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Abstract

A recent body of experimental literature has studied empirical game-theoretical analysis,
in which we have partial knowledge of a game, consisting of observations of a subset of the
pure-strategy profiles and their associated payoffs to players. The aim is to find an exact
or approximate Nash equilibrium of the game, based on these observations. It is usually
assumed that the strategy profiles may be chosen in an on-line manner by the algorithm.
We study a corresponding computational learning model, and the query complexity of
learning equilibria for various classes of games. We give basic results for exact equilibria
of bimatrix and graphical games. We then study the query complexity of approximate
equilibria in bimatrix games. Finally, we study the query complexity of exact equilibria
in symmetric network congestion games. For directed acyclic networks, we can learn the
cost functions (and hence compute an equilibrium) while querying just a small fraction of
pure-strategy profiles. For the special case of parallel links, we have the stronger result
that an equilibrium can be identified while only learning a small fraction of the cost values.

Keywords: query complexity, bimatrix game, congestion game, equilibrium computation,
approximate Nash equilibrium

1. Introduction

Suppose that we have a game G with a known set of players, and known strategy sets for
each player. We want to design an algorithm to solve G, where the algorithm can only
obtain information about G via payoff queries. In a payoff query, the algorithm proposes
pure strategies for the players, and is told the resulting payoffs. The general research issue
is to identify bounds on the number of payoff queries needed to find an equilibrium, subject
to the assumption that G belongs to some given class of games.

A general motivation for this topic is the observation that many data sets are generated
by economic or competitive agents (for example, transactions on financial or housing mar-
kets, or data on competitive sports). In attempting to learn from such data sets, it seems
natural to model the data-generating process in game-theoretic terms. To some extent,
the work in agent-based modelling takes this approach: artificial selfish agents are simu-
lated, and a general objective is to replicate various economic phenomena and behaviour
observed in practice. We believe that there is considerable future potential to study data

c©2015 John Fearnley, Martin Gairing, Paul Goldberg, and Rahul Savani.
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sets through the game-theoretic lens in this way. This has already been successfully applied
in the AI literature on adversarial security games, where for example, Yang et al. (2013)
apply existing models of bounded rationality of an opponent, so as to improve competitive
performance in an artificial online game. Nguyen et al. (2013) develop an adversary-based
model (SUQR), and shows that SUQR’s performance (using parameters learned from real-
world data) improves over previous work that does not model adversaries; an extension of
SUQR has been deployed in the context of fishery protection (Brown et al., 2014).

Suppose we have a detailed computational simulation of a game, and we want to check
whether it gives rise to behaviour that corresponds with real-world observations. A key
observation is that it is not too hard to take such a simulation, and feed into it some chosen
behaviour of the (simulated) players, check their payoffs, and (with a bit more effort) check
on whether players have a profitable deviation. From this, we get to the challenge of
searching for an equilibrium of the game (ideally a Nash equilibrium; failing that, search
for something weaker, like an approximate equilibrium). In terms of the theoretical model
that is studied in this paper, our choice of which behaviour to simulate corresponds to the
choices of payoff queries. Below, we discuss some of the literature in this setting.

1.1 Motivation for the Payoff-Query Model

Given a game, especially one with many players, it is unreasonable to assume that anyone
maintains an explicit representation of its payoff function, even if the game in question has
a concise representation. However, in practice, a reasonable modelling assumption is that
given, say, a strategy profile for the players, we can determine their payoffs, or some estimate
of the payoffs. We are interested in algorithms that find Nash equilibria using a sequence
of queries, where a query proposes a strategy profile and gets told the payoffs. We would
like to know under what conditions an algorithm can find a solution based on knowledge of
some but not all of the game’s payoffs, which is particularly important when there are many
players, and the number of pure-strategy profiles is large. This kind of challenge (where
you get observations of profile/payoff-vector pairs, and you want to find an approximate
equilibrium, as opposed to the unobserved payoffs) has been the subject of experimental
work (Vorobeychik et al., 2007; Wellman, 2006; Jordan et al., 2008; Duong et al., 2009),
where Jordan et al. (2008) focuses on the case (highly relevant to this work) where the
algorithm selects a sequence of pure profiles and gets told the resulting payoffs. In this
paper, we introduce the study of payoff-query algorithms from the algorithmic complexity
viewpoint.1 We are interested in upper and lower bounds on the query complexity of classes
of games.

From the theoretical perspective, we are studying a constrained class of algorithms for
computing equilibria of games. The study of such constraints—especially when they lead
to lower bounds or impossibility results—informs us about the approaches that a successful
algorithm needs to apply. In the context of equilibrium computation, other kinds of con-
straint include uncoupled algorithms for computing equilibria (Hart and Mas-Colell, 2003,
2006), communication-constrained algorithms (Hart and Mansour, 2010; Daskalakis et al.,

1. The first discussion of this query model (that we are aware of) appears in a 2009 blog article by Noam
Nisan: https://agtb.wordpress.com/2009/11/19/the-computational-complexity-of-pure-nash/.
It also mentions best-reply queries, which deserve further attention in the context of adversarial security
games.
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2010; Goldberg and Pastink, 2012), and oblivious algorithms (Daskalakis and Papadim-
itriou, 2009). Of course, the restriction to polynomial-time algorithms is the best-known
example of such a constraint. Based on the algorithms and open problems identified in this
paper, we find this to be a compelling motivation for the further study of the payoff-query
model. There are various related kinds of query models that are suggested by the payoff
queries studied here, which may also be of similar theoretical interest; we discuss these in
Section 6.

1.2 Games and Query Models

In this paper we introduce the study of payoff-queries for strategic-form games. We also
consider two models of concisely represented games: graphical games (Kearns et al., 2001),
where players are nodes in a given graph and the payoff of a player only depends on the
strategies of its neighbors in the graph, and symmetric network congestion games (Fabrikant
et al., 2004), where the strategy space of the players corresponds to the set of paths that
connect two nodes in a network.

For a strategic-form game, we assume that initially the querying algorithm only knows n,
the number of players, and k, the number of pure strategies that each player has.

Definition 1 A payoff query to a strategic-form game G selects a pure-strategy profile s
for G, and is given as response, the payoffs that G’s players derive from s.

There are kn pure-strategy profiles in a game, and one could learn the game exhaustively
using this many payoff queries. We are interested in algorithms that require only a small
fraction of this trivial upper bound on the number of queries required.

For our results on symmetric network congestion games, we assume that initially the
algorithm only knows the number of players n, and the set of pure strategies, given by a
graph and the common origin/destination pair. In this paper, we will consider two different
query models, which are described in the following definition.

Definition 2 For a symmetric congestion game with m pure strategies and n players, a
query is a tuple q = (q1, q2, . . . , qm), where for each pure strategy i = 1, 2, . . . ,m, we have
that qi ∈ {0, 1, 2, . . . , n} is the number of players assigned to i under the query. In response
to the query q, the querier learns the costs of each pure strategy under the assigned loads.
Let Q =

∑
1≤i≤m qi. We consider two different types of queries:

• In a normal-query, we require that Q = n;

• in an under-query, we require that Q < n.

Normal-queries correspond to the query model that we use for strategic-form games.
For a congestion game, m, which is the number of paths from the origin to the destination
in a graph, may be exponential. While we defined a query for congestion as a tuple of
length m, both normal-queries and under-queries require at most n positions of this tuple
to be non-zero, so the query can be specified succinctly. We use under-queries in our query
algorithm for games played on directed acyclic graphs. We feel that under-queries are a
reasonable query model for congestion games, because we can ask some players to refrain
from playing when we conduct our query.
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Definition 3 The payoff query complexity of a class of games G, with respect to some
solution concept such as exact or approximate Nash equilibrium, is defined as follows. It
is the smallest N such that there is some algorithm A that, given N payoff queries to any
game G ∈ G (where initially none of the payoffs of G are known) can find a solution of G.

The definition imposes no computational bound on the algorithm A. It is to some
extent inspired by the work on query-based learning initiated by Angluin (1987, 1988), in
the context of computational learning theory. Note that A may select the queries in an
on-line manner, so queries can depend on the responses to previous queries.

1.3 Overview of Results

We study a variety of different settings. In Section 3, we consider bimatrix games. Our
first result is a lower bound for computing an exact Nash equilibrium: in Theorem 4, we
show that computing an exact Nash equilibrium in a k× k bimatrix game has payoff query
complexity k2, even for zero-sum games. In other words, we have to query every pure
strategy profile.

We then turn our attention to approximate Nash equilibria, where we obtain some more
positive results. With the standard assumption that all payoffs lie in the range [0, 1], we
show that, when 2 ≤ i ≤ k − 1, the payoff query complexity of computing a (1 − 1

i )-
approximate Nash equilibrium is at most 2k − i + 1 (Theorem 5) and at least k − i + 1
(Theorem 7.) We also observe that, when ε ≥ 1 − 1

k , no payoff queries are needed at all,
because an ε-Nash equilibrium is achieved when both players mix uniformly over their pure
strategies.

The query complexity of computing an approximate Nash equilibrium when ε < 1
2

appears to be a challenging problem, and we provide an initial lower bound in this direction
in Theorem 13: we show that the payoff query complexity of finding a ε-approximate Nash
equilibrium for ε = O( 1

log k ) is Ω(k · log k). This gives an interesting contrast with the ε ≥ 1
2

case. Whereas we can always compute a 1
2 -approximate with 2k − 1 payoff queries, there

exists a constant ε < 1
2 for which this is not the case, as shown in Corollary 14.

Having studied payoff query complexity in bimatrix games, it is then natural to look for
improved payoff query complexity results in the context of “structured” games. In partic-
ular, we are interested in concisely represented games, where the payoff query complexity
may be much smaller than the number of pure strategy profiles. As an initial result in this
direction, in Section 4 we consider graphical games, where we show (Theorem 15) that for
graphical games with constant degree d, a Nash equilibrium can be found with a polynomial
number of payoff-queries. This algorithm works by discovering every payoff in the game,
however unlike bimatrix games, this can be done without querying every pure strategy
profile.

Finally, we focus on two different models of congestion games. In Section 5.1, we
consider the case of parallel links, where the game has a origin and destination vertex,
and m parallel links between them. We show both lower and upper bounds for this set-
ting. If n denotes the number of players, then we obtain a log(n) + m payoff query lower
bound (Theorem 17), which applies to both query models. We obtain an upper bound of

O
(

log(n) · log2(m)
log log(m) +m

)
normal-queries (Theorem 26). Note that there are n ·m different
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payoffs in a parallel links game, and so our upper bound implies that you do not need to
discover the entire payoff function in order to solve a parallel links game.

In Sections 5.2, 5.3, 5.4, we consider the more general case of symmetric network con-
gestion games on directed acyclic graphs. We show that if the game has m edges and n
players, then we can find a Nash equilibrium using m · n payoff queries (Theorem 38). The
algorithm discovers every payoff in the game, but it only queries a small fraction of the pure
strategy profiles.

2. Related Work

In Section 2.1 we review some very recent work on the payoff query complexity of related
game-theoretic solution concepts. In Section 2.2 we review the experimental work that
motivated this paper. Finally, in Section 2.3 we discuss the relationship with work that
analyzes best-response dynamics in a game-theoretic context.

2.1 Payoff Query Complexity

A preliminary version of this paper appeared at the ACM conference on Electronic Com-
merce (Fearnley et al., 2013). Work that has appeared subsequently has studied query
complexity bounds for general multi-player games, where the main parameter of interest is
the number of players n, who usually just have a small number of pure strategies. Hart
and Nisan (2013) obtain an exponential in n lower bound on the query complexity of
finding an exact correlated equilibrium of a general n-player game. Note that any lower
bounds for correlated equilibria apply immediately to Nash equilibria, since Nash equilibria
are a more restrictive solution concept. For approximate correlated equilibria, no-regret
learning dynamics can be simulated by a randomized payoff query algorithm, so that the
query complexity of approximate correlated equilibria is polynomial in the number of play-
ers (Babichenko and Barman, 2013; Hart and Nisan, 2013). Goldberg and Roth (2014)
studied the dependence in more detail, obtaining upper and lower bounds that are loga-
rithmic in n. However, randomness is needed: Babichenko and Barman (2013) show that
finding an exact correlated equilibrium in an n-player games using a deterministic querying
strategy requires exponentially many queries in n. This result is strengthened by Hart and
Nisan (2013), where it is shown that deterministic querying strategies require exponentially
many queries to find even a 1

2 -approximate correlated equilibrium.
Approximate well-supported Nash equilibria are another approximate solution concept

that have been studied in the context of strategic form games (Kontogiannis and Spirakis,
2010; Fearnley et al., 2012). Babichenko (2014) has shown that finding a 10−8-well sup-
ported Nash equilibrium in an n-player game requires exponentially many queries in n.
The query complexity of computing an ε-approximate Nash equilibrium (that need not be
well-supported) for constant ε remains open, although Goldberg and Roth (2014) show that
it is polynomial if the unknown game can be specified concisely. These negative results for
n-player games motivate the consideration of more structured classes of games, such as
congestion games, which we study in this paper.

Finally, Fearnley and Savani (2014) have continued the study of query complexity for
bimatrix games that was initiated in this paper. In particular, they show that randomized
payoff query algorithms can achieve better approximation ratios: there is a randomized
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algorithm for finding a (3−
√
5

2 +ε)-Nash equilibrium in a bimatrix game usingO(k·log k
ε2

) payoff
queries, and there is a randomized algorithm for finding a (23 +ε)-WSNE in a bimatrix game

using O(k·log k
ε4

) payoff queries. They also provide lower bounds for finding well-supported
Nash equilibria in bimatrix games: finding an ε-well-supported Nash equilibrium requires
k − 1 payoff queries for any ε < 1, even in win-lose games, and finding a 1

3k -well-supported
Nash equilibrium requires Ω(k2) payoff queries, even in win-lose constant-sum games.

2.2 Experimental Work

In empirical game-theoretic analysis (Wellman, 2006; Jordan et al., 2010), a game is pre-
sented to the analyst via a set of observations of strategy profiles (usually, pure) and their
corresponding payoffs. This set of profiles/payoff-vector pairs is called an empirical game.
In some settings the strategy profiles are randomly generated, but it is typically feasible
to obtain observations via the payoff queries we study here. The profile selection prob-
lem (Jordan et al., 2008) is the challenge of choosing helpful strategy profiles. The strategy
exploration problem (Jordan et al., 2010) is the special case of finding the best way to limit
the search to a small subset of a large set of strategies.

Jordan et al. (2008) envisage a setting where a game (called a base game) has a cor-
responding game simulator, an implementation in software, which is amenable to payoff
queries; a more general scenario allows the observed payoffs to be sampled from a distri-
bution associated with the strategy profile. The distribution is sometimes considered to be
due to a noise process, and called the noisy payoff model in Jordan et al. (2008). In this
paper we just consider deterministic payoffs, the “revealed payoff model” in Jordan et al.
(2008). As noted in Vorobeychik et al. (2007), a profile can be repeatedly queried to sample
from the distribution of payoffs, and thus get an estimate of the expected values. The two
interacting challenges are to identify helpful queries, and to use them to find pure-strategy
profiles that have low regret (where regret refers to the largest incentive to deviate, amongst
the players.)

Vorobeychik et al. (2007) study the payoff function approximation task, in which a
game belongs to a known class, and there is a “regression” challenge to determine certain
parameters; the information about the game consists of a random sample of pure profiles
and resulting payoff vectors. However, success is measured by the extent that the players’
predicted behaviour is close to the behaviour associated with the true payoffs, rather than
how well the true payoff functions are estimated.

Work on specific classes of multi-player games includes the following. Duong et al. (2009)
studies algorithms for learning graphical games; we consider a graphical game learning
algorithm in Section 4. Jordan et al. (2008) apply payoff-query learning to various kinds
of games generated by GAMUT (Nudelman et al., 2004), including a class of congestion
games. Vorobeychik et al. (2007) investigate a first-price auction and also a scheduling
game, where payoffs are described via a finite random sample of profile/payoff vector pairs.
Earlier, Sureka and Wurman (2005) study search for pure Nash equilibria of strategic-form
games (mostly with 5 players and 10 pure strategies).

Most of the experimental work (e.g., Sureka and Wurman 2005; Jordan et al. 2008;
Duong et al. 2009) uses local search, in which profiles that get queried are typically very
similar (differing in just one player’s strategy) from previously queried profiles. Jordan
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et al. (2008) experiment with local-search type algorithms in which when a player has the
incentive to deviate, the tested profile is updated with that deviation. Sureka and Wurman
(2005) study search for pure equilibria via best-response dynamics while maintaining a tabu
list, introduced to reduce the risk of cycles.

2.3 Best-Response Dynamics and Local Search

There is a large body of literature that studies best- and better-response dynamics for classes
of potential games, and gives bounds on the number of steps required for convergence to
pure-strategy equilibria. These dynamics relate to the payoff query model since they work
by exploring the space of pure profiles, and receiving feedback consisting of payoffs. The
difference is that they purport to model a decentralized process of selfish behaviour by
the players, while the payoff query model envisages a centralized algorithm that is less
constrained. In this section, we discuss some of the relevant literature.

Local search processes in that each pure profile is obtained from the previous one by
letting a single player move have been studied extensively in the literature. Bounds on
the convergence of deterministic best-response dynamics were considered in Even-Dar et al.
(2003) and Feldmann et al. (2003). Gairing and Savani (2010, 2011) showed polynomial
convergence of better-response dynamics for certain hedonic games. The better-response
dynamics considered by Goldberg (2004) is the basic randomized local search algorithm,
and bounds are obtained for its convergence to exact equilibrium. The work in Bei et al.
(2013) shows that a Nash equilibrium of a bimatrix game can be found using a polynomial
number of better-response queries. Chien and Sinclair (2011) study another local search,
the ε-Nash dynamics, and its convergence to approximate equilibria. Gairing et al. (2010)
employ controlled local search dynamics (where a sequence of players moves simultaneously)
to compute pure Nash equilibria. Other papers (e.g., Fischer et al. 2006; Berenbrink et al.
2007) analyze strongly-distributed dynamics in which multiple players can move in the
same time step; consequently the dynamics is not a local search. However, these dynamical
systems could all be simulated by payoff query algorithms in which at each step, at most
nk queries are made to determine the change in payoffs available to players as a result of
unilateral deviations. This paper begins to answer the question: how much better could a
payoff query algorithm do, if it were not subject to that constraint?

Finally, Alon et al. (2011) consider payoff-query algorithms for finding the costs of paths
in graphs. They consider weight discovery protocols where the aim is to determine the costs
of edges, and shortest path discovery protocols where the aim is to find a shortest path. The
latter objective is more similar to what we consider, since it can avoid the need to learn
the entire payoff function; also a shortest path is an equilibrium strategy for the one-player
case of a network congestion game.

3. Bimatrix Games

In this section, we give bounds on the payoff-query complexity of computing approximate
Nash equilibria of bimatrix games. A bimatrix game is a pair (R,C) of two k× k matrices:
R gives payoffs for the row player, and C gives payoffs for the column player. We use [n]
to denote the set {1, 2, . . . , n}. A mixed strategy is a probability distribution over [k]. A
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mixed strategy profile is a pair s = (x,y), where x is a mixed strategy for the row player,
and y is a mixed strategy for the column player.

Let s = (x,y) be a mixed strategy profile in a k× k bimatrix game (R,C). We say that
a row i ∈ [k] is a best response for the row player if Ri · y = maxj∈[k]Rj · y. We say that a
column i ∈ [k] is a best response for the column player if (x · C)i = maxj∈[k](x · C)j . We
define the row player’s regret under s = (x,y) as the difference between the payoff of a best
response and the payoff that the row player obtains under s. More formally, the regret that
the row player suffers under s is:

max
j∈[k]

(Rj · y)− x ·R · y.

Similarly, the column player’s regret is defined to be:

max
j∈[k]

((x · C)j)− x · C · y.

We say that s is a mixed Nash equilibrium if both players have regret 0 under s. An ε-Nash
equilibrium is an approximate solution concept: for every ε ∈ [0, 1], we say that s is an
ε-Nash equilibrium if both players suffer regret at most ε under s.

We begin with the following simple observation: there are no query-efficient algorithms
for finding exact Nash equilibria, even in zero-sum games. The following theorem shows
that, in order to find an exact Nash equilibrium, we must query all k × k pure strategy
profiles.

Theorem 4 The payoff query complexity of finding an exact Nash equilibrium of a zero-sum
k × k bimatrix game is k2.

Proof Consider a generalized version of matching pennies, where the column player pays 1
to the row player whenever both players choose the same strategy, otherwise the row player
pays 1 to the column player. Note that this is a zero-sum game, and that it has a unique
Nash equilibrium, namely when both players randomize uniformly over their strategies.
Now suppose each payoff in the game is perturbed by a small quantity, in such a way as to
maintain the zero-sum property. For small perturbations, there will still be a unique fully-
mixed equilibrium profile, but it can only be known exactly if all the payoffs are known
exactly. Thus, we cannot find an exact Nash equilibrium in a zero-sum bimatrix game
without querying all k × k pure strategy profiles.

Theorem 4 implies that we cannot devise query-efficient algorithms for finding exact
Nash equilibria. This naturally raises the question of whether there are query-efficient
algorithms for finding approximate Nash equilibria, and we continue by presenting results
on this topic. From now on, we will assume that all payoffs lie in the range [0, 1], which is
a standard assumption when finding approximate Nash equilibria.

Our first result is an upper bound. The work of Daskalakis, Mehta, and Papadim-
itriou (Daskalakis et al., 2009b) gives a simple algorithm for finding a 1

2 -Nash equilibrium.
We adapt their algorithm to prove the following result.
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Theorem 5 Let i be chosen such that 2 ≤ i ≤ k−1. The payoff query complexity of finding
a (1− 1

i )-approximate equilibrium of a k × k bimatrix game is at most 2k − i+ 1.

Proof We begin by querying all k pure profiles where the row player plays row 1. This
allows us to find the column player’s best response to row 1. Without loss of generality, we
can assume that this is column 1. Now query column 1 against rows 2 through k − i + 2.
Note that we have made a total of 2k − i + 1 queries. Let row b be a row that maximizes
the row player’s payoff against column 1, among those that we have queried. Let B =
{1, b} ∪ [k− i+ 3, k]. We propose the following mixed strategy profile s: the column player
plays column 1 with probability 1, and the row player mixes uniformly over the strategies
in B. Note that the row player is mixing between i rows, and thus plays each of them with
probability 1

i .

We claim that s is a (1− 1
i )-approximate Nash equilibrium. Let R and C be the actual

payoff matrices for the row and column player, respectively. Note that the row player’s best
response to column 1 is either b, or one of the strategies between k − i+ 3 and k. Call this
row j, and observe that j ∈ B. The row player’s regret can be expressed as

Rj,1 −
∑
`∈B

1

i
·R`,1 = (1− 1

i
) ·Rj,1 −

∑
`∈B\{j}

1

i
·R`,1

≤ (1− 1

i
) ·Rj,1

≤ (1− 1

i
).

Let j′ be a pure best response of the column player under s. Observe that, since column 1
is a best response against row 1, we have that C1,j′ −C1,1 ≤ 0. The column player’s regret
can be expressed as:∑

`∈B

1

i
· C`,j′ −

∑
`∈B

1

i
· C`,1 =

∑
`∈B

1

i
· (C`,j′ − C`,1)

≤
∑

`∈B\{1}

1

i
· (C`,j′ − C`,1)

≤
∑

`∈B\{1}

1

i

= 1− 1

i
.

Thus we have shown that both players suffer regret at most 1− 1
i .

Note that, when i = 2, the algorithm of Theorem 5 finds a 1
2 -Nash equilibrium using the

same technique as the algorithm from Daskalakis et al. (2009b). For i > 2, our algorithm
uses fewer payoff queries in exchange for a worse approximation. When i = k − 1, our
algorithm uses k+2 payoff queries in order to find a (1− 1

k−1)-Nash equilibrium. It turns out

that, for ε ≥ 1− 1
k , we do not need to make any payoff queries at all: an ε-Nash equilibrium
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is obtained when both players play the uniform distribution over their strategies, because
both players must place at least 1

k of their probability on a pure best response.

We now turn our attention to lower bounds. We complement the result of Theorem 5 by
showing lower bounds for finding (1− 1

i )-Nash equilibria, when i is in the range 2 ≤ i ≤ k−1.
First, we prove an auxiliary lemma.

Lemma 6 Suppose that every payoff query that is made by the algorithm returns 0 for both
players. Let i be chosen such that 2 ≤ i ≤ k − 1, and let s be a (1 − 1

i )-Nash equilibrium.
Any column that receives no queries must be assigned at least 1

i probability by s.

Proof Suppose, for the sake of contradiction, that c is a column that received no queries,
and that c is assigned strictly less than 1

i probability by s. We construct a column player
matrix C as follows:

Cj,j′ =

{
1 if j′ = c,

0 otherwise.

Since c received no queries, C is consistent with all queries that have been made. Note that
the column player’s payoff under s is strictly less than 1

i , and that the payoff of playing c as
a pure strategy is 1. Thus, the column player’s regret is strictly greater than 1− 1

i , which
contradicts the fact that s is a (1− 1

i )-Nash equilibrium

Now we can show our lower bound.

Theorem 7 Let i be chosen such that 2 ≤ i ≤ k−1. The payoff query complexity of finding
a (1− 1

i )-approximate Nash equilibrium of a k × k bimatrix game is at least k − i+ 1.

Proof Assume that all payoff queries return 0 for both players. Suppose, for the sake
of contradiction, that an algorithm makes fewer than k − i + 1 payoff queries, and then
outputs s as a (1 − 1

i )-Nash equilibrium. It follows that there must be at least i columns
that have received no payoff queries at all, and without loss of generality, we can assume
that these are columns 1 through i. By Lemma 6, we know that s must assign exactly 1

i
probability to each of the columns 1 through i. Since there are k rows, there is at least
one row r that receives probability at most 1

k under s. We construct a row player payoff
matrix R as follows:

Rj,j′ =

{
1 if j = r and 1 ≤ j′ ≤ i,
0 otherwise.

Since columns 1 through i were not queried, R is consistent with all queries that have been
made so far. The row player’s payoff under s is at most 1

k . On the other hand, the row
player would receive payoff 1 for playing r as a pure strategy. Thus, the row player’s regret
is at least:

1− 1

k
> 1− 1

i
.

This contradicts the fact that s is a (1− 1
i )-Nash equilibrium.
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As a consequence of the previous two theorems, when 2 ≤ i ≤ k − 1, we have that the
payoff query complexity of finding a (1− 1

i )-Nash equilibrium lies somewhere in the range
[k − i + 1, 2k − i + 1]. Determining the precise payoff query complexity for this case is an
open problem.

So far, we have only considered ε-Nash equilibria with ε ≥ 1
2 . Of course, the most

interesting challenge is to determine the payoff query complexity for values of ε < 1
2 . By our

previous results, we know that the payoff query complexity for finding a 1
2 -Nash equilibrium

is O(k), and the payoff query complexity for finding a 0-Nash equilibrium is O(k2), but we
do not know how the payoff query complexity behaves as we vary ε between 0 and 1

2 .

Our final result in this section will be to show a lower bound for ε = O( 1
log k ). We will

show that finding a O( 1
log k )-Nash equilibrium requires Ω(k log k) payoff queries. This estab-

lishes that there are some positive values of ε, for which computing an ε-Nash equilibrium
is asymptotically harder than computing a 1

2 -Nash equilibrium.

We will use the following class of bimatrix games, which have been previously used in
Theorem 1 of Feder et al. (2007).

Definition 8 Let G` be the class of strategic-form games where the column player has `
pure strategies and the row player has

(
`
`/2

)
pure strategies (where we assume ` is even).

Let G` ∈ G` be the win-lose constant-sum game in which each row of the row player’s payoff
matrix has `

2 1’s and `
2 0’s, all rows being distinct. The column player’s payoffs are one

minus the row player’s payoffs.

It is well-known that every zero-sum game has a unique value, which is the payoff that
both players can guarantee for themselves, independent of what the other player does. The
value of each game G` ∈ G` is 1

2 since either player can obtain payoff 1
2 by using the uniform

distribution over their pure strategies. Our first lemma shows that, if the column player
deviates from this by placing too much probability on a single column, then the row player
can take advantage and increase his payoff.

Lemma 9 Suppose that in game G` ∈ G`, the column player places probability α > 1/` on
some column. Then the row player can obtain a payoff strictly greater than 1

2 + α
2 −

1
2` .

Proof Let j be a column that the column player plays with probability α. Let Rj be
the set of rows where the row player obtains payoff 1 against column j. Suppose the row
player plays the uniform distribution over rows in Rj . When the column player plays j, the
row player receives payoff 1. Let j′ 6= j be a column, and consider the payoffs to the row
player where j′ intersects Rj . A fraction `/2−1

`−1 of these entries pay the row player 1, while a

fraction `/2
`−1 pay the row player 0. Consequently whenever the column player plays j′ 6= j,

the row player’s expected payoff is `/2−1
`−1 . Thus with probability α the row player receives

payoff 1, and with probability 1 − α he receives payoff `/2−1
`−1 . Thus, the payoff to the row
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player is

α+ (1− α)
`/2− 1

`− 1
=

1

2
+

1

2
α− 1− α

2(`− 1)

>
1

2
+

1

2
α− 1− 1/`

2(`− 1)

=
1

2
+

1

2
α− 1

2`
,

which completes the proof.

We now use the bound from the previous lemma to show that, in an approximate Nash
equilibrium for G`, the column player cannot place too much probability on any individual
column.

Corollary 10 Let α > 1
k , and let ε = 1

4(α − 1
` ). In every ε-Nash equilibrium of G` ∈ G`,

the column player plays each individual column with probability at most α.

Proof Suppose, for the sake of contradiction, that there is an ε-Nash equilibrium s in
which that the column player assigns column j probability strictly greater than α. Then,
by Lemma 9, the row player’s payoff is strictly greater than 1

2 + α
2 −

1
2` , and therefore the

row player’s payoff in s must be strictly greater than:

1

2
+
α

2
− 1

2`
− ε =

1

2
+ ε.

Therefore, the column player obtains payoff strictly less than 1
2 − ε. Since the value of G`

is 1
2 , the column player’s regret in s is strictly greater than ε, and therefore s is not an

ε-Nash equilibrium.

We can now provide a lower bound for the payoff query complexity of finding an ap-
proximate Nash equilibrium for the games in G`.

Lemma 11 For any ε < 1
12 , and any even ` ≥ 8, the payoff query complexity of finding an

ε-Nash equilibrium for the games in G` is at least 1
2 ·
(
`
`/2

)
· ( 1

16ε+4/`).

Proof Let A be a payoff query algorithm for finding an ε-Nash equilibrium, and, for the
sake of contradiction, suppose that A makes fewer than 1

2 ·
(
`
`/2

)
· ( 1

16ε+4/`) many payoff
queries when processing G`. Let s be the mixed strategy profile that A outputs for G`. By
Corollary 10, we know that no column in s is assigned more than α = 4ε+ 1

` probability. We
also know that in s, the row player’s payoff is at most 1

2 + ε, since s is an ε-Nash equilibrium

of a constant-sum game with value 1
2 . Since A made fewer than 1

2 ·
(
`
`/2

)
· ( 1

16ε+4/`) payoff

queries, at least half of the rows received fewer than ( 1
16ε+4/`) queries. Since ` ≥ 8, this

implies that there are at least 1
2 ·
(
8
4

)
= 45 such rows. Thus, there is one such row, call it r,

that is played with probability strictly less than 1
12 in s.
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Since s assigns at most α probability to each column, the total amount of probability
that s assigns to the queried portion of r is at most α( 1

16ε+4/`) = 1
4 . Now suppose that we

modify G` by replacing all un-queried entries of r with payoffs of 1 for the row player. Call
this new game G′`. Note that A outputs the same strategy profile s for both G` and G′`.

Let p be the payoff to the row player of playing s in G`, and let p′ be the payoff to the
row player of playing s in G′`. Since r is played with probability less than 1

12 we have:

p′ ≤ p+
1

12

≤ 7

12
+ ε

However, the row player’s best response payoff is at least 3
4 in G′`, so we have:

p′ ≥ 3

4
− ε

Therefore, we can conclude that:

7

12
+ ε ≥ 3

4
− ε

2ε ≥ 2

12
.

However, this is impossible because ε < 1
12 .

Finally, we can extend the lower bound to square bimatrix games.

Lemma 12 For k × k bimatrix games, the payoff query complexity of finding an ε-Nash
equilibrium, for ε ≤ 1

8 , is at least k · ( 1
32/ log k+64ε).

Proof Let k′ be the largest number of the form
(
`
`/2

)
that is smaller than k. We have

k′ ≥ k/4 and ` ≥ log k/2. By Lemma 11, the number of payoff queries needed to find an
ε-Nash equilibrium for games in Gk is at least:(

`

`/2

)
·
( 1

16ε+ 4/`

)
= k′

( 1

4/`+ 16ε

)
≥ k

4

( 1

4/`+ 16ε

)
≥ k

4

( 1

8/ log(k) + 16ε

)
= k

( 1

32/ log(k) + 64ε

)
.

The games in G` can be written down as a k × k game, by duplicating rows and columns.
Note that these operations preserve approximate equilibria.

By taking ε ∈ O( 1
log k ) in the previous lemma, we arrive at our final theorem.
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Theorem 13 For k × k bimatrix games, the payoff query complexity of finding a ε-Nash
equilibrium for ε ∈ O( 1

log k ), is Ω(k · log k).

Recall, from Theorem 5, that we can always find a 1
2 -Nash equilibrium using 2k − 1

payoff queries. The following corollary of Lemma 12 shows that there are some constant
values of ε that require more payoff queries.

Corollary 14 There is a constant value of ε > 0 for which finding an ε-Nash equilibrium
of a k × k bimatrix game requires strictly more than 2k − 1 payoff queries.

Proof Consider, for example, setting ε = 1
512 in Lemma 12. Then, for the family of games

in Gl with l > 2256, we have a lower bound of

k ·

(
1

32
log k + 0.0064

)
> k · 1

0.125 + 0.125
= 4 · k,

on the number of payoff queries.

An interesting question that remains is whether one can a show a superlinear lower
bound on the number of payoff queries required for a constant ε.

4. Graphical Games

In this section, we give a simple payoff query-based algorithm for graphical games. In a
n-player graphical game (Kearns et al., 2001) the players lie at the vertices of a degree-d
graph, and a player’s payoff is a function of the strategies of just himself and his neighbors.
If every player has k pure strategies, then the number of payoff values needed to specify such
a game is n · kd+1 which, in contrast with strategic-form games, is polynomial (assuming d
is a constant).

Previously, Duong et al. (2009) have carried out experimental work on payoff queries
for graphical games. They compare a number of techniques; the algorithm we give here is
polynomial-time but would likely be less efficient in practice. Similar to Duong et al. (2009),
we assume the underlying graph G is unknown, and we want to induce the structure of G,
and corresponding payoffs.

Theorem 15 For constant d, the payoff query complexity of degree d graphical games is
polynomial.

Proof Algorithm 1 constructs a directed graph G for the (initially unknown) game, along
with the payoff function. G is the “affects graph” (Goldberg and Papadimitriou, 2006) in
which a directed edge (p′, p) has the meaning that the behaviour of p′ may affect p’s payoff.
Note that in Step 2, |S| < (n · k)d+1. In a degree-d graphical game, any player p’s payoffs
may be affected by his own strategy, and the strategies of at most d neighbours p′ for which
edges (p′, p) exist. The existence of edge (p′, p) is equivalent to the existence of strategy
profiles s, s′ that differ only in p′’s strategy and p’s payoff. This is what Algorithm 1 checks
for. Finally, when the edges, and hence neighborhoods of the graph game have been found,
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Algorithm 1 GraphicalGames

1: Initialize graph G’s vertices to be the player set, with no edges
2: Let S be the set of pure profiles in which at least n− (d+ 1) players play 1.
3: Query each element of S.
4: for all players p, p′ do
5: if ∃s, s′ ∈ S that differ only in p’s payoff and p′’s strategy then
6: add directed edge (p, p′) to graph
7: end if
8: end for
9: for all players p do

10: Let Np be p’s neighborhood in G
11: Use elements of S to find p’s payoffs as a function of strategies of Np

12: end for

it is simple to read off each player’s payoff matrix from the data in Step 3.

Algorithm 1 learns the entire payoff function with polynomially many queries, but there
are a couple of important caveats. First, although the payoff query complexity is polynomial,
the computational complexity is probably not polynomial, since it is PPAD-complete to
actually compute an approximate Nash equilibrium for graphical games (Daskalakis et al.,
2009a). Second, while Algorithm 1 avoids querying all of the exponentially-many pure-
strategy profiles, it works in a brute-force manner that learns the entire payoff function. It
is natural to prefer algorithms that find a solution without learning the entire game, such
as those that we give for Theorem 5 and Theorem 26.

5. Congestion Games

In this section, we give bounds on the payoff-query complexity of finding a pure Nash
equilibrium in symmetric network congestion games. A congestion game is defined by a
tuple Γ = (N,E, (Si)i∈N , (fe)e∈E). Here, N = {1, 2, . . . , n} is a set of n players and E
is a set of resources. Each player chooses as her strategy a set si ⊆ E from a given set
of available strategies Si ⊆ 2E . Associated with each resource e ∈ E is a non-negative,
non-decreasing function fe : N 7→ R+. These functions describe costs (latencies) to be
charged to the players for using resource e. An outcome (or strategy profile) is a choice of
strategies s = (s1, s2, ..., sn) by players with si ∈ Si. For an outcome s define ne(s) = |i ∈
N : e ∈ si| as the number of players that use resource e. The cost for player i is defined
by ci(s) =

∑
e∈si fe(ne(s)). A pure Nash equilibrium is an outcome s where no player has

an incentive to deviate from her current strategy. Formally, s is a pure Nash equilibrium
if for each player i ∈ N and s′i ∈ Si, which is an alternative strategy for player i, we have
ci(s) ≤ ci(s−i, s′i). Here (s−i, s

′
i) denotes the outcome that results when player i changes her

strategy in s from si to s′i.

In a network congestion game, resources correspond to the edges in a directed multigraph
G = (V,E). Each player i is assigned an origin node oi, and a destination node di. A
strategy for player i consists of a sequence of edges that form a directed path from oi to
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di, and the strategy set Si consists of all such paths. In a symmetric network congestion
game all players have the same origin and destination nodes. We write a symmetric network
congestion game as Γ = (N,V,E, (fe)e∈E , o, d), where collectively V , E, o, and d succinctly
define the strategy space (Si)i∈N . We consider two types of networks, directed acyclic
graphs, and the special case of parallel links. We assume that initially we only know the
number of players n and the strategy space. The latency functions are completely unknown
initially. As discussed in Section 1.2, we use several different querying models for congestion
games.

5.1 Parallel Links

In this section, we consider congestion games on m parallel links. We present a lower
bound and an upper bound on the query complexity of finding an exact pure equilibrium
of these games. To simplify the presentation of the algorithmic ideas of our upper bound
we introduce a stronger type of query that we call an over-query. Recall from Definition 2
that for a query q = (q1, q2, . . . , qm), we denote by Q the total number of players used in
the query, i.e., Q =

∑
1≤i≤m qi.

Definition 16 An over-query is a query with n < Q ≤ mn.

First, we present a simple lower bound. Then, we present an algorithm, Algorithm 2,
that uses over-queries. Finally, we extend Algorithm 2 to Algorithm 3, which uses only
normal queries.

5.1.1 Lower Bound

In the following construction, we show that, if there are two links, the querier can do no
better than performing binary search in order to find an equilibrium, which gives a lower
bound of log(n) many queries.

Theorem 17 A querier must make log(n) queries to determine a pure equilibrium of a
symmetric network congestion game played on parallel links.

Proof We fix a graph G with two parallel links e1 and e2, and we fix the cost of e2 so that
fe2(i) = 1 for all i ∈ N . We consider functions fe1 that only return costs of 0 or 2. Since
fe1 is non-decreasing, this implies that it will be a step function with a single step. We say
that the step is at location i ∈ N if fe1(j) = 0 for all j ≤ i, and fe1(j) = 2 for all j > i.
The precise location of the step will be decided by an adversary, in response to the queries
that are received.

The adversary’s strategy maintains two integers ` and u with ` < u, and initially the
adversary sets ` = 0 and u = n. Intuitively, for all values below ` the adversary has fixed
fe1 to 0, and for all values above u the adversary has fixed fe1 to 2. The range of values
between u and ` are yet to be fixed, and all values in this range could potentially be the
location of the step.

Suppose that the adversary receives the query s. The adversary will respond with a pair
(c1, c2), where c1 is the cost of e1, and c2 is the cost of e2. The adversary uses the following
strategy:
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• If ne1(s) ≤ `, then the adversary responds with (0, 1). If ne1(s) ≥ u, then the adversary
responds with (2, 1).

• If ne1(s) < u+`
2 , that is, if ne1(s) is closer to ` than it is to u, then the adversary sets

` = ne1(s), and responds with (0, 1).

• If ne1(s) ≥ u+`
2 , that is, if ne1(s) is closer to u than it is to `, then the adversary sets

u = ne1(s), and responds with (2, 1).

Note that, if there exists an i with ` < i < u, then the querier cannot correctly deter-
mine the Nash equilibrium. This is because the step could be at location i, or it could be at
location i− 1. In the former case, the unique Nash equilibrium assigns i players to e1 and
n− i players to e2, and in the latter case the unique Nash equilibrium assigns i− 1 players
to e1 and n− i+ 1 players to e2. By construction, the adversary’s strategy ensures that, in
response to each query, the gap between u and ` may decrease by at most one half. Thus,
the querier must make log(n) queries to correctly determine the Nash equilibrium.

Consider a one-player game with m links. Clearly, we can solve this game with a single
over-query, but it requires m normal-queries. Thus we have the following:

Corollary 18 If over-queries are not allowed, then log(n) +m queries are required to de-
termine a pure equilibrium of a symmetric network congestion game played on parallel links.

5.1.2 Upper Bound

In the rest of the section, we provide an upper bound, by constructing a payoff query algo-

rithm that finds a pure Nash equilibrium using O
(

log(n) · log2(m)
log log(m) +m

)
normal-queries.

In order to simplify the presentation, we first present an algorithm that makes use of
over-queries; later we show how this can be translated into an algorithm that uses only
normal-queries.

Our algorithm is based on an algorithm from Gairing et al. (2008). Before we present
the full algorithm, we give an overview of the techniques by describing a simplified version
of the algorithm. The basic idea is to group the players into blocks, where all players in a
block must play on the same link. In each round of the algorithm, we maintain the property
that the blocks are in equilibrium: no block of players can collectively deviate in order to
reduce their latency. Initially, we place all of the players into a single block, and then in
each round of the algorithm, we split each block into smaller blocks, and compute a new
equilibrium for the smaller block size. Eventually, the block size will be reduced to 1, and
we recover a Nash equilibrium for the congestion game.

In this simplified overview, we will assume that the number of players n is equal to 2i

for some i ∈ N, and in each round we will split each block in half. Our full algorithm will
be more complicated, because it must deal with an arbitrary number of players, and it will
split each block into more than two pieces.

At the start of the algorithm, we place all n players into a single block. In order to find
an equilibrium for this block, we simply have to find the link i ∈ [m] that minimizes fi(n).
We can do this with a single over-query q = (n, n, . . . , n).
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Now suppose that we have found an equilibrium s for block size δ. We split each block
into two equal-sized pieces, and our task is to transform s into an equilibrium for block size
δ/2 by moving blocks between the links. The key observation is that no link can receive two
or more blocks of size δ/2, because this would contradict the fact that s is an equilibrium
for block size δ. So, when we move blocks between the links, we know that each link can
receive at most one block, and therefore each link can lose at most m − 1 blocks. We can
make a single over-query in order to discover the cost of adding one block of δ/2 players to
each link: we simply query p = (n1(s) + δ/2, n2(s) + δ/2, . . . , nm(s) + δ/2). On the other
hand, we also need to determine how many blocks each link loses, and a naive approach
would use m queries. We now describe a method that uses only log2(m) under-queries.

Suppose that we guess that q, where 0 ≤ q ≤ m, is the number of blocks that move. We
give an algorithm that verifies whether this guess is correct. Let c be the (q+ 1)th smallest
cost returned by the query p. For each link i, we determine qi, which is the number of
δ/2-sized blocks that would want to move to a link with cost c. This can be done by binary
search, in parallel for all links, using log(m) many under-queries. There are three possible
outcomes:

• If
∑m

i=1 qi = q, then our guess was correct, and exactly q blocks move.

• If
∑m

i=1 qi < q, then our guess was too high, and fewer than q blocks move.

• If
∑m

i=1 qi > q, then our guess was too low, and more than q blocks move.

Thus, to determine exactly how many blocks move between the links, we can use a nested
binary search approach: in the outer level we guess how many blocks move, and in the inner
level we use the above method to determine if our guess was too high or too low.

Therefore, we have a method for constructing an equilibrium with block size δ/2 from
an equilibrium with block size δ using log2(m) many queries. Since we start with block size
n, and we halve the block size in every round, this gives us an algorithm that finds a Nash
equilibrium using log(n) · log2(m) many payoff queries.

In the rest of this section, we formalize this approach, and we deal with the issues that
were ignored in this high level overview. In particular, we present an algorithm that works
for any number of players n, and we obtain a slightly better query complexity by splitting
each block into log(m) many pieces in each round.

5.1.3 The Algorithm With Over-Queries

The algorithm ParallelLinks is depicted in Algorithm 2. We will show how this algorithm

can be implemented with O
(

log(n) · log2(m)
log log(m)

)
queries. The integer k is a parameter to

the algorithm that determines the block size: in each round we consider blocks of size kt

for some t. To deal with the fact that n may not be an exact power of k, the algorithm
will maintain a special link a. This link is defined to be the link upon which all n players
are placed at the start of the algorithm. Since every subsequent step of the algorithm only
moves players in blocks of size kt for some t, link a will be the only link where the number
of players is not a multiple of the block size.
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We start by formalizing the notion of an equilibrium with respect to a certain block
size. For a congestion game Γ, an integer δ, and a special link a we define a δ-equilibrium
as follows:

Definition 19 (δ-equilibrium) A strategy profile s is δ-equilibrium if δ|ni(s) for all i ∈
[m] \ {a}, and for all links i, j ∈ [m] with ni(s) ≥ δ we have fi(ni(s)) ≤ fj(nj(s) + δ).

Intuitively, we can think of a δ-equilibrium s as a Nash equilibrium in a transformed
game where the players (of the original game) are partitioned into blocks of size δ and each
block represents a player in the transformed game, and the remaining (n mod δ) players are
fixed to link a.

We start with an informal description of algorithm ParallelLinks. On Line 1 we
initialize the algorithm by using one over-query to find the cheapest link a, and assigning
all n players to link a. Note that a is the special link, as discussed earlier. The algorithm
then works in T + 1 phases, where T = b log(n)log(k)c. Each phase is one iteration of the for-
loop. The for-loop is governed by a variable t, which is initially T and decreases by 1 in
each iteration. Within any iteration, the algorithm uses the function RefineProfile to
transform a kt+1-equilibrium into a kt-equilibrium.

Recall, from the overview, that when k = 2, we observed that each link can receive at
most one block when we transform a 2t+1-equilibrium into a 2t-equilibrium. In the following
lemma, we establish a similar property for the case where k 6= 2: each link can receive at
most 2k blocks. Intuitively, one might expect each link to receive at most k blocks, but the
extra factor of two here arises due to the special link a, which was not considered in our
simplified overview.

Lemma 20 We can convert a kt+1-equilibrium s into a kt-equilibrium s′ by moving at most
2k blocks of δ = kt players to any individual link and at most km blocks of δ players in
total.

Proof Since s is kt+1-equilibrium, we have fi(ni(s)) ≤ fj(nj(s) + kt+1) for all i ∈ [m] \
{a}, j ∈ [m]. Moreover, either (a) fa(na(s)) ≤ fj(nj(s) + kt+1) for all j ∈ [m] or (b)
na(s) < kt+1. In case (a), this implies that each link j ∈ [m] can in total receive at most
k blocks of size δ = kt from links i ∈ [m]. In case (b), this implies that each link j ∈ [m]
can in total receive at most k blocks of size δ = kt from links i ∈ [m] \ {a}. Moreover, since
na(s

′) < kt+1, we can move at most k blocks of size δ = kt from link a. In either case,
in total we move at most km blocks. All links receive and lose players only in multiples
of δ = kt, which ensures that kt|ni(s′) for all i ∈ [m] \ {a} is maintained.

RefineProfile determines the number of blocks q which have to be moved by binary
search on q in [0, km]. Since, by Lemma 20, each link receives at most 2k blocks of players,
we spend 2k over-queries to determine the cost function values fi(ni(s) + r · δ) for all
integers r ≤ 2k and all links i ∈ [m]. We define Q as the multi-set of these cost function
values and Cmin(q) as the (q + 1)-th smallest value in Q. Intuitively, Cmin(q) is the cost of
the (q + 1)-th block of players that we would move. We use Cmin(q) to find out how many
blocks of players qi we need to remove from each link i ∈ [m] so that on each link i ∈ [m] the
cost is at most Cmin(q) or we can’t remove any further blocks as there are less than δ players
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Algorithm 2 ParallelLinks

1: a← arg mini∈[m] fi(n) . 1 over-query
2: initialize strategy profile s by putting all players on link a
3: T ← b log(n)log(k)c
4: for t = T, T − 1, . . . , 1, 0 do
5: δ ← kt

6: s← RefineProfile(s, δ, 0, km)
7: end for
8: return s

9: function RefineProfile(s, δ, qmin, qmax)
10: q ← b qmin+qmax

2 c
11: Parallel for all links i ∈ [m]
12: Query for costs fi(ni(s) + rδ) for all integer 1 ≤ r ≤ 2k . 2k queries
13: EndParallel
14: Q← the ordered multiset of 2km non-decreasing costs from the above queries
15: Cmin(q)← (q + 1)-th smallest element of Q
16: pi ← number of times i ∈ [m] contributes a cost to the q smallest elements of Q

17: Parallel for all links i ∈ [m]

18: if fi(ni(s)− bni(s)
δ c · δ) > Cmin(q) then . 1 query; only relevant for link a

19: qi ← bni(s)
δ c

20: else (using binary search on qi ∈ [0,min{km, bni(s)
δ c}])

21: qi ← min {qi : fi(ni(s)− qiδ) ≤ Cmin(q)} . log(km) queries
22: end if
23: EndParallel

24: if
∑

i∈[m] qi = q then
25: modify s by removing qi and adding pi blocks of δ players to every link i ∈ [m]
26: return s
27: else if

∑
i∈[m] qi < q then

28: return RefineProfile(s, δ, qmin, q − 1)
29: else (

∑
i∈[m] qi > q)

30: return RefineProfile(s, δ, q + 1, qmax)
31: end if
32: end function
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assigned to it (which can only happen on link a). By Lemma 20, we need to remove at most

km blocks of players in total. Therefore, we can determine qi ∈ [0,min{km, bni(s)
δ c}] by

binary search in parallel on all links, with O(log(km)) under-queries. Now, if
∑m

i=1 qi = q,
we can construct a kt-equilibrium by removing qi and adding pi blocks of δ players to link
i ∈ [m]; note that for every i ∈ [m], either qi = 0 or pi = 0. If

∑m
i=1 qi 6= q, our guess for q

was not correct and we have to continue the binary search on q.

The algorithm maintains the following invariant:

Lemma 21 RefineProfile(s, δ, 0, km) returns a δ-equilibrium.

Proof Observe that δ = kt. In the first iteration of the for-loop t = T and Refine-
Profile(s, δ, 0, km) gets a n-equilibrium as input, which is also a kT+1-equilibrium as all
players are assigned to link a and kT+1 > n. So to prove the claim, it suffices to show that
RefineProfile(s, kt, 0, km) returns a kt-equilibrium if s is a kt+1-equilibrium. For the s
returned by RefineProfile and the q in its returning call, we have fi(ni(s)) ≤ Cmin(q) ≤
fi(ni(s) + δ) for all i ∈ [m] \ {a}. The left inequality follows from line 21 of the algorithm.
The right inequality follows from the definition of Cmin(q) as the (q+1)-th smallest element
in Q in line 15 of the algorithm. For link a, we have fa(na(s)) ≤ Cmin(q) ≤ fa(na(s) + δ)
or we have fa(na(s)) > Cmin(q) and na(s) < δ, where the first case follows from lines 21
and 15 as before, and the second case corresponds to line 18. Noting that RefineProfile
maintains that for the returned s we have δ|ni(s) for all i ∈ [m] \ {a}, as it only moves
blocks of size δ, the claim follows.

We now give the payoff query complexity of RefineProfile. We split our analysis
into over-queries and non-over-queries (i.e., under-queries or normal-queries), because we
will later show how the over-queries made by our algorithm can be translated into a sequence
of non-over-queries.

Lemma 22 RefineProfile(s, δ, 0, km) can be implemented to make 2k over-queries and
O(log2(km)) non-over-queries.

Proof Note that, as long as δ is not changed, the queries made on line 12 are the same
for each pair of qmin and qmax. Therefore, we can perform these 2k over-queries when we
first call RefineProfile(s, δ, 0, km), and reuse these values during each recursive call. For
each value of q in the binary search, we make O(log(km)) under-queries to determine the
qi’s in parallel for all links i ∈ [m]. The binary search on q adds a factor log(km) to give
O(log2(km)) under-queries in total.

Using Lemmas 21 and 22 we can prove the following.

Theorem 23 Algorithm ParallelLinks returns a pure Nash equilibrium and can be im-

plemented with O
(

log(n) · log2(m)
log log(m)

)
queries, of which 2k · logn

log logm are over-queries.

Proof In the last iteration of the for-loop, we have δ = 1, so Lemma 21 implies that s
is a pure Nash equilibrium. To find the best link in line 1 of the algorithm, we need one
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over-query. For any k ≥ 2, the algorithm does T + 1 = O
(
log(n)
log(k)

)
iterations of the for-

loop. In each iteration we do O(log2(km)) under-queries and 2k over-queries. Choosing
k = Θ(log(m)) yields the stated upper bound.

5.1.4 Using Only Normal-Queries

We now show how Algorithm 2 can be implemented without the use of over-queries. Before
doing so, we remark that in the parallel links setting, we can also avoid using under-queries.

Lemma 24 If a parallel links congestion game has at least two links, then every under-
query can be translated into two normal-queries.

Proof Suppose that the game has m ≥ 2 links, and let q = (i1, i2, . . . , im) be an under-
query. Let n′ =

∑m
j=1 ij be the total number of players used by q. We define the following

queries:

q1 = (i1 + n− n′, i2, . . . , im),

q2 = (i1, i2, . . . , im + n− n′).

Clearly both q1 and q2 are normal-queries. Query q1 tells us the cost of links 2 through m
under q, and query q2 tells us the cost of link 1 under q.

We now turn our attention to over-queries. The following lemma gives a general method
for translating over-queries into non-over-queries.

Lemma 25 Suppose we have a parallel links game with m links and n players. Let q =
(i1, i2, . . . , im) be an over-query, and define n′ =

∑m
j=1 ij. We can translate q into a sequence

of O(n′/n) non-over-queries.

Proof Consider the following greedy algorithm: find the smallest index b such that∑
1≤k≤b ik ≤ n and assign links 1 through b to query q1. Set i1 = i2 = · · · = ib = 0,

and repeat. Clearly each query that we generate during this algorithm is a non-over-query.

Let q1, q2, . . . , ql be the sequence of non-over-queries generated by the above algorithm
for some l ∈ N. For each j, let nj be the total number of players used by qj , and observe
that

∑
1≤j≤l nj = n′. Furthermore, for each j, let rj = n−nj be the total number of players

not used by qj . Due to the nature of our algorithm, for every j > 1 we must have rj−1 < nj ,
since the first link assigned to qj would not fit in qj−1. Thus, we have:∑

1≤j≤l
rj <

∑
2≤j≤l

nj + r1

< n′ + n.
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Since the total number of queries in the sequence is l, we can argue that:

l =
1

n

∑
1≤j≤l

(nj + rj)

<
n′ + n′ + n

n

= 1 +
2n′

n
.

Thus, our greedy algorithm generates at most O(n′/n) non-over-queries.

In order to optimize the number of non-over queries we have to adjust Algorithm 2
slightly, because with k = Θ(log(m)) in early iterations of the for loop, i.e., when T is
large, the number of players used in the over queries in line (12) is large and applying

Lemma 25 would yield to a total of O
(

log(n) · log2(m)
log log(m) +m log(m)

)
non-over queries. In

contrast, we will now show that our adjusted Algorithm 3 can be implemented to do at most

O
(

log(n) · log2(m)
log log(m) +m

)
non-over queries. The main idea is to divide the block size by 2

until the number of players in a block is small enough and then switch to k = Θ(log(m)).

Algorithm 3 ParallelLinks avoiding over-queries

1: a← arg mini∈[m] fi(n) . 1 over-query
2: initialize strategy profile s by putting all players on link a

3: T ←
⌊
log(n/m)
log(k)

⌋
4: T0 ← largest t such that kT 2t < n
5: for t = T0, T0 − 1, . . . , 1 do
6: δ ← kT 2t

7: s← RefineProfile(s, δ, 0, 2m)
8: end for
9: for t = T, T − 1, . . . , 1, 0 do

10: δ ← kt

11: s← RefineProfile(s, δ, 0, km)
12: end for
13: return s

To initialize our algorithm, we make an over-query that uses m·n players. By Lemma 25,
we can translate this into O(m) non-over-queries.

In each iteration of the first for-loop with value t, by Lemma 22, we make O(1) over-
queries. Each of these uses at most n + m · 4 · kT 2t players. By Lemma 25, these can be
simulated by O(1 + mkT 2t

n ) non-over-queries. Summing up over all iterations and using the
definition of T0, we can argue that all over-queries of the first for-loop can be simulated by

T0∑
t=1

O
(

1 +
mkT 2t

n

)
= O(T0) +O

(
mkT 2T0

n

)
= O(m)
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non-over-queries.
In each iteration of the second for-loop with value t, by Lemma 22, we make make 2k

over-queries that each use at most n + m · 2k · kt players. By Lemma 25, these can be
simulated by O(mk

t+1

n ) non-over-queries. Summing up over all iterations, we can argue that
all over-queries of the second for-loop can be simulated by

b log(n/m)
log(k)

c∑
t=0

O
(
mkt+1

n

)
= O

(
m

n
· k

log(n/m)
log(k)

+1
)

= O
(
m

n
· k

log(n)−log(m)+log(k)
log(k)

)
= O

(
m

n
· k

log(n)
log(k)

)
= O(m)

non-over-queries.
Combining this discussion with Theorem 23, we get the following result:

Theorem 26 Algorithm 3 returns a pure Nash equilibrium and can be implemented with

O
(

log(n) · log2(m)
log log(m) +m

)
queries.

The upper bound in Theorem 26 should be contrasted with the lower bound of log(n)+m
(Corollary 18).

5.2 Symmetric Network Congestion Games on Directed Acyclic Graphs

In this section, we consider symmetric network congestion games on directed acyclic graphs.
Throughout this section, we consider the game Γ = (N,V,E, (fe)e∈E , o, d), where (V,E) is
a directed acyclic graph (DAG). We use the ≺ relation to denote a topological ordering over
the vertices in V . We assume that, for every vertex v ∈ V , there exists a path from o to v,
and there exists a path from v to d. If either of these conditions does not hold for some
vertex v, then v cannot appear on an o-d path, and so it is safe to delete v.

We provide an algorithm that discovers a cost function for each edge. One immediate
observation is that we can never hope to find the actual cost functions. Consider the
following one-player congestion game.

o d

b

a

d

c

If we set fa(1) = fb(1) = 1 and fc(1) = fd(1) = 0, then all o-d paths have cost 1. However,
we could also achieve the same property by setting fa(1) = fb(1) = 0 and setting fc(1) =
fd(1) = 1. Thus, it is impossible to learn the actual cost functions using payoff queries.

To deal with this issue, we introduce the notion of an equivalent cost function: two cost
functions are said to be equivalent if they assign the same cost to every strategy profile.
We show that, while it is impossible to find the actual cost function via payoff queries, we
can use payoff queries to find an equivalent cost function.
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Our algorithm proceeds inductively over the number of players in the game. For the
base case, we give an algorithm that finds an equivalent cost function f ′ such that f ′e(1) is
defined for every edge e. This corresponds to learning all the costs in a one-player congestion
game played on Γ. Then, for the inductive step, we show how the costs for an i-player game
can be used to find the costs in an i+ 1 player game. That is, we use the known values of
f ′e(j) for j ≤ i to find the cost of f ′e(i + 1) for every edge e. Therefore, at the end of the
algorithm, we have an equivalent cost function f ′ for an n-player game on Γ, and we can
then apply a standard congestion game algorithm (Fabrikant et al., 2004) in order to solve
our game.

Unlike our work on parallel links, in this section we will not use over-queries at all. In
each inductive step, when we are considering an i-player congestion game, we will make
queries that use exactly i players. Thus, in the first n− 1 rounds we will use under-queries,
and in the final round we will use normal-queries. For the sake of brevity, in this section
we will use the word “query” to refer to both normal and under-queries.

As a shorthand for defining queries, we use notation of the form s ← (1 7→ p, 3 7→ q).
This example defines s to be a four-player query that assigns 1 player to p and 3 players
to q, where p and q are paths from the origin to the destination in a symmetric network
congestion game. We use Query(s) to denote the outcome of querying s. It returns a
function cs, which gives the cost of each strategy when s is played.

5.2.1 Preprocessing

Our algorithm requires a preprocessing step. We say that edges e and e′ are dependent if
visiting one implies that we must visit the other. More formally, e and e′ are dependent
if, for every o-d path p, we either have e, e′ ∈ p, or we have e, e′ /∈ p. We preprocess the
game to ensure that there are no pairs of dependent edges. To do this, we check every pair
of edges e and e′, and test whether they are dependent. If they are, then we contract e′,
i.e., if e′ = (v, u), then we delete e′, and set v = u. The following lemma shows that this
preprocessing is valid, and therefore, from now on, we can assume that our congestion game
contains no pair of dependent edges.

Lemma 27 There is an algorithm that, given a congestion game Γ, where (V,E) is a DAG,
produces a game Γ′ with no pair of dependent edges, such that every Nash equilibrium of Γ′

can be converted to a Nash equilibrium of Γ. The algorithm and conversion of equilibria
take polynomial time and make zero payoff queries. Moreover, payoff queries to Γ′ can be
trivially simulated with payoff queries to Γ.

Proof Our algorithm will check, for each pair of edges e = (v, u) and e′ = (v′, u′), whether e
and e′ are dependent. This is done in the following way. Note that if v = v′, then e and e′

cannot possibly be dependent. Thus, we can assume without loss of generality that v ≺ v′.
The algorithm performs two checks:

• Delete e and verify that there is no path from o to v′.

• Delete e′ and verify that there is no path from u to d.

The first check ensures that every path that uses e′ must also use e. The second check
ensures that every path that uses e must also use e′. Thus, if both checks are satisfied,
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then e and e′ are dependent. On the other hand, if one of the checks is not satisfied, then
we can construct an o-d path that uses e and not e′, or a path that uses e′ and not e, which
verifies that e and e′ are not dependent.

Whenever the algorithm finds a pair of edges e, e′ ∈ E that are dependent, it contracts e′.
More formally, if e′ = (v, u), then the algorithm constructs a new congestion game Γ′ =
(N,V ′, E′, (f ′e)e∈E′ , o, d) where V ′ = V \ {u}, and E′ contains:

• every edge (w, x) ∈ E with and w 6= u, and

• an edge (v, x) for every edge (u, x) ∈ E.

Note that E′ does not contain e′. Moreover, we define the cost functions f ′ as follows. For
each edge e′′ 6= e, we set f ′e′′(i) = fe′′(i) for all i. For the edge e, we define f ′e(i) = fe(i)+fe′(i)
for all i.

We argue that this operation is correct. Since e and e′ are dependent, we have that, for
every strategy profile s, and for every o-d path p:∑

e′′∈p
f ′e′′(i) =

∑
e′′∈p

fe′′(i).

Therefore, we can easily translate every Nash equilibrium of Γ′ into a Nash equilibrium
for Γ. Moreover, every payoff query for Γ′ can be translated into a payoff query for Γ by
adding the edge e′ where appropriate.

Thus, the algorithm constructs a sequence of games Γ1, Γ2, . . . , where each game Γi+1

is obtained by contracting an edge in Γi. Moreover, the Nash equilibria for Γi+1 can be
translated to Γi, which implies that the algorithm is correct. This algorithm can obviously
be implemented in polynomial time. Moreover, since the algorithm only inspects structural
properties of the graph, it does not make any payoff queries.

5.2.2 Equivalent Cost Functions

As we have mentioned, we cannot hope to find the actual cost function of Γ using payoff
queries. To deal with this, we introduce the following notion of equivalence.

Definition 28 (Equivalence) Two cost functions f and f ′ are equivalent if for every
strategy profile s = (s1, s2, . . . , sn), we have

∑
e∈si fe(ne(s)) =

∑
e∈si f

′
e(ni(s)), for all i.

Clearly, the Nash equilibria of a game cannot change if we replace its cost function f with
an equivalent cost function f ′.

We say that (f ′e)e∈E is a partial cost function if for some e ∈ E and some i ≤ n, f ′e(i)
is undefined. We say that f ′′ is an extension of f ′ if f ′′ is a partial cost function, and if
f ′′e (i) = f ′e(i) for every e ∈ E and i ≤ n for which f ′e(i) is defined. We say that f ′′ is a total
extension of f ′ if f ′′ is an extension of f ′, and if f ′′e (i) is defined for all e ∈ E and all i ≤ n.

Definition 29 (Partial equivalent cost function) Let f be a cost function. We say
that f ′ is a partial equivalent of f if f ′ is a partial cost function, and if there exists a total
extension f ′′ of f ′ such that f ′′ is equivalent to f .
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Our goal is to find a total equivalent cost function by learning the costs one edge at
a time. Thus, our algorithm will begin with a partial cost function f0 such that f0e (i)
is undefined for all e ∈ E and all i ≤ n. Since it is undefined everywhere, it is obvious
that f0 is a partial equivalent of f . At every step of the algorithm, we will take a partial
equivalent cost function f ′ of f , and produce an extension f ′′ of f ′, such that f ′′ is still a
partial equivalent of f . This guarantees that, when the algorithm terminates, the final cost
function is equivalent to f .

5.3 The One-Player Case

For the one player case, our algorithm is relatively straightforward. The algorithm proceeds
iteratively by processing the vertices according to their topological order, starting from the
origin vertex o, and moving towards the destination vertex d. Each time we process a vertex
k, we determine the cost of every incoming edge (u, k). There are two different cases: the
case where k 6= d, and the case where k = d. For the latter case, we will observe that, once
we know the cost of every edge other than the incoming edges to d, we can easily find the
cost of the incoming edges to d.

The former case is slightly more complicated. When we consider a vertex k 6= d, it
turns out that we cannot find the actual costs for the incoming edges at k. Instead, we can
use payoff queries to discover the difference in cost between each pair of incoming edges,
and therefore, we can find the cheapest incoming edge e to k. We proceed by fixing the
cost of e to be 0. Once we have done this, we can then set the cost of each other incoming
edge e′ according to the difference between the cost of e and the cost of e′, which we have
already discovered. We prove that this approach is correct by showing that it yields a
partial equivalent cost function.

We now formally describe our algorithm. The algorithm begins with the partial cost
function f0. The algorithm processes vertices iteratively according to the topological order-
ing ≺. Suppose that we are in iteration a+ 1 of the algorithm, and that we are processing
a vertex k ∈ V . We have a partial equivalent cost function fa such that fae (1) is defined for
every edge e = (v, u) with u ≺ k, for some vertex k. We then produce a partial equivalent
cost function fa+1 such that fa+1

e (1) is defined for every edge e = (v, u) with u � k. We
now consider the two cases.

5.3.1 The k 6= d Case

We use the procedure shown in Algorithm 4 to process k. Lines 1 through 3 simply copy
the old cost function fa into the new cost function fa+1. This ensures that fa+1 is an
extension of fa. The algorithm then picks an arbitrary k-d path p. The loop on lines 5
through 10 compute the function t, which for each incoming edge e = (v, k), gives the cost
t(ep) of allocating one player to ep. Note, in particular, that the value of the expression∑

e′∈p′ f
a
e′(1) is known to the algorithm, because every vertex visited by p′ has already been

processed. The algorithm then selects e′ to be the edge that minimizes t, and sets the cost
of e′ to be 0. Once it has done this, lines 13 through 15 compute the costs of the other
edges relative to e′.

When we set the cost of e′ to be 0, we are making use of equivalence. Suppose that the
actual cost of e′ is ce′ . Setting the cost of e′ to be 0 has the following effects:
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Algorithm 4 ProcessK

Input: A partial equivalent cost function fa, such that fae (1) is defined for all edges (v, u)
with u ≺ k.

Output: A partial equivalent cost function fa+1, such that fa+1
e (1) is defined for all edges

(v, u) with u � k.
1: for all e for which fae (1) is defined do
2: fa+1

e (1)← fae (1)
3: end for
4: p← an arbitrary k-d path
5: for all e = (v, k) ∈ E do
6: p′ ← an arbitrary o-v path
7: s← (1 7→ p′ep)
8: cs ← Query(s)
9: t(ep)← cs(p

′ep)−
∑

e′∈p′ f
a
e′(1)

10: end for
11: e′ ← edge e = (v, k) that minimizes t(ep)
12: fa+1

e′ (1)← 0
13: for all e = (v, k) ∈ E with e 6= e′ do
14: fa+1

e (1)← t(ep)− t(e′p)
15: end for

• Every incoming edge at k has its cost reduced by ce′ .

• Every outgoing edge at k has its cost increased by ce′ .

This maintains equivalence with the original cost function, because for every path p that
passes through k, the total cost of p remains unchanged. The following lemma formalizes
this and proves that fa+1 is indeed a partial equivalent cost function.

Lemma 30 Let k 6= d be a vertex, and let fa be a partial equivalent cost function such that
fae (1) is defined for all edges e = (v, u) with u ≺ k. When given these inputs, Algorithm 4
computes a partial equivalent cost function fa+1 such that fa+1

e (1) is defined for all edges
e = (v, u) with u � k.

Proof It can be verified that the algorithm assigns a cost to fa+1
e (1) for every edge

e = (v, u) with u � k. To complete the proof of the lemma, we must show that fa+1 is a
partial equivalent cost function. Since fa is a partial equivalent cost function, there must
exist a total extension of fa that is equivalent to f . Let f ′ denote such an extension. We
use f ′ to construct f ′′, which is a total extension of fa+1 that is equivalent to f .

Let e = (v, k) be an incoming edge at k. We begin by deriving a formula for t(ep),
which is computed on line 9. Note that, since f ′ is equivalent to f , we have cs(p

′ep) =∑
e′∈p′ep f

′
e′(1). Note also that f ′e′(1) = fae′(1) for every edge e′ ∈ p′. Therefore, we have the
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following:

t(ep) = cs(p
′ep)−

∑
e′∈p′

fae′(1)

=
∑

e′∈p′ep
f ′e′(1)−

∑
e′∈p′

f ′e′(1)

=
∑
e′∈ep

f ′e′(1).

For each edge e = (v, k) with e 6= e′, line 14 sets:

fa+1
e (1) = t(ep)− t(e′p)

=
∑
e′∈ep

f ′e′(1)−
∑
e′∈e′p

f ′e′(1)

= f ′e(1)− f ′e′(1).

Note also that line 12 sets:

fa+1
e′ (1) = 0 = f ′e′(1)− f ′e′(1).

Hence, we can conclude that fa+1
e (1) = f ′e(1)− f ′e′(1) for every incoming edge e = (v, k).

We construct the total cost function f ′′ as follows. For every edge e = (v, u), and every
i ≤ n, we set:

f ′′e (i) =


f ′e(i)− f ′e′(1) if u = k,

f ′e(i) + f ′e′(1) if v = k,

f ′e(i) otherwise.

Since we have shown that fa+1
e (1) = f ′e(1) − f ′e′(1) for every incoming edge e = (v, k), we

have that f ′′e (1) is a total extension of fa+1.
We must now show that f ′′e and f are equivalent. We will do this by showing that f ′′

and f ′ are equivalent. Let s = (s1, s2, . . . , sn) be an arbitrarily chosen strategy profile. If si
does not visit k, then we have:∑

e∈si

f ′′e (ne(s)) =
∑
e∈si

f ′e(ne(s)).

On the other hand, if si does visit k, then it must use exactly one edge (v, u) with u = k,
and exactly one edge (v, u) with v = k. Therefore, we have:∑

e∈si

f ′′e (ne(s)) =
∑
e∈si

f ′e(ne(s))− f ′e′(1) + f ′e′(1)

=
∑
e∈si

f ′e(ne(s)).

Therefore, f ′′ is equivalent to f ′, which also implies that it is equivalent to f . Thus, we
have found a total extension of f i+1 that is equivalent to f , as required.
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5.3.2 The k = d Case

When the algorithm processes d, it will have a partial cost function fa such that fae (1) is
defined for every edge e = (v, u) with u 6= d. The algorithm is required to produce a partial
cost function fa+1 such that fa+1

e (1) is defined for all e ∈ E. We use Algorithm 5 to do
this. Lines 1 through 3 ensure that fa+1 is equivalent to fa. Then, the algorithm loops

Algorithm 5 ProcessD

Input: A partial equivalent cost function fa, such that fae (1) is defined for all edges e =
(v, u) with u ≺ d.

Output: A partial equivalent cost function fa+1, such that fae (1) is defined for all edges
e ∈ E.

1: for all e for which fae (1) is defined do
2: fa+1

e (1)← fae (1)
3: end for
4: for all e = (v, d) ∈ E do
5: p← an arbitrary o-v path
6: s← (1 7→ pe)
7: cs ← Query(s)
8: fa+1

e (1)← cs(pe)−
∑

e′∈p f
a
e′(1)

9: end for

through each incoming edge e = (v, d), and line 8 computes fa+1
e (1). Note, in particular,

that fae′(1) is defined for every edge e′ ∈ p, and thus the computation on line 8 can be
performed. Lemma 31 shows that Algorithm 5 is correct.

Lemma 31 Let k 6= d be a vertex, and let fa be a partial equivalent cost function defined
for all edges (v, u) with u ≺ d. When given these inputs, Algorithm 5 computes a partial
equivalent cost function fa+1.

Proof Since fa is a partial equivalent cost function, there must exist a cost function f ′

that is an extension of fa, where f ′ is equivalent to f . We show that f ′ is also an extension
of fa+1.

Let e = (v, d) be an incoming edge at d. Consider line 8 of the algorithm. Note that,
since f ′ is equivalent to f , we have cs(pe) =

∑
e′∈pe f

′
e′(1). Furthermore, since f ′ is an

extension of fa+1, we have fae′(1) = f ′e′(1) for every e′ ∈ p. Therefore, we have:

fa+1
e (1) = cs(pe)−

∑
e′∈p

fae′(1)

=
∑
e′∈pe

f ′e′(1)−
∑
e′∈p

f ′e′(1)

= f ′e(1).

We also have fa+1
e (1) = f ′e(1) for every edge e = (v, u) with u ≺ d, and we have shown that

fa+1
e (1) = f ′e(1) for every edge e = (v, u) with u = d. Therefore f ′ is an extension of fa+1,

which implies that fa+1 is a partial equivalent cost function.
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The algorithm makes exactly |E| payoff queries in order to find the one-player costs.
When Algorithm 4 processes a vertex k, it makes exactly one query for each incoming edge
(v, k) at k. The same property holds for Algorithm 5. This implies that, in total, the
algorithm makes |E| queries.

5.4 The Many-Player Case

In this section, we will assume that we have a partial equivalent cost function fa such that
fae (j) is defined whenever j ≤ i. We will give an algorithm that goes through a sequence
of iterations and produces a partial cost function fa

′
, such that fa

′
e (j) is defined whenever

j ≤ i+ 1.

The algorithm for the many-player case proceeds in a similar fashion to the algorithm for
the one-player case. The algorithm is still iterative, and it still processes vertices according
to their topological order, starting from the origin o, and moving towards the destination
d. In this algorithm, when we process a vertex k, we will discover, for each incoming edge
e to k, the cost of placing i+ 1 players on e.

However, there is an additional complication. Our technique for discovering the cost of
placing i+ 1 players on the incoming edge at k requires two edge disjoint paths from k to
d, but there is no reason at all to assume that two such paths exist. We say that an edge e
is a bridge between two vertices v and u, if every v-u path contains e. Furthermore, if we
fix a vertex k ∈ V , then we say that an edge e is a k-bridge if e is a bridge between k-d.
The following lemma can be proved using the max-flow min-cut theorem and is a variant
of Menger’s theorem.

Lemma 32 Let v and u be two vertices. There are two edge disjoint paths between v and
u if, and only if, there is no bridge between v and u.

Proof Let (V,E) be a graph, and let v, u ∈ V be two vertices. We construct a network
flow instance where every edge e ∈ E has capacity 1, and we ask for the maximum flow
between v and u. Since each edge has capacity 1, we have that the maximum flow between
v and u is greater than 1 if, and only if, there are two edge-disjoint paths between v and u.
Moreover, by the max-flow min-cut theorem, the maximum flow from v to u is greater than
1 if and only if there is no bridge between v and u.

As a consequence of Lemma 32, we can only process k if there are no k-bridges. To
resolve this, before attempting to process k, we first use a separate algorithm to determine
the cost of placing i + 1 players on each k-bridge. After doing this, we can then find two
k-d paths that are edge disjoint except for k bridges. This, combined with the fact that we
know the cost of placing i+ 1 players on each k-bridge, is sufficient to allow us to process k.

The remainder of this section will proceed as follows. We first describe our algorithm
for finding the costs of the k bridges. After doing so, we then describe our algorithm for
processing k.
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5.4.1 Bridges

Given a vertex k, we show how to determine the cost of the k-bridges. Let b1, b2, . . . ,
bm denote the list of k-bridges sorted according to the topological ordering �. That is, if
b1 = (v1, u1), and b2 = (v2, u2), then we have v1 ≺ v2, and so on. Our algorithm is given a
partial cost function fa, such that fae (j) is defined for all j ≤ i, and returns a cost function
fa+1 that is an extension of fa where, for all `, we have that fa+1

b`
(i+ 1) is defined.

Our algorithm processes the k-bridges in reverse topological order, starting with the
final bridge bm. Suppose that we are processing the bridge bj = (v, u). We will make one
payoff query to find the cost of bj , which is described by the following diagram.

o k v u d
bj

p4

p5

p2 p3

p1

The dashed lines in the diagram represent paths. They must satisfy some special require-
ments, which we now describe. The paths p4 and p5 must be edge disjoint, apart from
k-bridges. The following lemma shows that we can always select two such paths.

Lemma 33 For each k-bridge bj = (v, u), there exists two paths p4 and p5 from u to d such
that p4 ∩ p5 = {bj+1, bj+2, . . . bm}.

Proof Note that for each `, there cannot exist a bridge between b` and b`+1. Therefore,
we can apply Lemma 32 to argue that there must exist two edge-disjoint paths between b`
and b`+1 For the same reason, we can find two edge-disjoint paths between bm and d. To
complete the proof, we simply concatenate these paths.

On the other hand, the paths p1, p2, and p3 must satisfy a different set of constraints,
which are formalized by the following lemma.

Lemma 34 Let bj = (v, u) be a k-bridge, let p2 be an arbitrarily chosen o-k path. There
exists an o-k path p1 and a k-v path p3 such that: p1 and p3 are edge disjoint; and if p1
visits k, then p2 and p1 use different incoming edges for k.

Proof We show how p1 and p3 can be constructed. This splits into two cases, and we
begin by considering the bridges bj with j > 1. Due to our preprocessing from Lemma 27,
bj and bj−1 cannot be dependent. Note that every o-d path that uses bj−1 must also use bj .
Therefore, there must exist an o-d path p that uses bj and not bj−1. We fix p1 to be the
prefix of p up to the point where it visits bj . Let p′3 be an arbitrarily selected path from k
to bj−1. Note that p1 cannot share an edge with p′3, because otherwise p1 would be forced
to visit bj−1.

We now show how p′3 can be extended to reach bj without intersecting p1. Since there
are no bridges between bj−1 and bj , we can apply Lemma 32 to obtain two edge-disjoint
paths q and q′ from bj−1 to bj . If one of these paths does not intersect with p1, then we
are done. Otherwise suppose, without loss of generality, that p1 intersects with q before it
intersects with q′. We create a path p′1 that follows p1 until the first intersection with q, and
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follows q after that. Since q and q′ are disjoint, the paths p′1 and p′3q
′ satisfy the required

conditions.

Now we consider the bridge b1. If k has at least two incoming edges, then we can apply
Lemma 32 to find two edge disjoint paths from k to b1, and we can easily construct p1 and
p3 using these paths. Otherwise, let e be the sole incoming edge at k. Since e and b1 are not
dependent, we can find a path p1 from o to b1 which does not use e, and we can use the same
technique as we did for j > 1 to find a path p3 from k to b1 that does not intersect with p1.

Algorithm 6 FindKBridges(k)

Input: A vertex k, and a partial equivalent cost function fa, such that fae (j) is defined for
every j ≤ i.

Output: A partial equivalent cost function fa+1, such that fa+1 is an extension of fa, and
fa+1
e is defined for every e that is a k bridge.

1: for all e and j for which fae (j) is defined do
2: fa+1

e (j)← fae (j)
3: end for
4: for j = m to 1 do
5: p4, p5 ← paths chosen according to Lemma 33
6: p1, p2, p3 ← paths chosen according to Lemma 34
7: s← (1 7→ p1bjp4, i 7→ p2p3bjp5)
8: cs ← Query(s)
9: fa+1

bj
(i+ 1)← cs(p1bjp4)−

∑
e∈p1 f

a+1
e (ne(s))−

∑
e∈p4 f

a+1
e (ne(s))

10: end for

Algorithm 6 shows how the cost of placing i+ 1 players on each of the k-bridges can be
discovered. Note that on line 9, since s assigns one player to p1, we have ne(s) = 1 for every
e ∈ p1. Therefore, fa+1

e (ne(s)) is known for every edge e ∈ p1. Moreover, for every edge
e ∈ p4, we have that ne(s) = i+ 1 if e is a k-bridge, and we have ne(s) = 1, otherwise. Since
the algorithm processes the k-bridges in reverse order, we have that fa+1

e (ne(s)) is defined
for every edge e ∈ p4. The following lemma shows that line 9 correctly computes the cost
of bj .

Lemma 35 Let k be a vertex, and let fa be a partial equivalent cost function, such that
fae (j) is defined for every j ≤ i. Algorithm 6 computes a partial equivalent cost function
fa+1, such that fa+1 is an extension of fa, and fa+1

e is defined for every e that is a k-bridge.

Proof It can be verified that the algorithm constructs a partial cost function fa+1 that
is an extension of fa, where fa+1

e is defined for every e that is a k-bridge. We must show
that fa+1 is partially equivalent to f . Since fa is partially equivalent to f , there exists
some total cost function f ′ that is an extension of fa, such that f ′ is equivalent to f . We
will show that f ′ is also an extension of fa+1.

We will do so inductively. The inductive hypothesis is that fa+1
e (i + 1) = f ′e(i + 1) for

every e = bl with ` > j. The base case, where j = m, is trivial, because there are no
k-bridges bl with ` > m. Now suppose that we have shown the inductive hypothesis for
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some j. We show that fa+1
bj

(i + 1) = f ′bj (i + 1). Let s be the strategy queried when the
algorithm considers bj .

Consider an edge e ∈ p1. By Lemma 34, we have that ne(s) = 1. By assumption, we
have that fa+1

e (1) = fae (1) for every edge e, and therefore fa+1
e (ne(s)) = f ′e(ne(s)) for every

edge e ∈ p1.
Now consider an edge e ∈ p4. By Lemma 33, we have that ne(s) = 1 whenever e is not

a k-bridge, and we have ne(s) = i+ 1 whenever e is a k-bridge. Therefore, by the inductive
hypothesis, we have that fa+1

e (ne(s)) = f ′e(ne(s)) for every e ∈ p4.
Since f ′ is equivalent to f , we have that cs(p1blp3) =

∑
e∈p1blp3 f

′
e. Therefore, line 9 sets:

fa+1
bj

(i+ 1) = cs(p1bjp4)−
∑
e∈p1

fa+1
e (ne(s))−

∑
e∈p4

fa+1
e (ne(s))

=
∑

e∈p1bjp4

f ′e(ne(s))−
∑
e∈p1

f ′e(ne(s))−
∑
e∈p4

f ′e(ne(s))

= f ′bj (ne(s)) = f ′bj (i+ 1).

Thus, the algorithm correctly sets fa+1
bj

(i+ 1) = f ′bj (i+ 1).

5.4.2 Incoming Edges of k

We now describe the second part of the many-player case. After finding the cost of each
k-bridge, we find the cost of each incoming edge at k. The following diagram describes how
we find the cost of e = (v, k), an incoming edge at k .

o v k d
ep

p1

p2

The path p is an arbitrarily chosen path from o to v. The paths p1 and p2 are chosen
according to the following lemma.

Lemma 36 There exist two k-d paths p1, p2 such that every edge in p1 ∩ p2 is a k-bridge.

Proof Let b1 be the first k-bridge. By Lemma 32 there exists edge disjoint paths from k
to b1. The proof can then be completed by applying Lemma 33.

Algorithm 7 shows how we find the cost of putting i + 1 players on each edge e that
is incoming at k. Apart from the consideration of k-bridges, this algorithm uses the same
technique as Algorithm 4. Consider line 9. Note that every vertex in p is processed before
k is processed, and therefore fa+1

e′ (i+1) is known for every e′ ∈ p. Moreover, for every edge
e′ ∈ p1, we have that ne′(s) = i + 1 if e′ is a k-bridge, and we have ne′(s) = 1 otherwise.
In either case, the fa+1

e′ (ne′(s)) is known for every edge e′ ∈ p1. The following lemma show
that line 9 correctly computes fa+1

e (i+ 1).
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Algorithm 7 MultiProcessK

Input: A vertex k, and a partial equivalent cost function fa, such that fae (j) is defined for
all e ∈ E when j ≤ i, all e = (v, u) with u ≺ k when j = i+ 1, and all k-bridges when
j = i+ 1.

Output: A partial equivalent cost function fa, such that fae (j) is defined for all e ∈ E
when j ≤ i, and for all e = (v, u) with u � k when j = i+ 1.

1: for all e and j for which fae (j) is defined do
2: fa+1

e (j)← fae (j)
3: end for
4: for all e = (v, k) ∈ E do
5: p← an arbitrary o-v path
6: p1, p2 paths chosen according to Lemma 36
7: s← (1 7→ pep1, i 7→ pep2)
8: cs ← Query(s)
9: fa+1

e (i+ 1)← cs(pep1)−
∑

e′∈p f
a+1
e′ (i+ 1)−

∑
e′∈p1 f

a+1
e′ (ne′(s)).

10: end for

Lemma 37 Let k be a vertex, and let fa be a partial equivalent cost function, such that
fae (j) is defined for all e ∈ E when j ≤ i, all e = (v, u) with u ≺ k when j = i + 1, and
all k-bridges when j = i+ 1. Algorithm 7 produces a partial equivalent cost function fa+1,
such that fa+1

e (j) is defined for all e ∈ E when j ≤ i, and for all e = (v, u) with u � k when
j = i+ 1.

Proof It can be verified that the algorithm constructs a partial cost function fa+1 that
is defined for the correct parameters. We must show that fa+1 is partially equivalent to f .
Note that fa+1 is an extension of fa. Since fa is partially equivalent to f , there exists some
total cost function f ′ that is an extension of fa, such that f ′ is equivalent to f . We will
show that f ′ is also an extension of fa+1.

Let e = (v, k) be an incoming edge at k. We will show that fa+1
e (i + 1) = f ′e(i + 1).

Let s be the strategy that the algorithm queries while processing e. Since f ′ is equivalent
to f , we have that cs(pep1) =

∑
e′∈pep1 f

′
e′(ne′(s)). For every edge e′ ∈ p1, we have ne′(s) =

i + 1. Since every vertex w visited by p satisfies w ≺ k, for every e′ ∈ p1 we must have
fa+1
e′ (ne′(s)) = fae′(ne′(s)) = f ′e′(ne′(s)). For every edge e′ ∈ p1, we have ne′(s) = 1 if e′ is

not a k-bridge, and we have ne′(s) = i + 1 if e′ is a k-bridge. In either case, we have that
fa+1
e′ (ne′(s)) = fae′(ne′(s)) = f ′e′(ne′(s)) for every edge e′ ∈ p1. Therefore, line 9 sets:

fa+1
e (i+ 1) = cs(pep1)−

∑
e′∈p

fa+1
e′ (ne′(s))−

∑
e′∈p1

fa+1
e′ (ne′(s))

=
∑
e∈pep1

f ′e′(ne′(s))−
∑
e′∈p

f ′e′(ne′(s))−
∑
e′∈p1

f ′e′(ne′(s))

= f ′e(ne(s)) = f ′e(i+ 1).

Therefore, for each incoming edge e = (v, k), we have that fa+1
e (i+ 1) = f ′e(i+ 1). Hence,

f ′ is an extension of fa+1, which implies that fa+1 is partially equivalent to f .
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5.4.3 Query Complexity

We argue that the algorithm can be implemented so that the costs for (i + 1) players can
be discovered using at most |E| many payoff queries. Every time Algorithm 6 discovers
the cost of placing i + 1 players on a k-bridge, it makes exactly one payoff query. Every
time Algorithm 7 discovers the cost of an incoming edge (v, k), it makes exactly one payoff
query. The key observation is that the costs discovered by Algorithm 6 do not need to be
rediscovered by Algorithm 7. That is, we can modify Algorithm 7 so that it ignores every
incoming edge (v, k) that has already been processed by Algorithm 6. This modification
ensures that the algorithm uses precisely |E| payoff queries to discover the edge costs for
i+ 1 players. This gives us the following theorem.

Theorem 38 Let Γ be a symmetric network congestion game with n-players played on a
DAG with |E| edges. The payoff query complexity of finding a Nash equilibrium in Γ is at
most n · |E|.

6. Conclusions and Further Work

We first consider open questions in the setting of payoff queries, which has been the main
setting for the results in this paper. We then consider alternative query models.

6.0.1 Open Questions Concerning Payoff Queries

In the context of strategic-form games, there are a number of open problems. In Theorem 13,
we show a super-linear lower bound on the payoff query complexity when ε is allowed to
depend on k. Can we prove a super-linear lower bound for a constant ε? Is there a
deterministic algorithm that can find an ε-Nash equilibrium with ε < 1

2 without querying
the entire payoff matrices? Fearnley and Savani (2014) achieve ε < 1

2 with the use of
randomization, but doing so with a deterministic algorithm appears to be challenging.
Finally, when 2 ≤ i ≤ k − 1, we have shown that the payoff query complexity of finding a
(1 − 1

i )-Nash equilibrium lies somewhere in the range [k − i + 1, 2k − i + 1]. Determining
the precise payoff query complexity for this case is an open problem.

For congestion games, our lower bound of log n+m arises from a game with two parallel

links and a one-player game with m links. The upper bound of O
(

log(n) · log2(m)
log log(m) +m

)
is a poly-logarithmic factor off from this lower bound, with the factor depending on m. Can
this factor be improved? It seems unlikely that the dependence of this factor on m can be
completely removed, in which case, in order to provide tight bounds, a single lower bound
construction that depends simultaneously on n and m would be necessary.

For symmetric network congestion games on DAGs it is unclear whether the payoff
query complexity is sub-linear in n. Non-trivial lower and upper bounds for more general
settings, such as asymmetric network congestion games (DAG or not) or general (non-
network) congestion games would also be interesting.

6.0.2 Other Query Models

We have defined a payoff query as given by a pure (not mixed) profile s, since that is
of main relevance to empirical game-theoretic modelling. Furthermore, if s was a mixed
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profile, it could be simulated by sampling a number of pure profiles from s and making
the corresponding sequence of pure payoff queries. An alternative definition might require
a payoff query to just report a single specified player’s payoff, but that would change the
query complexity by a factor at most n.

Our main results have related to exact payoff queries, though other query models are
interesting too. A very natural type of query is a best-response query, where a strategy s
is chosen, and the algorithm is told the players’ best responses to s. In general s may have
to be a mixed strategy; it is not hard to check that pure-strategy best response queries
are insufficient; even for a two-player two-action game, knowledge of the best responses to
pure profiles is not sufficient to identify an ε-Nash equilibrium for ε < 1

2 . Fictitious Play
(Fudenberg and Levine 1998, Chapter 2) can be regarded as a query protocol that uses
best-response queries (to mixed strategies) to find a Nash equilibrium in zero-sum games,
and essentially a 1/2-Nash equilibrium in general-sum games (Goldberg et al., 2013). We
can always synthesize a pure best-response query with n(k − 1) payoff queries. Hence, for
questions of polynomial query complexity, payoff queries are at least as powerful as best-
response queries. Are there games where best-response queries are much more useful than
payoff queries? If k is large then it is expensive to synthesize best-response queries with
payoff queries. The DMP-algorithm (Daskalakis et al., 2009b) finds a 1

2 -Nash equilibrium
via only two best-response queries, whereas Theorem 5 notes that O(k) payoff queries are
needed.

A noisy payoff query outputs an observation of a random variable taking values in
[0, 1] whose expected value is the true payoff. Alternative versions might assume that the
observed payoff is within some distance ε from the true payoff. Noisy query models might
be more realistic, and they are suggested by by the experimental papers on querying games.
However in a theoretical context, one could obtain good approximations of the expected
payoffs for a profile s, by repeated sampling. It would interesting to understand the power
of different query models.
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Abstract

In this article,1 we present a top-down theoretical study of general reinforcement learning
agents. We begin with rational agents with unlimited resources and then move to a setting
where an agent can only maintain a limited number of hypotheses and optimizes plans
over a horizon much shorter than what the agent designer actually wants. We axiomatize
what is rational in such a setting in a manner that enables optimism, which is important to
achieve systematic explorative behavior. Then, within the class of agents deemed rational,
we achieve convergence and finite-error bounds. Such results are desirable since they imply
that the agent learns well from its experiences, but the bounds do not directly guarantee
good performance and can be achieved by agents doing things one should obviously not.
Good performance cannot in fact be guaranteed for any agent in fully general settings. Our
approach is to design agents that learn well from experience and act rationally. We intro-
duce a framework for general reinforcement learning agents based on rationality axioms for
a decision function and an hypothesis-generating function designed so as to achieve guaran-
tees on the number errors. We will consistently use an optimistic decision function but the
hypothesis-generating function needs to change depending on what is known/assumed. We
investigate a number of natural situations having either a frequentist or Bayesian flavor,
deterministic or stochastic environments and either finite or countable hypothesis class.
Further, to achieve sufficiently good bounds as to hold promise for practical success we
introduce a notion of a class of environments being generated by a set of laws. None of the
above has previously been done for fully general reinforcement learning environments.

Keywords: reinforcement learning, rationality, optimism, optimality, error bounds

1. Introduction

A general reinforcement learning environment returns observations and rewards in cycles to
an agent that feeds actions to the environment. An agent designer’s aim is to construct an
agent that accumulates as much reward as possible. Ideally, the agent should maximize a
given quality measure like e.g., expected accumulated reward or the maximum accumulated
reward that is guaranteed with a certain given probability. The probabilities and expecta-
tion should be the actual, i.e., with respect to the true environment. Performing this task

∗. The first author is now at Google - DeepMind, London UK
1. This article combines and extends our conference articles (Sunehag and Hutter, 2011, 2012a,b, 2013,

2014) and is further extended by (Sunehag and Hutter, 2015) covering stochastic laws.

c©2015 Peter Sunehag and Marcus Hutter.
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well in an unknown environment is an extremely challenging problem (Hutter, 2005). Hutter
(2005) advocated a Bayesian approach to this problem while we here introduce optimistic
agents as an alternative.

The Bayesian approach to the above task is to design an agent that approximately max-
imizes the quality measure with respect to an a priori environment chosen by the designer.
There are two immediate problems with this approach. The first problem is that the arbi-
trary choice of a priori environment, e.g., through a prior defining a mixture of a hypothesis
class, substantially influences the outcome. The defined policy is optimal by definition in
the sense of achieving the highest quality with respect to the a priori environment, but its
quality with respect to other environments like the true one or a different mixture, might
be much lower. The second problem is that computing the maximizing actions is typically
too hard, even approximately. We will below explain how a recent line of work attempts
to address these problems and see that the first problem is partially resolved by using
information-theoretic principles to make a “universal” choice of prior, while the second is
not resolved. Then we will discuss another way in which Bayesian methods are motivated
which is through rational choice theory (Savage, 1954).

The optimistic agents that we introduce in this article have the advantage that they
satisfy guarantees that hold regardless of which environment from a given class is the true
one. We introduce the concept of a class being generated by a set of laws and improve our
bounds from being linear in the number of environments to linear in the number of laws.
Since the number of environments can be exponentially larger than the number of laws this
is of vital importance and practically useful environment classes should be such that its
size is exponential in the number of laws. We will discuss such guarantees below as well as
the mild modification of the classical rationality framework required to deem an optimistic
agent rational. We also explain why such a modification makes sense when the choice to be
made by an agent is one in a long sequence of such choices in an unknown environment.

Information-theoretic priors and limited horizons. Hutter (2005) and Veness et al. (2011)
choose the prior, which can never be fully objective (Leike and Hutter, 2015), through
an information-theoretic approach based on the code length of an environment by letting
environments with shorter implementations be more likely. Hutter (2005) does this for
the universal though impractical class of all lower semi-computable environments while
Veness et al. (2011) use a limited but useful class based on context trees. For the latter,
the context tree weighting (CTW) algorithm (Willems et al., 1995) allows for efficient
calculation of the posterior. However, to optimize even approximately the quality measure
used to evaluate the algorithm for the actual time-horizon (e.g., a million time steps), is
impossible in complex domains. The MC-AIXI-CTW agent in Veness et al. (2011), which
we employ to illustrate the point, uses a Monte-Carlo tree search method to optimize a
geometrically discounted objective. Given a discount factor close to 1 (e.g., 0.99999) the
effective horizon becomes large (100000). However, the tree search is only played out until
the end of episode in the tasks considered in Veness et al. (2011). Playing it out for 100000
time steps for each simulation at each time step would be completely infeasible. When an
agent maximizes the return from a much shorter horizon than the actual, e.g., one game
instead of a 1000 games of PacMan, the exploration versus exploitation dilemma shows up.
If the environment is fully known, then maximizing the return for one episode is perfect.
In an unknown environment such a strategy can be a fatal mistake. If the expected return
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is maximized for a shorter working horizon, i.e., the agent always exploits, then it is likely
to keep a severely sub-optimal policy due to insufficient exploration. Veness et al. (2011)
addressed this heuristically through random exploration moves.

Our agent framework. In Section 3, we introduce a framework that combines notions of
what is considered desirable in decision theory with optimality concepts from reinforcement
learning. In this framework, an agent is defined by the choice of a decision function and
a hypothesis-generating function. The hypothesis-generating function feeds the decision
function a finite class of environments at every time step and the decision function chooses
an action/policy given such a class. The decision-theoretic analysis of rationality is used
to restrict the choice of the decision function, while we consider guarantees for asymptotic
properties and error bounds when designing the hypothesis-generating function.

All the agents we study can be expressed with an optimistic decision function but we
study many different hypothesis-generating functions which are suitable under different
assumptions. For example, with a domination assumption there is no need to remove en-
vironments, it would only worsen the guarantees. Hence a constant hypothesis-generating
function is used. If we know that the environment is in a certain finite class of deter-
ministic environments, then a hypothesis-generating function that removes contradicted
environments but does not add any is appropriate. Similarly, when we have a finite class
of stochastic but non-dominant environments that we assume the truth belongs to, the
hypothesis-generating function should not add to the class but needs to exclude those en-
vironments that have become implausible.

If we only know that the true environment is in a countable class and we choose an
optimistic decision function, the agent needs to have a growing finite class. In the countable
case, a Bayesian agent can still work with the whole countable class at once (Lattimore,
2014), though to satisfy the desired guarantees that agent (BayesExp) was adjusted in a
manner we here deem irrational. Another alternative adjustment of a Bayesian agent that
is closer to fitting our framework is the Best of Sampled Set (BOSS) algorithm (Asmuth
et al., 2009). This agent samples a finite set of environments (i.e., hypothesis-generation)
from the posterior and then constructs an optimistic environment by combining transition
dynamics from all those environments in the most optimistic manner and then optimize for
this new environment (optimistic decision). This is an example of an agent that uses what
we refer to as environments constructed by combining laws, though BOSS belongs in the
narrow Markov Decision Process setting, while we here aim for full generality.

Rationality. In the foundations of decision theory, the focus is on axioms for rational
preferences (Neumann and Morgenstern, 1944; Savage, 1954) and on making a single decision
that does not affect the event in question but only its utility. The single decision setting
can actually be understood as incorporating sequential decision-making since the one choice
can be for a policy to follow for a period of time. This latter perspective is called normal
form in game theory. We extend rational choice theory to the full reinforcement learning
problem. It follows from the strictest version of the axioms we present that the agent must
be a Bayesian agent. These axioms are appropriate when an agent is capable of optimizing
the plan for its entire life. Then we loosen the axioms in a way that is analogous to the
multiple-prior setting by Gilboa and Schmeidler (1989), except that ours enable optimism
instead of pessimism and are based on a given utility function. These more permissive
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axioms are suitable for a setting where the agent must actually make the decisions in a
sequence due to not being able to optimize over the full horizon. We prove that optimism
allows for asymptotic optimality guarantees and finite error bounds not enjoyed by a realist
(expected utility maximizer).

Guarantees. In the field of reinforcement learning, there has been much work dedicated
to designing agents for which one can prove asymptotic optimality or sample complexity
bounds. The latter are high probability bounds on the number of time steps where the
agent does not make a near optimal decision (Strehl et al., 2009). However, a weakness
with sample complexity bounds is that they do not directly guarantee good performance
for the agent. For example, an agent who has the opportunity to self-destruct can achieve
subsequent optimality by choosing this option. Hence, aiming only for the best sample
complexity can be a very bad idea in general reinforcement learning. If the environment is
an ergodic MDPs or value-stable environment (Ryabko and Hutter, 2008) where the agent
can always recover, these bounds are more directly meaningful. However, optimizing them
blindly is still not necessarily good. Methods that during explicit exploration phases, aim at
minimizing uncertainty by exploring the relatively unknown, can make very bad decisions.
If one has an option offering return in the interval [0, 0.3] and another option has return
in the interval [0.7, 0.8] one should have no interest in the first option since its best case
scenario is worse than the worst case scenario of the other option. Nevertheless, some devised
algorithms have phases of pure exploration where the most uncertain option is chosen. On
the other hand, we will argue that one can rationally choose an option with return known to
be in [0.2, 0.85] over either. Assuming uniform belief over those intervals, the latter option
is, however, not strictly rational under the classical axioms that are equivalent to choosing
according to maximum subjective expected utility. We will sometimes use the term weakly
rational for the less strict version of rationality considered below.

Here we consider agents that are rational in a certain decision-theoretic sense and within
this class we design agents that make few errors. Examples of irrational agents, as discussed
above, are agents that rely on explicit phases of pure exploration that aim directly at
excluding environments while a category of prominent agents instead rely on optimism
(Szita and Lörincz, 2008; Strehl et al., 2009; Lattimore and Hutter, 2012). Optimistic
agents investigate whether a policy is as good as the hypothesis class says it might be but
not whether something is bad or very bad. We extend these kinds of agents from MDP to
general reinforcement learning and we deem them rational according to axioms presented
here in Section 2.

The bounds presented here, like discussed above, are of a sort that the agent is guaran-
teed to eventually act nearly as well as possible given the history that has been generated.
Since the risk of having all prospects destroyed cannot be avoided in the fully general set-
ting, we have above argued that the bounds should be complemented with a demand for
acting rationally. This does of course not prevent disaster, since nothing can. Hutter (2005)
brings up a heaven and hell example where either action a1 takes the agent to hell (min
reward forever) and a2 to heaven (max reward forever) or the other way around with a2

to hell and a1 to heaven. If one assumes that the true environment is safe (Ryabko and
Hutter, 2008) as in always having the same optimal value from all histories that can occur,
this kind of bounds are directly meaningful. Otherwise, one can consider an agent that is
first pessimistic and rules out all actions that would lead to disaster for some environment
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in its class and then takes an optimistic decision among the remaining actions. The bounds
then apply to the environment class that remains after the pessimist has ruled out some
actions. The resulting environments might not have as good prospects anymore due to the
best action being ruled out, and in the heaven and hell example both actions would be ruled
out and one would have to consider both. However, we repeat: there are no agents that
can guarantee good outcomes in general reinforcement learning (Hutter, 2005).

The bounds given in Section 5 have a linear dependence on the number of environments
in the class. While this rate is easily seen to be the best one can do in general (Lattimore
et al., 2013a), it is exponentially worse than what we are used to from Markov Decision
Processes (MDPs) (Lattimore and Hutter, 2012) where the linear (up to logarithms) depen-
dence is on the size of the state space instead. In Section 5.2 we introduce the concept of
laws and environments generated by sets of laws and we achieve bounds that are linear in
the number of laws instead of the number of environments. All environment classes are triv-
ially generated by sets of laws that equal the environments but some can also be represented
as generated by exponentially fewer laws than there are environments. Such environment
classes have key elements in common with an approach that has been heuristically devel-
oped for a long time, namely collaborative multi-agent systems called Learning Classifier
Systems (LCS) (Holland, 1986; Hutter, 1991; Drugowitsch, 2007) or artificial economies
(Baum and Durdanovic, 2001; Kwee et al., 2001). Such systems combine sub-agents that
make recommendations and predictions in limited contexts (localization), sometimes com-
bined with other sub-agents’ predictions for the same single decision (factorization). The
LCS family of approaches are primarily model-free by predicting the return and not future
observations while what we introduce here is model-based and has a dual interpretation as
an optimistic agent, which allows for theoretical guarantees.

Related work. Besides the work mentioned above, which all use discounted reward sums,
Maillard et al. (2011); Nguyen et al. (2013); Maillard et al. (2013) extend the UCRL algo-
rithm and regret bounds (Auer and Ortner, 2006) from undiscounted MDPs to problems
where the environments are defined by combining maps from histories to states with MDP
parameters as in Hutter (2009b); Sunehag and Hutter (2010). Though Maillard et al. (2011,
2013) study finite classes, Nguyen et al. (2013) extend their results by incrementally adding
maps. Their algorithms use undiscounted reward sums and are, therefore, in theory not
focused on a shorter horizon but on average reward over an infinite horizon. However, to
optimize performance over long horizons is practically impossible in general. The online
MDP with bandit feedback work (Neu et al., 2010; Abbasi-Yadkori et al., 2013) aims at
general environments but limited to finitely many policies called experts to choose between.
We instead limit the environment class in size, but consider any policies.

Outline. We start below with notation and background for general reinforcement learning
and then in Section 2 we introduce the axioms for rational and rational optimistic agents.
In Section 3 we introduce an agent framework that fits all the agents studied in this article
and we make the philosophy fully explicit. It consists of two main parts, rational deci-
sion functions (Section 3.1) and hypothesis-generating functions (Section 3.2) that given
a history delivers a class of environments to the decision function. In Section 4 we show
the importance of optimism for asymptotic optimality for a generic Bayesian reinforcement
learning agent called AIXI and we extend this agent to an optimistic multiple-prior agent
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with stronger asymptotic guarantees. The required assumption is the a priori environments’
dominance over the true environment and that at least one a priori environment is optimistic
for the true environment.

In Section 5 and Section 6 we continue to study optimistic agents that pick an opti-
mistic hypothesis instead of an optimistic a priori distribution. This is actually the very
same mathematical formula for how to optimistically make a decision given a hypothesis
class. However, in this case we do not assume that the environments in the class dominate
the truth and the agent, therefore, needs to exclude environments which are not aligned
with observations received. Instead of assuming dominance as in the previous section, we
here assume that the truth is a member of the class. It is interesting to notice that the
only difference between the two sections, despite their very different interpretations, is the
assumptions used for the mathematical analysis. In Section 5.2 we also show that under-
standing environment classes as being generated by finite sets of partial environments that
we call laws, allows for error bounds that are linear in the number of laws instead of in the
number of environments. This can be an exponential improvement.

In earlier sections the hypothesis-generating functions either deliver the exact same class
(except for conditioning the environments on the past) at all times or just remove implausi-
ble environments from an initial class while in Section 7 we consider hypothesis-generating
functions that also add new environments and exhaust a countable class in the limit. We
prove error bounds that depend on how fast new environments are introduced. Section 8
contains the conclusions. The appendix contains extensions of various results.

We summarize our contributions and where they can be found in the following list:

• Axiomatic treatment of rationality and optimism: Section 2.

• Agent framework: Section 3

• Asymptotic results for AIXI (rational) and optimistic agents using finite classes of
dominant stochastic environments: Section 4

• Asymptotic and finite error bounds for optimistic agents with finite classes of deter-
ministic (non-dominant) environments containing the truth, as well as improved error
rates for environment classes based on laws: Section 5

• Asymptotic results for optimistic agents with finite classes of stochastic non-dominant
environments containing the truth: Section 6

• Extensions to countable classes: Section 7.

• Extending deterministic results from smaller class of conservative optimistic agents to
larger class of liberal optimistic agents: Appendix A

• Extending axioms for rationality to countable case: Appendix B

• A list of important notation can be found in Appendix C
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General reinforcement learning: notation and background. We will consider an agent (Rus-
sell and Norvig, 2010; Hutter, 2005) that interacts with an environment through performing
actions at from a finite set A and receives observations ot from a finite set O and rewards
rt from a finite set R ⊂ [0, 1] resulting in a history ht := a0o1r1a1, ..., otrt. These sets
can be allowed to depend on time or context but we do not write this out explicitly. Let
H := ε ∪ (A × ∪n(O × R × A)n × (O × R)) be the set of histories where ε is the empty
history and A× (O ×R×A)0 × (O ×R) := A×O ×R . A function ν : H×A → O ×R
is called a deterministic environment. A function π : H → A is called a (deterministic)
policy or an agent. We define the value function V based on geometric discounting by
V π
ν (ht−1) =

∑∞
i=t γ

i−tri where the sequence ri are the rewards achieved by following π from
time step t onwards in the environment ν after having seen ht−1.

Instead of viewing the environment as a function H×A → O ×R we can equivalently
write it as a function H×A×O ×R → {0, 1} where we write ν(o, r|h, a) for the function
value. It equals zero if in the first formulation (h, a) is not sent to (o, r) and 1 if it is. In the
case of stochastic environments we instead have a function ν : H×A×O×R → [0, 1] such
that

∑
o,r ν(o, r|h, a) = 1 ∀h, a. The deterministic environments are then just a degenerate

special case. Furthermore, we define ν(ht|π) := Πt
i=1ν(oiri|ai, hi−1) where ai = π(hi−1).

ν(·|π) is a probability measure over strings, actually one measure for each string length with
the corresponding power set as the σ-algebra. We define ν(·|π, ht−1) by conditioning ν(·|π)
on ht−1 and we let V π

ν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri and V ∗ν (ht−1) := maxπ V
π
ν (ht−1).

Examples of agents: AIXI and Optimist. Suppose we are given a countable class of envi-
ronments M and strictly positive prior weights wν for all ν ∈ M. We define the a priori
environment ξ by letting ξ(·) =

∑
wνν(·) and the AIXI agent is defined by following the

policy

π∗ := arg max
π

V π
ξ (ε) (1)

which is its general form. Sometimes AIXI refers to the case of a certain universal class and
a Solomonoff style prior (Hutter, 2005). The above agent, and only agents of that form,
satisfies the strict rationality axioms presented first in Section 2 while the slightly looser
version we present afterwards enables optimism. The optimist chooses its next action after
history h based on

π◦ := arg max
π

max
ξ∈Ξ

V π
ξ (h) (2)

for a set of environments (beliefs) Ξ which we in the rest of the article will assume to be
finite, though results can be extended further.

2. Rationality in Sequential Decision-Making

In this section, we first derive the above introduced AIXI agent from rationality axioms in-
spired by the traditional literature (Neumann and Morgenstern, 1944; Ramsey, 1931; Savage,
1954; deFinetti, 1937) on decision-making under uncertainty. Then we suggest weakening
a symmetry condition between accepting and rejecting bets. The weaker condition only
says that if an agent considers one side of a bet to be rejectable, it must be prepared to
accept the other side but it can accept either. Since the conditions are meant for sequential
decision and one does not accept several bets at a time, considering both sides of a bet to
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be acceptable is not necessarily vulnerable to combinations of bets that would otherwise
cause our agent a sure loss. Further, if an outcome is only revealed when a bet is accepted,
one can only learn about the world by accepting bets. What is learned early on can lead
to higher earnings later. The principle of optimism results in a more explorative agent and
leads to multiple-prior models or the imprecise probability by Walley (2000). Axiomatics
of multiple-prior models has been studied by Gilboa and Schmeidler (1989); Casadesus-
Masanell et al. (2000). These models can be understood as quantifying the uncertainty in
estimated probabilities by assigning a whole set of probabilities. In the passive prediction
case, one typically combines the multiple-prior model with caution to achieve more risk
averse decisions (Casadesus-Masanell et al., 2000). In the active case, agents need to take
risk to generate experience that they can learn successful behavior from and, therefore,
optimism is useful.

Bets. The basic setting we use is inspired by the betting approach of Ramsey (1931);
deFinetti (1937). In this setting, the agent is about to observe a symbol from a finite
alphabet and is offered a bet x = (x1, ..., xn) where xi ∈ R is the reward received for the
outcome i.

Definition 1 (Bet) Suppose that we have an unknown symbol from an alphabet with m
elements, say {1, ...,m}. A bet (or contract) is a vector x = (x1, ..., xm) in Rm where xj is
the reward received if the symbol is j.

In our definition of decision maker we allow for choosing neither accept nor reject, while
when we move on to axiomatize rational decision makers we will no longer allow for neither.
In the case of a strictly rational decision maker it will only be the zero bet that can, and
actually must, be both acceptable and rejectable. For the rational optimist the zero bet is
always accepted and all bets are exactly one of acceptable or rejectable.

Definition 2 (Decision maker, Decision) A decision maker (for bets regarding an un-
known symbol) is a pair of sets (Z, Z̃) ⊂ Rm × Rm which defines exactly the bets that
are acceptable (Z) and those that are rejectable (Z̃). In other words, a decision maker is
a function from Rm to {accepted,rejected,either,neither}. The function value is called the
decision.

Next we present the stricter version of the axioms and a representation theorem.

Definition 3 (Strict rationality) We say that (Z, Z̃) is strictly rational if it has the fol-
lowing properties:

1. Completeness: Z ∪ Z̃ = Rm

2. Symmetry: x ∈ Z ⇐⇒ −x ∈ Z̃

3. Convexity of accepting: x, y ∈ Z, λ, γ > 0⇒ λx+ γy ∈ Z

4. Accepting sure profits: ∀k xk > 0 ⇒ x ∈ Z \ Z̃
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Axiom 1 in Definition 3 is really describing the setting rather than an assumption. It
says that the agent must always choose at least one of accept or reject. Axiom 2 is a
symmetry condition between accepting and rejecting that we will replace in the optimistic
setting. In the optimistic setting we still demand that if the agent rejects x, then it must
accept −x but not the other way around. Axiom 3 is motivated as follows: If x ∈ Z and
λ ≥ 0, then λx ∈ Z since it is simply a multiple of the same bet. Also, the sum of two
acceptable bets should be acceptable. Axiom 4 says that if the agent is guaranteed to win
money it must accept the bet and cannot reject it.

The following representation theorem says that a strictly rational decision maker can
be represented as choosing bets to accept based on if they have positive expected utility
for some probability vector. The same probabilities are consistently used for all decisions.
Hence, the decision maker can be understood as a Bayesian agent with an a priori environ-
ment distribution. In Sunehag and Hutter (2011) we derived Bayes rule by showing how
the concepts of marginal and conditional probabilities also come out of the same rational
decision-making framework.

Theorem 4 (Existence of probabilities, Sunehag&Hutter 2011) Given a rational de-
cision maker, there are numbers pi ≥ 0 that satisfy

{x |
∑

xipi > 0} ⊆ Z ⊆ {x |
∑

xipi ≥ 0}. (3)

Assuming
∑

i pi = 1 makes the numbers unique probabilities and we will use the notation
Pr(i) = pi.

Proof The third property tells us that Z and −Z (= Z̃ according to the second property)
are convex cones. The second and fourth property tells us that Z 6= Rm. Suppose that
there is a point x that lies in both the interior of Z and of −Z. Then, the same is true
for −x according to the second property and for the origin according to the third property.
That a ball around the origin lies in Z means that Z = Rm which is not true. Thus the
interiors of Z and −Z are disjoint open convex sets and can, therefore, according to the
Hahn-Banach Theorem be separated by a hyperplane which goes through the origin since
according to the first and second property the origin is both acceptable and rejectable. The
first two properties tell us that Z ∪−Z = Rm. Given a separating hyperplane between the
interiors of Z and −Z, Z must contain everything on one side. This means that Z is a half
space whose boundary is a hyperplane that goes through the origin and the closure Z̄ of Z
is a closed half space and can be written as

Z̄ = {x |
∑

xipi ≥ 0}

for some vector p = (pi) such that not every pi is 0. The fourth property tells us that
pi ≥ 0 ∀i.

In Appendix B we extend the above results to the countable case with Banach sequence
spaces as the spaces of bets. Sunehag and Hutter (2011) showed how one can derive basic
probability-theoretic concepts like marginalization and conditionalization from rationality.

Rational optimism. We now present four axioms for rational optimism. They state proper-
ties that the set of accepted and the set of rejected bets must satisfy.
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Definition 5 (Rational optimism, Weak rationality) We say that the decision maker
(Z, Z̃) ⊂ Rm × Rm is a rational optimist or weakly rational if it satisfies the following:

1. Disjoint Completeness: x /∈ Z̃ ⇐⇒ x ∈ Z

2. Optimism: x ∈ Z̃ ⇒ −x /∈ Z̃

3. Convexity of rejecting: x, y ∈ Z̃ and λ, γ > 0⇒ λx+ γy ∈ Z̃

4. Rejecting sure losses: ∀k xk < 0 ⇒ x ∈ Z̃ \ Z

The first axiom is again a completeness axiom where we here demand that each contract
is either accepted or rejected but not both. We introduce this stronger disjoint completeness
assumption since the other axioms now concern the set of rejected bets, while we want to
conclude something about what is accepted. The following three axioms concern rational
rejection. The second says that if x is rejected then −x must not be rejected. Hence, if the
agent rejects one side of a bet it must, due to the first property, accept its negation. This
was also argued for in the first set of axioms in the previous setting but in the optimistic
set we do not have the opposite direction. In other words, if x is accepted then −x can also
be accepted. The agent is strictly rational about how it rejects bets. Rational rejection also
means that if the agent rejects two bets x and y, it also rejects λx+ γy if λ ≥ 0 and γ ≥ 0.
The final axiom says that if the reward is guaranteed to be strictly negative the bet must
be rejected.

The representation theorem for rational optimism differs from that of strict rationality
by not having a single unique environment distribution. Instead the agent has a set of such
and if the bet has positive expected utility for any of them, the bet is accepted.

Theorem 6 (Existence of a set of probabilities) Given a rational optimist, there is a
set P ⊂ Rm that satisfies

{x | ∃p ∈ P :
∑

xipi > 0} ⊆ Z ⊆ {x | ∃p ∈ P :
∑

xipi ≥ 0}. (4)

One can always replace P with an extreme set the size of the alphabet. Also, one can demand
that all the vectors in P be probability vectors, i.e.,

∑
pi = 1 and ∀i pi ≥ 0.

Proof Properties 2 and 3 tell us that the closure ¯̃Z of Z̃ is a (one sided) convex cone.

Let P = {p ∈ Rm |
∑
pixi ≤ 0 ∀(xi) ∈ ¯̃Z}. Then, it follows from convexity that

¯̃Z = {(xi) |
∑
xipi ≤ 0 ∀p ∈ P}. Property 4 tells us that it contains all the elements

of only strictly negative coefficients and this implies that for all p ∈ P, pi ≥ 0 for all i.
It follows from property 1 and the above that {x |

∑
xipi > 0} ⊆ Z for all p ∈ P. Nor-

malizing all p ∈ P such that
∑
pi = 1 does not change anything. Property 1 tells us that

Z ⊆ {x | ∃p ∈ P :
∑
xipi ≥ 0}.

Remark 7 (Pessimism) If one wants an axiomatic system for rational pessimism, one
can reverse the roles of Z and Z̃ in the definition of rational optimism and the theorem
applies with a similar reversal: The conclusion could be rewritten by replacing ∃ with ∀ in
the conclusion of Theorem 6.
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Making choices. To go from agents making decisions on accepting or rejecting bets to agents
choosing between different bets xj , j = 1, 2, 3, ..., we define preferences by saying that x is
better than or equal to y if x− y ∈ Z̄ (the closure of Z), while it is worse or equal if x− y is
rejectable. For the first form of rationality stated in Definition 3, the consequence is that the
agent chooses the option with the highest expected utility. If we instead consider optimistic
rationality, and if there is p ∈ P such that

∑
xipi ≥

∑
yiqi ∀q ∈ P then

∑
pi(xi − yi) ≥ 0

and, therefore, x− y ∈ Z̄. Therefore, if the agent chooses the bet xj = (xji )i by

arg max
j

max
p∈P

∑
xjipi

it is guaranteed that this bet is preferable to all other bets. We call this the optimistic
decision or the rational optimistic decision. If the environment is reactive, i.e., if the proba-
bilities for the outcome depends on the action, then pi is above replaced by pji . We discussed
this in more detail in Sunehag and Hutter (2011).

Rational sequential decisions. For the general reinforcement learning setting we consider the
choice of policy to use for the next T time steps. After one chooses a policy to use for those
T steps the result is a history hT and the value/return

∑T
t=1 rtγ

t. There are finitely many
possible hT , each of them containing a specific return. If we enumerate all the possible hT
using i and the possible policies by j then for each policy and history there is a probability
pji for that history to be the result when policy j is used. Further we will denote the return
achieved in history i by xi. The bet xi does depend on j since the rewards are part of the
history.

By considering the choice to be for a policy π (previously j), an extension to finitely
many sequential decisions is directly achieved. The discounted value

∑
rtγ

t achieved then
plays the role of the bet xi and the decision on what policy to follow is taken according to

π∗ ∈ arg max
π

V π
ξ

where ξ is the probabilistic a priori belief (the pji ) and V π
ξ =

∑
pji (
∑
ritγ

t) where rit is
the reward achieved at time t in outcome sequence i in an enumeration of all the possible
histories. The rational optimist chooses the next action based on a policy

π◦ ∈ arg max
π

max
ξ∈Ξ

V π
ξ

for a finite set of environments Ξ (P before) and recalculates this at every time step.

3. Our Agent Framework

In this section, we introduce an agent framework that all agents we study in this paper can
be fitted into by a choice of what we call a decision function and a hypothesis-generating
function.

3.1 Decision Functions

The primary component of our agent framework is a decision function f : M → A where
M is the class of all finite sets M of environments. The function value only depends on
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the class of environments M that is the argument. The decision function is independent
of the history, however, the class M fed to the decision function introduces an indirect
dependence. For example, the environments at time t+ 1 can be the environments at time
t, conditioned on the new observation. Therefore, we will in this section often write the
value function without an argument: V π̃

νt = V π
ν0(ht) if νt = ν0(·|ht) where the policy π̃ on

the left hand side is the same as the policy π on the right, just after ht have been seen. It
starts at a later stage, meaning π̃(h) = π(hth), where hth is a concatenation.

Definition 8 (Rational decision function) Given alphabets A, O and R we say that a
decision function f : M→ A is a function f(M) = a that for any class of environments M
based on those alphabets produces an action a ∈ A. We say that f is strictly rational for
the class M if there are ων ≥ 0, ν ∈M,

∑
ν∈Mwν = 1 and there is a policy

π ∈ arg max
π̃

∑
ν∈M

ωνV
π̃
ν (5)

such that a = π(ε).

Agents as in Definition 8 are also called admissible if wν > 0 ∀ν ∈ M since then they are
Pareto optimal (Hutter, 2005). Being Pareto optimal means that if another agent (of this
form or not) is strictly better (higher expected value) than a particular agent of this form
in one environment, then it is strictly worse in another. A special case is when |M| = 1
and (5) becomes

π ∈ arg max
π̃

V π̃
ν

where ν is the environment in M. The more general case connects to this by letting
ν̃(·) :=

∑
ν∈Mwνν(·) since then V π

ν̃ =
∑
wνV

π
ν (Hutter, 2005). The next definition defines

optimistic decision functions. They only coincide with strictly rational ones for the case
|M| = 1, however agents based on such decision functions satisfy the looser axioms that
define a weaker form of rationality as presented in Section 2.

Definition 9 (Optimistic decision function) We call a decision function f optimistic
if f(M) = a implies that a = π(ε) for an optimistic policy π, i.e., for

π ∈ arg max
π̃

max
ν∈M

V π̃
ν . (6)

3.2 Hypothesis-Generating Functions

Given a decision function, what remains to create a complete agent is a hypothesis-generating
function G(h) = M that for any history h ∈ H produces a set of environments M. A
special form of hypothesis-generating function is defined by combining the initial class
G(ε) = M0 with an update function ψ(Mt−1, ht) = Mt. An agent is defined from a
hypothesis-generating function G and a decision function f by choosing action a = f(G(h))
after seeing history h. We discuss a number of examples below to elucidate the framework
and as a basis for the results we later present.
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Example 10 (Bayesian agent) Suppose that ν is a stochastic environment and G(h) =
{ν(·|h)} for all h and let f be a strictly rational decision function. The agent formed by
combining f and G is a rational agent in the stricter sense . Also, if M is a finite or
countable class of environments and G(h) = {ν(·|h) |ν ∈ M} for all h ∈ H (same M for
all h) and there are ων > 0, ν ∈M,

∑
ν∈Mwν = 1 such that a = π(ε) for a policy

π ∈ arg max
π̃

∑
ν∈G(h)

ωνV
π̃
ν , (7)

then we say that the agent is Bayesian and it can be represented more simply in the first
way by G(h) = {

∑
wνν(·|h)} due to linearity of the value function (Hutter, 2005)

Example 11 (Optimist deterministic case) Suppose that M is a finite class of deter-
ministic environments and let G(h) = {ν(·|h) | ν ∈M consistent with h}. If we combine G
with the optimistic decision function we have defined the optimistic agents for classes of de-
terministic environments (Algorithm 1) from Section 4. In Section 7 we extend these agents
to infinite classes by letting G(ht) contain new environments that were not in G(ht−1).

Example 12 (Optimistic AIXI) Suppose that M is a finite class of stochastic environ-
ments and that G(h) = {ν(·|h) | ν ∈ M}. If we combine G with the optimistic decision
function we have defined the optimistic AIXI agent (Equation 2 with Ξ =M).

Example 13 (MBIE) The Model Based Interval Estimation (MBIE) (Strehl et al., 2009)
method for Markov Decision Processes (MDPs) defines G(h) as a set of MDPs (for a given
state space) with transition probabilities in confidence intervals calculated from h. This is
combined with the optimistic decision function. MBIE satisfies strong sample complexity
guarantees for MDPs and is, therefore, an example of what we want but in a narrower
setting.

Example 14 (Optimist stochastic case) Suppose that M is a finite class of stochastic
environments and that G(h) = {ν(·|h) | ν ∈M : ν(h) ≥ zmaxν̃∈M ν̃(h)} for some z ∈ (0, 1).
If we combine G with the optimistic decision function we have defined the optimistic agent
with stochastic environments from Section 5.

Example 15 (MERL and BayesExp) Agents that switch explicitly between exploration
and exploitation are typically not satisfying even our weak rationality demand. An exam-
ple is Lattimore et al. (2013a) where the introduced Maximum Exploration Reinforcement
Learning (MERL) agent performs certain tests when the remaining candidate environments
are disagreeing sufficiently. This decision function is not satisfying rationality while our
Algorithm 3, which uses the exclusion criteria of MERL but with an optimistic decision
function, does satisfy our notion of rationality. Another example of an explicitly exploring
irrational agent is BayesExp (Lattimore, 2014).

4. Finite Classes of Dominant A Priori Environments

In this section, we study convergence results for optimistic agents with finite classes of dom-
inant environments. In terms of the agent framework we here use an optimistic decision
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function and a hypothesis-generating function that neither adds to nor removes from the
initial class but just updates the environments through conditioning. Such agents were pre-
viously described in Example 12. In the next section we consider a setting where we instead
of domination assume that one of the environments in the class is the true environment.
The first setting is natural for Bayesian approaches, while the second is more frequentist
in flavor. If we assume that all uncertainty is epistemic, i.e., caused by the agent’s lack of
knowledge, and that the true environment is deterministic, then for the first (Bayesian) set-
ting the assumption means that the environments assign strictly positive probability to the
truth. In the second (frequentist) setting, the assumption says that the environment class
must contain this deterministic environment. In Section 6, we also consider a stochastic
version of the second setting where the true environment is potentially stochastic in itself.

We first prove that AIXI is asymptotically optimal if the a priori environment ξ both
dominates the true environment µ in the sense that ∃c > 0 : ξ(·) ≥ cµ(·) and optimistic in
the sense that ∀ht V ∗ξ (ht) ≥ V ∗µ (ht) (for large t). We extend this by replacing ξ with a finite
set Ξ and prove that we then only need there to be, for each ht (for t large), some ξ ∈ Ξ such
that V ∗ξ (ht) ≥ V ∗µ (ht). We refer to this second domination property as optimism. The first
domination property, which we simply refer to as domination, is most easily satisfied for
ξ(·) =

∑
ν∈Mwνν(·) with wν > 0 whereM is a countable class of environments with µ ∈M.

We provide a simple illustrative example for the first theorem and a more interesting one
after the second theorem. First, we introduce some definitions related to the purpose of
domination, namely it implies absolute continuity which according to the Blackwell-Dubins
Theorem (Blackwell and Dubins, 1962) implies merging in total variation.

Definition 16 (Total variation distance, Merging, Absolute continuity)
i) The total variation distance between two (non-negative) measures P and Q is defined to
be

d(P,Q) = sup
A
|P (A)−Q(A)|

where A ranges over the σ-algebra of the relevant measure space.
ii) P and Q are said to merge iff d(P (·|ω1:t), Q(·|ω1:t)) → 0 P -a.s. as t → ∞, i.e., almost
surely if the sequence ω is generated by P . The environments ν1 and ν2 merge under π if
ν1(·|ht, π) and ν2(·|ht, π) merge.
iii) P is absolutely continuous with respect to Q if Q(A) = 0 implies that P (A) = 0.

We will make ample use of the classical Blackwell-Dubins Theorem (Blackwell and Du-
bins, 1962) so we state it explicitly.

Theorem 17 (Blackwell-Dubins Theorem) If P is absolutely continuous with respect
to Q, then P and Q merge P -almost surely.

Lemma 18 (Value convergence for merging environments) Given a policy π and en-
vironments µ and ν it follows that for all h

|V π
µ (h)− V π

ν (h)| ≤ 1

1− γ
d(µ(·|h, π), ν(·|h, π)).
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Proof The lemma follows from the general inequality∣∣EP (f)− EQ(f)
∣∣ ≤ sup |f | · sup

A

∣∣P (A)−Q(A)
∣∣

by letting f be the return in the history and P = µ(·|h, π) and Q = ν(·|h, π), and using
0 ≤ f ≤ 1/(1− γ) that follows from the rewards being in [0, 1].

The next theorem is the first of the two convergence theorems in this section. It relates to
a strictly rational agent and imposes two conditions. The domination condition is a standard
assumption that a Bayesian agent satisfies if it has strictly positive prior weight for the truth.
The other assumption, the optimism assumption, is restrictive but the convergence result
does not hold if only domination is assumed and the known alternative (Hutter, 2005) of
demanding that a Bayesian agent’s hypothesis class is self-optimizing is only satisfied for
environments of very particular form such as ergodic Markov Decision Processes.

Algorithm 1: Optimistic-AIXI Agent (π◦)

Require: Finite class of dominant a priori environments Ξ
1: t = 1, h0 = ε
2: repeat
3: (π∗, ξ∗) ∈ arg maxπ∈Π,ξ∈Ξ V

π
ξ (ht−1)

4: at−1 = π∗(ht−1)
5: Perceive otrt from environment µ
6: ht ← ht−1at−1otrt
7: t← t+ 1
8: until end of time

Theorem 19 (AIXI convergence) Suppose that ξ(·) ≥ cµ(·) for some c > 0 and µ is the
true environment. Also suppose that there µ-almost surely is T1 < ∞ such that V ∗ξ (ht) ≥
V ∗µ (ht) ∀t ≥ T1. Suppose that the policy π∗ acts in µ according to the AIXI agent based on
ξ, i.e.,

π∗ ∈ arg max
π

V π
ξ (ε)

or equivalently Algorithm 1 with Ξ = {ξ}. Then there is µ-almost surely, i.e., almost surely
if the sequence ht is generated by π∗ acting in µ, for every ε > 0, a time T <∞ such that
V π∗
µ (ht) ≥ V ∗µ (ht)− ε ∀t ≥ T .

Proof Due to the dominance we can (using the Blackwell-Dubins merging of opinions
theorem (Blackwell and Dubins, 1962)) say that µ-almost surely there is for every ε′ > 0,
a T < ∞ such that ∀t ≥ T d(ξ(·|ht, π∗), µ(·|ht, π∗)) < ε′ where d is the total variation
distance. This implies that |V π∗

ξ (ht) − V π∗
µ (ht)| < ε′

1−γ := ε which means that, if t ≥ T ,

V π∗
µ (ht) ≥ V ∗ξ (ht)− ε ≥ V ∗µ (ht)− ε.
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Figure 1: Line environment

Example 20 (Line environment) We consider an agent who, when given a class of en-
vironments, will choose its prior based on simplicity in accordance with Occam’s razor (Hut-
ter, 2005). First let us look at a class M of two environments which both have six states
(Figure 1) s1, ..., s6 and two actions L (left) and R (right). Action R changes sk to sk+1, L
to sk−1. Also L in s1 or R in s6 result in staying. We start at s1. Being at s1 has a reward
of 0, s2, s3, s4, s5 have reward −1 while the reward in s6 depends on the environment. In
one of the environments ν1, this reward is +1 while in ν2 it is −1. Since ν2 is not simpler
than ν1 it will not have higher weight and if γ is only modestly high the agent will not
explore along the line despite that in ν2 it would be optimal to do so. However, if we define
another environment ν3 by letting the reward at s6 be really high, then when including ν3

in the mixture, the agent will end up with an a priori environment that is optimistic for ν1

and ν2 and we can guarantee optimality for any γ.

In the next theorem we prove that for the optimistic agent with a class of a priori
environments, only one of them needs to be optimistic at a time while all are assumed to
be dominant. As before, domination is achieved if the a priori environments are of the form
of a mixture over a hypothesis class containing the truth. The optimism is in this case
milder and is e.g., trivially satisfied if the truth is one of the a priori environments. Since
the optimistic agent is guaranteed convergence under milder assumptions we believe that it
would succeed in a broader range of environments than the single-prior rational agent.

Theorem 21 (Multiple-prior convergence) Suppose that Ξ is a finite set of a priori
environments such that for each ξ ∈ Ξ there is cξ,µ > 0 such that ξ(·) ≥ cξ,µµ(·) where
µ is the true environment. Also suppose that there µ-almost surely is T1 < ∞ such that
for t ≥ T1 there is ξt ∈ Ξ such that V ∗ξt(ht) ≥ V ∗µ (ht). Suppose that the policy π◦, defined
as in (2) or equivalently Algorithm 1, acts according to the rational optimistic agent based
on Ξ in µ. Then there is µ-almost surely, for every ε > 0, a time T < ∞ such that
V π◦
µ (ht) ≥ V ∗µ (ht)− ε ∀t ≥ T .

The theorem is proven by combining the proof technique from the previous theorem with
the following lemma. We have made this lemma easier to formulate by formulating it for
time t = 0 (when the history is the empty string ε), though when proving Theorem 21 it is
used for a later time point when the environments in the class have merged sufficiently under
π◦ in the sense of total variation diameter. The lemma simply says that if the environments
are sufficiently close under π◦, then π◦ must be nearly optimal. This follows from optimism
since it means that the value function that π◦ maximizes is the highest among the value
functions for the environments in the class and it is also close to the actual value by the
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assumption. The only thing that makes the proof non-trivial is that π◦ might maximize
for different environments at each step but since they are all close, the conclusion that
would otherwise have been trivial is still true. One can simply construct a new environment
that combines the dynamics of the environments that are optimistic at different times.
Then, the policy maximizes value for this environment at each times step and this new
environment is also close to all the environments in the class. We let ν∗h be an environment
in arg maxν maxπ V

π
ν (h) that π◦ uses to choose the next action after experiencing h.

Definition 22 (Environment used by π◦) Suppose that Ξ is a finite set of environ-
ments and that π◦ is the optimistic agent. Let ν∗h be an environment in arg maxν maxπ V

π
ν (h)

that π◦ uses to choose the next action after experiencing h, i.e., ν∗h is such that V ∗ν∗h
(h) =

maxν,π V
π
ν (h) and π◦(h) = π̃(h) for some π̃ ∈ arg maxπ V

π
ν∗h

(h). Note, the choice might not

be unique.

The next definition introduces the concept of constructing an environment that is con-
sistently used.

Definition 23 (Constructed environment) Define ν̂ by ν̂(o, r|h, a) = ν∗h(o, r|h, a).

The following lemma is intuitively obvious. It says that if at each time step we define an
environment by using the dynamics of the environment in the class that promises the most
value, then the resulting environment will always be optimistic relative to any environment
in the class. The proof is only complicated by the cumbersome notation required due to
studying fully general reinforcement learning. The key tool is the Bellman equation that
for general reinforcement learning is

V π
ν (h) =

∑
o,r

ν(o, r|h, π(h))[r + γV π
ν (h′)]

where h′ = hπ(h)or. Together with induction this will be used to prove the next lemma.

Lemma 24 V π◦
ν̂ ≥ maxν∈M,π V

π
ν (ε)

Proof Let V π
ν denote V π

ν (ε). We reason by induction using a sequence of environments
approaching ν̂. Let

ν̂s(otrt|ht−1, a) = ν̂(otrt|ht−1, a) ∀ht−1∀a, t ≤ s

and

ν̂s(otrt|ht−1, a) = ν∗hs(otrt|ht−1, a), ∀ht−1∀a, t > s.

ν̂1 equals ν∗ε at all time points and thus V π
ν̂1

= V π
ν∗ε

. Let R̂νt be the expected accumulated

(discounted) reward (E
∑t

i=1 γ
i−1ri) up to time t when following π◦ up until that time in

the environment ν. We first do the base case t = 1.

max
π2:∞

V π◦0:1π2:∞
ν̂2

= max
π1:∞

(R̂
ν∗ε
1 + γEh1|ν∗ε ,π◦V

π1:∞
ν∗h1

(h1)) ≥
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max
π1:∞

(R̂
ν∗ε
1 + γEh1|ν∗ε ,π◦V

π1:∞
ν∗ε

(h1)) = max
π

V π
ν̂1 .

The middle inequality is due to maxπ V
π
ν∗h1

(h1) ≥ maxπ V
π
ν (h1) ∀ν ∈ Ξ. The first equality

is the Bellman equation together with the fact that π◦ makes a first action that optimize
for ν∗ε . The second is due to ν̂1 = ν∗ε and the Bellman equation. In the same way,

∀k max
πk:∞

V
π◦0:k−1πk:∞
ν̂k

≥ max
πk−1:∞

V
π◦0:k−2πk−1:∞
ν̂k−1

and it follows by induction that V π◦
ν̂ ≥ maxπ,ν∈M V π

ν ≥ V ∗µ .

Lemma 25 (Optimism is nearly optimal) Suppose that the assumptions of Theorem
21 hold and that we denote the optimistic agent again by (π◦). Then for each ε > 0 there
exists ε̃ > 0 such that V π◦

µ (ε) ≥ maxπ V
π
µ (ε)− ε whenever

∀h,∀ν1, ν2 ∈ Ξ, |V π◦
ν1 (h)− V π◦

ν2 (h)| < ε̃.

Proof We will show that if we choose ε̃ small enough, then

|V π◦
ν̂ − V π◦

µ | < ε (8)

where µ is the true environment. Equation (8), when proven to hold when ε̃ is chosen small
enough, concludes the proof since then |V ∗µ − V π◦

µ | < ε, due to V π◦
ν̂ ≥ V ∗µ ≥ V π◦

µ . This is
easy since

|V π◦
ν̂ε − V

π◦
ν̂ | <

ε̃

1− γ

and if ε̃ + ε̃
1−γ ≤ ε then (8) holds and the proof is complete as we concluded above since

|V π◦
ν̂ε
− V π◦

µ | < ε̃.

Proof of Theorem 21. Since Ξ is finite and by using Theorem 17 (Blackwell-Dubins),
there is for every ε′, a T < ∞ when ∀ξ ∈ Ξ ∀t ≥ T, d(ξ(·|ht, π◦), µ(·|ht, π◦)) < ε′. This
implies that ∀ξ ∈ Ξ |V π◦

ξ (ht)−V π◦
µ (ht)| < ε′

1−γ by Lemma 18. Choose ε′ such that ε′

1−γ = ε.

Applying Lemma 25 with class Ξ̃ = {ξ(·| hT ) : ξ ∈ Ξ} now directly proves the result. The
application of Lemma 25 is viewing time T from this proof as time zero and the ε context.

Example 26 (Multiple-prior AIXI) For any Universal Turing Machine (UTM) U the
corresponding Solomonoff distribution ξU is defined by putting coin flips on the input tape
(see Li and Vitani (2008); Hutter (2005) for details). ξU is dominant for any lower semi-
computable semi-measure over infinite sequences. Hutter (2005) extends these constructions
and introduces an environment ξU that is dominant for all reactive lower semi-computable
reactive environments and defines the AIXI agent based on it as in Theorem 19. A difficulty
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is to choose the UTM to use. Many have without success tried to find a single “natural”
Turing machine and it might in fact be impossible (Müller, 2010). Examples includes defin-
ing a machine from a programming language like C or Haskell and another possibility is
to use Lambda calculus. With the approach that we introduce in this article one can pick
finitely many machines that one considers to be natural. Though this does not fully resolve
the issue, and the issue might not be fully resolvable, it alleviates it.

5. Finite Classes of Deterministic (Non-Dominant) A Priori
Environments

In this section, we perform a different sort of analysis where it is not assumed that all the
environments in Ξ dominate the true environment µ. We instead rely on the assumption
that the true environment is a member of the agent’s class of environments. The a priori
environments are then naturally thought of as a hypothesis class rather than mixtures
over some hypothesis class and we will write M instead of Ξ to mark this difference. We
begin with the deterministic case, where one could not have introduced the domination
assumption, in this section and look at stochastic non-dominant a priori environments in
the next. The agent in this section can be described, as was done in Example 11 as having
an optimistic decision function and a hypothesis-generating function that begins with an
initial class and removes excluded environments.

5.1 Optimistic Agents for Deterministic Environments

Given a finite class of deterministic environmentsM = {ν1, ..., νm}, we define an algorithm
that for any unknown environment from M eventually achieves optimal behavior in the
sense that there exists T such that maximum reward is achieved from time T onwards.
The algorithm chooses an optimistic hypothesis from M in the sense that it picks the
environment in which one can achieve the highest reward and then the policy that is optimal
for this environment is followed. If this hypothesis is contradicted by the feedback from
the environment, a new optimistic hypothesis is picked from the environments that are still
consistent with h. This technique has the important consequence that if the hypothesis is
not contradicted, the agent acts optimally even when optimizing for an incorrect hypothesis.

Let hπ,νt be the history up to time t generated by policy π in environment ν. In particular
let h◦ := hπ

◦,µ be the history generated by Algorithm 2 (policy π◦) interacting with the
actual “true” environment µ. At the end of cycle t we know h◦t = ht. An environment ν

is called consistent with ht if hπ
◦,ν
t = ht. Let Mt be the environments consistent with ht.

The algorithm only needs to check whether oπ
◦,ν
t = ot and rπ

◦,ν
t = rt for each ν ∈ Mt−1,

since previous cycles ensure hπ
◦,ν
t−1 = ht−1 and trivially aπ

◦,ν
t = at. The maximization

in Algorithm 2 that defines optimism at time t is performed over ν ∈ Mt−1, the set of
consistent hypotheses at time t, and π ∈ Π = Πall is the class of all deterministic policies. In
Example 11, we described the same agent by saying that it combines an optimistic decision
function with a hypothesis generating function that begins with an initial finite class of
deterministic environments and excludes those that are contradicted. More precisely, we
have here first narrowed down the optimistic decision function further by saying that it
needs to stick to hypothesis until contradicted, while we will below further discuss not
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Algorithm 2: Optimistic Agent (π◦) for Deterministic Environments

Require: Finite class of deterministic environments M0 ≡M
1: t = 1
2: repeat
3: (π∗, ν∗) ∈ arg maxπ∈Π,ν∈Mt−1

V π
ν (ht−1)

4: repeat
5: at−1 = π∗(ht−1)
6: Perceive otrt from environment µ
7: ht ← ht−1at−1otrt
8: Remove all inconsistent ν from Mt (Mt := {ν ∈Mt−1 : hπ

◦,ν
t = ht})

9: t← t+ 1
10: until ν∗ 6∈ Mt−1

11: until M is empty

making this simplifying extra specification. Its an important fact, proven below, that an
optimistic hypothesis does not cease to be optimistic until contradicted. The guarantees we
prove for this agent are stronger than in the previous chapter where only dominance was
assumed while here we assume that the truth belongs to the given finite class of deterministic
environments.

Theorem 27 (Optimality, Finite deterministic class) Suppose M is a finite class of
deterministic environments. If we use Algorithm 2 (π◦) in an environment µ ∈ M , then
there is T <∞ such that

V π◦
µ (ht) = max

π
V π
µ (ht) ∀t ≥ T.

A key to proving Theorem 27 is time-consistency (Lattimore and Hutter, 2011b) of geometric
discounting. The following lemma tells us that if the agent acts optimally with respect to
a chosen optimistic hypothesis, this hypothesis remains optimistic until contradicted.

Lemma 28 (Time-consistency) Suppose (π∗, ν∗) ∈ arg maxπ∈Π,ν∈Mt−1
V π
ν (ht−1) and that

an agent acts according to π∗ from a time point t to another time point t̃ − 1, i.e., as =
π∗(hs−1) for t ≤ s ≤ t̃ − 1. For any choice of t < t̃ such that ν∗ is still consistent at time
t̃, it holds that (π∗, ν∗) ∈ arg maxπ∈Π,ν∈Mt̃

V π
ν (ht̃).

Proof Suppose that V π∗
ν∗ (ht̃) < V π̃

ν̃ (ht̃) for some π̃, ν̃. It holds that V π∗
ν∗ (ht) = C +

γ t̃−tV π∗
ν∗ (ht̃) where C is the accumulated reward between t and t̃ − 1. Let π̂ be a pol-

icy that equals π∗ from t to t̃ − 1 and then equals π̃. It follows that V π̂
ν̃ (ht) = C +

γ t̃−tV π̂
ν̃ (ht̃) > C + γ t̃−tV π∗

ν∗ (ht̃) = V π∗
ν∗ (ht) which contradicts the assumption (π∗, ν∗) ∈

arg maxπ∈Π,ν∈Mt
V π
ν (ht). Therefore, V π∗

ν∗ (ht̃) ≥ V π̃
ν̃ (ht̃) for all π̃, ν̃.

Proof (Theorem 27) At time t we know ht. If some ν ∈ Mt−1 is inconsistent with ht,

i.e., hπ
◦,ν
t 6= ht, it gets removed, i.e., is not in Mt′ for all t′ ≥ t.
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Since M0 = M is finite, such inconsistencies can only happen finitely often, i.e., from
some T onwards we have Mt = M∞ for all t ≥ T . Since hπ

◦,µ
t = ht ∀t, we know that

µ ∈Mt ∀t.
Assume t ≥ T henceforth. The optimistic hypothesis will not change after this point. If

the optimistic hypothesis is the true environment µ, the agent has obviously chosen a truly
optimal policy.

In general, the optimistic hypothesis ν∗ is such that it will never be contradicted while
actions are taken according to π◦, hence (π∗, ν∗) do not change anymore. This implies

V π◦
µ (ht) = V π∗

µ (ht) = V π∗
ν∗ (ht) = max

ν∈Mt

max
π∈Π

V π
ν (ht) ≥ max

π∈Π
V π
µ (ht)

for all t ≥ T . The first equality follows from π◦ equals π∗ from t ≥ T onwards. The
second equality follows from consistency of ν∗ with h◦1:∞. The third equality follows from
optimism, the constancy of π∗, ν∗, and Mt for t ≥ T , and time-consistency of geometric
discounting (Lemma 28). The last inequality follows from µ ∈ Mt. The reverse inequality
V π∗
µ (ht) ≤ maxπ V

π
µ (ht) follows from π∗ ∈ Π. Therefore π◦ is acting optimally at all times

t ≥ T .

Besides the eventual optimality guarantee above, we also provide a bound on the number
of time steps for which the value of following Algorithm 2 is more than a certain ε > 0 less
than optimal. The reason this bound is true is that we only have such suboptimality
for a certain number of time steps immediately before the current hypothesis becomes
inconsistent and the number of such inconsistency points are bounded by the number of
environments. Note that the bound tends to infinity as ε→ 0, hence we need Theorem 27
with its distinct proof technique for the ε = 0 case.

Theorem 29 (Finite error bound) Following π◦ (Algorithm 2),

V π◦
µ (ht) ≥ max

π∈Π
V π
µ (ht)− ε, 0 < ε < 1/(1− γ)

for all but at most K− log ε(1−γ)
1−γ ≤ |M − 1|− log ε(1−γ)

1−γ time steps t where K is the number
of times that some environment is contradicted.

Proof Consider the `-truncated value

V π
ν,`(ht) :=

t+∑̀
i=t+1

γi−t−1ri

where the sequence ri are the rewards achieved by following π from time t + 1 to t + `
in ν after seeing ht. By letting ` = log ε(1−γ)

log γ (which is positive due to negativity of both

numerator and denominator) we achieve |V π
ν,`(ht)− V π

ν (ht)| ≤ γl

1−γ = ε. Let (π∗t , ν
∗
t ) be the

policy-environment pair selected by Algorithm 2 in cycle t.

Let us first assume hπ
◦,µ
t+1:t+` = h

π◦,ν∗t
t+1:t+`, i.e., ν∗t is consistent with h◦t+1:t+`, and hence π∗t

and ν∗t do not change from t+ 1, ..., t+ ` (inner loop of Algorithm 2). Then

V π◦
µ (ht)

drop terms,
↓
≥ V π◦

µ,` (ht)

same ht+1:t+`,
↓
= V π◦

ν∗t ,`
(ht)

π◦=π∗t on ht+1:t+`,
↓
= V

π∗t
ν∗t ,`

(ht)
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≥
↑

bound extra terms

V
π∗t
ν∗t

(ht)− γ`

1−γ =
↑

def. of (π∗t , ν
∗
t ) and ε := γ`

1−γ

max
ν∈Mt

max
π∈Π

V π
ν (ht)− ε ≥

↑
µ ∈Mt

max
π∈Π

V π
µ (ht)− ε.

Now let t1, ..., tK be the times t at which the currently selected ν∗t becomes inconsistent
with ht, i.e., {t1, ..., tK} = {t : ν∗t 6∈ Mt}.

Therefore h◦t+1:t+` 6= h
π◦,ν∗t
t+1:t+` (only) at times t ∈ T× :=

⋃K
i=1{ti − `, ..., ti − 1}, which

implies V π◦
µ (ht) ≥ maxπ∈Π V

π
µ (ht)− ε except possibly for t ∈ T×. Finally

|T×| = `·K =
log ε(1− γ)

log γ
K ≤ K

log ε(1− γ)

γ − 1
≤ |M− 1| log ε(1− γ)

γ − 1

Conservative or liberal optimistic agents. We refer to the algorithm above as the conserva-
tive agent since it keeps its hypothesis for as long as it can. We can define a more liberal
agent that re-evaluates its optimistic hypothesis at every time step and can switch between
different optimistic policies at any time. Algorithm 2 is actually a special case of this as
shown by Lemma 28. The liberal agent is really a class of algorithms and this larger class of
algorithms consists of exactly the algorithms that are optimistic at every time step without
further restrictions. The conservative agent is the subclass of algorithms that only switch
hypothesis when the previous is contradicted. The results for the conservative agent can be
extended to the liberal one. We do this for Theorem 27 in Appendix A together with analyz-
ing further subtleties about the conservative case. It is worth noting that the liberal agent
can also be understood as a conservative agent but for an extended class of environments
where one creates a new environment by letting it have, at each time step, the dynamics of
the chosen optimistic environment. Contradiction of such an environment will then always
coincide with contradiction of the chosen optimistic environment and there will be no extra
contradictions due to these new environments. Hence, the finite-error bound can also be
extended to the liberal case. In the stochastic case below, we have to use a liberal agent.
Note that both the conservative and liberal agents are based on an optimistic decision func-
tion and the same hypothesis-generating function. There can be several optimistic decision
functions due to ties.

5.2 Environments and Laws

The bounds given above have a linear dependence on the number of environments in the
class and though this is the best one can do in general (Lattimore et al., 2013a), it is bad
compared to what we are used to from Markov Decision Processes (Lattimore and Hutter,
2012) where the linear (up to logarithms) dependence is on the size of the state space
instead. Markov Decision Processes are finitely generated in a sense that makes it possible
to exclude whole parts of the environment class together, e.g., all environments for which
a state s2 is likely to follow the state s1 if action a1 is taken. Unfortunately, the Markov
assumption is very restrictive.

In this section we will improve the bounds above by introducing the concept of laws and
of an environment being generated by a set of laws. Any environment class can be described
this way and the linear dependence on the size of the environment class in the bounds is
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replaced by a linear dependence on the size of the smallest set of laws that can generate the
class. Since any class is trivially generated by the laws that simply equal an environment
from the class each, we are not making further restrictions compared to previous results.
However, in the worst situations the bounds presented here equal the previous bounds,
while for other environment classes the bounds in this section are exponentially better. The
latter classes with good bounds are the only option for practical generic agents. Classes of
such form have the property that one can exclude laws and thereby exclude whole classes
of environments simultaneously like when one learns about a state transition for an MDP.

Environments defined by laws. We consider observations of the form of a feature vector
o = ~x = (xj)

m
j=1 ∈ O = ×mj=1Oj including the reward as one coefficient where xj is an

element of some finite alphabet Oi. Let O⊥ = ×mj=1(Oj ∪ {⊥}), i.e., O⊥ consists of the
feature vectors from O but where some elements are replaced by a special letter ⊥. The
meaning of ⊥ is that there is no prediction for this feature. We first consider deterministic
laws.

Definition 30 (Deterministic laws) A law is a function τ : H×A → O⊥.

Using a feature vector representation of the observations and saying that a law predicts
some of the features is a convenient special case of saying that the law predicts that the next
observation will belong to a certain subset of the observation space. Each law τ predicts,
given the history and a new action, some or none but not necessarily all of the features
xj at the next time point. We first consider sets of laws such that for any given history
and action, and for every feature, there is at least one law that makes a prediction of this
feature. Such sets are said to be complete.

Definition 31 (Complete set of laws) A set of laws T̃ is complete if

∀h, a∀j ∈ {1, ...,m} ∃τ ∈ T̃ : τ(h, a)j 6= ⊥.

We will only consider combining deterministic laws that never contradict each other and
we call such sets of laws coherent. The main reason for this restriction is that one can then
exclude a law when it is contradicted. If one does not demand coherence, an environment
might only sometimes be consistent with a certain law and the agent can then only exclude
the contradicted environment, not the contradicted law which is key to achieving better
bounds.

Definition 32 (Coherent set of laws) We say that T̃ is coherent if for all τ ∈ T̃ , h, a
and j

τ(h, a)j 6= ⊥ ⇒ τ̃(h, a)j ∈ {⊥, τ(h, a)j} ∀τ̃ ∈ T̃ .

Definition 33 (Environment from a complete and coherent set of laws) Given a
complete and coherent set of laws T̃ , ν(T̃ ) is the unique environment ν which is such that

∀h, a∀j ∈ {1, ...,m}∃τ ∈ T̃ : ν(h, a)j = τ(h, a)j .

The existence of ν(T̃ ) follows from completeness of T̃ and uniqueness is due to coherence.
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Definition 34 (Environment class from deterministic laws) Given a set of laws T ,
let C(T ) denote the complete and coherent subsets of T . Given a set of laws T , we define
the class of environments generated by T through

M(T ) := {ν(T̃ ) |T̃ ∈ C(T )}.

Example 35 (Deterministic laws for fixed vector) Consider an environment with a
constant binary feature vector of length m. There are 2m such environments. Every such
environment can be defined by combining m out of a class of 2m laws. Each law says what
the value of one of the features is, one law for 0 and one for 1. In this example, a coherent
set of laws is simply one feature for each coefficient. The generated environment is the
constant vector defined by that vector and the set of all the generated environments is the
full set of 2m environments.

Error analysis. Every contradiction of an environment is a contradiction of at least one
law and there are finitely many laws. This is what is needed for the finite error result
from Section 4 to hold but with |M| replaced by |T | (see Theorem 36 below) which can
be exponentially smaller. Furthermore, the extension to countable T works the same as in
Theorem 45.

Theorem 36 (Finite error bound when using laws) Suppose that T is a finite class
of deterministic laws and let G(h) = {ν(·|h) | ν ∈ M({τ | τ ∈ T consistent with h})}. We
define π̄ by combining G with the optimistic decision function. Following π̄ for a finite class
of deterministic laws T in an environment µ ∈M(T ), we have for any 0 < ε < 1

1−γ that

V π̄
µ (ht) ≥ max

π
V π
µ (ht)− ε (9)

for all but at most |T − l|− log ε(1−γ)
1−γ time steps t where l is the minimum number of laws

from T needed to define a complete environment.

Proof This theorem follows from Theorem 29 since there are at most K = |T − l| time
steps with a contradiction.

6. Finite Classes of Stochastic Non-Dominant A Priori Environments

A stochastic hypothesis may never become completely inconsistent in the sense of assigning
zero probability to the observed sequence while still assigning very different probabilities
than the true environment. Therefore, we exclude based on a threshold for the probability
assigned to the generated history proportional to the highest probability assigned by some
environment in the remaining class. An obvious alternative is to instead compare to a
weighted average of all the remaining environments as done by Lattimore et al. (2013b) for
the BayesExp algorithm. This latter alternative means that one can interpret the criterion
as excluding environments of low posterior probability where the weights define the prior.
The alternatives differ only by a constant factor depending on the weights.
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Unlike in the deterministic case, a hypothesis can cease to be optimistic without having
been excluded. We, therefore, only consider an algorithm that re-evaluates its optimistic
hypothesis at every time step. Algorithm 3 specifies the procedure and Theorem 37 states
that it is asymptotically optimal. We previously introduced the agent described in Algo-
rithm 3, in Example 14 by saying it has an optimistic decision function and by describing
the hypothesis-generating function based on a criterion for excluding environments from
an initial class. We also consider a different exclusion criterion, i.e., a different hypothesis-
generating function, for an optimistic agent to be able to present sample complexity bounds
that we believe also holds for the first agent. The criterion used to achieve near-optimal sam-
ple complexity has previously been used in the MERL algorithm (Lattimore et al., 2013a),
which has a decision function that we deem irrational according to our theory. Our agent
instead uses an optimistic decision function but the same hypothesis-generating function as
MERL. A very similar agent and bound can also be achieved as an optimistically acting
realization of the adaptive k-meteorologists’ algorithm by Diuk et al. (2009) and its bound.
This agent would only have a slightly different exclusion criterion compared to MERL. A
further step that we do not take here would be to improve the bounds dramatically by using
stochastic laws (Sunehag and Hutter, 2015) as we did with deterministic laws previously.

Algorithm 3: Optimistic Agent (π◦) with Stochastic Finite Class

Require: Finite class of stochastic environments M1 ≡M, threshold z ∈ (0, 1)
1: t = 1
2: repeat
3: (π∗, ν∗) = arg maxπ,ν∈Mt

V π
ν (ht−1)

4: at−1 = π∗(ht−1)
5: Perceive otrt from environment µ
6: ht ← ht−1at−1otrt
7: t← t+ 1
8: Mt := {ν ∈Mt−1 : ν(ht|a1:t)

maxν̃∈M ν̃(ht|a1:t) > z}
9: until the end of time

Theorem 37 (Optimality, Finite stochastic class) Define π◦ by using Algorithm 3 with
any threshold z ∈ (0, 1) and a finite class M of stochastic environments containing the true
environment µ, then with probability 1 − z|M − 1| there exists, for every ε > 0, a number
T <∞ such that

V π◦
µ (ht) > max

π
V π
µ (ht)− ε ∀t ≥ T.

We borrow some techniques from Hutter (2009a) that introduced a “merging of opinions”
result that generalized the classical theorem by Blackwell and Dubins (1962), restated here
as Theorem 17. The classical result says that it is sufficient that the true measure (over
infinite sequences) is absolutely continuous with respect to a chosen a priori distribution to
guarantee that they will almost surely merge in the sense of total variation distance. The
generalized version is given in Lemma 38. When we combine a policy π with an environment
ν by letting the actions be taken by the policy, we have defined a measure, denoted by
ν(·|π), on the space of infinite sequences from a finite alphabet. We denote such a sample
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sequence by ω and the a:th to b:th elements of ω by ωa:b. The σ-algebra is generated by
the cylinder sets Γy1:t := {ω|ω1:t = y1:t} and a measure is determined by its values on those
sets. To simplify notation in the next lemmas we will write P (·) = ν(·|π), meaning that
P (ω1:t) = ν(ht|a1:t) where ωj = ojrj and aj = π(hj−1). Furthermore, ν(·|ht, π) = P (·|ht).

The results from Hutter (2009a) are based on the fact that Zt = Q(ω1:t)
P (ω1:t)

is a martingale

sequence if P is the true measure and therefore converges with P probability 1 (Doob,
1953). The crucial question is if the limit is strictly positive or not. The following lemma
shows that with P probability 1 we are either in the case where the limit is 0 or in the case
where d(P (·|ω1:t), Q(·|ω1:t))→ 0.

Lemma 38 (Generalized merging of opinions Hutter (2009a)) For any measures P
and Q it holds that P (Ω◦ ∪ Ω̄) = 1 where

Ω◦ :=
{
ω :

Q(ω1:t)

P (ω1:t)
→ 0

}
and Ω̄ :=

{
ω : d(P (·|ω1:t), Q(·|ω1:t))→ 0

}
The following lemma replaces the property for deterministic environments that either

they are consistent indefinitely or the probability of the generated history becomes 0.

Lemma 39 (Merging of environments) Suppose we are given two environments µ (the
true one) and ν and a policy π (defined e.g., by Algorithm 3). Let P (·) = µ(·|π) and
Q(·) = ν(·|π). Then with P probability 1 we have that

lim
t→∞

Q(ω1:t)

P (ω1:t)
= 0 or lim

t→∞
|V π
µ (ht)− V π

ν (ht)| = 0.

Proof This follows from a combination of Lemma 38 and Lemma 18.

Proof (Theorem 37) Given a policy π, let P (·) = µ(·|π) where µ ∈ M is the true
environment and Q = ν(·|π) where ν ∈ M. Let the outcome sequence (o1r1), (o2r2), ...
be denoted by ω. It follows from Doob’s martingale inequality (Doob, 1953) that for all
z ∈ (0, 1)

P
(

sup
t

Q(ω1:t)

P (ω1:t)
≥ 1/z

)
≤ z, which implies P

(
inf
t

P (ω1:t)

Q(ω1:t)
≤ z
)
≤ z.

This implies, using a union bound, that the probability of Algorithm 3 ever excluding the
true environment is less than z|M− 1|.

The limits ν(ht|π◦)
µ(ht|π◦) converge µ-almost surely as argued before using the martingale con-

vergence theorem. Lemma 39 tells us that any given environment (with probability one)
is eventually excluded or is permanently included and merges with the true one under π◦.
Hence, the remaining environments do merge with the true environment, according to and
in the sense of Lemma 39. Lemma 18 tells us that the difference between value functions
(for the same policy) of merging environments converges to zero. Since there are finitely
many environments and the ones that remain indefinitely in Mt merge with the true envi-
ronment under π◦, there is for every ε̃ > 0 a T such that for all continuations h of hT , it
holds that

|V π◦
ν1 (h)− V π◦

ν2 (h)| < ε̃ ∀ν1, ν2 ∈M`(h).
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The proof is concluded by Lemma 25 (applied to Ξ = Mt) in the case where the true
environment remains indefinitely included which happens with probability z|M− 1|.

Optimal sample complexity for optimistic agent. We state the below results for γ = 0 even
if some of the results referred to are more general, both for simplicity and because we can
only prove that our new agent is optimal for this myopic case and only conjecture that the
result extends to 0 < γ < 1. For γ = 0 we can replace π by a in e.g., V π because the value
then only depends on the immediate action.

Definition 40 (ε-error) Given 0 ≤ ε < 1, we define the number of ε-errors for γ = 0 in
history h to be

m(h, ε) = |{t ≤ `(h) | V at
µ (ht) < V ∗µ (ht)− ε}|

where µ is the true environment, `(h) is the length of h, at is the t:th action of an agent π
and V ∗µ (h) = maxa V

a
µ (h). Each such time point t where V at

µ (ht) < V ∗µ (ht)− ε is called an
ε-error.

In Lattimore et al. (2013a), an agent (MERL) that achieves optimal sample complex-
ity for general finite classes of stochastic environments was presented and we provided a
high-level description of it in Example 15 in terms of an irrational decision function and
a hypothesis-generating function. Here we point out that one can take the hypothesis-
generating function of MERL and combine it with an optimistic decision function and still
satisfy optimal sample complexity for the case γ = 0. We conjecture that our optimistic
agent also satisfies MERL’s bound for 0 < γ < 1, but it is even harder to prove than the
difficult analysis of MERL, which was designed to enable the proof. Our resulting optimistic
agent is described in Algorithm 4. Lattimore et al. (2013a) proves the matching lower bound
O( M

ε2(1−γ)3
log 1

δ ). We conjecture that the optimistic agent just like MERL satisfies an upper

bound matching the generic lower up to logarithmic factors for all γ < 1 and not just for
γ = 0, which we can prove it for.

The advantage of the optimistic agent is that its exploration is not irrationally exploring
an option with values in e.g., the interval [0, 0.3] if there is an option with guaranteed value
of 0.9. MERL does this because it looks for the maximum discrepancy in values, which
is why it is called Maximum Exploration Reinforcement Learning. The agent eliminates
all wrong environments regardless if this is useful or not. The exclusion criterion is based
on what return is predicted by the remaining environments. If the most optimistic and
the most pessimistic differ substantially one of them will turn out to be wrong and the
plausibility of it being the truth decreases. When an environment becomes sufficiently
implausible it is excluded. The technical difficulty is about both making sure that the truth
is with high probability not excluded while also not keeping an environment unnecessarily
long which would cause excess exploration. Investigating this particular technical difficulty,
while important, is not among the main conceptual issues this article is focused on.

Theorem 41 (Sample complexity for optimistic agent) Suppose we have a finite class
of M (stochastic) environments M. Letting α = 1 + (4

√
M − 1)−1 and δ1 = δ(32(3 +

log2 1/ε)M3/2)−1 in Algorithm 4, the number of ε-errors, i.e., time points t such that
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Algorithm 4: Optimistic agent with hypothesis-generation from Lattimore et al. (2013a)

Require: ε, δ1, α,M = {ν1, ..., νM}
Ensure: t = 1, h = ε, αj = dαje, nν,κ := 0 ∀ν ∈M, κ ∈ N

while True do
(ν, at) := arg maxν∈M,a∈A V

a
ν (h) # Choosing the optimistic action.

Take action at, receive rt,ot # h is not appended until the end of the loop
ν := arg minν∈M V at

ν (h) # Find the pessimistic environment for at
∆ = V at

ν (h)− V at
ν (h) # Difference between optimistic and pessimistic

if ∆ > ε/4 # If large, one of them is significantly off
# and we got an effective test

then
κ = max{k ∈ N : ∆ > ε2k−2}
nν,κ = nν,κ + 1, nν,κ = nν,κ + 1
X
nν,κ
ν,κ = V at

ν (h)− rt
X
nν,κ
ν,κ = rt − V at

ν (h)

if ∃j, κ : nν,κ = αj and
∑nν,κ

i=1 X
i
ν,κ ≥

√
2nν,κ log

nν,κ
δ1

then

M =M\ {ν}
end if
if ∃j, κ : nν,κ = αj and

∑nν,κ
i=1 X

i
ν,κ ≥

√
2nν,κ log

nν,κ
δ1

then

M =M\ {ν}
end if
t := t+ 1, h := hatotrt

end if
end while

V ∗µ (ht) − V π
µ (ht) > ε where π is Algorithm 4, resulting from running it on any environ-

ment in M is with probability 1− δ less than

Õ(
M

ε2
log2 1

δ
)

where Õ means O but up to logarithmic factors.

Proof The result follows from the analysis in Lattimore et al. (2013a) and we only provide
an overview here. More precisely, the claim follows from the proofs of Lemma 2 and 4 in
Lattimore et al. (2013a) which are both based on Azuma’s inequality. Lemma 2 proves that
the true environment will not be excluded with high probability (we need this to be at least
1 − δ/2). Lemma 4 shows that the number of exploration phases will not be larger than
Õ(M

ε2
log2 1

δ ) with high probability, at least 1− δ/2. The proof shows that before we reach
that many we will with at least that probability have excluded all but the true environ-
ment. However, all environments do not have to be excluded and some environments might
remain indefinitely by offering just slightly less reward for the optimal action than the true
environment. For our agent, unlike MERL, an environment might also remain by differing
arbitrarily much on actions that will never optimistically be taken.
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For a reader that is familiar with MERL we explain why the bound for our agent should
naturally be expected to be the same as for the MERL agent for γ = 0. To ensure that
it can be guaranteed that no ε-errors are made during exploitation, MERL checks the
maximum distance between environments for any policy and decides based on this if it
needs to explore. Our agent, however, will still have this guarantee in the case γ = 0 and
we can, from the analysis of MERL in Lattimore et al. (2013a), conclude that it makes, with
probability 1 − δ, at most Õ(M

ε2
log2 1

δ ) ε-errors. In fact, for γ = 0 we only need to know
that the maximum difference between any two environments’ values under the optimistic
action is less than ε/2, to guarantee that the agent does not make an ε-error.

Model-free vs model-based. We will here discuss our two main ways of excluding environ-
ments, namely exclusion by accuracy of return predictions (Algorithm 4 and MERL) and
plausibility given observations and rewards (Algorithm 3 and BayesExp). Algorithm 4
above is essentially a model-free algorithm since what is used from each environment are
two things; a recommended policy and a predicted return (its value in the given environ-
ment). Algorithm 4 evaluates the plausibility of an environment based on its predicted
return. Hence, for each time step it only needs pairs of policy and return prediction and
not complete environments. Such pairs are exactly what is considered in the Learning Clas-
sifier Systems (LCS) approach as mentioned in the introduction and as will be discussed in
Section 5.2.

We will primarily consider a model-based situation where predictions are made also for
future observations. Also, including the observations in the evaluation of one’s hypotheses
makes better use of available data. However, Hutter (2009b) argues that observations can
be extremely complex and that focusing on reward prediction for selecting a model, may still
be preferable due its more discriminative nature. We do not here take a definite position.

Lattimore et al. (2013b) studied confidence and concentration in sequence prediction and
used exclusion based on a probability ratio, in that case with a weighted average instead of
the max in our Algorithm 3. This alternative expression, which is closely related to the one
used by Algorithm 3, differing only by a constant factor, can be interpreted as the posterior
probability for the hypothesis and hypotheses with low posterior probability are excluded.
Lattimore (2014) extended this work to a reinforcement learning algorithm BayesExp that
like MERL above switches between phases of exploitation and pure exploration. When
the remaining environments are sufficiently concentrated, one can guarantee that an agent
does not make a mistake and the agent exploits this. The exploitation in BayesExp is
performed by maximizing value for a weighted average, although one can also use optimism
and not make a mistake. We deem both behaviors rational based on the definitions in
Section 2. However, when the environments are not close enough, BayesExp explores by
maximizing Bayesian information gain or by acting greedily with respect to the policy with
the largest Hellinger distance to the Bayes mixture. Pure exploration is in this article not
deemed rational and we suggest replacing it with acting greedily with respect to the most
optimistic environment, i.e., being optimistic. This results again in an always optimistic
agent with a criterion for when to exclude environments and we conjecture that this agent
satisfies near optimal sample-complexity.
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Compact classes. One can extend our results for finite classes to classes that are compact
in a suitable topology, e.g., defined by the pseudo-metric

d̃(ν1, ν2) = sup
h,π
|V π
ν1(h)− V π

ν2(h)|

used by Lattimore et al. (2013a) or a variant based on total variation distance used for the
same purpose in Sunehag and Hutter (2012a). If one wants accuracy of ε > 0 one can cover
the compact space with finitely many d̃-balls of radius ε/2 and then apply an algorithm
for finite classes to the finite class of ball centers to achieve accuracy ε/2. This adds up to
accuracy ε for the actual compact class. The number of environments in the finite class is
then equal to the number of balls. This number also feature prominently in the theory of
supervised learning using reproducing kernel Hilbert spaces (Cucker and Smale, 2002).

Feature Markov decision processes. One can define interesting compact classes of envi-
ronments using the feature Markov decision process framework (φMDP) (Hutter, 2009b;
Sunehag and Hutter, 2010). The main idea in this framework is to reduce an environment
to an MDP through applying a function φ to the history ht and define a state st = φ(ht).
Given a class of functions of this sort, Sunehag and Hutter (2010) define a class of environ-
ments that consists of those that can be exactly represented as an MDP using a function
from the class. The class of feature Markov decision processes defined from a finite set of
maps is a compact continuously parameterized class. Given a map φ from histories to a
finite state set S, a sequence of actions, observations, rewards is transformed into a sequence
of states s1, ..., sn where st = φ(ht). Defining probability distributions Pr(or|s, a) leads to
having defined an environment. In other words, a combination of a map from histories to
states with probability parameters stating, for each state-action pair (s, a) the probability
of each possible perception or ∈ O ×R, is a fully specified environment. Furthermore,

Pr(st+1, rt+1|st, at+1) =
∑

ot+1rt+1|φ(htat+1ot+1rt+1)=st+1

Pr(ot+1rt+1|st, at+1)

and we have, therefore, also defined a Markov Decision Process based on the states defined
by the map φ. When considering an environment’s optimal policy, this means that we can
restrict our study to policies that are functions from the states of the environment to actions.
Finding the best such stationary policy becomes the goal in this setting. Considering a finite
class of maps, each map gives us a compact class of environments and we can embed all
of them into Rd for some d. Since a finite union of compact sets is compact, we have
defined a compact class. Hence, one can cover the space with finite many balls regardless
of how small positive radius one chooses. However, the bounds are linear in the number
of balls which can be very large. This is because those bounds are worst case bounds for
fully general environments. In the feature MDP case we learn simultaneously about large
subsets of environments and one should be able to have bounds that are linear in the size
of a maximal state space (see Section 5.2).

Example 42 (Automata) A special form of maps are those that can be defined by a
deterministic function (a table) τ(s, a, o, r) = s′. Maps of this sort have been considered by
Mahmud (2010) for the class of Probabilistic-Deterministic Finite Automata.
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7. Countable and Growing Classes

In this section, we extend the agents and analysis from the previous section to arbitrary
countable environment classes.

Properties of hypothesis-generating functions. After seeing examples of decision functions
and hypothesis generating functions above, we will discuss what properties are desirable
in a hypothesis-generating function. We discussed what a decision function should be like
in Section 3.1 based on decision-theoretic axioms defining rationality. In the choice of
hypothesis-generating functions we focus on what kind of performance can be guaranteed
in terms of how many suboptimal decisions will be taken. First, however, we want to restrict
our study to hypothesis-generating functions that are following Epicurus’ principle that says
that one should keep all consistent hypotheses. In the case of deterministic environments
it is clear what it means to have a contradiction between a hypothesis and an observation
while in the stochastic case it is not. One can typically only say that the data makes
a hypothesis unlikely as in Example 14. We say that a hypothesis generating function
satisfies Epicurus if the update function is such that it might add new environments in any
way while removing environments if a hypothesis becomes implausible (likely to be false)
in light of the observations made. Aside from satisfying Epicurus’ principle, we design
hypothesis generating functions based mainly on wanting few mistakes to be made. For
this purpose we first define the term ε-(in)confidence. We are going to formulate the rest of
the definitions and results in this section for γ = 0, while explaining also how the general
0 < γ < 1 works. We choose to formulate the formal results for this case (γ = 0) to clarify
the reasoning and conceptual issues that apply to endless variations of the setting.

Since the true environment is unknown, an agent cannot know if it has made an ε-error
or not. However, if one assumes that the true environment is in the class G(ht), or more
generally that the class contains an environment that is optimistic with respect to the true
environment, and if the class is narrow in total variation distance in the sense (of Lemma
25) that the distance between any pair of environments in the class is small, then one can
conclude that an error is not made. Since we do not know if this extra assumption holds
for G(ht), we will use the terms ε-confident and ε-inconfident.

If the value functions in the class G(ht) differ in their predicted value by more than ε > 0,
then we cannot be sure not to make an ε-error even if we knew that the true environment
is in G(ht). We call such points ε-inconfidence points.

Definition 43 (ε-(in)confidence) Given 0 < ε < 1, we define the number of ε-inconfidence
points in the history h to be

n(h, ε) := |{t ≤ `(h) | max
ν1,ν2∈G(ht)

|V π∗
ν1 − V

π∗
ν2 | > ε}|

where π∗ := arg maxπ maxν∈G(ht) V
π
ν . In the γ = 0 case studied here, we can equiva-

lently write a∗ := arg maxa maxν∈G(ht) V
a
ν instead of π∗. The individual time points where

maxν1,ν2∈G(ht) |V π∗
ν1 − V

π∗
ν2 | > ε are the points of ε-inconfidence and the other points are the

points of ε-confidence.

Hypothesis-generating functions with budget. We suggest defining a hypothesis-generating
function from a countable enumerated classM based on a budget function for ε-inconfidence.
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The budget function N : N → N is always such that N(t) → ∞ as t → ∞. The idea is
simply that when the number of ε-inconfidence points is below budget the next environment
is introduced into the class. The intuition is that if the current hypotheses are frequently
contradictory, then the agent should resolve these contradictions before adding more. The
definition is also mathematically convenient for proving bounds on ε-errors. Besides the
budget function we also require a criterion for excluding environments. An exclusion func-
tion (criterion) is here a function ψ(M̃, h) = M′i for M̃ ⊂ M and h ∈ H such that
M′ ⊂ M̃. We will use the trivial ψ(M̃, h) = M̃ when the class of environments is guaran-
teed to asymptotically merge with the truth. The definitions below are slightly complicated
by the fact that the hypothesis class G(h) consists of environments ν̃(·) = ν(·|h) for ν in a
subset of M that can be described as {ν ∈M | ν(·|h) ∈ G(h)}.

Definition 44 (Hypothesis generation with budget and exclusion function) The
hypothesis-generating function G with class M, initial class M0 ⊂ M, accuracy ε ≥ 0,
budget N and exclusion criterion ψ, is defined recursively: First, let G(ε) := M0. If
n(ht, ε) ≥ N(t), then

G(ht) := {ν(·|ht) | ν ∈ ψ({ν ∈M | ν(·|ht−1) ∈ G(ht−1)}, ht)}

while if n(ht, ε) < N(t), let ν̃ be the environment in M with the lowest index that is not in⋃t−1
i=1{ν ∈M | ν(·|hi) ∈ G(hi)} (i.e., the next environment to introduce) and let

G(ht) := {ν(·|ht) | ν ∈ {ν̃ ∪ ψ({ν ∈M | ν(·|ht−1) ∈ G(ht−1)}, ht)}}.

7.1 Error Analysis

We now extend the agents described in Example 11 and Example 12 by removing the
demand for the classM to be finite and analyze the effect on the number of ε-errors made.
We still use the optimistic decision function and apply it to finite classes but incrementally
add environments from the full class to the finite working class of environments. The
resulting agent differs from agents such as the one in Example 15 by (among other things)
instead of having exploration phases as part of the decision function, it has a hypothesis-
generating function that sometimes adds an environment. This may cause new explorative
behavior if it becomes the optimistic hypothesis and it deviates significantly from the other
environments. A point to note about our results is that the agent designer chooses the
asymptotic error rate but a constant term gets higher for slower rates. This trade-off is due
to the fact that if new environments are included at a slower rate, then it takes longer until
the right environment is introduced while the error rate afterwards is better. If the agent
knew that the true environment had been found, then it could stop introducing more but
this is typically impossible to know.

Deterministic environments. We first extend the agent for finite classes of deterministic
environments in Example 11 to the countable case. In the finite case with a fixed class,
the proof of the finite error bound builds on the fact that every ε-error must be within
− log(ε(1−γ))

1−γ time steps before a contradiction and the bound followed immediately because
there are at most |M− 1| contradictions. In the case where environments are being added,
errors occur either before the truth is added or within that many time steps before a
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contradiction or that many time steps before the addition of a new environment. The
addition of a new environment can change the optimistic policy without a contradiction,
because the event temporarily breaks time-consistency. Hence, every added environment
after the truth has been included can add at most 2− log(ε(1−γ))

1−γ ε-errors. In the γ = 0 case
it is only at contradictions and when the truth has not been added that errors occur.

Theorem 45 (Countable deterministic class) Suppose we have a countable class of
deterministic environments M with a chosen enumeration and containing the true envi-
ronment. Also suppose we have a hypothesis-generating function G with a finite initial class
G(ε) := M0 ⊂ M, budget function N : N → N, accuracy ε = 0 and exclusion function
ψ(M̃, h) := {ν ∈ M̃ | ν consistent with h}. π◦ is defined by combining G with an optimistic
decision function. It follows that
i) The number of 0-errors m(ht, 0) is for all t at most n(ht, 0) +C for some constant C ≥ 0
(the time steps until the true environment is introduced) dependent on choice of budget
function N but not on t.
ii) ∀i ∈ N there is ti ∈ N such that ti < ti+1 and n(hti , 0) < N(ti).
Further, if we modify the hypothesis-generating function above by delaying a new environ-
ment from being introduced if more than N(t) environments (including the initial class)
have been introduced at time t, then
iii) ∀t : n(ht, 0) < N(t)
iv) m(ht, 0)/t→ 0 if N(t)/t→ 0, i.e., π◦ satisfies weak asymptotic optimality

In the theorem above, ii) says that we will always see the number of errors fall within
the budget N(t) again (except for a constant term) even if it can be temporarily above.
This means that we will always introduce more environments and exhaust the class in the
limit. The final conclusion (iv) is that π◦ satisfies weak asymptotic optimality as defined
by Lattimore and Hutter (2011a) and previously considered by Orseau (2010) who showed
that AIXI does not achieve this for the class of all computable environments. An agent with
explicit exploration phases that achieved such weak asymptotic optimality was presented
by Lattimore and Hutter (2011a) where it was also showed that for the specific countable
class of all computable environments, no agent can achieve strong asymptotic optimality,
i.e., convergence to optimal performance without averaging.

Comparing to the previous results on finite deterministic environments, we then assumed
that the truth was already in that initial class and, therefore, C = 0. Further, one will in
that case have at most have |M− 1| inconfidence points as argued in the proof of Theorem
29. Hence, m(ht, 0) ≤ n(ht, 0) + C says that we will at most have |M− 1| errors as stated
also by Theorem 29 with γ = 0. The second part of the conclusion of Theorem 45 does not
mean anything for the finite case since it relates to an indefinitely increasing budget and
environments being continually added. Therefore, the case with a finite fixed class is more
cleanly studied first by itself to then reuse the techniques adapted to the setting of growing
classes in this section.

Proof Suppose that at time t, the true environment µ is in G(ht). Then, if we do not have
a 0-inconfidence point, it follows from optimism that

V π◦
µ (ht) = max

a
V a
µ (ht) (10)
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since all the environments in G(ht) agree on the reward for the optimistic action. Hence
m(ht, 0) ≤ n(ht, 0) + C where C is the time the true environment is introduced.

However, we need to show that the truth will be introduced by proving that the
class will be exhausted in the limit. If this was not the case, then there is T such that
n(0, ht) ≥ N(t) ∀t ≥ T . Since we have 0-inconfidence points exactly when a contradic-
tion is guaranteed, n(0, ht) is then bounded by the number of environments that have
been introduced up to time t if we include the number of environments in the initial class.
Hence n(0, ht) is bounded by a finite number while (by the definition of budget function)
N(t)→∞ which contradicts the assumption. iii) follows because if there are at most N(t)
environments, and if the truth has been introduced, then one cannot have had more than
N(t) contradictions. iv) follows directly from iii).

Stochastic environments. We continue by also performing the extension of the agent in
Example 12 from finite to countable classes of stochastic environments. The absolute conti-
nuity assumption (Definition 16) is best understood in a Bayesian setting but with multiple
priors. That is, the environment class can arise as different mixtures of the environments
in a hypothesis class that the true environment is assumed to belong to. An alternative
stochastic setting is the one in Example 14 where one does not make this assumption but
instead assumes that the true environment is in the class and the agent needs to have an ex-
clusion criterion. In this section no exclusion is necessary but we instead rely on the merging
of environments guaranteed by Theorem 17. As for the deterministic setting, one can derive
the corresponding finite class result, Theorem 21, from the inequality m(ht, ε) ≤ n(ht, ε)+C
but it requires some of the reasoning of its proof.

Theorem 46 (Countable stochastic class) Suppose we have a enumerated countable
class of stochastic environments M such that the true environment µ is absolutely con-
tinuous with respect to every environment in M, a hypothesis-generating function G with a
finite initial class G(ε) =M0 ⊂ M, a budget function N : N → N and accuracy ε > 0 and
exclusion function ψ(M̃, h) := M̃ . The agent is defined by combining G with an optimistic
decision function. If for all h, there is νh ∈M that is optimistic in the sense that

max
a

V a
νh

(h) ≥ max
a

V a
µ (h),

then there is
i) µ-almost surely a C ≥ 0 such that

∀t m(ht, ε) ≤ n(ht, ε) + C

ii) µ-almost surely a sequence ti → ∞ such that n(hti , ε) < N(ti) and, therefore, any
environment in M is eventually included in G(ht) for sufficiently large t.

Proof Suppose we have a finite class Ξ of stochastic environments such that the true
environment µ is absolutely continuous with respect to all of them. Suppose that ε > 0
and that π is defined by letting G(ht) = {ν(·|ht) | ν ∈ Ξ} for all t and letting the decision
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function be optimistic. If we act according to π then we will first show that there will
µ-almost surely only be finitely many ε-inconfidence points. Furthermore, if Ξ contains an
environment that is optimistic relative to µ then only ε -inconfidence points can be ε-errors
so there are only finitely many of those.

By Theorem 17 and the finiteness of the class, there is (µ-almost surely) for any ε > 0 and
policy π, a T <∞ such that d(ξ(·|ht, π), µ(·|ht, π)) < ε ∀ξ ∈ Ξ ∀t ≥ T . We cannot know for
sure when the environments in Ξ have merged with the truth (under policy π) in this sense
but we do know when the environments have merged with each other. That they will merge
with each other follows from the fact that they all merge with µ under π. More precisely,
for all ε′ > 0 there is T < ∞ such that d(ξ1(·|ht, π), ξ2(·|ht, π)) < ε′ ∀ξ1, ξ2 ∈ Ξ ∀t ≥ T . It
follows that then |V π

ξ1
(ht) − V π

ξ2
(ht)| < ε′

1−γ ∀ξ1, ξ2 ∈ Ξ ∀t ≥ T by Lemma 18. Hence, for
any ε > 0 there are only finitely many ε-inconfidence points.

Now, let ti, i = 1, 2, 3, ... be the points where n(ε, ht) < N(t), i.e., where new environ-
ments are added. ti < ti+1 by definition. One of the aims is to show that ti → ∞ as
i → ∞. Before that we do not know if there is a ti defined for each i. Suppose that i is
such that ti is defined and suppose that there is no ti+1, i.e., that n(ht, ε) ≥ N(t) ∀t > ti.
Let Ξ := G(hti+1). Then the argument above shows that there are only finitely many ε-
inconfidence points which contradicts the assumption that n(ht, ε) ≥ N(t) ∀t > ti since
N(t)→∞. Hence ti is defined for all i and since ti < ti+1, ti →∞ as i→∞.

Finally, ε-errors can only occur at time points before there always is an optimistic envi-
ronment for µ in G(ht), before an environment in the class has merged sufficiently with µ
or at points of ε-inconfidence and this proves the claims.

Remark 47 (Extensions: γ > 0, Separable classes) As in the deterministic case, the
difference between the γ = 0 case and the 0 < γ < 1 case is that ε-errors can then also occur
within − log(ε(1−γ))

1−γ time steps before a new environment is introduced, hence the Theorem
still holds. Further, one can extend our algorithms for countable classes to separable classes
since they can by definition be covered by countably many balls of arbitrarily small radius.

Discussion and future plans. The agent studied above has the behaviour that after its
current class merges it could remain confident for such a long time that its average number
of points of inconfidence gets close to zero, but then when a new environments is introduced
a finite but potentially very long stretch of inconfidence sets in before we are back to a stretch
of confidence. Since we do not have bound on how long the inconfidence will last, we can
not set the budget function such as to guarantee convergence to zero for the average number
of errors.

If we want to achieve such convergence, extending the agent that excludes implausible
stochastic environments is more promising. The reasoning is closer to the deterministic case.
In particular if we look at the adaptive k-meteorologist algorithm, when two environments
have disagreed sufficiently much m times, one of them is excluded. The number m depends
on the desired confidence. In the deterministic case m = 1 and the confidence is complete.
Having an environment excluded after m disagreements, bounds the amount of inconfidence
caused by adding a new environment. If one wants asymptotic optimality in average,
the agent also needs to decrease ε when a new environment is introduced. We intend in
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the future to pursue the investigation into asymptotic optimality for countable classes of
stochastic environments, which together with stochastic laws (Sunehag and Hutter, 2015)
and practical implementation constitute important questions not addressed here.

8. Conclusions

We studied sequential decision-making in general reinforcement learning. Our starting
point was decision-theoretic axiomatic systems of rational behavior and a framework to
define agents within. We wanted to axiomatically exclude agents that are doing things that
one clearly should not, before considering achieving good performance guarantees. This is
important because if the guarantees are for a relatively short horizon they can sometimes be
achieved by highly undesirable strategies. The guarantees only imply that the agent learns
well from its experiences.

After introducing two sets of rationality axioms, one for agents with a full horizon and
one for agents with a limited horizon that required optimism, we then introduced a frame-
work using hypothesis-generating functions and decision functions to define rational general
reinforcement learning agents. Further, we designed optimistic agents within this frame-
work for different kinds of environment classes and proved error bounds and asymptotic
properties. This was first done for finite classes and then extended to arbitrary countable
classes. Along the way we introduced the concept of deterministic environments defined by
combining partial laws and showed that the studied optimistic agents satisfy more desirable,
potentially exponentially better, guarantees in such a setting. A further step would be to
also apply that strategy in the stochastic setting.
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Appendix A. Asymptotic Optimality of the Liberal Agent

This section contains a proof of the asymptotic optimality Theorem 27 for the liberal version
of Algorithm 1 called Algorithm 1’, which can (but does not have to) leave the inner loop
even when ν∗ ∈ Mt−1. We are also more explicit and provide some intuition behind the
subtleties hidden in the conservative case. The notation used here is somewhat different
to the main paper. The fact that environments and policies are deterministic is heavily
exploited in notation and proof technique.

Policies versus action sequences. A deterministic policy π : H → A in some fixed deter-
ministic environment ν : H×A → O ×R induces a unique history hπ,ν , and in particular
an action an sequence a1:∞. Conversely, an action sequence a1:∞ defines a policy in a fixed
environment ν. Given ν, a policy and an action sequence are therefore equivalent. But a
policy applied to multiple environments is more than just an action sequence. More on this
later. For now we only consider action sequences a1:∞ rather than policies.

Definitions. Let

M∞ = finite class of environments

rνt (a1:t) = reward at time t when performing actions a1:t in environment ν

V at:∞
ν (a<t) =

∑∞
k=t r

ν
k(a1:k)γ

k−t = value of ν and a1:∞ from time t on

V at:∞
∗ (a<t) = maxν∈M∞ V

at:∞
ν (a<t) = optimistic value from time t on

a∗1:∞∈A∗1:∞ = {arg maxa1:∞ V
a1:∞
∗ (ε)} = set of optimistic action sequences

h◦t = hπ
◦,µ
t = ȧ1ȯ1ṙ1...ȧtȯtṙt = actually realized history

by Algorithm π◦ in true environment µ

generated via µ(h◦t−1, ȧt) = ȯtṙt and π◦(h◦t−1) = ȧt

Consistency. There is a finite initial phase during which environments ν can become incon-
sistent with h◦t in the sense of hπ

◦,ν
t 6= h◦t . Algorithm 1 eliminates environments as soon as

they become known to be inconsistent. Since here we are interested in asymptotic optimal-
ity only, we can ignore this finite initial phase 1, ..., T − 1 and shift time T back to 1. This
simplifies notation considerable. We hence assume that all environments in M∞ are from
the outset and forever consistent, i.e., hπ

◦,ν
∞ = h◦∞ ∀ν ∈M∞. This implies that

ṙt = rνt (ȧ1:t) is independent of ν ∈M∞ for all t (∞-consistency) (11)
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It does not imply that all environments in M∞ are the same, they only look the same on
the one chosen action path ȧ1:∞, but different actions, e.g., ãt =look-left instead of ȧt =look-
right could reveal that ν differs from µ, and ãt =go-left instead of ȧt =go-right can probe
completely different futures. This is relevant and complicates analysis and actually foils
many naively plausible conjectures, since an action ȧt is only optimal if alternative actions
are not better, and this depends on how the environment looks off the trodden path, and
there the environments in M∞ can differ.

Optimistic liberal algorithm π◦. At time t, given ȧ<t, Algorithm π◦ chooses action ȧt
optimistically, i.e., among

ȧt ∈ {arg max
at

max
at+1:∞

V at:∞
∗ (ȧ<t)} (12)

More precisely, we define Algorithm 1’ properly with usingMt−1 at time t generating action
sequence ȧ1:∞. After t > T , we can use M∞ =Mt−1, i.e., (12) is equivalent to Algorithm
1’ for t > T . Now we shift back T  1, and (12), which usesM∞, is a correct formalization
of Algorithm 1’. Note thatM∞ depends on the choice of ȧ1:∞ the algorithm actually makes
in case of ambiguities. From now on ȧ1:∞ will be a single fixed sequence, chosen by some
particular deterministic optimistic algorithm.

Lemma 48 (Optimistic actions) ȧ1:∞ ∈ A∗1:∞ i.e., V ȧ1:∞
∗ (ε) = maxa1:∞ V

a1:∞
∗ (ε).

Proof For |M∞| = 1, this follows from the well-known fact in planning that optimal action
trees lead to optimal policies and vice versa (under time-consistency (Lattimore and Hutter,
2011b)). For general |M∞| ≥ 1, ∞-consistency (11) is crucial. Using the value recursion

V a1:∞
ν (ε) =

t−1∑
k=1

rνk(a1:k) γ
k−1 + γtV at:∞

ν (a<t), we get:

γt max
at:∞

V at:∞
∗ (ȧ<t) = max

at:∞
max
ν∈M∞

[
V ȧ<tat:∞
ν (ε)−

∑t−1
k=1

=ṙk︷ ︸︸ ︷
rνk(ȧ1:k) γ

k−1︸ ︷︷ ︸
independent ν and at:∞

]
= max

at:∞
V ȧ<tat:∞
∗ (ε)− const.

Replacing maxat by arg maxat we get

arg max
at

max
at+1:∞

V at:∞
∗ (ȧ<t) = arg max

at
max
at+1:∞

V ȧ<tat:∞
∗ (ε) (13)

We can define the set of optimistic action sequences A∗1:∞ = {arg maxa1:∞ V
a1:∞
∗ (ε)} recur-

sively as

A∗1:t := {arg max
a1:t

max
at+1:∞

V a1:∞
∗ (ε))}

= {(a∗<t, arg max
at

max
at+1:∞

V
a∗<tat:∞
∗ (ε)) : a∗<t ∈ A∗<t},

A∗1:∞ = {a1:∞ : a1:t ∈ A∗1:t ∀t}

This shows that any sequence ã1:∞ that satisfies the recursion

ãt ∈ {arg max
at

max
at+1:∞

V ã<tat:∞
∗ (ε))} (14)
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is in A∗1:∞. Plugging (13) into (12) shows that ã1:∞ = ȧ1:∞ satisfies recursion (14), hence
ȧ1:∞ ∈ A∗1:∞.

Lemma 49 (Optimism is optimal) V ȧ1:∞
µ (ε) = maxa1:∞ V

a1:∞
µ (ε).

Note that by construction and Lemma 48, ȧ1:∞ maximizes the (known) optimistic value
V a1:∞
∗ and by Lemma 49 also the (unknown) true value V a1:∞

µ ; a consequence of the strong

asymptotic consistency condition (11). Also note that V ȧ1:∞
µ = V ȧ1:∞

∗ but V a1:∞
µ 6= V a1:∞

∗
for a1:∞ 6= ȧ1:∞ is possible and common.
Proof The ≤ direction is trivial (since maximization is over all action sequences. For lim-
ited policy spaces Π 6= Πall this may no longer be true). The following chain of (in)equalities
proves the ≥ direction

max
a1:∞

V a1:∞
µ (ε) ≤ max

a1:∞
V a1:∞
∗ (ε) = V ȧ1:∞

∗ (ε) = max
ν∈M∞

∞∑
k=1

rνk(ȧ1:k)γ
k−1

= max
ν∈M∞

∞∑
k=1

ṙkγ
k−1︸ ︷︷ ︸

indep.ν

=
∞∑
k=1

ṙkγ
k−1 =

∞∑
k=1

rµk (ȧ1:k)γ
k−1 = V ȧ1:∞

µ (ε)

where we used in order: definition, Lemma 48, definition, consistency of ν ∈M∞, indepen-
dence of ν, µ ∈M∞ and consistency again, and definition.

Proof of Theorem 27 for liberal Algorithm 1.
As mentioned, for a fixed deterministic environment ν, policies and action sequences are

interchangeable. In particular maxπ V
π
ν (ε) = maxa1:∞ V

a1:∞
ν (ε). This is no longer true for

V∗: There are π such that for all a1:∞, V π
∗ 6= V a1:∞

∗ , since π may depend on ν but a1:∞ not.
This causes us no problems, since still maxπ V

π
∗ = maxa1:∞ V

a1:∞
∗ , since

max
π

max
ν

V π
ν (ε) = max

ν
max
π

V π
ν (ε) = max

ν
max
a1:∞

V a1:∞
ν (ε) = max

a1:∞
max
ν

V a1:∞
ν (ε)

Similar (non)equalities hold for V (ht). Hence Lemmas 48 and 49 imply V π◦
∗ = maxπ V

π
∗

and V π◦
µ = maxπ V

π
µ .

Now if we undo the shift T  1, actually shift T  t, Lemma 49 implies V π◦
µ (h◦t ) =

maxπ V
π
µ (h◦t ) for all t ≥ T . This is just Theorem 1 for the liberal algorithm.

Appendix B. Countable Sets of Events

Instead of a finite set of possible outcomes, we will in this section assume a countable set.
We suppose that the set of bets is a vector space of sequences xk, k = 0, 1, 2, ... where we use
point-wise addition and multiplication with a scalar. We will define a space by choosing a
norm and let the space consist of the sequences that have finite norm as is common in Banach
space theory. If the norm makes the space complete it is called a Banach sequence space
(Diestel, 1984). Interesting examples are `∞ of bounded sequences with the maximum norm
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‖(αk)‖∞ = max |αk|, c0 of sequence that converges to 0 equipped with the same maximum
norm and `p which for 1 ≤ p <∞ is defined by the norm

‖(αk)‖p = (
∑
|αk|p)1/p.

For all of these spaces we can consider weighted versions (wk > 0) where

‖(αk)‖p,wk = ‖(αkwk)‖p.

This means that α ∈ `p(w) iff (αkwk) ∈ `p, e.g., α ∈ `∞(w) iff supk |αkwk| < ∞. Given a
Banach (sequence) spaceX we use X ′ to denote the dual space that consists of all continuous
linear functionals f : X → R. It is well known that a linear functional on a Banach space is
continuous if and only if it is bounded, i.e that there is C <∞ such that |f(x)|

‖x‖ ≤ C ∀x ∈ X.

Equipping X ′ with the norm ‖f‖ = sup |f(x)|
‖x‖ makes it into a Banach space. Some examples

are (`1)′ = `∞, c′0 = `1 and for 1 < p < ∞ we have that (`p)′ = `q where 1/p + 1/q = 1.
These identifications are all based on formulas of the form

f(x) =
∑

xipi

where the dual space is the space that (pi) must lie in to make the functional both well
defined and bounded. It is clear that `1 ⊂ (`∞)′ but (`∞)′ also contains “stranger” objects.

The existence of these other objects can be deduced from the Hahn-Banach theorem (see
e.g., Kreyszig (1989) or Naricia and Beckenstein (1997)) that says that if we have a linear
function defined on a subspace Y ∈ X and if it is bounded on Y then there is an extension
to a bounded linear functional on X. If Y is dense in X the extension is unique but in
general it is not. One can use this Theorem by first looking at the subspace of all sequences
in `∞ that converge and let f(α) = limk→∞ αk. The Hahn-Banach theorem guarantees the
existence of extensions to bounded linear functionals that are defined on all of `∞. These
are called Banach limits. The space (`∞)′ can be identified with the so called ba space of
bounded and finitely additive measures with the variation norm ‖ν‖ = |ν|(A) where A is the
underlying set. Note that `1 can be identified with the smaller space of countably additive
bounded measures with the same norm. The Hahn-Banach Theorem has several equivalent
forms. One of these identifies the hyper-planes with the bounded linear functionals (Naricia
and Beckenstein, 1997).

Definition 50 (Rationality (countable case)) Given a Banach sequence space X of
bets, we say that the decision maker (subset Z of X defining acceptable bets and Z̃ the
rejectable bets) is rational if

1. Every bet x ∈ X is either acceptable or rejectable or both

2. x is acceptable if and only if −x is rejectable.

3. x, y ∈ Z, λ, γ ≥ 0 then λx+ γy ∈ Z

4. If xk > 0 ∀k then x is acceptable and not rejectable

In the case of a finite dimensional space X, the above definition reduces to Definition 8.
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Theorem 51 (Linear separation) Suppose that we have a space of bets X that is a Ba-
nach sequence space. Given a rational decision maker there is a positive continuous linear
functional f : X → R such that

{x | f(x) > 0} ⊆ Z ⊆ {x | f(x) ≥ 0}. (15)

Proof The third property tells us that Z and −Z are convex cones. The second and fourth
property tells us that Z 6= X. Suppose that there is a point x that lies in both the interior
of Z and of −Z. Then the same is true for −x according to the second property and for the
origin. That a ball around the origin lies in Z means that Z = X which is not true. Thus
the interiors of Z and −Z are disjoint open convex sets and can, therefore, be separated by
a hyperplane (according to the Hahn-Banach theorem) which goes through the origin (since
according to the second and fourth property the origin is both acceptable and rejectable).
The first two properties tell us that Z ∪−Z = X. Given a separating hyperplane (between
the interiors of Z and −Z), Z must contain everything on one side. This means that Z is
a half space whose boundary is a hyperplane that goes through the origin and the closure
Z̄ of Z is a closed half space and can be written as {x | f(x) ≥ 0} for some f ∈ X ′. The
fourth property tells us that f is positive.

Corollary 52 (Additivity) 1. If X = c0 then a rational decision maker is described by a
countably additive (probability) measure.
2. If X = `∞ then a rational decision maker is described by a finitely additive (probability)
measure.

It seems from Corollary 52 that we pay the price of losing countable additivity for
expanding the space of bets from c0 to `∞ but we can expand the space even more by
looking at c0(w) where wk → 0 which contains `∞ and X ′ is then `1((1/wk)). This means
that we get countable additivity back but we instead have a restriction on how fast the
probabilities pk must tend to 0. Note that a bounded linear functional on c0 can always be
extended to a bounded linear functional on `∞ by the formula f(x) =

∑
pixi but that is not

the only extension. Note also that every bounded linear functional on `∞ can be restricted
to c0 and there be represented as f(x) =

∑
pixi. Therefore, a rational decision maker for

`∞-bets has probabilistic beliefs (unless pi = 0 ∀i), though it might also take asymptotic
behavior of a bet into account. For example the decision maker that makes decisions based
on asymptotic averages limn→∞

1
n

∑n
i=1 xi when they exist. This strategy can be extended

to all of `∞ and is then called a Banach limit. The following proposition will help us decide
which decision maker on `∞ is endowed with countably additive probabilities.

Proposition 53 Suppose that f ∈ (`∞)′. For any x ∈ `∞, let xji = xi if i ≤ j and xji = 0
otherwise. If for any x,

lim
j→∞

f(xj) = f(x),

then f can be written as f(x) =
∑
pixi where pi ≥ 0 and

∑∞
i=1 pi <∞.
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Proof The restriction of f to c0 gives us numbers pi ≥ 0 such that
∑∞

i=1 pi < ∞ and

f(x) =
∑
pixi for x ∈ c0. This means that f(xj) =

∑j
i=1 pixi for any x ∈ `∞ and j < ∞.

Thus limj→∞ f(xj) =
∑∞

i=1 pixi.

Definition 54 (Monotone decisions) We define the concept of a monotone decision
maker in the following way. Suppose that for every x ∈ `∞ there is N < ∞ such that
the decision is the same for all (as defined above) xj , j ≥ N as for x. Then we say that the
decision maker is monotone.

Example 55 Let f ∈ `∞ be such that if limαk → L then f(α) = L (i.e., f is a Banach
limit). Furthermore define a rational decision maker by letting the set of acceptable bets
be Z = {x | f(x) ≥ 0}. Then f(xj) = 0 (where we use notation from Proposition 53) for
all j < ∞ and regardless of which x we define xj from. Therefore, all sequences that are
eventually zero are acceptable bets. This means that this decision maker is not monotone
since there are bets that are not acceptable.

Theorem 56 (Monotone rationality) Given a monotone rational decision maker for
`∞ bets, there are pi ≥ 0 such that

∑
pi <∞ and

{x |
∑

xipi > 0} ⊆ Z ⊂ {x |
∑

xipi ≥ 0}. (16)

Proof According to Theorem 51 there is f ∈ (`∞)′ such that (the closure of Z) Z̄ =
{x| f(x) ≥ 0} . Let pi ≥ 0 be such that

∑
pi <∞ and such that f(x) =

∑
xipi for x ∈ c0.

Remember that xj (notation as in Proposition 53) is always in c0. Suppose that there is x
such that x is accepted but

∑
xipi < 0. This violate monotonicity since there exists N <∞

such that
∑n

i=1 xipi < 0 for all n ≥ N and, therefore, xj is not accepted for j ≥ N but x
is accepted. We conclude that if x is accepted then

∑
pixi ≥ 0 and if

∑
pixi > 0 then x is

accepted.

Appendix C. List of important notation

t generic time point

T special time point

A,O,R action/observation/reward sets

ht = a1o1r1...atotrt = (action,observation,reward) history

h0 = ε empty history/string

ε ≥ 0 accuracy

δ probability/confidence

0 ≤ γ < 1 discount factor

Oj set for the j:th feature

~x = (xi) ∈ O = ×mj=1Oj feature vector in Section 5
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⊥ not predicted feature

O⊥ = ×mj=1(Oj ∪ {⊥}) observation set enhanced by ⊥
π : H → A generic policy π ∈ Π

π̃ some specific policy π

π◦ optimistic policy actually followed.

(π∗t , ν
∗
t ) optimistic (policy,environment) (used only) at time t

V π
ν (ht) future value of π interacting with ν given ht

M,M̃,M̂ finite or countable class of environments

M0 initial class of environments

m(h, ε) number of ε-errors during h

n(h, ε) number of ε-inconfidence points

Ξ finite class of dominant environments

ν ∈M generic environment

ξ ∈ Ξ dominant environment

µ true environment

T finite class of laws

τ ∈ T generic law

q1(τ, h, a) features not predicted by τ in context h, a

q2(τ, h, a) features predicted by τ in context h, a

M(T ) environments generated by deterministic laws

Ξ(T ) environments generated by stochastic laws

M̄(P, T ) semi-deterministic environments from background and laws

ω elementary random outcome from some sample space

ωt = otrt = perception at time t

x = (xi) bet in Section 2

y = (yi) bet in Section 2

p = (pi) probability vector

f decision function

G hypothesis-generating function
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1. Introduction

Matrix completion is the task to reconstruct (to “complete”) matrices, given a subset of
entries at known positions. It occurs naturally in many practically relevant problems, such
as missing feature imputation, multi-task learning (Argyriou et al., 2008), transductive
learning (Goldberg et al., 2010), or collaborative filtering and link prediction (Srebro et al.,
2005; Acar et al., 2009; Menon and Elkan, 2011).

For example, in the “NetFlix problem”, the rows of the matrix correspond to users, the
columns correspond to movies, and the entries correspond to the rating of a movie by a user.
Predicting how one specific user will rate one specific movie then reduces to completing a
single unobserved entry from the observed ratings.

For arbitrarily chosen position (i, j), the primary questions are:

• Is it possible to reconstruct the entry (i, j)?

• How many possible completions are there for the entry (i, j)?

• What is the value of the entry (i, j)?

• How accurately can one estimate the entry (i, j)?

In this paper, we answer these questions algorithmically under the common low-rank as-
sumption - that is, under the model assumption (or approximation) that there is an under-
lying complete matrix of some low rank r from which the partial observations arise. Our
algorithms are the first in the low-rank regime that provide information about single entries.
They adapt to the combinatorial structure of the observations in that, if it is possible, the
reconstruction process can be carried out using much less than the full set of observations.
We validate our algorithms on real data. We also identify combinatorial features of the
low-rank completion problem. This then allows us to study low-rank matrix completion via
tools from, e.g., graph theory.

1.1 Results

Here is a preview of the results and themes of this paper, including the answers to the main
questions.

1.1.1 Is it possible to reconstruct the entry (i, j)?

We show that whether the entry (i, j) is completable depends, with probability one for any
continuous sampling regime, only on the positions of the observations and the position (i, j)
that we would like to reconstruct (Theorem 10). The proof is explicit and easily converted
into an exact (probability one) algorithm for computing the set of completable positions
(Algorithm 1).

1.1.2 How many possible completions are there for the entry (i, j)?

Whether the entry at position (i, j) is uniquely completable from the observations, or, more
generally, how many completions there are also depends, with probability one, only on
the positions of the observed entries and (i, j) (Theorem 17). We also give an efficient
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(randomized probability one) algorithm (Algorithm 1) that verifies a sufficient condition
for every unobserved entry to be uniquely completable.

1.1.3 What is the value of the entry (i, j)?

To reconstruct the missing entries, we introduce a general scheme based on finding polyno-
mial relations between the observations and one unobserved one at position (i, j) (Algorithm
5). For rank one matrices (Algorithm 6), and, in any rank, observation patterns with a spe-
cial structure (Algorithm 4) that allows “solving minor by minor”, we instantiate the scheme
completely and efficiently.

Since, for a specific (i, j), the polynomials needed can be very sparse, our approach has
the property that it adapts to the combinatorial structure of the observed positions. To our
knowledge, other algorithms for low-rank matrix completion do not have this property.

1.1.4 How accurately can one estimate entry (i, j)?

Our completion algorithms separate out finding the relevant polynomial relations from
solving them. When there is more than one relation, we can use them as different estimates
for the missing entry, allowing for estimation in the noisy setting (Algorithm 5). Because
the polynomials are independent of specific observations, the same techniques yield a priori
estimates of the variance of our estimators.

1.1.5 Combinatorics of matrix completion

Section 6 contains a detailed analysis of whether an entry (i, j) is completable in terms of a
bipartite graph encoding the combinatorics of the observed positions. We obtain necessary
(Theorem 38) and sufficient (Proposition 42) conditions for local completability, which are
sharp in the sense that our local algorithms apply when they are met. We then relate the
properties we find to standard graph-theoretic concepts such as edge-connectivity and cores.
As an application, we determine a binomial sampling density that is sufficient for solving
minor-by-minor nearly exactly via a random graph argument.

1.1.6 Experiments

Section 7 validates our algorithms on the Movie Lens data set and shows that the struc-
tural features identified by our theories predict completability and completability phase
transitions in practice.

1.2 Tools and themes

Underlying our results are a new view of low-rank matrix completion based on algebraic
geometry. Here are some of the key ideas.

1.2.1 Using the local-to-global principle

Our starting point is that the set of rank r, (m×n)-matrices carries the additional structure
of an irreducible algebraic variety (see Section 2.1). Additionally, the observation process is
a polynomial map. The key feature of this setup is that it gives us access to fundamental
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algebraic-geometric “local-to-global” results (see Appendix A) that assert the observation
process will exhibit a prototypical behavior : the answers to the main questions will be the
same for almost all low-rank matrices, so they are essentially properties of the rank and
observation map. This lets us study the main questions in terms of observed and unobserved
positions rather than specific partial matrices.

On the other hand, the same structural results show we can certify that properties
like completability hold via single examples. We exploit this to replace very complex basis
eliminations with fast algorithms based on numerical linear algebra.

1.2.2 Finding relations among entries using an ideal

Another fundamental aspect of algebraic sets are characterized exactly by the vanishing
ideal of polynomials that evaluate to zero on them. For matrix completion, the meaning is:
every polynomial relation between the observations and a specific position (i, j) is generated
by a finite set of polynomials we can in principle identify (See Section 5).

1.2.3 Connecting geometry to combinatorics using matroids

Our last major ingredient is the use of the Jacobian of the observation map, evaluated
at a “generic point”. The independence/dependence relation among its rows is invariant
(with matrix-sampling probability one) over the set of rank r matrices that characterizes
whether a position (i, j) is completable. Considering the subsets of independent rows as
simply subsets of a finite set, we obtain a linear matroid characterizing completability. This
perspective allows access to combinatorial tools of matroid theory, enabling the analysis in
Section 6.

1.3 Context and novelty

Low-rank matrix completion has received a great deal of attention from the community.
Broadly speaking, two main approaches have been developed: convex relaxations of the
rank constraints (e.g., Candès and Recht, 2009; Candès and Tao, 2010; Negahban and
Wainwright, 2011; Salakhutdinov and Srebro, 2010; Negahban and Wainwright, 2012; Foygel
and Srebro, 2011; Srebro and Shraibman, 2005); and spectral methods (e.g., Keshavan et al.,
2010; Meka et al., 2009). Both of these (see Candès and Tao, 2010; Keshavan et al., 2010)
yield, in the noiseless case, optimal sample complexity bounds (in terms of the number
of positions uniformly sampled) for exact reconstruction of an underlying matrix meeting
certain analytic assumptions. All the prior work of which we are aware concentrates on:
(A) sets of observed positions sampled from some known distribution; (B) completing all
the unobserved entries. The results here, by contrast, apply specifically to fixed sets of
observations and provide information about any unobserved position (i, j).

To point (A), there are three notable exceptions: Singer and Cucuringu (2010) discuss a
mathematical analogy to combinatorial rigidity, studying which fixed observation patterns
allow unique and stable completions; their work is to a large part conjectural but exposes
the connection to graph combinatorics and anticipates some of our theoretical results. Lee
and Shraibman (2013) study completion guarantees for fixed observation patterns with
tools inspired by and related to the nuclear norm. Bhojanapalli and Jain (2014) showed
a sufficient condition for exact recovery by nuclear norm minimization when the bipartite

1394



The Algebraic Combinatorial Approach for Low-Rank Matrix Completion

graph corresponding to the observed positions has a large spectral gap under a strong
incoherence assumption.

Regarding point (B) more specifically, all the prior work on low-rank matrix completion
from noisy observations concentrates on: (i) estimating every missing entry; (ii) denoising
every observed entry; and (iii) minimizing the MSE over the whole matrix. Our approach
allows, for the first time, to construct single-entry estimators that minimize the variance
of the entry under consideration; we have recently shown how to do this efficiently in rank
1 (Kiraly and Theran, 2013).

1.4 Organization

The sequel is structured as follows: Section 2 introduces the background material we need;
Sections 3 and 4 develop our algebraic-combinatorial theory and derive algorithms for deter-
mining when an entry is completable; Section 5 formulates the reconstruction process itself
algebraically; Section 6 contains a combinatorial analysis of the problem; finally Section 7
validates our approach on real data. The Appendix collects some technical results required
in the proofs of the main theorems.

2. Background and Setup

In this section, we introduce two essential objects, the set of low-rank matricesM(m×n, r)
and the set of observed positions E. We also define the concept of genericity.

2.1 The determinantal variety

First, we set up basic notation. A matrix is denoted by upper-case bold character like A.
We denote by [n] the set of integers {1, 2, . . . , n}. AI,J denotes the submatrix of an m× n
matrix A specified by the sets of indices I ⊆ [m] and J ⊆ [n]. The (i, j) element of a matrix
A is denoted by Aij . The cardinality of a set I is denoted by |I|.

Now we define the set of matrices of rank at most r.

Definition 1 The set of all complex (m× n)-matrices of rank r or less will be denoted by
M(m × n, r) = {A ∈ Cm×n : rank(A) ≤ r}. We will always assume that r ≤ m ≤ n; by
transposing the matrices, this is no loss of generality.

Some basic properties of M(m× n, r) are summarized in the following proposition.

Proposition 2 (Properties of the determinantal variety) The following hold:

(i) M(m × n, r) is the image of the map Υ : (U,V) 7→ UV>, where U ∈ Cm×r and
V ∈ Cn×r, and is therefore irreducible.

(ii) M(m× n, r) has dimension

dr(m,n) := dimM(m× n, r) =

{
r(m+ n− r) if m ≥ r and n ≥ r
mn otherwise
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(iii) Every (r + 1)× (r + 1) minor of a matrix in M(m× n, r) is zero, namely,

det(AI,J) = 0, ∀I ⊆ [m], J ⊆ [n],

where |I| = r + 1, |J | = r + 1, and A ∈M(m× n, r).

(iv) The vanishing ideal of M(m× n, r) is generated by the vanishing of the minors from
part 3.

Proof (i) The existence of the singular-value decomposition imply thatM(m×n, r) is the
surjective image of Cr(m+n) under the algebraic map Υ.

(ii) This follows from (i) and the uniqueness of the singular value decomposition, or
Bruns and Vetter (1988, section 1.C, Proposition 1.1).

(iii) The rank of a matrix equals the order of the largest non-vanishing minor.
(iv) By Bruns and Vetter (1988, Theorem 2.10, Remark 2.12, and Corollary 5.17f), the

ideal generated by the r×r minors is prime. Since it vanishes on the irreducibleM(m×n, r),
it is the vanishing ideal.

The set of observed positions is denoted by E and can be viewed as a bipartite graph as
follows.

Definition 3 Let E := [m] × [n]. The set containing the positions of observed entries is
denoted by E ⊆ E. We define the bipartite graph G(E) = (V,W,E) with vertices V = [m]
corresponding to rows and vertices W = [n] corresponding to columns. We call the m × n
adjacency matrix M(E) of the bipartite graph G(E) a mask. The map

Ω : A 7→ (Aij)(i,j)∈E ,

where A ∈M(m× n, r), is called a masking (in rank r).

Note that the set of observed positions E, the adjacency matrix M, and the map Ω
can be used interchangeably. For example, we denote by M(Ω) the adjacency matrix
corresponding to the map Ω, and by E(M) the set of positions specified by M, and so on.
Figure 1 shows two bipartite graphs G1 and G2 corresponding to the following two masks:

M1 =

1 0 1
1 1 0
1 0 0

 , M2 =

1 0 1
0 1 0
1 0 1

 .

2.2 The Jacobian of the masking operator

Informally, the question we are going to address is:

Which entries of A are (uniquely) reconstructable, given the masking Ω(A)?

The answer will depend on the interaction between the algebraic structure of M(m× n, r)
and the combinatorial structure of E. The main tool we use to study this is the Jacobian
of the map Υ, since at smooth points, we can obtain information about the dimension of
the pre-image Ω−1(A) from its rank.
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rows columns

G1

rows columns

G2

Figure 1: Two bipartite graphcs G1 and G2 corresponding to the masks M1 and M2, re-
spectively. Every non-edge corresponds to an unobserved entry.

Definition 4 We denote by J the Jacobian of the map Υ : U,V 7→ A = UV>. More
specifically, the Jacobian of the map from U and V to Aij can be written as follows:(

∂Aij

∂u>1
, . . . ,

∂Aij
∂u>m

,
∂Aij

∂v>1
, . . . ,

∂Aij
∂v>n

)
=
(

0 · · · v>j · · · 0 0 · · · u>i · · · 0
)

↑ ↑
Derivative wrt ui Derivative wrt vj

(1)

where u>i is the ith row vector of U and v>j is the jth row vector of V. Stacking the above
row vectors for (i, j) ∈ [m]× [n], we can write the Jacobian J(U,V) as an mn× r(m+ n)
matrix as follows:

J(U,V) =


Im ⊗ v>1
Im ⊗ v>2

...
Im ⊗ v>n

In ⊗U

 , (2)

where ⊗ denotes the Kronecker product. Here the rows of J correspond to the entries of A
in the column major order.

Lemma 5 Every matrix S ∈ Cm×n whose vectorization vec(S) lies in the left null space of
J(U,V) satisfies

U>S = 0, SV = 0,

and any S satisfying the above lies in the left null space of J(U,V). In addition, the
dimension of the null space is (m− r)(n− r) if U and V have full column rank r.

Proof Let P be the mn×mn permutation matrix defined by

P vec(X) = vec(X>).
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Note that P>P = Imn, and

P

Im ⊗ v>1
...

Im ⊗ v>n

 = Im ⊗V.

Thus we have

vec>(S)J =
(

vec>(S)P> (Im ⊗V) , vec>(S) (In ⊗U)
)

=
(

vec>(V>S>), vec>(U>S)
)
,

which is what we wanted. To show the last part of the lemma, let U⊥ ∈ Cm×(m−r) and
V⊥ ∈ Cn×(n−r) be any basis of the orthogonal complement space of U and V, respectively.
Since the null space can be parametrized as S = U⊥S′V>⊥ by S′ ∈ C(m−r)×(n−r), and this
parametrization is one-to-one, we see that the dimension of the null space is (m−r)(n−r).

Now we define the Jacobian corresponding to the set of observed positions E.

Definition 6 For a position (k, `), we define J(k,`) to be the single row of J corresponding
to the position (k, `). Similarly, we define JE to be the submatrix of J consisting of rows
corresponding to the set of observed positions E. Due to the chain rule, JE is the Jacobian
of the map Ω ◦Υ.

2.3 Genericity

The pattern of zero and non-zero entries in (1) hints at a connection to purely combinatorial
structure. To make the connection precise, we introduce genericity.

Definition 7 We say a boolean statement P (X) holds for a generic X in irreducible alge-
braic variety X , if for any Hausdorff continuous measure µ on S, P (X) holds with probability
1.

These kinds of statements are sometimes called “generic properties,” and they are properties
of X , rather than any specific µ. The prototypical example of a generic property is where
X = Cn, p 6= 0 is a polynomial, and the statement P is “p(X) 6= 0.”

Here, we are usually concerned with the case X = M(m × n, r). Proposition 2 tells
us that m, n and r define M(m × n, r) completely. Assertions of the form “For generic
X ∈ M(m × n, r), P (X) depends only on (t1, t2, . . .)” mean P (X) is a generic statement
for all M(m× n, r) with the parameters ti fixed.

Although showing whether some statement P holds generically might seem hard, we are
interested in P defined by polynomials. In this case, results in Appendix A imply that it is
enough to show that either P holds: (a) on an open subset of X in the metric topology; or
(b) almost surely, with respect to a Hausdorff continuous measure.

As a first step, and to illustrate the “generic philosophy” we show that the generic
behavior of the Jacobian JE(U,V) is a property of E. We first start by justifying the
definition via (U,V) (as opposed to A).
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Lemma 8 For all E ⊂ E and A ∈ M(m × n, r) generic, with A = Υ(U,V), and U and
V generic, the rank of JE is independent of A, U, and V.

Proof We first consider the composed map Ω◦Υ. This is a polynomial map in the entries of
U and V, so its critical points (at which the differential JE attains less than its maximum
rank) is an algebraic subset of Cr(m+n). The “Semialgebraic Sard Theorem” (Kurdyka
et al., 2000, Theorems 3.1, 4.1) then implies that the set of critical points is, in fact, a
proper algebraic subset of Cr(m+n).

So far, we have proved that the rank of JE is independent of U and V. However, U and
V are not uniquely determined by A. To reach the stronger conclusion, we first observe that
a generic A ∈M(m× n, r) is a regular value of Υ, again by Semialgebraic Sard. Thus, the
set of (U,V) such that Υ(U,V) and Ω◦Υ(U,V) are both regular values is the intersection
of two dense sets in Cr(m+n).

3. Finite Completability

This section is devoted to the question “Is it possible to reconstruct the entry (i, j)?”. We
will show that under mild assumptions, the answer depends only on the position (i, j), the
observed positions, and the rank, but not the observed entries. The main idea behind this
result is relating reconstructability to the rows of the Jacobian J, and their rank, which can
be shown to be independent of the actual entries for almost all low-rank matrices. Therefore,
we can later separate the question of reconstructability from the actual reconstruction
process.

3.1 Finite completability as a property of the positions

We show how to predict whether the entry at a specific position (k, `) will be reconstructable
from a specific set of positions E ⊂ E . For the rest of this section, we fix the parameters r,
m and n, and denote by E a set of observed positions. The symbol K will denote either of
the real numbers R or the complex numbers C.

We start by precisely defining what it means for one set of entries to imply the im-
putability of another entry.

Definition 9 Let E ⊂ E be a set of observed positions and A be a rank r true matrix. The
entry Ak` is finitely completable in rank r from the observed set of entries {Aij : (i, j) ∈ E}
if the entry Ak` can take only finitely many values when fixing Ω(A).

There are two subtleties here: the first is that, even if there is an infinity of possible
completions for the whole matrix A, it is possible that some specific Ak` takes on only
finitely many values; the question of whether the entry Ak` at position (k, `) is finitely
completable may have different answers for different A. The theoretical results in this
section take care of both issues.

Theorem 10 Let E ⊂ E be a set of positions, (k, `) ∈ E \E be arbitrary, and let A ∈ Km×n
be a generic, (m× n)-matrix of rank r. Whether the entry Ak` at position (k, `) is finitely
completable depends only on the position (k, `), the true rank r, and the observed positions
E (and not on A, m, n, or K).
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This lets us talk about the finite completability of positions instead of entries.

Definition 11 Let E ⊂ E be a set of observed positions, and (k, `) ∈ E \ E. We say that
the position (k, `) is finitely completable from E in rank r if, for generic A, the entry Ak`
is finitely completable from Ω(A). The rank r finitely completable closure clr(E) is the set
of positions generically finitely completable from E.

The main tool we use to prove Theorem 10 is the Jacobian matrix JE . For it, we obtain

Theorem 12 Let E ⊂ E and let A be a generic, rank r matrix. Then

clr(E) = {(k, `) ∈ E : J{(k,`)} ∈ rowspan JE}.

One implication of Theorem 12 is that linear independence of subsets of rows of JE is also
a generic property. (In fact, the proof in Section 3.3 goes in the other direction.) The
combinatorial object that captures this independence is a matroid.

Definition 13 Let A be a generic rank r matrix. The rank r determinantal matroid is the
linear matroid (E , rankr), with rank function rankr(E) = rank JE.

Note that due to Lemma 8, rank JE is independent of A as long as we are concerned with
generic matrices and the rank function is well defined.

In the language of matroids, Theorem 12 says that, generically, the finitely completable
closure is equal to the matroid closure in the rank r determinantal matroid. This perspective
will prove profitable when we consider entry-by-entry algorithms for completion in Section
5 and combinatorial conditions related to finite completability in Section 6.

3.2 Computing the finite closure

We describe, in pseudo-code, Algorithm 1 which computes the finite closure of E. An
algorithm for testing whether a single entry (k, `) is finitely completable is easily obtained
by only testing the entry (k, `) in step 4. The correctness of Algorithm 1 follows from
Theorem 12 and the fact that, if we sample U and V from any continuous density, with
probability one, we obtain generic U and V2.

Remark 14 For clarity and practicality, we have presented Algorithm 1 as a numerical
routine based on SVD. To analyze it in the RAM model, instead of sampling U and V from
a continuous density, we sample the entries uniformly from a finite field Zp of prime order
p ≈ (n + m)2. With this modification Algorithm 1 becomes strongly polynomial time via,
e.g., Gaussian elimination. Using the main results of Schwartz (1980), one can show that
this finite field variant computes the generic rank with probability 1−O(1/(n+m)).

3.3 Proofs

3.3.1 Proof of Theorem 12

Let (i, j) ∈ E \ E. Factor the map Ω ◦Υ into

Cr(m+n) Υ−→M(m× n, r) f−→ C|E|+1 g−→ C|E|

2. If we discretize the continuous density, then “probability one” becomes “with high probability”.
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Algorithm 1 Completable closure.
Input: A set E ⊂ E of observed positions.
Output: The rank r completable closure clr(E).

1: Sample U ∈ Rm×r,V ∈ Rn×r from a continuous density.
2: Compute the Jacobian matrix JE(U,V).
3: Compute the singular value decomposition of JE(U,V). Let VE be the right singular

vectors corresponding to singular values greater than 10−12.
4: For each e ∈ E\E, compute the projection of J{e}(U,V) ∈ Rr(m+n) on the subspace

spanned by VE . Let the Euclidean norm of the residual of the projection be re; let
re = 0 for e ∈ E.

5: Return clr(E) := {(i, j) ∈ E ; re ≤ 10−8}.

so that f is the projection of Υ(U,V) onto the set of entries at positions E ∪ {(i, j)} and g
then projects out the coordinate corresponding to (i, j). Lemma 8 implies that, since (U,V)
is generic, all the intermediate image points are smooth. The constant rank theorem then
implies:

1. We can find open neighborhoods f(M(m×n, r)) ⊃M 3 f(Υ(U,V)) and g◦f(M(m×
n, r)) ⊃ N 3 g(f(Υ(U,V))) such that the restriction of g to M is smooth and
g−1(N) ⊂M .

2. We have
dim

(
g−1(N)

)
+ dimN = dimM.

Since by using smoothness again

dimN = dim (g(f(Υ(U,V)))) = rank (JE(U,V)) ,

and

dimM = dim (f(Υ(U,V))) = rank
(
JE∪{i,j}(U,V)

)
,

dim
(
g−1(N)

)
= 0, that is, the position (i, j) is finitely completable from E and Υ(U,V),

if and only if
rank (JE(U,V)) = rank

(
JE∪{i,j}(U,V)

)
. (3)

Equation (3) is just the assertion that J{(i,j)} ∈ rowspan JE .
By Lemma 8, Equation (3) is a generic statement, independent of A, U and V. Because

the rows of JE and J{(i,j}) have non-zero columns only at positions depending on E and
(i, j), whether (3) holds does not depend on m and n (which are, by hypothesis, large
enough).

Finally, statement that finite completability is the same for K = R and K = C follows
from Theorem 68 in the appendix.

3.3.2 Proof of Theorem 10

The theorem follows directly from Theorem 12 and the definition of closure.
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3.4 Discussion

The kernel of JE spans the space of infinitesimal deformations of (U,V) that preserve Ω ◦
Υ(U,V). Because generic points are smooth, Milnor (1968, Curve Selection Lemma) implies
that every infinitesimal deformation can be integrated to a finite deformation. Conversely
(this is the harder direction) every curve in (Ω◦Υ)−1(A) through (U,V) has, as its tangent
vector a non-zero infinitesimal deformation. At non-generic points, this equivalence does
not hold, so the arguments here require genericity and smoothness in an essential way.

The finite identifiability statements in this section are instances of a more general phe-
nomenon, which is explored in Király et al. (2013). The results there imply similar identifi-
ability results, such as Bamber (1985); Allman et al. (2009); Hsu et al. (2012); Mahdi et al.
(2014); Meshkat et al. (2014), that use criteria based on a Jacobian, and also show that our
use of the “Υ” parameterization of M(m× n, r) is not essential.

Another connection is that, since permuting the rows and columns of a matrix preserves
its rank, we get:

Corollary 15 The rank function rankr(·) of the determinantal matroid depends only on
the graph isomorphism type of the graph associated with E.

In Section 6, we consider completability as a property of graphs. This relies on Corollary
15.

4. Unique Completability

In this section, we will address the question “How many possible completions are there for
the entry (i, j)?”. In Section 3.1, it was shown that whether the entry (i, j) is completable
depends (under mild assumptions) only on the position (i, j), the observed entries, and the
rank. In this section, we show an analogue result that the same holds for the number of
possible completions as well. Whether there is exactly one solution is of the most practical
relevance, and we give a sufficient condition for unique completability.

4.1 Unique completability as a property of the positions

We start by defining what it means for one entry to be uniquely completable:

Definition 16 Let E ⊂ E be a set of observed positions and A be a rank r true matrix.
The entry Ak` at position (k, `) ∈ E \ E is called uniquely completable from the entries
Aij , (i, j) ∈ E, if Ak` is uniquely determined by the Aij , (i, j) ∈ E.

The main theoretical statement for unique completability is an analogue to the main
theorem for finite completability; again, whether an entry is uniquely completable, depends
only on the positions of the observations, assuming the true matrix is generic.

Theorem 17 Let A ∈ Cm×n be a generic (m×n)-matrix of rank r, and consider a masking
where the entries Aij with (i, j) ∈ E ⊆ [m] × [n] are observed. Let (k, `) ∈ [m] × [n] be
arbitrary. Then, whether Ak` is uniquely completable from the Aij , (i, j) ∈ E depends only
on the position (k, `), the true rank r and the observed positions E (and not on A, m or
n).
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The proof of Theorem 17 is a bit more technical than its finite completability analogue,
Theorem 10. The main problem is that the constant rank theorem cannot be applied
since the latter is a local statement only and does not make say anything about the global
number of solutions. The proper tools to overcome that are found in algebraic geometry;
a complete proof is deferred to Section 4.4. The proof we give also shows that there is
an analog statement for the total number of possible completions, even if there is more
than one. Since the number of completions over the reals can potentially change even with
generic A, the result is stated only over the complex numbers.

Theorem 17 shows that it makes sense to talk about positions instead of entries that
are uniquely completable, in analogy to the finite case; moreover, it shows that there is a
biggest such set:

Definition 18 Let E ⊆ [m]× [n] be the set of observed positions, and let (k, `) ∈ [m]× [n]
be a position. We will call (k, `) uniquely completable if Ak` is uniquely completable from
Aij , (i, j) ∈ E for a generic matrix A ∈ Km×n of rank r.

Furthermore, we will denote by uclr(E) the inclusion-wise maximal set of positions such
that every index (k, `) ∈ uclr(E) is uniquely completable from E. We will call the uclr(E)
unique closure of E in rank r.

As for finite completability, we can check generic unique completability of a position
by testing a random A. However, we don’t have an analogue for the Jacobian JE that
exactly characterizes unique completability. One could, of course, use general Gröbner
basis methods, but these are computationally impractical. In the next section, we describe
an easy-to-check sufficient condition for unique completability in terms of the Jacobian.

4.2 Characterization by Jacobian stresses

As for the case of finite completability, the Jacobian of the masking can be used to provide
algorithmic criteria to determine whether an entry is uniquely completable. The char-
acterizing objects will be the so-called stresses, dual objects to the column space of the
Jacobian. Intuitively, they correspond to infinitesimal dual deformations. Singer and Cu-
curingu (2010, Equation 3.7) have defined a similar concept which is closely related to the
equilibrium stresses of Connelly (2005, Section 1.3).

Mathematically, stresses are left kernels of the Jacobian:

Definition 19 A rank-r stress of the matrix A = UV> is a matrix S ∈ Cm×n whose
vectorization is in the left kernel of the Jacobian J(U,V); that is,

vec S · J(U,V) = 0.

Let E ⊆ [m]× [n] be a set of observed entries. A stress S such that Sij = 0 for all (ij) 6∈ E
is called E-stress of A.

The C-vector space of E-stresses of A will be denoted by ΨA(E), noting that it does not
depend on the choice of U,V.

Note that E-stresses are, after vectorization and removing zeroes, in the left kernel of
the partial Jacobian JE .
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The central property of the stress which allows to test for unique completability is its
rank (as a matrix in Cm×n):

Definition 20 Let E ⊆ [m] × [n] be as set of observed entries. We define the maximal
E-stress rank of A in rank r to be

ρA(E) = max
S∈ΨA(E)

rank S.

As for the rank of the Jacobian, the dependence on A can be removed for generic
matrices:

Proposition 21 Let A be a generic (m × n)-matrix of rank r. The maximal stress rank
ρA(E) depends only on E and r. In particular, ρA(E) does not depend on the entries of A.

Proof Let A = Υ(U,V). By Cramer’s rule, if S ∈ ΨA(E), the entries of S are rational
functions of the entries of U and V. After clearing denominators, the proof is similar to
that of Lemma 8.

We can therefore just talk about the generic E-stress rank, omitting again the depen-
dence on the entries A:

Definition 22 Let E ⊆ [m] × [n] be as set of observed entries. We define the generic
E-stress rank ρ(E) to be equal to ρA(E) for generic A or rank r.

Our main theorem states that if the generic E-stress rank is maximal for finitely com-
pletable E, then E is also uniquely completable:

Theorem 23 Let E ⊆ E. If the generic E-stress rank in rank r is ρ(E) ≥ min(m,n)− r,
then clr(E) = uclr(E).

We defer the somewhat technical proof to Section 4.4.

4.3 Computing the generic stress rank

Theorem 23 implies that the generic stress rank ρ(E) can be used to certify unique com-
pletability of an observation pattern E. We explicitly describe the necessary computational
steps in Algorithm 2.

As the algorithm for finite completion, it uses a randomized strategy which allows to
compute over the real numbers instead of a field of rational functions by substituting a
generic entry. Steps 1 and the beginning of step 2 are thus analogous as in Algorithm 1.
In step 2, the completion matrix JE is computed, evaluated at the matrices (U,V). In 3,
an evaluated stress S is obtained in the left kernel of JE . Its rank, which is computed in
step 5, will be the generic stress rank. Correctness (with probability one) is implied by
Proposition 21. Also, similar to Algorithm 1, Algorithm 2 is a randomized algorithm for
which considerations analogue to those in Remark 14 hold.
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Algorithm 2 Generic stress rank.
Input: Observed positions E ⊆ E . Output: The generic stress rank ρ(E) of E in rank r.

1: Randomly sample U ∈ Rm×r,V ∈ Rn×r.
2: Compute JE(U,V) with rows J(i,j) := (ei ⊗ v>j , ej ⊗ u>i ),
3: where ui is the i-th row of U, and vj the j-th row of V.
4: Compute a random vector S ∈ R|E| in the left kernel of JE . Reformat S as (m × n)

matrix, where entries with index not in E are zero, and the remaining indices correspond
to the row positions in JE .

5: Output ρ(E) = rank(S).

4.4 Proofs

4.4.1 Proof of Theorem 17

Proof Consider the algebraic map

g : (Ak`;Aij , (i, j) ∈ E) 7→ (Aij , (i, j) ∈ E)

By Proposition 58 in the appendix, Ω is a surjective algebraic map of irreducible varieties.
Therefore, the generic fiber cardinality

∣∣g−1 ◦ g(x)
∣∣ for generic x ∈ X does not depend on

x by Corollary 62. In particular, whether 1 =
∣∣g−1 ◦ g(x)

∣∣ or not.

4.4.2 Proof of Theorem 23

This sections contains the proof for Theorem 23 and some related results.

Lemma 24 Let S ∈ Cm×n be a stress w.r.t. m,n, r,A = UV>. Then,

U> · S = 0 and S ·V = 0

(where 0 denotes the zero matrix of the correct size).

Proof Since S is an stress, it holds by definition that vec S · J(U,V) = 0. The statement
then follows from Lemma 5.

Lemma 24 immediately implies a rank inequality:

Corollary 25 Let E ⊆ [m] × [n], assume the true matrix has full rank r. Then, it holds
that ρ(E) ≤ min(m,n)− r

Proof Keep the notations of Lemma 24. The statement Lemma 24 implies that for arbitrary
S, one has S ·V = 0. Since V is a matrix of full rank r, this implies that the null space
dimension of S is at least r, which is equivalent to the statement by the rank-nullity theorem.

In keeping with our development of finite completability in terms of JE , we have defined
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stresses in a way that might depend on the coordinates (U,V). In the proof of Theorem
23, we will check that this can be removed when necessary. An alternative but probably
less concise approach would be to express the matrix JE directly in terms of the entries A.

4.4.3 Proof of Theorem 23

We start with a general statement that stresses are invariant over the pre-image (Ω ◦
Υ)−1(Ω(A)), loosely inspired by the work of Connelly (2005).

Lemma 26 Let A be generic, with Υ(U,V) = A, E ⊂ E, and S an E-stress. Then S is
also an E-stress for any (U′,V′) with Ω ◦Υ(U′,V′) = Ω(A)

Proof Let (U′,V′) ∈ (Ω ◦ Υ)−1(Ω ◦ Υ(U,V)) be a point different from (U,V). Because
Ω(A) is a regular value of the composed map Ω◦Υ, the Inverse Function Theorem provides
diffeomorphic neighborhoods M 3 (U,V) and N 3 (U′,V′); let f : M → N be the
diffeomorphism.

By construction, df is non-singular. The chain rule then implies that (JE)(U′,V′) =
(JE)(U,V) · df−1, so the left kernels of both Jacobians are the same. The definition of stress
as a vector in the left kernel then proves the lemma.

Proof [of Theorem 23] It is clear that clr(E) ⊇ uclr(E). Thus we show that clr(E) ⊆
uclr(E). By Lemma 26, S is a stress for any (U,V) that agrees with the observed entries
Ω(A) on the observed positions E. Then by Lemma 24, any such pair (U,V) must satisfy
U> · S = 0 and S ·V. Since generically the stress has rank min(m,n)− r, these equations
determine the row and column spans of A. Once the row and column spans are fixed, any
row or column with at least r observed positions can be uniquely determined. On the other
hand, any row or column with fewer than r observed positions cannot be recovered (even if
the row or column span is known). Therefore we have clr(E) ⊆ uclr(E).

5. Local Completion

In this section, we connect our theoretical results to the process of reconstructing the missing
entries. In a nutshell, the idea is that a completable missing entry (i, j) ∈ E \ E is covered
by at least one so-called circuit in E∪{(i, j)}, to which we can associate circuit polynomials
which can be used to solve for Aij in terms of the observations, addressing the question
“What is the value of the entry (i, j)?”. Just as in theory where we could separate the
reconstructability from the reconstruction, we can obtain a quantitative version of this
separation by estimating the entry-wise reconstruction error without actually performing
the reconstruction, allowing to give an answer to “How accurately can one estimate the
entry (i, j)?”. We give general algorithms for arbitrary rank, and a closed-form solution for
rank one.

5.1 Circuits as rank certificates

We start with some concepts from matroid theory.
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Definition 27 A set of observed positions C ⊆ E is called a circuit of rank r if rankr(C) =
|C| − 1 and rankr(S) = |S| for all proper subsets S ( C. The graph G(C) is called circuit
graph of rank r.

A reformulation of Theorem 10, in terms of circuits is the following.

Theorem 28 The position (i, j) is finitely completable if and only if there is a circuit
C ⊂ E ∪ {(i, j)} with (i, j) ∈ C.

Proof See (Oxley, 2011, Lemma 1.4.3)

The connection to reconstructing missing entries is that every circuit comes with a unique
polynomial:

Theorem 29 Let C ⊆ E be a circuit in rank r, ΩC be the mask corresponding to C, and
A ∈ Cm×n. There is a unique, up to scalar multiplication, square-free polynomial θC such
that: θC(ΩC(A)) = 0 if and only if there is A′ ∈M(m× n, r) and ΩC(A) = ΩC(A′).

Proof This follows indirectly from Theorem 1.1 in Dress and Lovász (1987), or from the
discussion in Section 5.2 of Király et al. (2013)

In other words, circuit polynomials minimally certify for the rank r condition being
fulfilled on the entries in C. The simplest example of a circuit is an (r + 1) × (r + 1)
rectangle in E . The associated polynomial is the determinant of an (r + 1)× (r + 1) minor
of A. Thus, Theorem 29 is a generalization of the linear algebra fact that a matrix is rank
r if and only if all (r + 1)-minors vanish.

Definition 30 We will call the polynomial θC from Theorem 29 a circuit polynomial asso-
ciated with the circuit C. Understanding that there are an infinity up to multiplication with
a scalar multiple, we will also talk about the circuit polynomial when that does not make a
difference.

Remark 31 The circuit polynomial can be interpreted algorithmically as follows: let C ⊆ E
be a circuit, assume all entries but one in C are observed, e.g., (k, `) ∈ C is not observed
and E = C \ (k, `) is observed. Then, θC(ΩC(A)) = θC(Ak`,ΩE(A)) can be interpreted
as a polynomial in the one unknown Ak`. That is, the circuit polynomial allows to solve
entry-wise for single missing entries.

Definition 32 Fix some set of observed entries E ⊆ E. A circuit C ⊆ E is called complet-
ing for the observations in E, or with respect to E, if |C ∩ E| ≥ |C| − 1.

5.2 Completion with circuit polynomials

The circuit properties inspire a general solution strategy. In general, Algorithm 3 is in-
effective, in the sense that Step 4 is unlikely to have a sub-exponential time algorithm in
the general case. However, there is a specific instance in which it is effective: when the
circuit C is always an (r+ 1)× (r+ 1) rectangle. In this case, the circuit polynomial is the
corresponding (r+1)× (r+1) minor. This means that enumerating all the circuits through
(i, j) is not necessary, because a minor is linear in the unknown entry Ak`.
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Király, Theran, and Tomioka

Algorithm 3 Completion with circuits.
Input: A set E ⊂ E of observed positions.
Output: Estimates for the entries clr(E) \ E

1: repeat
2: Find an unobserved entry (k, `) ∈ clr(E) \ E,
3: Find the set C = {C1, . . . , Ct} of all circuits (w.r.t. E) containing (k, `).
4: Compute the circuit polynomials θCi .
5: Substitute the entries {Aij : (i, j) ∈ E} into the θCi to get a family of polynomials

in the variable Ak` and find a solution Ak` common to all of them.
6: E ← E ∪ (k, `)
7: until E = clr(E).

A practical algorithm for computing the closure of a mask E and recovering the corre-
sponding entries based on (r+ 1)× (r+ 1) minors is given in Algorithm 4. In Step 5, N(j)
and N(i) denote the set of neighbors of vertices j ∈W and i ∈ V , respectively. In Step 10,
A+
I′,J ′ denotes the Moore-Penrose pseudoinverse of AI′,J ′ . Intuitively, the algorithm iterates

over missing edges and look if there is a (r + 1) × (r + 1) biclique in the union of current
set of edges Ek and (i, j). If such a biclique exists, then the edge (i, j) is added to Ek+1 so
that the edge is used in the next round. The iteration terminates when there is no more
edge to add.

Algorithm 4 MinorClosure((V,W,E), r)
Inputs: bipartite graph (V,W,E), rank r.
Outputs: completed matrix A and minor closure of E.

1: Let E0 ← E and k ← 0.
2: repeat
3: Ek+1 ← Ek
4: for each missing edge (i, j) in E\Ek do
5: Let I ← N(j) ⊆ V , J ← N(i) ⊆ W , where the neighbors are defined with

respect to graph (V,W,Ek).
6: E′k ← I × J ∩ Ek.
7: (I ′, J ′)← FindAClique((I, J, E′k), r, r).
8: if |I ′| > 0 and |J ′| > 0 then
9: Ek+1 ← Ek+1 ∪ (i, j).

10: Aij ← Ai,J ′A+
I′,J ′AI′,j .

11: end if
12: end for
13: k ← k + 1.
14: until Ek = Ek−1 or Ek = E
15: Return (A,Ek).

Note that Ek+1 is uniquely determined from Ek and the process is monotone and
bounded, i.e., Ek ⊆ Ek+1 ⊆ E . The first statement is true because the order of the it-
eration over missing edges in line 4 is irrelevant as we look if there is a (r + 1) × (r + 1)
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biclique in Ek ∪ (i, j) for each missing edge (i, j). Therefore, Algorithm 4 terminates with
either Ek = E or Ek ( E and the following definition is valid.

Definition 33 A set E ⊂ E is minor closable in rank r if Algorithm 4 reconstructs all
the entries in positions E \ E. Moreover, we say E is k-step minor closable in rank r, if
Algorithm 4 terminates with k steps, i.e., Ek = E in line 14.

Since each entry is uniquely determined when it is reconstructed, any minor closable set
is uniquely completable.

A crucial step in Algorithm 4 is FindAClique in line 7. The function should return
the indices of rows and columns, if an r × r biclique exists in subgraph (I, J, E′). This
can be achieved in various ways. Although the worst case complexity is O(|I|r|J |r), it can
be much more efficient in practice, because many vertices can be safely pruned due to the
fact that any r × r biclique may not contain vertices with degree less than r. An efficient
implementation that employs a row-wise recursion of this step, proposed by Takeaki Uno,
is presented in Appendix B.

We would like to note that Algorithm 3, as presented above, and all related algorithms
below, need the true matrix to be generic. Probabilities for this supposition to hold can be
backed out of from Remark 14.

5.3 Local completion

The circuit property can also be interpreted differently: instead of using multiple circuits
to complete many different entries, one can also think of concentrating on one single entry
and trying to reconstruct that as accurately as possible. Algorithm 5 describes a general
strategy on how to obtain estimates of single finitely or uniquely completable entries, from
noisy observations via local circuit completion.

Algorithm 5 Local completion/denoising of a single entry (k, `).
Input: A set E ⊂ E of observed positions, the entry.
Output: Estimate for Ak`

1: Find completing (w.r.t. E) circuits C1, . . . , CN containing (k, `)
2: Compute the circuit polynomials θCi , where the observed entries are substituted and
Ak` is the only unknown

3: For all i, find all solutions a(i,j) of θCi .
4: Return Ak` = f(. . . , a(i,j), . . . ), where f is an appropriate averaging function

The idea in Algorithm 5 is to obtain many candidate solutions in step 3 and then trade
them off appropriately in step 4. If all circuit polynomials θCi have degree one, there is only
one solution per polynomial, and f can be taken as the mean, or a weighted average that
minimizes some loss or a variance. If there are some circuit polynomial with higher degree,
then one can try to decide which solution is the right one - e.g., by clustering the a(i,j) and
rejecting all candidate solutions except the one which contains some a(i,j) for the highest
number of i, and then proceeding as in the degree one case. Also, one can imagine f being
adaptive, e.g. including Bayesian learning methods.
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For rank one, an closed explicit form is possible for the variance minimizing estimate, as
it was shown in Kiraly and Theran (2013). For arbitrary rank, a first-order approximation to
variance minimization can be employed to yield fast and competitive single-entry estimates;
see Blythe et al. (2014) for a derivation of variance minimization in higher rank, and Blythe
and Király (2015) for a practical adaptation of the algorithm to the context of athletic
performance prediction.

For illustration, we give a short overview of the crucial statements in the rank one case.
The proofs can be found in Kiraly and Theran (2013).

Theorem 34 The rank one circuit graphs are exactly the simple cycles (bipartite and thus
of even length). The corresponding circuit polynomials are all binomials of the form

θC =

L∏
ν=1

Aiνjν −
L∏
ν=1

Aiνjν+1 ,

where L is an arbitrary number, i1, . . . , iL are arbitrary disjoint numbers, and j1, . . . , jL are
arbitrary disjoint numbers, with the convention that j1 = jL+1. The iν and jν do not need
to be disjoint from each other.

In particular, Theorem 34 implies that the circuit polynomials are all linear in every
occurring variable. Moreover, the specific structure of the problem allows a further simpli-
fication:

Remark 35 Keep the notations of Theorem 34. Write Bij := log |Aij |. Then, the equations

LC =
L∑
ν=1

Biνjν −
L∑
ν=1

Biνjν+1

vanish on all rank one matrices.

With the elementary computation in Remark 35, matrix completion becomes estimation
with linear boundary constraints. That is, the function f in step 4 of Algorithm 5 could be
taken as the least squares regressor of all Bk` obtained from completing circuits for (k, `).
The algorithm in Kiraly and Theran (2013) gives a version which takes different observation
variances into account, and efficient graph theoretic observations making the computation
polynomial.

We paraphrase this as Algorithm 6; more details, e.g. on how to efficiently find a
basis for the set of completing circuits3 is efficiently found, or how the kernel matrix Σ is
constructed, can be found in Kiraly and Theran (2013).

5.4 Variance and error estimation

The locality of circuits also allows to obtain estimates for the reconstruction error of single
missing entries obtained by the strategy in Section 5.3, independent of the method which
does the actual reconstruction. The simplest estimate of this kind is obtained from a

3. This is equivalent to finding a basis for first Z-homology of the graph G, taken as a 1-complex.
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Algorithm 6 Local completion/denoising of a single entry (k, `) in a rank 1 matrix.
Input: A set E ⊂ E of observed positions, observation variances σ, the position (k, `).
Output: Estimate for Ak`

1: Find a basis C1, . . . , CN for the set of completing circuits (w.r.t E) for (k, `)
2: Find solutions ai for the corresponding circuit polynomials, write bi := log |ai|
3: Compute the (N × N)-path kernel matrix Σ = Σ(E, σ) corresponding to the Ci; set
α := Σ−1 · 1

4: Compute the weighted mean b :=
(∑N

i=1 αi · ai
)
/
(∑N

i=1 αi

)
5: As estimate, return Âk` = ± exp(b), where the sign is determined by the sign parity of

the circuits.

variational approach: say θC is a completing circuit (w.r.t E ⊆ E) for the missing entry
(k, `). In the simplest case, where θC is linear in the missing entry Ak`, we can obtain a
solving equation

Âk` = θC(Ae, e ∈ E),

by solving for Ak` as an unknown. A first order approximation for the standard error can
be obtained by the variational approach

δÂk` =
∑
e∈E

∂θC
∂Ae

(Ae, e ∈ E) δAe.

The right hand side can be obtained from a suitable noise model and the observations Ae,
or, if the error should be estimated independently from the Ae, from a noise model plus a
sampling model for the Ae. A general strategy for entry-wise error estimation is analogous
to Algorithm 5 for local completion. For rank one, it has been shown in Kiraly and Theran
(2013) that the variance estimate depends only on the noise model and not on the actual
observation, and takes a closed logarithmic-linear form, as it is sketched in Algorithm 7.

Algorithm 7 Error prediction for a single entry (k, `), rank one.
Input: A set E ⊂ E of observed positions, observation variances σ, the position (k, `).
Output: Estimate for the (log-)variance error of the estimate Âk`

1: Calculate Σ and α, as in Algorithm 6.
2: As log-variance, return α>Σα.
3: If an estimate Âk` is available, as standard error, return Âk` ·

(
exp(α>Σα)− 1

)
Note that the log-variance error is independent of the actual estimate Âk`, therefore the

variance patterns can be estimated without actually reconstructing the entries.

6. Combinatorial Completability Conditions

Through Sections 3 and 4, we have shown that for a given E ⊆ E , both finitely completable
closure (Theorem 12) and uniquely completable closure (Theorem 17) are properties of the
(isomorphism type of) the associated bipartite graph G(E); see also Corollary 15.

In this Section, using tools from graph and matroid theories, we relate the structural
properties of the bipartite graph G(E) to finite completability.
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For a set of observed positions, E ⊆ E , let G(E) = (V,W,E) be a bipartite graph, where
the sets of vertices V and W correspond to row and column of the observed positions; we
call V and W row vertices and column vertices, respectively. We assume that G(E) has no
isolated vertices (those corresponding to rows or columns with no observed positions.)

As usual, we will take r, n, and m to be the rank and parameters of the ground set
E , respectively. However, since our convention for graphs is that they do not have isolated
vertices, we will take care to indicate the ambient ground set.

6.1 Sparsity and independence

Suppose we want to maximize the size of the completable closure clr(E), with the number
of positions to observe fixed. To do this, consider the process of constructing E one position
at a time. What we need is to pick each successive entry in a way that causes clr(E) to
grow. Theorem 12 implies that a position (k, l) is finitely completable from E, if and only if
J{(k,l)} lies in the span of JE . In particular, this tells us that adding such a (k, `) to E will
not affect the finite completability of other unobserved positions; in matroid terminology,
we say (k, l) is dependent on E. We see, then, that it is wasteful to choose positions that
are dependent on the already chosen positions. Therefore intuitively we need to choose the
positions so that they are well spread out, which we call rank-r sparse; see Section 6.1.1.
Rank-r sparsity implies a more classical combinatorial property, namely r-connectivity; see
Section 6.1.2. Finally, in Section 6.1.3, we show by a counterexample that rank-r sparsity,
though necessary, is not a sufficient condition for finite completability.

We recall some basic terminologies from matroid theory. The rank function rankr(E) of
the rank r determinantal matroid is defined in Definition 13. Note that rankr(E) ≤ dr(m,n),
where dr(m,n) = r(m + n − r) if m ≥ r and n ≥ r, dr(m,n) = mn, otherwise. A set of
positions E ⊆ E is called independent if |E| = rankr(E). On the other hand, it is called
dependent if |E| > rankr(E). A basis B of E ⊆ E is a maximally independent subset of E.
In addition, a basis of E is called a basis of the rank r determinantal matroid. A basis B of
E consists of rankr(E) edges. In particular, a basis B of the rank r determinantal matroid
consists of rankr(E) = dr(m,n) edges. A basis of E is not unique unless E is independent.
A circuit C ⊆ E of of the rank r determinantal matroid is a minimally dependent set in the
sense that for any (i, j) ∈ C, C − {(i, j)} is an independent set; see also Definition 27.

We have the following two properties from matroid theory.

Proposition 36 1. Let E ⊆ E be a set of observed positions and B ⊆ E be any basis of
E. Then, clr(B) = clr(E).

2. Let E ⊆ E be an independent set in the rank r determinantal matroid. Then, any
E′ ⊆ E is independent.

In other words, (i) the finitely completable closures of E and any basis B of E are the same
(ii) and an independent graph G(E) cannot contain a dependent subgraph G(E′). Both
statements arise from the fact that the rank-r determinantal matroid is a linear matroid
defined by the linear independence of the rows of the Jacobian JE and that the matroid
closure coincides with the finitely completable closure.
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6.1.1 Rank-r-sparsity

Let G′ = (V ′,W ′, E′) be a subgraph of G = (V,W,E). Since E′ being independent implies
a bound on the cardinality |E′| ≤ dr(|V ′|, |W ′|), we consider the notion of rank-r-sparsity
defined as follows.

Definition 37 A graph G = (V,W,E) is rank-r-sparse if, for all subgraphs G′ = (V ′,W ′, E′)
of G, it holds that |E′| ≤ dr(|V ′| , |W ′|).

Theorem 38 Let E ⊆ E be an independent set in the rank r determinantal matroid on
[m]× [n]. Then G(E) is rank-r-sparse.

Proof Suppose that there is a subgraph G′ = (V ′,W ′, E′) with |E′| > dr(|V ′| , |W ′|) ≥
rankr(E

′), then this subgraph must be dependent, which contradicts Proposition 36, part
2.

6.1.2 Connectivity and vertex degrees

Rank r sparsity implies some other, more classical, graph theoretic properties in a straight-
forward way, since rank-r-sparsity is hereditary.

Corollary 39 Let m,n > r, and E ⊆ E be the set of observed positions. If G(E) contains
a rank-r sparse subgraph G(E′) with |E′| = dr(m,n) edges, then:

1. G(E) has minimum vertex degree at least r.

2. G(E) is r-edge-connected.

In particular, if E is finitely completable, it contains a basis E′ (Proposition 36, part 1)
with |E′| = dr(m,n) edges and G(E′) is rank-r sparse. Thus, E is r-edge connected.

The proof of the above corollary relies on the following lemma:

Lemma 40 Let E ⊆ E be rank-r sparse with |E| = dr(m,n) edges, and E = ∪Ni=1Ei be an
edge disjoint partition of E. For any set E′ ⊆ E of edges incident to m′ row and n′ column
vertices, we define dr(E

′) := dr(m
′, n′). Then we have

dr(m,n) ≤
N∑
i=1

dr(Ei).

Proof By the assumption,

dr(m,n) = |E| =
N∑
i=1

|Ei| ≤
N∑
i=1

dr(Ei),

where the first equality holds because E is independent and the last inequality follows from
Theorem 38.
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Király, Theran, and Tomioka

Proof [Proof of Corollary 39] Since Statement 2 implies statement 1, we prove Statement
2. First, we can assume without loss of generality that E is rank-r sparse and E′ = E
without loss of generality, because if E′ is r-edge-connected, so is E.

Consider any partition V = V1∪V2 andW = W1∪W2. V1 orW1 can be empty (but not at
the same time). This induces an edge disjoint partition E = E1∪E2∪(i,j)∈E−E1−E2

{(i, j)},
where E1 and E2 are sets of edges induced by (V1,W1) and (V2,W2), respectively. Treating
each edge in E − E1 − E2 as a subgraph, we have dr((i, j)) = 1. By applying Lemma 40,
we have

|E − E1 − E2| ≥ dr(m,n)− dr(E1)− dr(E2). (4)

Let m1 := |V1|, m2 := |V2|, n1 := |W1|, and n2 := |W2|. Due to symmetry, there are three
situations that we need to consider. First, if m1,m2, n1, n2 ≥ r, RHS of (4) = r2. Next, if
m1 ≤ r and n2 ≤ r, RHS of (4) = r(m+n−r)−m1n1−m2n2 ≥ r2, which is true considering
maximizing the inner product between (m1,m2) and (n1, n2) subject to m1 +m2 = m and
n1 + n2 = m. Finally, if m1, n1 ≤ r, RHS of (4) = r(m1 + n1)−m1n1 ≥ r. The minimum
is obtained for m1 = 1 and n1 = 0, or vice versa. Therefore E is r-edge connected.

6.1.3 Sparsity is not sufficient

On the other hand, rank r sparsity is not a sufficient condition for independence in de-
terminantal matroids. The bipartite graph defined by the following mask in rank 2 have
d2(5, 5) = 16 edges and rank-2 sparse but not independent:

1 1 1 0 0
1 1 1 0 0
1 1 0 1 1
0 0 1 1 1
0 0 1 1 1


This example amounts, graph theoretically, to gluing the graphs of two bases of the deter-
minantal matroid together along r vertices in a way that preserves rank-r-sparsity but not
independence. One can make the construction rigorous to show that, for any r ≥ 2, there
are infinitely many rank-r-sparse dependent sets in the determinantal matroid.

6.2 Circuit and stress supports

We have discussed stresses in Section 4 and circuits in Section 5. Here we show that for
each circuit C, there is a corresponding stress S that is supported on every position of C.
Here the support S ∈ E of stress S is defined as S = {(i, j) ∈ E : Sij 6= 0}. Moreover,
using the structure of the Jacobian matrix (see Definition 4), we show that every vertex of
circuit C has degree at least r+1. These results further imply that any finitely completable
position spans vertices in the r-core (see Section 6.2.1). Furthermore, combining the above
degree lower bound with the rank-r sparsity shown in the previous subsection, we show a
bound on the number of circuits in the rank r determinantal matroid in Section 6.2.2. The
proof of the key Theorem 41 is presented in Section 6.2.3.
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Theorem 41 For a generic A ∈ M(m × n, r), and a circuit C, the stress space ΨA(C)
is one dimensional; thus a stress S of a circuit C is unique up to scalar multiplication.
Moreover, the support of S is all of C.

The power of Theorem 41 can be seen in the following proposition, which lower bounds the
degree of a vertex in a circuit.

Proposition 42 Let C ⊆ E be a circuit in the rank r determinantal matroid. Then every
vertex in the graph G(C) has degree at least r + 1 edges.

Proof By Theorem 41, for generic (U,V), the rows of JC are dependent, with the associated
stress S supported on all the rows.

From (2), we see that any vertex j is associated with exactly r columns in JC . Let J
be the indices of these columns. The number of non-zero rows in JC [·, J ] is exactly the
degree d of j. If we suppose d ≤ r, the stress S cannot generically cancel these d columns.
Therefore, it holds that d ≥ r + 1.

6.2.1 Where are the completable positions?

The concept of k-core is useful for narrowing down where the completable positions can be
and where the circuits can lie.

We recall a concept from graph theory:

Definition 43 Let G be a graph, and let k ∈ N. The k-core of G, denoted corek(G), is the
maximal subgraph of G with minimum vertex degree k.

In rank r, the non-trivial aspects of matrix completion occur inside the r-core.

Theorem 44 Let E ⊆ E,

(i) If (i, j) ∈ E \ E and (i, j) ∈ clr(E), then the vertices i and j are in corer(G(E)).

(ii) Any circuit C ⊆ E is contained in corer+1(G(E)).

Proof (i) We have (i, j) ∈ clr(E) if and only if there is a circuit C ⊆ E ∪ {(i, j)} with
(i, j) ∈ C. Then (i) will follow from (ii) because for G(C) ⊆ corer+1(G(E)), we need
i ∈ corer(G(E)) and j ∈ corer(G(E)).
(ii) This follows from the fact that the (r + 1)-core is the union of all induced subgraphs
with minimum degree at least r + 1 and by Proposition 42, every C lies inside such an
induced subgraph.

Note here that uclr(E) ⊆ clr(E), so the same things are true for the uniquely completable
closure.
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6.2.2 Circuit size and counting

Combining the results in this section, we obtain bounds on the number of circuits in the
rank r determinantal matroid.

Theorem 45 Let C be a circuit in the rank r determinantal matroid with graph G(C) =
(V,W,C). Then |W | ≤ r(|V | − r) + 1

Proof Let m′ = |V | and n′ = |W |. Using Proposition 42 for the lower bound and Theorem
38 for the upper bound, we have n′(r+ 1) ≤ |C| ≤ r(m′+n′− r) + 1. Subtracting n′r from
both sides, we get |W | = n′ ≤ r(m′ − r) + 1.

Corollary 46 The number of circuits in the rank r determinantal matroid on [m]× [n] is
at most 2mr(m−r)+m.

6.2.3 Proof of Theorem 41

First, by Definition 19, rankr(C) = rank JC = |C| − 1. Thus the left null space of JC is one
dimensional.

Next, we explicitly construct a stress S. By Theorem 29, there is a unique polynomial
θC for each circuit C. Then taking the derivative of θC , we have∑

(i,j)∈C

∂θC
∂Aij

∣∣∣∣
ΩC(A)

dAij = 0,

for any tangent vector (dAij)(i,j)∈C ofM(m×n, r) at A. The vector (∂θC/∂Aij)(i,j)∈C |ΩC(A)

is, then, a stress for C. In addition, the coefficient of the stress is uniquely determined by the
entries ΩC(A). If any of the coefficients of (∂θC/∂Aij) were identically zero, we could remove
the associated row ij of JC and the left-kernel of JC\(i,j) would still be one-dimensional.
Since this is a contradiction to C being a circuit, we conclude that none of the coefficients
are identically zero. Since the coefficients are, in addition, rational functions in ΩC(A), each
of them is non-vanishing on a Zariski open subset ofM(m×n, r). The (finite) intersection
of these sets is again open, proving that the generic support of the stress is all of C.

6.3 Completability of random masks

Up to this point we have considered the completability of a fixed mask, which we have
shown to be equivalent to questions about the associated bipartite graph. We now turn to
the case where the masking is sampled at random, which, by Corollary 15, implies that,
generically, this is a question about random bipartite graphs.

6.3.1 Random graph models

A random graph is a graph valued random variable. We are specifically interested in two
such models for bipartite random graphs:

Definition 47 The Erdős-Rényi random bipartite graph G(m,n, p) is a bipartite graph on
m row and n column vertices vertices with each edge present with probability p, indepen-
dently.
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Definition 48 The (d, d′)-biregular random bipartite graph G(m,n, d, d′) is the uniform
distribution on graphs with m row vertices, n column ones, and each row vertex with degree
d and each column vertex with degree d′.

Clearly, we need md = nd′, and if m = n, the (d, d′)-regular random bipartite graph is, in
fact d-regular.

We will call a mask corresponding to a random graph a random mask. We now quote
some standard properties of random graphs we need.

Proposition 49 (i) Connectivity threshold. The threshold for G(m,n, p) to become con-
nected, w.h.p., is p = Θ((m+ n)−1 log n) (Bollobás, 2001, Theorem 7.1).

(Minimum degree threshold) The threshold for the minimum degree in G(n, n, p) to
reach d is p = Θ((m + n)−1(log n + d log log n + ω(1))). When p = cn, w.h.p., there
are isolated vertices (Bollobás, 2001, Exercise 3.2).

(ii) Connectivity threshold. With high probability, G(m,n, d, d′) is d-connected (Bollobás,
2001, Theorem 7.3.2). (Recall that we assume m ≤ n) .

(iii) Density principle. Suppose that the expected number of edges in either of our random
graph models is at most Cn, for constant C. Then for every ε > 0, there is a constant
c, depending on only C and ε such that, w.h.p., every subgraph of n′ vertices spanning
at least (1 + ε)n′ edges has n′ ≥ cn (Janson and Luczak, 2007, Lemma 5.1).

(iv) Emergence of the k-core. Define the k-core of a graph to be the maximal induced
subgraph with minimum k. For each k, there is a constant ck such that p = ck/n
is the first-order threshold for the k-core to emerge. When the k-core emerges, it
is giant and afterwards its size and number of edges spanned grows smoothly with p
(Pittel et al., 1996).

6.3.2 Sparser sampling and the completable closure

The lower bounds on sample size for completion of rank r incoherent matrices do not carry
over verbatim to the generic setting of this paper. This is because genericity and incoherence
are related, but incomparable concepts: there are generic matrices that are not incoherent
(consider a very small perturbation of the identity matrix); and, importantly, the block
diagonal examples showing the lower bound for incoherent completability are not generic,
since many of the entries are zero.

Thus, in the generic setting, we expect sparse sampling to be more powerful. This is
demonstrated experimentally in Section 7.2. In the rest of this section, we derive some
heuristics for the expected generic completability behavior of sparse random masks. We are
particularly interested in the question of: when are Ω(mn) of the entries completable from
a sparse random mask? We call this the completability transition. We will conjecture that
there is a sharp threshold for the completability transition, and that the threshold occurs
well below the threshold for G(n,m, p) to be completable.

Let c be a constant. We first consider the emergence of a circuit in G(n, n, c/n). The-
orem 44 implies that any circuit is a subgraph of the (r + 1)-core. By Theorem 12 and

1417
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Proposition 36, having a circuit is a monotone property, which occurs with probability one
for graphs with more than 2rn edges, and thus the value

tr := sup{t : G(n, n, t/n) is r-independent, w.h.p.}

is a constant. If we define Cr as

Cr := sup{c : the (r + 1)-core of G(n, n, c/n) has average degree at most 2r, w.h.p.}

smoothness of the growth of the (r + 1)-core implies that we have

cr+1 ≤ tr ≤ Cr+1

where we recall that cr+1 is the threshold degree for the (r + 1)-core to emerge. Putting
things together we get:

Proposition 50 There is a constant tr such that, if c < tr then w.h.p., G(n, n, c/n) is
r-independent, and, if c > tr then w.h.p. G(n, n, c/n) contains a giant r-circuit inside the
(r + 1)-core. Moreover, tr is at most the threshold for the (r + 1)-core to reach average
degree 2r.

Proposition 50 gives us some structural information about where to look for rank r circuits
in G(n, n, c/n): they emerge suddenly inside of the (r+ 1)-core and are all giant when they
do. If rank r circuits were themselves completable, this would then yield a threshold for the
completability transition. Unfortunately, the discussion in Section 6.1.3 tell us that this is
not always true. Nonetheless, we conjecture:

Conjecture 51 The constant tr is the threshold for the completability transition
in G(n, n, c/n). Moreover, we conjecture that almost all of the (r + 1)-core is completable
above the threshold.

We want to stress that the conjecture includes a conjecture about the existence of the
threshold for the completabilty transition, which hasn’t been established here, unlike the
existence for the emergence of a circuit. The subtlety is that we haven’t ruled out exam-
ples of r-independent graphs with no rank-r-spanning subgraph for which, nonetheless, the
closure in the rank r completion matroid is giant. Conjecture 51 is explored experimentally
in Sections 7.1 and 7.2. The conjectured behavior is analogous to what has been proved for
distance matrices (also known as bar-joint frameworks) in dimension 2 in (Kasiviswanathan
et al., 2011).

Our second conjecture is about 2r-regular masks.

Conjecture 52 With high probability G(n, n, 2r, 2r) is completable. Moreover, we conjec-
ture that it remains so, w.h.p., after removing r2 edges uniformly at random.

We provide evidence in Section 7.2. This behavior is strikingly different than the incoherent
case, and consistent with proven results about 2-dimensional distance matrices (Jackson
et al., 2007, Theorem 4.1).
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6.3.3 Denser sampling and the r-closure

The conjectures above, even if true, provide only information about matrix completability
and not matrix completion. In fact, the convex relaxation of Candès and Recht (2009)
does not seem to do very well on 2r-regular masks in our experiments, and the density
principle for sparse random graphs implies that, w.h.p., a 2r-regular mask has no dense
enough subgraphs for our closability algorithm in Section B.1 to even get started. Thus it
seems possible that these instances are quite “hard” to complete even if they are known to
be completable.

If we consider denser random masks, then the closability algorithm becomes more practi-
cal. A particularly favorable case for it is when every missing entry is part of some K−r+1,r+1.

In this case, the error propagation will be minimal and, heuristically, finding a K−r+1,r+1 is
not too hard, even though the problem is NP-complete in general.

Define the 1-step r-closure of a bipartite graph G as the graph G′ obtained by adding
the missing edge to each K−r+1,r+1 in G. If the 1-step closure of G is Kn,n, we define G to be
1-step r-closable. We conjecture an upper bound on the threshold for 1-step r-closability.

Conjecture 53 There is a constant C > 0 such that, if p = Cn−2/(r+2) log n then, w.h.p.,
G(n, n, p) is 1-step r-closable.

7. Experiments

In this section we will investigate the set of entries that are finitely completable from a set of
given entries. In Section 3 we have seen that the finitely completable closure clr(E) does not
depend on the values of the observed entries but only on their positions E. First, we check
the set of completable entries for synthetic random positions and empirically investigate
the completability phase transitions in terms of the number of known entries, as described
in Section 6.3. We also check the number of completable entries for MovieLens data set
in terms of the putative rank. Then, we present experiments on actual reconstruction and
algorithm-independent error estimation in the case of rank one matrices.

7.1 Randomized algorithms for completability

For a quantitative analysis, we perform experiments to investigate how the expected num-
ber of completable entries is influenced by the number of known entries. In particular,
Section 6.3 suggests that a phase transition between the state where only very few addi-
tional entries can be completed and the state where a large set of entries can be completed
should take place at some point. Figure 2 shows that this is indeed the case when slowly
increasing the number of known entries: first, the set of completable entries is roughly
equal to the set of known entries, but then, a sudden phase transition occurs and the set of
completable entries quickly reaches the set of all entries.

7.2 Phase transitions

Figure 3 shows phase transition curves of various conditions for 100× 100 matrices at rank
3. We consider uniform sampling model here. More specifically, we generated random
100 × 100 masks with various number of edges by first randomly sampling the order of
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(b) Results for m = 20, n = 20, r = 5

Figure 2: Expected number of completable entries (in rank r) versus the number of known
entries where the positions of the known entries are uniformly randomly sampled
in an (m×n)-matrix. The expected number of completable entries was estimated
for each data points from repeated calculations of the completable closure (200
for r = 2, and 20 for r = 5). The blue solid line is the median, the blue dotted
lines are the 1st and 3rd quartiles. The black dotted line is the total number of
entries, m · n.

edges (using MATLAB randperm function) and adding 100 entries at a time from 100 to
6000 sequentially. In this way, we made sure to preserve the monotonicity of the properties
considered here. This experiment was repeated 100 times and averaged to obtain estimates
of success probabilities. The conditions plotted are (a) minimum degree at least r, (b)
r-connected, (c) completable at rank r, (d) minor closable in rank r (e) nuclear norm
successful, and (f) one-step minor closable. For nuclear norm minimization (e), we used the
implementation of the algorithm in (Tomioka et al., 2010) which solves the minimization
problem

X̂ = arg min
X
‖X‖∗ subject to Xij = Aij ∀(i, j) ∈ E,

where ‖X‖∗ =
∑r

j=1 σj(X) is the nuclear norm of X. The success of nuclear norm mini-

mization is defined as the relative error ‖X̂−A‖F /‖A‖F less than 0.01.
The success probabilities of the (a) minimum degree, (b) r-connected, and (c) com-

pletable are almost on top of each other, and exceeds chance (probability 0.5) around
|E| ' 1, 000. The success probability of the (d) minor closable curve passes through 0.5
around |E| ' 1, 300. Therefore the r-closure method is nearly optimal. On the other hand,
the nuclear norm minimization required about 2, 200 entries to succeed with probability
larger than 0.5.
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Figure 3: Phase transition curves of various conditions for 100× 100 matrices at rank 3.
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Figure 4: Phase transition curves of various conditions for 100× 100 matrices at rank 6.

Figure 4 shows the same plot as above for 100 × 100 matrices at rank 6. The success
probabilities of the (a) minimum degree, (b) r-connected, (c) completable are again almost
the same, and exceeds chance probability 0.5 around |E| ' 1, 400. On the other hand, the
number of entries required for minor closability is at least 3, 700. This is because the masks
that we need to handle around the optimal sampling density is so large and sparse that
we cannot hope to find a 6× 6 biclique required by the minor clusre algorithm to even get
started. The nuclear norm minimization required about 3, 100 samples.

Figure 5 shows the phase transition from a non-completable mask to a completable
mask for almost 2r-regular random masks. Here we first randomly sampled 2r-regular
(n × n)- masks using Steger & Wormald algorithm (Steger and Wormald, 1999). Next we
randomly permuted the edges included in the mask and the edges not included in the mask
independently and concatenated them into a single list of edges. In this way, we obtained
a length mn ordered list of edges that become 2r-regular exactly at the 2rnth edge. For
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Figure 5: Phase transition in an almost regular mask.

each ordered list sampled this way, we took the first 2rn+ i edges and checked whether the
mask corresponding to these edges was completable for i = −15,−14, . . . , 5. This procedure
was repeated 100 times and averaged to obtain a probability estimate. In order to make
sure that the phase transition is indeed caused by the regularity of the mask, we conducted
the same experiment with row-wise 2r-regular masks, i.e., each row of the mask contained
exactly 2r entries while the number of non-zero entries varied from a column to another.

In Figure 5, the phase transition curves for different n at rank 2 and 3 are shown. The
two plots in the top part show the results for the 2r-regular masks, and the two plots in the
bottom show the same results for the 2r-row-wise regular masks. For the 2r-regular masks,
the success probability of completability sharply rises when the number of edges exceeds
2rn − r2 (i = −4 for r = 2 and i = −9 for r = 3); the phase transition is already rather
sharp for n = 10 and for n ≥ 20 it becomes almost zero or one. On the other hand, the
success probabilities for the 2r-row-wise regular masks grow rather slowly and approach
zero for large n. This is natural, since it is likely for large n that there is some column with
non-zero entries less than r, which violates the necessary conditions in Corollary 39.

7.3 Completability of the MovieLens data set

This section is devoted to studying a well-known data set - the MovieLens data published
by GroupLens - with the methods developed in this paper. We demonstrated how the
algorithms given above can be used to make statements about the sets of entries which are
(a) completable, (b) uniquely completable, and (c) not completable with any algorithm.
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Figure 6: Size of the r-core of the MovieLens 100k data set for varying r. For each rank r,
the figure shows the number of rows (solid blue), the number of columns (dashed
green), and the number of entries (dash-dotted red) in the r-core of the mask
corresponding to the observed entries of the MovieLens 100k data set. The biggest
rank with non-empty r-core is r = 83.

The underlying data set for the following analyses is the MovieLens 100k data set. By
convention, columns will correspond to the 1682 movies, while the rows will correspond to
the 943 users in the data set.

For growing rank r, the r-core of the MovieLens data set was computed by the algorithm
which is standard in graph theory - by Theorem 44 only the missing entries in the r-core
can be completed, and any entry not contained in the r-core is not completable by any
algorithm. Figure 6 shows the size (columns, rows, entries) of the r-core of the MovieLens
data for growing r.

Under rank 18, the vast majority of the entries are in the r-core, and so is the majority
of the rows, while some columns with very few entries are removed with increasing r. At
rank r = 18, the number of columns in the r-core attains the number of rows in the r-core;
above rank 18, the number of rows and columns in the r-core diminish exponentially with
the same speed. Above rank 79, the r-core rapidly starts to shrink, with r = 83 being the
biggest rank with non-empty r-core.

For growing rank r, the finitely completable closure clr(E) in the MovieLens data set
was identified in the following way: First, it was checked with Algorithm 1 whether the
83-core was r-completable. If not, the completable entries in the 83-core were computed by
an implementation of Algorithm 1. Then, the minor closure of the completed 83-cores was
computed by Algorithm 4; by Theorem 44, it was sufficient to check for completable entries
in the r-core. Note that the positions of the completable entries were also computed in the
process.

Figure 7 shows the number of completable entries in the MovieLens data set for growing
r determined in this way.

An interesting thing to note is the inflection point at rank r = 18. It corresponds
to the phase transition in Figure 6 where the r-core starts to shrink exponentially and

1423



Király, Theran, and Tomioka

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

rank

F
ra

c
ti
o

n
 o

f 
c
o

m
p

le
ta

b
le

 e
n

tr
ie

s

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

rank

F
ra

c
ti
o

n
 o

f 
c
o

m
p

le
ta

b
le

 e
n

tr
ie

s
w

rt
 t

h
e

 r
−

c
o

re
 s

iz
e

Figure 7: Number of completable entries in the MovieLens 100k data set for varying r; ob-
served entries are not counted as completable, only completable entries which are
not observed. For each rank r, the upper figure shows the number of completable
entries, as a fraction of all missing entries. The lower figure shows the number of
completable entries, as a fraction of the missing entries in the r-core. For r ≥ 84,
the r-core is empty, thus no missing entries can be completed, see Figure 6.

simultaneously in rows and columns. At rank r = 72 and above, no missing entry in the
83-core can be completed.

7.4 Entry-wise completion and error prediction

In the rest of the experiments, we recapitulate some results from Kiraly and Theran (2013)
on entry-wise reconstruction and error prediction for rank one matrices.

To test reconstruction, we generated 10 random masks of size 50× 50 with 200 entries
sampled uniformly and a random (50×50) matrix of rank one. The multiplicative noise was
chosen entry-wise independent, with variance σi = (i − 1)/10 for each entry. Figure 9(a)
compares the Mean Squared Error (MSE) for three algorithms: Nuclear Norm (using the
implementation Tomioka et al. (2010)), OptSpace (Keshavan et al., 2010), and Algorithm 6.
It can be seen that on these masks, Algorithm 6 is competitive with the other methods and
even outperforms them for low noise.

Figure 9(b) compares the error of each of the methods with the variance predicted
by Algorithm 7 each time the noise level changed. The figure shows that for any of the
algorithms, the mean of the actual error increases with the predicted error, showing that
the error estimate is useful for a-priori prediction of the actual error - independently of
the particular algorithm. Note that by construction of the data this statement holds in
particular for entry-wise predictions. Furthermore, in quantitative comparison Algorithm 7
also outperforms the other two in each of the bins. The qualitative reversal between the
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algorithms in Figures 9(b) (a) and (b) comes from the different error measure and the
conditioning on the bins.

7.5 Universal error estimates

For three different masks, we calculated the predicted minimum variance for each entry of
the mask. The mask sizes are all 140 × 140. The noise was assumed to be i.i.d. Gaussian
multiplicative with σe = 1 for each entry. Figure 8 shows the predicted a-priori minimum
variances for each of the masks. The structure of the mask affects the expected error.
Known entries generally have least variance, and it is less than the initial variance of 1,
which implies that the (independent) estimates coming from other paths can be used to
successfully denoise observed data. For unknown entries, the structure of the mask is
mirrored in the pattern of the predicted errors; a diffuse mask gives a similar error on each
missing entry, while the more structured masks have structured error which is determined
by combinatorial properties of the completion graph.
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Figure 8: The figure shows three pairs of masks and predicted variances. A pair consists
of two adjacent squares. The left half is the mask which is depicted by red/blue
heatmap with red entries known and blue unknown. The right half is a multi-
color heatmap with color scale, showing the predicted variance of the completion.
Variances were calculated by our implementation of Algorithm 7.

8. Discussion and Outlook

In this paper we have demonstrated the usefulness and practicability of the algebraic com-
binatorial approach for matrix completion, by deriving reconstructability statements, and
actual reconstruction algorithms for single missing entries. Our theory allows to treat the
positions of the observations separately from the entries themselves. As a prominent model
feature, we are able to separate the sampling scheme from algebraic and combinatorial con-
ditions for reconstruction and explain existing reconstruction bounds by the combinatorial
phase transition for the uniform random sampling scheme.

The discussed framework provides the foundation for a number of novel matrix com-
pletion strategies for the practitioner:

• The presented algorithms allow for entry-wise error estimates which are indepen-
dent of the method. More precisely, as it has been studied by Kiraly and Theran
(2013) for rank 1, the algorithm of actual reconstruction can be separated from the
question whether the entry is reconstructible, and with which error, allowing the com-
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Figure 9: For 10 randomly chosen masks and 50× 50 true matrix, matrix completions were
performed with Nuclear Norm (green), OptSpace (red), and Algorithm 6 (blue)
under multiplicative noise with variance increasing in increments of 0.1. For each
completed entry, minimum variances were predicted by Algorithm 7. 9(a) shows
the mean squared error of the three algorithms for each noise level, coded by
the algorithms’ respective colors. 9(b) shows a bin-plot of errors (y-axis) versus
predicted variances (x-axis) for each of the three algorithms: for each completed
entry, a pair (predicted error, true error) was calculated, predicted error being the
predicted variance, and the actual prediction error being the squared logarithmic
error (i.e., (log |atrue| − log |apredicted|)2 for an entry a). Then, the points were
binned into 11 bins with equal numbers of points. The figure shows the mean
of the errors (second coordinate) of the value pairs with predicted variance (first
coordinate) in each of the bins, the color corresponds to the particular algorithm;
each group of bars is centered on the minimum value of the associated bin.

bination of any reconstruction algorithm with reconstruction bounds obtained from
our framework.

• The presented ideas allow completion/denoising of single entries in the practi-
cally relevant case where only one entry or a subset of all entries should be recon-
structed or denoised. A rank one method has been presented by Kiraly and Theran
(2013), the case of rank 2 and higher is studied by Blythe et al. (2014).

• The use of circuits for reconstruction pave the way for local completion/denoising,
that is, a good reconstruction can be obtained from a small combinatorial neighbor-
hood of entries which can be determined from the theory (and which is not necessarily
a submatrix), allowing to avoid processing of the whole matrix - which is especially
desirable if the matrix is huge.

In our new setting, we are also left with a number of major open questions:

• Characterize all circuits and circuit polynomials in rank 2 or higher.

• Give a sufficient and necessary combinatorial criterion for unique completability.
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• Give an efficient4 algorithm certifying for unique completability when given
the positions of the observed entries (or, more generally, one which computes the
number of solutions).

• Prove the phase transition bound for the completable core (the phase transition
bound for completability has been shown in Király and Theran, 2013).

• Explain the existing guarantees for whole matrix reconstruction MSE in
terms of single entry expected error, for the various sampling models in lit-
erature (an explanation for rank one can be inferred from Kiraly and Theran, 2013).

Finally, our presented results suggest a number of future directions:

• Problems such as matrix completion under further constraints such as for sym-
metric matrices, distance matrices or kernel matrices, are closely related to the
ones we consider here, and can be treated by similar techniques. Under a phase tran-
sition aspect, these models were studied by Király and Theran (2013); for general
matroids, the theory in (Király et al., 2013) yields a starting point.

• Completion of tensors is a natural generalization of matrix completion and acces-
sible to the techniques presented here or in (Király and Theran, 2013; Király et al.,
2013).

• We have essentially shown matrix completion to be an algebraic manifold learning
problem. This makes it accessible to the kernel/ideal learning techniques presented
in (Király et al., 2014).

• The algebraic theory used to infer genericity and identifiability is largely independent
of the matrix completion setting and can be applied in a very general context of
compressed sensing, identifiability and inverse problems that are algebraic.
For a more detailed discussion and some related problems, see Section 3.4.

Summarizing, we argue that recognizing and exploiting algebra and combinatorics in
machine learning problems is beneficial from the practical and theoretical perspectives.
When it is present, methods using underlying algebraic and combinatorial structures yield
sounder statements and more practical algorithms than can be obtained when ignoring
it, conversely algebra and combinatorics can profit from the various interesting structure
surfacing in machine learning problems. Therefore all involved fields can only profit from a
more widespread interdisciplinary collaboration with and between each other.
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Appendix A. Algebraic Geometry Fundamentals

This section collects some algebraic geometric tools used in the main corpus.

A.1 Algebraic Genericity

We will briefly review the concept of genericity for our purposes. Intuitively, algebraic
genericity describes that some statements holds for almost all objects, with the exceptions
having an algebraic structure. The following results will be stated for algebraic varieties
over the real or complex numbers, that is, over the field K, where K = R or K = C.

Definition 54 Let Y ⊆ Kn be an algebraic variety. Let P be some property of points y ∈ Y.
Write P (Y) = {y ∈ Y : y has property P}, and ¬P (Y) = Y \ P (Y).

(i) We call P an open condition if P (Y) is a Zariski open subset of Y.

(ii) We call P a Zariski-generic condition if there is an open dense subset U ⊆ Y such that
U ⊆ P (Y).

(iii) We call P a Hausdorff-generic condition if ¬P (Y) is a Y-Hausdorff zero set.

The different types of conditions above can be put in relation to each other:

Proposition 55 Keep the notation of Definition 54.

(i) If P is a Zariski-generic condition, then P is a Hausdorff-generic condition as well.

(ii) Assume Y is irreducible, and P (Y) is non-empty. If P is an open condition, then it is
a Zariski-generic condition.

(iii) Assume Y is irreducible, and P (Y) is constructible in the Zariski topology, i.e., can be
written as finite union and intersection of open and closed sets. If P is a Hausdorff-
generic condition, then it is a Zariski-generic condition as well.

Proof (i) follows from the fact that Zariski closed sets of smaller Krull dimension are Haus-
dorff zero sets.
(ii) follows from the fact that non-empty Zariski open sets are dense in an irreducible alge-
braic set.
(iii) as P (Y) is Zariski-constructible, it will have positive Hausdorff measure if and only if
it contains a non-empty (relatively Zariski) open set. The statement then follows from (ii).

Furthermore, Hausdorff-genericity is essentially states that the condition holds, univer-
sally with probability one:
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Proposition 56 Keep the notation of Definition 54. The following are equivalent:

(i) P is a Hausdorff-generic condition.

(ii) For all Hausdorff-continuous random variables X taking values in Y, the statement
P (X) holds with probability one.

Proof (i)⇔ (ii) follows from taking Radon-Nikodym derivatives.

All relevant properties and conditions which are referenced from the main corpus de-
scribe (a) irreducible varieties - in this case, the determinantal variety, and (b) are Zariski-
constructible. Therefore, by Proposition 55, all three definitions agree for the purpose of this
paper. The terminology used in the paper can be given as follows in the above definitions:

Definition 57 Let Y ⊆ Kn be an algebraic variety. Let P be some property of points y ∈ Y.
We say “a generic y ∈ Y has property P” if P is a Hausdorff-generic condition for points
in Y.

A.2 Open Conditions and Generic Properties of Morphisms

In this section, we will summarize some algebraic geometry results used in the main corpus.
The following results will always be stated for algebraic varieties over C.

Proposition 58 Let f : X → Y be a morphism of algebraic varieties (over any field).
Then, if X is irreducible, so is f(X ). In particular, if f is surjective, and X is irreducible,
then Y also is.

Proof This is classical and follows directly from the fact that morphisms of algebraic vari-
eties are continuous in the Zariski topology.

Theorem 59 Let f : X → Y be a morphism of algebraic varieties. The function

Y → N, y 7→ dim f−1(y)

is upper semicontinuous in the Zariski topology.

Proof This follows from (Grothendieck and Dieudonné, 1966, Théorème 13.1.3).

Proposition 60 Let f : X → Y be a morphism of algebraic varieties, with Y be irreducible.
Then, there is an open dense subset V ⊆ Y such that f : U → V , where U = f−1(V ), is a
flat morphism.

Proof This follows from (Grothendieck and Dieudonné, 1965, Théorème 6.9.1).
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Theorem 61 Let f : X → Y be a morphism of algebraic varieties. Let d, ν ∈ N. Then, the
following are open conditions for y ∈ Y:

(i) dim f−1(y) ≤ d.

(ii) f is unramified over y.

(iii) f is unramified over y, and the number of irreducible components of f−1(y) equals ν.

In particular, if f is surjective, then the following is an open property as well:

(iv) f is unramified over y, and
∣∣f−1(y)

∣∣ = ν, for some ν ∈ N.

Proof (i) follows from (Grothendieck and Dieudonné, 1965, Corollaire 6.1.2).
(ii) follows from (Grothendieck and Dieudonné, 1966, Théorème 12.2.4(v)).
(iii) follows from (Grothendieck and Dieudonné, 1966, Théorème 12.2.4(vi)).
(iv) follows from (i), applied in the case dim f−1(y) ≤ 0 which is equivalent to dim f−1(y) =
0 due to surjectivity of f , and (iii).

Corollary 62 Let f : X → Y be a generically unramified and surjective morphism of
algebraic varieties, with Y be irreducible. Then, there are unique d, ν ∈ N such that the
following sets are Zariski closed, proper subsets of Y (and therefore Hausdorff zero sets):

(i) {y : dim f−1(y) 6= d}

(ii) {y : f is ramified at y}

(iii) {y : f is ramified at y} ∪ {y :
∣∣f−1(y)

∣∣ 6= ν}

Proof This is implied by Theorem 61 (i), (ii) and (iii), using that a non-zero open subset
of the irreducible variety Y must be open dense, therefore its complement in Y a closed and
a proper subset of Y.

Proposition 63 Let f : X → Y be a morphism of algebraic varieties, with Y irreducible.
Then, the following are equivalent:

(i) f is unramified over y and
∣∣f−1(y)

∣∣ = ν.

(ii) There is a Borel open neighborhood U ⊆ Y of y ∈ U , such that f is unramified over U
and

∣∣f−1(z)
∣∣ = ν for all z ∈ U .

(iii) There is a Zariski open neighborhood U ⊆ Y of y ∈ U , dense in Y, such that f is
unramified over U and

∣∣f−1(z)
∣∣ = ν for all z ∈ U .

Proof The equivalence is implied by Corollary 62 and the fact that Y is irreducible. Note
that either condition implies that f is generically unramified due to Theorem 61 (ii) and
irreducibility of Y.
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A.3 Real versus Complex Genericity

We derive some elementary results how generic properties over the complex and real numbers
relate. While some could be taken for known results, they appear not to be folklore - except
maybe Lemma 65. In any case, they seem not to be written up properly in literature known
to the authors. A first version of the statements below has also appeared as part of Király
and Ehler (2014).

Definition 64 Let X ⊆ Cn be a variety. We define the real part of X to be XR := X ∩Rn.

Lemma 65 Let X ⊆ Cn be a variety. Then, dimXR ≤ dimX , where dimXR denotes the
Krull dimension of XR, regarded as a (real) subvariety of Rn, and dimX the Krull dimension
of X , regarded as subvariety of Cn.

Proof Let k = n − dimX . By (Mumford, 1999, Section 1.1), X is contained in some
complete intersection variety X ′ = V(f1, . . . , fk). That is (f1, . . . , fk) is a complete inter-
section, with fi ∈ C[X1, . . . , Xn] and dimX ′ = dimX , such that fi is a non-zero divisor
modulo f1, . . . , fi−1. Define gi := fi · f∗i , one checks that gi ∈ R[X1, . . . , Xn], and define
Y := V(g1, . . . , gk) and YR := Y ∩ Rn. The fact that fi is a non-zero divisor modulo
f1, . . . , fi−1 implies that gi is a non-zero divisor modulo g1, . . . , gi−1; since gi ·h ∼= 0 modulo
g1, . . . , gi−1 implies fi · (h · f∗i ) ∼= 0 modulo f1, . . . , fi−1. Therefore, dimYR ≤ dimX ; by
construction, X ′ ⊆ Y, and X ⊆ X ′, therefore XR ⊆ YR, and thus dimXR ≤ dimYR. Com-
bining it with the above inequality yields the claim.

Definition 66 Let X ⊆ Cn be a variety. If dimX = dimXR, we call X observable over
the reals. If X equals the (complex) Zariski-closure of XR, we call X defined over the reals.

Proposition 67 Let X ⊆ Cn be a variety.

(i) If X is defined over the reals, then X is also observable over the reals.

(ii) The converse of (i) is false.

(iii) If X irreducible and observable over the reals, then X is defined over the reals.

Proof (i) Let k = n − dimXR. By (Mumford, 1999, Section 1.1), XR is contained in
some complete intersection variety X ′ = V(f1, . . . , fk), with fi ∈ R[X1, . . . , Xn] a com-
plete intersection. By an argument, analogous to the proof of Lemma 65, one sees that
the fi are a complete intersection in C[X1, . . . , Xn] as well. Since the Zariski-closure of
XR and X are equal, it holds that fi ∈ I(X ). Therefore, X ⊆ V(f1, . . . , fk), which imples
dimX ≤ n−k, and by definition of k, as well dimX ≤ dimXR. With Lemma 65, we obtain
dimXR = dimX , which was the statement to prove.
(ii) It suffices to give a counterexample: X = {1, i} ⊆ C. Alternatively (in a context where
∅ is not a variety) X = {(1, x) : x ∈ C} ∪ {(i, x) : x ∈ C} ⊆ C2.
(iii) By definition of dimension, Zariski-closure preserves dimension. Therefore, the closure
XR is a sub-variety of X , with dimXR = dimX . Since X is irreducible, equality XR = X
must hold.
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Theorem 68 Let X ⊆ Cn be an irreducible variety which is observable over the reals, let
XR be its real part. Let P be an algebraic property. Assume that a generic x ∈ X is P .
Then, a generic x ∈ XR has property P as well.

Proof Since P is an algebraic property, the P points of X are contained in a proper
sub-variety Z ⊆ X , with dimZ � dimX . Since X is observable over the reals, it holds
dimX = dimXR. By Lemma 65, dimZR ≤ dimZ. Putting all (in-)equalities together,
one obtains dimZR � dimXR. Therefore, the ZR is a proper sub-variety of XR; and the P
points of XR are contained in it - this proves the statement.

A.4 Algebraic Properties of the Masking

We conclude with checking the conditions previously discussed in the specific case of the
masking:

Proposition 69 For E ⊆ E, consider the determinantal variety M(m × n, r) (over C),
and the masking

Ω :M(m× n, r)→ C|E|, A 7→ {Ae, e ∈ E}.

(i) The determinantal variety M(m× n, r) is irreducible.

(ii) The determinantal variety M(m× n, r) is observable over the reals.

(iii) The determinantal variety M(m× n, r) is defined over the reals.

(iv) The variety Ω(M(m× n, r)) is irreducible.

(v) The map Ω is generically unramified.

Proof (i) follows from Proposition 58, applied to the surjective map

Υ : Cm×r × Cn×r →M(m× n, r), (U, V ) 7→ UV >,

and irreducibility of affine space Cm×r × Cn×r.
(ii) follows from considering the map Υ over the reals, observing that the rank its Jacobian
is not affected by this.
(iii) follows from (i), (ii) and Proposition 67 (iii).
(iv) follows from (i) and Proposition 58, applied to Ω.
(v) follows from the fact that Ω is a coordinate projection, therefore linear.

Appendix B. Advanced Algorithm for Minor Closure

Takeaki Uno
uno@nii.jp

National Institute of Informatics
Tokyo 101-8430, Japan
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B.1 Closability and the r-Closure

A crucial step in minor closure algorithm 4 is to find a r×r biclique in a (sub)graph(V,W,E).
Algorithm 8 can find an d1 × d2 biclique efficiently based on two ideas: (i) iterate

over row vertices and (ii) work only on the (d2, d1)-core; here (d2, d1)-core is the maximal
subgraph of (V,W,E) that the degrees of the row and column vertices are at least d2 and
d1, respectively.

A naive approach for finding an r × r biclique might be to iterate over edges in E and
for each edge (v, w) ∈ E whose nodes have at least r − 1 neighbors, check whether the
subgraph induced by (N(w), N(v)) contains an r−1×r−1 biclique. Instead our algorithm
iterates over nodes in V and for each node v ∈ V , check whether the subgraph induced by
(V ′, N(v)) contains an r − 1 × r biclique, where V ′ is defined by removing all previously
attempted nodes and the current v from V . Iterating over row vertices results in smaller
number of iterations because |V | ≤ |E|, and allows us to avoid double checking, because
previously attempted nodes can be removed from V ′. Concentrating on the (d2, d1)-core is
natural, because no d1× d2 biclique contains row or column vertex with degree less than d2

or d1, respectively. We present the pruning step for finding the (d2, d1)-core in Algorithm 9.

Algorithm 8 FindAClique((V,W,E), d1, d2)

1: Inputs: bipartite graph (V,W,E), size of the bipartite clique to be found d1 × d2.
2: Output: vertex sets of a clique (I, J).
3: (V,W,E)← FindCore((V,W,E), d2, d1).
4: if |V | < d1 or |W | < d2 then
5: Return (∅, ∅).
6: end if
7: V ′ ← V .
8: for each v ∈ V do
9: if d1 = 1 and |N(v)| ≥ d2 then

10: Return ({v}, N(v)).
11: end if
12: V ′ ← V ′\{v}, W ′ ← N(v), E′ ← (V ′ ×W ′) ∩ E.
13: (I ′, J ′)← FindAClique((V ′,W ′, E′), d1 − 1, d2).
14: if |I ′| > 0 and |J ′| > 0 then
15: Return (I ′ ∪ {v}, J ′).
16: end if
17: end for
18: Return (∅, ∅).
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Abstract

Safe Reinforcement Learning can be defined as the process of learning policies that maxi-
mize the expectation of the return in problems in which it is important to ensure reasonable
system performance and/or respect safety constraints during the learning and/or deploy-
ment processes. We categorize and analyze two approaches of Safe Reinforcement Learning.
The first is based on the modification of the optimality criterion, the classic discounted fi-
nite/infinite horizon, with a safety factor. The second is based on the modification of the
exploration process through the incorporation of external knowledge or the guidance of a
risk metric. We use the proposed classification to survey the existing literature, as well as
suggesting future directions for Safe Reinforcement Learning.

Keywords: reinforcement learning, risk sensitivity, safe exploration, teacher advice

1. Introduction

In reinforcement learning (RL) tasks, the agent perceives the state of the environment, and
it acts in order to maximize the long-term return which is based on a real valued reward
signal (Sutton and Barto, 1998). However, in some situations in which the safety of the
agent is particularly important, for example in expensive robotic platforms, researchers are
paying increasing attention not only to the long-term reward maximization, but also to
damage avoidance (Mihatsch and Neuneier, 2002; Hans et al., 2008; Mart́ın H. and Lope,
2009; Koppejan and Whiteson, 2011; Garćıa and Fernández, 2012).

The safety concept, or its opposite, risk, have taken many forms in the RL literature,
and it does not necessarily refer to physical issues. In many works, risk is related to the
stochasticity of the environment and with the fact that, in those environments, even an
optimal policy (with respect the return) may perform poorly in some cases (Coraluppi and
Marcus, 1999; Heger, 1994b). In these approaches, the risk concept is related to the inher-
ent uncertainty of the environment (i.e., with its stochastic nature). Since maximizing the
long-term reward does not necessarily avoid the rare occurrences of large negative outcomes,
we need other criteria to evaluate risk. In this case, the long-term reward maximization is
transformed to include some notion of risk related to the variance of the return (Howard
and Matheson, 1972; Sato et al., 2002) or its worst-outcome (Heger, 1994b; Borkar, 2002;
Gaskett, 2003). In other works, the optimization criterion is transformed to include the
probability of visiting error states (Geibel and Wysotzki, 2005), or transforming the tem-
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poral differences to more heavily weighted events that are unexpectedly bad (Mihatsch and
Neuneier, 2002).

Other works do not change the optimization criterion, but the exploration process di-
rectly. During the learning process, the agent makes decisions about which action to choose,
either to find out more about the environment or to take one step closer towards the
goal. In RL, techniques for selecting actions during the learning phase are called explo-
ration/exploitation strategies. Most exploration methods are based on heuristics, rely on
statistics collected from sampling the environment, or have a random exploratory com-
ponent (e.g., ε − greedy). Their goal is to explore the state space efficiently. However,
most of those exploration methods are blind to the risk of actions. To avoid risky situa-
tions, the exploration process is often modified by including prior knowledge of the task.
This prior knowledge can be used to provide initial information to the RL algorithm bi-
asing the subsequent exploratory process (Driessens and Džeroski, 2004; Mart́ın H. and
Lope, 2009; Koppejan and Whiteson, 2011), to provide a finite set of demonstrations on
the task (Abbeel and Ng, 2005; Abbeel et al., 2010), or to provide guidance (Clouse, 1997;
Garćıa and Fernández, 2012). Approaches based on prior knowledge were not all originally
built to handle risky domains but, by the way they were designed, they have been demon-
strated to be particularly suitable for this kind of problem. For example, initial knowledge
was used to bootstrap an evolutionary approach by the winner of the helicopter control
task of the 2009 RL competition (Mart́ın H. and Lope, 2009). In this approach, several
neural networks that clone error-free teacher policies are added to the initial population
(facilitating the rapid convergence of the algorithm to a near-optimal policy and, indirectly,
reducing agent damage or injury). Indeed, as the winner of the helicopter domain is the
agent with the highest cumulative reward, the winner must also indirectly reduce helicopter
crashes insofar as these incur large catastrophic negative rewards. Although the compe-
tition is based on the performance after the learning phase, these methods demonstrate
that reducing the number of catastrophic situations, also during the learning phase, can be
particularly interesting in real robots where the learning phase is performed in an on-line
manner, and not through simulators. Instead, Abbeel and Ng (2005); Abbeel et al. (2010)
use a finite set of demonstrations from a teacher to derive a safety policy for the helicopter
control task, while minimizing the helicopter crashes. Finally, the guidance provided by a
teacher during the exploratory process has also been demonstrated to be an effective method
to avoid dangerous or catastrophic states (Garćıa and Fernández, 2012). In another line
of research, the exploration process is conducted using some form of risk metric based on
the temporal differences (Gehring and Precup, 2013) or in the weighted sum of an entropy
measure and the expected return (Law, 2005).

In this manuscript, we present a comprehensive survey of work which considers the
concepts of safety and/or risk within the RL community. We call this subfield within RL,
Safe Reinforcement Learning. Safe RL can be defined as the process of learning policies
that maximize the expectation of the return in problems in which it is important to ensure
reasonable system performance and/or respect safety constraints during the learning and/or
deployment processes. Safe RL algorithms suffer from the lack of an established taxonomy in
which to organize existing approaches. In this survey, we have contributed such a structure,
through a categorization of Safe RL algorithms. We segment Safe RL algorithms into
two fundamental tendencies. The first consists of transforming the optimization criterion.
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The second consists of modifying the exploration process in two ways: (i) through the
incorporation of external knowledge, and, (ii) through the use of a risk metric. In this
category, we focus on those RL approaches tested in risky domains that reduce or prevent
undesirable situations through the modification of the exploration process. The objective
of this is to become a starting point for researchers who are initiating their endeavors in
Safe RL. It is important to note that the second category includes the first since modifying
the optimization criterion will also modify the exploration process. However, in the first
category we consider those approaches that transform the optimization criterion in some
way to include a form of risk. On the other hand, the optimization criterion in the second
category remains, while the exploration process is modified to consider some form of risk.

Resulting from these considerations, the remainder of the paper is organized as follows.
Section 2 presents an overview and a categorization of Safe RL algorithms existing in the
literature. The methods based on the transformation of the optimization criterion are
examined in Section 3. The methods that modify the exploration process by the use of
prior knowledge or a risk metric are considered in Section 4. In Section 5 we discuss the
surveyed methods and identify open areas of research for future work. Finally, we conclude
with Section 6.

2. Overview of Safe Reinforcement Learning

We consider learning in Markov Decision Processes (MDP) described formally by a tuple
< S,A, T,R >, where S is the state space, A is the action space, T : S × A → S is the
transition function and R : S × A → R is the reward function (Putterman, 1994). In this
survey, we consider two main trends for Safe RL (Table 1) to learn in MDPs. The first
one is based on the modification of the optimality criterion to introduce the concept of risk
(Section 3). The second is based on the modification of the exploration process to avoid
the exploratory actions that can lead the learning system to undesirable or catastrophic
situations (Section 4).

Optimization Criterion. As regards the first, the objective of traditional RL al-
gorithms is to find an optimal control policy; that is, to find a function which specifies
an action or a strategy for some state of the system to optimize a criterion. This op-
timization criterion may be to minimize time or any other cost metric, or to maximize
rewards, etc. The optimization criterion in RL is described by a variety of terms within the
published literature, including the expected return, expected sum of rewards, cumulative
reward, cumulative discounted reward or return. Within this article, to avoid terminology
misunderstandings, we use the term return.

Definition 1 Return. The term return is used to refer to the expected cumulative future
discounted reward R =

∑∞
t=0 γ

trt, where rt represents a single real value used to evaluate the
selection of an action in a particular state (i.e., the reward), and γ ∈ [0, 1] is the discount
factor that allows the influence of future rewards to be controlled.

This optimization criterion is not always the most suitable one in dangerous or risky
tasks (Heger, 1994b; Mihatsch and Neuneier, 2002; Geibel and Wysotzki, 2005). There are
several alternatives to this optimization criterion in order to consider risk. In this survey,
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Safe RL



Optimization Criterion



Worst Case Criterion



Inherent Uncertainty
Heger (1994b,a)
Gaskett (2003)

Parameter Uncertainty
Nilim and El Ghaoui (2005)
Tamar et al. (2013)

Risk-Sensitive Criterion



Exponential Functions
Howard and Matheson (1972)
Borkar (2001, 2002)
Basu et al. (2008)

Weighted Sum of Return and Risk
Mihatsch and Neuneier (2002)
Sato et al. (2002)
Geibel and Wysotzki (2005)

Constrained Criterion
Moldovan and Abbeel (2011, 2012a)
Castro et al. (2012)
Kadota et al. (2006)

Other Optimization Criteria
Morimura et al. (2010a,b)
Luenberger (2013)
Castro et al. (2012)

Exploration Process



External Knowledge



Providing Initial Knowledge
Driessens and Džeroski (2004)
Mart́ın H. and Lope (2009)
Song et al. (2012)

Deriving a Policy from Demonstrations
Abbeel et al. (2010)
Tang et al. (2010)

Teacher Advice



Ask for Help
Clouse (1997)
Garćıa and Fernández (2012)
Geramifard et al. (2013)

Teacher Provide Advices
Clouse and Utgoff (1992)
Thomaz and Breazeal (2006, 2008)
Vidal et al. (2013)

Other Approaches
Rosenstein and Barto (2002, 2004)
Kuhlmann et al. (2004)
Torrey and Taylor (2012)

Risk-directed Exploration
Gehring and Precup (2013)
Law (2005)

Table 1: Overview of the approaches for Safe Reinforcement Learning considered in this
survey.
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we categorize these optimization criteria in four groups: (i) the worst-case criterion, (ii) the
risk-sensitive criterion, (iii) the constrained criterion, and (iv) other optimization criteria.

• Worst Case Criterion. The first criterion is based on the Worst Case Criterion where
a policy is considered to be optimal if it has the maximum worst-case return (Sec-
tion 3.1). This criterion is used to mitigate the effects of the variability induced by
a given policy, since this variability can lead to risk or undesirable situations. This
variability can be due to two types of uncertainties: the inherent uncertainty related
to the stochastic nature of the system (Heger, 1994b,a; Gaskett, 2003), and the pa-
rameter uncertainty related to some of the parameters of the MDP are not known
exactly (Nilim and El Ghaoui, 2005; Tamar et al., 2013).

• Risk-Sensitive Criterion. In other approaches, the optimization criterion is trans-
formed so as to reflect a subjective measure balancing the return and the risk. These
approaches are known as risk-sensitive approaches and are characterized by the pres-
ence of a parameter that allows the sensitivity to the risk to be controlled (Section 3.2).
In these cases, the optimization criterion is transformed into an exponential utility
function (Howard and Matheson, 1972), or a linear combination of return and risk,
where risk can be defined as the variance of the return (Markowitz, 1952; Sato et al.,
2002), or as the probability of entering into an error state (Geibel and Wysotzki,
2005).

• Constrained Criterion. The purpose of this objective is to maximize the return subject
to one or more constraints resulting in the constrained optimization criterion (Sec-
tion 3.3). In such a case, we want to maximize the return while keeping other types
of expected measures higher (or lower) than some given bounds (Kadota et al., 2006;
Moldovan and Abbeel, 2012a).

• Other Optimization Criteria. Finally, other approaches are based on the use of opti-
mization criteria falling into the area of financial engineering, such as the r-squared,
value-at-risk (VaR) (Mausser and Rosen, 1998; Kashima, 2007; Luenberger, 2013), or
the density of the return (Morimura et al., 2010a,b) (Section 3.4).

Exploration Process. As regards the modification of the exploration process, there
are also several approaches to overcoming the problems where the exploratory actions may
have serious consequences. Most RL algorithms begin learning with no external knowledge
of the task. In such cases, exploration strategies such as ε−greedy are used. The application
of this strategy results in the random exploration of the state and action spaces to gather
knowledge on the task. Only when enough information is discovered from the environment,
does the algorithm’s behavior improve. The randomized exploration strategies, however,
waste a significant amount of time exploring irrelevant regions of the state and action spaces,
or lead the agent to undesirable states which may result in damage or injury to the agent,
the learning system or external entities. In this survey we consider two ways of modifying
the exploration process to avoid risk situations: (i) through the incorporation of external
knowledge and, (ii) through the use of a risk-directed exploration.
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• External Knowledge. We distinguish three ways of incorporating prior knowledge into
the exploration process (Section 4.1) by: (i) providing initial knowledge, (ii) deriving
a policy from a finite set of demonstrations and, (iii) providing teach advice.

– Providing Initial Knowledge. To mitigate the aforementioned exploration diffi-
culties, examples gathered from a teacher or previous information on the task can
be used to provide initial knowledge for the learning algorithm (Section 4.1.1).
This knowledge can be used to bootstrap the learning algorithm (i.e., a type of
initialization procedure). Following this initialization, the system can switch to a
Boltzmann or fully greedy exploration based on the values predicted in the initial
training phase (Driessens and Džeroski, 2004). In this way, the learning algo-
rithm is exposed to the most relevant regions of the state and action spaces from
the earliest steps of the learning process, thereby eliminating the time needed in
random exploration for the discovery of these regions.

– Deriving a policy from a finite set of demonstrations. In a similar way, a set of ex-
amples provided by a teacher can be used to derive a policy from demonstrations
(Section 4.1.2). In this case, the examples provided by the random exploration
policy are replaced by the examples provided by the teacher. In contrast to the
previous category, this external knowledge is not used to bootstrap the learning
algorithm, but is used to learn a model from which to derive a policy in an off-line
and, hence, safe manner (Abbeel et al., 2010; Tang et al., 2010).

– Providing Teach Advice. Other approaches based on teacher advice assist the
exploration during the learning process (Section 4.1.3). They assume the avail-
ability of a teacher for the learning agent. The teacher may be a human or
a simple controller, but in both cases it does not need to be an expert in the
task. At every step, the agent observes the state, chooses an action, and receives
the reward with the objective of maximizing the return or other optimization
criterion. The teacher shares this goal, and provides actions or information to
the learner agent. Both the agent and the teacher can initiate this interaction
during the learning process. In the ask for help approaches (Section 4.1.3.1),
the learner agent requests advice from the teacher when it considers it neces-
sary (Clouse, 1997; Garćıa and Fernández, 2012). In other words, the teacher
only provides advice to the learner agent when it is explicitly asked to. In other
approaches (Section 4.1.3.2), it is the teacher who provides actions whenever it
feels it is necessary (Thomaz and Breazeal, 2008; Vidal et al., 2013). In another
group of approaches (Section 4.1.3.3), the main role in this interaction is not so
clear (Rosenstein and Barto, 2004; Torrey and Taylor, 2012).

• Risk-directed Exploration. In these approaches a risk measure is used to determine the
probability of selecting different actions during the exploration process (Section 4.2)
while the classic optimization criterion remains (Gehring and Precup, 2013; Law,
2005).
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3. Modifying the Optimization Criterion

This section describes the methods of the first category of the proposed taxonomy based
on the transformation of the optimization criterion. The approaches using the return as
the objective function are referred to as risk-neutral control (Putterman, 1994), because
the variance and higher order moments in the probability distribution of the rewards are
neglected.

Definition 2 Risk-Neutral Criterion. In risk-neutral control, the objective is to com-
pute (or learn) a control policy that maximizes the expectation of the return,

max
π∈Π

Eπ(R) = max
π∈Π

Eπ(
∞∑
t=0

γtrt), (1)

where Eπ(·) stands for the expectation with respect to the policy π.

The decision maker may be also interested in other objective functions, different from
the expectation of the return, to consider the notion of risk. In this case, risk is related to
the fact that even an optimal policy may perform poorly in some cases due to the variability
of the problem, and the fact that the process behavior is partially known. Because of the
latter, the objective function is transformed, resulting in various risk-aware approaches. In
this survey, we focus on three optimization criterion: the worst case criterion, the risk-
sensitive criterion, and the constrained criterion. These approaches are discussed in detail
in the following sections.

3.1 Worst-Case Criterion

In many applications, we would like to use an optimization criterion that incorporates a
penalty for the variability induced by a given policy, since this variability can lead to risk
or undesirable situations. This variability can be due to two types of uncertainties: a) the
inherent uncertainty related to the stochastic nature of the system, and b) the parameter
uncertainty, related to some of the parameters of the MDP are not known exactly. To
mitigate this problem, the agent maximizes the return associated to the worst-case scenario,
even though the case may be highly unlikely.

3.1.1 Worst-Case Criterion under Inherent Uncertainty

This approach is discussed at length in the literature (Heger, 1994b; Coraluppi, 1997;
Coraluppi and Marcus, 1999, 2000).

Definition 3 Worst-Case or Minimax Criterion under inherent uncertainty. In
worst-case or minimax control the objective is to compute (or learn) a control policy that
maximizes the expectation of the return with respect to the worst case scenario (i.e., the
worst outcome) incurred in the learning process using,

max
π∈Π

min
w∈Ωπ

Eπ,w(R) = max
π∈Π

min
w∈Ωπ

Eπ,w(

∞∑
t=0

γtrt), (2)
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where Ωπ is a set of trajectories of the form (s0, a0, s1, a1, . . . ) that occurs under policy π,
and where Eπ,w(·) stands for the expectation with respect to the policy π and the trajectory
w. That is, we are interested in the policy π ∈ Π with the max-min outcome.

We briefly review the difference between the risk-neutral and worst-case criterion using
the example provided by Hedger, replicated in Figure 1 (see Heger, 1994b).

Figure 1: Difference between risk-neutral and worst-case criterion. Example provided
by Heger (1994b). Each transition is labeled as a triple. The first number a
in the triple is an admissible action for the state s. The second number stands
for the probability that the state transition will occur if action a is selected in
the corresponding starting state s. The third number represents the immediate
reward for the transition.

In Figure 1, there are three states and transitions between them. Each transition is
represented by three components: the first is the action that performs the transition from
one state to the other, the second is the probability of the transition, and the last is
the reward obtained when performing this transition. Additionally, there are two policies
labeled π and µ. In Figure 1, Eπ(R) = 311 + 2γ and Eµ(R) = 310 + 2γ. Therefore, by
applying the risk-neutral criterion, the policy π is optimal. However, max inf (Eπ(R)) =
44 + 2γ and max inf (Eµ(R)) = 310 + 2γ. Therefore µ is optimal when applying the
worst-case criterion. In worst case control strategies, the optimality criterion is exclusively
focused on risk-avoidance or risk-averse policies. A policy is considered to be optimal if its
worst-case return is superior.

Heger (1994b) introduces the Q̂−Learning which can be regarded as the counterpart
to Q-Learning (Watkins, 1989) related to the minimax criterion,

Q̂(st, at) = min(Q̂(st, at), rt+1 + γ max
at+1∈A

Q̂(st+1, at+1)) (3)

The Q̂ value is essentially a lower bound on value. Q̂ − learning and the minimax
criterion are useful when avoiding risk is imperative. Jiang et al. (1998) combine the
simple function approximation state aggregation with the minimax criterion and present
the convergence theory for Q̂− learning. However, Gaskett (2003) tested Q̂− learning in a
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stochastic cliff world environment, under the condition that actions are picked greedily, and
found that Q̂−learning demonstrated extreme pessimism which can be more injurious than
beneficial (Gaskett, 2003). Chakravorty and Hyland (2003) apply the minimax criterion
to the actor-critic architecture and presents error bounds when using state aggregation as a
function approximation. In general, the minimax criterion is too restrictive as it takes into
account severe but extremely rare events which may never occur (Mihatsch and Neuneier,
2002). The α − value of the return m̂α introduced by Heger (1994a) can be seen as an
extension of the worst case control of MDPs. This concept establishes that the returns
R < m̂α of a policy that occur with a probability of less than α are ignored. The algorithm
is less pessimistic than the pure worst case control, given that extremely rare scenarios have
no effect on the policy.

Gaskett (2003) proposes a new extension to Q-learning, β-pessimistic Q − learning,
which compromises between the extreme optimism of standardQ−learning and the extreme
pessimism of minimax approaches,

Qβ(st, at) = Qβ(st, at) +α(rt+1 + γ((1− β) max
at+1∈A

Qβ(st+1, at+1) + β min
at+1∈A

Qβ(st+1, at+1)))

(4)

In the β-pessimistic Q− learning algorithm the value of β ∈ [0, 1] renders the equation
into the standard Q − learning or the minimax algorithm respectively (Gaskett, 2003).
Experimental results show that when β = 0.5, the algorithm reaches the same level of
pessimism as Q̂ − learning, although the agent manages to reach the goal state in some
cases, unlike in Q̂− learning.

3.1.2 Worst-Case Criterion under Parameter Uncertainty

Some RL approaches are focused to learning the model first which is assumed to be correct,
and then applying a dynamic programming to it to learn and optimal policy. However, in
practice, the model learned is typically estimated from noisy data or insufficient training
examples, or even worse, they may change during the execution of a policy. These modeling
errors may have fatal consequences in real, physical systems, where there are often states
that are really catastrophic and must be avoided even during learning. This problem is faced
by the robust control community (Zhou et al., 1996), whose one goal is to build policies with
satisfactory online performance and robustness to model errors. Specifically, a robust MDP
deals with uncertainties in parameters; that is, some of the parameters, namely, transition
probabilities, of the MDP are not known exactly (Bagnell et al., 2001; Iyengar, 2004; Nilim
and El Ghaoui, 2005).

Definition 4 Worst-Case or Minimax Criterion under parameter uncertainty.
Typically this criterion is described in terms of a set (uncertainty set), P , of possible tran-
sition matrices, and the objective is to maximize the expectation of the return for the worst
case policy over all possible models p ∈ P ,

max
π∈Π

min
p∈P

Eπ,p(R) = max
π∈Π

min
p∈P

Eπ,p(

∞∑
t=0

γtrt), (5)
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where Eπ,p(·) stands for the expectation with respect to the policy π and the transition model
p.

The problem of parameter uncertainty has been recognized in the reinforcement learning
community as well, and algorithms have been suggested to deal with it (Tamar et al., 2013).
Typical model-based reinforcement algorithms ignore this type of uncertainty. However,
minimizing the risk is one of several imports in model-based reinforcement learning solu-
tions, particularly ones in which failure has important consequences (Bagnell and Schneider,
2008), as a learned model invariably has certain inaccuracies, due to insufficient or noise
training data (Bagnell, 2004).

3.2 Risk-Sensitive Criterion

In risk-sensitive RL, the agent has to strike a balance between getting large reinforcements
and avoiding catastrophic situations even if they occur with very small probability. For
example, a profit-maximizing firm may want to be conservative in making business decisions
to avoid bankruptcy even if its conservation will probably lower the expected profits.

Definition 5 Risk-Sensitive Criterion. In risk-sensitive RL, the objective function in-
cludes a scalar parameter β that allows the desired level of risk to be controlled. The pa-
rameter β is known as the risk sensitivity parameter, and is generally either positive or
negative: β > 0 implies risk aversion, β < 0 implies a risk-seeking preference, and (through
a limiting argument) β = 0 implies risk neutrality.

Depending on the form of the objective function, it is possible to consider various risk-
sensitive RL algorithms.

3.2.1 Risk-Sensitive Based on Exponential Functions

In risk-sensitive control based on the use of exponential utility functions, the return R is
transformed to reflect a subjective measure of utility (Howard and Matheson, 1972; Chung
and Sobel, 1987). Instead of maximizing the expected value of R, the objective here is to
maximize

max
π∈Π

β−1logEπ(expβR) = max
π∈Π

β−1logEπ(expβ
∑∞
t=0 γ

trt), (6)

where β is a parameter and R is the return. A straightforward Taylor expansion of the
exp and log terms of Equation 6 yields in Equation (by using the big O notation)

max
π∈Π

β−1logEπ(expβR) = max
π∈Π

Eπ(R) +
β

2
V ar(R) +O(β2), (7)

where V ar(R) denotes the variance of the return. Variability is penalized for β < 0 and
enforced for β > 0. Therefore, the objective is risk-averse for β < 0, risk-seeking for β > 0
and risk-neutral for β = 0.

Most of the work of this trend is within the MDP framework where the transition
probabilities and rewards are explicitly available. As an example, Patek (2001) analyzed a
class of terminating MDPs with a risk-averse, expected-exponential criterion, with compact
constraint sets. By restricting attention to risk-averse problems (β > 0) with all transition
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costs strictly positive, and by assuming the existence of a stationary policy, the authors
established the existence of stationary optimal policies. More recently, Osogami (2012)
and Moldovan and Abbeel (2012b) demonstrate that a risk-sensitive MDP for maximizing
the expected exponential utility is equivalent to a robust MDP for maximizing the worst-
case criterion. Although the exponential utility approach constitutes the most popular
and best analyzed risk-sensitive control framework in the literature, there remain serious
drawbacks which prevent the formulation of corresponding RL algorithms (Mihatsch and
Neuneier, 2002): time-dependent optimal policies, and no model-free RL algorithms for
both deterministic and stochastic reward structures. As a result, the use of this criterion
does not lend itself easily to model-free reinforcement learning methods such as TD(0) or Q-
learning (Heger, 1994b). Therefore, much less work has been done within the RL framework
using this exponential utility function as an optimization criterion, with a notable exception
of Borkar (2001, 2002) who relaxes the assumption of a system model by deriving a variant
of the Q-learning algorithm for finite MDPs with an exponential utility. Basu et al. (2008)
present an approach, extending the works by Borkar (2001, 2002), for Markov decision
processes with an infinite horizon risk-sensitive cost based on an exponential function. Its
convergence is proved using the ordinary differential equation (o.d.e) method for stochastic
approximation, and it is also extended to continuous state space processes.

In a different line of work, Chang-Ming et al. (2007) demonstrated that the max operator
in Equation 6 can be replaced with a generalized averaged operator in order to improve the
robustness of RL algorithms. From a more practical point of view, Liu et al. (2003) use an
exponential function in the context of auction agents. Since companies are often risk-averse,
the authors derive a closed form of the optimal bidding function for auction agents that
maximize the expected utility of the profit for concave exponential utility functions.

However, all the approaches considered in this trend share the same idea: associate the
risk with the variance of the return. Higher variance implies more instability and, hence,
more risk. Therefore, it should be noted that the aforementioned approaches are not suited
for problems where a policy with a small variance can produce a large risk (Geibel and
Wysotzki, 2005).

3.2.2 Risk-Sensitive RL Based on the Weighted Sum of Return and Risk

In this trend, the objective function is expressed as the weighted sum of return and risk
given by

max
π∈Π

(Eπ(R)− β ω) (8)

In Equation 8, Eπ(R) refers to the expectation of the return with respect the pol-
icy π, β is the risk-sensitive parameter, and ω refers to the consideration of the risk
concept which can take various forms. A general objective function is the well-known
Markowitz criterion (Markowitz, 1952) where the ω in Equation 8 is replaced by the vari-
ance of the return, V ar(R). This criterion is also known in the literature as variance-
penalized criterion (Gosavi, 2009), expected value-variance criterion (Taha, 1992; Heger,
1994b) and expected-value-minus-variance-criterion (Geibel and Wysotzki, 2005). Within
the RL framework, Sato et al. (2002) propose an approach that directly optimizes an ob-
jective function defined as a linear combination of the mean and the variance of the return.
However, this is based on the assumption of the mean-variance model where the distribution
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of the return follows a Gaussian distribution, which does not hold in most situations. There
are several limitations when using the return variance as a measure of risk. First, the fat
tails of the distribution are not accounted for. Consequently, risk can be underestimated
due to the ignorance of low probability, but highly severe events. Second, variance penalizes
both positive and negative risk equally and does not distinguish between the two. Third,
this criterion is incorrectly applied to many cases in which risk cannot be described by
the variance of the return (Szegö, 2005). Additionally, mean minus variance optimization
within the MDP framework has been shown to be NP-hard in general, and optimizing this
criterion can directly lead to counterintuitive policies (Mannor and Tsitsiklis, 2011).

Mihatsch and Neuneier (2002) replace the ω in Equation 8 with the temporal difference
errors that occur during learning. Their learning algorithm has a parameter β ∈ (−1.0, 1.0)
that allows for switching between risk-averse behavior (β = 1), risk-neutral behavior (β =
0) and risk-seeking behavior (β = −1). Loosely speaking, the authors overweigh transitions
to successor states where the immediate return happen to be smaller than in the average,
and they underweigh transitions to states that promise a higher return than the average.
In the study, the authors demonstrate that the learning algorithm has the same limiting
behavior as exponential utility functions. This method is extended by Campos to deal with
large dimensional state/action spaces (Campos and Langlois, 2003).

Geibel and Wysotzki (2005) replace the ω in Equation 8 with the probability, ρπ(s),
in which a state sequence (si)i≥0 with s0 = s, generated by the execution of policy π,
terminates in an error state,

ρπ(s) = E(

∞∑
i=0

γir̄) (9)

In Equation 9, r̄ is a cost function in which r̄ = 1 if an error state occurs and r̄ = 0 if
not. In this case and, as demonstrated by Garćıa and Fernández (2012), ρπ(s) is learned by
TD methods which require error states (i.e., helicopter crashes or company bankruptcies) to
be visited repeatedly in order to approximate the risk function and, subsequently, to avoid
dangerous situations.

Common to the works of Mihastch and Geibel is the fact that risk-sensitive behavior
is induced by transforming the action values, Q(s, a), or the state values, V (s). There are
several reasons why this may not be desirable: (i) if these values are updated based on a
conservative criterion, the policy may be overly pessimistic; (ii) the worst thing that can
happen to an agent in an environment may have high utility in the long term, but fatal
consequences in the short term; and (iii) the distortion of these values means that the true
long term utility of the actions are lost.

3.3 Constrained Criterion

The constrained criterion is applied in the literature to constrained Markov processes in
which we want to maximize the expectation of the return while keeping other types of
expected utilities lower than some given bounds (Altman, 1992). This approach might be
considered within the second category of the taxonomy described here, since the optimiza-
tion criterion remains. However, the addition of constraints to this optimization criterion is
sufficient to consider a transformation and so we consider that it must be included within
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this category. The constrained MDP is an extension of the MDP framework described as
the tuple < S,A,R, T, C >, where S,A,R, T are defined as in standard MDP, and C is a
set of constraints applied to the policy.

Definition 6 Constrained Criterion. In the constrained criterion, the expectation of
the return is maximized subject to one or more constraints, ci ∈ C. The general form of
this criterion is shown in the following

max
π∈Π

Eπ(R) subject to ci ∈ C, ci = {hi ≤ αi}, (10)

where ci represents the ith constraint in C that the policy π must fulfill, with ci = {hi ≤ αi}
where hi is a function related with the return and αi is the threshold restricting the values
of this function. Depending of the problem the symbol ≤ in the constraints ci ∈ C may be
replaced by ≥.

We can see the proposed constraints in Equation 10 as restrictions on the space of
allowable policies. Figure 2 shows the entire policy space, Π, and the set of allowable
policies, Γ ⊂ Π, where each policy π ∈ Γ satisfies the constraints ci ∈ C.

Figure 2: Policy space, Π, and the set of allowable policies, Γ ⊂ Π, where each policy π ∈ Γ
satisfies the constraints ci ∈ C.

Therefore, Equation 10 can be transformed into

max
π∈Γ

Eπ(R) (11)

From a safety point of view, this optimization criterion is particularly suitable for risky
domains. In these domains, the objective may be seen as finding the best policy π in the
space of considered safe policies, Γ. This space, Γ, may be restricted using various types of
constraints: constraints to ensure that the expectation of the return exceeds some specific
minimum threshold, to ensure that the variance of the return does not exceed specific
maximum threshold, to enforce ergodicity, to ensure specific restrictions of the problem.
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A typical constraint is referred to ensure that the expectation of the return exceeds
some specific minimum threshold, E(R) ≥ α (Geibel, 2006). In this case, the space of
considered safe policies, Γ, is made up of the policies for which the expectation of return
exceeds the specific threshold, α. This is suitable in situations in which we already know a
reasonably good policy, and we want to improve it through exploration, but the expectation
of the return may not fall below a given safety margin. In these kinds of problem, one can
derive the LP problem by using a Lagrangian approach which allows us to transform the
constrained problem into a equivalent non-constrained one. As an example, Kadota et al.
(2006) transform the constrained criterion into a Lagrangian expression. In this way, the
method reduces the constrained problem with n variables to one with n + k unrestricted
variables, where k is equal to the number of restrictions. Thus, the resulting expression
can be solved more easily. The previous constraint is a hard constraint that cannot be
violated, but other approaches allow a certain admissible chance of constraint violation.
This chance-constraint metric, P (E(R) ≥ α) ≥ (1− ε), is interpreted as guaranteeing that
the expectation of the return (considered a random variable) will be at least as good as α
with a probability greater than or equal to (1− ε) (Delage and Mannor, 2010; Ponda et al.,
2013).

Instead, other approaches use a different constrained criterion in which the variance of
the return must not exceed a given threshold, V ar(R) ≤ α (Castro et al., 2012). In this
case, the space of safe policies, Γ, is made up of policies for which the variance does not
exceed a threshold, α. This constrained problem is also transformed into an equivalent
unconstrained problem by using penalty methods (Smith et al., 1997). Then, the problem
is solved using standard unconstrained optimization techniques.

Other approaches rely on ergodic MDPs (Hutter, 2002) which guarantee that any state
is reachable from any other state by following a suitable policy. Unfortunately, many risky
domains are not ergodic. For example, our robot helicopter learning to fly cannot recover
on its own after crashing. The space of safe policies, Γ, is restricted to those policies that
preserve ergodicity with some user-specified probability, α, called the safety level. That is,
only visiting states s so that one can always get back from s to the initial state (Moldovan
and Abbeel, 2011, 2012a). In this case, the authors use plain linear programming formula-
tion after removing the non-linear dependences to solve the constrained MDP efficiently. It
is important to note that this constrained criterion is closely related to the recoverable and
value-state concepts described by Ryabko and Hutter. An environment is recoverable if it
is able to forgive initial wrong actions, i.e., after any arbitrary finite sequence of actions,
the optimal policy is still achievable. Additionally, an environment is value-stable if from
any sequence of k actions, it is possible to return to the optimal level of reward in o(k)
steps; that is, it is not just possible to recover after any sequence of (wrong) actions, but it
is possible to recover fast.

Finally, Abe et al. (2010) proposed a constrained RL algorithm and reported their
experience in an actual deployment of a tax collection optimization system based on their
approach, at New York State Department of Taxation and Finance. In this case, the set of
constraints, C, is made up of legal, business and resource constraints, which are specific to
the problem under consideration. In contrast to the previous general formulations in which
the constraints are defined as a function of the entire state trajectory, the authors formulate
the constraints as being fixed and known at each learning iteration.
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However these approaches have three main drawbacks. First, the correct selection of the
threshold α. Higher values mean that they are too permissive, or conversely, too restrictive.
Second, they do not prevent the fatal consequences in the short term. Finally, these methods
associate the risk to policies in which the return or its variance is greater than a specified
threshold, which is not suitable for most risk domains.

3.4 Other Optimization Criteria

In the area of financial engineering, various risk metrics such as r-squared, beta, Sharpe
ratio or value-at-risk (VaR) have been studied for decision making with a low risk of huge
costs (Mausser and Rosen, 1998; Kashima, 2007; Luenberger, 2013). Castro et al. (2012)
also use the Sharpe ratio criterion, maxπ∈ΠEπ(R)

√
V ar(R). The performance of this crite-

rion is compared with the constrained criterion, V ar(R) ≤ α, and the classic optimization
criterion (Equation 1) in a portfolio management problem where the available investment
options include both liquid and non-liquid assets. The non-liquid asset has some risk of not
being paid (i.e., a default) with a given probability. The policy for the classic criterion is
risky, and yields a higher gain than the policy for the constrained criterion. Interestingly,
maxπ∈ΠEπ(R)

√
V ar(R) resulted in a very risk-averse policy, that almost never invested in

the non-liquid asset. This interesting phenomenon discourages the use of this optimization
criterion. Even the authors suggest that it might be more prudent to consider other risk
measures instead of the maxπ∈ΠEπ(R)

√
V ar(R). Morimura et al. (2010a,b) focus their

risk-sensitive approach on estimating the density of the returns, which allows them to han-
dle various risk-sensitive criteria. However, the resulting distributional-SARSA-with-CVaR
(or d-SARSA with CVaR) algorithm, has proved effectiveness only in a very simple and
discrete MDP with 14 states.

4. Modifying the Exploration Process

This section describes the methods of the second category of the proposed taxonomy. In this
category, in contrast with the previous one, the optimization criterion remains, but the ex-
ploration process is modified to consider some form of risk. Classic exploration/exploitation
strategies in RL assume that the agent must explore and learn everything from scratch. In
this framework, the agent is blind to the risk of actions during learning, potentially ending
up in catastrophic states (Geibel and Wysotzki, 2005; Garćıa and Fernández, 2012). The
helicopter hovering control task is one such case involving high risk, since some policies
can crash the helicopter, incurring catastrophic negative reward. Exploration/exploitation
strategies such as ε − greedy may even result in constant helicopter crashes (especially
where there is a high probability of random action selection). In addition, random explo-
ration policies waste a significant amount of time exploring irrelevant regions of the state
and action spaces in which the optimal policy will never be encountered. This problem
is more pronounced in environments with extremely large and continuous state and ac-
tion spaces. Finally, it is impossible to completely avoid undesirable situations in high-risk
environments without a certain amount of external knowledge (that is, not coming from
interaction between the agent and the system): the use of random exploration would require
an undesirable state to be visited before it can be labeled as undesirable. However, such
visits to undesirable states usually lead to unrecoverable situations or traps (Ryabko and
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Hutter) (i.e., the agent is not able to achieve the optimal policy after a sequence of wrong
actions) and may result in damage or injury to the agent, the learning system or external
entities. Consequently, visits to these states should be avoided from the earliest steps of
the learning process. In this paper, we focus on two ways of modifying the exploration
process in order to avoid visits to undesirable states: through the incorporation of external
knowledge or through a directed exploration based on a risk measure. Both approaches are
discussed in detail in the following sections.

4.1 Incorporating External Knowledge

Mitigating the difficulties described above, external knowledge (e.g., finite sets of teacher-
provided examples or demonstrations) can be used in three general ways, either (i) to
provide initial knowledge (i.e., a type of initialization procedure) or (ii) to derive a policy
from a finite set of examples or (iii) to guide the exploration process through teacher advice.
In the first case, the knowledge is used to bootstrap the value function approximation and
lead the agent through the more relevant regions of the space. In the second way, finite sets
of teacher-provided examples or demonstrations can be used to derive a policy. In these
ways, the learning algorithm is exposed to the most relevant regions of the state and action
spaces from the earliest steps of the learning process, thereby eliminating the time needed
in random exploration for the discovery of these regions.

However, while furnishing the agent with initial knowledge helps to mitigate the prob-
lems associated with random exploration, this initialization alone is not sufficient to prevent
the undesirable situations that arise in the subsequent explorations undertaken to improve
learner ability. An additional mechanism is necessary to guide this subsequent exploration
process in such a way that the agent may be kept far away from catastrophic states. So,
in the third case, a teacher is used to provide information when it is considered necessary.
These three ways of incorporating external knowledge are widely discussed in the following
sections. Some of the approaches described here were not created originally as specific Safe
RL methods, but they have some properties that make them particularly suitable for these
kinds of problem.

4.1.1 Providing Initial Knowledge

The most elementary method for biasing learning is to choose some initialization based
on prior knowledge of the problem. In Driessens and Džeroski (2004), a bootstrapping
procedure is used for relational RL in which a finite set of demonstrations are recorded
from a human teacher and later presented to a regression algorithm (Driessens and Džeroski,
2004). This allows the regression algorithm to build a partial Q-function which can later
be used to guide further exploration of the state space using a Boltzmann exploration
strategy. Smart and Kaelbling also use examples, training runs to bootstrap the Q-learning
approach for their HEDGER algorithm (Smart and Kaelbling, 2000). The initial knowledge
bootstrapped into the Q-learning approach allows the agent to learn more effectively and
helps to reduce the time spent with random actions. Teacher behaviors are also used
as a form of population seeding in neuroevolution approaches (Siebel and Sommer, 2007).
Evolutionary methods are used to optimize the weights of neural networks, but starting from
a prototype network whose weights correspond to a teacher (or baseline policy). Using this
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technique, RL Competition helicopter hovering task winners Mart́ın H. and Lope (2009)
developed an evolutionary RL algorithm in which several teachers are provided in the initial
population. The algorithm restricts crossover and mutation operators, allowing only slight
changes to the policies given by the teachers. Consequently, it facilitates a rapid convergence
of the algorithm to a near-optimal policy, as is the indirect minimization of damage to the
agent. In Koppejan and Whiteson (2009, 2011), neural networks are also evolved, beginning
with one whose weights correspond to the behavior of the teacher. While this approach has
been proven advantageous in numerous applications of evolutionary methods (Hernández-
Dı́az et al., 2008; Koppejan and Whiteson, 2009), Koppejan’s algorithm nevertheless seems
somewhat ad-hoc and designed for a specialized set of environments.

Maire (2005) propose an approach for deriving high quality initial value functions from
existing demonstrations by a teacher. The resulting value function constitutes a starting
point for any value function-based RL method. As the initial value function is substan-
tially more informative than a random value function initialization frequently used with RL
methods, the remaining on-line learning process is conducted safer and faster. Song et al.
(2012) also improve the performance of the Q-learning algorithm initializing the Q-values
appropriately. These approaches are used in the Grid-World domain and are able to reduce
drastically the times the agent moves into an obstacle.

Some Transfer Learning (TL) algorithms are also used to initialize a learner in a target
task (Taylor and Stone, 2009). The core idea of transfer is that experience gained in
learning to perform one task can help to improve learning performance in a related, but
different, task. Taylor and Stone (2007) train an agent in a source task recording the
agent’s trajectories (i.e., state-action pairs). Then, the agent uses this experience to train
in the target task off-line before the on-line training begins. These authors also learn an
action-value function in a source task, translate the function into a target task via a hand-
coded inter-task mapping, and then use the transferred function to initialize the target task
agent (Taylor et al., 2007). Despite TL approaches having been shown effective in speeding
up the learning processes, they present two main difficulties in their applicability to risky
domains: (i) the knowledge to be reused in the target task requires it to be previously
learned in a source task(s) (which is not always possible to do in a safe manner), and (ii)
it is not always trivial to transfer this knowledge from the source task(s) to the target task
since they could be of a different nature.

There is extensive literature on initialization in RL algorithms (Burkov and Chaib-draa,
2007), but their intensive analysis falls outside the scope of this paper since not all of them
are focused to preserving the agent’s safety or avoiding risky or undesirable situations. But
the bias introduced in the learning process and the rapid convergence produced by most of
these algorithms, can ensure their applicability to risky domains. However, this approach is
problematic for two main reasons. First, if the initialization does not provide information for
all important states the agent may end up with a suboptimal policy. Second, the exploration
process following the initial training phase can result in visiting new states for which the
agent has no information on how to act. As a result, the probability of incurring damage or
injury is greatly increased. In addition, the relevance of these methods is highly dependent
on the internal representations used by the agent. If the agent simply maintains a table,
initialization is easy, but if the agent uses a more complex representation, it maybe very
difficult or impossible to initialize the learning algorithm.
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4.1.2 Deriving a Policy from a Finite Set of Demonstrations

All approaches falling under this category are framed according to the field of Learning
from Demonstration (LfD) (Argall et al., 2009). Highlighting the study by Abbeel and
Ng (2005); Abbeel et al. (2010) based on apprenticeship learning, the approach is made
up of three distinct steps. In the first, a teacher demonstrates the task to be learned and
the state-action trajectories of the teacher’s demonstration are recorded. In the second
step, all state-action trajectories seen so far are used to learn a model from the system’s
dynamics. For this model, a (near-)optimal policy is to be found using any reinforcement
learning (RL) algorithm. Finally, the policy obtained should be tested by running it on the
real system. In Tang et al. (2010), an algorithm based on apprenticeship learning is also
presented for automatically-generating trajectories for difficult control tasks. The proposal
is based on the learning of parameterized versions of desired maneuvers from multiple expert
demonstrations. In these approaches, the learner is able to exceed the performance of the
teacher. Despite each approach’s potential strengths and general interest, all are inherently
linked to the information provided in the demonstration data set. As a result, learner
performance is heavily limited by the quality of the teacher’s demonstrations. While one
way to circumvent the difficulty and improve performance is by exploring beyond what is
provided in the teacher demonstrations, this again raises the question of how the agent
should act when it encounters a state for which no demonstration exists. One possible
answer to this question is based on the use of teacher advice techniques, as defined below.

4.1.3 Using Teacher Advice

Exploring the environment while avoiding fatal states is critical for learning in domains
where a bad decision can lead the agent to a dangerous situation. In such domains, differ-
ent ways of teacher advice in reinforcement learning has been proposed as a form of safe
exploration (Clouse, 1997; Hans et al., 2008; Geramifard et al., 2013; Garćıa and Fernández,
2012). The guidance provided by a teacher supports the safe exploration in two ways. First,
the teacher can guide the learner in promising parts of the state space where suggested by
the teacher’s policy. This guidance reduces the sample complexity of learning techniques
which is important when dealing with dangerous or high-risk domains. Secondly, the teacher
is able to provide advice (e.g., safe actions) to the learner when either the learner or the
teacher considers it is necessary so as to prevent catastrophic situations.

The idea of a program learning from external advice was first proposed in 1959 by
John McCarthy (Mccarthy, 1959). Teacher advice is based on the use of two fundamental
sources of training information: future payoff achieved by taking actions according to a given
policy from a given state (derived from classic exploration in RL), and the advice from a
teacher as regards which action to take next (Utgoff and Clouse, 1991). The objective of
the approaches considered here is to combine these two sources of training information. In
these approaches, a learner agent improves its policy based on the information (i.e., the
advice) provided by a teacher.

Definition 7 Teacher Advising (VN and Ravindran, 2011). Any external entity
which is able to provide an input to the control algorithm that could be used by the agent to
take decisions and modify the progress of its exploration.
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Figure 3: General Teacher-Learner Agent Interaction Scheme.

Figure 3 details such an interaction scheme between the teacher and the learner agent.
In every time step, the learner agent perceives the state, chooses the action to perform, and
receives a reward as in the classic RL interaction. In this framework, the teacher generally
observes the same state as the learner and either the learner or the teacher determines when
it is appropriate for the teacher to give an advice. However, the state observed by the agent,
state, and the teacher, state′, could be different if they have different sensing mechanisms
(e.g., a robot learner’s camera will not detect state changes in the same way as a human
teacher’s eyes) (Argall et al., 2009). Additionally, the nature of the advice can have various
forms: a single action that the learner carries out at that time (Clouse and Utgoff, 1992;
Clouse, 1997; Garćıa and Fernández, 2012); a complete sequence of actions that the learner
agent replays internally (Lin, 1992; Driessens and Džeroski, 2004); reward used to judge the
agent’s behavior interactively (Thomaz and Breazeal, 2006; Knox and Stone, 2009, 2010;
Knox et al., 2011); a set of actions from which the agent has to select one randomly or
greedily (Thomaz and Breazeal, 2006; Cetina, 2008).

The general framework of teacher’s advice includes five main steps (Philip Klahr Hayes-
Roth and Mostow., 1981): (i) requesting or receiving the advise; (ii) converting advice into
a usable form; (iii) integrating the reformulated advice into the agent’s knowledge base; and
(iv) judging the value of advice. In this survey, we focus on step one to classify the different
approaches of this trend. Thus, there are two main categories of algorithms: the learner
agent asks for advice from the teacher when it needs to, the teacher provides advice to the
learner agent when it is necessary.

4.1.3.1 The Learner Agent Asks for Advice

In this approach, the learner agent poses a confidence parameter and when this confi-
dence in a state is low, the learner agent asks for advice from the teacher. Typically, this
advice corresponds to the action that the teacher would carry out if it were in the place of
the learner agent in the current state. In case of advice, the learner agent assimilates the
teacher’s action by first performing the action (as the learner itself selected it), and later
receiving the corresponding reward. This reward is used to update the policy using any RL
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algorithm. These teacher-advising algorithms are called Ask for help algorithms (Clouse,
1997). In the original Ask for help approach, Clouse (1997) uses the confidence parameter
in two different strategies: uniform asking strategy and uncertainty asking strategy. In the
first, the learner’s request is spread uniformly throughout the learning process. In this case,
this parameter establishes the percentage of time steps in which the learner requests help.
The second is based on the learner agent’s uncertainty about its current action selection.
In this case, Clouse establishes that the agent is unsure about the action to choose when
all the actions in the current learning step have similar Q-values; i.e., if the minimum and
maximum Q-values are very similar (which is specified by the confidence parameter), the
learner agent asks for advice. However, this interval-estimation measure between the high-
est and lowest Q-values produces counterintuitive results in some domains, such the maze
domain. In this domain, the true Q-values of actions for each state are very similar since
the maze states are highly connected. Interval estimation is therefore not a stable measure
of confidence for maze-like domains.

Hans et al. (2008) and Garćıa and Fernández (2011, 2012); Garćıa et al. (2013) use this
confidence parameter to detect risky situations. In this case, the concept of risk is based on
the definition of fatal transitions or unknown states. Hans et al. (2008) consider a transition
to be fatal if the corresponding reward is less than a given threshold τ , and an action a
to be unsafe in a given state s if it leads to a fatal transition. In this work, the authors
also build the teacher’s policy with an altered Bellman optimality equation that does not
maximize the return, but the minimal reward to come. The learner agent tries to explore
all actions considered safe for all states using the teacher policy or previously identified safe
actions in a level-based exploration strategy, which requires storing large amounts of tuples.

Garćıa and Fernández (2011, 2012); Garćıa et al. (2013) present a new definition of risk
based on unknown and known space, and that reflects the author’s intuition as to when
human learners require advice. Certainly, humans benefit from help when they are in novel
or unknown situations. The authors use a case-based approach to detect such situations.
Traditionally, case-based approaches use a density threshold θ in order to determine when
a new case should be added to the memory. When the distance of the nearest neighbor
to the query state is greater than θ, a new case is added. Garćıa and Fernández (2011,
2012) propose the PI-SRL algorithm in which a risk function, %B(s), measures the risk
of a state in terms of its similarity to previously visited (and secure) states in a case
base, B = {c1 . . . , cn}. Every case ci consists of a state-action pair (si, ai) the agent has
experienced in the past and with an associated value V (si). When the distance to the closest
state in the case base is larger than a parameter θ, the risk is maximum, while the risk is
minimal if this distance is less than θ. Therefore, in that work, the risk function is defined as
a step function. However, to define the risk function in such a way demonstrates that it may
still produce damage in the learning agent. The reason is that to follow the teacher’s advice
only when the distance to the closest known state is larger than θ may be too late. On the
other hand, one would expect that the risk function is progressive. Therefore, while the limit
of θ is approaching, the risk should start to grow, and the learning agent could start to use
the teacher’s advice. In a further work, Garćıa et al. (2013) propose the use of a progressive
risk function that determines the probability of following the teacher advice. The integration
of this advice together with the π-reuse exploration strategy (Fernández and Veloso, 2006;
Fernández et al., 2010) results in the PR-SRL algorithm (Garćıa et al., 2013). The π-reuse
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exploration strategy allows the agent to use a past policy, Πpast, with probability φ, explores
with probability ε, and exploits the current policy, Πnew, with probability 1− φ− ε. In the
PR-SRL algorithm the past policy Πpast is replaced by the teacher policy, the new policy to
be learned Πnew is replaced by the case base policy in B, and the parameter ψ is replaced
by a sigmoid risk function, %B(s), which computes the probability of teacher’s advice.

Hailu and Sommer (1998) also associates the concept of risk to the concept of distance
to distinguish novel situations. In this case, the learner agent consists of a feedforward
neural network made up of RBF neurons in the input layer and a stochastic neuron in the
output layer. Each neuron represents a localized receptive field of width

∑
that covers a

hyper-sphere of the input space. The learner agent has no neurons at the beginning of the
learning process. At this point, the robot perceives a new state s, and it cannot generalize
the situation. Therefore, it invokes the teacher which sends its action to the learner. The
learner receives the action and adds a neuron. When a new state is perceived, the learner
identifies the first winning neuron closest to the state perceived. If the distance of the
winning neuron is larger than

∑
, the state is regarded as novel and the learner invokes the

teacher and adds a neuron that generalized the new situation perceived. In this way, the
learner grows gradually, thus increasing its competence.

Instead, Geramifard et al. (2011); Geramifard (2012); Geramifard et al. (2013) assume
the presence of a function named safe: S×A→ {0, 1} that returns true if the carrying out of
action a at state s will result in a catastrophic outcome and false otherwise. At every time
step, if the learner agent considers the action to be safe, it will be carried out during the next
step, otherwise the learner invokes the teacher’s action which is assumed to be safe. The safe
function is based on the existence of a constrained function: S → {0, 1}, which indicates
whether being in a particular state is allowed or not. Risk is defined as the probability of
visiting any of the constrained states. However, this approach presents two main drawbacks:
(i) modeling the constrained function correctly, and (ii) it assumes the system model is
known or partially known although it is only used for risk analysis. Jessica Vleugel and
Gelens (2011) proposed an approach where the unsafe states are previously labeled. In this
method, the learner agent asks for advice when it reaches a previously labeled unsafe state.

Finally, although more related to learning from demonstration, Chernova and Veloso
(2009) also use the confidence parameter to select between agent autonomy and a request
for a demonstration based on the measure of action-selection confidence returned by a
classifier. Confidence below a given threshold indicates that the agent is uncertain about
which action to take, so it seeks help from the teacher in the form of a demonstration,
improving the policy and increasing the confidences for future similar states.

4.1.3.2 The Teacher Provides Advice

In the approaches grouped in this trend, the teacher provides actions or information
whenever the teacher feels its help is necessary. Therefore in all these approaches, an
explicit mechanism in the learner agent to recognize (and express) its need for advice is not
necessary. Therefore, a new open question arises namely what is the best time for a teacher
to provide information. Clouse and Utgoff (1992) add a simple interface to a RL algorithm to
allow a human teacher to interact with the learner agent during the learning process. In this
work, the teacher monitors the learner’s behavior and provides an action when it considers
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it necessary. This action is supposed to be the correct choice to be made in that state.
Otherwise, the learner agent takes its own action based on its developing policy. Maclin
and Shavlik (1996) use a similar approach in their RATLE algorithm, where a teacher at
any point can interrupt the agent learning execution and types its advice using simple IF-
THEN rules and more complex rules involving multiple steps. Thomaz and Breazeal (2006,
2008) also introduce an interface between the human teacher and the learner agent. The
human teacher advises the agent in two ways: using an interactive reward interface and
sending human advice messages. Through the first, the teacher introduces a reward signal
r ∈ [−1, 1] for each step of the learning process. The human teacher receives visual feedback
enabling him/her to tune the reward signal before sending it to the agent. Through the
second, the agent begins each iteration of the learning loop by pausing to allow the teacher
time to introduce advice messages (1.5 seconds). If advice messages are received, the agent
will choose randomly between the set of actions derived from these messages. Otherwise, the
agent chooses randomly between the set of actions with the highest Q-values. In a similar
way, Suay and Chernova (2011) also use a teacher to provide rewards and guidance to an
Aldebaran Nao humanoid robot. Instead, Vidal et al. (2013) presents a learning algorithm
in which the reinforcement comes from a human teacher that is seeing what the robot does.
This teacher is able to punish the robot by simply pressing a button on a wireless joystick.
When the teacher presses the button to give the robot negative reinforcement, the robot
learns from it and transfers the control to the teacher, so that the teacher will be able to
move the robot and place it in a suitable position to go on learning. Once this manual
control is over, the teacher will press a second button to continue the learning process. In
all these approaches, the teacher decides when to provide information based on him/her
own feelings (i.e., when the teacher deems it necessary), but there is no metric or rule as to
the best time for to do it. Additionally, using the constant monitoring of the learner agent
by the teacher, it might not be desirable in practice due to the time or cost implications.

Maclin et al. (2005b) implement the advice as a set of rules provided by a teacher.
When a rule applies (i.e., the LHS is satisfied) it is used to say the Q-value for some action
should be high or low. The experiments are conducted using the keep away domain, and
an example of the rule suggests the keeper with the ball should hold it when the nearest
taker is at least 8 metres away (i.e., Q(hold) ≥ high). In a later work, Maclin et al. (2005a)
extends the previous approach to recommend that some action is preferred over another
in a specified set of states. Therefore, the teacher is giving advice on policies rather than
Q-values, which is a more natural way for humans to present advice (e.g., when the nearest
taker is at least 8 meters, holding the ball is preferred to passing it). Similarly, Torrey
et al. (2005) also used a set of rules, but these rules were learned in a previous related
task using inductive logic programming following a transfer learning approach (Taylor and
Stone, 2009). The user can also add supplementary teacher advice on the learned rules
before the learning process begins. During the learning process, the learner agent receives
the teacher’s advice and the agent can follow it, refine it, or ignore it according to its value.

Walsh et al. (2011) use a teacher that analyzes the return of the learner agent for each
episode. This return provides enough information for the teacher to decide whether or not
to provide a demonstration. For each episode, if the return of the agent is lower than a
certain measurement, the teacher decides to show a demonstration of that episode starting
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at the same initial state. In this way, the agent learns concepts that it cannot efficiently
learn on its own.

4.1.3.3 Other Approaches

In other approaches, the control of the teacher and the learner agent in the advice-taking
interaction is not pre-defined. Rosenstein and Barto (2002, 2004) present a supervised RL
algorithm that computes a composite action that is a weighted average of the action sug-
gested by the teacher (aT ) and the exploratory action suggested by the evaluation function
(aE) using

a = kaE + (1− k)aT (12)

In Equation 12, aE = aA + N(0, σ), where aA is the action derived from the policy of
the agent, πA(s), for a given state s; and N(0, σ) is a normal distribution. The parameter
k can be used to interpolate between an ask for help approach and an approach in which
the teacher has the main role. Therefore, k determines the level of control, or autonomy,
on the parts of the learner agent and the teacher. On the one hand, the learner agent
can set k = 1 if it is fully confidence about the action to be taken. Instead, it can set
the value of k close to 0 whenever it needs help from its teacher obtaining an ask for help
approach (Section 4.1.3.1). On the other hand, the teacher can set k = 0 whenever it loses
confidence in the autonomous behavior of the learner agent similarly to the approaches in
Section 4.1.3.2. It is important to note that the proposed way of combining the action
suggested by the teacher and the exploratory action is originally conceived for continuous
action spaces but it could be extended to a discrete action space as well, by considering
distributions over actions.

Kuhlmann et al. (2004) also computes an action using the suggestions of the teacher
and the agent. In this work, the teacher generates values for the possible actions in the
current world state. It is implemented as a set of rules. If a rule applies, the corresponding
action value is increased or decreased by a constant amount. The values generated by the
teacher are added to those generated by the learning agent. The final action selected is the
action with the greatest final composite value. On the other hand, Judah et al. (2010) use
a teacher that is allowed to observe the execution of the agent’s current policy and then
scroll back and forth along the trajectory and mark any of the available actions in any state
as good or bad. The learner agent uses these suggestions and the trajectories generated by
itself to compose the agent policy that maximizes the return in the environment. Moreno
et al. (2004), by extending the approach proposed by Iglesias et al. (1998b,a), computes
an action as the combination of the actions suggested by different teachers. At every time
step, each teacher produces a vector of utilities u which contains a value u(s, ai) ∈ [0, 1]
for each action ai that it is possible to carry out in the current state s. Then the teacher’s
vectors are amalgamated into a one single vector, w(a). This vector and an exploratory
vector, e(a), computed as e(a) = 1−w(a), are used to draw up a final decision vector which
indicates which actions are the most suitable for the current state.

Torrey and Taylor (2012) present an algorithm in which the advice probability depends
on the relationship between the learner agent’s confidence and the teacher’s confidence. In
states where the teacher has much greater confidence than that of the student, it gives
advice with a greater probability. As the agent’s confidence in a state grows, the advice
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probability decreases. Other approaches are based on interleaving episodes carried out by a
teacher with normal exploration episodes. This mixture of teacher and normal exploration
makes it easier for the RL algorithms to distinguish between beneficial and poor or unsafe
actions. Lin (1991, 1992) use two different interleaving strategies. In the first, after each
complete episode, the learner agent replays n demonstrations chosen randomly from the
most recent 100 experienced demonstrations, with recent lessons exponentially more likely
to be chosen. In the second, after each complete episode, the agent also stochastically
chooses already taught demonstrations for replay. Driessens and Džeroski (2004) also use an
interleaving strategy and compares its influence when it is supplied at different frequencies.

In other works the advice takes the form of a reward. In this case, the teacher judges
the quality of the agent’s behavior sending a feedback signal that can be mapped onto a
scalar value (e.g. by pressing a button or verbal feedback of “good” and “bad”) (Thomaz
and Breazeal, 2006; Knox and Stone, 2009). In contrast to RL, a learner agent seeks to
directly maximize the short-term reinforcement given by the teacher. Other works combine
the reward function of the MDP and that provided by the teacher (Knox and Stone, 2010;
Knox et al., 2011).

4.2 Risk-directed Exploration

In this trend the exploration process is carried out by taking into account a defined risk met-
ric. Gehring and Precup (2013) defines a risk metric based on the notion of controllability.
If a particular state (or state-action pair) yields a considerable variability in the temporal-
difference error signal, it is less controllable. The authors compute the controllability of a
state-action pair as defined in

C(st, at)← C(st, at)− α′(|δt|+ C(st, at)) (13)

The exploration algorithm uses controllability as an exploration bonus, picking actions
greedily according to Q(st, at)+wC(st, at). In this way, the agent is encouraged to seek con-
trollable regions of the environment. This approach is successfully applied to the helicopter
hovering control domain (Garćıa and Fernández, 2012) used in the RL Competition. Law
(2005) uses a risk metric to guide the exploration process. In this case, the measurement
of risk for a particular action in a given state is the weighted sum of the entropy (i.e., the
stochasticity of the outcomes of a given action in a given state) and normalized expected
return of that action. The risk measure of an action, U(s, a), is combined with the action
value to form the risk-adjusted utility of an action, i.e., p(1 − U(st, at)) + (1 − p)Q(st, at)
where p ∈ [0, 1]. The first term measures the safety value of an action, while the second
term measures the long term utility of that action. The risk-adjusted utility is replaced
in the Boltzmann function instead of the Q-values in order to safely guide the exploration
process. However, the main drawback of these approaches is that the mechanism of risk
avoidance is achieved by learning the risk values of actions during learning, i.e., when the
functions C(st, at) and U(st, at) are correctly approximated. But it would be desirable to
prevent risk situations from the early steps in the learning process.

Finally, it is important to note that the approaches considered here are similar in spirit
to those in section 3.3. As an example, if the controllability was added as a constraint,
then it becomes a constrained optimization criterion and, hence, this approach should be
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included in Section 3.3. However, we would obtain a different algorithm with different
results. The approaches considered here only introduce a bias in the exploration process
without satisfying hard constraints or constraints with a fixed probability of violation.
Instead, the approaches in Section 3.3 must fulfill all the given constraints (although it is
considered a fixed probability of constraint violation).

5. Discussion and Open Issues

In this Section, we complete the study of the techniques surveyed in this paper by classifying
them across different dimensions. Additionally, we summarize the main advantages and
drawbacks for each group of techniques in order to define future work directions.

5.1 Characterization of Safe RL Algorithms

As highlighted in the previous sections, current approaches to Safe RL have been designed
to address a wide variety of problems where the risk considered and its detection have a large
variety of forms. Table 2 analyzes most of the surveyed approaches across four dimensions.

5.1.1 Allowed Learner

We distinguish various RL approaches used in Safe RL. The model free methods such as
Q-Learning (Sutton and Barto, 1998) which learn by backing up experienced rewards over
time. The model-based methods which attempt to estimate the true model of the environ-
ment by interacting with it. The policy search methods which directly modify a policy over
time to increase the expected long-term reward by using search or other optimization tech-
niques. Finally, the relational RL methods which use a different state/action representation
(relational or first-order language).

Table 2 shows that most of the approaches correspond to model-free RL algorithms.
Model-based approaches are also used but few such methods handle continuous or large
state and action spaces (Abbeel and Ng, 2005) and they generally have trouble scaling to
tasks with many state and action variables due to the curse of dimensionality. Model-based
approaches demand run exploration policies until they have an accurate model of the entire
MDP (or at least the reachable parts of it). This makes many model-based approaches
require exhaustive exploration that can take an undesirably long time for complex systems.
Additionally, an aggressive exploration policy in order to build an accurate model can lead to
catastrophic consequences. Therefore, model-based approaches suffer a similar exploration
problem as model-free approaches, but in this case the question is: how can we safely explore
the relevant parts of the state/action spaces to build up a sufficiently accurate dynamics
model from which derive a good policy? Abbeel (2008) offers a solution to these problems
by learning a dynamics model from teacher demonstrations. Policy search and Relational
RL methods are also identified as techniques that can be applied to risky domains, but
usually refer to the use of bootstrapping approaches.

5.1.2 Space Complexity

The column entitled by Space in Table 2 describes the complexity of the state and action
spaces of the domains where the method has been used. The S refers to continuous or large
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Citation Allowed Learner Spaces Risk Exploration

Modifying the Optimization Criterion: Section 3

Worst Case Criterion: Section 3.1

Heger (1994b) model free s/a V ar greedy

Gaskett (2003) model free s/a V ar greedy

Risk-Sensitive Criterion: Section 3.2

Borkar (2002) model free s/a V ar greedy

Mihatsch and Neuneier (2002) model free S/a TD-error ε− greedy
Campos and Langlois (2003) model free S/a TD-error ε− greedy
Geibel and Wysotzki (2005) model free S/a error states greedy

Constrained Criterion: Section 3.3

Geibel (2006) model free s/a E(R) ≥ α greedy

Castro et al. (2012) model free S/A V ar(R) ≤ α softmax

Moldovan and Abbeel (2011, 2012a) model based s/a ergodicity bonuses

Abe et al. (2010) model free s/a ad-hoc constraints greedy

Modifying the Exploration Process: Section 4

Providing Initial Knowledge: Section 4.1.1

Driessens and Džeroski (2004) relational S/a initial exploration softmax

Smart and Kaelbling (2000) model free S/A initial exploration gaussian

Mart́ın H. and Lope (2009) policy search S/A initial exploration evolving NN

Koppejan and Whiteson (2011) policy search S/A initial exploration evolving NN

Maire (2005) model free s/a initial exploration greedy

Deriving a Policy from a Finite Set of Demonstrations: Section 4.1.2

Abbeel and Ng (2005) model based S/A accurate model greedy

Tang et al. (2010) model based S/A accurate model greedy

Using Teacher Advice: Section 4.1.3

Clouse (1997) model free S/a similar Q− values softmax

Hans et al. (2008) model free s/a fatal transitions level-based

Garćıa et al. (2013) model free S/A unknown states gaussian

Geramifard (2012) model based S/A constrained states softmax

Clouse and Utgoff (1992) model free s/a human ε− greedy
Maclin and Shavlik (1996) model free s/a human softmax

Thomaz and Breazeal (2006, 2008) model free S/a human softmax

Walsh et al. (2011) model based s/a E(R) ≤ α Rmax

Rosenstein and Barto (2002, 2004) model free S/A agent/teacher confidence gaussian

Kuhlmann et al. (2004) model free S/a human ε− greedy
Torrey and Taylor (2012) model free S/a agent/teacher confidence ε− greedy

Risk-directed Exploration: Section 4.2

Gehring and Precup (2013) model free S/a TD-error risk directed

Law (2005) model based s/a entropy and E(R) risk directed

Table 2: This table lists most of the Safe RL methods discussed in this survey and classifies
each in terms of four dimensions.
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state space, and s to discrete and small state space. The same interpretation can be applied
analogously to A and a in the case of the action space. In this way, S/a means that the
method has been applied to domains with continuous or large state space and discrete and
small action space.

Most of the research on RL has studied solutions to finite MDPs. On the other hand,
learning in real-world environments requires handling with continuous state and action
spaces. While several studies have focused on problems with continuous states, little at-
tention has been paid to tasks involving continuous actions. These conclusions can also be
obtained for Safe RL from Table 2 where most of the approaches address finite MDPs (Heger,
1994a; Gaskett, 2003; Moldovan and Abbeel, 2012a) and problems with continuous or
large state spaces (Mihatsch and Neuneier, 2002; Geibel and Wysotzki, 2005; Thomaz and
Breazeal, 2008), and much fewer approaches address problems with continuous or large
state and action spaces (Abbeel et al., 2009; Garćıa and Fernández, 2012).

5.1.3 Risk

The forms of risk considered in this survey are also listed in Table 2. These forms are
related to the variance of the return or its worst possible outcome (entitled Var in Table 2),
to the temporal differences (entitled TD-error), to error states, to constraints related to
the expected return (entitled by E(R) ≥ α or E(R) ≤ α) or the variance of the return
(entitled V ar(R) ≤ α), to the ergodicity concept, to the effects of initial exploration in early
stages in unknown environments (entitled initial exploration), to the obtaining of accurate
models used later to derive a policy (entitled accurate model), to similar Q-values, to fatal
transitions, to unknown states, to human decisions which determine what is considered a
risk situation and when to provide help (entitled human), and to the degree of confidence
both the teacher and the agent (denoted by agent/teacher confidence).

Table 2 shows the wide variety of forms of risk considered in the literature. This makes
the drawing up of a benchmark problem difficult, or the identification of an environment
to test different notions of risk. That is, in most cases, the approaches have different safety
objectives and, hence, they result in different safe policies. For instance, the Q̂−Learning
algorithm by Heger (1994b) leads to a safe policy completely different from that obtained by
the method proposed by Garćıa and Fernández (2012). The applicability of one or another
depends on the particular domain we are considering, and the type of risk it involves.
Additionally, it is important to note that, in some cases, the risk metric selected places
restrictions on which RL algorithm is used. For instance, the risk related to the ergodicity
requires the model of the MDP to be known or learned.

5.1.4 Exploration

Table 2 also describes the exploration/exploitation strategy used for action selection. The
greedy strategy is referred to the ε − greedy strategy where the ε is fixed at 0. For in-
stance, Gaskett (2003) applies this exploration strategy and uses the inherent stochasticity
of the environment to explore efficiently. In the classic ε− greedy action selection strategy
the agent selects a random action with chance ε and the current best action with proba-
bility 1 − ε. In softmax action selection, the action probabilities are ranked according to
their value estimates. The gaussian exploration is related to continuous action spaces and
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at every moment the action is selected by sampling from a Gaussian distribution with the
mean at the current best action. The evolution of Neural Networks (NN) are used in policy
search methods to explore around the policy space. In the level-based exploration proposed
by Hans et al. (2008), the agent tries to explore all actions considered safe (i.e., it does not
lead to a fatal transition) for each state gradually. The exploration bonuses adds a bonus
to states with higher potential of learning (Baranes and Oudeyer, 2009), or with higher
uncertainty (Brafman and Tennenholtz, 2003). Regarding the latter, the Rmax exploration
is related to model-based approaches and it divides states into two groups, known and un-
known states, and focuses on reaching unknown states by assigning them maximum possible
values (Brafman and Tennenholtz, 2003). Finally, the risk directed exploration uses a risk
metric to guide the exploration process.

As the most widely used methods are model free in discrete and small action space, the
exploration strategies most commonly used are ε − greedy and softmax. However, due to
their random component of action selection, there is a certain chance of exploring dangerous
or undesirable states. This chance affects the approaches differently using these strategies in
Section 3 and Section 4. Most of the approaches in Section 3 are not interested in obtaining
a safe exploration during the learning process; they are more interested in obtaining a safe
policy at the end (Heger, 1994b; Gaskett, 2003; Mihatsch and Neuneier, 2002; Campos and
Langlois, 2003). Therefore, the random component of these strategies is not so relevant for
these approaches. In the approaches in Section 3.3 the use of these exploration strategies
is limited to the space considered safe (i.e., that fulfills the constraints) (Geibel, 2006;
Castro et al., 2012; Abe et al., 2010), which limits visiting undesirable regions despite this
random component. Instead, most of the approaches in Section 4 address the problem
of safe exploration using these exploration strategies. The approaches in Section 4.1.1
introduce an initial bias into the exploration space which mitigate (but do not prevent) the
number of visits to undesirable states that produce these exploration strategies (Driessens
and Džeroski, 2004; Maire, 2005). The approaches in Section 4.1.2 derive a model from
a finite set of demonstrations, and then use this model to derive a policy greedily in an
off-line and, hence, safe manner (Abbeel et al., 2009; Tang et al., 2010). The approaches in
Section 4.1.3 combine the advice provided by the teacher with these exploration strategies
to produce a safe exploration process (Clouse, 1997; Maclin et al., 2005a; Thomaz and
Breazeal, 2006, 2008; Torrey and Taylor, 2012). For instance, the softmax exploration is
used by Thomaz and Breazeal (2008) to select an action if no advice is introduced by the
human. Otherwise, it selects a random action from among that derived from the advice
introduced.

Other exploration strategies based on exploration bonuses such as Rmax are related to
the use of model-based algorithms (Walsh et al., 2011; Moldovan and Abbeel, 2012a). This
exploration technique was first presented for finite MDPs (Brafman and Tennenholtz, 2003),
but also there are versions for continuous state space where the number of samples required
to learn an accurate model increases as the number of dimensions of the space grows (Nouri,
2011). Moldovan and Abbeel (2012a) use an adapted version of Rmax where the exploration
bonus of moving between two states is proportional to the number of neighboring unknown
states that would be uncovered as a result of the move. It is important to note that Rmax
exploration by itself may be considered unsafe since it is encouraged to explore areas of
unknown space, and other authors establish a direct relationship between the risk and the
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unknown concept (Garćıa and Fernández, 2012). However, Moldovan and Abbeel (2012a)
use this exploration method to explore from among the policies whose preserve the ergodicity
and are considered safe.

The gaussian exploration also introduces a random component in the algorithms pro-
posed by Garćıa and Fernández (2012) and Smart and Kaelbling (2000). As regards the
former, when an unknown state is found, the action is carried out by the teacher, other-
wise, small amounts of Gaussian noise are randomly added to the greedy actions of the
current policy. This ensures a safe exploration. As regards the latter, at the beginning of
the learning process, the gaussian noise is added to greedy actions derived from a policy
previously bootstrapped by teacher demonstrations. Other approaches uses a risk metric to
direct the safe exploration based on the temporal differences (Gehring and Precup, 2013) or
the weighted sum of an entropy measurement and the expected return (Law, 2005). Hans
et al. (2008) uses a level-based exploration approach where the safe exploration is carried
out gradually by exploring all the considered safe actions for each state. This exploration
approach seems suitable for finite MDPs, but in MDPs with large state and action spaces,
this exhaustive exploration is computationally intractable. Finally, the safe exploration
conducted by Mart́ın H. and Lope (2009) and Koppejan and Whiteson (2011) is due to
the population seeding of the initial population which biases the subsequent exploratory
process.

5.2 Discussion

Table 3 summarizes the main advantages and drawbacks of the approaches surveyed in
this paper. Attending to the main advantages and drawbacks identified for each approach,
we believe that there are several criteria that must be analyzed when developing Safe RL
algorithms and risk metrics.

5.2.1 Selection of the Risk Metric

The algorithms based on the variance of the return (Sato et al., 2002; Borkar, 2002; Osogami,
2012) or its worst possible outcome (Heger, 1994b; Coraluppi, 1997) are not generalizable
to problems in which a policy with a small variance can produce a large risk. To clarify this
statement, we have reproduced the example set out by Geibel and Wysotzki (Geibel and
Wysotzki, 2005). The example is a grid-world problem in which there are error states (i.e.,
undesirable or dangerous situations), and two goal states (one of them is placed next to the
error state, and the other in a safer part of the state space). This grid-world is detailed in
Figure 4.

The agent is able to move North, South, East, or West. With a probability of 0.21,
the agent is not transported to the desired direction but to one of the three remaining
directions. The agent receives a reward of 1 if it enters a goal state and a reward of 0 in
every other case. There is no explicit negative reward for entering an error state, but when
the agent enters it, the learning episode ends. In this domain, we found that a policy leading
to the error states as fast as possible does not have a higher variance than one that reaches
the goal states as fast as possible. Therefore, a policy with a small variance can therefore
have a large risk, because this policy can lead the agent to error states. Additionally, we
can see that all policies have the same worst case outcome and, hence, this optimization
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Advantages Drawbacks

Modifying the Optimization Criterion: Section 3

Worst Case Criterion: Section 3.1

• Useful when avoiding rare occurrences of large
negative return is imperative

• Overly pessimistic
• Variance of the return not generalizable to ar-

bitrary domains
• The true long term utility of the actions are

lost
• Not detect risky situations from the early steps

Risk-Sensitive Criterion: Section 3.2

• Easy switch between risk-averse and risk-
seeking behavior

• Detect long-term risk situations

• If a conservative criterion is used, the policy
may be overly pessimistic

• The true long term utility of the actions are
lost

• Not detect risky situations from the early steps

Constrained Criterion: Section 3.3

• Intuitively it seems a natural solution to the
problem of safe exploration: the exploration is
carried out only in the region of space consid-
ered safe (i.e., that fulfills the constraints)

• Many of these problems are computationally
intractable, which difficult the formulation of
RL algorithms

• Correct selection of the parameter constraints
• Constraints related to the return or its variance

are not generalizable to arbitrary domains

Modifying the Exploration Process: Section 4

Providing Initial Knowledge: Section 4.1.1

• Bootstrap the value function approximation
and lead the agent through the more relevant
regions of the space from the earliest steps of
the learning process

• Bias introduced may produce suboptimal poli-
cies

• Exploration process following the initial train-
ing phase can result in visiting catastrophic
states

• Difficult initialization in complex structures

Deriving a Policy from a Finite set of Demonstrations: Section 4.1.2

• The learning algorithm derives a policy from a
finite set of demonstrations in an off-line and,
hence, safe manner

• Learner performance is heavily limited by the
quality of the teacher’s demonstrations

• How the agent should act when it encounters
a state for which no demonstration exists?

Using Teacher Advice: Section 4.1.3

• Guide the exploration process keeping the
agent far away from catastrophic states from
the earliest steps of the learning process

• In ask for help approaches
– Automatic detection of risk and request

for advice when needed

– Generalizable mechanisms of risk detec-
tion

• In ask for help approaches
– Detect short term risk situations but not

long term
• In teacher provides advices approaches:

– Teacher decides when to provide infor-
mation based on its own feelings

– Constant monitoring of the learner
agent by the teacher might not be de-
sirable in practice

Risk-directed Exploration: Section 4.2

• Detect long-term risk situations • Not detect risky situations from the early steps

Table 3: This table lists the main advantages and drawbacks of the Safe RL methods dis-
cussed in this survey.

1466



A Comprehensive Survey on Safe Reinforcement Learning

Figure 4: (a) The grid-world domain. (b) The minimum risk policy computed by Geibel
and Wysotzki (Geibel and Wysotzki, 2005).

criterion is also unsuitable for this kind of risky domain. Accordingly, the variance or the
worst-outcome criterion may not be generalizable to any risky domain.

The risk metric considered should be easily generalizable to any risky domain and be
independent of the nature of the task. The risk based on the level of knowledge of a
particular state is an example of generalizable risk metric (Hailu and Sommer, 1998; Garćıa
and Fernández, 2012; Chernova and Veloso, 2009; Torrey and Taylor, 2012). This level of
knowledge about a state can be based on the distance between the known and the unknown
space (Hailu and Sommer, 1998; Garćıa and Fernández, 2012), on the difference between
the highest and lowest Q-values (Clouse, 1997), or on the number of times an agent has
made a non-trivial Q-value update in a state (Torrey and Taylor, 2012). In this sense,
other knowledge level metrics in a state proposed in the literature can be used in Safe RL
to identify potentially catastrophic situations (e.g., those based on the number of times an
agent visits a state (Kearns and Singh, 2002), or on the knownness criterion (Nouri and
Littman, 2008). The study of risk metrics easily generalizable to arbitrary domains is still
an open issue in Safe RL.

5.2.2 Selection of the Optimization Criterion

We distinguish five possible situations based on two criteria: (i) the kind of optimization
criterion (long term optimization of risk or risk-neutral), and (ii) the kind of risk detection
(immediate and/or long term risk detection).

• Long term optimization of risk. In this case, we are interested in maximizing a long
term measurement which considers some form of risk. This is common to most of the
works reviewed in Section 3 where the risk-averse behavior is induced by transform-
ing the classic optimization criterion of RL by introducing a risk metric. However, it
seems difficult to find an optimization objective which correctly models our intuition
of risk awareness. In Section 3.1, most of the approaches are updated based on a
conservative criterion and the resulting policy tends to be overly pessimistic. Some-
thing similar happens with the approaches in Section 3.2 based on the variance of
the return. In addition, the transformation of the optimization criterion produces a
distortion in the action values and the true long term utility of the actions are lost.
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Finally, most of these approaches repeatedly visit risk situations until the optimiza-
tion criterion is correctly approximated and, subsequently, avoid dangerous situations.
As an example of the latter, the optimization criterion used by Geibel and Wysotzki
(2005) helps to reduce the number of visits to error states once the risk function is
approximated (Geibel and Wysotzki, 2005; Garćıa and Fernández, 2012). It could be
interesting to avoid future risk situations since it can provide a margin of reaction
before reaching a point where it is unavoidable to reach an error state.

• Detection of immediate risk. We are interested in detecting and reacting to immediate
risk situations from the early steps of the learning process while the classic optimiza-
tion criterion remains. This second one is related to the approaches in Section 4. The
worst thing that can happen to an agent in an environment may have a high return
in the long term, but fatal consequences in the short term. The Safe RL algorithm
should incorporate a mechanism to detect and react to immediate risk by manifest-
ing different risk attitudes, while leaving the optimization criterion untouched. The
ability to assess the amount of immediate risk in any action allows one to make step-
by-step tradeoffs between attaining and abandoning the goal (i.e., the maximization
of the return) in order to ensure the safety of the agent, the learning system and
any external entity. The teacher advice approaches presented in Section 4.1.3.1 and
Section 4.1.3.2 are good examples of this property. In these approaches, when a risk
situation is detected by the agent or the teacher, the teacher provides safe informa-
tion to the agent to prevent fatal situations. The main drawback of most of these
approaches is that the risk is detected on the basis of the current state (Clouse, 1997;
Geramifard, 2012; Garćıa and Fernández, 2012), and it may be too late to react.

• Long term optimization of risk and immediate risk. We are interested in maximiz-
ing a long term measurement which considers some form of risk and, at the same
time, detects and reacts to immediate risk situations from the early steps of the learn-
ing process. The two previous approaches can be integrated into a same Safe RL
algorithm. As an example, Geibel’s approach (Geibel and Wysotzki, 2005) can be
combined with an approach based on the level of knowledge of the current state from
Section 4.1.3.1. The learner agent can ask for help in little known (Torrey and Taylor,
2012) or unknown states (Hailu and Sommer, 1998; Garćıa and Fernández, 2012) mit-
igating the effects of risk situations from early steps of the learning process. At the
same time, the exploration directed by Geibel’s optimization criterion, which include
the risk function, ρπ(s), ensures the selection of safe actions preventing long-term risk
situations once the risk function is correctly approximated. The development of these
Safe RL algorithms is an area open for future research.

• Detection of long term risk. We are interested in detecting long-term risk situations
when the risk function is correctly approximated, but not in detect and react to
immediate risk situations from the early steps in the learning process. In addition, the
classic optimization criterion remains. This is related to the approaches in Section 4.2.
In this case, a risk metric is used to guide the exploration of the state and action
spaces in a risk-directed exploration process based on the controllability (Gehring and
Precup, 2013) or on the entropy (Law, 2005). In these approaches, the value function
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is learned separately, so optimal values and policies can be recovered if desired at a
later time. As regards the latter, it would be interesting to decouple Geibel’s risk
function based on error states, ρπ(s), from the value function. In this way, it would
be possible to analyze the effect of considering risk as part of the objective function
with respect to considering risk only for risk-directed exploration while the objective
function remains.

• Detection of immediate and long term risk. In this case, we are interested in detecting
long-term risk situations when the risk function is correctly approximated, and in
detect and react to immediate risk situations from the early steps in the learning
process. The combination of immediate and long term risk detection mechanisms is
still an open issue in Safe RL. As an example, the approaches in Section 4.1.3.1 could
be combined with the approaches in Section 4.2. The learner agent can ask for help
in little known (Torrey and Taylor, 2012) or unknown states (Hailu and Sommer,
1998; Garćıa and Fernández, 2012), and when the risk metric is greater than a certain
threshold (e.g., C(st, at) ≥ w or ρπ(s) ≥ w). The first helps to mitigate the effects
of immediate risk, the second immediate risk situations to be prevented in the long
term through the delegation of the action taking to an external teacher instead of the
ongoing exploratory process. At the same time, the risk-directed exploration mitigates
the selection of actions which bring the risk situations closer.

5.2.3 Selection of the Mechanism for Risk Detection

The mechanism for risk detection should be automatic and not based on the intuition of a
human teacher. In most of the approaches in Section 4.1.3.2, the teacher decides when to
provide information to the learner agent based on its own feelings, but there is no metric as
to the best time to do it. It is important to be aware of the fact that this way of providing
the information is highly non-deterministic, i.e., the same human teacher can give the agent
information in certain situations but remain impassive in other scenarios that are very
similar. Moreover, the teacher observer can change his/her mind as to what is risky or not
while the agent is still learning.

5.2.4 Selection of the Learning Schema

Although policy search methods have been demonstrated to be good techniques for avoiding
risky situations, their safe exploration was related to the incorporation of teachers in the
initial population (Mart́ın H. and Lope, 2009; Koppejan and Whiteson, 2011). The problem
of extracting knowledge (e.g., on the known space) from the networks or their weights makes
it almost impossible to incorporate mechanisms for safe exploration during the learning
process. As regards model-free vs. model-based approaches, there is still an open debate
within the RL community as to whether model-based or model-free could be shown to be
clearly superior to the other. This debate can also be taken in Safe RL. Model-based methods
have relative higher space and computational complexities and lower sample complexity
than model-free methods (Strehl et al., 2006). In general, this prevents the use of model-
based methods in large space and stochastic problems in which the approximation of an
accurate model from which derive a good policy is not possible. However, recent model-based
approaches have demonstrated successful handling with continuous state domains (Nouri,
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2011; Hester and Stone, 2013). Having such a model is a useful entity for Safe RL: it allows
the agent to predict the consequences of actions before they are taken, allowing the agent
to generate virtual experience. Therefore, we consider that building models is an open issue
and a key ingredient of research and progress in Safe RL. So far, as shown in Table 2, most
of the Safe RL approaches are model-free.

5.2.5 Selection of the Exploration Strategy

The exploratory process is responsible for visits to undesirable states or risky situations
but also for progressively improve the policies learned. Techniques such as that proposed
in Section 4.1.2 do not require exploration, but only the exploitation of the learning model
derived from the teacher demonstrations. However, without additional exploration, the poli-
cies learned are heavily limited by the teacher demonstrations. The methods in Section 3.3
carry out safe exploration from among the policies in the constrained space. This may be
the more advisable intuitively, but many of these problems are computationally intractable,
which makes the formulation of RL algorithms difficult for large space and stochastic tasks.

As regards the other strategies used, all of them lead to a risky behavior. In explo-
ration methods such as Rmax the algorithm still tends to end up generating (and using)
exploration policies in its initial stage. Additionally, Rmax follows the optimism in the face
of uncertainty principle, which consists of assuming a higher return on the most unknown
states. This optimism for reaching unknown states can produce an unsafe exploration,
since other authors establish a direct relationship between unknown and dangerous situa-
tions (Garćıa and Fernández, 2012). Exploration methods such as ε − greedy, softmax, or
gaussian incorporates a random component which give rise to a certain chance of exploring
dangerous or undesirable states. The risk-directed exploration conducted by the use of risk
metrics requires the function to be correctly approximated beforehand to avoid risk situa-
tions. Therefore, we consider that if the exploration is carried out in the entire state and
action spaces (i.e., without constraints restricting the explorable/safe space), whatever the
exploration used, this should be carried out in combination with an automatic risk detection
mechanism (able to detect immediate and/or long term risk situations from the early steps
in the learning process) and abandoning the goal in order to ensure the safety of the agent
(e.g., asking for help from a teacher). Finally, if the goal is to obtain a safe policy at the
end, without worrying about the number of dangerous or undesirable situations that occur
during the learning process, then the exploratory strategy used to learn this policy is not
so relevant from a safety point of view.

6. Conclusions

In this paper we have presented a comprehensive survey on Safe Reinforcement Learning
techniques used to address control problems in which it is important to respect safety con-
straints. In this survey, we have contributed with a categorization of Safe RL techniques.
We first segment the Safe RL techniques into two fundamental trends: the approaches based
on the modification of the optimization criterion, and those based on the modification of
the exploration process. We use this structure to survey the existing literature highlighting
the major advantages and drawbacks of the techniques presented. We present techniques
created specifically to address domains with a diverse nature of risk (e.g., those based on
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the variance of the return (Sato et al., 2002), on error states (Geibel and Wysotzki, 2005),
or on the controllability concept (Gehring and Precup, 2013), and others that have not been
created for this purpose, but have shown that their application to these domains can be
effective in reducing the number of undesirable situations. Most of these techniques are
described in Section 4.1 where external knowledge is used. As regards the latter, different
forms of initialization have been shown to reduce the number of helicopter crashes success-
fully (Mart́ın H. and Lope, 2009; Koppejan and Whiteson, 2011), or the number of times
the agent moves into an obstacle in a Grid-World domain (Song et al., 2012; Maire, 2005);
deriving a policy from a finite set of safe demonstrations provided by a teacher have also
been shown to be a safe way of learning policies in risky domains (Abbeel et al., 2010);
finally, the effectiveness of using teacher advice to provide actions in situations identified
as dangerous has recently been demonstrated (Garćıa and Fernández, 2012; Geramifard,
2012).

The current proliferation of robots requires that the techniques used for learning tasks
are safe. It has been shown that parameters learned in simulation often do not translate di-
rectly to reality, especially as heavy optimization on simulation has been observed to exploit
the inevitable simplification of the simulator, thus creating a gap between simulation and
application that reduces the usefulness of learning in simulation. In addition, autonomous
robotic controllers must deal with a large number of factors such as the mechanical system
and electrical characteristics of the robot, as well as the environmental complexity. There-
fore, it is important to develop learning algorithms directly applicable to robots such as
Safe RL algorithms since it could reduce the amount of damage incurred and, consequently,
allow the lifespan of the robots to be extended.

Although Safe RL has proven to be a successful tool for learning policies which con-
sider some form of risk, there are still many areas open for research, several of which we
have identified in Section 5. As an example, the techniques based on the use of a risk func-
tion (Geibel and Wysotzki, 2005; Law, 2005; Gehring and Precup, 2013) have demonstrated
their effectiveness in preventing risky situations once the risk function is correctly approxi-
mated. However, it would be desirable to prevent the risk situations from the early steps in
the learning process. In this way, teacher advice techniques can be used to incorporate prior
knowledge, thus mitigating the effects of immediate risk situations until the risk function
is correctly approximated.
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Abstract

The goal of a learner in standard online learning, is to have the cumulative loss not much
larger compared with the best-performing function from some fixed class. Numerous al-
gorithms were shown to have this gap arbitrarily close to zero, compared with the best
function that is chosen off-line. Nevertheless, many real-world applications, such as adap-
tive filtering, are non-stationary in nature, and the best prediction function may drift over
time. We introduce two novel algorithms for online regression, designed to work well in
non-stationary environment. Our first algorithm performs adaptive resets to forget the his-
tory, while the second is last-step min-max optimal in context of a drift. We analyze both
algorithms in the worst-case regret framework and show that they maintain an average
loss close to that of the best slowly changing sequence of linear functions, as long as the
cumulative drift is sublinear. In addition, in the stationary case, when no drift occurs, our
algorithms suffer logarithmic regret, as for previous algorithms. Our bounds improve over
existing ones, and simulations demonstrate the usefulness of these algorithms compared
with other state-of-the-art approaches.

Keywords: online learning, regret bounds, non-stationary input

1. Introduction

We consider the classical problem of online learning for regression. On each iteration,
an algorithm receives a new instance (for example, input from an array of antennas) and
outputs a prediction of a real value (for example distance to the source). The correct value
is then revealed, and the algorithm suffers a loss based on both its prediction and the correct
output value.

In the past half a century many algorithms were proposed (see e.g. a comprehensive
book of Cesa-Bianchi and Lugosi 2006) for this problem, some of which are able to achieve
an average loss arbitrarily close to that of the best function in retrospect. Furthermore,
such guarantees hold even if the input and output pairs are chosen in a fully adversarial
manner with no distributional assumptions. Many of these algorithms exploit first-order
information (e.g. gradients).

Recently, there is an increased amount of interest in algorithms that exploit second-
order information. For example the second-order perceptron algorithm (Cesa-Bianchi et al.,

c©2015 Edward Moroshko, Nina Vaits and Koby Crammer.
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2005), confidence-weighted learning (Dredze et al., 2008; Crammer et al., 2008), adaptive
regularization of weights (AROW) (Crammer et al., 2009), all designed for classification;
and AdaGrad (Duchi et al., 2010) and FTPRL (McMahan and Streeter, 2010) for general
loss functions.

Despite the extensive and impressive guarantees that can be made for algorithms in
such settings, competing with the best fixed function is not always good enough. In many
real-world applications, the true target function is not fixed, but is slowly changing over
time. Consider a filter designed to cancel echoes in a hall. Over time, people enter and
leave the hall, furniture are being moved, microphones are replaced and so on. When this
drift occurs, the predictor itself must also change in order to remain relevant.

With such properties in mind, we develop new learning algorithms, based on second-
order quantities, designed to work with target drift. The goal of an algorithm is to maintain
an average loss close to that of the best slowly changing sequence of functions, rather than
compete well with a single function. We focus on problems for which this sequence consists
only of linear functions. Most previous algorithms (e.g. Littlestone and Warmuth 1994;
Auer and Warmuth 2000; Herbster and Warmuth 2001; Kivinen et al. 2001) designed for
this problem are based on first-order information, such as gradient descent, with additional
control on the norm of the weight-vector used for prediction (Kivinen et al., 2001) or the
number of inputs used to define it (Cavallanti et al., 2007).

In Section 2 we review three second-order learning algorithms: the recursive least squares
(RLS) (Hayes, 1996) algorithm, the Aggregating Algorithm for regression (AAR) (Vovk,
1997, 2001), which can be shown to be derived based on a last-step min-max approach (Forster,
1999), and the AROWR algorithm (Vaits and Crammer, 2011) which is a modification of
the AROW algorithm (Crammer et al., 2009) for regression. All three algorithms obtain
logarithmic regret in the stationary setting, although derived using different approaches,
and they are not equivalent in general.

In Section 3 we formally present the non-stationary setting both in terms of algorithms
and in terms of theoretical analysis. For the RLS algorithm, a variant called CR-RLS (Sal-
gado et al., 1988; Goodwin et al., 83; Chen and Yen, 1999) for the non-stationary setting
was described, yet not analyzed, before. In Section 4 we present two new algorithms for the
non-stationary setting, that build on the other two algorithms (AROWR and AAR). Specifi-
cally, in Section 4.1 we extend the AROWR algorithm to the non-stationary setting, yielding
an algorithm called ARCOR for adaptive regularization with covariance reset. Similar to
CR-RLS, ARCOR performs a step called covariance-reset, which resets the second-order
information from time-to-time, yet it is done based on the properties of this covariance-like
matrix, and not based on the number of examples observed, as in CR-RLS.

In Section 4.2 we derive a different algorithm based on the last-step min-max approach
proposed by Forster (1999) and later used (Takimoto and Warmuth, 2000) for online density
estimation. On each iteration the algorithm makes the optimal min-max prediction with
respect to the regret, assuming it is the last iteration. Yet, unlike previous work (Forster,
1999), it is optimal when a drift is allowed. As opposed to the derivation of the last-step
min-max predictor for a fixed vector, the resulting optimization problem is not straightfor-
ward to solve. We develop a dynamic program (a recursion) to solve this problem, which
allows to compute the optimal last-step min-max predictor. We call this algorithm LASER
for last step adaptive regressor algorithm. We conclude the algorithmic part in Section 4.3
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in which we compare all non-stationary algorithms head-to-head highlighting their sim-
ilarities and differences. Additionally, after describing the details of our algorithms, we
provide in Section 5 a comprehensive review of previous work, that puts our contribution in
perspective. Both algorithms reduce to their stationary counterparts when no drift occurs.

We then move to Section 6 which summarizes our next contribution stating and proving
regret bounds for both algorithms. We analyze both algorithms in the worst-case regret-
setting and show that as long as the amount of average-drift is sublinear, the average-loss of
both algorithms will converge to the average-loss of the best sequence of functions. Specifi-
cally, we show in Section 6.1 that the cumulative loss of ARCOR after observing T examples,
denoted by LT (ARCOR), is upper bounded by the cumulative loss of any sequence of weight-

vectors {ut}, denoted by LT ({ut}), plus an additional term O
(
T 1/2 (V ({ut}))1/2 log T

)
where V ({ut}) measures the differences (or variance) between consecutive weight-vectors of
the sequence {ut}. Later, we show in Section 6.2 a similar bound for the loss of LASER, de-

noted by LT (LASER), for which the second term is O
(
T 2/3 (V ({ut}))1/3

)
. We emphasize

that in both bounds the measure V ({ut}) of differences between consecutive weight-vectors
is not defined in the same way, and thus, the bounds are not comparable in general.

In Section 7 we report results of simulations designed to highlight the properties of both
algorithms, as well as the commonalities and differences between them. We conclude in
Section 8 and most of the technical proofs appear in the appendix.

The ARCOR algorithm was presented in a shorter publication (Vaits and Crammer,
2011), as well with its analysis and some of its details. The LASER algorithm and its
analysis was also presented in a shorter version (Moroshko and Crammer, 2013). The
contribution of this submission is three-fold. First, we provide head-to-head comparison of
three second-order algorithms for the stationary case. Second, we fill the gap of second-order
algorithms for the non-stationary case. Specifically, we add to the CR-RLS (which extends
RLS) and design second-order algorithms for the non-stationary case and analyze them,
building both on AROWR and AAR. Our algorithms are derived from different principles,
which is reflected in our analysis. Finally, we provide empirical evidence showing that under
various conditions different algorithm performs the best.

Some notation we use throughout the paper: For a symmetric matrix Σ we denote its jth
eigenvalue by λj(Σ). Similarly we denote its smallest eigenvalue by λmin(Σ) = minj λj(Σ),
and its largest eigenvalue by λmax(Σ) = maxj λj(Σ). For a vector u ∈ Rd, we denote by
‖u‖ the `2-norm of the vector. Finally, for y > 0 we define clip(x, y) = sign(x) min{|x|, y}.

2. Stationary Online Learning

We focus on the online regression task evaluated with the squared loss, where algorithms
work in iterations (or rounds). On each round an online algorithm receives an input-vector
xt ∈ Rd and predicts a real value ŷt ∈ R. Then the algorithm receives a target label yt ∈ R
associated with xt, uses it to update its prediction rule, and proceeds to the next round.

On each iteration, the performance of the algorithm is evaluated using the squared
loss, `t(alg) = ` (yt, ŷt) = (ŷt − yt)2. The cumulative loss suffered by the algorithm over T
iterations is, LT (alg) =

∑T
t=1 `t(alg).
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The goal of the algorithm is to have low cumulative loss compared to predictors from
some class. A large body of work, which we adopt as well, is focused on linear prediction
functions of the form f(x) = x>u where u ∈ Rd is some weight-vector. We denote by

`t(u) =
(
x>t u− yt

)2
the instantaneous loss of a weight-vector u. The cumulative loss

suffered by a fixed weight-vector u is, LT (u) =
∑T

t=1 `t(u).
The goal of the learning algorithm is to suffer low loss compared with the best linear

function. Formally we define the regret of an algorithm to be

R(T ) = LT (alg)− inf
u
LT (u) .

The goal of an algorithm is to have R(T ) = o(T ), such that the average loss of the
algorithm will converge to the average loss of the best linear function u.

Numerous algorithms were developed for this problem, see a comprehensive review in
the book of Cesa-Bianchi and Lugosi (2006). Among these, a few second-order online
algorithms for regression were proposed in recent years, which we summarize in Table 1.
One approach for online learning is to reduce the problem into consecutive batch problems,
and specifically use all previous examples to generate a regressor, which is used to predict
the current example. The least squares approach, for example, sets a weight-vector to be
the solution of the following optimization problem

wt = arg min
w

(
t∑
i=1

rt−i (yi −w · xi)2

)
,

for 0 < r ≤ 1. Since the last problem grows with time, the well known recursive least
squares (RLS) (Hayes, 1996) algorithm was developed to generate a solution recursively.
The RLS algorithm maintains both a vector wt and a positive semi-definite (PSD) matrix
Σt. On each iteration, after making a prediction ŷt = x>t wt−1, the algorithm receives the
true label yt and updates

wt = wt−1 +
(yt − x>t wt−1)Σt−1xt

r + x>t Σt−1xt
(1)

Σ−1
t = rΣ−1

t−1 + xtx
>
t . (2)

The update of the prediction vector wt is additive, with vector Σt−1xt scaled by the error
(yt − x>t wt−1) over the norm of the input measured using the norm defined by the matrix
x>t Σt−1xt. The algorithm is summarized in the right column of Table 1.

The Aggregating Algorithm for regression (AAR) (Vovk, 1997; Azoury and Warmuth,
2001), summarized in the middle column of Table 1, was introduced by Vovk and it is similar
to the RLS algorithm, except it shrinks its predictions. The AAR algorithm was shown to be
last-step min-max optimal by Forster (1999). Given a new input xT the algorithm predicts
ŷT which is the minimizer of the following problem

arg min
ŷT

max
yT

[
T∑
t=1

(yt − ŷt)2 − inf
u

(
b ‖u‖2 + LT (u)

)]
. (3)

Forster proposed also a simpler analysis with the same regret bound as of Vovk (1997).
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The AROWR algorithm (Vaits and Crammer, 2011) is a modification of the AROW
algorithm (Crammer et al., 2009) for regression. In a nutshell, the AROW algorithm main-
tains a Gaussian distribution parameterized by a mean wt ∈ Rd and a full covariance matrix
Σt ∈ Rd×d. Intuitively, the mean wt represents a current linear function, while the covari-
ance matrix Σt captures the uncertainty in the linear function wt. Given a new input xt the
algorithm uses its current mean to make a prediction ŷt = x>t wt−1. Then, given the true
label yt, AROWR sets the new distribution to be the solution of the following optimization
problem

arg min
w,Σ

[
DKL[N (w,Σ) ‖N (wt−1,Σt−1)] +

1

2r

(
yt −w>xt

)2
+

1

2r

(
x>t Σxt

)]
, (4)

for r > 0. This optimization problem is similar to the one of AROW (Crammer et al.,
2009) for classification, except we use the square loss rather than squared-hinge loss used in
AROW. Intuitively, the optimization problem trades off between three requirements. The
first term forces the parameters not to change much per example, as the entire learning
history is encapsulated within them. The second term requires that the new vector wt

should perform well on the current instance, and finally, the third term reflects the fact
that the uncertainty about the parameters reduces as we observe the current example xt.

The weight vector solving this optimization problem (details given by Vaits and Cram-
mer 2011) is given by

wt = wt−1 +

(
yt −wt−1 · xt
r + x>t Σt−1xt

)
Σt−1xt , (5)

and the optimal covariance matrix is

Σ−1
t = Σ−1

t−1 +
1

r
xtx

>
t . (6)

The algorithm is summarized in the left column of Table 1. Comparing AROWR to RLS
we observe that while the update of the weights of (5) is equivalent to the update of RLS
in (1), the update of the matrix (2) for RLS is not equivalent to (6), as in the former case
the matrix goes via a multiplicative update as well as additive, while in (6) the update is
only additive. The two updates are equivalent only by setting r = 1. Moving to AAR, we
note that the update rules for wt and Σt in AROWR and AAR are the same if we define
ΣAAR
t = ΣAROWR

t /r, but AROWR does not shrink its predictions as AAR. Thus all three
algorithms are not equivalent, although very similar.

3. Non-Stationary Online Learning

The analysis of all algorithms discussed above compares their performance to that of a
single fixed weight vector u, and all suffer regret that is logarithmic in T . However, in
many real-world applications, the true target function is not fixed, but is slowly changing
over time.

We use an extended notion of evaluation, comparing our algorithms to a sequence of
functions. We define the loss suffered by such a sequence to be

LT (u1, . . . ,uT ) = LT ({ut}) =

T∑
t=1

`t(ut) ,
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and the tracking regret is then defined to be

R(T ) = LT (alg)− inf
u1,...,uT

LT ({ut}) .

We focus on algorithms that are able to compete against sequences of weight-vectors,
(u1, . . . ,uT ) ∈ Rd × · · · × Rd, where ut is used to make a prediction for the tth exam-
ple (xt, yt). Note the difference between tracking regret (where the algorithm is compared
to a good sequence of experts, as we do) and adaptive regret (Adamskiy et al., 2012), which
measures how well the algorithm approximates the best expert locally on some time interval.

Clearly, with no restriction over the set {ut} the right term of the regret can easily be
zero by setting, ut = xt(yt/ ‖xt‖2), which implies `t(ut) = 0 for all t. Thus, in the analysis
below we will make use of the total drift of the weight-vectors defined to be

V (P ) = V
(P )
T ({ut}) =

T−1∑
t=1

‖ut − ut+1‖P ,

where P ∈ {1, 2}, and the total loss of the algorithm is allowed to scale with the total drift.
For the three algorithms in Table 1 the matrix Σ can be interpreted as adaptive learn-

ing rate, as was also observed previously in the context of CW (Dredze et al., 2008),
AROW (Crammer et al., 2009), AdaGrad (Duchi et al., 2010) and FTPRL (McMahan
and Streeter, 2010). As these algorithms process more examples, that is larger values of t,
the eigenvalues of the matrix Σ−1

t increase, the eigenvalues of the matrix Σt decrease, and
we get that the rate of updates is getting smaller, since the additive term Σt−1xt is getting
smaller. As a consequence the algorithms will gradually stop updating using current in-
stances which lie in the subspace of examples that were previously observed numerous times.
This property leads to a very fast convergence in the stationary case. However, when we
allow these algorithms to be compared with a sequence of weight-vectors, each applied to a
different input example, or equivalently, there is a drift or shift of a good prediction vector,
these algorithms will perform poorly, as they will converge and will not be able to adapt to
the non-stationarity nature of the data.

This phenomena motivated the proposal of the CR-RLS algorithm (Salgado et al., 1988;
Goodwin et al., 83; Chen and Yen, 1999), which re-sets the covariance matrix every fixed
number of input examples, causing the algorithm not to converge or get stuck. The pseudo-
code of CR-RLS algorithm is given in the right column of Table 2. The only difference of
CR-RLS from RLS is that after updating the matrix Σt, the algorithm checks whether T0

(a predefined natural number) examples were observed since the last restart, and if this
is the case, it sets the matrix to be the identity matrix. Clearly, if T0 = ∞ the CR-RLS
algorithm is reduced to the RLS algorithm.

4. Algorithms for Non-Stationary Regression

In this work we fill the gap and propose extension to non-stationary setting for the two
other algorithms in Table 1. Similar to CR-RLS, both algorithms modify the matrix Σt

to prevent its eigenvalues to shrink to zero. The first algorithm, described in Section 4.1,
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AROWR AAR RLS
Parameters 0 < r 0 < b 0 < r ≤ 1

Initialize w0 = 0 , Σ0 = I w0 = 0 , Σ0 = b−1I w0 = 0 , Σ0 = I
Receive an instance xt

for t = 1...T

Output
prediction

ŷt = x
>
t wt−1

ŷt =
x>t wt−1

1 + x>t Σt−1xt

ŷt = x
>
t wt−1

Receive a correct label yt

Update Σt Σ
−1
t = Σ

−1
t−1+

1

r
xtx
>
t

Σ
−1
t = Σ

−1
t−1 +xtx

>
t Σ

−1
t = rΣ

−1
t−1 + xtx

>
t

Update wt
wt = wt−1

+
(yt−x>t wt−1)Σt−1xt

r+x>t Σt−1xt

wt = wt−1

+
(yt−x>t wt−1)Σt−1xt

1+x>t Σt−1xt

wt = wt−1

+
(yt−x>t wt−1)Σt−1xt

r+x>t Σt−1xt

Output wT , ΣT wT , ΣT wT , ΣT
Extension to non-stationary

setting
ARCOR Section 4.1
below

LASER Section 4.2
below

CR-RLS (Goodwin
et al., 83)

Analysis yes, Section 6.1
below

yes, Section 6.2
below

No

Table 1: Algorithms for stationary setting and their extension to non-stationary case

extends AROWR to the non-stationary setting and is similar in spirit to CR-RLS, yet the
restart operations it performs depend on the spectral properties of the covariance matrix,
rather than the time index t. Additionally, this algorithm performs a projection of the
weight vector into a predefined ball. Similar technique was used in first order algorithms
by Herbster and Warmuth (2001), and Kivinen and Warmuth (1997). Both steps are
motivated from the design and analysis of AROWR. Its design is composed of solving small
optimization problems defined in (4), one per input example. The non-stationary version
performs explicit corrections to its update, in order to prevent from the covariance matrix
to shrink to zero, and the weight-vector to grow too fast.

The second algorithm, described in Section 4.2, is based on a last-step min-max pre-
diction principle and objective, where we replace LT (u) in (3) with LT ({ut}) and some
additional modifications preventing the solution being degenerate. Here the algorithmic
modifications from the original AAR algorithm are implicit and are due to the modifica-
tions of the objective. The resulting algorithm smoothly interpolates the covariance matrix
with the identity matrix.

4.1 ARCOR: Adaptive Regularization of Weights for Regression with
Covariance Reset

Our first algorithm is based on the AROWR. We propose two modifications to (5) and (6),
which in combination overcome the problem that the algorithm’s learning rate gradually
goes to zero. The modified algorithm operates on segments of the input sequence. In each
segment indexed by i, the algorithm checks whether the lowest eigenvalue of Σt is greater
than a given lower bound Λi. Once the lowest eigenvalue of Σt is smaller than Λi the
algorithm resets Σt = I and updates the value of the lower bound Λi+1. Formally, the
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algorithm uses the update (6) to compute an intermediate candidate for Σt, denoted by

Σ̃t =

(
Σ−1
t−1 +

1

r
xtx

>
t

)−1

. (7)

If indeed Σ̃t � ΛiI then it sets Σt = Σ̃t, otherwise it sets Σt = I and the segment index is
increased by 1.

Additionally, before our modification, the norm of the weight vector wt did not increase
much as the effective learning rate (the matrix Σt) went to zero. After our update, as the
learning rate is effectively bounded from below, the norm of wt may increase too fast, which
in turn will cause a low update-rate in non-stationary inputs.

We thus employ additional modification which is exploited by the analysis. After up-
dating the mean wt as in (5),

w̃t = wt−1 +
(yt − x>t wt−1)Σt−1xt

r + x>t Σt−1xt
, (8)

we project it into a ball B around the origin of radius RB using a Mahalanobis distance. For-
mally, we define the function proj(w̃,Σ, RB) to be the solution of the following optimization
problem

arg min
‖w‖≤RB

1

2
(w − w̃)>Σ−1 (w − w̃) .

We write the Lagrangian,

L =
1

2
(w − w̃)>Σ−1 (w − w̃) + α

(
1

2
‖w‖2 − 1

2
R2
B

)
.

Setting the gradient with respect to w to zero we get, Σ−1 (w − w̃) + αw = 0. Solving for
w we get

w =
(
αI + Σ−1

)−1
Σ−1w̃ = (I + αΣ)−1 w̃ .

From KKT conditions we get that if ‖w̃‖ ≤ RB then α = 0 and w = w̃. Otherwise, α
is the unique positive scalar that satisfies ‖ (I + αΣ)−1 w̃‖ = RB. The value of α can be
found using binary search and eigen-decomposition of the matrix Σ. We write explicitly
Σ = V ΛV > for a diagonal matrix Λ. By denoting u = V >w̃ we rewrite the last equation,

‖ (I + αΛ)−1 u‖ = RB. We thus wish to find α such that
∑d

j

u2
j

(1+αΛj,j)2 = R2
B. It can be

done using a binary search for α ∈ [0, a] where a = (‖u‖/RB − 1)/λmin(Λ). To summarize,
the projection step can be performed in time cubic in d and logarithmic in RB and Λi.

We call the algorithm ARCOR for adaptive regularization with covariance reset. A
pseudo-code of the algorithm is summarized in the left column of Table 2. We defer a
comparison of ARCOR and CR-RLS after the presentation of our second algorithm now.

1488



Second-Order Non-Stationary Online Learning for Regression

ARCOR LASER CR-RLS
Parame-

ters
0 < r,RB , a sequence
1 > Λ1 ≥ Λ2...

0 < b < c 0 < r ≤ 1, T0 ∈ N

Initialize w0 = 0 , Σ0 = I , i = 1 w0 = 0 , Σ0 = c−b
bc

I w0 = 0 , Σ0 = I

Receive an instance xt

for
t = 1...T

Output
prediction

ŷt = x
>
t wt−1

ŷt =
x>t wt−1

1 + x>t
(
Σt−1 + c−1I

)
xt

ŷt = x
>
t wt−1

Receive a correct label yt

Update Σt

Σ̃
−1
t = Σ

−1
t−1 +

1

r
xtx
>
t

Σ
−1
t =

(
Σt−1 + c

−1
I
)−1

+xtx
>
t

Σ̃
−1
t = rΣ

−1
t−1+xtx

>
t

If Σ̃t � ΛiI set Σt = Σ̃t
else set Σt = I , i = i + 1

If mod (t, T0) > 0

set Σt = Σ̃t
else set Σt = I

Update wt
w̃t = wt−1

+
(yt−x>t wt−1)Σt−1xt

r+x>t Σt−1xt

wt = proj (w̃t,Σt, RB)

wt = wt−1

+
(yt−x>t wt−1)

(
Σt−1+c−1I

)
xt

1+x>t
(
Σt−1+c−1I

)
xt

wt = wt−1

+
(yt−x>t wt−1)Σt−1xt

r+x>t Σt−1xt

Output wT , ΣT wT , ΣT wT , ΣT

Table 2: ARCOR, LASER and CR-RLS algorithms

4.2 Last-Step Min-Max Algorithm for Non-Stationary Setting

Our second algorithm is based on a last-step min-max predictor proposed by Forster (1999)
and later modified by Moroshko and Crammer (2012) to obtain sub-logarithmic regret in
the stationary case. On each round, the algorithm predicts as in the last round, and assumes
a worst case choice of yt given the algorithm’s prediction.

We extend the rule given in (3) to the non-stationary setting, and re-define the last-step
minmax predictor ŷT to be1

arg min
ŷT

max
yT

[
T∑
t=1

(yt − ŷt)2 − min
u1,..,uT

QT (u1, ...,uT )

]
, (9)

where

Qt (u1, . . . ,ut) = b ‖u1‖2 + c
t−1∑
s=1

‖us+1 − us‖2 +
t∑

s=1

(
ys − u>s xs

)2
, (10)

for some positive constants b, c. The first term of (9) is the loss suffered by the algorithm
while Qt (u1, . . . ,ut) defined in (10) is a sum of the loss suffered by some sequence of linear
functions (u1, . . . ,ut), and a penalty for consecutive pairs that are far from each other, and
for the norm of the first to be far from zero.

1. yT and ŷT serve both as quantifiers (over the max and min operators, respectively), and as the optimal
arguments of this optimization problem.
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We develop the algorithm by solving the three optimization problems in (9), first, min-
imizing the inner term, minu1,..,uT QT (u1, ...,uT ), maximizing over yT , and finally, mini-
mizing over ŷT . We start with the inner term for which we define an auxiliary function

Pt (ut) = min
u1,...,ut−1

Qt (u1, . . . ,ut) ,

which clearly satisfies

min
u1,...,ut

Qt (u1, . . . ,ut) = min
ut

Pt(ut) .

The following lemma states a recursive form of the function-sequence Pt(ut).

Lemma 1 For t = 2, 3, . . .

P1(u1) = Q1(u1)

Pt (ut) = min
ut−1

(
Pt−1 (ut−1) + c ‖ut − ut−1‖2 +

(
yt − u>t xt

)2
)
.

The proof appears in Appendix A. Using Lemma 1 we write explicitly the function Pt(ut).

Lemma 2 The following equality holds

Pt (ut) = u>t Dtut − 2u>t et + ft ,

where

D1 = bI + x1x
>
1 Dt =

(
D−1
t−1 + c−1I

)−1
+ xtx

>
t (11)

e1 = y1x1 et =
(
I + c−1Dt−1

)−1
et−1 + ytxt (12)

f1 = y2
1 ft = ft−1 − e>t−1 (cI +Dt−1)−1 et−1 + y2

t . (13)

Note that Dt ∈ Rd×d is a positive definite matrix, et ∈ Rd×1 and ft ∈ R. The proof appears
in Appendix B. From Lemma 2 we conclude that

min
u1,...,ut

Qt (u1, . . . ,ut) = min
ut

Pt (ut) = min
ut

(
u>t Dtut − 2u>t et + ft

)
= −e>t D−1

t et + ft .

(14)

Substituting (14) back in (9) we get that the last-step minmax predictor is given by

ŷT = arg min
ŷT

max
yT

[
T∑
t=1

(yt − ŷt)2 + e>TD
−1
T eT − fT

]
. (15)

Since eT depends on yT we substitute (12) in the second term of (15),

e>TD
−1
T eT =

((
I + c−1DT−1

)−1
eT−1 + yTxT

)>
D−1
T

((
I + c−1DT−1

)−1
eT−1 + yTxT

)
.

(16)
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Substituting (16) and (13) in (15) and omitting terms not depending explicitly on yT and
ŷT we get

ŷT = arg min
ŷT

max
yT

[
(yT − ŷT )2 + y2

Tx
>
TD
−1
T xT + 2yTx

>
TD
−1
T

(
I + c−1DT−1

)−1
eT−1 − y2

T

]
= arg min

ŷT
max
yT

[(
x>TD

−1
T xT

)
y2
T + 2yT

(
x>TD

−1
T

(
I + c−1DT−1

)−1
eT−1 − ŷT

)
+ ŷ2

T

]
.

(17)

The last equation is strictly convex in yT and thus the optimal solution is not bounded.
To solve it, we follow an approach used by Forster (1999) in a different context. In order
to make the optimal value bounded, we assume that the adversary can only choose labels
from a bounded set yT ∈ [−Y, Y ]. Thus, the optimal solution of (17) over yT is given by
the following equation, since the optimal value is yT ∈ {+Y,−Y },

ŷT = arg min
ŷT

[(
x>TD

−1
T xT

)
Y 2 + 2Y

∣∣∣x>TD−1
T

(
I + c−1DT−1

)−1
eT−1 − ŷT

∣∣∣+ ŷ2
T

]
.

This problem is of a similar form to the one discussed by Forster (1999), from which we get

the optimal solution, ŷT = clip
(
x>TD

−1
T

(
I + c−1DT−1

)−1
eT−1, Y

)
.

The optimal solution depends explicitly on the bound Y , and as its value is not known,
we thus ignore it, and define the output of the algorithm to be

ŷT = x>TD
−1
T

(
I + c−1DT−1

)−1
eT−1 = x>TD

−1
T D′T−1eT−1 , (18)

where we define
D′t−1 =

(
I + c−1Dt−1

)−1
. (19)

We call the algorithm LASER for last step adaptive regressor algorithm. Clearly, for c =∞
the LASER algorithm reduces to the AAR algorithm. Similar to CR-RLS and ARCOR,
this algorithm can be also expressed in terms of weight-vector wt and a PSD matrix Σt, by
denoting wt = D−1

t et and Σt = D−1
t . The algorithm is summarized in the middle column

of Table 2.

4.3 Discussion

Table 2 enables us to compare the three algorithms head-to-head. All algorithms perform
predictions, and then update the prediction vector wt and the matrix Σt. CR-RLS and
ARCOR are more similar to each other, both stem from a stationary algorithm, and perform
resets from time-to-time. For CR-RLS it is performed every fixed time steps, while for
ARCOR it is performed when the eigenvalues of the matrix (or effective learning rate) are
too small. ARCOR also performs a projection step, which is motivated to ensure that the
weight-vector will not grow to much, and is used explicitly in the analysis below. Note that
CR-RLS (as well as RLS) also uses a forgetting factor (if r < 1).

Our second algorithm, LASER, controls the covariance matrix in a smoother way. On
each iteration it interpolates it with the identity matrix before adding xtx

>
t . Note that if λ

is an eigenvalue of Σ−1
t−1 then λ× (c/(λ+ c)) < λ is an eigenvalue of

(
Σt−1 + c−1I

)−1
. Thus
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the algorithm implicitly reduces the eigenvalues of the inverse covariance (and increases the
eigenvalues of the covariance).

Finally, all three algorithms can be combined with Mercer kernels as they employ only
sums of inner- and outer-products of its inputs. This allows them to perform non-linear
predictions, similar to SVM.

5. Related Work

There is a large body of research in online learning for regression problems. Almost half a
century ago, Widrow and Hoff (1960) developed a variant of the least mean squares (LMS)
algorithm for adaptive filtering and noise reduction. The algorithm was further developed
and analyzed extensively, for example by Feuer and Weinstein (1985). The normalized least
mean squares filter (NLMS) (Bershad, 1986; Bitmead and Anderson, 1980) is similar to
LMS but it is insensitive to scaling of the input. The recursive least squares (RLS) (Hayes,
1996) is the closest to our algorithms in the signal processing literature and also maintains
a weight-vector and a covariance-like matrix, which is positive semi-definite (PSD), that is
used to re-weight inputs.

In the machine learning literature the problem of online regression was studied exten-
sively, and clearly we cannot cover all the relevant work. Cesa-Bianchi et al. (1993) studied
gradient descent based algorithms for regression with the squared loss. Kivinen and War-
muth (1997) proposed various generalizations for general regularization functions. We refer
the reader to a comprehensive book in the subject (Cesa-Bianchi and Lugosi, 2006).

Foster (1991) studied an online version of the ridge regression algorithm in the worst-
case setting. Vovk (1990) proposed a related algorithm called the Aggregating Algorithm
(AA), which was later applied to the problem of linear regression with square loss (Vovk,
1997, 2001). Forster (1999) simplified the regret analysis for this problem. Both algorithms
employ second-order information. ARCOR for the separable case is very similar to these
algorithms, although has alternative derivation. Recently, few algorithms were proposed
either for classification (Cesa-Bianchi et al., 2005; Dredze et al., 2008; Crammer et al., 2008,
2009) or for general loss functions (Duchi et al., 2010; McMahan and Streeter, 2010) in the
online convex programming framework. AROWR (Vaits and Crammer, 2011) shares the
same design principles of AROW (Crammer et al., 2009) yet it is aimed for regression. The
ARCOR algorithm takes AROWR one step further and it has two important modifications
which makes it work in the drifting or shifting settings. These modifications make the
analysis more complex than of AROW.

Two of the approaches used in previous algorithms for non-stationary setting are bound-
ing the weight vector and covariance reset. Bounding the weight vector was performed either
by projecting it into a bounded set (Herbster and Warmuth, 2001), shrinking it by multipli-
cation (Kivinen et al., 2001), or subtraction of previously seen examples (Cavallanti et al.,
2007). These three methods (or at least most of their variants) can be combined with kernel
operators, and in fact, the last two approaches were designed and motivated by kernels.

The Covariance Reset RLS algorithm (CR-RLS) (Salgado et al., 1988; Goodwin et al.,
83; Chen and Yen, 1999) was designed for adaptive filtering. CR-RLS makes covariance
reset every fixed amount of data points, while ARCOR performs restarts based on the
actual properties of the data - the eigenspectrum of the covariance matrix. Furthermore,

1492



Second-Order Non-Stationary Online Learning for Regression

as far as we know, there is no analysis in the mistake bound model for CR-RLS. Both
ARCOR and CR-RLS are motivated from the property that the covariance matrix goes to
zero and becomes rank deficient. In both algorithms the information encapsulated in the
covariance matrix is lost after restarts. In a rapidly varying environments, like a wireless
channel, this loss of memory can be beneficial, as previous contributions to the covariance
matrix may have little correlation with the current structure. Recent versions of CR-
RLS (Goodhart et al., 1991; Song et al., 2002) employ covariance reset to have numerically
stable computations.

ARCOR algorithm combines two techniques with second-order algorithm for regression.
In this aspect it has the best of all worlds, fast convergence rate due to the usage of second-
order information, and the ability to adapt in non-stationary environments due to projection
and resets.

LASER is simpler than all these algorithms as it controls the increase of the eigenvalues
of the covariance matrix, implicitly rather than explicitly, by “averaging” it with a fixed di-
agonal matrix (see 11), and it does not involve projection steps. The Kalman filter (Kalman,
1960) and the H∞ algorithm (e.g. the work of Simon 2006) designed for filtering take a
similar approach, yet the exact algebraic form is different.

The derivation of the LASER algorithm in this work shares similarities with the work
of Forster (1999) and the work of Moroshko and Crammer (2012). These algorithms are mo-
tivated from the last-step min-max predictor. Yet, the algorithms of Forster and Moroshko
and Crammer are designed for the stationary setting, while LASER is primarily designed
for the non-stationary setting. Moroshko and Crammer (2012) also discussed a weak variant
of the non-stationary setting, where the complexity is measured by the total distance from
a reference vector ū, rather than the total distance of consecutive vectors (as in this paper),
which is more relevant to non-stationary problems.

6. Regret Bounds

We now analyze our algorithms in the non-stationary case, upper bounding the regret using
more than a single comparison vector. Specifically, our goal is to prove bounds that would
hold uniformly for all inputs, and are of the form

LT (alg) ≤ LT ({ut}) + α(T )
(
V (P )

)γ
,

for either P = 1 or P = 2, a constant γ and a function α(T ) that may depend implicitly on
other quantities of the problem.

Specifically, in the next section we show (Corollary 6) that under a particular choice of
Λi = Λi(V

(1)) for the ARCOR algorithm, its regret is bounded by

LT (ARCOR) ≤ LT ({ut}) +O
(
T

1
2

(
V (1)

) 1
2

log T

)
.

Additionally, in Section 6.2, we show (Corollary 12) that under proper choice of the constant
c = c

(
V (2)

)
, the regret of LASER is bounded by

LT (LASER) ≤ LT ({ut}) +O
(
T

2
3

(
V (2)

) 1
3

)
.

1493



Moroshko, Vaits and Crammer

The two bounds are not comparable in general. For example, assume a constant instanta-
neous drift ‖ut+1−ut‖ = ν for some constant value ν. In this case the variance and squared
variance are, V (1) = Tν and V (2) = Tν2. The bound of ARCOR becomes asymptotically
ν

1
2T log T , while the bound of LASER becomes asymptotically ν

2
3T . Hence the bound of

LASER is better in this case.

Another example is polynomial decay of the drift, ‖ut+1 − ut‖ ≤ t−κ for some κ > 0.

In this case, for κ 6= 1 we get2 V (1) ≤
∑T−1

t=1 t−κ ≤
∫ T−1

1 t−κdt+ 1 = (T−1)1−κ−κ
1−κ . For κ = 1

we get V (1) ≤ log(T − 1) + 1. For LASER we have, for κ 6= 0.5, V (2) ≤
∑T−1

t=1 t−2κ ≤∫ T−1
1 t−2κdt+ 1 = (T−1)1−2κ−2κ

1−2κ . For κ = 0.5 we get V (2) ≤ log(T − 1) + 1. Asymptotically,
ARCOR outperforms LASER about when κ ≥ 0.7.

Herbster and Warmuth (2001) developed shifting bounds for general gradient descent
algorithms with projection of the weight-vector using the Bregman divergence. In their
bounds, there is a factor greater than 1 multiplying the term LT ({ut}) (see also theorem
11.4 in Cesa-Bianchi and Lugosi 2006). However, it is possible to get regret bound similar
to ARCOR bound above, as they have an implicit parameter that can be tuned with the

prior knowledge of LT ({ut}) and V (1), leading to regret of O
(√

LT ({ut})V (1)
)

, or just

O
(√

TV (1)
)

, assuming only the knowledge of V (1).

Busuttil and Kalnishkan (2007) developed a variant of the Aggregating Algorithm (Vovk,
1990) for the non-stationary setting. However, to have sublinear regret they require a strong
assumption on the drift V (2) = o(1), while we require only V (2) = o(T ) (for LASER) or
V (1) = o(T ) (for ARCOR).

6.1 Analysis of the ARCOR Algorithm

Let us define additional notation that we will use in our bounds. We denote by ti the
example index for which a restart was performed for the ith time, that is Σti = I for all i.
We define by n the total number of restarts, or intervals. We denote by Ti = ti − ti−1 the
number of examples between two consecutive restarts. Clearly T =

∑n
i=1 Ti. Finally, we

denote by Σi−1 = Σti−1 just before the ith restart, and we note that it depends on exactly
Ti examples (since the last restart).

In what follows we compare the performance of the ARCOR algorithm to the perfor-
mance of a sequence of weight vectors ut ∈ Rd, which are of norm bounded by RB. In
other words, all the vectors ut belong to B. We break the proof into four steps. In the first
step (Theorem 3) we bound the regret when the algorithm is executed with some value of
parameters {Λi} and the resulting covariance matrices. In the second step, summarized in
Corollary 4, we remove the dependencies in the covariance matrices by taking a worst case
bound. In the third step, summarized in Lemma 5, we upper bound the total number of
switches n given the parameters {Λi}. Finally, in Corollary 6 we provide the regret bound
for a specific choice of the parameters. We now move to state the first theorem.

Theorem 3 Assume that the ARCOR algorithm is run with an input sequence (x1, y1), . . . , (xT , yT ).
Assume that all the inputs are upper bounded by unit norm ‖xt‖ ≤ 1 and that the outputs

2. This is correct because f(t) = t−κ is a monotonically decreasing function for κ > 0 and thus we can
lower bound the integral with the right Riemann sum. In addition f(1) = 1.
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are bounded by Y = maxt |yt|. Let ut be any sequence of bounded weight vectors ‖ut‖ ≤ RB.
Then, the cumulative loss is bounded by

LT (ARCOR) ≤ LT ({ut}) + 2RBr
∑
t

1

Λi(t)
‖ut−1 − ut‖

+ ru>T Σ−1
T uT + 2

(
R2
B + Y 2

) n∑
i

log det
((

Σi
)−1
)
,

where n is the number of covariance restarts and Σi−1 is the value of the covariance matrix
just before the ith restart.

The proof appears in Appendix C. Note that the number of restarts n is not fixed but
depends both on the total number of examples T and the scheme used to set the values of
the lower bound of the eigenvalues Λi. In general, the lower the values of Λi are, the smaller
number of covariance-restarts occur, yet the larger the value of the last term of the bound
is, which scales inversely proportional to Λi. A more precise statement is given in the next
corollary.

Corollary 4 Assume that the ARCOR algorithm made n restarts and {Λi} are monoton-
ically decreasing with i (which is satisfied by our choice later). Under the conditions of
Theorem 3 we have

LT (ARCOR) ≤ LT ({ut}) + 2RBrΛ
−1
n

∑
t

‖ut−1 − ut‖

+ 2
(
R2
B + Y 2

)
dn log

(
1 +

T

nrd

)
+ ru>T Σ−1

T uT .

Proof By definition we have

(
Σi
)−1

= I +
1

r

Ti+ti∑
t=ti

xtx
>
t .

Denote the eigenvalues of
∑Ti+ti

t=ti
xtx

>
t by λ1, . . . , λd. Since ‖xt‖ ≤ 1 their sum is Tr

(∑Ti+ti
t=ti

xtx
>
t

)
≤

Ti. We use the concavity of the log function to bound log det
((

Σi
)−1
)

=
∑d

j log
(

1 +
λj
r

)
≤

d log
(

1 + Ti
rd

)
. We use concavity again to bound the sum

n∑
i

log det
((

Σi
)−1
)
≤

n∑
i

d log

(
1 +

Ti
rd

)
≤ dn log

(
1 +

T

nrd

)
,

where we used the fact that
∑n

i Ti = T . Substituting the last inequality in Theorem 3, as
well as using the monotonicity of the coefficients, Λi ≥ Λn for all i ≤ n, yields the desired
bound.

Implicitly, the second and third terms of the bound have opposite dependence on n. The
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second term is decreasing with n. If n is small it means that the lower bound Λn is very
low (otherwise we would make many restarts) and thus Λ−1

n is large. The third term is
increasing with n� T . We now make this implicit dependence explicit.

Our goal is to bound the number of restarts n as a function of the number of examples
T . This depends on the exact sequence of values Λi used. The following lemma provides a
bound on n given a specific sequence of Λi.

Lemma 5 Assume that the ARCOR algorithm is run with some sequence of Λi. Then, the
number of restarts is upper bounded by

n ≤ max
N

{
N : T ≥ r

N∑
i

(
Λ−1
i − 1

)}
.

Proof Since
∑n

i=1 Ti = T , then the number of restarts is maximized when the number
of examples between restarts Ti is minimized. We prove now a lower bound on Ti for all
i = 1 . . . n. A restart occurs for the ith time when the smallest eigenvalue of Σt is smaller
(for the first time) than Λi.

As before, by definition,
(
Σi
)−1

= I + 1
r

∑Ti+ti
t=ti

xtx
>
t . By a result in matrix analy-

sis (Golub and Van Loan, 1996, Theorem 8.1.8) we have that there exists a matrix A ∈ Rd×Ti
with each column belongs to a bounded convex body that satisfy ak,l ≥ 0 and

∑
k ak,l ≤ 1

for l = 1, . . . , Ti, such that the kth eigenvalue λik of
(
Σi
)−1

equals to λik = 1 + 1
r

∑Ti
l=1 ak,l.

The value of Ti is defined when the largest eigenvalue of
(
Σi
)−1

hits Λ−1
i . Formally, we get

the following lower bound on Ti,

arg min
{ak,l}

s

s.t. max
k

(
1 +

1

r

s∑
l=1

ak,l

)
≥ Λ−1

i

ak,l ≥ 0 for k = 1, . . . , d, l = 1, . . . , s∑
k

ak,l ≤ 1 for l = 1, . . . , s .

For a fixed value of s, a maximal value maxk
(
1 + 1

r

∑s
l=1 ak,l

)
is obtained when each column

of A concentrates the “mass” in one value k = k0 and equal to its maximal value ak0,l = 1
for l = 1, . . . , s. That is, we have ak,l = 1 for k = k0 and ak,l = 0 otherwise. In this
case maxk

(
1 + 1

r

∑s
l=1 ak,l

)
= 1 + 1

rs and the lower bound is obtained when 1 + 1
rs = Λ−1

i .
Solving for s we get that the shortest possible length of the ith interval is bounded by,
Ti ≥ r

(
Λ−1
i − 1

)
. Summing over the last equation we get, T =

∑n
i Ti ≥ r

∑n
i

(
Λ−1
i − 1

)
.

Thus, the number of restarts is upper bounded by the maximal value n that satisfies the
last inequality.

We now prove a bound for a specific choice of the parameters {Λi}, namely polynomial
decay, Λ−1

i = iq−1 +1 for q > 1 (note that the thresholds {Λi} are monotonically decreasing
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with i). This scheme of setting {Λi} balances between the amount of drift (need for many
restarts) and the property that using the covariance matrix for updates achieves fast con-
vergence. We note that an exponential scheme Λi = 2−i will lead to very few restarts, and
very small eigenvalues of the covariance matrix. Intuitively, this is because the last segment
will be about half the length of the entire sequence. Combining Lemma 5 with Corollary 4
we get,

Corollary 6 Assume that the ARCOR algorithm is run with a polynomial scheme, that is
Λ−1
i = iq−1 + 1 for some q > 1. Under the conditions of Theorem 3 we have

LT (ARCOR) ≤ LT ({ut}) + ru>T Σ−1
T uT

+ 2
(
R2
B + Y 2

)
d (qT + 1)

1
q log

(
1 +

T

nrd

)
(20)

+ 2RBr
(

(qT + 1)
q−1
q + 1

)∑
t

‖ut−1 − ut‖ . (21)

Proof Substituting Λ−1
i = iq−1 + 1 in Lemma 5 we get

T ≥ r
n∑
i

(
Λ−1
i − 1

)
= r

n∑
i=1

iq−1 ≥ r
∫ n

1
xq−1dx =

r

q
(nq − 1) ,

where the middle inequality is correct because f(x) = xq−1 for q > 1 is a monotonically
increasing function and thus we can upper bound the integral with the right Riemann sum.
This yields an upper bound on n,

n ≤ (qT + 1)
1
q ⇒ Λ−1

n ≤ (qT + 1)
q−1
q + 1 .

Comparing the last two terms of the bound of Corollary 6 we observe a natural tradeoff in
the value of q. The third term of (20) is decreasing with large values of q, while the fourth
term of (21) is increasing with q.

Assuming a bound on the deviation
∑

t ‖ut−1 − ut‖ = V
(1)
T ≤ O

(
T 1/p

)
, or in other

words p = (log T ) /
(
log V (1)

)
. We set a drift dependent parameter q = (2p) / (p+ 1) =

(2 log T ) /
(
log T + log V (1)

)
and get that the sum of (20) and (21) is of orderO

(
T
p+1
2p log(T )

)
=

O
(√

V (1)T log T
)

.

Few comments are in order. First, as long as p > 1 the sum of (20) and (21) is o(T ) and
thus vanishing. Second, when the drift is very small, that is p ≈ −(1 + ε), the algorithm
sets q ≈ 2 + (2/ε), and thus it will not make any restarts, and the bound of O(log T ) for
the stationary case is retrieved. In other words, for this choice of q the algorithm will have
only one interval, and there will be no restarts.

To conclude, we showed that if the algorithm is given an upper bound on the amount of
drift, which is sub-linear in T , it can achieve sub-linear regret. Furthermore, if it is known
that there is no non-stationarity in the reference vectors, then running the algorithm with
large enough q will have a regret logarithmic in T .
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6.2 Analysis of the LASER Algorithm

We now analyze the performance of the LASER algorithm in the worst-case setting in six
steps. First, state a technical lemma that is used in the second step (Theorem 8), in which
we bound the regret with a quantity proportional to

∑T
t=1 x

>
t D
−1
t xt. Third, in Lemma 9

we bound each of the summands with two terms, one logarithmic and one linear in the
eigenvalues of the matrices Dt. In the fourth (Lemma 10) and fifth (Lemma 11) steps we
bound the eigenvalues of Dt first for scalars and then extend the results to matrices. Finally,
in Corollary 12 we put all these results together and get the desired bound.

Lemma 7 For all t the following statement holds

D′t−1D
−1
t xtx

>
t D
−1
t D′t−1 +D′t−1

(
D−1
t D′t−1 + c−1I

)
−D−1

t−1 � 0 ,

where as defined in (19) we have D′t−1 =
(
I + c−1Dt−1

)−1
.

The proof appears in Appendix D. We next bound the cumulative loss of the algorithm.

Theorem 8 Assume that the labels are bounded supt |yt| ≤ Y for some Y ∈ R. Then the
following bound holds

LT (LASER) ≤ min
u1,...,uT

[
LT ({ut}) + cV

(2)
T ({ut}) + b ‖u1‖2

]
+ Y 2

T∑
t=1

x>t D
−1
t xt . (22)

Proof Fix t. A long algebraic manipulation, given in Appendix E, yields

(yt − ŷt)2 + min
u1,...,ut−1

Qt−1 (u1, . . . ,ut−1)− min
u1,...,ut

Qt (u1, . . . ,ut)

= (yt − ŷt)2 + 2ytx
>
t D
−1
t D′t−1et−1 + e>t−1

[
−D−1

t−1 +D′t−1

(
D−1
t D′t−1 + c−1I

) ]
et−1

+ y2
tx
>
t D
−1
t xt − y2

t . (23)

Substituting the specific value of the predictor ŷt = x>t D
−1
t D′t−1et−1 from (18), we get that

(23) equals to

ŷ2
t + y2

tx
>
t D
−1
t xt + e>t−1

[
−D−1

t−1 +D′t−1

(
D−1
t D′t−1 + c−1I

) ]
et−1

= e>t−1D
′
t−1D

−1
t xtx

>
t D
−1
t D′t−1et−1 + y2

tx
>
t D
−1
t xt

+ e>t−1

[
−D−1

t−1 +D′t−1

(
D−1
t D′t−1 + c−1I

) ]
et−1

= e>t−1D̃tet−1 + y2
tx
>
t D
−1
t xt , (24)

where D̃t = D′t−1D
−1
t xtx

>
t D
−1
t D′t−1−D

−1
t−1 +D′t−1

(
D−1
t D′t−1 + c−1I

)
. Using Lemma 7 we

upper bound D̃t � 0 and thus (24) is bounded,

y2
tx
>
t D
−1
t xt ≤ Y 2x>t D

−1
t xt .
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Finally, summing over t ∈ {1, . . . , T} gives the desired bound,

LT (LASER)− min
u1,...,uT

[
b ‖u1‖2 + cV

(2)
T ({ut}) + LT ({ut})

]
≤ Y 2

T∑
t=1

x>t D
−1
t xt .

In the next lemma we further bound the right term of (22). This type of bound is based
on the usage of the covariance-like matrix D.

Lemma 9
T∑
t=1

x>t D
−1
t xt ≤ ln

∣∣∣∣1bDT

∣∣∣∣+ c−1
T∑
t=1

Tr (Dt−1) . (25)

Proof Let Bt
.
= Dt − xtx

>
t =

(
D−1
t−1 + c−1I

)−1 � 0.

x>t D
−1
t xt = Tr

(
x>t D

−1
t xt

)
= Tr

(
D−1
t xtx

>
t

)
= Tr

(
D−1
t (Dt −Bt)

)
= Tr

(
D
−1/2
t (Dt −Bt)D−1/2

t

)
= Tr

(
I −D−1/2

t BtD
−1/2
t

)
=

d∑
j=1

[
1− λj

(
D
−1/2
t BtD

−1/2
t

)]
.

We continue using 1− x ≤ − ln (x) and get

x>t D
−1
t xt ≤ −

d∑
j=1

ln
[
λj

(
D
−1/2
t BtD

−1/2
t

)]

= − ln

 d∏
j=1

λj

(
D
−1/2
t BtD

−1/2
t

)
= − ln

∣∣∣D−1/2
t BtD

−1/2
t

∣∣∣
= ln

|Dt|
|Bt|

= ln
|Dt|∣∣Dt − xtx>t

∣∣ .
It follows that

x>t D
−1
t xt ≤ ln

|Dt|∣∣∣(D−1
t−1 + c−1I

)−1
∣∣∣

= ln
|Dt|
|Dt−1|

∣∣(I + c−1Dt−1

)∣∣
= ln

|Dt|
|Dt−1|

+ ln
∣∣(I + c−1Dt−1

)∣∣ .
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and because ln
∣∣1
bD0

∣∣ ≥ 0 we get

T∑
t=1

x>t D
−1
t xt ≤ ln

∣∣∣∣1bDT

∣∣∣∣+
T∑
t=1

ln
∣∣(I + c−1Dt−1

)∣∣ ≤ ln

∣∣∣∣1bDT

∣∣∣∣+ c−1
T∑
t=1

Tr (Dt−1) .

At first sight it seems that the right term of (25) may grow super-linearly with T , as
each of the matrices Dt grows with t. The next two lemmas show that this is not the case,
and in fact, the right term of (25) is not growing too fast, which will allow us to obtain a
sub-linear regret bound. Lemma 10 analyzes the properties of the recursion of D defined
in (11) for scalars, that is d = 1. In Lemma 11 we extend this analysis to matrices.

Lemma 10 Define f(λ) = λβ/ (λ+ β) + x2 for β, λ ≥ 0 and some x2 ≤ γ2. Then:

1. f(λ) ≤ β + γ2

2. f(λ) ≤ λ+ γ2

3. f(λ) ≤ max

{
λ,

3γ2+
√
γ4+4γ2β
2

}
Proof For the first property we have f(λ) = λβ/ (λ+ β) + x2 ≤ β × 1 + x2. The second
property follows from the symmetry between β and λ. To prove the third property we
decompose the function as, f(λ) = λ − λ2

λ+β + x2. Therefore, the function is bounded by

its argument f(λ) ≤ λ if, and only if, − λ2

λ+β + x2 ≤ 0. Since we assume x2 ≤ γ2, the last

inequality holds if, −λ2 + γ2λ+ γ2β ≤ 0, which holds for λ ≥ γ2+
√
γ4+4γ2β
2 .

To conclude. If λ ≥ γ2+
√
γ4+4γ2β
2 , then f(λ) ≤ λ. Otherwise, by the second property,

we have

f(λ) ≤ λ+ γ2 ≤ γ2 +
√
γ4 + 4γ2β

2
+ γ2 =

3γ2 +
√
γ4 + 4γ2β

2
,

as required.

We build on Lemma 10 to bound the maximal eigenvalue of the matrices Dt.

Lemma 11 Assume ‖xt‖2 ≤ X2 for some X. Then, the eigenvalues of Dt (for t ≥ 1),
denoted by λi (Dt), are upper bounded by

max
i
λi (Dt) ≤ max

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
.

Proof By induction. From (11) we have that λi(D1) ≤ b+X2 for i = 1, . . . , d. We proceed
with a proof for some t. For simplicity, denote by λi = λi(Dt−1) the ith eigenvalue of Dt−1
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with a corresponding eigenvector vi. From (11) we have

Dt =
(
D−1
t−1 + c−1I

)−1
+ xtx

>
t

�
(
D−1
t−1 + c−1I

)−1
+ I ‖xt‖2

=
d∑
i

viv
>
i

((
λ−1
i + c−1

)−1
+ ‖xt‖2

)
=

d∑
i

viv
>
i

(
λic

λi + c
+ ‖xt‖2

)
. (26)

Plugging Lemma 10 in (26) we get

Dt �
d∑
i

viv
>
i max

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}

= max

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
I .

Finally, equipped with the above lemmas we are able to prove the main result of this
section.

Corollary 12 Assume ‖xt‖2 ≤ X2, |yt| ≤ Y . Then

LT (LASER) ≤ b ‖u1‖2 + LT ({ut}) + Y 2 ln

∣∣∣∣1bDT

∣∣∣∣+ c−1Y 2Tr (D0) + cV (2)

+ c−1Y 2Tdmax

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
. (27)

Furthermore, set b = εc for some 0 < ε < 1. Denote by µ = max

{
9/8X2,

(b+X2)
2

8X2

}
and

M = max
{

3X2, b+X2
}

. If V (2) ≤ T
√

2Y 2dX
µ3/2 (low drift) then by setting

c =

√
2TY 2dX(
V (2)

)2/3 (28)

we have

LT (LASER) ≤ b ‖u1‖2 + 3
(√

2Y 2dX
)2/3

T 2/3
(
V (2)

)1/3
+

ε

1− ε
Y 2d+ LT ({ut})

+ Y 2 ln

∣∣∣∣1bDT

∣∣∣∣ . (29)
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The proof appears in Appendix F. Note that if V (2) ≥ T Y 2dM
µ2 then by setting c =√

Y 2dMT/V (2) we have

LT (LASER) ≤ b ‖u1‖2 + 2
√
Y 2dTMV (2) +

ε

1− ε
Y 2d+ LT ({ut}) + Y 2 ln

∣∣∣∣1bDT

∣∣∣∣ . (30)

(see Appendix G for details). The last bound is linear in T and can be obtained also by a
naive algorithm that outputs ŷt = 0 for all t.

A few remarks are in order. When the variance V (2) = 0 goes to zero, we set c = ∞
and thus we have Dt = bI +

∑t
s=1 xsx

>
s used in recent algorithms (Vovk, 2001; Forster,

1999; Hayes, 1996; Cesa-Bianchi et al., 2005). In this case the algorithm reduces to the
algorithm by Forster (1999) (which is also the AAR algorithm of Vovk 2001), with the same
logarithmic regret bound (note that the term ln

∣∣1
bDT

∣∣ in the bounds is logarithmic in T ,
see the proof of Forster 1999). See also the work of Azoury and Warmuth (2001).

7. Simulations

We evaluated our algorithms on four data sets, one synthetic and three real-world. The
synthetic data set contains 2, 000 points xt ∈ R20, where the first ten coordinates were
grouped into five groups of size two. Each such pair was drawn from a 45◦ rotated Gaussian
distribution with standard deviations 10 and 1. The remaining 10 coordinates of xt were
drawn from independent Gaussian distributions N (0, 2). The data set was generated using
a sequence of vectors ut ∈ R20 for which the only non-zero coordinates are the first two,
where their values are the coordinates of a unit vector that is rotating with a constant rate.
Specifically, we have ‖ut‖ = 1 and the instantaneous drift ‖ut − ut−1‖ is constant. The
labels were set according to yt = x>t ut.

The first two real-world data sets were generated from echoed speech signal. The first
speech echoed signal was generated using FIR filter with k delays and varying attenuated
amplitude. This effect imitates acoustic echo reflections from large, distant and dynamic
obstacles. The difference equation y(n) = x(n) +

∑k
D=1A(n)x(n−D) + v(n) was used,

whereD is a delay in samples, the coefficientA(n) describes the changing attenuation related
to object reflection and v(n) ∼ N

(
0, 10−3

)
is a white noise. The second speech echoed signal

was generated using a flange IIR filter, where the delay is not constant, but changing with
time. This effect imitates time stretching of audio signal caused by moving and changing
objects in the room. The difference equation y(n) = x(n) +Ay (n−D(n)) + v(n) was used.

The last real-world data set was taken from the Kaggle competition ”Global Energy
Forecasting Competition 2012 - Load Forecasting”.3 This data set includes hourly demand
for four and a half years from 20 different geographic regions, and similar hourly temperature
readings from 11 zones, which we used as features xt ∈ R11. Based on this data set, we
generated drifting and shifting data as follows: we predict the load 3 times a day (thus
there is a drift between day and night), and every half a year there is a switch in the region
where the load is predicted.

Five algorithms were evaluated: NLMS (normalized least mean square) (Bershad, 1986;
Bitmead and Anderson, 1980) which is a state-of-the-art first-order algorithm, AROWR

3. The data set was taken from
http://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting .
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Figure 1: Cumulative squared loss for AROWR, ARCOR, LASER, NLMS and CR-RLS vs
iteration. (a) Results for synthetic data set with drift. (b) Results for a problem
of acoustic echo cancellation on speech signal generated using FIR filter and (c)
IIR filter. (d) Results for a problem of electric load prediction (best shown in
color).

(AROW for Regression) with no restarts nor projection, ARCOR, LASER and CR-RLS.
We note that AAR (Vovk, 2001) is a special case of LASER and RLS is a special case of
CR-RLS, for a specific choice of their respective parameters (c =∞ for LASER and T0 =∞
for CR-RLS) . Additionally, the performance of AROWR, AAR and RLS is similar, and
thus only the performance of AROWR is shown. For the synthetic data set the algorithms’
parameters were tuned using a single random sequence. For the speech signal the algorithms’
parameters were tuned on 10% of the signal, then the best parameter choices for each
algorithm were used to evaluate the performance on the remaining signal. Similarly, for the
load data set the algorithms’ parameters were tuned on 20% of the signal.
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The results are summarized in Figure 1. AROWR performs the worst on all data sets
as it converges very fast and thus not able to track the changes in the data. Focusing on
Figure 1(a), showing the results for the synthetic signal, we observe that ARCOR performs
relatively bad as suggested by our analysis for constant, yet not too large, drift. Both
CR-RLS and NLMS perform better, where CR-RLS is slightly better as it is a second-order
algorithm, and allows to converge faster between switches. On the other hand, NLMS is not
converging and is able to adapt to the drift. Finally, LASER performs the best, as hinted
by its analysis, for which the bound is lower where there is a constant drift.

Moving to Figure 1(b), showing the results for first echoed speech signal with varying
amplitude, we observe that LASER is the worst among all algorithms except AROWR.
Indeed, it prevents the convergence by keeping the learning rate far from zero, yet it is a
min-max algorithm designed for the worst-case, which is not the case for real-world speech
data. However, speech data is highly regular and the instantaneous drift vary. NLMS
performs better as it does not converge, yet both CR-RLS and ARCOR perform even
better, as they both do not converge due to covariance resets on the one hand, and second-
order updates on the other hand. ARCOR outperforms CR-RLS as the former adapts the
resets to actual data, and does not use pre-defined scheduling as the later.

Figure 1(c) summarizes the results for evaluations on the second echoed speech signal.
Note that the amount of drift grows since the data is generated using flange filter. Both
LASER and ARCOR are outperformed as both assume drift that is sublinear or at most
linear, which is not the case. CR-RLS outperforms NLMS. The later is first order, so is
able to adapt to changes, yet has slower convergence rate. The former is able to cope with
drift due to resets.

Finally, Figure 1(d) summarizes the results for the electric load data set. ARCOR
outperforms other algorithms, as the drift is sublinear and it has the ability to adapt resets
to the data. Again, LASER is a min-max algorithm designed for the worst case, which is
usually not the case for real-world data.

Interestingly, in all experiments, NLMS was not performing the best nor the worst.
There is no clear winner among the three algorithms that are both second-order (AR-
COR, LASER, CR-RLS), and designed to adapt to drifts. Intuitively, if the drift suits the
assumptions of an algorithm, that algorithm would perform the best, and otherwise, its
performance may even be worse than of NLMS.

We have seen above that ARCOR performs a projection step, which partially was mo-
tivated from the analysis. We now evaluate its need and affect in practice on two speech
problems. We test two modifications of ARCOR, resulting in four variants altogether. First,
we replace the polynomial thresholds scheme to the constant thresholds scheme, that is, all
thresholds are equal. Second, we omit the projection step. The results are summarized
in Figure 2. The line corresponding to the original algorithm, is called “proj, poly” as it
performs a projection step and uses polynomial scheme for the lower-bound on eigenvalues.
The version that omits projection and uses constant scheme, called “no proj, const”, is most
similar to CR-RLS. Both resets the covariance matrix, CR-RLS after fixed amount of iter-
ations, while “ARCOR-no proj, const” when the eigenvalues meets a specified fixed lower
bound. The difference between the two plots is the amount of drift used: the left plot shows
results for sublinear drift, and the right plot shows results with increasing per-instance drift.
The original version, as hinted by the analysis, is designed to work with sub-linear drift,
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Figure 2: Cumulative squared loss of four variants of ARCOR vs iteration.

and performs the best in this case. However, when this assumption over the amount of
drift breaks, this version is not optimal anymore, and constant scheme performs better,
as it allows the algorithm to adapt to non-vanishing drift. Finally, in both data sets, the
algorithm that performs the best performs a projection step after each iteration, providing
some empirical evidence for its need.

8. Summary and Conclusions

We proposed and analyzed two novel algorithms for non-stationary online regression de-
signed and analyzed with the squared loss in the worst-case regret framework. The AR-
COR algorithm was built on AROWR. It employs second-order information, yet performs
data-dependent covariance resets, which provides it the ability to track drifts. The LASER
algorithm was built on the last-step minmax predictor with the proper modifications for
non-stationary problems. Our algorithms require some prior knowledge of the drift to get
optimal performance, and each algorithm works best in other drift level. The optimal set-
ting depends on the actual drift in the data and the optimality of our bounds is an open
issue.

Few open directions are possible. First, extension of these algorithms to other loss
functions rather than the squared loss. Second, currently, direct implementation of both
algorithms requires either matrix inversion or eigenvector decomposition. A possible direc-
tion is to design a more efficient version of these algorithms. Third, an interesting direction
is to design algorithms that automatically detect the level of drift, or do not need this
information before run-time.

Acknowledgments: This research was funded in part by the Intel Collaborative Re-
search Institute for Computational Intelligence (ICRI-CI) and in part by an Israeli Science
Foundation grant ISF- 1567/10.
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Appendix A. Proof of Lemma 1

Proof We calculate

Pt (ut) = min
u1,...,ut−1

(
b ‖u1‖2 + c

t−1∑
s=1

‖us+1 − us‖2 +
t∑

s=1

(
ys − u>s xs

)2
)

= min
u1,...,ut−1

(
b ‖u1‖2 + c

t−2∑
s=1

‖us+1 − us‖2 +

t−1∑
s=1

(
ys − u>s xs

)2
+ c ‖ut − ut−1‖2

+
(
yt − u>t xt

)2
)

= min
ut−1

min
u1,...,ut−2

(
b ‖u1‖2 + c

t−2∑
s=1

‖us+1 − us‖2 +
t−1∑
s=1

(
ys − u>s xs

)2
+ c ‖ut − ut−1‖2

+
(
yt − u>t xt

)2
)

= min
ut−1

[
min

u1,...,ut−2

(
b ‖u1‖2 + c

t−2∑
s=1

‖us+1 − us‖2 +
t−1∑
s=1

(
ys − u>s xs

)2
)

+ c ‖ut − ut−1‖2 +
(
yt − u>t xt

)2
]

= min
ut−1

(
Pt−1 (ut−1) + c ‖ut − ut−1‖2 +

(
yt − u>t xt

)2
)
.

Appendix B. Proof of Lemma 2

Proof By definition

P1 (u1) = Q1 (u1) = b ‖u1‖2 +
(
y1 − u>1 x1

)2
= u>1

(
bI + x1x

>
1

)
u1 − 2y1u

>
1 x1 + y2

1 ,

and indeed D1 = bI + x1x
>
1 , e1 = y1x1, and f1 = y2

1.

1506



Second-Order Non-Stationary Online Learning for Regression

We proceed by induction, assume that, Pt−1 (ut−1) = u>t−1Dt−1ut−1−2u>t−1et−1 +ft−1.
Applying Lemma 1 we get

Pt (ut) = min
ut−1

(
u>t−1Dt−1ut−1 − 2u>t−1et−1 + ft−1 + c ‖ut − ut−1‖2 +

(
yt − u>t xt

)2
)

= min
ut−1

(
u>t−1 (cI +Dt−1)ut−1 − 2u>t−1 (cut + et−1) + ft−1 + c ‖ut‖2

+
(
yt − u>t xt

)2
)

= − (cut + et−1)> (cI +Dt−1)−1 (cut + et−1) + ft−1 + c ‖ut‖2 +
(
yt − u>t xt

)2

= u>t

(
cI + xtx

>
t − c2 (cI +Dt−1)−1

)
ut − 2u>t

[
c (cI +Dt−1)−1 et−1 + ytxt

]
− e>t−1 (cI +Dt−1)−1 et−1 + ft−1 + y2

t .

Using the Woodbury identity we continue to develop the last equation,

= u>t

(
cI + xtx

>
t − c2

[
c−1I − c−2

(
D−1
t−1 + c−1I

)−1
])

ut

− 2u>t

[(
I + c−1Dt−1

)−1
et−1 + ytxt

]
− e>t−1 (cI +Dt−1)−1 et−1 + ft−1 + y2

t

= u>t

((
D−1
t−1 + c−1I

)−1
+ xtx

>
t

)
ut − 2u>t

[(
I + c−1Dt−1

)−1
et−1 + ytxt

]
− e>t−1 (cI +Dt−1)−1 et−1 + ft−1 + y2

t ,

and indeed Dt =
(
D−1
t−1 + c−1I

)−1
+ xtx

>
t , et =

(
I + c−1Dt−1

)−1
et−1 + ytxt and, ft =

ft−1 − e>t−1 (cI +Dt−1)−1 et−1 + y2
t , as desired.

Appendix C. Proof of Theorem 3

We prove the theorem in four steps. First, we state a technical lemma, for which we define
the following notation

dt (z,v) = (z − v)>Σ−1
t (z − v) ,

dt̃ (z,v) = (z − v)>Σ̃−1
t (z − v) ,

χt = x>t Σt−1xt .

Second, we define a telescopic sum and in Lemma 14 prove a lower bound for each element.
Third, in Lemma 15 we upper bound one term of the telescopic sum, and finally, in the
fourth step we combine all these parts to conclude the proof. Let us start with the technical
lemma.
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Lemma 13 Let w̃t and Σ̃t be defined in (7) and (8), then

dt−1 (wt−1,ut−1)− dt̃ (w̃t,ut−1) =
1

r
`t −

1

r
gt −

`tχt
r (r + χt)

,

where `t =
(
yt −w>t−1xt

)2
and gt =

(
yt − u>t−1xt

)2
.

Proof We start by writing the distances explicitly,

dt−1 (wt−1,ut−1)− dt̃ (w̃t,ut−1)

=− (ut−1 − w̃t)
>Σ̃−1

t (ut−1 − w̃t) + (ut−1 −wt−1)>Σ−1
t−1 (ut−1 −wt−1) .

Substituting w̃t as appears in (8) the last equation becomes

− (ut−1 −wt−1)>Σ̃−1
t (ut−1 −wt−1) + 2(ut−1 −wt−1)Σ̃−1

t Σt−1xt
(yt − x>t wt−1)

r + x>t Σt−1xt

−
(

(yt − x>t wt−1)

r + x>t Σt−1xt

)2

x>t Σt−1Σ̃−1
t Σt−1xt + (ut−1 −wt−1)>Σ−1

t−1 (ut−1 −wt−1) .

Plugging Σ̃t as appears in (7) we get

dt−1 (wt−1,ut−1)− dt̃ (w̃t,ut−1)

=− (ut−1 −wt−1)>
(

Σ−1
t−1 +

1

r
xtx

>
t

)
(ut−1 −wt−1)

+ 2(ut−1 −wt−1)>
(

Σ−1
t−1 +

1

r
xtx

>
t

)
Σt−1xt

(yt − x>t wt−1)

r + x>t Σt−1xt

− (yt − x>t wt−1)2(
r + x>t Σt−1xt

)2x>t Σt−1

(
Σ−1
t−1 +

1

r
xtx

>
t

)
Σt−1xt

+ (ut−1 −wt−1)>Σ−1
t−1 (ut−1 −wt−1) .
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Finally, we substitute `t =
(
yt − x>t wt−1

)2
, gt =

(
yt − x>t ut−1

)2
and χt = x>t Σt−1xt.

Rearranging the terms,

dt−1 (wt−1,ut−1)− dt̃ (w̃t,ut−1)

=− 1

r

(
yt − x>t wt−1 −

(
yt − x>t ut−1

))2

−
2
(
yt − x>t ut−1 −

(
yt − x>t wt−1

)) (
yt − x>t wt−1

)
r + χt

(
1 +

χt
r

)
− `tχt

(r + χt)
2

(
1 +

χt
r

)
=− 1

r
`t + 2

(
yt − x>t wt−1

)(
yt − x>t ut−1

) 1

r
− 1

r
gt

+
2`t

r + χt

(
1 +

χt
r

)
− `tχt
r (r + χt)

− 2

(
yt − x>t wt−1

) (
yt − x>t ut−1

)
r + χt

(
1 +

χt
r

)
=

1

r
`t −

1

r
gt −

`tχt
r (r + χt)

,

which completes the proof.

We now define one element of the telescopic sum and lower bound it.

Lemma 14 Denote

∆t = dt−1 (wt−1,ut−1)− dt (wt,ut)

then

∆t ≥
1

r
(`t − gt)− `t

χt
r(r + χt)

+ u>t−1Σ−1
t−1ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i ‖ut−1 − ut‖ ,

where i− 1 is the number of restarts occurring before example t.

Proof We write ∆t as a telescopic sum of four terms as follows

∆t,1 = dt−1 (wt−1,ut−1)− dt̃ (w̃t,ut−1)

∆t,2 = dt̃ (w̃t,ut−1)− dt (w̃t,ut−1)

∆t,3 = dt (w̃t,ut−1)− dt (wt,ut−1)

∆t,4 = dt (wt,ut−1)− dt (wt,ut) .

We lower bound each of the four terms. Since the value of ∆t,1 was computed in Lemma 13,
we start with the second term. If no reset occurs then Σt = Σ̃t and ∆t,2 = 0. Otherwise,
we use the facts that 0 � Σ̃t � I and Σt = I, and get

∆t,2 = (w̃t − ut−1)>Σ̃−1
t (w̃t − ut−1)− (w̃t − ut−1)>Σ−1

t (w̃t − ut−1)

≥ Tr
(

(w̃t − ut−1) (w̃t − ut−1)> (I − I)
)

= 0 .
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To summarize, ∆t,2 ≥ 0. We can lower bound ∆t,3 ≥ 0 by using the fact that wt is a
projection of w̃t onto a closed set (a ball of radius RB around the origin), which by our
assumption contains ut. Employing Corollary 3 of Herbster and Warmuth (2001) we get,
dt (w̃t,ut−1) ≥ dt (wt,ut−1) and thus ∆t,3 ≥ 0.

Finally, we lower bound the fourth term ∆t,4,

∆t,4 = (wt − ut−1)>Σ−1
t (wt − ut−1)− (wt − ut)

>Σ−1
t (wt − ut)

= u>t−1Σ−1
t ut−1 − u>t Σ−1

t ut − 2w>t Σ−1
t (ut−1 − ut) . (31)

We use the Hölder inequality and then the Cauchy-Schwartz inequality to get the following
lower bound

− 2w>t Σ−1
t (ut−1 − ut) = −2Tr

(
Σ−1
t (ut−1 − ut)w

>
t

)
≥ −2λmax

(
Σ−1
t

)
w>t (ut−1 − ut)

≥ −2λmax
(
Σ−1
t

)
‖wt‖‖ut−1 − ut‖ .

Using the facts that ‖wt‖ ≤ RB and that λmax
(
Σ−1
t

)
= 1/λmin (Σt) ≤ Λ−1

i , where i is the
current segment index, we get

−2w>t Σ−1
t (ut−1 − ut) ≥ −2Λ−1

i RB‖ut−1 − ut‖ . (32)

Substituting (32) in (31) and using Σt � Σt−1 a lower bound is obtained,

∆t,4 ≥ u>t−1Σ−1
t ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i ‖ut−1 − ut‖

≥ u>t−1Σ−1
t−1ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i ‖ut−1 − ut‖ . (33)

Combining (33) with Lemma 13 concludes the proof.

Next we state an upper bound that will appear in one of the summands of the telescopic
sum.

Lemma 15 During the runtime of the ARCOR algorithm we have

ti+Ti∑
t=ti

χt
(χt + r)

≤ log
(

det
(

Σ−1
ti+1−1

))
= log

(
det
((

Σi
)−1
))

.

We remind the reader that ti is the first example index after the ith restart, and Ti is the
number of examples observed before the next restart. We also remind the reader the notation
Σi = Σti+1−1 is the covariance matrix just before the next restart.

The proof of the lemma is similar to the proof of Lemma 4 by Crammer et al. (2009) and
thus omitted. We now put all the pieces together and prove Theorem 3.
Proof We bound the sum

∑
t ∆t from above and below, and start with an upper bound

using the property of telescopic sum,∑
t

∆t =
∑
t

[dt−1 (wt−1,ut−1)− dt (wt,ut)] = d0 (w0,u0)− dT (wT ,uT ) ≤ d0 (w0,u0) .

(34)
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We compute a lower bound by applying Lemma 14,

∑
t

∆t ≥
∑
t

(
1

r
(`t − gt)− `t

χt
r(r + χt)

+ u>t−1Σ−1
t−1ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i(t)‖ut−1 − ut‖

)
,

where i(t) is the number of restarts occurred before observing the tth example. Continuing
to develop the last equation we obtain

∑
t

∆t ≥
1

r

∑
t

`t −
1

r

∑
t

gt −
∑
t

`t
χt

r(r + χt)
+
∑
t

(
u>t−1Σ−1

t−1ut−1 − u>t Σ−1
t ut

)
−
∑
t

2RBΛ−1
i(t)‖ut−1 − ut‖

=
1

r

∑
t

`t −
1

r

∑
t

gt −
∑
t

`t
χt

r(r + χt)
+ u>0 Σ−1

0 u0 − u>T Σ−1
T uT

− 2RB
∑
t

Λ−1
i(t)‖ut−1 − ut‖ . (35)

Combining (34) with (35) and using d0 (w0,u0) = u>0 Σ−1
0 u0 (as w0 = 0),

1

r

∑
t

`t −
1

r

∑
t

gt −
∑
t

`t
χt

r(r + χt)
− u>T Σ−1

T uT − 2RB
∑
t

Λ−1
i(t)‖ut−1 − ut‖ ≤ 0 .

Rearranging the terms of the last inequality,∑
t

`t ≤
∑
t

gt +
∑
t

`t
χt

r + χt
+ ru>T Σ−1

T uT + 2RBr
∑
t

1

Λi(t)
‖ut−1 − ut‖ . (36)

Since ‖wt‖ ≤ RB and we assume that ‖xt‖ = 1 and supt |yt| = Y , we get that supt `t ≤
2(R2

B + Y 2). Substituting the last inequality in Lemma 15, we bound the second term in
the right-hand-side of (36),

∑
t

`t
χt

r + χt
=

n∑
i

ti+Ti∑
t=ti

`t
χt

r + χt

≤
n∑
i

(
sup
t
`t

)
log det

((
Σi
)−1
)

≤ 2
(
R2
B + Y 2

) n∑
i

log det
((

Σi
)−1
)
,

which completes the proof.
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Appendix D. Proof of Lemma 7

Proof We first use the Woodbury identity to get the following two identities

D−1
t =

[(
D−1
t−1 + c−1I

)−1
+ xtx

>
t

]−1

= D−1
t−1 + c−1I −

(
D−1
t−1 + c−1I

)
xtx

>
t

(
D−1
t−1 + c−1I

)
1 + x>t

(
D−1
t−1 + c−1I

)
xt(

I + c−1Dt−1

)−1
= I − c−1

(
D−1
t−1 + c−1I

)−1
.

Multiplying both identities with each other we get

D−1
t

(
I + c−1Dt−1

)−1

=

[
D−1
t−1 + c−1I −

(
D−1
t−1 + c−1I

)
xtx

>
t

(
D−1
t−1 + c−1I

)
1 + x>t

(
D−1
t−1 + c−1I

)
xt

] [
I − c−1

(
D−1
t−1 + c−1I

)−1
]

= D−1
t−1 −

(
D−1
t−1 + c−1I

)
xtx

>
t D
−1
t−1

1 + x>t
(
D−1
t−1 + c−1I

)
xt

, (37)

and, similarly, we multiply the identities in the other order and get

(
I + c−1Dt−1

)−1
D−1
t

=
[
I − c−1

(
D−1
t−1 + c−1I

)−1
] [
D−1
t−1 + c−1I −

(
D−1
t−1 + c−1I

)
xtx

>
t

(
D−1
t−1 + c−1I

)
1 + x>t

(
D−1
t−1 + c−1I

)
xt

]

= D−1
t−1 −

D−1
t−1xtx

>
t

(
D−1
t−1 + c−1I

)
1 + x>t

(
D−1
t−1 + c−1I

)
xt

. (38)

Finally, from (37) we get

(
I + c−1Dt−1

)−1
D−1
t xtx

>
t D
−1
t

(
I + c−1Dt−1

)−1 −D−1
t−1

+
(
I + c−1Dt−1

)−1
[
D−1
t

(
I + c−1Dt−1

)−1
+ c−1I

]
=
(
I + c−1Dt−1

)−1
D−1
t xtx

>
t D
−1
t

(
I + c−1Dt−1

)−1

−D−1
t−1 +

[
I − c−1

(
D−1
t−1 + c−1I

)−1

][
D−1
t−1 + c−1I −

(
D−1
t−1 + c−1I

)
xtx

>
t D
−1
t−1

1 + x>t
(
D−1
t−1 + c−1I

)
xt

]
.
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We further develop the last equality and use (37) and (38) in the second equality below,

=
(
I + c−1Dt−1

)−1
D−1
t xtx

>
t D
−1
t

(
I + c−1Dt−1

)−1 −D−1
t−1

+D−1
t−1 −

D−1
t−1xtx

>
t D
−1
t−1

1 + x>t
(
D−1
t−1 + c−1I

)
xt

=

[
D−1
t−1 −

D−1
t−1xtx

>
t

(
D−1
t−1 + c−1I

)
1 + x>t

(
D−1
t−1 + c−1I

)
xt

]
xtx

>
t

[
D−1
t−1 −

(
D−1
t−1 + c−1I

)
xtx

>
t D
−1
t−1

1 + x>t
(
D−1
t−1 + c−1I

)
xt

]

−
D−1
t−1xtx

>
t D
−1
t−1

1 + x>t
(
D−1
t−1 + c−1I

)
xt

= −
x>t
(
D−1
t−1 + c−1I

)
xtD

−1
t−1xtx

>
t D
−1
t−1(

1 + x>t
(
D−1
t−1 + c−1I

)
xt
)2 � 0 .

Appendix E. Derivations for Theorem 8

(yt − ŷt)2 + min
u1,...,ut−1

Qt−1 (u1, . . . ,ut−1)− min
u1,...,ut

Qt (u1, . . . ,ut)

= (yt − ŷt)2 − e>t−1D
−1
t−1et−1 + ft−1 + e>t D

−1
t et − ft

= (yt − ŷt)2 − e>t−1D
−1
t−1et−1

+
((
I + c−1Dt−1

)−1
et−1 + ytxt

)>
D−1
t

((
I + c−1Dt−1

)−1
et−1 + ytxt

)
+e>t−1 (cI +Dt−1)−1 et−1 − y2

t ,

where the last equality follows from (12) and (13). We proceed to develop the last equality,

= (yt − ŷt)2 − e>t−1D
−1
t−1et−1 + e>t−1

(
I + c−1Dt−1

)−1
D−1
t

(
I + c−1Dt−1

)−1
et−1

+2ytx
>
t D
−1
t

(
I + c−1Dt−1

)−1
et−1 + y2

tx
>
t D
−1
t xt + e>t−1 (cI +Dt−1)−1 et−1 − y2

t

= (yt − ŷt)2 + e>t−1

(
−D−1

t−1 +
(
I + c−1Dt−1

)−1
D−1
t

(
I + c−1Dt−1

)−1

+c−1
(
I + c−1Dt−1

)−1

)
et−1

+2ytx
>
t D
−1
t

(
I + c−1Dt−1

)−1
et−1 + y2

tx
>
t D
−1
t xt − y2

t

= (yt − ŷt)2 + e>t−1

(
−D−1

t−1 +
(
I + c−1Dt−1

)−1 [
D−1
t

(
I + c−1Dt−1

)−1
+ c−1I

])
et−1

+2ytx
>
t D
−1
t

(
I + c−1Dt−1

)−1
et−1 + y2

tx
>
t D
−1
t xt − y2

t .
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Appendix F. Proof of Corollary 12

Proof Plugging Lemma 9 in Theorem 8 we have for all (u1 . . .uT ),

LT (LASER) ≤ b ‖u1‖2 + cV (2) + LT ({ut}) + Y 2 ln

∣∣∣∣1bDT

∣∣∣∣+ c−1Y 2
T∑
t=1

Tr (Dt−1)

≤ b ‖u1‖2 + LT ({ut}) + Y 2 ln

∣∣∣∣1bDT

∣∣∣∣+ c−1Y 2Tr (D0) + cV (2)

+ c−1Y 2Tdmax

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
,

where the last inequality follows from Lemma 11. The term c−1Y 2Tr (D0) does not depend
on T , because

c−1Y 2Tr (D0) = c−1Y 2d
bc

c− b
=

ε

1− ε
Y 2d .

To show (29), note that

V (2) ≤ T
√

2Y 2dX

µ3/2
⇔ µ ≤

(√
2Y 2dXT

V (2)

)2/3

= c .

We thus have that the right term of (27) is upper bounded,

max

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
≤ max

{
3X2 +

√
8X2c

2
, b+X2

}
≤ max

{√
8X2c, b+X2

}
≤ 2X

√
2c .

Using this bound and plugging the value of c from (28) we bound (27),

(√
2TY 2dX

V (2)

)2/3

V (2) + Y 2Td2X

√√√√2

(√
2TY 2dX

V (2)

)−2/3

= 3
(√

2TY 2dX
)2/3 (

V (2)
)1/3

,

which concludes the proof.

Appendix G. Details for the bound (30)

To show the bound (30), note that

V (2) ≥ T Y
2dM

µ2
⇔ µ ≥

√
TY 2dM

V (2)
= c .
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We thus have that the right term of (27) is upper bounded as follows

max

{
3X2 +

√
X4 + 4X2c

2
, b+X2

}
≤ max

{
3X2,

√
X4 + 4X2c, b+X2

}
≤ max

{
3X2,

√
2X2,

√
8X2c, b+X2

}
=
√

8X2 max

{
3X2

√
8X2

,
√
c,
b+X2

√
8X2

}

=
√

8X2

√√√√max

{
(3X2)2

8X2
, c,

(b+X2)2

8X2

}
=
√

8X2
√

max {µ, c} ≤
√

8X2
√
µ = M .

Using this bound and plugging c =
√
Y 2dMT/V (2) we bound (27),√

Y 2dMT

V (2)
V (2) +

1√
Y 2dMT
V (2)

TdY 2M = 2
√
Y 2dMTV (2) .
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Abstract

We revisit, from a statistical learning perspective, the classical decision-theoretic problem
of weighted expert voting. In particular, we examine the consistency (both asymptotic
and finitary) of the optimal Naive Bayes weighted majority and related rules. In the
case of known expert competence levels, we give sharp error estimates for the optimal
rule. We derive optimality results for our estimates and also establish some structural
characterizations. When the competence levels are unknown, they must be empirically
estimated. We provide frequentist and Bayesian analyses for this situation. Some of our
proof techniques are non-standard and may be of independent interest. Several challenging
open problems are posed, and experimental results are provided to illustrate the theory.

Keywords: experts, hypothesis testing, Chernoff-Stein lemma, Neyman-Pearson lemma,
naive Bayes, measure concentration

1. Introduction

Imagine independently consulting a small set of medical experts for the purpose of reaching
a binary decision (e.g., whether to perform some operation). Each doctor has some “repu-
tation”, which can be modeled as his probability of giving the right advice. The problem
of weighting the input of several experts arises in many situations and is of considerable
theoretical and practical importance. The rigorous study of majority vote has its roots in
the work of Condorcet (1785). By the 70s, the field of decision theory was actively exploring
various voting rules (see Nitzan and Paroush (1982) and the references therein). A typical
setting is as follows. An agent is tasked with predicting some random variable Y ∈ {±1}
based on input Xi ∈ {±1} from each of n experts. Each expert Xi has a competence level
pi ∈ (0, 1), which is his probability of making a correct prediction: P(Xi = Y ) = pi. Two
simplifying assumptions are commonly made:

∗. An extended abstract of this paper appeared in NIPS 2014 under the title “Consistency of weighted
majority votes,” which was also the former title of this paper. A. Kontorovich was partially supported
by the Israel Science Foundation (grant No. 1141/12) and a Yahoo Faculty award.
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(i) Independence: The random variables {Xi : i ∈ [n]} are mutually independent condi-
tioned on the truth Y .

(ii) Unbiased truth: P(Y = +1) = P(Y = −1) = 1/2.

We will discuss these assumptions below in greater detail; for now, let us just take them as
given. (Since the bias of Y can be easily estimated from data, and the generalization to the
asymmetric case is straightforward, only the independence assumption is truly restrictive.)
A decision rule is a mapping f : {±1}n → {±1} from the n expert inputs to the agent’s
final decision. Our quantity of interest throughout the paper will be the agent’s probability
of error,

P(f(X) 6= Y ). (1)

A decision rule f is optimal if it minimizes the quantity in (1) over all possible decision
rules. It follows from the work of Neyman and Pearson (1933) that, when Assumptions
(i)–(ii) hold and the true competences pi are known, the optimal decision rule is obtained
by an appropriately weighted majority vote:

fOPT(x) = sign

(
n∑
i=1

wixi

)
, (2)

where the weights wi are given by

wi = log
pi

1− pi
, i ∈ [n]. (3)

Thus, wi is the log-odds of expert i being correct, and the voting rule in (2) is also known
as naive Bayes (Hastie et al., 2009).
Main results. Formula (2) raises immediate questions, which apparently have not previously
been addressed. The first one has to do with the consistency of the naive Bayes decision
rule: under what conditions does the probability of error decay to zero and at what rate?
In Section 3, we show that the probability of error is controlled by the committee potential
Φ, defined by

Φ =
n∑
i=1

(pi − 1
2)wi =

n∑
i=1

(pi − 1
2) log

pi
1− pi

. (4)

More precisely, we prove in Theorem 1 that

− logP(fOPT(X) 6= Y ) � Φ,

where � denotes equivalence up to universal multiplicative constants. As we show in Sec-
tion 3.3, both the upper estimate of O(e−Φ/2) and the lower one of Ω(e−2Φ) are tight in
various regimes of Φ. The structural characterization in terms of “antipodes” (Lemma 2)
and the additional bounds provided in Section 3.4 may also be of interest.

Another issue not addressed by the Neyman-Pearson lemma is how to handle the case
where the competences pi are not known exactly but rather estimated empirically by p̂i. We
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present two solutions to this problem: a frequentist and a Bayesian one. As we show in Sec-
tion 4, the frequentist approach does not admit an optimal empirical decision rule. Instead,
we analyze empirical decision rules in various settings: high-confidence (i.e., |p̂i − pi| � 1)
vs. low-confidence, adaptive vs. nonadaptive. The low-confidence regime requires no ad-
ditional assumptions, but gives weaker guarantees (Theorem 7). In the high-confidence
regime, the adaptive approach produces error estimates in terms of the empirical p̂is (Theo-
rem 13), while the nonadaptive approach yields a bound in terms of the unknown pis, which
still leads to useful asymptotics (Theorem 11). The Bayesian solution sidesteps the various
cases above, as it admits a simple, provably optimal empirical decision rule (Section 5).
Unfortunately, we are unable to compute (or even nontrivially estimate) the probability of
error induced by this rule; this is posed as a challenging open problem.

Notation. We use standard set-theoretic notation, and in particular [n] = {1, . . . , n}.

2. Related Work

The Naive Bayes weighted majority voting rule was stated by Nitzan and Paroush (1982) in
the context of decision theory, but its roots trace much earlier to the problem of hypothesis
testing (Neyman and Pearson, 1933). Machine learning theory typically clusters weighted
majority (Littlestone and Warmuth, 1989, 1994) within the framework of online algorithms;
see Cesa-Bianchi and Lugosi (2006) for a modern treatment. Since the online setting is
considerably more adversarial than ours, we obtain very different weighted majority rules
and consistency guarantees. The weights wi in (2) bear a striking similarity to the AdaBoost
update rule (Freund and Schapire, 1997; Schapire and Freund, 2012). However, the latter
assumes weak learners with access to labeled examples, while in our setting the experts are
“static”. Still, we do not rule out a possible deeper connection between the Naive Bayes
decision rule and boosting.

In what began as the influential Dawid-Skene model (Dawid and Skene, 1979) and is now
known as crowdsourcing, one attempts to extract accurate predictions by pooling a large
number of experts, typically without the benefit of being able to test any given expert’s
competence level. Still, under mild assumptions it is possible to efficiently recover the expert
competences to a high accuracy and to aggregate them effectively (Parisi et al., 2014+).
Error bounds for the oracle MAP rule were obtained in this model by Li et al. (2013) and
minimax rates were given in Gao and Zhou (2014).

In a recent line of work, Lacasse et al. (2006); Laviolette and Marchand (2007); Roy et al.
(2011) have developed a PAC-Bayesian theory for the majority vote of simple classifiers.
This approach facilitates data-dependent bounds and is even flexible enough to capture
some simple dependencies among the classifiers — though, again, the latter are learners
as opposed to our experts. Even more recently, experts with adversarial noise have been
considered (Mansour et al., 2013), and efficient algorithms for computing optimal expert
weights (without error analysis) were given (Eban et al., 2014). More directly related to
the present work are the papers of Berend and Paroush (1998), which characterizes the
conditions for the consistency of the simple majority rule, and Boland et al. (1989); Berend
and Sapir (2007); Helmbold and Long (2012) which analyze various models of dependence
among the experts.
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3. Known Competences

In this section we assume that the expert competences pi are known and analyze the con-
sistency of the naive Bayes decision rule (2). Our main result here is that the probability
of error P(fOPT(X) 6= Y ) is small if and only if the committee potential Φ is large.

Theorem 1 Suppose that the experts X = (X1, . . . , Xn) satisfy Assumptions (i)-(ii) and
fOPT : {±1}n → {±1} is the naive Bayes decision rule in (2). Then

(i) P(fOPT(X) 6= Y ) ≤ exp
(
−1

2Φ
)
.

(ii) P(fOPT(X) 6= Y ) ≥ 3

4[1 + exp(2Φ + 4
√

Φ)]
.

The next two sections are devoted to proving Theorem 1. These are followed by an opti-
mality result and some additional upper and lower bounds.

3.1 Proof of Theorem 1(i)

Define the {0, 1}-indicator variables

ξi = 1{Xi=Y }, (5)

corresponding to the event that the ith expert is correct. A mistake fOPT(X) 6= Y occurs
precisely when1 the sum of the correct experts’ weights fails to exceed half the total mass:

P(fOPT(X) 6= Y ) = P

(
n∑
i=1

wiξi ≤
1

2

n∑
i=1

wi

)
. (6)

Since Eξi = pi, we may rewrite the probability in (6) as

P

(∑
i

wiξi ≤ E

[∑
i

wiξi

]
−
∑
i

(pi − 1
2)wi

)
. (7)

A standard tool for estimating such sum deviation probabilities is Hoeffding’s inequality
(Hoeffding, 1963). Applied to (7), it yields the bound

P(fOPT(X) 6= Y ) ≤ exp

(
−

2
[∑

i(pi −
1
2)wi

]2∑
iw

2
i

)
, (8)

which is far too crude for our purposes. Indeed, consider a finite committee of highly
competent experts with pi’s arbitrarily close to 1 and X1 the most competent of all. Raising
X1’s competence sufficiently far above his peers will cause both the numerator and the
denominator in the exponent to be dominated by w2

1, making the right-hand-side of (8)
bounded away from zero. In the limiting case of this regime, the probability of error
approaches zero while the right-hand side of (8) approaches e−1/2 ≈ 0.6. The inability of
Hoeffding’s inequality to guarantee consistency even in such a felicitous setting is an instance

1. Without loss of generality, ties are considered to be errors.
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of its generally poor applicability to highly heterogeneous sums, a phenomenon explored in
some depth in McAllester and Ortiz (2003). Bernstein’s and Bennett’s inequalities suffer
from a similar weakness (see ibid.). Fortunately, an inequality of Kearns and Saul (1998)
is sufficiently sharp2 to yield the desired estimate: For all p ∈ [0, 1] and all t ∈ R,

(1− p)e−tp + pet(1−p) ≤ exp

(
1− 2p

4 log((1− p)/p)
t2
)
. (9)

Put θi = ξi − pi, substitute into (6), and apply Markov’s inequality:

P(fOPT(X) 6= Y ) = P

(
−
∑
i

wiθi ≥ Φ

)
(10)

≤ e−tΦEexp

(
−t
∑
i

wiθi

)
.

Now

Ee−twiθi = pie
−(1−pi)wit + (1− pi)epiwit

≤ exp

(
−1 + 2pi

4 log(pi/(1− pi))
w2
i t

2

)
(11)

= exp
[

1
2(pi − 1

2)wit
2
]
,

where the inequality follows from (9). By independence,

E exp

(
−t
∑
i

wiθi

)
=

∏
i

Ee−twiθi

≤ exp

(
1
2

∑
i

(pi − 1
2)wit

2

)
= exp

(
1
2Φt2

)
and hence

P(fOPT(X) 6= Y ) ≤ exp
(

1
2Φt2 − Φt

)
.

Choosing t = 1, we obtain the bound in Theorem 1(i).

3.2 Proof of Theorem 1(ii)

Define the {±1}-indicator variables

ηi = 2 · 1{Xi=Y } − 1, (12)

corresponding to the event that the ith expert is correct, and put qi = 1−pi. The shorthand
w · η =

∑n
i=1wiηi will be convenient. We will need some simple lemmata:

2. The Kearns-Saul inequality (9) may be seen as a distribution-dependent refinement of Hoeffding’s

for a two-valued distribution (which bounds the left-hand-side of (9) by et
2/8), and is not nearly as

straightforward to prove; see Appendix A.
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Lemma 2

P(fOPT(X) = Y ) = 1
2

∑
η∈{±1}n

max {P (η), P (−η)}

=
∑

η∈{+1}×{±1}n−1

max {P (η), P (−η)}

and

P(fOPT(X) 6= Y ) = 1
2

∑
η∈{±1}n

min {P (η), P (−η)}

=
∑

η∈{+1}×{±1}n−1

min {P (η), P (−η)} ,

where

P (η) =
∏
i:ηi=1

pi
∏

i:ηi=−1

qi. (13)

Proof By (5), (6) and (12), that a mistake occurs precisely when

n∑
i=1

wi
ηi + 1

2
≤ 1

2

n∑
i=1

wi,

which is equivalent to

w · η ≤ 0. (14)

Exponentiating both sides,

exp (w · η) =
n∏
i=1

ewiηi

=
∏
i:ηi=1

pi
qi
·
∏

i:ηi=−1

qi
pi

=
P (η)

P (−η)
≤ 1. (15)

We conclude from (15) that among two “antipodal” atoms ±η ∈ {±1}n, the one with the
greater mass contributes to the probability of being correct and the one with the smaller
mass contributes to the probability of error, which proves the claim.

Lemma 3 Suppose that s, s′ ∈ (0,∞)m satisfy

m∑
i=1

(si + s′i) ≥ a
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and

1

R
≤ si
s′i
≤ R, i ∈ [m]

for some 1 ≤ R <∞. Then

m∑
i=1

min
{
si, s

′
i

}
≥ a

1 +R
.

Proof Immediate from

si + s′i ≤ min
{
si, s

′
i

}
(1 +R).

Lemma 4 Define the function F : (0, 1)→ R by

F (x) =
x(1− x) log(x/(1− x))

2x− 1
.

Then sup0<x<1 F (x) = 1
2 .

Proof Since F is symmetric about x = 1
2 , it suffices to prove the claim for 1

2 ≤ x < 1. We
will show that F is concave by examining its second derivative:

F ′′(x) = −2x− 1− 2x(1− x) log(x/(1− x))

x(1− x)(2x− 1)3
.

The denominator is obviously nonnegative on [1
2 , 1], while the numerator has the Taylor

expansion

∞∑
n=1

22(n+1)(x− 1
2)2n+1

4n2 − 1
≥ 0, 1

2 ≤ x < 1

(verified through tedious but straightforward calculus). Since F is concave and symmetric
about 1

2 , its maximum occurs at F (1
2) = 1

2 .

Continuing with the main proof, observe that

E [w · η] =
n∑
i=1

(pi − qi)wi = 2Φ (16)

and

Var [w · η] = 4
n∑
i=1

piqiw
2
i .
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By Lemma 4,

piqiw
2
i ≤ 1

2(pi − qi)wi,

and hence

Var [w · η] ≤ 4Φ. (17)

Define the segments I, J ⊂ R by

I =
[
2Φ− 4

√
Φ, 2Φ + 4

√
Φ
]
⊂
[
−2Φ− 4

√
Φ, 2Φ + 4

√
Φ
]

= J. (18)

Chebyshev’s inequality together with (16, 17, 18) implies that

P (w · η ∈ J) ≥ P (w · η ∈ I) ≥ 3

4
. (19)

Consider an atom η ∈ {±1}n for which w · η ∈ J . It follows from (15) and (18) that

P (η)

P (−η)
= exp (w · η) ≤ exp(2Φ + 4

√
Φ). (20)

Finally, we have

P(fOPT(X) 6= Y )
(a)
=

∑
η∈{+1}×{±1}n−1

min {P (η), P (−η)}

≥
∑

η∈{+1}×{±1}n−1:w·η∈J

min {P (η), P (−η)}

(b)

≥ 1

1 + exp(2Φ + 4
√

Φ)

∑
η∈{+1}×{±1}n−1:w·η∈J

(P (η) + P (−η))

(c)
=

1

1 + exp(2Φ + 4
√

Φ)

∑
η∈{±1}n:w·η∈J

P (η)

(d)

≥ 3/4

1 + exp(2Φ + 4
√

Φ)
,

where: (a) follows from Lemma 2, (b) from Lemma 3 and (20), (c) from the fact that
w · η ∈ J ⇐⇒ −w · η ∈ J , and (d) from (19). This completes the proof.

Remark 5 The constant 3
4 can be made arbitrarily close to 1 at the expense of an increased

coefficient in front of the
√

Φ term. More precisely, the 4
√

Φ term in (18) corresponds to
taking two standard deviations about the mean. Taking instead k standard deviations would
cause 4

√
Φ to be replaced by 2k

√
Φ and the 3

4 constant to be replaced by 1−1/k2. This leads
to (mild) improvements for large Φ.
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3.3 Asymptotic tightness

Although there is a 4th power gap between the upper bound U = exp
(
−1

2Φ
)

and lower
bound L � exp(−2Φ) in Theorem 1, we will show that each estimate is tight in a certain
regime of Φ.

Upper bound. To establish the tightness of the upper bound U = e−Φ/2, consider n identical
experts with competences p1 = . . . = pn = p > 1

2 . Then

P(fOPT(X) 6= Y ) = P(B < 1
2n) = P(B < n(p− ε)), (21)

where B ∼ Bin(n, p) and ε = p− 1
2 . By Sanov’s theorem (den Hollander, 2000),

lim
n→∞

− 1

n
logP(B < n(p− ε)) = H(p− ε||p) = H(1

2 ||p), (22)

where

H(x||y) = x ln
x

y
+ (1− x) ln

1− x
1− y

, 0 < x, y < 1.

Hence,

1

n
logP(fOPT(X) 6= Y )

(a)
=

1

n
logP(B < 1

2n)

(b)−→
n→∞

−H(1
2 ||p)

= 1
2 ln 2p+ 1

2 ln 2(1− p),

(where (a) and (b) follow from (21) and (22), respectively) whence

lim
n→∞

n
√
P(fOPT(X) 6= Y ) = exp

(
1
2 ln(2p) + 1

2 ln(2(1− p))
)

(23)

= 2
√
p(1− p).

On the other hand,

Φ =
n∑
i=1

(pi − 1
2) log

pi
1− pi

= n(p− 1
2) log

p

1− p
,

and hence

n
√
U = [(1− p)/p](p−

1
2)/2.

The tightness of the upper bound follows from

F (p) :=
2
√
p(1− p)

[(1− p)/p](p−
1
2)/2

−→
p→1/2

1,

which is easily verified since F (1
2) = 1.
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Lower bound. For the lower bound, consider a single expert with competence p1 = p > 1
2 .

Thus, P(fOPT(X) 6= Y ) = 1 − p and L � exp(−2Φ) = [(1 − p)/p]2p−1. Again, it is easily
verified that

[(1− p)/p]2p−1

1− p
−→
p→1

1,

and so the lower bound is also tight.
We conclude that the committee profile Φ is not sufficiently sensitive an indicator to

close the gap between the two bounds entirely.

Remark 6 In the special case of identical experts, with p1 = . . . = pn = p, the Chernoff-
Stein lemma (Cover and Thomas, 2006) gives the best asymptotic exponent for one-sided
(i.e., type I or type II) errors, while Chernoff information corresponds to the optimal
exponent for the overall probability of error. As seen from (23), the latter is given by
1
2 ln(2p) + 1

2 ln(2(1− p)) in this case.
In contradistinction, our bounds in Theorem 1 hold for non-identical experts and are

dimension-free.

3.4 Additional bounds

An anonymous referee has pointed out that

Φ = 1
2D(P ||Q) = 1

2D(Q||P ), (24)

where P is the distribution of η ∈ {±1}n defined in (13), Q is the “antipodal” distribution
of −η, and D(P ||Q) is the Kullback-Leibler divergence, defined by

D(P ||Q) =
∑

x∈{±1}n
P (x) ln

P (x)

Q(x)
.

This leads to an improved lower bound for Φ . 0.992, as follows. By Lemma 2, we have

P(fOPT(X) 6= Y ) = 1
2

∑
η∈{±1}n

min {P (η), Q(η)}

= 1
2

(
1− 1

2 ‖P −Q‖1
)
, (25)

where the second identity follows from a well-known minorization characterization of the
total variation distance (see, e.g., Kontorovich (2007, Lemma 2.2.2)). A bound relating the
total variation distance and Kullback-Leibler divergence is known as Pinsker’s inequality,
and states that

‖P −Q‖1 ≤
√

2D(P ||Q) (26)

holds for all distributions P,Q (see Berend et al. (2014) for historical background and a
“reversed” direction of (26)). Combining (24), (25), and (26), we obtain

P(fOPT(X) 6= Y ) ≥ 1
2

(
1−
√

Φ
)
,

1528



A Finite Sample Analysis of the Naive Bayes Classifier

which, for small Φ, is far superior to Theorem 1(ii) (but is vacuous for Φ ≥ 1).
The identity in (25) may also be used to sharpen the upper bound in Theorem 1(i) for

small Φ. Invoking Even-Dar et al. (2007, Lemma 3.10), we have

D(P ||Q) ≤ ‖P −Q‖1 log

(
min

x∈{±1}n
P (x)

)−1

. (27)

Let us suppose for concreteness that all of the experts are identical with pi = 1
2 + γ for

γ ∈ (0, 1
2), i ∈ [n]. Then

Φ = nγ log
1/2 + γ

1/2− γ

and

log

(
min

x∈{±1}n
P (x)

)−1

= n log
1

1/2− γ
=: Γ,

which, combined with (24, 25, 27) yields

P(fOPT(X) 6= Y ) ≤ 1
2

(
1− Φ

Γ

)
= 1

2

(
1− γ + γ

log(1/2 + γ)

log(1/2− γ)

)
. (28)

Thus, for 0 < γ < 1
2 and

n <
2

γ

(
log

1/2− γ
1/2 + γ

)
log

(
1− γ

2
+
γ

2
· log(1/2 + γ)

log(1/2− γ)

)
,

(28) is sharper than Theorem 1(i).

4. Unknown Competences: Frequentist Approach

Our goal in this section is to obtain, insofar as possible, analogues of Theorem 1 for unknown
expert competences. When the pis are unknown, they must be estimated empirically before
any useful weighted majority vote can be applied. There are various ways to model partial
knowledge of expert competences (Baharad et al., 2011, 2012). Perhaps the simplest scenario
for estimating the pis is to assume that the ith expert has been queried independently mi

times, out of which he gave the correct prediction ki times. Taking the {mi} to be fixed,
define the committee profile by k = (k1, . . . , kn); this is the aggregate of the agent’s empirical
knowledge of the experts’ performance. An empirical decision rule f̂ : (x,k) 7→ {±1}
makes a final decision based on the expert inputs x together with the committee profile.
Analogously to (1), the probability of a mistake is

P(f̂(X,K) 6= Y ). (29)

Note that now the committee profile is an additional source of randomness. Here we run
into our first difficulty: unlike the probability in (1), which is minimized by the naive Bayes
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decision rule, the agent cannot formulate an optimal decision rule f̂ in advance without
knowing the pis. This is because no decision rule is optimal uniformly over the range of
possible pis. Our approach will be to consider weighted majority decision rules of the form

f̂(x,k) = sign

(
n∑
i=1

ŵ(ki)xi

)
(30)

and to analyze their consistency properties under two different regimes: low-confidence and
high-confidence. These refer to the confidence intervals of the frequentist estimate of pi,
given by

p̂i =
ki
mi
. (31)

4.1 Low-confidence regime

In the low-confidence regime, the sample sizes mi may be as small as 1, and we define3

ŵ(ki) = ŵLC
i := p̂i − 1

2 , i ∈ [n], (32)

which induces the empirical decision rule f̂LC. It remains to analyze f̂LC’s probability of
error. Recall the definition of ξi from (5) and observe that

E [ŵLC
i ξi] = E[(p̂i − 1

2)ξi] = (pi − 1
2)pi, (33)

since p̂i and ξi are independent. As in (6), the probability of error (29) is

P

(
n∑
i=1

ŵLC
i ξi ≤

1

2

n∑
i=1

ŵLC
i

)
= P

(
n∑
i=1

Zi ≤ 0

)
, (34)

where Zi = ŵLC
i (ξi − 1

2). Now the {Zi} are independent random variables, EZi = (pi − 1
2)2

(by (33)), and each Zi takes values in an interval of length 1
2 . Hence, the standard Hoeffding

bound applies:

P(f̂LC(X,K) 6= Y ) ≤ exp

− 8

n

(
n∑
i=1

(pi − 1
2)2

)2
 . (35)

We summarize these calculations in

Theorem 7 A sufficient condition4 for P(f̂LC(X,K) 6= Y )→ 0 is

1√
n

n∑
i=1

(pi − 1
2)2 →∞.

3. For mi min {pi, qi} � 1, the estimated competences p̂i may well take values in {0, 1}, in which case
log(p̂i/q̂i) = ±∞. The rule in (32) is essentially a first-order Taylor approximation to w(·) about p = 1

2
.

4. Formally, we have an infinite sequence of experts with competences {pi : i ∈ N}, with a corresponding
sequence of trials with sizes {mi} and outcomes Ki ∼ Bin(mi, pi), in addition to the expert votes
Xi ∼ Y [2 · Bernoulli(pi)− 1]. An empirical decision rule fn (more precisely, a sequence of rules) is said
to be consistent if

lim
n→∞

P(fn(X,K) 6= Y ) = 0.
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Several remarks are in order. First, notice that the error bound in (35) is stated in terms
of the unknown {pi}, providing the agent with large-committee asymptotics but giving no
finitary information; this limitation is inherent in the low-confidence regime. Secondly,
the condition in Theorem 7 is considerably more restrictive than the consistency condition
Φ → ∞ implicit in Theorem 1. Indeed, the empirical decision rule f̂LC is incapable of
exploiting a single highly competent expert in the way that fOPT from (2) does. Our
analysis could be sharpened somewhat for moderate sample sizes {mi} by using Bernstein’s
inequality to take advantage of the low variance of the p̂is. For sufficiently large sample
sizes, however, the high-confidence regime (discussed below) begins to take over. Finally,
there is one sense in which this case is “easier” to analyze than that of known {pi}: since
the summands in (34) are bounded, Hoeffding’s inequality gives nontrivial results and there
is no need for more advanced tools such as the Kearns-Saul inequality (9) (which is actually
inapplicable in this case).

4.2 High-confidence regime

In the high-confidence regime, each estimated competence p̂i is close to the true value pi
with high probability. To formalize this, fix some 0 < δ < 1, 0 < ε ≤ 5, and put

qi = 1− pi, q̂i = 1− p̂i.

We will set the empirical weights according to the “plug-in” naive Bayes rule

ŵHC
i := log

p̂i
q̂i
, i ∈ [n], (36)

which induces the empirical decision rule f̂HC and raises immediate concerns about ŵHC
i =

±∞. We give two kinds of bounds on P(f̂HC 6= Y ): nonadaptive and adaptive. In
the nonadaptive analysis, we show that for mi min {pi, qi} � 1, with high probability
|wi − ŵHC

i | � 1, and thus a “perturbed” version of Theorem 1(i) holds (and in particu-
lar, wHC

i will be finite with high probability). In the adaptive analysis, we allow ŵHC
i to

take on infinite values5 and show (perhaps surprisingly) that this decision rule still admits
reasonable error estimates.
Nonadaptive analysis. In this section, ε, ε̃ > 0 are related by ε = 2ε̃+ 4ε̃2 or, equivalently,

ε̃ =

√
4ε+ 1− 1

4
. (37)

Lemma 8 If 0 < ε̃ < 1 and

ε̃2mipi ≥ 3 log(2n/δ), i ∈ [n], (38)

then

P
(
∃i ∈ [n] :

p̂i
pi

/∈ (1− ε̃, 1 + ε̃)

)
≤ δ.

5. When the decision rule is faced with evaluating sums involving ∞−∞, we automatically count this as
an error.
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Proof The multiplicative Chernoff bound yields

P (p̂i < (1− ε̃)pi) ≤ e−ε̃
2mipi/2

and

P (p̂i > (1 + ε̃)pi) ≤ e−ε̃
2mipi/3.

Hence,

P
(
p̂i
pi

/∈ (1− ε̃, 1 + ε̃)

)
≤ 2e−ε̃

2mipi/3.

The claim follows from (38) and the union bound.

Lemma 9 Let δ ∈ (0, 1), ε ∈ (0, 5), and wi be the naive Bayes weight (3). If

1− ε̃ ≤ p̂i
pi
,
q̂i
qi
≤ 1 + ε̃

then

|wi − ŵHC
i | ≤ ε.

Proof We have

|wi − ŵHC
i | =

∣∣∣∣log
pi
qi
− log

p̂i
q̂i

∣∣∣∣
=

∣∣∣∣log
pi
p̂i

+ log
q̂i
qi

∣∣∣∣
=

∣∣∣∣log
pi
p̂i

∣∣∣∣+

∣∣∣∣log
q̂i
qi

∣∣∣∣ .
Now6

[log(1− ε̃), log(1 + ε̃)] ⊆ [−ε̃− 2ε̃2, ε̃]

⊆ [−1
2ε,

1
2ε],

whence ∣∣∣∣log
pi
p̂i

∣∣∣∣+

∣∣∣∣log
q̂i
qi

∣∣∣∣ ≤ ε.

6. The first containment requires log(1 − x) ≥ −x − 2x2, which holds (not exclusively) on (0, 0.9). The
restriction ε ≤ 5 ensures that ε̃ is in this range.
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Corollary 10 If

ε̃2mi min {pi, qi} ≥ 3 log(4n/δ), i ∈ [n],

then

P
(

max
i∈[n]
|wi − ŵHC

i | > ε

)
≤ δ.

Proof An immediate consequence of applying Lemma 8 to pi and qi with the union bound.

To state the next result, let us arrange the plug-in weights (36) as a vector ŵHC ∈ Rn,
as was done with w and η from Section 3.1. The corresponding weighted majority rule f̂HC

yields an error precisely when

ŵHC · η ≤ 0

(cf. (14)). Our nonadaptive approach culminates in the following result.

Theorem 11 Let 0 < δ < 1 and 0 < ε < min {5, 2Φ/n}. If

mi min {pi, qi} ≥ 3

(√
4ε+ 1− 1

4

)−2

log
4n

δ
, i ∈ [n], (39)

then

P
(
f̂HC(X,K) 6= Y

)
≤ δ + exp

[
−(2Φ− εn)2

8Φ

]
. (40)

Remark 12 For fixed {pi} different from 0 or 1 and mini∈[n]mi →∞, we may take δ and
ε arbitrarily small — and in this limiting case, the bound of Theorem 1(i) is recovered.

Proof Suppose that Z, Ẑ, and U are real numbers satisfying∣∣∣Z − Ẑ∣∣∣ ≤ U.
Then

∀t > 0, (Ẑ ≤ 0) =⇒ (U > t) ∨ (Z ≤ t). (41)

Indeed, if both U ≤ t and Z > t, then Ẑ and Z are within a distance t of each other, but
Z > t and so Ẑ must be greater than 0.

Observe also that ‖η‖∞ = 1, and thus a simple application of Hölder’s inequality yields

|w · η − ŵHC · η| = |(w − ŵHC) · η|

≤
n∑
i=1

|wi − wHC
i | = ‖w − ŵHC‖1 .
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Invoking (41) with Z = w, Ẑ = ŵHC, and t = εn, we obtain

P (ŵHC · η ≤ 0) ≤ P ({‖w − ŵHC‖1 > εn} ∪ {w · η ≤ εn})
≤ P(‖w − ŵHC‖1 > εn) + P(w · η ≤ εn).

Corollary 10 upper-bounds the first term on the right-hand side by δ. The second term
is estimated by replacing Φ by Φ − εn in (10) and repeating the argument following that
formula.

Adaptive analysis. Theorem 11 has the drawback of being nonadaptive, in that its assump-
tions (39) and conclusions (40) depend on the unknown {pi} and hence cannot be evaluated
by the agent (the bound in Display 35 is also nonadaptive). In the adaptive approach, all
results are stated in terms of empirically observed quantities:

Theorem 13 Choose any

δ ≥
n∑
i=1

1
√
mi

and let R be the event

exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)
≤ δ

2
. (42)

Then

P
(
R ∩

{
f̂HC(X,K) 6= Y

})
≤ δ.

Remark 14 Our interpretation for Theorem 13 is as follows. The agent observes the
committee profile K, which determines the {p̂i, ŵHC

i }, and then checks whether the event R
has occurred. If not, the adaptive agent refrains from making a decision (and may choose to
fall back on the low-confidence approach described previously). If R does hold, however, the
agent predicts Y according to f̂HC. The event R will tend to occur when the estimated p̂is
are “favorable” in the sense of inducing a large empirical committee profile. When this fails
to happen (i.e., many of the p̂i are close to 1

2), R will be a rare event. However, in this case
little is lost by refraining from a high-confidence decision and defaulting to a low-confidence
one, since near 1

2 , the two decision procedures are very similar.

As explained above, there does not exist a nontrivial a priori upper bound on P(f̂HC(X,K) 6=
Y ) independent of any knowledge of the pis. Instead, Theorem 13 bounds the probability
of the agent being “fooled” by an unrepresentative committee profile.7 Note that we have
done nothing to prevent ŵHC

i = ±∞, and this may indeed happen. Intuitively, there are two
reasons for infinite ŵHC

i : (a) noisy p̂i due to mi being too small, or (b) the ith expert is
actually highly (in)competent, which causes p̂i ∈ {0, 1} to be likely even for large mi. The
1/
√
mi term in the bound insures against case (a), while in case (b), choosing infinite ŵHC

i

causes no harm (as we show in the proof).

7. These adaptive bounds are similar in spirit to empirical Bernstein methods, (Audibert et al., 2007; Mnih
et al., 2008; Maurer and Pontil, 2009), where the agent’s confidence depends on the empirical variance.
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Proof We will write the probability and expectation operators with subscripts (such as K)
to indicate the random variable(s) being summed over. Thus,

PK,X,Y

(
R ∩

{
f̂HC(X,K) 6= Y

})
= PK,η (R ∩ {ŵHC · η ≤ 0})

= EK [1R · Pη (ŵHC · η ≤ 0 |K)] .

(43)

Recall that the random variable η ∈ {±1}n, with probability mass function

P (η) =
∏
i:ηi=1

pi
∏

i:ηi=−1

qi,

is independent of K, and hence

Pη (ŵHC · η ≤ 0 |K) = Pη (ŵHC · η ≤ 0) . (44)

Define the random variable η̂ ∈ {±1}n (conditioned on K) by the probability mass function

P (η̂) =
∏
i:ηi=1

p̂i
∏

i:ηi=−1

q̂i,

and the set A ⊆ {±1}n by A = {x : ŵHC · x ≤ 0} . Now∣∣Pη (ŵHC · η ≤ 0)− Pη̂ (ŵHC · η̂ ≤ 0)
∣∣ =

∣∣Pη (A)− Pη̂ (A)
∣∣

≤ max
A⊆{±1}n

∣∣Pη (A)− Pη̂ (A)
∣∣

=
∥∥Pη − Pη̂

∥∥
TV

≤
n∑
i=1

|pi − p̂i| =: M,

where the last inequality follows from a standard tensorization property of the total variation
norm ‖·‖

TV
, see e.g. (Kontorovich, 2012, Lemma 2.2). By Theorem 1(i), we have

Pη̂ (ŵHC · η̂ ≤ 0) ≤ exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)
,

and hence

Pη (ŵHC · η ≤ 0) ≤M + exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)
.

Invoking (44), we substitute the right-hand side above into (43) to obtain

PK,X,Y

(
R ∩

{
f̂HC(X,K) 6= Y

})
≤ EK

[
1R ·

(
M + exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

))]

≤ EK[M ] + EK

[
1R exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)]
.
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By the definition of R, the second term on the last right-hand side is upper-bounded by
δ/2. To bound M , we invoke a simple mean absolute deviation estimate (cf. Berend and
Kontorovich, 2013a):

EK |pi − p̂i| ≤

√
pi(1− pi)

mi
≤ 1

2
√
mi
,

which finishes the proof.

Remark 15 Actually, the proof shows that we may take a smaller δ, but with a more
complex dependence on {mi}, which simplifies to 2[1− (1− (2

√
m)−1)n] for mi ≡ m. This

improvement is achieved via a refinement of the bound
∥∥Pη − Pη̂

∥∥
TV
≤
∑n

i=1 |pi − p̂i| to∥∥Pη − Pη̂

∥∥
TV
≤ α ({|pi − p̂i| : i ∈ [n]}), where α(·) is the function defined in Kontorovich

(2012, Lemma 4.2).

Open problem. As argued in Remark 12, the nonadaptive agent achieves the asymptotically
optimal rate of Theorem 1(i) in the large-sample limit. Does an analogous claim hold true
for the adaptive agent? Can the dependence on {mi} in Theorem 13 be improved, perhaps
through a better choice of ŵHC?

5. Unknown Competences: Bayesian Approach

A shortcoming of Theorem 13 is that, when condition R fails, the agent is left with no
estimate of the error probability. An alternative (and in some sense cleaner) approach to
handling unknown expert competences pi is to assume a known prior distribution over the
competence levels pi. The natural choice of prior for a Bernoulli parameter is the Beta
distribution, namely

pi ∼ Beta(αi, βi)

with density

pαi−1
i qβi−1

i

B(αi, βi)
, αi, βi > 0,

where qi = 1−pi and B(x, y) = Γ(x)Γ(y)/Γ(x+y). Our full probabilistic model is as follows.
First, “nature” chooses the true state of the world Y according to Y ∼ Bernoulli(1

2), and
each of the n expert competences pi is drawn independently from Beta(αi, βi) with known
parameters αi, βi. Then the ith expert, i ∈ [n], is queried (on independent instances) mi

times, with Ki ∼ Bin(mi, pi) correct predictions and mi − Ki incorrect ones. As before,
K = (K1, . . . ,Kn) is the (random) committee profile. Additionally, X = (X1, . . . , Xn) is
the random voting profile, where Xi ∼ Y [2 · Bernoulli(pi)− 1], independent of the other
random variables. Absent direct knowledge of the pis, the agent relies on an empirical
decision rule f̂ : (x,k) 7→ {±1} to produce a final decision based on the expert inputs x
together with the committee profile k. A decision rule f̂Ba is Bayes-optimal if it minimizes

P(f̂(X,K) 6= Y ), (45)
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which is formally identical to (29) but semantically there is a difference: the probability
in (45) is over the pi in addition to (X, Y,K). Unlike the frequentist approach, where no
optimal empirical decision rule was possible, the Bayesian approach readily admits one:

Theorem 16 The decision rule

f̂Ba(x,k) = sign

(
n∑
i=1

ŵBa
i xi

)
, (46)

where

ŵBa
i = log

αi + ki
βi +mi − ki

, (47)

minimizes the probability in (45) over all empirical decision rules.

Remark 17 For 0 < pi < 1, we have

ŵBa
i −→mi→∞

wi, i ∈ [n],

almost surely, both in the frequentist and the Bayesian interpretations.

Proof Denote

Mn = {0, . . . ,m1} × {0, . . . ,m2} × . . .× {0, . . . ,mn}

and let f : {±1}n ×Mn → {±1} be an arbitrary empirical decision rule. Then

P(f(X,K) 6= Y ) =
∑

x∈{±1}n, k∈Mn

P(X = x,K = k) · P(f(X,K) 6= Y |X = x,K = k).

Observe that the quantity P(Y = y |X = x,K = k) is completely determined by y, x, k,
and the parameters α,β ∈ Rn, and denote this functional dependence by

P(Y = y |X = x,K = k) =: Gα,β(y,x,k).

Then clearly, the optimal empirical decision rule is

f∗α,β(x,k) =

{
+1, Gα,β(+1,x,k) ≥ Gα,β(−1,x,k),

−1, Gα,β(+1,x,k) < Gα,β(−1,x,k),

and a decision rule fα,β is optimal if and only if

P(fα,β(X,K) = Y |X = x,K = k) ≥ P(fα,β(X,K) 6= Y |X = x,K = k) (48)

for all x,k,α,β. Invoking Bayes’ formula, we may rewrite the optimality criterion in (48)
in the form

P(fα,β(X,K) = Y,X = x,K = k) ≥ P(fα,β(X,K) 6= Y,X = x,K = k). (49)
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For given x ∈ {±1}n and k ∈Mn, let I+(x) be the set of YES votes

I+(x) = {i ∈ [n] : xi = +1}

and I−(x) = [n] \ I+(x) the set of NO votes. Let us fix some A ⊆ [n], B = [n] \ A and
compute

P(Y = +1, I+(X) = A, I−(X) = B,k = K)

=
n∏
i=1

∫ 1

0

pαi−1
i qβi−1

i

B(αi, βi)

(
mi

ki

)
pkii q

mi−ki
i p

1{i∈A}
i q

1{i∈B}
i dpi

=
n∏
i=1

(
mi
ki

)
B(αi, βi)

∫ 1

0
p
αi+ki−1+1{i∈A}
i q

βi+mi−ki−1+1{i∈B}
i dpi

=

n∏
i=1

(
mi
ki

)
B(αi + ki + 1{i∈A}, βi +mi − ki + 1{i∈B})

B(αi, βi)
. (50)

Analogously,

P(Y = −1, I+(X) = A, I−(X) = B,k = K)

=
n∏
i=1

(
mi
ki

)
B(αi + ki + 1{i∈B}, βi +mi − ki + 1{i∈A})

B(αi, βi)
. (51)

Let us use the shorthand P (+1, A,B,k) and P (−1, A,B,k) for the joint probabilities in the
last two displays, along with their corresponding conditionals P (±1 |A,B,k). Obviously,

P (1|A,B,k) > P (−1|A,B,k) ⇐⇒ P (1, A,B,k) > P (−1, A,B,k),

which occurs precisely if

n∏
i=1

B(αi+ki+1{i∈A}, βi+mi−ki+1{i∈B})>
n∏
i=1

B(αi+ki+1{i∈B}, βi+mi−ki+1{i∈A}), (52)

as the other factors in (50) and (51) cancel out. Now B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and

Γ(αi + ki + 1{i∈A} + βi +mi − ki + 1{i∈B}) = Γ(αi + ki + 1{i∈B} + βi +mi − ki + 1{i∈A})

= Γ(αi + βi +mi + 1),

and thus both sides of (52) share a common factor of(
n∏
i=1

Γ(αi + βi +mi + 1)

)−1

.

Furthermore, the identity Γ(x+ 1) = xΓ(x) implies

Γ(αi + ki + 1{i∈A}) = (αi + ki)
1{i∈A}Γ(αi + ki),

Γ(βi +mi − ki + 1{i∈B}) = (βi +mi − ki)1{i∈B}Γ(βi +mi − ki),
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and thus both sides of (52) share a common factor of

n∏
i=1

Γ(αi + ki)Γ(βi +mi − ki).

After cancelling out the common factors, (52) becomes equivalent to∏
i∈A

(αi + ki)
∏
i∈B

(βi +mi − ki) >
∏
i∈B

(αi + ki)
∏
i∈A

(βi +mi − ki),

which further simplifies to∏
i∈A

αi + ki
βi +mi − ki

>
∏
i∈B

αi + ki
βi +mi − ki

.

Hence, the choice (47) of ŵBa
i guarantees that the decision rule in (46) is indeed optimal.

Remark 18 Unfortunately, although

P(f̂Ba(X,K) 6= Y ) = P(ŵBa · η ≤ 0)

is a deterministic function of {αi, βi,mi}, we are unable to compute it at this point, or even
give a non-trivial bound. The main source of difficulty is the coupling between ŵBa and η.

Open problem. Give a non-trivial estimate for P(f̂Ba(X,K) 6= Y ).

6. Experiments

It is most instructive to take the committee size n to be small when comparing the different
voting rules. Indeed, for a large committee of “marginally competent” experts with pi = 1

2 +
γ for some γ > 0, even the simple majority rule fMAJ(x) = sign(

∑n
i=1 xi) has a probability

of error decaying as exp(−4nγ2), as can be easily seen from Hoeffding’s bounds. The more
sophisticated voting rules discussed in this paper perform even better in this setting; see
Helmbold and Long (2012) for an in-depth study of the utility gained from weak experts.
Hence, small committees provide the natural test-bed for gauging a voting rule’s ability to
exploit highly competent experts. In our experiments, we set n = 5 and the sample sizes
mi were identical for all experts. The results were averaged over 105 trials. Two of our
experiments are described below.
Low vs. high confidence. The goal of this experiment was to contrast the extremal behavior
of f̂LC vs. f̂HC. To this end, we numerically optimized the p ∈ [0, 1]n so as to maximize the
absolute gap

∆n(p) := P(fLC(X) 6= Y )− P(fOPT(X) 6= Y ),

where fLC(x) = sign
(∑n

i=1(pi − 1
2)xi

)
. We were surprised to discover that, though the ratio

P(fLC(X) 6= Y )/P(fOPT(X) 6= Y ) can be made arbitrarily large by setting p1 ≈ 1 and the
remaining pi < 1−ε, the absolute gap appears to be rather small: we conjecture (with some
heuristic justification8) that supn≥1 supp∈[0,1]n ∆n(p) = 1/16. For f̂Ba, we used αi = βi = 1
for all i. The results are reported in Figure 1.

8. The intuition is that we want one of the experts to be perfect (i.e., p = 1) and two others to be
“moderately strong,” whereby under the low confidence rule, the two can collude to overwhelm the perfect
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Figure 1: For very small sample sizes, f̂LC outperforms f̂HC but is outperformed by f̂Ba.
Starting from sample size ≈ 13, f̂HC dominates the other empirical rules. The
empirical rules are (essentially) sandwiched between fOPT and fMAJ.
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Figure 2: Unsurprisingly, f̂Ba uniformly outperforms the other two empirical rules. We
found it somewhat surprising that f̂HC required so many samples (about 60 on
average) to overtake f̂LC. The simple majority rule fMAJ (off the chart) performed
at an average accuracy of 50%, as expected.

expert, but neither of them alone can. For n = 3, the choice p = (1, 3/4 + ε, 3/4 + ε) asymptotically
achieves the gap ∆3(p) = 1/16.
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Bayesian setting. In each trial, a vector of expert competences p ∈ [0, 1]n was drawn
independently componentwise, with pi ∼ Beta(1, 1). These values (i.e., αi = βi ≡ 1) were
used for f̂Ba. The results are reported in Figure 2.

7. Discussion

The classic and seemingly well-understood problem of the consistency of weighted majority
votes continues to reveal untapped depth and suggest challenging unresolved questions. We
hope that the results and open problems presented here will stimulate future research.
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Appendix A. Bibliographical Notes on the Kearns-Saul Inequality

Given the recent interest surrounding the Kearns-Saul inequality (9), we find it instructive
to provide some historical notes on this and related results. Most of the material in this
section is taken from Saul (2014), to whom we are indebted for writing the note and for his
kind permission to include it in this paper.

Lemma 19 Let f(x) = log cosh(1
2

√
x). Then f(x) is concave on x ≥ 0.

Proof The second derivative is given by

f ′′(x) =
sech2(1

2

√
x)

16x3/2

[√
x− sinh(

√
x)
]
.

For x > 0, the first of these factors is positive, and the second is negative. To show the
latter, recall the Taylor series expansion

sinh(t) = t+
t3

3!
+
t5

5!
+
t7

7!
+ . . . ,

from which we observe that
√
x ≤ sinh(

√
x). It also follows from the Taylor series that

f ′′(0) = − 1
96 . It follows that f ′′ is negative on the positive half-line, and hence f is concave

on this domain.

Corollary 20 For x, x0 > 0, we have

log cosh(1
2

√
x) ≤ log cosh(1

2

√
x0) +

[
tanh(1

2

√
x0)

4
√
x0

]
(x− x0). (53)
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Proof A concave function f(x) is upper-bounded by its first-order Taylor approximation:
f(x) ≤ f(x0) + f ′(x0)(x− x0). The claim follows from Lemma 19.

The results in Lemma 19 and Corollary 20 were first stated by Jaakkola and Jordan
(1997); see Jebara (2011); Jebara and Choromanska (2012) for extensions, including a
multivariate version. As pointed out by a referee, Theorem 1 in Hoeffding (1963) contains
some bounds that bear a resemblance to the Kearns-Saul inequality. However, we were
unable to derive the latter from the former — which, in particular, requires all of the
summands to be bounded between 0 and 1.

Suppose that in Equation (53), we make the substitutions

√
x =

∣∣∣∣t+ log
p

1− p

∣∣∣∣ , (54)

√
x0 =

∣∣∣∣log
p

1− p

∣∣∣∣ , (55)

where t ∈ R and p ∈ (0, 1). Then we obtain a particular form of the bound that will be
especially useful in what follows.

Corollary 21 For all t ∈ R and p ∈ (0, 1),

log cosh

(
1
2

[
t+ log

p

1− p

])
≤ − log

[
2
√
p(1− p)

]
+ (p− 1

2)t+

(
2p− 1

4 log p
1−p

)
t2.

Proof Make the substitutions suggested in (54, 55) and apply Corollary 20. The result
follows from tedious but elementary algebra.

The above result yields perhaps the most natural and direct proof of the Kearns-Saul
inequality to date:

Theorem 22 For all t ∈ R and p ∈ (0, 1),

log
[
(1− p)e−pt + pe(1−p)t

]
≤

(
2p− 1

4 log p
1−p

)
t2.

Proof Rewrite the left-hand side by symmetrizing the argument inside the logarithm,

log
[
(1− p)e−pt + pe(1−p)t

]
= log cosh

(
1
2

[
t+ log

p

1− p

])
− (p− 1

2)t+ log
[
2
√
p(1− p)

]
,

and invoke Corollary 21.

The inequality in Theorem 22 was first stated by Kearns and Saul (1998) and first
rigorously proved by Berend and Kontorovich (2013b). Shortly thereafter, Raginsky (2012)
provided a very elegant proof based on transportation and information-theoretic techniques,
which currently appears as Theorem 37 in Raginsky and Sason (2013). A third proof, found
by Schlemm (2014), fleshes out the original strategy suggested by Kearns and Saul (1998).
The fourth proof, given here, is due to Saul (2014).

1542



A Finite Sample Analysis of the Naive Bayes Classifier

References
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Abstract

Classification is an important topic in statistics and machine learning with great potential in
many real applications. In this paper, we investigate two popular large-margin classification
methods, Support Vector Machine (SVM) and Distance Weighted Discrimination (DWD),
under two contexts: the high-dimensional, low-sample size data and the imbalanced data.
A unified family of classification machines, the FLexible Assortment MachinE (FLAME)
is proposed, within which DWD and SVM are special cases. The FLAME family helps to
identify the similarities and differences between SVM and DWD. It is well known that many
classifiers overfit the data in the high-dimensional setting; and others are sensitive to the
imbalanced data, that is, the class with a larger sample size overly influences the classifier
and pushes the decision boundary towards the minority class. SVM is resistant to the
imbalanced data issue, but it overfits high-dimensional data sets by showing the undesired
data-piling phenomenon. The DWD method was proposed to improve SVM in the high-
dimensional setting, but its decision boundary is sensitive to the imbalanced ratio of sample
sizes. Our FLAME family helps to understand an intrinsic connection between SVM and
DWD, and provides a trade-off between sensitivity to the imbalanced data and overfitting
the high-dimensional data. Several asymptotic properties of the FLAME classifiers are
studied. Simulations and real data applications are investigated to illustrate theoretical
findings.

Keywords: classification, Fisher consistency, high-dimensional low-sample size asymp-
totics, imbalanced data, support vector machine

1. Introduction

Classification refers to predicting the class label, y ∈ C, of a data object based on its
covariates, x ∈ X . Here C is the space of class labels, and X is the space of the covariates.
Usually we consider X ≡ Rd, where d is the number of variables or the dimension. See Duda
et al. (2001) and Hastie et al. (2009) for a comprehensive introduction to many popular
classification methods. When C = {+1,−1}, this is an important class of classification
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problems, called binary classification. The classification rule for a binary classifier usually
has the form φ(x) = sign {f(x)}, where f(x) is called the discriminant function. Linear
classifiers are the most important and the most commonly used classifiers, as they are often
easy to interpret in addition to reasonable classification performance. We focus on linear
classifier in this article. In the above formula, linear classifiers correspond to f(x;ω, β) =
xTω+β. The sample space is divided into halves by the separating hyperplane, also known as
the classification boundary, defined by

{
x : f(x) ≡ xTω + β = 0

}
. Note that the coefficient

vector ω ∈ Rd defines the normal vector, and hence the orientation, of the classification
boundary; and the intercept term β ∈ R defines the location of the classification boundary.

In this paper, two popular classification methods, Support Vector Machine (SVM; Cortes
and Vapnik, 1995; Vapnik, 1998; Cristianini and Shawe-Taylor, 2000) and Distance Weighted
Discrimination (DWD; Marron et al., 2007) are investigated under two important contexts:
the High-Dimensional, Low-Sample Size (HDLSS) data and the imbalanced data. Both
methods are large-margin classifiers (Smola et al., 2000), that seek separating hyperplanes
which maximize certain notions of gap (that is, distances) between the two classes. The
investigation of the performance of SVM and DWD motivates the notion of a unified fam-
ily of classifiers, the FLexible Assortment MachinE (FLAME), which connects the two
classifiers, and helps to understand their connections and differences.

There is a large literature in statistics and machine learning on large-margin classifiers.
For example, Wahba (1999) studied kernel SVM in Reproducing Kernel Hilbert Spaces. Lin
(2004) introduced and proved Fisher consistency for SVM. Bartlett et al. (2006) quantified
the excess risk of a loss function in a learning problem including the case of large-margin
classification. On the methodology level, Shen et al. (2003) invented ψ-learning; Wu and
Liu (2007) introduced robust SVM. Recently, Liu, Zhang, and Wu (2011) studies a unified
class of classifiers which connected hard classification and soft classification (probability
estimation).

It is worth mentioning that the FLAME family is not proposed as a better classification
method to replace SVM or DWD. Instead, it is proposed as a unified machine, which is very
helpful to investigate the trade-off between generalization errors and overfitting. A single
parameter will be used to control the trade-off, of which DWD and SVM sit on the two
ends.

1.1 Motivation: Pros and Cons of SVM and DWD

SVM is a very popular classifier in statistics and machine learning. It has been shown to
have Fisher consistency, that is, when sample size goes to infinity, its decision rule converges
to the Bayes rule (Lin, 2004). SVM has several nice properties: 1) Its dual formulation is
relatively easy to implement (through Quadratic Programming). 2) SVM is robust to the
model specification, which makes it very popular in various real applications. However,
when being applied to HDLSS data, it has been observed that a large portion of the data
(usually the support vectors, to be properly defined later) lie on two hyperplanes parallel
to the SVM classification boundary. This is known as the data-piling phenomenon (Marron
et al., 2007; Ahn and Marron, 2010). Data-piling of SVM indicates a type of overfitting.
Other overfitting phenomenon of SVM under the HDLSS context include:

1. The angle between the SVM direction and the Bayes rule direction is usually large.
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2. The variability of the sampling distribution of the SVM direction ω is very large
(Zhang and Lin, 2013). Moreover, because the separating hyperplane is decided only
by the support vectors, the SVM direction tends to be unstable, in the sense that small
turbulence or measurement error to the support vectors can lead to a big change of
the estimated direction.

3. In some cases, the out-of-sample classification performance may not be optimal due
to the suboptimal direction of the estimated SVM discrimination direction.

DWD is a recently developed classifier to improve SVM in the HDLSS setting. It uses a
different notion of gap from SVM. While SVM is to maximize the smallest distance between
classes, DWD is to maximize a special average distance (harmonic mean) between classes.
It has been shown in many earlier simulations that DWD largely overcomes the overfitting
(data-piling) issue and it usually gives a better discrimination direction.

On the other hand, the intercept term β of the DWD method is sensitive to the sample
size ratio between the two classes, that is, to the imbalanced data (Qiao et al., 2010).
Note that, even though a good discriminant direction ω is more important in revealing
the structure of the data, the classification/prediction performance heavily depends on the
intercept β, more than on the direction ω. As shown in Qiao et al. (2010), usually the β
term of the SVM classifier is not sensitive to the sample size ratio, while the β term of the
DWD method will become too large (or too small) if the sample size of the positive class
(or negative class) is very large.

In summary, both methods have pros and cons. SVM has a greater stochastic variability
and usually overfits the data by showing data-piling phenomena, but is less sensitive to the
imbalanced data issue. DWD usually overcomes the overfitting/data-piling issue, and has
a smaller sampling variability, but is very sensitive to the imbalanced data. Driven by
their similarity, we propose a unified class of classifiers, FLAME, in which the above two
classifiers are special cases. FLAME provides a framework to study the connections and
differences between SVM and DWD. Each FLAME classifier has a parameter θ which is used
to control the performance balance between overfitting the HDLSS data and the sensitivity
to the imbalanced data. It turns out that the DWD method is FLAME with θ = 0; and
that the SVM method corresponds to FLAME with θ = 1. The optimal θ depends on the
trade-off among several factors: stochastic variability, overfitting and resistance against the
imbalanced data. In this paper, we also propose an approach to select θ, where the resulting
FLAME have the potential to achieve a balanced performance between the SVM and DWD
methods.

1.2 Outline

The rest of the paper is organized as follows. Section 2 provides toy examples and highlights
the strengths and drawbacks of SVM and DWD on classifying the HDLSS and imbalanced
data. We develop the FLAME method in Section 3, which is motivated by the investigation
of the loss functions of SVM and DWD. Section 4 provides suggestions on choosing the
parameters. Three types of asymptotic results for the FLAME classifier are studied in
Section 5. Section 6 demonstrates its properties using simulation experiments. A real
application study is conducted in Section 7. Some concluding remarks and discussions are
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made in Section 8. Technical proofs of theorems and propositions are included in Online
Appendix 1.

2. Comparison of SVM and DWD

In this section, we use several toy examples to illustrate the strengths and drawbacks of
SVM and DWD under two contexts: HDLSS data and imbalanced data.

2.1 Overfitting HDLSS Data

We use several simulated examples to compare SVM and DWD. The results show that the
stochastic variability of the SVM direction is usually larger than that of the DWD method,
and SVM directions are deviated farther away from Bayes rule directions. In addition, the
new proposed FLAME machine (see details in Section 3) is also included in the comparison,
and it turns out that FLAME with a mediocre θ is between the above two methods.

Figure 1 shows the comparison results between SVM, DWD and FLAME (with tuning
parameter θ = 1/2). We simulate 10 samples with the same underlying distribution. Each
simulated data set contains 12 variables and two classes, with 120 observations in each class.
The two classes have mean difference on only the first three dimensions and the within-class
covariances are diagonal, that is, the variables are independent. For each simulated data
set, we plot the first three components of the resulting discriminant directions from SVM,
DWD and FLAME (after normalizing the 3D vectors to have unit L2 norms), as shown
in Figure 1. It clearly shows that the DWD directions (the blue down-pointing triangles)
are the closest ones to the true Bayes rule direction (the cyan diamond marker) among the
three approaches. In addition, the DWD directions have the smallest variation (that is,
more stable) over different samples. The SVM directions (the red up-pointing triangles)
are farthest from the true Bayes rule direction and have a larger variation than the other
two methods. To highlight the direction variabilities of the three methods, we introduce
a novel measure for the variation (instability) of the discriminant directions: the trace of
the sample covariance of the resulting direction vectors over the 10 replications, which we
name as dispersion. The dispersion for the DWD method (0.0031) is much smaller than
that of the SVM method (0.0453), as highlighted in the figure as well. The new FLAME
classifiers usually have a performance between DWD and SVM. Figure 1 shows the results
of a specific FLAME (θ = 0.5, the magenta squares), which are better than SVM but worse
than DWD.

Besides the advantage in terms of the stochastic variability and the deviation from the
true direction, DWD outperforms SVM in terms of stability in the presence of small pertur-
bations. In Figure 2, we use a two-dimensional example to illustrate this phenomenon. We
simulate a perfectly separable 2-dimensional data set. The theoretical Bayes rule decision
boundary is shown as the thick black line. The dashed red line and the dashed dotted blue
line are the SVM and the DWD classification boundaries respectively before the perturba-
tion. We then move one observation in the positive group slightly (from the solid triangle
to the solid diamond as shown in the figure). This perturbation leads to a visible change of
the SVM direction (shown as the dotted red line), but a smaller change for DWD (shown
as the solid blue line). Note that all four hyperplanes are capable of classifying this training
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Figure 1: The true population mean difference direction vector (the cyan dashed line and
diamond marker; equivalent to the Bayes rule direction), the DWD directions
(blue down-pointing triangles), the FLAME directions with θ = 0.5 (magenta
squares), and the SVM directions (red up-pointing triangles) for 10 realizations
of simulated data. Each direction vector has norm 1 and thus is depicted as a point
on the 3D unit sphere. On average, all machines have their discriminant direction
vectors scattering around the true direction. The DWD directions are the closest
to the true direction and have the smallest variation. The SVM directions have
the largest variation and are farthest from the true direction. The variation of
the intermediate FLAME direction vectors is between the two machines above.
The variation (dispersion) of a machine is also measured by the trace of the
sample covariance calculated from the 10 resulting direction vectors for the 10
simulations.

data set perfectly. But it may not be true for an out-of-sample test set. This example shows
the unstableness of SVM.

2.2 Sensitivity to Imbalanced Data

In the last subsection, we have shown that DWD outperforms SVM in estimating the
discrimination direction, that is, DWD directions are closer to the Bayes rule discrimination
directions and usually have a smaller variability. However, it was found that the location
of DWD classification boundary, which is characterized by the intercept β, is sensitive to
the sample size ratio between the two classes (Qiao et al., 2010).
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Figure 2: A 2D example shows that the unstable SVM boundary has changed due to a
small turbulence of a support vector (the solid red triangle and diamond) while
the DWD boundary remains almost still.

Usually, a good discriminant direction ω helps to reveal the profiling difference between
two classes of populations. But the classification/prediction performance heavily depends
on the location coefficient β. We define the imbalance factor m ≥ 1 as the sample size ratio
between the majority class and the minority class. It turns out that β in the SVM classifier
is not sensitive to m. However, the β term for the DWD method is very sensitive to m. We
also notice that, as a consequence, the DWD separating hyperplane will be pushed toward
the minority class, when the ratio m is close to infinity, that is, DWD classifiers intend to
ignore the minority class. In this section, we use another toy example to better illustrate the
impact of the imbalanced data on both the estimated β and the classification performance.

Figure 3 uses a one-dimensional example, so that estimating ω is not needed. This also
corresponds to a multivariate data set, where ω is estimated correctly first, after which the
data set is projected to ω to form the one-dimensional data. In this plot, the x-coordinates
of the red dots and the blue dots are the values of the data while the y-coordinates are
random jitters for better visualization. The red and blue curves are the kernel density
estimations for both classes. In the top subplot of Figure 3, where m = 1 (that is, the
balanced data), both the DWD (blue lines) and SVM (red lines) boundaries are close to the
Bayes rule boundary (black solid line), which sits at 0. In the bottom subplot, the sample
size of the red class is tripled, which corresponds to m = 3. Note that the SVM boundary
moves a little towards the minority (blue) class, but still fairly close to the true boundary.
The DWD boundary, however, is pushed towards the minority. Although this does not
impose immediate problems for the training data set, the DWD classifier will suffer from a
great loss of classification performance when it is applied to an out-of-sample data set. It
can be shown that when m goes to infinity, the DWD classification boundary will tends to
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Figure 3: A 1D example shows that the DWD boundary is pushed towards the minority
class (blue) when the majority class (red) has tripled its sample size.

negative infinity, which totally ignores the minority group (see our Theorem 4). However,
SVM will not suffer from the imbalanced data issue. One reason is that SVM only needs
a small fraction of data (called support vectors) to estimate both ω and β, which mitigate
the imbalanced data issue naturally.

Imbalanced data issues have been investigated in both statistics and machine learning.
See an extensive survey in Chawla et al. (2004). Recently, Owen (2007) studied the asymp-
totic behavior of infinitely imbalanced binary logistic regression. In addition, Qiao and Liu
(2009) and Qiao et al. (2010) proposed to use adaptive weighting approaches to overcome
the imbalanced data issue.

In summary, the performance of DWD and SVM is different in the following ways: 1)
The SVM direction usually has a larger variation and deviates farther from the Bayes rule
direction than the DWD direction, which are indicators of overfitting HDLSS data. 2) The
SVM intercept is not sensitive to the imbalanced data, but the DWD intercept is. These
observations have motivated us to investigate their similarity and differences. In the next
section, a new family of classifier will be proposed, which unifies the above two classifiers.

3. FLAME Family

In this section, we introduce FLAME, a family of classifiers, through a thorough inves-
tigation of the loss functions of SVM and DWD in Section 3.1. The formulation and
implementation of the FLAME classifiers are given in Section 3.2.
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3.1 SVM and DWD Loss Functions

The key factors that drive the very distinct performances of the SVM and the DWD methods
are their associated loss functions (see Figure 4.)
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DWD (FLAME: θ = 0)
FLAME, θ = 0.5
SVM (FLAME: θ = 1)

Figure 4: FLAME loss functions for three θ values: θ = 0 (equivalent to SVM/Hinge loss),
θ = 0.5, θ = 1 (equivalent to DWD). The parameter C is set to be 1.

Figure 4 displays the loss functions of SVM, DWD and FLAME with some specific
tuning parameters. SVM uses the Hinge loss function, H(u) = (1 − u)+ (the red dashed
curve in Figure 4), where u corresponds to the functional margin u ≡ yf(x). Note that
the functional margin u can be viewed as the distance of vector x from the separating
hyperplane (defined by {x : f(x) = 0}). When u > 0 and is large, the data vector is
correctly classified and is far from the separating hyperplane; when u < 0, the data vector
is wrongly classified. Note that when u > 1, the corresponding Hinge loss equals zero.
Thus, only those observations with u ≤ 1 contribute to the estimation of ω and β. These
observations are called support vectors. Hence, SVM is insensitive to the observations that
are far away from the decision boundary, which is the reason that it is less sensitive to the
imbalanced data issue. However, the influence by only the support vectors makes the SVM
solution subject to overfitting (data-piling). This can be explained by the following: in the
optimization process of SVM, the functional margins for the vectors are pushed towards
a region with small loss, that is, functional margins u are encouraged to be large. But
once a vector is pushed to the point where u = 1, the optimization mechanism lacks further
incentive to continue pushing it towards a larger function margin as the Hinge loss cannot be
further reduced for this vector. Therefore many data vectors are piling along the hyperplane
corresponding to u = 1. Data-piling is bad for generalization because a small turbulence
to the support vectors could lead to a big difference of the estimated discriminant direction
vector (recall the examples in Section 2.1).
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The DWD method corresponds to a different DWD loss function,

V (u) =

{
2
√
C − Cu if u ≤ 1√

C
,

1/u otherwise.
(1)

Here C is a pre-defined constant. Figure 4 shows the DWD loss function with C = 1. It is
clear that the DWD loss function is very similar to the SVM loss function when u is small
(both are linearly decreasing with respect to u). The major difference is that the DWD loss
is always positive. This property will make the DWD method behave in a very different
way than SVM. As there is always an incentive to make the function margin to be larger
(and the loss to be smaller), the DWD loss function kills data-piling, and mitigates the
overfitting issue for HDLSS data.

On the other hand, the DWD loss function makes the DWD method very sensitive to the
imbalanced data issue. This is because now that each observation will have some influence,
the larger class will have a larger influence. The decision boundary of the DWD method
tends to ignore the smaller class, because sacrificing the smaller class (boundary being closer
to the smaller class and farther from the larger class) can lead to a dramatic reduction of
the loss from the larger class, which ultimately lead to a minimized overall loss.

3.2 FLAME

We propose to borrow strengths from both methods to simultaneously deal with both the
imbalanced data and the overfitting (data-piling) issues. We first highlight the connections
between the DWD loss and an modified version of the Hinge loss (of SVM). Then we modify
the DWD loss so that samples far from the classification boundary will have zero loss.

Let f(x) = xTω+β. The formulation of SVM can be rewritten (see details in Appendix
A) in the form of argmin

ω,β

∑
iH
∗(yif(xi)), s.t. ‖ω‖2 ≤ 1 where the modified Hinge loss

function H∗ is defined as

H∗(u) =

{ √
C − Cu if u ≤ 1√

C
,

0 otherwise.
(2)

Comparing the DWD loss (1) and this modified Hinge loss (2), one can easily see their
connections: for u ≤ 1√

C
, the DWD loss is greater than the Hinge loss of SVM by an exact

constant
√
C, and for u > 1√

C
, the DWD loss is 1/u while the SVM Hinge loss equals

0. Clearly the modified Hinge loss (2) is the result of soft-thresholding the DWD loss at√
C. In other words, SVM can be seen as a special case of DWD where the losses of those

vectors with u = yif(xi) > 1/
√
C are shrunken to zero. To allow different levels of soft-

thresholding, we propose to use a new loss function which (soft-)thresholds the DWD loss
function by constant θ

√
C where 0 ≤ θ ≤ 1, that is, a fraction of

√
C. The new loss function

is

L(u) =
[
V (u)− θ

√
C
]
+

=


(2− θ)

√
C − Cu if u ≤ 1√

C
,

1/u− θ
√
C if 1√

C
≤ u < 1

θ
√
C
,

0 if u ≥ 1
θ
√
C
,

(3)
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that is, to reduce the DWD loss by a constant, and truncate it at 0. The magenta solid
curve in Figure 4 is the FLAME loss when C = 1 and θ = 0.5. This simple but useful
modification unifies the DWD and SVM methods. When θ = 1, the new loss function
(when C = 1) reduces to the SVM Hinge loss function; while when θ = 0, it remains as the
DWD loss.

Note that L(u) = 0 for u > 1/(θ
√
C). Thus, those data vectors with very large func-

tional margins will still have zero loss. For DWD loss (corresponding to θ = 0), note that
1/(θ
√
C) = ∞. Thus no data vector can have zero loss. For SVM loss, all the data vector

with u > 1/(θ
√
C) = 1/

√
C will have zero loss. Training a FLAME classifier with 0 < θ < 1

can be interpreted as sampling a portion of data which are farther from the boundary than
1/θ
√
C and assign zero loss to them. Alternatively, it can be viewed as sampling data that

are closer to the boundary than 1/θ
√
C and assign positive loss to them. Note that the

larger θ is, the fewer data are sampled to have positive loss. As one can flexibly choose θ,
the new classification method with this new loss function is called the FLexible Assortment
MachinE (FLAME).

FLAME can be implemented by a Second-Order Cone Programming algorithm (Toh
et al., 1999; Tütüncü et al., 2003). Let θ ∈ [0, 1] be the FLAME parameter. The proposed

method minimizes min
ω,b,ξ

n∑
i=1

(
1

ri
+ Cξi − θ

√
C

)
+

. A slack variable ϕi ≥ 0 can be introduced

to absorb the (·)+ function. The optimization of the FLAME can be written as

min
ω,b,ξ

∑
i

ϕi,

s.t.
( 1

ri
+ Cξi − θ

√
C
)
− ϕi ≤ 0, ϕi ≥ 0,

ri = yi(x
T
i ω + β) + ξi, ri ≥ 0 and ξi ≥ 0,

‖ω‖2 ≤ 1.

A MATLAB routine has been implemented and is available at the authors’ personal web-
sites. See Online Appendix 1 for more details on the implementation.

4. Choice of Parameters

There are two tuning parameters in the FLAME model: one is the C, inherited from the
DWD loss, which controls the amount of allowance for misclassification; the other is the
FLAME parameter θ, which controls the level of soft-thresholding. Similar to the discussion
in DWD (Marron et al., 2007), the classification performance of FLAME is insensitive to
different values of C. In addition, it can be shown for any C, FLAME is Fisher consistent,
by applying the general results in Lin (2004). Thus, the default value for C as proposed
in Marron et al. (2007) will be used in FLAME. As the property and the performance of
FLAME depends on the choice of the θ parameter, it is important to select the right amount
of thresholding. In this section, we introduce a way of choosing the second parameter θ,
which is motivated by a theoretical consideration and is heuristically meaningful as well.

Having observed that the DWD discrimination direction is usually closer to the Bayes
rule direction, but its location term β is sensitive to the imbalanced data issue, we propose
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the following data-driven approach to select an appropriate θ. Without loss of generality,
we assume that the negative class is the majority class with sample size n− and the positive
class is the minority class with sample size n+. We point out that the main reason that DWD
is sensitive to the imbalanced data issue is that it uses all vectors in the majority class to
build up a classifier. A heuristic strategy to correct this would be to force the optimization
to use the same number of vectors from both classes (so as to mimic a balanced data set) to
build up a classifier: we first apply DWD to the data set, and calculate the distances of all
data in the majority (negative) class to the current DWD classification boundary; we then
train FLAME with a carefully chosen parameter θ which assigns positive loss to the closet
n+(< n−) data vectors in the majority (negative) class to the classification boundary. As
a consequence, each class will have exactly n+ vectors which have positive loss. In other
words, while keeping the least imbalance (because we have the same numbers of vectors
from both classes that have influence over the optimization), we obtain a model with the
least possible overfitting (because 2n+ vectors have influence, instead of only the limited
support vectors as in SVM.)

In practice, since the new FLAME classification boundary using the θ value chosen
above may be different from the initial DWD classification boundary, the n+ closest points
to the FLAME classification boundary may not be the same n+ closest points to the DWD
boundary. This means that it is not guaranteed that exactly n+ points from the majority
class will have positive loss. However, one can expect that reasonable approximation can
be achieved. Moreover, an iterative scheme for finding θ is introduced as follows in order
to minimize such discrepancy.

For simplicity, we let (xi, yi) with index i be an observation from the positive/minority
class and (xj , yj) with index j be an observation from the negative/majority class.

Algorithm 1 (Adaptive parameter)

1. Initiate θ0 = 0.
2. For k = 0, 1, · · · ,

(a) Solve FLAME solutions ω(θk) and β(θk) given parameter θk.

(b) Let θk+1 = max

(
θk,

{
g(n+)(θk)

√
C
}−1)

, where gj(θk) is the functional margin

uj ≡ yj(x
T
j ω(θk) + β(θk)) of the jth vector in the negative/majority class and

g(l)(θk) is the lth order statistic of these functional margins.
3. When θk = θk−1, the iteration stops.

The goal of this algorithm is to make g(n+)(θk) to be the greatest functional margin among
all the data vectors that have positive loss in the negative/majority class. To achieve this,
we calibrate θ by aligning g(n+)(θk) to the turning point u = 1/(θ

√
C) in the definition of

the FLAME loss (3), that is g(n+)(θk) = 1/(θ
√
C)⇒ θ =

(
g(n+)(θk)

√
C
)−1

.

We define the equivalent sample objective function of FLAME for the iterative algorithm

above, s(ω, β, θ) =
1

n+ + n−

 n+∑
i=1

L((xTi ω + β), θ) +

n−∑
j=1

L(−(x′jω + β), θ)

+
λ

2
‖ω‖2. Then

the convergence of this algorithm is shown in Theorem 1. The proofs of all the theorems
and propositions in this article are included in Online Appendix 1.
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Theorem 1 In Algorithm 1, s(ωk, βk, θk) is non-increasing in k. As a consequence, Algo-
rithm 1 converges to a stationary point s(ω∞, β∞, θ∞) where s(ωk, βk, θk) ≥ s(ω∞, β∞, θ∞).
Moreover, Algorithm 1 terminates finitely.

Ideally, one would hope to get an optimal parameter θ∗ which satisfies θ∗ =
(
g(n+)(θ

∗)
√
C
)−1

.

In practice, θ∞ will approximate θ∗ very well. In addition, we notice that one-step iteration
usually gives decent results for simulation examples and some real examples.

5. Theoretical Properties

In this section, several important theoretical properties of the FLAME classifier are inves-
tigated. We first prove the Fisher consistency (Lin, 2004) of the FLAME in Section 5.1.
As one focus of this paper is imbalanced data classification, the asymptotic properties for
FLAME under extremely imbalanced data setting is studied in Section 5.2. Lastly, a novel
HDLSS asymptotics where n is fixed and d→∞, the other focus of this article, is studied
in Section 5.3.

5.1 Fisher Consistency and Large Sample Asymptotics

Fisher consistency is a very basic property for a classifier. A classifier is Fisher consistent
implies that the minimizer of the conditional risk of the classifier given observation x has the
same sign as the Bayes rule, argmax

k∈{+1,−1}
P(Y = k|X = x). It has been shown that both SVM

and DWD are Fisher consistent (Lin, 2004; Qiao et al., 2010). The following proposition
states that the FLAME classifier is Fisher consistent too.

Proposition 2 Let f∗ be the global minimizer of the expected loss E[L(Y f(X), θ)], where
L(·) is the loss function for the FLAME classifier, given parameters C and θ. Then
sign (f∗(x)) = sign (P(Y = +1|X = x)− 1/2).

Fisher consistency is also known as classification-calibrated, notably by Bartlett et al.
(2006). With this weakest possible condition on the loss function, they extended the re-
sults of Zhang (2004) and showed that there was a nontrivial upper bound on the excess
risk. Moreover, they were able to derive faster rates of convergence in some low noise
settings. In particular, for a classification-calibrated loss function L(·), there exists a
function ψ : [−1, 1] 7→ [0,∞) so that ψ(R0−1(f) − R∗0−1) ≤ RL(f) − R∗L or c(R0−1(f) −
R∗0−1)

αψ
(
(R0−1(f)−R∗0−1)

α

2c

)
≤ RL(f) − R∗L for some constant c > 0 with certain low noise

parameter α, where R0−1(f) and RL(f) are the risk of the prediction function f with respect
to the 0-1 loss and the loss function L respectively, and R∗0−1 and R∗L are the corresponding
Bayes risk and “optimal L-risk” respectively. The techniques in Zhang (2004) and Bartlett
et al. (2006) can be directly applied to the FLAME classifier. The form of the ψ transform
above which establishes the relations between the two excess risks, being applied to the
current article, is given by Proposition 3.

Proposition 3 The ψ-transform of the FLAME loss function with parameters C and θ is

ψ(γ) = (2− θ)
√
C −H((1 + γ)/2),

1558



Flexible High-Dimensional Classification Machines

where

H(η) =

{√
C min(η, 1− η)(2 + 1

θ − θ), if η < θ2

1+θ2
or η > 1

1+θ2
,√

C[2 min(η, 1− η)− θ + 2
√
η(1− η)], otherwise.

(4)

These results provide bounds for the excess risk R0−1(f)−R∗0−1 in terms of the excess
L-risk RL(f)−R∗L. Combined with a bound on the excess L-risk, they can give us a bound
on the excess risk. Recent works for SVM have focused on fast rates of convergence. Vito
et al. (2005) studied classification problems as inverse problems; Steinwart and Scovel (2007)
studied the convergence properties of the standard SVM with Gaussian kernels; Blanchard
et al. (2008) used a method called “localization”. See also Chen et al. (2004) for another
relevant work for the q-soft margin SVM.

5.2 Asymptotics under Imbalanced Setting

In this subsection, we investigate the asymptotic performance of SVM, DWD and FLAME.
The asymptotic setting we focus on is when the minority sample size n+ is fixed and the
majority sample size n− → ∞, which is similar to the setting in Owen (2007). We will
show that DWD is sensitive to the imbalanced data, while FLAME with proper choices of
parameter θ and SVM are not.

Let x+ be the sample mean of the positive/minority class. Theorem 4 shows that in the
imbalanced data setting, when the size of the negative/majority class grows while that of
the positive/minority class is fixed, the intercept term for DWD tends to negative infinity, in
the order of

√
m. Therefore, DWD will classify all the observations to the negative/majority

class, that is, the minority class will be 100% misclassified.

Theorem 4 Let n+ be fixed. Assume that the conditional distribution of the negative ma-
jority class F−(x) surrounds x+ by the definition given in Owen (2007), and that γ is a

constant satisfying inf
‖ω‖=1

∫
(x−x+)′ω>0

dF−(x) > γ ≥ 0, then the DWD intercept β̂ satisfies

β̂ < −
√
γ

C
m− xT+ω = −

√
n−γ

n+C
− xT+ω.

In Section 4, we have introduced an iterative approach to select the parameter θ. The-
orem 5 shows that with the optimal parameter θ∗ found by Algorithm 1, the discriminant
direction of FLAME is in the same direction of the vector that joins the sample mean of the
positive class and the tilted population mean of the negative class. Moreover, in contrast
to DWD, the intercept term of FLAME in this case is finite.

Theorem 5 Suppose that n− � n+ and ω∗ and β∗ are the FLAME solutions trained with

the parameter θ∗ that satisfies θ∗ =
(
g(n+)(θ

∗)
√
C
)−1

. Then ω∗ and β∗ satisfy that

ω∗ =
C

(1 +m)λ

[
x+ −

∫
(xTω∗ + β∗)−2xdF−(x | E)∫
(xTω∗ + β∗)−2dF−(x | E)

]
, (5)
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where E is the event that [Y (XTω∗ + β∗)]−1 ≥ θ∗
√
C where (X, Y ) is a random sample

from the negative/majority class, and that∫
(xTω∗ + β∗)−2dF−(x | E) =

n+
no
C,where 0 < no ≤ n+.

Note that event E is [Y (XTω∗ + β∗)]−1 ≥ θ∗
√
C, which implies that the second term

in (5) focuses on data vectors in the negative class with positive loss since their functional
margins are less than 1/(θ

√
C). Recall that this is precisely the interpretation of FLAME

(see Section 3.2), namely, to sample a subset of the majority class to have positive loss, so
as to make the problem less imbalanced.

Remark: As a consequence of Theorem 5, when m = n−/n+ →∞, we have ‖ω∗‖ → 0.
Since the right-hand-side of the last equation above is positive and finite, β∗ does not
diverge. In addition, since P(E)→ 1 with probability converging to 1, β∗ < −1/(θ

√
C).

The following theorem shows the performance of SVM under the imbalanced data con-
text, which completes our comparisons between SVM, DWD and FLAME.

Theorem 6 Suppose that n− � n+. The solutions ω̂ and β̂ to SVM satisfy that

ω̂ =
1

(1 +m)λ

{
x+ −

∫
xdF−(x | G)

}
,

where G is the event that 1− Y (XT ω̂+ β̂) > 0 where (X, Y ) is a random sample from the
negative/majority class, and that

P(G) = P(1 +XT ω̂ + β̂ ≤ 0) = 1− 1/m.

Remark: The last statement in Theorem 6 means that with probability converging to 1,
β̂ ≤ −1. However, note this is the only restriction that SVM solution has for the intercept

term (recall that the counterpart in DWD is β̂ < −
√

γ
Cm− x

T
+ω).

5.3 High-Dimensional, Low-Sample Size Asymptotics

HDLSS data are emerging in many areas of scientific research. The HDLSS asymptotics is a
recently developed theoretical framework. Hall et al. (2005) gave a geometric representation
for the HDLSS data, which can be used to study these new “n fixed, d → ∞” asymptotic
properties of binary classifiers such as SVM and DWD. Ahn et al. (2007) weakened the
conditions under which the representation holds. Qiao et al. (2010) improved the condi-
tions and applied this representation to investigate the performance of the weighted DWD
classifier. Bolivar-Cime and Marron (2013) compared several binary classification methods
in the HDLSS setting under the same theoretical framework. The same geometric repre-
sentation can be used to analyze FLAME. See summary of some previous HDLSS results in
Online Appendix 1. We develop the HDLSS asymptotic properties of the FLAME family
by providing conditions in Theorem 7 under which the FLAME classifiers always correctly
classify HDLSS data.

We first introduce the notations and give some regularity assumptions, then state the
main theorem. Let k ∈ {+1,−1} be the class index. For the kth class and given a fixed nk,
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consider a sequence of random data matrices Xk
1,X

k
2, · · ·Xk

d, · · · , indexed by the number
of rows d, where each column of Xk

d is a random observation vector from Rd and each
row represents a variable. Assume that each column of Xk

d comes from a multivariate
distribution with dimension d and with covariance matrix Σk

d independently. Let λk1,d ≥
· · · ≥ λkd,d be the eigenvalues of the covariance, and

(
σkd
)2

= d−1
∑d

i=1 λ
k
i,d the average

eigenvalue. The eigenvalue decomposition of Σk
d is Σk

d = V k
dΛ

k
d

(
V k
d

)T
. We may define

the square root of Σk
d as

(
Σk
d

)1/2
= V k

d

(
Λk
d

)1/2
, and the inverse square root

(
Σk
d

)−1/2
=(

Λk
d

)−1/2 (
V k
d

)T
. With minimal abuse of notation, let E(Xk

d) denote the expectation of

columns of Xk
d. Lastly, the nk × nk dual sample covariance matrix is denoted by SkD,d =

d−1
{
Xk

d − E(Xk
d)
}T {

Xk
d − E(Xk

d)
}

.

Assumption 1 There are five components:
(i) Each column of Xk

d has mean E(Xk
d) and the covariance matrix Σk

d of its distribution
is positive definite.

(ii) The entries of Zk
d ≡

(
Σk
d

)− 1
2
{
Xk

d − E(Xk
d)
}

=
(
Λk
d

)− 1
2
(
V k
d

)T {
Xk

d − E(Xk
d)
}

are
independent.

(iii) The fourth moment of each entry of each column is uniformly bounded by M > 0
and the Wishart representation holds for each dual sample covariance matrix SkD,d
associated with Xk

d, that is,

dSkD,d =

{(
Zk
d

)T(
Λk
d

)1/2(
V k
d

)T}{
V k
d

(
Λk
d

)1/2
Zk
d

}
=

d∑
i=1

λki,dW
k
i,d,

where W k
i,d ≡

(
Zki,d

)T
Zki,d and Zi,d is the ith row of Zk

d defined above. It is called

Wishart representation because if Xk
d is Gaussian, then each W k

i,d follows the Wishart
distribution Wnk(1, Ink) independently.

(iv) The eigenvalues of Σk
d are sufficiently diffused, in the sense that

εkd =

∑d
i=1(λ

k
i,d)

2

(
∑d

i=1 λ
k
i,d)

2
→ 0 as d→∞. (6)

(v) The sum of the eigenvalues of Σk
d is the same order as d, in the sense that

(
σkd
)2

=

O(1) and 1/
(
σkd
)2

= O(1).

Assumption 2 The distance between the two population expectations satisfies,

d−1
∥∥E(X

(+1)
d )− E(X

(−1)
d )

∥∥2 → µ2, as d→∞.

Moreover, there exist constants σ2 and τ2, such that(
σ
(+1)
d

)2
→ σ2, and

(
σ
(−1)
d

)2
→ τ2.

Let ν2 ≡ µ2 + σ2/n+ + τ2/n−. The following theorem gives the sure classification
condition for FLAME, which includes SVM and DWD as special cases.
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Theorem 7 Without loss of generality, assume that n+ ≤ n−. The situation of n+ > n−
is similar and omitted.

• If either one of the following three conditions is satisfied,

1. for θ ∈
[
0, (1 +

√
m−1)/(ν

√
dC)

)
, µ2 > (n−/n+)

1
2σ2/n+ − τ2/n− > 0;

2. for θ ∈
[
(1 +

√
m−1)/(ν

√
dC), 2/(ν

√
dC)

)
, µ2 > T − τ2/n− > 0 where T :=(

1/(2θ
√
dC) +

√
1/(4θ2dC) + σ2/n+

)2
− σ2/n+;

3. for θ ∈
[
2/(ν
√
dC), 1

]
, µ2 > σ2/n+ − τ2/n− > 0,

then for a new data point x+
0 from the positive class (+1),

P(x+
0 is correctly classified by FLAME)→ 1, as d→∞.

Otherwise, the probability above → 0.
• If either one of the following three conditions is satisfied,

1. for θ ∈
[
0, (1 +

√
m−1)/(ν

√
dC)

)
, (n−/n+)

1
2σ2/n+ − τ2/n− > 0;

2. for θ ∈
[
(1 +

√
m−1)/(ν

√
dC), 2/(ν

√
dC)

)
, T − τ2/n− > 0;

3. for θ ∈
[
2/(ν
√
dC), 1

]
, σ2/n+ − τ2/n− > 0,

then for any µ > 0, for a new data point x−0 from the negative class (−1),
P(x−0 is correctly classified by FLAME)→ 1, as d→∞.

Remark: Theorem 7 has two parts. The first part gives the conditions under which
FLAME correctly classifies a new data point from the positive class, and the second part
is for the negative class. Each part lists three conditions based on three disjoint intervals
of parameter θ. Note the first and third intervals of each part generalize results which were
shown to hold only for DWD and SVM before (c.f. Theorem 1 and Theorem 2 in Hall
et al., 2005). In particular, it shows that all the FLAME classifiers with θ falling into the
first interval behave like DWD asymptotically. Similarly, all the FLAME classifiers with θ
falling into the third interval behave like SVM asymptotically. This partially explains the
shape of the within-group error curve that we will show in Figure 6 (see also Figures A.2
and A.3 in Online Appendix 1), which we will discuss in the next section.

In the first part, the condition for other FLAMEs (with θ in the second interval) is
weaker than the DWD-like FLAMEs (in the first interval), but stronger than the SVM-like
FLAMEs (in the third interval). This means that it is easier to classify a new data point
from the positive/minority class by SVM, than by an intermediate FLAME, which is easier
than by DWD. Note that when n+ ≤ n−, the hyperplane for FLAME is in general closer
to the positive class.

In terms of classifying data points from the negative class, the order of the difficulties
among DWD, FLAME and SVM reverses.

6. Simulations

FLAME is not only a unified representation of DWD and SVM, but also introduces a new
family of classifiers which has the potential of avoiding the overfitting HDLSS data issue
and the sensitivity to imbalanced data issue. In this section, we use simulations to show
the performance of FLAME at various parameter levels.
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6.1 Measures of Performance

Before we introduce our simulation examples, we first introduce the performance measures in
this paper. Note that the Bayes rule classifier can be viewed as the “gold standard” classifier.
In our simulation settings, we assume that data are generated from two multivariate normal
distributions with different mean vectors µ+ and µ− and same covariance matrices Σ. This
setting leads to the following Bayes rule,

sign(xTωB + βB) where ωB = Σ−1(µ+ − µ−) and βB = −1

2
(µ+ + µ−)′ωB. (7)

Five performance measures are evaluated in this paper:

1. The mean within-class error (MWE) for an out-of-sample test set, which is defined
as

MWE =
1

2n+

n+∑
i=1

1(Ŷ +
i 6= Y +

i ) +
1

2n−

n−∑
j=1

1(Ŷ −j 6= Y −j )

2. The deviation of the estimated intercept β from the Bayes rule intercept βB: |β−βB|.
3. Dispersion: a measure of the stochastic variability of the estimated discrimination

direction vector ω. The dispersion measure was introduced in Section 1, as the trace
of the sample covariance of the resulting discriminant direction vectors: disperson =
Var([ωr]r=1:R) where R is the number of repeated runs.

4. Angle between the estimated discrimination direction ω and the Bayes rule direction
ωB: ∠(ω,ωB).

5. RankComp(ω,ωB): In general, for two direction vectors ω and ω∗, RankComp is
defined as the proportion of the pairs of variables, among all d(d− 1)/2 pairs, whose
relative importances (in terms of their absolute values) given by the two directions
are different, that is,

RankComp(ω,ω∗) ≡ 1

d(d− 1)/2

∑
1≤i<j≤d

1
{

(|ωi| − |ωj |)× (|ω∗i | − |ω∗j |) < 0
}
,

where ωi and ω∗i are the ith components of the vectors ω and ω∗ respectively. The
RankComp measure can be viewed as a discretized analog to the angle between two
vectors, and it provides more insights in the ranking of variables that a direction
vector may suggest. We report the RankComp between the estimated direction ω
and the Bayes rule direction ωB to measure their closeness.

We will investigate these measures based on different dimensions d and different imbalance
factors m.

6.2 Effects of Dimensions and Imbalanced Data

In Section 1, a specific FLAME (θ = 0.5) has been compared with SVM (θ = 1) and DWD
(θ = 0) in Figure 1, and on average, its discriminant directions are closer to the Bayes rule
direction ωB compared to the SVM directions, but are less close than the DWD directions.
In this subsection, we will further investigate the performance of FLAME with several
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Figure 5: The dispersions (top row) and the angles between the FLAME direction and the
Bayes direction (bottom row) for 50 runs of simulations, where the imbalance
factors m are 1, 4 and 9 (the left, center and right panels), in the increasing
dimension setting (d = 100, 400, 700, 1000; shown on the x-axes). The FLAME
machines have θ = 0, 0.25, 0.5, 0.75, 1 which are depicted using different curve
styles (the first and the last cases correspond to DWD and SVM, respectively.)
Note that with θ and the dimension d increase, both the dispersion and the
deviation from the Bayes direction increase. The emergence of the imbalanced
data (the increase of m) does not much deteriorate the FLAME directions except
for large d.

different values of θ, and compare them with DWD and SVM under various simulation
settings.

Figure 5 shows the comparison results under the same simulation setting with various
combinations of (d,m)’s. In this simulation setting, data are from multivariate normal distri-
butions with identity covariance matrix MVNd(µ±, Id), where d = 100, 400, 700 and 1000.
We let µ0 = c(d, d − 1, d − 2, · · · , 1)T where c > 0 is a constant which scales µ0 to have
norm 2.7. Then we let µ+ = µ0 and µ− = −µ0. The imbalance factor varies among 1, 4
and 9 while the total sample size is 240. For each experiment, we repeat the simulation 50
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times, and plot the average performance measure in Figure 5. The Bayes rule is calculated
according to (7). It is obvious that when the dimension increases, both the dispersion and
the angle increase. They are indicators of overfitting HDLSS data. When the imbalance
factor m increases, the two measures increase as well, although not as much as when the
dimension increases. More importantly, it shows that when θ decreases (from 1 to 0, or
equivalently FLAME changes from SVM to DWD), the dispersion and the angle both de-
crease, which is promising because it shows that FLAME improves SVM on the overfitting
issue.

6.3 Effects of Tuning Parameters with Covariance

We also investigate the effect of different covariance structures, since independence structure
among variables as in the last subsection is less common in real applications. We investigate
three covariance structures: independent, interchangeable and block-interchangeable covari-
ance. Data are generated from two multivariate normal distributions MVN300(µ±,Σ) with
d = 300. We fist let µ1 = (75, 74, 73, · · · , 1, 0, 0, · · · , 0)′, then scale it by multiply a constant
c such that the Mahalanobis distance between µ+ = cµ1 and µ− = −cµ1 equals 5.4, that
is, (µ+ − µ−)′Σ−1(µ+ − µ−) = 5.4. Note that this represents a reasonable signal-to-noise
ratio.

We consider the FLAME machines with different parameter θ from a grid of 11 values
(0, 0.1, 0.2, · · · , 1), and apply them to nine simulated examples (three different imbalance
factors (m = 2, 3, 4) × three covariance structures). For the independent structure example,
Σ = I300; For the interchangeable structure example, Σii = 1 and Σij = 0.8 for i 6= j; For
the block-interchangeable structure example, we let Σ be a block diagonal matrix with
five diagonal blocks, the sizes of which are 150, 100, 25, 15, 10, and each block is an
interchangeable covariance matrix with diagonal entries 1 and off-diagonal entries 0.8.

Figure 6 shows the results of the interchangeable structure example. Since the results
under different covariance structures are similar, those for the other two covariance struc-
tures are reported in Online Appendix 1 to save space (Figure A.2 for the independent
structure, and Figure A.3 for the block-interchangeable covariance).

In each plot, we include the within-group error (top-left), the absolute value of the
difference between the estimated intercept and the Bayes intercept |β − βB| (top-middle),
the angle between the estimated direction and the Bayes direction ∠(ω,ωB) (bottom-left),
the RankComp between the estimated direction and the Bayes direction (bottom-middle)
and the dispersion of the estimated directions (bottom-right).

We can see that in Figure 6 (and Figures A.2 and A.3 in Online Appendix 1), when we
increase θ from 0 to 1, that is, when the FLAME moves from the DWD end to the SVM
end, the within-group error decreases. This is mostly due to the fact that the intercept term
β comes closer to the Bayes rule intercept βB. On the other hand, the estimated direction
is deviating from the true direction (larger angle), is giving the wrong rank of the variables
(larger RankComp), and is more unstable (larger dispersion). Similar phenomena hold for
the other two covariance structures, with one exception in the block interchangeable setting
(Figure A.3 in Online Appendix 1) where the RankComp first decreases then increases.

In the entire FLAME family, DWD represents one extreme which provides better es-
timation of the direction, is closer to the Bayes direction, provides the right order for all
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Figure 6: Interchangeable example. It can be seen that with FLAME turns from DWD to
SVM (θ from 0 to 1), the within-class error decreases (top-left), thanks to the
more accurate estimate of the intercept term (top-middle). On the other hand,
this comes at the cost of larger deviation from the Bayes direction (bottom-left),
incorrect rank of the importance of the variables (bottom-middle) and larger
stochastic variability of the estimation directions (bottom-right).

variables, and is more stable. But it suffers from the inaccurate estimation of β in the
presence of imbalanced data; SVM represents the other extreme, which is not sensible to
imbalanced data and usually provides a good estimation of β, but is in general outperformed
by DWD in terms of closeness to the Bayes optimal direction. In most situations, within
the FLAME family, there is no single machine that is better than the both ends from the
two aspects at the same time.

7. Real Data Application

In this section we demonstrate the performance of FLAME on a real example: the Human
Lung Carcinomas Microarray Data set, which has been analyzed earlier in Bhattacharjee
et al. (2001).
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Figure 7: The dispersion and cross-validation error for the Human Lung Carcinomas Data
set over 100 random splittings for different choices of θ values. The mean and
standard error of the two measurements are depicted by ellipses as detour plots.
The red square shows the performance for the adaptive parameter recommenda-
tion after one step. This plot shows clear trade-off between generalization error
and stochastic variability.

The Human Lung Carcinomas Data set contains six classes: adenocarcinoma, squamous,
pulmonary carcinoid, colon, normal and small cell carcinoma, with sample sizes of 128, 21,
20, 13, 17 and 6 respectively. Liu et al. (2008) used this data as a test set to demonstrate
their proposed significance analysis of clustering approach. We combine the first two sub-
classes and the last four subclasses to form the positive and negative classes respectively.
The sample sizes are 149 and 56 with imbalance factor m = 2.66. The original data contain
12,625 genes. We first filter genes using the ratio of the sample standard deviation and
sample mean of each gene and keep 2,530 of them with large ratios (Dudoit et al., 2002;
Liu et al., 2008).
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We conduct five-fold cross-validations (CV) to evaluate the within-group error for the
two classes over 100 random splits. In each split, we apply FLAME with 21 different θ
values, ranging from 0, 0.05, 0.1, . . . to 1. Because the true Bayes rule is unknown, we
cannot evaluate the RankComp measure or the angle measure. Instead, we calculate the
dispersion of the resulting direction vectors when conducting five-fold cross-validation. The
adaptive value for θ (after one step) is calculated based on the DWD direction using all the
samples in the data set, and the performance of the resulting FLAME is evaluated as well.
We report the cross-validation error and the dispersion in a scatter plot.

Figure 7 shows the dispersion and cross-validation error. The mean and standard error
of both measurements are depicted by ellipses as detour plots. This plot clears illustrates
the existence of the trade-off between generalization error and stochastic variability.

This experiment shows that FLAME opens a new dimension to improve both the classi-
fication performance and the interpretative ability of the classifier. In particular, compared
to SVM (FLAME with θ = 1), we can probably choose θ = 0.7 or 0.75 so that the stabil-
ity of the classifier can be much improved at a very small cost of the generalization error.
Compared to DWD (FLAME with θ = 0), any increase in θ after 0.3 can lead to dramatic
improvement of the cross-validation error, again with very minimal compromise of the sta-
bility. The optimal choice of θ seem to be ad-hoc, and depends on the preference of the
user. Our adaptive parameter recommendation gives θ at around 0.44.

8. Conclusion and Discussion

In this paper, we thoroughly investigate SVM and DWD on their performance when applied
to the HDLSS and imbalanced data. A novel family of binary classifiers called FLAME is
proposed, where SVM and DWD are the two ends of the spectrum. On the DWD end, the
estimation of the intercept term is deteriorated while it provides better estimation of the
direction vector, and thus better handles the HDLSS data. On the hand, SVM is good at
estimating the intercept term but not the direction and is subject to overfitting, and thus
is more suitable for imbalanced data but not HDLSS data.

We conduct extensive study of the asymptotic properties of the FLAME family in three
different flavors, the “d fixed, n → ∞” asymptotics (Fisher consistency), the “d and n+
fixed, n− → ∞” asymptotics (extremely imbalanced data), and the “n fixed, d → ∞”
asymptotics (the HDLSS asymptotics). These results explain the performance we have
seen in the simulations and suggest that with a smart choice of θ, FLAME can properly
handle both the HDLSS data and the imbalanced data, by improving the estimations of the
direction and the intercept term.

The FLAME family can be immediately extended to multi-class classification, as was
done for SVM and DWD such as in Weston and Watkins (1999); Crammer and Singer
(2002); Lee et al. (2004) or Huang et al. (2013). Another natural extension is variable
selection for FLAME.

The FLAME machines generalize the concepts of support vectors. In SVM, support
vectors are referred to vectors that sit on or fall into the two hyperplanes corresponding to
u ≤ 1 (or u ≤ 1/

√
C for the modified version of Hinge loss (2)). In SVM, only support

vectors have impacts on the final solution. DWD is the other extreme case where all the data
vectors have some impacts. In the presence of imbalanced sample size, the fact that all the
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data vectors influence the solution cause the optimization to ignore the minority class. The
FLAME with 0 < θ < 1 is somewhere in the middle. For FLAME, part of the data vectors,
more than the support vectors, but fewer than all the vectors, have impacts. Smart choice
of θ means that one needs to include as many vectors, and as balanced influential samples,
as possible. More vectors usually lead to mitigated overfitting, and balanced sample size
of the influential vectors from two classes means that the sensitivity issue of the intercept
term can be alleviated.

The authors are aware that it is possible to implement a two-step procedure to conduct
binary linear classification. In the first step, a good direction is found, probably in the
fashion of DWD; in the second step, a fine intercept is chosen by borrowing idea of SVM.
This idea is elaborated in Qiao and Zhang (2015).

The choice of θ usually depends on the nature of the data and the scientific context. If
the users prefer better classification performance over reasonable discrimination direction
for interpretation of the data, θ may be chosen to be closer to 1. If the right direction
is the first priority, then θ should be chosen to be closer to 0. Note that, under some
circumstances, the primary goal is to obtain a direction vector which can provide a score
xTω for each observation for further use, and the intercept parameter β is of no use at
all. For example, some users may use a receiver operating characteristic (ROC) curve as a
graphical tool to evaluate classification performance over different β value instead of using
a single β value given by the classifier. In this case, a FLAME machine close to the DWD
method may be ideal.

Qiao et al. (2010) considered the sample weighted versions of DWD and SVM. One
could in theory extend the FLAME directly to the so-called weighted FLAME family. Such
extension is quite straightforward. It is easy to see that all the classifiers in such a family
are Fisher consistent with respect to the weighted 0-1 loss function. The intercept term
from weighted FLAME does not diverge. Similar HDLSS asymptotic results to what are
presented in the current article can be expected as well.
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Appendix A. Derivation of Modified Hinge Loss

Note that the original SVM formulation is argmin
ω̃,β̃

∑(
1− yif̃(xi)

)
+
, s.t. ‖ω̃‖2 ≤ C, where

f̃(x) = xT ω̃+ β̃. Here the coefficient vector ω̃ does not have unit norm. We let ω = ω̃/
√
C,
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β = β̃/
√
C and f = f̃/

√
C. Thus SVM solution is given by argmin

ω,β

∑(
1−
√
Cyif(xi)

)
+
,

s.t. ‖ω‖2 ≤ 1, or equivalently, argmin
ω,β

∑(√
C − Cyif(xi)

)
+
, s.t. ‖ω‖2 ≤ 1.
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Abstract

RLPy is an object-oriented reinforcement learning software package with a focus on value-
function-based methods using linear function approximation and discrete actions. The
framework was designed for both educational and research purposes. It provides a rich
library of fine-grained, easily exchangeable components for learning agents (e.g., policies
or representations of value functions), facilitating recently increased specialization in re-
inforcement learning. RLPy is written in Python to allow fast prototyping, but is also
suitable for large-scale experiments through its built-in support for optimized numerical
libraries and parallelization. Code profiling, domain visualizations, and data analysis
are integrated in a self-contained package available under the Modified BSD License at
http://github.com/rlpy/rlpy. All of these properties allow users to compare various
reinforcement learning algorithms with little effort.

Keywords: reinforcement learning, value-function, empirical evaluation, open source

1. Introduction

An integral part of most artificial intelligence courses are value-function-based methods
using linear function approximation for solving Markov decision processes (such as linear
Q-learning or SARSA). In addition, many researchers build upon this well-understood and

1. The first three authors contributed equally to this work.
2. The majority of this work was done prior to Amazon involvement of the authors. This paper does not

reflect the views of the Amazon company.

©2015 Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, and Jonathan P. How.
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powerful framework and aim at improving existing methods by, for example, feature learning
(Keller et al., 2006; Parr et al., 2007; Geramifard et al., 2011), or policies with better
exploration-exploitation trade-off (Nouri and Littman, 2009; Jaksch et al., 2010; Li, 2012).

The need to unify and increase reusability of software packages for reinforcement learning
research has been widely discussed (Tanner and White, 2009; Schaul et al., 2010), and many
successful tools have been created (see Section 2). However, it is desirable to have a software
framework that is 1) easily accessible by novices so that they may compare and understand
existing algorithms, and 2) efficient for researchers who perform large scale experiments and
advance the state-of-the-art.

By focusing on the prominent class of value-function-based methods with linear function
approximation using discrete actions, RLPy aims at being such a software framework that
provides simple and convenient tools for conducting sequential decision making experiments.
In the following, we present the main features of RLPy and highlight those that distinguish
it from existing frameworks.

2. Existing Frameworks

The following existing software packages have some overlap with RLPy:

1. RL-Toolbox: (Neumann, 2005) C++ RL toolbox focusing on continuous state-spaces
2. CLSquare: (Riedmiller et al., 2012) C++ RL framework focused on interfaces with several robotics
3. libPG: (Aberdeen, 2007) RL library focused on high-performance policy-gradient algorithm implementations
4. rllib (Frezza-Buet and Geist, 2013): Template-based C++ RL library for value-function methods
5. rl-texplore-ros-pkg:(Hester, 2013) ROS package for RL algorithms
6. JRLF: (Kochenderfer, 2006) Small-scale Java-Framework for RL experiments
7. PIQLE: (de Comite, 2006) Java-Framework for RL experiments
8. RLPark:(Degris, 2013) Java reinforcement learning library
9. RLLib: (Abeyruwan, 2013) Port of RLPark into C++

10. RL-Glue, RL-Library: (Tanner and White, 2009) Protocol for RL experiments and reference implementations
11. ApproxRL: (Busoniu, 2010) Matlab Toolbox with RL and dynamic programming algorithms
12. MMLF: (Metzen and Edgington, 2011) Python-based framework for reinforcement learning
13. PyBrain (Schaul et al., 2010): Machine learning library focused on neural networks with RL support

For the sake of brevity, we do not compare RLPy against each of the existing frameworks
in detail but highlight key differences in the following section by referencing the list above.

3. Why RLPy?

Improved Granularity of Agents with Linear Value Functions. RL has advanced signifi-
cantly over the past decade, leading researchers to narrow their focus towards specialized,
independent aspects of RL agents, such as approximate function representations, explo-
ration schemes, and learning rates. The structure of numerous existing frameworks (2, 6,
7, 10, 12) does not properly account for this increased specialization and makes it cumber-
some to exchange, for example, the way the value function is represented in a learning agent.
RLPy addresses this issue by separating these components into exchangeable classes (shown
as green boxes in Figure 1) and other minor components such as learning rates into separate
functions. This division reduces implementation effort, promotes reusability, and facilitates
automated testing. Code for an example experiment that exploits this modularity is shown
in Figure 2. In addition, the assumption of linearly parameterizing the value function allows
RLPy to provide many tools and helpers for designing state features. For example, in large
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Domain

Learning 
Algorithm

Representation

Policy
⇡

Q, V

at

st+1, rt+1
RL Agent

Experiment

Figure 1: RLPy framework - Green components constitute an RL agent which did not exist
as separate components in previous RL frameworks. The experiment module
handles the interaction between the agent and the domain; gray arrows depict
the information flow in a conventional RL framework (Sutton and Barto, 1998).

import rlpy

#### Domain ####

domain = rlpy.Domains.InfCartPoleBalance ()

### Agent ####

representation = rlpy.Representations.Tabular(domain , discretization =20)

policy = rlpy.Policies.eGreedy(representation , epsilon =0.1)

agent = rlpy.Agents.SARSA(policy , representation , domain.discount_factor)

### Experiment ####

experiment = rlpy.Experiments.Experiment(agent , domain , max_steps =100000)

experiment.run()

experiment.save()

Figure 2: RLPy code for setting up and running an experiment: SARSA learning for
100, 000 steps how to balance an inverted pole on a cart while following an ε-
greedy policy and using discretized tabular features.

MDPs where using a tabular representation is infeasible, the IndependentDiscretization

representation creates features by ignoring dependency among dimensions of states.

Rapid Prototyping with Python. RLPy is fully object-oriented and based primarily on
the Python language (van Rossum and de Boer, 1991). Low-level, computationally-intensive
tools are implemented in Cython (a compiled and typed version of Python) or C++. In
contrast to other packages (1 – 9) written solely in C++ or Java, this approach leverages
the user-friendliness, conciseness, and portability of Python while supplying computational
efficiency where needed. This combination allows researchers to prototype new ideas quickly
and comfortably without sacrificing the computing speed necessary to conduct large-scale
experiments. In addition, the Python-based approach of RLPy is particularly suited for
education as it does not require any proprietary software (in contrast to 11).

“Batteries Included” – Many Existing Components and Benchmarks. RLPy includes
an ever-growing repository of components which may be combined to form new RL agents.
While many frameworks (1, 3, 4, 6) only include classic benchmark domains such as Puddle-
World or an Inverted Pendulum on Cart, RLPy supplies a large number of more challenging
domains such as HIV-Treatment, Hovering a Helicopter, and Pac-Man. In addition to im-
plementations of most value-function-based RL algorithms, RLPy includes experimental
support for dynamic programming methods that require full domain knowledge but yield
optimal policies. This is especially useful as a baseline for comparison with (often sub-
optimal) policies generated by RL agents.
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Figure 3: RLPy sample outputs of RLPy plotting (left) and profiling (right) tools: A portion
of the profiling graph of the example code (Figure 2) in which the green box shows
the statistics of executing the learn function 105 times. It required 37.38% of
the CPU-time for completion, out of which its main body was responsible only
for 7.15% of the computation while the rest was spent in other called functions.

Ease of Use and Development. Numerous tools are shipped with RLPy that facili-
tate ease of use and efficiency. One example is the code profiler, which produces a visual
runtime graph of the source code (c.f. Figure 3 right) and identifies slow routines. This
information allows the researcher to reduce the runtime of an algorithm with minimal effort
and discourages premature runtime optimization. Additionally, every RLPy domain has a
visualization, an important feature lacking in other frameworks (3, 4, 7). These visuals help
user quickly assess and gain intuition about the algorithm and domain behavior.

Automation of Experiments. RLPy aims to promote reproducible research. To this
end, it provides a suite of tools to automate the entire experiment pipeline. For example,
RLPy allows concise specification of experiment settings (see Figure 2) and automated and
efficient hyperparameter optimization with the hyperopt package (Yamins et al., 2013).
Researchers can share their experimental setups by publishing short settings files, and col-
leagues can reproduce the results when running the scripts independent of their hardware
or operating system. Additionally, RLPy experiments are natively parallelizable. Once pa-
rameters are selected, the user simply specifies the number of CPU cores RLPy can utilize
for multiple experiments to test statistical significance. RLPy enables further scaling by
switching seamlessly from a single machine to a job-based cluster (e.g. HTCondor) while
ensuring results remain identical across varying hardware. RLPy also provides automated
tools for generation of final publication-ready plots of results (see Figure 3 left); researchers
need only specify the quantities that should appear on the plot. To the best of our knowledge
this degree of automation of the entire experimentation pipeline is unique to RLPy.

4. Conclusion

RLPy is a new reinforcement learning framework focused on value-function-based reinforce-
ment learning using linear function approximation with discrete actions. It simplifies the
construction of learning agents and makes it easier for novices and experts alike to evaluate
and compare algorithms, representations, environments, and other RL components. RLPy
also provides many tools for conducting reproducible experiments from initial prototyping
to final plotting. The framework is entirely open-source and all contributions are welcome.
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Abstract
We propose a calibrated multivariate regression method named CMR for fitting high dimensional
multivariate regression models. Compared with existing methods, CMR calibrates regulariza-
tion for each regression task with respect to its noise level so that it simultaneously attains im-
proved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient
conditions under which CMR achieves the optimal rate of convergence in parameter estimation.
Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case
numerical rate of convergence O(1/ε), where ε is a pre-specified accuracy of the objective function
value. We conduct thorough numerical simulations to illustrate that CMR consistently outper-
forms other high dimensional multivariate regression methods. We also apply CMR to solve a
brain activity prediction problem and find that it is as competitive as a handcrafted model created
by human experts. The R package camel implementing the proposed method is available on the
Comprehensive R Archive Network http://cran.r-project.org/web/packages/camel/.

Keywords: calibration, multivariate regression, high dimension, sparsity, low Rank, brain ac-
tivity prediction

1. Introduction

This paper studies the multivariate regression problem. Let X ∈ Rn×d be the design matrix and
Y ∈ Rn×m be the response matrix, we consider a linear model

Y = XB0 + Z, (1)

where B0 ∈ Rd×m is an unknown regression coefficient matrix and Z ∈ Rn×m is a noise matrix
(Anderson, 1958; Breiman and Friedman, 2002). For a matrix A = [Ajk] ∈ Rd×m, we denote its jth

row and kth column by Aj∗ = (Aj1, ..., Ajm) ∈ Rm and A∗k = (A1k, ...,Adk)T ∈ Rd respectively.
We assume that all Zi∗’s are independently sampled from an m-dimensional distribution with mean
0 and covariance matrix Σ ∈ Rm×m.

∗. Some preliminaries results in this paper were presented at the 28-th Annual Conference on Neural Information
Processing Systems, Montreal, Quebec, Canada, 2014 (Liu et al., 2014a). This work is partially supported by
grants NIH R01MH102339, NSF IIS1408910, NSF IIS1332109, NSF CAREER DMS1454377, NIH R01GM083084,
NIH R01HG06841, and NSF Grant DMS-1005539.

†. Tuo Zhao is also affiliated with Department of Operations Research and Financial Engineering at Princeton
University.

c©2015 Han Liu, Lie Wang, and Tuo Zhao.

http://cran.r-project.org/web/packages/camel/


Liu, Wang, and Zhao

We can represent (1) as an ensemble of univariate linear regression models:

Y∗k = XB0
∗k + Z∗k, k = 1, ...,m,

which results in a multi-task learning problem (Baxter, 2000; Caruana, 1997; Caruana et al., 1996;
Thrun, 1996; Ando and Zhang, 2005; Johnson and Zhang, 2008; Zhang et al., 2006; Zhang, 2006).
Multi-task learning exploits shared common structure across tasks to obtain improved estimation
performance. In the past decade, significant progress has been made on designing various modeling
assumptions for multivariate regression.

One popular approach is to assume that the regression coefficients across different tasks are cou-
pled by some shared common factors so that B0 has a low rank structure, i.e., rank(B0)� min(d,m).
Under this assumption, a consistent estimator of B0 can be obtained by adopting either a non-convex
rank constraint (Anderson, 1958; Izenman, 1975; Reinsel and Velu, 1998; Anderson, 1999; Reinsel
and Velu, 1998; Izenman, 2008) or a convex relaxation using the nuclear norm regularization (Yuan
et al., 2007; Amit et al., 2007; Argyriou et al., 2008; Negahban and Wainwright, 2011; Rohde and
Tsybakov, 2011; Bunea et al., 2011, 2012; Bunea and Barbu, 2009; Mukherjee et al., 2012; Giraud,
2011; Argyriou et al., 2010; Foygel and Srebro, 2011; Johnson and Zhang, 2008; Salakhutdinov and
Srebro, 2010; Evgeniou et al., 2006; Heskes, 2000; Teh et al., 2005; Yu et al., 2005). Such a low rank
multivariate regression method is often applied to scenarios where m is large.

Another approach is to assume that all the regression tasks share a common sparsity pattern,
i.e., many B0

j∗’s are zero vectors. Such a joint sparsity assumption for multivariate regressions is a
natural extension from sparse univariate linear regressions. Similar to using the L1-regularization in
Lasso (Tibshirani, 1996; Chen et al., 1998), group regularization can be used to obtain a consistent
estimator of B0 (Yuan and Lin, 2005; Turlach et al., 2005; Meier et al., 2008; Lounici et al., 2011;
Kolar et al., 2011). Such a sparse multivariate regression method is often applied to scenarios where
the dimension d is large.

In this paper, we consider an uncorrelated structure for the noise matrix Z, i.e.,

Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
m−1, σ

2
m). (2)

Such an assumption allows us to efficiently solve the resulting estimation problem with a convex
program and prove that the obtained estimator achieves the minimax optimal rates of convergence
in parameter estimation.1 For example, many existing work propose to solve the convex program

B̂ = argmin
B

1√
n
||Y −XB||2F + λR(B), (3)

where λ > 0 is a tuning parameter, R(B) is a regularization function of B, and ||A||F =
√∑

j,k A2
jk

is the Frobenius norm of a matrix A. Popular choices of R(B) include

Nuclear Norm : ||B||∗ =

r∑
j=1

ψj(B), (4)

L1,p Norm : ||B||1,p =

d∑
j=1

(
m∑
k=1

|Bjk|p
)1/p

for 2 ≤ p <∞, (5)

L1,∞ Norm : ||B||1,∞ =

d∑
j=1

max
1≤k≤m

|Bjk|, (6)

1. See more details on exploiting the covariance structure of the noise matrix Z for multivariate regression in Breiman
and Friedman (2002); Reinsel (2003); Rothman et al. (2010).
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where r in (4) is the rank of B and ψj(B) represents the jth largest singular value of B. The
optimization problem (3) can be efficiently solved by the block coordinate descent algorithm (Liu
et al., 2009a,b; Liu and Ye, 2010; Zhao et al., 2014a,c), fast proximal gradient algorithm (Toh and
Yun, 2010; Beck and Teboulle, 2009a,b), and alternating direction method of multipliers(Boyd et al.,
2011; Liu et al., 2014b). Scalable software packages such as MALSAR have been developed (Zhou
et al., 2012).

The problem in (2) is amenable to statistical analysis. Under suitable conditions on the noise
and design matrices, let σmax = maxk σk and ||X||2 = ψ1(X) denote the largest singular value of X,
if we choose

Low Rank : λ = 2c · ||X||2
n
· σmax

(√
d+
√
m
)
, (7)

Joint Sparsity : λ = 2c · σmax

(√
log d+m1−1/p

)
, (8)

for some c > 1, then the estimator B̂ in (3) achieves the optimal rates of convergence2 (Lounici
et al., 2011; Rohde and Tsybakov, 2011). More specifically, there exists some universal constant C
such that, with high probability,

Low Rank :
1√
m
||B̂−B0||F ≤ C ·

||X||2√
n
· σmax

(√
r

n
+

√
rd

nm

)
,

Joint Sparsity :
1√
m
||B̂−B0||F ≤ C · σmax

(√
s log d

nm
+

√
sm1−2/p

n

)
,

where r is the rank of B0 for the low rank setting and s is the number of rows with non-zero entries
in B0 for the setting of joint sparsity.

The estimator in (3) has two drawbacks: (i) All the tasks are regularized by the same tuning
parameter λ, even though different tasks may have different σk’s. Thus more estimation bias is
introduced to the tasks with smaller σk’s since they have to compensate the tasks with larger σk’s.
In another word, these tasks are not calibrated (Zhao and Liu, 2014). (ii) The tuning parameter
selection, as shown in (7) and (8), involves the unknown parameter σmax. This requires the regular-
ization parameter to be carefully tuned over a wide range of potential values in order to get a good
finite-sample performance.

To overcome the above two drawbacks, we propose a new method named calibrated multivariate
regression (CMR) based on the convex program

B̂ = argmin
B

||Y −XB||2,1 + λR(B) (9)

where ||A||2,1 =
∑
k

√∑
j A2

jk is the L2,1 norm of a matrix A = [Ajk] ∈ Rd×m. This is a mul-

tivariate extension of the square-root Lasso estimator (Belloni et al., 2011; Sun and Zhang, 2012).
Similar to the square-root Lasso, the tuning parameter selection of CMR does not involve σmax.
Thus the resulting procedure adapts to different σk’s and achieves an improved finite-sample perfor-
mance comparing with the ordinary multivariate regression estimator (OMR) defined in (3). Since
both the loss and regularization functions in (9) are nonsmooth, CMR is computationally more chal-
lenging than OMR. To efficiently solve CMR, we develop a smoothed proximal gradient algorithm
with a worst-case iteration complexity of O(1/ε), where ε is a pre-specified accuracy of the objective
value (Nesterov, 2005; Chen et al., 2012; Zhao and Liu, 2012; Zhao et al., 2014b). Theoretically, we
show that under suitable conditions, CMR achieves the optimal rates of convergence in parameter

2. For the joint sparsity setting, the rate of convergence is optimal when R(B) = ||B||1,2. See more details in Lounici
et al. (2011)
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estimation. Numerical experiments on both synthetic and real data show that CMR universally out-
performs existing multivariate regression methods. For a brain activity prediction task, prediction
based on the features selected by CMR significantly outperforms that based on the features selected
by OMR, and is even competitive with that based on the handcrafted features selected by human
experts.

This paper is organized as follows: In §2, we describe the CMR method. In §3, we investigate the
statistical properties of CMR; In §4, we derive a smoothed proximal gradient algorithm for solving
CMR optimization. In §5, we conduct numerical experiments to illustrate the usefulness of the
proposed method. In §6, we discuss the relationships between our results and other related work.
Notation: Given a vector v = (v1, . . . , vd)

T ∈ Rd, for 1 ≤ p ≤ ∞, we define the vector norms:

||v||p =
(∑d

j=1 |vj |p
)1/p

for 1 ≤ p <∞ and ||v||∞ = max1≤j≤d |vj |. Given two matrices A = [Ajk]

and C = [Cjk] ∈ Rd×m, we define the inner product of A and C as 〈A,C〉 =
∑d
j=1

∑m
k=1 AjkCjk =

tr(ATC), where tr(A) is the trace of a matrix A. We use A∗k = (A1k, ...,Adk)T and Aj∗ =
(Aj1, ...,Ajm) to denote the kth column and jth row of A. Let S be some subspace of Rd×m, we use
AS to denote the projection of A onto S, i.e., AS = argminC∈S ||C−A||2F. Given a subspace U ⊂ Rd,
we define its orthogonal complement as U⊥ =

{
u ∈ Rd | uTv = 0, for all v ∈ U

}
. Moreover, we

define the Frobenius, spectral, and nuclear norms of A as ||A||F =
√
〈A,A〉, ||A||2 = ψ1(A),

and ||A||∗ =
∑r
j=1 ψj(A), where r is the rank of A, and ψj(A) is the jth largest singular value

of A. In addition, we define the matrix block norms as ||A||2,1 =
∑m
k=1 ||A∗k||2, ||A||2,∞ =

max1≤k≤m ||A∗k||2, ||A||1,p =
∑d
j=1 ||Aj∗||p, and ||A||∞,q = max1≤j≤d ||Aj∗||q, where 1 ≤ p ≤ ∞

and 1 ≤ q ≤ ∞. It is easy to verify that ||A||2,1 and ||A||∗ are dual norms of ||A||2,∞ and ||A||2
respectively. Let 1/∞ = 0, then if 1/p + 1/q = 1, ||A||∞,q and ||A||1,p are also dual norms of each
other.

2. Method

We solve the multivariate regression problem in (1) by the convex program

B̂ = argmin
B

||Y −XB||2,1 + λR(B), (10)

where R(B) is a regularization function and can take the forms in (4), (5), and (6).
To understand the intuition of (10), we show that the L2,1-loss can be viewed as a special case

of the weighted square loss function. More specifically, we consider the optimization problem

B̂∗ = argmin
B

m∑
k=1

1

σk
√
n
||Y∗k −XB∗k||22 + λR(B), (11)

where 1
σk
√
n

is the weight to calibrate the kth regression task. B̂∗ is an “oracle” estimator (not

practically calculable) since it assumes that all σk’s are given. Without any prior knowledge of σk’s,
we can use the following replacement of σk’s,

σ̃k =
1√
n
||Y∗k −XB∗k||2, k = 1, ...,m. (12)

We then recover (10) by replacing σk in (12) by σ̃k. In another word, CMR calibrates different tasks
by solving a regularized weighted least square problem with weights defined in (12).

3. Statistical Properties

For notational simplicity, we define a rescaled noise matrix W = [Wik] ∈ Rn×m with Wik = Zik/σk,
where EZ2

ik = σ2
k is defined in (2). Thus W is a random matrix with all entries having mean 0 and
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variance 1. We define G0 as the gradient of ||Y −XB||2,1 at B = B0. We see that G0 does not
depend on the unknown quantities σk’s since

G0
∗k =

XTZ∗k
||Z∗k||2

=
XTW∗kσk
||W∗kσk||2

=
XTW∗k

||W∗k||2
.

Thus it serves as an important pivotal in our analysis. Moreover, our analysis exploits the de-
composability of R(B), which is satisfied by the nuclear and L1,p norms (Negahban et al., 2012).

Definition 1 Let S and N be two subspaces of Rd×m, which are orthogonal to each other and also
satisfy S ⊆ N⊥. A regularization function R(·) is decomposable with respect to the pair (S,N ) if
for any A ∈ Rd×m, we have

R(A + C) = R(A) +R(C) for A ∈ S and C ∈ N .

The decomposability of R(B) is important in analyzing the statistical properties of the estimator in
(10). The next lemma shows that if we choose S to be some subspace of Rd×m containing the true
parameter B0, given a decomposable regularizer and a suitably chosen λ, the optimum to (10) lies
in a restricted set.

Lemma 2 Let B0 ∈ S and B̂ be an arbitrary3 optimum to (10). We denote the estimation error

as ∆̂ = B̂−B0 and the dual norm of R(·) as R∗(·). If λ ≥ cR∗(G0) for some c > 1, we have

∆̂ ∈Mc =

{
∆ ∈ Rd×m | R(∆N ) ≤ c+ 1

c− 1
R(∆N⊥)

}
. (13)

The proof of Lemma 2 is provided in Appendix A. To prove the main result, we assume that the
design matrix X satisfies a generalized restricted eigenvalue condition as below.

Assumption 1 Let B0 ∈ S, then there exist positive constants κ and c > 1 such that

κ = min
∆∈Mc\{0}

||X∆||F√
n||∆||F

.

Assumption 1 is the generalization of the restricted eigenvalue conditions for analyzing univariate
sparse linear models (Negahban et al., 2012; Bickel et al., 2009). Many design matrices satisfy this
assumption with high probability (Lounici et al., 2011; Negahban and Wainwright, 2011; Rohde and
Tsybakov, 2011; Raskutti et al., 2010).

3.1 Main Result

We first present a deterministic result for a general norm-based regularization function R(·), which
satisfies the decomposability in Definition 1.

Theorem 3 Suppose that the design matrix X satisfies Assumption 1. Let B̂ be an arbitrary opti-
mum to (10), and G0 be the gradient of ||Y −XB||2,1 at B = B0. We denote

Θ(N⊥,R) = max
A∈Rd×m\{0}

R(AN⊥)

||AN⊥ ||F
.

Let λ satisfy

2λΘ(N⊥,R) ≤ δ(c− 1)
√
nκ for some δ < 1, and λ ≥ cR∗(G0).

3. Since (10) is not a strictly convex program, the optimum to (10) is not necessarily unique.
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Then we have

1√
nm
||XB̂−XB0||F ≤

4λΘ(N⊥,R)σmax√
mnκ(c− 1)(1− δ)

||W||2,∞,

1√
m
||B̂−B0||F ≤

4λΘ(N⊥,R)σmax√
mnκ2(c− 1)(1− δ)

||W||2,∞,

where σmax = max
1≤k≤m

σk. Moreover, if we estimate σk’s by

σ̂k =
1√
n
||Y∗k −XB̂∗k||2 for all k = 1, ...,m, (14)

then we have

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
4λ2Θ2(N⊥,R)σmax√
nmnκ(c− 1)(1− δ)

||W||2,∞.

The proof of Theorem 3 is provided in Appendix B. Note that Theorem 3 is a deterministic bound
of the CMR estimator for a fixed λ. Since W is a random matrix, we need to bound ||W||2,∞ and
show that λ ≥ cR∗(G0) holds with high probability. For simplicity, we assume that each entry of
W follows a Gaussian distribution as follows.

Assumption 2 All Wik’s are independently generated from N(0,1).

We then refine error bounds of the CMR estimator under Assumption 2 for calibrated sparse mul-
tivariate regression and calibrated low rank multivariate regression respectively .

3.2 Calibrated Low Rank Multivariate Regression

We assume that the rank of B0 is r � min{d,m}, and B0 has a singular value decomposition
B0 =

∑r
j=1 ψj(B

0)ujv
T
j where ψj(B

0) is the jth largest singular value with uj ’s and vj ’s as the
corresponding left and right singular vectors. We define

U = span({u1, ...,ur}) ⊂ Rd and V = span({v1, ...,vr}) ⊂ Rm.

We then define S and N as follows,

S =
{

C ∈ Rd×m
∣∣∣ C∗k ∈ U , Cj∗ ∈ V for all j, k

}
, (15)

N =
{

C ∈ Rd×m
∣∣∣ C∗k ∈ U⊥, Cj∗ ∈ V⊥ for all j, k

}
. (16)

We can easily verify that B0 ∈ S and the nuclear norm is decomposable with respect to the pair
(S,N ), i.e.,

||A + C||∗ = ||A||∗ + ||C||∗ for A ∈ S and C ∈ N .

The next corollary provides the concrete rates of convergence for the calibrated low rank multi-
variate regression estimator.

Corollary 4 We assume that the design matrix X satisfies Assumption 1 with S and N chosen as
in (15) and (16), and each column of X is normalized so that

‖X∗j‖2√
n

= 1 for all j = 1, ..., d. (17)
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We also assume that the rescaled noise matrix W satisfies Assumption 2. By Theorem 3, for some
universal constants c0 ∈ (0, 1), c1 > 0, and large enough n, we take

λ =
2c||X||2(

√
d+
√
m)√

n(1− c0)
, (18)

then for some δ < 1, we have

1√
nm
||XB̂−XB0||F ≤

8c
√

2||X||2σmax√
nκ(c− 1)(1− δ)

√
1 + c0
1− c0

(√
r

n
+

√
rd

nm

)
,

1√
m
||B̂−B0||F ≤

8c
√

2||X||2σmax√
nκ2(c− 1)(1− δ)

√
1 + c0
1− c0

(√
r

n
+

√
rd

nm

)
,

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
64c2||X||22σmax

nκ(c− 1)(1− δ)

√
1 + c0

1− c0

(
rd

nm
+
r

n

)

with probability at least 1− 2 exp(−c1d− c1m)− 2 exp
(
−nc20/8 + logm

)
.

The proof of Corollary 4 is provided in Appendix C. The rate of convergence obtained in Corollary
4 matches the minimax lower bound4 presented in Rohde and Tsybakov (2011). See more details in
Theorems 5 and 6 of Rohde and Tsybakov (2011).

3.3 Calibrated Sparse Multivariate Regression

We now assume that the multivariate regression model in (1) is jointly sparse. More specifically, we
assume that B0 has s rows with nonzero entries and define

S =
{
C ∈ Rd×m | Cj∗ = 0 for all j such that B0

j∗ = 0
}
, (19)

N =
{
C ∈ Rd×m | Cj∗ = 0 for all j such that B0

j∗ 6= 0
}
. (20)

We can easily verify that we have B0 ∈ S and the L1,p norm is decomposable with respect to the
pair (S,N ), i.e.,

||A + C||1,p = ||A||1,p + ||C||1,p for A ∈ S and C ∈ N .

The next corollary provides the concrete rates of convergence for the calibrated sparse multivari-
ate regression estimator.

Corollary 5 We assume that the design matrix X satisfies Assumption 1 with S and N chosen as
in (19) and (20), and each column of X is normalized so that

m1/2−1/p‖X∗j‖2√
n

= 1 for all j = 1, ..., d. (21)

We also assume that the rescaled noise matrix W satisfies Assumption 2. By Theorem 3, for some
universal constant c0 ∈ (0, 1) and large enough n, let

λ =
2c(m1−1/p +

√
log d)√

1− c0
, (22)

4. In the fixed design setting for the low rank regression, ||X||2 is supposed to increase as an order of
√
n. Thus

||X||2/
√
n in (18) should be viewed as a constant.
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then for some δ < 1, we have

1√
nm
||XB̂−XB0||F ≤

8cσmax

κ(c− 1)(1− δ)

√
1 + c0
1− c0

(√
sm1−2/p

n
+

√
s log d

nm

)
,

1√
m
||B̂−B0||F ≤

8cσmax

κ2(c− 1)(1− δ)

√
1 + c0
1− c0

(√
sm1−2/p

n
+

√
s log d

nm

)
,

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
32c2σmax

κ(c− 1)(1− δ)

√
1 + c0

1− c0

(
sm1−2/p

n
+
s log d

mn

)

with probability at least 1− 2 exp(−2 log d)− 2 exp
(
−nc20/8 + logm

)
.

The proof of Corollary 5 is provided in Appendix D. Note that when we choose p = 2, the column
normalization condition (21) becomes

‖X∗j‖2√
n

= 1 for all j = 1, ..., d,

which is the same as (17). Then Corollary 5 implies that with high probability, we have

1√
m
||B̂−B0||F ≤

8cσmax

κ2(c− 1)(1− δ)

√
1 + c0
1− c0

(√
s

n
+

√
s log d

nm

)
. (23)

The rate of convergence obtained in (23) matches the minimax lower bound presented in Lounici
et al. (2011). See more details in Theorem 6.1 of Lounici et al. (2011).

Remark 6 From Corollaries 4 and 5, we see that CMR achieves the same rates of convergence as the
noncalibrated counterpart in parameter estimation. Moreover, the selected regularization parameter λ
in (18) and (22) does not involve σk’s. Therefore CMR makes the regularization parameter selection
insensitive to σmax.

4. Computational Algorithm

Though the L2,1 norm is nonsmooth, it is nondifferentiable only when a task achieves exact zero
residual, which is unlikely to happen in practice. This motivates us to apply the smoothing approach
proposed by Nesterov (2005) to obtain a smooth approximation so that we can avoid directly eval-
uating the subgradient of the L2,1 loss function. Thus we gain computational efficiency like other
smooth loss functions.

4.1 Smooth Approximation

We consider the Fenchel’s dual representation of the L2,1 loss:

||Y −XB||2,1 = max
||U||2,∞≤1

〈U,Y −XB〉.

Let µ > 0 be a smoothing parameter. The smooth approximation of the L2,1 loss can be obtained
by solving the optimization problem

||Y −XB||µ = max
||U||2,∞≤1

〈U,Y −XB〉 − µ

2
||U||2F. (24)
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Note that the equality in (24) is attained with U = ÛB:

ÛB
∗k =

Y∗k −XB∗k
max {||Y∗k −XB∗k||2, µ}

.

Nesterov (2005) has shown that ||Y −XB||µ have good computational structures: (1) It is convex
and differentiable with respect to B; (2) Its gradient takes a simple form as

Gµ(B) =
∂||Y −XB||µ

∂B
=
∂
(
〈ÛB,Y −XB〉 − µ||ÛB||2F/2

)
∂B

= −XT ÛB;

(3) Let γ = ||XTX||2, we have that Gµ(B) is Lipschitz continuous in B with the Lipschitz constant
γ/µ, i.e., for any B′, B′′ ∈ Rd×m,

||Gµ(B′)−Gµ(B′′)||F ≤
γ

µ
||B′ −B′′||F.

Therefore we consider a smoothed replacement of the optimization problem in (10):

B̃ = argmin
B

||Y −XB||µ + λR(B). (25)

4.2 Smoothed Proximal Gradient Algorithm

We then present a brief derivation of the smoothed proximal gradient algorithm for solving (25).
We first define three sequences of auxiliary variables {A(t)}, {V(t)}, and {H(t)} with A(0) = H(0) =
V(0) = B(0), a sequence of weights {θt = 2/(t + 1)}, and a nonincreasing sequence of step sizes
{ηt}∞t=0.

At the tth iteration, we take V(t) = (1 − θt)B(t−1) + θtA
(t−1). Let H̃(t) = V(t) − ηtGµ(V(t)).

When R(H) = ||H||∗, we take

H(t) =

min{d,m}∑
j=1

max
{
ψj(H̃

(t))− ηtλ, 0
}
ujv

T
j ,

where uj and vj are the left and right singular vectors of H̃(t) corresponding to the jth largest

singular value ψj(H̃
(t)). When R(H) = ||H||1,2, we take

H
(t)
j∗ = H̃j∗ ·max

{
1− ηtλ/||H̃j∗||2, 0

}
.

See more details about other choices of p in the L1,p norm in Liu et al. (2009a); Liu and Ye (2010).
To ensure that the objective function value is nonincreasing, we choose

B(t) = argmin
B∈{H(t), B(t−1)}

||Y −XB||µ + λR(B).

For simplicity, we can set {ηt} as a constant sequence, e.g., ηt = µ/γ for t = 1, 2, .... In practice,
we cam use the backtracking line search to adjust ηt and boost the performance. At last, we
take A(t) = B(t−1) + 1

θt
(H(t) − B(t−1)). Given a stopping precision ε, the algorithm stops when

max
{
||B(t) −B(t−1)||F, ||H(t) −H(t−1)||F

}
≤ ε.

Remark 7 The smoothed proximal gradient algorithm has a worst-case iteration complexity of
O(1/ε), where ε is a pre-specified accuracy of the objective value5. See more details in Nesterov
(2005); Beck and Teboulle (2009a).

5. During this paper was under review, a dual proximal gradient algorithm was proposed for solving (10). See more
details in Gong et al. (2014).
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5. Numerical Experiments

To compare the finite-sample performance between the calibrated multivariate regression (CMR)
and ordinary multivariate regression (OMR), we conduct numerical experiments on both simulated
and real data sets.

5.1 Simulated Data

We generate training data sets of 400 samples for the low rank setting and 200 samples for joint
sparsity setting. In details, for the low rank setting, we use the following data generation scheme:

(1) Generate each row of the design matrix Xi∗, i = 1, ..., 400, independently from a 200-dimensional
normal distribution N(0,Σ) where Σjj = 1 and Σj` = 0.5 for all ` 6= j.

(2) Generate the regression coefficient matrix B0 = LRT , where L ∈ R200×3, R ∈ R3×101, and all
entries of L and R are independently generated from N(0, 0.05).

(3) Generate the random noise matrix Z = WD where W ∈ R400×101 with all entries of W
independently generated from N(0, 1) and D is either of the following matrices

D = σmax · diag
(

20/100, 2−3/100, · · · , 2−297/100, 2−300/100
)
∈ R101×101, , (26)

D = σmax · diag (1, 1, · · · , 1, 1) ∈ R101×101. (27)

For the joint sparsity setting, we use the following data generation scheme:

(1) Generate each row of the design matrix Xi∗, i = 1, ..., 200, independently from a 800-dimensional
normal distribution N(0,Σ) where Σjj = 1 and Σj` = 0.5 for all ` 6= j.

(2) Let k = 1, . . . , 13, set the regression coefficient matrix B0 ∈ R800×13 as B0
1k = 3, B0

2k = 2,
B0

4k = 1.5, and B0
jk = 0 for all j 6= 1, 2, 4.

(3) Generate the random noise matrix Z = WD, where W ∈ R200×13 with all entries of W
independently generated from N(0, 1) and D is is either of the following matrices

D = σmax · diag
(

20/4, 2−1/4, · · · , 2−11/4, 2−12/4
)
∈ R13×13, (28)

D = σmax · diag (1, 1, · · · , 1, 1) ∈ R13×13. (29)

In addition, we generate validation sets (400 samples for the low rank setting and 200 samples for
the joint sparsity setting) for the regularization parameter selection, and testing sets (10,000 samples
for both settings) to evaluate the prediction accuracy.

Remark 8 The scale matrices in (26) and (28) consider the scenario, where the regression tasks
have different variances. The scale matrices in (27) and (29) consider the scenario, where all
regression tasks have the equal variance.

In numerical experiments, we set σmax = 1, 2, and 4 to illustrate the tuning insensitivity of
CMR. The regularization parameter λ of both CMR and OMR is chosen over a grid

Λ =
{

240/4λ0, 2
39/4λ0, · · · , 2−17/4λ0, 2−18/4λ0

}
.

We choose

λ0 =
||X||2
n

(
√
d+
√
m) and λ0 =

√
log d+

√
m
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for the low rank and joint sparsity settings. The optimal regularization parameter λ̂ is determined
by the prediction error as

λ̂ = argmin
λ∈Λ

||Ỹ − X̃B̂λ||2F,

where B̂λ denotes the obtained estimate using the regularization parameter λ, and X̃ and Ỹ denote
the design and response matrices of the validation set.

Since the noise level σk’s may vary across different regression tasks, we adopt the following three
criteria to evaluate the empirical performance:

P.E. =
1

10000
||Y −XB̂||2F, A.P.E. =

1

10000m
||(Y −XB̂)D−1||2F, E.E. =

1

m
||B̂−B0||2F,

where X and Y denote the design and response matrices of the testing set.
All simulations are implemented by MATLAB using a PC with Intel Core i5 3.3GHz CPU and

16GB memory. We set p = 2 for the joint sparsity setting, but it is straightforward to extend to
arbitrary p > 2. OMR is solved by the monotone fast proximal gradient algorithm, where we set the
stopping precision ε = 10−4. CMR is solved by the proposed smoothed proximal gradient algorithm,
where we set the stopping precision ε = 10−4, and the smoothing parameter µ = 10−4.

We compare the statistical performance between CMR and OMR. Tables 1-4 summarize the
results averaged over 200 simulations for both settings. In addition, since we know the true values
of σk’s, we also present the results of the oracle estimator B̂∗ defined in (11). The oracle estimator
is only for comparison purpose, and it is not a practical estimator.

Tables 1 and 3 present the empirical results when we adopt the scale matrix D defined in (26)
and (28) to generate the random noise. Though our theoretical analysis in §3 only shows CMR
attains the same rates of convergence as OMR, our empirical results show that CMR universally
outperforms OMR, and achieves almost the same performance as the oracle estimator. These results
corroborate the effectiveness of the calibration for each task.

σmax Method P.E. A.P.E. E.E.

1
Oracle 48.394(0.7421) 1.1659(0.0241) 0.1106(0.0245)
CMR 48.411(0.7431) 1.1668(0.0214) 0.1109(0.0133)
OMR 53.337(0.7063) 1.2880(0.0231) 0.2077(0.0137)

2
Oracle 183.38(0.9786) 1.0917(0.0068) 0.2425(0.0187)
CMR 183.40(1.2212) 1.0924(0.0063) 0.2430(0.0238)
OMR 194.66(1.4109) 1.1641(0.0112) 0.4637(0.0277)

4
Oracle 713.13(3.3923) 1.0554(0.0062) 0.5696(0.0669)
CMR 713.24(2.7685) 1.0565(0.0047) 0.5737(0.0533)
OMR 728.55(2.6500) 1.0793(0.0051) 0.8722(0.0526)

Table 1: Quantitative comparison of the statistical performance between CMR and OMR for the
low rank setting with D defined in (26). The results are averaged over 200 simulations
with the standard errors in parentheses. CMR universally outperforms OMR, and achieves
almost the same performance as the oracle estimator.

Tables 2 and 4 present the empirical results when we adopt the scale matrix D defined in (27)
and (29) with all σk’s being equal. We can see that CMR attains similar performance to OMR. This
indicates that CMR is a safe replacement of OMR for multivariate regressions.
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σmax Method P.E. A.P.E. E.E.

1
CMR 112.13(1.0051) 1.1103(0.0097) 0.2128(0.0190)
OMR 113.69(1.0163) 1.1951(0.0100) 0.2217(0.0193)

2
CMR 428.42(1.8061) 1.0605(0.0043) 0.4576(0.0344)
OMR 430.73(1.9636) 1.0758(0.0053) 0.4752(0.0413)

4
CMR 1669.2(5.0401) 1.0335(0.0028) 0.9621(0.0991)
OMR 1673.5(5.7879) 1.0378(0.0035) 1.0353(0.1104)

Table 2: Quantitative comparison of the statistical performance between CMR and OMR for the
low rank setting with D defined in (27). The results are averaged over 200 simulations with
the standard errors in parentheses. CMR and OMR achieve similar statistical performance.

σmax Method P.E. A.P.E. E.E.

1
Oracle 5.8759(0.0834) 1.0454(0.0149) 0.0245(0.0086)
CMR 5.8761(0.0669) 1.0459(0.0122) 0.0249(0.0078)
OMR 5.9012(0.0701) 1.0581(0.0162) 0.0290(0.0091)

2
Oracle 23.464(0.3237) 1.0441(0.0148) 0.0926(0.0342)
CMR 23.465(0.2600) 1.0446(0.0131) 0.0928(0.0268)
OMR 23.580(0.2832) 1.0573(0.0170) 0.1115(0.0365)

4
Oracle 93.532(0.8843) 1.0418(0.0962) 0.3342(0.1255)
CMR 93.542(0.9788) 1.0421(0.0113) 0.3346(0.1002)
OMR 94.094(1.0978) 1.0550(0.0166) 0.4125(0.1417)

Table 3: Quantitative comparison of the statistical performance between CMR and OMR for the
joint sparsity setting with D defined in (28). The results are averaged over 200 simulations
with the standard errors in parentheses. CMR universally outperforms OMR, and achieves
almost the same performance as the oracle estimator.

σmax Method P.E. A.P.E. E.E.

1
CMR 13.565(0.1411) 1.0435(0.0156) 0.0599(0.0199)
OMR 13.697(0.1554) 1.0486(0.0142) 0.0607(0.0128)

2
CMR 54.171(0.5791) 1.0418(0.0101) 0.2252(0.0644)
OMR 54.221(0.6173) 1.0427(0.0118) 0.2359(0.0821)

4
CMR 215.98(1.994) 1.0384(0.0099) 0.80821(0.2417)
OMR 216.19(2.391) 1.0394(0.0114) 0.81957(0.3180)

Table 4: Quantitative comparison of the statistical performance between CMR and OMR for the
joint sparsity setting with D defined in (29). The results are averaged over 200 simula-
tions with the standard errors in parentheses. CMR and OMR achieve similar statistical
performance.
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In addition, we also examine the optimal regularization parameters for CMR and OMR over all
replicates. We visualize the distribution of all 200 selected λ̂’s using the kernel density estimator. In
particular, we adopt the Gaussian kernel, and select the kernel bandwidth based on the 10-fold cross
validation. Figure 1 illustrates the estimated density functions. The horizontal axis corresponds to
the rescaled regularization parameter as follows:

Low Rank : log

(
λ̂

(
√
d+
√
m)||X||2/n

)
,

Joint Sparsity : log

(
λ̂√

log d+
√
m

)
.

We see that the optimal regularization parameters of OMR significantly vary with different σmax. In
contrast, the optimal regularization parameters of CMR are more concentrated. This is consistent
with our claimed tuning insensitivity.
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(a) The low rank setting with D defined in (26)
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(b) The low rank setting with D defined in (27)
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(c) The joint sparsity setting with D defined in (28)
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(d) The joint sparsity setting with D defined in (29)

Figure 1: The distributions of the selected regularization parameters using the kernel density esti-
mator. The numbers in the parentheses are σmax’s. The optimal regularization parameters
of OMR are more spread with different σmax than those of CMR and the oracle estimator.

5.2 Real Data

We apply CMR on a brain activity prediction problem which aims to build a parsimonious model
to predict a person’s neural activity when seeing a stimulus word. As is illustrated in Figure 2, for
a given stimulus word, we first encode it into an intermediate semantic feature vector using some
corpus statistics. We then model the brain’s neural activity pattern using CMR. Creating such a
predictive model not only enables us to explore new analytical tools for the fMRI data, but also helps
us to gain deeper understanding on how human brain represents knowledge (Mitchell et al., 2008).
As will be shown in the section, prediction based on the features selected by CMR significantly

1591



Liu, Wang, and Zhao

outperforms that based on the features selected by OMR, and is even better than that based on the
handcrafted features selected by human experts.

(b) model for predicting fMRI brain activity pattern 

Predict fMRI brain activity patterns in response to text stimulus

!"#$%&'()*'

?+',%,-.& Model

!"#$%)/01'2

!"#$%0334'&

%50//'.& !"#$%50//'.&

%6)*7*4'& !"#$%6)*7*4'&

89/:4:2%,-.&2

%0334'&

Standard solution 
Linear models
(More restrictive)

Our solution
Nonlinear models
(Less restrictive)

.

;5'%'<3'.)/'+=2%0.'%*-+&:*='&%)+%>")=*5'44%'=%0?%8*)'+*'%@AB

(a) illustration of the data collection procedure

"apple"
predicted 
activities 

for "apple"

stimulus word

intermediate semantic features mapping learned from fMRI data

(Mitchell et al., Science,2008)

Figure 2: An illustration of the fMRI brain activity prediction problem (Mitchell et al., 2008). (a) To
collect the data, a human participant sees a sequence of English words and their images.
The corresponding fMRI images are recorded to represent the brain activity patterns; (b)
To build a predictive model, each stimulus word is encoded into intermediate semantic
features (e.g. the co-occurrence statistics of this stimulus word in a large text corpus).
These intermediate features can then be used to predict the brain activity pattern.

5.2.1 Data

The data are obtained from Mitchell et al. (2008) and contain a fMRI image data set and a text
data set. The fMRI data are collected from an experiment with 9 participants.60 nouns are selected
as stimulus words from 12 different categories (See Table 5). When a participant sees a stimulus
word, the fMRI device records an image6. Each image contains 20,601 voxels that represent the
neural activities of the participant’s brain. Therefore the total number of images is 9 × 60 = 540.
Since many of the 20,601 voxels are noisy, Mitchell et al. (2008) exploit a “stability score” approach
to extract 500 most stable voxels. See more details in Mitchell et al. (2008).

The text data set is collected from the Google Trillion Word corpus7. It contains the co-
occurrence frequencies of the 60 stimulus words with 5,000 most frequent English words in the
corpus with 100 stop words removed. In Mitchell et al. (2008), 25 sensory-action verbs (See Table 6)
are handcrafted by human experts based on the domain knowledge of cognitive neuroscience. These
25 words are closely related to the 60 stimulus words in their semantics meanings. For example,
“eat” is related to vegetables such as “lettuce” or “tomato”, and “wear” is related to clothing such
as “shirt” and “dress”.

When building multivariate linear models, Mitchell et al. (2008) use the co-occurrence frequencies
of each stimulus word with 25 sensory verbs as covariates and use the corresponding fMRI image as
response. They estimate a 25-dimensional multivariate linear model by the ridge regression. They
show that the obtained predictive model significantly outperforms random guess. Thus, they treat
these 25 words as a semantic basis.

In our experiment below, we apply CMR to automatically select a semantic basis from all 5,000
most frequent English words. Compared with the protocol used in Mitchell et al. (2008), our
approach is completely data-driven and outperforms the handcraft method in the brain activity
prediction accuracy for 5 out of 9 participants.

6. Each image is actually the average of 6 consecutive recordings of each word.
7. http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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Category Exemplar 1 Exemplar 2 Exemplar 3 Exemplar 4 Exemplar 5

animals bear cat cow dog horse
body parts arm eye foot hand leg
buildings apartment barn church house igloo
building parts arch chimney closet door window
clothing coat dress pants shirt skirt
furniture bed chair desk dresser table
insects ant bee beetle butterfly fly
kitchen utensils bottle cup glass knife spoon
man made objects bell key refrigerator telephone watch
tools chisel hammer pliers saw screwdriver
vegetables carrot celery corn lettuce tomato
vehicles airplane bicycle car train truck

Table 5: The 60 stimulus words used in Mitchell et al. (2008) from 12 categories (5 per category).

See Eat Run Say Enter
Hear Touch Push Fear Drive
Listen Rub Fill Open Wear
Taste Approach Move Lift Break
Smell Manipulate Ride Near Clean

Table 6: The 25 verbs used in Mitchell et al. (2008). They are handcrafted based on the domain knowledge
of cognitive science, and are independent on the data set.

5.2.2 Experimental Protocol in Mitchell et al. (2008)

The evaluation procedure of Mitchell et al. (2008) is based on the leave-two-out cross validation over
all
(
60
2

)
= 1, 770 possible partitions. In each partition, we select 58 stimulus words out of 60 as the

training set. Recall that each stimulus word is represented by 5,000 features and each feature is the
co-occurrence frequency of a potential basis word with the stimulus word, we obtain a 58 × 5, 000
design matrix. Similarly, we can format the fMRI images corresponding to the 58 training stimulus
words into a 58 × 500 response matrix. In the training stage, we apply CMR and OMR to select
25 basis words by adjusting the regularization parameters. We then use the remaining two stimulus
words as a validation set and apply the estimated models to predict the neural activity of these two
stimulus words. We evaluate the prediction performance based on the combined cosine similarity
measure defined as follow.

Definition 9 (Combined Similarity Measure, Mitchell et al. (2008)) Let u ∈ Rm and v ∈
Rm denote the observed fMRI images of two stimulus words in the validation set, and û ∈ Rm and
v̂ ∈ Rm denote the corresponding predicted fMRI images. We say that the predicted images û and
v̂ correctly label two validation stimulus words, if

cos(u, û) + cos(v, v̂) > cos(u, v̂) + cos(v, û), (30)

where cos(u,v) = (uTv)/(||u||2||v||2).

We then summarize the overall prediction accuracy for each participant by the percentage of the
correct labelings over all 1,770 partitions. Table 7 presents the prediction accuracies for the 9
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participants. We see that CMR universally outperforms OMR across all 9 participants by 4.42% on
average. Note that the statistically significant accuracy at 5% level is 0.61, CMR achieves statistically
significant advantages for 8 out of 9 participants.

Method P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7 P. 8 P. 9

CMR 0.783 0.724 0.748 0.528 0.772 0.713 0.728 0.739 0.763
OMR 0.749 0.685 0.732 0.485 0.724 0.661 0.688 0.682 0.693

Table 7: Prediction accuracies evaluated using the experimental protocol in Mitchell et al. (2008).
CMR universally outperforms OMR across all participants.

5.2.3 An Improved Experimental Protocol

There are two drawbacks of the previous protocol: (1) The selected basis words vary a lot across
different partitions of the cross validation and participants. Such high variability makes the obtained
results difficult to interpret; (2) The automatic semantic basis selection method of CMR and OMR
is sensitive to data outliers, which are common in fMRI studies. In this section, we improve this
protocol to address these two problems in a more data-driven manner.

Our main idea is to simultaneously exploit the training data of multiple participants and use the
stability criterion to select more stable semantic basis words (Meinshausen and Bühlmann, 2010). In
detail, for each participant to be evaluated, we choose three other representatives out of the remaining
eight according to who achieve the best three leave-two-out cross validation prediction accuracies
in Table 7. Taking Participant 2 and CMR as an example, the three selected representatives are
Participants 1, 3, and 9 with the three highest accuracies of 0.783, 0.772, and 0.763. In this way,
we could eliminate the effects of possible data outliers. We then combine the fMRI images of three
representatives and formulate a multivariate regression problem with 1,500 dimensional response.
We conduct the leave-two-out cross validation as in the previous protocol using the combined data
set, and count the frequency of each potential basis word that appears in all 1,770 partitions. We
then choose the 25 most frequent words as the semantic basis. Finally, we apply the same procedure
as in the previous protocol on the current candidate participant and evaluate the prediction accuracy
using the combined cosine score.

Table 8 summarizes the prediction performance based on this improved protocol. We also report
the results obtained by the 25 handcrafted basis. Compared with the results in Table 7, we see
that the performance of CMR is greatly improved. For Participants 1, 2, 3, 5, and 8, the prediction
performance of CMR significantly outperforms the handcraft method. Moreover, since the candidate
participant is not involved in the semantic basis word selection, our results imply that the selected
semantic basis have good generalization capability across participants.

Method P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7 P. 8 P. 9

CMR 0.840 0.794 0.861 0.651 0.823 0.722 0.738 0.720 0.780
OMR 0.803 0.789 0.801 0.602 0.766 0.623 0.726 0.749 0.765

Handcraft 0.822 0.776 0.773 0.727 0.782 0.865 0.734 0.685 0.819

Table 8: Prediction accuracies evaluated used a more heuristic protocol. CMR significantly outper-
forms the handcrafted basis words for 5 out of 9 participants.
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Table 9 lists 35 basis words obtained by CMR using the improved protocol. The words in the bold
font are common ones shared by all 9 participants. We see that our list contains nouns, adjectives,
and verbs. These words are closely related to the 60 stimulus words. For example, lodge, hotel, and
floor are closely related to “building” and “building parts”; green and fruit clearly refer to words in
“vegetable”; built and using are related to “tools” and “man made objects”.

av balls booking built cartoon cream
cut country discounts floor fruit green
hold holidays hotel interior kill liquid
located lodge log measure mesh near
offers put reg room sale separate
shipping soft usd using went

Table 9: The 35 basis words selected by CMR using the improved protocol. The words in the bold
font are shared by predictive models for all 9 participants.

6. Discussion and Conclusion

Two other related methods are the square-root low rank multivariate regression (Klopp, 2011) and
the square-root sparse multivariate regression (Bunea et al., 2013). They solve the convex program

B̂ = argmin
B

||Y −XB||F + λR(B). (31)

The Frobenius loss in (31) makes the regularization parameter selection independent of σmax, but it
does not calibrate different regression tasks. We can rewrite (31) as

(B̂, σ̂) = argmin
B,σ

1√
nmσ

||Y −XB||2F + λR(B) subject to σ =
1√
nm
||Y −XB||F. (32)

Since σ in (32) is not specific to any individual task, it cannot calibrate the regularization. Thus it
is fundamentally different from CMR.

The calibration technique proposed in this paper is quite general, and can be extended to more
sophisticated scenarios, e.g. the regularization function is weakly decomposable or geometrically
decomposable (Geer, 2014; Lee et al., 2013), or the regression coefficient matrix can be decomposed
into multiple structured matrices (Agarwal et al., 2012; Chen et al., 2011; Gong et al., 2012; Jalali
et al., 2010; Obozinski et al., 2010). Accordingly, the extensions of our proposed theory are also
straightforward. We only need to replace their squared Frobenius loss-based analysis with the L2,1

loss based analysis in this paper.

Appendix A. Proof of Lemma 2

Note that the following two relations are frequently used in our analysis,

Y −XB0 = XB0 + Z−XB0 = Z and Y −XB̂ = XB0 + Z−XB̂ = Z−X∆̂.

Proof Since B0 ∈ S, we have B0
S⊥ = 0. Then we have

R(B̂) = R(B0 + ∆̂) = R(B0
S + ∆̂N⊥ + ∆̂N ) ≥ R(B0

S + ∆̂N )−R(∆̂N⊥). (33)
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Since R(·) is decomposable with respect to (S,N ), (33) further implies

R(B̂) ≥ R(B0
S) +R(∆̂N )−R(∆̂N⊥). (34)

Since B0 ∈ S, we have R(B0) = R(B0
S). Then by rearranging (34), we obtain

R(B0)−R(B̂) ≤ R(∆̂N⊥)−R(∆̂N ). (35)

Since B̂ is the optimum to (10), by (34), we further have

||X∆̂− Z||2,1 − ||Z||2,1 ≤ λ(R(B0)−R(B0 + ∆̂)) ≤ λ(R(∆̂N⊥)−R(∆̂N )). (36)

Due to the convexity of || · ||2,1, we know

||X∆̂− Z||2,1 − ||Z||2,1 ≥ 〈G0, ∆̂〉 ≥ −|〈G0, ∆̂〉|. (37)

By the Cauchy-Schwarz inequality, we obtain

|〈G0, ∆̂〉| ≤ R∗(G0)R(∆̂) ≤ λ

c
(R(∆̂N⊥) +R(∆̂N )), (38)

where the last inequality comes from the assumption λ ≥ cR∗(G0) and the triangle inequality

R(∆̂) ≤ R(∆̂N⊥) +R(∆̂N ). By combining (36), (37), and (38), we obtain

−λ
c

(R(∆̂N⊥) +R(∆̂N )) ≤ λ(R(∆̂N⊥)−R(∆̂N )). (39)

By rearranging (39), we obtain (c− 1)R(∆̂N ) ≤ (c+ 1)R(∆̂N⊥), which completes the proof.

Appendix B. Proof of Theorem 3

Proof We have

||X∆̂− Z||2,1 − ||Z||2,1 =

m∑
k=1

(||X∆̂∗k − Z∗k||2 − ||Z∗k||2)

=

m∑
k=1

||X∆̂∗k||22 − 2(X∆̂∗k)TZ∗k

||X∆̂∗k − Z∗k||2 + ||Z∗k||2
≥

m∑
k=1

||X∆̂∗k||22
||X∆̂∗k||2 + 2||Z∗k||2

− 2

m∑
k=1

|∆̂T
∗kX

TZ∗k|
||Z∗k||2

. (40)

Since G0
∗k = XTZ∗k/||Z∗k||2, we have

m∑
k=1

|∆̂T
∗kX

TZ∗k|
||Z∗k||2

=

m∑
k=1

|∆̂T
∗kG

0
∗k| ≤

m∑
k=1

d∑
j=1

|∆̂jkG
0
jk| ≤ R∗(G0)R(∆̂), (41)

where the last inequality follows from the Cauchy-Schwarz inequality. Recall that in the proof of
Lemma 2, we already have (36) as follows,

||X∆̂− Z||2,1 − ||Z||2,1 ≤ λ(R(∆̂N⊥)−R(∆̂N )). (42)

Therefore by combining (42) with (40) and (41), we obtain

m∑
k=1

||X∆̂∗k||22
||X∆̂∗k||2 + 2||Z∗k||2

≤ λ
(
R(∆̂N⊥)−R(∆̂N )

)
+ 2R∗(G0)R(∆̂)

≤ λ (1 + 2/c)R(∆̂N⊥) + λ (2/c− 1)R(∆̂N ) ≤ 2λ

c− 1
R(∆̂N⊥), (43)
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where the second inequality comes from the assumption λ ≥ cR∗(G0) and the triangle inequality

R(∆̂) ≤ R(∆̂N⊥) +R(∆̂N ), and the last inequality comes from (13) in Lemma 2. Meanwhile, by
the triangle inequality, we also have

m∑
k=1

||X∆̂∗k||22
||X∆̂∗k||2 + 2||Z∗k||2

≥
∑m
k=1 ||X∆̂∗k||22

||X∆̂||2,∞ + 2||Z||2,∞
≥ ||X∆̂||2F
||X∆̂||F + 2||Z||2,∞

, (44)

where the last inequality comes from the fact ||X∆̂||2,∞ ≤ ||X∆̂||F. Combining (43) and (44), we
obtain

||X∆̂||2F
||X∆̂||F + 2||Z||2,∞

≤ 2λ

c− 1
R(∆̂N⊥) ≤ 2λΘ(N⊥,R)||∆̂||F

c− 1
, (45)

where the last inequality comes from the definition of Θ(N⊥,R). By Assumption 1, we can rewrite
(45) as

||X∆̂||2F ≤
2λΘ(N⊥,R)

(c− 1)
√
nκ
||X∆̂||2F +

4λΘ(N⊥,R)√
nκ(c− 1)

||Z||2,∞||X∆̂||F.

Given 2λΘ(N⊥,R) ≤ δ(c− 1)
√
nκ for some δ < 1, we have

||X∆̂||F ≤
4λΘ(N⊥,R)√
nκ(c− 1)(1− δ)

||Z||2,∞ ≤
4λΘ(N⊥,R)σmax√
nκ(c− 1)(1− δ)

||W||2,∞. (46)

By Assumption 1 again, we obtain

||∆̂||F ≤
4λΘ(N⊥,R)σmax

nκ2(c− 1)(1− δ)
||W||2,∞. (47)

We proceed with the standard deviation estimation. By (36), we have

||Y −XB̂||2,1 − ||Y −XB0||2,1 ≤ λR(∆̂N⊥)− λR(∆̂N ) ≤ λR(∆̂N⊥). (48)

Combining (48) with a simple variant of Assumption 1

κ ≤ ||X∆̂||F√
n||∆̂||F

≤ ||X∆̂||F√
n||∆̂N⊥ ||F

≤ Θ(N⊥,R)||X∆̂||F√
nR(∆̂N⊥)

, (49)

we have

√
n

(
m∑
k=1

σ̂k −
m∑
k=1

σk

)
≤ λΘ(N⊥,R)||X∆̂||F√

nκ
≤ 4λ2Θ2(N⊥,R)σmax

nκ(c− 1)(1− δ)
||W||2,∞, (50)

where the last inequality comes from (46). By (37), (38), and Lemma 2, we have

||Y −XB̂||2,1 − ||Y −XB0||2,1 ≥ −
λ

c
(R(∆̂N⊥) +R(∆̂N )) ≥ − 2λ

c− 1
R(∆̂N⊥). (51)

By (49) again, we have

√
n

(
m∑
k=1

σ̂k −
m∑
k=1

σk

)
≥ −8λ2Θ2(N⊥,R)σmax

nκ(c− 1)2(1− δ)
||W||2,∞. (52)

Thus combining (50) and (52), we have

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
4λ2Θ2(N⊥,R)σmax√
nmnκ(c− 1)(1− δ)

||W||2,∞. (53)
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Appendix C. Proof of Corollary 4

We need to introduce the following lemmas for our proof.

Lemma 10 Suppose that we have all entries of a random vector v = (v1, ..., vn)T ∈ Rn indepen-
dently generated from the standard Gaussian distribution with mean 0 and variance 1. For any
c0 ∈ (0, 1), we have

P
(∣∣∣||v||22 − n∣∣∣ ≥ c0n) ≤ 2 exp

(
−nc

2
0

8

)
.

The proof of Lemma 10 is provided in Johnstone (2001), therefore omitted.

Lemma 11 Suppose that we have all entries of W independently generated from the standard Gaus-
sian distribution with mean 0 and variance 1, then there exists some universal constant c1 such that

P
(
||XTW||2√

n
≤ 2||X||2√

n
(
√
m+

√
d)

)
≥ 1− 2 exp(−c1(d+m)). (54)

The proof of Lemma 11 is provided in Appendix E. Now we proceed to derive the refined error
bound for the calibrated low rank regression estimator.
Proof Since we have all entries of W independently generated from N(0, 1), then by Lemma 10,
for any c0 ∈ (0, 1), we have

P
(√

(1− c0)n ≤ ||W∗k||2 ≤
√

(1 + c0)n
)
≥ 1− 2 exp

(
−nc

2
0

8

)
.

By taking the union bound over all k = 1, ...,m, we have

P
(√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2 ≤ max
1≤k≤m

||W∗k||2 ≤
√

(1 + c0)n
)

≥ 1− 2m exp

(
−nc

2
0

8

)
. (55)

Now conditioning on the event
√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2, we have

R∗(G0) = ||G0||2 = max
||v||2≤1

√√√√ m∑
k=1

(vTXTW∗k)2

||W∗k||22

≤ max
||v||2≤1

√√√√√√
m∑
k=1

(vTXTW∗k)2

(1− c0)n
=
||XTW||2√

(1− c0)n
. (56)

By Lemma 11, there exists some universal positive constant c1 such that we have

P

(
||XTW||2√

(1− c0)n
≤ 2||X||2(

√
d+
√
m)√

n(1− c0)

)
≥ 1− 2 exp (−c1(d+m)) . (57)

Given any matrix A in N⊥, A has at most rank 2r (See more details in Appendix B of Negahban
and Wainwright (2011)). Then we have

||A||∗ =

2r∑
j=1

ψj(A) ≤
√

2r

√√√√ 2r∑
j=1

ψj(A)2 =
√

2r||A||F.
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Therefore we have Θ(N⊥, || · ||∗) =
√

2r. Theorem 3 requires

2λΘ(N⊥,R) ≤ δκ(c− 1)
√
n for some δ < 1. (58)

Thus if we take

λ =
2c||X||2(

√
m+

√
d)√

n(1− c0)
,

then we need n to be large enough

n ≥ 4
√

2c||X||2(
√
rm+

√
rd)

δκ(c− 1)
√

1− c0
,

such that (58) can be secured. Then by combining (55), (56), (57), (47), and (53), we complete the
proof.

Appendix D. Proof of Corollary 5

We need to introduce the following lemma for our proof.

Lemma 12 Suppose that we have all entries of W independently generated from the standard Gaus-
sian distribution with mean 0 and variance 1, then we have

P
(

max
1≤j≤d

1√
n
||WTX∗j ||q ≤ 2

(
m1−1/p +

√
log d

))
≥ 1− 2

d
,

where 1/p+ 1/q = 1.

The proof of Lemma 12 is provided in Appendix F. Now we proceed to derive the refined error
bound for the joint sparsity setting.
Proof Recall that we already have (55),

P
(√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2 ≤ max
1≤k≤m

||W∗k||2 ≤
√

(1 + c0)n
)

≥ 1− 2m exp

(
−nc

2
0

8

)
. (59)

Now conditioning on the event
√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2, we have

R∗(G0) = ||G0||∞,q = max
1≤j≤d

(
n∑
k=1

(WT
∗kX∗j)

q

||W∗k||q2

)1/q

≤
max
1≤j≤d

||WTX∗j ||q

min
1≤k≤m

||W∗k||2
≤ ||X

TW||∞,q√
(1− c0)n

. (60)

By Lemma 12, we have

P

(
||XTW||∞,q√

(1− c0)n
≤ 2m1−1/p√

(1− c0)
+

2
√

log d√
(1− c0)

)
≥ 1− 2

d
. (61)

Given any matrix A in N⊥, A has at most s nonzero rows. Then we have

||A||1,p =
∑

Aj∗ 6=0

||Aj∗||p ≤
∑

Aj∗ 6=0

||Aj∗||2 ≤
√
s

√ ∑
Aj∗ 6=0

||Aj∗||22 =
√
s||A||F.
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Therefore we have Θ(N⊥, || · ||1,p) =
√
s for any 2 ≤ p ≤ ∞. Theorem 3 requires

2λΘ(N⊥,R) ≤ δκ(c− 1)
√
n for some δ < 1. (62)

Thus if we take

λ =
2c(m1−1/p +

√
log d)√

1− c0
,

then we need n to be large enough

√
n ≥ 4c

√
s(m1−1/p +

√
log d)

δκ(c− 1)
√

1− c0
,

such that (62) can be secured. Then by combining (59), (60), (61), (47), and (53), we complete the
proof.

Appendix E. Proof of Lemma 11

Proof Since W has all its entries independently generated from the standard Gaussian distribution
with mean 0 and variance 1, then all XTW∗k/

√
n’s are essentially independently generated from a

multivariate Gaussian distribution with mean 0 and covariance matrix XTX/n.
Thus by Corollary 5.50 in Vershynin (2010) on the singular values of Gaussian random matrices

(Davidson and Szarek, 2001), we know that there exists a universal positive constant c1 such that

P
(
||XTW||2√

n
≤ 2||X||2√

n
(
√
m+

√
d)

)
≥ 1− 2 exp(−c1(d+m)), (63)

which completes the proof.

Appendix F. Proof of Lemma 12

Proof We adopt the similar proof strategy in Negahban et al. (2012), and begin our proof by
establishing the tail bound of ||WTX∗j ||q/

√
n.

Deviation above the mean : Given any pair of W, W̃ ∈ Rn×m and 1/q + 1/p = 1, we have∣∣∣∣ 1√
n
||WTX∗j ||q −

1√
n
||W̃TX∗j ||q

∣∣∣∣ ≤ 1√
n
||(W − W̃)TX∗j ||q

=
1√
n

max
||θ||p≤1

〈θ, (W − W̃)TX∗j〉. (64)

By the Cauchy-Schwartz inequality, we have

1√
n

max
||θ||p≤1

〈θXT
∗j ,W − W̃〉 ≤ ||W − W̃||F√

n
max
||θ||p≤1

||θXT
∗j ||F. (65)

Since θXT
∗j is a rank one matrix, its singular value decomposition is

θXT
∗j = ||θ||2||X∗j || ·

θ

||θ||2
·

XT
∗j

||X∗j ||2
.
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Consequently, we have

1√
n

max
||θ||p≤1

||θXT
∗j ||F =

||X∗j ||2√
n

max
||θ||p≤1

||θ||2
(i)

≤ m1/2−1/p||X∗j ||2√
n

(ii)

≤ 1. (66)

where (i) comes from ||θ||2 ≤ m1/2−1/p||θ||p, and (ii) comes from the column normalization condition
(21). Combining (64), (65), and (66), we obtain∣∣∣∣ 1√

n
||WTX∗j ||q −

1√
n
||W̃TX∗j ||q

∣∣∣∣ ≤ ||W − W̃||F. (67)

which implies that ||WTX∗j ||q/
√
n is a Lipschitz continuous function of W with a Lipschitz constant

as 1. By the Gaussian concentration of measure for Lipschitz functions (Ledoux and Talagrand,
2011), we have

P
(

1√
n
||WTX∗j ||q ≥ E

1√
n
||WTX∗j ||q + ξ

)
≤ 2 exp

(
−ξ

2

2

)
. (68)

Upper bound of the mean : Given any β ∈ Rm, we define a zero mean Gaussian random variable
Jβ = βTWTX∗j/

√
n, and note that we have 1√

n
||WTX∗j ||q = max||β||p=1 Jβ. Thus given any two

vectors ||β||p ≤ 1 and ||β′||p ≤ 1, we have

E(Jβ − Jβ′)2 =
1

n
||X∗j ||22||β − β′||22 ≤ ||β − β′||22,

where the last inequality comes from (21) and m1−1/p ≥ 1.
Then we define another Gaussian random variable Kβ = βTω, where ω = (ω1, ..., ωm)T ∼

N(0, Im) is standard Gaussian. By construction, for any pair β,β′ ∈ Rm, we have

E[(Kβ −Kβ′)2] = ‖β − β′‖22 ≥ E(Jβ − Jβ′)2.

Thus by the Sudakov-Fernique comparison principle (Ledoux and Talagrand, 2011), we have

E
1√
n
||WTX∗j ||q = E max

||β||p=1
Jβ ≤ E max

||β||p=1
Kβ.

By definition of Kβ, we have

E max
||β||p=1

Kβ = E||ω||q ≤ m1/q(E|ω1|q)1/q, (69)

where the last inequality comes from Jensen’s inequality and the fact that |ω1|1/q is a concave
function of ω1 for q ∈ [1, 2]. Eventually, by Hölder inequality, we obtain

(E|ω1|q)1/q ≤
√
Eω2

1 = 1. (70)

Combing (69) and (70), we obtain

E max
||β||p=1

Kβ ≤ m1−1/p ≤ 2m1−1/p. (71)

Then combing (68) and (71), we have

P
(

1√
n
||WTX∗j ||q ≥ 2m1−1/p + ξ

)
≤ 2 exp

(
−ξ

2

2

)
.

Taking the union bound over j = 1, ..., d and let ξ = 2
√

log d, we have

P
(

1√
n
||XTW||∞,q ≥ 2m1−1/p + 2

√
log d

)
≤ 2

d
.

This finishes the proof.
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Abstract

Crowdsourcing has been proven to be an effective and efficient tool to annotate large data-sets. User
annotations are often noisy, so methods to combine the annotations to produce reliable estimates
of the ground truth are necessary. We claim that considering the existence of clusters of users in
this combination step can improve the performance. This is especially important in early stages
of crowdsourcing implementations, where the number of annotations is low. At this stage there
is not enough information to accurately estimate the bias introduced by each annotator separately,
so we have to resort to models that consider the statistical links among them. In addition, finding
these clusters is interesting in itself as knowing the behavior of the pool of annotators allows imple-
menting efficient active learning strategies. Based on this, we propose in this paper two new fully
unsupervised models based on a Chinese restaurant process (CRP) prior and a hierarchical struc-
ture that allows inferring these groups jointly with the ground truth and the properties of the users.
Efficient inference algorithms based on Gibbs sampling with auxiliary variables are proposed. Fi-
nally, we perform experiments, both on synthetic and real databases, to show the advantages of our
models over state-of-the-art algorithms.

Keywords: multiple annotators, Bayesian nonparametrics, Dirichlet process, hierarchical cluster-
ing, Gibbs sampling
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1. Introduction

Crowdsourcing services are becoming very popular as a mean of outsourcing tasks to a large crowd
of users. The best-known tool is Mechanical Turk (Amazon, 2005), in which requesters are able to
post small tasks for providers registered in the system, who complete them for a monetary payment
set by the requester. In machine learning, crowdsourcing allows to distribute the labeling of a data-
set among a pool of users, so each user only labels a subset of the instances. The advantage is the
ability to gather large data-sets in a short time and, generally, at a low cost. Successful examples
include, but it is not limited to, LabelMe (Russell et al., 2008) or GalazyZoo (Lintott et al., 2010).

The quality of the labels retrieved by crowdsourcing is uneven. Unlike traditional ways of
gathering a labeled data-set in which labels are provided by a small set of motivated experts, we
deal now with a large number of users who are not necessarily experts nor motivated. Further, we
might have little or no information about them to perform quality control tests. This motivates the
development of statistical models for reliably estimating ground truth from noisy and biased labels
provided by users.

Another problem that has received significant attention of late, is the detection of groupings
among the labelers (Simpson et al., 2011, 2013). In most crowdsourcing applications we can iden-
tify several types of users: experts, novices, spammers and even malicious or adversarial annotators.
Identifying these groups of users and learning about their properties is useful to design efficient
crowdsourcing strategies that minimize the overall cost, selecting the most suitable users for a la-
beling task. For example, if we could identify spammers we could ban them from the system and
avoid wasting resources. In the same way, if a user is identified as an expert in a particular task, we
could reward him by increasing his pay-off or giving him preference over other users when the time
to select new tasks comes.

Usually, the detection of grouping of labelers is tackled in a post-processing step, after the
ground truth has been estimated from user annotations (see Section 4). In particular Simpson et al.
(2011) were the first to tackle the join problem. They estimated the ground truth using a previ-
ous model called Independent Bayesian Combination of Classifiers (iBCC) (Kim and Ghahramani,
2012) and then, as a post-processing step they infer the different clusters of users. Therefore, the
estimation of the ground truth is done without considering the clustering structure of the users.

In this paper, we propose two unsupervised Bayesian nonparametric models to combine the la-
bels provided by the users in a crowdsourcing scenario, taking into account the presence of clusters
of users. Our models jointly solve the problem of the estimation of ground truth and the problem of
identification of clusters of users and their properties. The estimation of the ground truth improves
the clustering of the users and vice-versa, thus performing better than current state-of-the-art (Kim
and Ghahramani, 2012; Simpson et al., 2011). The overall improvement in both tasks is particularly
important in the early stages of a crowdsourcing project, when the number of annotations provided
by the users is very low. In this case, algorithms that estimate the properties of each user indepen-
dently, without considering the dependencies among them, tend to provide poor estimates, and may
perform worse than majority voting (see Section 5).

In the first model, we propose a clustering structure using a CRP prior (Pitman, 2002) which
allows flexible modeling of the number of clusters of users. In this model, all the users that belong
to the same cluster share the same parameters governing the way they label instances, and therefore,
they have the same behavior. Forcing all the users to share the same exact parameters, is a strong
assumption that might lead to groupings with a large number of cluster. Therefore, these groupings
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are difficult to interpret and not very useful. To relax this assumption we propose a second model
in which users that belong to the same cluster are modeled as having similar parameters, but allows
each user to have its own parameters using a hierarchical Bayesian approach.

In this paper, we rely on a Bayesian nonparametric model, because we are not only interesting in
having an accurate model but also in having an interpretable one. In the experiments (Section 5) we
show that the error rates between the two proposed models are not significantly different. However,
the second one is interpretable, in the sense that it perfectly identifies each kind of clusters and it
reports the least number of them. The interpretability of the model is principal to us, because we
want to use the model to identify the ‘good’ annotators and be able to reward them accordingly,
while other models are not able to provide this information.

The rest of the paper is organized as follows. In Section 2, we present the two new generative
models for crowdsourcing that take into account the clustering structure of the users. In Section 3,
we propose efficient Markov chain Monte Carlo (MCMC) inference algorithms for estimating the
different groups of users as well as the ground truth. In Section 4, we review related literature on
crowdsourcing and the identification of user clusters in the context of crowdsourcing. In Section
5, we validate our model on synthetic data and we perform several experiments on real data-sets to
show the advantages of our models over state-of-the-art algorithms. Finally, we conclude this paper
in Section 6 and present possible extensions for the future.

2. Hierarchical Bayesian Combination of Classifiers

In this section, we propose two different models. Both algorithms receive as input a set of noisy
labels Y ∈ {0, ...,C}N×L provided by L users for N instances. The element yi` represents the label
given by the user ` to the instance i and it is 0 if the user did not label the corresponding instance.
Notice that this matrix Y is highly sparse in the early stages of a crowdsourcing application. This
is known as the cold start problem (Schein et al., 2002), i.e. the difficulty of drawing any inferences
due to the lack of information. Notice that Y is the only observed variable in the models.

The output of the algorithms is the set of true but unknown labels of the instances z ∈{1, ...,C}N ,
where zi indicates the true label estimate of the instance i.

We denote by [L] = {1,2, ...,L} the set of indices of the users and by πL a partition of [L]. A
partition is a collection of mutually exclusive, mutually exhaustive and non-empty subsets called
clusters. We denote the cluster assignment of the user ` with a variable q` such that q` = m denotes
the event that the user ` is assigned to cluster m ∈ πL .

2.1 Clustering Based Bayesian Combination of Classifiers

Firstly, we propose a model for users in which they can belong to different clusters. In each cluster
all the users have the same properties. We name it Clustering based Bayesian Combination of
Classifiers (cBCC) (see Figure 1b) and it has the following observation model

yi`|zi,π,Ψ
i.i.d∼ Discrete(Ψq`

zi
),

zi|τ
i.i.d∼ Discrete(τ ).

We assume that all the users that belong to cluster m ∈ π share the same properties, i.e. the same
confusion matrix Ψm ∈ [0,1]C×C, where Ψm

tc is the probability that a user allocated in cluster m
labels an instance as y = c when the ground truth is z = t. We use the notation Ψm

t ∈S C to denote
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(a) iBCC model (b) cBCC model

Figure 1: Graphical model representation of the iBCC and cBCC models

the row t of Ψm, where S C is the C-dimensional probability simplex. The component τt of τ ∈S C

is the probability of the ground truth z being equal to t ∈ {1, ...,C}.
We also need to define priors to complete the Bayesian model. In particular, we choose conju-

gate priors

Ψm
t |β,η ∼ Dir(βtηt),

τ |ε,µ∼ Dir(εµ),

where we use a Dirichlet prior on each of the rows of the confusion matrices in which ηt ∈ S C

is the mean value of Ψm
t while βt ∈ R+ is related to its precision. Notice that this is an over

parametrization of the Dirichlet distribution, which only needs C parameters to be fully determined.
However, this decomposition is useful to interpret the results as well as for the development of the
inference algorithms in Section 3. Likewise, we set a Dirichlet prior on τ , where µ ∈S C is the
mean and ε ∈ R+ relates to the precision.

We could use a parametric model in which the cardinality of the partition M = |π| is fixed a
priori. Unfortunately, in this case the inferences are sensitive to the value of M chosen. In the
limiting case M = 1 the model is equivalent to majority voting. If M is too large the model does not
take advantage of the presence of clusters of users. In the limiting case M = L each user becomes a
singleton cluster, and the model does not capture the dependencies among the users.

To find M we could use traditional model selection strategies like cross-validation (Stone, 1974)
or Bayesian Information Criterion (Fraly and Raftery, 1998). This approach has two limitations.
First, we usually do not have access to a validation set for which z is known. Second, is the
high computational complexity. An alternative pathway is to set a prior on the space of partitions.
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We denote by PL the space of all partitions πL ∈PL. In a Bayesian setting, we have to set the
prior without observing the number of users. One option is to set a prior on an infinite number of
users, i.e. on partition π ∈P∞. To build such a prior we further assume that the observations are
exchangeable and that we deal with consistent random partitions (Pitman, 2002). A (exchangeable
and consistent) prior on P∞ is the CRP introduced by Blackwell and Macqueen (1973) and that can
be seen as the induced distribution over the partition space by a Dirichlet Process (DP) (Ferguson,
1973; Antoniak, 1974). We place a CRP prior over the users’ partitions

π|α ∼ CRP(α). (1)

We can generate samples from this prior using the following conditional distributions

p(q` = m|π¬`,α) ∝

{
|m|¬`, m ∈ π¬`

α, m = /0
,

where |m| represents the number of users in cluster m and |m|¬` is equal to |m| excluding user `.
We denote by π¬` the partition with the user ` removed and q` = /0 denotes the event that user `
is assigned to a new cluster. α is the so called concentration parameter and control the a priori
probability of generating new clusters. We further place a gamma prior over the concentration
parameter α

α|aα ,bα ∼ Gamma(aα ,bα). (2)

If α tends to infinity, every user is allocated to a singleton cluster. If α tends to 0, all the users
share the same confusion matrix and the model produces a majority voting solution

In general, the CRP assigns more mass to partitions with a small number of clusters. This is
sensible in our case, because when the number of annotations is scarce, majority voting may perform
better than more elaborate algorithms since there is no enough information to estimate the individual
properties of the users. In this case, the CRP prior dominates and therefore all users are allocated
to the same cluster. When the number of annotations increase, the likelihood term dominates and
different clusters of users are created.

Finally, we analyze the correlation structure that it is introduced among the users as a conse-
quence of this clustering. The correlation a priori among two users ` and `′ is

Corr(I(yi` = a),I(yi`′ = b)|zi = t) =

−
( 1

1+α

)( 1
1+βt

)√
ηtaηtb

(1−ηta)(1−ηtb)
a 6= b( 1

1+α

)( 1
1+βt

)
a = b

. (3)

Here, I(.) represents the indicator function. The proof is in the supplementary material. In Section
4, we show how this model relates to other state-of-the-art algorithms.

2.2 Hierarchical Clustering Based Bayesian Combination of Classifiers

In the cBCC model, the users that belong to the same cluster share the same confusion matrix.
However, in a practical situation, each user has a behavior that is different from every other user,
but it is in some sense similar to the behavior of users that are allocated to its cluster.

To capture this behavior, we propose a hierarchical extension of the cBCC model called hcBCC
(hierarchical cBCC) depicted in Figure 2. The observation model is the following
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Figure 2: Graphical model representation of the hcBCC model

yi`|zi,Ψ
i.i.d∼ Discrete(Ψ`

zi
),

zi|τ
i.i.d∼ Discrete(τ ).

Now each user has its own confusion matrix Ψ` in contrast to the cBCC model where we had
a confusion matrix per cluster Ψm. To capture the similarity between users that belong to the same
cluster we use the following hierarchical prior:

Ψ`
t |π,β,η ∼ Dir(β q`

t η
q`
t ),

β
m
t |at ,bt ∼ Gamma(at ,bt),

ηm
t |φ,γ ∼ Dir(φtγt),

τ |ε,µ∼ Dir(εµ).

In this way, the confusion matrices of all users that belong to the same cluster m are generated
from the same distribution. In particular, each of the rows of the confusion matrices of all the users
that belong to cluster m, i.e. {Ψ`

t : q` = m}, are i.i.d. samples from the same Dirichlet distribution
whose parameters are β m

t and ηm
t . A Dirichlet prior is set on the vector ηm

t while a gamma prior is
set on the scalar β m

t . Finally, for π and α we, respectively, use the same priors given by Equations
1 and 2. With this we have a model where we no longer cluster the confusion matrices of the users,
but the distributions that generate them.
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Notice that the vector βm governs the variability among the users that belong to the same cluster
m. The bigger are these values, the lower is the intra-cluster variability. If we make each of the
components of βm tend to infinity, then the variability among the users tend to 0 and the model
becomes equivalent to the cBCC model. In this way, this model can be seen as a generalization of
some state-of-the-art methods (see Section 4).

3. Inference

Computing the posterior distribution of the clusters allocation, the properties of the users and the
estimated ground is intractable, so we have to resort to approximate inference. Since the proposal of
the DP by Ferguson (1973), approximate inference schemes based on Markov Chain Monte Carlo
(MCMC) methods have played a crucial role (Escobar, 1994; MacEachern and Müller, 1998; Neal,
2000; Ishwaran and James, 2001; Walker, 2007; Kalli et al., 2011) among others. In this section we
propose to use Gibbs sampling together with the corresponding auxiliary variables whenever it is
not possible to compute the conditional distributions due to non-conjugacies.

3.1 CBCC

We use a collapsed Gibbs sampling algorithm where we integrate out the variables Ψm and τ ,
obtaining the following new set of equations

p(Y |π,z,η,β) = ∏
m

∏
t

[
Γ(βt)

Γ(nmt +βt)
∏

c

Γ(nmtc +βtηtc)

Γ(βtηtc)

]
,

p(z|ε,µ) = Γ(ε)

Γ(N + ε) ∏
t

Γ(nm + εµt)

Γ(εµt)
,

where Γ(·) denotes the gamma function. We denote ni`mtc = I(zi = t,yi` = c,yi` 6= 0,q` = m), and
when an index of this variable is omitted we assume it is summed out. For example, nmtc represents
the number of annotations equal to c provided by the users of cluster m for the set of instances
whose ground truth is equal to t. We use Gibbs sampling to infer the value of the ground truth z, the
clusters of annotators π, as well as the hyper parameters of the CRP, conditioned on the observed
variables Y .

Firstly, to update the cluster assignment of annotator `, we need the conditional distribution of
q` given the rest of the variables

p(q` = m|rest) ∝


n¬`m ×∏

t

Γ(n¬`mt +βt)

Γ(n¬`mt +n`t +βt)
∏

t
∏

c

Γ(n¬`mtc +n`tc +βtηtc)

Γ(n¬`mtc +βtηtc)
, m ∈ π¬`

α×∏
t

Γ(βt)

Γ(n`t +βt)
∏

t
∏

c

Γ(n`tc +βtηtc)

Γ(βtηtc)
, m = /0

,

where q` = /0 denotes the event that user ` is assigned to a new cluster. The quantities n¬`mt and
n¬`mtc are defined in the same way as nmt and nmtc respectively, but excluding the annotator `. The
complexity of updating the q variables is O(LMTC). To sample the estimate of the ground truth zi

of each instance conditioned on the rest of the variables, the required conditional distribution is

p(zi = t|rest) ∝
(
n¬i

t + εµt
)
×∏

m

[
Γ(n¬i

mt +βt)

Γ(n¬i
mt +nim +βt)

∏
c

Γ(n¬i
mtc +nimc +βtηtc)

Γ(n¬i
mtc +βtηtc)

]
.
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The quantities n¬i
mt and n¬i

mtc again correspond to nmt and nmtc but excluding the instance i. The
complexity of updating the z variables is O(NMTC)

Finally, we sample the concentration parameter α following the procedure proposed by Escobar
(1994).

3.2 HCBCC

As in the cBCC we start by integrating out the Ψ` and τ variables

p(Y |z,π,η,β) = ∏
m

∏
`:q`=m

∏
t

[
Γ(β m

t )

Γ(n`t +β m
t ) ∏

c

Γ(n`tc +β m
t ηm

tc)

Γ(βtη
m
tc)

]
,

p(z|ε,µ) = Γ(ε)

Γ(N + ε) ∏
t

Γ(nm + εµt)

Γ(εµt)
.

The variables we need to sample from are π and the ground truth estimate z. Note however that we
cannot marginalize out the cluster parameters η and β, as the Dirichlet prior and the Gamma prior
are not conjugate to the likelihoods given above, so that these variables will have to be sampled as
well.

The conditional distribution of p(q` = m|rest) when m ∈π¬` can be computed like in the cBCC
model. However, to compute p(q` = m|rest) when m = /0 we need to integrate the parameters of
the new clusters, i .e . β and η. In this case, due to the non-conjugacy we cannot solve this integral
analytically. Instead, we use the recently proposed Reuse algorithm (Favaro and Teh, 2012). This
algorithm is similar to the well-known Algorithm 8 (Neal, 2000), where the idea is to use a set of h
auxiliary empty clusters Hempty to approximate the integral. However, the reuse algorithm is more
efficient as it requires less simulations from the prior over the cluster parameters. For each cluster
m ∈ π∪Hempty we keep track of the parameters βm and ηm. The conditional distribution of q` is
then

p(q` = m|rest) ∝

{
n¬`m ×∏t

Γ(β m
t )

Γ(n`t+β m
t ) ∏t ∏c

Γ(n`tc+β m
t ηm

tc)
Γ(β m

t ηm
tc)

, m ∈ π¬`
α

h ×∏t
Γ(β m

t )
Γ(n`t+β m

t ) ∏t ∏c
Γ(n`tc+β m

t ηm
tc)

Γ(β m
t ηm

tc)
, m ∈ Hempty

.

If an auxiliary empty cluster is chosen, it is moved into the partition π, and a new empty cluster is
created in its place by sampling from the prior over cluster parameters. If a cluster in π is emptied
as a result of sampling q`, it is moved into H, displacing one of the empty clusters (picked uniformly
at random). In addition, at regular intervals the parameters of the empty clusters are refreshed by
simulating them from their priors, while those in π are updated. The complexity of updating the q
variables is O(LMTC).

Again, due to the non-conjugacy of the Dirichlet and Gamma priors, the conditional distribu-
tions of the parameters ηm and βm for m∈π cannot be computed analytically. To solve this, we use
an auxiliary variable method similar to the one proposed by Escobar (1994) and Teh et al. (2003).
Specifically, we introduce two auxiliary variables ν and s (see the supplementary material for fur-
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ther details), and apply the following Gibbs updates that leave invariant the posterior distribution:

ν`t ∼ Beta(β q`
t ), s`tc ∼ Antoniak(n`tc,β

q`
t η

q`
tc ),

η
m
t: ∼ Dir

(
∑

{`:q`=m}
s`t: +φtγt:

)
,

β
m
t ∼ Gamma

(
∑

{`:q`=m}
∑
c

s`tc +at ,bt − ∑
{`:q`=m}

log(ν`t)

)
.

Here the Antoniak distribution introduced by Antoniak (1974) is simply the distribution of the
number of clusters in a partition of n`tc items under a CRP with concentration parameter β

q`
t η

q`
tc .

To update zi, we compute its conditional distribution given the rest of the variables:

p(zi = t|rest) ∝
(
n¬i

t + εµt
)
∏
m

∏
{`:q`=m}

∏c(n¬i
`tc +βtηtc)

I(yi`=c)

(n¬i
`t +βt)I(yi` 6=0) .

The complexity of updating the z variables is O(NLTC). Finally, we use the same scheme as the
one applied in Section 3.1 to update α .

4. Related Work

Dawid and Skene in a seminal work proposed a model in which each user is characterized by a
confusion matrix, and they use the EM algorithm to estimate the most likely values of both the
parameters governing the behavior of each user and the ground truth (Dawid and Skene, 1979).
Similar models have been applied to depression diagnosis (Young et al., 1983) and myocardial
infarction (Rindskopf and Rindskopf, 1986), among other areas.

Ghahramani and Kim (2003); Kim and Ghahramani (2012) proposed a Bayesian extension of
the method proposed by Dawid and Skene (1979) called Independent Bayesian Combination of
Classifiers (iBCC), whose graphical model is shown in Figure 1a. In our cBCC model, if α tends to
infinity, every user is allocated in a different cluster, and it becomes equivalent to the iBCC model.
We see that in this case, the correlation a priori among two users (Equation 3) is zero. Also, in the
hcBCC model, if each component of φ tends to infinity, and we also make the quantities at and
bt tend to infinity with a fixed at

bt
ratio for all t, then we recover the iBCC model with ηt = γt and

βt =
at
bt

. If α tends to ∞, then the model is equivalent to the iBCC model, but with additional priors
on η and β. To sum up, we can see each the cBCC and the iBCC as particularizations of the hcBCC
model, which capture more complex relationships among the users.

Ghahramani and Kim (2003); Kim and Ghahramani (2012) also presented two extensions. The
first one uses a latent variable that categorizes the instances in two classes: easy and difficult to
classify. The assumption is that the annotators have the same behavior regarding the easy instances,
while they are different for the difficult ones. In the second one, they propose a more flexible
correlation model based on a factor graph. However, these models do not identify groupings of
users.

Simpson et al. (2011) extend the proposal of Ghahramani and Kim (2003); Kim and Ghahramani
(2012) in two directions. First, they derived a variational inference algorithm for the iBCC, which
is more efficient for large data-sets. Second, they apply community detection algorithms to the
estimated confusion matrices to detect clusters of users with the same behavior. Recently, they have
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extended the model to the case in which the properties of the users can vary in time (Simpson et al.,
2013). In both cases, the detection of groups of users is made in a post-hoc manner and therefore,
this information is not used to improve the estimation of the confusion matrices of the users or
the ground truth estimate. To the extent of our knowledge, only Kajino et al. (2013) perform the
inference of the groups of users and the ground truth at the same time, using convex optimization.
However, the performance depends on a constant that controls the strength of the clustering and for
tuning this constant, the authors rely on a labeled validation set. Our algorithm, on the other hand,
is fully unsupervised and therefore can be apply to the standard problem presented by Ghahramani
and Kim (2003); Kim and Ghahramani (2012).

Recently, a paper on the inconsistency of the DP Mixture Model to estimate the true number of
components was published (Miller and Harrison, 2013). However, we are not interested in estimat-
ing the ”true” number of users’ clusters, specially since this is not a well defined measure in a real
crowdsourcing application. Instead, we look for identifying a clustering of the users that improves
the performance and helps us to better understand the different types of users that are present in the
crowdsourcing application.

Another research line that is related to the problem is relaxing the assumption of the existence of
one single gold standard, which is a limiting assumption when the tasks involved in the crowdsourc-
ing problem are subjective and accept multiple reasonable answers (Wauthier and Jordan, 2011;
Tian and Zhu, 2012). In this paper, we focus on a crowdsourcing scenario with a well defined gold
standard that we aim to predict.

5. Experiments

In this section, we firstly use synthetic data-sets based on different assumptions to validate our
models. In the second part we use publicly available real data-sets to compare our two models with
state-of-the-art algorithms highlighting their advantages.

5.1 Synthetic Data-sets

We generate three different data-sets following respectively the assumptions of the hcBCC, cBCC
and iBCC models. In order to analyze the properties of the algorithms, we apply each of them to
each of the generated data-sets.

Firstly, we generate a synthetic database called data-set1 following the generative model for
the hcBCC model. This data-set has 500 labeled instances provided by 200 users. The number of
categories is C = 3. These users belong to 3 clusters with properties shown in Figure 3a, where we
can see the mean of each cluster, their variances and the percentage of users allocated to each of
them.

We analyze the behavior of the different algorithms with respect to the sparsity of the input
matrix Y . In particular, we randomly erase a percentage of the entries from 82.5% missing entries
to 97.5% in steps of 2.5%. This high sparsity levels are typical in crowdsourcing applications, where
the idea is to distribute the load of labeling a data-set among many users, and therefore each of them
only labels a small subset of the data-set.

In the iBCC, the diagonal elements of η are 0.7 while the off diagonal are 0.3, which reflect our
prior belief that users perform better than random. All the elements of β are 3. In the cBCC model,
the hyper parameters of α are aα = 1 and bα = 10. This values agree with our prior belief that if the
annotations are very scarce, simpler algorithm like majority voting are more suitable and therefore,
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(a) Users’ properties for data-set1. (Upper row) Mean
of the clusters. (Lower row) Variance of the clusters.
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(b) Performance for data-set1

Figure 3: Results for data-set1. a) Characteristics of the users’ clusters present in data-set1. Mi

denotes the percentage of users allocated to cluster i, T is the ground truth label, and
C is the user label. b) Results for data-set 1. Improvement in accuracy of the different
methods with respect to majority voting, for different sparsity levels.

we should favor partitions with a small number of clusters. For these parameters, in the limiting
case when the sparsity of Y tends to 100%, the average number of clusters tends to 1. Finally, in
the hcBCC model, we set γ and φ to the values of η and β in the cBCC model respectively. All
the components of at are set to 30 while all the components of bt are set to 2. This reflects our
prior belief that the variability among the users inside the clusters should be less than the variability
across clusters.

We run the MCMC for 10,000 iterations. After the first 3,000 we collect 7,000 samples to
compute z and π. In the cBCC and hcBCC, we set to five the number of iterations used to sample α

following the algorithm proposed by Escobar (1994). In the hcBCC we fix the number of auxiliary
clusters used by the Reuse Algorithm to h = 10.

The increment in accuracy of ours proposals and the iBCC algorithm with respect to majority
voting is shown in Figure 3b. The two proposed models outperform iBCC as expected. This im-
provement of both methods cBCC and hcBCC is particularly significant when the level of sparsity
is high, which is a situation that we face in the early stages of a crowdsourcing project. In this
case there is not enough information to accurately estimate the confusion matrix of every user inde-
pendently. We can see that the performance of iBCC drops below the performance of the majority
voting algorithm, which assumes all users are similar. Therefore, identifying a clustering structure
that allows to share some parameters among the users helps to increase the accuracy of the estimates.
Notice that the performance obtained by Simpson et al. (2011) would be equal to the performance of
the iBCC model given that it identifies the users’ clusters after the ground truth has been estimated,
so it does not affect the performance of the algorithm.
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(a) cBCC

(b) hcBCC

Figure 4: Co-occurrence matrices of the users

To further analyze the cluster structure identified by the algorithms, in Figure 4 we represent
the co-occurrence matrix of the users. The position (`,`′) is the probability of ` and `′ belonging
to the same cluster. We can see that the clusters identified by the hcBCC are more useful than
the ones extracted by the cBCC, because in a practical situation we are not normally interested in
finding users with exactly the same behavior, but users with similar characteristics. For example,
we can see that when 82.5% of the annotations are missing, the hcBCC algorithm identifies the 3
main groups of users while the cBCC algorithm identifies instead a much larger number of groups
because of the constraint that all users of a cluster must have the same properties. So, although both
algorithms’ performance is similar, the clustering provided by the hBCC is easier to interpret and
gives a simpler explanation of the data.

Finally, we test with data-sets that are generated following the iBCC and cBCC models. First,
we create a new data-set (data-set2) in which the mean confusion matrix of each cluster is the same
as in data-set1 which is shown in Figure 3a. However, in this case the variability of the confusion
matrices inside each cluster is zero. Therefore, this new data-set follows the assumptions made by
the cBCC model. Again, the performance of the cBCC and the hcBCC models outperforms iBCC as
expected (see Figure 5a). However, even though data is generated from the cBCC which is a simpler
model than the hcBCC, hcBCC is able to discover the underlying structure of the users and gets a
performance which is on par with the cBCC. The hcBCC does not degrade the solution although it
is more flexible.

In the last database called data-set3, we generate all the instances from the same clustering
(M2 in Figure 3a). In this case there is no different clusters of users and each of them has its own
confusion matrix. Therefore, this data-set fulfill the assumptions of the iBCC. In Figure 5b we see
that the performance of the two proposed models is identical to iBCC. To sum up, we see that the
performances of cBCC and hcBCC dominate iBCC under all conditions tested.

5.2 Real Data-sets

In this Section, we use 4 publicly available crowdsourced data-sets with C = 2 whose principal
characteristics are described in Table 1 (Raykar and Yu, 2012).

To choose the hyper-parameters we follow the reasoning of Section 5.1. Specifically, in the
iBCC the diagonal elements of η are 0.7 while the off diagonal are 0.3, and all the elements of β
are set to 3. In this way, we incorporate our prior belief that users are imperfect but perform better
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(a) Performance for data-set2
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(b) Performance for data-set3

Figure 5: Results for data-set2 and data-set3. Improvement in accuracy of the different methods
with respect to majority voting, for different sparsity levels

than chance. In the cBCC model we use the same value for η and β so that the comparison is
fair. Finally for the hcBCC model, γ is set to the same value used for η in the previous models.
All the components of at are set to 20 while all the components of bt are set to 2, reflecting our
belief that the variability inside clusters should be lower than the variability across clusters. We fix
aα = 1,bα = 10 in both, cBCC and hcBCC. We run the MCMC for 10,000 iterations and we discard
the first 3,000 to compute the posterior distribution of z and π.

In Table 2, we see the performance of the different algorithms in terms of accuracy predicting
the ground truth. In particular, we see that the performances of the cBCC and the hcBCC are better
than that of the iBCC in the last three data-sets, i.e. rte, temp and valence. On the other hand, in
the bluebird data-sets the iBCC performs better. Notice again that the performance of the algorithm
described by Simpson et al. (2011) would be exactly equal to the one of the iBCC, given that the
communities of users are inferred after the ground truth is inferred and therefore, it does not affect
the accuracy in any way.

The performance difference between the cBCC and the hcBCC is only significant in the valence
data-set. However, the main advantage of the hcBCC model over the cBCC is clear when we
represent the average number of clusters (See Figure 6 and Table 2). Even though the cBCC model
correctly captures the clustering structure of the users, forcing all users of a cluster to share the
same confusion matrix translates into a large number of clusters, some of them with very similar
properties.

The hcBCC identifies a smaller number of clusters that are much more interpretable, in the
sense that it perfectly identifies each kind of clusters thanks to its additional flexibility. We are not
interested in identifying clusters of users with the exact same behavior, but what we really want
is to find clusters of users that behave in a similar way, so we can establish strategies to boost the
overall performance of the crowdsourcing system, i.e. by rewarding the most efficient labelers,
avoiding spammers or by better defining the description of the task based on the biases identified in
the clusters of users.
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data-set N L µn µl Sparsity (%) Brief Description
bluebird 108 39 108 39 0 Identify whether there is a Indigo Bunting or Blue Grosbeak in the im-

age

rte 800 164 49 10 93.90 Identify wether the second sentence can be inferred from the first

valence 100 38 26 10 73.68 Identify the overall positive or negative valence of the emotional content

of a headline

temp 462 76 61 10 86.84 Users observe a dialogue and two verbs from the dialogue and have to

identify whether the first verb event occurs before or after the second

Table 1: Description of the real data-sets. N and L denotes the number of instances and users
respectively. µn stand for the mean number of instances labeled by a user and µl designate
the mean number of users that label an instance.

data-set Accuracy(%) Average number of clusters
Majority iBCC cBCC hcBCC cBCC hcBCC

bluebird 75.93 89.81 88.89 88.89 11.32 ± 0.04 3.31 ± 0.09
rte 91.88 92.88 93.12 93.12 7.70 ± 0.07 2.30 ± 0.06
valence 80.00 85.00 88.00 89.00 3.5 ± 0.04 2.25 ± 0.02
temp 93.94 94.35 94.37 94.37 6.20 ± 0.03 3.2 ± 0.02

Table 2: Results for the real data. Mean accuracy of the different algorithms 2. Average number of
clusters (mean ± one standard deviation).

(a) bluebird (b) rte (c) valence (d) temp

Figure 6: Co-occurrence matrix of the users. (Upper row) hcBCC. (Lower row) cBCC.
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Figure 7: Mean confusion matrices of the user’s clusters identified by hcBCC. Mi denotes the per-
centage of users allocated to cluster i, T is the ground truth label, and C is the user label.

In Figure 7 we show as an example the mean confusion matrix of the hcBCC clusters in the data-
sets. It shows very interpretable clusters that are useful for the modeler. In the bluebird data-set we
can clearly identify a small subset of experts (M4 = 15.38%) who shows a high performance labeling
the bird images. In addition, we find that the biggest cluster (M2 = 35.90%) corresponds to users
whose accuracy is high when the real class is z = 1 (images of Blue Grosbeak) but performs poorly
when the class is z = 2 (images of Indigo Bunting). Finally, we have two clusters of spammers.
In the first cluster (M1 = 15.38%) users tend to label all images as belonging to class z = 2 and
in the second (M3 = 33.33%) users tend to label all images as z = 1. In the temp data-set, we
can observe that the majority of the users (M2 = 84.21%) are experts, but there are again two
small clusters of spammers. As for the rte data-set, most of the users have a good performance
(M1 = 93.29%). The remaining users are bias toward labeling instances as belonging to class z = 2.
Finally, in the valence data-set we can see that the majority of the users (M2 = 89.47%) are very
accurate identifying instances belonging to class z = 2 and have a medium performance when z =
1. In addition we find a small cluster of users that have labeled almost every instance as z = 2.
All this information about the underlying clustering structure of the users in the data-sets can be
used in a real crowdsourcing application to develop efficient strategies to minimize the cost of a
crowdsourcing project maximizing the performance.

To conclude this Section, we evaluate the performance of the algorithms in the real data-sets for
different levels of sparsity. Following the procedure in Section 5.1, we create 50 random databases
for each level of sparsity. We do that in such a way that every instance has at least one label and
every user provides at least one label. The results are shown in Figure 8.

In the data-set bluebird and temp, we observe that finding clusters of users does not have a
significant effect in terms of accuracy. However, the cBCC and the hcBCC models do not degrade
the performance and give us some insight about the users in the crowdsourcing application (See

2. The standard deviations are less than 10−4 and are not shown
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Figure 8: Results for real data-sets. Improvement in accuracy of the different methods with respect
to majority voting, for different sparsity levels

Figure 7). In the rte and valence data-sets, the inference of the clustering structure of the users
also translates into an improvement in terms of accuracy. In the rte data-set, this improvement is
not significant for the original sparsity level, but it becomes more significant when the sparsity is
increased. What happens is that when the sparsity is very high, there are very few annotations
provided by each user, and the iBCC algorithm fails to infer the properties of each user separately.

In the valence data-set, we can even see that the performance of the iBCC model drops below
the performance of a simple majority voting algorithm when the sparsity is increased. However,
the cBCC and hcBCC outperform the majority voting algorithm for every sparsity level. Again the
iBCC model does not have enough information to infer the properties of each user and a simpler
model like majority voting, which assume that all users have the same level of expertise, performs
better. Actually, what is happening is that the the CRP prior used in the cBCC and the hcBCC
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models favors partitions with a small number of clusters. When the input matrix Y is very sparse,
the prior term dominates over the likelihood and all users tend to be grouped in the same cluster.

6. Conclusions

We have proposed two new Bayesian nonparametric models to merge the information provided
by the users in a crowdsourcing system. In addition, the algorithms detect clusters of users that
have similar behaviors and use this information to improve the ground truth estimate. In the cBCC
model, we have used a CRP to infer the partitioning of the users such that users in the same cluster
are constrained to have the same properties. In the hcBCC model, we have used a hierarchical
structure to increase the flexibility. In particular, each user has its own properties, but users assigned
to the same cluster have similar properties. In this way, it finds smaller number of clusters that are
easy to interpret.

We have shown how these new models relate to the iBCC model and analyzed the correlation
structure among the users as a consequence of the clustering. We have proposed MCMC methods
to infer the parameters of both models and performed several experiments with synthetic and real
databases, which have shown that the algorithms outperform the current state-of-the-art.

Finally, we comment possible extensions. The ground truth estimated by the proposed algo-
rithms, can be used to train a supervised learning algorithm. Raykar et al. (2010); Groot et al.
(2011); Welinder et al. (2010) propose to train a classifier directly with the noisy labels provided
by the users. It would be interesting to extend the models following this line. Also, the models
assume consistent users, i.e the users have the same properties across the whole instance space. An
extension would be considering users with nonuniform behavior (Zhang and Obradovic, 2011; Yan
et al., 2010), i.e. a user can be an expert for a subset of the instances while can act as a novice in
another subset. Also, a future research line is to propose new inference schemes that improve the
scalability of the methods.
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Appendix A: Correlations in the CBCC Model

In the iBCC model, the joint probability of two users given the ground truth is
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p(yi`,yi`′ |zi = t) =
Γ(βt)

Γ(βt + I(yi` 6= 0)) ∏
c

Γ(βtηtc + I(yi` = c,yi` 6= 0))
Γ(βtηtc)

×

× Γ(βt)

Γ(βt + I(yi`′ 6= 0)) ∏
c

Γ(βtηtc + I(yi`′ = c,yi`′ 6= 0))
Γ(βtηtc)

= p(yi`|zi = t)× p(yi`′ |zi = t).

Therefore

corr(I(yi` = a),I(yi`′ = b)) = 0.

In the cBCC model, we have the following expression for the joint distribution of yi` and yi`′

p(yi`,yi`′ |zi = t) =
(

1
1+α

)[
Γ(βt)

Γ(βt + I(yi` 6= 0)+ I(yi`′ 6= 0))
×

×∏
c

Γ(βtηtc + I(yi` = c,yi` 6= 0)+ I(yi`′ = c,yi`′ 6= 0))
Γ(βtηtc)

]
+

(
α

1+α

)[
Γ(βt)

Γ(βt + I(yi` 6= 0))
×

∏
c

Γ(βtηtc + I(yi` = c,yi` 6= 0))
Γ(βtηtc)

× Γ(βt)

Γ(βt + I(yi`′ 6= 0)) ∏
c

Γ(βtηtc + I(yi`′ = c,yi`′ 6= 0))
Γ(βtηtc)

]
.

We can now compute the covariance in the following way

cov(I(yi` = a),I(yi`′ = b)) = E{I(yi` = a)I(yi`′ = b)}−E{I(yi` = a)}E{I(yi`′ = b)}=

=

(
1

1+α

)[
Γ(βt)

Γ(βt + I(a 6= 0)+ I(b 6= 0)) ∏
c

Γ(βtηtc + I(a = c,a 6= 0)+ I(b = c,b 6= 0))
Γ(βtηtc)

−

− Γ(βt)

Γ(βt + I(a 6= 0)) ∏
c

Γ(βtηtc + I(a = c,a 6= 0))
Γ(βtηtc)

× Γ(βt)

Γ(βt + I(b 6= 0)) ∏
c

Γ(βtηtc + I(b = c,b 6= 0))
Γ(βtηtc)

]
.

Assuming that a 6= 0 and b 6= 0, and considering the cases where a = b and a 6= b we obtain the
following equation for the covariance

Cov(I(yi` = a),I(yi′`′ = b)|zi = t) =

−
( 1

1+α

)( 1
1+βt

)
ηtaηtb a 6= b( 1

1+α

)( 1
1+βt

)
ηta(1−ηta) a = b

.

Here we have taken into account that Γ(x+ 1) = xΓ(x). Once we get the expression of the
covariance, we divide it by the square root of the variances to get the correlation

Corr(I(yi` = a),I(yi`′ = b)) =
Cov(I(yi` = a),I(yi`′ = b))√

Var(I(yi` = a))Var(I(yi`′ = b))
.

It is straightforward to see that Var(I(yi` = a)) = ηa(1−ηa), getting the expected result.
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Appendix B: Inference Details of the HCBCC Model

The posterior distribution of the parameters βm and ηm is proportional to the following expression.

p(η,β|Y ,z,π) ∝ p(Y |η,β,z,π)× p(η,β) = ∏
`

∏
t

[
Γ(β q`

t )

Γ(n`t +β
q`
t ) ∏

c

Γ(n`tc +β
q`
t η

q`
tc )

Γ(βtη
q`
tc )

]
×

×∏
m

∏
t

[
Γ(φt)

∏c Γ(φtγtc)
∏

c
(ηm

tc)
φt γtc−1

]
∏
m

∏
t

bat
t

Γ(at)
(β m

t )at−1 exp(−btβ
m
t ).

We cannot compute an analytic expression for p(η,β|Y ,z,π) because the prior on p(η,β)
is no longer conjugate of the likelihood of the observations. The idea is to include two auxiliary
variables ν and s such that we can compute the joint distribution p(η,β,ν,s|Y ,z,π). To do so,
we use the following relation between the gamma function and the Stirling numbers of the first kind
denoted by S

Γ(x+n)
Γ(x)

= (x)n =
n

∑
s=0

S(n,s)(x)s.

Here (x)n denotes the Pochhammer symbol. Taking into account also the definition of the beta
distribution we reach the following expression

p(η,β|Y ,z,π) ∝ ∏
`

∏
t

[∫ 1

0
ν

β
q`
t −1(1−ν)n`t−1dν ∏

c

n`tc

∑
s=0

S(n`tc,s)(β
q`
t η

q`
tc )

s

]
×
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m

∏
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(ηm

tc)
φt γtc−1

]
∏
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∏
t

bat
t

Γ(at)
(β m

t )at−1 exp(−btβ
m
t ).

And therefore we can introduce a set of auxiliary variables ν and s such that the joint distribution
is given by

p(η,β,ν,s|Y ,z,π) ∝ ∏
`

∏
t

[
ν

β
q`
t −1

`t (1−ν`t)
n`t−1

∏
c

S(n`tc,s`tc)(β
q`
t η

q`
tc )

s`tc

]
×
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m

∏
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Γ(φt)
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(ηm

tc)
φt γtc−1

]
∏
m

∏
t

bat
t

Γ(at)
(β m

t )at−1 exp(−btβ
m
t ).

(4)

and such that
p(η,β|Y ,z,π) =

∫
p(η,β,ν,s|Y ,z,π)dνds.

From Equation 4 it is straightforward to compute the necessary conditional distributions to
implement the Gibbs sampler (See Section 3.2).
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Abstract

Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains
the two celebrated policy and value iteration methods. Despite its generality, MPI has not
been thoroughly studied, especially its approximation form which is used when the state
and/or action spaces are large or infinite. In this paper, we propose three implementations
of approximate MPI (AMPI) that are extensions of the well-known approximate DP algo-
rithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration.
We provide error propagation analysis that unify those for approximate policy and value
iteration. We develop the finite-sample analysis of these algorithms, which highlights the
influence of their parameters. In the classification-based version of the algorithm (CBMPI),
the analysis shows that MPI’s main parameter controls the balance between the estima-
tion error of the classifier and the overall value function approximation. We illustrate and
evaluate the behavior of these new algorithms in the Mountain Car and Tetris problems.
Remarkably, in Tetris, CBMPI outperforms the existing DP approaches by a large margin,
and competes with the current state-of-the-art methods while using fewer samples.1

1. This paper is a significant extension of two conference papers by the authors (Scherrer et al., 2012;
Gabillon et al., 2013). Here we discuss better the relation of the AMPI algorithms with other approximate
DP methods, and provide more detailed description of the algorithms, proofs of the theorems, and report

c©2015 Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, Matthieu Geist.
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1. Introduction

Modified Policy Iteration (MPI) (Puterman, 1994, Chapter 6, and references therein for a
detailed historical account) is an iterative algorithm to compute the optimal policy and value
function of a Markov Decision Process (MDP). Starting from an arbitrary value function
v0, it generates a sequence of value-policy pairs

πk+1 = G vk (greedy step) (1)

vk+1 = (Tπk+1
)mvk (evaluation step) (2)

where G vk is a greedy policy w.r.t. (with respect to) vk, Tπk is the Bellman operator associ-
ated to the policy πk, and m ≥ 1 is a parameter. MPI generalizes the well-known dynamic
programming algorithms: Value Iteration (VI) and Policy Iteration (PI) for the values
m = 1 and m =∞, respectively. MPI has less computation per iteration than PI (in a way
similar to VI), while enjoys the faster convergence (in terms of the number of iterations)
of the PI algorithm (Puterman, 1994). In problems with large state and/or action spaces,
approximate versions of VI (AVI) and PI (API) have been the focus of a rich literature
(see e.g., Bertsekas and Tsitsiklis 1996; Szepesvári 2010). Approximate VI (AVI) generates
the next value function as the approximation of the application of the Bellman optimality
operator to the current value (Singh and Yee, 1994; Gordon, 1995; Bertsekas and Tsitsiklis,
1996; Munos, 2007; Ernst et al., 2005; Antos et al., 2007; Munos and Szepesvári, 2008).
On the other hand, approximate PI (API) first finds an approximation of the value of the
current policy and then generates the next policy as greedy w.r.t. this approximation (Bert-
sekas and Tsitsiklis, 1996; Munos, 2003; Lagoudakis and Parr, 2003a; Lazaric et al., 2010b,
2012). Another related algorithm is λ-policy iteration (Bertsekas and Ioffe, 1996), which is
a rather complicated variation of MPI. It involves computing a fixed-point at each iteration,
and thus, suffers from some of the drawbacks of the PI algorithms. This algorithm has been
analyzed in its approximate form by Thiery and Scherrer (2010a); Scherrer (2013). The aim
of this paper is to show that, similarly to its exact form, approximate MPI (AMPI) may
represent an interesting alternative to AVI and API algorithms.

In this paper, we propose three implementations of AMPI (Section 3) that generalize
the AVI implementations of Ernst et al. (2005); Antos et al. (2007); Munos and Szepesvári
(2008) and the classification-based API algorithms of Lagoudakis and Parr (2003b); Fern
et al. (2006); Lazaric et al. (2010c); Gabillon et al. (2011). We then provide an error
propagation analysis of AMPI (Section 4), which shows how the Lp-norm of its performance
loss

`k = vπ∗ − vπk
of using the policy πk computed at some iteration k instead of the optimal policy π∗ can
be controlled through the errors at each iteration of the algorithm. We show that the error

of the experimental results, especially in the game of Tetris. Moreover, we report new results in the game
Tetris that were obtained after the publication of our paper on this topic (Gabillon et al., 2013).
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propagation analysis of AMPI is more involved than that of AVI and API. This is due to the
fact that neither the contraction nor monotonicity arguments, that the error propagation
analysis of these two algorithms rely on, hold for AMPI. The analysis of this section unifies
those for AVI and API and is applied to the AMPI implementations presented in Section 3.
We then detail the analysis of the three algorithms of Section 3 by providing their finite-
sample analysis in Section 5. Interestingly, for the classification-based implementation of
MPI (CBMPI), our analysis indicates that the parameter m allows us to balance the esti-
mation error of the classifier with the overall quality of the value approximation. Finally,
we evaluate the proposed algorithms and compare them with several existing methods in
the Mountain Car and Tetris problems in Section 6. The game of Tetris is particularly
challenging as the DP methods that are only based on approximating the value function
have performed poorly in this domain. An important contribution of this work is to show
that the classification-based AMPI algorithm (CBMPI) outperforms the existing DP ap-
proaches by a large margin, and competes with the current state-of-the-art methods while
using fewer samples.

2. Background

We consider a discounted MDP 〈S,A, P, r, γ〉, where S is a state space, A is a finite action
space, P (ds′|s, a), for all state-action pairs (s, a), is a probability kernel on S, the reward
function r : S × A → R is bounded by Rmax, and γ ∈ (0, 1) is a discount factor. A
deterministic stationary policy (for short thereafter: a policy) is defined as a mapping
π : S → A. For a policy π, we may write rπ(s) = r

(
s, π(s)

)
and Pπ(ds′|s) = P

(
ds′|s, π(s)

)
.

The value of the policy π in a state s is defined as the expected discounted sum of rewards
received by starting at state s and then following the policy π, i.e.,

vπ(s) = E

[ ∞∑

t=0

γtrπ(st) | s0 = s, st+1 ∼ Pπ(·|st)
]
.

Similarly, the action-value function of a policy π at a state-action pair (s, a), Qπ(s, a), is
the expected discounted sum of rewards received by starting at state s, taking action a, and
then following the policy π, i.e.,

Qπ(s, a) = E

[ ∞∑

t=0

γtr(st, at) | s0 = s, a0 = a, st+1 ∼ P (·|st, at), at+1 = π(st+1)

]
.

Since the rewards are bounded by Rmax, the values and action-values are bounded by
Vmax = Qmax = Rmax/(1− γ).

For any distribution µ on S, µPπ is a distribution given by (µPπ)(ds′) =
∫
Pπ(ds′|ds)µ(ds).

For any integrable function v on S, Pπv is a function defined as (Pπv)(s) =
∫
v(s′)Pπ(ds′|s).

The product of two kernels is naturally defined as (Pπ′Pπ)(ds′′|s) =
∫
Pπ′(ds

′′|s′)Pπ(ds′|s).
In analogy with the discrete space case, we write (I − γPπ)−1 to denote the kernel that is
defined as

∑∞
t=0(γPπ)t.

The Bellman operator Tπ of policy π takes an integrable function f on S as input and
returns the function Tπf defined as

∀s ∈ S, [Tπf ](s) = E
[
rπ(s) + γf(s′) | s′ ∼ Pπ(.|s)

]
,
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or in compact form, Tπf = rπ + γPπf . It is known that vπ = (I − γPπ)−1rπ is the unique
fixed-point of Tπ. Given an integrable function f on S, we say that a policy π is greedy
w.r.t. f , and write π = G f , if

∀s ∈ S, [Tπf ](s) = max
a

[Taf ](s),

or equivalently Tπf = maxπ′ [Tπ′f ]. We denote by v∗ the optimal value function. It is
also known that v∗ is the unique fixed-point of the Bellman optimality operator T : v →
maxπ Tπv = TG(v)v, and that a policy π∗ that is greedy w.r.t. v∗ is optimal and its value
satisfies vπ∗ = v∗.

We now define the concentrability coefficients (Munos, 2003, 2007; Munos and Szepesvári,
2008; Farahmand et al., 2010; Scherrer, 2013) that measure the stochasticity of an MDP,
and will later appear in our analysis. For any integrable function f : S → R and any
distribution µ on S, the µ-weighted Lp norm of f is defined as

‖f‖p,µ ∆
=

[∫
|f(x)|pµ(dx)

]1/p

.

Given some distributions µ and ρ that will be clear in the context of the paper, for all integers
j and q, we shall consider the following Radon-Nikodym derivative based quantities

cq(j)
∆
= max

π1,...,πj

∥∥∥∥
d(ρPπ1Pπ2 · · ·Pπj )

dµ

∥∥∥∥
q,µ

, (3)

where π1, . . . , πj is any set of policies defined in the MDP, and with the understanding
that if ρPπ1Pπ2 · · ·Pπj is not absolutely continuous with respect to µ, then we take cq(j) =
∞. These coefficients measure the mismatch between some reference measure µ and the
distribution ρPπ1Pπ2 · · ·Pπj obtained by starting the process from distribution ρ and then
making j steps according to π1, π2, ... πj , respectively. Since the bounds we shall derive
will be based on these coefficients, they will be informative only if these coefficients are
finite. We refer the reader to Munos (2007); Munos and Szepesvári (2008); Farahmand
et al. (2010) for more discussion on this topic. In particular, the interested reader may find
a simple MDP example for which these coefficients are reasonably small in Munos (2007,
Section 5.5 and 7).

3. Approximate MPI Algorithms

In this section, we describe three approximate MPI (AMPI) algorithms. These algorithms
rely on a function space F to approximate value functions, and in the third algorithm, also
on a policy space Π to represent greedy policies. In what follows, we describe the iteration
k of these iterative algorithms.

3.1 AMPI-V

The first and most natural AMPI algorithm presented in the paper, called AMPI-V, is
described in Figure 1. In AMPI-V, we assume that the values vk are represented in a
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function space F ⊆ RS . In any state s, the action πk+1(s) that is greedy w.r.t. vk can be
estimated as follows:

πk+1(s) ∈ arg max
a∈A

1

M

M∑

j=1

(
T̂ (j)
a vk

)
(s), (4)

with
(
T̂ (j)
a vk

)
(s) = r(j)

a + γvk(s
(j)
a ),

where for all a ∈ A and 1 ≤ j ≤ M , r
(j)
a and s

(j)
a are samples of rewards and next states

when action a is taken in state s. Thus, approximating the greedy action in a state s requires
M |A| samples. The algorithm works as follows. We sample N states from a distribution
µ on S, and build a rollout set Dk = {s(i)}Ni=1, s(i) ∼ µ. We denote by µ̂ the empirical
distribution corresponding to µ. From each state s(i) ∈ Dk, we generate a rollout of size

m, i.e.,
(
s(i), a

(i)
0 , r

(i)
0 , s

(i)
1 , . . . , a

(i)
m−1, r

(i)
m−1, s

(i)
m

)
, where a

(i)
t is the action suggested by πk+1

in state s
(i)
t , computed using Equation 4, and r

(i)
t and s

(i)
t+1 are sampled reward and next

state induced by this choice of action. For each s(i), we then compute a rollout estimate

v̂k+1(s(i)) =

m−1∑

t=0

γtr
(i)
t + γmvk(s

(i)
m ), (5)

which is an unbiased estimate of
[
(Tπk+1

)mvk
]
(s(i)). Finally, vk+1 is computed as the best

fit in F to these estimates, i.e., it is a function v ∈ F that minimizes the empirical error

L̂Fk (µ̂; v) =
1

N

N∑

i=1

(
v̂k+1(s(i))− v(s(i))

)2
, (6)

with the goal of minimizing the true error

LFk (µ; v) =
∣∣∣
∣∣∣
[
(Tπk+1

)mvk
]
− v
∣∣∣
∣∣∣
2

2,µ
=

∫ ([
(Tπk+1

)mvk
]
(s)− v(s)

)2
µ(ds).

Each iteration of AMPI-V requires N rollouts of size m, and in each rollout, each of the
|A| actions needs M samples to compute Equation 4. This gives a total of Nm(M |A|+ 1)
transition samples. Note that the fitted value iteration algorithm (Munos and Szepesvári,
2008) is a special case of AMPI-V when m = 1.

3.2 AMPI-Q

In AMPI-Q, we replace the value function v : S → R with the action-value function Q :
S ×A → R. Figure 2 contains the pseudocode of this algorithm. The Bellman operator for
a policy π at a state-action pair (s, a) can then be written as

[TπQ](s, a) = E
[
r(s, a) + γQ(s′, π(s′)) | s′ ∼ P (·|s, a)

]
,

and the greedy operator is defined as

π ∈ GQ ⇐⇒ ∀s, π(s) = arg max
a∈A

Q(s, a).
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Input: Value function space F , state distribution µ
Initialize: Let v0 ∈ F be an arbitrary value function
for k = 0, 1, . . . do

• Perform rollouts:

Construct the rollout set Dk = {s(i)}Ni=1, s
(i) iid∼ µ

for all states s(i) ∈ Dk do
Perform a rollout (using Equation 4 for each action)

v̂k+1(s(i)) =
∑m−1
t=0 γtr

(i)
t + γmvk(s

(i)
m )

end for
• Approximate value function:
vk+1 ∈ argmin

v∈F
L̂Fk (µ̂; v) (regression) (see Equation 6)

end for

Figure 1: The pseudo-code of the AMPI-V algorithm.

In AMPI-Q, action-value functions Qk are represented in a function space F ⊆ RS×A, and
the greedy action w.r.t. Qk at a state s, i.e., πk+1(s), is computed as

πk+1(s) ∈ arg max
a∈A

Qk(s, a). (7)

The evaluation step is similar to that of AMPI-V, with the difference that now we work
with state-action pairs. We sample N state-action pairs from a distribution µ on S × A
and build a rollout set Dk = {(s(i), a(i))}Ni=1, (s(i), a(i)) ∼ µ. We denote by µ̂ the empirical
distribution corresponding to µ. For each (s(i), a(i)) ∈ Dk, we generate a rollout of size m,

i.e.,
(
s(i), a(i), r

(i)
0 , s

(i)
1 , a

(i)
1 , · · · , s(i)

m , a
(i)
m

)
, where the first action is a(i), a

(i)
t for t ≥ 1 is the

action suggested by πk+1 in state s
(i)
t computed using Equation 7, and r

(i)
t and s

(i)
t+1 are

sampled reward and next state induced by this choice of action. For each (s(i), a(i)) ∈ Dk,
we then compute the rollout estimate

Q̂k+1(s(i), a(i)) =
m−1∑

t=0

γtr
(i)
t + γmQk(s

(i)
m , a

(i)
m ),

which is an unbiased estimate of
[
(Tπk+1

)mQk
]
(s(i), a(i)). Finally, Qk+1 is the best fit to

these estimates in F , i.e., it is a function Q ∈ F that minimizes the empirical error

L̂Fk (µ̂;Q) =
1

N

N∑

i=1

(
Q̂k+1(s(i), a(i))−Q(s(i), a(i))

)2
, (8)

with the goal of minimizing the true error

LFk (µ;Q) =
∣∣∣
∣∣∣
[
(Tπk+1

)mQk
]
−Q

∣∣∣
∣∣∣
2

2,µ
=

∫ ([
(Tπk+1

)mQk
]
(s, a)−Q(s, a)

)2
µ(dsda).

Each iteration of AMPI-Q requires Nm samples, which is less than that for AMPI-V.
However, it uses a hypothesis space on state-action pairs instead of states (a larger space
than that used by AMPI-V). Note that the fitted-Q iteration algorithm (Ernst et al., 2005;
Antos et al., 2007) is a special case of AMPI-Q when m = 1.
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Input: Value function space F , state distribution µ
Initialize: Let Q0 ∈ F be an arbitrary value function
for k = 0, 1, . . . do

• Perform rollouts:

Construct the rollout set Dk = {(s(i), a(i)}Ni=1, (s(i), a(i))
iid∼ µ

for all states (s(i), a(i)) ∈ Dk do
Perform a rollout (using Equation 7 for each action)

Q̂k+1(s(i), a(i)) =
∑m−1
t=0 γtr

(i)
t + γmQk(s

(i)
m , a

(i)
m ),

end for
• Approximate action-value function:
Qk+1 ∈ argmin

Q∈F
L̂Fk (µ̂;Q) (regression) (see Equation 8)

end for

Figure 2: The pseudo-code of the AMPI-Q algorithm.

3.3 Classification-Based MPI

The third AMPI algorithm presented in this paper, called classification-based MPI (CBMPI),
uses an explicit representation for the policies πk, in addition to the one used for the value
functions vk. The idea is similar to the classification-based PI algorithms (Lagoudakis and
Parr, 2003b; Fern et al., 2006; Lazaric et al., 2010c; Gabillon et al., 2011) in which we search
for the greedy policy in a policy space Π (defined by a classifier) instead of computing it
from the estimated value or action-value function (similar to AMPI-V and AMPI-Q).
In order to describe CBMPI, we first rewrite the MPI formulation (Equations 1 and 2) as

vk = (Tπk)mvk−1 (evaluation step) (9)

πk+1 = G
[
(Tπk)mvk−1

]
(greedy step) (10)

Note that in this equivalent formulation both vk and πk+1 are functions of (Tπk)mvk−1.
CBMPI is an approximate version of this new formulation. As described in Figure 3,
CBMPI begins with arbitrary initial policy π1 ∈ Π and value function v0 ∈ F .2 At each
iteration k, a new value function vk is built as the best approximation of the m-step Bell-
man operator (Tπk)mvk−1 in F (evaluation step). This is done by solving a regression
problem whose target function is (Tπk)mvk−1. To set up the regression problem, we build
a rollout set Dk by sampling N states i.i.d. from a distribution µ.3 We denote by µ̂ the
empirical distribution corresponding to µ. For each state s(i) ∈ Dk, we generate a rollout(
s(i), a

(i)
0 , r

(i)
0 , s

(i)
1 , . . . , a

(i)
m−1, r

(i)
m−1, s

(i)
m

)
of size m, where a

(i)
t = πk(s

(i)
t ), and r

(i)
t and s

(i)
t+1

are sampled reward and next state induced by this choice of action. From this rollout, we
compute an unbiased estimate v̂k(s

(i)) of
[
(Tπk)mvk−1

]
(s(i)) as in Equation 5:

v̂k(s
(i)) =

m−1∑

t=0

γtr
(i)
t + γmvk−1(s(i)

m ), (11)

2. Note that the function space F and policy space Π are automatically defined by the choice of the regressor
and classifier, respectively.

3. Here we used the same sampling distribution µ for both regressor and classifier, but in general different
distributions may be used for these two components of the algorithm.
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and use it to build a training set
{(
s(i), v̂k(s

(i))
)}N

i=1
. This training set is then used by the

regressor to compute vk as an estimate of (Tπk)mvk−1. Similar to the AMPI-V algorithm,
the regressor here finds a function v ∈ F that minimizes the empirical error

L̂Fk (µ̂; v) =
1

N

N∑

i=1

(
v̂k(s

(i))− v(s(i))
)2
, (12)

with the goal of minimizing the true error

LFk (µ; v) =
∣∣∣
∣∣∣
[
(Tπk)mvk−1

]
− v
∣∣∣
∣∣∣
2

2,µ
=

∫ ([
(Tπk)mvk−1

]
(s)− v(s)

)2
µ(ds).

The greedy step at iteration k computes the policy πk+1 as the best approximation of
G
[
(Tπk)mvk−1

]
by solving a cost-sensitive classification problem. From the definition of a

greedy policy, if π = G
[
(Tπk)mvk−1

]
, for each s ∈ S, we have

[
Tπ(Tπk)mvk−1

]
(s) = max

a∈A

[
Ta(Tπk)mvk−1

]
(s). (13)

By defining Qk(s, a) =
[
Ta(Tπk)mvk−1

]
(s), we may rewrite Equation 13 as

Qk
(
s, π(s)

)
= max

a∈A
Qk(s, a). (14)

The cost-sensitive error function used by CBMPI is of the form

LΠ
πk,vk−1

(µ;π) =

∫ [
max
a∈A

Qk(s, a)−Qk
(
s, π(s)

)]
µ(ds). (15)

To simplify the notation we use LΠ
k instead of LΠ

πk,vk−1
. To set up this cost-sensitive classi-

fication problem, we build a rollout set D′k by sampling N ′ states i.i.d. from a distribution
µ. For each state s(i) ∈ D′k and each action a ∈ A, we build M independent rollouts of size
m+ 1, i.e.,4 (

s(i), a, r
(i,j)
0 , s

(i,j)
1 , a

(i,j)
1 , . . . , a(i,j)

m , r(i,j)
m , s

(i,j)
m+1

)M
j=1

,

where for t ≥ 1, a
(i,j)
t = πk(s

(i,j)
t ), and r

(i,j)
t and s

(i,j)
t+1 are sampled reward and next state

induced by this choice of action. From these rollouts, we compute an unbiased estimate of
Qk(s

(i), a) as Q̂k(s
(i), a) = 1

M

∑M
j=1R

j
k(s

(i), a) where

Rjk(s
(i), a) =

m∑

t=0

γtr
(i,j)
t + γm+1vk−1(s

(i,j)
m+1). (16)

Given the outcome of the rollouts, CBMPI uses a cost-sensitive classifier to return a policy
πk+1 that minimizes the following empirical error

L̂Π
k (µ̂;π) =

1

N ′

N ′∑

i=1

[
max
a∈A

Q̂k(s
(i), a)− Q̂k

(
s(i), π(s(i))

)]
, (17)

4. In practice, one may implement CBMPI in more sample-efficient way by reusing the rollouts generated for
the greedy step in the evaluation step, but we do not consider this here because it makes the forthcoming
analysis more complicated.
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Input: Value function space F , policy space Π, state distribution µ
Initialize: Let π1 ∈ Π be an arbitrary policy and v0 ∈ F an arbitrary value function
for k = 1, 2, . . . do

• Perform rollouts:

Construct the rollout set Dk = {s(i)}Ni=1, s
(i) iid∼ µ

for all states s(i) ∈ Dk do
Perform a rollout and return v̂k(s(i)) (using Equation 11)

end for
Construct the rollout set D′k = {s(i)}N ′

i=1, s
(i) iid∼ µ

for all states s(i) ∈ D′k and actions a ∈ A do
for j = 1 to M do

Perform a rollout and return Rjk(s(i), a) (using Equation 16)
end for
Q̂k(s(i), a) = 1

M

∑M
j=1R

j
k(s(i), a)

end for
• Approximate value function:
vk ∈ argmin

v∈F
L̂Fk (µ̂; v) (regression) (see Equation 12)

• Approximate greedy policy:
πk+1 ∈ argmin

π∈Π
L̂Π
k (µ̂;π) (classification) (see Equation 17)

end for

Figure 3: The pseudo-code of the CBMPI algorithm.

with the goal of minimizing the true error LΠ
k (µ;π) defined by Equation 15.

Each iteration of CBMPI requires Nm+M |A|N ′(m+ 1) (or M |A|N ′(m+ 1) in case we
reuse the rollouts, see Footnote 4) transition samples. Note that when m tends to ∞, we
recover the DPI algorithm proposed and analyzed by Lazaric et al. (2010c).

3.4 Possible Approaches to Reuse the Samples

In all the proposed AMPI algorithms, we generate fresh samples for the rollouts, and even for
the starting states, at each iteration. This may result in relatively high sample complexity
for these algorithms. In this section, we propose two possible approaches to circumvent this
problem and to keep the number of samples independent of the number of iterations.

One approach would be to use a fixed set of starting samples (s(i)) or (s(i), a(i)) for all
iterations, and think of a tree of depth m that contains all the possible outcomes of m-steps
choices of actions (this tree contains |A|m leaves). Using this tree, all the trajectories with
the same actions share the same samples. In practice, it is not necessarily to build the entire
depth m tree, it is only needed to add a branch when the desired action does not belong
to the tree. Using this approach, that is reminiscent of the work by Kearns et al. (2000),
the sample complexity of the algorithm no longer depends on the number of iterations. For
example, we may only need NM |A|m transitions for the CBMPI algorithm.

We may also consider the case where we do not have access to a generative model of the
system, and all we have is a set of trajectories of sizem generated by a behavior policy πb that
is assumed to choose all actions a in each state s with a positive probability (i.e., πb(a|s) >
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0, ∀s, ∀a) (Precup et al., 2000, 2001; Geist and Scherrer, 2014). In this case, one may still
compute an unbiased estimate of the application of (Tπ)m operator to value and action-
value functions. For instance, given a m-step sample trajectory (s, a0, r0, s1, . . . , sm, am)
generated by πb, an unbiased estimate of [(Tπ)mv](s) may be computed as (assuming that
the distribution µ has the following factored form p(s, a0|µ) = p(s)πb(a0|s) at state s)

y =
m−1∑

t=0

αtγ
trt + αmγ

mv(sm), where αt =
t∏

j=1

1aj=π(sj)

πb(aj |sj)

is an importance sampling correction factor that can be computed along the trajectory.
Note that this process may increase the variance of such an estimate, and thus, requires
many more samples to be accurate—the price to pay for the absence of a generative model.

4. Error Propagation

In this section, we derive a general formulation for propagation of errors through the it-
erations of an AMPI algorithm. The line of analysis for error propagation is different in
VI and PI algorithms. VI analysis is based on the fact that this algorithm computes the
fixed point of the Bellman optimality operator, and this operator is a γ-contraction in max-
norm (Bertsekas and Tsitsiklis, 1996; Munos, 2007). On the other hand, it can be shown
that the operator by which PI updates the value from one iteration to the next is not a
contraction in max-norm in general. Unfortunately, we can show that the same property
holds for MPI when it does not reduce to VI (i.e., for m > 1).

Proposition 1 If m > 1, there exists no norm for which the operator that MPI uses to
update the values from one iteration to the next is a contraction.

Proof We consider the MDP with two states {s1, s2}, two actions {change, stay}, rewards
r(s1) = 0, r(s2) = 1, and transitions Pch(s2|s1) = Pch(s1|s2) = Pst(s1|s1) = Pst(s2|s2) = 1.
Consider two value functions v = (ε, 0) and v′ = (0, ε) with ε > 0. Their correspond-
ing greedy policies are π = (st, ch) and π′ = (ch, st), and the next iterates of v and

v′ can be computed as (Tπ)mv =

(
γmε

1 + γmε

)
and (Tπ′)

mv′ =

(
γ−γm
1−γ + γmε

1−γm
1−γ + γmε

)
. Thus,

(Tπ′)
mv′ − (Tπ)mv =

(
γ−γm
1−γ
γ−γm
1−γ

)
, while v′ − v =

(
−ε
ε

)
. Since ε can be arbitrarily small,

the norm of (Tπ′)
mv′ − (Tπ)mv can be arbitrarily larger than the norm of v − v′ as long as

m > 1.

We also know that the analysis of PI usually relies on the fact that the sequence of the gener-
ated values is non-decreasing (Bertsekas and Tsitsiklis, 1996; Munos, 2003). Unfortunately,
it can be easily shown that for m finite, the value functions generated by MPI may decrease
(it suffices to take a very high initial value). It can be seen from what we just described
and Proposition 1 that for m 6= 1 and ∞, MPI is neither contracting nor non-decreasing,
and thus, a new proof is needed for the propagation of errors in this algorithm.

To study error propagation in AMPI, we introduce an abstract algorithmic model that
accounts for potential errors. AMPI starts with an arbitrary value v0 and at each iteration
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k ≥ 1 computes the greedy policy w.r.t. vk−1 with some error ε′k, called the greedy step
error. Thus, we write the new policy πk as

πk = Ĝε′kvk−1. (18)

Equation 18 means that for any policy π′, we have Tπ′vk−1 ≤ Tπkvk−1 + ε′k. AMPI then
generates the new value function vk with some error εk, called the evaluation step error

vk = (Tπk)mvk−1 + εk. (19)

Before showing how these two errors are propagated through the iterations of AMPI, let
us first define them in the context of each of the algorithms presented in Section 3 separately.

AMPI-V: The term εk is the error when fitting the value function vk. This error can be
further decomposed into two parts: the one related to the approximation power of F and
the one due to the finite number of samples/rollouts. The term ε′k is the error due to using
a finite number of samples M for estimating the greedy actions.

AMPI-Q: In this case ε′k = 0 and εk is the error in fitting the state-action value function Qk.

CBMPI: This algorithm iterates as follows:

vk = (Tπk)mvk−1 + εk

πk+1 = Ĝε′k+1
[(Tπk)mvk−1] .

Unfortunately, this does not exactly match the model described in Equations 18 and 19.

By introducing the auxiliary variable wk
∆
= (Tπk)mvk−1, we have vk = wk + εk, and thus,

we may write
πk+1 = Ĝε′k+1

[wk] . (20)

Using vk−1 = wk−1 + εk−1, we have

wk = (Tπk)mvk−1 = (Tπk)m(wk−1 + εk−1) = (Tπk)mwk−1 + (γPπk)mεk−1. (21)

Now, Equations 20 and 21 exactly match Equations 18 and 19 by replacing vk with wk and
εk with (γPπk)mεk−1.

The rest of this section is devoted to show how the errors εk and ε′k propagate through
the iterations of an AMPI algorithm. We only outline the main arguments that will lead to
the performance bounds of Theorems 7 and 8 and report most technical details of the proof
in Appendices A to C. To do this, we follow the line of analysis developed by Scherrer and
Thiéry (2010), and consider the following three quantities:

1) The distance between the optimal value function and the value before approximation at
the kth iteration:

dk
∆
= v∗ − (Tπk)mvk−1 = v∗ − (vk − εk).

2) The shift between the value before approximation and the value of the policy at the kth

iteration:
sk

∆
= (Tπk)mvk−1 − vπk = (vk − εk)− vπk .
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3) The (approximate) Bellman residual at the kth iteration:

bk
∆
= vk − Tπk+1

vk.

We are interested in finding an upper bound on the loss

lk
∆
= v∗ − vπk = dk + sk.

To do so, we will upper bound dk and sk, which requires a bound on the Bellman residual
bk. More precisely, the core of our analysis is to prove the following point-wise inequalities
for our three quantities of interest.

Lemma 2 Let k ≥ 1, xk
∆
= (I − γPπk)εk + ε′k+1 and yk

∆
= −γPπ∗εk + ε′k+1. We have:

bk ≤ (γPπk)mbk−1 + xk,

dk+1 ≤ γPπ∗dk + yk +
m−1∑

j=1

(γPπk+1
)jbk,

sk = (γPπk)m(I − γPπk)−1bk−1.

Proof See Appendix A.

Since the stochastic kernels are non-negative, the bounds in Lemma 2 indicate that the loss
lk will be bounded if the errors εk and ε′k are controlled. In fact, if we define ε as a uniform
upper-bound on the pointwise absolute value of the errors, |εk| and |ε′k|, the first inequality
in Lemma 2 implies that bk ≤ O(ε), and as a result, the second and third inequalities gives
us dk ≤ O(ε) and sk ≤ O(ε). This means that the loss will also satisfy lk ≤ O(ε).

Our bound for the loss lk is the result of careful expansion and combination of the three
inequalities in Lemma 2. Before we state this result, we introduce some notations that will
ease our formulation and significantly simplify our proofs compared to those in the similar
existing work (Munos, 2003, 2007; Scherrer, 2013).

Definition 3 For a positive integer n, we define Pn as the smallest set of discounted tran-
sition kernels that are defined as follows:

1) for any set of n policies {π1, . . . , πn}, (γPπ1)(γPπ2) . . . (γPπn) ∈ Pn,

2) for any α ∈ (0, 1) and (P1, P2) ∈ Pn × Pn, αP1 + (1− α)P2 ∈ Pn.
Furthermore, we use the somewhat abusive notation Γn for denoting any element of Pn.
For example, if we write a transition kernel P as P = α1Γi + α2ΓjΓk = α1Γi + α2Γj+k,
it should be read as: “there exist P1 ∈ Pi, P2 ∈ Pj, P3 ∈ Pk, and P4 ∈ Pk+j such that
P = α1P1 + α2P2P3 = α1P1 + α2P4.”

Using the notation in Definition 3, we now derive a point-wise bound on the loss.

Lemma 4 After k iterations, the losses of AMPI-V and AMPI-Q satisfy

lk ≤ 2
k−1∑

i=1

∞∑

j=i

Γj |εk−i|+
k−1∑

i=0

∞∑

j=i

Γj |ε′k−i|+ h(k),
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while the loss of CBMPI satisfies

lk ≤ 2
k−2∑

i=1

∞∑

j=i+m

Γj |εk−i−1|+
k−1∑

i=0

∞∑

j=i

Γj |ε′k−i|+ h(k),

where h(k)
∆
= 2

∑∞
j=k Γj |d0| or h(k)

∆
= 2

∑∞
j=k Γj |b0|.

Proof See Appendix B.

Remark 5 A close look at the existing point-wise error bounds for AVI (Munos, 2007,
Lemma 4.1) and API (Munos, 2003, Corollary 10) shows that they do not consider error
in the greedy step ( i.e., ε′k = 0) and have the following form:

lim supk→∞lk ≤ 2 lim supk→∞

k−1∑

i=1

∞∑

j=i

Γj |εk−i|.

This indicates that the bound in Lemma 4 not only unifies the analysis of AVI and API,
but it generalizes them to the case of error in the greedy step and to a finite number of
iterations k. Moreover, our bound suggests that the way the errors are propagated in the
whole family of algorithms, VI/PI/MPI, is independent of m at the level of abstraction
suggested by Definition 3.5

An important immediate consequence of the point-wise bound of Lemma 4 is a simple
guarantee on the performance of the algorithms. Let us define ε = supj≥1 ‖εj‖∞ and
ε′ = supj≥1 ‖ε′j‖∞ as uniform bounds on the evaluation and greedy step errors. Now by

taking the max-norm (using the fact that for all i, ‖Γi‖∞ = γi) and limsup when k tends
to infinity, we obtain

lim sup
k→∞

‖lk‖∞ ≤
2γε+ ε′

(1− γ)2
. (22)

Such a bound is a generalization of the bounds for AVI (m = 1 and ε′ = 0) and API (m =∞)
in Bertsekas and Tsitsiklis (1996). This bound can be read as follows: if we can control
the max-norm of the evaluation and greedy errors at all iterations, then we can control the
loss of the policy returned by the algorithm w.r.t. the optimal policy. Conversely, another
interpretation of the above bound is that errors should not be too big if we want to have a
performance guarantee. Since the loss is always bounded by 2Vmax, the bound stops to be
informative as soon as 2γε+ ε′ > 2(1− γ)2Vmax = 2(1− γ)Rmax.

Assume we use (max-norm) regression and classification for the evaluation and greedy
steps. Then, the above result means that one can make a reduction from the RL problem to
these regression and classification problems. Furthermore, if any significant breakthrough is
made in the literature for these (more standard problems), the RL setting can automatically
benefit from it. The error terms ε and ε′ in the above bound are expressed in terms of the

5. Note however that the dependence on m will reappear if we make explicit what is hidden in Γj terms.
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max-norm. Since most regressors and classifiers, including those we have described in
the algorithms, control some weighted quadratic norm, the practical range of a result like
Equation 22 is limited. The rest of this section addresses this specific issue, by developing
a somewhat more complicated but more useful error analysis in Lp-norm.

We now turn the point-wise bound of Lemma 4 into a bound in weighted Lp-norm,
which we recall, for any function f : S → R and any distribution µ on S is defined as

‖f‖p,µ ∆
=
[ ∫
|f(x)|pµ(dx)

]1/p
. Munos (2003, 2007); Munos and Szepesvári (2008), and the

recent work of Farahmand et al. (2010), which provides the most refined bounds for API
and AVI, show how to do this process through quantities, called concentrability coefficients.
These coefficients use the Radon-Nikodym coefficients introduced in Section 2 and measure
how a distribution over states may concentrate through the dynamics of the MDP. We
now state a technical lemma that allows to convert componentwise bounds to Lp-norm
bounds, and that generalizes the analysis of Farahmand et al. (2010) to a larger class of
concentrability coefficients.

Lemma 6 Let I and (Ji)i∈I be sets of non-negative integers, {I1, . . . , In} be a partition
of I, and f and (gi)i∈I be functions satisfying

|f | ≤
∑

i∈I

∑

j∈Ji

Γj |gi| =
n∑

l=1

∑

i∈Il

∑

j∈Ji

Γj |gi|.

Then for all p, q and q′ such that 1
q + 1

q′ = 1, and for all distributions ρ and µ, we have

‖f‖p,ρ ≤
n∑

l=1

(
Cq(l)

)1/p
sup
i∈Il
‖gi‖pq′,µ

∑

i∈Il

∑

j∈Ji

γj ,

with the following concentrability coefficients

Cq(l) ∆
=

∑
i∈Il

∑
j∈Ji γ

jcq(j)∑
i∈Il

∑
j∈Ji γ

j
,

where cq(j) is defined by Equation 3.

Proof See Appendix C.

We now derive an Lp-norm bound for the loss of the AMPI algorithm by applying
Lemma 6 to the point-wise bound of Lemma 4.

Theorem 7 For all q, l, k and d, define the following concentrability coefficients:

Cl,k,dq
∆
=

(1− γ)2

γl − γk
k−1∑

i=l

∞∑

j=i

γjcq(j + d),

with cq(j) given by Equation 3. Let ρ and µ be distributions over states. Let p, q, and q′ be
such that 1

q + 1
q′ = 1. After k iterations, the loss of AMPI satisfies

‖lk‖p,ρ ≤ 2

k−1∑

i=1

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖εk−i‖pq′,µ +

k−1∑

i=0

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖ε′k−i‖pq′,µ + g(k),
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while the loss of CBMPI satisfies

‖lk‖p,ρ ≤ 2γm
k−2∑

i=1

γi

1− γ
(
Ci,i+1,m
q

) 1
p ‖εk−i−1‖pq′,µ +

k−1∑

i=0

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖ε′k−i‖pq′,µ + g(k),

where g(k)
∆
= 2γk

1−γ

(
Ck,k+1,0
q

) 1
p

min
(
‖d0‖pq′,µ, ‖b0‖pq′,µ

)
.

Proof We only detail the proof for AMPI, the proof is similar for CBMPI. We define
I = {1, 2, . . . , 2k} and the (trivial) partition I = {I1, I2, . . . , I2k}, where Ii = {i}, i ∈
{1, . . . , 2k}. For each i ∈ I, we also define

gi =





2εk−i if 1 ≤ i ≤ k − 1,
ε′k−(i−k) if k ≤ i ≤ 2k − 1,

2d0 (or 2b0) if i = 2k,

and Ji =




{i, · · · } if 1 ≤ i ≤ k − 1,
{i− k · · · } if k ≤ i ≤ 2k − 1,
{k} if i = 2k.

With the above definitions and the fact that the loss lk is non-negative, Lemma 4 may be
rewritten as

|lk| ≤
2k∑

l=1

∑

i∈Il

∑

j∈Ji

Γj |gi|.

The result follows by applying Lemma 6 and noticing that
∑k−1

i=i0

∑∞
j=i γ

j = γi0−γk
(1−γ)2

.

Similar to the results of Farahmand et al. (2010), this bound shows that the last itera-
tions have the highest influence on the loss and the influence decreases at the exponential
rate γ towards the initial iterations. This phenomenon is related to the fact that the DP
algorithms progressively forget about the past iterations. This is similar to the fact that
exact VI and PI converge to the optimal limit independently of their initialization.

We can group the terms differently and derive an alternative Lp-norm bound for the loss
of AMPI and CBMPI. This also shows the flexibility of Lemma 6 for turning the point-wise
bound of Lemma 4 into Lp-norm bounds.

Theorem 8 With the notations of Theorem 7, and writing ε = sup1≤j≤k−1 ‖εj‖pq′,µ and
ε′ = sup1≤j≤k ‖ε′j‖pq′,µ, the loss of AMPI satisfies

‖lk‖p,ρ ≤
2(γ − γk)

(
C1,k,0
q

) 1
p

(1− γ)2
ε+

(1− γk)
(
C0,k,0
q

) 1
p

(1− γ)2
ε′ + g(k), (23)

while the loss of CBMPI satisfies

‖lk‖p,ρ ≤
2γm(γ − γk−1)

(
C2,k,m
q

) 1
p

(1− γ)2
ε+

(1− γk)
(
C0,k,0
q

) 1
p

(1− γ)2
ε′ + g(k). (24)
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Proof We only give the details of the proof for AMPI, the proof is similar for CBMPI.
Defining I = {1, 2, · · · , 2k} and gi as in the proof of Theorem 7, we now consider the
partition I = {I1, I2, I3} as I1 = {1, . . . , k−1}, I2 = {k, . . . , 2k−1}, and I3 = {2k}, where
for each i ∈ I

Ji =




{i, i+ 1, · · · } if 1 ≤ i ≤ k − 1,
{i− k, i− k + 1, · · · } if k ≤ i ≤ 2k − 1,
{k} if i = 2k.

The proof ends similar to that of Theorem 7.

By sending the iteration number k to infinity, one obtains the following bound for AMPI:

lim sup
k→∞

‖lk‖p,ρ ≤
2γ
(
C1,∞,0
q

) 1
p
ε+

(
C0,∞,0
q

) 1
p
ε′

(1− γ)2
.

Compared to the simple max-norm bound of Equation 22, we can see that the price that
we must pay to have an error bound in Lp-norm is the appearance of the concentrability

coefficients C1,∞,0
q and C0,∞,0

q . Furthermore, it is easy to see that the above bound is more
general, i.e., by sending p to infinity, we recover the max-norm bound of Equation 22.

Remark 9 We can balance the influence of the concentrability coefficients (the bigger the
q, the higher the influence) and the difficulty of controlling the errors (the bigger the q′, the
greater the difficulty in controlling the Lpq′-norms) by tuning the parameters q and q′, given
that 1

q + 1
q′ = 1. This potential leverage is an improvement over the existing bounds and

concentrability results that only consider specific values of these two parameters: q =∞ and
q′ = 1 in Munos (2007) and Munos and Szepesvári (2008), and q = q′ = 2 in Farahmand
et al. (2010).

Remark 10 It is important to note that our loss bound for AMPI does not “directly”
depend on m (although as we will discuss in the next section, it “indirectly” does through
εk). For CBMPI, the parameter m controls the influence of the value function approximator,
cancelling it out in the limit when m tends to infinity (see Equation 24). Assuming a
fixed budget of sample transitions, increasing m reduces the number of rollouts used by the
classifier, and thus, worsens its quality. In such a situation, m allows making a trade-off
between the estimation error of the classifier and the overall value function approximation.

The arguments we developed globally follow those originally developed for λ-policy iter-
ation (Scherrer, 2013). With respect to that work, our proof is significantly simpler thanks
to the use of the Γn notation (Definition 3) and the fact that the AMPI scheme is itself
much simpler than λ-policy iteration. Moreover, the results are deeper since we consider a
possible error in the greedy step and more general concentration coefficients. Canbolat and
Rothblum (2012) recently (and independently) developed an analysis of an approximate
form of MPI. While Canbolat and Rothblum (2012) only consider the error in the greedy
step, our work is more general since it takes into account both this error and the error in
the value update. Note that it is required to consider both sources of error for the analysis
of CBMPI. Moreover, Canbolat and Rothblum (2012) provide bounds when the errors are
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controlled in max-norm, while we consider the more general Lp-norm. At a more techni-
cal level, Theorem 2 in Canbolat and Rothblum (2012) bounds the norm of the distance
v∗ − vk, while we bound the loss v∗ − vπk . Finally, if we derive a bound on the loss (using
e.g., Theorem 1 in Canbolat and Rothblum 2012), this leads to a bound on the loss that is
looser than ours. In particular, this does not allow to recover the standard bounds for AVI
and API, as we may obtain here (in Equation 22).

The results that we just stated (Theorem 7 and 8) can be read as follows: if one
can control the errors εk and ε′k in Lp-norm, then the performance loss is also controlled.
The main limitation of this result is that in general, even if there is no sampling noise
(i.e., N =∞ for all the algorithms and M =∞ for AMPI-V), the error εk of the evaluation
step may grow arbitrarily and make the algorithm diverge. The fundamental reason is
that the composition of the approximation and the Bellman operator Tπ is not necessarily
contracting. Since the former is contracting with respect to the µ-norm, another reason
for this issue is that Tπ is in general not contracting for that norm. A simple well-known
pathological example is due to Tsitsiklis and Van Roy (1997) and involves a two-state
uncontrolled MDP and a linear projection onto a 1-dimensional space (that contains the
real value function). Increasing the parameter m of the algorithm makes the operator (Tπ)m

used in Equation 19 more contracting and can in principle address this issue. For instance,
if we consider that we have a state space of finite size |S|, and take the uniform distribution
µ, it can be easily seen that for any v and v′, we have

‖(Tπ)mv − (Tπ)mv′‖2,µ = γm‖(Pπ)m(v − v′)‖2,µ
≤ γm‖(Pπ)m‖2,µ‖v − v′‖2,µ
≤ γm

√
|S|‖v − v′‖2,µ.

In other words, (Tπ)m is contracting w.r.t. the µ-weighted norm as soon as m > log |S|
2 log 1

γ

. In

particular, it is sufficient for m to be exponentially smaller than the size of the state space
in order to solve this potential divergence problem.

5. Finite-Sample Analysis of the Algorithms

In this section, we first show how the error terms εk and ε′k appeared in Theorem 8 (Equa-
tions 23 and 24) can be bounded in each of the three proposed algorithms, and then use the
obtained results and derive finite-sample performance bounds for these algorithms. We first
bound the evaluation step error εk. In AMPI-V and CBMPI, the evaluation step at each
iteration k is a regression problem with the target (Tπk)mvk−1 and a training set of the form{(
s(i), v̂k(s

(i))
)}N

i=1
in which the states s(i) are i.i.d. samples from the distribution µ and

v̂k(s
(i))’s are unbiased estimates of the target computed using Equation 5. The situation is

the same for AMPI-Q, except everything is in terms of action-value function Qk instead of
value function vk. Therefore, in the following we only show how to bound εk in AMPI-V
and CBMPI, the extension to AMPI-Q is straightforward.

We may use linear or non-linear function space F to approximate (Tπk)mvk−1. Here we
consider a linear architecture with parameters α ∈ Rd and bounded (by L) basis functions

{ϕj}dj=1, ‖ϕj‖∞ ≤ L. We denote by φ : X → Rd, φ(·) =
(
ϕ1(·), . . . , ϕd(·)

)>
the feature
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vector, and by F the linear function space spanned by the features ϕj , i.e., F = {fα(·) =
φ(·)>α : α ∈ Rd}. Now if we define vk as the truncation (by Vmax) of the solution of
the above linear regression problem, we may bound the evaluation step error εk using the
following lemma.

Lemma 11 (Evaluation step error) Consider the linear regression setting described above,
then we have

‖εk‖2,µ ≤ 4 inf
f∈F
‖(Tπk)mvk−1 − f‖2,µ + e1(N, δ) + e2(N, δ),

with probability at least 1− δ, where

e1(N, δ) = 32Vmax

√
2

N
log
(27(12e2N)2(d+1)

δ

)
,

e2(N, δ) = 24
(
Vmax + ‖α∗‖2 · sup

x
‖φ(x)‖2

)√ 2

N
log

9

δ
,

and α∗ is such that fα∗ is the best approximation (w.r.t. µ) of the target function (Tπk)mvk−1

in F .

Proof See Appendix D.

After we showed how to bound the evaluation step error εk for the proposed algorithms,
we now turn our attention to bounding the greedy step error ε′k, that contrary to the
evaluation step error, varies more significantly across the algorithms. While the greedy step
error equals to zero in AMPI-Q, it is based on sampling in AMPI-V, and depends on a
classifier in CBMPI. To bound the greedy step error in AMPI-V and CBMPI, we assume
that the action space A contains only two actions, i.e., |A| = 2. The extension to more
than two actions is straightforward along the same line of analysis as in Section 6 of Lazaric
et al. (2010a). The main difference w.r.t. the two action case is that the VC-dimension of
the policy space is replaced with its Natarajan dimension. We begin with AMPI-V.

Lemma 12 (Greedy step error of AMPI-V) Let µ be a distribution over the state space
S and N be the number of states in the rollout set Dk drawn i.i.d. from µ. For each state
s ∈ Dk and each action a ∈ A, we sample M states resulted from taking action a in state s.
Let h be the VC-dimension of the policy space obtained by Equation 4 from the truncation
(by Vmax) of the function space F . For any δ > 0, the greedy step error ε′k in the AMPI-V
algorithm is bounded as

||ε′k(s)||1,µ ≤ e′3(N, δ) + e′4(M,N, δ) + e′5(M,N, δ),

with probability at least 1− δ, with

e′3(N, δ) = 16Vmax

√
2

N
(h log

eN

h
+ log

24

δ
) ,

e′4(N,M, δ) = 8Vmax

√
2

MN

(
h log

eMN

h
+ log

24

δ

)
, e′5(M,N, δ) = Vmax

√
2 log(3N/δ)

M
.
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Proof See Appendix E.

We now show how to bound ε′k in CBMPI. From the definitions of ε′k (Equation 20) and
LΠ
k (µ;π) (Equation 15), it is easy to see that ‖ε′k‖1,µ = LΠ

k−1(µ;πk). This is because

ε′k(s) = max
a∈A

[
Ta(Tπk−1

)mvk−2

]
(s)−

[
Tπk(Tπk−1

)mvk−2

]
(s) (see Equation 13)

= max
a∈A

Qk−1(s, a)−Qk−1

(
s, πk(s)

)
. (see Equations 14 and 15)

Lemma 13 (Greedy step error of CBMPI) Let the policy space Π defined by the clas-
sifier have finite VC-dimension h = V C(Π) < ∞, and µ be a distribution over the state
space S. Let N ′ be the number of states in D′k−1 drawn i.i.d. from µ, M be the number of

rollouts per state-action pair used in the estimation of Q̂k−1, and πk = argminπ∈Π L̂Π
k−1(µ̂, π)

be the policy computed at iteration k − 1 of CBMPI. Then, for any δ > 0, we have

‖ε′k‖1,µ = LΠ
k−1(µ;πk) ≤ inf

π∈Π
LΠ
k−1(µ;π) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
,

with probability at least 1− δ, where

e′1(N ′, δ) = 16Qmax

√
2

N ′
(
h log

eN ′

h
+ log

32

δ

)
,

e′2(N ′,M, δ) = 8Qmax

√
2

MN ′
(
h log

eMN ′

h
+ log

32

δ

)
.

Proof See Appendix F.

From Lemma 11, we have a bound on ‖εk‖2,µ for all the three algorithms. Since ‖εk‖1,µ ≤
‖εk‖2,µ, we also have a bound on ‖εk‖1,µ for all the algorithms. On the other hand, from
Lemmas 12 and 13, we have a bound on ‖ε′k‖1,µ for the AMPI-V and CMBPI algorithms.
This means that for AMPI-V, AMPI-Q (ε′k = 0 for this algorithm), and CBMPI, we can
control the right hand side of Equations 23 and 24 in L1-norm, which in the context of
Theorem 8 means p = 1, q′ = 1, and q = ∞. This leads to the main result of this section,
finite-sample performance bounds for the three proposed algorithms.

Theorem 14 Let

d′ = sup
g∈F ,π′∈Π

inf
π∈Π
LΠ
π′,g(µ;π) and dm = sup

g∈F ,π∈Π
inf
f∈F
‖(Tπ)mg − f‖2,µ

where F is the function space used by the algorithms and Π is the policy space used by
CBMPI with the VC-dimension h. With the notations of Theorem 8 and Lemmas 11-13,
after k iterations, and with probability 1 − δ, the expected losses Eρ[lk] = ‖lk‖1,ρ of the
proposed AMPI algorithms satisfy:6

6. Note that the bounds of AMPI-V and AMPI-Q may also be written with (p = 2, q′ = 1, q = ∞), and
(p = 1, q′ = 2, q = 2).
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AMPI-V: ‖lk‖1,ρ ≤
2(γ − γk)C1,k,0

∞
(1− γ)2

(
dm + e1(N,

δ

k
) + e2(N,

δ

k
)

)

+
(1− γk)C0,k,0

∞
(1− γ)2

(
e′3(N,

δ

k
) + e′4(N,M,

δ

k
) + e′5(N,M,

δ

k
)

)
+ g(k),

AMPI-Q: ‖lk‖1,ρ ≤
2(γ − γk)C1,k,0

∞
(1− γ)2

(
dm + e1(N,

δ

k
) + e2(N,

δ

k
)

)
+ g(k),

CBMPI: ‖lk‖1,ρ ≤
2γm(γ − γk−1)C2,k,m

∞
(1− γ)2

(
dm + e1(N,

δ

2k
) + e2(N,

δ

2k
)

)

+
(1− γk)C1,k,0

∞
(1− γ)2

(
d′ + e′1(N ′,

δ

2k
) + e′2(N ′,M,

δ

2k
)

)
+ g(k).

Remark 15 Assume that we run AMPI-Q with a total fixed budget B that is equally divided
between the K iterations.7 Recall from Theorem 8 that g(k) = γkCk,k+1,0

q C0, where C0 =
min

(
‖d0‖pq′,µ, ‖b0‖pq′,µ

)
≤ Vmax measures the quality of the initial value/policy pair. Then,

up to constants and logarithmic factors, one can see that the bound has the form

‖lk‖1,µ ≤ O
(
dm +

√
K

B
+ γKC0

)
.

We deduce that the best choice for the number of iterations K can be obtained as a com-
promise between the quality of the initial value/policy pair and the estimation errors of the
value estimation step.

Remark 16 The CBMPI bound in Theorem 14 allows to turn the qualitative Remark 10
into a quantitative one. Assume that we have a fixed budget per iteration B = Nm +
N ′M |A|(m + 1) that is equally divided over the classifier and regressor. Note that the
budget is measured in terms of the number of calls to the generative model. Then up to
constants and logarithmic factors, the bound has the form

‖lk‖1,µ ≤ O
(
γm
(
dm +

√
m

B

)
+ d′ +

√
|A|mM
B

)
.

This shows a trade-off in tuning the parameter m: a large value of m makes the influence (in
the final error) of the regressor’s error (both approximation and estimation errors) smaller,
and at the same time the influence of the estimation error of the classifier larger.

6. Experimental Results

The main objective of this section is to present experiments for the new algorithm that
we think is the most interesting, CBMPI, but we shall also illustrate AMPI-Q (we do not

7. Similar reasoning can be done for AMPI-V and CBMPI, we selected AMPI-Q for the sake of simplicity.
Furthermore, one could easily relax the assumption that the budget is equally divided by using Theorem 7.
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illustrate AMPI-V that is close to AMPI-Q but significantly less efficient to implement). We
consider two different domains: 1) the mountain car problem and 2) the more challenging
game of Tetris. In several experiments, we compare the performance of CBMPI with the
DPI algorithm (Lazaric et al., 2010c), which is basically CBMPI without value function
approximation.8 Note that comparing DPI and CBMPI allows us to highlight the role of
the value function approximation.

As discussed in Remark 10, the parameter m in CBMPI balances between the errors
in evaluating the value function and the policy. The value function approximation error
tends to zero for large values of m. Although this would suggest to have large values for
m, as mentioned in Remark 16, the size of the rollout sets D and D′ would correspondingly
decreases as N = O(B/m) and N ′ = O(B/m), thus decreasing the accuracy of both the
regressor and classifier. This leads to a trade-off between long rollouts and the number of
states in the rollout sets. The solution to this trade-off strictly depends on the capacity of
the value function space F . A rich value function space would lead to solve the trade-off for
small values of m. On the other hand, when the value function space is poor, or, as in the
case of DPI, when there is no value function, m should be selected in a way to guarantee
large enough rollout sets (parameters N and N ′), and at the same time, a sufficient number
of rollouts (parameter M).

One of the objectives of our experiments is to show the role of these parameters in
the performance of CBMPI. However, since we almost always obtained our best results
with M = 1, we only focus on the parameters m and N in our experiments. Moreover, as
mentioned in Footnote 3, we implement a more sample-efficient version of CBMPI by reusing
the rollouts generated for the classifier in the regressor. More precisely, at each iteration
k, for each state s(i) ∈ D′k and each action a ∈ A, we generate one rollout of length m+ 1,

i.e.,
(
s(i), a, r

(i)
0 , s

(i)
1 , a

(i)
1 , . . . , a

(i)
m , r

(i)
m , s

(i)
m+1

)
. We then take the rollout of action πk(s

(i)),

select its last m steps, i.e.,
(
s

(i)
1 , a

(i)
1 , . . . , a

(i)
m , r

(i)
m , s

(i)
m+1

)
(note that all the actions here have

been taken according to the current policy πk), use it to estimate the value function v̂k(s
(i)
1 ),

and add it to the training set of the regressor. This process guarantees to have N = N ′.

In each experiment, we run the algorithms with the same budget B per iteration. The
budget B is the number of next state samples generated by the generative model of the
system at each iteration. In DPI and CBMPI, we generate a rollout of length m + 1 for
each state in D′ and each action in A, so, B = (m+ 1)N |A|. In AMPI-Q, we generate one
rollout of length m for each state-action pair in D, and thus, B = mN .

6.1 Mountain Car

Mountain Car (MC) is the problem of driving a car up to the top of a one-dimensional
hill (see Figure 4). The car is not powerful enough to accelerate directly up the hill, and
thus, it must learn to oscillate back and forth to build up enough inertia. There are three
possible actions: forward (+1), reverse (−1), and stay (0). The reward is −1 for all the
states but the goal state at the top of the hill, where the episode ends with a reward 0. The
discount factor is set to γ = 0.99. Each state s consists of the pair (xs, ẋs), where xs is the

8. DPI, as it is presented by Lazaric et al. (2010c), uses infinitely long rollouts and is thus equivalent to
CBMPI with m = ∞. In practice, implementations of DPI use rollouts that are truncated after some
horizon H, and is then equivalent to CBMPI with m = H and vk = 0 for all the iterations k.
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Figure 4: (Left) The Mountain Car (MC) problem in which the car needs to learn to
oscillate back and forth in order to build up enough inertia to reach the top of
the one-dimensional hill. (Right) A screen-shot of the game of Tetris and the
seven pieces (shapes) used in the game.

position of the car and ẋs is its velocity. We use the formulation described in Dimitrakakis
and Lagoudakis (2008) with uniform noise in [−0.2, 0.2] added to the actions.

In this section, we report the empirical evaluation of CBMPI and AMPI-Q and compare
it to DPI and LSPI (Lagoudakis and Parr, 2003a) in the MC problem. In our experiments,
we show that CBMPI, by combining policy and value function approximation, can improve
over AMPI-Q, DPI, and LSPI.

6.1.1 Experimental Setup

The value function is approximated using a linear space spanned by a set of radial basis
functions (RBFs) evenly distributed over the state space. More precisely, we uniformly
divide the 2-dimensional state space into a number of regions and place a Gaussian function
at the center of each of them. We set the standard deviation of the Gaussian functions to
the width of a region. The function space to approximate the action-value function in
LSPI is obtained by replicating the state-features for each action. We run LSPI off-policy
(i.e., samples are collected once and reused through the iterations of the algorithm).

The policy space Π (classifier) is defined by a regularized support vector classifier (C-
SVC) using the LIBSVM implementation by Chang and Lin (2011). We use the RBF kernel
exp(−|u− v|2) and set the cost parameter C = 1000. We minimize the classification error
instead of directly solving the cost-sensitive multi-class classification step as in Figure 3. In
fact, the classification error is an upper-bound on the empirical error defined by Equation 17.
Finally, the rollout set is sampled uniformly over the state space.

In our MC experiments, the policies learned by the algorithms are evaluated by the
number of steps-to-go (average number of steps to reach the goal with a maximum of 300)
averaged over 4, 000 independent trials. More precisely, we define the possible starting con-
figurations (positions and velocities) of the car by placing a 20 × 20 uniform grid over the
state space, and run the policy 6 times from each possible initial configuration. The perfor-
mance of each algorithm is represented by a learning curve whose value at each iteration is
the average number of steps-to-go of the policies learned by the algorithm at that iteration
in 1, 000 separate runs of the algorithm.
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We tested the performance of DPI, CBMPI, and AMPI-Q on a wide range of parameters
(m,M,N), but only report their performance for the best choice of M (as mentioned earlier,
M = 1 was the best choice in all the experiments) and different values of m.

6.1.2 Experimental Results
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Figure 5: Performance of the policies learned by (a) DPI and LSPI, (b) CBMPI, and (c)
AMPI-Q algorithms in the Mountain Car (MC) problem, when we use a 3 × 3
RBF grid to approximate the value function. The results are averaged over 1, 000
runs. The total budget B is set to 4, 000 per iteration.

Figure 5 shows the learning curves of DPI, CBMPI, AMPI-Q, and LSPI algorithms with
budget B = 4, 000 per iteration and the function space F composed of a 3 × 3 RBF grid.
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We notice from the results that this space is rich enough to provide a good approximation
for the value function components (e.g., in CBMPI, for (Tπ)mvk−1 defined by Equation 19).
Therefore, LSPI and DPI obtain the best and worst results with about 50 and 160 steps
to reach the goal, respectively. The best DPI results are obtained with the large value of
m = 20. DPI performs better for large values of m because the reward function is constant
everywhere except at the goal, and thus, a DPI rollout is only informative if it reaches
the goal. We also report the performance of CBMPI and AMPI-Q for different values of
m. The value function approximation is very accurate, and thus, CBMPI and AMPI-Q
achieve performance similar to LSPI for m < 20. However when m is large (m = 20), the
performance of these algorithms is worse, because in this case, the rollout set does not have
enough elements (N small) to learn the greedy policy and value function well. Note that
as we increase m (up to m = 10), CBMPI and AMPI-Q converge faster to a good policy.
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Figure 6: Performance of the policies learned by (a) CBMPI and LSPI and (b) AMPI-Q
algorithms in the Mountain Car (MC) problem, when we use a 2×2 RBF grid to
approximate the value function. The results are averaged over 1, 000 runs. The
total budget B is set to 4, 000 per iteration.

Although this experiment shows that the use of a critic in CBMPI compensates for the
truncation of the rollouts (CBMPI performs better than DPI), most of this advantage is due
to the richness of the function space F (LSPI and AMPI-Q perform as well as CBMPI—
LSPI even converges faster). Therefore, it seems that it would be more efficient to use LSPI
instead of CBMPI in this case.

In the next experiment, we study the performance of these algorithms when the function
space F is less rich, composed of a 2 × 2 RBF grid. The results are reported in Figure 6.
Now, the performance of LSPI and AMPI-Q (for the best value of m = 1) degrades to 75
and 70 steps, respectively. Although F is not rich, it still helps CBMPI to outperform DPI.
We notice the effect of (a weaker) F in CBMPI when we observe that it no longer converges
to its best performance (about 50 steps) for small values of m = 1 and m = 2. Note that
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CMBPI outperforms all the other algorithms for m = 10 (and even for m = 6), while still
has a sub-optimal performance for m = 20, mainly due to the fact that the rollout set would
be too small in this case.

6.2 Tetris

Tetris is a popular video game created by Alexey Pajitnov in 1985. The game is played on
a grid originally composed of 20 rows and 10 columns, where pieces of 7 different shapes
fall from the top (see Figure 4). The player has to choose where to place each falling piece
by moving it horizontally and rotating it. When a row is filled, it is removed and all the
cells above it move one line down. The goal is to remove as many rows as possible before
the game is over, i.e., when there is no space available at the top of the grid for the new
piece. This game constitutes an interesting optimization benchmark in which the goal is to
find a controller (policy) that maximizes the average (over multiple games) number of lines
removed in a game (score).9 This optimization problem is known to be computationally
hard. It contains a huge number of board configurations (about 2200 ' 1.6 × 1060), and
even in the case that the sequence of pieces is known in advance, finding the strategy to
maximize the score is a NP hard problem (Demaine et al., 2003). Here, we consider the
variation of the game in which the player only knows the current falling piece and none of
the next several coming pieces.

Approximate dynamic programming (ADP) and reinforcement learning (RL) algorithms
including approximate value iteration (Tsitsiklis and Van Roy, 1996), λ-policy iteration (λ-
PI) (Bertsekas and Ioffe, 1996; Scherrer, 2013), linear programming (Farias and Van Roy,
2006), and natural policy gradient (Kakade, 2002; Furmston and Barber, 2012) have been
applied to this very setting. These methods formulate Tetris as a MDP (with discount factor
γ = 1) in which the state is defined by the current board configuration plus the falling piece,
the actions are the possible orientations of the piece and the possible locations that it can
be placed on the board,10 and the reward is defined such that maximizing the expected
sum of rewards from each state coincides with maximizing the score from that state. Since
the state space is large in Tetris, these methods use value function approximation schemes
(often linear approximation) and try to tune the value function parameters (weights) from
game simulations. Despite a long history, ADP/RL algorithms, that have been (almost)
entirely based on approximating the value function, have not been successful in finding good
policies in Tetris. On the other hand, methods that search directly in the space of policies
by learning the policy parameters using black-box optimization, such as the cross entropy
(CE) method (Rubinstein and Kroese, 2004), have achieved the best reported results in
this game (see e.g., Szita and Lőrincz 2006; Thiery and Scherrer 2009b). This makes us
conjecture that Tetris is a game in which good policies are easier to represent, and thus to
learn, than their corresponding value functions. So, in order to obtain a good performance
with ADP in Tetris, we should use those ADP algorithms that search in a policy space, like
CBMPI and DPI, instead of the more traditional ones that search in a value function space.

9. Note that this number is finite because it was shown that Tetris is a game that ends with probability
one (Burgiel, 1997).

10. The total number of actions at a state depends on the shape of the falling piece, with the maximum of
32 actions in a state, i.e., |A| ≤ 32.
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In this section, we evaluate the performance of CBMPI in Tetris and compare it with
DPI, λ-PI, and CE. In these experiments, we show that CBMPI improves over all the previ-
ously reported ADP results. Moreover, it obtains the best results reported in the literature
for Tetris in both small 10×10 and large 10×20 boards. Although the CBMPI’s results are
similar to those achieved by the CE method in the large board, it uses considerably fewer
samples (call to the generative model of the game) than CE.

6.2.1 Experimental Setup

In this section, we briefly describe the algorithms used in our experiments: the cross entropy
(CE) method, our particular implementation of CBMPI, and its slight variation DPI. We
refer the readers to Scherrer (2013) for λ-PI. We begin by defining some terms and notations.
A state s in Tetris consists of two components: the description of the board b and the type
of the falling piece p. All controllers rely on an evaluation function that gives a value to each
possible action at a given state. Then, the controller chooses the action with the highest
value. In ADP, algorithms aim at tuning the weights such that the evaluation function
approximates well the value function, which coincides with the optimal expected future
score from each state. Since the total number of states is large in Tetris, the evaluation
function f is usually defined as a linear combination of a set of features φ, i.e., f(·) =
φ(·)>θ. Alternatively, we can think of the parameter vector θ as a policy (controller) whose
performance is specified by the corresponding evaluation function f(·) = φ(·)>θ. The
features used in Tetris for a state-action pair (s, a) may depend on the description of the
board b′ resulting from taking action a in state s, e.g., the maximum height of b′. Computing
such features requires to exploit the knowledge of the game’s dynamics (this dynamics is
indeed known for tetris). We consider the following sets of features, plus a constant offset
feature:11

(i) Bertsekas Features: First introduced by Bertsekas and Tsitsiklis (1996), this set
of 22 features has been mainly used in the ADP/RL community and consists of: the
number of holes in the board, the height of each column, the difference in height between
two consecutive columns, and the maximum height of the board.

(ii) Dellacherie-Thiery (D-T) Features: This set consists of the six features of Del-
lacherie (Fahey, 2003), i.e., the landing height of the falling piece, the number of eroded
piece cells, the row transitions, the column transitions, the number of holes, and the
number of board wells; plus 3 additional features proposed in Thiery and Scherrer
(2009b), i.e., the hole depth, the number of rows with holes, and the pattern diversity
feature. Note that the best policies reported in the literature have been learned using
this set of features.

(iii) RBF Height Features: These new 5 features are defined as exp(−|c−ih/4|
2

2(h/5)2
), i =

0, . . . , 4, where c is the average height of the columns and h = 10 or 20 is the total
number of rows in the board.

11. For a precise definition of the features, see Thiery and Scherrer (2009a) or the documentation of their
code (Thiery and Scherrer, 2010b). Note that the constant offset feature only plays a role in value
function approximation, and has no effect in modeling polices.
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Input: parameter space Θ, number of parameter vectors n, proportion ζ ≤ 1, noise η
Initialize: Set the mean and variance parameters µ = (0, 0, . . . , 0) and σ2 =
(100, 100, . . . , 100)
for k = 1, 2, . . . do

Generate a random sample of n parameter vectors {θi}ni=1 ∼ N (µ,diag(σ2))
For each θi, play G games and calculate the average number of rows removed (score) by
the controller
Select bζnc parameters with the highest score θ′1, . . . , θ

′
bζnc

Update µ and σ: µ(j) = 1
bζnc

∑bζnc
i=1 θ′i(j) and σ2(j) = 1

bζnc
∑bζnc
i=1 [θ′i(j)− µ(j)]2 + η

end for

Figure 7: The pseudo-code of the cross-entropy (CE) method used in our experiments.

The Cross Entropy (CE) Method: CE (Rubinstein and Kroese, 2004) is an iterative
method whose goal is to optimize a function f parameterized by a vector θ ∈ Θ by direct
search in the parameter space Θ. Figure 7 contains the pseudo-code of the CE algorithm
used in our experiments (Szita and Lőrincz, 2006; Thiery and Scherrer, 2009b). At each
iteration k, we sample n parameter vectors {θi}ni=1 from a multivariate Gaussian distribu-
tion with diagonal covariance matrix N (µ, diag(σ2)). At the beginning, the parameters
of this Gaussian have been set to cover a wide region of Θ. For each parameter θi, we
play G games and calculate the average number of rows removed by this controller (an
estimate of the expected score). We then select bζnc of these parameters with the high-
est score, θ′1, . . . , θ

′
bζnc, and use them to update the mean µ and variance diag(σ2) of the

Gaussian distribution, as shown in Figure 7. This updated Gaussian is used to sample the
n parameters at the next iteration. The goal of this update is to sample more parame-
ters from the promising parts of Θ at the next iteration, and hopefully converge to a good
maximum of f . In our experiments, in the pseudo-code of Figure 7, we set ζ = 0.1 and
η = 4, the best parameters reported in Thiery and Scherrer (2009b). We also set n = 1, 000
and G = 10 in the small board (10×10) and n = 100 and G = 1 in the large board (10×20).

Our Implementation of CBMPI (DPI): We use the algorithm whose pseudo-code is
shown in Figure 3. We sampled states from the trajectories generated by a good policy
for Tetris, namely the DU controller obtained by Thiery and Scherrer (2009b). Since this
policy is good, this set is biased towards boards with small height. The rollout set is then
obtained by subsampling this set so that the board height distribution is more uniform. We
noticed from our experiments that this subsampling significantly improves the performance.
We now describe how we implement the regressor and the classifier.

• Regressor: We use linear function approximation for the value function, i.e., v̂k(s
(i)) =

φ(s(i))α, where φ(·) and α are the feature and weight vectors, and minimize the em-
pirical error L̂Fk (µ̂; v) using the standard least-squares method.

• Classifier: The training set of the classifier is of size N with s(i) ∈ D′k as input

and
(

maxa Q̂k(s
(i), a) − Q̂k(s

(i), a1), . . . ,maxa Q̂k(s
(i), a) − Q̂k(s(i), a|A|)

)
as output.

We use the policies of the form πβ(s) = argmaxa ψ(s, a)>β, where ψ is the policy
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feature vector (possibly different from the value function feature vector φ) and β ∈ B
is the policy parameter vector. We compute the next policy πk+1 by minimizing the
empirical error L̂Π

k (µ̂;πβ), defined by (17), using the covariance matrix adaptation
evolution strategy (CMA-ES) algorithm (Hansen and Ostermeier, 2001). In order to
evaluate a policy β ∈ B in CMA-ES, we only need to compute L̂Π

k (µ̂;πβ), and given
the training set, this procedure does not require further simulation of the game.

We set the initial value function parameter to α = (0, 0, . . . , 0) and select the initial policy π1

(policy parameter β) randomly. We also set the CMA-ES parameters (classifier parameters)
to ζ = 0.5, η = 0, and n equal to 15 times the number of features.

6.2.2 Experiments

In our Tetris experiments, the policies learned by the algorithms are evaluated by their
score (average number of rows removed in a game started with an empty board) averaged
over 200 games in the small 10 × 10 board and over 20 games in the large 10 × 20 board
(since the game takes much more time to complete in the large board). The performance
of each algorithm is represented by a learning curve whose value at each iteration is the
average score of the policies learned by the algorithm at that iteration in 100 separate runs
of the algorithm. The curves are wrapped in their confidence intervals that are computed
as three time the standard deviation of the estimation of the performance at each iteration.
In addition to their score, we also evaluate the algorithms by the number of samples they
use. In particular, we show that CBMPI/DPI use 6 times fewer samples than CE in the
large board. As discussed in Section 6.2.1, this is due the fact that although the classifier in
CBMPI/DPI uses a direct search in the space of policies (for the greedy policy), it evaluates
each candidate policy using the empirical error of Equation 17, and thus, does not require
any simulation of the game (other than those used to estimate the Q̂k’s in its training set).
In fact, the budget B of CBMPI/DPI is fixed in advance by the number of rollouts NM and
the rollout’s length m as B = (m+ 1)NM |A|. On the contrary, CE evaluates a candidate
policy by playing several games, a process that can be extremely costly (sample-wise),
especially for good policies in the large board.

We first run the algorithms on the small board to study the role of their parameters and
to select the best features and parameters, and then use the selected features and param-
eters and apply the algorithms to the large board. Finally, we compare the best policies
found in our experiments with the best controllers reported in the literature (Tables 1 and 2).

6.2.2.1 Small (10 × 10) Board

Here we run the algorithms with two different feature sets: Dellacherie-Thiery (D-T) and
Bertsekas, and report their results.

D-T Features: Figure 8 shows the learning curves of CE, λ-PI, DPI, and CBMPI. Here we
use the D-T features for the evaluation function in CE, the policy in DPI and CBMPI, and
the value function in λ-PI (in the last case we also add the constant offset feature). For the
value function of CBMPI, we tried different choices of features and “D-T plus the 5 RBF
features and constant offset” achieved the best performance (see Figure 8(d)). The budget
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(c) DPI with budget B = 8, 000, 000 per iteration
and m = {1, 2, 5, 10, 20}.
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(d) CBMPI with budget B = 8, 000, 000 per iteration
and m = {1, 2, 5, 10, 20}.

Figure 8: Learning curves of CE, λ-PI, DPI, and CBMPI using the 9 Dellacherie-Thiery
(D-T) features on the small 10 × 10 board. The results are averaged over 100
runs of the algorithms.

of CBMPI and DPI is set to B = 8, 000, 000 per iteration. The CE method reaches the
score 3, 000 after 10 iterations using an average budget B = 65, 000, 000. λ-PI with the best
value of λ only manages to score 400. In Figure 8(c), we report the performance of DPI for
different values of m. DPI achieves its best performance for m = 5 and m = 10 by removing
3, 400 lines on average. As explained in Section 6.1, having short rollouts (m = 1) in DPI
leads to poor action-value estimates Q̂, while having too long rollouts (m = 20) decreases
the size of the training set of the classifier N . CBMPI outperforms the other algorithms,
including CE, by reaching the score of 4, 200 for m = 5. This value of m = 5 corresponds
to N = 8000000

(5+1)×32 ≈ 42, 000. Note that unlike DPI, CBMPI achieves good performance with
very short rollouts m = 1. This indicates that CBMPI is able to approximate the value
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(a) The cross-entropy (CE) method.
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(b) λ-PI with λ = {0, 0.4, 0.7, 0.9}.
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(c) DPI (dash-dotted line) & CBMPI (dash line) with
budget B = 80, 000, 000 per iteration and m = 10.

Figure 9: (a)-(c) Learning curves of CE, λ-PI, DPI, and CBMPI algorithms using the 22
Bertsekas features on the small 10× 10 board.

function well, and as a result, build a more accurate training set for its classifier than DPI.
Despite this improvement, the good results obtained by DPI in Tetris indicate that with
small rollout horizons like m = 5, one already has fairly accurate action-value estimates in
order to detect greedy actions accurately (at each iteration).

Overall, the results of Figure 8 show that an ADP algorithm, namely CBMPI, outper-
forms the CE method using a similar budget (80 vs. 65 millions after 10 iterations). Note
that CBMPI takes less iterations to converge than CE. More generally, Figure 8 confirms
the superiority of the policy search and classification-based PI methods to value-function
based ADP algorithms (λ-PI). This suggests that the D-T features are more suitable to
represent policies than value functions in Tetris.
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Figure 10: Learning curves of CBMPI, DPI and CE (left) using the 9 features listed in
Table 2, and λ-PI (right) using the Bertsekas features (those for which λ-PI
achieves here its best performance) on the large 10×20 board. The total budget
B of CBMPI and DPI is set to 16,000,000 per iteration.

Bertsekas Features: Figures 9(a)-(c) show the performance of CE, λ-PI, DPI, and CBMPI.
Here all the approximations in the algorithms are with the Bertsekas features plus constant
offset. CE achieves the score 500 after about 60 iterations and outperforms λ-PI with score
350. It is clear that the Bertsekas features lead to much weaker results than those obtained
by the D-T features (Figure 8) for all the algorithms. We may conclude then that the D-T
features are more suitable than the Bertsekas features to represent both value functions and
policies in Tetris. In DPI and CBMPI, we managed to obtain results similar to CE, only
after multiplying the per iteration budget B used in the D-T experiments by 10. Indeed,
CBMPI and DPI need more samples to solve the classification and regression problems
in this 22-dimensional weight vector space than with the 9 D-T features. Moreover, in
the classifier, the minimization of the empirical error through the CMA-ES method (see
Equation 12) was converging most of the times to a local minimum. To solve this issue,
we run multiple times the minimization problem with different starting points and small
initial covariance matrices for the Gaussian distribution in order to force local exploration
of different parts of the weight vector areas. However, CBMPI and CE require the same
number of samples, 150, 000, 000, to reach their best performance, after 2 and 60 iterations,
respectively (see Figure 9). Note that DPI and CBMPI obtain the same performance, which
means that the use of a value function approximation by CBMPI does not lead to a sig-
nificant performance improvement over DPI. We tried several values of m in this setting
among which m = 10 achieved the best performance for both DPI and CBMPI.

6.2.2.2 Large (10 × 20) Board

We now use the best parameters and features in the small board experiments, run CE, DPI,
and CBMPI in the large board, and report their results in Figure 10 (left). We also report
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the results of λ-PI in the large board in Figure 10 (right). The per iteration budget of DPI
and CBMPI is set to B = 32, 000, 000. While λ-PI with per iteration budget 100, 000, at
its best, achieves the score of 2, 500, DPI and CBMPI, with m = 5 and m = 10, reach the
scores of 12, 000, 000 and 20, 000, 000 after 3 and 8 iterations, respectively. CE matches the
performances of CBMPI with the score of 20, 000, 000 after 8 iterations, this is achieved
with almost 6 times more samples: after 8 iterations, CBMPI and CE use 256, 000, 000 and
1, 700, 000, 000 samples, respectively.

6.2.2.3 Comparison of the Best Policies

So far the reported scores for each algorithm was averaged over the policies learned in 100
separate runs. Here we select the best policies observed in all our experiments and compute
their scores more accurately by averaging over 10, 000 games. We then compare these results
with the best policies reported in the literature, i.e., DU and BDU (Thiery and Scherrer,
2009b) in both small and large boards in Table 1. The DT-10 and DT-20 policies, whose
weights and features are given in Table 2, are policies learned by CBMPI with D-T features
in the small and large boards, respectively.12 As shown in Table 1, DT-10 removes 5, 000
lines and outperforms DU, BDU, and DT-20 in the small board. Note that DT-10 is the
only policy among these four that has been learned in the small board. In the large board,
DT-20 obtains the score of 51, 000, 000 and not only outperforms the other three policies,
but also achieves the best reported result in the literature (to the best of our knowledge).
We observed in our experiments that the learning process in CBMPI has more variance in
its performance than the one of CE. We believe this is why in the large board, although the
policies learned by CE have similar performance to CBMPI (see Figure 10 (left)), the best
policy learned by CBMPI outperforms BDU, the best one learned by CE (see Table 1).

Boards \ Policies DU BDU DT-10 DT-20

Small (10× 10) board 3800 4200 5000 4300

Large (10× 20) board 31, 000, 000 36, 000, 000 29, 000, 000 51, 000, 000

Table 1: Average (over 10, 000 games) score of DU, BDU, DT-10, and DT-20 policies.

feature weight feature weight feature weight

landing height -2.18 -2.68 column transitions -3.31 -6.32 hole depth -0.81 -0.43

eroded piece cells 2.42 1.38 holes 0.95 2.03 rows w/ holes -9.65 -9.48

row transitions -2.17 -2.41 board wells -2.22 -2.71 diversity 1.27 0.89

Table 2: The weights of the 9 D-T features in the DT-10 (left) and DT-20 (right) policies.

12. Note that in the standard code by Thiery and Scherrer (2010b), there exist two versions of the feature
“board wells” numbered 6 and −6. In our experiments, we used the feature −6 as it is the more
computationally efficient of the two.
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7. Conclusion

In this paper, we considered a dynamic programming (DP) scheme for Markov decision pro-
cesses, known as modified policy iteration (MPI). We proposed three original approximate
MPI (AMPI) algorithms that are extensions of the existing approximate DP (ADP) algo-
rithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration.
We reported a general error propagation analysis for AMPI that unifies those for approxi-
mate policy and value iteration. We instantiated this analysis for the three algorithms that
we introduced, which led to a finite-sample analysis of their guaranteed performance. For
the last introduced algorithm, CBMPI, our analysis indicated that the main parameter of
MPI controls the balance of errors (between value function approximation and estimation of
the greedy policy). The role of this parameter was illustrated for all the algorithms on two
benchmark problems: Mountain Car and Tetris. Remarkably, in the game of Tetris, CBMPI
showed advantages over all previous approaches: it significantly outperforms previous ADP
approaches, and is competitive with black-box optimization techniques—the current state
of the art for this domain—while using fewer samples. In particular, CBMPI led to what is
to our knowledge the currently best Tetris controller, removing 51, 000, 000 lines on average.
Interesting future work includes 1) the adaptation and precise analysis of our three algo-
rithms to the computation of non-stationary policies—we recently showed that considering
a variation of AMPI for computing non-stationary policies allows improving the 1

(1−γ)2
con-

stant (Lesner and Scherrer, 2013)—and 2) considering problems with large action spaces,
for which the methods we have proposed here are likely to have limitation.
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Appendix A. Proof of Lemma 2

Before we start, we recall the following definitions:

bk = vk − Tπk+1
vk,

dk = v∗ − (Tπk)mvk−1 = v∗ − (vk − εk),
sk = (Tπk)mvk−1 − vπk = (vk − εk)− vπk .

A.1 Bounding bk

bk = vk − Tπk+1
vk

= vk − Tπkvk + Tπkvk − Tπk+1
vk

(a)

≤ vk − Tπkvk + ε′k+1

= vk − εk − Tπkvk + γPπkεk + εk − γPπkεk + ε′k+1

(b)
= vk − εk − Tπk(vk − εk) + (I − γPπk)εk + ε′k+1. (25)
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Using the definition of xk, i.e.,

xk
∆
= (I − γPπk)εk + ε′k+1, (26)

we may write Equation 25 as

bk ≤ vk − εk − Tπk(vk − εk) + xk
(c)
= (Tπk)mvk−1 − Tπk(Tπk)mvk−1 + xk

= (Tπk)mvk−1 − (Tπk)m(Tπkvk−1) + xk
(d)
= (γPπk)m(vk−1 − Tπkvk−1) + xk

= (γPπk)mbk−1 + xk. (27)

(a) From the definition of ε′k+1, we have ∀π′ Tπ′vk ≤ Tπk+1
vk + ε′k+1, thus this inequality

holds also for π′ = πk.
(b) This step is due to the fact that for every v and v′, we have Tπk(v+v′) = Tπkv+γPπkv

′.
(c) This is from the definition of εk, i.e., vk = (Tπk)mvk−1 + εk.
(d) This step is due to the fact that for every v and v′, any m, we have (Tπk)mv−(Tπk)mv′ =
(γPπk)m(v − v′).

A.2 Bounding dk

Define
gk+1

∆
= Tπk+1

vk − (Tπk+1
)mvk. (28)

Then,

dk+1 = v∗ − (Tπk+1
)mvk

= Tπ∗v∗ − Tπ∗vk + Tπ∗vk − Tπk+1
vk + Tπk+1

vk − (Tπk+1
)mvk

(a)

≤ γPπ∗(v∗ − vk) + ε′k+1 + gk+1

= γPπ∗(v∗ − vk) + γPπ∗εk − γPπ∗εk + ε′k+1 + gk+1

(b)
= γPπ∗

(
v∗ − (vk − εk)

)
+ yk + gk+1

= γPπ∗dk + yk + gk+1

(c)
= γPπ∗dk + yk +

m−1∑

j=1

(γPπk+1
)jbk. (29)

(a) This step is from the definition of ε′k+1 (see step (a) in bounding bk) and that of gk+1

in Equation 28.
(b) This is from the definition of yk, i.e.,

yk
∆
= −γPπ∗εk + ε′k+1. (30)

(c) This step comes from rewriting gk+1 as

gk+1 = Tπk+1
vk − (Tπk+1

)mvk
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=
m−1∑

j=1

[
(Tπk+1

)jvk − (Tπk+1
)j+1vk

]

=

m−1∑

j=1

[
(Tπk+1

)jvk − (Tπk+1
)j(Tπk+1

vk)
]

=
m−1∑

j=1

(γPπk+1
)j(vk − Tπk+1

vk)

=
m−1∑

j=1

(γPπk+1
)jbk. (31)

A.3 Bounding sk

With some slight abuse of notation, we have

vπk = (Tπk)∞vk

and thus:

sk = (Tπk)mvk−1 − vπk
(a)
= (Tπk)mvk−1 − (Tπk)∞vk−1

= (Tπk)mvk−1 − (Tπk)m(Tπk)∞vk−1

= (γPπk)m
(
vk−1 − (Tπk)∞vk−1

)

= (γPπk)m
∞∑

j=0

[
(Tπk)jvk−1 − (Tπk)j+1vk−1

]

= (γPπk)m
∞∑

j=0

[
(Tπk)jvk−1 − (Tπk)jTπkvk−1

]

= (γPπk)m
( ∞∑

j=0

(γPπk)j
)

(vk−1 − Tπkvk−1)

= (γPπk)m(I − γPπk)−1(vk−1 − Tπkvk−1)

= (γPπk)m(I − γPπk)−1bk−1. (32)

(a) For any v, we have vπk = (Tπk)∞v. This step follows by setting v = vk−1, i.e., vπk =
(Tπk)∞vk−1.

Appendix B. Proof of Lemma 4

We begin by focusing our analysis on AMPI. Here we are interested in bounding the loss
lk = v∗ − vπk = dk + sk.
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By induction, from Equations 27 and 29, we obtain

bk ≤
k∑

i=1

Γm(k−i)xi + Γmkb0, (33)

dk ≤
k−1∑

j=0

Γk−1−j
(
yj +

m−1∑

l=1

Γlbj

)
+ Γkd0. (34)

in which we have used the notation introduced in Definition 3. In Equation 34, we also
used the fact that from Equation 31, we may write gk+1 =

∑m−1
j=1 Γjbk. Moreover, we may

rewrite Equation 32 as

sk = Γm
∞∑

j=0

Γjbk−1 =

∞∑

j=0

Γm+jbk−1. (35)

B.1 Bounding lk

From Equations 33 and 34, we may write

dk ≤
k−1∑

j=0

Γk−1−j

(
yj +

m−1∑

l=1

Γl
( j∑

i=1

Γm(j−i)xi + Γmjb0

))
+ Γkd0

=
k∑

i=1

Γi−1yk−i +
k−1∑

j=0

m−1∑

l=1

j∑

i=1

Γk−1−j+l+m(j−i)xi + zk, (36)

where we used the following definition

zk
∆
=

k−1∑

j=0

m−1∑

l=1

Γk−1+l+j(m−1)b0 + Γkd0 =
mk−1∑

i=k

Γib0 + Γkd0.

The triple sum involved in Equation 36 may be written as

k−1∑

j=0

m−1∑

l=1

j∑

i=1

Γk−1−j+l+m(j−i)xi =

k−1∑

i=1

k−1∑

j=i

m−1∑

l=1

Γk−1+l+j(m−1)−mixi

=
k−1∑

i=1

mk−1∑

j=mi+k−i
Γj−mixi

=

k−1∑

i=1

m(k−i)−1∑

j=k−i
Γjxi

=

k−1∑

i=1

mi−1∑

j=i

Γjxk−i. (37)
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Using Equation 37, we may write Equation 36 as

dk ≤
k∑

i=1

Γi−1yk−i +
k−1∑

i=1

mi−1∑

j=i

Γjxk−i + zk. (38)

Similarly, from Equations 35 and 33, we have

sk ≤
∞∑

j=0

Γm+j
( k−1∑

i=1

Γm(k−1−i)xi + Γm(k−1)b0

)

=
∞∑

j=0

( k−1∑

i=1

Γm+j+m(k−1−i)xi + Γm+j+m(k−1)b0

)

=
k−1∑

i=1

∞∑

j=0

Γj+m(k−i)xi +

∞∑

j=0

Γj+mkb0 =

k−1∑

i=1

∞∑

j=0

Γj+mixk−i +

∞∑

j=mk

Γjb0

=

k−1∑

i=1

∞∑

j=mi

Γjxk−i + z′k, (39)

where we used the following definition

z′k
∆
=

∞∑

j=mk

Γjb0.

Finally, using the bounds in Equations 38 and 39, we obtain the following bound on the
loss

lk ≤ dk + sk

≤
k∑

i=1

Γi−1yk−i +

k−1∑

i=1

(mi−1∑

j=i

Γj +

∞∑

j=mi

Γj
)
xk−i + zk + z′k

=

k∑

i=1

Γi−1yk−i +

k−1∑

i=1

∞∑

j=i

Γjxk−i + ηk, (40)

where we used the following definition

ηk
∆
= zk + z′k =

∞∑

j=k

Γjb0 + Γkd0. (41)

Note that we have the following relation between b0 and d0

b0 = v0 − Tπ1v0

= v0 − v∗ + Tπ∗v∗ − Tπ∗v0 + Tπ∗v0 − Tπ1v0

≤ (I − γPπ∗)(−d0) + ε′1, (42)
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In Equation 42, we used the fact that v∗ = Tπ∗v∗, ε0 = 0, and Tπ∗v0 − Tπ1v0 ≤ ε′1 (this is
because the policy π1 is ε′1-greedy w.r.t. v0). As a result, we may write |ηk| either as

|ηk| ≤
∞∑

j=k

Γj
[
(I − γPπ∗)|d0|+ |ε′1|

]
+ Γk|d0|

≤
∞∑

j=k

Γj
[
(I + Γ1)|d0|+ |ε′1|

]
+ Γk|d0|

= 2
∞∑

j=k

Γj |d0|+
∞∑

j=k

Γj |ε′1|, (43)

or using the fact that from Equation 42, we have d0 ≤ (I − γPπ∗)−1(−b0 + ε′1), as

|ηk| ≤
∞∑

j=k

Γj |b0|+ Γk
∞∑

j=0

(γPπ∗)
j
(
|b0|+ |ε′1|

)

=

∞∑

j=k

Γj |b0|+ Γk
∞∑

j=0

Γj
(
|b0|+ |ε′1|

)

= 2
∞∑

j=k

Γj |b0|+
∞∑

j=k

Γj |ε′1|. (44)

Now, using the definitions of xk and yk in Equations 26 and 30, the bound on |ηk| in
Equation 43 or 44, and the fact that ε0 = 0, we obtain

|lk| ≤
k∑

i=1

Γi−1
[
Γ1|εk−i|+ |ε′k−i+1|

]
+
k−1∑

i=1

∞∑

j=i

Γj
[
(I + Γ1)|εk−i|+ |ε′k−i+1|

]
+ |ηk|

=
k−1∑

i=1

(
Γi +

∞∑

j=i

(Γj + Γj+1)
)
|εk−i|+ Γk|ε0| (45)

+
k−1∑

i=1

(
Γi−1 +

∞∑

j=i

Γj
)
|ε′k−i+1|+ Γk−1|ε′1|+

∞∑

j=k

Γj |ε′1|+ h(k)

= 2
k−1∑

i=1

∞∑

j=i

Γj |εk−i|+
k−1∑

i=1

∞∑

j=i−1

Γj |ε′k−i+1|+
∞∑

j=k−1

Γj |ε′1|+ h(k)

= 2

k−1∑

i=1

∞∑

j=i

Γj |εk−i|+
k−1∑

i=0

∞∑

j=i

Γj |ε′k−i|+ h(k), (46)

where we used the following definition

h(k)
∆
= 2

∞∑

j=k

Γj |d0| or h(k)
∆
= 2

∞∑

j=k

Γj |b0|,

depending on whether one uses Equation 43 or Equation 44.
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We end this proof by adapting the error propagation to CBMPI. As expressed by
Equations 20 and 21 in Section 4, an analysis of CBMPI can be deduced from that we
have just done by replacing vk with the auxiliary variable wk = (Tπk)mvk−1 and εk with
(γPπk)mεk−1 = Γmεk−1. Therefore, using the fact that ε0 = 0, we can rewrite the bound of
Equation 46 for CBMPI as follows:

lk ≤ 2
k−1∑

i=1

∞∑

j=i

Γj+m|εk−i−1|+
k−1∑

i=0

∞∑

j=i

Γj |ε′k−i|+ h(k)

= 2
k−2∑

i=1

∞∑

j=m+i

Γj |εk−i−1|+
k−1∑

i=0

∞∑

j=i

Γj |ε′k−i|+ h(k). (47)

Appendix C. Proof of Lemma 6

For any integer t and vector z, the definition of Γt and Hölder’s inequality imply that

ρΓt|z| =
∥∥Γt|z|

∥∥
1,ρ
≤ γtcq(t)‖z‖q′,µ = γtcq(t)

(
µ|z|q′

) 1
q′
. (48)

We define

K
∆
=

n∑

l=1

ξl


∑

i∈Il

∑

j∈Ji

γj


 ,

where {ξl}nl=1 is a set of non-negative numbers that we will specify later. We now have

‖f‖pp,ρ = ρ|f |p

≤ Kpρ

(∑n
l=1

∑
i∈Il

∑
j∈Ji Γj |gi|

K

)p
= Kpρ



∑n

l=1 ξl
∑

i∈Il
∑

j∈Ji Γj
(
|gi|
ξl

)

K



p

(a)

≤ Kpρ

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji Γj

(
|gi|
ξl

)p

K
= Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji ρΓj

(
|gi|
ξl

)p

K

(b)

≤ Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji γ

jcq(j)

(
µ
(
|gi|
ξl

)pq′) 1
q′

K

= Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji γ

jcq(j)
(‖gi‖pq′,µ

ξl

)p

K

≤ Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

jcq(j)
)(

supi∈Il
‖gi‖pq′,µ
ξl

)p

K

(c)
= Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

j
)
Cq(l)

(
supi∈Il

‖gi‖pq′,µ
ξl

)p

K
,
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FN

z

y
⇠

b⇠
by = b⇧ybz = b⇧z

Figure 11: The notations used in the proof.

where (a) results from Jensen’s inequality, (b) from Equation 48, and (c) from the definition

of Cq(l). Now, by setting ξl =
(
Cq(l)

)1/p
supi∈Il ‖gi‖pq′,µ, we obtain

‖f‖pp,ρ ≤ Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

j
)

K
= Kp,

where the last step follows from the definition of K.

Appendix D. Proof of Lemma 11

Let µ̂ be the empirical distribution corresponding to states s(1), . . . , s(n). Let us define

two N -dimensional vectors z =
([

(Tπk)mvk−1

]
(s(1)), . . . ,

[
(Tπk)mvk−1

]
(s(N))

)>
and y =

(
v̂k(s

(1)), . . . , v̂k(s
(N))

)>
and their orthogonal projections onto the vector space FN as ẑ =

Π̂z and ŷ = Π̂y =
(
ṽk(s

(1)), . . . , ṽk(s
(N))

)>
, where ṽk is the result of linear regression and

its truncation (by Vmax) is vk, i.e., vk = T(ṽk) (see Figure 11). What we are interested in is
to find a bound on the regression error ‖z − ŷ‖ (the difference between the target function
z and the result of the regression ŷ). We may decompose this error as

‖z − ŷ‖2,µ̂ ≤ ‖ẑ − ŷ‖2,µ̂ + ‖z − ẑ‖2,µ̂ = ‖ξ̂‖2,µ̂ + ‖z − ẑ‖2,µ̂, (49)

where ξ̂ = ẑ − ŷ is the projected noise (estimation error) ξ̂ = Π̂ξ, with the noise vector
ξ = z − y defined as ξi =

[
(Tπk)mvk−1

]
(s(i)) − v̂k(s

(i)). It is easy to see that noise is
zero mean, i.e., E[ξi] = 0 and is bounded by 2Vmax, i.e., |ξi| ≤ 2Vmax. We may write the
estimation error as

‖ẑ − ŷ‖22,µ̂ = ‖ξ̂‖22,µ̂ = 〈ξ̂, ξ̂〉 = 〈ξ, ξ̂〉,
where the last equality follows from the fact that ξ̂ is the orthogonal projection of ξ. Since
ξ̂ ∈ FN , let fα ∈ F be any function in the function space F ,13 whose values at {s(i)}Ni=1

13. We should discriminate between the linear function space F =
{
fα | α ∈ Rd and fα(·) = φ(·)>α

}
, where

φ(·) =
(
ϕ1(·), . . . , ϕd(·)

)>
, and its corresponding linear vector space FN = {Φα, α ∈ Rd} ⊂ RN , where

Φ =
[
φ(s(1))>; . . . ;φ(s(N))>

]
.
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equals to {ξ̂i}Ni=1. By application of a variation of Pollard’s inequality (Györfi et al., 2002),
we obtain

〈ξ, ξ̂〉 =
1

N

N∑

i=1

ξifα(s(i)) ≤ 4Vmax‖ξ̂‖2,µ̂

√
2

N
log

(
3(9e2N)d+1

δ′

)
,

with probability at least 1− δ′. Thus, we have

‖ẑ − ŷ‖2,µ̂ = ‖ξ̂‖2,µ̂ ≤ 4Vmax

√
2

N
log

(
3(9e2N)d+1

δ′

)
. (50)

From Equations 49 and 50, we have

‖(Tπk)mvk−1 − ṽk‖2,µ̂ ≤ ‖(Tπk)mvk−1 − Π̂(Tπk)mvk−1‖2,µ̂ + 4Vmax

√
2

N
log

(
3(9e2N)d+1

δ′

)
.

(51)
Now in order to obtain a random design bound, we first define fα̂∗ ∈ F as fα̂∗(s

(i)) =[
Π̂(Tπk)mvk−1

]
(s(i)), and then define fα∗ = Π(Tπk)mvk−1 that is the best approximation

(w.r.t. µ) of the target function (Tπk)mvk−1 in F . Since fα̂∗ is the minimizer of the empirical
loss, any function in F different than fα̂∗ has a bigger empirical loss, thus we have

‖fα̂∗ − (Tπk)mvk−1‖2,µ̂ ≤ ‖fα∗ − (Tπk)mvk−1‖2,µ̂
≤ 2‖fα∗ − (Tπk)mvk−1‖2,µ

+ 12
(
Vmax + ‖α∗‖2 sup

x
‖φ(x)‖2

)√ 2

N
log

3

δ′
(52)

with probability at least 1−δ′, where the second inequality is the application of a variation of
Theorem 11.2 in Györfi et al. (2002) with ‖fα∗−(Tπk)mvk−1‖∞ ≤ Vmax+‖α∗‖2 supx ‖φ(x)‖2.
Similarly, we can write the left-hand-side of Equation 51 as

2‖(Tπk)mvk−1 − ṽk‖2,µ̂ ≥ 2‖(Tπk)mvk−1 − T(ṽk)‖2,µ̂

≥ ‖(Tπk)mvk−1 − T(ṽk)‖2,µ − 24Vmax

√
2

N
Λ(N, d, δ′) (53)

with probability at least 1−δ′, where Λ(N, d, δ′) = 2(d+1) logN+log e
δ′+log

(
9(12e)2(d+1)

)
.

Putting together Equations 51, 52, and 53 and using the fact that T(ṽk) = vk, we obtain

‖εk‖2,µ = ‖(Tπk)mvk−1 − vk‖2,µ

≤ 2

(
2‖(Tπk)mvk−1 − fα∗‖2,µ

+ 12
(
Vmax + ‖α∗‖2 sup

x
‖φ(x)‖2

)√ 2

N
log

3

δ′
+ 4Vmax

√
2

N
log

(
3(9e2N)d+1

δ′

))

+ 24Vmax

√
2

N
Λ(N, d, δ′).

The result follows by setting δ = 3δ′ and some simplifications.
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Appendix E. Proof of Lemma 12

Proof We prove the following series of inequalities:

||ε′k||1,µ
(a)

≤ ||ε′k||1,µ̂ + e′3(N, δ′) w.p. 1− δ′

(b)
=

1

N

N∑
i=1

[
max
a∈A

(
Tavk−1

)
(s(i))−

(
Tπkvk−1

)
(s(i))

]
+ e′3(N, δ′)

(c)

≤ 1

N

N∑
i=1

[
max
a∈A

(
Tavk−1

)
(s(i))− 1

M

M∑
j=1

(
T̂ (j)
πk
vk−1

)
(s(i))

]
+ e′3(N, δ′) + e′4(N,M, δ′) w.p. 1− 2δ′

(d)
=

1

N

N∑
i=1

[
max
a∈A

(
Tavk−1

)
(s(i))−max

a′∈A

1

M

M∑
j=1

(
T̂

(j)

a′ vk−1

)
(s(i))

]
+ e′3(N, δ′) + e′4(N,M, δ′)

(e)

≤ 1

N

N∑
i=1

{
max
a∈A

[(
Tavk−1

)
(s(i))− 1

M

M∑
j=1

(
T̂ (j)
a vk−1

)
(s(i))

]}
+ e′3(N, δ′) + e′4(N,M, δ′)

(f)

≤ e′3(N, δ′) + e′4(N,M, δ′) + e′5(M,N, δ′) w.p. 1− 3δ′

(a) This step is the result of the following lemma.

Lemma 17 Let Π be the policy space of the policies obtained by Equation 4 from the trun-
cation (by Vmax) of the function space F , with finite VC-dimension h = V C(Π) < ∞. Let
N > 0 be the number of states in the rollout set Dk, drawn i.i.d. from the state distribution
µ. Then, we have

PDk

[
sup
π∈Π

∣∣||ε′k(π)||1,µ̂ − ||ε′k(π)||1,µ
∣∣ > e′3(N, δ′)

]
≤ δ′ ,

with e′3(N, δ′) = 16Vmax

√
2
N (h log eN

h + log 8
δ′ ).

Proof The proof is similar to the proof of Lemma 1 in Lazaric et al. (2010c).

(b) This is from the definition of ||ε′k||1,µ̂.

(c) This step is the result of bounding

sup
π∈Π


 1

MN

N∑

i=1

M∑

j=1

(
T̂ (j)
π vk−1

)
(s(i))− 1

MN

N∑

i=1

M∑

j=1

(
Tπvk−1

)
(s(i))




by e′4(N,M, δ′). The supremum over all the policies in the policy space Π is due to the
fact that πk is a random object whose randomness comes from all the randomly generated
samples at the k’th iteration (i.e., the states in the rollout set and all the generated rollouts).
We bound this term using the following lemma.

Lemma 18 Let Π be the policy space of the policies obtained by Equation 4 from the trun-
cation (by Vmax) of the function space F , with finite VC-dimension h = V C(Π) < ∞. Let
{s(i)}Ni=1 be N states sampled i.i.d. from the distribution µ. For each sampled state s(i),
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we take the action suggested by policy π, M times, and observe the next states {s(i,j)}Mj=1.
Then, we have

P


sup
π∈Π

∣∣∣∣∣∣
1

N

N∑

i=1

1

M

M∑

j=1

[
r
(
s(i), π(s(i)

)
+ γvk−1

(
s(i,j)

)]
− 1

N

N∑

i=1

(
Tπvk−1

)
(s(i))

∣∣∣∣∣∣
> e′4(N,M, δ′)


 ≤ δ′ ,

with e′4(N,M, δ′) = 8Vmax

√
2

MN

(
h log eMN

h + log 8
δ′

)
.

Proof The proof is similar to the proof of Lemma 4 in Lazaric et al. (2010a).

(d) This step is from the definition of πk in the AMPI-V algorithm (Equation 4).

(e) This step is algebra, replacing two maximums with one.

(f) This step follows from applying Chernoff-Hoeffding to bound

(
T
a
(i)
∗
vk−1

)
(s(i))− 1

M

M∑

j=1

(
T̂

(j)

a
(i)
∗
vk−1

)
(s(i)),

for each i = 1, . . . , N , by e′5(M, δ′′) = Vmax

√
2 log(1/δ′′)

M , followed by a union bound, which

gives us e′5(M,N, δ′) = Vmax

√
2 log(N/δ′)

M . Note that the fixed action a
(i)
∗ is defined as

a
(i)
∗ = argmax

a∈A

[(
Tavk−1

)
(s(i))− 1

M

M∑

j=1

(
T̂ (j)
a vk−1

)
(s(i))

]
.

The final statement of the theorem follows by setting δ = 3δ′.

Appendix F. Proof of Lemma 13

The proof of this lemma is similar to the proof of Theorem 1 in Lazaric et al. (2010c).
Before stating the proof, we report the following two lemmas that are used in the proof.

Lemma 19 Let Π be a policy space with finite VC-dimension h = V C(Π) <∞ and N ′ be
the number of states in the rollout set D′k−1 drawn i.i.d. from the state distribution µ. Then
we have

PD′k−1

[
sup
π∈Π

∣∣∣LΠ
k−1(µ̂;π)− LΠ

k−1(µ;π)
∣∣∣ > ε

]
≤ δ ,

with ε = 16Qmax

√
2
N ′

(
h log eN ′

h + log 8
δ

)
.

Proof This is a restatement of Lemma 1 in Lazaric et al. (2010c).
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Lemma 20 Let Π be a policy space with finite VC-dimension h = V C(Π) < ∞ and
s(1), . . . , s(N ′) be an arbitrary sequence of states. Assume that at each state, we simulate M
independent rollouts. We have

P


sup
π∈Π

∣∣∣ 1

N ′

N ′∑

i=1

1

M

M∑

j=1

Rjk−1

(
s(i,j), π(s(i,j))

)
− 1

N ′

N ′∑

i=1

Qk−1

(
s(i,j), π(s(i,j))

)∣∣∣ > ε


 ≤ δ ,

with ε = 8Qmax

√
2

MN ′

(
h log eMN ′

h + log 8
δ

)
.

Proof The proof is similar to the one for Lemma 19.

Proof (Lemma 13) Let a∗(·) ∈ argmaxa∈AQk−1(·, a) be a greedy action. To simplify the
notation, we remove the dependency of a∗ on states and use a∗ instead of a∗(s(i)) in the
following. We prove the following series of inequalities:

LΠ
k−1(µ;πk)

(a)

≤ LΠ
k−1(µ̂;πk) + e′1(N ′, δ) w.p. 1− δ′

=
1

N ′

N ′∑

i=1

[
Qk−1(s(i), a∗)−Qk−1

(
s(i), πk(s(i))

)]
+ e′1(N ′, δ)

(b)

≤ 1

N ′

N ′∑

i=1

[
Qk−1(s(i), a∗)− Q̂k−1

(
s(i), πk(s(i))

)]
+ e′1(N ′, δ) + e′2(N ′,M, δ) w.p. 1− 2δ′

(c)

≤ 1

N ′

N ′∑

i=1

[
Qk−1(s(i), a∗)− Q̂k−1

(
s(i), π̃(s(i))

)]
+ e′1(N ′, δ) + e′2(N ′,M, δ)

(b)

≤ 1

N ′

N ′∑

i=1

[
Qk−1(s(i), a∗)−Qk−1

(
s(i), π̃(s(i))

)]
+ e′1(N ′, δ) + 2e′2(N ′,M, δ) w.p. 1− 3δ′

= LΠ
k−1(µ̂; π̃) + e′1(N ′, δ) + 2e′2(N ′,M, δ)

(a)

≤ LΠ
k−1(µ; π̃) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
w.p. 1− 4δ′

= inf
π∈Π
LΠ
k−1(µ;π) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
.

The statement of the theorem is obtained by setting δ′ = δ/4.

(a) This follows from Lemma 19.
(b) Here we introduce the estimated action-value function Q̂k−1 by bounding

sup
π∈Π

[
1

N ′

N ′∑

i=1

Q̂k−1

(
s(i), π(s(i))

)
− 1

N ′

N ′∑

i=1

Qk−1

(
s(i), π(s(i))

)]

using Lemma 20.
(c) From the definition of πk in CBMPI, we have

πk = argmin
π∈Π

L̂Π
k−1(µ̂;π) = argmax

π∈Π

1

N ′

N ′∑

i=1

Q̂k−1

(
s(i), π(s(i))

)
,
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thus, −1/N ′
∑N ′

i=1 Q̂k−1

(
s(i), πk(s

(i))
)

can be maximized by replacing πk with any other
policy, particularly with

π̃ = argmin
π∈Π

∫

S

(
max
a∈A

Qk−1(s, a)−Qk−1

(
s, π(s)

))
µ(ds).
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Cs. Szepesvári. Reinforcement learning algorithms for mdps. In Wiley Encyclopedia of
Operations Research. Wiley, 2010.

I. Szita and A. Lőrincz. Learning tetris using the noisy cross-entropy method. Neural
Computation, 18(12):2936–2941, 2006.

1675



Scherrer, Ghavamzadeh, Gabillon, Lesner and Geist

C. Thiery and B. Scherrer. Building controllers for tetris. International Computer Games
Association Journal, 32:3–11, 2009a. URL http://hal.inria.fr/inria-00418954.

C. Thiery and B. Scherrer. Improvements on learning tetris with cross entropy. Interna-
tional Computer Games Association Journal, 32, 2009b. URL http://hal.inria.fr/

inria-00418930.

C. Thiery and B. Scherrer. Least-squares λ-policy iteration: bias-variance trade-off in
control problems. In Proceedings of the Twenty-Seventh International Conference on
Machine Learning, pages 1071–1078, 2010a.

C. Thiery and B. Scherrer. MDPTetris features documentation, 2010b. http://mdptetris.
gforge.inria.fr/doc/feature_functions_8h.html.

J. Tsitsiklis and B Van Roy. Feature-based methods for large scale dynamic programming.
Machine Learning, 22:59–94, 1996.

J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

1676

http://hal.inria.fr/inria-00418954
http://hal.inria.fr/inria-00418930
http://hal.inria.fr/inria-00418930
http://mdptetris.gforge.inria.fr/doc/feature_functions_8h.html
http://mdptetris.gforge.inria.fr/doc/feature_functions_8h.html


Journal of Machine Learning Research 16 (2015) 1677-1681 Published 9/15

Preface to this Special Issue

Alex Gammerman alex@cs.rhul.ac.uk
Vladimir Vovk v.vovk@rhul.ac.uk
Computer Learning Research Centre, Department of Computer Science
Royal Holloway, University of London

This issue of JMLR is devoted to the memory of Alexey Chervonenkis. Over the period
of a dozen years between 1962 and 1973 he and Vladimir Vapnik created a new discipline
of statistical learning theory—the foundation on which all our modern understanding of
pattern recognition is based. Alexey was 28 years old when they made their most famous
and original discovery, the uniform law of large numbers. In that short period Vapnik and
Chervonenkis also introduced the main concepts of statistical learning theory, such as VC-
dimension, capacity control, and the Structural Risk Minimization principle, and designed
two powerful pattern recognition methods, Generalised Portrait and Optimal Separating
Hyperplane, later transformed by Vladimir Vapnik into Support Vector Machine—arguably
one of the best tools for pattern recognition and regression estimation. Thereafter Alexey
continued to publish original and important contributions to learning theory. He was also
active in research in several applied fields, including geology, bioinformatics, medicine, and
advertising.

Alexey tragically died in September 2014 after getting lost during a hike in the Elk Island
park on the outskirts of Moscow. Vladimir Vapnik suggested to prepare an issue of JMLR
to be published at the first anniversary of the death of his long-term collaborator and close
friend. Vladimir and the editors contacted a few dozen leading researchers in the fields of
machine learning related to Alexey’s research interests and had many enthusiastic replies. In
the end eleven papers were accepted. This issue also contains a first attempt at a complete
bibliography of Alexey Chervonenkis’s publications.

Simultaneously with this special issue will appear Alexey’s Festschrift (Vovk et al., 2015),
to which the reader is referred for information about Alexey’s research, life, and death. The
Festschrift is based in part on a symposium held in Pathos, Cyprus, in 2013 to celebrate
Alexey’s 75th anniversary. Apart from research contributions, it contains Alexey’s remi-
niscences about his early work on statistical learning with Vladimir Vapnik, a reprint of
their seminal 1971 paper, a historical chapter by R. M. Dudley, reminiscences of Alexey’s
and Vladimir’s close colleague Vasily Novoseltsev, and three reviews of various measures of
complexity used in machine learning (“Measures of Complexity” is both the name of the
symposium and the title of the book). Among Alexey’s contributions to machine learning
(mostly joint with Vladimir Vapnik) discussed in the book are:

• derivation of necessary and sufficient conditions for the uniform convergence of the
frequencies of events to their probabilities (later developed into necessary and sufficient
conditions for the uniform convergence of means to expectations);

• introduction of a new characteristic of classes of sets, which they called capacity
(емкость) and which was later renamed as VC-dimension;
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• development of powerful pattern recognition algorithms, Generalized Portrait and Op-
timal Separating Hyperplane;

• applying the theory of machine learning to diverse fields; e.g., a computer system using
methods of machine learning was developed and installed at the world’s largest open
gold pit in Murun-Tau (Uzbekistan), which won him the State Prize of the USSR.

This Special Issue opens with the paper by Vladimir Vapnik and Rauf Izmailov “V -
matrix method of solving statistical inference problems”, which proposes new ways of solving
learning problems such as estimating conditional probabilities. The authors ask whether
the new methods can replace SVM in the problem of pattern recognition. Solving the
problem of pattern recognition via estimating conditional probabilities might appear to
contradict Vapnik’s [1995, 1998] Imperative that the problem of interest (in this case pattern
recognition) should be solved directly, without solving a more general problem (in this case
estimating conditional probabilities) as an intermediate step. However, the authors explain
that there is no real contradiction.

The paper “Batch learning from logged bandit feedback through Counterfactual Risk
Minimization” by Adith Swaminathan and Thorsten Joachims extends Vapnik and Chervo-
nenkis’s Structural Risk Minimization principle to the situation where only partial feedback,
determined by the prediction, is available. Such situations are ubiquitous in, e.g., advertise-
ment placement, an active area of Alexey’s research during the last years of his life.

The next paper, “Optimal estimation of low rank density matrices” by Vladimir Koltchin-
skii and Dong Xia, concerns Alexey’s other major interest, quantum mechanics, which the
authors mention at the beginning of their contribution. This interest is not reflected in
Alexey’s bibliography (published at the end of this Special Issue), and we know about
it from reminiscences of his colleagues and relatives and from his technical report (Chervo-
nenkis, 2001), in which he computes the covariance function for the solution to Schrödinger’s
equation. The paper by Koltchinskii and Xia is devoted to the estimation of density ma-
trices, describing states of quantum systems, which has important applications in quantum
tomography.

The paper “Fast rates in statistical and online learning” by van Erven, Peter D. Grünwald,
Nishant A. Mehta, Mark D. Reid, and Robert C. Williamson explores conditions that make
fast learning possible finding unexpected similarities between two styles of learning, statis-
tical and online. It is interesting that Vapnik and Chervonenkis started their joint work in
a non-statistical setting (Chervonenkis, 2015), although they quickly moved to their well-
known statistical one, which is now standard in machine learning. The authors show us that
the difference between the two styles of learning is smaller than it appears.

In their paper “On the asymptotic normality of an estimate of a regression functional”
László Györfi and Harro Walk deal with the standard problem of regression in statistical
learning theory but are interested in the quality (as measured by the square loss function) of
the regression function rather than the regression function itself. They prove a surprisingly
robust result about the asymptotic distribution of the main component of this measure of
quality.

Pierre Bellec and Alexandre B. Tsybakov in “Sharp oracle bounds for monotone and
convex regression through aggregation” consider important restricted versions of regression,
in which the regression function is assumed to be either monotone (isotonic regression)
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or convex. In evaluating their procedures the authors follow Vapnik and Chervonenkis’s
criterion of minimax loss, their main tools are different kinds of predictor aggregation, and
their non-asymptotic performance guarantees are sharp.

The paper “Exceptional rotations of random graphs: a VC theory” by Louigi Addario-
Berry, Shankar Bhamidi, Sébastien Bubeck, Luc Devroye, Gábor Lugosi, and Roberto
Imbuzeiro Oliveira develops a fascinating analogue of the Vapnik–Chervonenkis statistical
learning theory adapting it to random graphs.

The next paper, “Semi-supervised interpolation in an anticausal learning scenario” by
Dominik Janzing and Bernhard Schölkopf, represents the area of causal inference and sheds
new light on the situations in which seeing unlabelled observations does not provide any
useful information (and so semi-supervised learning does not work). As the second author
modestly says in a slightly different context elsewhere (Schölkopf, 2014), such results may
not be as beautiful as those in the field that Alexey co-founded; however, this is compensated
by their practical and philosophical importance.

It appears that unsupervised learning was one of the few fields of machine learning
in which Alexey did not work directly, despite its importance in many applications: no
one mind, even as versatile as his, can embrace everything. In their “Towards an axiomatic
approach to hierarchical clustering of measures”, Philipp Thomann, Ingo Steinwart, and Nico
Schmid study the foundations of unsupervised learning. They show how the user’s choice
of a “clustering base” in conjunction with several natural axioms determines a clustering
method.

Mark Herbster, Stephen Pasteris, and Massimiliano Pontil’s “Predicting a switching se-
quence of graph labellings” is another paper devoted to online learning. The authors design
new online prediction algorithms on graphs that can cope with switching labellings and
multitask prediction problems.

The last research paper in this Special Issue is Vladimir Vapnik and Rauf Izmailov’s
“Learning using privileged information: Similarity control and knowledge transfer”, which
complements the standard protocol of statistical learning with an Intelligent Teacher provid-
ing the Student with privileged information. Such information is present in many real-world
applications of machine learning and can be very useful.

The last part of the Special Issue is Alexey Chervonenkis’s bibliography. His publica-
tions are listed in the chronological order, starting from the fundamental papers by Vapnik
and Chervonenkis on the method of Generalized Portrait and the foundations of statistical
learning theory, and then branching into countless fields including applied linguistics, geol-
ogy, medicine and bioinformatics, and advertisement placement. They attest to his great
role as discoverer and inventor. His tragic death a year ago was a great loss not only to his
relatives, friends, and colleagues, who remember his wonderful warmth as a person, but also
to the whole machine learning community and science in general.
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Figure 1: Alexey Chervonenkis (1938–2014)
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Abstract

This paper presents direct settings and rigorous solutions of the main Statistical Inference
problems. It shows that rigorous solutions require solving multidimensional Fredholm in-
tegral equations of the first kind in the situation where not only the right-hand side of
the equation is an approximation, but the operator in the equation is also defined ap-
proximately. Using Stefanuyk-Vapnik theory for solving such ill-posed operator equations,
constructive methods of empirical inference are introduced. These methods are based on a
new concept called V -matrix. This matrix captures geometric properties of the observation
data that are ignored by classical statistical methods.

Keywords: conditional probability, regression, density ratio, ill-posed problem, mutual
information, reproducing kernel Hilbert space · function estimation, interpolation function,
support vector machines, data adaptation, data balancing, conditional density

1. Basic Concepts of Classical Statistics

In the next several sections, we describe main concepts of Statistics. We first outline these
concepts for the one-dimensional case and then generalize them for the multidimensional
case.

1.1 Cumulative Distribution Function

The basic concept of Theoretical Statistics and Probability Theory is the so-called Cumulative
Distribution Function (CDF)

F (x) = P{X ≤ x}.

This function defines the probability of the random variable X not exceeding x. Different
CDFs describe different statistical environments, so CDF (defining the probability measure)
is the main characteristic of the random events. In this paper, we consider the important
case when F (x) is a continuous function.
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1.2 General Problems of Probability Theory and Statistics

The general problem of Probability Theory can be defined as follows:

Given a cumulative distribution function F (x), describe outcomes of random experi-
ments for a given theoretical model.

The general problem of Statistics can be defined as follows:

Given iid observations of outcomes of the same random experiments, estimate the
statistical model that defines these observations.

In Section 2, we discuss several main problems of Statistics. Next, we consider the basic
one: estimation of CDF.

1.3 Empirical Cumulative Distribution Functions

In order to estimate CDF, one introduces the so-called Empirical Cumulative Distribution
function (ECDF) constructed for iid observations obtained according to F (x):

X1, ..., X`.

The ECDF function has the form

F`(x) =
1

`

∑̀
i=1

θ(x−Xi),

where θ(x−Xi) is the step-function

θ(x−Xi) =

{
1, if x ≥ Xi,
0, if x < Xi.

Classical statistical theory is based on convergence of ECDF converges to CDF when the
number ` of observations increases.

1.4 The Glivenko-Cantelli Theorem and Kolmogorov Type Bounds

In 1933, the following theorem was proven (Glivenko-Cantelli theorem).

Theorem. Empirical cumulative distribution functions converge uniformly to the true
cumulative distribution function:

lim
`→∞

P{sup
x
|F (x)− F`(x)| ≥ ε} = 0, ∀ε > 0.

In 1933, Kolmogorov derived asymptotical exact rate of convergence of ECDF to CDF for
continuous functions F (x):

lim
`→∞

P{
√
` sup

x
|F (x)− F`(x)| ≥ ε} = 2

∞∑
k=1

(−1)k−1 exp{−2ε2k2}. (1)
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Later, Dvoretzky, Kiefer, Wolfowitz, and Massart showed the existence of exponential
type of bounds for any `:

P{sup
x
|F (x)− F`(x)| ≥ ε} ≤ 2 exp{−2ε2`}. (2)

Bound (2) is defined by the first term of the right-hand side of Kolmogorov asymptotic
equality (1).

Glivenko-Cantelli theorem and bounds (1), (2) can be considered as a foundation of
statistical science since they claim that:

1. It is possible to estimate the true statistical distribution from iid data.

2. The ECDF strongly converges to the true CDF, and this convergence is fast.

1.5 Generalization to Multidimensional Case

Let us generalize the main concepts described above to the multidimensional case. We start
with CDF.

Joint cumulative distribution function. For the multivariate random variable
x = (x1, ..., xd), the joint cumulative distribution function F (x), x ∈ Rd is defined by
the function

F (x) = P{X1 ≤ x1, ..., Xd ≤ xd}. (3)

As in the one-dimensional case, the main problem of Statistics is as follows: estimate
CDF, as defined in (3), based on random multivariate iid observations

X1, ..., X`, Xi ∈ Rd, i = 1, . . . , `..

In order to solve this problem, one uses the same idea of empirical distribution function

F`(x) =
1

`

∑̀
i=1

θ(x−Xi),

where x = (x1, ..., xd) ∈ Rd, Xi = (X1
i , ..., X

d
i ) ∈ Rd and

θ(x−Xi) =
d∏

k=1

θ(xk −Xk
i ).

Note that

F (x) = Euθ(x− u) =

∫
θ(x− u)dF (u),

and the generalized (for the multidimensional case) Glivenko-Cantelli theorem has the form

lim
`→∞

P

{
sup
x

∣∣∣∣∣Euθ(x− u)− 1

`

∑̀
i=1

θ(x−Xi)

∣∣∣∣∣ ≥ ε
}

= 0.

This equation describes the uniform convergence of the empirical risks to their expectation
over vectors u ∈ Rd for the parametric set of multidimensional step functions θ(x−u) (here
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x, u ∈ Rd, and x is a vector of parameters). Since VC dimension of this set of functions
is equal1 to one, according to the VC theory (Vapnik and Chervonenkis, 1974), (Vapnik,
1995), (Vapnik, 1998), the corresponding rate of convergence is bounded as follows:

P

{
sup
x

∣∣∣∣∣Euθ(x− u)− 1

`

∑̀
i=1

θ(x−Xi)

∣∣∣∣∣ ≥ ε
}
≤ exp

{
−
(
ε2 − ln `

`

)
`

}
. (4)

According to this bound, for sufficiently large values of `, the convergence of ECDF to the
actual CDF does not depend on the dimensionality of the space. This fact has important
consequences for Applied Statistics.

2. Main Problems of Statistical Inference

The main target of statistical inference theory is estimation (from the data) of specific
models of random events, namely:

1. conditional probability function;

2. conditional density function;

3. regression function;

4. density ratio function.

2.1 Conditional Density, Conditional Probability, Regression, and Density
Ratio Functions

Let F (x) be a cumulative distribution function of random variable x. We call non-negative
function p(x) the probability density function if∫ x

−∞
p(x∗)dx∗ = F (x).

Similarly, let F (x, y) be the joint probability distribution function of variables x and y. We
call non-negative p(x, y) the joint probability density function of two variables x and y if∫ y

−∞

∫ x

−∞
p(x∗, y∗)dx∗dy∗ = F (x, y).

1. Let p(x, y) and p(x) be probability density functions for pairs (x, y) and vectors x.
Suppose that p(x) > 0. The function

p(y|x) =
p(x, y)

p(x)

is called the Conditional Density Function. It defines, for any fixed x = x0, the probability
density function p(y|x = x0) of random value y ∈ R1. The estimation of the conditional
density function from data

(y1, X1), ..., (y`, X`) (5)

1. Since the set of d-dimensional parametric (with respect to parameter x) functions θ(x− u) can shatter,
at most, one vector.
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is the most difficult problem in our list of statistical inference problems.

2. Along with estimation of the conditional density function, the important problem is
to estimate the so-called Conditional Probability Function. Let variable y be discrete, say,
y ∈ {0, 1}. The function defined by the ratio

p(y = 1|x) =
p(x, y = 1)

p(x)
, p(x) > 0

is called Conditional Probability Function. For any given vector x = x0, this function defines
the probability that y is equal to one; correspondingly, p(y = 0|x = x0) = 1− p(y = 1|x =
x0). The problem is to estimate the conditional probability function, given data (5) where
y ∈ {0, 1}.

3. As mentioned above, estimation of the conditional density function is a difficult prob-
lem; a much easier problem is the problem of estimating the so-called Regression Function
(conditional expectation of the variable y):

r(x) =

∫
yp(y|x)dy,

which defines expected value y ∈ R1 for a given vector x.

4. In this paper, we also consider a problem, which is important for applications:
estimating the ratio of two probability densities (Sugiyama et al., 2012). Let pnum(x) and
pden(x) > 0 be two different density functions (subscripts num and den correspond to
numerator and denominator of the density ratio). Our goal is to estimate the function

R(x) =
pnum(x)

pden(x)

given iid data

X1, ..., X`den ,

distributed according to pden(x), and iid data

X ′1, ..., X
′
`num ,

distributed according to pnum(x).

In the next sections, we introduce direct settings for these four statistical inference
problems.

2.2 Direct Constructive Setting for Conditional Density Estimation

By definition, conditional density p(y|x) is the ratio of two densities

p(y|x) =
p(x, y)

p(x)
, p(x) > 0 (6)

or, equivalently,

p(y|x)p(x) = p(x, y).
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This expression leads to the following equivalent one:∫ ∫
θ(y − y′)θ(x− x′)f(x′, y′)dF (x′)dy′ = F (x, y), (7)

where f(x, y) = p(y|x), function F (x) is the cumulative distribution function of x and
F (x, y) is the joint cumulative distribution function of x and y.

Therefore, our setting of the condition density estimation problem is as follows:

Find the solution of integral equation (7) in the set of nonnegative functions f(x, y) =
p(y|x) when the cumulative probability distribution functions F (x, y) and F (x) are
unknown but iid data

(y1, X1), ..., (y`, X`)

are given.

In order to solve this problem, we use empirical estimates

F`(x, y) =
1

`

∑̀
i=1

θ(y − yi)θ(x−Xi), (8)

F`(x) =
1

`

∑̀
i=1

θ(x−Xi) (9)

of the unknown cumulative distribution functions F (x, y) and F (x). Therefore, we have
to solve an integral equation where not only its right-hand side is defined approximately
(F`(x, y) instead of F (x, y)), but also the data-based approximation

A`f(x, y) =

∫ ∫
θ(y − y′)θ(x− x′)f(x′, y′)dy′dF`(x

′)

is used instead of the exact integral operator

Af(x, y) =

∫ ∫
θ(y − y′)θ(x− x′)f(x′, y′)dy′dF (u′).

Taking into account (9), our goal is thus to find the solution of approximately defined
equation ∑̀

i=1

θ(x−Xi)

∫ y

−∞
f(Xi, y

′)dy′ ≈ 1

`

∑̀
i=1

θ(y − yi)θ(x−Xi). (10)

Taking into account definition (6), we have∫ ∞
−∞

p(y|x)dy = 1, ∀x ∈ X .

Therefore, the solution of equation (10) has to satisfy the constraint f(x, y) ≥ 0 and the
constraint ∫ ∞

−∞
f(y′, x)dy′ = 1, ∀x ∈ X .

We call this setting the direct constructive setting since it is based on direct definition
of conditional density function (7) and uses theoretically justified approximations (8), (9)
of unknown functions.
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2.3 Direct Constructive Setting for Conditional Probability Estimation

The problem of estimation of the conditional probability function can be considered analo-
gously to the conditional density estimation problem. The conditional probability is defined
as

p(y = 1|x) =
p(x, y = 1)

p(x)
, p(x) > 0 (11)

or, equivalently,

p(y = 1|x)p(x) = p(x, y = 1).

We can rewrite it as ∫
θ(x− x′)f(x′)dF (x′) = F (x, y = 1), (12)

where f(x) = p(y = 1|x) and F (x, y = 1) = P{X ≤ x, y = 1}.
Therefore, the problem of estimating the conditional probability is formulated as follows.

In the set of bounded functions 0 ≤ f(x) ≤ 1, find the solution of equation (12) if
cumulative distribution functions F (x) and F (x, y = 1) are unknown but iid data

(y1, X1), ..., (y`, X`), y ∈ {0, 1}, x ∈ X ,

generated according to F (x, y), are given.

As before, instead of unknown cumulative distribution functions we use their empirical
approximations

F`(x) =
1

`

∑̀
i=1

θ(x−Xi), (13)

F`(x, y = 1) = p`F`(x|y = 1) =
1

`

∑̀
i=1

yiθ(x−Xi), (14)

where p` is the ratio of the number of examples with y = 1 to the total number ` of the
observations.

Therefore, one has to solve integral equation (12) with approximately defined right-hand
side (13) and approximately defined operator (14):

A`f(x) =
1

`

∑̀
i=1

θ(x−Xi)f(Xi).

Since the probability takes values between 0 and 1, our solution has to satisfy the bounds

0 ≤ f(x) ≤ 1, ∀x ∈ X .

Also, definition (11) implies that∫
f(x)dF (x) = p(y = 1),

where p(y = 1) is the probability of y = 1.
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2.4 Direct Constructive Setting for Regression Estimation

By definition, regression is the conditional mathematical expectation

r(x) =

∫
yp(y|x)dy =

∫
y
p(x, y)

p(x)
dy.

This can be rewritten in the form

r(x)p(x) =

∫
yp(x, y)dy. (15)

From (15), one obtains the equivalent equation∫
θ(x− x′)r(x′)dF (x′) =

∫
θ(x− x′)

∫
ydF (x′, y′). (16)

Therefore, the direct constructive setting of regression estimation problem is as follows:
In a given set of functions r(x), find the solution of integral equation (16) if cumulative

probability distribution functions F (x, y) and F (x) are unknown but iid data (5) are given.
As before, instead of these functions, we use their empirical estimates. That is, we

construct the approximation

A`r(x) =
1

`

∑̀
i=1

θ(x−Xi)r(Xi)

instead of the actual operator in (16), and the approximation of the right-hand side

F`(x) =
1

`

∑̀
j=1

yjθ(x−Xj)

instead of the actual right-hand side in (16), based on the observation data

(y1, X1), ..., (y`, X`), y ∈ R1, x ∈ X . (17)

2.5 Direct Constructive Setting of Density Ratio Estimation Problem

Let Fnum(x) and Fden(x) be two different cumulative distribution functions defined on X ⊂
Rd and let pnum(x) and pden(x) be the corresponding density functions. Suppose that
pden(x) > 0, x ∈ X . Consider the ratio of two densities:

R(x) =
pnum(x)

pden(x)
.

The problem is to estimate the ratio R(x) when densities are unknown, but iid data

X1, ..., X`den ∼ Fden(x), (18)

generated according to Fden(x), and iid data

X ′1, ..., X
′
`num ∼ Fnum(x), (19)
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generated according to Fnum(x), are given.
As before, we introduce the constructive setting of this problem: solve the integral

equation ∫
θ(x− u)R(u)dFden(u) = Fnum(x)

when cumulative distribution functions Fden(x) and Fnum(x) are unknown, but data (18) and
(19) are given. As before, we approximate the unknown cumulative distribution functions
Fnum(x) and Fden(x) using empirical distribution functions

F`num(x) =
1

`num

`num∑
j=1

θ(x−X ′j)

for Fnum(x), and

F`den(x) =
1

`den

`den∑
j=1

θ(x−Xj)

for Fden(x).
Since R(x) ≥ 0 and limx→∞ Fnum(x) = 1, our solution has to satisfy the constraints

R(x) ≥ 0, ∀x ∈ X ,∫
R(x)dFden(x) = 1.

Therefore, all main empirical inference problems can be represented via (multidimen-
sional) Fredholm integral equation of the first kind with approximately defined elements.
Although approximations converge to the true functions, these problems are computation-
ally difficult due to their ill-posed nature. Thus they require rigorous solutions.2

In Section 5, we consider methods for solving ill-posed operator equations, which we
apply in Section 6 to our problems of inference. Before that, however, we present a general
form for all statistical inference problems in the next subsections.

2.6 General Form of Statistical Inference Problems

Consider the multidimensional Fredholm integral equation∫
θ(z − z′)f(z′)dFA(z′) = FB(z),

where the kernel of operator equation is defined by the step function θ(z−z′), the cumulative
distribution functions FA(z) and FB(z) are unknown but the corresponding iid data

Z1, ..., Z`A ∼ FA(z)

Z1, ..., Z`B ∼ FB(z)

are given. In the different inference problems, the elements f(z), FA(z), FB(z) of the equa-
tion have different meanings (Table 1):

2. Various statistical methods exist for solving these inference problems. Our goal is to find general rigorous
solutions that take into account all the available characteristics of the problems.
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Conditional Conditional Density Regression
density probability ratio

z (x, y) x x (x, y), where y ≥ 0

f(z) p(y|x) p(y = 1|x)
pnum(x)

pden(x)
ŷ−1R(x), (R(x) =

∫
yp(y|x)dy)

FA(z) F (x) F (x) Fnum(x) F (x)

FB(z) F (x, y) F (x|y = 1)p(y = 1) Fden(x) ŷ−1
∫
θ(x− x′)y′dF (x′, y′)

Table 1: Vector z, solution f(z), and functions FA(z), FB(z) for different statistical infer-
ence problems.

1. In the problem of conditional density estimation, vector z is the pair (x, y), the solution
f(z) is p(y|x), the cumulative distribution function FA(z) is F (x) and the cumulative
distribution function FB(z) is F (x, y).

2. In the problem of conditional probability p(y = 1|x) estimation, vector z is x, the
solution f(z) is p(y = 1|x), the cumulative distribution function FA(z) is F (x), the
cumulative distribution function FB(z) is F (x|y = 1)p(y = 1), where p(y = 1) is the
probability of class y = 1.

3. In the problem of density ratio estimation, the vector z is x, the solution f(z) is
pnum(x)/pden(x), the cumulative function FA(z) is Fnum(x), the cumulative function
FB(z) is Fden(x).

4. In the problem of regression R(x) =
∫
yp(y|x)dy estimation, the vector z is (x, y),

where y ≥ 0, the solution f(z) is ŷ−1R(x), (R(x) =
∫
yp(y|x)dy), the cumulative

function FA(z) is F (x), the cumulative function FB(z) is ŷ−1
∫
θ(x′ − x′)y′dF (x′, y′).

Since statistical inference problems have the same kernel of the integral equations (i.e.,
the step-function) and the same right-hand side (i.e., the cumulative distribution func-
tion), it allows us to introduce (in Section 5) a common standard method (called V -matrix
method) for solving all inference problems.

3. Solution of Ill-Posed Operator Equations

In this section, we consider ill-posed operator equations and their solutions.

3.1 Fredholm Integral Equations of the First Kind

In this section, we consider the linear operator equations

Af = F, (20)
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where A maps elements of the metric space f ∈M ⊂ E1 into elements of the metric space
F ∈ N ⊂ E2. Let f be a continuous one-to-one operator and f(M) = N . Let the solution
of such operator equation exist and be unique. Then

M = A−1N .

The crucial question is whether this inverse operator A−1 is continuous. If it is, then
close functions in N correspond to close functions in M. That is, ”small” changes in the
right-hand side of (20) cause ”small” changes of its solution. In this case, we call the
operator A−1 stable (Tikhonov and Arsenin, 1977).

If, however, the inverse operator is discontinuous, then ”small” changes in the right-hand
side of (20) can cause significant changes of the solution. In this case, we call the operator
A−1 unstable.

Solution of equation (20) is called well-posed if this solution

1. exists;

2. is unique;

3. is stable.

Otherwise we call the solution ill-posed.

We are interested in the situation when the solution of operator equation exists, and is
unique. In this case, the effectiveness of solution of equation (20) is defined by the stability
of the operator A−1. If the operator is unstable, then, generally speaking, the numerical
solution of equation is impossible.

Here we consider linear integral operator

Af(x) =

∫ b

a
K(x, u)f(u)du

defined by the kernel K(t, u), which is continuous almost everywhere on a ≤ t ≤ b, c ≤
x ≤ d. This kernel maps the set of functions {f(t)}, continuous on [a, b], unto the set of
functions {F (x)}, also continuous on [c, d]. The corresponding Fredholm equation of the
first kind ∫ b

a
K(x, u)f(u)du = F (x)

requires finding the solution f(u) given the right-hand side F (x).

In this paper, we consider integral equation defined by the so-called convolution kernel

K(x, u) = K(x− u).

Moreover, we consider the specific convolution kernel of the form

K(x− u) = θ(x− u).

As stated in Section 2.2, this kernel covers all settings of empirical inference problems.
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First, we show that the solution of equation∫ 1

0
θ(x− u)f(u)du = x (21)

is indeed ill-posed3. It is easy to check that

f(x) = 1

is the solution of this equation. Indeed,∫ 1

0
θ(x− u)du =

∫ x

0
du = x. (22)

It is also easy to check that the function

f∗(x) = 1 + cosnx (23)

is a solution of the equation∫ 1

0
θ(x− u)f∗(u)du = x+

sinnx

n
. (24)

That is, when n increases, the right-hand sides of equations (22) and (24) are getting close
to each other, but their solutions (21) and (23) are not.

The problem is how one can solve an ill-posed equation when its right-hand side is
defined imprecisely.

3.2 Methods of Solving Ill-Posed Problems

In this subsection, we consider methods for solving ill-posed operator equations.

3.2.1 Inverse Operator Lemma

The following classical inverse operator lemma (Tikhonov and Arsenin, 1977) is the key
enabler for solving ill-posed problems.

Lemma. If A is a continuous one-to-one operator defined on a compact set M∗ ⊂M,
then the inverse operator A−1 is continuous on the set N ∗ = AM∗.

Therefore, the conditions of existence and uniqueness of the solution of an operator
equation imply that the problem is well-posed on the compact M∗. The third condition
(stability of the solution) is automatically satisfied. This lemma is the basis for all con-
structive ideas of solving ill-posed problems. We now consider one of them.

3.2.2 Regularization Method

Suppose that we have to solve the operator equation

Af = F (25)

3. Using the same arguments, one can show that the problem of solving any Fredholm equation of the first
kind is ill-posed.
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defined by continuous one-to-one operator A mapping M into N , and assume the solution
of (25) exists. Also suppose that, instead of the right-hand side F (x), we are given its
approximation Fδ(x), where

ρE2(F (x), Fδ(x)) ≤ δ.
Our goal is to find the solution of equation

Af = Fδ

when δ → 0.
Consider a lower semi-continuous functional W (f) (called the regularizer) that has the

following three properties:

1. the solution of the operator equation (25) belongs to the domain D(W ) of the func-
tional W (f);

2. functional W (f) is non-negative values in its domain;

3. all sets
Mc = {f : W (f) ≤ c}

are compact for any c ≥ 0.

The idea of regularization is to find a solution for (25) as an element minimizing the
so-called regularized functional

Rγ(f̂ , Fδ) = ρ2E2
(Af̂, Fδ) + γδW (f̂), f̂ ∈ D(W ) (26)

with regularization parameter γδ > 0.
The following theorem holds true (Tikhonov and Arsenin, 1977).
Theorem 1 Let E1 and E2 be metric spaces, and suppose for F ∈ N there exists a

solution of (25) that belongs to Mc. Suppose that, instead of the exact right-hand side F in
(25), its approximations4 Fδ ∈ E2 in (26) are given such that ρE2(F, Fδ) ≤ δ. Consider the
sequence of parameters γ such that

γ(δ) −→ 0 for δ −→ 0,

lim
δ−→0

δ2

γ(δ)
≤ r <∞. (27)

Then the sequence of solutions f
γ(δ)
δ minimizing the functionals Rγ(δ)(f, Fδ) on D(W ) con-

verges to the exact solution f (in the metric of space E1) as δ −→ 0.
In a Hilbert space, the functional W (f) may be chosen as ||f ||2 for a linear operator A.

Although the setsMc are (only) weakly compact in this case, regularized solutions converge
to the desired one. Such a choice of regularized functional is convenient since its domain
D(W ) is the whole space E1. In this case, however, the conditions on the parameters γ are
more restrictive than in the case of Theorem 1: namely, γ should converge to zero slower
than δ2.

Thus the following theorem holds true (Tikhonov and Arsenin, 1977).
Theorem 2 Let E1 be a Hilbert space and W (f) = ||f ||2. Then for γ(δ) satisfying (27)

with r = 0, the regularized element f
γ(δ)
δ converges to the exact solution f in metric E1 as

δ → 0.

4. The elements Fδ do not have to belong to the set N .
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4. Stochastic Ill-Posed Problems

In this section, we consider the problem of solving the operator equation

Af = F, (28)

where not only its right-hand side is defined approximately (F`(x) instead of F (x)), but
the operator Af is also defined approximately. Such problem are called stochastic ill-posed
problems.

In the next subsections, we describe the conditions under which it is possible to solve
equation (28), where both the right-hand side and the operator are defined approximately.
We first discuss the general theory for solving stochastic ill-posed problems and then con-
sider specific operators describing particular problems, i.e., empirical inference problems
described in Sections 2.3, 2.4, and 2.5. For all these problems, the operator has the form

A`f =

∫
θ(x− u)f(u)dF`(u).

We show that rigorous solutions of stochastic ill-posed problem with this operator leverage
the so-called V -matrix, which captures some geometric properties of the data; we also
describe specific algorithms for solution of our empirical inference problems.

4.1 Regularization of Stochastic Ill-Posed Problems

Consider the problem of solving the operator equation

Af = F

under the condition where (random) approximations are given not only for the function
on the right-hand side of the equation but for the operator as well (the stochastic ill-posed
problem).

We assume that, instead of the true operator A, we are given a sequence of random
continuous operators A`, ` = 1, 2, ... that converges in probability to the operator A (the
definition of closeness between two operators will be defined later).

First, we discuss general conditions under which the solution of stochastic ill-posed
problem is possible; after that, we consider specific operator equations corresponding to
each empirical inference problem.

As before, we consider the problem of solving the operator equation by the regularization
method, i.e., by minimizing the functional

R∗γ`(f, F`, A`) = ρ2E2
(A`f, F`) + γ`W (f). (29)

For this functional, there exists a minimum (perhaps, not unique). We define the closeness
of operator A and operator A` as the distance

||A` −A|| = sup
f∈D

||A`f −Af ||E2

W 1/2(f)
.

The main result for solving stochastic ill-posed problems via regularization method (29)
is provided by the following Theorem (Stefanyuk, 1986), (Vapnik, 1998).
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Theorem. For any ε > 0 and any constants C1, C2 > 0 there exists a value γ0 > 0
such that for any γ` ≤ γ0 the inequality

P{ρE1(f`, f) > ε} ≤ P{ρE2(F`, F ) > C1
√
γ`}+ P{||A` −A|| > C2

√
γ`} (30)

holds true.

Corollary. As follows from this theorem, if the approximations F`(x) of the right-hand
side of the operator equation converge to the true function F (x) in E2 with the rate of
convergence r(`), and the approximations A` converge to the true operator A in the metric
in E1 defined in (30) with the rate of convergence rA(`), then there exists such a function

r0(`) = max {r(`), rA(`)} ; lim
`→∞

r0(`) = 0,

that the sequence of solutions to the equation converges in probability to the true one if

lim
`→∞

r0(`)√
γ`

= 0, lim
`→∞

γ` = 0.

4.2 Solution of Empirical Inference Problems

In this section, we consider solutions of the integral equation

Af = F,

where operator A has the form

Af =

∫
θ(x− u)f(u)dF1(u),

and the right-hand side of the equation is F2(x). That is, our goal is to solve the integral
equation ∫

θ(x− u)f(u)dF1(x) = F2(x).

We consider the case where F1(x) and F2(x) are two different cumulative distribution func-
tions. (This integral equation also includes, as a special case, the problem of regression
estimation, where F2(x) =

∫
ydP (x, y) for non-negative y). This equation defines the main

empirical inference problem described in Section 2. The problem of density ratio estimation
requires solving this equation when both functions F1(x) and F2(x) are unknown but the
iid data

X1
1 , ..., X

1
`1 ∼ F1 (31)

X1
1 , ..., X

1
`2 ∼ F2 (32)

are available. In order to solve this equation, we use empirical approximations instead of
actual distribution functions, thus obtaining

A`1f =

∫
θ(x− u)dF`1(u) (33)
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F`k(x) =
1

`k

`k∑
i=1

θ(x−Xk
i ), k = 1, 2,

where F`1(u) are and F`2(x) are the empirical distribution functions obtained from data
(31) and (32), respectively.

One can show (see (Vapnik, 1998), Section 7.7) that, for sufficiently large `, the inequality

||A` −A|| = sup
f

||A`f −Af ||E2

W 1/2(f)
≤ ||F` − F ||E2

holds true for the smooth solution f(x) of our equations.
From this inequality, bounds (4), and the Theorem of Section 4.1, it follows that the

regularized solutions of our operator equations converge to the actual function

ρE1(f`, f)→`→∞ 0

with probability one.
Therefore, to solve our inference problems, we minimize the functional

Rγ(f, F`, A`1) = ρ2E2
(A`1f, F`2) + γ`W (f). (34)

In order to do this well and find the unique solution of this problem, we have to define
three elements of (34):

1. The distance ρE2(F1, F2) between functions F1(x) and F2(x) in E2.

2. The regularization functional W (f) in the space of functions f ∈ E1.

3. The rule for selecting the regularization constant γ`.

In the next sections, we consider the first two elements.

5. Solving Statistical Inference Problems with V -matrix

Consider the explicit form of the functional for solving our inference problems. In order
to do this, we specify expressions for the squared distance and regularization functional in
expression (34).

5.1 The V -matrix

In this subsection, we consider the key element of our approach, the V -matrix.

5.1.1 Definition of Distance

Let our distance in E2 be defined by the L2 metric

ρ2E2
(F1(x), F2(x)) =

∫
(F1(x)− F2(x))2σ(x)dµ(x),

where σ(x) is a known positive function and µ(x) is a known measure defined on X . To
define distance, one can use any non-negative measurable function σ(x) and any measure
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µ(x). For example, if our equation is defined in the box domain [0, 1]d, we can use uniform
measure in this domain and σ(x) = 1.

Below we define the measure µ(x) as

dµ(x) =
d∏

k=1

dF`(x
k), (35)

where each F`(x
k) is the marginal empirical cumulative distribution function of the coordi-

nate xk estimated from data.
We also choose function σ(x) in the form

σ(x) =

n∏
k=1

σk(x
k). (36)

In this paper, we consider several weight functions σ(xk):

1. The function
σ(xk) = 1.

2. For the problem of conditional probability estimation, we consider the function

σ(xk) =
1

F`(xk|y = 1)(1− F`(xk|y = 1)) + ε
, (37)

where ε > 0 is a small constant.

3. For the problem of regression estimation, we consider the case where y ≥ 0 and,
instead of F`(x

k|y = 1) in (37), the monotonic function

F`(x
k) =

1

`ŷav

∑̀
i=1

yiθ(x
k −Xk

i )

is used, where ŷav is the average value of y in the training data. This function has
properties of ECDF.

4. For the problem of density ratio estimation, we consider an estimate of function
Fnum(x) instead of the estimate of function F (x|y = 1) in (37).

Remark. In order to explain choice (37) for function σ(x), consider the problem of
one-dimensional conditional probability estimation. Let f0(x) be the true conditional prob-
ability. Consider the function f̂0(x) = p1f0(x). Then the solution of integral equation∫

θ(x− u)f̂(u)dF (u) = F (x|y = 1)

defines the conditional probability f̂0(x) = p1f0(x). Consider two functions: the estimate
of the right-hand side of equation F`(x|y = 1) and the actual right-hand side

F0(x|y = 1) =

∫ x

−∞
f̂0(t)dt.
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The deviation
∆ = F0(x|y = 1)− F`(x|y = 1)

between these two functions has different values of variance for different x. The variance is
small (equal to zero) at the end points of an interval and is large somewhere inside it. To
obtain the uniform relative deviation of approximation from the actual function over the
whole interval, we adjust the distance in any point of interval proportionally to the inverse
of variance. Since for any fixed x the variance is

Var(x) = F (x|y = 1)(1− F (x|y = 1)), (38)

we normalize the squared deviation ∆2 by (38). The expression (37) realizes this idea.

5.1.2 Definition of Distance for Conditional Probability Estimation
Problem

Consider the problem of conditional probability estimation.
For this problem, the squared distance between approximations of the right-hand side

and the left-hand side of equation

F`(x, y = 1) = p`F`(x|y = 1) =
1

`

∑̀
i=1

yiθ(x−Xi)

can be written as follows:

ρ2(A`f, F`) =

∫ (∫
θ(x− u)f(u)dF`(u)−

∫
yiθ(x− u)dF`(u)

)2

σ(x)dµ(x),

where yi ∈ {0, 1} and F`(x) is the empirical distribution function estimated from training
vectors Xi. Therefore, we obtain the expression

ρ2(A`f, F`) =
1

`2

∑̀
i,j=1

f(Xi)f(Xj)

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x)−

2

`2

∑̀
i,j=1

f(Xi)yj

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x)+

1

`2

∑̀
i,j=1

yiyj

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x),

(39)

where the last term does not depend on function f(x).
Since both σ(x) and µ(x) are products of one-dimensional functions, each integral in (39)

has the form

Vi,j =

∫
θ(x−Xi)θ(x−Xj)σ(x) dµ(x) =

d∏
k=1

∫
θ(xk −Xk

i )θ(xk −Xk
j )σk(x

k)dµ(xk). (40)

This (`× `)-dimensional matrix of elements Vi,j we call V -matrix of the sample X1, ..., X`,
where Xi = (X1

i , . . . X
d
i ), ∀i = 1, . . . , `.

Consider three cases:
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Case 1. Data belongs to the upper-bounded support (−∞, B]d for some B and σ(x) = 1 on
this support. Then the elements Vi,j of V -matrix have the form

Vi,j =
d∏

k=1

(B −max{Xk
i , X

k
j }).

Case 2. Case where σ(xk) = 1 and µ defined as (35). Then the elements Vi,j of V -matrix have
the form

Vi,j =

d∏
k=1

ν(Xk > max{Xk
i , X

k
j }).

where ν(Xk > max{Xk
i , X

k
j }) is the frequency of Xk from the given data with the

values larger than max{Xk
i , X

k
j }.

Case 3. Case where σ(x) is defined as (36), (37) and µ(x) as (35). In this case, the values Vi,j
also can be easily computed numerically (since both functions are piecewise constant,
the integration (40) is reduced to a summation of constants).

To rewrite the expression for the distance in a compact form, we introduce the `-
dimensional vector Φ

Φ = (f(X1), ..., f(X`))
T .

Then, taking into account (39), we rewrite the first summand of functional (34) as

ρ2(A`f, F`) =
1

`2
(
ΦTV Φ− 2ΦTV Y + Y TV Y

)
, (41)

where Y denotes the `-dimensional vector (y1, ..., y`)
T , yi ∈ {0, 1}.

5.1.3 Distance for Regression Estimation Problem

Repeating the same derivation for regression estimation problem, we obtain the same ex-
pression for the distance

ρ2(A`f, F`) =
1

`2
(
ΦTV Φ− 2ΦTV Y + Y TV Y

)
,

where coordinates of vector Y are values y ∈ R1 given in examples (17) for regression
estimation problem.

5.1.4 Distance for Density Ratio Estimation Problem

In the problem of density ratio estimation, we have to solve the integral equation∫
θ(x− u)R(u)dFden(u) = Fnum(x),

where cumulative distribution functions Fden(x) and Fnum(x) are unknown but iid data

X1, ..., X`den ∼ Fden(x)
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and iid data
X ′1, ..., X

′
`num ∼ Fnum(x)

are available.
Using the empirical estimates

F`num(x) =
1

`num

`num∑
j=1

θ(x−X ′j)

and

F`den(x) =
1

`den

`den∑
i=1

θ(x−Xi)

instead of unknown cumulative distribution Fnum(x) and Fden(x) and repeating the same
distance computations as in the problems of conditional probability estimation and regres-
sion estimation, we obtain

ρ2 =

∫ (∫
θ(x− u)R(u)dF`den(u)− F`num(x)

)2

σ(x)dµ(x) =

1

`2den

`den∑
i,j=1

R(Xi)R(Xj)

∫
θ(x−Xj)θ(x−Xj)σ(x)dµ(x)−

2

`num`den

`num∑
i=1

`den∑
j=1

R(Xi)R(X ′j)

∫
θ(x−Xi)θ(x−X ′j)σ(x)dµ(x)+

1

`2num

`num∑
i,j=1

∫
θ(x−X ′j)θ(x−X ′j)σ(x)dµ(x) =

1

`2num

`num∑
i,j=1

V ∗∗i,j +

1

`2den

`den∑
i,j=1

R(Xi)R(Xj)Vi,j −
2

`num`den

`den∑
i=1

`num∑
j=1

R(Xi)R(X ′j)V
∗
i,j ,

where the values Vi,j , V
∗
i,j , V

∗∗
i,j are calculated as

Vi,j =

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x), i, j = 1, ..., `den,

V ∗i,j =

∫
θ(x−Xi)θ(x−X ′j)σ(x)dµ(x), i = 1, ..., `num, j = 1, ..., `den,

V ∗∗i,j =

∫
θ(x−X ′i)θ(x−X ′j)σ(x)dµ(x), i, j = 1, ..., `num.

We denote by V , V ∗, and V ∗∗ (respectively, (`den × `den)-dimensional, (`den × `num)-
dimensional, and (`num × `num)-dimensional) the matrices of corresponding elements Vi,j ,
V ∗i,j , and V ∗∗i,j . We also denote by 1`num the `num-dimensional vector of ones, and by R – the
`den-dimensional column vector of R(Xi), i = 1, . . . , `den.

Using these notations, we can rewrite the distance as follows:

ρ2 =
1

`2den

(
RTV R− 2

(
`den
`num

)
RTV ∗1`num +

(
`den
`num

)2

1T`numV
∗∗1`num

)
.
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5.2 The Regularization Functionals in RKHS

For each of our inference problems, we now look for its solution in Reproducing Kernel
Hilbert Space (RKHS).

5.2.1 Reproducing Kernel Hilbert Space

According to Mercer theorem, any positive semi-definite kernel has a representation

K(x, z) =
∞∑
k=1

λkφk(x)φk(z), x, z ∈ X ,

where {φk(x)} is a system of orthonormal functions and λk ≥ 0 ∀k.
Consider the set of functions

f(x; a) =

∞∑
k=1

akφk(x). (42)

We say that set of functions (42) belongs to RKHS of kernel K(x, z) if we can define the
inner product (f1, f2) in this space such that

(f1(x),K(x, y)) = f1(y). (43)

It is easy to check that the inner product

(f(x, a), f(x, b)) =

∞∑
k=1

akbk
λk

,

where ak and bk are the coefficients of expansion of functions f(x, a), and f(x, b), satisfies
the reproducing property (43). In particular, the equality

(K(x1, z),K(x2, z)) = K(x1, x2) (44)

holds true for the kernel K(x, x∗) that defines RKHS.
The remarkable property of RKHS is the so-called Representer Theorem (Kimeldorf and

Wahba, 1971), (Kimeldorf and Wahba, 1970), (Schölkopf et al., 2001), which states that
any function f(x) from RKHS that minimizes functional (34) can be represented as

f(x) =
∑̀
i=1

ciK(Xi, x),

where ci, i = 1, ..., ` are parameters and Xi, i = 1, ..., ` are vectors of observations.

5.2.2 Explicit Form of Regularization Functional.

In all our Statistical Inference problems, we are looking for solutions in RKHS, where we
use the squared norm as the regularization functional:

W (f) = (f, f) = ||f ||2. (45)
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That is, we are looking for solution in the form

f(x) =
∑̀
i=1

αiK(Xi, x), (46)

where Xi are elements of the observation. Using property (44), we define the functional
(45) as

W (f) =
∑̀
i,j=1

αiαjK(xi, xj).

In order to use the matrix form of (34), we introduce the following notations:

1. K is the (`× `)-dimensional matrix of elements K(Xi, Xj), i, j = 1, ..., `.

2. K(x) is the `-dimensional vector of functions K(Xi, x), i = 1, ..., `.

3. A is the `-dimensional vector A = (α1, ..., α`)
T of elements αi, i = 1, ..., `.

In these notations, the regularization functional has the form

W (f) = ATKA, (47)

and its solution has the form
f(x) = ATK(x). (48)

6. Solution of Statistical Inference Problems

In this section, we formulate our statistical inference problems as optimization problems.

6.1 Estimation of Conditional Probability Function

Here we present an explicit form of the optimization problem for estimating conditional
probability function.

We are looking for the solution in form (48), where we have to find vector A. In order
to find it, we have to minimize the objective function

T (A) = ATKVKA− 2ATKV Y + γATKA, (49)

where Y is a binary vector (with coordinates y ∈ {0, 1}) defined by the observations. The
first two terms of the objective function come from distance (41), the last term is regulariza-
tion functional (47). (The third term from (49) was omitted in the target functional since
it does not depend on the unknown function.) Since the conditional probability has values
between 0 and 1, we have to minimize this objective function subject to the constraint

0 ≤ ATK(x) ≤ 1, ∀x ∈ X. (50)

We also know that ∫
ATK(x)dF (x) = p0, (51)

1704



V -Matrix Method of Solving Statistical Inference Problems

where p0 is the probability of class y = 1.

Minimization of (49) subject to constraints (50), (51) is a difficult optimization problem.
To simplify this problem, we minimize the functional subject to the constraints

0 ≤ ATK(Xi) ≤ 1, i = 1, ..., `, (52)

defined only at the vectors Xi of observations5.

Also, we can approximate equality (51) using training data

1

`

∑̀
i=1

ATK(Xi) = p`, (53)

where p` is the frequency of class y = 1 estimated from data. Using matrix notation, the
constraints (52) and (53) can be rewritten as follows:

0` ≤ KA ≤ 1`, (54)

1

`
ATK1` = p`. (55)

where K is the matrix of elements K(Xi, Xj), i, j = 1, ..., ` and 0`, 1` are `-dimensional
vectors of zeros and ones, respectively.

Therefore, we are looking for the solution in form (48), where parameters of vector A
minimize functional (49) subject to constraints (54) and (55). This is a quadratic optimiza-
tion problem with one linear equality constraint and 2` general linear inequality constraints.

In Section 6.4, we simplify this optimization problem by reducing it to a quadratic
optimization problem with one linear equality constraint and several box constraints.

6.2 Estimation of Regression Function

Similarly, we can formulate the problem of regression function estimation, which has the
form (48). To find the vector A, we minimize the functional

T (A) = ATKVKA− 2ATKV Y + γATKA, (56)

where Y is a real-valued vector (with coordinates yi ∈ R1 of observations (5)).

Suppose that we have the following knowledge about the regression function:

1. Regression y = f(x) = ATK(x) takes values inside an interval [a, b]:

a ≤ ATK(x) ≤ b, ∀x ∈ X . (57)

2. We know the expectation of the values of the regression function:∫
ATK(x)dF (x) = c. (58)

5. One can find the solution in closed form A = (V K + γI)−1V Y if constraints (52), (53) are ignored; here
I is the identity matrix.
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Then we can solve the following problem: minimize functional (56) subject to constraints
(57), (58).

Usually we do not have knowledge (57), (58), but we can approximate it from the
training data. Specifically, we can approximate a by the smallest value a` of yi, while b can
be approximated by the largest value b` of yi from the training set:

a` = min{y1, ..., y`}, b` = max{y1, ..., y`}.

We then consider constraint (57) applied only for the training data:

a` ≤ ATK(Xi) ≤ b`, i = 1, ..., `. (59)

Also, we can approximate (58) with the equality constraint

1

`

∑̀
i=1

ATK(Xi) =
1

`

∑̀
i=1

yi. (60)

Constraints (59), (60) can be written in matrix notation

a`1` ≤ KA ≤ 1`b`, (61)

1

`
ATK1` = ŷav, (62)

where ŷav is the right-hand side of (60). If these approximations6 are reasonable, the problem
of estimating the regression can be stated as minimization of functional (56) subject to
constraints (61), (62). This is a quadratic optimization problem with one linear equality
constraint and 2` general linear inequality constraints.

6.3 Estimation of Density Ratio Function

To solve the problem of estimating density ratio function in the form

R(x) = ATK(x),

where A is the `den-dimensional vector of parameters and K(x) is the `den-dimensional vector
of functions K(X1, x), ...,K(X`den , x), we have to minimize the functional

T (A) = ATKVKA− 2

(
`den
`num

)
ATKV ∗1`num + γATKA, (63)

where K is the (`den × `den)-dimensional matrix of elements K(Xi, Xj) subject to the con-
straints

ATK(x) ≥ 0, ∀x ∈ X,∫
ATK(x)dFden(x) = 1.

6. Without constraints, the solution has the closed form (see footnote 5), where y ∈ R1 are elements of
training data for regression.
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As above, we replace these constraints with their approximations

KA ≥ 0`den ,

1

`den
ATKV ∗1`num = 1.

Here K is (`den × `den)-dimensional matrix of observations from Fden(x), and V ∗ is (`den ×
`num)-dimensional matrix defined in Section 5.1.

6.4 Two-Stage Method for Function Estimation:
Data Smoothing and Data Interpolation

Solutions of Statistical Inference problems considered in the previous sections require nu-
merical treatment of the general quadratic optimization problem: minimization of quadratic
form subject to one linear equality constraint and 2` linear inequality constraints of general
type (` linear inequality constraints for density ratio estimation problem).

Numerical solution for such problems can be computationally hard (especially when `
is large). In this section, we simplify the problem by splitting it into two stages:

1. Estimating function values at ` observation points, that is, the estimating vector
Φ = (f(X1), ..., f(X`))

T .

2. Interpolating the values of function known at the ` observation points to other points
in the space X .

6.4.1 Stage 1: Estimating Function Values at Observation Points

In order to find the function values at the training data points, we rewrite the regularization
functional in objective functions (49), (56), (63) in a different form. In order to do this, we
use the equality

K = KK+K,

where K+ is the generalized inverse matrix of matrix7 K.
In our regularization term of objective functions, we use the equality

ATKA = ATKK+KA.

1. Estimation of values of conditional probability. For the problem of estimating
the values of conditional probability at ` observation points, we rewrite objective function
(49) in the form

W (Φ) = ΦTV Φ− 2ΦTV Y + γΦTK+Φ, (64)

where we have denoted
Φ = KA. (65)

In the problem of estimating conditional probability, Y is a binary vector.

7. Along with generalized inverse matrix, pseudoinverse matrix is also used. Pseudoinverse matrix M+ of
the matrix M (not necessarily symmetric) satisfies the following four conditions: (1) MM+M = M , (2)
M+MM+ = M+, (3) (MM+)T = MM+, and (4) (M+M)T = M+M . If matrix M is invertible, then
M+ = M−1. Pseudoinverse exists and is unique for any matrix.
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In order to find vector Φ, we minimize functional (64) subject to box constraints

0` ≤ Φ ≤ 1`,

and equality constraint
1

`
ΦT 1` = p`.

2. Estimating values of regression. In order to estimate the vector Φ of values of
regression at ` observation points, we minimize functional (64) (where Y is a real-valued
vector), subject to the box constraints

a`1` ≤ Φ ≤ b`1`,

and the equality constraint
1

`
ΦT 1` = ŷav.

3. Estimating values of density ratio function. In order to estimate the vector Φ
of values of density ratio function at `den observation points X1, ..., X`den , we minimize the
functional

ΦTV Φ− 2

(
`den
`num

)
ΦTV ∗1`num + γΦTK+Φ

subject to the box constraints

Φ ≥ 0`den ,

and the equality constraint
1

`den
ΦTV ∗1`num = 1.

6.4.2 Stage 2: Function Interpolation

In the second stage of our two-stage procedure, we use the estimated function values at the
points of training set to define the function in input space. That is, we solve the problem
of function interpolation.

In order to do this, consider representation (65) of vector Φ∗:

Φ∗ = KA∗. (66)

We also consider the RKHS representation of the desired function:

f(x) = A∗TK(x). (67)

If the inverse matrix K−1 exists, then

A∗ = K−1Φ∗.

If K−1 does not exist, there are many different A∗ satisfying (66). In this situation, the
best interpolation of Φ∗ is a (linear) function (67) that belongs to the subset of functions
with the smallest bound on VC dimension (Vapnik, 1998). According to Theorem 10.6
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in (Vapnik, 1998), such a function either satisfies equation (66) with the smallest L2 norm
of A∗ or it satisfies equation (66) with the smallest L0 norm of A∗.

Efficient computational implementations for both L0 and L2 norms are available in the
popular scientific software package Matlab.

Note that the obtained solutions in all our problems satisfy the corresponding constraints
only on the training data, but they do not have to satisfy these constraints at any x ∈ X .
Therefore, we truncate the obtained solution functions as

ftr(x) = [A∗TK(x)]ba,

where

[u]ba =


a, if u < a
u, if a ≤ u ≤ b
b, if u > b

Remark. For conditional probability estimation, the choice of a > 0, b < 1 (for
constraints in training and truncation in test) is an additional tool for regularization that
can leverage prior knowledge.

6.4.3 Additional Considerations

For many problems, it is useful to consider the solutions in the form of a function from a
set of RKHS functions with a bias term:

f(x) =
∑̀
i=1

αiK(Xi, x) + c = ATK(x) + c.

Using this set of functions, our quadratic optimization formulation for estimating the
function values at training data points for the problem of conditional probability and re-
gression estimation is as follows: minimize the functional (over vectors Φ)

(Φ + c1`)
TV (Φ + c1`)− 2(Φ + c1`)

TV Y + γΦTK+Φ

subject to the constraints
(a− c1`) ≤ Φ ≤ (b− c1`),

(where a = 0, b = 1 for conditional probability problem, and a = a`, b = b` for regression
problem).

1

`
1T` + c = ŷav

where we denoted

ŷav =
1

`

∑̀
i=1

yi.

For estimating the values of density ratio function at points (X1, . . . , X`den), we minimize
the functional

(Φ + c1`den)TV (Φ + c1`den)− 2

(
`den
`num

)
(Φ + c1`den)TV ∗1`num + γΦTK+Φ

subject to the constraints
−c1`den ≤ Φ,

ΦT 1`den + c`den = `den.
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7. Applications of Density Ratio Estimation

Here we describe three applications of density ratio estimation (Sugiyama et al., 2012), (Kawa-
hara and Sugiyama, 2009), specifically,

– Data adaptation and correction of solution for unbalanced data.

– Estimation of mutual information and problem of feature selection.

– Change point detection.

It is important to note that, in all these problems, it is required to estimate not the func-
tion R(x), but rather the values R(Xi) of density ratio function at the points X1, ..., X`den

(generated by probability measure Fden(x)).

Below we consider the first two problems in the pattern recognition setting and then
consider two new applications:

1) Learning from data with unbalanced classes

2) Learning of local rules.

7.1 Data Adaptation Problem

Let the iid data

(y1, X1), ..., (y`, X`) (68)

be defined by a fixed unknown density function p(x) and a fixed unknown conditional
density function p(y|x) generated according to an unknown joint density function p(x, y) =
p(y|x)p(x). Suppose now that one is given data

X∗1 , ..., X
∗
`1 (69)

defined by another fixed unknown density function p∗(x). This density function, together
with conditional density p(y|x) (the same one as for Equation 68), defines the joint density
function p∗(x, y) = p(y|x)p∗(x).

It is required, using data (68) and (69), to find in a set of functions f(x, α), α ∈ Λ, the
one that minimizes the functional

T (α) =

∫
L(y, f(x, α))p∗(x, y)dydx, (70)

where L(·, ·) is a known loss function.

This setting is an important generalization of the classical function estimation problem
where the functional dependency between variables y and x is the same (the function p(y|x)
which is the part of composition of p(x, y) and p∗(x, y)), but the environments (defined by
densities p(x) and p∗(x)) are different.

It is required, by observing examples from one environment (with p(x)), to define the
rule for another environment (with p∗(x)). Let us denote

R(x) =
p∗(x)

p(x)
, p(x) > 0.
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Then functional (70) can be rewritten as

T (α) =

∫
L(y, f(x, α))R(x)p(x, y)dydx,

and we have to minimize the functional

T`(α) =
∑̀
i=1

L(yi, f(Xi, α))R(xi),

where Xi, yi are data points from (68). In this equation, we have multipliers R(Xi) that
define the adaptation of data (69) generated by joint density p(x, y) = p(y|x)p(x) to the
data generated by the density p∗(x, y) = p(y|x)p∗(x). Knowledge of density ratio values
R(Xi) leads to a modification of classical algorithms.

For SVM method in pattern recognition (Vapnik, 1995), (Vapnik, 1998), this means that
we have to minimize the functional

T`(w) = (w,w) + C
∑̀
i=1

R(Xi)ξi (71)

(C is a tuning parameter) subject to the constraints

yi((w, zi) + b) ≥ 1− ξi, ξ ≥ 0, yi ∈ {−1,+1}, (72)

where zi is the image of vector Xi ∈ X in feature space Z.
This leads to the following dual-space SVM solution: maximize the functional

T`(α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyjK(Xi, Xj), (73)

where (zi, zj) = K(Xi, Xj) is Mercer kernel that defines the inner product (zi, zj) subject
to the constraint ∑̀

i=1

yiαi = 0 (74)

and the constraints
0 ≤ αi ≤ CR(Xi). (75)

The adaptation to new data is given by the values R(xi), i = 1, ..., `; these values are set
to 1 in standard SVM (71).

7.2 Estimation of Mutual Information.

Consider k-class pattern recognition problem y ∈ {a1, ..., ak}.
The entropy of nominal random variable y (level of uncertainty for y with no information

about corresponding x) is defined by

H(y) = −
k∑
t=1

p(y = at) log2 p(y = at).
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Similarly, the conditional entropy given fixed value x∗ (level of uncertainty of y given infor-
mation x∗) is defined by the value

H(y|x∗) = −
k∑
t=1

p(y = at|x∗) log2 p(y = at|x∗).

For any x∗, the difference (decrease in uncertainty)

∆H(y|x∗) = H(y)−H(y|x∗)

defines the amount of information about y contained in vector x∗. The expectation of this
value (with respect to x)

I(x, y) =

∫
∆H(y|x)dF (x)

is called the mutual information between variables y and vectors x. It describes how much
information vector x caries about variable y. The mutual information can be rewritten in
the form

I(x, y) =

k∑
t=1

p(y = at)

∫ (
p(x, y = at) log2

p(x, y = at)

p(x)p(y = at)

)
dF (x) (76)

(see (Cover and Thomas, 2006) for details).

For two densities (p(x|y = at) and p(x)), the density ratio function is

R(x, y = at) =
p(x|y = at)

p(x)
.

Using this notation, one can rewrite expression (76) as

I(x, y) =
k∑
t=1

p(y = at)

∫
R(y = at, x) log2R(y = at, x)dF (x), (77)

where F (x) is cumulative distribution function of x.

Our goal is to use data

(y1, X1), ..., (y`, X`)

to estimate I(x, y). Using in (77) the empirical distribution function F`(x) and the val-
ues p`(y = at) estimated from the data, we obtain the approximation I`(x, y) of mutual
information (77):

I`(x, y) =
1

`

m∑
t=1

p(y = at)
∑̀
i=1

R(Xi, y = at) log2R(Xi, y = at).

Therefore, in order to estimate the mutual information for k-class classification problem,
one has to solve the problem of values of density ratio estimation problem k times at the
observation points R(Xi, y = at), i = 1, ..., ` and use these values in (77).
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Feature selection problem and mutual information. Estimates of mutual infor-
mation play important role in the problem of feature selection. Indeed, the problem of
selecting k features from the set of n features require to find among n features x1, .., xn

such k elements xk1 , ..., xkk which contain maximal information about variable y generated
according to p(y|x), x = (x1, ..., xn). That means to find the subset of k elements with
maximal mutual information. This is a hard computational problem: even if one can es-
timate the mutual information from data well, one still needs to solve mutual information
estimation problem Ckn times to chose the best subset.

Therefore some heuristic methods are used (Brown et al., 2012) to chose the subset
with best features. There are two heuristic approaches to the problem of estimating best
features:

1. To estimate mutual information I(y, xt) or I(xt, xm) of scalar values and then combine
(heuristically) the results.

2. To estimate mutual information between the value of y and two features xt,m =
(xt, xm), obtaining n2 elements of matrix I(y, xt,m) t,m = 1, . . . , n and choose from this
matrix the minor with the largest score (say, the sum of its elements).

All these procedures require accurate estimates of mutual information.

7.3 Unbalanced Classes in Pattern Recognition

An important application of data adaptation method is the case of binary classification
problem with unbalanced training data (du Plessis and Sugiyama, 2012). In this case,
the numbers of training examples for both classes differ significantly (often, by orders of
magnitude). For instance, for diagnosis of rare diseases, the number of samples from the
first class (patients suffering from the disease) is much smaller than the number of samples
from the second class (patients without that disease).

Classical pattern recognition algorithms applied to unbalanced data can lead to large
false positive or false negative error rates. We would like to construct a method that would
allow to control the balance of both error rates. Formally, this means that training data
are generated according to some probability measure

p(x) = p(x|y = 1)p+ p(x|y = 0)(1− p),

where 0 ≤ p ≤ 1 is a fixed parameter that defines probability of the event of the first class.
Learning algorithms are developed to minimize the expectation of error for this generator
of random events.

Our goal, however, is to minimize the expected error for another generator

p∗(x) = p(x|y = 1)p∗ + p(x|y = 0)(1− p∗),

where p∗ defines different probability of the first class (in the rare disease example, we
minimize the expected error if this disease is not so rare); that is, for parameter p = p∗.

To solve this problem, we have to estimate the values of density ratio function

R(x) =
p∗(x)

p(x)
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from available data. Suppose we are given observations

(y1, X1), ..., (y`, X`). (78)

Let us denote by X1
i and X0

j vectors from (78) corresponding to y = 1 and y = 0, respec-
tively. We rewrite elements of x from (78) generated by p(x) as

X1
i1 , ..., X

1
im , X

0
im+1

, ..., X0
i`

Consider the new training set that imitates iid observations generated by p∗(x) by having
the elements of the first class to have frequency p∗:

X1
i1 , ..., X

1
im , X

1
j1 , ...X

1
js , X

0
im+1

, ..., X0
i`
, (79)

where X1
j1
, . . . , X1

js
are the result of random sampling from X1

i1
, . . . , X1

im
with replacement.

Now, in order to estimate values R(Xi), i = 1, ..., `, we construct function F`den(x) from
data (78) and function F`num(x) from data (79) and use the algorithm for density ratio
estimation. For SVM method, in order to balance data, we have to maximize (73) subject
to constraints (74) and (75).

8. Problem of Local Learning

In 1992, the following problem of local learning was formulated (Bottou and Vapnik, 1992):
given data

(x1, y1), ..., (x`, y`) (80)

generated according to an unknown density function

p0(y, x) = p0(y|x)p0(x),

find the decision rule that minimizes risk in a vicinity of the given point x0. Using some
heuristic concept of vicinity of given points, the corresponding algorithm was developed.
It was demonstrated (Bottou and Vapnik, 1992), (Vapnik and Bottou, 1993) that local
learning is often more accurate than the global learning.

In this Section, we present a reasonable definition of the concept of locality, and we solve
the problem of constructing local rules. Our goal is to use data (80) for constructing a rule
that is accurate for vectors distributed according to some ploc(x), for example, according to
the multidimensional normal distribution

ploc(x) = N(x0, σI) =
1

(2π)m/2σm

m∏
k=1

exp

{
−(xk − xk0)

2σ2

}
,

where x0 = (x10, ..., x
m
0 ) is the vector of means, σ > 0 and identity matrix I are known

parameters of multi-dimensional normal distribution (they are specified by our concept of
vicinity point x0). We denote by ploc(y, x) the density function

ploc(y, x) = p0(y|x)N(x0, σI).
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Therefore, the goal of local learning is to find, in the set of functions f(x, α), α ∈ Λ, the
function f(x, αn) that minimizes the functional

Tloc(α) =

∫
(y − f(x, α))2ploc(y, x)dydx

instead of the functional

T0(α) =

∫
(y − f(x, α))2p0(y, x)dydx,

as it is formulated in classical (global) learning paradigm.
We rewrite functional Tloc as follows:

Tloc(α) =

∫
(y − f(x, α))2R(x)p0(y, x)dydx,

where we have denoted

R(x) =
ploc(x)

p0(x)
.

To minimize the functional Tloc given data obtained according to p0(y, x), we minimize
the empirical risk

R̂(α) =
1

`

∑̀
i=1

(yi − f(xi, α))2R(xi).

To define this functional explicitly, we have to estimate the ratio of two densities, one of
which (the density that specifies vicinity of point x0) is known, and another one is unknown
but elements x of data obtained according to that unknown density p0(x) are available from
the training set.

This problem of density ratio estimation, however, differs from the one considered in
Section 6.3. It requires solving the integral equation when the right-hand side of equation
is precisely defined, whereas the operator is defined approximately:

1

`

∑̀
i=1

θ(x−Xi)R(xi) ≈
∫ x

−∞
N(x0, σI)dx.

The integral in the right-hand can be expressed as the product of m (where m is the
dimensionality of space X) functions

Erf(x∗|x0, σI) =
2m

(π)m/2

m∏
k=1

∫ xk∗

0
exp

{
−(xk − xk0)2

2σ2
dxk
}
.

Note that function Erf(x|x0, σI) can be easily computed using the so-called function erf(x):

erf(xk) =
2√
π

∫ xk

0
exp{−t2}dt,

which is tabulated.
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Using the method of estimation of density ratio, in order to estimate vector R =
(R(x1), ..., R(x`)), one has to minimize the functional

RTV R− 2`RTU + γRTK+R,

where we have denoted by U = (U1, ..., U`)
T the vector with coordinates

Ui =
m∏
k=1

∑̀
t=1

θ(xkt − xki )Erf(xkt |x0, σ)

subject to constraints
RT 1 = `

and constraints
R ≥ 0`.

In SVM technology, the V -matrix method requires to estimate values R(Xi) in the points
of observations first, and then to solve the SVM problem itself using the data adaptation
technique described in Section 6.3.

9. Comparison with Classical Methods

In this paper, we introduced a new unified approach to solution of statistical inference
problems based on their direct settings. We used rigorous mathematical techniques to solve
them. Surprisingly, all these problems are amenable to relatively simple solutions.

One can see that elements of such solutions already exist in the basic classical statistical
methods, for instance, in estimation of linear regression and in SVM pattern recognition
problems.

9.1 Comparison with Linear Methods

Estimation of linear regression function is an important part of classical statistics. It is
based on iid data

(y1, X1), ..., (y`, X`), (81)

where y is distributed according to an unknown function p(y|x). Distribution over vectors
x is a subject of special discussions: it could be either defined by an unknown p(x) or by
known fixed vectors. It is required to estimate the linear regression function

y = wT0 x.

Linear estimator. To estimate this function, classical statistics uses ridge regression
method that minimizes the functional

R(w) = (Y −Xw)T (Y −Xw) + γ(w,w), (82)

where X is the (` × n)-dimensional matrix of observed vectors X, and Y is the (` × 1)-
dimensional matrix of observations y. This approach also covers the least squares method
(for which γ = 0).
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When observed vectors X in X are distributed according to an unknown p(x), method
(81) is consistent under very general conditions.

The minimum of this functional has the form

w` = (XTX + γI)−1XTY. (83)

However, estimate (82) is not necessarily the best possible one.
The main theorem of linear regression theory, the Gauss-Markov theorem, assumes that

input vectors X in X (81) are fixed (they are not random!). Below we formulate it in a
slightly more general form.

Theorem. Suppose that the random values (yi−wT0Xi) and (yj−wT0Xj) are uncorrelated
and that the bias of estimate (82)

µ = Ey(w` − w0).

Then, among all linear8 estimates with bias9 µ, estimate (82) has the smallest expectation
of squared deviation:

Ey(w0 − w`)2 ≤ Ey(w0 − w)2, ∀w.

Generalized linear estimator. Gauss-Markov model can be extended in the following
way. Let `-dimensional vector of observations Y be defined by fixed vectors X and additive
random noise Ω = (ε1, ..., ε`)

T so that

Y = Xw0 + Ω,

where the noise vector Ω = (ε1, ..., ε`)
T is such that

EΩ = 0, (84)

EΩΩT = Σ. (85)

Here, the noise values at the different points Xi and Xj of matrix X are correlated and the
correlation matrix Σ is known (in the classical Gauss-Markov model, it is identity matrix
Σ = I). Then, instead of estimator (82) minimizing functional (81), one minimizes the
functional

R(w) = (Y −Xw)TΣ−1(Y −Xw) + γ(w,w). (86)

This functional is obtained as the result of de-correlation of noise in (83), (84). The mini-
mum of (85) has the form

ŵ∗ = (XTΣ−1X + γI)−1XTΣ−1Y. (87)

This estimator of parameters w is an improvement of (82) for correlated noise vector.
V -matrix estimator of linear functions. The method of solving regression estima-

tion problem (ignoring constraints) with V matrix leads to the estimate

ŵ∗∗ = (XTVX + γI)−1XTV Y.

8. Note that estimate (83) is linear only if matrix X is fixed.
9. Note that when γ = 0 in (82), the estimator (82) with γ = 0 is unbiased.
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The structure of the V -matrix based estimate is the same as those of linear regression
estimates (82) and (86), except that the V -matrix replaces identity matrix in (82) and
inverse covariance matrix in (86).

The significant difference, however, is that both classical models were developed for the
known (fixed) vectors X, while V -matrix is defined for random vectors X and is computed
using these vectors. It takes into account the information that classical methods ignore:
the domain of regression function and the geometry of observed data points. The complete
solution also takes into accounts the constraints that reflects the belief in estimated prior
knowledge about the solution.

9.2 Comparison with L2-SVM (Non-Linear) Methods

For simplicity, we discuss in this section only pattern recognition problem; we can use the
same approach for the non-linear regression estimation problem.

The pattern recognition problem can be viewed as a special case of the problem of
conditional probability estimation. Using an estimate of conditional probability p(y = 1|x),
one can easily obtain the classification rule

f(x) = θ(p(y = 1|x)− 1/2).

We now compare the solution f(x) with

f(x) = ATK(x)

obtained for conditional probability problem with the same form of solution that defines
SVM.

The coefficients A for L2-SVM have the form (Saunders et al., 1998), (Suykens and
Vandewalle, 1999)

A = (K + γI)−1Y. (88)

If V -matrix method ignores the prior knowledge about the properties of conditional prob-
ability function, the coefficients of expansion have the form

A = (KV + γI)−1V Y. (89)

It is easy, however, to incorporate the existing constraints into both solutions.

In order to find the standard hinge-loss SVM solution (Vapnik, 1995), we have to mini-
mize the quadratic form

−ATYKYA+ 2AT1`

with respect to A subject to the box constraint

0` ≤ A ≤ C1`

and the equality constraint
ATY1` = 0,

where C is the (penalty) parameter of the algorithm, and Y is (`× `)-dimensional diagonal
matrix with yi ∈ {−1,+1} from training data on its diagonal (see formulas (71), (72) , (73),
(74), and (75) with R(xi) = 1 in (71) and (75)).
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In order to find the values of conditional probability, we also have to minimize the
quadratic form

ΦT (V + γK+)Φ− 2ΦV Y,

with respect to Φ subject to the box constraints10

0` ≤ Φ ≤ 1`

and the equality constraint

ΦT1` = `p`,

where γ > 0 is the (regularization) parameter of the algorithm in the objective function (as
C for SVM).

The essential difference between SVM and V -matrix method is that the constraints
in SVM method appear due to necessary technicalities (related to Lagrange multiplier
method11) while in V -matrix method they appear as a result of incorporating existing
prior knowledge about the solution: the classical setting of pattern recognition problem
does not include such prior knowledge12.

The discussion above indicates that, on one hand, the computational complexity of
estimation of conditional probability is not higher than that of standard SVM classification,
while, on the other hand, the V -estimate of conditional probability takes into account not
only the information about the geometry of training data (incorporated in V -matrix) but
also the existing prior knowledge about solution (incorporated in the constraints above).

This leads to the following question:

Can V -matrix method replace SVM method for pattern recognition?

The answer to this question is not obvious. In the mid-1990s, the following Imperative
was formulated (Vapnik, 1995), (Vapnik, 1998):

While solving problem of interest, do not solve a more general problem as an inter-
mediate step. Try to get the answer that you need, but not a more general one. It
is quite possible that you have enough information to solve a particular problem of
interest well, but not enough information to solve a general problem.

10. Often one has stronger constraints

a` ≤ Φ ≤ b`,

where 0` ≤ a` and b` ≤ 1` are given (by experts) as additional prior information.
11. The Lagrange multiplier method was developed to find the solution in the dual optimization space and

constraints in SVM method are related to Lagrange multipliers. Computationally, it is much easier to
obtain the solution in the dual space given by (73), (74), (75) than in the primal space given by (71), (72).
As shown by comparisons (Osuna and Girosi, 1999) of SVM solutions in primal and dual settings, (1)
solution in primal space is more difficult computationally, (2) the obtained accuracies in both primal and
dual spaces are about the same, (3) the primal space solution uses significantly fewer support vectors,
and (4) the large number of support vectors in dual space solution is caused by the need to maintain the
constraints for Lagrange multipliers.

12. The only information in SVM about the solution are the constraints yif(xi, α) ≥ 1 − ξi, where ξi ≥ 0
are (unknown) slack variables (Vapnik and Izmailov, 2015). However, this information does not contain
any prior knowledge about the function f .
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Solving (ill-posed) conditional probability problem instead of pattern recognition prob-
lem might appear to contradict this Imperative. However, while estimating conditional
probability, one uses prior knowledge about the solution, and applies rigorous approaches,
whereas the SVM setting does not take that knowledge into account and is based, instead,
on justified heuristic approach of large margin. Since these two approaches leverage dif-
ferent factors and thus cannot be compared theoretically, it is important to compare them
empirically.

9.3 Experimental Comparison of I-Matrix (L2 SVM) and V -matrix Methods

In this section, we compare the L2-SVM based method with V -matrix based method for
estimation of one-dimensional conditional probability functions. Let the data be generated
by an unknown probability density function p(x, y) = p(y|x)p(x), where x ∈ X, y ∈ {0, 1}.
Then the regression function f0(x) coincides with the conditional probability function p(y =
1|x), so the problem of estimating the conditional probability in the set {f(x, α)}, α ∈ Λ is
equivalent to the problem of estimating the regression function on the data

(x1, y1), ..., (x`, y`).

We use L2-SVM method for the estimation of the non-linear regression function in the
set {f(x, α)}, α ∈ Λ belonging to RKHS.

According to this method, in order to estimate the regression in the set of RKHS asso-
ciated with the kernel K(xi, x), one has to find the parameters αi of the function

f(x, α) =
∑̀
i=1

αiK(xi, x) + α0

that minimize the functional

(Y −KΛ− α01)T (Y −KΛ− α01) + γΛTKΛ, (90)

where we have denoted Y = (y1, ..., y`)
T , Λ = (α1, ..., α`)

T , by K is the matrix of elements
K(xi, xj), i, j = 1, ..., ` and 1 is the `-dimensional vector of ones.

Additionally, we take into account that (since regression coincides with conditional prob-
ability) the desired function satisfies (`+ 1) constraints: one constraint of equality type

1

`

∑̀
i,j=1

αiK(xi, xj) + α0 =
1

`

∑̀
i=1

yi, (91)

and ` constraints of inequality type

0 ≤
∑̀
i=1

αiK(xi, xj) + α0 ≤ 1, j = 1, ..., `, (92)

forming L2-SVM based method of conditional probability estimation.

The V -matrix based method of conditional probability estimation minimizes the func-
tional

(Y −KΛ− α01)TV (Y −KΛ− α01) + γΛTKΛ (93)
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subject to the same constraints.

Therefore, the L2-SVM method differs from V -matrix method by using identity matrix
I instead of V matrix. Further, we call these method as I-matrix and V -matrix methods13

In this Section, we present results of experimental comparisons of I-matrix and V -matrix
methods. In our comparison, we consider two (one-dimensional) examples: estimating
monotonic14 and non-monotonic functions. In our experiments, we use the same kernel,
namely, INK-spline of order 0:

K(xi, xj) = min(x, xi).

We can apply three versions of the solution for this problem:

1. Solutions that are defined by closed forms (ignoring the prior knowledge about the
problem). These solutions are fast to obtain, without any significant computational
problems.

2. Solutions that minimize the corresponding functionals while taking into account only
the constraint of equality type.

These solutions are also fast, without any significant computational problems. In this
case one has to minimize functionals (90) and (93) choosing such α0 for which equality
constraints (91) holds true (Kuhn-Tucker condition)

3. Solutions that minimize functionals (90), (93) subject to all `+ 1 constraints.

These solutions require applying a full-scale quadratic optimization procedure. For
large values of `, it is not as simple computationally as previous two versions.

For our examples, all three solutions gave reasonably close results. Below we only report
the results of the last one, the QP-solution.

Our first goal was to estimate the effect of using V -matrix (and compare it to I-matrix).
To do this, we had to exclude the influence of the choice of regularization parameter γ.
We did this by using two one-dimensional problems of estimating conditional probability
functions: (1) monotonic function (Figure 1) and (2) non-monotonic one (Figure 2). For
each problem, we generated 10,000 test examples and selected the best the possible (for
the given training set) value of parameter γ. Figure 1 and Figure 2 present the result of
approximation of conditional probability function for training sets of different sizes (48, 96,

13. If one ignores the constraints, both methods (I-matrix method the V -matrix method) have closed form
solutions. The solutions are (for I-matrix method V = I)

A =
(
WK +

γ

2
I
)−1

WY,

where
W = V − c−1(V 1)(1TV ), c = 1TV 1.

α0 = c−11TV (Y −KA) .

14. Estimation of monotonic conditional probability function is important for pattern recognition problem
since the V C dimension of the set of monotonically increasing (decreasing) functions equal to one inde-
pendently of dimensionality.
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192, 384) using the best γ for I-matrix method (left column) and V -matrix method (right
column). In the figures, blue color corresponds to the true condition probability function,
while black color corresponds to its approximations; red and green points in the horizontal
axis correspond to two classes of the training set. In the Figures, we also show deviations
of the approximations from the true conditional probability functions in both L1(µ) and
L2(µ) metrics. In all our experiments we used the equal number of representatives of both
classes.

These comparisons show that in all cases V -matrix method delivers better solution.
Subsequently, we compared V -matrix and I-matrix methods when the parameter γ is

selected using the cross-validation technique on training data (6-fold cross validation based
on maximum likelihood criterion): Figure 3 and Figure 4. Here also V -matrix method
performs better than I-matrix method. The more training data is used, the larger is the
advantage of the V -matrix method.

It is especially important that, in all our experiments, V -matrix method produced more
smooth approximations to the true function than I-matrix method did. This is due to
incorporation of the geometry of the training data into the solution.
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Appendix A. Appendix: V -Matrix for Statistical Inference

In this section, we describe some details of statistical inference algorithms using V -matrix.
First, consider algorithms for conditional probability function P (y|x) estimation and re-
gression function f(x) estimation given iid data

(y1, X1), ..., (y`, X`) (94)

generated according to p(x, y) = p(y|x)p(x). In (94), y ∈ {0, 1} for the problem of con-
ditional probability estimation, and y ∈ R1 for the problems of regression estimation and
density ratio estimation. Our V -matrix algorithm consists of the following simple steps.

A.1 Algorithms for Conditional Probability and Regression Estimation

Step 1. Find the domain of function. Consider vectors

X1, ..., X` (95)

from training data. By a linear transformation in space X , this data can be embedded into
the smallest rectangular box with its edges parallel to coordinate axes. Without loss of
generality, we also chose the origin of coordinate y such that all yi ∈ [0,∞], i = 1, ..., ` are
non-negative.
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V-matrix methodI-matrix method

Training size 48 (24 + 24)

Training size 96 (48 + 48)

Training size 192 (96 + 96)

Training size 384 (192 +192)

Figure 1: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected on validation set of size 10,000.
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Training size 48 (24 + 24)
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Training size 192 (96 + 96)

Training size 384 (192 +192)

Figure 2: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected on validation set of size 10,000.
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Figure 3: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected by cross-validation on training set.
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Figure 4: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected by cross-validation on training set.
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Further we assume that data (95) had been preprocessed in this way.
Step 2. Find the functions µ(xk). Using preprocessed data (95), construct for any

coordinate xk of the vector x the piecewise constant function

µk(x) =
1

`

∑̀
i=1

θ(xk −Xk
i ).

Step 3. Find functions σ(xk). For any coordinate of k = 1, ..., d find the following:

1. The value

ŷav =
1

`

∑̀
i=1

yi

(for pattern recognition problem, ŷav = p` is the fraction of training samples from
class y = 1).

2. The piecewise constant function

F∗(x
k) =

1

`ŷav

∑̀
i=1

yiθ(x−Xi)

(For pattern recognition problem, function F∗(x
k) = P (xk|y = 1) estimates cumula-

tive distribution function of xk for samples from class y = 1).

3. The piecewise constant function

σk(x) =
(
F∗(x

k)(1− F∗(xk)) + ε
)−1

.

Step 4. Find elements of V -matrix. Calculate the values

V k
ij =

∫
θ(xk −Xk

i )θ(xk −Xk
j )σ(xk)dµ(xk) =

∫ ∞
max{Xk

i ,X
k
j )
σ(xk)dµ(xk).

Since both σ(xk) and µ(xk) are piecewise constant functions, the last integral is a sum of
constants.

Step 5. Find V -matrix. Compute elements of V -matrix as

Vij =
d∏

k=1

V k
ij .

Remark 1. Since V -matrix in the problems of conditional probability and regression
estimation is scale-invariant, one can multiply all elements of this matrix by a fixed constant
in order to keep the values of matrix elements within reasonable bounds for subsequent
computations.

Remark 2. Any diagonal element V k
tt is not less than elements of the corresponding

row V k
tj and column V k

jt. Therefore, in order to compute V -matrix in multi-dimensional
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case, it is reasonable to compute its diagonal elements first and, if they are small, just to
replace the entries in the corresponding row and column with zeros.

It is possible (especially for large d) that V -matrix can have dominating diagonal ele-
ments. In this case, V -matrix can be approximated by a diagonal matrix. This is equivalent
to the weighted least square method where weights are defined by the diagonal values Vtt.

Step 6. Find the values of conditional probability or the values of regression
at the points of observation. Solve the quadratic optimization problem defined in the
corresponding sections (in Section 6.4).

Step 7. Find the conditional probability or regression function. Solve interpo-
lation problem defined in Section 6.4.

A.2 Algorithms for Density Ratio Estimation

For the problem of density ratio estimation, the algorithm requires the following modifica-
tions:

Step 1a. Find the domain of function. Domain of function is defined using data

X1, ..., X`den , X
′
1, ..., X

′
`num , (96)

where training vectors Xi and X ′j are distributed according to Fden(x) and Fnum(x′), re-
spectively.

Step 2a. Find the functions µ(xk). Using (preprocessed) data (96), construct for
coordinate xk, k = 1, ..., d of vector x the piecewise constant function

µk(x) =
1

(`den + `num)

(
`den∑
i=1

θ(xk −Xk
i ) +

`num∑
i=1

θ(xk −X ′ki )

)
.

Step 3a. Find functions σ(xk). For any coordinate xk, k = 1, ..., d find:

– the piecewise constant function

F∗∗(x
k) =

1

`num

`num∑
j=1

θ(x−X ′j);

– the piecewise constant function

σ(xk) =
(
F∗∗(x

k)(1− F∗∗(xk)) + ε
)−1

,

where ε > 0 is a small value.

Step 4a. Find the V -matrix and V ∗-matrix. Estimate the matrices using expres-
sions from corresponding sections.

Step 5a. Find the values of density ratio function at the points of observation.
Solve the quadratic optimization problem defined in corresponding sections.

Step 6a. Find the density ratio function. Solve the interpolation problem defined
in Section 6.4 (if estimated values of density ratio in `den points are not sufficient for the
application, and the function itself has to be estimated).
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A.3 Choice of Regularization Parameter

The value of regularization parameter γ can be selected using standard cross-validation
techniques.

For conditional probability estimation, one can look for maximization of likelihood rather
than for minimization of error rate. This leads to a more accurate estimate of conditional
probability function.
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Abstract

We develop a learning principle and an efficient algorithm for batch learning from logged
bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement,
web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking)
for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented
ads). We first address the counterfactual nature of the learning problem (Bottou et al.,
2013) through propensity scoring. Next, we prove generalization error bounds that ac-
count for the variance of the propensity-weighted empirical risk estimator. In analogy to
the Structural Risk Minimization principle of Wapnik and Tscherwonenkis (1979), these
constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle.
We show how CRM can be used to derive a new learning method—called Policy Optimizer
for Exponential Models (POEM)—for learning stochastic linear rules for structured out-
put prediction. We present a decomposition of the POEM objective that enables efficient
stochastic gradient optimization. The effectiveness and efficiency of POEM is evaluated
on several simulated multi-label classification problems, as well as on a real-world informa-
tion retrieval problem. The empirical results show that the CRM objective implemented
in POEM provides improved robustness and generalization performance compared to the
state-of-the-art.

Keywords: empirical risk minimization, bandit feedback, importance sampling, propen-
sity score matching, structured prediction

1. Introduction

Log data is one of the most ubiquitous forms of data available, as it can be recorded
from a variety of systems (e.g., search engines, recommender systems, ad placement) at
little cost. The interaction logs of such systems typically contain a record of the input to
the system (e.g., features describing the user), the prediction made by the system (e.g., a
recommended list of news articles) and the feedback (e.g., number of ranked articles the user
read) (Li et al., 2010). The feedback, however, provides only partial information— “bandit
feedback”— limited to the particular prediction shown by the system. The feedback for
all the other predictions the system could have made is typically not known. This makes
learning from log data fundamentally different from supervised learning, where “correct”
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predictions (e.g., the best ranking of news articles for that user) together with a loss function
provide full-information feedback.

In this paper, we address the problem of learning from logged bandit feedback. Unlike
online learning with bandit feedback, batch learning with bandit feedback does not require
interactive experimental control over the system. Furthermore, it enables the reuse of
existing data and offline cross-validation techniques for model selection (e.g., “which features
to use?”, “which learning algorithm to use?”, etc.).

To design algorithms for batch learning from bandit feedback, counterfactual estimators
(Bottou et al., 2013) of a system’s performance can be used to estimate how other systems
would have performed if they had been in control of choosing predictions. Such estimators
have been developed recently for the off-policy evaluation problem (Dud́ık et al., 2011; Li
et al., 2011, 2014), where data collected from the interaction logs of one bandit algorithm
is used to evaluate another system.

Our approach to counterfactual learning centers around the insight that, to perform ro-
bust learning, it is not sufficient to have just an unbiased estimator of the off-policy system’s
performance. We must also reason about how the variances of these estimators differ across
the hypothesis space, and pick the hypothesis that has the best possible guarantee (tightest
conservative bound) for its performance. We first prove generalization error bounds for
a stochastic hypothesis family using an empirical Bernstein argument (Maurer and Pontil,
2009). This builds on recent approaches to deriving confidence intervals for counterfactual
estimators (Bottou et al., 2013; Thomas et al., 2015). By relating the generalization error
to the empirical sample variance of different hypotheses, we can effectively penalize the hy-
potheses with large variance during training using a data-dependant regularizer. In analogy
to Structural Risk Minimization for full-information feedback (Wapnik and Tscherwonenkis,
1979), the constructive nature of these bounds suggests a general principle—Counterfactual
Risk Minimization (CRM)—for designing methods for batch learning from bandit feedback.

Using the CRM principle, we derive a new learning algorithm—Policy Optimizer for
Exponential Models (POEM)—for structured output prediction. The training objective is
decomposed using repeated variance linearization, and optimizing it using AdaGrad (Duchi
et al., 2011) yields a fast and effective algorithm. We evaluate POEM on several multi-
label classification problems, verify that its empirical performance supports the theory, and
demonstrates substantial gain in generalization performance over the state-of-the-art.

This paper is an extended version of Swaminathan and Joachims (2015), adding the
following contributions. First, it provides the proof of the main generalization error bound
upon which the CRM principle is based. Second, it derives and details the Iterated Variance
Majorization Algorithm for training POEM, which was only sketched in Swaminathan and
Joachims (2015). Third, the paper provides a first real-world experiment using POEM for
learning a high precision classifier for information retrieval using logged click data.

The remainder of this paper is structured as follows. We review existing approaches
in Section 2. The learning setting is detailed in Section 3, and contrasted with supervised
learning. In Section 4, we derive the Counterfactual Risk Minimization learning principle
and provide a rule of thumb for setting hyper-parameters. In Section 5, we instantiate the
CRM principle for structured output prediction using exponential models and construct an
efficient decomposition of the objective for stochastic optimization. Empirical evaluations
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are reported in Section 6 and a real-world application is described in Section 7. We conclude
with future directions and discussion in Section 8.

2. Related Work

Existing approaches for batch learning from logged bandit feedback fall into two categories.
The first approach is to reduce the problem to supervised learning. In principle, since the
logs give us an incomplete view of the feedback for different predictions, one could first use
regression to estimate a feedback oracle for unseen predictions, and then use any supervised
learning algorithm using this feedback oracle. Such a two-stage approach is known to not
generalize well (Beygelzimer and Langford, 2009). More sophisticated techniques using the
Offset Tree algorithm (Beygelzimer and Langford, 2009) allow us to perform batch learn-
ing when the space of possible predictions is small. In contrast, our approach generalizes
structured output prediction, with exponential-sized prediction spaces. In particular, we
apply our approach to multilabel classification problems. When the number of labels is K,
the number of possible predictions is 2K . A direct application of the Offset tree algorithm
requires O(2K) space and only guarantees regret O((2K − 1)r) where r is the regret of
the underlying binary classifier. Our approach directly tackles the problem using popular
models from structured prediction instead, using computation and space complexity that
mimics supervised approaches to the problem.

The second approach to batch learning from bandit feedback uses propensity scoring
(Rosenbaum and Rubin, 1983) to derive unbiased estimators from the interaction logs (Bot-
tou et al., 2013). These estimators are used for a small set of candidate policies, and the
best estimated candidate is picked via exhaustive search. In contrast, our approach can be
optimized via gradient descent, over hypothesis families (of infinite size) that are equally as
expressive as those used in supervised learning. In particular, we build on recent work that
develops confidence bounds for counterfactual estimators (Bottou et al., 2013; Thomas et al.,
2015) using empirical Bernstein bounds. Our key insight is that these confidence intervals
are not merely observable but can be efficiently optimized during training. Other recent
bounds derived from analyzing Renyi divergences (Cortes et al., 2010) can analogously be
co-opted in our approach to counterfactual learning.

Our approach builds on counterfactual estimators that have been developed for off-
policy evaluation. The inverse propensity scoring approach can work well when we have
a good model of the historical algorithm (Strehl et al., 2010; Li et al., 2014, 2015), and
doubly robust estimators (Dud́ık et al., 2011) are even more effective when we additionally
have a good model of the feedback. In our work, we focus on the inverse propensity scoring
estimator, but the results we derive hold equally for the doubly robust estimators.

In the current work, we concentrate on the case where the historical algorithm was a
stationary, stochastic policy. Techniques like exploration scavenging (Langford et al., 2008)
and bootstrapping (Mary et al., 2014) allow us to perform counterfactual evaluation even
when the historical algorithm was deterministic or adaptive.

Our strategy of picking the hypothesis with the tightest conservative bound on per-
formance mimics similar successful approaches in other problems like supervised learning
(Wapnik and Tscherwonenkis, 1979), risk averse multi-armed bandits (Galichet et al., 2013),
regret minimizing contextual bandits (Langford and Zhang, 2008) and reinforcement learn-
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ing (Garcia and Fernandez, 2012). Beyond the problem of batch learning from bandit
feedback, our approach can have implications for several applications that require learning
from logged bandit feedback data: warm-starting multi-armed bandits (Shivaswamy and
Joachims, 2012) and contextual bandits (Strehl et al., 2010), pre-selecting retrieval func-
tions for search engines (Hofmann et al., 2013), policy evaluation for contextual bandits (Li
et al., 2011), and reinforcement learning (Thomas et al., 2015) to name a few.

3. Learning Setting: Batch Learning with Logged Bandit Feedback

Consider a structured output prediction problem that takes as input x ∈ X and outputs a
prediction y ∈ Y. For example, in multi-label document classification, x could be a news
article and y a bit vector indicating the labels assigned to this article. The inputs are

assumed drawn from a fixed but unknown distribution Pr(X ), x
i.i.d.∼ Pr(X ). Consider a

hypothesis space H of stochastic policies. A hypothesis h(Y | x) ∈ H defines a probability
distribution over the output space Y, and the hypothesis makes predictions by sampling,
y ∼ h(Y | x). Note that this definition also includes deterministic hypotheses, where
the distributions assign probability 1 to a single y. For notational convenience, denote
h(Y | x) by h(x), and the probability assigned by h(x) to y as h(y | x). We will abuse
notation slightly and use (x, y) ∼ h to refer to samples drawn from the joint distribution,
x ∼ Pr(X ), y ∼ h(Y | x). When it is clear from the context, we will drop (x, y) ∼ h and
simply write h.

In interactive learning systems, we only observe feedback δ(x, y) for the y sampled from
h(x). In this work, feedback δ : X × Y 7→ R is a cardinal loss that is only observed at the
sampled data points. Small values for δ(x, y) indicate user satisfaction with y for x, while
large values indicate dissatisfaction. The expected loss—called risk—of a hypothesis R(h)
is defined as

R(h) = Ex∼Pr(X )Ey∼h(x) [δ(x, y)] = Eh [δ(x, y)] .

The goal of the system is to minimize risk, or equivalently, maximize expected user satis-
faction. The aim of learning is to find a hypothesis h ∈ H that has minimum risk.

We wish to re-use the interaction logs of these systems for batch learning. Assume that
its historical algorithm acted according to a stationary policy h0(x) (also called logging
policy). The data collected from this system is

D = {(x1, y1, δ1), . . . , (xn, yn, δn)},

where yi ∼ h0(xi) and δi ≡ δ(xi, yi).
Sampling bias. D cannot be used to estimate R(h) for a new hypothesis h using the

estimator typically used in supervised learning. We ideally need either full information
about δ(xi, ·) or need samples y ∼ h(xi) to directly estimate R(h). This explains why, in
practice, model selection over a small set of candidate systems is typically done via A/B
tests, where the candidates are deployed to collect new data sampled according to y ∼ h(x)
for each hypothesis h. A relative comparison of the assumptions, hypotheses, and principles
used in supervised learning vs. our learning setting is outlined in Table 1. Fundamentally,
batch learning with bandit feedback is hard because D is both biased (predictions favored
by the historical algorithm will be over-represented) and incomplete (feedback for other
predictions will not be available) for learning.
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Supervised Batch w/bandit

Distribution (x, y∗) ∼ Pr(X × Y) x ∼ Pr(X ), y ∼ h0(x)
Data D {xi, y∗i } {xi, yi, δi, pi}
Hypothesis h y = h(x) y ∼ h(Y | x)
Loss ∆(y∗, ·) known δ(x, ·) unknown

Objective: argminh R̂(h) + C ·Reg(H) R̂M (h) + C ·Reg(H) + λ ·
√

V ar(h)
n

Table 1: Comparison of assumptions, hypotheses and learning principles for supervised
learning and batch learning with bandit feedback.

4. Learning Principle: Counterfactual Risk Minimization

The distribution mismatch between h0 and any hypothesis h ∈ H can be addressed using
importance sampling, which corrects the sampling bias as

R(h) = Eh [δ(x, y)] = Eh0
[
δ(x, y)

h(y | x)

h0(y | x)

]
.

This motivates the propensity scoring approach of Rosenbaum and Rubin (1983). During
the operation of the logging policy, we keep track of the propensity, h0(y | x) of the historical
system to generate y for x. From these propensity-augmented logs

D = {(x1, y1, δ1, p1), . . . , (xn, yn, δn, pn)},

where pi ≡ h0(yi | xi), we can derive an unbiased estimate of R(h) via Monte Carlo
approximation,

R̂(h) =
1

n

n∑
i=1

δi
h(yi | xi)

pi
. (1)

At first thought, one may think that directly estimating R̂(h) over h ∈ H and picking the
empirical minimizer is a valid learning strategy. Unfortunately, there are several pitfalls.

First, this strategy is not invariant to additive transformations of the loss and will
give degenerate results if the loss is not appropriately scaled. In Section 4.3, we develop
intuition for why this is so, and derive the optimal scaling of δ. For now, assume that
∀x,∀y, δ(x, y) ∈ [−1, 0].

Second, this estimator has unbounded variance, since pi ' 0 in D can cause R̂(h) to be
arbitrarily far away from the true risk R(h). This can be fixed by “clipping” the importance
sampling weights (Ionides, 2008; Strehl et al., 2010; Bottou et al., 2013; Cortes et al., 2010)

RM (h) = Eh0
[
δ(x, y) min

{
M,

h(y | x)

h0(y | x)

}]
,

R̂M (h) =
1

n

n∑
i=1

δi min

{
M,

h(yi | xi)
pi

}
.
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M ≥ 1 is a hyper-parameter chosen to trade-off bias and variance in the estimate, where
smaller values of M induce larger bias in the estimate. Optimizing R̂M (h) through exhaus-
tive enumeration over H yields the Inverse Propensity Scoring (IPS) training objective

ĥIPS = argmin
h∈H

{
R̂M (h)

}
. (2)

This objective captures the essence of previous offline policy optimization approaches (Bot-
tou et al., 2013; Strehl et al., 2010). These approaches differ from Equation (2) in the specific
way the importance sampling weights are clipped, and frame the optimization problem as a
maximization of counterfactual rewards as opposed to minimization of counterfactual risk.

Third, importance sampling typically estimates R̂M (h) of different hypotheses h ∈ H
with vastly different variances. Consider two hypotheses h1 and h2, where h1 is similar to
h0, but where h2 samples predictions that were not well explored by h0. Importance sam-
pling gives us low-variance estimates for R̂M (h1), but highly variable estimates for R̂M (h2).
Intuitively, if we can develop variance-sensitive confidence bounds over the hypothesis space,
optimizing a conservative confidence bound should find a h whose R(h) will not be much
worse, with high probability.

4.1 Generalization Error Bound

A standard analysis would give a bound that is agnostic to the variance introduced by
importance sampling. Following our intuition above, we derive a higher order bound that
includes the variance term using empirical Bernstein bounds (Maurer and Pontil, 2009). To
develop such a generalization error bound, we first need a concept of capacity for stochastic
hypothesis classes. Our strategy is to define an auxiliary deterministic function class FH
for H and directly use covering numbers for FH conditioned on a sample D. We start by
defining the auxiliary deterministic function class FH.

Definition 1 For any stochastic class H, define an auxiliary function class FH = {fh :
X × Y 7→ [0, 1]}. Each h ∈ H corresponds to a function fh ∈ FH,

fh(x, y) = 1 +
δ(x, y)

M
min

{
M,

h(y | x)

h0(y | x)

}
. (3)

Based on this auxiliary function class FH, we will study the convergence of R̂M (h) →
RM (h). A key insight is the following relationship between h and fh.

Lemma 2 For any stochastic hypothesis h, the clipped risk RM (h) and the expected value
of fh under the data generating distribution are related as

Eh0 [fh(x, y)] = 1 +
RM (h)

M
. (4)
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Proof Note that fh is a deterministic and bounded function. From the definition of fh
and by linearity of expectation,

Eh0 [fh(x, y)] = Eh0
[
1 +

δ(x, y)

M
min

{
M,

h(y | x)

h0(y | x)

}]
= 1 +

1

M
Eh0

[
δ(x, y) min

{
M,

h(y | x)

h0(y | x)

}]
= 1 +

RM (h)

M

As a consequence of Lemma 2, we can use classic notions of capacity for FH to reason
about the convergence of R̂M (h) → RM (h). Recall the covering number N∞(ε,F , n) for a
function class F .1 Define an ε−cover N (ε, A, ‖ · ‖∞) for a set A ⊆ Rn to be the size of the
smallest cardinality subset A0 ⊆ A such that A is contained in the union of balls of radius
ε centered at points in A0, in the metric induced by ‖ · ‖∞. The covering number is,

N∞(ε,F , n) = sup
(xi,yi)∈(X×Y)n

N (ε,F({(xi, yi)}), ‖ · ‖∞),

where F({(xi, yi)}) is the function class conditioned on sample {(xi, yi)},

F({(xi, yi)}) = {(f(x1, y1), . . . , f(xn, yn)) : f ∈ F}.

Our measure for the capacity of our stochastic class H to “fit” a sample of size n shall be
N∞( 1

n ,FH, 2n).

For a compact notation, define the random variable uh ≡ δ(x, y) min
{
M, h(y|x)h0(y|x)

}
with

mean uh = RM (h). The sampleD contains n i.i.d. random variables uh
i ≡ δi min{M, h(yi|xi)pi

}.
Define the sample mean and variance of uh

i

ûh ≡
1

n

n∑
i=1

uh
i = R̂M (h),

ˆV ar(uh) ≡ 1

n− 1

n∑
i=1

(uh
i − ûh)2.

Theorem 3 With probability at least 1−γ in the random vector (x1, y1) · · · (xn, yn)
i.i.d.∼ h0,

with observed losses δ1, . . . , δn, for n ≥ 16 and a stochastic hypothesis space H with capacity
N∞( 1

n ,FH, 2n),

∀h ∈ H : R(h) ≤ R̂M (h) +

√
18

ˆV ar(uh)QH(n, γ)

n
+M

15QH(n, γ)

n− 1
,

where, QH(n, γ) ≡ log(
10 · N∞( 1

n ,FH, 2n)

γ
), 0 < γ < 1.

1. Refer Anthony and Bartlett (2009); Maurer and Pontil (2009) and the references therein for a compre-
hensive treatment of covering numbers.
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Proof The proof follows from Theorem 6 of Maurer and Pontil (2009) applied to the
deterministic function class FH. We sketch the main argument using symmetrization and
Rademacher variables here.

Define the random variable sh = 1 + uh
M with mean Eh0 [sh] and variance V ar(sh).

Observe that Eh0 [sh] = 1 + RM (h)
M from Lemma 2. Let sh

i = 1 + uh
i

M . The sample D
essentially contains n i.i.d. observations of sh. Let ŝh and ˆV ar(sh) denote the empirical

mean and variance of {shi}ni=1 respectively. Observe that ˆV ar(sh) =
ˆV ar(uh)
M2 . Abusing

notation slightly, we will use boldface sh to refer to the sample {shi}ni=1.
We begin with Bennet’s inequality.
For s, {si}ni=1 i.i.d. bounded random variables in [0, 1] having mean E [s] and variance

V ar(s), with probability at least 1− γ in {si}ni=1 ≡ s,

E [s]− ŝ ≤
√

2V ar(s) log 1/γ

n
+

log 1/γ

3n
. (5)

Intuitively, Bennet’s inequality tells us that the estimate ŝ has lower accuracy if V ar(s)
is high, which exactly captures our intuition about the variance introduced by importance
sampling when estimating the risk of a hypothesis “far” from h0. However, the diameter of
this confidence interval depends on the unobservable V ar(s).

We recite Theorem 11 from Maurer and Pontil (2009) that gives a variance-sensitive
bound with an observable confidence interval, which they call an Empirical Bernstein bound.

Under the same conditions as Bennet’s inequality (5), let n ≥ 2, ˆV ar(s) represent the
empirical variance of {si}ni=1. With probability at least 1− γ,

E [s]− ŝ ≤

√
2 ˆV ar(s) log 2/γ

n
+

7 log 2/γ

3(n− 1)
. (6)

This follows from confidence bounds on the sample standard deviation

√
ˆV ar(s) com-

pared to the true standard deviation Es

[
ˆV ar(s)

]
. Based on this bound, Maurer and Pontil

(2009) define two Lipschitz continuous functions, Φ,Ψ : [0, 1]n × R+ → R.

Φ(s, t) = ŝ+

√
2 ˆV ar(s)t

n
+

7t

3(n− 1)

Ψ(s, t) = ŝ+

√
18 ˆV ar(s)t

n
+

11t

n− 1
.

These functions are Lipschitz continuous,

Φ(s, t)− Φ(s′, t) ≤ (1 + 2

√
t

n
)‖s− s′‖∞

Ψ(s, t)−Ψ(s′, t) ≤ (1 + 6

√
t

n
)‖s− s′‖∞. (7)

The inequalities follow directly from

√
ˆV ar(s)−

√
ˆV ar(s′) ≤

√
2‖s− s′‖∞.
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For the symmetrization argument, consider two sets of n samples D and D′ drawn from
h0 according to the conditions of Theorem 3 and used to estimate risk of a hypothesis
h. This gives rise to two sets of n i.i.d. random variables sh and s′h. Also define the

Rademacher variables σ1, . . . σn
i.i.d∼ U{−1, 1}. Define (σ, sh, s

′
h) as the vector who’s ith

co-ordinate is set to sh
i or s′h

i as specified by σi.

(σ, sh, s
′
h)i =

{
sh
i if σi = 1

s′h
i if σi = −1.

For a fixed h ∈ H and a fixed double sample sh, s
′
h as described above,

Pr
σ

[
Φ((σ, sh, s

′
h), t) ≥ Ψ((σ, sh, s

′
h), t)

]
≤ 5e−t. (8)

This is simply a restatement of Lemma 14 from Maurer and Pontil (2009) and follows
by decomposing the event [Φ((σ, sh, s

′
h), t) ≥ Ψ((σ, sh, s

′
h), t)] as [Φ((σ, sh, s

′
h), t) ≥ A] ∧

[A ≥ Ψ((σ, sh, s
′
h), t)] where A uses the true mean and variance of sh. The probability

of the first event can be bounded using Bennet’s inequality (5), while the second event
can be bounded using the empirical Bernstein bound (6) and the confidence bounds on the

sample standard deviation

√
ˆV ar(s).

Set t = log 2
γ and consider t ≥ log 4 (i.e. γ ≤ 1

2). Equation (6) implies, for any h ∈ H,

Pr(Φ(sh, t) ≥ E [sh]) ≥ 1

2
. (9)

Hence, for any ρ > 0,

Pr
D

(∃h ∈ H : E [sh] > Ψ(sh, t) + ρ) = ED
[

sup
h∈H

I{E [sh] > Ψ(sh, t) + ρ}
]

≤ ED
[

sup
h∈H

I{E [sh] > Ψ(sh, t) + ρ}
]

2 Pr(Φ(s′h, t) ≥ E
[
s′h
]
) Equation (9)

= 2ED
[

sup
h∈H

ED′
[
I{E [sh] > Ψ(sh, t) + ρ ∧ Φ(s′h, t) ≥ E [sh]}

]]
since E [sh] = E

[
s′h
]

≤ 2EDED′

[
sup
h∈H

I{E [sh] > Ψ(sh, t) + ρ ∧ Φ(s′h, t) ≥ E [sh]}
]

≤ 2EDED′

[
sup
h∈H

I{Φ(s′h, t) > Ψ(sh, t) + ρ}
]

= 2EσEDED′

[
sup
h∈H

I{Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ρ}

]
since sh, s

′
h are i.i.d.

≤ 2 sup
D,D′

Eσ
[

sup
h∈H

I{Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ρ}

]
= 2 sup

D,D′
Pr
σ

(∃h ∈ H : Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ρ).

For a fixed D,D′, consider the ε−cover of FH, FH0. Denote the set of stochastic poli-
cies that correspond to each fh ∈ FH0 by H0. We know that

∣∣H0
∣∣ ≤ N∞(ε,FH, 2n) (by
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definition of the covering number, and since there is a one-to-one mapping from h to fh)
and ∀h ∈ H, ∃h′ ∈ H0 such that ‖sh − sh′‖∞ ≤ ε and ‖s′h − s′h′‖∞ ≤ ε (by definition

of ε−cover). Instantiate ρ = ε(2 + 8
√

t
n) and suppose ∃h ∈ H such that Φ((σ, sh, s

′
h), t) >

Ψ((−σ, sh, s′h), t) + ρ. Since Φ and Ψ are Lipschitz continuous, as demonstrated in Equa-
tion (7), hence there must exist a h′ ∈ H0 such that Φ((σ, sh′ , s

′
h′), t) > Ψ((−σ, sh′ , s′h′), t).

Hence,

Pr
σ

(∃h ∈ H : Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ε(2 + 8

√
t

n
))

≤ Pr
σ

(∃h ∈ H0 : Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t))

≤
∑
h∈H0

Pr
σ

(Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t))

≤ 5e−tN∞(ε,FH, 2n) Equation (8) .

In short,

Pr
D

(∃h ∈ H : E [sh] > Ψ(sh, t) + ε(2 + 8

√
t

n
)) ≤ 10e−tN∞(ε,FH, 2n).

Setting 10e−tN∞(ε,FH, 2n) = γ we get tγ = log 10N∞(ε,FH,2n)
γ > 1. Moreover,

2(tγ+1)
n ≤

2(tγ+1)
n−1 ≤ 4tγ

n−1 and for n ≥ 16, 8
√

tγ
n ≤ 2tγ . Substituting ε = 1

n and simplifying,

Pr
D

(∃h ∈ H : E [sh] > ŝh +

√
18 ˆV ar(sh)tγ

n
+

15tγ
n− 1

) ≤ γ.

Finally, E [sh] = 1 + RM (h)
M , ŝh = 1 + R̂M (h)

M and ˆV ar(sh) =
ˆV ar(uh)
M2 . Since δ(·, ·) ≤ 0,

hence R(h) ≤ RM (h). Putting it all together,

Pr
D

(∃h ∈ H : R(h) > R̂M (h) +

√
18 ˆV ar(uh)tγ

n
+

15Mtγ
n− 1

) ≤ γ.

4.2 CRM Principle

The generalization error bound from the previous section is constructive in the sense that
it motivates a general principle for designing machine learning methods for batch learning
from bandit feedback. In particular, a learning algorithm following this principle should
jointly optimize the estimate R̂M (h) as well as its empirical standard deviation, where the
latter serves as a data-dependent regularizer.

ĥCRM = argmin
h∈H

R̂M (h) + λ

√
ˆV ar(uh)

n

 . (10)
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M ≥ 1 and λ ≥ 0 are regularization hyper-parameters. When λ = 0, we recover the
Inverse Propensity Scoring objective of Equation (2). In analogy to Structural Risk Min-
imization (Wapnik and Tscherwonenkis, 1979), we call this principle Counterfactual Risk
Minimization, since both pick the hypothesis with the tightest upper bound on the true
risk R(h).

4.3 Optimal Loss Scaling

When performing supervised learning with true labels y∗ and a loss function ∆(y∗, ·), em-
pirical risk minimization using the standard estimator is invariant to additive translation
and multiplicative scaling of ∆. The risk estimators R̂(h) and R̂M (h) in bandit learning,
however, crucially require δ(·, ·) ∈ [−1, 0].

Consider, for example, the case of δ(·, ·) ≥ 0. The training objectives in Equation (2)
(IPS) and Equation (10) (CRM) become degenerate! A hypothesis h ∈ H that completely
avoids the sample D (i.e. ∀i = 1, . . . , n, h(yi | xi) = 0) trivially achieves the best possible
R̂M (h) (= 0) with 0 empirical variance. This degeneracy arises partially because when
δ(·, ·) ≥ 0, the objectives optimize a lower bound on R(h), whereas what we need is an
upper bound.

For any bounded loss δ(·, ·) ∈ [5,4], we have, ∀x

Ey∼h(x) [δ(x, y)] ≤ 4+ Ey∼h0(x)
[
(δ(x, y)−4) min

{
M,

h(y | x)

h0(y | x)

}]
.

Since the optimization objectives in Equations (2),(10) are unaffected by a constant scale
factor (e.g., 4−5), we should transform δ 7→ δ′ to derive a conservative training objective,

δ′ ≡ {δ −4}/{4 −5}.

Such a transformation captures the following assumption: for an input x ∈ D, if a new
hypothesis h 6= h0 samples an unexplored y not seen in D, in the worst case it will incur a
loss of 4. This is clearly a very conservative assumption, and we foresee future work that
relaxes this using additional assumptions about δ(·, ·) and Y.

4.4 Selecting Hyper-Parameters

We propose selecting the hyper-parameters M ≥ 1 and λ ≥ 0 via cross validation. However,
we must be careful not to set M too small or λ too big. The estimated risk R̂M (h) ∈ [−M, 0],

while the variance penalty

√
ˆV ar(uh)
n ∈

[
0, M

2
√
n

]
. If M is too small, all the importance

sampling weights will be clipped and all hypotheses will have the same biased estimate of
risk MR̂M (h0). Similarly, if λ � 0, a hypothesis h ∈ H that completely avoids D (i.e.
∀i = 1, . . . , n, h(yi | xi) = 0) has R̂M (h) (= 0) with 0 empirical variance. So, it will achieve
the best possible training objective of 0. As a rule of thumb, we can calibrate M and λ so
that the estimator is unbiased and the objective is negative for some h ∈ H. When h0 ∈ H,

M ' max{pi}/min{pi} and

{
R̂M (h0) + λ

√
ˆV ar(uh0 )

n

}
< 0 are natural choices.
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4.5 When is Counterfactual Learning Possible?

The bounds in Theorem 3 are with respect to the randomness in h0. Known impossibility
results for counterfactual evaluation using h0 (Langford et al., 2008) also apply to counter-
factual learning. In particular, if h0 was deterministic, or even stochastic but without full
support over Y, it is easy to engineer examples involving the unexplored y ∈ Y that guar-
antee sub-optimal learning even as |D| → ∞. Similarly, lower bounds for learning under
covariate shift (Cortes et al., 2010) also apply to counterfactual learning. Finally, a stochas-
tic h0 with heavier tails need not always allow more effective learning. From importance
sampling theory (Owen, 2013), what really matters is how well h0 explores the regions of
Y with favorable losses.

5. Learning Algorithm: POEM

We now use the CRM principle to derive an efficient algorithm for structured output predic-
tion using linear rules. Classic learning methods for structured output prediction based on
full-information feedback, e.g. structured support vector machines (Tsochantaridis et al.,
2004) and conditional random fields (Lafferty et al., 2001), predict using

hsupw (x) = argmax
y∈Y

{w · φ(x, y)} , (11)

where w is a d−dimensional weight vector, and φ(x, y) is a d−dimensional joint feature
map. For example, in multi-label document classification, for a news article x and a possible
assignment of labels y represented as a bit vector, φ(x, y) could simply be a concatenation
x ⊗ y of the bag-of-words features of the document (x), one copy for each of the assigned
labels in y. Several efficient inference algorithms have been developed to solve Equation (11).

The POEM algorithm that is derived in this section uses the same parameterization of
the hypothesis space as in Equation (11). However, it considers the following expanded
class of Stochastic Softmax Rules based on this parameterization, which contains the de-
terministic rule in Equation (11) as a limiting case.

5.1 Stochastic Softmax Rules

Consider the following stochastic family Hlin, parametrized by w. A hypothesis hw(x) ∈
Hlin samples y from the distribution

hw(y | x) = exp(w · φ(x, y))/Z(x).

Z(x) =
∑

y′∈Y exp(w ·φ(x, y′)) is the partition function. This can be thought of as the “soft-
max” variant of the “hard-max” rules from Equation (11). Additionally, for a temperature
multiplier α > 1, w 7→ αw induces a more “peaked” distribution hαw that preserves the
modes of hw, and intuitively is a “more deterministic” variant of hw.

hw lies in the exponential family of distributions, and has a simple gradient,

∇hw(y | x) = hw(y | x)
{
φ(x, y)− Ey′∼hw(x)

[
φ(x, y′)

]}
.
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5.2 POEM Training Objective

Consider a bandit structured-output data set D = {(x1, y1, δ1, p1), . . . , (xn, yn, δn, pn)}. In
multi-label document classification, this data could be collected from an interactive labeling
system, where each y indicates the labels predicted by the system for a document x. The
feedback δ(x, y) is how many labels (but not which ones) were correct. To perform learning,
first we scale the losses as outlined in Section 4.3. Next, instantiating the CRM principle of
Equation (10) for Hlin, (using notation analogous to that in Theorem 3, adapted for Hlin),
yields the POEM training objective:

w∗ = argmin
w∈Rd

ûw + λ

√
ˆV ar(uw)

n
, (12)

with uw
i ≡ δi min{M,

exp(w · φ(xi, yi))

pi · Z(xi)
},

ûw ≡
1

n

n∑
i=1

uw
i,

ˆV ar(uw) ≡ 1

n− 1

n∑
i=1

(uw
i − ûw)2.

While the objective in Equation (12) is not convex in w (even for λ = 0), we find that batch
and stochastic gradient descent compute hw that have good generalization error (e.g., L-
BFGS out of the box). The key subroutine that enables us to perform efficient gradient
descent is a tractable way to compute uw

i and ∇w(uw
i)—both depend on Z(xi) using the

formulas

uw
i = δi min{M,

exp(w · φ(xi, yi))

pi · Z(xi)
} (13)

∇w(uw
i) =

0 if exp(w·φ(xi,yi))
pi·Z(xi) ≥M

δi
pi
uw

i
{
φ(xi, yi)−

∑
y′

[
φ(xi, y

′) exp(w·φ(xi,y
′))

Z(xi)

]}
otherwise.

For the special case when φ(x, y) = x ⊗ y, where y is a bit vector ∈ {0, 1}L, Z(x) has a
simple decomposition:

exp(w · φ(x, y)) =
L∏
l=1

exp(ylwl · x),

Z(x) =
L∏
l=1

(1 + exp(wl · x)),

where L is the length of the bit vector representation of y. For the general case, sev-
eral approximation schemes have been developed to handle Z(x) for supervised training of
graphical models and we can directly co-opt these for batch learning under bandit feedback
as well.
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5.3 POEM Iterated Variance Majorization Algorithm

We could use standard batch gradient descent methods to minimize the POEM training
objective. In particular, prior work (Yu et al., 2010; Lewis and Overton, 2013) has estab-
lished theoretically sound modifications to L-BFGS for non-smooth non-convex optimiza-
tion. However, the following develops a stochastic method that can be much faster.

At first glance, the POEM training objective in Equation (12), specifically the variance
term resists stochastic gradient optimization in the presented form. To remove this obstacle,
we now develop a Majorization-Minimization scheme, similar in spirit to recent approaches
to multi-class SVMs (van den Burg and Groenen, 2014) that can be shown to converge
to a local optimum of the POEM training objective. In particular, we will show how to

decompose

√
ˆV ar(uw) as a sum of differentiable functions (e.g.,

∑
i uw

i or
∑

i{uwi}2) so
that we can optimize the overall training objective at scale using stochastic gradient descent.

Proposition 4 For any w0 such that ˆV ar(uw0) > 0,√
ˆV ar(uw) ≤ Aw0

n∑
i=1

uw
i +Bw0

n∑
i=1

{uwi}2 + Cw0

= G(w;w0).

Aw0 ≡ −
ˆuw0

(n− 1)

√
ˆV ar(uw0)

,

Bw0 ≡
1

2(n− 1)

√
ˆV ar(uw0)

,

Cw0 ≡
n{ ˆuw0}2

2(n− 1)

√
ˆV ar(uw0)

+

√
ˆV ar(uw0)

2
.

Proof Consider a first order Taylor approximation of

√
ˆV ar(uw) around w0. Observe

that
√
· is concave.√

ˆV ar(uw) ≤
√

ˆV ar(uw0) +∇z
√
z |z= ˆV ar(uw0 )

( ˆV ar(uw)− ˆV ar(uw0))

=

√
ˆV ar(uw0) +

ˆV ar(uw)− ˆV ar(uw0)

2

√
ˆV ar(uw0)

=

√
ˆV ar(uw0)

2
+

1

2

√
ˆV ar(uw0)

ˆV ar(uw)

=

√
ˆV ar(uw0)

2
+

∑n
i=1{uwi}2

2(n− 1)

√
ˆV ar(uw0)

+
−n{ûw}2

2(n− 1)

√
ˆV ar(uw0)

.
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Again Taylor approximate −{ûw}2, noting that −{·}2 is concave.

−{ûw}2 ≤ −{ ˆuw0}2 +∇z(−z2) |z= ˆuw0
(ûw − ˆuw0)

= −{ ˆuw0}2 + 2{ ˆuw0}2 − 2 ˆuw0 ûw

= { ˆuw0}2 −
2 ˆuw0

n

n∑
i=1

uw
i.

Substituting above and re-arranging terms, we derive the proposition.

Iteratively minimizing wt+1 = argminwG(w;wt) ensures that the sequence of iterates

w1, . . . , wt+1 are successive minimizers of

√
ˆV ar(uw). Hence, during an epoch t, POEM

proceeds by sampling uniformly i ∼ D, computing uw
i,∇uwi and, for learning rate η,

updating

w ← w − η{∇uwi + λ
√
n(Awt∇uwi + 2Bwtuw

i∇uwi)}.

After each epoch, wt+1 ← w, and iterated minimization proceeds until convergence.

The complete algorithm is summarized as Algorithm 1. Software implementing POEM
is available at http://www.cs.cornell.edu/∼adith/poem/ for download, as is all the code and
data needed to run each of the experiments reported in Section 6.

6. Empirical Evaluation

We now empirically evaluate the prediction performance and computational efficiency of
POEM on a broad range of scenarios. To be able to control these experiments effectively,
we derive bandit feedback from existing full-information data sets. As the learning task,
we consider multi-label classification with input x ∈ Rp and prediction y ∈ {0, 1}q. Popular
supervised algorithms that solve this problem include Structured SVMs (Tsochantaridis
et al., 2004) and Conditional Random Fields (Lafferty et al., 2001). In the simplest case,
CRF essentially performs logistic regression for each of the q labels independently. As
outlined in Section 5, we use a joint feature map: φ(x, y) = x⊗y. We conducted experiments
on different multi-label data sets collected from the LibSVM repository, with different ranges
for p (features), q (labels) and n (samples) represented as summarized in Table 2.

Experiment methodology. We employ the Supervised 7→ Bandit conversion (Beygelzimer
and Langford, 2009) method. Here, we take a supervised data setD∗ = {(x1, y∗1) . . . (xn, y

∗
n)}

Name p(# features) q(# labels) ntrain ntest
Scene 294 6 1211 1196
Yeast 103 14 1500 917
TMC 30438 22 21519 7077
LYRL 47236 4 23149 781265

Table 2: Corpus statistics for different multi-label data sets from the LibSVM repository.
LYRL was post-processed so that only top level categories were treated as labels.
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Algorithm 1 POEM pseudocode. An alternative version can use separate samplers for
estimating uw

i and {uwi}2 on Line 24.

1: procedure LossGradient(Ds, ~w) . Returns uw
i,∇w(uw

i) for i ∈ Ds
2: for i ∈ Ds do
3: ui ← uw

i. . Equation (13)
4: gi ← ∇w(uw

i).
return ~u,~g.

5: procedure ABC(D, ~w, λ) . Returns Aw, Bw, Cw from Proposition (4)
6: ~u,~g ← LossGradient(D, ~w).
7: R←

∑
i∈D ui/n.

8: V ←
√∑

i∈D(ui −R)2/(n− 1).

9: A← 1− λ
√
nR

(n−1)V .

10: B ← λ
2(n−1)V

√
n

.

11: C ← λV
2
√
n

+ λ
√
nR2

2(n−1)V .

return A,B,C.

12: procedure SGD(D, λ, µ) . L2 regularizer µ
13: ~w ← [0]d. . Initial param

14: ~h← [1]d. . Adagrad history
15: while True do
16: Shuffle D.
17: A,B,C ← ABC(D, w, λ).
18: for Ds ⊂ D do . Minibatch |Ds| = b
19: ~u,~g ← LossGradient(Ds, ~w).
20: u =

∑
i∈Ds ui/|Ds|.

21: g =
∑

i∈Ds gi/|Ds|.
22: hi ← hi + gi

2.
23: ji ← gi/

√
hi.

24: ~∇ ← A~j + 2µ~w + 2Bu~j.
25: if ‖~∇‖ ' 0 then return ~w. . Gradient norm convergence

26: if u > avg u then return ~w. . Progressive validation

27: ~w ← ~w − η~∇. . Step size η

and simulate a bandit feedback data set from a logging policy h0 by sampling yi ∼ h0(xi)
and collecting feedback ∆(y∗i , yi). In principle, we could use any arbitrary stochastic policy
as h0. We choose a CRF trained on 5% of D∗ as h0 using default hyper-parameters, since
they provide probability distributions amenable to sampling. In all the multi-label experi-
ments, ∆(y∗, y) is the Hamming loss between the supervised label y∗ vs. the sampled label y
for input x. Hamming loss is just the number of incorrectly assigned labels (both false posi-
tives and false negatives). To create bandit feedback D = {(xi, yi, δi ≡ ∆(y∗i , yi), pi ≡ h0(yi |
xi))}, we take four passes through D∗ and sample labels from h0. Note that each supervised
label is worth ' |Y| = 2q bandit feedback labels. We can explore different learning strategies
(e.g., IPS, CRM, etc.) on D and obtain learnt weight vectors wips, wcrm, etc. On the super-

1746



Counterfactual Risk Minimization

vised test set, we then report the expected loss per instance R = 1
ntest

∑
i Ey∼hw(xi)∆(y∗i , y)

and compare the generalization error of these learning strategies.

Baselines and learning methods. The expected Hamming loss of h0 is the baseline to
beat. Lower loss is better. The näıve, variance-agnostic approach to counterfactual learning
(Bottou et al., 2013; Strehl et al., 2010) can be generalized to handle parametric multilabel
classification by optimizing Equation (12) with λ = 0. We optimize it either using L-BFGS
(IPS(B)) or stochastic optimization (IPS(S)). POEM(S) uses our Iterative-Majorization
approach to variance regularization as outlined in Section 5.3, while POEM(B) is a L-BFGS
variant. Finally, we report results from a supervised CRF as a skyline, despite its unfair
advantage of having access to the full-information examples.

We keep aside 25% of D as a validation set—we use the unbiased counterfactual estima-
tor from Equation (1) for selecting hyper-parameters. λ = cλ∗, where λ∗ is the calibration
factor from Section 4.4 and c ∈ {10−6, . . . , 1} in multiples of 10. The clipping constant M
is similarly set to the ratio of the 90%ile to the 10%ile propensity score observed in the
training set of D. The reported results are not sensitive to this choice of M , any reasonably
large clipping constant suffices (e.g. even a simple, problem independent choice of M = 100
works well). When optimizing any objective over w, we always begin the optimization from
w = 0, which is equivalent to hw = uniform(Y). We use mini-batch AdaGrad (Duchi
et al., 2011) with batch size = 100 and step size η = 1 to adapt our learning rates for
the stochastic approaches and use progressive validation (Blum et al., 1999) and gradient
norms to detect convergence. Finally, the entire experiment set-up is run 10 times (i.e. h0
trained on randomly chosen 5% subsets, D re-created, and test set performance of different
approaches collected) and we report the averaged test set expected error across runs.

6.1 Does Variance Regularization Improve Generalization?

Results are reported in Table 3. We statistically test the performance of POEM against
IPS (batch variants are paired together, and the stochastic variants are paired together)
using a one-tailed paired difference t-test at significance level of 0.05 across 10 runs of
the experiment, and find POEM to be significantly better than IPS on each data set and
each optimization variant. Furthermore, on all data sets POEM learns a hypothesis that
substantially improves over the performance of h0. This suggests that the CRM principle
is practically useful for designing learning algorithms, and that the variance regularizer is
indeed beneficial.

6.2 How Computationally Efficient is POEM?

Table 4 shows the time taken (in CPU seconds) to run each method on each data set,
averaged over different validation runs when performing hyper-parameter grid search. Some
of the timing results are skewed by outliers, e.g., when under very weak regularization,
CRFs tend to take longer to converge. However, it is still clear that the stochastic variants
are able to recover good parameter settings in a fraction of the time of batch L-BFGS
optimization, and this is even more pronounced when the number of labels grows—the
run-time is dominated by computation of Z(xi).
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R Scene Yeast TMC LYRL

h0 1.543 5.547 3.445 1.463

IPS(B) 1.193 4.635 2.808 0.921
POEM(B) 1.168 4.480 2.197 0.918

IPS(S) 1.519 4.614 3.023 1.118
POEM(S) 1.143 4.517 2.522 0.996

CRF 0.659 2.822 1.189 0.222

Table 3: Test set Hamming loss, R for different approaches to multi-label classification on
different data sets, averaged over 10 runs. POEM is significantly better than IPS
on each data set and each optimization variant (one-tailed paired difference t-test
at significance level of 0.05).

Time(s) Scene Yeast TMC LYRL

IPS(B) 2.58 47.61 136.34 21.01
IPS(S) 1.65 2.86 49.12 13.66

POEM(B) 75.20 94.16 949.95 561.12
POEM(S) 4.71 5.02 276.13 120.09

CRF 4.86 3.28 99.18 62.93

Table 4: Average time in seconds for each validation run for different approaches to multi-
label classification. CRF is implemented by scikit-learn (Pedregosa et al., 2011).
On all data sets, stochastic approaches are much faster than batch gradients.

6.3 Can MAP Predictions Derived From Stochastic Policies Perform Well?

For the policies learnt by POEM as shown in Table 3, Table 5 reports the averaged per-
formance of the deterministic predictor derived from them. For a learnt weight vector w,
this simply amounts to applying Equation (11). In practice, this method of generating
predictions can be substantially faster than sampling since computing the argmax does not
require computation of the partition function Z(x) which can be expensive in structured
output prediction. From Table 5, we see that the loss of the deterministic predictor is
typically not far from the loss of the stochastic policy, and often better.

6.4 How Does Generalization Improve With Size Of D?

As we collect more data under h0, our generalization error bound indicates that prediction
performance should eventually approach that of the optimal hypothesis in the hypothesis
space. We can simulate n → ∞ by replaying the training data multiple times, collecting
samples y ∼ h0(x). In the limit, we would observe every possible y in the bandit feedback
data set, since h0(x) has non-zero probability of exploring each prediction y. However,
the learning rate may be slow, since the exponential model family has very thin tails, and
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R Scene Yeast TMC LYRL

POEM(S) 1.143 4.517 2.522 0.996
POEM(S)map 1.143 4.065 2.299 0.880

Table 5: Mean Hamming loss of MAP predictions from the policies in Table 3. POEMmap

is significantly better than POEM on all data sets except Scene (one-sided paired
difference t-test, significance level 0.05).

20 21 22 23 24 25 26 27 28

3

3.5

4

ReplayCount

R h0
CRF

POEM(S)

Figure 1: Generalization performance of POEM(S) as a function of n on the Yeast data
set.

hence may not be an ideal logging distribution to learn from. Holding all other details
of the experiment setup fixed, we vary the number of times we replayed the training set
(ReplayCount) to collect samples from h0, and report the performance of POEM(S) on the
Yeast data set in Figure 1. As expected, performance of POEM improves with increasing
sample size. Note that even with ReplayCount = 28, POEM(S) is learning from much less
information than the CRF, where each supervised label conveys 214 bandit label feedbacks.

6.5 How Does Quality of h0 Affect Learning?

In this experiment, we change the fraction of the training set f ·ntrain that was used to train
the logging policy—and as f is increased, the quality of h0 improves. Intuitively, there’s
a trade-off: better h0 probably samples correct predictions more often and so produces a
higher quality D to learn from, but it should also be harder to beat h0. We vary f from
1% to 100% while keeping all other conditions identical to the original experiment setup in
Figure 2, and find that POEM(S) is able to consistently find a hypothesis at least as good
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Figure 2: Performance of POEM(S) on the Yeast data set as h0 is improved. The fraction
f of the supervised training set used to train h0 is varied to control h0’s quality.
h0 performance does not reach CRF when f = 1 because we do not tune hyper-
parameters, and we report its expected loss, not the loss of its MAP prediction.

as h0. Moreover, even D collected from a poor quality h0 (0.5 ≤ f ≤ 0.2) allows POEM(S)
to effectively learn an improved policy.

6.6 How Does Stochasticity of h0 Affect Learning?

Finally, the theory suggests that counterfactual learning is only possible when h0 is suf-
ficiently stochastic (the generalization bounds hold with high probability in the samples
drawn from h0). Does CRM degrade gracefully when this assumption is violated? We test
this by introducing the temperature multiplier w 7→ αw,α > 0 (as discussed in Section 5)
into the logging policy. For h0 = hw0 , we scale w0 7→ αw0, to derive a “less stochastic”
variant of h0, and generate D ∼ hαw0 . We report the performance of POEM(S) on the
LYRL data set in Figure 3 as we change α ∈ [0.5, . . . , 32], compared against h0, and the
deterministic predictor— h0 map—derived from h0. So long as there is some minimum
amount of stochasticity in h0, POEM(S) is still able to find a w that improves upon h0 and
h0 map. The margin of improvement is typically greater when h0 is more stochastic. Even
when h0 is barely stochastic (α ≥ 24), performance of POEM(S) simply recovers h0 map,
suggesting that the CRM principle indeed achieves robust learning.

We observe the same trends (Figures 1, 2 and 3) across all data sets and optimization
variants. They also remain unchanged when we include l2−regularization (analogous to
supervised CRFs to capture the capacity of Hlin).
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Figure 3: Performance of POEM(S) on the LYRL data set as h0 becomes less stochastic.
For α ≥ 25, h0 ≡ h0 map (within machine precision).

7. Real-World Application

We now demonstrate how POEM (and in general the CRM principle) can be instantiated
effectively in real world settings. Bloomberg, the financial and media company in New
York, had the following challenging retrieval problem: the task was to train a high-precision
classifier that could reliably pick the best answer d∗ (or none, if none answered the query)
from a pool of candidate answers Y(x) for query x, where Y(x) was generated by an existing
high-recall retrieval function. The challenge lay in collecting supervised labeled data that
could be used to train this high-precision classifier.

Before we started our experiment with POEM, an existing high-precision classifier was
already in operation. It was trained using a few labeled examples (x, d∗), but scaling up
the system to achieve improved accuracy appeared challenging given the cost of acquiring
new (x, d∗) pairs that mimicked what the system saw during its operation. However, it was
possible to collect logs of the system, where each entry contained a query x and the features
φ(x, d) describing each candidate answer d ∈ Y(x). The high-precision classifier could be
modeled as a logistic regression classifier with weights w and a threshold τ . Each candidate
was scored using w, s(d) = w · φ(x, d). If the highest scoring candidate s(d∗) ≥ τ , it was
selected as the answer and otherwise the system abstained.

This existing system could easily be adapted to provide D as needed by POEM. For each
x, a dummy d0 ∈ Y(x) is added to the candidate pool to model abstention. During the oper-

ation of the system, answers are sampled according to exp(α·s(d))
Z . Z is the partition function

to ensure this is a valid sampling distribution, Z =
∑

d∈Y(x)∪d0 exp(α · s(d)). Abstention
is modeled by the fact that d0 is sampled with probability proportional to exp(α · s(d0)).
α is a temperature constant so that the system can be tuned to sample abstentions at
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roughly the same rate as its deterministic counterpart. Finally, the end-result feedback
(δ ∈ {thumbs-up, thumbs-down} represented as binary feedback) was logged and provided
bandit feedback for the presented answer d.

This data set was much easier to collect during the system run compared to annotating
each x in the logs with the best possible d∗ that would have answered the query. We argue
that this is a general, practical, alternative approach to training retrieval systems: use any
strategy with very high recall to construct Y, then use the parameters w estimated using
the CRM principle to search through this Y and find a precise answer.

On a small pilot study, we acquired D with ' 4000 (x, d, exp(α·s(d))Z , δ) tuples in the
training set and ' 500 tuples in the validation and test sets. We verified that the existing
high-precision classifier was statistically significantly better than random baselines for the
problem. POEM(S) is trained on this log data by performing gradient descent with w
initialized to w0 = 0 and validating c ∈

[
10−6, . . . 1

]
, λ = cλ∗ as described in Sections 4.4

and 6. POEM(S) found a w∗ that improved δ feedback over the existing system by over
30%, as estimated using the unbiased counterfactual estimator of Equation (1) on the test
set. Without using the variance regularizer, the IPS(S) found a w∗ that degraded the
system performance by 3.5% estimated counterfactually in the same way. This shows that
POEM and the CRM principle can bring potential benefit even in binary-feedback multi-
class classification settings where classic supervised learning approaches lack available data.

8. Conclusion

Counterfactual risk minimization serves as a robust principle for designing algorithms that
can learn from a batch of bandit feedback interactions. The key insight for CRM is to
expand the classical notion of a hypothesis class to include stochastic policies, reason about
variance in the risk estimator, and derive a generalization error bound over this hypothesis
space. The practical take-away is a simple, data-dependent regularizer that guarantees
robust learning. Following the CRM principle, we developed the POEM learning algorithm
for structured output prediction. POEM can optimize over rich policy families (exponential
models corresponding to linear rules in supervised learning), and deal with massive output
spaces as efficiently as classical supervised methods.

The CRM principle more generally applies to supervised learning with non-differentiable
losses, since the objective does not require the gradient of the loss function. We also foresee
extensions of the algorithm to handle ordinal or co-active feedback models for δ(·, ·), and
extensions of the generalization error bound to include adaptive or deterministic h0, etc.
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Abstract
The density matrices are positively semi-definite Hermitian matrices of unit trace that
describe the state of a quantum system. The goal of the paper is to develop minimax lower
bounds on error rates of estimation of low rank density matrices in trace regression models
used in quantum state tomography (in particular, in the case of Pauli measurements)
with explicit dependence of the bounds on the rank and other complexity parameters.
Such bounds are established for several statistically relevant distances, including quantum
versions of Kullback-Leibler divergence (relative entropy distance) and of Hellinger distance
(so called Bures distance), and Schatten p-norm distances. Sharp upper bounds and oracle
inequalities for least squares estimator with von Neumann entropy penalization are obtained
showing that minimax lower bounds are attained (up to logarithmic factors) for these
distances.
Keywords: quantum state tomography, low rank density matrix, minimax lower bounds

1. Introduction

This paper deals with optimality properties of estimators of density matrices, describing
states of quantum systems, that are based on penalized empirical risk minimization with
specially designed complexity penalties such as von Neumann entropy of the state. Alexey
Chervonenkis was a co-founder of the theory of empirical risk minimization that is of cru-
cial importance in machine learning, but he also had very broad interests that included,
in particular, quantum mechanics. By the choice of the topic, we would like to honor the
memory of this great man and great scientist.

Let Mm(C) be the set of all m×m matrices with complex entries and let Hm = Hm(C) ⊂
Mm(C) be the set of all Hermitian matrices: Hm = {A ∈ Mm(C) : A = A∗}, A∗ denoting
the adjoint matrix of A. For A ∈ Hm, tr(A) denotes the trace of A and A < 0 means
that A is positively semi-definite. Let Sm := {S ∈ Hm : S < 0, tr(S) = 1} be the set of
all positively semi-definite Hermitian matrices of unit trace called density matrices. In
quantum mechanics, the state of a quantum system is usually characterized by a density
matrix ρ ∈ Sm (or, more generally, by a self-adjoint positively semi-definite operator of unit
trace acting in an infinite-dimensional Hilbert space, called a density operator). Often, very
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†. Supported in part by NSF Grant DMS-1207808

c©2015 Vladimir Koltchinskii and Dong Xia.
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large density matrices are needed to represent or to approximate the density operator of the
state. For instance, for a quantum system consisting of b qubits, the density matrices are
of the size m×m with m = 2b, so the dimension of the density matrix grows exponentially
with b. For instance, for a 10 qubit system, one has to deal with matrices that have 220

entries. Thus, it becomes natural in the problems of statistical estimation of density matrix
ρ to take an advantage of the fact that it might be low rank, or nearly low rank (that is,
it could be well approximated by low rank matrices) which reduces the complexity of the
estimation problem.

In quantum state tomography (QST), the goal is to estimate an unknown state ρ ∈ Sm
based on a number of specially designed measurements for the system prepared in state
ρ (see Gross et al. 2010, Gross 2011, Koltchinskii 2011a, Cai et al. 2015 and references
therein). Given an observable A ∈ Hm with spectral representation A =

∑m′
j=1 λjPj , where

m′ ≤ m, λj being the eigenvalues of A and Pj being the corresponding mutually orthogonal
eigenprojectors, the outcome of a measurement of A for the system prepared in state ρ is a
random variable Y taking values λj with probabilities tr(ρPj). The expectation of Y is then
EρY = tr(ρA), so, Y could be viewed as a noisy observation of the value of linear functional
tr(ρA) of the unknown density matrix ρ. A common approach is to choose an observable
A at random, assuming that it is the value of a random variable X with some design
distribution Π in the space Hm. More precisely, given a sample of n i.i.d. copies X1, . . . , Xn

of X, n measurements are being performed for the system identically prepared n times in
state ρ resulting in outcomes Y1, . . . , Yn. Based on the data (X1, Y1), . . . , (Xn, Yn), the goal
is to estimate the target density matrix ρ. Clearly, the observations satisfy the following
model

Yj = tr(ρXj) + ξj , j = 1, . . . , n, (1)

where {ξj} is a random noise consisting of n i.i.d. random variables satisfying the condi-
tion Eρ(ξj |Xj) = 0, j = 1, . . . , n. This is a special case of so called trace regression model
intensively studied in the recent literature (see, e.g., Koltchinskii et al. 2011, Koltchinskii
2011b and references therein).

1.1 Assumptions

A common choice of design distribution in this type of problems is so called uniform sampling
from an orthonormal basis described in the following assumptions.

Assumption 1 Let E = {E1, . . . , Em2} ⊂ Hm be an orthonormal basis of Hm with respect
to the Hilbert–Schmidt inner product: 〈A,B〉 = tr(AB). Moreover, suppose that, for some
U > 0,

‖Ej‖∞ ≤ U, j = 1, . . . , n,

where ‖ · ‖∞ denotes the operator norm (the spectral norm).

Since ‖Ej‖2 = 1, where ‖ · ‖2 denotes the Hilbert–Schmidt (or Frobenius) norm, we can
assume that U ≤ 1. Moreover, U ≥ m−1/2 since 1 = ‖Ej‖2 ≤ m1/2‖Ej‖∞ ≤ m1/2U.

Assumption 2 Let Π be the uniform distribution in the finite set E (see Assumption 1),
let X be a random variable sampled from Π and let X1, . . . , Xn be i.i.d. copies of X.
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It will be assumed in what follows that assumptions 1 and 2 hold (unless it is stated
otherwise). Under these assumptions, Y1, . . . , Yn could be viewed as noisy observations of
a random sample of Fourier coefficients 〈ρ,X1〉, . . . , 〈ρ,Xn〉 of the target density matrix
ρ in the basis E . The above model (in which X1, . . . , Xn are uniformly sampled from an
orthonormal basis and Y1, . . . , Yn are the outcomes of measurements of the observables
X1, . . . , Xn for the system being identically prepared n times in the same state ρ) will be
called in what follows the standard QST model. It is a special case of trace regression model
with bounded response:

Assumption 3 (Trace regression with bounded responce) Suppose that Assumption
1 holds and let (X,Y ) be a random couple such that X is sampled from the uniform
distribution Π in an orthonormal basis E ⊂ Hm. Suppose also that, for some ρ ∈ Sm,
E(Y |X) = 〈ρ,X〉 a.s. and, for some Ū > 0, |Y | ≤ Ū a.s.. The data (X1, Y1), . . . (Xn, Yn)
consists of n i.i.d. copies of (X,Y ).

We are also interested in the trace regression model with Gaussian noise:

Assumption 4 (Trace regression with Gaussian noise) Suppose Assumption 1 holds
and let (X,Y ) be a random couple such that X is sampled from the uniform distribution
Π in an orthonormal basis E ⊂ Hm and, for some ρ ∈ Sm, Y = 〈ρ,X〉 + ξ, where ξ is a
normal random variable with mean 0 and variance σ2

ξ , ξ and X being independent. The
data (X1, Y1), . . . (Xn, Yn) consists of n i.i.d. copies of (X,Y ).

Note that this model is not directly applicable to the “standard QST problem” described
above, where the response variable Y is discrete. However, if the measurements are repeated
multiple times for each observable Xj and the resulting outcomes are averaged to reduce the
variance, the noise of such averaged measurements becomes approximately Gaussian and it
is of interest to characterize the estimation error in terms of the variance of the noise.

An important example of an orthonormal basis used in quantum state tomography is
so called Pauli basis, see, e.g., Gross et al. (2010), Gross (2011). The Pauli basis in the
space H2 of 2× 2 Hermitian matrices (observables in a single qubit system) consists of four
matrices W1,W2,W3,W4 defined as Wi = 1√

2σi, i = 1, . . . , 4, where

σ1 :=
(

1 0
0 1

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
0 1
1 0

)
, σ4 :=

(
1 0
0 −1

)
.

It is easy to check that {W0,W1,W2,W3} indeed forms an orthonormal basis in H2. The
Pauli basis in the space Hm for m = 2b (the space of observables for a b qubits system) is de-
fined by tensorisation, namely, it consists of 4b tensor products Wi1⊗ . . .⊗Wib , (i1, . . . , ib) ∈
{1, 2, 3, 4}b. Let us write these matrices as E1, . . . , Em2 with E1 = W1⊗ . . .⊗W1. It is easy
to see that each of them has eigenvalues ± 1√

m
and ‖Ej‖∞ = m−1/2, so, for this basis,

U = m−1/2. The fact that, for the Pauli basis, the operator norms of basis matrices are as
small as possible plays an important role in quantum state tomography (Gross et al., 2010;
Gross, 2011; Liu, 2011). Let Ej = 1√

m
Q+
j − 1√

m
Q−j be the spectral representation of Ej .

Then, an outcome of a measurement of Ej in state ρ is a random variable τj taking values
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± 1√
m

with probabilities
〈
ρ,Q±t

〉
. Its expectation is Eρτj = 〈ρ,Ej〉. Of course, there exists a

unique representation of density matrix ρ in the Pauli basis that can be written as follows:
ρ =

∑m2
j=1

αj√
m
Ej with α1 = 1. Then, we clearly have Eρτj = αj√

m
and Pρ

{
τj = ± 1√

m

}
= 1±αj

2

(for j = 1, this gives Pρ
{
τ1 = 1√

m

}
= 1). As a consequence, Varρ(τj) = 1−α2

j

m . Note that∑m2
j=1

α2
j

m = ‖ρ‖22 ≤ tr2(ρ) = 1. This implies that there exists j such that α2
j ≤ 1

2 and
Varρ(τj) ≥ 1

2m . In fact, the number of such j must be large, say, at least m2

2 (provided that
m > 4). Thus, for “most” of the values of j, Varρ(τj) � 1

m . A way to reduce the variance is
to repeat the measurement of each observable Xj K times (for a system identically prepared
in state ρ) and to average the outcomes of such K measurements. The resulting response
variable is Yj = 〈ρ,Xj〉 + ξj , where Eρ(ξj |Xj) = 0 and Eρ(ξ2

j |Xj) = Varρ(Yj |Xj) =
1−α2

νj

Km ,
νj being defined by the relationship Xj = Eνj .

1.2 Preliminaries and Notations

Some notations will be used throughout the paper. The Euclidean norm in Cm will be
denoted by ‖ · ‖ and the notation 〈·, ·〉 will be used for both the Euclidean inner product in
Cm and for the Hilbert–Schmidt inner product in Hm. ‖·‖p, p ≥ 1 will be used to denote the
Schatten p-norm in Hm, namely ‖A‖pp =

m∑
j
|λj(A)|p, A ∈ Hm, λ1(A) ≥ . . . ≥ λm(A) being

the eigenvalues of A. In particular, ‖ · ‖2 denotes the Hilbert–Schmidt (or Frobenius) norm,
‖·‖1 denotes the nuclear (or trace) norm and ‖·‖∞ denotes the operator (or spectral) norm:
‖A‖∞ = max1≤j≤m |λj(A)| = |λ1(A)|. The following well known interpolation inequality for
Schatten p-norms will be used to extend the bounds proved for some values of p to the
whole range of its values. It easily follows from similar bounds for `p-spaces.

Lemma 1 (Interpolation inequality) For 1 ≤ p < q < r ≤ ∞, and let µ ∈ [0, 1] be such
that

µ

p
+ 1− µ

r
= 1
q
.

Then, for all A ∈ Hm,
‖A‖q ≤ ‖A‖µp‖A‖1−µr .

Given A ∈ Hm, define a function fA : Hm 7→ R : fA(x) := 〈A, x〉, x ∈ Hm. For a given
random variable X in Hm with a distribution Π, we have ‖fA‖2L2(Π) = Ef2

A(X) = E〈A,X〉2.
Sometimes, with a minor abuse of notation, we might write ‖A‖2L2(Π) =

∫
Hm〈A, x〉

2Π(dx) =
‖fA‖2L2(Π). In what follows, Π will be typically the uniform distribution in an orthonormal
basis E = {E1, . . . , Em2} ⊂ Hm, implying that

‖fA‖2L2(Π) = ‖A‖2L2(Π) = m−2‖A‖22,

so, the L2(Π)-norm is just a rescaled Hilbert–Schmidt norm.
Consider A ∈ Hm with spectral representation A =

∑m′
j=1 λjPj , m

′ ≤ m with distinct
non-zero eigenvalues λj . Denote by sign(A) :=

∑m′
j=1 sign(λj)Pj and by supp(A) the linear
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span of the images of projectors Pj , j = 1, . . . ,m′ (the subspace supp(A) ⊂ Cm will be
called the support of A).

Given a subspace L ⊂ Cm, L⊥ denotes the orthogonal complement of L and PL denotes
the orthogonal projection onto L. Let PL,P⊥L be orthogonal projection operators in the
space Hm (equipped with the Hilbert–Schmidt inner product), defined as follows:

P⊥L (A) = PL⊥APL⊥ , PL(A) = A− PL⊥APL⊥ .

These two operators split any Hermitian matrix A into two orthogonal parts, PL(A) and
P⊥L (A), the first one being of rank at most 2dim(L).

For a convex function f : Hm 7→ R, ∂f(A) denotes the subdifferential of f at the point
A ∈ Hm. It is well known that

∂‖A‖1 =
{

sign(A) + P⊥L (M) : M ∈ Hm, ‖M‖∞ ≤ 1
}
, (2)

where L = supp(A) (see Koltchinskii 2011b, p. 240 and references therein).
C,C1, C

′, c, c′, etc will denote constants (that do not depend on parameters of interest
such as m,n, etc) whose values could change from line to line (or, even, within the same
line) without further notice. For nonnegative A and B, A . B (equivalently, B & A) means
that A ≤ CB for some absolute constant C > 0, and A � B means that A . B and
B . A. Sometimes, symbols .,& and � could be provided with subscripts (say, A .γ B)
to indicate that constant C may depend on a parameter (say, γ).

In what follows, P denotes the distribution of (X,Y ) and Pn denotes the corresponding
empirical distribution based on the sample (X1, Y1), . . . , (Xn, Yn) of n i.i.d. observations.
Similarly, Π is the distribution of X (typically, uniform in an orthonormal basis) and Πn

is the corresponding empirical distribution based on the sample (X1, . . . , Xn). We will use
standard notations Pf = Ef(X,Y ), Pnf = n−1∑n

j=1 f(Xj , Yj) and Πg = Eg(X), Png =
n−1∑n

j=1 g(Xj).

1.3 Estimation Methods

Recall that the central problem in quantum state tomography is to estimate a large density
matrix ρ based on the data (X1, Y1), . . . , (Xn, Yn) satisfying the trace regression model.
Often, the goal is to develop adaptive estimators with optimal dependence of the estimation
error (measured by various statistically relevant distances) on the unknown rank of the
target matrix ρ under the assumption that ρ is low rank, or on other complexity parameters
in the case when the target matrix ρ can be well approximated by low rank matrices.

The simplest estimation procedure for density matrix ρ is the least squares estimator
defined by the following convex optimization problem:

ρ̂ := arg min
S∈Sm

1
n

n∑
j=1

(Yj − 〈S,Xj〉)2 . (3)

Since, for all S ∈ Sm, ‖S‖1 = tr(S) = 1, we have that

ρ̂ = ρ̂ε := arg min
S∈Sm

[ 1
n

n∑
j=1

(Yj − 〈S,Xj〉)2 + ε‖S‖1
]
, ε ≥ 0. (4)
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Thus, in the case of density matrices, the least squares estimator ρ̂ coincides with the
matrix LASSO estimator ρ̂ε with nuclear norm penalty and arbitrary value of regularization
parameter ε. The nuclear norm penalty is used as a proxy of the rank that provides a convex
relaxation for rank penalized least squares method. Matrix LASSO is a standard method of
low rank estimation in trace regression models that has been intensively studied in the recent
years, see, for instance, Candés and Plan (2011), Rohde and Tsybakov (2011), Koltchinskii
(2011b), Koltchinskii et al. (2011), Negahban and Wainwright (2010) and references therein.
In the case of estimation of density matrices, due to their positive semidefiniteness and trace
constraint, the nuclear norm penalization is present implicitly even in the case of a non-
penalized least squares estimator ρ̂ (see also Koltchinskii 2013a, Kalev et al. 2015 where
similar ideas were used).

Note that the estimator ρ̂ can be also rewritten as

ρ̂ := arg min
S∈Sm

[
‖S‖2L2(Πn) −

2
n

n∑
j=1

Yj
〈
S,Xj

〉]
. (5)

Replacing the empirical ‖ · ‖L2(Πn)-norm with the “true” ‖ · ‖L2(Π)-norm (which could make
sense in the case when the design distribution Π is known) yields the following modified
least squares estimator studied in Koltchinskii et al. (2011), Koltchinskii (2013a):

ρ̌ := arg min
S∈Sm

[
‖S‖2L2(Π) −

2
n

n∑
j=1

Yj
〈
S,Xj

〉]
. (6)

Another estimator was proposed in Koltchinskii (2011a) and it is based on an idea of
using so called von Neumann entropy as a penalizer in least squares method. Von Neumann
entropy is a canonical extension of Shannon’s entropy to the quantum setting. For a density
matrix S ∈ Sm, it is defined as E(S) := −tr(S logS). The estimator proposed in Koltchinskii
(2011a) is defined as follows

ρ̃ε := arg min
S∈Sm

[ 1
n

n∑
j=1

(Yj −
〈
S,Xj

〉
)2 + εtr(S logS)

]
. (7)

Essentially, it is based on a trade-off between fitting the model via the least squares method
in the class of all density matrices and maximizing the entropy of the quantum state. Note
that (7) is also a convex optimization problem (due to concavity of von Neumann entropy,
see Nielsen and Chuang 2000) and its solution ρ̃ε is a full rank matrix (see Koltchinskii
2011a, the proof of Proposition 3). It should be also mentioned that the idea of estimation
of a density matrix of a quantum state by maximizing the von Neumann entropy subject
to constraints based on the data has been used in quantum state tomography earlier (see
Bužek 2004 and references therein).

1.4 Distances between Density Matrices

The main purpose of this paper is to study the optimality properties of estimator ρ̃ε with
respect to a variety of statistically meaningful distances, in the case when the underlying
density matrix ρ is low rank. These distances include Schatten p-norm distances for p ∈
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[1, 2],1 but also quantum versions of Hellinger distance and Kullback-Leibler divergence
that are of importance in quantum statistics and quantum information. A version of the
(squared) Hellinger distance that will be studied is defined as

H2(S1, S2) := 2− 2tr
√
S

1
2
1 S2S

1
2
1

for S1, S2 ∈ Sm (see also Nielsen and Chuang 2000). Clearly, 0 ≤ H2(S1, S2) ≤ 2. In
quantum information literature, it is usually called Bures distance and it does not coincide
with tr(

√
S1−

√
S2)2 (which is another possible non-commutative extension of the classical

Hellinger distance). In fact, H2(S1, S2) ≤ tr(
√
S1 −

√
S2)2, S1, S2 ∈ Sm, but the opposite

inequality does not necessarily hold. The quantity tr
√
S

1
2
1 S2S

1
2
1 in the right hand side of

the definition of H2 is a quantum version of Hellinger affinity.
The noncommutative Kullback-Leibler divergence (or relative entropy distance) K(·‖·)

is defined as (see also Nielsen and Chuang 2000):

K(S1‖S2) :=
〈
S1, logS1 − logS2

〉
.

If logS2 is not well-defined (for instance, some of the eigenvalues of S2 are equal to 0) we
set K(S1‖S2) = +∞. The symmetrized version of Kullback-Leibler divergence is defined as

K(S1;S2) := K(S1‖S2) +K(S2‖S1) = 〈S1 − S2, logS1 − logS2〉.

The following very useful inequality is a noncommutative extension of similar classical
inequalities for total variation, Hellinger and Kullback-Leibler distances. It follows from
representing the “noncommutative distances” involved in the inequality as suprema of the
corresponding classical distances between the distributions of outcomes of measurements
for two states S1, S2 over all possible measurements represented by positive operator valued
measures (see, Nielsen and Chuang 2000, Klauck et al. 2007, Koltchinskii 2011a, Section 3
and references therein).

Lemma 2 For all S1, S2 ∈ Sm, the following inequalities hold:
1
4‖S1 − S2‖21 ≤ H2(S1, S2) ≤

(
K(S1‖S2) ∧ ‖S1 − S2‖1

)
. (8)

1.5 Matrix Bernstein Inequalities

Non-commutative (matrix) versions of Bernstein inequality will be used in what follows.
The most common version is stated (in a convenient form for our applications) in the
following lemma.

Lemma 3 Let X,X1, . . . , Xn ∈ Hm be i.i.d. random matrices with EX = 0, σ2
X :=

‖EX2‖∞ and ‖X‖∞ ≤ U a.s. for some U > 0. Then, for all t ≥ 0 with probability at
least 1− e−t, ∥∥∥∥ 1

n

n∑
j=1

Xj

∥∥∥∥
∞
≤ 2

[
σX

√
t+ log(2m)

n

∨
U
t+ log(2m)

n

]
.

1. Similar problems for estimators ρ̂, ρ̌ and for Schatten p-norm distances with p ∈ (2,+∞] are studied in
a related paper by Koltchinskii and Xia (2015+)
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The proof of such bounds could be found, e.g., in Tropp (2012). Other versions on
matrix Bernstein type inequalities for not necessarily bounded random matrices will be also
used in what follows and they could be found in Koltchinskii (2011b), Koltchinskii (2013a).
A simple consequence of the inequality of Lemma 3 is the following expectation bound:

E
∥∥∥∥ 1
n

n∑
j=1

Xj

∥∥∥∥
∞

.
[
σX

√
log(2m)

n

∨
U

log(2m)
n

]
.

It follows from the exponential bound by integrating the tail probabilities.
The paper is organized as follows. In Section 2, minimax lower bounds on estimation

error of low rank density matrices are provided in Schatten p-norm, Hellinger (Bures) and
Kullback-Leibler distances. In Section 3.1, sharp low rank oracle inequalities for von Neu-
mann entropy penalized least squares estimator are derived in the case of trace regression
model with bounded response. In Section 3.2, low rank oracle inequalities are established in
the case of trace regression with Gaussian noise. In addition to this, in these two sections,
upper bounds on estimation error with respect to Kullback-Leibler distance are obtained.
In Section 3.3, they are further developed and extended to other distances (Hellinger dis-
tance, Schatten p-norm distances for p ∈ [1, 2]) showing the minimax optimality (up to
logarithmic factors) of the error rates of the least squares estimator with von Neumann
entropy penalization.

2. Minimax Lower Bounds

In this section, we provide main results on the minimax lower bounds on the risk of estima-
tion of density matrices with respect to Schatten p-norm (or, rather q-norm in the notations
used below) distances as well as Hellinger-Bures distance and Kullback-Leibler divergence.

Minimax lower bounds will be derived for the class Sr,m := {S ∈ Sm : rank(S) ≤ r}
consisting of all density matrices of rank at most r (the low rank case). We will start with the
case of trace regression with Gaussian noise. Given that the sample (X1, Y1), . . . , (Xn, Yn)
satisfies Assumption 4 with the target density matrix ρ ∈ Sm and noise variance σ2

ξ , let Pρ
denote the corresponding probability distribution.

Note that Ma and Wu (2013) developed a method of deriving minimax lower bounds for
distances based on unitary invariant norms, including Schatten p-norms in matrix problems,
and obtained such lower bounds, in particular, in matrix completion problem. The approach
used in our paper is somewhat different and the aim is to develop such bounds under an
additional constraint that the target matrix is a density matrix. The resulting bounds
are also somewhat different, they involve an additional term that does not depend on the
rank, but does depend on q. Essentially, it means that the “complexity” of the problem is
controlled by a “truncated rank” r ∧ 1

τ , where τ = σξm
3/2

√
n

rather than by the actual rank
r. The upper bounds of Section 3.3 show that such a structure of the bound is, indeed,
necessary. It should be also mentioned that minimax lower bounds on the nuclear norm
error of estimation of density matrices have been obtained earlier in Flammia et al. (2012)
(see Remark 11 below).
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Theorem 4 For all q ∈ [1,+∞], there exist constants c, c′ > 0 such that, the following
bounds hold:

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

(
σξm

3
2 r1/q
√
n

∧(σξm3/2
√
n

)1− 1
q ∧

1
)}
≥ c′, (9)

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
H2(ρ̂, ρ) ≥ c

(
σξm

3
2 r√
n

∧
1
)}
≥ c′, (10)

and

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̂) ≥ c

(
σξm

3
2 r√
n

∧
1
)}
≥ c′, (11)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn)
satisfying the Gaussian trace regression model with noise variance σ2

ξ .

Proof A couple of preliminary facts will be needed in the proof. We start with bounds
on the packing numbers of Grassmann manifold Gk,l, which is the set of all k-dimensional
subspaces L of the l-dimensional space Rl. Given such a subspace L ⊂ Rl with dim(L) = k,
let PL be the orthogonal projection onto L and let Pk,l := {PL : L ∈ Gk,l}. The set
of all k-dimensional projectors Pk,l will be equipped with Schatten q-norm distances for
all q ∈ [1,+∞] (which also could be viewed as distances on the Grassmannian itself):
dq(Q1, Q2) := ‖Q1 − Q2‖q, Q1, Q2 ∈ Pk,l. Recall that the ε-packing number of a metric
space (T, d) is defined as

D(T, d, ε) = max
{
n : there are t1, . . . , tn ∈ T, such that min

i 6=j
d(ti, tj) > ε

}
.

The following lemma (see Pajor 1998, Proposition 8) will be used to control the packing
numbers of Pk,l with respect to Schatten distances dq.

Lemma 5 For all integer 1 ≤ k ≤ l such that k ≤ l − k, and all 1 ≤ q ≤ ∞, the following
bounds hold (

c

ε

)d
≤ D(Pk,l, dq, εk

1/q) ≤
(
C

ε

)d
, ε > 0 (12)

with d = k(l − k) and universal positive constants c, C.

In addition to this, we need the following well known information-theoretic bound fre-
quently used in derivation of minimax lower bounds (see Tsybakov 2008, Theorem 2.5).
Let Θ = {θ0, θ1, . . . , θM} be a finite parameter space equipped with a metric d and let
P := {Pθ : θ ∈ Θ} be a family of probability distributions in some sample space. Given
P,Q ∈ P, let K(P‖Q) := EP log dP

dQ be the Kullback-Leibler divergence between P and Q.

Proposition 6 Suppose that the following conditions hold:

(i) for some s > 0, d(θj , θk) ≥ 2s > 0, 0 ≤ j < k ≤M ;

(ii) for some 0 < α < 1/8, 1
M

M∑
j=1

K(Pθj‖Pθ0) ≤ α logM
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Then, for a positive constant cα,

inf
θ̂

sup
θ∈Θ

Pθ{d(θ̂, θ) ≥ s} ≥ cα,

where the infimum is taken over all estimators θ̂ ∈ Θ based on an observation sampled from
Pθ.

We now turn to the actual proof of Theorem 4. Under Assumption 4, the following
computation is well known: for ρ1, ρ2 ∈ Sr,m,

K(Pρ1‖Pρ2) = EPρ1 log Pρ1

Pρ2

(
X1, Y1, . . . , Xn, Yn

)
= EPρ1

n∑
j=1

[
− (Yj − 〈ρ1, Xj〉)2

2σ2
ξ

+ (Yj − 〈ρ2, Xj〉)2

2σ2
ξ

]

= E
n∑
j=1

〈ρ1 − ρ2, Xj〉2

2σ2
ξ

= n

2σ2
ξ

‖ρ1 − ρ2‖2L2(Π).

(13)

It is enough to prove the bounds for 2 ≤ r ≤ m/2. The proof in the case r = 1 is simpler
and the case r > m/2 easily reduces to the case r ≤ m/2. We will use Lemma 5 to construct
a well separated (with respect to dq) subset of density matrices in Sr,m. To this end, first
choose a subset Dq ⊂ Pr−1,m−1 such that card(Dq) ≥ 2(r−1)(m−r) and, for some constant
c′, ‖Q1 − Q2‖q ≥ c′(r − 1)1/q, Q1, Q2 ∈ Pr−1,m−1, Q1 6= Q2. Such a choice is possible due
to the lower bound on the packing numbers of Lemma 5. For Q ∈ Dq (note that Q can
be viewed as an (m − 1) × (m − 1) matrix with real entries) and κ ∈ (0, 1), consider the
following m×m matrix

S = SQ =
(

1− κ 0′
0 κ Q

r−1

)
. (14)

Note that S is symmetric positively-semidefinite real matrix of unit trace. It is straight-
forward to check that it defines a Hermitian positively-semidefinite operator in Cm of unit
trace, and it can be identified with a density matrix S ∈ Sm. Clearly, S is of rank r, so,
S ∈ Sr,m.

We will take κ := c1
σξm

3/2(r−1)√
n

with a small enough absolute constant c1 > 0 and first
assume that κ < 1 (as it is needed in definition Equation 14).

Let S ′q := {SQ : Q ∈ Dq} and consider a family of M + 1 = card(Dq) ≥ 2(r−1)(m−r)

distributions {PS : S ∈ S ′q}. It is immediate that for S1 = SQ1 , S2 = SQ2 , Q1, Q2 ∈ Dq, Q1 6=
Q2, we have

‖S1 − S2‖q = κ

r − 1‖Q1 −Q2‖q ≥ c′κ(r − 1)1/q−1

≥ c′c1
σξm

3/2(r − 1)1/q
√
n

≥ cσξm
3/2r1/q
√
n

(15)

with some constant c > 0, implying condition (i) of Proposition 6 with s = c
2
σξm

3/2r1/q
√
n

.
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We will now check its condition (ii) . In view of (13), we have, for all S1 = SQ1 , S2 =
SQ2 ∈ S ′q,

K(PS1‖PS2) = n

2σ2
ξ

‖S1 − S2‖2L2(Π) = n

2σ2
ξm

2 ‖S1 − S2‖22

= nκ2

2σ2
ξm

2(r − 1)2 ‖Q1 −Q2‖22 ≤
4n(r − 1)κ2

2σ2
ξm

2(r − 1)2 = 2c2
1m(r − 1)

≤ αm(r − 1)/ log(2)/4 ≤ α

2 (r − 1)(m− r) log(2) ≤ α logM,

(16)

provided that constant c1 is small enough, so, condition (ii) of Proposition 6 is also satisfied.
Proposition 6 implies that, under the assumption κ = c1

σξm
3/2(r−1)√
n

< 1, the following
minimax lower bound holds for some c, c′ > 0 :

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

σξm
3
2 r1/q
√
n

}
≥ c′. (17)

In the case when
c1
σξm

3/2
√
n

< 1 ≤ c1
σξm

3/2(r − 1)√
n

,

one can choose 2 ≤ r′ < r − 1 such that, for some constant c2 > 0,

c2 < c1
σξm

3/2(r′ − 1)√
n

< 1.

For such a choice of r′, it follows from (17) that

inf
ρ̂

sup
ρ∈Sr′,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

σξm
3
2 (r′)1/q
√
n

}
≥ c′. (18)

The definition of r′ implies that

r′ � r′ − 1 �
(
σξm

3/2
√
n

)−1
.

Therefore,
σξm

3
2 (r′)1/q
√
n

�
(
σξm

3/2
√
n

)1−1/q
,

and, since Sr′,m ⊂ Sr,m, bound (18) yields

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂−ρ‖q ≥ c

(
σξm

3/2
√
n

)1−1/q}
≥ inf

ρ̂
sup

ρ∈Sr′,m

Pρ
{
‖ρ̂−ρ‖q ≥ c

(
σξm

3/2
√
n

)1−1/q}
≥ c′

(19)
for some constants c, c′ > 0. This allows us to recover the second term in the minimum in
bound (9). Finally, in the case when c1

σξm
3/2

√
n

> 1, the minimax lower bound becomes a
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constant (and the proof is based on a simplified version of the above argument that could
be done for r = 1). This completes the proof of bound (9) for Schatten q-norms.

The proof of bound (10) for the Hellinger distance is similar. In the case r ≥ 2, we will
use a “well separated” set of density matrices S ′q ⊂ Sr,m for q = 1 constructed above. We
still use κ := c1

σξm
3/2(r−1)√
n

assuming first that κ ∈ (0, 1). For SQ1 , SQ2 ∈ S ′q with Q1 6= Q2,

it follows by a simple computation and using bound (8) that, for some c′′ > 0,

H2(SQ1 , SQ2) = κH2
( Q1
r − 1 ,

Q2
r − 1

)
≥ 1

4
κ

(r − 1)2 ‖Q1 −Q2‖21 ≥
(c′)2

4 κ ≥ c′′σξm
3/2(r − 1)√
n

.

Repeating the argument based on Proposition 6 yields bound (10) in the case when κ =
c1
σξm

3/2(r−1)√
n

< 1, and in the opposite case it is easy to see that the lower bound is a
constant.

Finally, bound (11) for the Kullback–Leibler divergence follows from (10) and the in-
equality K(ρ‖ρ̂) ≥ H2(ρ̂, ρ) (see inequality 8).

Next we state similar results in the case of trace regression model with bounded response
(see Assumption 3). Denote by Pr,m(Ū) the class of all distributions P of (X,Y ) such that
Assumption 3 holds for some Ū and E(Y |X) = 〈ρP , X〉 for some ρP ∈ Sr,m. Given P, PP
denotes the corresponding probability measure (such that (X1, Y1), . . . , (Xn, Yn) are i.i.d.
copies of (X,Y ) sampled from P ).

Theorem 7 Suppose Ū ≥ 2U. For all q ∈ [1,+∞], there exist absolute constants c, c′ > 0
such that the following bounds hold:

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
‖ρ̂− ρP ‖q ≥ c

(
Ūm

3
2 r1/q
√
n

∧( Ūm3/2
√
n

)1− 1
q ∧

1
)}
≥ c′, (20)

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
H2(ρ̂, ρP ) ≥ c

(
Ūm

3
2 r√
n

∧
1
)}
≥ c′, (21)

and

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
K(ρP ‖ρ̂) ≥ c

(
Ūm

3
2 r√
n

∧
1
)}
≥ c′, (22)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).

Proof The proof relies on an idea already used in a context of matrix completion by
Koltchinskii et al. (2011) (see their Theorem 7). We need the same family S ′q ⊂ Sr,m of “well
separated” density matrices of rank r as in the proof of Theorem 4. For a density matrix ρ,
let (X,Y ) be a random couple such that X is sampled from the uniform distribution Π in
E and, conditionally on X, Y takes value +Ū with probability pρ(X) := 1

2 + 〈ρ,X〉2Ū and value
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−Ū with probability qρ(X) := 1
2 −

〈ρ,X〉
2Ū . Since Ū ≥ 2U and |〈ρ,X〉| ≤ ‖ρ‖1‖X‖∞ ≤ U, we

have pρ(X), qρ(X) ∈ [1/4, 3/4] (so, they are bounded away from 0 and from 1). Clearly,
Eρ(Y |X) = 〈ρ,X〉. Let Pρ denote the distribution of such a couple and Pρ denote the
corresponding distribution of the data (X1, Y1), . . . , (Xn, Yn). Then, for all ρ ∈ Sr,m, Pρ ∈
Pr,m(Ū). The only difference with the proof of Theorem 4 is in the bound on Kullback-
Leibler divergence K(Pρ1‖Pρ2) (see Equation 13). It is easy to see that

K(Pρ1‖Pρ2) = nE
(
pρ1(X) log pρ1(X)

pρ2(X) + qρ1(X) log qρ1(X)
qρ2(X)

)
. (23)

The following simple inequality will be used: for all a, b ∈ [1/4, 3/4],

a log a
b

+ (1− a) log 1− a
1− b ≤ 12(a− b)2.

It implies that

K(Pρ1‖Pρ2) ≤ 3nE〈ρ1 − ρ2, X〉2

Ū2 ≤ 3n
Ū2 ‖ρ1 − ρ2‖2L2(Π).

This bound is used instead of identity (13) from the proof of Theorem 4. The rest of the
proof is the same.

Note that the proof requires the possible range [−Ū , Ū ] of response variable Y to be
larger than the possible range [−U,U ] of Fourier coefficients 〈ρ,Ej〉, j = 1, . . . ,m2. This is
not the case for standard QST model described in the introduction (see also the example
of Pauli measurements) and it is of interest to prove a version of minimax lower bounds
without this constraint, including the case when Ū = U. The following theorem is a result
in this direction.

Theorem 8 Suppose Assumption 1 is satisfied and, moreover, for some constant γ ∈ (0, 1),∣∣∣tr(Ek)∣∣∣ ≤ (1− γ)Um, k = 1, . . . ,m2. (24)

Then, for all q ∈ [1,+∞], there exist constants cγ , c′γ > 0 such that the following bounds
hold:

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
‖ρ̂− ρP ‖q ≥ cγ

(
Um

3
2 r1/q
√
n

∧(Um3/2
√
n

)1− 1
q ∧

1
)}
≥ c′γ , (25)

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
H2(ρ̂, ρP ) ≥ cγ

(
Um

3
2 r√
n

∧
1
)}
≥ c′γ , (26)

and

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
K(ρP ‖ρ̂) ≥ cγ

(
Um

3
2 r√
n

∧
1
)}
≥ c′γ , (27)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).
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Proof The proof is based on the following lemma:

Lemma 9 Suppose assumption (24) holds. Let K be a sufficiently large absolute constant
(to be chosen later) and let m satisfy the condition K logm√

m
≤ γ

2 (which means that m ≥ Aγ
for some constant Aγ). Then there exists v ∈ Cm with ‖v‖ = 1 such that∣∣∣〈Ekv, v〉∣∣∣ ≤ (1− γ/2)U, k = 1, . . . ,m2. (28)

Proof We will prove this fact by a probabilistic argument. Namely, set v := m−1/2(ε1, . . . , εm),
where εj = ±1. We will show that there is a random choice of “signs” εj such that (28)
holds. Assume that εj , j = 1, . . . ,m are i.i.d. and take values ±1 with probability 1/2
each. Let Ek := (a(k)

ij )i,j=1,...,m. For simplicity, assume that (a(k)
ij )i,j=1,...,m is a symmetric

real matrix (in the complex case, the proof can be easily modified). We have

〈Ekv, v〉 = 1
m

m∑
i=1

a
(k)
ii ε

2
i + 1

m

∑
i 6=j

a
(k)
ij εiεj = tr(Ek)

m
+ 1
m

∑
i 6=j

a
(k)
ij εiεj .

It is well known that

Var
(∑
i 6=j

a
(k)
ij εiεj

)
= E

(∑
i 6=j

a
(k)
ij εiεj

)2
= 2

∑
i 6=j

(
a

(k)
ij

)2
≤ 2

∑
i,j

(
a

(k)
ij

)2
= 2‖Ek‖22 = 2.

Moreover, it follows from exponential inequalities for Rademacher chaos (see, e.g., Corollary
3.2.6 in de la Peña and Giné 1999) that for some absolute constant K > 0 and for all t > 0,
with probability at least 1− e−t∣∣∣∣〈Ekv, v〉 − tr(Ek)

m

∣∣∣∣ =
∣∣∣∣ 1
m

∑
i 6=j

a
(k)
ij εiεj

∣∣∣∣ ≤ Kt

m
.

Taking t = 2 logm and using the union bound, we conclude that with probability at least
1−me−2 logm = 1− 1

m > 0,

max
1≤k≤m2

∣∣∣∣〈Ekv, v〉 − tr(Ek)
m

∣∣∣∣ ≤ K logm
m

≤ K logm√
m

U ≤ γ

2U,

where we also used the fact that U ≥ m−1/2. Thus, there exists a choice of signs εj such
that

max
1≤k≤m2

∣∣∣〈Ekv, v〉∣∣∣ ≤ max
1≤k≤m

∣∣∣∣tr(Ek)m

∣∣∣∣+ γ

2U,

which, under condition (24), implies (28).

We set e1 := v (where v is the unit vector introduced in Lemma 9) and construct an
orthonormal basis e1, . . . , em. Assume that matrices SQ defined by (14) represent linear
transformations in basis e1, . . . , em. Then we have

〈SQ, Ek〉 = (1− κ)〈Ekv, v〉+ κ

r − 1〈Q,Ek〉.
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Therefore,∣∣∣〈SQ, Ek〉∣∣∣ ≤ (1−κ)
∣∣∣〈Ekv, v〉∣∣∣+ κ

r − 1‖Ek‖∞‖Q‖1 ≤ (1−κ)(1−γ/2)U+κU = (1−(1−κ)(γ/2))U.

Assuming that κ ≤ 1/2, we get∣∣∣〈SQ, Ek〉∣∣∣ ≤ (1− γ/4)U, k = 1, . . . ,m2. (29)

The rest of the proof becomes similar to the proof of Theorem 7 (with Ū = U). Namely,
bound (29) implies that, for ρ = SQ and X being sampled from the orthonormal ba-
sis {E1, . . . , Em2}, probabilities pρ(X) and qρ(X) are bounded away from 0 and from 1 :
pρ(X), qρ(X) ∈ [γ/8, 1 − γ/8]. This allows us to complete the argument of the proof of
Theorem 7.

Theorem 8 does not apply directly to the Pauli basis since condition (24) fails in this case.
Indeed, by the definition of Pauli basis, U = m−1/2 and tr(E1) =

√
m = Um > (1− γ)Um.

Note also that tr(Ej) = 0, j = 2, . . . ,m2. Thus, for Pauli basis, E1 is the only matrix for
which condition (24) fails. However, for this matrix 〈ρ,E1〉 = m−1/2tr(ρ) = m−1/2 = U for
all density matrices ρ ∈ Sm. This immediately implies that pρ(E1) = 1 and qρ(E1) = 0 for
all ρ ∈ Sm and, as a result, the value X = E1 does not have an impact on the computation of
Kullback-Leibler divergence in (23). For the rest of the matrices in the Pauli basis, condition
(24) holds implying also bound (28). Therefore, if X 6= E1, we still have that, for ρ = SQ,
pρ(X), qρ(X) ∈ [γ/8, 1 − γ/8], and the proof of Theorem 7 can be completed in this case,
too. Note also that, given X sampled from the Pauli basis, the binary random variable Y
taking values ±U = ± 1√

m
with probabilities pρ(X) and qρ(X), respectively (this is exactly

the random variable used in the construction of the proof of Theorem 7) coincides with an
outcome of a Pauli measurement for the system prepared in state ρ. These considerations
yield the following minimax lower bounds for Pauli measurements.

Theorem 10 Let {E1, . . . , Em2} be the Pauli basis in the space Hm of m ×m Hermitian
matrices and let X1, . . . , Xn be i.i.d. random variables sampled from the uniform distribution
in {E1, . . . , Em2}. Let Y1, . . . , Yn be outcomes of measurements of observables X1, . . . , Xn

for the system being identically prepared n times in state ρ. The corresponding distribution
of the data (X1, Y1), . . . , (Xn, Yn) will be denoted by Pρ. Then, for all q ∈ [1,+∞], there
exist constants c, c′ > 0 such that the following bounds hold:

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

(
mr1/q
√
n

∧( m√
n

)1− 1
q ∧

1
)}
≥ c′, (30)

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
H2(ρ̂, ρ) ≥ c

(
mr√
n

∧
1
)}
≥ c′, (31)

and
inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̂) ≥ c

(
mr√
n

∧
1
)}
≥ c′, (32)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).
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Remark 11 Minimax lower bounds on nuclear norm error of density matrix estimation
close to bound (30) for q = 1 (but for a somewhat different “estimation protocol” and stated
in a different form) were obtained earlier in Flammia et al. (2012). This paper also contains
upper bounds on the errors of matrix LASSO and Dantzig selector estimators in the nuclear
norm matching the lower bounds up to log-factors.

Remark 12 It is easy to see that, if constant γ ∈ (0, 1) is small enough (namely, γ <
1− 1√

2), then, in an arbitrary orthonormal basis {E1, . . . , Em2}, there is at most one matrix
Ej such that |tr(Ej)| > (1− γ)Um. Indeed, note that tr(Ej) = 〈Ej , Im〉. Since

m2∑
j=1
〈Ej , Im〉2 = ‖Im‖22 = m

and U2m ≥ 1, we have

card
({
j : |〈Ej , Im〉| > (1− γ)Um

})
≤ 1

(1− γ)2U2m2

m2∑
j=1
〈Ej , Im〉2

≤ m

(1− γ)2U2m2 = 1
(1− γ)2U2m

≤ 1
(1− γ)2 < 2,

provided that γ < 1− 1√
2 .

Remark 13 It will be shown in Section 3.3 that the minimax rates of theorems 4, 7, 8
and 10 are attained up to logarithmic factors for the von Neumann entropy penalized least
squares estimator.

Remark 14 Similar minimax lower bounds could be proved in certain classes of “nearly
low rank” density matrices. Consider, for instance, the following class

Bp(d;m) :=
{
S ∈ Sm :

m∑
j=1
|λj(S)|p ≤ d

}
(33)

for some d > 0 and p ∈ [0, 1], where λ1(S) ≥ · · · ≥ λm(S) denote the eigenvalues of S. This
set consists of density matrices with the eigenvalues decaying at a certain rate (nearly low
rank case) and, for p = 0, d = r it coincides with Sr,m. It turns out that minimax lower
bounds of theorems 4 and 7 hold for the class Bp(d;m) (instead of Sr,m) with r replaced by

r̄ := r̄(τ, d,m, p) = dτ−p ∧m,

where τ := σξm
3/2

√
n

in the case of trace regression with Gaussian noise and τ := Ūm3/2
√
n

in
the case of trace regression with bounded response. These minimax bounds are attained up
to logarithmic factors for a slightly modified von Neumann entropy penalized least squares
estimator.

Note that, for ρ ∈ Bp(d,m) with eigenvalues λ1(ρ) ≥ · · · ≥ λm(ρ), we have λj(ρ) ≤
d1/p

j1/p
, j = 1, . . . ,m. Therefore, for j ≥ r̄, λj(ρ) ≤ τ. Note also that τ characterizes the
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minimax rate of estimation of ρ ∈ Sr,m in the operator norm for any value of the rank r
(see bound (9) for q = +∞; the corresponding upper bound also holds for the least squares
estimator up to a logarithmic factor, see Koltchinskii and Xia 2015+). Roughly speaking, τ
is a threshold below which the estimation of eigenvalues λj(ρ) becomes impossible and r̄ can
be viewed as an “effective rank” of nearly low rank density matrices in the class Bp(d,m).

3. Von Neumann Entropy Penalization: Optimality and Oracle
Inequalities

The goal of this section is to study optimality properties of von Neumann entropy penalized
least squares estimator ρ̃ε defined by (7). In particular, we establish oracle inequalities for
such estimators in the cases of trace regression with bounded response (Subsection 3.1)
and trace regression with Gaussian noise (Subsection 3.2), and prove upper bounds on their
estimation errors measured by Schatten q-norm distances for q ∈ [1, 2] and also by Hellinger
and Kullback-Leibler distances (Subsection 3.3).

3.1 Oracle Inequalities for Trace Regression with Bounded Response

In this subsection, we prove a sharp low rank oracle inequality for estimator ρ̃ε defined by
(7). It is done in the case of trace regression model with bounded response (that is, under
Assumption 3). The results of this type show some form of optimality of the estimation
method, namely, that the estimator provides an optimal trade-off between the “approx-
imation error” of the target density matrix by a low rank “oracle” and the “estimation
error” of the “oracle” that is proportional to its rank. Sharp oracle inequalities (in which
the leading constant in front of the “approximation error” is equal to 1, so that the bound
mimics precisely the approximation by the oracle) are usually harder to prove. In the case
of low rank matrix completion, the first result of this type was proved by Koltchinskii et al.
(2011) for a modified least squares estimator with nuclear norm penalty. A version of such
inequality for empirical risk minimization with nuclear norm penalty (that includes matrix
LASSO) was first proved by Koltchinskii (2013b). Low rank oracle inequalities for von
Neumann entropy penalized least squares method with the leading constant larger than 1
were proved by Koltchinskii (2011a). The main result of this section refines these previous
bounds by proving a sharp oracle inequality, improving the logarithmic factors and remov-
ing superfluous assumptions, but also by establishing the inequality in the whole range of
values of regularization parameter ε ≥ 0 (including the value ε = 0, for which ρ̃ε coincides
with the least squares estimator ρ̂). In addition to this, for a special choice of regularization
parameter ε, the theorem below also provides an upper bound on the Kullback-Leibler error
K(ρ‖ρ̃ε) of ρ̃ε that matches the minimax lower bound (22) up to log-factors (and “second
order terms”). It turns out that, for this choice of ε, the estimator satisfies exactly the same
low rank oracle inequality as the best inequalities known for LASSO estimator and minimax
optimal error rates are attained for ρ̃ε also with respect to Hellinger distance and Schatten
q-norm distances for all q ∈ [1, 2] (see Section 3.3). For simplicity, it will be assumed that
constants U in Assumption 1 and Ū in Assumption 3 coincide (in the upper bounds, one
can always replace U and Ū by U ∨ Ū).
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Theorem 15 Suppose Assumption 3 holds with constant Ū = U and let ε ∈ [0, 1]. Then,
there exists a constant C > 0 such that for all t ≥ 1 with probability at least 1− e−t

‖fρ̃ε − fρ‖2L2(Π) ≤ infS∈Sm
[
‖fS − fρ‖2L2(Π) + C

(
rank(S)m2ε2 log2(mn)

+U2 rank(S)m log(2m)
n + U2 t+log log2(2n)

n

)]
. (34)

In particular, this implies that

‖fρ̃ε − fρ‖2L2(Π) ≤ C
[
rank(ρ)m2ε2 log2(mn)

+U2 rank(ρ)m log(2m)
n + U2 t+log log2(2n)

n

]
. (35)

Moreover, if

ε := 1
log(mn)

[
U

√
log(2m)
nm

∨
U2 log(2m)

n

]
,

then, with some constant C and with probability at least 1− e−t

‖fρ̃ε − fρ‖2L2(Π) ≤ C
[
U2 rank(ρ)m log(2m)

n

(
1
∨
U2m log(2m)

n

)
+U2 t+log log2(2n)

n

]
(36)

and

K(ρ‖ρ̃ε) ≤ CU
[

rank(ρ)m3/2
√

log(2m) log(mn)√
n

(
1
∨
U
√

m log(2m)
n

)
+
√

m
n

(t+log log2(2n)) log(mn)√
log(2m)

]
. (37)

Proof The following notations will be used in the proof. Let `(y, u) := (u − y)2, y, u ∈ R
be the quadratic loss function. For f : Hm 7→ R, denote

(` • f)(x, y) = (f(x)− y)2, (`′ • f)(x, y) = 2(f(x)− y)

and
P (` • f) = E(Y − f(X))2, Pn(` • f) = n−1

n∑
j=1

(Yj − f(Xj))2.

For A ∈ Hm, let fA(x) = 〈A, x〉, x ∈ Hm. Since for density matrices S ∈ Sm, ‖S‖1 = tr(S) =
1, the estimator ρ̃ = ρ̃ε can be equivalently defined by the following convex optimization
problem:

ρ̃ = argminS∈SmLn(S), Ln(S) :=
[
Pn(` • fS) + εtr(S logS) + ε̄‖S‖1

]
for an arbitrary ε̄ > 0.

The following lemma will be crucial in the proofs of Theorem 15 as well Theorem 19 in
the following subsection. Note that it does not rely on Assumption 3, only Assumptions 1
and 2 are needed.
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Lemma 16 Suppose Assumptions 1 and 2 hold. Let δ ∈ (0, 1) and S := (1 − δ)S′ + δ Imm ,
where S′ ∈ Sm, rank(S′) = r and Im is the m × m identity matrix. Then the following
bound holds:

‖fρ̃ − fρ‖2L2(Π) + 1
2‖fρ̃ − fS‖

2
L2(Π) + εK(ρ̃;S) + ε̄

∥∥∥P⊥L (ρ̃)
∥∥∥

1
≤ ‖fS − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + rm2ε̄2 (38)

+4ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Lemma 16 will be often used together with the following simple bound:

‖fS − fρ‖2L2(Π) = 1
m2 ‖S − ρ‖22 ≤

1
m2 ‖S′ − ρ‖22 + 2

m2 ‖S′ − ρ‖2‖S′ − S‖2 + 1
m2 ‖S′ − S‖22 (39)

≤ ‖fS′ − fρ‖2L2(Π) + 8δ
m2 + 4δ2

m2 ≤ ‖fS′ − fρ‖2L2(Π) + 12δ
m2 .

Together, they imply that

‖fρ̃ − fρ‖2L2(Π) + 1
2‖fρ̃ − fS‖

2
L2(Π) + εK(ρ̃;S) + ε̄

∥∥∥P⊥L (ρ̃)
∥∥∥

1
≤ ‖fS′ − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + rm2ε̄2 (40)

+4ε̄δ + 12δ
m2 + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

We will now give the proof of Lemma 16.
Proof By standard necessary conditions of extremum in convex problems, we get that, for
all S ∈ Sm and for some Ṽ ∈ ∂‖ρ̃‖1,

Pn(`′ • fρ̃)(fρ̃ − fS) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉 ≤ 0

(see, e.g., Aubin and Ekeland 2006, Chapter 2, Corollary 6; see also Koltchinskii 2011b,
pp. 198–199; for the computation of derivative of the function tr(S logS), see Lemma 1 in
Koltchinskii 2011a). Replacing in the left hand side P by Pn, we get

P (`′ • fρ̃)(fρ̃ − fS) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉 ≤ (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

It is easy to check that for the quadratic loss

P (`′ • fρ̃)(fρ̃ − fS) = P (` • fρ̃)− P (` • fS) + ‖fρ̃ − fS‖2L2(Π),

implying that

P (` • fρ̃)− P (` • fS) + ‖fρ̃ − fS‖2L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉

≤ (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Also, for the quadratic loss,

P (` • f)− P (` • fρ) = ‖f − fρ‖2L2(Π).
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Therefore,

‖fρ̃ − fρ‖2L2(Π) + ‖fρ̃ − fS‖2L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉

≤ ‖fS − fρ‖2L2(Π) + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Recall that we have set S = (1 − δ)S′ + δ Imm , where S′ ∈ Sm, rank(S′) = r, δ ∈ (0, 1).
Clearly, ∣∣∣〈Ṽ , S − S′〉∣∣∣ ≤ ‖Ṽ ‖∞‖S − S′‖1 ≤ ‖S − S′‖1 = δ

∥∥∥∥S′ − Im
m

∥∥∥∥
1
≤ 2δ,

where we used the fact that ‖Ṽ ‖∞ ≤ 1 for Ṽ ∈ ∂‖ρ̃‖1. This implies

‖fρ̃ − fρ‖2L2(Π) + ‖fρ̃ − fS‖2L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S′〉 (41)
≤ ‖fS − fρ‖2L2(Π) + 2ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Recall formula (2) for the subdifferential of nuclear norm. Let L = supp(S′). By the
duality between the operator and nuclear norms, there exists M ∈ Hm with ‖M‖∞ ≤ 1
such that

〈P⊥L (M), ρ̃− S′〉 = 〈M,P⊥L (ρ̃− S′)〉 =
∥∥∥P⊥L (ρ̃− S′)

∥∥∥
1

=
∥∥∥P⊥L (ρ̃)

∥∥∥
1
.

With V = sign(S′) + P⊥L (M) ∈ ∂‖S′‖1, by monotonicity of subdifferential, we get that

〈sign(S′), ρ̃− S′〉+
∥∥∥P⊥L (ρ̃)

∥∥∥
1

= 〈V, ρ̃− S′〉 ≤ 〈Ṽ , ρ̃− S′〉. (42)

In addition to this, we have

〈log ρ̃, ρ̃− S〉 = 〈log ρ̃− logS, ρ̃− S〉+ 〈logS, ρ̃− S〉 = K(ρ̃;S) + 〈logS, ρ̃− S〉. (43)

Substituting (42) and (43) into (41), we get

‖fρ̃ − fρ‖2L2(Π) + ‖fρ̃ − fS‖2L2(Π) + εK(ρ̃;S) + ε̄
∥∥∥P⊥L (ρ̃)

∥∥∥
1

≤ ‖fS − fρ‖2L2(Π) + ε〈logS, S − ρ̃〉+ ε̄〈sign(S′), S′ − ρ̃〉 (44)
+2ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

The following bound on ε̄〈sign(S′), S′ − ρ̃〉 is straightforward:

ε̄〈sign(S′), S′ − ρ̃〉 ≤ ε̄〈sign(S′), S − ρ̃〉+ ε̄‖sign(S′)‖∞‖S − S′‖1
≤ ε̄‖sign(S′)‖2‖S − ρ̃‖2 + 2ε̄δ ≤ ε̄

√
rm‖fS − fρ̃‖L2(Π) + 2ε̄δ (45)

≤ rm2ε̄2 + 1
4‖fS − fρ̃‖

2
L2(Π) + 2ε̄δ.

A similar bound on ε〈logS, S− ρ̃〉 is only slightly more complicated. Suppose S′ has the
following spectral representation: S′ =

∑r
k=1 λkPk with eigenvalues λk ∈ (0, 1] (repeated

with their multiplicities) and one-dimensional orthogonal eigenprojectors Pk. We will extend
Pj , j = 1, . . . , r to the complete orthogonal resolution of the identity Pj , j = 1, . . . ,m. Then

logS = log
(

(1− δ)S′ + δ
Im
m

)
=

r∑
j=1

log
(
(1− δ)λj + δ/m

)
Pj +

m∑
j=r+1

log(δ/m)Pj
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=
r∑
j=1

log
(
1 + (1− δ)mλj/δ

)
Pj + log(δ/m)Im

and

〈logS, S − ρ̃〉 =
〈 r∑
j=1

log
(
1 + (1− δ)mλj/δ

)
Pj , S − ρ̃

〉
+ log(δ/m)〈Im, S − ρ̃〉

=
〈 r∑
j=1

log
(
1 + (1− δ)mλj/δ

)
Pj , S − ρ̃

〉
where we used the fact that 〈Im, S − ρ̃〉 = tr(S)− tr(ρ̃) = 0. Therefore,

ε〈logS, S − ρ̃〉 ≤ ε
∥∥∥∥∑r

j=1 log
(
1 + (1− δ)mλj/δ

)
Pj

∥∥∥∥
2
‖S − ρ̃‖2 (46)

= εm

(∑r
j=1 log2

(
1 + (1− δ)mλj/δ

))1/2
‖fS − fρ̃‖L2(Π)

≤ ε
√
rm log(m/δ)‖fS − fρ̃‖L2(Π) ≤ rm2ε2 log2(m/δ) + 1

4‖fS − fρ̃‖
2
L2(Π),

where it was used that for λj ∈ [0, 1]

log
(
1 + (1− δ)mλj/δ

)
≤ log

(δ + (1− δ)m
δ

)
≤ log(m/δ).

Substituting bounds (45) and (46) in (44) we easily get bound (38), as claimed in the lemma.

We will also need the following simple lemma that provides a bound on K(S′‖ρ̃) in
terms of K(S‖ρ̃).

Let
h(δ) := δ log 1

δ
+ (1− δ) log 1

1− δ .

Observe that

h(δ) = δ log 1
δ

+ (1− δ) log
(

1 + δ

1− δ

)
≤ δ log 1

δ
+ (1− δ) δ

1− δ ≤ δ log e
δ

(this bound will be used in what follows).

Lemma 17 Let δ ∈ (0, 1), S′ ∈ Sm with rank(S′) = r and S = (1− δ)S′ + δ Imm . Then, for
any U ∈ Sm,

K(S′‖U) ≤ K(S‖U) + h(δ)
1− δ .

Proof The following identities are straightforward:

K(S‖U) = tr(S(logS − logU))
= (1− δ)tr(S′(logS − logU)) + δtr((Im/m)(logS − logU))
= (1− δ)tr(S′(logS′ − logU)) + (1− δ)tr(S′(logS − logS′))

+δtr((Im/m)(logS − log(Im/m))) + δtr((Im/m)(log(Im/m)− logU))
= (1− δ)K(S′‖U)− (1− δ)K(S′‖S) + δK(Im/m‖U)− δK(Im/m‖S).

1777



Koltchinskii and Xia

Since K(Im/m‖U) ≥ 0, it follows that

K(S′‖U) ≤ K(S‖U)
1− δ +K(S′‖S) + δ

1− δK(Im/m‖S). (47)

Assuming that S′ has spectral representation S′ =
∑r
j=1 λjPj with eigenvalues λj > 0 and

one-dimensional projectors Pj , we get

−K(S′‖S) =
r∑
j=1

λj log (1− δ)λj + δ/m

λj

=
r∑
j=1

λj log
(

1− δ + δ

mλj

)
≥ log(1− δ)

r∑
j=1

λj = log(1− δ),

implying that K(S′‖S) ≤ log 1
1−δ . On the other hand,

K(Im/m‖S) = 1
m

m∑
j=1

log 1/m
(1− δ)λj + δ/m

≤ 1
m

m∑
j=1

log 1
δ

= log 1
δ
.

Substituting these bounds in (47) yields the result.

To complete the proof of Theorem 15, we need to control the empirical process (P −
Pn)(`′ • fρ̃)(fρ̃ − fS) in the right hand side of bound (38). Our approach is based on the
following empirical processes bound that is a slight modification of Lemma 1 in Koltchinskii
(2013b). As before, we assume that S = (1 − δ)S′ + δ Imm with S′ ∈ Sm, rank(S′) = r. We
will set δ := 1

m2n2 .
Let Ξε := n−1∑n

j=1 εjXj , where εj are i.i.d. Rademacher random variables (that is, εj
takes values +1 and −1 with probability 1/2 each) and {εj}, {Xj} are independent.

Lemma 18 Given δ1, δ2 > 0, denote

αn(δ1, δ2) := sup
{∣∣∣(Pn−P )(`′•fA)(fA−fS)

∣∣∣ : A ∈ Sm, ‖fA−fS‖L2(Π) ≤ δ1, ‖P⊥LA‖1 ≤ δ2

}
.

Let 0 < δ−1 < δ+
1 , 0 < δ−2 < δ+

2 . For t ≥ 1, denote

t̄ := t+ log
(
[log2(δ+

1 /δ
−
1 )] + 2

)
+ log

(
[log2(δ+

2 /δ
−
2 )] + 2

)
+ log 3.

Then, with probability at least 1− e−t, for all δ1 ∈ [δ−1 , δ
+
1 ], δ2 ∈ [δ−2 , δ

+
2 ],

αn(δ1, δ2) ≤ C1UE‖Ξε‖∞
(√

rmδ1 + δ2 + δ
)

+ C2Uδ1

√
t̄

n
+ C3U

2 t̄

n
,

where C1, C2, C3 > 0 are constants.
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We will use this lemma to control the term (P −Pn)(`′ •fρ̃)(fρ̃−fS) in bound (38). Let
δ1 := ‖fρ̃ − fS‖L2(Π) and δ2 := ‖P⊥L ρ̃‖1. Define also

δ+
1 := 2

m
, δ+

2 := 1, δ−1 = δ−2 := 1
mn

,

so that t̄ ≤ t+ 2 log(log2(mn) + 3) + log 3. It is easy to see that δ1 ≤ δ+
1 and δ2 ≤ δ+

2 . If, in
addition, δ1 ≥ δ−1 , δ2 ≥ δ−2 , the bound of Lemma 18 implies that with probability at least
1− e−t

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) ≤ αn(δ1, δ2)

≤ C1UE‖Ξε‖∞
(√

rmδ1 + δ2 + δ
)

+ C2Uδ1

√
t̄

n
+ C3U

2 t̄

n

If ε̄ ≥ C1UE‖Ξε‖∞, the last bound implies that

(P − Pn)(`′ • fρ̃)(fρ̃ − fS)
≤ 1

4‖fρ̃ − fS‖
2
L2(Π) + rm2ε̄2 + ε̄‖P⊥L ρ̃‖1 + ε̄δ (48)

+1
4‖fρ̃ − fS‖

2
L2(Π) + (C2

2 + C3)U2 t̄
n .

Substituting this bound in the right hand side of (40), we get

‖fρ̃ − fρ‖2L2(Π) + εK(ρ̃;S)

≤ ‖fS′ − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + 2rm2ε̄2 (49)

+5ε̄δ + CU2 t̄
n + 12δ

m2 ,

where C := C2
2 + C3.

In the case when δ1 = ‖fρ̃ − fS‖L2(Π) ≤ δ−1 = 1
mn or δ2 = ‖P⊥L ρ̃‖1 ≤ δ−2 = 1

mn , we can
replace the terms 1

4‖fρ̃−fS‖
2
L2(Π) or ‖P⊥L ρ̃‖1 in bound (48) by their respective upper bounds

(1
4(δ−1 )2 = 1

4m2n2 , or δ−2 = 1
mn), which would be smaller than CU2 t̄

n for large enough C > 0,
so bound (49) still holds (recall that U ≥ m−1/2). Note also that 12δ

m2 = 12 1
m4n2 ≤ 12U2 t̄

n .
Thus, increasing the value of constant C, one can rewrite (49) in a simpler form as

‖fρ̃ − fρ‖2L2(Π) + εK(ρ̃;S)

≤ ‖fS′ − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + 2rm2ε̄2 (50)

+5ε̄δ + CU2 t̄
n .

The following expectation bound is a consequence of a matrix version of Bernstein inequality
for ‖Ξε‖∞ (it follows by integrating out its exponential tails):

E‖Ξε‖∞ ≤ 4
[√ log(2m)

nm

∨
U

log(2m)
n

]
(it is also used in this computation that, in the case of uniform sampling from an orthonormal
basis, σ2

εX = ‖EX2‖∞ = 1
m , a simple fact often used in the literature; see, e.g., Koltchinskii

2011a, Section 5). Let

ε̄ := D′U

√
log(2m)
nm
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for some constant D′. If D′ is sufficiently large and

U
log(2m)

n
≤

√
log(2m)
nm

, (51)

then the condition ε̄ ≥ C1UE‖Ξε‖∞ is satisfied and bound (50) holds with probability at
least 1 − e−t. Moreover, ε̄δ .D′ δ .D′ U2 t̄

n , implying that the term 5ε̄δ in (50) can be
dropped at a price of further increasing the value of constant C.

If (51) does not hold, we still have that

‖fρ̃ − fρ‖2L2(Π) = ‖ρ̃− ρ‖
2
2

m2 ≤ 2
m2 ≤ CU

2 t̄

n
.

Recalling that t̄ ≤ t + 2 log(log2(mn) + 3) and log(m/δ) . log(mn), we deduce from (50)
that with some constant C and with probability at least 1− e−t

‖fρ̃ − fρ‖2L2(Π) ≤ ‖fS′ − fρ‖2L2(Π) + C

[
rm2ε2 log2(mn)

+U2 rm log(2m)
n + U2 t+log(log2(mn)+3)

n

]
. (52)

Note that, for n ≥ 2,

log(log2(mn) + 3) = log
(
log2(4m) + log2(2n)

)
≤ log log2(4m) + log log2(2n), (53)

since log2(4m) + log2(2n) ≤ log2(4m) log2(2n). Since also, for r ≥ 1,

U2 t+ log log2(4m)
n

. U2 rm log(2m)
n

, (54)

we can replace in bound (52) the term U2 t+log(log2(mn)+3)
n with the term U2 t+log log2(2n)

n
(increasing the value of the constant C accordingly). This yields bound (34) of the theorem.
For S′ = ρ, it yields bound (35), and, moreover, for S′ = ρ and S = (1 − δ)ρ + δ Imm with
δ = 1

m2n2 , bound (50) also implies that

εK(ρ̃;S) ≤ rank(ρ)m2ε2 log2(m/δ) + 2rank(ρ)m2ε̄2 (55)
+5ε̄δ + CU2 t̄

n .

We will now take

ε̄ := D′
[
U

√
log(2m)
nm

∨
U2 log(2m)

n

]
for a large enough constant D′ so that ε̄ ≥ C1UE‖Ξε‖∞. Assume that

ε := 1
log(mn)

[
U

√
log(2m)
nm

∨
U2 log(2m)

n

]
.
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As before, the term ε̄δ in bound (55) will be absorbed by the term CU2 t̄
n with a larger

value of C and also

rank(ρ)m2ε2 log2(m/δ) �D′ rank(ρ)m2ε̄2 �D′ U2 rank(ρ)m log(2m)
n

(
1
∨
U2m log(2m)

n

)
.

As a result, taking into account (53), (54), bound (55) can be rewritten as follows:

εK(ρ̃;S) ≤ CU2
[

rank(ρ)m log(2m)
n

(
1
∨
U2m log(2m)

n

)
(56)

+ t+log log2(2n)
n

]
.

Using the bound of Lemma 17 along with the bound

h(δ) ≤ δ log(e/δ) = 1
m2n2 log(em2n2) . U

√
m

n

(t+ log log2(2n)) log(mn)√
log(2m)

,

we easily get that (37) holds.

3.2 Oracle Inequalities for Trace Regression with Gaussian Noise

In this subsection, we establish oracle inequalities for the von Neumann entropy penalized
least squares estimator ρ̃ε in the case of trace regression model with Gaussian noise (As-
sumption 4). Unlike in the case of Theorem 15 of the previous section, our aim is not
to obtain sharp oracle inequality, but rather to get a clean main term of the random error
bound part of the inequality, namely, the term σ2

ξ
rank(S)m(t+log(2m))

n in inequality (58) below.
Note that this term depends only on the variance of the noise σ2

ξ , but not on the constant U
from Assumption 1 (the constant U is involved only in the higher order O(n−2) terms of the
bound). Note also that there are no constraints on the variance σ2

ξ that could be arbitrarily
small, or even equal to 0 (in which case only higher order terms are present in the bound).
This improvement comes at a price of having the leading constant 2 in the oracle inequality
and also of imposing assumption (57) that requires the regularization parameter ε to be
bounded away from 0 (again, unlike Theorem 15, where it could be arbitrarily small). As
in the previous section, we also obtain a bound on Kullback–Leibler divergence K(ρ‖ρ̃ε).

Theorem 19 Let t ≥ 1. Suppose

ε ∈
[
DU2 t+ log3m log2 n

n
,
D1σξ

log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n

]
(57)

with large enough constants D,D1 > 0. There exists a constant C > 0 such that with
probability at least 1− e−t

‖fρ̃ε − fρ‖2L2(Π) ≤ inf
S∈Sm

[
2‖fS − fρ‖2L2(Π) + C

(
σ2
ξ

rank(S)m(t+ log(2m))
n

+ σ2
ξU

2 rank(S)m2(t+ log(2m))2 log(2m)
n2 + U4 rank(S)m2(t+ log3m log2 n)2 log2(mn)

n2

)]
.

(58)
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In particular,

‖fρ̃ε − fρ‖2L2(Π) ≤ C
[
σ2
ξ

rank(ρ)m(t+log(2m))
n (59)

+σ2
ξU

2 rank(ρ)m2(t+log(2m))2 log(2m)
n2 + U4 rank(ρ)m2(t+log3 m log2 n)2 log2(mn)

n2

]
.

Moreover, if

ε := D1σξ
log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n

for large enough constants D,D1, then with some constant C and with the same probability
both (59) and the following bound hold:

K(ρ‖ρ̃ε) ≤ C
[
σξ

rank(ρ)m3/2(t+log(2m))1/2 log(mn)√
n

(60)

+σ2
ξ

rank(ρ)m2(t+log(2m)) log(2m)
n + U2 rank(ρ)m2(t+log3 m log2 n) log2(mn)

n

]
.

Proof As in in the proof of Theorem 15, we rely on Lemma 16, but we use a different
approach to bounding the empirical process (P−Pn)(`′•fρ̃)(fρ̃−fS). The following identity
follows from the definition of quadratic loss `

(`′ • f)(x, y)(f(x)− fS(x)) = 2(f(x)− fS(x))2 + 2(fS(x)− y)(f(x)− fS(x))

and it implies that

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) = −2(Pn − P )(fρ̃ − fS)2 − 2〈Ξ, ρ̃− S〉 (61)

where
Ξ := n−1

n∑
j=1

(fS(Xj)− Yj)Xj − E(fS(X)− Y )X.

We will bound (Pn − P )(fρ̃ − fS)2 in representation (61) as follows:

∣∣∣(Pn − P )(fρ̃ − fS)2
∣∣∣ ≤ ‖ρ̃− S‖21βn(‖fρ̃ − fS‖L2(Π)

‖ρ̃− S‖1

)
, (62)

where
βn(∆) := sup

{∣∣∣(Pn − P )(f2
A)
∣∣∣ : A ∈ Hm, ‖A‖1 ≤ 1, ‖fA‖L2(Π) ≤ ∆

}
.

The next lemma provides a bound on βn(∆). Its proof is somewhat involved and it will
not be given here. It is based on Rudelson’s L∞(Pn) generic chaining bound for empirical
processes indexed by squares of functions and on the ideas of the paper by Guédon et al.
(2008) combined with Talagrand’s concentration inequality (see also Aubrun 2009, Liu
2011 and Theorem 3.16, Lemma 9.8 and Proposition 9.2 in Koltchinskii 2011b for similar
arguments).
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Lemma 20 Given 0 < δ− < δ+ and t ≥ 1, let

t̄ := t+ log
(
log2(δ+/δ−) + 3

)
.

Then, with some constant C and with probability at least 1− e−t, the following bound holds
for all ∆ ∈ [δ−, δ+] :

βn(∆) ≤ C
[
∆U log3/2m logn√

n
+ U2 log3m log2 n

n
+ ∆U

√
t̄

n
+ U2 t̄

n

]
. (63)

We will use Lemma 20 to control βn(∆) for ∆ := ‖fρ̃−fS‖L2(Π)
‖ρ̃−S‖1 . Let δ+ := 1

m and
δ− := 1

mn . With this choice, t̄ ≤ t+ log(log2 n+ 3). Note that for A = ρ̃−S
‖ρ̃−S‖1 , ‖fA‖L2(Π) =

‖A‖2
m ≤ ‖A‖1

m = m−1 = δ+. If also ‖fA‖L2(Π) ≥ δ−, then we can substitute bound (63) on
βn(∆) into (62) that yields:

∣∣∣(Pn − P )(fρ̃ − fS)2
∣∣∣ ≤ C[‖fρ̃ − fS‖L2(Π)‖ρ̃− S‖1U log3/2 m logn√

n

+‖ρ̃− S‖21U2 log3m log2 n
n + ‖fρ̃ − fS‖L2(Π)‖ρ̃− S‖1U

√
t̄
n

+‖ρ̃− S‖21U2 t̄
n

]
≤ 1

32‖fρ̃ − fS‖
2
L2(Π) + 8(C2 + C/8)U2 log3 m log2 n

n ‖ρ̃− S‖21 (64)

+ 1
32‖fρ̃ − fS‖

2
L2(Π) + 8(C2 + C/8)U2 t̄

n‖ρ̃− S‖
2
1

≤ 1
16‖fρ̃ − fS‖

2
L2(Π) + C ′U2 log3 m log2 n+t̄

n ‖ρ̃− S‖21,

where C ′ := 8(C2 +C/8). If, on the other hand, ‖fA‖L2(Π) ≤ δ− = 1
mn , then ‖fρ̃− fS‖L2(Π)

in the above bound can be replaced by 1
mn‖ρ̃−S‖1 and the proof that follows only simplifies

since

1
16‖fρ̃ − fS‖

2
L2(Π) ≤

1
16

1
m2n2 ‖ρ̃− S‖

2
1 ≤

1
16U

2 log3m log2 n+ t̄

n
‖ρ̃− S‖21.

Another term in the right hand side of representation (61) to be controlled is 〈Ξ, ρ̃−S〉.
Note that Ξ = Ξ1 + Ξ2, where

Ξ1 := −n−1
n∑
j=1

ξjXj

and
Ξ2 := n−1

n∑
j=1

(fS(Xj)− fρ(Xj))Xj − E(fS(X)− fρ(X))X.

Recall that S = (1−δ)S′+δ Imm with S′ ∈ Sm, rank(S′) = r, supp(S′) = L and δ = 1
m2n2 .
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The term with Ξ1 is controlled as follows:∣∣∣〈Ξ1, ρ̃− S〉
∣∣∣

≤
∣∣∣〈PL(Ξ1), ρ̃− S′〉

∣∣∣+ ∣∣∣〈Ξ1,P⊥L (ρ̃− S′)〉
∣∣∣+ ∣∣∣〈P⊥L (Ξ1), S′ − S〉

∣∣∣
≤ ‖PL(Ξ1)‖2‖ρ̃− S′‖2 + ‖Ξ1‖∞‖P⊥L (ρ̃)‖1 +

∥∥∥P⊥L (Ξ1)
∥∥∥
∞
‖S′ − S‖1

≤ 2
√

2rm‖Ξ1‖∞‖fρ̃ − fS‖L2(Π) + ‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞ (65)
≤ 32rm2‖Ξ1‖2∞ + 1

16‖fρ̃ − fS‖
2
L2(Π)

+‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞.

We also have∣∣∣〈Ξ2, ρ̃− S〉
∣∣∣ ≤ ‖Ξ2‖∞‖ρ̃− S‖1 ≤ ‖Ξ2‖∞‖ρ̃− S′‖1 + ‖Ξ2‖∞‖S′ − S‖1

≤ ‖Ξ2‖∞‖ρ̃− S′‖1 + 2δ‖Ξ2‖∞. (66)

Thus, ∣∣∣〈Ξ, ρ̃− S〉∣∣∣ ≤ 32rm2‖Ξ1‖2∞ + 1
16‖fρ̃ − fS‖

2
L2(Π)

+‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞ + ‖Ξ2‖∞‖ρ̃− S′‖1 + 2δ‖Ξ2‖∞. (67)

It follows from (61), (64) and (67) that with some constant C ′

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) ≤
1
4‖fρ̃ − fS‖

2
L2(Π) + C ′U2 log3m log2 n+t̄

n ‖ρ̃− S‖21 (68)

+64rm2‖Ξ1‖2∞ + 2‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 8δ‖Ξ1‖∞
+2‖Ξ2‖∞‖ρ̃− S′‖1 + 4δ‖Ξ2‖∞.

This bound will be substituted in (38). Note that, if assumption (57) on ε holds with a
sufficiently large constant D, then we have

ε ≥ 8C ′U2 log3m log2 n+ t̄

n

(this follows from the fact that t̄ ≤ t+ log(log2 n+ 3) ≤ t+ c log3m log2 n for some constant
c > 0). Assume also that ε̄ ≥ 4‖Ξ1‖∞ and recall that K(ρ̃;S) ≥ 1

4‖ρ̃− S‖
2
1 (see inequality

8). Taking all this into account, (38) implies that

‖fρ̃ − fρ‖2L2(Π) + 1
4‖fρ̃ − fS‖

2
L2(Π) + ε

2K(ρ̃;S) + ε̄
2‖P

⊥
L ρ̃‖1

≤ ‖fS − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + 5rm2ε̄2 + 6ε̄δ (69)
+2‖Ξ2‖∞‖ρ̃− S′‖1 + 4‖Ξ2‖∞δ.

It remains to control ‖Ξ1‖∞ and ‖Ξ2‖∞. To this end, we use matrix versions of Bernstein
inequality. To bound ‖Ξ2‖∞, we use its standard version which yields that with probability

1784



Low Rank Density Matrices Estimation

at least 1− e−t

‖Ξ2‖∞ ≤ 2
[∥∥∥E(fS(X)− fρ(X))2X2

∥∥∥1/2

∞

√
t+log(2m)

n

∨∥∥∥(fS(X)− fρ(X))‖X‖∞
∥∥∥
L∞

t+log(2m)
n

]
,

where ‖ · ‖L∞ denotes the essential supremum norm in the space of random variables. Since∥∥∥E(fS(X)− fρ(X))2X2
∥∥∥
∞
≤ U2‖fS − fρ‖2L2(Π)

and ∥∥∥(fS(X)− fρ(X))‖X‖∞
∥∥∥
L∞
≤ 2U2,

we get

‖Ξ2‖∞ ≤ 4
[
‖fS − fρ‖L2(Π)U

√
t+log(2m)

n + U2 t+log(2m)
n

]
. (70)

This implies that

2‖Ξ2‖∞‖ρ̃− S′‖1 ≤ ‖fS − fρ‖2L2(Π) + 16U2 t+log(2m)
n ‖ρ̃− S′‖21 (71)

+8U2 t+log(2m)
n ‖ρ̃− S′‖1.

Note that

16U2 t+log(2m)
n ‖ρ̃− S′‖21

≤ 16U2 t+log(2m)
n ‖ρ̃− S‖21 + 16U2 t+log(2m)

n (4δ + δ2) (72)

and

8U2 t+log(2m)
n ‖ρ̃− S′‖1

≤ 8U2 t+log(2m)
n ‖P⊥L ρ̃‖1 + 8U2 t+log(2m)

n ‖PL(ρ̃− S′)‖1 (73)

≤ 8U2 t+log(2m)
n ‖P⊥L ρ̃‖1 + 8U2 t+log(2m)

n ‖PL(ρ̃− S)‖1 + 16U2 t+log(2m)
n δ.

Since, for some constant C ′′ > 0,

8U2 t+log(2m)
n ‖PL(ρ̃− S)‖1 ≤ 8

√
2U2 t+log(2m)

n

√
r‖PL(ρ̃− S)‖2

≤ 8
√

2U2 t+log(2m)
n

√
rm‖fρ̃ − fS‖L2(Π) ≤ 1

4‖fρ̃ − fS‖
2
L2(Π) + C ′′U4 rm2(t+log(2m))2

n2 ,

it follows from (71), (72) and (73) that

2‖Ξ2‖∞‖ρ̃− S′‖1 ≤ ‖fS − fρ‖2L2(Π) +

+16U2 t+log(2m)
n ‖ρ̃− S‖21 + 16U2 t+log(2m)

n (4δ + δ2) (74)

+8U2 t+log(2m)
n ‖P⊥L ρ̃‖1 + 16U2 t+log(2m)

n δ

+1
4‖fρ̃ − fS‖

2
L2(Π) + C ′′U4 rm2(t+log(2m))2

n2 .
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Note that (70) also implies that

‖Ξ2‖∞ ≤ 4
[

2U
m

√
t+log(2m)

n + U2 t+log(2m)
n

]
(75)

(since ‖fS − fρ‖L2(Π) ≤ m−1‖S − ρ‖2 ≤ 2m−1). Let us substitute (74) and (75) in the last
line of (69). Assume that

ε̄ ≥ 16U2 t+ log(2m)
n

and that constant D in assumption (57) is large enough so that

16U2 t+ log(2m)
n

‖ρ̃− S‖21 ≤
ε

4K(ρ̃, S)

(recall inequality 8). It easily follows that with some constants C1, C2,

‖fρ̃ − fρ‖2L2(Π) + ε
4K(ρ̃;S)

≤ 2‖fS − fρ‖2L2(Π) + C1rm
2ε2 log2(m/δ) + 5rm2ε̄2 (76)

+C2ε̄δ + 32Um
√

t+log(2m)
n δ

(note that the term C ′′U4 rm2(t+log(2m))2

n2 of bound (74) is “absorbed” by the term C1rm
2ε2 log2(m/δ)

of bound (76) provided that constant C1 is large enough). Since

δ = 1
m2n2 ≤ U

2 t+ log(2m)
n

≤ ε̄

(recall that U2 ≥ m−1), we have ε̄δ ≤ ε̄2. Also, since U ≥ m−1/2,

U

m

√
t+ log(2m)

n
δ = U

√
t+ log(2m)

n

1
m3n2 ≤ U

4
(
t+ log(2m)

n

)2
≤ ε̄2.

Therefore, (76) implies that with some constant C

‖fρ̃ − fρ‖2L2(Π) + ε
4K(ρ̃;S)

≤ 2‖fS − fρ‖2L2(Π) + C
(
rm2ε2 log2(m/δ) + rm2ε̄2

)
. (77)

To bound ‖Ξ1‖∞, we use a version of matrix Bernstein type inequality due to Koltchin-
skii (2011b) (see bound (2.7) of Theorem 2.7). Its version for α = 2 (with U (α) � Uσξ)
implies that for some constant K > 0 with probability at least 1− e−t

‖Ξ1‖∞ ≤ K
[
σξ

√
t+ log(2m)

nm

∨
σξU

(t+ log(2m)) log1/2(2Um1/2)
n

]
. (78)

We choose

ε̄ := D2

[
σξ

√
t+ log(2m)

nm

∨
(σξ ∨ U)U (t+ log(2m)) log1/2(2m)

n

]
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with a sufficiently large constant D2 to satisfy the condition ‖Ξ1‖∞ ≤ 4ε̄ with probability
at least 1−e−t (the rest of the assumptions we made on ε̄ are also satisfied with this choice).

Bound (77) then implies that with some constant C and with probability at least 1−3e−t
the following inequality holds:

‖fρ̃ε − fρ‖2L2(Π) ≤ 2‖fS − fρ‖2L2(Π)

+ C

[
σ2
ξ

rm(t+ log(2m))
n

+ σ2
ξU

2 rm
2(t+ log(2m))2 log(2m)

n2

+ U4 rm
2(t+ log3m log2 n)2 log2(mn)

n2

]
.

(79)

Using bound (39) to replace S in ‖fS−fρ‖2L2(Π) with S′ and adjusting the value of constant
C to rewrite the probability bound as 1 − e−t, it is easy to complete the proof of (58).
If S′ = ρ, this also yields bound (59). Moreover, with a larger value of regularization
parameter

ε := D1σξ
log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n
,

bound (77) and Lemma 17 easily imply bound (60).

3.3 Optimality Properties of von Neumann Entropy Penalized Estimator ρ̃ε

We start with upper bounds on the error of estimator ρ̃ε (von Neumann entropy penalized
least squares estimator defined by (7)) in Hellinger, Kullback-Leibler and Schatten q-norm
distances for q ∈ [1, 2] for the trace regression model with Gaussian noise (Assumption
4). To avoid the impact of “second order terms” on the upper bounds, we will make the
following simplifying assumptions:

U

√
m

n
logm . 1 and U2

√
m

n
log5/2m log2 n log(mn) . σξ. (80)

Recall that, for the Pauli basis, U = m−1/2, so, the above assumptions hold if n & log2m
and σξ is larger than 1√

mn
(times a logarithmic factor). We will choose regularization

parameter ε as follows:

ε := D1σξ
log(mn)

√
log(2m)
nm

(81)

with a sufficiently large constant D1 > 0. The next result shows that minimax rates of
Theorem 4 are attained up to logarithmic factors for the estimator ρ̃ε.

Theorem 21 There exists a constant C > 0 such that the following bounds hold for all
r = 1, . . . ,m, for all ρ ∈ Sr,m and for all q ∈ [1, 2] with probability at least 1−m−2 :

‖ρ̃ε − ρ‖q ≤ C
(
σξm

3
2 r1/q
√
n

√
logm log(2−q)/q(mn)

∧(σξm3/2
√
n

)1− 1
q

(logm)
1
2−

1
2q

)∧
2, (82)
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H2(ρ̃ε, ρ) ≤ Cσξm
3
2 r√
n

√
logm log(mn)

∧
2 (83)

and

K(ρ‖ρ̃ε) ≤ Cσξm
3
2 r√
n

√
logm log(mn). (84)

Proof We will need the following simple lemma.

Lemma 22 For all ρ ∈ Sm and all l = 1, . . . ,m, there exists ρ′ ∈ Sl,m such that

‖ρ− ρ′‖22 ≤
1
l
.

Proof Suppose that ρ =
∑m
j=1 λjPj , where λj are the eigenvalues of ρ repeated with

their multiplicities and Pj are orthogonal one-dimensional projectors. Note that {λj : j =
1, . . . ,m} is a probability distribution on the set {1, . . . ,m}. Let ν be a random variable
sampled from this distribution and ν1, . . . , νl be its i.i.d. copies. Then EPν = ρ and

E
∥∥∥∥l−1

l∑
j=1

Pνj − ρ
∥∥∥∥2

2
= E‖Pν − ρ‖22

l
= E‖Pν‖22 − ‖ρ‖22

l
= 1− ‖ρ‖22

l
≤ 1
l
.

Therefore, there exists a realization ν1 = k1, . . . , νl = kl of r.v. ν1, . . . , νl such that∥∥∥∥l−1
l∑

j=1
Pkj − ρ

∥∥∥∥2

2
≤ 1
l
.

Denote ρ′ := l−1∑l
j=1 Pkj . Then, ρ′ ∈ Sl,m and ‖ρ− ρ′‖22 ≤ 1

l .

First, we will prove bound (82) for q = 2. To this end, we use oracle inequality (58) with
t = 2 logm+ log 2 and with oracle S = ρ′ ∈ Sl,m such that ‖ρ−ρ′‖22 ≤ 1

l . Under simplifying
assumptions (80) it yields that with probability at least 1− 1

2m
−2

‖ρ̃ε − ρ‖22 = m2‖fρ̃ε − fρ‖2L2(Π) .
[1
l

+ τ2l logm
]
,

where τ := σξm
3/2

√
n

. On the other hand, using the same inequality with S = ρ ∈ Sr,m yields
the bound

‖ρ̃ε − ρ‖22 . τ2r logm

that also holds with probability at least 1 − 1
2m
−2. Therefore, with probability at least

1−m−2

‖ρ̃ε − ρ‖22 .
(1
l

+ τ2l logm
)∧

τ2r logm. (85)

Let l̄ = 1
τ
√

logm . If l̄ ∈ [1,m], set l := [l̄]. Otherwise, if l̄ > m, set l := m and, if l̄ < 1, set
l := 1. An easy computation shows that with such a choice of l bound (85) implies (82) for
q = 2.
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Next we use bound (60) that, for t = 2 logm, implies under assumptions (80) that with
some constant C and with probability at least 1−m−2

K(ρ‖ρ̃ε) ≤ Cσξ rm
3/2√logm log(mn)√

n
, (86)

which is bound (84). Bound (83) also holds in view of inequality (8).
Now, we prove bound (82) for q = 1 (the bound for q ∈ [1, 2] will then follow by inter-

polation). To this end, we will use the following lemma (see Proposition 1 in Koltchinskii
2011a) that shows that if two density matrices are close in Hellinger distance and one of
them is “concentrated around a subspace” L, then another one is also “concentrated around”
L.

Lemma 23 For any L ⊂ Cm and all S1, S2 ∈ Sm,

‖P⊥L S1‖1 ≤ 2‖P⊥L S2‖1 + 2H2(S1, S2).

We apply this lemma to S1 = ρ̃ε, S2 = ρ and L = supp(ρ) so that P⊥L ρ = 0. It yields that

‖P⊥L ρ̃ε‖1 ≤ 2H2(ρ̃ε, ρ).

Therefore,

‖ρ̃ε−ρ‖1 ≤ ‖PL(ρ̃ε−ρ)‖1+‖P⊥L (ρ̃ε−ρ)‖1 ≤
√

2r‖ρ̃ε−ρ‖2+‖P⊥L ρ̃ε‖1 ≤
√

2r‖ρ̃ε−ρ‖2+2H2(ρ̃ε, ρ).
(87)

Using bounds (82) for q = 2 and (83), we get from (87) that

‖ρ̃ε − ρ‖1 ≤ C
σξm

3
2 r√
n

√
logm log(mn)

∧
2, (88)

which is equivalent to (82) for q = 1. Note that by choosing t = 2 logm+ log 2 + 2 (which
might have an impact only on the constant), we could make probability bounds in (82) for
q = 2 and (83) to be at least 1 − 1

2m
−2 implying that (88) holds with probability at least

1−m−2, as it is claimed in the theorem.
To complete the proof, it is enough to use the interpolation inequality of Lemma 1. It

follows that, for q ∈ (1, 2),

‖ρ̃ε − ρ‖q ≤ ‖ρ̃ε − ρ‖
2
q
−1

1 ‖ρ̃ε − ρ‖
2− 2

q

2 .

Substituting bound (82) for q = 1 and q = 2 into the last inequality yields the result for an
arbitrary q ∈ (1, 2).

Similarly, in the case of trace regression with bounded response (see Assumption 3),
minimax rates of Theorem 7 are also attained for the estimator ρ̃ε (up to log factors). In
this case, assume that Assumption 3 holds with Ū = U and, in addition, let us make the
following simplifying assumptions:

U

√
m logm

n
. 1 and log log2 n . m logm. (89)
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For the Pauli basis (U = m−1/2), the first assumption holds if n & logm. The second as-
sumption does hold unless n is extremely large (n ∼ 2exp{m logm}). Under these assumptions,
we will use the following value of regularization parameter ε :

ε := U

log(mn)

√
log(2m)
nm

.

The following version of Theorem 21 holds in the bounded regression case (with a similar
proof).

Theorem 24 There exists a constant C > 0 such that the following bounds hold for all
r = 1, . . . ,m, for all ρ ∈ Sr,m and for all q ∈ [1, 2] with probability at least 1−m−2 :

‖ρ̃ε − ρ‖q ≤ C
(
Um

3
2 r1/q
√
n

√
logm log(2−q)/q(mn)

∧(Um3/2
√
n

)1− 1
q

(logm)
1
2−

1
2q

)∧
2, (90)

H2(ρ̃ε, ρ) ≤ CUm
3
2 r√
n

√
logm log(mn)

∧
2 (91)

and

K(ρ‖ρ̃ε) ≤ CUm
3
2 r√
n

√
logm log(mn). (92)

Remark 25 In the case of Pauli basis, the minimax optimal rates (up to constants and
logarithmic factors) are: mr1/q

√
n
∧( m√

n
)1− 1

q ∧2 for Schatten q-norm distances for q ∈ [1, 2]; mr√
n

for nuclear norm, squared Hellinger and Kullback-Leibler distances (provided the mr .
√
n).
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Abstract

The speed with which a learning algorithm converges as it is presented with more data
is a central problem in machine learning — a fast rate of convergence means less data is
needed for the same level of performance. The pursuit of fast rates in online and statistical
learning has led to the discovery of many conditions in learning theory under which fast
learning is possible. We show that most of these conditions are special cases of a single,
unifying condition, that comes in two forms: the central condition for ‘proper’ learning
algorithms that always output a hypothesis in the given model, and stochastic mixability
for online algorithms that may make predictions outside of the model. We show that under
surprisingly weak assumptions both conditions are, in a certain sense, equivalent. The
central condition has a re-interpretation in terms of convexity of a set of pseudoprobabilities,
linking it to density estimation under misspecification. For bounded losses, we show how
the central condition enables a direct proof of fast rates and we prove its equivalence to
the Bernstein condition, itself a generalization of the Tsybakov margin condition, both of
which have played a central role in obtaining fast rates in statistical learning. Yet, while the
Bernstein condition is two-sided, the central condition is one-sided, making it more suitable
to deal with unbounded losses. In its stochastic mixability form, our condition generalizes
both a stochastic exp-concavity condition identified by Juditsky, Rigollet and Tsybakov and
Vovk’s notion of mixability. Our unifying conditions thus provide a substantial step towards
a characterization of fast rates in statistical learning, similar to how classical mixability
characterizes constant regret in the sequential prediction with expert advice setting.

Keywords: statistical learning theory, fast rates, Tsybakov margin condition, mixability,
exp-concavity
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1. Introduction

Alexey Chervonenkis jointly achieved several significant milestones in the theory of ma-
chine learning: the characterization of uniform convergence of relative frequencies of events
to their probabilities (Vapnik and Chervonenkis, 1971), the uniform convergence of means
to their expectations (Vapnik and Chervonenkis, 1981), and the ‘key theorem in learning
theory’ showing the relationship between the consistency of empirical risk minimization
(ERM) and the uniform one-sided convergence of means to expectations (Vapnik and Cher-
vonenkis, 1991); (Vapnik, 1998, Chapter 3). Two outstanding features of these contributions
are that they characterized the phenomenon in question, and the quantitative results are
parametrization independent in the sense that they do not depend upon how elements of
the hypothesis class F are parameterized, only on global (effectively geometric) properties
of F . With his co-author Vladimir Vapnik, Alexey Chervonenkis also presented quantita-
tive bounds on the deviation between the empirical and expected risk as a function of the
sample size n. These are used for the theoretical analysis of the statistical convergence of
ERM algorithms, which are central to machine learning. According to Vapnik (1998, p.
695), in his 1974 book co-authored by Chervonenkis (Vapnik and Chervonenkis, 1974) they
presented ‘slow’ and ‘fast’ bounds for ERM when used with 0-1 loss. They showed that in
the realizable or ‘optimistic’ case (where there is an f ∈ F that almost surely predicts cor-
rectly, so that the minimum achievable risk is zero) one can achieve fast O(1/n) convergence
as opposed to the ‘pessimistic’ case where one does not have such an f in the hypothesis
class and the best uniform bound is O(1/

√
n) (Vapnik, 1998, page 127). This difference is

important because if one is in such a ‘fast rate’ regime, one can achieve good performance
with less data.

The present paper makes several further contributions along this path first delineated by
Vapnik and Chervonenkis. We focus upon the distinction between slow and fast learning. As
shown in the special case of squared loss by Lee et al. (1998) and log loss by Li (1999), if the
hypothesis class is convex, one can still attain fast O(1/n) convergence even in the agnostic
(pessimistic) setting.1 Such convergence results, like those of Vapnik and Chervonenkis,
are uniform — they hold for all possible target distributions. When the hypothesis class
is not convex, one cannot attain a uniform fast bound for ERM (Mendelson, 2008a), and
it is not known whether fast rates are possible for any algorithm at all; however, one can
obtain a non-uniform bound (Mendelson and Williamson, 2002; Mendelson, 2008b). Such
bounds are necessarily dependent upon the relationships between the components (`,P,F)
of a statistical decision problem or learning task. Here ` is the loss, F the hypothesis class,
and P the (possibly singleton) class of distributions which, by assumption, contains the
unknown data-generating distribution. Often one can assume large classes of P and still
obtain bounds that are relatively uniform, i.e. uniform over all P ∈ P. We identify a
central condition on decision problems (`,P,F) — where ` may be unbounded — that, in
its strongest form, allows O(1/n) rates for so-called ‘proper’ learning algorithms that always
output a member of F . In weaker forms, it allows rates in between O(1/

√
n) and O(1/n).

1. Throughout this work, implicit in our statements about rates is that the function class is not too large;
we assume classes with at most logarithmic universal metric entropy, which includes finite classes, VC
classes, and VC-type classes.
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As a second contribution, we connect the above line of work (within the traditional
stochastic setting) to a parallel development in the worst-case online sequence prediction
setting. There, one makes no probabilistic assumptions at all, and one measures conver-
gence of the regret, that is, the difference between the cumulative loss attained by a given
algorithm on a particular sequence with the best possible loss attainable on that sequence
(Cesa-Bianchi and Lugosi, 2006). This work, due in large part to Vovk (1990, 1998, 2001),
shares one aspect of Vapnik and Chervonenkis’ approach — it achieves a characterization
of when fast learning is possible in the online individual sequence-setting. Since there is
no P in this setting, the characterization depends only upon the loss `, and in particular
whether the loss is mixable. As shown in Section 4, our second key condition, stochastic
mixability, is a generalization of Vovk’s earlier notion. Briefly, when P is the set of all
distributions on a domain, stochastic mixability is equivalent to Vovk’s classical mixability.
Stochastic mixability of (`,P,F) for general P then indicates that fast rates are possible in
a stochastic on-line setting, in the worst-case over all P ∈ P.

The main contribution in this paper is to show, first, that a range of existing condi-
tions for fast rates (such as the Bernstein condition, itself a generalization of the Tsybakov
condition) are either special cases of our central condition, or special cases of stochastic
mixability (such as original mixability and (stochastic) exp-concavity); and second, to show
that under surprisingly weak conditions the central condition and stochastic mixability are
in fact equivalent — thus there emerges essentially a single condition that implies fast rates
in a wide variety of situations. Our central and stochastic mixability condition improve in
several ways on the existing conditions that they generalize and unify. For example, like
the uniform convergence condition in Vapnik and Chervonenkis’ original ‘key theorem of
learning theory’ (Vapnik and Chervonenkis, 1991), but unlike the Bernstein fast rate con-
dition, our conditions are one-sided which, as forcefully argued by Mendelson (2014), seems
as it should be; Example 5.7 explains and illustrates the difference between the two- and
one-sided conditions. Like Vapnik and Chervonenkis’ uniform convergence condition and
Vovk’s classical mixability, but unlike the stochastic and individual-sequence exp-concavity
conditions, our conditions are parametrization independent (Section 4.2.2). Finally, unlike
the assumptions for classical mixability (Vovk, 1998), we do not require compactness of
the loss function’s domain. We hasten to add though that for unbounded losses, several
important issues are still unresolved — for example, if under some P ∈ P and with some
f ∈ F the distribution of the loss has polynomial tails, then some of our equivalences break
down (Section 5.2).

One final historical precursor deserves mention. Statistical convergence bounds rely on
bounds on the tails of certain random variables. In Section 7 we show how, for bounded
losses, the central condition (4) directly controls the behaviour of the cumulant generating
function of the excess loss random variable. The geometric insight behind this result,
Figure 3, previously was used, unbeknownst to us when carrying out the work originally
(Mehta and Williamson, 2014), by Claude Shannon (1956). It is fitting that our tribute to
Alexey Chervonenkis can trace its history to another such giant of the theory of information
processing.
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1.1 Why Read This Paper? Our Most Important Results

Below, we highlight the core contributions of this work. A more comprehensive overview is
in Section 2 and the diagram on page 1798, which summarizes all results from the paper.

• We introduce the v-stochastic mixability condition on decision problems (Equation 8,
Definition 4.1 and 5.9), a strict generalization of Vovk’s classical mixability (Vovk,
1990, 1998, 2001; van Erven et al., 2012a), exp-concavity (Kivinen and Warmuth,
1999; Cesa-Bianchi and Lugosi, 2006) and stochastic exp-concavity, a condition iden-
tified implicitly by Juditsky et al. (2008) and used by e.g. Dalalyan and Tsybakov
(2012). Here v : R+

0 → R+
0 is a nondecreasing nonnegative function. In the important

special case that v ≡ η is constant, we say that (strong) stochastic mixability holds.
Proposition 4.5 shows that in that case, with finite F , Vovk’s aggregating algorithm
for on-line prediction in combination with an online-to-batch conversion achieves a
learning rate of O(1/n); if the v-condition holds for sublinear v with v(0) = 0, inter-
mediate rates between O(1/

√
n) and O(1/n) are obtained. These results hold under

no further conditions at all, in particular for unbounded losses. Interest: the condition
being a strict generalization of earlier ones, it shows that we can get fast rates for
some situations for which this was was hitherto unknown.

• We introduce the v-central condition (Equations 4, 5, 6, 10, Definitions 3.1 and 5.3).
As we show in Theorem 5.4, for bounded losses and v of the form v(x) = Cxα, it gener-
alizes the Bernstein condition (Bartlett and Mendelson, 2006), itself a generalization
of the Tsybakov margin condition (Tsybakov, 2004). If v ≡ η is constant, we just say
that the (strong) central condition holds. In that case, with (unbounded) log-loss, it
generalizes a (typically nameless) condition used to obtain fast rates in Bayesian and
minimum description length (MDL) density estimation in misspecification contexts
(Li, 1999; Zhang, 2006a,b; Kleijn and van der Vaart, 2006; Grünwald, 2011; Grünwald
and van Ommen, 2014). These are all conditions that allow for fast rates for proper
learning, in which the learning algorithm always outputs an element of F .

(i) For convex F , we prove that the strong η-central condition and the strong η-
stochastic mixability are equivalent, under weak conditions (Theorem 4.17 in conjunc-
tion with Proposition 4.11 and Theorem 3.10 in conjunction with Proposition 4.12).
Interest: This shows that existing fast rate conditions for O(1/n) rates in online
learning are related to fast rate conditions for O(1/n) rates for proper learning algo-
rithms such as ERM — even though such conditions superficially look very different
and have very different interpretations: existence of a ‘substitution function’ (mixa-
bility) vs. the exponential moment of a loss difference constituting a supermartingale
(central condition).

(ii) We prove (a) that for bounded losses, the strong central condition always
implies fast O(1/n) rates for ERM and the v-central condition implies intermediate
rates (Theorem 7.6). The equivalence between η-mixability and the central condition
and Proposition 4.5 mentioned above imply that, (b), the central condition implies
fast rates in many more conditions, even with unbounded losses. We also show (c) that
there exist decision problems with unbounded losses in which the central condition
holds, the Bernstein condition does not hold, and we do get fast rates. Interest:
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first, while fast and intermediate rates under the v-central condition with bounded
loss can also be derived from existing results, our proof is directly in terms of the
central condition and yields better constants. Second, results (a)-(c) above lead us to
conjecture that there exist some very weak condition (much weaker than bounded loss)
such that for sublinear v, the v-central condition together with this extra condition
always implies sublinear rates. Establishing such a result is a major goal for future
work.

• Under mild conditions, the v-central condition is equivalent to a third condition, the
pseudoprobability convexity (PPC) condition — (7) and Definition 3.2 and 5.3. In-
terest: for the constant v ≡ η case (O(1/n) rates), the PPC condition provides a
clear geometric and a data-compression interpretation of the v-central condition. For
bounded losses and general v, it implies that a problem must have unique minimiz-
ers in a certain sense (Proposition 5.11), giving further insight into the fast rates
phenomenon.

• In some cases with nonconvex F , ERM and other proper learning algorithms achieve a
suboptimal O(1/

√
n) rate, whereas online methods combined with an online-to-batch

convergence get O(1/n) rates in expectation (Audibert, 2007). Now the implication
‘strong stochastic mixability ⇒ strong central condition ’ (Theorem 3.10 in conjunc-
tion with Proposition 4.12, already mentioned under 2(i)) holds whenever the risk
minimizer within F coincides with the risk minimizer within the convex hull of F .
Thus, as long as this is the case, there is no inherent rate advantage in improper
learning — if η-stochastic mixability holds so that (improper) online methods achieve
an O(1/n)-rate, so will the (proper) ERM method. Theorem 7.6 implies this for
bounded losses; we conjecture that the same holds for unbounded losses. Interest:
This insight helps understand when improper learning can and cannot be helpful for
general losses, something that was hitherto only well-understood for the squared loss
on a bounded domain (Lecué, 2011).

2. Introduction to and Overview of Results

To facilitate reading of this long paper, we provide an introductory summary of all our
results. By reading this section alongside the ‘map’ of conditions and their relationships on
page 1798, the reader should get a good overview of our results. We start below with some
notational and conceptual preliminaries, and continue in Section 2.2 with a discussion of
the central condition, followed by a section-by-section description of the paper.

2.1 Decision Problems and Risk

We consider decision problems which, in their most general form, can be specified as a
four-tuple (`,P,F ,Fd) where P is a set of distributions on a sample space Z, and the goal
is to make decisions that are essentially as good as the best decision in the model F (F is
often called an ‘hypothesis space’ in machine learning). We will allow the decision maker
to make decisions in a decision set Fd which is usually taken equal to, or a superset of,
F but for mathematical convenience is also allowed to be a subset of F . The quality of
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for ERM

A = Assumption A
B = Assumption B
C = Assumption C

CC = Central Condition
CON = Convexity of F with `sq

EC = Exp-Concavity
JRT = Juditsky-Rigollet-Tsybakov
PC = Predictor Condition

PPC = Pseudoprobability Convexity
SC = Strong Convexity

SEC = Stochastic Exp-Concavity
SM = Stochastic Mixability
TM = Tsybakov Margin Condition

u-BC = u-Bernstein Condition
v-CC = v-Central Condition
v-PPC = v-Pseudoprobability Convexity Condition

UM = Unique Minimizer
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decisions will be measured by a loss function ` : F` × Z → [−B,∞] for arbitrary B ≥ 0
where a smaller loss means better predictions, and F` ⊇ F ∪ Fd is the domain of the loss.
As further notation we introduce the component functions `f (z) = `(f, z) and for any set G
we let ∆(G) denote the set of distributions on G (implicitly assuming that G is a measurable
set, equipped with an appropriate σ-algebra). A loss function ` is called bounded if for some
B ≥ 0, for all f ∈ F` and all P ∈ P, we have |`f (Z)| ≤ B almost surely when Z ∼ P .
When F` is a set for which this is well-defined, for any F ⊂ F` we denote by co(F) ⊆ F`
the convex hull of F .

Now fix some decision problem (`,P,F ,Fd). The risk of a predictor f ∈ F` with respect
to P ∈ P is defined, as usual, as

R(P, f) = E
Z∼P

[`f (Z)], (1)

where Z is a random variable mapping to outcomes in Z and, in general, R(P, f) may be
infinite. However, for the remainder of the paper we will only consider tuples (`,P,F ,Fd)
such that for all P ∈ P, there exists2 at least one f◦ ∈ F with R(P, f◦) < ∞ and hence
P (`f◦(Z) = ∞) = 0. A learning algorithm or estimator is a (computable) function from

∪n≥0Zn to Fd that, upon observing data Z1, . . . , Zn, outputs some f̂n ∈ Fd. Following
standard terminology, we call a learning algorithm proper (Lee et al., 1996; Alekhnovich
et al., 2004; Urner and Ben-David, 2014) if its outputs are restricted to the set F , i.e. F =
Fd. Examples of this setting, which has also been called in-model estimation (Grünwald
and van Ommen, 2014), include ERM and Bayesian maximum a posteriori (MAP) density
estimation. For notational convenience, in such cases we identify a decision problem with the
triple (`,P,F). We only consider F 6= Fd in Section 4 and 6 on on-line learning, where Fd is
often taken to be co(F); for example, F may be a set of probability densities (Example 2.2)
and the algorithm may be Bayesian prediction, which predicts with the Bayes predictive
distribution (Section 3.3), a mixture of elements of F which is hence in co(F). One of
our main insights, discussed in Section 4.3.3, is understanding when the weaker conditions
that allow fast rates for improper learning transfer to the proper learning setting. In the
stochastic setting, the rate (in expectation) of a learning algorithm is the quantity

sup
P∈P

{
E

Z∼P

[
R(P, f̂n)

]
− inf
f∈F

R(P, f)

}
, (2)

where Z = (Z1, . . . , Zn) are n i.i.d. copies of Z. The rate of a learning algorithm can usually
be bounded, up to log n factors, as (compn(F)/n)α for some α between 1/2 and 1. Here
compn(F) is some measure of the complexity of F which may or may not depend on n, such
as its codelength, its VC-dimension in classification, an upper bound on the KL-divergence
between prior and posterior in PAC-Bayesian approaches, or the logarithm of the number
of elements of an ε-net, with ε determined by sample size, and so on. In the simplest case,
with F finite, complexity is invariably bounded independently of n (usually as log |F|), and
whenever for a decision problem (`,P,F ,Fd) with finite F there exists a learning algorithm
achieving the rate O(1/n), we say that the problem allows for fast rates.

In the remainder of this section we make the following simplifying assumption.

2. We allow the loss itself to be infinite which makes random variables and their expectations undefined
when they evaluate to∞−∞ with positive probability. The requirement that f◦ exists for all P ensures
that we never encounter this situation in any of our formulas.
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Assumption A (Minimal Risk Achieved) For all P ∈ P, the minimal risk R(P, f)
over F is achieved by some f∗ ∈ F depending on P , i.e.

R(P, f∗) = inf
f∈F

R(P, f). (3)

Assumption A is essentially a closure property that holds in many cases of interest. We
will call such f∗ F-optimal for P or simply F-optimal. When P ∈ P and F are clear from
context, we will also simply say that f∗ is the best predictor.

Example 2.1 (Regression, Classification, (Relatively) Well-Specified and Mis-
specified Models) In the standard statistical learning problems of classification and re-
gression, we have Z = X × Y for some ‘feature’ or ‘covariate’ space X and F is a set of
functions from X to Y. In classification, Y = {0, 1} and one usually takes the standard
classification loss `class

f ((x, y)) = |y − f(x)|; in regression, one takes Y = R and the squared

error loss `reg
f ((x, y)) = 1

2(y − f(x))2. In Example 2.2 we show that density estimation also
fits in our setting. For losses with bounded range [0, B], if the optimal f∗ that exists by As-
sumption A has 0 risk, we are in what Vapnik and Chervonenkis (1974) call the ‘optimistic’
setting, more commonly known as the ‘deterministic’ or ‘realizable’ case (VC in Figure 1 on
page 1798). We never make this strong an assumption and are thus always in the ‘agnostic’
case. A strictly weaker assumption would be to assume that f∗ is the Bayes decision rule,
minimizing the risk R(P, f∗) over the loss function’s full domain F`; in classification this
means that f∗ is the Bayes classifier (minimizing risk over all functions from X to Y), in re-
gression it implies that f∗ is the true regression function, i.e. f∗(x) = E(X,Y )∼P [Y | X = x],
in density estimation (see below) that f∗ is the density of the ‘true’ P . Borrowing termi-
nology from statistics, we then say that the model F is well-specified, or simply correct.
Although this assumption is often made in statistics and sometimes in statistical learning
(e.g. in the original Tsybakov condition (Tsybakov, 2004) and in the analysis of strictly
convex surrogate loss functions for 0/1-loss (Bartlett et al., 2006)), all of our results are
applicable to incorrect, misspecified F as well. We will, however, in some cases make the
much weaker Assumption B (page 1820) that F is well-specified relative to Fd, or equiva-
lently F is as good as Fd, meaning that for all P ∈ P, minf∈Fd

R(P, f) = minf∈F R(P, f).
In all our examples, if F 6= Fd we can take, without loss of generality, Fd = co(F), and
then a sufficient (but by no means necessary) condition for relative well-specification is that
F is either convex or correct.

We now turn to an overview of the main results and concepts of this paper, which are also
highlighted in Figure 1 on page 1798.

2.2 Main Concept: The Central Condition

We focus on decision problems (`,P,F) satisfying the simplifying Assumption A by fixing
any such decision problem and letting P ∈ P and f∗ be F-optimal for P . We may now
ask this f∗ to satisfy a stronger, supermartingale-type property where for some η > 0 we
require

E
Z∼P

[
eη(`f∗ (Z)−`f (Z))

]
≤ 1 for all f ∈ F . (4)
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This type of property plays a fundamental role in the study of fast rates because it controls
the higher moments of the negated excess loss `f∗(Z)−`f (Z). Note that by our conventions
regarding infinities (Section 2.1) this implies that P (`f∗(Z) =∞) = 0.

There are several motivations for studying the requirement in (4). In the case of clas-
sification loss, it can be seen to be a special, extreme case of the Bernstein condition (see
below). In the case of log loss, the requirement becomes a standard (but usually unnamed)
condition which we call the Bayes-MDL Condition which is used in proving convergence
rates of Bayesian and MDL density estimation (Example 2.2). Finally, under a bounded
loss assumption the condition (4) implies one our main results, Theorem 7.6, a fast rates
result for statistical learning over finite classes (the situation for unbounded losses is more
complicated and is discussed after Example 2.2).

Note that to satisfy Assumption A it is sufficient to require that the property (4) holds
for some f∗ ∈ F since, by Jensen’s inequality, this f∗ must then automatically be F-optimal
as in (3). We will require (4) to hold for all P ∈ P (where f∗ may depend on P ). This is
the simplest form of our central condition, which we call the the η-central condition. We
note that if (4) holds for all f ∈ F then it must also hold in expectation for all distributions
on F . Thus, the η-central condition can be restated as follows:

∀P ∈ P ∃f∗ ∈ F ∀Π ∈ ∆(F) : E
Z∼P

E
f∼Π

[
eη(`f∗ (Z)−`f (Z))

]
≤ 1. (5)

This rephrasing of the central condition will be useful when comparing it to conditions
introduced later in the paper.

The central condition is easiest to interpret for density estimation with the logarithmic
loss. In this case the condition for η = 1 is implied by F being either well-specified or
convex, as the following example shows.

Example 2.2 (Density estimation under well-specified or convex models) Let F
be a set of probability densities on Z and take ` to be log loss, so that `f (z) = − log f(z).

For log loss, statistical learning becomes equivalent to density estimation. Satisfying the
central condition then becomes equivalent to, for all P ∈ P, finding an f∗ ∈ F such that

E
Z∼P

(
f(Z)

f∗(Z)

)η
≤ 1 (6)

for all f ∈ F . If the model F is correct, it trivially holds that (`,P,F) satisfies the 1-central
condition as we choose f∗ to be the density of P , so that the densities in the expectation
and the denominator cancel. Even when the model is misspecified, Li (1999) showed that
(6) holds for η = 1 provided the model is convex. We will recover this result in Exam-
ple 3.12 in Section 3, where we review the central role that (6) plays in convergence proofs
of MDL and Bayesian estimation. Even if the set of densities is neither correct nor convex,
the central condition often still holds for some η 6= 1. In Example 3.6 we explore this for
the set of normal densities with variance τ2 when the true distribution is either Gaussian
with a different variance, or subgaussian.

We show in Section 7 that for bounded losses the η-central condition implies fast O(1/n)
rates for finite F . But what about unbounded losses such as log loss? In the log loss/density
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estimation case, as shown by Barron and Cover (1991); Zhang (2006a); Grünwald (2007)
and others, fast rates can be obtained in a weaker sense. Specifically, in the worst-case over
P ∈ P, the squared Hellinger distance or Rényi divergences between f̂n and the optimal
f∗ converge as O(1/n) for ERM when F is finite, and like O(compn/n) for general F and
for 2-part MDL and Bayes MAP-style algorithms. If the goal is to obtain fast rates in
the stronger sense (2) for general unbounded loss functions some additional assumptions
are needed. Zhang (2006a,b) provides such results for penalized ERM and randomized
estimators (see also the discussion in Section 8). Importantly, as explained by Grünwald
(2012), the proofs for fast rates in all the works mentioned here crucially, though sometimes
implicitly, employ the η-central condition at some point.

2.3 Overview of the Paper

Section 3 —Fast Rates for Proper Learning: PPC Condition, Bayesian Interpretation,
Relation to Bayes-MDL Condition.

In Section 3, we give a second condition, the pseudoprobability convexity (PPC) condition,
a variation of (5) stating that:

∀P ∈ P ∀Π ∈ ∆(F) ∃f∗ ∈ F : E
Z∼P

[`f∗(Z)] ≤ E
Z∼P

[
−1

η
log E

f∼Π
e−η`f (Z)

]
. (7)

Clearly, if the condition holds, then it will hold by choosing, for every P ∈ P, f∗ to be
F-optimal relative to P . The name ‘pseudoprobability’ stems from the interpretation of
pf (Z) := e−`f (Z) as ‘pseudo-probability associated with f , similar to the ‘entropification’
of f introduced by Grünwald (1999). The full ‘pseudoprobability convexity’ stems from
the interpretation illustrated by and explained around Figure 2 on page 1813. We show
that, under simplifying Assumption A, the central and PPC conditions are equivalent. One
direction of this equivalence is trivial, while the other direction is our first main result,
Theorem 3.10. We also explain how the rightmost expression in (7) strongly resembles
the expected log-loss of a Bayes predictive distribution, and how this leads to a ‘pseudo-
Bayesian’ or ‘pseudo-data compression’ interpretation of the pseudoprobability convexity
condition, and hence of the central condition. Versions of this interpretation were high-
lighted earlier by Grünwald (2012); Grünwald and van Ommen (2014). Thus, we can think
of both conditions as a single condition with dual interpretations: a frequentist one in terms
of exponentially small deviation probabilities (which follow by applying Markov’s inequality
to EZ∼P [eη(`f∗(Z)−`f (Z))]), and a pseudo-Bayesian one in terms of convexity properties of
F . Further, we give a few more examples of the central/PPC condition in this section, and
we discuss in detail its special case, the Bayes-MDL condition (Example 2.2).

Crucially, all algorithms that we are aware of for which fast rates have been proven
by means of the η-central condition are ‘proper’ in that they always output a (possibly
randomized) element of F itself. This includes ERM, two-part MDL, Bayes MAP and
randomized Bayes algorithms (Barron and Cover, 1991; Zhang, 2006a,b; Grünwald, 2007)
and PAC-Bayesian methods (Audibert, 2004; Catoni, 2007). Thus, the central condition is
appropriate for proper learning. This is in contrast to the stochastic mixability condition
which is defined and studied in Section 4.
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Section 4 — Fast Rates for Online Learning: (Stochastic) Mixability and Exp-Concavity.

In online learning with bounded losses, strong convexity of the loss is an oft-used condition
to obtain fast rates because it is naturally related to gradient and mirror descent methods
(Hazan et al., 2007, 2008; Shalev-Shwartz and Singer, 2007). If we allow more general algo-
rithms, however, then fast rates are also possible under the condition of exp-concavity which
is weaker than strong convexity (Hazan et al., 2007). Exp-concavity in turn is a special case
of Vovk’s classical mixability condition (Vovk, 2001), the main difference being that the defi-
nition of exp-concavity depends on the choice of parametrization of the loss function whereas
the definition of classical mixability does not. Whether classical mixability can really be
strictly weaker than exp-concavity in an ‘optimal’ parametrization is an open question (Ka-
malaruban et al., 2015; van Erven, 2012). Strong convexity, exp-concavity and classical
mixability are all individual sequence notions, allowing for fast rates in the sense that, if F
is finite, then there exist (improper) learning algorithms for which the worst-case cumulative

regret over all sequences, that is supz1,...,zn∈Zn
{∑n

i=1

(
`f̂i−1

(zi)
)
− inff∈F

∑n
i=1 `f (zi)

}
,

is bounded by a constant. This implies that the worst-case cumulative regret per outcome
at time n is O(1/n).

One may obtain learning algorithms for statistical learning by converting algorithms for
online learning using a process called online-to-batch conversion (Cesa-Bianchi et al., 2004;
Barron, 1987; Yang and Barron, 1999). This process preserves rates, in the sense that if
the worst-case regret per outcome at time n of a method is rn then the rate of the resulting
learning algorithm in the sense of (2) will also be rn. However, for this purpose, it suffices to
use a much weaker stochastic analogue of mixability that only holds in expectation instead
of holding for all outcomes. This analogue is η-stochastic mixability, which we define (note
the similarity to (7)) as

∀Π ∈ ∆(F) ∃f∗ ∈ Fd ∀P ∈ P : E
Z∼P

[`f∗(Z)] ≤ E
Z∼P

[
−1

η
log E

f∼Π
e−η`f (Z)

]
. (8)

Under this condition, Vovk’s Aggregating Algorithm (AA) achieves fast rates in expecta-
tion under any P ∈ P in sequential on-line prediction, without any further conditions on
(`,P,F ,Fd); in particular there are no boundedness restrictions on the loss. If we take P
to be the set of all distributions on Z, we recover Vovk’s original individual-sequence η-
mixability. Note that, based on data Z1, . . . , Zn, the AA outputs f that are not necessarily
in F but can be in some different set Fd (in all applications we are aware of, Fd = co(F),
the convex hull of F). Online-to-batch conversion has been used, amongst others, by Judit-
sky et al. (2008); Dalalyan and Tsybakov (2012) and Audibert (2009) to obtain fast rates
in model selection aggregation. In Sections 4.2.3 and 4.2.4 we relate their conditions to
stochastic mixability. We show that results by Juditsky et al. (2008) employ a stochastic
exp-concavity condition, a special case of our stochastic mixability condition, in a manner
similar to the way exp-concavity is a special case of classical mixability. Given these appli-
cations to statistical learning, it is not surprising that stochastic mixability is closely related
to the conditions for statistical learning discussed above. We will show in Proposition 4.12
that under certain assumptions it is equivalent to our central condition (5) and hence also
the PPC condition (7). The proposition shows that this holds unconditionally in the proper
learning setting: stochastic mixability implies the pseudoprobability convexity condition
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which, in turn, implies the central condition under some weak restrictions. The proposi-
tion also gives a condition under which these relationships continue to hold in the more
challenging case when F 6= Fd. In general, making predictions in Fd gives more power,
and the central condition can only be used to infer fast rates for proper learning algorithms
which always play in F . Thus, if η-stochastic mixability for (`,P,F ,Fd) implies η-PPC
for (`,P,F) then there is no rate improvement for learning algorithms that are allowed to
predict in Fd instead of F . Proposition 4.12 gives a central insight of this paper by showing
that this implication holds under Assumption B: η-stochastic mixability for (`,P,F ,Fd)
implies the η-PPC and η-central conditions for (`,P,F) whenever F is well-specified rel-
ative to Fd — relative well-specification was defined in Example 2.1, where we indicated
that this a much weaker condition than mere correctness of F ; in all cases we are aware of,
a sufficient condition is that F is convex. In Example 4.13 we explore the implications of
Proposition 4.12 for the question whether fast rates can be obtained both in expectation
and in probability — as is the case under the central condition — or only in expectation
— as is sometimes the case under stochastic mixability.

For the implication from the central condition to stochastic mixability, we first define
an intermediate, slightly stronger generalization of classical mixability that we call the η-
predictor condition, which looks like the central condition, but with its universal quantifiers
interchanged:

∀Π ∈ ∆(F) ∃f∗ ∈ Fd ∀P ∈ P : E
Z∼P

E
f∼Π

[
eη(`f∗ (Z)−`f (Z))

]
≤ 1. (9)

In our second main result, Theorem 4.17, we show that the central condition implies the pre-
dictor condition whenever the decision problem satisfies a certain minimax identity, which
holds under Assumption C or its weakening Assumption D. And since (by a trivial appli-
cation of Jensen’s inequality) the predictor condition in turn implies stochastic mixability,
we come full circle and see that, under some restrictions, all four of our conditions in the
‘central quadrangle’ of Figure 1 (page 1798) are really equivalent.

Section 5 — Intermediate Rates: Weakening to v-central condition, connection to
Bernstein and Tsybakov Conditions — can be read independently from Section 4.

In Section 5, we weaken the η-central condition to a condition which we call the v-central
condition: rather than requiring that a fixed η exists such that (4) holds, we only require
that it holds (for all P ∈ P) up to some ‘slack’ ε, where we require that the slack must go
to 0 as η ↓ 0. Specifically, we require that there is some increasing nonnegative function v
such that

E
Z∼P

[
eη(`f∗ (Z)−`f (Z))

]
≤ eηε for all f ∈ F , all ε > 0, with η := v(ε). (10)

As shown in this section (Example 5.5), the v-central condition is associated with rates of
order w(C/n) where C > 0 is some constant, and w is the inverse of x 7→ xv(x) — taking
constant v(x) = η we see that this generalizes the situation for the η-central condition
which for fixed η allows rates of order O(1/n). In our third main result, Theorem 5.4, we
then show that, for bounded loss functions, this condition is equivalent to a generalized
Bernstein condition (see Definition 5.2), which itself is a generalization of the Tsybakov
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margin condition (Tsybakov, 2004) to classification settings in which F may be misspecified,
and to loss functions different from 0/1-loss (Bartlett and Mendelson, 2006). Specifically,
for given function v, a decision problem satisfies the v-central condition if and only if it
satisfies the u-generalized Bernstein condition for a function

u(x) � x

v(x)
, (11)

where for functions a, b from [0,∞) to [0,∞), a(x) � b(x) denotes that there exist constants
c, C > 0 such that, for all x ≥ 0, ca(x) ≤ b(x) ≤ Ca(x).

Example 2.3 (Classification) Let (`,P,F) represent a classification problem with ` the
0/1-loss that satisfies the v-central condition for v(x) � x1−β, 0 ≤ β ≤ 1. Then (11) holds
with u of form u(x) = Bxβ. This is equivalent to the standard (β,B)-Bernstein condition
(which, if F is well-specified, corresponds to the Tsybakov margin condition with exponent
β/(1− β)), which is known to guarantee rates of O

(
n−1/(2−β)

)
. This is consistent with the

rate w(C/n) above, since if v(x) � x1−β, then its inverse w satisfies w(x) � x1/(2−β).

For the case of unbounded losses, the generalized Bernstein and central conditions are not
equivalent. Example 5.7 gives a simple case in which the Bernstein condition does not hold
whereas, due to its one-sidedness, the central condition does hold and fast rates for ERM
are easy to verify; Example 5.8 shows that the opposite can happen as well.

In this section we also extend η-stochastic mixability to v-stochastic-mixability and
show that another fast-rate condition identified by Juditsky et al. (2008) is a special case.
For unbounded losses, the v-stochastic mixability and the v-central condition become quite
different, and it may be that the u-Bernstein condition does imply v-mixability; whether
this is so is an open problem. Finally, using Theorem 5.4, we characterize the relationship
between the η-central condition and the existence of unique risk minimizers for bounded
losses.

Section 6 —From Actions to Predictors.

The classical mixability literature usually considers the unconditional setting where obser-
vations and actions are points from Z and A, respectively. For example, one may consider
the squared loss with `a(y) = (y−a)2 for y, a ∈ [0, 1]. It is often easy to establish stochastic
mixability for a decision problem in this unconditional setting. An interesting question
is whether this automatically implies that stochastic mixability (and hence, under further
conditions, also the central condition) holds in the corresponding conditional setting where
Z = X ×Y and the decision set contains predictors f : X → A that map features x ∈ X to
actions. Here, an example loss function might be `reg

f ((x, y)) = 1
2(y − f(x))2 as considered

in Example 2.1. In this section, we show that the answer is a qualified ‘yes’ — in general,
the set Fd may need to be a large set such as AX , but with some additional assumptions it
remains manageable.

Section 7 — Fast Rate Theorem.

In Section 7, we show how for bounded losses the central condition enables a direct proof
of fast rates in statistical learning over finite classes. The path to our fast rates result,
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Theorem 7.6, involves showing that, for each function f ∈ F , the central condition implies
that the empirical excess loss of f exhibits one-sided concentration at a scale related to
the excess loss of f . This one-sided concentration result is achieved by way of the Cramér-
Chernoff method (Boucheron et al., 2013) combined with an upper bound on the cumulant
generating function (CGF) of the negative excess loss of f evaluated at a specific point.
The upper bound on the CGF is given in Theorem 7.3 which shows that if the absolute
value of the excess loss random variable is bounded by 1, its CGF evaluated at some −η < 0
takes the value 0, and its mean µ is positive, then the central condition implies that the
CGF evaluated at −η/2 is upper bounded by a universal constant times −ηµ. By way of a
careful localization argument, the fast rates result for finite classes also extends to VC-type
classes, as presented in Theorem 7.7.

Final Section — Discussion.

The paper ends with a discussion of what has been achieved and a list of open problems.

3. The Central Condition in General and a Bayesian Interpretation via
the PPC Condition

In this section we first generalize the definitions of the central and pseudoprobability con-
vexity (PPC) conditions beyond the case of the simplifying Assumption A. We give a few
examples and list some of their basic properties. We then show that the central condition
trivially implies the PPC condition, under no conditions on the decision problem at all.
Additionally, in our first main theorem, we show that if Assumption A holds or the loss is
bounded, then the converse result is also true. Importantly, this equivalence between the
central condition and the PPC condition allows us to interpret the PPC condition as the
requirement that a particular set of pseudoprobabilities is convex on the side that ‘faces’ the
data-generating distribution P (Figure 2). This leads to a (pseudo)-Bayesian interpretation,
which says that the (pseudo)-Bayesian predictive distribution is not allowed to be better
than the best element of the model.

3.1 The Central and Pseudoprobability Convexity Conditions in General

We now extend the definition (4) of the central condition to the case that our simplifying
Assumption A may not hold. In such cases, it may be that there is no fixed comparator
that satisfies (4), but there does exist a sequence of comparators f∗1 , f

∗
2 , . . . that satisfies

(5) in the limit. By introducing a function φ that maps P to f∗ this leads to the following
definition of the general η-central condition:

Definition 3.1 (Central Condition) Let η > 0 and ε ≥ 0. We say that (`,P,F) satisfies
the η-central condition up to ε if there exists a comparator selection function φ : P → F
such that

E
Z∼P

E
f∼Π

[
eη(`φ(P )(Z)−`f (Z))

]
≤ eηε for all P ∈ P and distributions Π ∈ ∆(F). (12)

If it satisfies the η-central condition up to 0, we say that the strong η-central condition or
simply the η-central condition holds. If it satisfies the η-central condition up to ε for all
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ε > 0, we say that the weak η-central condition holds; this is equivalent to

sup
P∈P

inf
f∗∈F

sup
Π∈∆(F)

E
Z∼P

E
f∼Π

[
eη(`f∗ (Z)−`f (Z))

]
≤ 1. (13)

Note that we explicitly identify the situation in which the condition does not actually hold
in the strong sense but will if some slack ε > 0 is introduced. We will do the same for
the other fast rate conditions identified in this paper, and we will also establish relations
between the ‘up to ε > 0’ versions. This will become useful throughout Section 5 and, in
particular, Section 5.3.

The PPC condition generalizes analogously to the central condition and features

mη
Π(z) = −1

η
log E

f∼Π

[
e−η`f (z)

]
, (14)

a quantity that plays a crucial role in the analysis of online learning algorithms (Vovk, 1998,
2001), (Cesa-Bianchi and Lugosi, 2006, Theorem 2.2) and has been called the mix loss in
that context by De Rooij et al. (2014).

Definition 3.2 (Pseudoprobability convexity condition) Let η > 0 and ε ≥ 0. We
say that (`,P,F) satisfies the η-pseudoprobability convexity condition up to ε if there exists
a function φ : P → F such that

E
Z∼P

[
`φ(P )(Z)

]
≤ E

Z∼P

[
mη

Π(Z)
]

+ ε for all P ∈ P and Π ∈ ∆(F). (15)

If it satisfies the η-pseudoprobability convexity condition up to 0, we say that the strong
η-pseudoprobability convexity condition or simply the η-pseudoprobability convexity con-
dition holds. If it satisfies the η-pseudoprobability convexity condition up to ε for all ε > 0,
we say that the weak η-pseudoprobability convexity condition holds; this is equivalent to

sup
Π∈∆(F)

sup
P∈P

inf
f∈F

E
Z∼P

[
`f (Z)−mη

Π(Z)
]
≤ 0. (16)

Under Assumption A this condition simplifies and implies the essential uniqueness of optimal
predictors (cf. Section 3.3).

Proposition 3.3 (PPC condition implies uniqueness of risk minimizers) Suppose
that Assumption A holds, and that (`,P,F) satisfies the weak η-pseudoprobability convexity
condition. Then it also satisfies the strong η-pseudoprobability convexity condition, and for
all P ∈ P, the F-optimal f∗ satisfying (3) is essentially unique, in the sense that, for any
g∗ ∈ F with R(P, g∗) = R(P, f∗), we have that `g∗(Z) = `f∗(Z) holds P -almost surely.

Proof Assumption A implies that if (15) holds at all, then it also holds with φ(P ) equal
to any F-risk minimizer f∗ as in (3). Thus, if it holds for all ε > 0, it holds for all ε > 0
with the fixed choice f∗, and hence it must also hold for ε = 0 with the same f∗.

As to the second part, consider a distribution Π that puts mass 1/2 on f∗ and 1/2 on
g∗. Then the strong η-pseudoprobability condition implies that

min
f∈F

E
Z∼P

[`f (Z)] ≤ E
Z∼P

[
−1

η
log
(1

2
e−η`f∗ (Z) +

1

2
e−η`g∗ (Z)

)]
≤ E

Z∼P

[
1

2
`f∗(Z) +

1

2
`g∗(Z)

]
= min

f∈F
E

Z∼P
[`f (Z)],
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where we used convexity of − log and Jensen’s inequality. Hence both inequalities must
hold with equality. By strict convexity of − log, we know that for the second inequality this
can only be the case if `f∗ = `g∗ almost surely, which was to be shown.

Finally, we will often make use of the following trivial but important fact.

Fact 3.4 Fix η > 0, ε ≥ 0 and let (`,P,F) be an arbitrary decision problem that satisfies
the η-central condition up to ε. Then for any 0 < η′ ≤ η and any ε′ ≥ ε and for any
P ′ ⊆ P, (`,P ′,F) satisfies the η′-central condition up to ε′. The same holds with ‘central’
replaced by ‘PPC’.

We proceed to give some examples.

Example 3.5 (Squared Loss, Unrestricted Domain) Consider squared loss `sqf (z) =
1
2(z−f)2 with Z = F = R, and let P = {N (µ, 1) : µ ∈ R} be the set of normal distributions
with unit variance and arbitrary means µ. Estimating the mean of a normal model is a
standard inference problem for which a squared error risk of order O(1/n) is obtained by
the sample mean. We would therefore expect the central condition to be satisfied and,
indeed, this is the case for η ≤ 1 via a reduction to Example 2.2. To see this, consider
the well-specified setting for the log loss `log

f ′ with densities f ′ ∈ F ′ = P, and note that the
squared loss for f equals the log loss for f ′ up to a constant when f is the mean of f ′:

`sqf (z) = − log e−(z−f)2/2 = `log
f ′ (z)− log

√
2π.

Since the log loss satisfies the 1-central condition in the well-specified case (see Example 2.2),
the squared loss must also satisfy the 1-central condition.

Not surprisingly, the central condition still holds if we replace the Gaussian assumption by
a subgaussian assumption.

Example 3.6 For σ2 > 0 let Pσ2 be an arbitrary subgaussian collection of distributions
over R. That is, for all t ∈ R and P ∈ Pσ2

E
Z∼P

[
et(Z−µP )

]
≤ eσ2t2/2, (17)

where µP = EZ∼P [Z] is the mean of Z. Now consider the squared loss `sqf (z) = 1
2(z − f)2

again, with F = Z = R. Then

`sqf (z)− `sqf ′(z) =
1

2
δ(2(z − f)− δ), where δ = f ′ − f . (18)

Taking f = µP gives

E
Z∼P

[
e
η
(
`sqf (Z)−`sq

f ′ (Z)
)]

= e−ηδ
2/2 E

Z∼P

[
eηδ(Z−µP )

]
≤ e−ηδ2/2eσ

2η2δ2/2. (19)

The right-hand side is at most 1 if η ≤ 1/σ2, and hence to satisfy the strong η-central
condition with substitution function φ(P ) = µP , it suffices to take η ≤ 1/σ2. Note that
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φ maps P to the F-optimal predictor for P — a fact which holds generally, as shown in
Proposition 3.3 above. Note also that, just like Example 3.5, the example can be reduced
to the log-loss setting in which the densities are all normal densities with means in R and
variance equal to 1. In Example 5.8 we shall see that if P contains P with polynomially
large tails, then the η-central condition may fail.

Example 3.7 (Subgaussian Regression) Examples 2.2, 3.5 and 3.6 all deal with the
unconditional setting (cf. page 1805) of estimating a mean without covariate information.
The corresponding conditional setting is regression, in which F is a set of functions f :
X → Y, Z = X × Y, Y = R and `reg

f ((x, y)) := `sqf(x)(y). Analogously to Example 3.6,

fix σ2 > 0 and let P be a set of distributions on X × Y such that for each P ∈ P and
x ∈ X , P (Y | X = x) is subgaussian in the sense of (17). Now consider a decision problem
(`reg,P,F). Example 3.6 applies to this regression setting, provided that, for each P ∈ P,
the model F contains the true regression function f∗P (x) := E(X,Y )∼P [Y | X = x]. To see
this, note that then for all P ∈ P, all f ′ ∈ F ,

E
(X,Y )∼P

[
e
η

(
`reg
f∗
P

(X,Y )−`reg

f ′ (X,Y )

)]
= E

P (X)
E

P (Y |X)

[
e
η

(
`sq
f∗
P

(X)
(Y )−`sq

f ′(X)
(Y )

)]
≤ E

P (X)

[
e−ηδ

2/2eσ
2η2δ2/2

]
≤ 1,

where the final inequality holds as long as η ≤ 1/σ2. Thus the 1/σ2-central condition holds.
Although it is often made, the assumption that F contains the Bayes decision rule (i.e.,
the true regression function) is quite strong. In Section 6 we will encounter Example 6.2
where, under a compactness restriction on P, the central condition still holds even though
F may be misspecified.

Example 3.8 (Bernoulli, 0/1-loss and the margin condition) Let Z = F = {0, 1}, for
any 0 ≤ δ ≤ 1/2 let Pδ be the set of distributions P on Z with |P (Z = 1)−1/2| ≥ δ, and let
`01 be the 0/1-loss with `01(y, f) = |y−f |. For every δ > 0, there is an η > 0 such that the η-
central condition holds for (`01,Pδ,F). To see this, let f∗ be the Bayes act for P , i.e., f∗ = 1

if and only if P (Z = 1) > 1/2, and, for f 6= f∗, define A(η) = EZ∼P

[
e
η(`01

f∗ (Z)−`01
f (Z))

]
.

Then A(0) = 1 and the derivative A′(0) is easily seen to be negative, which implies the
result. However, as δ ↓ 0, so does the largest η for which the central condition holds. For
δ = 0, the central condition does not hold any more. Since the central condition and the
PPC condition are equivalent, this also follows from Proposition 3.3: if δ = 0, then there
exist P ∈ P with P (Z = 1) = 1/2, and for this P both f ∈ F = {0, 1} have equal risk so
there is no unique minimum. For each δ > 0, the restriction to Pδ may also be understood
as saying that a Tsybakov margin condition (Tsybakov, 2004) holds with noise exponent
∞, the most stringent case of this condition that has long been known to ensure fast rates.
As will be seen in Example 5.5 the Tsybakov margin condition can also be thought of as a
Bernstein condition with β = 0 and B ↑ ∞ as δ ↓ 0 (in practice, however, this condition is
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usually applied in the conditional setting with covariates X). Finally, just like the squared
loss examples, this example can be recast in terms of log-loss as well. Fix β > 0 and let Fβ
be the subset of the Bernoulli model containing two symmetric probability mass functions,
p1 and p0, where p1(1) = p0(0) = eβ/(1 + eβ) > 1/2. Then the log loss Bayes act for P is p1

if and only if P (Z = 1) > 1/2. For P ∈ Pδ and f ′ 6= f∗, EZ∼P

[
e
η(`log

f∗ (Z)−`log
f (Z))

]
= A(βη),

which by the same argument as above can be made < 1 if η > 0 is chosen small enough
(provided δ > 0).

3.2 Equivalence of Central and Pseudoprobability Convexity Conditions

The following result shows that no additional assumptions are required for the central
condition to imply the pseudoprobability convexity condition.

Proposition 3.9 Fix an arbitrary decision problem (`,P,F) and ε ≥ 0. If the η-central
condition holds up to ε then the η-pseudoprobability convexity condition holds up to ε. In
particular the (strong) η-central condition implies the (strong) η-pseudoprobability convexity
condition.

Proof Let P ∈ P and Π ∈ ∆(F) be arbitrary. Assume the η-central condition holds up to
ε. Then

E
Z∼P

[
`φ(P )(Z)−mη

Π(Z)
]

=
1

η
E

Z∼P
log E

f∼Π

[
eη(`φ(P )(Z)−`f (Z))

]
≤ 1

η
log E

Z∼P
E
f∼Π

[
eη(`φ(P )(Z)−`f (Z))

]
≤ ε.

where the first inequality is Jensen’s and the second inequality follows from the central
condition (12).

To obtain the reverse implication we require either Assumption A (i.e., that minimum risk
within F is achieved) or, if Assumption A does not hold, the boundedness of the loss3.
Below we use the term ‘essentially unique’ in the sense of Proposition 3.3 and call any g∗

such that `g∗(Z) = `f∗(Z) occurs P -almost-surely a version of f∗.

Theorem 3.10 Let (`,P,F) be a decision problem. Then the following statements both
hold:

1. If ` is bounded, then the weak η-pseudoprobability convexity condition implies the weak
η-central condition.

2. Moreover, if Assumption A holds, then (irrespective of whether the loss is bounded)
the weak η-pseudoprobability convexity condition implies the strong η-central condition
with comparator function φ(P ) := f∗ for F-optimal f∗. That is, f∗ can be any version
of the essentially unique element of F that satisfies (3).

3. We suspect this latter requirement can be weakened, at the cost of considerably complicating the proof.
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The proof of Theorem 3.10 is deferred to Appendix A.1. It generalizes a result for log loss
from the PhD thesis of Li (1999, Theorem 4.3) and Barron (2001).4 Theorem 3.10 leads to
the following useful consequence.

Corollary 3.11 Consider a decision problem (`,P,F) and suppose that Assumption A
holds. Then the following are equivalent:

1. The weak η-central condition is satisfied.

2. The strong η-central condition is satisfied with comparator function φ as given by
Theorem 3.10.

3. The weak η-pseudoprobability convexity condition is satisfied.

4. The strong η-pseudoprobability convexity condition is satisfied.

If any of these statements hold, then for all P ∈ P, the corresponding optimal f∗ is essen-
tially unique in the sense of Proposition 3.3.

Proof Suppose that the η-(weak) pseudoprobability convexity condition holds and that
Assumption A holds. This implies that the infimum in (16) is always achieved, from which
it follows that the strong η-pseudoprobability convexity condition holds. The assumption
also lets us apply Theorem 3.10 which implies that the strong η-central condition holds
with φ as described. This immediately implies the weak η-central condition which, via
Proposition 3.9, implies the weak η-pseudoprobability convexity condition.

The corollary establishes the equivalence of the weak and strong central and pseudoprobabil-
ity convexity conditions which we assumed in Section 2.2. The result prompts the question
whether non-uniqueness of the optimal f∗ might imply that the four conditions do not hold.
While this is not true in general, at least for bounded losses it is ‘almost’ true if we replace
the η-fast rate conditions by the weaker notion of v–fast rate conditions of Section 5 (see
Proposition 5.11).

3.3 Interpretation as Convexity of the Set of Pseudoprobabilities and a
Bayesian Interpretation

As we will now explain both the pseudoprobability convexity condition and, by the equiv-
alence from the previous section, the central condition may be interpreted as a partial
convexity requirement. For simplicity, we restrict ourselves to the setting of Assumption A
from Section 2.2. We first present this interpretation for the logarithmic loss from Ex-
ample 2.2 on page 1801, for which it is most natural and can also be given a Bayesian
interpretation.

Example 3.12 (Example 2.2 continued: convexity interpretation for log loss)
Let P ∈ P be arbitrary. Under Assumption A the strong 1-pseudoprobability convexity

4. Under Assumption A, the proof of Theorem 3.10 shows that it is actually sufficient if the weak pseudo-
probability convexity condition only holds for distributions Π on f∗ and single f ∈ F . Via Proposition 3.9
we then see that this actually implies weak pseudoprobability convexity for all distributions Π.
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condition for log loss says that

E
Z∼P

[− log f∗(Z)] ≤ min
Π∈∆(F)

E
Z∼P

[
− log E

f∼Π
[f(Z)]

]
, i.e.,

min
f∈F

E
Z∼P

[− log f(Z)] = min
f∈co(F)

E
Z∼P

[− log f(Z)] , (20)

where f∗ = φ(P ) and co(F) denotes the convex hull of F (i.e., the set of all mixtures of
densities in F). This may be interpreted as the requirement that a convex combination of
elements of the model F is never better than the best element in the model. This means
that the model is essentially convex with respect to P (i.e., ‘in the direction facing’ P —
see Figure 2).

In particular, in the context of Bayesian inference, the Bayesian predictive distribution
after observing data Z1, . . . , Zn is a mixture of elements of the model according to the
posterior distribution, and therefore must be an element of co(F). The pseudoprobability
convexity condition thus rules out the possibility that the predictive distribution is strictly
better (in terms of expected log loss or, equivalently, KL-divergence) than the best single
element in the model. This might otherwise be possible if the posterior was spread out over
different parts of the model. This interpretation is explained at length by Grünwald and
van Ommen (2014) who provide a simple regression example in which (20) does not hold
and the Bayes predictive distribution is, with substantial probability, better than the best
single element f∗ in the model, and the Bayesian posterior does not concentrate around
this optimal f∗ at all.

For log loss, the convexity requirement (20) is, by Corollary 3.11, equivalent to the strong
1-central condition and can thus be written as

E
Z∼P

[
f(Z)

f∗(Z)

]
≤ 1 (21)

for all f ∈ F . Recognizing (6) we therefore also recover the result by Li (1999) mentioned
in Example 2.2.

Example 3.13 (Bayes-MDL Condition) The 1-central condition (21) for log loss plays
a fundamental role in establishing consistency and fast rates for Bayesian and related meth-
ods. Due to its use in a large number of papers on convergence of MDL-based methods
(Grünwald, 2007) and Bayesian methods and lack of a standard name, we will henceforth
call it the Bayes-MDL condition. Most of the papers using this condition make the tradi-
tional assumption that the model is well-specified, i.e., for every P ∈ P, F contains the
density of P . As already mentioned in Example 2.2, the condition then holds automatically,
so one does not see (21) stated in those papers as an explicit condition. Yet, if one tries to
generalize the results of such papers to the misspecified case, one invariably sees that the
only step in the proofs needing adjustment is the step where (21) is implicitly employed. If
the model is incorrect yet (21) holds, then the proofs invariably still go through, establishing
convergence towards the f∗ that minimizes KL divergence to the true P . This happens,
for example, in the MDL convergence proofs of Barron and Cover (1991); Zhang (2006a);
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P
P

f∗
f∗

PF (η)
PF (η)

coPF (η)

coPF (η)

pseudo-probability
convexity condition

not satisfied

pseudo-probability
convexity condition

satisfied

Figure 2: The pseudoprobability convexity condition interpreted as convexity of the set of
pseudoprobabilities with respect to P .

Grünwald (2007) as well as in the pioneering paper by Doob (1949) on Bayesian consistency.
The dependence on (21) becomes more explicit in works explicitly dealing with misspecifi-
cation such as those by Li (1999); Kleijn and van der Vaart (2006); Grünwald (2011). For
example, in order to guarantee convergence of the posterior around the best element f∗ of
misspecified models, Kleijn and van der Vaart (2006) impose a highly technical condition
on (`,P,F). If, however, (21) holds then this complicated condition simplifies to the stan-
dard, much simpler condition from (Ghosal et al., 2000) which is sufficient for convergence
in the well-specified case. The same phenomenon is seen in results by Ramamoorthi et al.
(2013); De Blasi and Walker (2013). Grünwald and Langford (2004) and Grünwald and van
Ommen (2014) give examples in which the condition does not hold, and Bayes and MDL
estimators fail to converge.

The convexity interpretation for log loss may be generalized to other loss functions
via loss dependent ‘pseudoprobabilities’. These play a crucial role both in online learning
(Vovk, 2001) and the PAC-Bayesian analysis of the Bayes posterior and the MDL estimator
by Zhang (2006a). For log loss, we may express the ordinary densities in terms of the loss
as f(z) = e−`f (z). This generalizes to other loss functions by letting η`f (z) play the role
of the log loss, where η > 0 is the scale factor that appears in all our definitions. We thus
obtain the set of pseudoprobabilities

PF (η) =
{
z 7→ e−η`f (z) : f ∈ F

}
,

which are non-negative, but do not necessarily integrate to 1. The only feature we need
of these pseudoprobabilities is that their log loss is equal to η times the original loss,
because, analogously to (20), this allows us to write the strong η-pseudoprobability convexity
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condition as

min
f∈PF (η)

E
Z∼P

[− log f(Z)] ≤ min
f∈co(PF (η))

E
Z∼P

[− log f(Z)] .

Figure 2 provides a graphical illustration of this condition. Thus, for any loss function we
can interpret the pseudoprobability convexity condition as the requirement that the set of
pseudoprobabilities is essentially convex with respect to P . As suggested by Vovk (2001);
Zhang (2006a), one can also run Bayes on such pseudoprobabilities, and then the pseudo-
probability convexity condition again implies that the resulting pseudo-Bayesian predictive
distribution cannot be strictly better than the single best element of the model. The log
loss achieved with such pseudoprobabilities, and hence η times the original loss, can be
given a code length interpretation, essentially allowing arbitrary loss functions to be recast
as versions of logarithmic loss (Grünwald, 2008).

4. Online Learning

In this section, we discuss conditions for fast rates that are related to online learning. Our
key concept is introduced in Section 4.1, where we define stochastic mixability, the natural
stochastic generalization of Vovk’s notion of mixability, and show (in Section 4.2) how it
unifies existing conditions in the literature. Section 4.3 contains the main results for this
section, which connect stochastic mixability to the central condition and to pseudoproba-
bility convexity. As an intermediate step, these results use a fourth condition called the
predictor condition, which is related to the central condition via a minimax identity. We
show that, under appropriate assumptions, all four conditions are equivalent. This equiva-
lence is important because it relates the generic condition for fast rates in online learning
(stochastic mixability) to the generic condition that enables fast rates for proper in-model
estimators in statistical learning (the central condition).

4.1 Stochastic Mixability in General

Stochastic mixability generalizes from (8) similarly to the way we have generalized the
central condition and pseudoprobability convexity. Let mη

Π(z) be the mix loss, as defined
in (14).

Definition 4.1 (The Stochastic Mixability Condition) Let η > 0 and ε ≥ 0. We say
that (`,P,F ,Fd) is η-stochastically mixable up to ε if there exists a substitution function
ψ : ∆(F)→ Fd such that

E
Z∼P

[
`ψ(Π)(Z)

]
≤ E

Z∼P

[
mη

Π(Z)
]

+ ε for all P ∈ P and Π ∈ ∆(F). (22)

If it is η-stochastically mixable up to 0, we say that it is strongly η-stochastically mixable
or simply η-stochastically mixable. If it is η-stochastically mixable up to ε for all ε > 0, we
say that it is weakly η-stochastically mixable; this is equivalent to

sup
Π∈∆(F)

inf
f∈Fd

sup
P∈P

E
Z∼P

[
`f (Z)−mη

Π(Z)
]
≤ 0. (23)
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Unlike for the central and pseudoprobability convexity conditions (see Corollary 3.11), for
stochastic mixability it is not clear whether the weak and strong versions become equiva-
lent under the simplifying Assumption A. We do have a trivial yet important extension of
Fact 3.4:

Fact 4.2 Fix η > 0, ε ≥ 0 and let (`,P,F ,Fd) be an arbitrary decision problem that is
η-stochastically mixable up to ε. Then for any 0 < η′ ≤ η, any ε′ ≥ ε and for any P ′ ⊆ P,
F ′ ⊆ F and F ′d ⊇ Fd, (`,P ′,F ′,F ′d) is η′-stochastically mixable up to ε′.

4.2 Relations to Conditions in the Literature

As explained next, stochastic mixability generalizes Vovk’s notion of (non-stochastic) mix-
ability, and correspondingly implies fast rates. Its most important special case is stochastic
exp-concavity, for which Juditsky et al. (2008) give sufficient conditions, and which is used
by, e.g., Dalalyan and Tsybakov (2012). Stochastic mixability is also equivalent to a special
case of a condition introduced by Audibert (2009).

4.2.1 Generalization of Vovk’s Mixability and Fast Rates for Stochastic
Prediction with Expert Advice

If we take ε = 0 and let P be the set of all possible distributions, then (22) reduces to

`ψ(Π)(z) ≤ m
η
Π(z) for all z ∈ Z and Π ∈ ∆(F), (24)

which is Vovk’s original definition of (non-stochastic) mixability (Vovk, 2001). It follows
that Vovk’s mixability implies strong stochastic mixability for all sets P.

Example 4.3 (Mixable Losses) Losses that are classically mixable in Vovk’s sense, in-
clude the squared loss `sq(f, z) = 1

2(z − f)2 on a bounded domain Z = Fd ⊇ F = [−B,B],
which is 1/B2-mixable (Vovk, 2001, Lemma 3)5, and the logarithmic loss, which is 1-mixable
for Fd ⊆ co(F) with substitution function equal to the mean ψ(Π) = Ef∼Π[f ]. The Brier
score is also 1-mixable (Vovk and Zhdanov, 2009; van Erven et al., 2012b); this loss function
is defined for all possible probability distributions Fd = F on a finite set of outcomes Z
according to `Brier

f (z) =
∑

z′∈Z(f(z′)− δz(z′))2, where δz denotes a point-mass at z.

Example 4.4 (0/1 Loss: Example 3.8, Continued) Fix 0 ≤ δ ≤ 1/2 and consider a
decision problem (`01,Pδ,F) where `01 is the 0/1-loss, Z = F = {0, 1} and Pδ is as in
Example 3.8. The 0/1-loss is not η-mixable for any η > 0 (Vovk, 1998), and it is also easily
shown that (`01,Pδ,F ,F) is not η-stochastically mixable for any η > 0; nevertheless, if
δ > 0, then (`01,Pδ,F) does satisfy the η-central condition for some η > 0. In Section 4.3
we show that, under some conditions, the η-central condition and η-stochastic mixability
coincide, but this example shows that this cannot always be the case.

5. Taking into account the factor of 1
2

difference between his definition of squared loss as (z− f)2 and ours.
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Vovk defines the aggregating algorithm (AA) and shows that it achieves constant regret
in the setting of prediction with expert advice, which is the online learning equivalent
of fast rates, provided that (24) is satisfied. In prediction with expert advice, the data
Z1, . . . , Zn are chosen by an adversary, but one may define a stochastic analogue by letting
the adversary instead choose P1, . . . , Pn ∈ P, where the choice of Pi may depend on the
player’s predictions on rounds 1, . . . , i − 1, and letting Zi ∼ Pi for all i = 1, . . . , n. It
turns out that under no further conditions, stochastic mixability implies fast rates for the
expected regret under P1, . . . , Pn in this stochastic version of prediction with expert advice.
In particular, there is no requirement that losses are bounded.

Proposition 4.5 Let (`,P,F ,Fd) be η-stochastically mixable up to ε with substitution func-
tion ψ. Assume the data Z1, . . . , Zn are distributed as Zj ∼ Pj ∈ P for each j ∈ [n], where
the Pj can be adversarially chosen. Then the AA, playing fj ∈ Fd in round j, achieves, for
all f ∈ F , regret

n∑
j=1

E
Zj∼Pj

[
`fj (Zj)− `f (Zj)

]
≤ log |F|

η
+ nε.

In particular, in the statistical learning (stochastic i.i.d.) setting where P1, . . . , Pn all equal

the same P , online-to-batch conversion yields the bound log |F|
ηn + ε on the expected regret

and hence on the rate (2) of the AA is O( log |F|
ηn + ε).

Proof For ε = 0, the first result follows by replacing every occurrence of mixability with
stochastic mixability in Vovk’s proof (see Section 4 of Vovk (1998) or the proof of Propo-
sition 3.2 of Cesa-Bianchi and Lugosi (2006)). The case of ε > 0 is handled simply by
adding a slack of ε to the RHS of the first equation after equation (18) of Vovk (1998). The
online-to-batch conversion of the second result is well-known and can be found e.g. in the
proof of Lemma 4.3 of Audibert (2009).

4.2.2 Special Case: Stochastic Exp-concavity

In online convex optimization, an important sufficient condition for fast rates requires the
loss to be η-exp-concave in f (Hazan et al., 2007), meaning that F = Fd is convex and that

e−η`f (z) is concave in f for all z ∈ Z. (25)

We may equivalently express this requirement as

e
−η`Ef∼Π[f ](z) ≥ E

f∼Π

[
e−η`f (z)

]
, or

`Ef∼Π[f ](z) ≤ m
η
Π(z),

for all distributions Π ∈ ∆(F) and all z ∈ Z. This shows that exp-concavity is a special
case of mixability, where we require the function ψ to map Π to its mean:

ψ(Π) = E
f∼Π

[f ].
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Because the mean Ef∼Π[f ] depends not only on the losses `f , but also on the choice of
parameters f , we therefore see that exp-concavity is parametrization-dependent, whereas in
general the property of being mixable is unaffected by the choice of parametrization. The
parametrization dependent nature of exp-concavity is explored in detail by Vernet et al.
(2011); Kamalaruban et al. (2015); see also van Erven et al. (2012b); van Erven (2012).

Example 4.6 (Exp-concavity) Consider again the mixable losses from Example 4.3.
Then the log loss is 1-exp concave. The squared loss, in its standard parametrization,
is not 1/B2-exp-concave, but it is 1/(4B2)-exp-concave, losing a factor of 4 (Vovk, 2001,
Remark 3). By continuously reparametrising the squared loss, however, it can be made
1/B2-exp-concave after all (Kamalaruban et al., 2015; van Erven, 2012). It is not known
whether there exists a parametrization that makes the Brier score 1-exp-concave.

The natural generalization of exp-concavity to stochastic exp-concavity becomes:

Definition 4.7 Suppose Fd ⊇ co(F). Then we say that (`,P,F ,Fd) is η-stochastically
exp-concave up to ε or strongly/weakly η-stochastically exp-concave if it satisfies the corre-
sponding case of stochastic mixability with substitution function ψ(Π) = Ef∼Π[f ].

4.2.3 The JRT Conditions Imply Stochastic Exp-concavity

Juditsky, Rigollet, and Tsybakov (2008) introduced two conditions that guarantee fast rates
in model selection aggregation. For now we focus on the following condition, mentioned in
their Theorem 4.2, which we henceforth refer to as the JRT-II condition, returning to the
JRT-I condition, mentioned in their Theorem 4.1, in Section 5.3.

Definition 4.8 (JRT-II condition) Let η > 0. We say that (`,P,F) satisfies the η-
JRT-II condition if there exists a function γ : F × F → R satisfying (a) for all f ∈ F ,
γ(f, f) = 1, (b) for all f ∈ F , the function g 7→ γ(f, g) is concave, and (c)

for all P ∈ P and f, g ∈ F : E
Z∼P

[
eη(`f (Z)−`g(Z))

]
≤ γ(f, g). (26)

This condition has been used to obtain fast O(1/n) rates for the mirror averaging estimator
in model selection aggregation, which is statistical learning against a finite class of functions
F = {f1, . . . , fm} (Juditsky et al., 2008). One may interpret their approach as using
Vovk’s aggregating algorithm to get O(1) expected regret, and then applying online-to-
batch conversion (Cesa-Bianchi et al., 2004; Barron, 1987; Yang and Barron, 1999), which
leads to an estimator whose risk is upper bounded by the expected regret divided by n.
This use of the AA is allowed, because, if Fd ⊇ co(F), then the JRT-II condition implies
strong stochastic exp-concavity, as already shown by Audibert (2009) as part of the proof
of his Corollary 5.1:

Proposition 4.9 If (`,P,F) satisfies the η-JRT-II condition, then (`,P,F ,Fd) satisfies
the strong η-stochastic exp-concavity condition for any Fd ⊇ co(F).
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Proof From the JRT-II condition, for all P ∈ P and Π ∈ ∆(F)

E
g∼Π

E
Z∼P

eη(`ψ(Π)(Z)−`g(Z)) ≤ E
g∼Π

γ(ψ(Π), g),

which from the concavity of γ in its second argument is at most

γ

(
ψ(Π), E

g∼Π
g

)
= γ

(
ψ(Π), ψ(Π)

)
= 1,

by the definition of ψ and part (a) of the JRT-II condition. Thus, we have

E
g∼Π

E
Z∼P

eη(`ψ(Π)(Z)−`g(Z)) ≤ 1.

Applying Jensen’s inequality to the exponential function completes the proof.

Juditsky et al. (2008) use the JRT-II condition in the proof of their Theorem 4.2 as a suffi-
cient condition for another condition, which is then shown to imply O(1/n) rates for finite
classes F . After some basic rewriting, this other condition (which requires the formula
below Eq. (4.1) in their paper to be ≤ 0) is seen to be equivalent to strong stochastic
exp-concavity as defined in Definition 4.7, i.e. it requires that (22) holds with ε = 0 and
substitution function ψ(Π) = Ef∼Π[f ]. The JRT-I condition, which we define in Section 5.3,
can be related to stochastic exp-concavity with nonzero ε, thus we may say that the under-
lying condition that JRT work with is equivalent to our stochastic exp-concavity condition,
albeit that they restrict themselves to a finite class of functions.

4.2.4 Relation to Audibert’s Condition

Audibert (2009, p. 1596) presented a condition which he called the variance inequality. It
is defined relative to a tuple (`,P,F ,Fd) and has the following requirement as a special
case (in Audibert’s notation, this corresponds to δλ = 0 and Π̂ a Dirac distribution on some
f ∈ Fd):

∀Π ∈ ∆(F) ∃f ∈ Fd sup
P∈P

E
Z∼P

log E
g∼Π

[
eη(`f (Z)−`g(Z))

]
≤ 0.

Rewriting

E
Z∼P

log E
g∼Π

[
eη(`f (Z)−`g(Z))

]
= η E

Z∼P
[`f (Z)−mη

Π(Z)],

this is seen to be precisely equivalent to strong stochastic mixability.

4.3 Relations with Central and Pseudoprobability Convexity Conditions

We now turn to the relations between stochastic mixability and the two main conditions
from Section 3: the central condition and pseudoprobability convexity. We first define the
predictor condition, which will act as an intermediate step, and then show the following
implications:

predictor ⇒ stochastic mixability ⇒ PPC ⇒ CC ⇒ predictor (under assumptions.)

The implication from pseudoprobability convexity to the central condition was shown in
Theorem 3.10 from Section 3.2; we will consider the other ones in turn in this section.
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The second implication is of special interest since, in the online setting, there is extra power
because predictions may take place in a set Fd that can be larger than F . The conditions of
the second implication will identify situations in which this additional power is not helpful.

4.3.1 The Predictor Condition in General

We define the general predictor condition as follows:

Definition 4.10 (Predictor Condition) Let η > 0 and ε ≥ 0. We say that (`,P,F ,Fd)
satisfies the η-predictor condition up to ε if there exists a prediction function ψ : ∆(F)→ Fd

such that

E
Z∼P

E
f∼Π

[
eη(`ψ(Π)(Z)−`f (Z))

]
≤ eηε for all P ∈ P and distributions Π on F . (27)

If it satisfies the η-predictor condition up to 0, we say that the strong η-predictor condition
or simply the η-predictor condition holds. If it satisfies the η-predictor condition up to ε
for all ε > 0, we say that the weak η-predictor condition holds; this is equivalent to

sup
Π∈∆(F)

inf
f∈Fd

sup
P∈P

E
Z∼P

E
g∼Π

[
eη(`f (Z)−`g(Z))

]
≤ 1. (28)

Comparing (28) to the central condition, we see that the predictor condition looks similar,
except that the suprema over Π and P are interchanged. We note that, trivially, Fact 4.2
extends from η-stochastic mixability to the η-predictor condition.

4.3.2 Predictor Implies Stochastic Mixability

By an application of Jensen’s inequality, the predictor condition always implies stochastic
mixability, without any assumptions:

Proposition 4.11 Suppose that (P, `,F ,Fd) satisfies the η-predictor condition up to some
ε ≥ 0. Then it is η-stochastically mixable up to ε. In particular, the (strong) η-predictor
condition implies (strong) η-stochastic mixability.

Proof Let P ∈ P,Π ∈ ∆(F) and ε ≥ 0 be arbitrary. Then, by Jensen’s inequality, the
η-predictor condition up to ε implies

eηε ≥ E
Z∼P
f∼Π

[
eη(`ψ(Π)(Z)−`f (Z))

]
= E

Z∼P

[
eη(`ψ(Π)(Z)−mηΠ(Z))

]
≥ eηEZ∼P [`ψ(Π)(Z)−mηΠ(Z)].

Taking logarithms on both sides leads to EZ∼P
[
`ψ(Π)(Z)

]
≤ EZ∼P

[
mη

Π(Z)
]

+ ε, which is
η-stochastic mixability up to ε.

4.3.3 Stochastic Mixability Implies Pseudoprobability Convexity

In Proposition 4.12 below, we show that, under the right assumptions, stochastic mixability
implies pseudoprobability convexity.
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A complication in establishing this implication is that stochastic mixability is defined
relative to a four-tuple (`,P,F ,Fd), and allows us to play in a decision set that is different
from F , whereas the pseudoprobability convexity is defined relative to the triple (`,P,F).
The proposition automatically holds if one takes F = Fd, and then the implication follows
trivially. In practice, however, we may have a non-convex model F — as is quite usual
in e.g. density estimation — whereas the decision set Fd for which we can establish that
(`,P,F ,Fd) is η-stochastically mixable is equal to the convex hull of F . It would be quite
disappointing if, in such cases, there would be no hope of getting fast rates for in-model
statistical learning algorithms. The second part of the proposition shows that, luckily, fast
rates are still possible under the following assumption:

Assumption B (model F and decision set Fd equally good — F well-specified
relative to Fd) We say that Assumption B holds weakly for (`,P,F ,Fd), if, for all P ∈ P,

inf
f∈F

R(P, f) = inf
f∈Fd

R(P, f). (29)

We say that Assumption B holds strongly if additionally, for all P ∈ P, both infima are
achieved: minf∈F R(P, f) = minf∈Fd

R(P, f).

The strong version of Assumption B implies Assumption A and will be used further on in
Theorem 4.14. In a typical application of the proposition below, the weak Assumption B
would be assumed relative to a Fd such that F ⊂ Fd.

Proposition 4.12 Suppose that Assumption B holds weakly for (`,P,F ,Fd). If (`,P,F ,Fd)
is η-stochastically mixable up to some ε ≥ 0, then (`,P,F) satisfies the η-pseudoprobability
convexity condition up to δ for any δ > ε; in particular, weak η-stochastic mixability of
(`,P,F ,Fd) implies the weak η-PPC condition for (`,P,F). Moreover, if Assumption A
also holds and (`,P,F ,Fd) satisfies strong η-stochastic mixability, then (`,P,F) satisfies
the strong η-PPC condition.

If Assumption A and the weak version of Assumption B both hold, then, using this propo-
sition, if we have η-stochastic mixability for (`,P,F ,Fd) we can directly conclude from
Theorem 3.10 that we also have the η-central condition for (`,P,F). So when does As-
sumption B hold? Let us assume that (`,P,F ,Fd) satisfies η-stochastic mixability. In all
cases we are aware of, it then also satisfies η-stochastic mixability for (`,P,F ,F ′d), where
F ′d is equal to, or an arbitrary superset of, co(F) — in the special case of η-stochastic exp-
concavity this actually follows by definition. An extreme case occurs if we take F ′d := F` to
be the set of all functions that can be defined on a domain (Example 2.1). Then Assump-
tion B expresses that the model F is well-specified. But the assumption is weaker: assuming
again that Fd can be taken to be the convex hull of F , it also holds if F is itself convex and
contains, for all P ∈ P, a risk minimizer; and also, if, more weakly still, F is convex ‘in the
direction facing P ’. Note that, for the log-loss, we already knew that the 1-central condition
holds under this condition, from the Bayesian interpretation in Section 3.3. There we also
established a generalization to other loss functions: the η-central condition holds if the set
of pseudoprobabilities PF is convex ‘in the direction facing P ’ (Figure 2). But, for all loss
functions except log-loss, that was a condition involving pseudoprobabilities and artificial
(mix) losses. The novelty of Proposition 4.12 is that, if η-stochastic mixability holds for
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(`,P,F ,Fd) with Fd = co(F) (as e.g. when we have η-stochastic exp-concavity), then the
result generalizes further to ‘the η-central condition holds if the set F itself (rather than
the artificial set PF ) is convex in the direction facing P ’.

Example 4.13 (Fast Rates in Expectation rather than Probability) Fast rate re-
sults proved under the η-central condition, such as our result in Section 7 and the various
results by Zhang (2006b) generally hold both in expectation and in probability. The situ-
ation is different for η-stochastic mixability: extending the analysis of Vovk’s Aggregating
Algorithm to tuples (`,P,F ,Fd) and using the online-to-batch conversion, we can only
prove a fast rate result in expectation, and not in probability. Audibert (2007) provides
a by now well-known example (`sq,P,F , co(F)) with squared loss in which the rate ob-
tained by the exponentially weighted forecaster (the aggregating algorithm applied with
ψ(Π) = Ef∼Π[f ]) followed by online-to-batch conversion is O(1/n) in expectation, yet only
� 1/

√
n in probability; and ERM also gives a rate, both in-probability and in-expectation of

1/
√
n (Theorem 2 of (Audibert, 2007)). As might then be expected, in Audibert’s decision

problem η-exp-concavity holds for some η > 0 yet the central condition does not hold for
any η > 0. Proposition 4.12 then implies that Assumption B must be violated: the best
f ∈ co(F) is better than the best f ∈ F . Inspection of the example shows that this indeed
the case (a related point was made earlier by Lecué (2011)).

Proof (of Proposition 4.12) Note that (22), the definition of η-stochastic mixability up
to ε, can be rewritten as

∀Π ∈ ∆(F) ∃f ∈ Fd ∀P ∈ P : E
Z∼P

[`f (Z)] ≤ E
Z∼P

[
mη

Π(Z)
]

+ ε.

This trivially implies

∀Π ∈ ∆(F) ∀P ∈ P ∃f ∈ Fd : E
Z∼P

[`f (Z)] ≤ E
Z∼P

[
mη

Π(Z)
]

+ δ, (30)

for any δ ≥ ε. This implies that for any δ > ε, we can assume that the choice of f in (30)
only depends on P and not on Π. We would therefore obtain η-pseudoprobability convexity
up to any δ > ε of (`,P,F) if we could replace Fd by F , which is trivial if Fd = F and
allowed under Assumption B because it implies that, for any f ∈ Fd we can find f ′ ∈ F
such that EZ∼P

[
`f ′(Z)

]
−EZ∼P [`f (Z)] ≤ δ − ε.

For the final implication, note that under Assumption A we can choose δ = ε, and by
Corollary 3.11 we can choose ε = 0.

4.3.4 The Central Condition Implies the Predictor Condition

We proceed to study when the central condition implies the predictor condition (with Fd =
F), which requires the strongest assumptions among the implications we consider. We first
identify a minimax identity (32) that is sufficient by itself (Theorem 4.14), but difficult to
verify directly. We therefore weaken Theorem 4.14 to Theorem 4.17 by providing sufficient
conditions (Assumption D) for the minimax identity.
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For any Π and η, define the function

SηΠ(P, f) = E
Z∼P

E
g∼Π

[
eη(`f (Z)−`g(Z))

]
,

which is the main quantity in the definitions of both the central and the predictor condition.

Assumption C (Minimax Assumption) For given η > 0, we say that the η-minimax
assumption is satisfied for (`,P,F ,Fd) if, for all Π ∈ ∆(F) and for all C ≥ 1, the following
implication holds:

sup
P∈P

inf
f∈Fd

SηΠ(P, f) ≤ C =⇒ inf
f∈Fd

sup
P∈P

SηΠ(P, f) ≤ C. (31)

We call this the minimax assumption, because (31) is implied by the minimax identity

sup
P∈P

inf
f∈Fd

SηΠ(P, f) = inf
f∈Fd

sup
P∈P

SηΠ(P, f). (32)

Theorem 4.14 below implies that Assumption C is sufficient for the central condition to
imply the predictor condition, with Fd = F . Intuitively, Assumption C should hold under
broad conditions — just like standard minimax theorems hold under broad conditions.
Below we will identify the specific, less elegant but more easily verifiable Assumption D that
implies Assumption C. However, like conditions for standard minimax theorems, in some
cases Assumption D requires Fd ⊂ R to be compact, yet we want to apply the theorem
also in cases where F = R. As shown in Example 4.21, in this case we can sometimes still
use Part (b) of the result, which implies that the assumption is still sufficient if we take
a smaller set Fd ⊂ F that satisfies Assumption B. Note that Assumption B also played
a crucial role in going from stochastic mixability of (`,P,F ,Fd) to the PPC condition for
(`,P,F).

Theorem 4.14 Consider a decision problem (`,P,F). Suppose that (`,P,F ,Fd) is such
that the the η-minimax assumption (Assumption C) holds. Then

(a) if F = Fd and the η-central condition holds up to some ε ≥ 0 for (`,P,F), then
the η-predictor condition holds up to any δ > ε for (`,P,F ,Fd). In particular, the weak
η-central condition implies the weak η-predictor condition. Moreover,

(b) if F ⊇ Fd and (`,P,F ,Fd) satisfies the strong version of Assumption B, then the
weak η-central condition for (`,P,F) implies the weak η-predictor condition for (`,P,F ,Fd)
and therefore also for (`,P,F ,F).

Once we establish that the η-predictor condition holds for (`,P,F ,Fd) with Fd ⊂ F , by
Fact 4.2 we can also infer that the η-predictor condition holds for (`,P,F ,F ′d) for any
F ′d ⊃ Fd, in particular for F ′d = F .
Proof For Part (a), from the η-central condition up to ε and the fact that the sup inf never
exceeds the inf sup and that F = Fd, we get

eηε ≥ sup
P∈P

inf
f∈Fd

sup
Π∈∆(F)

SηΠ(P, f) ≥ sup
P∈P

sup
Π∈∆(F)

inf
f∈Fd

SηΠ(P, f) = sup
Π∈∆(F)

sup
P∈P

inf
f∈Fd

SηΠ(P, f).

(33)
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This establishes that the premise of (31) holds with C = eηε for all Π ∈ ∆(F). Hence
Assumption C tells us that the conclusion of (31) must also hold for all Π ∈ ∆(F), and
therefore

sup
Π∈∆(F)

inf
f∈F

sup
P∈P

SηΠ(P, f) ≤ eηε.

Since we are not guaranteed that the infimum over f is achieved, this implies the η-predictor
condition up to any δ > ε, but not necessarily for δ = ε. We thus obtain the first part of
the theorem.

For Part (b), we note that, by the premise, Assumption A must hold and we can
apply Corollary 3.11 which tells us that for all P ∈ P, the f∗P ∈ F minimizing R(P, f) is
essentially unique and that the strong η-central condition holds, i.e. for all P ∈ P, (4) holds.
As explained below (4), this implies that f ′P = φ(P ) is F-optimal for P , hence it follows
that f ′P = f∗P , P -almost surely. The strong version of Assumption B then implies that Fd

contains a g∗P with P (`f∗P = `g∗P ) = 1. We now have, by the strong η-central condition, that
for all Π ∈ ∆(F),

1 ≥ sup
P∈P

inf
f∈F

sup
Π∈∆(F)

SηΠ(P, f) = sup
P∈P

sup
Π∈∆(F)

SηΠ(P, f ′P ) = sup
P∈P

sup
Π∈∆(F)

SηΠ(P, g∗P )

≥ sup
P∈P

inf
f∈Fd

sup
Π∈∆(F)

SηΠ(P, f).

We have thus established the first inequality of (33) with ε = 0; we can now proceed as in
the first part.

We proceed to identify more concrete conditions that are sufficient for Assumption C.
To this end, we will endow the set of finite measures (including all probability measures) on
Z with the weak topology (Billingsley, 1968; Van der Vaart and Wellner, 1996), for which
convergence of a sequence of measures P1, P2, . . . to P means that

E
Z∼Pn

[h(Z)]→ E
Z∼P

[h(Z)] (34)

for any bounded, continuous function h : Z → R. To make continuity of h well-defined, we
then also need to assume a topology on Z. It is standard to assume that Z is a Polish space
(i.e. that it is a complete separable metric space), because then, from Prokhorov (1956),
there exists a metric for which the set of finite measures on Z is a Polish space as well
and for which convergence in this metric is equivalent to (34). The weak topology is the
topology induced by this metric.

We shall also assume that P is tight, which means that, for any ε > 0, there must exist
a compact event A ⊆ Z such that P (A) ≥ 1− ε for all P ∈ P. This is a weaker condition
than assuming that the whole space Z is compact because it allows some probability mass
outside of the compact event A.

Assumption D Suppose the set of possible outcomes Z is a Polish space. Let (`,P,F ,Fd),
Π ∈ ∆(F) and η > 0 be given. Then assume that all of the following are satisfied:

1. For all f ∈ F ∪ Fd, `f (z) is continuous in z and `f (z) ≥ 0.
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2. The set Fd is convex and, for any z ∈ Z, eη`f (z) is convex in f on Fd.

3. The set P is convex and tight.

4. Either a) P is closed in the weak topology; or b) Fd is a totally bounded metric space,
and, for every compact subset Z ′ of Z, the family of functions {f 7→ `f (z) : z ∈ Z ′}
is uniformly equicontinuous on Fd.

5. The random variables ξZ,f = Eg∼Π

[
eη(`f (Z)−`g(Z))

]
are uniformly integrable over

f ∈ Fd, P ∈ P in the sense that

lim
b→∞

sup
f∈Fd,P∈P

E
Z∼P

[ξZ,f JξZ,f ≥ bK] = 0. (35)

While these assumptions may look daunting, they actually hold in many situations even
with unbounded losses, as our examples below illustrate. In D.1, continuity is automatic
for finite and countable Z as long as we take the discrete topology. In D.2, convexity of
eη`f (z) in f is implied by convexity of `f (z) in f . Regarding the fourth requirement, D.4:
the condition that P is weakly closed is easily stated but hard to verify for general Z and
P; the alternative condition is hard to state but often straightforward to verify. And finally,
D.5 will automatically hold for all bounded loss functions and for many unbounded losses
as well; for a discussion of uniform integrability as used in D.5, see Shiryaev (1996, pp. 188–
190). In particular, Lemma 3 on p. 190, specialised to our context, implies the following
sufficient condition:

Lemma 4.15 (Sufficient Condition for D.5) For a fixed choice of Π ∈ ∆(F), let ξZ,f
be as in Assumption D.5. Then (35) is satisfied if

sup
f∈Fd

sup
P∈P

E
Z∼P

[G(ξZ,f )] <∞

for any function G : [0,∞)→ R that is bounded below and is such that

G(t)

t
is increasing, and

G(t)

t
→∞. (36)

We may, for instance, take G(t) = t2 or G(t) = t log t.
Proof Without loss of generality, we may assume that G is non-negative. Otherwise
replace G(t) by max{G(t), 0}, which preserves (36) and adds at most − inftG(t) < ∞ to
supf∈Fd

supP∈P EZ∼P [G(ξZ,f )].
Now let M = supf∈Fd

supP∈P EZ∼P [G(ξZ,f )] and, for any ε > 0, take b > 0 large
enough that G(t)/t ≥M/ε for all t ≥ b. Then

0 ≤ sup
f∈Fd

sup
P∈P

E
Z∼P

[ξZ,f JξZ,f ≥ bK] ≤
ε

M
sup
f∈Fd

sup
P∈P

E
Z∼P

[G(ξZ,f ) JξZ,f ≥ bK]

≤ ε

M
sup
f∈Fd

sup
P∈P

E
Z∼P

[G(ξZ,f )] ≤ ε,

from which (35) follows by letting ε tend to 0.

Assumption D is sufficient for the minimax assumption, as our main technical result of
this section (proof deferred to Appendix A.2) shows:
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Lemma 4.16 Fix (`,P,F ,Fd) and η > 0. If Assumption D is satisfied for a given Π ∈
∆(F), then (32) also holds. Consequently, if Assumption D is satisfied for all Π ∈ ∆(F),
then that implies Assumption C.

Together, Theorem 4.14 and Lemma 4.16 prove the following theorem.

Theorem 4.17 (Central to Predictor) Let η > 0 and suppose Assumption D holds for
(`,P,F ,Fd) for all Π ∈ ∆(F). If either F = Fd or the strong version of Assumption B
holds and F ⊃ Fd, then the weak η-central condition implies the weak η-predictor condition.

We now provide some examples which indicate that while Assumption D covers several non-
trivial cases — including non-compact F — it is probably still significantly more restrictive
than needed.

Example 4.18 (Logarithmic Loss) Consider a set of distributions P on some set Z and
let F either be the densities or mass functions corresponding to P or an arbitrary convex
set of densities on Z. By Example 2.2, (`log,P,F) satisfies the 1-central condition. If we
further assume that P is convex and tight and that there is a δ > 0 such that for all z ∈ Z,
all f ∈ F , f(z) ≥ δ (so that the densities are bounded from below), then Assumption D is
readily verified and we can conclude from the theorem that the 1-predictor condition and
hence 1-stochastic mixability holds for (`,P,F ,F). We know however, because log-loss is
1-(Vovk-) mixable, that 1-stochastic mixability must even hold if P is neither convex nor
tight; Assumption D is not weak enough to handle this case, so the example suggests that a
further weakening might be possible. Also, we know that 1-stochastic mixability continues
to hold if δ = 0; verification of Assumption D is not straightforward in this case, which
suggests that a simplification of the assumption is desirable.

Example 4.19 (0/1-Loss , Example 3.8, Continued.) Consider the setting of Exam-
ple 3.8 and Example 4.4 with decision problem (`01,Pδ,F) and δ > 0. We established in
Example 3.8 that the η-central condition then holds for some η > 0, but also, in Example 4.4,
that (`01,Pδ,F ,F) is not η-stochastically mixable. We would thus expect Assumption D
to fail here, which it does, since F = Fd is not convex.

Example 4.20 (Squared Loss, Restricted Domain) Let ` be the squared loss `sqf (z) :=
1
2(z − f)2 on the restricted spaces Z = F = Fd = [−B,B] as in Example 4.3, and take
P to be the set of all possible distributions on Z. Then the first three requirements of

Assumption D may be verified by observing that `sqf (z) (and therefore also eη`
sq
f (z)) is convex

in f , and that P is trivially tight by taking A = Z. Now P is actually closed in the weak
topology, but, in order to satisfy the fourth condition, we might also use that the mappings
{f 7→ `sqf (z) : z ∈ Z} are all Lipschitz with the same Lipschitz constant (2B), which implies
that they are also uniformly equicontinuous. Finally, to see that the fifth requirement is
satisfied for any Π ∈ ∆(F), we may appeal to Lemma 4.15 with G(t) = t2 and use that `sq

is uniformly bounded.
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Then all parts of Assumption D are satisfied for all Π ∈ ∆(F). We know from Ex-
ample 4.3 that in this case classical η-mixability holds for η = 1/B2. This implies strong
η-stochastic mixability, which implies the strong η-pseudoprobability convexity condition
(by Proposition 4.12). Since Assumption A holds, this in turn implies the strong η-central
condition (by Theorem 3.10), and by applying Theorem 4.17 one can then infer the weak
η-predictor condition.

In the example above, the set P was convex and, by boundedness of Z, automatically tight
and thus the η-central condition and η-stochastic mixability both hold. In Example 3.5
we established the η-central condition for a set P that is neither convex nor tight, so
Assumption D fails and we cannot apply Theorem 4.17 to jump from the η-central to the
η-predictor condition as in Example 4.20. However, as the next example shows, if we replace
P by its convex hull for a restricted range of µ, then we can recover the predictor condition
via Theorem 4.17 after all; restriction of F , however, is not needed.

Example 4.21 (Squared Loss, Unrestricted Domain: Example 3.5, Continued.)
Consider the squared loss `sqf (z) = 1

2(z − f)2, and let Z = R, F = [−B,B] (later we will
consider F = R), and let P = co({N (µ, 1) : µ ∈ [−M,M ]}) be the convex hull of the set of
normal distributions with unit variance and means bounded by M ≤ B. We may represent
any P ∈ P as a mixture of N (µ, 1) under some distribution w on µ. Let µP be the mean
of P . Then, for all P ∈ P with corresponding w and all t ∈ R,

E
Z∼P

[
et(Z−µP )

]
=

∫ M

−M
E

Z∼N (µ,1)

[
et(Z−µP )

]
dw(µ) = et

2/2

∫ M

−M
et(µ−µP )dw(µ) ≤ et2/2et2M2/2,

where the last inequality follows from Hoeffding’s bound on the moment generating function
and the observation that µP = Eµ∼w[µ]. Thus the elements of P are all subgaussian with
variance σ2 = 1 + M2. Hence, by the argument in Example 3.6, the strong η-central
condition is satisfied for η ≤ 1/(1 +M2) and with substitution function φ(P ) = µP .

In order to also get the predictor condition via Theorem 4.17, we need to verify As-
sumption D. The first three parts of this assumption may be readily verified, and part b) of
D.4 also holds, because the mappings {f 7→ 1

2(z− f)2 : z ∈ [−A,A]} are all (2A)-Lipschitz,
which implies their uniform equicontinuity, for any choice of A. Finally, Assumption D.5
follows from Lemma 4.15 with G(t) = t2 and Jensen’s inequality:

sup
f∈F

sup
P∈P

E
Z∼P

[
E
g∼Π

[eη(`sqf (Z)−`sqg (Z))]

]2

≤ sup
f∈F

sup
P∈P

E
Z∼P

E
g∼Π

[
e2η(`sqf (Z)−`sqg (Z))

]
≤ sup

f,g∈F
sup
P∈P

E
Z∼P

[
e2η(`sqf (Z)−`sqg (Z))

]
= sup

f,g∈F
sup
P∈P

E
Z∼P

[
e2η(f2+2Z(g−f)−g2)

]
≤ e2ηB2

sup
f,g∈F

sup
P∈P

E
Z∼P

[
e4ηZ(g−f)

] (∗)
≤ e2ηB2

sup
f,g∈F

sup
P∈P

e8η2(g−f)2(1+M2)+4η(g−f)µP <∞,

where (∗) follows from (1 + M2)-subgaussianity. Thus, Theorem 4.17 can be applied to
establish the weak η-predictor condition for squared loss on an unbounded domain Z = R
for the choices of η, Fd = F and P described above.
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Now consider the case where we set F = R = Z and leave everything else unchanged.
Then by the argument in Example 3.6, the strong η-central condition is still satisfied for
η ≤ 1/(1 + M2), but we cannot directly use Theorem 4.17 to establish the weak predictor
condition for (`,P,F ,F). All steps of the above reasoning go through except part b) of
D.4, since F is no longer compact. However, if we take Fd = [−B,B] for B ≥ M , then
Assumption D.4 (which only refers to Fd, not to F) holds after all. Moreover, the strong
version of Assumption B also holds, because arg minf∈R EZ∼P (Z − f)2 = µP . We can thus
use Theorem 4.17 to conclude that (`,P,F ,Fd) satisfies the weak η-predictor condition. It
then follows by Fact 4.2 that (`,P,F ,F) satisfies the weak η-predictor condition as well.
We conclude that the implication η-central ⇒ weak η-predictor goes through, even though
F is not compact.

This final example shows how Theorem 4.17 allows us to find assumptions on P that are
sufficient for establishing the weak predictor condition, and therefore weak stochastic mixa-
bility, for squared loss on the unbounded domain R. As discussed by Vovk (2001, Section 5),
this is a case where the classical mixability analysis does not apply.

5. Intermediate Rates: The Central Condition, the Margin Condition
and the Bernstein condition

In this section, we weaken the η-central and η-PPC conditions to the v-central and v-
PPC conditions, which allow η = v(ε) to depend on ε according to a function v that is
allowed to go to 0 as ε goes to 0. In the main result of this section, Theorem 5.4 in
Section 5.1, we establish that for bounded loss functions, these weakened versions of our
conditions are essentially equivalent to a generalized Bernstein condition which has been
used before to characterize fast rates. Section 5.2 shows that, for unbounded loss functions,
the one-sidedness of our conditions allows them to capture situations in which fast rates are
attainable yet the Bernstein condition does not hold — although there are also situations in
which the Bernstein condition holds whereas the v-central condition does not for any allowed
v (although the v-PPC condition does). Thus, as a corollary we find that the equivalence
between the central and PPC condition breaks for the weaker, v-versions of these conditions.
Section 5.3 illustrates that η-stochastic mixability can be weakened similarly to v-stochastic
mixability and relates this to a condition identified by Juditsky et al. (2008). Finally, in
Section 5.4 we apply Theorem 5.4 to show how the central condition is related to (non-)
existence of unique risk minimizers.

5.1 The v-Conditions and the Bernstein Condition

Empirical risk minimization (ERM) achieves fast rates if the random deviations of the
empirical excess risk are small compared to the true excess risk. As shown by Tsybakov
(2004), this is the case in classification if the Bayes-optimal classifier is in the model F and
the so-called margin, which measures the difference between the conditional probabilities of
the labels given the features and the uniform distribution, is large. Technically, the random
deviations can be controlled in this case, because the second moment of the excess loss can
be bounded in terms of the first moment. In fact, as shown by Bartlett and Mendelson
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(2006), this condition, which they call the Bernstein condition, is sufficient for fast rates for
bounded losses in general, even if the Bayes-optimal decision is not in the model. Precisely,
the standard Bernstein condition is defined as follows:

Definition 5.1 (Bernstein Condition) Let β ∈ (0, 1] and B ≥ 1. Then (`, P,F) satis-
fies the (β,B)-Bernstein condition if there exists an f∗ ∈ F such that

E
Z∼P

[(
`f (Z)− `f∗(Z)

)2] ≤ B( E
Z∼P

[`f (Z)− `f∗(Z)]

)β
for all f ∈ F . (37)

This standard definition bounds the second moment in terms of the polynomial function
u(x) = Bxβ of the first moment.6 The exponent β is most important, because it determines
the order of the rates, whereas the scaling factor B only matters for the constants. To
draw the connection with the central condition, however, it will be clearer to allow general
functions u instead of x 7→ Bxβ. Following Koltchinskii (2006) and Arlot and Bartlett
(2011), we then bound the variance instead of the second moment, which is equivalent with
respect to the rates that can be obtained:

Definition 5.2 (Generalized Bernstein Condition) Let u : [0,∞)→ [0,∞) be a non-
decreasing function such that u(x) > 0 for all x > 0, and u(x)/x is non-increasing. We say
that (`,P,F) satisfies the u-Bernstein condition if, for all P ∈ P, there exists an F-optimal
f∗ ∈ F (satisfying (3)) such that

Var
Z∼P

(
`f (Z)− `f∗(Z)

)
≤ u

(
E

Z∼P
[`f (Z)− `f∗(Z)]

)
for all f ∈ F . (38)

In particular u(x) = Bxβ is allowed for β ∈ [0, 1], or, more generally, it is sufficient if
u(0) = 0 and u is a non-decreasing concave function, because then the slope u(x)/x =
(u(x)− u(0))/x is non-increasing; for a concrete example see Example 5.5 below.

Similar generalizations have been proposed by Koltchinskii (2006) and Arlot and Bartlett
(2011)7. For bounded losses, our generalized Bernstein condition is equivalent to a gener-
alization of the central condition in which η = v(ε) is allowed to depend on ε according
to some function v, which in turn is equivalent to the analogous generalization of the
pseudoprobability-convexity condition. We first introduce these generalized concepts and
then show how they are related to the Bernstein condition. They are defined as imme-
diate generalizations of their corresponding definitions, Definition 3.1, Equation (12) and
Definition 3.2, Equation (15):

Definition 5.3 (v-Central Condition and v-PPC Condition) Let v : [0,∞)→ [0,∞)
be a bounded, non-decreasing function satisfying v(x) > 0 for all x > 0. We say that

6. The Tsybakov condition with exponent q (Tsybakov, 2004) is the special case that the (β,B)-Bernstein
condition holds for B < ∞, q = β/(1 − β), additionally requiring ` to be classification loss and F to
contain the Bayes classifier for P .

7. They require u to be of the form w2 where w is a concave increasing function with w(0) = 0. In their
examples, w2 is also concave, a case which is subsumed by our condition, but they additionally allow
concave w with convex u = w2, which is not covered by our condition. On the other hand, our condition
allows u with non-concave

√
u, which is not covered by theirs. For example, u(x) = (x−1/3)3 + 1/27 for

x ≤ 1/2 and u(x) = x/12 for x > 1/2 satisfies our condition, but
√
u(x) is nonconcave. So, in general,

the conditions are incomparable.
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(`,P,F) satisfies the v-central condition if, for all ε ≥ 0, there exists a function φ :
P → F such that (12) is satisfied with η = v(ε). We say that (`,P,F) satisfies the
v-pseudoprobability convexity (PPC) condition if, for all ε ≥ 0, there exists a function
ψ : P → F such that (15) is satisfied with η = v(ε).

If v(x) = η for all x > 0 and v(0) = 0, then the v-central condition is equivalent to the weak
η-central condition. If v(x) = η for all x ≥ 0, then it is equivalent to the strong η-central
condition.

Now consider a decision problem (`,P,F) such that Assumption A holds. Theorem 5.4
below in conjunction with Proposition 3.9 implies that the generalized Bernstein condition
with function u, the v-central condition and the v-PPC condition are then all equivalent
for bounded losses in the sense that one implies the other if

v(x) · u(x) = c · x for all sufficiently small x, (39)

where c is a constant whose value depends on whether we are going from Bernstein to central
or the other way around. In particular, if we ignore the unimportant difference between
the second moment of `f (Z) − `f∗(Z) and its variance, we see that the (1, B)-Bernstein
condition and the η-central condition are equivalent for η = c/B.

Define the function κ(x) := (ex − x − 1)/x2 for x 6= 0, extended by continuity to
κ(0) = 1/2, which is positive and increasing (Freedman, 1975).

Theorem 5.4 For given (`,P,F), suppose that the losses `f take values in [0, a].

1. If the u-Bernstein condition holds for a function u satisfying the requirements of Def-
inition 5.2 (so that Assumption A holds), then

(a) The v-central condition holds for

v(x) =
cb1x

u(x)
∧ b,

where b > 0 can be any finite constant and cb1 = 1/κ(2ba); and if u(0) = 0 we
read 0/u(0) as lim infx↓0 x/u(x).

(b) Additionally, for each P ∈ P, any F-optimal f∗ for P , and any δ > 0, we have
EZ∼P [eη(`f∗ (Z)−`f (Z))] ≤ 1 for all f with R(P, f)−R(P, f∗) ≥ δ, where η = v(δ).

2. On the other hand, suppose that Assumption A holds. If the v-pseudoprobability con-
vexity condition holds for a function v satisfying the requirements of Definition 5.3
such that x/v(x) is nondecreasing, then the u-Bernstein condition holds for

u(x) =
c2x

v(x)
,

where c2 = 6/κ(−2ba) for b = supx v(x) < ∞; and if v(0) = 0 we read 0/v(0) as
limx↓0 x/v(x).
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We are mainly interested in Part 1(a) of the theorem and its essential converse, Part 2. Part
1(b) is a by-product of the proof of 1(a) that will be useful for the proof of Proposition 5.11
below as well as the proof of the later-appearing Corollary 7.8. Part 2 assumes that the
v-PPC condition holds for v such that supx≥0 v(x) < ∞. This boundedness requirement
is without essential loss of generality, since we already assume that losses are in [0, a].
From the definition this trivially implies that, if the v-condition holds at all, then also the
v′-condition holds for v′(x) = v(x) ∧ a′, for any a′ ≥ a.

Example 5.5 (Example 2.3 and 3.8, Continued) Let ` be a bounded loss function and
suppose that the u-Bernstein condition holds with u(x) = Bxβ for some β ∈ [0, 1]. We first
note that if β = 0, then the condition holds trivially for large enough B. Theorem 5.4 shows
that, in this case, we have the v-central condition for some v being linear in a neighborhood
of 0, in particular lim infx↓0 v(x)/x <∞. Thus, for bounded losses, the v-central condition
always holds for such v. Thus we will say that the v-central condition holds nontrivially
if it holds for v with lim infx↓0 v(x)/x = ∞. Since the trivial v-condition always holds,
it provides no information and therefore, under this condition, one can only prove (using
Hoeffding’s inequality) the standard slow rate of O(1/

√
n). The other extreme is when we

have the η-central condition, i.e. the v-condition holds with constant v, which as we show
in Theorem 7.6 leads to rates of order O(1/n). Moreover, as we show in Corollary 7.8, it
also is possible to recover intermediate rates under the general case of the v-central condi-
tion. Specifically, under the v-central condition, we get in-probability rates of O (w(1/n)),
where we recall that w is the inverse of the function x 7→ xv(x). In the special case of
v : ε 7→ ε1−β (for which the behavior in terms of ε corresponds to the (β,B)-Bernstein
condition as shown by Theorem 5.4), we get the rate O(n−1/(2−β)), just as we do from the
(β,B)-Bernstein condition.

The proof of Theorem 5.4 is deferred until Appendix A.3. It is based on the following
lemma, which adds a (non-surprising) lower bound to a well-known upper bound used e.g.
by Freedman (1975) in the context of concentration inequalities. Since most authors only
require the upper bound, we have been unable to find a reference for the lower bound,
except for Lemma C.4 in our own work (Koolen et al., 2014). Interestingly, the Lemma is
applied in the proof of Theorem 5.4 with a ‘frequentist’ expectation over Z ∈ Z to prove
the first part, and a ‘Bayesian’ expectation over f ∈ F to prove the second part.

Lemma 5.6 For any random variable X taking values in [−a, a],

κ(−2a) Var(X) ≤ E[X] + log E[e−X ] ≤ κ(2a) Var(X), (40)

where the function κ is as defined above Theorem 5.4.

Proof Define the auxiliary function κ′(x) = ex − x− 1. Then

E[X] + log E[e−X ] = min
µ∈[−a,a]

E[κ′(µ−X)],

as may be checked by observing that E[κ′(µ−X)] = eµ E[e−X ]−µ+E[X]−1 is minimized
at µ = − log E[e−X ]. Since κ′(x) = κ(x)x2 and κ(x) is increasing (Freedman, 1975), we
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further have

E[κ′(µ−X)]

{
≤ maxµ′,x∈[−a,a] κ(µ′ − x) E[(µ−X)2] = κ(2a) E[(µ−X)2]

≥ minµ′,x∈[−a,a] κ(µ′ − x) E[(µ−X)2] = κ(−2a) E[(µ−X)2],
(41)

from which the lemma follows upon observing that minµ∈[−a,a] E[(µ−X)2] = Var(X).

5.2 Bernstein vs. Central Condition for Unbounded Losses - Two-sided vs.
One-sided Conditions

Applying Proposition 3.9 with η = v(ε) for all ε > 0 immediately gives that, under no
further assumptions, the v-central condition implies the v-pseudoprobability convexity con-
dition. Combined with Theorem 5.4 this shows that the central condition and the Bernstein
condition are essentially equivalent for bounded losses, so it is natural to ask how the v-
versions of our conditions are related to the Bernstein conditions for unbounded losses. In
that case there are two essential differences. One difference is that the variance or second
moment in the Bernstein condition is two-sided in the sense that it is large both if the
excess loss `f (Z)− `f∗(Z) gets largely negative with significant probability, but also if the
excess loss is large, whereas the central condition is one-sided in that large excess losses
only make it easier to satisfy. This difference is illustrated by Example 5.7 below, where
fast rates can be obtained and the central condition holds, but the Bernstein condition fails
to be satisfied. The second difference is that the v-central condition essentially requires
the probability that `f∗(Z) − `f (Z) is large is exponentially small. Hence, if the loss is
unbounded and has only polynomial tails, then the v-central condition cannot hold. Yet
Example 5.8 shows that in such a case, the u-Bernstein condition can very well hold for
nontrivial u. However, we should note that the v-PPC condition and the v-stochastic mix-
ability conditions (introduced in the next subsection) also do not require exponential tails;
hence it may still be that whenever the u-Bernstein condition holds, v-stochastic mixability
also holds with u(x) · v(x) � x; we do not know whether this is the case.

Example 5.7 (Central without Bernstein for Unbounded Loss) Consider density
estimation for the log loss. For fµ the univariate normal density with mean µ and variance
1, let P be the normal location family and let F = {fµ : µ ∈ R} be the set of densities of
the distributions in P. Then, for any P ∈ P with density fν , the risk R(P, f) is minimized
by f∗ = fν , since the model is well-specified.

Let Z1, . . . , Zn be an iid sample from P ∈ P. Then, as can be verified by direct
calculation, the empirical risk minimizer/maximum likelihood estimator relative to F ,
γ̂n := 1

n

∑n
j=1 Zj , satisfies EZ1,...,Zn∼P (γ̂n − ν)2 = 1/n, which translates into an expected

excess risk of

E
Z1,...,Zn,Z∼P

[− log fγ̂n(Z) + log f∗(Z)] =
1

2n
,

such that ERM obtains a fast rate in expectation. One would therefore want a condition that
aims to capture fast rates to be satisfied as well. For the central condition, this is the case
with η = 1, as follows from Example 2.2. However, as we show next, the (1, B)-Bernstein
condition does not hold for any constant B.
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Consider P ∈ P with density fν , and abbreviate Uµ(z) = − log fµ(z) + log fν(z) =
µ2−ν2

2 + z(ν − µ). Then

E
Z∼P

[Uµ(Z)] =
µ2 + ν2

2
− µν

E
Z∼P

[U2
µ(Z)] = (ν − µ)2 E

Z∼P
[Z2] + 2(ν − µ) E

Z∼P
[Z]

µ2 − ν2

2
+

(
µ2 − ν2

2

)2

= (ν − µ)2(1 + ν2) + (ν − µ)ν(µ2 − ν2) +

(
µ2 − ν2

2

)2

.

First consider the case that the ‘true’ mean ν ≥ 0. Then for all constants B the (1, B)-
Bernstein condition fails to hold. To see this, first observe that for any µ satisfying µ ≤ 0

and −µ ≥ ν, we have EZ∼P [U2
µ(Z)] ≥

(
µ2−ν2

2

)2
since ν−µ ≥ 0 and ν ≥ 0. Second, observe

that EZ∼P [Uµ(Z)] ≤ µ2 + ν2 since −µν ≤ µ2+ν2

2 . Hence, the following condition is weaker
than the (1, B)-Bernstein condition:

(µ2 − ν2)2 ≤ 4B(µ2 + ν2).

Choosing µ to satisfy ν ≤ µ2

2 leads to the even weaker condition
(
µ2

2

)2
≤ 4B(2µ2) which

fails as soon as |µ| >
√

32B. It remains to show that the (1, B)-Bernstein also fails to hold
for all B if the true mean ν < 0; this is shown using a symmetric argument by considering
µ > 0 and −µ < ν. The result follows.

Critically, the Bernstein condition cannot hold because of the two-sided nature of the second
moment, which is large, not just if some fµ is better than f∗ with significant probability,
but also if it is much worse. Thus, the fact that certain fµ are so highly suboptimal that
they suffer high empirical excess risk with high probability (and hence are easily avoided by
ERM) ironically is what causes the Bernstein condition to fail; a related point is made by
Mendelson (2014). The next example shows that, if Z has two-sided, polynomial tails then
the opposite phenomenon can also occur: the v-central condition does not hold for any v,
but we do have the u-Bernstein condition for constant u.

Example 5.8 Let P be an arbitrary collection of distributions over R such that for all
P ∈ P, the mean µP := EZ∼P [Z] ∈ [−1, 1]. Consider the squared loss `sqf (z) = 1

2(z − f)2,
with F = [−1, 1]. Assume that P contains a distribution P ∗ with µP ∗ = 0 and, for some
constants c1, c2 > 0, for all z ∈ R with |z| > c1, the density p∗ of P ∗ satisfies p∗(z) ≥ c2/z

6.
The predictor in F that minimizes risk is given by f∗ = 0. Now with such a P, for all
η > 0, all µ 6= 0, and using that `sqf∗ − `

sq
µ = 2Zµ− µ2, we find for c3 = c2 · exp(−ηµ2),

E
Z∼P

[
e
η
(
`sq
f∗ (Z)−`sqµ (Z)

)]
≥
∫ ∞
c1

c3

z6
eη2z|µ|dz =∞, (42)

so that the v-central condition fails for all v of the form required in Definition 5.3. Hence
the v-central condition does not hold — although from Example 5.10 below we see that
v-stochastic mixability (and hence the v-PPC condition) does hold for v(x) �

√
x.
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Now consider a P with means in [−1, 1] and containing a P ∗ as above such that addi-
tionally for all P ∈ P, the fourth moment is uniformly bounded, i.e. there is an A > 0
such that for all P ∈ P, EZ∼P [Z4] < A. Clearly we can construct such a P and by the
above it will not satisfy the v-central condition for any allowed v. However, the u-Bernstein
condition holds with u(x) = (4A1/2 + 1)x, since, using again `sqµ (Z)− `sqf∗(Z) = −2Zµ+ µ2,
we find

E
Z∼P ∗

(
`sqµ (Z)− `sqf∗(Z)

)2
= E

[
4Z2µ2 + µ4 − 4Zµ3

]
≤ 4
√
Aµ2 + µ4 ≤ u(µ2) =

u

(
E

Z∼P ∗

(
`sqµ (Z)− `sqf∗(Z)

))
.

5.3 v-Stochastic Mixability and the JRT Conditions

Just as Definition 5.3 weakened the η-central and PPC conditions to the v-central and PPC
conditions, we similarly may weaken the main conditions of Section 4, stochastic mixability
and its special case stochastic exp-concavity, to their v-versions:

Definition 5.9 (v-Stochastic Mixability and v-Stochastic Exp-Concavity) Let v :
[0,∞) → [0,∞) be a bounded, non-decreasing function satisfying v(x) > 0 for all x > 0.
We say that (`,P,F ,Fd) is v-stochastically mixable if, for all ε ≥ 0, there exists a function
φ : P → Fd such that (22) is satisfied with η = v(ε). If Fd ⊇ co(F) and this holds for the
function ψ(Π) = Ef∼Π[f ] for all ε > 0, then we say that (`,P,F ,Fd) is v-stochastically-
exp-concave.

The main insight of Sections 3 and 4 was that the η-central condition, η-PPC condition
and η-stochastic mixability are all equivalent under some assumptions. One may of course
conjecture that the same holds for their weaker v-versions. We shall defer discussion of this
issue to Section 8 and for now focus on the usefulness of v-stochastic exp-concavity, which
can lead to intermediate rates even for unbounded losses.

A special case of v-stochastic exp-concavity, which we will call the JRT-I condition,
was stated by Juditsky et al. (2008); recall that we discussed the JRT-II condition in
Section 4.2.3. The JRT-I condition8 states that, for every η > 0, the excess loss can be
decomposed as

`f (z)− `f∗(z) ≥ `(2)
η (z, f, f∗)− rη(z) for all z, any f, f∗ ∈ co(F),

where rη : Z → R does not depend on f, f∗, and, for any f∗ ∈ co(F), `
(2)
η (z, f∗, f∗) = 0

and `
(2)
η (z, f, f∗) is 1-exponentially concave as a function of f ∈ co(F) (i.e., (25) holds

with η`f (z) = `
(2)
η (z, f, f∗)). Note that the choice of `

(2)
η and rη in general depends on η.

Juditsky et al. (2008) show that, under this condition, fast rates can be obtained in, for

8. The assumption is stated in basic form in their Theorem 4.1; their Q2 is our `(2) and their R is our rη;
the dependence of rη on η (their 1/β) is made explicit in their Corollary 5.1.
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example, regression problems with a finite number of regression functions, where the rate
depends on how εη := supP∈P EZ∼P [rη(Z)] varies with η.

We now connect the JRT-I assumption to v-stochastic exp-concavity. Consider again
the substitution function ψ(Π) := Eg∼Π[g] as in Definition 4.7. Letting ḡ = ψ(Π), the JRT-I
assumption implies that

E
Z∼P

[
`Eg∼Π[g](Z) +

1

η
log E

g∼Π
e−η`g(Z)

]
= E

Z∼P

[
1

η
log E

g∼Π
eη`ḡ(Z)−η`g(Z)

]
≤ E

Z∼P

[
1

η
log E

g∼Π
e−η`

(2)(Z,g,ḡ)+ηrη(Z)

]
(a)

≤ E
Z∼P

[
1

η
log e−η`

(2)(Z,ḡ,ḡ)+ηrη(Z)

]
= E

Z∼P
[rη(Z)] ≤ εη,

where (a) follows by the η-exp-concavity of `(2). The derivation shows that, if the JRT-I
condition holds for each η with function rη(z) then we have η-stochastic exp-concavity up
to εη := supP∈P EZ∼P [rη(Z)]. In their Theorem 4.1 they go on to show that, for finite F ,
by applying the aggregating algorithm at learning rate η and an on-line to batch conversion,
one can obtain rates of order O(log |F|/(nη) + εη), for each η. They go on to calculate εη
as function of η in various examples (regression, classification with surrogate loss functions,
density estimation) and, in each example, optimize η as a function of n so as to minimize the
rate. Now for each function εη in their examples, there is a corresponding inverse function
v that maps ε to η rather than vice versa, so that if the JRT-I condition holds for εη, then
v-stochastic exp-concavity holds. Rather than formalizing this in general, we illustrate it
informally using their regression example (Juditsky et al., 2008, Section 5.1):

Example 5.10 (JRT-I Condition and Regression) JRT consider a regression problem
in which F is finite and supP∈P ‖f‖P,∞ < ∞ for all f ∈ F , where ‖ · ‖P,∞ denotes the
L∞(PX)-norm. They further assume that a weak moment assumption holds: for all P ∈ P,
E(X,Y )∼P [|Y |s] < ∞ for some s ≥ 2. They show that in this setting there exist constants
c1, c2, c3, c4 > 0 such that for all y ∈ R, rη(y) ≤ c1|y| · J|y| > c2/ηK +ηc3y

2 · J|y| ≥ c4/
√
ηK.

Bounding expectations of the form |y|a·J|y| > bK in the same way as one bounds expectations
of indicator variables J|y| > bK in the proof of Markov’s inequality, this gives that

εη = O
(
ηs/2

)
,

which is strictly increasing in η. Thus, the inverse v(ε) of εη is well-defined on ε > 0 and
satisfies v(ε) = O(ε2/s). Since the JRT-I condition implies that, for all η > 0, we have
η-stochastic exp-concavity up to ε if ε ≥ εη, it follows that for all ε > 0, we must have
η-stochastic exp-concavity up to ε for η ≤ v(ε). It follows that v-stochastic exp-concavity
holds with v(ε) = O(ε2/s). In this unbounded loss case, we can easily obtain a rate by
using the aggregating algorithm with online-to-batch conversion. Applying Proposition 4.5

with the optimal choice of ε yields a rate of 2
(

log |F|
n

)−s/(s+2)
, which coincides with the

rate obtained by Juditsky, Rigollet, and Tsybakov (2008) in their Corollary 5.2 and the
minimax rate for this problem (Audibert, 2009).
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5.4 The v-Central Condition and Existence of Unique Risk-Minimizers

Corollary 3.11 showed that, under Assumption A, strong η-fast rate (i.e. central and PPC)
conditions imply uniqueness of optimal f∗’s. Here we extend this result, for bounded loss,
to the v-fast rate conditions, and also provide a converse, thus completely characterizing
uniqueness of f∗ in terms of the v-central condition, for bounded losses. To understand
the proposition, note that for two predictors with the same risk, R(P, f) = R(P, f∗), it
holds that f and f∗ achieve the same loss almost surely, so they essentially coincide, if and
only if VarZ∼P [`f (Z) − `f∗(Z)] = 0. In the proposition we use Fε = {f∗} ∪ {f ∈ F :
VarZ∼P [`f (Z)− `f∗(Z)] ≥ ε} to denote the subset of F where all f ’s that are very similar
to, but not identical with, f∗ have been taken out.

Proposition 5.11 (v-central condition and (non-)uniqueness of risk minimizers)
Fix (`, {P},F) such that the loss ` is bounded and Assumption A holds, and let f∗ be an
F-risk minimizer for P . Exactly one of the following two situations is the case:

1. The v-central condition holds for some v that is sublinear at 0, i.e. limx↓0 v(x)/x =∞.
In this case, f∗ is essentially unique, in the sense that for every sequence f1, f2, . . . ∈ F
such that EZ∼P [`fj (Z)] → EZ∼P [`f∗(Z)], we have VarZ∼P

[
`fj (Z)− `f∗(Z)

]
→ 0.

Moreover, for every ε > 0, (`, {P},Fε) satisfies the η-central condition for some
η > 0.

2. The v-central condition only holds trivially in the sense of Example 5.5, i.e. it does
not hold for any v with limx↓0 v(x)/x =∞. In this case, f∗ is essentially non-unique,
in the sense that there exists ε > 0 and a sequence f1, f2, . . . ∈ F (possibly identical
for all large j) such that EZ∼P [`fj (Z)]→ EZ∼P [`f∗(Z)], but, for all sufficiently large
j, VarZ∼P

[
`fj (Z)− `f∗(Z)

]
≥ ε. Moreover, for some ε > 0, (`, {P},Fε) does not

satisfy the η-central condition for any η > 0.

Proof For Part 1, Proposition 3.9 implies that the v-PPC condition holds. Now Part 2 of
Theorem 5.4 implies that the u-Bernstein condition holds with u such that limx↓0 u(x) =
limx↓0 x/v(x) = 0 by assumption. Then it follows from the definition of the u-Bernstein
condition that f∗ is essentially unique. Moreover, by Part 1(b) of Theorem 5.4, there exists a
function v′ with v′(x) > 0 for x > 0, such that for every δ > 0, (`, {P}, {f∗}∪G) satisfies the
η-central condition with η = v′(δ) > 0 for any subset G ⊆ {f ∈ F : R(P, f)−R(P, f∗) ≥ δ}.
Now since the u-Bernstein condition holds with limx↓0 u(x) = 0, we know that, for every
ε > 0, there is a δ > 0 such that VarZ∼P [`f (Z)−`f∗(Z)] ≥ ε implies R(P, f)−R(P, f∗) > δ.
For this δ, G = {f ∈ F : VarZ∼P [`f (Z) − `f∗(Z)] ≥ ε} is a subset of {f ∈ F : R(P, f) −
R(P, f∗) ≥ δ}, and consequently, as already established, (`, {P}, {f∗} ∪ G) must satisfy the
η-central condition for η > 0, which is what we had to prove.

For Part 2, to show non-uniqueness of f∗, note that by Theorem 5.4, Part 1, the u-
Bernstein condition cannot hold for any u with limx↓0 u(x) = 0. This already shows that
there exists a sequence as required, for some ε > 0, so that f∗ is essentially non-unique.
Since VarZ∼P [`fj (Z)− `f∗(Z)] ≥ ε for all elements of the sequence and R(P, fj)→ R(P ),
the first inequality of Lemma 5.6 applied with X = η(`fj (Z)− `f∗(Z)) now gives that, for

all η > 0, there exists fj such that log EZ∼P e
η(`f∗ (Z)−`fj (Z))

> 0, so that the η-central
condition does not hold.
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6. From Fast Rates for Actions to Fast Rates for Functions

Let ` : A×Y → R be a loss function, where Y is a set of possible outcomes and A is a set of
possible actions. Then our abstract formulation in terms of (`,P,F ,Fd) can accommodate
unconditional problems, where distributions P ∈ P are on Z = Y and both F and Fd are
subsets of A; but it can also capture the conditional setting, where we observe additional
features from a covariate space X . In that case, outcomes are pairs (X,Y ) from Z ′ =
X × Y, the model F ′ and decision set F ′d are both sets of functions {f : X → F} from
features to actions, and the loss is commonly defined in terms of the unconditional loss as
`′
(
f, (x, y)

)
= `(f(x), y).

It may often be easier to establish properties like stochastic mixability for the uncondi-
tional setting than for the conditional setting. In this section we therefore consider when
we can lift conditions for unconditional problems with loss ` to the conditional setting with
loss `′. For the condition of being η-stochastically mixable, this is done by Proposition 6.1
below. And, in Example 6.2, it will be seen that, in some cases, this also allows us to obtain
the η-central condition for the conditional setting.

Proposition 6.1 is based on the construction of a substitution function ψ′ : ∆(F ′)→ F ′d
for the conditional setting from the substitution function ψ : ∆(F) → Fd for the uncondi-
tional setting. This works by applying ψ conditionally on every x ∈ X : first, note that any
distribution Π on functions f ∈ F ′, induces, for every x ∈ X , a distribution Πx on actions
A by drawing f ∼ Π and then evaluating f(x). We may therefore define ψ′(Π) = fΠ with
fΠ the function

fΠ(x) = ψ(Πx). (43)

The conditions of the proposition then amount to the requirement that this is a valid
substitution function in the conditional setting.

Proposition 6.1 Let (`,P,F ,Fd) and (`′,P ′,F ′,F ′d) correspond to the unconditional and
conditional settings described above, and assume all of the following:

• (`,P,F ,Fd) satisfies η-stochastic mixability up to ε with substitution function ψ;

• P (Y |X) ∈ P for every P ∈ P ′;

• the function fΠ from (43) is measurable and contained in F ′d, for every Π ∈ ∆(F ′).

Then η-stochastic mixability up to ε is satisfied in the conditional setting. In particular, fΠ

is contained in F ′d if:

• F ′d is the set of all measurable functions from X to A; or

• (`,P,F ,Fd) is η-stochastically exp-concave up to ε, and F ′d contains the convex hull
of F ′. In this case, (`′,P ′,F ′,F ′d) is also η-stochastically exp-concave up to ε.

We recall from Section 4.2.2 that η-stochastic exp-concavity is the special case of η-stochastic
mixability where the substitution function maps Π to its mean. In addition, for η-stochastic
exp-concavity the weak and strong versions of the condition coincide.
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Proof We verify η-stochastic mixability up to ε for (`′,P ′,F ′,F ′d) by using η-stochastic
mixability for (`,P,F ,Fd) conditional on each x ∈ X : for any P ∈ P ′ and Π ∈ ∆(F ′),

E
P (X,Y )

[
`′ψ′(Π)(X,Y )

]
= E

P (X)
E

P (Y |X)

[
`ψ(ΠX)(Y )

]
≤ E

P (X)
E

P (Y |X)

[
− 1
η log E

ΠX(A)

[
e−η`A(Y )

]]
+ ε

= E
P (X,Y )

[
− 1
η log E

Π(f)

[
e−η`

′
f (X,Y )

]]
+ ε,

which was to be shown.

Verifying that fΠ ∈ F ′d is trivial if F ′d is the set of all measurable functions. And if
(`,P,F ,Fd) is η-stochastically exp-concave up to ε, then fΠ(x) = EΠ[f(x)] for all x, and
therefore fΠ is the mean of Π also in the conditional setting.

The most important application is when P contains all possible distributions on Y,
which means that the unconditional problem is classically mixable in the sense of Vovk (see
Section 4.2.1). Then the requirement that P (Y | X) ∈ P is automatically satisfied.

Example 6.2 (Squared Loss for Misspecified Model) As discussed in Example 4.6,
the squared loss is η-exp-concave in the unconditional setting on a bounded domain Fd ⊇
F = Z = [−B,B], for η = 1/4B2. If we make the setting conditional by adding features,
and consider any set of regression functions F ′ and any set of joint distributions P ′, then
Proposition 6.1 implies that we still have exp-concavity as long as we allow ourselves to make
decisions in the convex hull of F ′, i.e. if F ′d ⊇ co(F ′). Note that this holds even if the model
F is misspecified in that it does not contain the true regression function x 7→ E[Y | X = x].
If, furthermore, the model F ′ is itself convex and satisfies Assumption A relative to P ′,
i.e. the minimum risk minf∈F ′ E(X,Y )∼P (Y − f(X))2 is achieved for all P ∈ P ′, then we
may take F ′d = F ′ and recover the setting considered by Lee et al. (1998). Even though
this does not require F ′ to be well-specified, the strong version of Assumption B (which
implies Assumption A) is then still satisfied, and hence Proposition 4.12 and Theorem 3.10
tell us that (`′,P,F) satisfies both the strong η-pseudoprobability convexity condition and
the strong η-central condition.

The example raises the question whether we cannot directly conclude, under appropriate
conditions, that, if the η-central condition holds for some unconditional (`,P,F), then it
should also hold for the corresponding conditional (`′,P ′,F ′). We can indeed prove a trivial
analogue of Proposition 6.1 for this case, as long as F ′ contains all measurable functions
from X to Y; we implicitly used this result in Example 3.7. Example 6.2, however, shows
that, if one can first establish η-stochastic exp-concavity for (`,P,F ,Fd), one can sometimes
reach the stronger conclusion that (`′,P ′,F ′) satisfies the η-central condition as long as F ′
is merely convex, rather than the set of all functions from X to Y.
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7. The Central Condition Implies Fast Rates

In this section, we show how a statistical learning problem’s satisfaction of the strong
η-central condition implies fast rates of O(1/n) under a bounded losses assumption. Theo-
rem 7.6 herein establishes via a rather direct argument that the strong η-central condition
implies an exact oracle inequality (i.e. with leading constant 1) with a fast rate for finite
function classes, and Theorem 7.7 extends this result to VC-type classes. We emphasize
that the implication of fast rates from the strong η-central condition under a bounded
losses assumption is not itself new. Specifically, for bounded losses, the central condition
is essentially equivalent to the Bernstein condition by Theorem 5.4, and therefore implies
fast rates via existing fast rate results for the Bernstein condition. For instance, for finite
classes Theorem 4.2 of Zhang (2006b) implies a fast O(1/n) rate by letting `θ be our excess
loss `f − `f∗ assumed to satisfy the bounded loss condition therein, setting α = 0, taking
Π to be the uniform prior over a finite class F , and taking ρ as C

KM for some sufficiently
small constant C. In addition, Audibert (2004) showed fast rates for classification under
the Bernstein condition9; see for example Theorem 3.4 of Audibert (2004) along with the
discussion of how the variant of the (CA3) condition needed there is related to the (CA1)
condition connected to VC-classes. However, since we posit the one-sided central condition
rather than the two-sided Bernstein condition as our main condition, it is interesting to
take a direct route based on the central condition itself, rather than proceeding via the
Bernstein condition. As an added benefit, this approach turns out to give better constants
and a better dependence on the upper bound on the loss.

We proceed via the standard Cramér-Chernoff method, which also lies at the heart of
many standard (and advanced) concentration inequalities (Boucheron et al., 2013). This
method requires an upper bound on the cumulant generating function. We solve this sub-
problem by solving an optimization problem that is an instance of the general moment prob-
lem, a problem on which Kemperman (1968) has conducted a detailed geometric study. This
strategy leads to a fast rates bound for finite classes, which can be extended to parametric
(VC-type) classes, as shown in Section 7.3.

7.1 The Strong Central Condition and ERM

For the remainder of Section 7, we will consider the conditional setting, where the loss `f (Z)
takes values in the bounded range [0, V ] for outcomes Z = (X,Y ) ∈ X × Y and functions
f from F = {f : X → A}. We take P = {P} to be a single fixed distribution and we will
assume throughout that (`, {P},F) satisfies the strong η-central condition for some η > 0.
That is, there exists f∗ ∈ F such that

log E
Z∼P

exp(−ηWf ) ≤ 0 for all f ∈ F , (44)

where we have abbreviated the excess loss by Wf (Z) = `f (Z)−`f∗(Z); for brevity we further
abbreviate Wf (Z) to Wf in this section. Then, by Jensen’s inequality, f∗ is F-optimal for
P . We let η∗ denote the largest η for which (44) holds.

9. Audibert actually introduces multiple conditions, referred to as variants of the margin condition, but
these actually are closer to Bernstein-type conditions as they take into account the function class F .
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An empirical measure Pn associated with an n-sample Z, comprising n independent,
identically distributed (iid) observations (Z1, . . . , Zn) = ((X1, Y1), . . . , (Xn, Yn)), operates
on functions as Pn f = 1

n

∑n
j=1 f(Xj) and on losses as Pn `f = 1

n

∑n
j=1 `f (Zj).

Cramér-Chernoff. We will bound the probability that the ERM estimator

f̂Z := arg min
f∈F

1

n

n∑
i=1

`f (Zi) (45)

selects a hypothesis with excess risk R(P, f)−R(P, f∗) = E[Wf ] above a
n for some constant

a > 0. For any real-valued random variable X, let η 7→ ΛX(η) = log E eηX denote its
cumulant generating function (CGF), which is known to be convex and satisfies Λ′(0) =
E[X].

Lemma 7.1 (Cramér-Chernoff) For any f ∈ F , η > 0 and t ∈ R,

Pr

 1

n

n∑
j=1

`f (Zj) ≤
1

n

n∑
j=1

`f∗(Zj) + t

 ≤ exp
(
ηnt+ nΛ−Wf

(η)
)
. (46)

Proof Applying Markov’s inequality to e−ηnPn Wf and using the fact that Λ−nPn Wf
(η) =

nΛ−Wf
(η) for iid observations, yields

Pr (−Pn Wf > −t) ≤ exp
(
ηnt+ Λ−nPn Wf

(η)
)

= exp
(
ηnt+ nΛ−Wf

(η)
)
,

from which the lemma follows.

7.2 Semi-infinite Linear Programming and the General Moment Problem

We first consider the canonical case that Wf takes values in [−1, 1] (i.e., V = 1), that
Λ−Wf

(η∗) = 0 with equality (as opposed to the inequality in Equation 44) and that E[Wf ] =
a/n for some constant a > 0 that does not depend on f . These restrictions allow us to
formulate the goal of bounding the CGF as an instance of the general moment problem of
Kemperman (1968, 1987). We will later relax them to allow general V , Λ−Wf

(η∗) ≤ 0 and
E[Wf ] ≥ a/n.

As illustrated by Figure 3, our approach will be to bound Λ−Wf
(η) at η = η∗/2 from

above by maximizing over all possible random variables Wf subject to the given constraints.
This is equivalent to minimizing −E[exp((η∗/2)S)] over S = −Wf and may be formulated
as an instance of the general moment problem, which we describe next.

The general moment problem. Let ∆(S) be the set of all probability measures over a
measurable space S. Then for any real-valued measurable functions h, g1, . . . , gm on S and
constants k1, . . . , km, the general moment problem is the semi-infinite linear program

inf
P∈∆(S)

E
S∼P

h(S)

subject to E
S∼P

gj(S) = kj , j = 1, . . . ,m.
(47)
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Figure 3: Control of the CGF of −Wf for a function f with excess loss E[Wf ] of order 1
n .

The derivative at 0 equals −E[Wf ].

Define the vector-valued map g : S → Rm as g(s) = (g1(s), . . . , gm(s)) and the vector k =
(k1, . . . , km). Then Theorem 3 of Kemperman (1968), which was also shown independently
by Richter (1957) and Karlin and Studden (1966), states that, if k ∈ int co(g(S)), the
optimal value of problem (47) equals

sup

{
d0 +

m∑
j=1

djkj : d∗ = (d0, d1, . . . , dm) ∈ D∗
}
, (48)

where D∗ ⊆ Rm+1 is the set

D∗ :=

{
d∗ = (d0, d1, . . . , dm) ∈ Rm+1 : h(s) ≥ d0 +

m∑
j=1

djgj(s) for all s ∈ S
}
. (49)

Instantiating, we choose S = [−1, 1] and define

h(s) = −e(η∗/2)s, g1(s) = s, g2(s) = eη
∗s, k1 = −a

n
, k2 = 1,

which yields the following special case of problem (47):

inf
P∈∆([−1,1])

− E
S∼P

e(η∗/2)S (50a)

subject to E
S∼P

S = −a
n

(50b)

E
S∼P

eη
∗S = 1. (50c)

Equation 48 from the general moment problem now instantiates to

sup
{
d0 −

a

n
d1 + d2 : d∗ = (d0, d1, d2) ∈ D∗

}
, (51)

with D∗ equal to the set{
d∗ = (d0, d1, d2) ∈ R3 : −e(η∗/2)s ≥ d0 + d1x+ d2e

η∗s for all s ∈ [−1, 1]
}
. (52)

Applying Theorem 3 of Kemperman (1968) requires k ∈ int co g([−1, 1]). We first char-
acterize when k ∈ co g([−1, 1]) holds and handle the int co g([−1, 1]) version after Theo-
rem 7.3. The proof of the next result, along with all subsequent results in this section, can
be found in Appendix A.4.
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Lemma 7.2 For a > 0, the point k =
(
− a
n , 1
)
∈ co(g([−1, 1])) if and only if

a

n
≤ eη

∗
+ e−η

∗ − 2

eη∗ − e−η∗
=

cosh(η∗)− 1

sinh(η∗)
. (53)

Moreover, k ∈ int co(g([−1, 1])) if and only if the inequality in (53) is strict.

Note that (53) is guaranteed to hold, because otherwise the semi-infinite linear program
(50) is infeasible (which in turn implies that such an excess loss random variable cannot
exist).

The next theorem is a key result for using the strong central condition to control the
CGF.

Theorem 7.3 Let f be an element of F with (`f − `f∗)(Z) taking values in [−1, 1], n ∈ N,
EZ∼P (`f − `f∗)(Z) = a

n for some a > 0, and Λ−(`f−`f∗ )(Z)(η
∗) = 0 for some η∗ > 0. If

a

n
<

cosh(η∗)− 1

sinh(η∗)
, (54)

then Λ−(`f−`f∗ )(Z)(η
∗/2) ≤ −0.21(η∗ ∧ 1)a

n
.

Corollary 7.4 The result of Theorem 7.3 also holds when the strict inequality in (54) is

replaced with inequality, i.e. a
n ≤

cosh(η∗)−1
sinh(η∗) .

We now present an extension of this result for losses with range [0, V ].

Corollary 7.5 Let g1(x) = x and y2 = 1 be common settings for the following two problems.
The instantiation of problem (47) with S = [−V, V ], h(x) = −e(η/2)x, g2(x) = eηx, and
y1 = − a

n has the same optimal value as the instantiation of problem (47) with S = [−1, 1],

h(x) = −e(V η/2)x, g2(x) = e(V η)x, and y1 = −a/V
n .

7.3 Fast Rates

We now show how the above results can be used to obtain an exact oracle inequality with
a fast rate. We first present a result for finite classes and then present a result for VC-type
classes (classes with logarithmic universal metric entropy).

Theorem 7.6 Let (`,P ,F) satisfy the strong η∗-central condition, where |F| = N , ` is a
nonnegative loss, and supf∈F `f (Z) ≤ V a.s. for a constant V . Then for all n ≥ 1, with
probability at least 1− δ

E
Z∼P

[`f̂Z(Z)] ≤ E
Z∼P

[`f∗(Z)] +
5 max

{
V, 1

η∗

}(
log 1

δ + logN
)

n
.
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Before presenting the result for VC-type classes, we require some definitions. For a
pseudometric space (G, d), for any ε > 0, let N (ε,G, d) be the ε-covering number of (G, d);
that is, N (ε,G, d) is the minimal number of balls of radius ε needed to cover G. We will
further constrain the cover (the set of centers of the balls) to be a subset of G (i.e. to
be proper), thus ensuring that the strong central condition assumption transfers to any
(proper) cover of F . Note that the ‘proper’ requirement at most doubles the constant K
below, as shown in Lemma 2.1 of Vidyasagar (2002).

We now present the fast rates result for VC-type classes. The proof, which can be found
as the proof of Theorem 7 of Mehta and Williamson (2014), uses Theorem 6 of Mehta
and Williamson (2014) and the proof of Theorem 7.6. Below, we denote the loss-composed
version of a function class F as ` ◦ F := {`f : f ∈ F}.

Theorem 7.7 Let (`,P ,F) satisfy the strong η∗-central condition with ` ◦ F separable,

where, for a constant K ≥ 1, for each ε ∈ (0,K] we have N (` ◦ F , L2(P), ε) ≤
(
K
ε

)C
, and

supf∈F `
(
Y, f(X)

)
≤ V a.s. for a constant V ≥ 1. Then for all n ≥ 5 and δ ≤ 1

2 , with
probability at least 1− δ,

E
Z∼P

[`f̂Z(Z)] ≤

E
Z∼P

[`f∗(Z)] +
1

n
max

 8 max
{
V, 1

η∗

}(
C log(Kn) + log 2

δ

)
,

2V
(

1080C log(2Kn) + 90
√(

log 2
δ

)
C log(2Kn) + log 2e

δ

)
+

1

n
.

We have shown the fast rate of O(1/n) under the best case of the v-central condition,
i.e. when v is constant; however, it also is possible to recover intermediate rates for the case
of general v.

Corollary 7.8 Let (`,P ,F) satisfy the v-central condition hold for a finite class F . Then,

for some constant c, for all n satisfying v
(
w−1

(
5(log 1

δ
+logN)

cn

))
≤ 1

cV , we get an interme-

diate rate of w
(

5(log 1
δ

+logN)

cn

)
, where w is the inverse of the function x 7→ xv(x).

Proof From part (2) of Theorem 5.4, the v-central condition implies the u-Bernstein
condition for u(x) � x/v(x), and from part (1b) of Theorem 5.4, we then have the η-central
condition for η = cv(δ) for the subclass of functions with excess risk above δ, for some
constant c. From here, a simple modification of the proof of Theorem 7.6 yields the desired
result as follows. Let ε correspond to the excess risk threshold above which ERM should
reject all functions with high probability. Then, similar to the proof of Theorem 7.6, we
upper bound the probability of ERM picking a function with excess risk ε or higher:

N exp(nΛ−Wf
(cv(ε)) = N exp(nΛ−Wf/V (cV v(ε))

≤ N exp
(
−0.21n

(
cV v(ε)∧ 1

) ε
V

)
.

For ε satisfying v(ε) ≤ 1
cV , the failure probability δ is at most N exp(−0.21cnεv(ε)), and

hence by inversion we get the rate w
(

5(log 1
δ

+logN)

cn

)
.
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8. Discussion, Open Problems and Concluding Remarks

In this paper we identified four general conditions for fast and intermediate learning rates.
The two main ones, which subsumed many previously identified conditions, where the cen-
tral condition and stochastic mixability. We provided sufficient assumptions under which
the four conditions become equivalent via the implications

η-central⇒ η-predictor⇒ η-stochastic mixability⇒ η-PPC⇒ η-central. (55)

In Section 3 and 4 we considered the versions of these conditions for fixed η > 0, as given
by Theorem 4.17, Proposition 4.11, Proposition 4.12 and Theorem 3.10, respectively. For
this fixed η > 0 case, all implications except one hold under surprisingly weak conditions,
in particular allowing for unbounded loss functions. The exception is ‘central ⇒ predictor’
(Theorem 4.17). Although even this result was applicable to some non-compact decision
sets F with unbounded losses (Example 4.21), it requires tightness and convexity of the set
P, although Example 4.18 shows that sometimes the implication holds even though P is
neither tight nor convex. An important open question is whether Theorem 4.17 still holds
under weaker versions of Assumption C or Assumption D.

Another restriction of Theorem 4.17 is that, via Assumption D, it requires convexity
of the decision set Fd, which fails for the 0/1-loss `01 and its conditional version, the
classification loss `class. However, we may extend the definition of `01 to F = [0, 1] and define
the resulting randomized 0/1 or absolute loss as `abs

f (z) := |y−f |. This can be interpreted as
the 0/1-loss a decision maker expects to make if she is allowed to randomize her decision by
flipping a coin with bias f — a standard concept in PAC-Bayesian approaches (Audibert,
2004; Catoni, 2007). For the absolute loss, we can consider η-stochastic mixability for
Fd = co(F) = [0, 1], which is convex; hence, the requirement of convex Fd in Theorem 4.17
is not such a concern.

In Section 5 we discussed weakenings of the four conditions to their v-versions. Now
for bounded losses, the four implications above still hold under similar conditions as for the
fixed η-case. Since the first three implications in (55) were proven in an ‘up to ε’ form for
all ε > 0, it immediately follows that for arbitrary functions v, the implications continue
to hold under the same assumptions if the η-conditions are replaced by the corresponding
v-conditions. This does not work for the fourth implication, since Theorem 3.10 is not given
in an ‘up to ε’ form (indeed, we conjecture that it does not hold in this form). However, we
can work around this issue by using instead a detour via the Bernstein condition: by using
first part 2 and then part 1 in Theorem 5.4, it follows that the v-PPC condition implies the
v′-central condition for v′(ε) � v(ε), so the four v-conditions still imply each other, under
the same assumptions as before, up to constant factors. However, the Bernstein-detour
works only for bounded losses, and Example 5.7, 5.8 and 5.10 together indicate that in
general it cannot be made to work and indeed the analogue of (55) for the v-conditions
does not hold for unbounded losses: for decision problems with polynomial rather than
exponential tails on the losses, v-stochastic mixability and the v-PPC condition may hold
whereas the v-central condition does not. Thus there is the question whether the central
condition can be weakened such that the four implications for the v-versions continue to
hold, under weak conditions, for unbounded losses — and we regard this as the main open
question posed by this work. Another issue here is that, if in a decision problem (`,P,F)
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that satisfies a v-condition, we replace P by its convex closure, then the v-condition may
very well be broken, so, once again, a weakening of Assumption D to nonconvex P seems
required. Finally, it would be of considerable interest if one could show an analogue for
unbounded losses of Proposition 5.11, which connects — for bounded losses — the central
condition to the existence of a unique risk minimizer. Relatedly, it would be desirable
to link this proposition to the results by Mendelson (2008a) who also connects slow rates
with nonunique risk minimizers, and to Koltchinskii (2006) who gives a version of the
Bernstein condition that does hold if nonunique minimizers exist, indicating that our η-
central condition (which via Proposition 3.3 implies unique minimizers) might sometimes
be too strong.

Apart from these implications in the ‘main quadrangle’ of Figure 1 on page 1798, it
would be good to strengthen some of the other connections shown in that figure, such as
the precise relation between η-mixability and η-exp-concavity. It would also be desirable
to establish connections to results in defensive forecasting (Chernov et al., 2010) in which
conditions similar to both the central condition and mixability play a role; their Theorem
9 is reminiscent of the special case of our Theorem 4.17 for the case that Z is finite and P
consists of all distributions on Z.

We focused on showing equivalence of fast rate conditions and not on showing that one
can actually always obtain fast rates under these conditions. For stochastic mixability, this
immediately follows, under no further conditions, from Proposition 4.5. For the central
condition, the situation is more complicated: in this paper we only showed that it implies
fast rates for bounded loss functions. We know that, for the unbounded log-loss, fast rates
can be obtained under the central condition (and no additional conditions) in a weaker
sense, involving Rényi and squared Hellinger distance (Section 2.2); in work in progress, we
aim at showing that the central condition implies fast rates in the standard sense even for
unbounded loss functions. This does appear possible, up to log-factors, however it seems
that here one does need weak additional conditions such as existence of certain moments
different from the exponential moment in (4).

Second, by ‘fast’ rates we merely meant rates of order 1/n; it would of course be highly
desirable to characterize when the rates that are achieved under our conditions by appro-
priate algorithms (ERM, Bayes MAP-style and MDL methods for the central condition,
the aggregating algorithm for stochastic mixability) are indeed minimax optimal. Similarly,
one would need examples showing that if a condition fails, then the corresponding fast or
intermediate rates cannot be obtained in general. While several such results are available,
they either focus on showing that, in the worst-case over all P ∈ P, no learning algorithm,
proper or improper, can achieve a certain rate (in particular Audibert (2009) gives very
general results), or that a particular proper learning algorithm such as ERM cannot achieve
a certain rate (Mendelson, 2008a). Currently unexplored, it seems, are minimax results
where one looks at the optimal (not just ERM) algorithm, but within the restricted class
of all proper learning algorithms.

In the spirit of Vapnik and Chervonenkis, who discovered under what conditions one
can learn from a finite amount of data at all, we continue our quest for conditions under
which one can learn from data using not too many examples.
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Appendix A. Additional Proofs

A.1 Proof of Theorem 3.10 in Section 3

Proof We first consider the case that Assumption A holds, and then the case of bounded
loss.

Under Assumption A. Under our Assumption A, we can, for each P ∈ P, define φ(P ) :=
f∗ ∈ F to be optimal in the sense of (3). Note that f∗ depends on P , but not on any Π.
Since we also assume the weak η-pseudoprobability convexity condition, we must have that
for every ε > 0, the η-pseudoprobability convexity condition holds up to ε for some function
φε. It follows that for all ε > 0, EZ∼P [`f∗(Z)] ≤ EZ∼P [`φε(P )(Z)] ≤ EZ∼P [mη

Π(Z)] + ε, so
that also

E
Z∼P

[`f∗(Z)] ≤ E
Z∼P

[mη
Π(Z)] (56)

for all Π ∈ ∆(F). Now fix arbitrary P ∈ P, let f∗ = φ(P ) and let f ∈ F be arbitrary and
consider the special case that Π = (1− λ)δf∗ + λδf for λ ∈ [0, 1

2 ], where δf is a point-mass
on f . Let

χ(λ, z) = ηmη
Π(z) = − log

(
(1− λ)e−η`f∗ (z) + λe−η`f (z)

)
be the corresponding mix loss multiplied by η, and let

χ(λ) = E
Z∼P

[χ(λ, Z)] = η E
Z∼P

[mη
Π(Z)]

be its expected value. Then from (56) it follows that χ(λ) is minimized at λ = 0, which
implies that the right-derivative χ′(0) at 0 is nonnegative:

χ′(0) ≥ 0. (57)

In order to compute χ′(0), we first observe that, for any z, χ(λ, z) is convex in λ, because it
is the composition of the negative logarithm with a linear function. Convexity of χ(λ, z) in
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λ implies that the slope s(d, z) = χ(0+d,z)−χ(0,z)
d is non-decreasing in d ∈ (0, 1

2 ] and achieves
its maximum value at d = 1/2, where it never exceeds 2 log 2:

s(1/2, z) = 2 log
e−η`f∗ (z)

1
2e
−η`f∗ (z) + 1

2e
−η`f (z)

≤ 2 log
e−η`f∗ (z)

1
2e
−η`f∗ (z)

= 2 log 2.

Hence EZ∼P [s(1
2 , Z)] ≤ 2 log 2 < ∞ and by the monotone convergence theorem (Shiryaev,

1996)

χ′(0) = lim
d↓0

E
Z∼P

[s(d, Z)] = E
Z∼P

[
lim
d↓0

s(d, Z)

]
= E

Z∼P

[
d

dλ
χ(λ, Z)|λ=0

]
= 1− E

Z∼P

[
e−η`f (Z)

e−η`f∗ (Z)

]
.

(58)
Together with (57) and the fact that φ(P ) = f∗ and that P was chosen arbitrarily, this
implies the strong η-central condition as required.

When the Loss is Bounded. Let P ∈ P be arbitrary. The η-pseudoprobability convexity
condition implies that for any γ > 0 we can find f∗ ∈ F such that

E
Z∼P

[`f∗(Z)] ≤ E
Z∼P

[
mη

Π(Z)
]

+ γ

for all distributions Π ∈ ∆(F). Choose any f ∈ F and consider again the special case
Π = (1− λ)δf∗ + λδf for λ ∈ [0, 1

2 ], which gives

χ(0) ≤ χ(λ) + ηγ (59)

for χ(λ) as above. This time χ(0) is not necessarily the exact minimum of χ(λ), but (59)
expresses that it is close. To control χ′(0), we use that

χ(λ, z) = χ(0, z) + λ d
dλχ(0, z) + 1

2λ
2 d2

dλ2χ(ξ, z) for some ξ ∈ [0, λ]

by a second-order Taylor expansion in λ, which implies that

χ(λ)− χ(0)− λχ′(0) ≤ λ2

2
max
z,λ′

(
e−η`f∗ (z) − e−η`f (z)

(1− λ′)e−η`f∗ (z) + λ′e−η`f (z)

)2

≤ λ2

2

(
eη2B − 1

)2
.

Together with (59) the choice λ =
√
γ (which requires γ ≤ 1/4) then allows us to conclude

that

−ηγ ≤ χ(
√
γ)− χ(0) ≤ √γχ′(0) +

γ

2

(
eη2B − 1

)2
χ′(0) ≥ −c√γ

for c = η + 1
2(eη2B − 1)2. Since (58) still holds, taking γ small enough that 1 + c

√
γ ≤ eηε

gives us the central condition (12) for any ε > 0.
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A.2 Proof of Lemma 4.16 in Section 4

Proof Theorem 6.1 of Grünwald and Dawid (2004), itself a direct consequence of a minimax
theorem due to Ferguson (1967), states the following: if a set of distributions P̄ is convex,
tight and closed in the weak topology, and L : Z × Fd → R is a function such that, for all
f , L(z, f) is bounded from above and upper semi-continuous in z, then

sup
P∈P̄

inf
f∈Fd

E
Z∼P

[L(Z, f)] = inf
ρ∈∆(Fd)

sup
P∈P̄

E
Z∼P

E
f∼ρ

[L(Z, f)]. (60)

Let Π ∈ ∆(Fd) be arbitrary, and observe that SηΠ(P, f) is related to ξZ,f via

SηΠ(P, f) = E
Z∼P

[ξZ,f ],

so we will aim to apply (60) with L(z, f) approximately equal to ξz,f . Although ξz,f is not
necessarily bounded above, rewriting

ξz,f = eη`f (z) E
g∼Π

[
e−η`g(z)

]
,

we find that it is continuous in z, because `f (z) is continuous in z and Eg∼Π

[
e−η`g(z)

]
is also

continuous in z by continuity of `g(z) and the dominated convergence theorem (Shiryaev,
1996), which applies because |e−η`g(z)| ≤ 1. Letting a∧ b denote the minimum of a and b,
it follows that ξz,f ∧ b is also continuous in z for any number b.

Thus we can apply (60) to the function L(z, f) = ξz,f ∧ b, with P̄ the closure of P in
the weak topology, to obtain

inf
ρ∈∆(Fd)

sup
P∈P

E
Z∼P

E
f∼ρ

[ξZ,f ∧ b] ≤ inf
ρ∈∆(Fd)

sup
P∈P̄

E
Z∼P

E
f∼ρ

[ξZ,f ∧ b] = sup
P∈P̄

inf
f∈Fd

E
Z∼P

[ξZ,f ∧ b].

(61)
We will show that

sup
P∈P̄

inf
f∈Fd

E
Z∼P

[ξZ,f ∧ b] ≤ sup
P∈P

inf
f∈Fd

E
Z∼P

[ξZ,f ∧ b]. (62)

If P is closed itself (first possibility in D.4), then P̄ = P and this is immediate. The second
possibility will be covered at the end of the proof.

Together, (61) and (62) imply that

inf
ρ∈∆(Fd)

sup
P∈P

E
Z∼P

E
f∼ρ

[ξZ,f ∧ b] ≤ sup
P∈P

inf
f∈Fd

E
Z∼P

[ξZ,f ∧ b] ≤ sup
P∈P

inf
f∈Fd

E
Z∼P

[ξZ,f ]

for any finite b. We will show that, for every ε > 0, there exists a b such that

E
Z∼P

E
f∼ρ

[ξZ,f ∧ b] ≥ E
Z∼P

E
f∼ρ

[ξZ,f ]− ε for all ρ ∈ ∆(Fd) and P ∈ P. (63)

By letting ε tend to 0, we can therefore conclude that

sup
P∈P

inf
f∈Fd

E
Z∼P

[ξZ,f ] ≥ inf
ρ∈∆(Fd)

sup
P∈P

E
Z∼P

E
f∼ρ

[ξZ,f ] = inf
f∈Fd

sup
P∈P

E
Z∼P

[ξZ,f ], (64)
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where the identity follows from the requirement that eη`f (z) is convex in f , which implies
that ξZ,f is also convex in f , and hence the mean of ρ is always at least as good as ρ itself:
ξZ,Ef∼ρ[f ] ≤ Ef∼ρ[ξZ,f ]. Since the sup inf never exceeds the inf sup, (64) implies (32), which
was to be shown.

To prove (63), we observe that

E
Z∼P

E
f∼ρ

[ξZ,f ∧ b] ≥ E
Z∼P

E
f∼ρ

[ξZ,f JξZ,f < bK] = E
Z∼P

E
f∼ρ

[ξZ,f ]− E
Z∼P

E
f∼ρ

[ξZ,f JξZ,f ≥ bK],

and, by uniform integrability, we can take b large enough that EZ∼P Ef∼ρ[ξZ,f JξZ,f ≥ bK] ≤
ε for all ρ and P , as required.

Finally, it remains to establish (62) for the second possibility in Assumption D.4. To
this end, let ε > 0 be arbitrary and let Z ′ ⊆ Z be a compact set such that P (Z ′) ≥ 1 − ε
for all P ∈ P. In addition, let δ > 0 be small enough that

sup
z∈Z′
|`f (z)− `g(z)| < ε for all f, g ∈ Fd such that d(f, g) < δ,

which is possible by the assumption of uniform equicontinuity. Since Fd is totally bounded,
it can be covered by a finite number of balls of radius δ. Let F̈d ⊆ Fd be the (finite) set of
centers of those balls. Then we can bound the left-hand side of (62) as follows:

sup
P∈P̄

inf
f∈Fd

E
Z∼P

[L(Z, f)] ≤ sup
P∈P̄

min
f∈F̈d

E
Z∼P

[L(Z, f)] = sup
P∈P

min
f∈F̈d

E
Z∼P

[L(Z, f)],

where the equality holds by continuity of EZ∼P [L(Z, f)] and hence minf∈F̈d
EZ∼P [L(Z, f)]

in P . We now need to relate F̈d back to Fd, which is possible because, for every f ∈ Fd,
there exists f̈ ∈ F̈d such that d(f, f̈) < δ and hence |`f̈ (z) − `f (z)| < ε for all z ∈ Z ′. It

follows that L(z, f̈) ≤ eηεL(z, f) and therefore

sup
P∈P

min
f∈F̈d

E
Z∼P

[L(Z, f)] ≤ sup
P∈P

min
f∈F̈d

E
Z∼P

[JZ ∈ Z ′KL(Z, f)] + εb

≤ eηε sup
P∈P

inf
f∈Fd

E
Z∼P

[JZ ∈ Z ′KL(Z, f)] + εb ≤ eηε sup
P∈P

inf
f∈Fd

E
Z∼P

[L(Z, f)] + εb,

and letting ε tend to 0 we obtain (62), which completes the proof.

A.3 Proof of Theorem 5.4 in Section 5

Proof We prove the two cases in turn.

Bernstein ⇒ Central. Fix arbitrary P ∈ P, and let f∗ be F-optimal, i.e. satisfying (3).
In this part of the proof, all expectations E are taken over Z ∼ P .

Suppose that the u-Bernstein condition holds. Fix arbitrary f ∈ F and let X = `f (Z)−
`f∗(Z). Let ε ≥ 0 and set η = v(ε) ≤ cb1ε/u(ε). We deal with ε = 0 later and for now focus
on the case ε > 0, which implies η > 0. Then Lemma 5.6, applied to the random variable
ηX, gives

E[X] +
1

η
log E[e−ηX ] ≤ κ(2ba)ηVar(X) ≤ κ(2ba)ηu(E[X]) ≤ ε

u(ε)
u(E[X]).

1848



Fast Rates in Statistical and Online Learning

If ε ≤ E[X], then the assumption that u(ε)
ε is non-increasing in ε implies that

ε

u(ε)
u(E[X]) ≤ E[X]

u(E[X])
u(E[X]) = E[X], (65)

and we can conclude that 1
η log E[e−ηX ] ≤ 0 ≤ ε. This inequality establishes (b), and it

establishes (a) for the case 0 < ε ≤ E[X]. If ε > E[X], then the assumption that u is
non-decreasing implies that

ε

u(ε)
u(E[X]) ≤ ε

u(E[X])
u(E[X]) = ε, (66)

and, using that E[X] ≥ 0, we again find that 1
η log E[e−ηX ] ≤ ε, as required for (a). To

finish the proof of (a) we now consider ε = 0. If we also have v(0) = 0 then the central
condition (12) holds trivially for ε = 0, so we may assume without loss of generality that
v(0) > 0. Then we must have η = v(0) = lim infx↓0 x/u(x) > 0. Now fix a decreasing
sequence {εj}j=1,2,... tending to 0, where the εj are all positive and let ηj = v(εj). By the
argument above, the ηj-central condition holds up to εj . This implies (Fact 3.4) that for all
j, all η ≤ ηj , in particular for η = v(0), the η-central condition also holds up to εj . Thus,
the η-central condition holds up to ε for all ε > 0. By Proposition 3.11 it then follows that
the strong η-central condition holds, i.e. it also holds for ε = 0.

Pseudoprobability ⇒ Bernstein. Suppose that the v-PPC condition holds. Fix some ε ≥ 0
and let η = v(ε). Fix arbitrary P ∈ P and let f∗ be F-optimal for P , achieving (3).
Fix arbitrary f ∈ F and let Π be the distribution on F assigning mass 1/2 to f∗ and
mass 1/2 to f , and let f̄ ∈ {f, f∗} be the corresponding random variable. For z ∈ Z, let

Yz,f̄ = η(`f̄ (z) − `f∗(z)) and let εz = η−1 log Ef̄∼Π

[
e−Yz,f̄

]
. Note that Yz,f̄ is a random

variable under distribution Π (not P , since z is fixed), and that

E
f̄∼Π

[Yz,f̄ ] =
1

2
η (`f (z)− `f∗(z)) . (67)

Lemma 5.6 then gives, for each z ∈ Z,

κ(−2ab) Var
f̄∼Π

[Yz,f̄ ] ≤ E
f̄∼Π

[Yz,f̄ ] + log E
f̄∼Π

[
e−Yz,f̄

]
=

1

2
η (`f (z)− `f∗(z)) + ηεz, (68)

where we used the definition of Π and εz. We may assume from the definition of the
v-pseudoprobability convexity condition that (15) holds for the given ε and η and Π; rear-
ranging this equation it is seen to be equivalent to EZ∼P [εZ ] ≤ ε. By taking expectations
over Z on both sides of (68) this gives

κ(−2ab) E
Z∼P

Var
f̄∼Π

[YZ ] ≤ 1

2
η E
Z∼P

[`f (Z)− `f∗(Z)] + ηε. (69)

The Π-variance on the left can be rewritten, using (67), as

Var
f̄∼Π

[
Yz,f̄

]
=

1

2

(
η(`f (z)− `f∗(z))− E

f̄∼Π

[
Yz,f̄

])2

+
1

2

(
η · 0− E

f̄∼Π

[
Yz,f̄

])2

=
1

2

(
1

2
η(`f (z)− `f∗(z))

)2

+
1

2

(
−1

2
η(`f (z)− `f∗(z))

)2

=
1

4
η2(`f (z)− `f∗(z))2.
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Plugging this into (69) and dividing both sides by η2/(4κ(−2ab)) gives

E
Z∼P

(`f (Z)− `f∗(Z))2 ≤ 2

κ(−2ab) · η

(
E

Z∼P
[`f (Z)− `f∗(Z)] + 2ε

)
. (70)

This holds for all ε ≥ 0 and η = v(ε), as long as η = u(ε) > 0 (if η = 0 we cannot divide by η2

to go from (69) to (70)). Thus, we may set ε = EZ∼P [`f (Z)− `f∗(Z)] ≥ 0; if η = u(ε) > 0
then (70) must hold for ε. With these values the right-hand side becomes 6η−1κ−1(2ab)ε =
c2ε/v(ε) = u(ε), and the result follows by our choice of ε. It remains to deal with the case
η = 0, which by definition of v can only happen if ε = EZ∼P [`f (Z)− `f∗(Z)] = 0. In this
case, (70) still holds for all values of ε > 0. We thus infer that the left-hand side of (70) is
bounded by infε>0 4ε/(κ(−2ab)v(ε), and the result follows by our definition of 0/v(0).

A.4 Proofs for Section 7

Lemma A.1 (Hyper-Concentrated Excess Losses) Let Z be a random variable with
probability measure P supported on [−V, V ]. Suppose that limη→∞E[exp(−ηZ)] < 1 and
E[Z] = µ > 0. Then there is a suitable modification Z ′ of Z for which Z ′ ≤ Z with
probability 1, the mean of Z ′ is arbitrarily close to µ, and E[exp(−ηZ ′)] = 1 for arbitrarily
large η.

Proof First, observe that Z ≥ 0 a.s. If not, then there must be some finite η > 0 for
which E[exp(−ηZ)] = 1. Now, consider a random variable Z ′ with probability measure Qε,
a modification of Z (with probability measure P ) constructed in the following way. Define
A := [µ, V ] and A− := [−V,−µ]. Then for any ε > 0 we define Qε as

dQε(z) =


(1− ε)dP (z) if z ∈ A
εdP (−z) if z ∈ A−

dP (z) otherwise.

Additionally, we couple P and Qε such that the couple (Z,Z ′) is a coupling of (P,Qε)
satisfying

E
(Z,Z′)∼(P,Qε)

JZ 6= Z ′K = min
(P ′,Q′ε)

E
(Z,Z′)∼(P ′,Q′ε)

JZ 6= Z ′K,

where the min is over all couplings of P and Qε. This coupling ensures that Z ′ ≤ Z with
probability 1; i.e. Z ′ is dominated by Z.
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Now,

E[exp(−ηZ ′)] =

∫ V

−V
e−ηzdQε(z)

=

∫
A−

e−ηzdQε(z) +

∫
A
e−ηzdQε(z) +

∫
[0,V ]\A

e−ηzdQε(z)

= ε

∫
A−

e−ηzdP (−z) + (1− ε)
∫
A
e−ηzdP (z) +

∫
[0,V ]\A

e−ηzdP (z)

= ε

∫
A
eηzdP (z) + (1− ε)

∫
A
e−ηzdP (z) +

∫
[0,V ]\A

e−ηzdP (z)

≥ εeµηP (A) + (1− ε)
∫
A
e−ηzdP (z) +

∫
[0,V ]\A

e−ηzdP (z). (71)

Now, on the one hand, for any η > 0, the sum of the two right-most terms in (71) is
strictly less than 1 by assumption. On the other hand, η → εP (A)eµη is exponentially in-
creasing since ε > 0 and µ > 0 (and hence P (A) > 0 as well) by assumption; thus, the first
term in (71) can be made arbitrarily large by increasing η. Consequently, we can choose
ε > 0 as small as desired and then choose η <∞ as large as desired such that the mean of
Z ′ is arbitrarily close to µ and E[exp(−ηZ ′)] = 1 respectively.

Proof (of Lemma 7.2) Let W denote the convex hull of g([−1, 1]). We need to see if(
− a
n , 1
)
∈ W . Note that W is the convex set formed by starting with the graph of x 7→

eη
∗x on the domain [−1, 1], including the line segment connecting this curve’s endpoints

(−1, e−η
∗
) to (1, eη

∗x), and including all of the points below this line segment but above the
aforementioned graph. That is, W is precisely the set

W =

{
(x, y) ∈ R2 : eη

∗x ≤ y ≤ eη
∗

+ e−η
∗

2
+
eη
∗ − e−η∗

2
x, x ∈ [−1, 1]

}
.

We therefore need to check that −1 ≤ − a
n ≤ 1 and that 1 is sandwiched between the lower

and upper bounds at x = − a
n . Clearly −1 ≤ − a

n ≤ 1 holds since the loss is in [0, 1] by

assumption. Using that cosh(η∗) = eη
∗

+e−η
∗

2 and sinh(η∗) = eη
∗−e−η∗

2 , this means that
k ∈W if and only if

e−η
∗a/n ≤ 1 ≤ cosh(η∗) + sinh(η∗)

−a
n
.

Also, since a > 0 the inequality e−η
∗a/n ≤ 1 holds with strict inequality. Thus, we end up

with a single requirement characterizing when k ∈W , which is equivalent to condition (53).
Moreover, k ∈ intW is characterized by when (53) holds strictly.

Proof (of Theorem 7.3) By assumption, the condition of Lemma 7.2 is satisfied, so we can
apply Theorem 3 of Kemperman (1968). This gives

− exp
(

Λ−(`f−`f∗ )(Z)(η
∗/2)

)
≥ d0 −

a

n
d1 + d2, (72)

1851



Van Erven, Grünwald, Mehta, Reid and Williamson

for all d∗ = (d0, d1, d2) ∈ R3 such that

d0 + d1s+ d2e
η∗s + e(η∗/2)s ≤ 0 for all s ∈ [−1, 1]. (73)

To find a good choice of d∗, we will restrict attention to those d∗ for which (73) holds with
equality at s = 0, yielding the constraint

d0 = −d2 − 1. (74)

Plugging this into (73) and changing variables to c1 = −d1/η,10 and c2 = −d2, we obtain
the constraint

u(s) := 1 + c2(eηs − 1)− e(η/2)s + ηc1s ≥ 0 for all s ∈ [−1, 1].

A.4.1 Constraints from the Local Minimum at 0

Since u(0) = 0, we need s = 0 to be a local minimum of u, and so we require the first and
second derivative to satisfy

(a) u′(0) = 0

(b) u′′(0) ≥ 0,

since otherwise there exists some small ε > 0 such that either u(ε) < 0 or u(−ε) < 0.
For (a), we compute

u′(s) = ηc2e
ηs − η

2
e(η/2)s + ηc1.

Since we require u′(0) = 0, we pick up the constraint

η

(
c2 −

1

2
+ c1

)
= 0,

and since η > 0 by assumption, we have

c1 =
1

2
− c2. (75)

Thus, we can eliminate c1 from u(s):

u(s) = 1 + c2(eηs − 1)− e(η/2)s + η

(
1

2
− c2

)
s.

For (b), observe that

u′′(s) = η2c2e
ηs − η2

4
e(η/2)s,

so that u′′(0) = η2
(
c2 − 1

4

)
≥ 0, and hence we require

c2 ≥
1

4
. (76)

10. We scale by η here because we are chasing a certain η-dependent rate.
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A.4.2 The Other Minima of u

Thus far, we have picked up the constraints (74), (75), and (76), and it remains to choose
a value of c2 such that u(s) ≥ 0 for all s ∈ [−1, 1]. To this end, observe that u′(s) has at
most two roots, because with the substitution y = e(η/2)s, we have

u′(s) = ηc2y
2 − η

2
y + η

(
1

2
− c2

)
,

which is a quadratic equation in y with two roots:

y ∈
{

1− 2c2

2c2
, 1

}
⇒ s ∈

{
2

η
log

1− 2c2

2c2
, 0

}
.

Now, since we are taking c2 ≥ 1
4 , the first root is negative, and we find that u is non-

decreasing on [0, 1]. As we already ensured that u(0) = 0, this means that u is non-negative
on [0, 1]. On the remaining interval, [−1, 0], we know that u is increasing up to 2

η log 1−2c2
2c2

and then decreasing until s = 0. Since u(0) = 0, we therefore need to ensure only that
u(−1) ≥ 0 by finding appropriate conditions on c2, where

u(−1) = 1 + c2(e−η − 1)− e−(η/2) − η
(

1

2
− c2

)
=
(

1− η

2

)
− e−(η/2) + c2

(
e−η − (1− η)

)
c2 ≥

e−η/2 + η
2 − 1

e−η + η − 1
=

1

4

κ(−η/2)

κ(−η)
,

where κ(x) = (ex − x − 1)/x2 is increasing in x, which implies that this condition always
ensures that c2 ≥ 1/4.

We consider the cases η ≤ 1 and η > 1 separately.

Case η ≤ 1. For η ≤ 1, we will take the value of the constraint at η = 1. That is,

c2 =
1

4

κ(−1/2)

κ(−1)
= e1/2 − e

2
.

This is allowed because κ(−η/2)
κ(−η) is non-decreasing, as may be verified by observing that

d

dη

e−η/2 + η
2 − 1

e−η + η − 1
=
eη/2(eη/2 − 1)(eη − 1 + eη/2η)

2(1 + eη(η − 1))2
,

which is non-negative if g(η) = eη − 1 + eη/2η ≥ 0. This in turn is verified by noting that
g(0) = 0 and g′(η) = eη/2(eη/2 − η

2 − 1) is positive.

Case η > 1. Let c2 = 1
2 −

α
η for some α ≥ 0. With this substitution, we have

u(−1) = 1 + c2(e−η − 1)− e−(η/2) − η
(

1

2
− c2

)
= 1 +

(
1

2
− α

η

)
(e−η − 1)− e−(η/2) − α

=

(
1 + e−η

2
− e−η/2

)
+ α

(
−1 +

1

η

(
1− e−η

))
.
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Since we want the above to be nonnegative for all η > 1, we arrive at the condition

α ≤ inf
η≥1

{
1+e−η

2 − e−η/2

1− 1
η (1− e−η)

}
. (77)

Plotting suggests that the minimum is attained at η = 1, with the value 1
2(
√
e − 1)2 =

0.2104 . . .. We will fix α to this value and verify that(
1 + e−η

2
− e−η/2

)
+

(
1

2
(
√
e− 1)2

)(
−1 +

1

η

(
1− e−η

))
≥ 0. (78)

This is true with equality at η = 0. The derivative of the LHS with respect to η is

1

2
e−η

(
eη/2 − 1− (

√
e− 1)2(eη − η − 1)

η2

)
.

The derivative is positive at η = 1, so 0 is a candidate minimum. Eventually, (
√
e−1)2(eη−η−1)

η2

grows more quickly than eη/2−1 and surpasses the latter in value. The derivative is therefore
negative for all sufficiently large η, and so we need only take the minimum of the LHS of
(78) evaluated at η = 1 and the limiting value as η →∞. We have

lim
η→∞

(
1 + e−η

2
− e−η/2

)
+

(
1

2
(
√
e− 1)2

)(
−1 +

1

η

(
1− e−η

))
=
√
e− e

2
≥ 0.

Hence, (78) indeed holds for α ≤ 0.21 ≤ 1
2(
√
e − 1)2. We conclude that u(−1) ≥ 0 when

α ≤ 1
2(
√
e− 1)2.

A.4.3 Putting it All Together

Tracing back our substitutions, we have d0 + d2 = −1 and d1 = −η/2 + ηc2, which gives

d0 −
a

n
d1 + d2 = −1 +

aη

n

(
1

2
− c2

)
≥ −e−

aη
n ( 1

2
−c2).

In the regime η ≤ 1, we choose c2 = e1/2 − e/2, which leads to

d0 −
a

n
d1 + d2 ≥ −e−

0.21ηa
n . (79)

In the regime η > 1, we take c2 = 1
2 −

1
2η (
√
e− 1)2, which gives

d0 −
a

n
d1 + d2 ≥ −e−

a
2n . (80)

Combining with (72) leads to the desired result.

Proof (of Corollary 7.4) Define the function Γ(η) := cosh(η)−1
sinh(η) . For any negative excess loss

random variable S′, let ηS′ be the maximum η for which −S′ is stochastically mixable.
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Let W be a stochastically mixable excess loss random variable taking values in [−1, 1]
and satisfying E[W ] = Γ(ηS) > 0, and let S = −W be the corresponding negative excess
loss random variable.

Let kS ∈ R2 be the moments vector of S, defined as

kS :=

(
E[S]

E[eηSS ]

)
=

(
−Γ(ηs)

1

)
.

Because −E[S] = Γ(ηS), from Lemma 7.2 the point kS is extremal with respect to
co(g([−1, 1])). Recall that the goal of this proof is to establish that Theorem 7.3 holds even
for the extremal random variable S.

Since E[S] < 0, there exists A ⊂ {x ∈ R : x < 0} for which we have Pr(S ∈ A) =: p > 0.
Now, consider the following two perturbed versions of S, which we call (I) and (II). In both
perturbations, we deflate Pr(S ∈ A) by the same (multiplicative) factor ε > 0 uniformly
over A so that the overall loss in probability mass over A is ε; this is always possible for
small enough ε since p > 0, and throughout the rest of the proof we keep implicit that ε is
suitably small. The perturbations differ in where they allocate the mass taken from A:

(I) Allocate ε additional mass to 3
4 .

(II) Allocate ε
2 additional mass to 1

2 and ε
2 additional mass to 1.

We refer to these new random variables as SI and SII . Observe that

E[SI ] = E[SII ] ≥ E[S] +
3

4
ε.

Because E[SI ] = E[SII ], it follows that if we can show that ηSI 6= ηSII , then kSI and kSII
cannot both are extremal since Γ is strictly increasing.

Now, by definition, E exp (ηSISI) = 1. But observe that by strict convexity, for any
η > 0, we have

e3η/4 <
1

2

(
eη/2 + eη

)
.

Therefore, E[exp (ηSISI)] > 1, and so ηSII < ηSI . Therefore, kSI cannot be extremal, and
Theorem 7.3 can be applied to the excess loss random variable −SI .

Now, for each (suitably small) ε, we refer to the corresponding SI more precisely via
the notation Sε, and we define ηε := ηSε . Since for all ε > 0,∣∣∣exp

(ηε
2
Sε

)∣∣∣ ≤ exp
(ηS

2

)
,

and since for each Sε we have

E
[
exp

(ηε
2
Sε

)]
≤ 1− 0.21(ηε ∧ 1) E[−Sε],

from the dominated convergence theorem it follows that

E
[
exp

(ηS
2
S
)]
≤ 1− 0.21(ηS ∧ 1) E[−S],
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i.e. using the familiar notation η∗ = ηS :

E

[
exp

(
−η
∗

2
W

)]
≤ 1− 0.21(η∗ ∧ 1) E[W ].

Proof (of Corollary 7.5) Let X be a random variable taking values in [−V, V ] with mean
− a
n and E[eηX ] = 1, and let Y be a random variable taking values in [−1, 1] with mean

−a/V
n and E[e(V η)Y ] = 1. Consider a random variable X̃ that is a 1

V -scaled independent

copy of X; observe that E[X̃] = −a/V
n and E[e(V η)X̃ ] = 1. Let the maximal possible value

of E[e(η/2)X ] be bX , and let the maximal possible value of E[e(V η/2)Y ] be bY . We claim that
bX = bY . Let X be a random variable with a distribution that maximizes E[e(η/2)X ] sub-

ject to the previously stated constraints on X. Since X̃ satisfies E[e(V η/2)X̃ ] = bX , setting
Y = X̃ shows that in fact bY ≥ bX . A symmetric argument (starting with Y and passing
to some Ỹ = V Y ) implies that bX ≥ bY .

Proof (of Theorem 7.6) Let γn = a
n for a constant a to be fixed later. For each η > 0,

let F (η)
γn ⊂ Fγn correspond to those functions in Fγn for which η is the largest constant

such that E[exp(−ηWf )] = 1. Let Fhyper
γn ⊂ Fγn correspond to functions f in Fγn for

which limη→∞E[exp(−ηWf )] < 1. Clearly, Fγn =
(⋃

η∈[η∗,∞)F
(η)
γn

)
∪ Fhyper

γn . The excess

loss random variables corresponding to elements f ∈ Fhyper
γn are ‘hyper-concentrated’ in the

sense that they are infinitely stochastically mixable. However, Lemma A.1 above shows
that for each hyper-concentrated Wf , there exists another excess loss random variable W ′f
with mean arbitrarily close to that of Wf , with E[exp(−ηW ′f )] = 1 for some arbitrarily
large but finite η, and with W ′f ≤Wf with probability 1. The last property implies that the
empirical risk of W ′f is no greater than that of Wf ; hence for each hyper-concentrated Wf it
is sufficient (from the perspective of ERM) to study a corresponding W ′f . From now on, we

implicitly make this replacement in Fγn itself, so that we now have Fγn =
⋃
η∈[η∗,∞)F

(η)
γn .

Consider an arbitrary a > 0. For some fixed η ∈ [η∗,∞) for which |F (η)
γn | > 0, consider

the subclass F (η)
γn . Individually for each such function, we will apply Lemma 7.1 as follows.

From Lemma 7.5, we have Λ−Wf
(η/2) = Λ− 1

V
Wf

(V η/2). From Corollary 7.4, the latter is

at most −0.21(V η ∧ 1)(a/V )
n = − 0.21ηa

(V η ∨ 1)n . Hence, Lemma 7.1 with t = 0 and the η from the

lemma taken to be η/2 implies that the probability of the event Pn `(·, f) ≤ Pn `(·, f∗) is

at most exp
(
−0.21 η

V η ∨ 1a
)

. Applying the union bound over all of Fγn , we conclude that

Pr {∃f ∈ Fγn : Pn `f ≤ Pn `f∗} ≤ N exp

(
−η∗

(
0.21a

V η∗ ∨ 1

))
.

Since ERM selects hypotheses on their empirical risk, from inversion it holds that with
probability at least 1 − δ ERM will not select any hypothesis with excess risk at least
5 max

{
V, 1
η∗

}
(log 1

δ
+logN)

n .
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Abstract

An estimate of the second moment of the regression function is introduced. Its asymptotic
normality is proved such that the asymptotic variance depends neither on the dimension of
the observation vector, nor on the smoothness properties of the regression function. The
asymptotic variance is given explicitly.

Keywords: nonparametric estimation, regression functional, central limit theorem, par-
titioning estimate

1. Introduction

This paper considers a histogram-based estimate of second moment of the regression func-
tion in multivariate problems. The interest in the second moment is motivated by the fact
that by estimating it one obtains an estimate of the best possible achievable mean squared
error, a quantity of obvious statistical interest. It is shown that the estimate is asymptoti-
cally normally distributed. It is remarkable that the asymptotic variance only depends on
moments of the regression function but neither on its smoothness, nor on the dimension of
the space. The proof relies on a Poissonization technique that has been used successfully
in related problems.

Let Y be a real valued random variable with E{Y 2} <∞ and letX = (X(1), . . . , X(d)) be
a d-dimensional random observational vector. In regression analysis one wishes to estimate
Y given X, i.e., one wants to find a function g defined on the range of X so that g(X) is
“close” to Y . Assume that the main aim of the analysis is to minimize the mean squared
error :

min
g

E{(g(X)− Y )2}.

∗. This research has been partially supported by the European Union and Hungary and co-financed by
the European Social Fund through the project TMOP-4.2.2.C-11/1/KONV-2012-0004 - National Re-
search Center for Development and Market Introduction of Advanced Information and Communication
Technologies.
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As is well-known, this minimum is achieved by the regression function m(x), which is
defined by

m(x) = E{Y | X = x}. (1)

For each measurable function g one has

E{(g(X)− Y )2} = E{(m(X)− Y )2}+ E{(m(X)− g(X))2}

= E{(m(X)− Y )2}+

∫
| m(x)− g(x) |2 µ(dx),

where µ stands for the distribution of the observation X.
It is of great importance to be able to estimate the minimum mean squared error

L∗ = E{(m(X)− Y )2}

accurately, even before a regression estimate is applied: in a standard nonparametric regres-
sion design process, one considers a finite number of real-valued features X(i), i ∈ I, and
evaluates whether these suffice to explain Y . In case they suffice for the given explanatory
task, an estimation method can be applied on the basis of the features already under con-
sideration, if not, more or different features must be considered. The quality of a subvector
{X(i), i ∈ I} of X is measured by the minimum mean squared error

L∗(I) := E
(
Y − E{Y |X(i), i ∈ I}

)2

that can be achieved using the features as explanatory variables. L∗(I) depends upon the
unknown distribution of (Y,X(i) : i ∈ I). The first phase of any regression estimation
process therefore heavily relies on estimates of L∗ (even before a regression estimate is
picked).

Concerning dimension reduction the related testing problem is on the hypothesis

L∗ = L∗(I).

This testing problem can be managed such that we estimate both L∗ and L∗(I), and accept
the hypothesis if the two estimates are close to each other. (Cf. De Brabanter et al. (2014).)

Devroye et al. (2003), Evans and Jones (2008), Liitiäinen et al. (2008), Liitiäinen et al.
(2009), Liitiäinen et al. (2010), and Ferrario and Walk (2012) introduced nearest neighbor
based estimates of L∗, proved strong universal consistency and calculated the (fast) rate of
convergence.

Because of
L∗ = E{Y 2} − E{m(X)2}

and E{Y 2} < ∞, estimating L∗ is equivalent to estimating the second moment S∗ of the
regression function:

S∗ = E{m(X)2} =

∫
m(x)2µ(dx).

In this paper we introduce a partitioning based estimator of S∗, and show its asymptotic
normality. It turns out that the asymptotic variance depends neither on the dimension of
the observation vector, nor on the smoothness properties of the regression function. The
asymptotic variance is given explicitly.
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2. A Splitting Estimate

We suppose that the regression estimation problem is based on a sequence

(X1, Y1), (X2, Y2), . . .

of i.i.d. random vectors distributed as (X,Y ). Let

Pn = {An,j , j = 1, 2, . . .}

be a cubic partition of IRd of size hn > 0.

The partitioning estimator of the regression function m is defined as

mn(x) =
νn(An,j)

µn(An,j)
if x ∈ An,j , (2)

(interpreting 0/0 = 0) with

νn(A) =
1

n

n∑
i=1

I{Xi∈A}Yi

and

µn(A) =
1

n

n∑
i=1

I{Xi∈A}.

(Here I denotes the indicator function.)

If for cubic partition

nhdn →∞ and hn → 0 (3)

as n → ∞, then the partitioning regression estimate (2) is weakly universally consistent,
which means that

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0 (4)

for any distribution of (X,Y ) with E{Y 2} <∞, and for bounded Y it holds

lim
n→∞

∫
(mn(x)−m(x))2µ(dx) = 0 (5)

a.s. (Cf. Theorems 4.2 and 23.1 in Györfi et al. (2002).)

Assume splitting data

Zn = {(X1, Y1), . . . , (Xn, Yn)}

and

D′n = {(X ′1, Y ′1), . . . , (X ′n, Y
′
n)}

such that (X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Y
′
n) are i.i.d.

The splitting data estimate of S∗ is defined as

Sn :=
1

n

n∑
i=1

Y ′imn(X ′i) =
1

n

n∑
i=1

∞∑
j=1

I{X′
i∈An,j}Y

′
i

νn(An,j)

µn(An,j)
.
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Put

ν ′n(A) =
1

n

n∑
i=1

I{X′
i∈A}Y

′
i ,

then Sn has the equivalent form

Sn =

∞∑
j=1

ν ′n(An,j)
νn(An,j)

µn(An,j)
. (6)

Theorem 1 Assume (3) and that µ is non-atomic and has bounded support. Suppose that
there is a finite constant C such that

E{|Y |3 | X} < C. (7)

Then √
n (Sn − E{Sn}) /σ

D→ N(0, 1),

where

σ2 = 2

∫
M2(x)m(x)2µ(dx)−

(∫
m(x)2µ(dx)

)2

−
∫
m(x)4µ(dx),

with
M2(X) = E{Y 2 | X}.

The estimation problem is motivated by the above mentioned dimension reduction such
that one estimates S∗ for the original observation vector and for the observation vector
where some components are left out. If the two estimates are ”close” to each other, then
we decide that the left out components are ineffective. Theorem 1 is on the random part of
the estimates. Therefore there is a further need to study the difference of the biases of the
estimates. Under (3) we have

lim
n→∞

E{Sn} = S∗

and for Lipschitz continuous m the rate of convergence can be of order n−1/d for suitable
choice of hn. (Cf. Devroye et al. (2013).) Similarly to De Brabanter et al. (2014) we
conjecture that this difference of the biases has universally a fast rate of convergence.

Obviously, there are several other possibilities for defining partitioning based estimates
and proving their asymptotic normality, for example,

1

n

n∑
i=1

mn(X ′i)
2

or
∞∑
j=1

νn(An,j)
2

µn(An,j)
.

Notice that both estimates have larger bias and variance than our estimate (6) has.
The proof of Theorem 1 works without any major modification for consistent kn nearest

neighbor (kn-NN) estimate mn if kn →∞ and kn/n→ 0. A delicate and important research
problem is the case of non-consistent 1-NN estimate mn, because for 1-NN estimate mn the
bias is smaller. We conjecture that even in this case one has a CLT.

We prove Theorem 1 in the next section.
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3. Proof of Theorem 1

Introduce the notations
Un =

√
n (Sn − E{Sn | Zn})

and
Vn =

√
n (E{Sn | Zn} − E{Sn}) ,

then √
n (Sn − E{Sn}) = Un + Vn.

We prove Theorem 1 by showing that for any u, v ∈ IR

P{Un ≤ u, Vn ≤ v} → Φ

(
u

σ1

)
Φ

(
v

σ2

)
(8)

where Φ denotes the standard normal distribution function, and

σ2
1 =

∫
M2(x)m(x)2µ(dx)−

(∫
m(x)2µ(dx)

)2

(9)

and

σ2
2 =

∫
M2(x)m(x)2µ(dx)−

∫
m(x)4µ(dx). (10)

Notice that Vn is measurable with respect to Zn, therefore∣∣∣∣P{Un ≤ u, Vn ≤ v} − Φ

(
u

σ1

)
Φ

(
v

σ2

)∣∣∣∣
=

∣∣∣∣E{I{Vn≤v}P{Un ≤ u | Zn}} − Φ

(
u

σ1

)
Φ

(
v

σ2

)∣∣∣∣
≤
∣∣∣∣E{I{Vn≤v}(P{Un ≤ u | Zn} − Φ

(
u

σ1

))}∣∣∣∣
+

∣∣∣∣(P{Vn ≤ v} − Φ

(
v

σ2

))
Φ

(
u

σ1

)∣∣∣∣
≤ E

{∣∣∣∣P{Un ≤ u | Zn} − Φ

(
u

σ1

)∣∣∣∣}+

∣∣∣∣P{Vn ≤ v} − Φ

(
v

σ2

)∣∣∣∣ .
Thus, (8) is satisfied if

P{Un ≤ u | Zn} → Φ

(
u

σ1

)
(11)

in probability and

P{Vn ≤ v} → Φ

(
v

σ2

)
. (12)

Proof of (11).
Let’s start with the representation

Un =
√
n

(
1

n

n∑
i=1

(Y ′imn(X ′i)− E{Y ′imn(X ′i) | Zn})

)

=
1√
n

n∑
i=1

(Y ′imn(X ′i)− E{Y ′imn(X ′i) | Zn}).
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Because of (7) and the Jensen inequality, for any 1 ≤ s ≤ 3, we get

Ms(X) := E{|Y |s | X} = (E{|Y |s | X}1/s)s ≤ (E{|Y |3 | X}1/3)s ≤ Cs/3, (13)

especially, for s = 1
M1(X) = |m(X)| ≤ C1/3

and
E{|Y |3} ≤ C.

Next we apply a Berry-Esseen type central limit theorem (see Theorem 14 in Petrov (1975)).
It implies that∣∣∣∣∣P{Un ≤ u | Zn} − Φ

(
u√

Var(Y ′1mn(X ′1) | Zn)

)∣∣∣∣∣ ≤ c√
n

E{|Y ′1mn(X ′1)|3 | Zn}√
Var(Y ′1mn(X ′1) | Zn)

3

with the universal constant c > 0. Because of

E{Y ′1mn(X ′1) | Zn} =

∫
m(x)mn(x)µ(dx),

we get that

Var(Y ′1mn(X ′1) | Zn) = E{Y ′1
2
mn(X ′1)2 | Zn} − E{Y ′1mn(X ′1) | Zn}2

=

∫
M2(x)mn(x)2µ(dx)−

(∫
m(x)mn(x)µ(dx)

)2

.

Now (4), together with the boundedness of M2 by (13), implies that

Var(Y ′1mn(X ′1) | Zn)→ σ2
1

in probability, where σ2
1 is defined by (9). Further

E{|Y ′1mn(X ′1)|3 | Zn} ≤ C
∫
|mn(x)|3µ(dx).

Put
An(x) = An,j if x ∈ An,j .

Again, applying the Jensen inequality we get

|mn(x)|3 ≤

∣∣∣∣∣
∑n

i=1 I{Xi∈An(x)}|Yi|3/2∑n
i=1 I{Xi∈An(x)}

∣∣∣∣∣
2

,

the right hand side of which is the square of the regression estimate, where Y is replaced
by |Y |3/2. Thus, (4) together with E{|Y |3} <∞ implies that

∫ ∣∣∣∣∣
∑n

i=1 I{Xi∈An(x)}|Yi|3/2∑n
i=1 I{Xi∈An(x)}

∣∣∣∣∣
2

µ(dx)→ E{E{|Y |3/2 | X}2} < C
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in probability. These limit relations imply (11).

Proof of (12).
Assuming that the support S of µ is bounded, let ln be such that S ⊂ ∪lnj=1An,j . Also we
re-index the partition so that

µ(An,j) ≥ µ(An,j+1),

with µ(An,j) > 0 for j ≤ ln, and µ(An,j) = 0 otherwise. Then,

Sn =

ln∑
j=1

ν ′n(An,j)
νn(An,j)

µn(An,j)
, (14)

and
ln ≤

c

hdn
.

The condition nhdn →∞ implies that

ln/n→ 0.

Because of (14) we have that

Vn =
√
n

ln∑
j=1

E{ν ′n(An,j) | Zn}
(
νn(An,j)

µn(An,j)
− E

{
νn(An,j)

µn(An,j)

})

=
√
n

ln∑
j=1

ν(An,j)

(
νn(An,j)

µn(An,j)
− E

{
νn(An,j)

µn(An,j)

})
,

where
ν(A) = E{νn(A)}.

Observe that we have to show the asymptotic normality for a finite sum of dependent
random variables. In order to prove (12), we follow the lines of the proof in Beirlant and
Györfi (1998) and use a Poissonization argument. With this we introduce a modification
Mn of Vn such that

∆n := Vn −Mn → 0,

the proof of which follows, starting from (23).
Now we proceed arguing for Mn. Introduce the notation Nn for a Poisson(n) random

variable independent of (X1, Y1), (X2, Y2), . . .. Moreover put

nν̃n(A) =

Nn∑
i=1

I{Xi∈A}Yi

and

nµ̃n(A) =

Nn∑
i=1

I{Xi∈A}.

The key result in this step is the following property:
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Proposition 2 (Beirlant and Mason (1995), Beirlant et al. (1994).) Put

M̃n =
√
n

ln∑
j=1

ν(An,j)

(
ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

})
, (15)

and

Mn =
√
n

ln∑
j=1

ν(An,j)

(
νn(An,j)

µn(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

})
. (16)

Assume that

Φn(t, v) = E
(

exp

(
itM̃n + iv

Nn − n√
n

))
→ e−(t2ρ2+v2)/2

for a constant ρ > 0, where i =
√
−1. Then

Mn/ρ
D→ N(0, 1).

Put

Tn = tM̃n + v
Nn − n√

n
,

for which a central limit result is to hold:

Tn
D→ N

(
0, t2ρ2 + v2

)
(17)

as n→∞. Remark that

Var(Tn) = t2Var(M̃n) + 2tvE
{
M̃n

Nn − n√
n

}
+ v2.

For a cell A = An,j from the partition with µ(A) > 0, let Y (A) be a random variable
such that

P{Y (A) ∈ B} = P{Y ∈ B|X ∈ A},
where B is an arbitrary Borel set.

Introduce the notations

qn,k = P{nµn(A) = k} =

(
n

k

)
µ(A)k(1− µ(A))n−k

and

q̃n,k = P{nµ̃n(A) = k} =
(nµ(A))k

k!
e−nµ(A).

Concerning the expectation, with (Y1(A), Y2(A), . . .) an i.i.d. sequence of random vari-
ables distributed as Y (A) we find that

E
{
ν̃n(A)

µ̃n(A)

}
=

∞∑
k=0

E
{
ν̃n(A)

µ̃n(A)
| nµ̃n(A) = k

}
P{nµ̃n(A) = k}

=
∞∑
k=1

E

{∑k
i=1 Yi(A)

k

}
q̃n,k

= E {Y1(A)} (1− q̃n,0)

=
ν(A)

µ(A)
(1− q̃n,0), (18)
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further, by (24)

E
{
νn(A)

µn(A)

}
= nE

{
Yn(A)

1 + (n− 1)µn−1(A)

}
=
ν(A)

µ(A)
(1− (1− µ(A))n)), (19)

Moreover,

E
{
ν̃n(A)2

µ̃n(A)2

}
=

∞∑
k=0

E
{
ν̃n(A)2

µ̃n(A)2
| nµ̃n(A) = k

}
P{nµ̃n(A) = k}

=
∞∑
k=1

E


(∑k

i=1 Yi(A)
)2

k2

 q̃n,k

=
∞∑
k=1

kE
{
Y1(A)2

}
+ k(k − 1)E {Y1(A)}2

k2
q̃n,k

= Var (Y1(A))
∞∑
k=1

1

k
q̃n,k + E {Y1(A)}2 (1− q̃n,0),

and
∞∑
k=1

1

k
q̃n,k =

∞∑
k=1

1

k

(nµ(A))k

k!
e−nµ(A)

=

∞∑
k=1

1

k + 1

(nµ(A))k

k!
e−nµ(A) +

∞∑
k=1

1

k(k + 1)

(nµ(A))k

k!
e−nµ(A)

≤ 1

nµ(A)
(1− q̃n,0) +

3

n2µ(A)2
(1− q̃n,0).

The independence of the Poisson masses over different cells leads to

Var(M̃n) = n

ln∑
j=1

ν(An,j)
2Var

(
ν̃n(An,j)

µ̃n(An,j)

)

≤ n
ln∑
j=1

ν(An,j)
2
(
Var (Y1(An,j))

( 1

nµ(An,j)
(1− e−nµ(An,j))

+
3

n2µ(An,j)2
(1− e−nµ(An,j))

)
+ E {Y1(An,j)}2 (1− e−nµ(An,j))− E {Y1(An,j)}2 (1− e−nµ(An,j))2

)
≤

ln∑
j=1

ν(An,j)
2

µ(An,j)2
Var (Y1(An,j))µ(An,j)

+

ln∑
j=1

3Var (Y1(An,j)) ν(An,j)
2

nµ(An,j)2

+ n

ln∑
j=1

ν(An,j)
2E {Y1(An,j)}2 e−nµ(An,j)

)
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such that the bounding error in these inequalities is of order O(ln/n). (4) together with the
boundedness of M2 and m implies that

ln∑
j=1

ν(An,j)
2

µ(An,j)2
Var (Y1(An,j))µ(An,j)

=

∫ ∫
An(x)M2(z)µ(dz)

µ(An(x))

(∫
An(x)m(z)µ(dz)

µ(An(x))

)2

µ(dx)−
∫ (∫

An(x)m(z)µ(dz)

µ(An(x))

)4

µ(dx)

= σ2
2 + o(1),

where σ2
2 is defined by (10). Moreover,

ln∑
j=1

3Var (Y1(An,j)) ν(An,j)
2

nµ(An,j)2
≤ 3C4/3ln

n
→ 0.

Then

n

ln∑
j=1

ν(An,j)
2E {Y1(An,j)}2 e−nµ(An,j)

=

ln∑
j=1

ν(An,j)
2

µ(An,j)2
E {Y1(An,j)}2 nµ(An,j)e

−nµ(An,j)µ(An,j)

≤ C4/3
ln∑
j=1

nµ(An,j)
2e−nµ(An,j)

≤ C4/3(max
z>0

z2e−z)ln/n→ 0.

So we proved that

Var(M̃n)→ σ2
2.

To complete the asymptotics for Var(Tn), it remains to show that

E
{
M̃n

Nn − n√
n

}
→ 0 as n→∞.

Because of

Nn = n

ln∑
j=1

µ̃n(An,j)

and

n = n

ln∑
j=1

µ(An,j),
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we have that

E
{
M̃n

Nn − n√
n

}
= n

ln∑
j=1

E
{
ν̃n(An,j)

µ̃n(An,j)
ν(An,j)(µ̃n(An,j)− µ(An,j))

}

= n

ln∑
j=1

ν(An,j)

(
E {ν̃n(An,j)} − E

{
ν̃n(An,j)

µ̃n(An,j)

}
µ(An,j))

)

= n

ln∑
j=1

ν(An,j)

(
ν(An,j)−

ν(An,j)

µ(An,j)
(1− e−nµ(An,j))µ(An,j))

)

= n

ln∑
j=1

ν(An,j)
2e−nµ(An,j)

≤ C2/3(max
z>0

z2e−z)ln/n→ 0.

To finish the proof of (17) by Lyapunov’s central limit theorem, it suffices to prove that

n3/2
ln∑
j=1

E
{∣∣t( ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

})
ν(An,j) + v (µ̃n(An,j)− µ(An,j))

∣∣3}→ 0

or, by invoking the c3 inequality |a+ b|3 ≤ 4(|a|3 + |b|3), that

n3/2
ln∑
j=1

E

{∣∣∣∣ ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

}∣∣∣∣3
}
ν(An,j)

3 → 0 (20)

and

n3/2
ln∑
j=1

E
{
|µ̃n(An,j)− µ(An,j)|3

}
→ 0. (21)

In view of (20), because of (13) it suffices to prove

Dn := n3/2
ln∑
j=1

E

{∣∣∣∣ ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

}∣∣∣∣3
}
µ(An,j)

3 → 0 (22)

For a cell A, (18) implies that

E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− E

{
ν̃n(A)

µ̃n(A)

}∣∣∣∣3
}
≤ 4E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0}

∣∣∣∣3
}

+ 4E

{∣∣∣∣ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0} −

ν(A)

µ(A)
(1− q̃n,0)

∣∣∣∣3
}
.
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On the one hand, (18), (13) and (25) imply that, for a constant K,

E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0}

∣∣∣∣3
}

=

∞∑
k=0

E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0}

∣∣∣∣3 | nµ̃n(A) = k

}
P{nµ̃n(A) = k}

=
∞∑
k=1

E


∣∣∣∑k

i=1(Yi(A)− E{Yi(A)})
∣∣∣3

k3

 q̃n,k

≤ K
∞∑
k=1

1

k3/2
q̃n,k

≤ c1
1

n3/2µ(A)3/2
,

where we applied the Marcinkiewicz and Zygmund (1937) inequality for absolute central
moments of sums of i.i.d. random variables. On the other hand

E

{∣∣∣∣ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0} −

ν(A)

µ(A)
(1− q̃n,0)

∣∣∣∣3
}
≤ Cq̃n,0.

Therefore

Dn ≤ n3/2c2

ln∑
j=1

(
1

n3/2µ(An,j)3/2
+ e−nµ(An,j)

)
µ(An,j)

3

≤ c2

 ln∑
j=1

µ(An,j)
3/2 +

ln∑
j=1

n3/2e−nµ(An,j)µ(An,j)
3


≤ c2

ln∑
j=1

µ(An,j)
3/2

(
1 + max

z>0
z3/2e−z

)
= c3

∫
µ(An(x))1/2µ(dx)

→ 0,

where we used the assumption that µ is non-atomic. Thus, (20) is proved.

The proof of (21) is easier. Notice that (21) means

Fn := n−3/2
ln∑
j=1

E


∣∣∣∣∣
Nn∑
i=1

I{Xi∈An,j} − nµ(An,j)

∣∣∣∣∣
3
→ 0.
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One has

E


∣∣∣∣∣
Nn∑
i=1

I{Xi∈An,j} − nµ(An,j)

∣∣∣∣∣
3


≤ 4E


∣∣∣∣∣
Nn∑
i=1

(I{Xi∈An,j} − µ(An,j))

∣∣∣∣∣
3
+ 4E

{
|(Nn − n)µ(An,j)|3

}

≤ c4

( ∞∑
k=1

k3/2µ(An,j)
3/2e−n

nk

k!
+ E

{
|Nn − n|3

}
µ(An,j)

3

)
≤ c5

(
n3/2µ(An,j)

3/2 + n3/2µ(An,j)
3
)
.

Therefore

Fn ≤ 2c5

ln∑
j=1

µ(An,j)
3/2 → 0,

and so (21) is proved, too.

The remaining step in the proof of (12) is to show that

∆n := Vn −Mn = n1/2
ln∑
j=1

(
E
{
ν̃n(An,j)

µ̃n(An,j)

}
− E

{
νn(An,j)

µn(An,j)

})
ν(An,j)→ 0. (23)

By (18) and (19) have that

|∆n| =

∣∣∣∣∣∣n1/2
ln∑
j=1

ν(An,j)

µ(An,j)
(e−nµ(An,j) − (1− µ(An,j))

n)ν(An,j)

∣∣∣∣∣∣
= n1/2

ln∑
j=1

ν(An,j)
2

µ(An,j)2
(e−nµ(An,j) − (1− µ(An,j))

n)µ(An,j)

≤ C2/3n1/2
ln∑
j=1

(e−nµ(An,j) − (1− µ(An,j))
n)µ(An,j).

For 0 ≤ z ≤ 1, using the elementary inequalities

1− z ≤ e−z ≤ 1− z + z2

we have that

e−nz − (1− z)n = (e−z − (1− z))
n−1∑
k=0

e−kz(1− z)n−1−k ≤ nz2e−(n−1)z,
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and thus we get that

|∆n| ≤ C2/3n1/2
ln∑
j=1

(e−nµ(An,j) − (1− µ(An,j))
n)µ(An,j)

≤ C2/3n1/2
ln∑
j=1

nµ(An,j)
3e−(n−1)µ(An,j)

≤ C2/3

n1/2

ln∑
j=1

µ(An,j)
(

[nµ(An,j)]
2e−nµ(An,j)

)
e

≤ C2/3

n1/2

ln∑
j=1

µ(An,j) max
z≥0

(z2e−z)e

→ 0.

This ends the proof of (12) and so the proof of Theorem 1 is complete.

Next we give two lemmas, which are used above.

Lemma 3 If B(n, p) is a binomial random variable with parameters (n, p), then

E
{

1

1 +B(n, p)

}
=

1− (1− p)n+1

(n+ 1)p
. (24)

Lemma 4 If Po(λ) is a Poisson random variable with parameter λ, then

E
{

1

Po(λ)3
I{Po(λ)>0}

}
≤ 24

λ3
. (25)
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Abstract
We derive oracle inequalities for the problems of isotonic and convex regression using the
combination of Q-aggregation procedure and sparsity pattern aggregation. This improves
upon the previous results including the oracle inequalities for the constrained least squares
estimator. One of the improvements is that our oracle inequalities are sharp, i.e., with leading
constant 1. It allows us to obtain bounds for the minimax regret thus accounting for model
misspecification, which was not possible based on the previous results. Another improvement
is that we obtain oracle inequalities both with high probability and in expectation.
Keywords: aggregation, shape constraints, isotonic regression, convex regression, minimax
regret, sharp oracle inequalities, model misspecification

1. Introduction

Assume that we have the observations

Yi = µi + ξi, i = 1, ..., n, (1)

where µ = (µ1, ..., µn)T ∈ Rn is unknown, ξ = (ξ1, ..., ξn)T is a noise vector with n-
dimensional Gaussian distribution N (0, σ2In×n) where σ > 0. We observe y = (Y1, ..., Yn)T
and we want to estimate µ. We can interpret µi as the values f(Xi) of an unknown regression
function f : X → R at given non-random points Xi ∈ X , i = 1, . . . , n, where X is an abstract
set. Then, the equivalent setting is that we observe y along with (X1, . . . , Xn) but the values
of Xi are of no interest and can be replaced by their indices if we measure the loss in a
discrete norm. Namely, for any u ∈ Rn we consider the scaled (or the empirical) norm ‖ · ‖
defined by

‖u‖2 = 1
n

n∑
i=1

u2
i . (2)

We will measure the error of an estimator µ̂ of µ by the distance ‖µ̂− µ‖. Let S↑ be the
set of all non-decreasing sequences:

S↑ := {u = (u1, ..., un) ∈ Rn : ui ≤ ui+1, i = 1, ..., n− 1}. (3)

For a subset S of S↑, and any µ ∈ Rn the quantity minu∈S ‖u − µ‖ is the smallest
approximation error achievable by a sequence in the set S. This quantity defines a benchmark

©2015 Pierre C. Bellec and Alexandre B. Tsybakov.
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or oracle performance on S. The accuracy of an estimator µ̂ with respect to the oracle for any
µ, not necessarily µ ∈ S, can be characterized by the excess loss ‖µ̂−µ‖−minu∈S ‖u−µ‖.
This is a measure of performance of µ under model misspecification. One can also consider
the expected quantities R1(µ̂,µ) = Eµ‖µ̂ − µ‖ −minu∈S ‖u − µ‖ or R2(µ̂,µ) = Eµ‖µ̂ −
µ‖2 −minu∈S ‖u− µ‖2 known under the name of regret measures. Here, Eµ denotes the
expectation with respect to the distribution of y satisfying (1). The minimax regret is
defined as minµ̂ maxµ∈Rn Ri(µ̂,µ) for i = 1, 2, where minµ̂ denotes the minimum over all
estimators. We can characterize the performance of an estimator µ̃ by the closeness of
its maximal regret maxµ∈Rn Ri(µ̃,µ) to the minimax regret. This approach to measure
the performance of estimators under model misspecification was pioneered by Vapnik and
Chervonenkis who called it the criterion of minimax of the loss (Vapnik and Chervonenkis,
1974, Chapter 6). In this paper, we follow this approach and establish non-asymptotic
bounds for the maximal regret for some classes S of monotone and convex functions.

When the model is well-specified, i.e., the true function µ belongs to the class S, the
approximation error vanishes and instead of the minimax regret it is natural to consider
the minimax risk defined either as minµ̂ maxµ∈S Eµ‖µ̂−µ‖ or as minµ̂ maxµ∈S Eµ‖µ̂−µ‖2
(the minimax squared risk). It is easy to see that the minimax risk is not greater than the
minimax regret. A classical problem in nonparametric statistics is to study the behavior
of minimax risks for different classes S. In particular, there exist results concerning the
minimax risks for classes of monotone and convex functions in our setting. We review some of
them below. The behavior of the minimax regret is much less studied. For a recent overview
and some general results we refer to Rakhlin et al. (2013) where it is shown that the rate
of minimax regret can be different from that of the minimax risk. Note that Rakhlin et al.
(2013) studies the prediction problem with i.i.d. observations, which is a setting different
from ours.

A well-studied estimator under the monotonicity and convexity assumptions is the least
squares estimator

µ̂LS(S) ∈ argmin
u∈S

‖y− u‖2 . (4)

In Nemirovski et al. (1985) it was shown that µ̂LS(S) attains, up to logarithmic factors,
the rates n−2/3 and n−4/5 of the mean squared risk for classes S of monotone and convex
functions respectively and that these rates are optimal up to logarithmic factors when
the minimax squared risk is used as a criterion. Under monotonicity constraints, the rate
n−2/3 was later observed in different settings, see for instance Banerjee and Wellner (2001);
Balabdaoui and Wellner (2007).

One class of monotone functions we will be interested in here is defined as

S↑(V ) = {µ ∈ S↑ : V (µ) ≤ V }

where V (µ) = µn − µ1 for any µ = (µ1, . . . , µn) ∈ S↑, and V > 0 is a given constant. In
Meyer and Woodroofe (2000); Zhang (2002) it was shown that for any µ ∈ S↑ we have

Eµ ‖µ̂− µ‖2 ≤ cmax

(σ2V (µ)
n

)2/3

,
σ2 logn

n

 (5)
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for µ̂ = µ̂LS(S↑) and some absolute constant c > 0. This immediately implies an upper
bound on the minimax risk on S↑(V ). A recent paper Chatterjee et al. (2015) establishes
the oracle inequality

Eµ
∥∥∥µ̂LS(S↑)− µ

∥∥∥2
≤ C∗ min

u∈S↑

(
‖µ− u‖2 + c∗σ

2k(u)
n

log en

k(u)

)
(6)

valid for all µ ∈ S↑ where either C∗ = 6, c∗ = 1 (Chatterjee et al., 2015, inequality
(18)) or C∗ = 4, c∗ = 4 (Chatterjee et al., 2015, inequality (30)). Here, k(u) ≥ 1 for
u = (u1, . . . , un) ∈ S↑ is the integer such that k(u) − 1 is the number of inequalities
ui ≤ ui+1 that are strict for i = 1, . . . , n− 1 (number of jumps of u). Inequality (6) implies
(up to a logarithmic factor) a bound as in (5) and also gives some more insight into the
problem. For example, (6) shows that the fast rate logn

n is achieved if µ has only one jump
or a fixed, independent of n, number of jumps. This is not granted by (5).

Along with the least squares estimator, one may consider estimation of monotone functions
via penalized least squares with total variation penalty. The corresponding estimator µ̂TV
is defined as

µ̂TV ∈ argmin
u∈Rn

(
1
2 ‖u− y‖2 + λ

n−1∑
i=1
|ui+1 − ui|

)
, (7)

where λ > 0 is a tuning parameter. Statistical properties of this estimator were first studied
in Mammen and van de Geer (1997) where it was shown that ‖µ̂TV −µ‖ attains the optimal
rate n−1/3 in probability on the class of functions of bounded variation (and thus on S↑(V )).
Recently, the performance of µ̂TV was analyzed in Dalalyan et al. (2014) by considering µ̂TV
as a special instance of the Lasso estimator. If µ↑ is the projection of µ onto S↑, δ ∈ (0, 1)
is a constant, and the tuning parameter λ is given by

λ = σ

√
log(n/δ)
k∗n

where k∗ =
(
V (µ↑)2n log(n/δ)

σ2

)1/3

, (8)

the estimator µ̂TV satisfies with probability greater than 1−2δ the following oracle inequality
(Dalalyan et al., 2014, Proposition 6):

∥∥∥µ̂TV − µ∥∥∥2
≤

∥∥∥µ↑ − µ∥∥∥2
+ 6

(
σ2V (µ↑)

√
log(n/δ)

n

)2/3

(9)

+2σ2(1 + 2 log(1/δ))
n

for all µ ∈ Rn. It follows from (9) that if the tuning parameter is chosen correctly, the
estimator µ̂TV achieves, up to a logarithmic factor, the minimax rate n−2/3 in probability on
the class S↑(V ). Also, (9) implies a bound for the excess losses ‖µ̂TV −µ‖i−minu∈S↑(V ) ‖u−
µ‖i, i = 1, 2, corresponding to the class S↑(V ). However, (9) does not allow us to evaluate
the expected regrets Ri(µ̂TV ,µ) since µ̂TV depends on δ. It is also shown in (Dalalyan
et al., 2014, Proposition 4) that if λ = 2σ

√
(2/n) log(n/δ), the estimator µ̂TV satisfies

∥∥∥µ̂TV − µ∥∥∥2
≤ min
u∈Rn

(
‖u− µ‖2 + 4σ2k(u) log(n/δ)

n
rn(u)

)
(10)
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with probability greater than 1−2δ, where k(u)−1 for u ∈ Rn is the number of jumps of u, i.e.,
the cardinality of the set {i ∈ {1, ..., n− 1} : ui 6= ui+1}, rn(u) = 3 + 256(log(n) + (n/∆(u)))
and ∆(u) is the minimum distance between two jumps in the sequence u:

∆(u) = min {d ≥ 1 : ∃k ∈ {1, ..., n} with uk+1 6= uk and uk+d+1 6= uk+d} .

The expressions on the right hand sides of (6) and (10) are small if the unknown sequence
µ is well approximated by a piecewise constant sequence with not too many pieces. In
this regard, the two bounds have some similarity to sparsity oracle inequalities in high-
dimensional linear regression (cf. Rigollet and Tsybakov, 2011, 2012; Tsybakov, 2014). This
similarity can be easily explained as follows. Write (1) in the equivalent form

y = Xβ∗ + ξ,

with the matrix X = (Xij)i=1,...,n, j=1,...,n where Xij = 1 if j ≤ i and Xij = 0 otherwise, and
β∗ = (β∗1 , . . . , β∗n) where β∗1 = µ1 and β∗i = µi − µi−1 for i = 2, . . . , n. With this notation,
k(µ) ∈ {|β∗|0, 1 + |β∗|0}, where |β∗|0 denotes the number of non-zero components of β∗.
The value k(µ) is small when β∗ is sparse. Thus, the problem of estimation of piecewise
constant sequence µ with small number of pieces can be considered as the problem of
prediction in sparse linear regression with a specific design matrix X. Similarly, we may
write u = Xβ, for β with components β1 = u1 and βi = ui − ui−1 for i = 2, . . . , n. These
remarks suggest that we can apply the theory of sparsity oracle inequalities, in particular,
sparsity pattern aggregation (cf. Rigollet and Tsybakov, 2011, 2012; Tsybakov, 2014) in the
context of monotone estimation described above. Similar observation is valid for estimation
under convexity constraints (see Section 3 below). In the present paper, we develop this
argument using as a building block the Q-aggregation procedures Rigollet (2012); Dai et al.
(2012, 2014); Bellec (2014). In particular, we construct an estimator µ̂ such that

Eµ ‖µ̂− µ‖2 ≤ min
u∈S↑

(
‖µ− u‖2 + cσ2k(u)

n
log en

k(u)

)
, ∀ µ ∈ Rn, (11)

for some absolute constant c > 0. Note that (11) is a sharp oracle inequality (i.e., an
inequality with leading constant 1). It improves upon the oracle inequality (6) for the least
squares estimator where the leading constant C∗ is noticeably greater than 1 and the bound
is valid only for µ ∈ S↑. The advantage of having leading constant 1 and arbitrary µ in (11)
is that it allows us to derive bounds on the excess risk and on the minimax regret, which
was not possible based on the previous results. We also obtain sharp oracle inequalities with
high probability for the same estimator. In addition, we show that it satisfies stronger sharp
inequalities with the minimum minu∈S↑ on the right hand side of (11) replaced by minu∈Rn .
This implies that our results are invariant to the direction of monotonicity; they remain valid
if we replace everywhere monotone increasing by monotone decreasing functions. Finally, we
derive similar results for the problem of estimation under the convexity constraints improving
an oracle inequality obtained in Guntuboyina and Sen (2013).
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2. Sparsity Pattern Aggregation for Piecewise Constant Sequences

For any non-empty set J ⊆ {1, ..., n− 1}, let |J | denote the cardinality of J and define

πJ := exp(−|J |)
H
(n−1
|J |
) , H :=

n−1∑
i=0

exp(−i). (12)

Let PJ ∈ Rn×n be the projector on the linear subspace VJ of Rn defined by

VJ :=
{
u ∈ Rn : ∀i ∈ {1, ..., n− 1} \ J, ui+1 = ui

}
. (13)

In words, VJ is the space of all piecewise constant sequences that have jumps only at points
in J . Given a vector y of observations and θ = (θJ)J⊆{1,...,n−1} where each θJ ∈ R, let

µθ =
∑

J⊆{1,...,n−1}
θJPJy. (14)

Finally, let
µ̂Q = µθ̂ (15)

where θ̂ is the solution of the optimization problem

min
θ∈Λ

‖µθ − y‖2 +
∑

J⊆{1,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2 ‖µθ − PJy‖2 + 46σ2

n
log 1

πJ

)

where

Λ =

θ : θJ ≥ 0 for all J ⊆ {1, ..., n− 1}, and
∑

J⊆{1,...,n−1}
θJ = 1

 .
This optimization problem is a convex quadratic program with a simplex constraint. It
performs aggregation of the linear estimators (PJy)J⊆{1,...,n−1} using the Q-aggregation
procedure Dai et al. (2012, 2014); Bellec (2014) with the prior weights (12). As the size of
this quadratic program is of order 2n, it is a computationally hard problem. The estimator
µ̂Q satisfies the following sharp oracle inequalities.

Theorem 1 Let µ ∈ Rn, n ≥ 2, and assume that the noise vector ξ has distribution
N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that for all δ ∈ (0, 1/3), the
estimator µ̂Q satisfies with probability at least 1− 3δ,

∥∥∥µ̂Q − µ∥∥∥2
≤ min
u∈Rn

(
‖µ− u‖2 + cσ2k(u))

n
log en

k(u)

)
+ cσ2 log(1/δ)

n
, (16)

and

Eµ
∥∥∥µ̂Q − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + c′σ2k(u)

n
log en

k(u)

)
. (17)
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Proof Let J ⊆ {1, ..., n − 1}. Denote by d = |J | + 1 the dimension of the subspace VJ .
Then, the projection estimator PJy satisfies with probability at least 1− δ (see, for example,
Hsu et al. (2012)):

‖PJy− µ‖2 ≤ ‖PJµ− µ‖2 + d+ 2
√
d log(1/δ) + 2 log(1/δ)

n

≤ min
u∈VJ

‖u− µ‖2 + 2(|J |+ 1) + 3 log(1/δ)
n

. (18)

The sharp oracle inequality from Bellec (2014) yields that with probability at least 1− 2δ
for all J ⊆ {1, ..., n− 1} we have∥∥∥µ̂Q − µ∥∥∥2

≤ ‖PJy− µ‖2 + Cσ2 log 1
πJ

+ Cσ2 log(1/δ), (19)

for some absolute constant C > 0. Combining (18) and (19) with the union bound and the
inequality (cf. (Rigollet and Tsybakov, 2012, (5.4))) log(1/πJ) ≤ 2(|J | + 1) log(en/(|J | +
1)) + 1/2, we find that with probability at least 1− 3δ,

∥∥∥µ̂Q − µ∥∥∥2
≤ min

J⊆{1,...,n−1}
min
u∈VJ

(
‖µ− u‖2 + cσ2(|J |+ 1)

n
log

(
en

|J |+ 1

))
+ cσ2 log(1/δ)

where c > 0 is an absolute constant. Since we have that |J | + 1 = k(u) for all u ∈ VJ
and also that minJ⊆{1,...,n−1}minu∈VJ

= minu∈Rn , the bound (16) follows. Finally, (17) is
obtained from (16) by integration.

We now discuss some corollaries of Theorem 1. First, it follows that (11) is satisfied for
µ̂ = µ̂Q, so the remarks after (11) apply. Next, in view of (17), for the class of monotone
sequences with at most k jumps S↑k = {u ∈ S↑ : k(u) ≤ k} we have the following bounds for
the maximal expected regrets

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖ − min

u∈S↑
k

‖u− µ‖
)
≤ c

√
σ2k

n
log

(
en

k

)
, (20)

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖2 − min

u∈S↑
k

‖u− µ‖2
)
≤ cσ2k

n
log

(
en

k

)
, (21)

where c > 0 is an absolute constant. The same bounds hold for the minimax risks over S↑k
since the minimax risk is smaller than the minimax regret. Theorem 4 below shows that the
bounds (20) and (21) are optimal up to logarithmic factors.

Finally, consider the consequences of Theorem 1 for the class S↑(V ). To this end, define
the integer k∗ such that

k∗ = min

m ∈ N : m ≥
(

V (µ)2n

σ2 log(en)

)1/3
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if the set
{
m ∈ N : m ≥

(
V (µ)2n
σ2 log(en)

)1/3}
is non-empty, and k∗ = 1 otherwise. We will need

the following lemma.

Lemma 2 Let µ ∈ S↑ and let 1 ≤ k ≤ n be an integer. Then there exists a sequence ū ∈ S↑k
such that

‖ū− µ‖ ≤ V (µ)
2k . (22)

Next, there exists a sequence ū ∈ S↑k∗ such that

‖ū− µ‖2 ≤ 1
4 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (23)

In addition,

σ2k∗

n
log en

k∗
≤ 2 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (24)

Proof To construct the sequence ū, consider the k intervals

Ij =
[
µ1 + j − 1

k
V (µ), µ1 + j

k
V (µ)

)
, j = 1, ..., k − 1, (25)

and Ik = [µ1 + k−1
k V (µ), µn]. For all j = 1, ..., k, let

Jj = {i = 1, ..., n : µi ∈ Ij}. (26)

For any i ∈ {1, ..., n} there exists a unique j ∈ {1, ..., k} such that i ∈ Ij . Let ūi =
µ1 + j−1/2

k V (µ) for all i ∈ Ij . Then the sequence ū = (ū1, . . . , ūn) is non-decreasing, it has
at most k pieces, i.e., k(ū) ≤ k, and |ūi − µi| ≤ V (µ)

2k for i = 1, ..., n. Thus (22) follows.
Next, note that if k∗ = 1, then V (µ)2 ≤ σ2 log(en)/n. If k∗ > 1, then by definition of k∗,
V (µ)2/(k∗)2 ≤ (σ2V (µ) log(en)/n)2/3. Thus, (23) follows. The bound (24) is straightfor-
ward by studying the cases k∗ = 1 and k∗ > 1 separately.

We can now derive the following corollary of Theorem 1.

Corollary 3 Under the assumptions of Theorem 1, there exists an absolute constant c > 0
such that, for any µ ∈ S↑,

Eµ‖µ̂Q − µ‖2 ≤ c max

(σ2V (µ) logn
n

)2/3

,
σ2 logn

n

 . (27)

In addition, for any V > 0 and any µ ∈ Rn the expected regret of µ̂Q satisfies

Eµ‖µ̂Q − µ‖ − min
u∈S↑(V )

‖u− µ‖ ≤ c max

(σ2V logn
n

)1/3

, σ

√
logn
n

 (28)

where c > 0 is an absolute constant.
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Proof Inequality (27) is straightforward in view of (17), (23), and (24). To prove (28), fix
any µ ∈ Rn and consider

µ∗ ∈ argmin
µ′∈S↑(V )

‖µ′ − µ‖.

From (17) and the fact that the function x 7→ x log
(
en
x

)
is increasing for 1 ≤ x ≤ n we get

Eµ‖µ̂Q − µ‖ ≤ min
u∈S↑

k∗

‖u− µ‖+
√
c′
σ2k∗

n
log

(
en

k∗

)
≤ min
u∈S↑

k∗

‖u− µ∗‖+ ‖µ∗ − µ‖+
√
c′
σ2k∗

n
log

(
en

k∗

)

≤ ‖µ∗ − µ‖+ c′′ max

(σ2V logn
n

)1/3

, σ

√
logn
n


for an absolute constant c′′ > 0 where the last inequality follows from (23) and (24).

The estimator µ̂Q shown in Theorem 1 satisfies the sharp oracle inequalities both in
expectation and with high probability. Previous results for the least squares estimator
Chatterjee et al. (2015) were only obtained in expectation and the results on the `1-penalized
estimator (7) are only obtained with high probability.

Finally, the following result shows that the upper bounds (20) and (21) are optimal up
to logarithmic factors.

Proposition 4 Let n ≥ 2, V > 0 and σ > 0. There exist absolute constants c, c′ > 0 such
that for any positive integer k ≤ n satisfying k3 ≤ 16nV 2/σ2 we have

inf
µ̂

sup
µ∈S↑

k
∩S↑(V )

Pµ

(
‖µ̂− µ‖2 ≥ cσ2k

n

)
> c′, (29)

where Pµ denotes the distribution of y satisfying (1) and inf µ̂ is the infimum over all
estimators.

For k = 1, ..., n, take any V > 0 large enough to satisfy k3 ≤ 16nV 2/σ2. Then, Theorem 4
and Markov’s inequality yield the following lower bounds on the minimax risks over the
class S↑k :

inf
µ̂

sup
µ∈S↑

k

Eµ‖µ̂− µ‖ ≥ c

√
c′σ2k

n
, inf

µ̂
sup
µ∈S↑

k

Eµ ‖µ̂− µ‖2 ≥
cc′σ2k

n
. (30)

As the minimax risk is smaller than the minimax regret, (30) also provides lower bounds for
the corresponding minimax regrets over S↑k . Combining this with (20) and (21) we find that
the estimator µ̂Q achieves up to logarithmic factors the optimal rate with respect to the
minimax regret.

Next, Proposition 4 implies the following lower bound on the minimax deviation risk on
S↑(V ).
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Corollary 5 Let n ≥ 2, V > 0 and σ > 0. There exist absolute constants c, c′ > 0 such that

inf
µ̂

sup
µ∈S↑(V )

Pµ

‖µ̂− µ‖2 ≥ cmax


(
σ2V

n

)2/3

,
σ2

n


 > c′. (31)

To prove this corollary it is enough to note that if 16nV 2/σ2 ≥ 1, by choosing k in
Proposition 4 as the integer part of (16nV 2/σ2)1/3, we obtain the lower bound corresponding
to
(
σ2V
n

)2/3
under the maximum in (31). On the other hand, if 16nV 2/σ2 < 1 the term σ2

n

is dominant, so that we need to have the lower bound of the order σ2

n , which is trivial (it
follows from a reduction to the bound for the class composed of two constant functions).

It follows from (31) and (27) that the estimator µ̂Q achieves, up to logarithmic factors,
the optimal rate with respect to the minimax risk on the class S↑(V ). Using (28) and the
fact that the minimax risk is smaller than the minimax regret, we conclude that it is also
the optimal rate up to logarithmic factors for the minimax regret.
Proof [Proof of Theorem 4] We assume for simplicity that n is a multiple of k. The general
case is treated analogously. For any ω,ω′ ∈ {0, 1}k, let dH(ω,ω′) = |{i = 1, ..., k : ωi 6= ω′i}|
be the Hamming distance between ω and ω′. By the Varshamov-Gilbert bound (Tsybakov,
2009, Lemma 2.9), there exists a set Ω ⊂ {0, 1}k such that

0 = (0, ..., 0) ∈ Ω, log(|Ω| − 1) ≥ k/8, and dH(ω,ω′) > k/8 (32)

for any two distinct ω,ω′ ∈ Ω. For each ω ∈ Ω, define a vector uω ∈ Rn with components

uωi = b(i− 1)k/nc V
2k + γωb(i−1)k/nc+1, i = 1, ..., n,

where γ = (1/8)
√
σ2k/n, and bxc denotes the maximal integer smaller than x. For any

ω ∈ Ω, uω is a piecewise constant sequence with k(uω) ≤ k, uω is a non-decreasing sequence
because γ ≤ V/(2k), and by construction V (uω) ≤ V . Thus, uω ∈ S↑k ∩S↑(V ) for all ω ∈ Ω.
Moreover, for any ω,ω′ ∈ Ω,

‖uω − uω′‖2 = γ2

k
dH(ω,ω′) ≥ γ2

8 = σ2k

512n. (33)

Set for brevity Pω = Puω . The Kullback-Leibler divergence K(Pω, Pω′) between Pω and Pω′
is equal to n

2σ2 ‖uω − uω
′‖2 for all ω,ω′ ∈ Ω. Thus,

K(Pω, P0) = γ2ndH(0,ω)
2kσ2 ≤ k

128 ≤
log(|Ω| − 1)

16 . (34)

Applying (Tsybakov, 2009, Theorem 2.7) with α = 1/16 completes the proof.

3. Estimation of Convex Sequences by Aggregation

Assume that n ≥ 3 and define the set of convex sequences SC as follows:

SC = {u = (u1, . . . , un) ∈ Rn : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n− 1}. (35)

1887



Bellec and Tsybakov

For any u ∈ Rn, we introduce the integer q(u) ≥ 1 such that q(u) − 1 is the cardinality
of the set {i = 1, ..., n − 1 : 2ui 6= ui+1 + ui−1}. If u ∈ SC, q(u) − 1 is the number of
inequalities 2ui ≤ ui+1 + ui−1 that are strict for i = 2, ..., n− 1. The value q(u) is small if u
is a piecewise linear sequence with a small number of pieces.

The performance of the least squares estimator over convex sequences µ̂LS(SC) has been
recently studied in Guntuboyina and Sen (2013). If the unknown vector µ belongs to the set
SC, Guntuboyina and Sen (2013) shows that the estimator µ̂LS(SC) satisfies the risk bound

Eµ
∥∥∥µ̂LS(SC)− µ

∥∥∥2
≤ c log(en)5/4

(
σ2√R(µ)

n

)4/5

,

where R(µ) = max(1,min{‖τ − µ‖2 , τ is affine}) and c > 0 is an absolute constant. It is
proved in (Chatterjee et al., 2015, Example 2.3) that the least squares estimator µ̂LS(SC)
satisfies the oracle inequality

Eµ
∥∥∥µ̂LS(SC)− µ

∥∥∥2
≤ 6 min

u∈SC

‖u− µ‖2 +
cσ2q(u) log

(
en
q(u)

)5/4

n

 , (36)

where c > 0 is an absolute constant. The right hand side of (36) is small if the unknown
vector µ can be well approximated by a piecewise linear sequence in SC with not too many
pieces.

The leading constant in (36) is 6. We will show that sparsity pattern aggregation
achieves a substantially better performance. We obtain the sharp oracle inequality (39)
below, improving upon (36) not only in the fact that the leading constant is 1 but also in
the rate of the remainder term; we will see that the exponent 5/4 of the logarithmic factor
is reduced to 1.

For any set J ⊆ {2, ..., n− 1}, define

νJ := exp(−|J |)
HC

(n−2
|J |
) , HC :=

n−2∑
i=0

exp(−i). (37)

Let QJ ∈ Rn×n be the projector on the linear subspace WJ of Rn given by

WJ :=
{
u ∈ Rn : ∀i ∈ {2, ..., n− 1} \ J, 2ui = ui+1 + ui−1

}
.

Given a vector y of observations and θ = (θJ)J⊆{2,...,n−1} where each θJ belongs to R, let

µθ =
∑

J⊆{2,...,n−1}
θJQJy.

Finally, let
µ̂Q−conv = µθ̂

where θ̂ is the solution of the optimization problem

min
θ∈Λ′

‖µθ − y‖2 +
∑

J⊂{2,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2 ‖µθ −QJy‖2 + 46σ2

n
log 1

νJ

)
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where

Λ′ =

θ : θJ ≥ 0 for all J ⊆ {2, ..., n− 1}, and
∑

J⊆{2,...,n−1}
θJ = 1

 .
The structure of this minimization problem is the same as of its analog introduced in Section
2. This is a quadratic program that aggregates the linear estimators (QJy)J⊆{2,...,n−1} using
the Q-aggregation procedure Dai et al. (2012, 2014); Bellec (2014) with the prior weights
(37).

Theorem 6 Let µ ∈ Rn, n ≥ 3, and assume that the noise vector ξ has distribution
N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that for all δ ∈ (0, 1/3), the
estimator µ̂Q−conv satisfies with probability at least 1− 3δ,∥∥∥µ̂Q−conv − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + cσ2q(u)

n
log en

q(u)

)
+ cσ2 log(1/δ)

n
, (38)

and we have

Eµ
∥∥∥µ̂Q−conv − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + c′σ2q(u)

n
log en

q(u)

)
. (39)

The proof of this theorem is the same as that of Theorem 1 with the only difference that J is
now a subset of {2, ..., n− 1} rather than that of {1, ..., n− 1}, and we replace the notation
PJ and VJ by QJ and WJ respectively.

The leading constant of the oracle inequality (39) is 1, and the remainder term is
proportional to q(u) log(en/q(u)). These are two improvements upon (36), where the
leading constant is 6 and the remainder term is proportional to q(u) log(en/q(u))5/4.

In view of (39), for the class of piecewise linear convex sequences with at most q linear
pieces, SC

q = {u ∈ SC : q(u) ≤ q} we have the following bounds for the maximal expected
regrets

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖ − min

u∈SC
q

‖u− µ‖
)
≤ c

√
σ2q

n
log

(
en

q

)
, (40)

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖2 − min

u∈SC
q

‖u− µ‖2
)
≤ cσ2q

n
log

(
en

q

)
, (41)

where c > 0 is an absolute constant. The same bounds hold for the minimax risks over SC
q

since the minimax risk is smaller than the minimax regret.
The following proposition shows that the rates of convergence in (40) and (41) are

optimal up to logarithmic factors. We omit the discussion since it is similar to that after
Theorem 4.

Proposition 7 Let n ≥ 3. There exist absolute constants c, c′ > 0 such that, for any
positive integer q ≤ n,

inf
µ̂

sup
µ∈SC

q

Pµ

(
‖µ̂− µ‖2 ≥ cσ2q

n

)
> c′, (42)

where the infimum is taken over all estimators.
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Proof Assume that q ≥ 2 since for q = 1 the result is trivial. We also assume for simplicity
that n is a multiple of q. Let m = n/q and γ = (1/8)

√
σ2q/n. Set β0 = 0, α0 = 0 and define,

for all integers j ≥ 1,

βj = βj−1 + γ +mαj−1, αj = 2γ + αj−1. (43)

By the Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9) there exists Ω ⊂ {0, 1}q
such that (32) is satisfied, with k replaced by q. For each ω ∈ Ω, define a vector uω ∈ Rn
with components

uωjm+i = ωj+1γ + αj(i− 1) + βj , j = 0, ..., q − 1, i = 1, ...,m.

The sequence uω is piecewise linear. It is linear with slope αj on the set {jm+1, ..., (j+1)m}
for any j = 0, ..., q − 1. Thus, q(uω) = q. Next, we prove that uω ∈ SC for all ω ∈ Ω. It is
enough to check the convexity condition at the endpoints of the linear pieces:

2uωjm ≤ uωjm−1 + uωjm+1, 2uωjm+1 ≤ uωjm + uωjm+2, (44)

for all j = 1, ..., q − 1. Using (43) we get that, for all j = 1, ..., q − 1,

uωjm+1 − uωjm = ωj+1γ + βj − (ωjγ + αj−1(m− 1) + βj−1),
= (ωj+1 − ωj + 1)γ + αj−1,

= (ωj+1 − ωj − 1)γ + αj .

Hence, αj−1 ≤ uωjm+1 − uωjm ≤ αj . Since also αj−1 = uωjm − uωjm−1 and αj = uωjm+2 − uωjm+1,
it follows that the two inequalities (44) hold, for all j = 1, ..., q − 1. Thus, uω ∈ SC. In
summary, we have proved that uω ∈ SC

q for all ω ∈ Ω.
Now, from the Varshamov-Gilbert bound, cf. (32), for ω,ω′ ∈ Ω we have

‖uω − uω′‖2 = γ2

q
dH(ω,ω′) ≥ γ2

8 = σ2q

512n, (45)

where dH(·, ·) is the Hamming distance. Finally, similarly to (34), the Kullback-Leibler
divergence between Pω and P0 satisfies K(Pω, P0) ≤ log(|Ω|−1)

16 . Applying (Tsybakov, 2009,
Theorem 2.7) with α = 1/16 completes the proof.

4. Concluding Remarks and Discussion

In this short note, we have shown that the estimators µ̂Q and µ̂Q−conv based on sparsity
pattern aggregation (in its Q-aggregation version) achieve oracle inequalities that improve
on some previous results for isotonic and convex regression.

One of the improvements is that oracle inequalities (17) and (39) are sharp, i.e., with
leading constant 1 and they are valid for all µ ∈ Rn. It allows us to obtain bounds for the
minimax regret under arbitrary model misspecification, which was not possible based on
the previous results. We show that these bounds are rate optimal up to logarithmic factors.
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The question on whether the least squares estimators under monotonicity and convexity
constraints can achieve sharp oracle inequalities with correct rates remains open.

Another improvement is that we obtain oracle inequalities both with high probability
and in expectation, which was not the case in the previous work.

An advantage of the least squares estimator is that it requires no tuning parameters.
In particular, the knowledge of σ2 is not needed to construct the estimators µ̂LS(S↑) and
µ̂LS(SC). This is in contrast to the `1 penalized estimator (7) and the estimators µ̂Q and
µ̂Q−conv; their construction requires the knowledge of σ2. For the `1 penalized estimator (7),
the issue may be addressed by using a scale-free version of the Lasso Belloni et al. (2014);
Sun and Zhang (2012). For the Q-aggregation estimators µ̂Q and µ̂Q−conv, we can treat
the issue of unknown σ as in Bellec (2014). Namely, it is shown in Bellec (2014) that the
oracle inequalities for Q-aggregation procedures are essentially preserved after plugging in
an estimator σ̂2 of σ2 that satisfies |σ̂2/σ2 − 1| ≤ 1/8 with high probability, which is even
weaker than consistency.

Finally, note that instead of Q-aggregation we could have used sparsity pattern ag-
gregation by the Exponential Screening procedure of Rigollet and Tsybakov (2011). This
would lead to sharp oracle inequalities in expectation of the form (17) and (39) but not
to inequalities with high probability such as (16) and (38). This is the reason why we
have opted for Q-aggregation rather than for Exponential Screening in this paper. On
the other hand, Exponential Screening estimators are computationally more attractive
than Q-aggregation since they can be successfully approximated by MCMC algorithms (see
Rigollet and Tsybakov (2011, 2012) for details).
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Abstract

In this paper we explore maximal deviations of large random structures from their typical
behavior. We introduce a model for a high-dimensional random graph process and ask
analogous questions to those of Vapnik and Chervonenkis for deviations of averages: how
“rich” does the process have to be so that one sees atypical behavior.

In particular, we study a natural process of Erdős-Rényi random graphs indexed by
unit vectors in Rd. We investigate the deviations of the process with respect to three
fundamental properties: clique number, chromatic number, and connectivity. In all cases
we establish upper and lower bounds for the minimal dimension d that guarantees the
existence of “exceptional directions” in which the random graph behaves atypically with
respect to the property. For each of the three properties, four theorems are established,
to describe upper and lower bounds for the threshold dimension in the subcritical and
supercritical regimes.
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1. Introduction

One of the principal problems in probability and statistics is the understanding of maximal
deviations of averages from their means. The revolutionary work of Vapnik and Chervo-
nenkis (1971, 1974, 1981) introduced a completely new combinatorial approach that opened
many paths and helped us understand this fundamental phenomena. Today, the Vapnik-
Chervonenkis theory has become the theoretical basis of statistical machine learning, em-
pirical process theory, and has applications in a diverse array of fields.

The purpose of this paper is to initiate the exploration of maximal deviations of complex
random structures from their typical behavior. We introduce a model for a high-dimensional
random graph process and ask analogous questions to those of Vapnik and Chervonenkis
for deviations of averages: how “rich” does the process have to be so that one sees atypical
behavior. In particular, we study a process of Erdős-Rényi random graphs. In the G(n, p)
model introduced by Erdős and Rényi (1959, 1960), a graph on n vertices is obtained by
connecting each pair of vertices with probability p, independently, at random. The G(n, p)
model has been thoroughly studied and many of its properties are well understood—see,
e.g., the monographs of Bollobás (2001) and Janson et al. (2000).

In this paper we introduce a random graph process indexed by unit vectors in Rd, defined
as follows. For positive integer n, write [n] = {1, . . . , n}. For 1 ≤ i < j ≤ n, let Xi,j be
independent standard normal vectors in Rd. Denote by Xn = (Xi,j)1≤i<j≤n the collection
of these random points. For each s ∈ Sd−1 (where Sd−1 denotes the unit sphere in Rd) and
t ∈ R we define the random graph Γ(Xn, s, t) with vertex set v(Γ(Xn, s, t)) = [n] and edge
set e(Γ(Xn, s, t)) = {{i, j} : 〈Xi,j , s〉 ≥ t}, where 〈·, ·〉 denotes the usual inner product in
Rd.

For any fixed s ∈ Sd−1 and t ∈ R, Γ(Xn, s, t) is distributed as an Erdős-Rényi random
graph G(n, p), with p = 1−Φ(t) where Φ is the distribution function of a standard normal
random variable. In particular, Γ(Xn, s, 0) is a G(n, 1/2) random graph. With a slight
abuse of notation, we write Γ(Xn, s) for Γ(Xn, s, 0).

We study the random graph process

Gd,p(Xn) =
{

Γ(Xn, s,Φ
−1(1− p)) : s ∈ Sd−1

}
.

Gd,p(Xn) is a stationary process of G(n, p) random graphs, indexed by d-dimensional unit
vectors. For larger values of d, the process becomes “richer”. Our aim is to explore
how large the dimension d needs to be for there to exist random directions s for which
Γ(Xn, s,Φ

−1(1−p)) ∈ Gd,p(Xn) has different behavior from what is expected from a G(n, p)
random graph. Adapting terminology from dynamical percolation Steif (2009), we call such
directions exceptional rotations. More precisely, in analogy with the Vapnik-Chervonenkis
theory of studying atypical deviations of averages from their means, our aim is to develop a
VC theory of random graphs. In particular, we study three fundamental properties of the
graphs in the family Gd,p(Xn): the size of the largest clique, the chromatic number, and
connectivity. In the first two cases we consider p = 1/2 while in the study of connectivity
we focus on the case when p = c log n/n for some constant c > 0.

The graph properties we consider are all monotone, so have a critical probability p∗

at which they are typically obtained by G(n, p). For example, consider connectivity, and
suppose we first place ourselves above the critical probability in G(n, p), e.g., p = c log n/n
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for c > 1, so that G(n, p) is with high probability connected. Then the question is how large
should d be to ensure that for some member graph in the class, the property (connectivity)
disappears. There is a threshold dimension d for this, and we develop upper and lower
bounds for that dimension. Secondly, consider the regime below the critical probability for
connectivity in G(n, p), e.g., p = c log n/n for c < 1. In this case, with high probability
G(n, p) is not connected, and we ask how large d should be to ensure that for some member
graph in the class, the property (connectivity) appears. Again, we develop upper and lower
bounds for the threshold dimension d for this.

In all, for each of the three properties considered in this paper, clique number, chromatic
number, and connectivity, four theorems are needed, to describe upper and lower bounds
for the threshold dimension for exceptional behaviour in the subcritical regime (when the
property typically does not obtain) and in the supercritical regime (when the property
typically does obtain). In every case, our results reveal a remarkable asymmetry between
“upper” and “lower” deviations relative to this threshold.

Our techniques combine some of the essential notions introduced by Vapnik and Cher-
vonenkis (such as shattering, covering, packing, and symmetrization), with elements of
high-dimensional random geometry, coupled with sharp estimates for certain random graph
parameters.

The model considered in this paper uses subsets of the collection of halfspaces in
Rd to define the random graphs in the collection. A natural variant would be one in
which we associate with each edge {i, j} a uniformly distributed random vector on the
torus [0, 1]d, and consider a class parametrized by s ∈ [0, 1]d. Then define the edge set
e(Γ(Xn, s, t)) = {{i, j} : ‖Xi,j−s‖ ≤ t}. For general classes of sets of Rd, the complexity of
the classes will affect the behaviour of the collection of random graphs in a universal man-
ner. We can define the complexity of a class of graphs indexed in terms of the threshold
dimension needed to make certain graph properties appear or disappear in the subcritical
and supercritical regimes, respectively. It will be interesting to explore the relationship
between the combinatorial geometry of the class and these complexities.

Note that when d = 1, G1,p(Xn) only contains two graphs (when p = 1/2, one is the
complement of the other), and therefore the class is trivial. On the other extreme, when

d ≥
(
n
2

)
, with probability one, the collection Gd,1/2(Xn) contains all 2(n2) graphs on n

vertices. This follows from the following classical result on the “VC shatter coefficient”
of linear half spaces (see, e.g., Schläffli 1950, Cover 1965) that determines the number of
different graphs in Gd,1/2(Xn) (with probability one).

Lemma 1 Given N ≥ d points x1, . . . , xN ∈ Rd in general position (i.e., every subset of
d points is linearly independent), the number of binary vectors b ∈ {0, 1}N of the form
b =

(
1{〈xi,s〉≥0}

)
i≤N for some s ∈ Sd−1 equals

C(N, d) = 2

d−1∑
k=0

(
N − 1

k

)
.

In particular, when N = d, all 2N possible dichotomies of the N points are realizable
by some linear half space with the origin on its boundary. In such a case we say that the
N points are shattered by half spaces.
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1.1 Notation and Overview

Throughout the paper, log denotes natural logarithm. For a sequence {An} of events, we
say that An holds with high probability if limn→∞ P{An} = 1.

The paper is organized as follows. In Section 2 we study the clique number in the case
p = 1/2. The four parts of Theorem 2 establish upper and lower bounds for the critical
dimension above which, with high probability, there exist graphs in Gd,1/2(Xn) whose
largest clique is significantly larger/smaller than the typical value, which is ≈ 2 log2 n −
2 log2 log2 n. We show that the critical dimension for which some graphs in Gd,1/2(Xn)

have a clique number at least, say, 10 log2 n is of the order of log2 n/ log logn.
In sharp contrast to this, d needs to be at least n2/ polylog n to find a graph in

Gd,1/2(Xn) with maximum clique size 3 less than the typical value. We study this func-
tional in Section 3. Theorem 3 summarizes the four statements corresponding to upper and
lower bounds in the sub-, and super-critical regime. Once again, the two regimes exhibit an
important asymmetry. While no graphs in Gd,1/2(Xn) have a chromatic number a constant
factor larger than typical unless d is is of the order of n2/ polylog n, there exist graphs with
a constant factor smaller chromatic number for d near n.

Finally, in Section 4, connectivity properties are examined. To this end, we place our-
selves in the regime p = c log n/n for some constant c. When c < 1, a typical graph G(n, p)
is disconnected, with high probability, while for c > 1 it is connected. In Theorem 6 we
address both cases. We show that for c > 1, the critical dimension above which one finds
disconnected graphs among Gd,c logn/n(Xn) is of the order of log n/ log logn. (Our upper
and lower bounds differ by a factor of 2.) We also show that when c < 1, d needs to be at
least roughly n1−c in order to find a connected graph Gd,c logn/n(Xn). While we conjecture
this lower bound to be sharp, we do not have a matching upper bound in this case. How-
ever, we are able to show that when d is at least of the order of n

√
log n, Gd,c logn/n(Xn)

not only contains some connected graphs but with high probability, for any spanning tree,
there exists s ∈ Sd−1 such that Γ(Xn, s, t) contains that spanning tree. This property holds
for even much smaller values of p.

In the Appendix we gather some technical estimates required for the proofs. Before
diving into the proofs we make one final remark regarding the proof techniques. Fix an
increasing graph property P. One natural way to show that with high probability there
exists a direction s for which Γ(Xn, s, t) has P is as follows. Fix p in (0, 1) such that G(n, p)
has property P with high probability; then show that with high probability there exists a
direction s for which Γ(Xn, s, t) has at least p

(
n
2

)
edges. This type of argument, and its

obvious analogue for decreasing graph properties, maximally decouple geometric and graph
theoretic considerations. For the lower tail of the clique number, our results, Theorem 2
(i) and (ii), leave open the possibility that such an argument could yield tight bounds for
threshold dimensions. For the remaining properties we consider, our results rule this out –
the dimensional thresholds cannot be explained by edge density alone.

2. Clique Number

In this section we consider p = 1/2 and investigate the extremes of the clique number
amongst the graphs Γ(Xn, s), s ∈ Sd−1. Denote by cl(Xn, s) the size of the largest clique
in Γ(Xn, s).
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The typical behavior of the clique number of a G(n, 1/2) random graph is quite accu-
rately described by Matula’s classical theorem (Matula, 1972) that states that for any fixed
s ∈ Sd−1, for any ε > 0,

cl(Xn, s) ∈ {bω − εc, bω + εc}

with probability tending to 1, where ω = 2 log2 n− 2 log2 log2 n+ 2 log2 e− 1.
Here we are interested in understanding the values of d for which graphs with atypical

clique number appear. We prove below that while for moderately large values of d some
graphs Γ(Xn, s) have a significantly larger clique number than ω, one does not find graphs
with significantly smaller clique number unless d is nearly quadratic in n.

Observe first that by Lemma 1 for any k, if d ≥
(
k
2

)
, then, with probability one,

cl(Xn, s) ≥ k for some s ∈ Sd−1. (Just fix any set of k vertices; all 2k graphs on
these vertices is present for some s, including the complete graph.) For example, when
d ∼ (9/2)(log2 n)2, cl(Xn, s) ≥ 3 log2 n for some s ∈ Sd−1, a quite atypical behavior. In
fact, with a more careful argument we show below that when d is a sufficiently large con-
stant multiple of (log n)2/ log log n, then, with high probability, there exists s ∈ Sd−1 such
that cl(Xn, s) ≥ 3 log2 n. We also show that no such s exists for d = o((log n)2/ log logn).
Perhaps more surprisingly, clique numbers significantly smaller than the typical value only
appear for huge values of d. The next theorem shows the surprising fact that in order to
have that for some s ∈ Sd−1, cl(Xn, s) < ω− 3, the dimension needs to be n2−o(1). (Recall
that for d =

(
n
2

)
the point set Xn is shattered and one even has cl(Xn, s) = 1 for some s.

Our findings on the clique number are summarized in the following theorem.

Theorem 2 (clique number.) If cl(Xn, s) denotes the clique number of Γ(Xn, s), then,
with high probability the following hold:

(i) (subcritical; necessary.) If d = o(n2/(log n)9), then for all s ∈ Sd−1, cl(Xn, s) >
bω − 3c .

(ii) (subcritical; sufficient.) If d ≥
(
n
2

)
, then there exists s ∈ Sd−1 such that

cl(Xn, s) = 1 .

(iii) (supercritical; necessary.) For any c > 2 there exists c′ > 0 such that if d ≤
c′ log2 n/ log logn, then for all s ∈ Sd−1, we have cl(Xn, s) ≤ c log2 n.

(iv) (supercritical; sufficient.) For any c > 2 and c′ > c2/(2 log 2), if it is the case
that d ≥ c′ log2 n/ log log n, then there exists s ∈ Sd−1 such that cl(Xn, s) ≥ c log2 n .

The event described in (ii) holds with probability one for all n.

Proof To prove part (i), let k = bω − 3c and let Nk(s) denote the number of cliques of
size k in Γ(Xn, s). Let η ∈ (0, 1] and let Cη be a minimal η-cover of Sd−1. Then

P
{
∃s ∈ Sd−1 : Nk(s) = 0

}
= P

{
∃s′ ∈ Cη and ∃s ∈ Sd−1 : ‖s− s′‖ ≤ η : Nk(s) = 0

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
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where s0 = (1, 0, . . . , 0) and the last inequality follows from the union bound. Consider the
graph Γ(Xn, s0,−η

√
1− η2/4) in which vertex i and vertex j are connected if and only if

the first component of Xi,j is at least −η
√

1− η2/4
The proof of Lemma 12 implies that the event

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
is included in the event that Γ(Xn, s0,−η

√
1− η2/4) does not have any clique of size k.

By Lemma 12, the probability of this is bounded by the probability that an Erdős-Rényi

random graph G(n, 1/2 − αn) does not have any clique of size k where αn = η
√
d√

2π
. If we

choose (say) η = 1/n2 then for d ≤ n2 we have αn ≤ 1/n and therefore, by Lemma 17
below,

P
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
≤ exp

(
−C ′n2

(log2 n)8

)
for some numerical constant C ′. Thus, using Lemma 10,

P
{
∃s ∈ Sd−1 : Nk(s) = 0

}
≤ (4n2)d exp

(
−C ′n2

(log2 n)8

)
= o(1)

whenever d = o(n2/(log n)9).

Part (ii) follows from the simple fact that, by Lemma 1, with d =
(
n
2

)
even the empty graph

appears among the Γ(Xn, s).

The proof of part (iii) proceeds similarly to that of part (i). Let k = c log2 n. Then

P
{
∃s ∈ Sd−1 : Nk(s) ≥ 1

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) ≥ 1

}
.

Similarly to the argument of (i), we note that the event
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) ≥ 1

}
is included in the event that Γ(Xn, s0,−η

√
1− η2/4) has a clique of size k, which is bounded

by the probability that an Erdős-Rényi random graph G(n, 1/2 +αn) has a clique of size k

where αn = η
√
d√

2π
. Denoting p = 1/2+αn, this probability is bounded by

(
n
k

)
p(
k
2) ≤

(
npk/2

)k
.

We may choose η = 4/d. Then, for d sufficiently large, αn ≤ (c/2−1) log 2 and, using Lemma
10, we have

P
{
∃s ∈ Sd−1 : Nk(s) ≥ 1

}
≤ (4/η)d

(
np(c/2) log2 n

)c log2 n

≤ ed log d
(
n1+(c/2) log2(1/2+αn)

)c log2 n

≤ ed log d
(
n1−c/2+cαn/ log 2

)c log2 n

≤ ed log dn(1−c/2)c(log2 n)/2

= ed log d−(c−2)c(log2 n)2 log 2/4 ,

and the statement follows.

It remains to prove part (iv). The proof relies on the second moment method. Let c > 2,
c′ > c2/(2 log 2), and assume that d ≥ c′ log2 n/ log log n. Let K be a constant satisfying
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K > 2/
√
c′ and define θ = K

√
log logn/ log n. Let A be a subset of Sd−1 of cardinality at

least (d/16)θ−(d−1) such that for all distinct pairs s, s′ ∈ A, we have 〈s, s′〉 ≥ cos(θ). Such
a set exists by Lemma 11. Also, let C be the family of all subsets of [n] of cardinality k =
bc log2 nc. For s ∈ A and γ ∈ C, denote by Zs,γ the indicator that all edges between vertices
in γ are present in the graph Γ(Xn, s). Our aim is to show that limn→∞ P{Z > 0} = 1
where

Z =
∑
s∈A

∑
γ∈C

Zs,γ .

To this end, by the second moment method (see, e.g., Alon and Spencer 1992), it suffices
to prove that EZ →∞ and that E[Z2] = (EZ)2(1 + o(1).

To bound EZ note that

EZ = |A|
(
n

k

)
EZs,γ

≥ (d/16)θ−(d−1)

(
n

k

)
2−(k2)

= exp

(
(log n)2

(
c′ − c2

2 log 2
+

c

log 2
+ o(1)

))
→∞ .

On the other hand,

E[Z2] =
∑
s,s′∈A

∑
γ,γ′∈C

E[Zs,γZs′,γ′ ]

=
∑

s,s′:s 6=s′∈A

∑
γ,γ′∈C:|γ∩γ′|≤1

E[Zs,γZs′,γ′ ] +
∑
s∈A

∑
γ,γ′∈C

E[Zs,γZs,γ′ ]

+
∑

s,s′:s 6=s′∈A

∑
γ,γ′∈C:|γ∩γ′|≥2

E[Zs,γZs′,γ′ ]

def
= I + II + III .

For the first term note that if γ and γ′ intersect in at most one vertex then Zs,γ and Zs′,γ′

are independent and therefore

I =
∑

s,s′:s 6=s′∈A

∑
γ,γ′∈C:|γ∩γ′|≤1

EZs,γEZs′,γ′ ≤ (EZ)2 .

Hence, it suffices to prove that II + III = o((EZ)2). To deal with II, we have

II

(EZ)2
=

1

|A| ·
(
n
k

) k∑
`=0

2(`2)
(
n− k
k − `

)(
k

`

)

≤ 1

|A|

k∑
`=0

2(`2)
k2`

(n− 2k)``!

≤ 1

|A|
2(`2)

∞∑
`=0

(
k2

n− 2k

)`
1

`!

= exp
(
−(log n)2

(
c′ + o(1)− c2/(2 log 2)

))
→ 0 .

1899



Addario-Berry, Bhamidi, Bubeck, Devroye, Lugosi, and Oliveira

We now take care of III. To this end, we bound

max
s,s′∈A:s 6=s′
γ,γ′:|γ∩γ′|=`

E[Zs,γZs′,γ′ ]

by

2(`2)−2(k2)+1P
{〈

N

‖N‖
, s0

〉
≥ sin(θ/2)

}(`2)
,

where N is a standard normal vector in Rd. To see this, note that 2
(
k
2

)
−
(
`
2

)
edges of the

two cliques occur independently, each with probability 1/2. The remaining
(
`
2

)
edges must

be in both Γ(Xn, s) and Γ(Xn, s
′). A moment of thought reveals that this probability is

bounded by the probability that the angle between a random normal vector and a fixed
unit vector (say s0) is less than π/2− θ/2. This probability may be bounded as

P {〈N/‖N‖, s0〉 ≥ sin(θ/2)} =
1

2
P
{
B ≥ sin2(θ/2)

}
(where B is a Beta(1/2, (d− 1)/2) random variable)

≤ EB
2 sin2(θ/2)

=
1

2d sin2(θ/2)

=
2 + o(1)

dθ2
=

2 + o(1)

c′K2
.

Via the same counting argument used in handling II, we have

III

(EZ)2
≤

k∑
`=2

2(`2)
(

2 + o(1)

c′K2

)(`2)
(

k2

n− 2k

)`
1

`!
.

Since c′K2 > 4, we have, for n large enough,

III

(EZ)2
≤

k∑
`=2

(
k2

n− 2k

)`
1

`!
= O

(
(log n)2

n2

)
as required. This concludes the proof of the theorem.

We conclude the section by remarking that the above proof extends straightforwardly to
G(n, p) for any constant p ∈ (0, 1).

3. Chromatic Number

A proper coloring of vertices of a graph assigns a color to each vertex such that no pair of
vertices joined by an edge share the same color. The chromatic number χ(G) of a graph G
is the smallest number of colors for which a proper coloring of the graph exists.

Here we study the fluctuations of the chromatic numbers χ(Γ(Xn, s)) from its typical
behavior as s ∈ Sd−1. Once again, for simplicity of the presentation, we consider p = 1/2.
The arguments extend easily to other (constant) values of p.
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For a fixed s, a celebrated result of Bollobás (1988) implies that

n

2 log2 n
≤ χ(Γ(Xn, s)) ≤

n

2 log2 n
(1 + o(1))

with high probability.

In this section we derive estimates for the value of the dimension d for which there exist
random graphs in the collection Gd,1/2(Xn) whose chromatic number differs substantially
(i.e., by a constant factor) from that of a typical G(n, 1/2) graph. Similar to the case of
the clique number studied in Section 2, we find that upper and lower deviations exhibit a
different behavior—though in a less dramatic way. With high probability, one does not see a
graph with a clique number larger than (1 + ε)n/(2 log2 n) unless d is at least n2/ polylog n.
On the other hand, when d is roughly linear in n, there are graphs is Gd,1/2(Xn) with
chromatic number at most (1 − ε)n/(2 log2 n). Below we make these statements rigorous
and also show that they are essentially tight.

Theorem 3 (chromatic number.) Let ε ∈ (0, 1/2). If χ(Γ(Xn, s)) denotes the chro-
matic number of Γ(Xn, s), then, with high probability the following hold:

(i) (subcritical; necessary.) If d = o(n/(log n)3), then for all s ∈ Sd−1, χ(Γ(Xn, s)) ≥
(1− ε)n/(2 log2 n).

(ii) (subcritical; sufficient.) If d ≥ 2n log2 n/(1 − 2ε), then there exists s ∈ Sd−1

such that χ(Γ(Xn, s)) ≤ (1− ε)n/(2 log2 n).

(iii) (supercritical; necessary.) If d = o(n2/(log n)6), then we have that for all s ∈
Sd−1, χ(Γ(Xn, s)) ≤ (1 + ε)n/(2 log2 n).

(iv) (supercritical; sufficient.) If d ≥ .5 [(1 + ε)n/(2 log2 n)]2, then there exists s ∈
Sd−1 such that χ(Γ(Xn, s)) ≥ (1 + ε)n/(2 log2 n).

Part (i) of Theorem 3 follows from the following “uniform concentration” argument.

Proposition 4 If d = o(n/(log n)3), we have

sup
s∈Sd−1

∣∣∣∣χ(Γ(Xn, s))−
n

2 log2 n

∣∣∣∣ = op

(
n

log2 n

)
,

Proof A classical result of Shamir and Spencer (1987) shows that for any fixed s ∈ Sd−1,

|χ(Γ(Xn, s))− E (χ(Γ(Xn, s)))| = Op(n
1/2) .

In fact, one may easily combine the above-mentioned results of Bollobás and Shamir and
Spencer to obtain that

Eχ(Γ(Xn, s))

n/(2 log2 n)
→ 1 .

The proof of the proposition is based on combining the Shamir-Spencer concentration ar-
gument with Vapnik-Chervonenkis-style symmetrization.
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For each s ∈ Sd−1 and i = 2, . . . , n, define Yi,s = (1{〈Xi,j ,s〉≥0}})j=1,...,i−1 ∈ {0, 1}i−1 as
the collection of indicators of edges connecting vertex i smaller-labeled vertices in Γ(Xn, s).
As Shamir and Spencer, we consider the chromatic number Γ(Xn, s) as a function of these
variables and define the function f :

∏n
i=2{0, 1}i−1 → N by

f(Y2,s, . . . , Yn,s) = χ(Γ(Xn, s)) .

By Markov’s inequality, it suffices to show that

E

[
sup

s∈Sd−1

|f(Y2,s, . . . , Yn,s)− Ef(Y2,s, . . . , Yn,s)|

]
= o

(
n

log n

)
.

Let X ′n = (X ′i,j)1≤i<j≤n be an independent copy of Xn. Denote by E′ conditional expecta-

tion given Xn. We write Y ′i,s = (1{〈X′i,j ,s〉≥0}})j=1,...,i−1 ∈ {0, 1}i−1.

Also introduce random “swap operators” ε2, . . . , εn defined by

εi(Yi,s, Y
′
i,s) =

{
Yi,s with probability 1/2
Y ′i,s with probability 1/2

where the εi are independent of each other and of everything else.

E

[
sup

s∈Sd−1

|f(Y2,s, . . . , Yn,s)− Ef(Y2,s, . . . , Yn,s)|

]

= E

[
sup

s∈Sd−1

∣∣E′ (f(Y2,s, . . . , Yn,s)− f(Y ′2,s, . . . , Y
′
n,s)
)∣∣]

≤ E

[
sup

s∈Sd−1

∣∣f(Y2,s, . . . , Yn,s)− f(Y ′2,s, . . . , Y
′
n,s)
∣∣]

= E

[
sup

s∈Sd−1

∣∣f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s))− f(ε2(Y ′2,s, Y2,s), . . . , εn(Y ′n,s, Yn,s))

∣∣] .

Introduce now the expectation operator Eε that computes expectation with respect to the
random swaps only. Then we can further bound the expectation above by

2EEε

[
sup

s∈Sd−1

∣∣f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s))− Eεf(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s))

∣∣] .

Next we bound the inner expectation. Note that for fixed Xn,X
′
n, by Lemma 1, there

are at most n2d different dichotomies of the 2
(
n
2

)
points in Xn ∪X ′n by hyperplanes in-

cluding the origin and therefore there are not more than n2d random variables of the form
f(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s)) as s varies over Sd−1. On the other hand, for any fixed s,

the value of f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s)) can change by at most 1 if one flips the value

of one of the εi(Yi,s, Y
′
i,s) (i = 2, . . . , n), since such a flip amounts to changing the edges

incident to vertex i and therefore can change the value of the chromatic number by at most
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one. Thus, by the bounded differences inequality (see, e.g., Boucheron et al. 2013, Section
6.1), for all s ∈ Sd−1 and λ > 0,

Eε
[
exp

(
λ(f(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s))− Eεf(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s)))

)]
≤ exp

(
(n− 1)λ2

2

)
.

Therefore, by a standard maximal inequality for sub-Gaussian random variables (Boucheron
et al., 2013, Section 2.5),

Eε

[
sup

s∈Sd−1

∣∣f(ε2(Y2,s, Y
′

2,s), . . . , εn(Yn,s, Y
′
n,s))− Eεf(ε2(Y2,s, Y

′
2,s), . . . , εn(Yn,s, Y

′
n,s))

∣∣]
≤
√

4(n− 1)d log n .

Since the upper bound is o(n/ log n) for d = o(n/ log3 n), the result follows.

Parts (ii) and (iv) of Theorem 3 follow from the next, straightforward proposition by
setting k = b(1− ε)n/(2 log2 n)c and k′ = d(1 + ε)n/(2 log2 n)e.

Proposition 5 Let k, k′ ≤ n be positive integers. If d ≥ k
(dn/ke

2

)
, then, with probability

one, there exists s ∈ Sd−1 such that χ(Γ(Xn, s)) ≤ k. On the other hand, if d ≥
(
k′

2

)
, then,

with probability one, there exists s ∈ Sd−1 such that χ(Γ(Xn, s)) ≥ k′.

Proof Partition the vertex set [n] into k disjoint sets of size at most dn/ke each. If for
some s ∈ Sd−1 each of these sets is an independent set (i.e., contain no edge joining two
vertices within the set) in Γ(Xn, s), then the graph Γ(Xn, s) is clearly properly colorable
with k colors. Let A be the set of pairs of vertices (i, j) such that i and j belong to the same
set of the partition. By Lemma 1, if d ≥ k

(dn/ke
2

)
≥ |A|, the set of points {Xi,j : (i, j) ∈ A}

is shattered by half spaces. In particular, there exists an s ∈ Sd−1 such that 〈Xi,j , s〉 < 0
for all (i, j) ∈ A and therefore Γ(Xn, s) has no edge between any two vertices in the same
set. The first statement follows.

To prove the second statement, simply notice that is a graph has a clique of size k then
its chromatic number at least k. But if d ≥

(
k
2

)
, then, by Lemma 1, for some s ∈ Sd−1, the

vertex set {1, . . . , k} forms a clique.

It remains to prove Part (iii) of Theorem 3. To this end, we combine the covering
argument used in parts (i) and (iii) of Theorem 2 with a result of Alon and Sudakov (2010)
(see Proposition 18 below) that bounds the “resilience” of the chromatic number of a random
graph.

Let Cη be a minimal η-cover of Sd−1 where we take η = cε2/(
√
d log2 n) for a sufficiently

small positive constant c. Then

P
{
∃s ∈ Sd−1 : χ(Γ(Xn, s)) > (1 + ε)

n

2 log2 n

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : χ(Γ(Xn, s)) > (1 + ε)

n

2 log2 n

}
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where s0 = (1, 0, . . . , 0). By the argument used in the proof of parts (i) and (iii) of Theorem
2, ⋃

s∈Sd−1:‖s−s0‖≤η

Γ(Xn, s) ⊂ Γ(Xn, s0) ∪ E

where E is a set of Bin(
(
n
2

)
, αn) edges where, αn = η

√
d√

2π
. By our choice of η, we have

αn ≤ c2ε
2n2/(log2 n)2 where c2 is the constant appearing in Proposition 18. Thus, by the

Chernoff bound,

P
{
|E| > c2ε

2n2

(log2 n)2

}
≤ exp

(
−c2(log 2− 1/2)ε2n2

(log2 n)2

)
.

Hence, by Proposition 18,

P
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : χ(Γ(Xn, s)) > (1 + ε)

n

2 log2 n

}
≤ exp

(
−c2(log 2− 1/2)ε2n2

(log2 n)2

)
+ exp

(
− c1n

2

(log2 n)4

)
.

Combining this bound with Lemma 10 implies the statement. �

4. Connectivity

In this section we study connectivity of the random graphs in Gd,p(Xn). It is well known
since the pioneering work of Erdős and Rényi (1960) that the threshold for connectivity for
a G(n, p) random graph is when p = c log n/n. For c < 1, the graph is disconnected and
for c > 1 it is connected, with high probability. In this section we investigate both regimes.
In particular, for c > 1 we establish lower and upper bounds for the smallest dimension d
such that some graph in Gd,c logn/n(Xn) is disconnected. We prove that this value of d is of
the order of (c− 1) log n/ log log n. For the regime c < 1 we also establish lower and upper
bounds for the smallest dimension d such that some graph in Gd,c logn/n(Xn) is connected.
As in the case of the clique number and chromatic number, here as well we observe a large
degree of asymmetry. In order to witness some connected graphs in Gd,c logn/n(Xn), the
dimension d has to be at least of the order of n1−c. While we suspect that this bound
is essentially tight, we do not have a matching upper bound. However, we are able to
show that when d is of the order of n log n, the family Gd,c logn/n(Xn) not only contains
connected graphs, but also, with high probability, for every spanning tree of the vertices
[n], there exists an s ∈ Sd−1 such that Γ(Xn, s, t) contains the spanning tree. (Recall that
t is such that p = 1− Φ(t).)

Theorem 6 (connectivity.) Assume p = c log n/n and let t = Φ−1(1 − p). Then with
high probability the following hold:

(i) (subcritical; necessary.) If c < 1 then for any ε > 0, if d = O(n1−c−ε), then for
all s ∈ Sd−1, Γ(Xn, s, t) is disconnected.

(ii) (subcritical; sufficient.) There exists an absolute constant C such that if d ≥
Cn
√

log n, then there exists an s ∈ Sd−1 such that Γ(Xn, s, t) is connected.
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(iii) (supercritical; necessary.) If c > 1 then for any ε > 0, if d ≤ (1 − ε)(c −
1) log n/ log log n, then for all s ∈ Sd−1, Γ(Xn, s, t) is connected.

(iv) (supercritical; sufficient.) If c > 1 then for any ε > 0, if d ≥ (2 + ε)(c −
1) log n/ log log n, then for some s ∈ Sd−1, Γ(Xn, s, t) is disconnected.

4.1 Proof of Theorem 6, Part (i)

To prove part (i), we show that when d = O(n1−c−ε), with high probability, all graphs
Γ(Xn, s, t) contain at least one isolated point. The proof of this is based on a covering
argument similar those used in parts of Theorems 2 and 3, combined with a sharp estimate
for the probability that G(n, c log n/n) has no isolated vertex. This estimate, given in
Lemma 19 below, is proved by an elegant argument of O’Connell (1998).

Let η ∈ (0, 1] to be specified below and let Cη be a minimal η-cover of Sd−1. If N(s)
denotes the number of isolated vertices (i.e., vertices of degree 0) in Γ(Xn, s, t), then

P
{
∃s ∈ Sd−1 : Γ(Xn, s, t) is connected

}
≤ P

{
∃s ∈ Sd−1 : N(s) = 0

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : N(s) = 0

}
where s0 = (1, 0, . . . , 0). It follows by the first half of Lemma 13 that there exists a constant
κ > 0 such that if η = κε/(t

√
d), then

P
{
∃s ∈ Sd−1 : ‖s− s0‖ ≤ η : Nk(s) = 0

}
≤ P {N = 0}

where N is the number of isolated vertices in a G(n, (c + ε/2) log n/n) random graph. By
Lemma 19, for n sufficiently large, this is at most exp(−n−(1−c−ε/2)/3). Bounding |Cη| by
Lemma 10 and substituting the chosen value of η proves part (i).

4.2 Proof of Theorem 6, Part (ii)

Part (ii) of Theorem 6 follows from a significantly more general statement. Based on a
geometrical argument, we show that for any positive integer k, if d is at least a sufficiently
large constant multiple of kΦ−1(1− p), then with high probability, k independent standard
normal vectors in Rd are shattered by half spaces of the form {x : 〈x, s〉 ≥ t}. In particular,
by taking k = n− 1 and considering the normal vectors Xi,j corresponding to the edges of
any fixed spanning tree, one finds an s ∈ Sd−1 such that Γ(Xn, s, t) contains all edges of
the spanning tree, making the graph connected. Note that if d ≥ Cn

√
α log n then the same

statement holds whenever p = n−α regardless of how large α is. Thus, for d � n
√

log n,
some Γ(Xn, s, t) are connected, even though for a typical s, the graph is empty with high
probability.

Fix a set E of edges of the complete graph Kn. We say that Gd,p(Xn) shatters E if
{e(G) : G ∈ Gd,p(Xn)} shatters E (where e(G) denotes the set of edges of a graph G).
In other words, Gd,p(Xn) shatters E if for all F ⊂ E there is G ∈ Gd,p(Xn) such that
e(G) ∩ E = F .
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Proposition 7 Fix n ∈ N, k ∈ {1, 2, . . . ,
(
n
2

)
}, and a set E = {e1, . . . , ek} of edges of the

complete graph Kn. There exist universal constants b, c > 0 such that for d ≥ (4/c) · k ·
Φ−1(1− p) we have

P (Gd,p(Xn) shatters E) ≥ 1− e−bd .

Proof Given points x1, . . . , xk in Rd, the affine span of x1, . . . , xk is the set {
∑k

i=1 ciXi :∑k
i=1 ci = 1}. Fix E = {e1, . . . , ek} ∈ Sk and let PE be the affine span of Xe1 , . . . , Xek .

Also, let t = Φ−1(1− p).
First suppose that min{‖y‖ : y ∈ PE} > t. Then we may shatter E as follows. First,

almost surely, PE is a (k − 1)-dimensional affine subspace in Rd. Assuming this occurs,
then E is shattered by halfspaces in PE : in other words, for any F ⊂ E there is a (k − 2)-
dimensional subspace H contained within PE such that F and E \ F lie on opposite sides
of H in PE (i.e., in different connected components of PE \H).

Fix F ⊂ E and H ⊂ PE as in the preceding paragraph. Then let K be a (d − 1)-
dimensional hyperplane tangent to tSd−1 = {x ∈ Rd : ‖x‖ = t}, intersecting PE only at
H, and separating the origin from F . In other words, K is such that K ∩ PE = H and
|K ∩ tSd−1| = 1, and also such that 0 and F lie on opposite sides of K of Rd \K. Since PE
has dimension k− 1 < d− 2, such a hyperplane K exists. Since F and E \F lie on opposite
sides of H, we also obtain that 0 and E \ F lie on the same side of K.

Let s ∈ Sd−1 be such that ts ∈ K. Then for e ∈ F we have 〈Xe, s〉 > t, and for e ∈ E \F
we have 〈Xe, s〉 < t. It follows that E ∩ Γ(X, s, t) = F . Since F ⊂ E was arbitrary, this
implies that

P(Gd,p(Xn) shatters E) ≥ P(min{‖y‖ : y ∈ PE} > Φ−1(1− p)) ,

In light of the assumption that d ≥ (4/c) · k ·Φ−1(1− p), the proposition is then immediate
from Lemma 8 below.

The key element of the proof of Proposition 7 is that the affine span of k ≤ 4d indepen-
dent standard normal vectors in Rd is at least at distance of the order of d/k from the origin.
This is made precise in the following lemma whose proof crucially uses a sharp estimate
for the smallest singular value of a d × k Wishart matrix, due to Rudelson and Vershynin
(2009).

Lemma 8 There exist universal constants b, c > 0 such that the following holds. Let
N1, . . . , Nk be independent standard normal vectors in Rd, let P be the affine span of
N1, . . . , Nk, and let D = min{‖y‖ : y ∈ P}. Then whenever d ≥ 4k, we have P(D ≤
cd/4k) < 2e−bd.
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Proof We use the notation y = (y1, . . . , yk). We have

D = min
y :

∑
yi=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
2

= min
y :

∑
yi=1
|y|2

∥∥∥∥∥
k∑
i=1

yi
‖y‖

Ni

∥∥∥∥∥
2

≥ min
y :

∑
yi=1

1

k

∥∥∥∥∥
k∑
i=1

yi
‖y‖

Ni

∥∥∥∥∥
2

≥ 1

k
min

y :|y|2=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
2

,

where the first inequality holds because if
∑k

i=1 yi = 1 then ‖y‖2 ≥ k−1 and the second by
noting that the vector (yi/‖y‖, 1 ≤ i ≤ k) has 2-norm 1.

Let N be the d × k matrix with columns N t
1, . . . , N

t
k, and write N = (Nij)ij∈[d]×[k].

Then

min
y :|y|2=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
2

=

(
min

y :|y|2=1

∥∥∥∥∥
k∑
i=1

yiNi

∥∥∥∥∥
)2

=

(
min

y :|y|2=1
‖Xy‖

)2

.

The final quantity is just the square of the least singular value of X. Theorem 1.1 of
Rudelson and Vershynin (2009) states the existence of absolute constants b, B > 0 such
that for every ε > 0 we have

P
(

min
y :|y|=1

‖Xy‖ ≤ ε(
√
d−
√
k − 1)

)
≤ (Bε)(d−k+1) + e−bd .

If d ≥ 4(k − 1) then
√
d −
√
k − 1 ≥

√
d/2 and d − k + 1 > d. Combining the preceding

probability bound with the lower bound on D, if ε ≤ e−b/B we then obtain

P
(
D < ε2 d

4k

)
< 2e−bd.

Taking c = (e−b/B)2 completes the proof.

One may now easily use Proposition 7 to deduce part (ii) of Theorem 6:

Proposition 9 There are absolute constants b, C > 0 such that the following holds. For
all p ≤ 1/2, if d ≥ Cn

√
log(1/p) then with probability at least 1−e−bd there exists s ∈ Sd−1

such that Γ(X, s,Φ−1(1− p)) is connected.
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Proof Fix any tree T with vertices [n], and write E for the edge set of T . By Proposi-
tion 7, if d ≥ (4/c) ·k ·Φ−1(1−p) then with probability at least 1− e−bd there is s such that
Γ(X, s,Φ−1(1− p)) contains T , so in particular is connected. Now simply observe that for
p ≤ 1/2 we have Φ−1(1− p) ≤

√
2 log(1/p).

Observe that the exponentially small failure probability stipulated in Proposition 9
allows us to conclude that if d is at least a sufficiently large constant multiple of n(log n ∨√

log(1/p)), then, with high probability, for any spanning tree of the complete graph Kn

there exists s ∈ Sd−1 such that Γ(X, s,Φ−1(1− p)) contains that spanning tree.

4.3 Proof of Theorem 6, Part (iii)

Let c > 1, ε ∈ (0, 1), and assume that d ≤ (1− ε)(c− 1) log n/ log logn. Let E be the event
that Γ(Xn, t, s) is disconnected for some s ∈ Sd−1. Let Cη be a minimal η-cover of Sd−1 for
η ∈ (0, 1] to be specified below. Then

E ⊆
⋃
s∈Cη

Es ,

where Es is the event that the graph
⋂
s′:‖s−s′‖≤η Γ(Xn, t, s

′) is disconnected. Let c′ =

c− (c−1)ε/2. Note that 1 < c′ < c. It follows from the second half of Lemma 13 that there
exists a constant κ > 0 such that if η = κ(1− c′/c)/(t

√
d), then

P {Es} ≤ P
{
G(n, c′ log n/n) is disconnected

}
≤ n1−c′(1 + o(1)) ,

where the second inequality follows from standard estimates for the probability that a
random graph is disconnected, see (Palmer, 1985, Section 4.3). Bounding |Cη| by Lemma
10, and using the fact that t =

√
2 log n(1 + o(1)), we obtain that

P{E} ≤ |Cη|n1−c′(1 + o(1))

≤ exp

(
d log logn

2
+
d log d

2
+O(d) + (1− c′) log n

)
→ 0 ,

as desired.

4.4 Proof of Theorem 6, Part (iv)

Recall that p = c log n/n for c > 1 fixed, and that t = Φ−1(p). Let 0 < ε < 1, and assume
that d ≥ (2 + ε)(c − 1) log n/ log log n. Define θ ∈ (0, π/2) by θ = (log n)−1/(2+ε), so that
log(1/θ) = log log n/(2 + ε). Let P be a maximal θ-packing of Sd−1, that is, P ⊂ Sd−1 is
a set of maximal cardinality such that for all distinct s, s′ ∈ P we have 〈s, s′〉 ≤ cos θ. By
Lemma 11 we have that

|P| ≥ d

16
θ−(d−1) .

It suffices to prove that for some s ∈ P, Γ(Xn, s, t) contains an isolated vertex.
For each s ∈ P, we write the number of isolated vertices in Γ(Xn, s, t) as

N(s) =
n∑
i=1

∏
j:j 6=i

Zi,j(s),

1908



Exceptional Rotations of Random Graphs: A VC Theory

where Zi,j(s) equals 1 if {i, j} is not an edge in Γ(Xn, s, t) and is 0 otherwise. We use the

second moment method to prove that N
def
=
∑

s∈P N(s) > 0 with high probability. This
will establish the assertion of part (iv) since if N > 0 then there is s ∈ Sd−1 such that
Γ(Xn, s, t) contains an isolated vertex.

To show that N > 0 with high probability, by the second moment method it suffices to
prove that EN →∞ and that E[N2] = (EN)2(1 + o(1). First,

EN = |P| · n · P {vertex 1 is isolated in G(n, p)} = |P| · n(1− p)n−1.

The lower bound on |P| and the inequality 1− p ≤ e−p = n−c/n together imply

EN ≥ d

16
θ−(d−1)n1−c,

which tends to infinity by our choice of θ. We now turn to the second moment.

E[N2] =
∑
s,s′∈P

∑
i,j∈[n]

∏
k:k 6=i,`:`6=j

Zi,k(s)Zj,`(s
′) .

When s = s′, separating the inner sum into diagonal and off-diagonal terms yields the
identity∑
i,j

∏
k 6=i,` 6=j

Zi,k(s)Zj,`(s) = n(1−p)n−1+n(n−1)(1−p)2n−3 = n(1−p)n−1·[1+(n−1)(1−p)n−2] .

Let q = sups 6=s′,s,s′∈P P{Zi,j(s)Zi,j(s′) = 1} be the greatest probability that an edge is
absent in both Γ(Xn, s, t) and Γ(Xn, s

′, t). Then when s 6= s′, the inner sum is bounded
by

nqn−1 + n(n− 1) · q · (1− p)2n−4.

Combining these bounds, we obtain that

E[N2] ≤ |P|n(1−p)n−1 ·[1+(n−1)(1−p)n−2]+|P|(|P|−1)·[nqn−1+n(n−1)·q ·(1−p)2n−4] .

The first term on the right is at most EN(1 + EN/[(1− p)|P|]). The second is at most

|P|2n2(1−p)2(n−1)·
(

1

n

( q

(1− p)2

)n−1
+

q

(1− p)2

)
= (EN)2·

(
1

n

( q

(1− p)2

)n−1
+

q

(1− p)2

)
.

We will show below that q ≤ (1− p)2 · (1 + o(p)). Assuming this, the upper bounds on
the two terms on the right together give

E[N2]

[EN ]2
≤ 1

EN

(
1 +

EN
(1− p)|P|

)
+ no(1)−1 +

(1− ε) log n

n
→ 1 ,

as required.
To prove the bound on q, fix s, s′ ∈ P such that q = P{Zi,j(s)Zi,j(s′) = 1}. Using the

definition of Zi,j(s) and Zi,j(s
′), we have

q = P
{
{i, j} 6∈ Γ(Xn, s, t), {i, j} 6∈ Γ(Xn, s

′, t),
}
.
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We may apply Lemma 14 to this quantity, noting that in our case θ = (lnn)1/(2+ε), t =
O(
√

lnn) and ln(1/t p) = (1 + o(1)) lnn � θ−2. This means that the Remark after the
statement of the Lemma applies, and this gives precisely that q ≤ (1 − p)2 (1 + o(p)), as
desired.
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Appendix A. Appendix

Here we gather some of the technical tools used in the paper. In the first section we
summarize results involving covering and packing results of the unit sphere that are essential
in dealing with the random graph process Gd,1/2(Xn). In Section A.2 we describe analogous
results needed for studying Gd,p(Xn) for small values of p. These lemmas play an important
role in the proof of Theorem 6. Finally, in Section A.4 we collect some results on G(n, p)
random graphs needed in our proofs.

A.1 Covering and Packing

Let B(a, b) =
∫ 1

0 t
a−1(1 − t)b−1dt be the beta function, and let Ix(a, b) be the incomplete

beta function,

Ix(a, b) =

∫ x
0 t

a−1(1− t)b−1dt

B(a, b)
.

For α ∈ [0, π] and s ∈ Sd−1, let

Cα(s) = {s′ ∈ Sd−1 :
〈
s, s′

〉
≥ cosα}

be the cap in Sd−1 consisting of points at angle at most α from s. For α ≤ π/2 the area of
this cap (see, e.g., Li 2011) is

|Cα(s)| = |S
d−1|
2
· Isin2 θ

(
d− 1

2
,
1

2

)
. (1)

We use the following standard estimate of the covering numbers of the Euclidean sphere
(see, e.g., Matoušek 2002, Lemma 13.1.1).
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Lemma 10 For any η ∈ (0, 1] there exists a subset Cη of Sd−1 of size at most (4/η)d such
that for all s ∈ Sd−1 there exists s′ ∈ Cη with ‖s− s′‖ ≤ η.

We now provide a rough lower bound on the number of points that can be packed in Sd−1

while keeping all pairwise angles large.

Lemma 11 For any θ ∈ (0, π/2) there exists a subset Pθ of Sd−1 of size at least

d

16
θ−(d−1)

such that for all distinct s, s′ ∈ Pθ we have 〈s, s′〉 ≤ cos θ.

Proof
First note that it suffices to consider θ < 1/2 because otherwise the first bound domi-

nates. Consider N independent standard normal vectors X1, . . . , XN . Then Ui = Xi/‖Xi‖
(i = 1, . . . , N) are independent, uniformly distributed on Sd−1. Let

Z =

N∑
i=1

1{minj:j 6=i |〈Ui,Uj〉|≤cos(θ)}.

Denoting P{| 〈Ui, Uj〉 | > cos(θ)} = φ,

EZ = N(1− φ)N ≥ N(1− φN) ≥ N/2

whenever φN ≤ 1/2. Since Z ≤ N , this implies that

P
{
Z ≥ N

4

}
≥ EZ −N/4

N −N/4
≥ 1

3

and therefore there exists a packing set A of cardinality |A| ≥ N/4 as long as φN ≤ 1/2.
To study φ, note that

φ = P

{∑d
j=1 YjY

′
j

‖Y ‖ · ‖Y ′‖
> cos(θ)

}

where Y = (Y1, . . . , Yd), Y
′ = (Y ′1 , . . . , Y

′
d) are independent standard normal vectors. By

rotational invariance, we may replace Y ′ by (‖Y ′‖, 0, . . . , 0), and therefore

φ = P
{
Y 2

1

‖Y ‖
> cos2(θ)

}
= P

{
B ≤ cos2(θ)

}
(where B is a Beta(1/2, (d− 1)/2) random variable)

≥ 2θd−1

d− 1
.

The result follows.

The next lemma is used repeatedly in the proof of Theorem 2 and 3.
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η/2

x

α

α

Figure 1: Since sin(α) = η/2, the height of the spherical cap that only includes points at
distance at least η from the equator is 1− sin(2α) = 1− η

√
1− (η/2)2.

Lemma 12 Fix s′ ∈ Sd−1 and η ∈ (0, 1] and assume that d ≥ 12. The probability that
there exists s ∈ Sd−1 with ‖s − s′‖ ≤ η such that vertex 1 and vertex 2 are connected in
Γ(Xn, s) but not in Γ(Xn, s

′) is at most

η

√
d

2π
.

Proof Without loss of generality, assume that s′ = (1, 0, . . . , 0). Observe that the event
that there exists s′ ∈ Sd−1 with ‖s− s′‖ ≤ η such that vertex 1 and vertex 2 are connected
in Γ(Xn, s) but not in Γ(Xn, s

′) is equivalent to X1,2/‖X1,2‖ having its first component
between −η

√
1− η2/4 and 0 (see Figure 1). Letting Z = (Z1, . . . , Zd) be a standard normal

vector in Rd, the probability of this is

P
{
Z1

‖Z‖
∈
(
−η
√

1− η2/4, 0
)}

≤ P
{
Z1

‖Z‖
∈ (−η, 0)

}
=

1

2
P
{
B ≤ η2

}
(where B is a Beta(1/2, (d− 1)/2) random variable)

=
1

2
Iη2(1/2, (d− 1)/2)

≤ 1

2B(1/2, (d− 1)/2)

∫ η2

0
x−1/2dx

=
η

2B(1/2, (d− 1)/2)

≤ η

√
d− 1

2π
.
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A.2 Auxiliary Results for Gd,p(Xn)

In this section we develop some of the main tools for dealing with the random graph process
Gd,p(Xn). We assume throughout the section that

p := 1− Φ(t) ≤ 1

2
. (2)

Recall from the start of Section A.1 that Cα(s) denotes the spherical cap consisting of all
unit vectors with an angle of ≤ α with s. We will use the following expressions for Cα(s):

Cα(s) = {s′ ∈ Sd−1 : ‖s− s′‖2 ≤ 2 (1− cosα)}
= {s cos θ + w sin θ : w ∈ Sd−1 ∩ {v}⊥, 0 ≤ θ ≤ α}. (3)

We are interested in studying the graphs Γ(Xn, s
′, t), for all s′ ∈ Cα(s) simultaneously.

Lemma 13 There exists a constant c > 0 such that, for all ε ∈ (0, 1/2), if t ≥ 0 and p are
as in (2),

0 ≤ α ≤ π

2
, tanα ≤ ε

(t ∨ 1)
√
d− 1

,

then, for some universal c > 0, if we define ε′ := ε+ c (ε2 + ε/(t2 ∨ 1)),

1. the union Γ+ :=
⋃
s′∈Cα(s) Γ(Xn, s

′, t) is stochastically dominated by G(n, (1 + ε′) p);

2. the intersection Γ− :=
⋂
s′∈Cα(s) Γ(Xn, s

′, t) stochastically dominates by G(n, (1 −
ε′) p).

Proof The first step in this argument is to note that the edges of both Γ+ and Γ− are
independent. To see this, just notice that, for any {i, j} ∈

(
[n]
2

)
, the event that {i, j} is an

edge in Γ± depends on Xn only through Xi,j . More specifically,

{i, j} ∈ Γ+ ⇔ ∃s′ ∈ Cα(s) :
〈
Xi,j , s

′〉 ≥ t;
{i, j} ∈ Γ− ⇔ ∀s′ ∈ Cα(s) : 〈Xi,j , s〉 ≥ t.

The main consequence of independence is that we will be done once we show that

(1− ε′) p ≤ P{{i, j} ∈ Γ−} ≤ P{{i, j} ∈ Γ+} ≤ (1 + ε′) p. (4)

As a second step in our proof, we analyze the inner product of Xi,j with s′ = s cos θ +
w sin θ ∈ Cα(s) (with the same notation as in (3)). Note that〈

s′, Xi,j

〉
= N cos θ +

〈
w,X⊥i,j

〉
sin θ = cos θ

(
N +

〈
w,X⊥i,j

〉
tan θ

)
,

where N := 〈Xi,j , s〉 and X⊥i,j is the component of Xi,j that is orthogonal to s. Crucially,
the fact that Xi,j is a standard Gaussian random vector implies that N is a standard
normal random variable and X⊥i,j is an independent standard normal random vector in s⊥.
Moreover,

∀w ∈ Sd−1|
〈
w,X⊥i,j

〉
| ≤ χ := ‖X⊥i,j‖.
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Since “θ 7→ tan θ” is increasing in [0, α], we conclude

∀s′ ∈ Cα(s) :
〈
s′, Xi,j

〉
= cos θ

(
N + ∆(s′)

)
, where |∆(s′)| ≤ (tanα)χ. (5)

Our third step is to relate the above to the events {{i, j} ∈ Γ±}. On the one hand,

{i, j} ∈ Γ+ ⇔ max
s′∈Cα(s)

〈
s′, Xi,j

〉
≥ t

⇒ N + max
s′∈Cα(s)

∆(s′) ≥ t (use (5) and 0 ≤ cos θ ≤ 1)

⇒ N ≥ t− (tanα)χ,

and we conclude (using the independence of N and χ) that

P{{i, j} ∈ Γ+} ≤ 1− E[Φ(t− (tanα)χ)]. (6)

Similarly,

{i, j} ∈ Γ− ⇔ min
s′∈Cα(s)

〈
s′, Xi,j

〉
≥ t

⇔ N + min
s′∈Cα(s)

∆(s′) ≥ t

cosα
(by (5) and cos θ ≥ cosα > 0)

⇐ N ≥ t

cosα
+ (tanα)χ,

and we conclude

P{{i, j} ∈ Γ−} ≥ E
[
1− Φ

(
t

cosα
+ (tanα)χ

)]
. (7)

The remainder of the proof splits into two cases, depending on whether or not

e
5t2

8 (1− Φ(t)) ≥ 1 (8)

Note that this condition holds if and only if t ≥ C for some C > 0, as 1−Φ(t) = e−(1+o(1))t2/2

when t→ +∞ and e
5t2

8 (1− Φ(t)) = 1/2 < 1 when t = 0.

Last step when (8) is violated. In this case t is bounded above, so p > c0 for some positive
constant c0 > 0. We combine (6) and (7) with the fact that Φ(t) is (2π)−1/2-Lipschitz. The
upshot is that

|1− Φ(t)− P{{i, j} ∈ Γ±}| ≤
1√
π

∣∣∣∣1− 1

cosα

∣∣∣∣ t+ E[χ] tanα.

Now χ is the norm of a d − 1 dimensional standard normal random vector, so E[χ] ≤√
E[χ2] =

√
d− 1. The choice of α implies:∣∣∣∣1− 1

cosα

∣∣∣∣ = O(sinα) = O

(
ε2

d− 1

)
, and tanα ≤ ε√

d− 1
.
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So

|1− Φ(t)− P{{i, j} ∈ Γ±}| ≤
1√
2π

(c ε2 + ε) ≤
[
ε+ c

(
ε2 +

ε

t2

)]
p

for some universal c > 0.

Last step when (8) is satisfied. We start with (7) and note that we can apply Lemma 16
with r := t and

h :=

(
1

cosα
− 1

)
t+ (tanα)χ ≤ O((tanα)2) t+ (tanα)χ.

After simple calculations, this gives

P{{i, j} ∈ Γ−}
1− Φ(t)

≥ E [exp (−X)] ,

where

X := O((tanα)2) (t2 + 1)− (t+ t−1) (tanα)χ− (tanα)2 ξ2 −O((tanα)2)t2.

By Jensen’s inequality, E[e−X ] ≥ e−E[X]. Since E[χ]2 ≤ E[χ2] = d−1 and tanα = ε/t
√
d− 1

in this case,

E[X] ≤ O
(

ε2

d− 1

)
+ (1 +O(ε+ t−2)) ε.

In other words, if we choose c > 0 in the statement of the theorem to be large enough, we
can ensure that

P{{i, j} ∈ Γ−}
1− Φ(t)

≥ (1− ε′).

We now turn to (6). Applying Lemma 16 below with r := t− χ tanα when r ≥ t/2, we get

1− Φ(t− (tanα)χ) ≤ e(t+
2
t ) (tanα)χ+

(tan α)2 χ2

2 (1− Φ(t)). (9)

In fact, the same inequality holds when r < t/2, i.e., (tanα)χ > t/2, for in that case the

right-hand side is ≥ e
5t2

8 (1 − Φ(t)) ≥ 1 (recall that we are under the assumption (8)). So
(9) always holds, and integration over χ gives

P{{i, j} ∈ Γ+}
1− Φ(t)

≤ E[e(t+
2
t ) (tanα)χ+

(tan α)2 χ2

2 ]. (10)

It remains to estimate the moment generating function on the right-hand side. The first
step is to note that, since E[ξ] is the norm of a d− 1 dimensional standard normal vector,
E[χ] ≤ E[χ2]1/2 =

√
d− 1. So by Cauchy Schwartz,

e−(t+ 2
t ) (tanα)

√
d−1 E[e(t+

2
t ) (tanα)χ+

(tan α)2 χ2

2 ]

≤ E[e(t+
2
t ) (tanα) (χ−E[χ])+

(tan α)2 χ2

2 ]

≤
√

E[e(2t+ 4
t ) (tanα) (χ−E[χ])]E[e(tan α)2 χ2 ]. (11)
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Next we estimate each of the two expectations on the right-hand side of the last line. In
the first case we have the moment generating function of χ−E[χ], where χ is a 1-Lipschitz
function of a standard Gaussian vector. A standard Gaussian concentration argument and
our definition of α give

E[e(2t+ 4
t ) (tanα) (χ−E[χ])] ≤ e

(2t+4
t )

2
(tanα)2

2 ≤ 1 + c0ε
2

for some universal constant c0 > 0. The second term in (11) is the moment generating
function of χ2, a chi-squared random variable with d−1 degrees of freedom. Since (tanα)2 ≤
ε2/(d− 1) ≤ 1/2 under our assumptions, one can compute explicitly

E[e(tan α)2 χ2
] =

(
1

1− 2(tan α)2

)d/2
≤ 1 + c0 ε

2

for a (potentially larger, but still universal c0 > 0). Plugging the two estimates back into
(11), we obtain

E[e(t+
2
t ) (tanα)χ+

(tan α)2 χ2

2 ] ≤ e(t+
2
t ) (tanα)

√
d−1 (1 + c0 ε

2),

and the fact that t (tanα)
√
d− 1 = ε implies that the right-hand side is ≤ 1+ε+c (t−2ε+ε2)

for some universal c > 0. Going back to (10) we see that this finishes our upper bound for
P{{i, j} ∈ Γ+}.

A.3 Correlations Between Edges and Non-Edges

In this case we consider s, s′ ∈ Sd−1 and look at correlations of “edge events.”

Lemma 14 For any t ≥ 1, 0 < θ < π, define

ξ := 1− cos θ, γ :=
(1− cos θ)2

sin θ
.

Then there exists a universal constant C > 0 such that for s, s′ ∈ Sd−1 such that 〈s, s′〉 ≤
cos θ, we have

P{〈Xij , s〉 ≥ t,
〈
Xij , s

′〉 ≥ t} ≤ p [(C p t)2ξ+ξ2 + e
γ (1−γ) t2+ γ

1−γ+ γ2 t2

2 p]. (12)

P{〈Xij , s〉 < t,
〈
Xij , s

′〉 < t} ≤ 1− 2p+ p [(C p t)2 ξ+ξ2 + e
γ (1−γ) t2+ γ

1−γ+ γ2 t2

2 p]

Remark 15 (nearly equal vectors.) Suppose p = o(1) and θ = o(1). One may check
that γ = (1 + o(1)) θ3/4 and ξ = (1 + o(1)) θ2/2. This means that if θ3 t2 = o(ln(1/p)) and
θ2 ln(1/t p) = ω(1), then

P{〈Xij , s〉 < t,
〈
Xij , s

′〉 < t} ≤ 1− 2p+ o(p) = (1− p)2 (1 + o(p)).

This is used in the proof of Theorem 6, part (iv) above.
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Proof We focus on the inequalities in (12), from which the other inequalities follow. For
convenience, we write η := cos θ and note that

η = 1− ξ, so γ = 1− 1− (1 + ξ)η√
1− η2

. (13)

Moreover, 0 < γ < 1: the first inequality is obvious, and the second follows from the fact
that

0 < θ <
π

2
⇒ 0 < γ =

(1− cos θ)2

sin θ
<

(1− cos θ) (1 + cos θ)

sin θ
=

1− cos2 θ

sin θ
= sin θ < 1.

Let E denote the event in (12). The properties of standard Gaussian vectors imply

P{E} = P({N1 ≥ t} ∩ {η N1 +
√

1− η2N2 ≥ t})

where N1, N2 are independent standard normal random variables. In particular, we can
upper bound

P{E} ≤ P{N1 ≥ (1 + ξ) t}+ P{N1 ≥ t}P

{
N2 ≥

(
1− (1 + ξ)η√

1− η2

)
t

}
, (14)

The first term in the right-hand side is 1−Φ(t+ξt) ≤ e−
ξ2t
2
−ξt2 (1−Φ(t)) = e−

2ξ+ξ2

2
t2 (1−

Φ(t)) by Lemma 16. The fact that

lim
t→+∞

(1− Φ(t))

e−t2/2/(t
√

2π)
= 1,

implies that, for t > 1, the ratio e−t
2/2/p is bounded by a C t, C > 0 a constant. We

conclude
P{N1 ≥ (1 + ξ) t} ≤ p (e−t

2/2)2ξ+ξ2 ≤ p (C t p)2ξ+ξ2 . (15)

As for the second term in the right-hand side of (14), we apply Lemma 16 with

r :=
t (1− (1 + ξ)η)√

1− η2
= (1− γ) t and h := γ t.

We deduce:

P

{
N2 ≥

(
1− (1 + ξ)η√

1− η2

)
t

}
= 1− Φ(r) ≤ eγ (1−γ) t2+ γ

1−γ+ γ2 t2

2 (1− Φ(t)),

The proof finishes by combining the estimates for the right-hand side of (14).

Lemma 16 If ε ∈ (0, 1/2), r > 0 and h ≥ 0,

e−h r−
h
r
−h

2

2 ≤ 1− Φ(r + h)

1− Φ(r)
≤ e−h r−

h2

2 .
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Proof We first show the upper bound, namely:

∀r, h > 0 : 1− Φ(r + h) ≤ e−r h−
h2

2 (1− Φ(r)). (16)

To see this, we note that:

1− Φ(r + h) =

∫ +∞

0

e−
(x+r+h)2

2

√
2π

dx

=

∫ +∞

0

e−
(x+r)2

2

√
2π

e−(x+r+h
2 )h dx

≤
∫ +∞

0

e−
(x+r)2

2

√
2π

e−r h−
h2

2 dx

= [1− Φ(r)] e−r h−
h2

2 .

To continue, we go back to the formula

1− Φ(r + h) =

∫ +∞

0

e−
(x+r)2

2 e−(x+r)h

√
2π

dx

 e−
h2

2 ,

which is clearly related to

1− Φ(r) =

∫ +∞

0

e−
(x+r)2

2

√
2π

dx.

In fact, inspection reveals that

1− Φ(r + h)

1− Φ(r)
= e−

h2

2 E[e−hN | N ≥ r].

Using Jensen’s inequality, we have

1− Φ(r + h)

1− Φ(r)
≥ e−

h2

2 e−hE[N |N≥r],

and (16) means that P{N − r ≥ t | N ≥ r} ≤ e−t r, so E[N | N ≥ r] ≤ r + 1
r . We deduce:

1− Φ(r + h)

1− Φ(r)
≥ e−

h2

2 e−h r−
h
r ,

as desired.

A.4 Random Graph Lemmas

Here we collect some results on random graphs that we need in the arguments. In the
proof of Theorem 2 we use the following lower tail estimate of the clique number of an
Erdős-Rényi random graph that follows from a standard use of Janson’s inequality.
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Lemma 17 Let Nk denote the number of cliques of size k of a G(n, 1/2−αn) Erdős-Rényi
random graph where 0 ≤ αn ≤ 1/n and let δ > 2. Denote ω = 2 log2 n − 2 log2 log2 n +
2 log2 e− 1. If k = bω − δc, then there exists a constant C ′ such that for all n,

P {Nk = 0} ≤ exp

(
−C ′n2

(log2 n)8

)
.

Proof Write p = 1/2−αn and define ωp = 2 log1/p n− 2 log1/p log1/p n+ 2 log1/p(e/2) + 1.
We use Janson’s inequality ((Janson et al., 2000, Theorem 2.18)) which implies that

P {Nk = 0} ≤ exp

(
−(ENk)

2

∆

)
,

where ENk =
(
n
k

)
p(
k
2) and

∆ =

k∑
j=2

(
n

k

)(
k

j

)(
n− k
k − j

)
p2(k−j2 )−(j2)−2j(k−j) .

To bound the ratio ∆/(ENk)
2, we may repeat the calculations of Matula’s theorem on the

2-point concentration of the clique number (Matula (1972)), as in (Palmer, 1985, Section
5.3).

Let β = log1/p(3 log1/p n)/ log1/p n and define m = bβkc Then we split the sum

∆

(ENk)2
=

k∑
j=m

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) +
m−1∑
j=2

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) .

To bound the first term, we write

k∑
j=m

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) =
F (m)

ENk
,

where F (m) =
∑k

j=m

(
k
j

)(
n−k
k−j
)
p−(j2)+(k2). Now if k = bωp− δc for some δ ∈ (0, ωp), then the

computations in (Palmer, 1985, pp.77–78) show that

F (m) ≤
∞∑
j=0

(
kn
√

1/p

p−k(1+β)/2

)j
,

which is bounded whenever
kn
√

(1/p)

p−k(1+β)/2
= o(1) .

This is guaranteed by our choice of β = log1/p(3 log1/p n)/ log1/p n. Hence, the first term is
bounded by

F (m)

ENk
= O(1)

√
kpkδ/2 .
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For the second term, once again just like in Palmer (1985), note that

m−1∑
j=2

(
k
j

)(
n−k
k−j
)(

n
k

) p−(j2) ≤ O(1)
m−1∑
j=2

k2j

nj
p−(j2)

≤ O(1)
m−1∑
j=2

(
kp−m/2

n

)j

≤ O(1)
m−1∑
j=2

(
2(log1/p n)4

n

)j

≤ O

(
(log1/p n)8

n2

)
.

Putting everything together, we have that there exist constants C,C ′ such that for k =
bωp − δc,

P {Nk = 0} ≤ exp

−C ((log1/p n)8

n2
+ pkδ/2

√
k

)−1
 ≤ exp

(
−C ′n2

(log2 n)8

)
,

whenever δ > 2. Noting that ωp = ω +O(αn log n) completes the proof.

Part (iii) of Theorem 3 crucially hinges on the following interesting result of Alon and
Sudakov (2010) on the “resilience” of the chromatic number of a G(n, 1/2) random graph.
The form of the theorem cited here does not explicitly appear in Alon and Sudakov (2010)
but the estimates for the probability of failure follow by a simple inspection of the proof of
their Theorem 1.2.

Proposition 18 (Alon and Sudakov, 2010, Theorem 1.2). There exist positive con-
stants c1, c2 such that the following holds. Let ε > 0 and let G be a G(n, 1/2) random
graph. With probability at least 1 − exp(c1n

2/(log n)4), for every collection E of at most
c2ε

2n2/(log2 n)2 edges, the chromatic number of G ∪ E is at most (1 + ε)n/(2 log2 n).

The final lemma is used in proving part (i) of Theorem 6.

Lemma 19 Fix c ∈ (0, 1). With p = c log n/n, let N be the number of isolated vertices in
G(n, p). Then for n large, P(N = 0) ≤ exp(−n1−c/3).

Proof The following approach is borrowed from O’Connell (1998). Fix q = 1 −
√

1− p
and let D(n, q) be the random directed graph with vertices [n] in which each oriented edge
ij appears independently with probability q. Write I for the number of vertices of D(n, q)
with no incoming edges, and M for the number of isolated vertices in D(n, q), with no
incoming or outgoing edges. Then M and N have the same distribution. Next, observe
that I has law Bin

(
n, (1− q)n−1

)
= Bin

(
n, (1− p)(n−1)/2

)
. Furthermore, conditional on I,

M
d
= Bin

(
I, (1− p)(n−I)/2

)
.
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It follows that

P(N = 0) = P(M = 0)

≤ P(|I − EI| > EI/2) + sup
k∈(1/2)EI,(3/2)EI

P(Bin
(
k, (1− p)(n−k)/2

)
= 0). (17)

For the first term, a Chernoff bound gives

P(|I − EI| > EI/2) ≤ 2e−EI/10 = 2e−n(1−p)(n−1)/2/10 = e−(1+o(1))n1−c/2/10 , (18)

where the last inequality holds since (1 − p)(n−1)/2 = (1 + o(1)n−c/2. Next, fix k as in the
above supremum. For such k we have p(n − k) = c log n + O(log n/nc/2). Using this fact
and that 1− p ≥ e−p−p2 for p small yields

P(Bin
(
k, (1− p)(n−k)/2

)
= 0) = (1− (1− p)(n−k)/2)k

≤ exp
(
−k(1− p)(n−k)/2

)
= exp

(
−ke−(p+p2)(n−k)/2

)
= exp

(
−(1 + o(1))kn−c/2

)
.

Using that 1− p ≥ e−p−p2 a second time gives

k ≥ EI/2 = n(1− p)(n−1)/2/2 ≥ (1 + o(1))ne−np/2/2 = (1 + o(1))n1−c/2/2.

The two preceding inequalities together imply that

P(Bin
(
k, (1− p)(n−k)/2

)
= 0) ≤ exp

(
−(1/2 + o(1)) · n1−c) .

Using this bound and (18) in the inequality (17), the result follows easily.
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Abstract

According to a recently stated ‘independence postulate’, the distribution Pcause contains
no information about the conditional Peffect|cause while Peffect may contain information
about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information
from PX to assist in predicting Y from X, it should only work in anticausal direction,
i.e., when Y is the cause and X is the effect. In causal direction, when X is the cause
and Y the effect, unlabelled x-values should be useless. To shed light on this asymmetry,
we study a deterministic causal relation Y = f(X) as recently assayed in Information-
Geometric Causal Inference (IGCI). Within this model, we discuss two options to formalize
the independence of PX and f as an orthogonality of vectors in appropriate inner product
spaces. We prove that unlabelled data help for the problem of interpolating a monotonically
increasing function if and only if the orthogonality conditions are violated – which we only
expect for the anticausal direction. Here, performance of SSL and its supervised baseline
analogue is measured in terms of two different loss functions: first, the mean squared error
and second the surprise in a Bayesian prediction scenario.

Keywords: semi-supervised learning, anticausal learning, independence of cause and
mechanism, information geometry, causality

1. Introduction

Semi-supervised learning (SSL) has received increasing attention during the past decade
(Darnstädt et al., 2013; Ben-David et al., 2008; Yuanyuan et al., 2010; Chapelle et al.,
2006). In contrast to supervised learning, where the prediction of a variable Y from another
variable X is based on pairs (x1, y1), . . . , (xn, yn), semi-supervised learning uses additional
x-values xn+1, . . . , xn+m to improve the prediction. Motivated by the fact that the y-values
are often discrete variables, that is, ‘labels’, one often talks about the pairs as labelled
instances and the unpaired x-values as unlabelled ones.

One can easily imagine scenarios where labelled instances are rare and unlabelled ones
are easily available: consider, for example, the task of text classification, where labelling
has to be done by humans while unlabelled instances can be retrieved from the internet
automatically. Hence, SSL is useful provided that the unlabelled x-values indeed contain
information about the relation between X and Y . Given the standard scenario where the
pairs are i.i.d. drawn from PXY and the unlabelled x-values from the corresponding marginal
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distribution PX , the essential question is the following. Predicting Y from X amounts to
knowing properties of PY |X , while the unlabelled x-values only tell us something about PX .
Why should PX contain information about PY |X?

Some recent approaches to distinguish cause and effect in causal structure learning (Janz-
ing and Schölkopf, 2010; Daniusis et al., 2010; Janzing et al., 2012; Sgouritsa et al., 2015)
were motivated by an informal ‘independence’ postulate stating that Pcause and Peffect|cause

contain no information about each other. On the other hand, Peffect and Pcause|effect may con-
tain information about each other. This has been shown by means of several toy examples
(Janzing and Schölkopf, 2010; Daniusis et al., 2010; Janzing et al., 2012) using appropriate
formalizations of the independence postulate. In the same spirit, Schölkopf et al. (2012,
2013) argue that under the independence postulate, SSL cannot work in the causal setting,
that is, if X is the cause and Y the effect (provided that there is no common cause of both),
while it may work in anticausal setting, i.e., when the cause is predicted from the effect.
In a typical scenario of SSL that often appears in the literature (Chapelle et al., 2006), Y
attains few values {1, . . . , k} only (Zhang and Oles, 2000) and X ∈ Rd is a high-dimensional
vector. Then different labels j may correspond to different clusters in Rd. If they are suf-
ficiently apart, the modes of PX tell us the centers of the clusters, which helps in learning
PY |X from fewer data. Distributions that satisfy this (loose) condition are said to follow
the cluster assumption, a case for which SSL can plausibly be justified (Chapelle et al.,
2006): as long as each cluster contains some labelled data points, we can propagate the
labels to the other points in the same cluster, and thus convert the semi-supervised learning
problem to a supervised one. In our terminology, this assumption implies that points in the
same cluster have the same label, i.e., certain properties of PX imply properties of PY |X . A
related assumption states that the separating boundary should lie in a region of low density
of PX (Chapelle et al., 2006) – again, an assumption relating PX and PY |X .

The goal of this paper is to provide a mathematical understanding of why the perfor-
mance of SSL is related to the causal direction. Previous work remains vague regarding the
question in what sense Peffect may contain information about Pcause|effect and which mathe-
matical postulates about asymmetries between cause and effect are needed for this claim.
Here we present a model in which a well-defined independence assumption between Pcause

and Peffect|cause ensures that unlabelled data from the effect help in the sense of quantita-
tively improving the prediction of the cause from the effect with respect to a natural loss
function, while it does not help in causal direction. To this end, we have chosen a model
where X and Y have the same range. The more popular case where X is high-dimensional
and Y of lower dimension or even a discrete label could be misleading for our purposes: dif-
ferent ranges define an asymmetry between X and Y that could erroneously be attributed
to the fact that one is the cause and the other the effect.

We study the following simple interpolation problem: Let X and Y be random
variables attaining values in [0, 1], deterministically related by Y = f(X), where f is
an unknown bijective strictly monotonically increasing map. We are given n − 1 points
(x1, y1), . . . , (xn−1, yn−1). For some additional x-value xn, we seek to infer the correspond-
ing y-value yn = f(xn).

We will analyze why knowing PX enables a better estimation (which implies that PX
and PY |X are somehow dependent), given that a certain independence between PY and
PX|Y holds.
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The paper is structured as follows. Section 2 introduces a toy model of a bijective
deterministic relation between X and Y and formalizes independence between Pcause and
Peffect|cause in two different ways. We explain why this independence implies dependence
between Peffect and Pcause|effect with respect to both formalizations. Section 3 describes
the interpolation problem in the supervised scenario (i.e., with no unlabelled points) and
presents a straightforward solution via linear interpolation, which will be the baseline our
SSL method is later compared to.

Section 4 describes a semi-supervised modification and shows that the advantage can
be quantified in terms of the dependence measures introduced in Section 2. The main
contribution of this paper is to describe the relation between the performance of SSL to
a mathematically well-defined notion of dependence between PX and PY |X . Although our
toy scenario is certainly an oversimplification compared to real SSL scenarios, the value of
this work lies in providing the first link between causal direction and applicability of SSL
that can be proven, subject to an assumption that links causality to statistics.

2. Asymmetries Between Cause and Effect for Deterministic Relations

Our restriction to monotonically increasing bijections of [0, 1] coincides with the typical
toy scenario used by Daniusis et al. (2010); Janzing et al. (2012) to explain Information-
Geometric Causal Inference (IGCI) although the formalism of IGCI introduced therein is
actually more general.

We are given two random variables C,E (‘cause’ and ’effect’) attaining values in [0, 1].
We assume that their distributions PC and PE have strictly positive densities pC and pE
with respect to Lebesgue measure. We will often use p(c) as short hand for pC(c), for
instance. Assume we observe that C and E are deterministically related by

E = g(C) and C = g−1(E) ,

for some strictly monotonically increasing diffeomorphism1 g of [0, 1].
So far, the assumptions are symmetric with respect to C and E and there is no reason

why observing the joint distribution of E and C should enable one to infer which variable
is the cause and which the effect, assuming that exactly one of the alternatives is true. The
problem of distinguishing cause and effect gets solvable only after introducing an assumption
that links the causal direction to an observable implication. The essential idea is that g
(which uniquely determines PE|C) and pC do not contain information about each other.
Subsections 2.1 and 2.2 will describe two different formalizations of this idea which are the
basis for two different SSL methods presented in Subsections 4.1 and 4.2, respectively.

2.1 Uncorrelatedness Between pC and Slope

To formalize the idea of independence between g and pC , Daniusis et al. (2010); Janzing
et al. (2012, 2015) postulate uncorrelatedness between pC and the logarithm of the derivative
of g, which will be explained in Subsection 2.2. Here we state an assumption that simplifies
the former by dropping the logarithm:

1. The ‘diffeomorphism’ assumption is convenient for the theory although it can be significantly weakened.
The example in Figure 1(a) uses functions g and g−1 that are almost everywhere differentiable, which is
also sufficient.
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Independence Assumption 1 (with slope) If C causes E with E = g(C) then

Cov[g′, pC ] = 0 . (1)

Here, both functions g′ and pC are considered as random variables on the probability space
[0, 1] with Lebesgue measure. Their covariance, i.e., the left hand side of (1), equals∫ 1

0
g′(c)p(c)dc−

∫ 1

0
g′(c)dc

∫ 1

0
p(c)dc =

∫ 1

0
g′(c)p(c)dc− 1 . (2)

It turns out that Independence Assumption 1 implies that PE contains information about
g−1 (and thus about PC|E):

Lemma 1 (pE correlates with slope) Let g 6= id and (1) hold. Then the derivative of
g−1, denoted by g−1′, is positively correlated with pE:

Cov[g−1′ , pE ] > 0 . (3)

Proof By substitution of variables, (2) implies∫ 1

0
p(e)

1

g−1′(e)
de = 1 . (4)

We then conclude∫ 1

0
p(e)g−1′(e)de =

∫ 1

0
p(e)g−1′(e)de ·

∫ 1

0
p(e)

1

g−1′(e)
de

=

∫ 1

0
p(e)

(√
g−1′(e)

)2

de ·
∫ 1

0
p(e)

(
1√

g−1′(e)

)2

de

≥

(∫ 1

0
p(e)

√
g−1′(e)

1√
g−1′(e)

de

)2

= 1 ,

where we have applied the Cauchy-Schwarz inequality to the inner product 〈·, ·〉 =
∫
p(e)··de

(note that it is strictly positive because pE is strictly positive). Therefore we only have
equality if

√
g−1′ and 1/

√
g−1′ are linearly dependent, i.e., g′ is constant and thus g is the

identity due to g(0) = 0 and g(1) = 1.

Figure 1(a) provides a first intuition about Lemma 1: whenever the slope of g has been
chosen independently of pE , the density pC tends to be high in regions where g is flat and g−1

is steep. Figures. 2(a) and 2(b) visualize the geometric content of Lemma 1 in the following
sense. The covariance defines an inner product in the space of square integrable random
variables if variables are identified up to constants. Then we have postulated orthogonality
of g′ and pC and concluded non-orthogonality of g−1 and pE . Therefore, the projection v of
g−1 onto the line (0, pE) is closer to g−1 than 0. Within our setting, this point v will later
play a crucial role for constructing the optimal prediction of g−1 that can be obtained from
pE .
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Figure 1: (a) If g has been designed independently of pC , then the density pE tends to be
high in regions where g is flat. Source: Janzing et al. (2012). (b) The piecewise
linear function f2 interpolating the observations (x1, y1), (x2, y2) is used for pre-
dicting y3. f3 accounts also for the point (x3, y3) and is later used to predict y4

once x4 is provided.

0

g' 

pC

.

(a)

pEp 

g-1'

0v 

(b)

Figure 2: Orthogonality of the random variables pC and g′ (in the sense of vanishing co-
variance) in Figure (a) implies non-orthogonality of pE and g−1′ in Figure (b).
In Subsection 4.1, the squared distance of v and 0 will be the amount by which
SSL can improve the performance of the interpolation.
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2.2 Uncorrelatedness Between pC and Logarithmic Slope

To phrase independence of g and pC as uncorrelatedness of pC and the derivative of g is
certainly only one simple choice out of many options. Instead, Daniusis et al. (2010); Janzing
et al. (2012) postulate uncorrelatedness between pC and the logarithm of the derivative of
g:

Independence Assumption 2 (with logarithmic slope) If C causes E with E = g(C)
then

Cov[log g′, pC ] = 0 . (5)

Here, both functions log g′ and pC are considered as random variables on the probability
space [0, 1]. Again, their covariance is then computed with respect to the Lebesgue measure,
i.e., the left hand side of (5) is short hand for∫ 1

0
log g′(c)p(c)dc−

∫ 1

0
log g′(c)dc

∫ 1

0
p(c)dc =

∫ 1

0
log g′(c)p(c)dc−

∫ 1

0
log g′(c)dc .

Assumption 2 admits several information theoretic interpretations (Daniusis et al., 2010;
Janzing et al., 2012, 2015) of which we only explain the ones that are required for our
analysis.

It turns out (Daniusis et al., 2010, Section 2) that Assumption 2 implies that PE contains
information about g−1 (and thus about PC|E):

Lemma 2 (pE correlates with logarithmic slope) Let g 6= id and (5) hold. Then the
logarithm of the derivative of g−1, denoted by g−1′, is positively correlated with pE:

Cov[log g−1′ , pE ] > 0 . (6)

Our algorithm and the performance analysis will be based on the following information
geometric rephrasing of the above.

Lemma 3 (covariance as difference of relative entropies) Let

D(q‖r) :=

∫ 1

0
q(w) log

q(w)

r(w)
dw

denote the relative entropy distance between the probability densities q and r. Then,

Cov[log g′, pC ] = −D(pC‖g′) +D(pC‖u) +D(u‖g′) ,

where u denotes the uniform density. Here we have interpreted g′ as probability density
which is possible due to g′ > 0 and

∫
g′(c)dc = 1.

The following conclusion is immediate:

Corollary 1 (independence as orthogonality in information space) (5) is equiva-
lent to

D(pC‖g′) = D(pC‖u) +D(u‖g′) . (7)

Likewise, (6) is equivalent to

D(pE‖g−1′) < D(pE‖u) +D(u‖g−1′) . (8)
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u

g' 

.

pC 

(a)

u 

g-1'

wa 

pE 

wa 

(b)

Figure 3: (a) Independence Assumption 2 for PC and PE|C implies that (pC , u, g
′) is a

Pythagorean triple, i.e., there is a rectangle at u. (b) Since bijections preserve
relative entropy, the right angle for the backward direction occurs at g−1′ instead
of u, as would be required by the corresponding independence assumption for PE
and PC|E . The point wa obtained by projecting g−1′ onto the line u, pE will later
play a crucial role for our SSL method and the distance D(wa‖u) will quantify
the amount by which SSL improves the interpolation.

Without going to the details of information geometry Amari and Nagaoka (1993), we use
some of its terminology and mention that due to (7), (pC , u, g

′) is called a Pythagorean triple.
This is visualized by drawing a right angle at u, see Figure 3(a). The idea is that square
distance in Euclidean geometry is replaced with relative entropy in information geometry
and therefore (7) replaces the usual Pythagorean theorem.2 This way, Assumptions 1 and
2 both amount to orthogonality conditions in appropriate spaces.

Since relative entropy is preserved under bijections, we also have:

Lemma 4 (right angle at g−1′) Eq. (5) is equivalent to

D(pE‖u) = D(pE‖g−1′) +D(g−1′‖u) . (9)

Geometrically, this means that the right angle now occurs at g−1′ , as visualized by Fig-
ure 3(b), whereas independence between pE and g−1′ would require it to occur at u. In
other words, by formalizing independence between input distribution and function as a
certain orthogonality in information space, independence in causal direction implies depen-
dence in anticausal direction. IGCI uses this asymmetry for inferring which of the two
variables is the cause.

The goal of this paper is to answer the question why PX is helpful for the interpolation
problem stated in Section 1 when X = E and Y = C, while it is useless when X = C

2. Then, the m-geodesic connecting pC and u (given by the line λpC + (1 − λ)u) is orthogonal to the
e-geodesic connecting u and g′ which is given by an affine combination on the logarithmic scale, that is,
by λ log u+ (1− λ) log g′.
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and Y = E. Some thoughts on this can be found in Janzing et al. (2015, Section 4), but
here we will describe a learning scenario where the information of PX on f amounts to
reducing the loss with respect to some natural loss function. To this end, we first describe
a baseline method for the interpolation problem in Section 3 and analyze its performance
with respect to two different loss functions. In Section 4 it will turn out that our two
different formalizations of dependence vs. independence in Subsections 2.1 and 2.2 yield
two different algorithms each of which improves the performance with respect to one of
these loss functions.

3. Baseline Solutions of the Interpolation Problem

To analyze the performance of our interpolation methods (baseline and SSL) we consider a
game consisting of infinitely many steps: In the nth step, we are given (n− 1) pairs

(x1, y1), . . . , (xn−1, yn−1)

obtained by i.i.d. sampling from PXY . After observing the next x-value xn, we are supposed
to infer the corresponding value yn. Having inferred it, we are told the true value yn and the
next x-value xn+1. The reason why we define this game is that our theory will not provide
a performance statement for any specific n. Instead, we will show that SSL outperforms
the baseline method on average over all n until some nmax if nmax tends to infinity. Note,
however, that the first step n = 1 would be usually called ‘unsupervised learning’, which
we include as special case of SSL in our analysis.

Note, moreover, that ‘inferring yn’ can mean two different things: either one infers one
specific value ŷn. Then the performance is evaluated by some distance measure between the
estimated value ŷn and the true value yn. The other sense of ‘inferring’ is to define some
conditional probability density3

pr(yn|x1, . . . , xn, y1, . . . , yn−1) (10)

expressing one’s belief about yn. Then it is natural to evaluate the performance of the
prediction by the ‘surprise’ given by the negative logarithm of (10). Subsections 3.1 and
3.2 describe the supervised baseline scenarios for the two different settings.

3.1 Predicting One Specific Value by Linear Interpolation

As baseline method we consider interpolation by piecewise linear functions:

Definition 1 (linear interpolation) For some (n− 1)-tuple of points

(x1, y1), . . . , (xn−1, yn−1) , with n ≥ 1 ,

let fn denote the function that linearly interpolates between these points (see Figure 1(a),
right). Explicitly, it is given by first ordering the x-values x◦1 < · · · < x◦n−1, which also

3. We use the notation pr to indicate that it is not connected to the probability densities pX and pY . In
a fully Bayesian scenario we would parameterize the set of distributions Pcause and the set of functions
g and then define a prior on both parameter spaces. Here, pr expresses a belief on yn that will later be
based on some naive smoothness assumption formalized by the Dirichlet prior without accounting for
any explicit generating model.
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orders the y-values y′1 < · · · < y′n−1. Then fn−1 is the piecewise linear function that linearly
connects (x◦j , y

◦
j ) with (x◦j+1, y

◦
j+1) for j = 0, . . . , n − 1 after we have set x◦0 = y◦0 = 0 and

x◦n = y◦n = 1. Hence, f0 is the identity.

Although the interpolating function fn depends on the whole (n− 1)-tuple of points, it will
be convenient to have only the index n since we refer to a fixed list of observations (obtained
by i.i.d sampling from PXY ) of which we only know the first n− 1. We set

ŷn := fn−1(xn) ,

with fn−1 as in Definition 1, see also Figure 1(a), right. Here and throughout the paper i will
denote the index for which xn lies in the interval (x◦i , x

◦
i+1) (see the notation of Definition 1).

Then the estimated value is explicitly given by

ŷn =
xn − x◦i
x◦i+1 − x◦i

(y◦i+1 − y◦i ) + y◦i . (11)

To analyze the performance of the SSL version versus standard liner interpolation, it would
be natural to measure the deviation of ŷn from yn via the usual squared loss (ŷn − yn)2.
Here we modify this term as follows:

Definition 2 (modified squared loss) The deviation between the estimated value ŷn and
the true value yn in step n is measured by the loss

Ln(yn, ŷn) :=

(
1

xn − x◦i
+

1

x◦i+1 − xn

)
(ŷn − yn)2 , (12)

where i again denotes the index for which xn ∈ (x◦i , x
◦
i+1).

The additional weighting factor amounts to stronger penalizing the deviation for those cases
where xn is close to the neighbors x◦i and x◦i+1. This can be justified by the idea that these
errors should count stronger because one should actually be able to infer yn more accurately
when labelled points are close. The main reason, however, for the weighting factor is that it
is necessary to link the performance of linear interpolation to Independence Assumption 1.
The following reinterpretation will later be the reason why the loss (12) is convenient for
our purposes:

Lemma 5 (squared loss as distance of derivatives) Let f̂n and fn be the piecewise
linear functions (linear on our n intervals) that interpolate the points (xn, ŷn) and (xn, yn),
respectively, in addition to the points (xi, yi) for i = 1, . . . , n− 1. Then,

Ln(yn, ŷn) =

∫ 1

0
(f ′n(x)− f̂ ′n(x))2dx . (13)

Proof:∫ 1

0
(f ′n(x)− f̂ ′n(x))2dx =

(
yn − y◦i
xn − x◦i

− ŷn − y◦i
xn − x◦i

)2

(xn − x◦i )+(
y◦i+1 − yn
x◦i+1 − xn

−
y◦i+1 − ŷn
x◦i+1 − xn

)2

(x◦i+1 − xn) = (yn − ŷn)2

(
1

xn − x◦i
+

1

x◦i+1 − xn

)
= Ln(yn, ŷn) .
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We now show that the loss until step nmax and the total loss over infinitely many steps can
be given in a concise form. The proofs will be skipped because the corresponding results
for the SSL scenario (Lemma 16 and Theorem 2) contain the statements below as special
cases.

Lemma 6 (total loss until step nmax) The sum over all modified quadratic errors reads:

nmax∑
n=1

Ln(yn, ŷn) =

∫ 1

0
(f ′nmax

(x)− 1)2dx .

Therefore, the asymptotic loss reads:

Lemma 7 (total loss) The sum over all modified quadratic errors reads:

∞∑
n=1

Ln(yn, ŷn) =

∫ 1

0
(f ′(x)− 1)2dx = Var(f ′) ,

where we consider f ′ as random variable on the probability space [0, 1] with respect to the
Lebesgue measure.

Recall that we have already considered derivatives of functions as random variables in
Subsection 2.1. It is intuitively plausible that the complexity of the interpolation problem
depends on the non-linearity of f , which can be quantified by the variance of f ′. Note that
this variance is also the squared length of the vectors g′ and g−1′ in Figure 2(a). Hence,
we have linked the modified quadratic errors to Euclidean geometry in the space of random
variables of Subsection 2.1. Accordingly, the non-orthogonality of pE and g−1′ in this space
will be employed to construct an SSL algorithm that outperforms linear interpolation with
respect to the modified quadratic errors.

3.2 Interpolation via a Dirichlet Process

To obtain a probability distribution that expresses our belief about yn, given x1, . . . , xn and
y1, . . . , yn−1, we define a prior over the monotonically increasing functions. An arbitrary
monotonic function f on [0, 1] with f(0) = 0 and f(1) = 1 can be interpreted as cumulative
distribution function of a probability distribution on [0, 1]. Since Dirichlet distributions
can be used as priors for probability distributions, it is therefore also natural to use them
as priors for increasing functions. We first introduce Dirichlet distributions of finite order
(Balakrishnan and V., 2003):

Definition 3 (Dirichlet distribution) The Dirichlet distribution Dir(α) of order k and
parameter vector α = (α1, . . . , αk) with αj > 0 is defined as the density on the simplexθ ∈ Rk

∣∣∣∣∣∣θj > 0,

k∑
j=1

θj = 1

 ,
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given by

pr(θ) :=
1

B(α)

k∏
j=1

θ
αj−1
j , (14)

where B(α) is the normalization constant

B(α) :=

∏k
j=1 Γ(αj)

Γ(
∑k

j=1 αj)
,

and Γ denotes the gamma function.

The following known result shows how the αj control the expectations:

Lemma 8 (expectation of Dirichlet distribution) The expectation of each θj is given
by

E[θj ] =
αj∑k
j=1 αj

.

The sum over all αj then controls to what extent the distribution is concentrated around
its mean. The following well-known property will be crucial below:

Lemma 9 (aggregation property of Dirichlet) If (θ1, . . . , θk) is a random vector dis-
tributed according to Dir(α1, . . . , αk) then (θ1, . . . , θk−2, θk−1 + θk) is distributed according
to
Dir(α1, . . . , αk−2, αk−1 + αk).

When a Dirichlet distribution is used to describe a distribution over distributions, then θ is
the probability vector of k events. If we define ∆Y

j with j = 0, . . . , n as the gaps obtained by

ordering all values y1, . . . , yn, then
∑n

j=0 ∆Y
j = 1 and thus the Dirichlet distribution of order

n+ 1 defines a distribution over the set of possible difference vectors ∆Y := (∆Y
0 , . . . ,∆

Y
n ).

However, we have to define distributions of order n for arbitrary n and need to ensure that
the distributions defined for different n are consistent in the sense that marginalizing the
distribution of y1, . . . , yn over yn coincides with the distribution of y1, . . . , yn−1 we define
for ñ = n − 1. To this end, we use a Dirichlet process, which is the generalization of a
Dirichlet distribution to infinite order:

Definition 4 (prediction via Dirichlet process) Given the values x1, . . . , xn, we de-
fine the probability density for the corresponding y-values by

pr(y1, . . . , yn|x1, . . . , xn) =
1

B(α)

n∏
j=0

(∆Y
j )αj−1 , (15)

where the parameters are defined via the gaps of the corresponding x-values:

αj := λ∆X
j j = 0, . . . , n , (16)

where ∆X
j are defined in analogy to ∆Y

j . Here, λ > 0 is a parameter that controls to what

extent we prefer linear function4

4. It should be noted that functions obtained by a Dirichlet process are almost surely discontinuous (Black-
well, 1973) although we have assumed the true function f to be differentiable. Yet, the process defines
a reasonable prior for our ‘naive’ prediction scheme of finitely many y-values. Later, we will let λ go to
infinity (which renders the discontinuities arbitrarily small) before we consider n→∞.
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To understand this Definition, we need a few remarks. First note that actually ∆Y is Dirich-
let distributed, but the same probability density can be used for y := (y1, . . . , yn) since the
Jacobian of the transformation from ∆Y to y is 1. This shows that the normalization of (14)
still remains correct. To choose the parameters αj proportional to the gaps in x-direction
(16) amounts to taking the uniform distribution as ‘base measure’ according to standard
terminology of Dirichlet processes. We will later see that changing the base measure pro-
vides a simple way to define an SSL version of the above prediction. Lemma 8 shows the
implication of this choice: the expectation of each ∆Y

j is given by the corresponding gap

∆X
j . In this sense, the Dirichlet process a priori favors the linear function. For our further

analysis it is also important to note that Lemma 9 implies

pr(y1, . . . , yn−1|x1, . . . , xn) = pr(y1, . . . , yn−1|x1, . . . , xn−1) . (17)

Hence, using (14) for n points and marginalizing over yn is the same as applying it to
ñ := n − 1 points only, which is the sense of consistency we have demanded above. In
other words, the unlabelled value xn is irrelevant for the prediction of the remaining (n−1)
y-values.

After having seen (n− 1) points, we interpolate via the prediction rule

pr(yn|x1, . . . , xn, y1, . . . , yn−1) =
pr(y1, . . . , yn−1, yn|x1, . . . , xn)

pr(y1, . . . , yn−1|x1, . . . , xn)
. (18)

Although our performance analysis does not require the explicit form of the left hand side of
(18), the following result (which is shown in Appendix A) provides a better understanding
about what it does:

Lemma 10 (interpolation by Dirichlet of order 2) Eq. (15) yields

pr(yn|x1, . . . , xn, y1, . . . , yn−1) =
1

(y◦i+1 − y◦i )B(α)

2∏
l=1

(θl)
αl−1 ,

with θ1 := (yn − y◦i )/(y◦i+1 − y◦i ) and θ2 := 1− θ1. The parameter vector reads

α := λ((xn − x◦i ), (x◦i+1 − xn)) .

Note that we need the additional normalization factor (y◦i+1−y◦i ) compared to (14) because
the Dirichlet distribution is actually a normalized probability density for θ1 ∈ (0, 1) which we
have transformed into a density for yn ∈ (y◦i+1, y

◦
i ). Due to Lemma 8 the expectation of the

ratio θ1 = (yn−y◦i )/(y◦i+1−y◦i ) is thus given by the corresponding ratio (xn−x◦i )/(x◦i+1−x◦i ).
Hence, (18) favors piecewise linear interpolation as defined in Subsection 3.1. Note that
the probability density of Dir(α1, α2) diverges at the boundaries θ1 = 0, 1 if αj < 1. To
ensure that our interpolation uses a density that favours values yn that are closer to the
expectation instead of favouring those that are close to the bounds y◦i and y◦i+1, we choose
λ � nmax because this yields λ(x◦j − x◦j+1) > 1 with high probability. Therefore, we will
later consider the limit λ→∞.

We now define the loss in each step as the Bayesian surprise:
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Definition 5 (Bayesian loss function) The loss in step n is defined by

Lλn(yn) := − log pr(yn|x1, . . . , xn, y1, . . . , yn−1) ,

where the superscript λ reminds us that pr already depends on λ.

Due to

pr(y1, . . . , yn|x1, . . . , xn) =
n∏
j=1

pr(yj |x1, . . . , xj , y1, . . . , yj−1)

(just apply (17) for each j) we obtain:

Lemma 11 (loss until step nmax) The total loss for steps 1, . . . , nmax in the prediction
game reads:

nmax∑
n=1

Lλn(yn) = − log pr(y1, . . . , ynmax |x1, . . . , xnmax)

The asymptotic for large λ of the total loss can be nicely described in terms of relative
entropies:

Theorem 1 (asymptotic total loss)

lim
λ→∞

1

λ

nmax∑
n=1

Lλn(yn) = D(u‖f ′nmax
) . (19)

Hence,

lim
nmax→∞

[
lim
λ→∞

1

λ

nmax∑
n=1

Lλn(yn)

]
= D(u‖f ′) . (20)

Proof: To shorten notation, we write n and j for nmax and n, respectively. Taking the
logarithm of (15) yields:

log pr(y1, . . . , yn|x1, . . . , xn) =
n∑
j=0

(λ∆X
j − 1) log ∆Y

j + log Γ(λ)−
n∑
j=0

log Γ(λ∆X
j ) . (21)

We now use the Stirling approximation

log Γ(z) = z log z − z log e+O(log z) .

Thus,

−
n∑
j=0

log Γ(λ∆X
j ) + log Γ(λ) = −λ

n∑
j=0

∆X
j log ∆X

j −O(log λ) .

Therefore,

lim
λ→∞

1

λ
log pr(y1, . . . , yn|x1, . . . , xn) =

n∑
j=1

∆X
j log ∆Y

j /∆
X
j = −D(u‖f ′n) .
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The second part of the statement holds because

lim
n→∞

∫ 1

0
log f ′n(x)dx =

∫ 1

0
lim
n→∞

log f ′n(x)dx ,

due to the bounded convergence theorem (the sequence (log f ′n)n∈N is uniformly bounded
because minx{f ′(x)} ≤ f ′n ≤ maxx{f ′(x)} by the mean value theorem).

We have seen that the complexity of the interpolation problem has turned out to depend on
D(u‖f ′) (for an appropriate limit, namely λ → ∞). Since information geometry considers
relative entropy as an analog of squared length in Euclidean geometry (Amari and Nagaoka,
1993), the total loss again depends on the squared length of the vector (u, g′) or (u, g−1′)
in Figures 3(a) or 3(b), respectively, in analogy to Subsection 3.1 where it was given by
Var(f ′) (i.e., the squared length of the vector g′ or g−1′ in Figures 2(a) or 2(b)).

4. Semi-Supervised Interpolation

In addition to the n − 1 labelled points (x1, y1), . . . , (xn−1, yn−1) and the unlabelled value
xn, we are now given the density pX . For the anticausal scenario, i.e., if X = E and Y = C,
Lemmas 1 and 2 state positive correlation between pX and f ′ or log f ′, respectively. Hence,
large density p(x) tends to correspond to large slope. Qualitatively, this already provides
a guideline on how to modify the linear interpolation: the value xn defines a partition of
(x◦i , x

◦
i+1) into two intervals. We first compare the average probability density in the left

interval with the one in the right one. Whenever it is larger in the left one than in the right
one, we slightly increase ŷn because we expect the slope of f to be larger on the left interval.
This, however, is just a rough intuition. The precise method of employing our knowledge
on pX depends on whether we use the correlations between f ′ and pX or between log f ′ and
pX . We start with the former because the performance analysis of the corresponding SSL
method uses a loss function that is closer to standard loss functions in machine learning.

4.1 SSL Using Correlations Between Slope and Density

In our SSL version, the estimation reads:

Definition 6 (additive SSL interpolation) Let F denote the cumulative distribution of
X and s > 0 be a parameter that controls how strongly the interpolation accounts for the
distribution pX . Then additive SSL interpolation is given by

ŷsn := ŷn + s
(x◦i+1 − xn)(x◦i − xn)

x◦i+1 − x◦i

[
F (xn)− F (x◦i )

xn − x◦i
−
F (x◦i+1)− F (xn)

x◦i+1 − xn

]
,

where ŷn is defined as in (11). Note that s must be admissible in the sense that it is small
enough to ensure that ŷsn remains inside the interval (y◦i , y

◦
i+1).

To intuitively understand this interpolation, note that the term in the bracket is the differ-
ence between the average densities of the left and the right interval. Hence ŷsn is increased
compared to the standard interpolation whenever the left interval contains higher density.
Further understanding of why we define our SSL interpolation precisely in such a way will
be provided below in the proof of Theorem 2. We first state our main result proved below:
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Theorem 2 (total loss in terms of (co)-variances) The total loss in the infinite inter-
polation game using ŷsn in Definition 6 reads:

∞∑
n=1

Ln(yn, ŷ
s
n) = Var(f ′ − s pX) = Var(f ′)− 2sCov[f ′, pX ] + s2 Var(pX) .

In causal direction we have Cov[f ′, pX ] = 0 and the additional term s2 Var(pX) makes the
performance worse than the baseline. In anticausal direction we have Cov[f ′, pX ] > 0. Then
standard linear regression tells us that the optimal improvement is reached for

s =
Cov[f ′, pX ]

Var(pX)
,

if this value is admissible (otherwise one chooses a smaller one). Then the remaining loss
reads:

Var(f ′ − spX) = Var(f ′)− (Cov[f ′, pX ])2

Var(pX)
,

which is exactly the squared distance between v and g−1 in Figure 2(b). By Pythagoras,
the squared length of (v, 0) is the amount by which SSL improves the prediction for the
optimal choice of s. We conclude:

Corollary 2 (Anticausal SSL works, causal SSL doesn’t) If X = E and Y = C,
SSL interpolation outperforms its supervised baseline version for sufficiently small s in the
sense that

∞∑
n=1

[Ln(yn, ŷ
s
n)− Ln(yn, ŷn)] < 0 .

If X = C and Y = E, SSL increases the total loss for all admissible s.

Finding the right value s needs to be a non-trivial problem for the following reason. pE
deviates from the uniform distribution for two reasons: first, because the function g is non-
linear and second, because pC is not uniform. In other words, we do not know which part
of the structure of pE is due to the structure of g and which part due to the structure of
pC . This is also shown by the two extreme cases (1) where g is the identity and pC and
pE are identical densities and (2) pC is uniform and pE = g−1′ . The optimal way to use
pE for better predicting g−1 will typically be a compromise that neither assumes that pC is
uniform nor that g is linear. The two extreme cases nicely correspond to a degeneration of
the triangles in Figures 3(a) and 2(a): For linear g, the derivative g−1′ is constant and thus
coincides with the trivial random variable 0 and the trivial density u. On the other hand,
for uniform pC , g−1′ and pE coincide. For the generic case, the projection of g−1′ onto the
line from pE to u is an interior point. Finding the right balance between attributing the
structure of pE entirely to the structure of g or entirely to the structure of pC amounts to
finding the projection points v and wa that correspond to an optimal performance of our
SSL methods in Subsections 4.1 and in Subsection 4.2, respectively. Since we do not know
g−1, we do not know the projection points v and wa beforehand. Therefore, we have to
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work with the following heuristics: in step n, we choose the value sn−1 that minimizes the
total loss until step n− 1, which is easy to compute using Corollary 4 below.

The remainder of this subsection is devoted to the proof of Theorem 2 with some ad-
ditional intuitive explanations at the end. To quantitatively analyze the loss, it is helpful
to describe the estimation process as an estimation of the slope f ′n (which is equivalent)
instead of an estimation of yn. Let us define f̂n as the function passing through (xn, ŷn)
in addition to the points (x1, y1), . . . , (xn−1, yn−1). Standard linear interpolation obviously
amounts to setting

f̂ ′n := f ′n−1 .

Note that f ′n−1 indicates the average slope for each open interval (x◦j , x
◦
j+1) and is undefined

for each x◦j with j = 0, . . . , n. It is therefore convenient to consider f ′n as the following
conditional expectation:

Lemma 12 (f ′n as conditional expectation of f ′) Let Jn : [0, 1] → {0, . . . , n} be the
random variable such that for each x the value Jn(x) indicates the subinterval in which x
lies (defined by the n observed x-values x◦1, x

◦
i , xn, x

◦
i+1 . . . , x

◦
n−1). Then,

f ′n = E[f ′|Jn] .

The proof is immediate via the mean value theorem. Similarly, we now introduce average
densities:

Definition 7 (average density as conditional expectation) Let Jn be defined as in
Lemma 12. Then the average density (corresponding to the partition of [0, 1] defined by the
first n x-values) is the function on [0, 1] given by

pn := E[pX |Jn] ,

which is defined only in the interior of all n+ 1 intervals.

For x ∈ (x◦j , x
◦
j+1) with j 6= i we have, for instance:

pn(x) =
F (x◦j+1)− F (x◦j )

x◦j+1 − x◦j
. (22)

Using these conditional expectations, our SSL interpolation can be written in a concise
form:

Lemma 13 (additive SSL interpolation in terms of conditional expectations) The
interpolation in Definition 6 amounts to setting

(f̂ s)′n = f ′n−1 + s(pn − pn−1) . (23)

Proof: We only need to show that integrating (23) from x◦i to xn yields the correct value
for ŷsn. On all intervals other than (x◦i , x

◦
i+1) (23) is certainly true because f̂sn coincides with

fn−1 and pn − pn−1 is zero. On the interval (x◦i , xn) the average densities pn−1 and pn are
given by

pn−1 =
F (x◦i+1)− F (x◦i )

x◦i+1 − x◦i
and pn =

F (xn)− F (x◦i )

xn − x◦i
.
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Inserting this into (23) and integrating it from x◦i to xn yields:

ŷsn = ŷn + s

[
F (xn)− F (x◦i )−

F (x◦i+1)− F (x◦i )

x◦i+1 − x◦i
(xn − x◦i )

]
= ŷn + s

[
F (xn)− F (x◦i )

x◦i+1 − x◦i
(x◦i+1 − x◦i )−

F (x◦i+1)− F (x◦i )

x◦i+1 − x◦i
(xn − x◦i )

]
= ŷn +

s

x◦i+1 − x◦i

[
−(xn − x◦i )F (x◦i+1) + (x◦i+1 − x◦i )F (xn)− (x◦i+1 − xn)F (x◦i )

]
= ŷn + s

(x◦i+1 − xn)(x◦i − xn)

x◦i+1 − x◦i

[
F (xn)− F (x◦i )

xn − x◦i
−
F (x◦i+1)− F (xn)

x◦i+1 − xn

]
.

Using Lemma 5 we are now able to phrase the loss in step n using our conditional expec-
tations:

Corollary 3 (difference between interpolating functions) The loss of the SSL ver-
sion in step n reads

Ln(yn, ŷ
s
n) =

∫ 1

0

[
(f ′n − f ′n−1)− s(pn − pn−1)

]2
dx (24)

=

∫ 1

0
[(f ′n − spn)− (f ′n−1 − spn−1)]2dx . (25)

To derive a closed form for the total loss until step n we observe that f ′n−1 and pn−1 can
also be seen as conditional expectations of f ′n and pn, respectively:

Lemma 14 (concatenating conditional expectations)

E[f ′|Jn−1] = E[f ′n|Jn−1] and E[pX |Jn−1] = E[pn|Jn−1] .

Proof: Applying the law of total expectation E[E[A|B]] = E[A] to each value of Jn−1

yields E[E[f ′|Jn]|Jn−1 = j] = E[f ′|Jn−1 = j] . Hence, E[E[f ′|Jn]|Jn−1] = E[f ′|Jn−1] . The
proof for pX is similar.

Since we want to show that the total loss until step n can be written as a variance, we first
need to rewrite the loss in each step as variance:

Lemma 15 (loss as variance of conditional expectation)

Ln(yn, ŷ
s
n) = E[Var(f ′n − spn|Jn−1)] .

Proof: The right-hand side of (24) can be written as∫ 1

0
((f ′n − spn)− (f ′n−1 − spn−1))2dx =

∫ 1

0
(f ′n − spn −E[f ′ − spX |Jn−1])2dx

=

∫ 1

0
(f ′n − spn −E[f ′n − spn|Jn−1])2dx = E[Var(f ′n − spn|Jn−1)] .

We can now express the total loss after n steps as a variance:
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Lemma 16 (total loss after n steps)

n∑
j=1

Lj(yj , ŷ
s
j ) = Var(f ′n − spn) , (26)

where the variance is again meant with respect to the Lebesgue measure.

Proof: By induction over n. Let (26) hold for n. Using the law of total variance we have

Var(f ′n − spn) = E[Var(f ′n − spn|Jn−1)] + Var(E[f ′n − spn|Jn−1])

= Ln(ŷsn, yn) + Var(f ′n−1 − spn−1) ,

where we have used Lemma 15.

As a simple conclusion we find:

Corollary 4 (optimal value sn) The total loss
∑n

j=1 Lj(yj , ŷ
s
j ) until step n is minimized

for

sn :=
Cov[f ′n, pn]

Var(pn)
.

Moreover, sn converges to the value s optimizing the total loss for infinitely many steps.

The limit n→∞ now proves Theorem 2:

lim
n→∞

Var(f ′n − spn) = lim
n→∞

∫ 1

0
(f ′n − spn)− (1− s))2dx

=

∫ 1

0
((f ′ − spX)− (1− s))2dx = Var(f ′ − spX) .

Theorem 2 only states an improvement of the total loss over the infinite number of steps
without stating for which n we get an improvement. The following remarks provide an
intuition about in which steps SSL is effective. The term Cov[f ′n, pn] quantifies to what
extent the covariance of f ′ and pX is apparent on the level of coarse-graining defined by the
observations available in step n. For n→∞, it converges to Cov[f ′, pX ], which is positive
in the anticausal scenario. The difference

Cov[f ′n, pn]− Cov[f ′n−1, pn−1] (27)

measures to what extent the correlations between f ′ and pX get better visible when the
coarse-graining is made finer by going from n− 1 to n intervals. One can easily show that
(27) can be rewritten as Cov[f ′n− f ′n−1, pn− pn−1], which is positive whenever either (1) yn
is greater than the value ŷn obtained by linear interpolation ŷn := fn−1(xn) and the average
probability density is larger on the left interval (x◦i , xn) than on the right interval (xn, x

◦
i+1)

or (2) yn is smaller than ŷn and the density is larger on the right interval. Hence, (27) is
positive whenever our SSL method corrects ŷn in the correct direction. In other words, SSL
does the right thing in step n whenever n defines a level of coarse-graining for which the
covariance of f ′ and pX gets better visible than in the previous step.
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4.2 SSL Using Correlations Between Log Slope and Density

As in Subsection 4.1 we modify the interpolation in a way that favors functions that have
higher derivative in regions where pX is large. To do so, we use the Dirichlet process
in Definition 4 with respect to a coordinate system that makes pX more uniform: if we
reparameterize X such that the differences ∆X

j get larger in regions with high density,

the interpolation with respect to the new coordinates infers the corresponding ∆Y
j to be

larger. To analyze the total loss for such a ‘deformed interpolation’ does not require to redo
the computations in Subsection 3.2. Instead, we observe that applying the transformation
xj 7→ x̃j = b(xj) with some diffeomorphism b and performing interpolation in the new
coordinate system amounts to interpolating f̃ := f ◦ b−1. We thus conclude that the term
on the right hand side of (20) is replaced with D(u‖(f ◦ b−1)′). As an aside, we should
mention that interpolation in the new coordinates amounts to using a Dirichlet process
with a different base measure, namely the density that is uniform in the new coordinates.
We conclude:

Lemma 17 (loss of deformed interpolation) The asymptotic of the loss with respect
to the above ‘b-deformed interpolation’ (denoted by L̃) reads:

lim
nmax→∞

[
lim
λ→∞

nmax∑
n=1

L̃λn(yn)

]
= D(ũ‖f ′), (28)

where ũ := b′ denotes the density that is the image of the uniform under b−1.

Proof: Since the density f ′ is the image of the uniform distribution under f−1, the density
(f ◦b−1)′ is the image of the uniform distribution under b◦f−1. Relative entropy is preserved
under bijections, we can thus apply b−1 to the left argument u of D(.‖.) (which generates
the density b′) instead of applying b to the right one.

We can now easily compare the performance of interpolations with respect to different
coordinate systems:

Lemma 18 (comparing Dirichlet interpolations)

lim
nmax→∞

[
lim
λ→∞

nmax∑
n=1

(Lλn(yn)− L̃λn(yn))

]
= D(u‖f ′)−D(ũ‖f ′) .

Given the relation between performance and the relative entropy stated by Lemma 18 we
conclude:

Corollary 5 (benefit of changing the coordinate system) The deformed interpolation
with respect to a transformation that turns ũ into the uniform distribution on [0, 1] asymp-
totically outperforms the standard interpolation for n→∞ if and only if

D(ũ‖f ′) < D(u‖f ′) .

We now define the density that generates our SSL interpolation:
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Definition 8 (SSL interpolation) Let ws be the mixture of pX with the uniform distri-
bution, i.e.,

ws = spX + (1− s) .

Apply the coordinate transformation that transforms ws into the uniform distribution, i.e.,

Ws(x) := sF (x) + (1− s)x . (29)

Then the deformed interpolation is our usual Dirichlet interpolation from Subsection 2.2
applied to the values x̃j := Ws(xj).

We then state our main result regarding the performance of SSL by Dirichlet process in the
modified coordinate system:

Theorem 3 (improvement of performace by SSL) Predicting yn via the Dirichlet pro-
cess in the coordinate system Ws, as defined by (29), improves the performance by the
amount D(u‖ws) .

To further understand our deformed interpolation one may wonder whether the expectation
of yn coincides with the value ŷsn in Subsection 4.1. Remarkably, this is not the case. Instead,
it turns out that the SSL method in this subsection modifies the slope by a multiplicative
factor that accounts for pX while the SSL method in Subsection 4.1 corrects the slope by
an additive summand. This nicely corresponds to the fact that Subsection 4.1 employs
correlations between pX and f ′ while this Subsection employs correlations between pX and
log f ′. This difference is made more explicit in Appendix D.

We now state our main result:

Theorem 4 (anticausal SSL works, causal SSL doesn’t) Let cause C and effect E
satisfy Assumption 2. For X := E and Y := C and f := g−1 there is an s > 0 for
which the deformed interpolation outperforms standard linear interpolation. For X := C
and Y := E and f := g, there is no such s.

Proof In the terminology of information geometry (Amari and Nagaoka, 1993; Amari,
2001), M := {ws}s∈I is an m-manifold. There is therefore a unique minimizer wa of the
distance D(ws‖f ′) (called the ‘projection’ of f ′ onto M) satisfying the orthogonality, see
Eq. (60) in (Amari, 2001),

D(u‖f ′) = D(u‖wa) +D(wa‖f ′) . (30)

For X = C and Y = E, we have wa = u. Therefore, M cannot contain any ws for which
D(ws‖f ′) < D(u‖f ′).

For the causal scenario X = E and Y = C, we consider the function

h(s) := D(ws‖f ′) =

∫ 1

0
(sp(x)− (1− s)) log

sp(x)− (1− s)
f ′(x)

dx . (31)

Its derivative reads

h′(s) =

∫ 1

0
(p(x)− 1) log

ws(x)

f ′(x)
dx . (32)
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We observe

h′(0) =

∫ 1

0
(p(x)− 1) log

1

f ′(x)
dx = −Cov[pX , log f ′] .

Using (6), we thus have h′(0) < 0. Therefore, the unique minimum a of h satisfies a > 0.

Remark 1 We show in Appendix C that a ≤ 1 holds in addition to a > 0 whenever one
assumes the additional independence postulate

Cov[g′, log pE ] = 0 ,

which has not been described in the literature yet.5 Then wa is a mixture of u and pX .

In strong analogy to Subsection 4.1, the theory does not tell us how to find the optimal value
s = a. We know that wa is geometrically given by projecting f ′ onto the line connecting u
and pX , see Figure 3(b), but since we don’t know f ′, it is not even clear how to find any
ws that is closer to f ′ than u is. In Subsection 4.1 we have provided intuitive arguments
why this needs to be a non-trivial problem: The free parameter s defines a prior decision
to what extent we attribute the non-uniformness of pX to pY and to what extent to the
non-linearity of f . Again, we propose the following heuristic procedure to iteratively adapt
s during the SSL procedure: in each step n, we already know which value an−1 minimizes
D(ws‖f ′n−1). In other words, among all possible deformations given by ws, we can choose
the one that yields the best prediction for the piecewise linear function f ′n−1 interpolating
the known values. Then, an converges to the optimal value a as shown by the following
result which is proved in Appendix B:

Lemma 19 (continuity of projections) Let f ′ be continuous and pX be bounded from
above. Define

an := argmins∈ID(ws‖f ′n) .

Then we have
lim
n→∞

an = argmins∈ID(ws‖f ′) .

5. Conclusions

We have analyzed a semi-supervised interpolation for Y = f(X) for an unknown strictly
monotonically increasing function f . Whenever Y is the cause and X the effect the deriva-
tive of f tends to be high in regions where pX is large – provided that one believes in the
model assumptions of Information-Geometric Causal Inference. We have proposed two dif-
ferent SSL methods, one employs the fact that pX is positively correlated with f ′, while the
other one employs positive correlations between pX and the logarithm of the slope. In both
cases, the SSL method changes the value ŷn inferred by standard linear interpolation by an
amount that depends on the average probability densities of X in the intervals between xn
and the closest point to the left and to the right. It turns out that such a modified linear

5. It turns out to be equivalent to the dual version of (7) by replacing each relative entropy D(p‖q) with
D(q‖p). It is known in information geometry (Amari, 2001) that many theorems have such a ‘dual’
counterpart.
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interpolation outperforms standard linear interpolation with respect to two substantially
different loss functions: the first one is a squared distance, the second one the Bayesian
surprise.

To the best of our knowledge, this is the first theoretical result that links the performance
of SSL to the causal direction, provided that one accepts the underlying independence
assumption for Pcause and Peffect|cause. SSL-algorithms that employ PX by changing the
geometry of the input space accordingly have been described earlier Chapelle et al. (2006).
For instance, PX may define a notion of smoothness (e.g. via PX -dependent kernels or
graphs) and thus influence the regularization term. Here we have justified an appropriate
change of the geometry based on a postulate that is linked to the causal direction.

Certainly, the notion of (in)dependence of PX and PY |X used throughout this article is
a rather simplistic one. First, the deterministic scenario applies only to very specific causal
relations in real life. Second, even for this case, one would not expect that independence
between Pcause and Peffect|cause always holds in the sense of vanishing correlations as discussed
here. To find notions of (in)dependence that turn out to be related to the causal direction
in realistic learning scenarios has to be left to the future.

Acknowledgments

The authors would like to thank Eleni Sgouritsa, Joris Mooij, and Jonas Peters for helpful
remarks on the manuscript.

Appendix A. Proof of Lemma 10

Using (17) yields

log pr(yn|x1, . . . , xn, y1, . . . , yn−1)

= pr(y1, . . . , yn|x1, . . . , xn)− log pr(y1, . . . , yn−1|x1, . . . , xn−1) .

We now compare the terms in (21) with those that occur in the same formula for n+ 1: the
term

(λ(x◦i+1 − x◦i )− 1) log(y◦i+1 − y◦i ) (33)

is replaced with

(λ(xn+1 − x◦i )− 1) log(yn+1 − y◦i ) + (λ(x◦i+1 − xn)− 1) log(y◦i+1 − yn) . (34)

Splitting the term (33) into

(λ(xn − x◦i )− 1) log(y◦i+1 − y◦i ) + (λ(xn − x◦i+1)− 1) log(y◦i+1 − y◦i ) + log(y◦i+1 − y◦i ) ,

the difference between (33) and (34) can be written as

λ(xn − x◦i )− 1) log
yn − y◦i
y◦i+1 − y◦i

+ λ(x◦i+1 − xn)− 1) log
y◦i+1 − yn
y◦i+1 − y◦i

− log(y◦i+1 − y◦i ) .

To understand how the normalization factors change from n − 1 to n we observe that the
term

log Γ(λ(x◦i+1 − x◦i ))
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is replaced with
log Γ(λ(xn − x◦i )) + log Γ(λ(x◦i+1 − xn)) .

Then the statement follows.

Appendix B. Proof of Lemma 19

We first consider the affine family of densities qλ := λr1 + (1−λ)r2, where r1, r2 are strictly
positive densities with non-zero lower bound b. We then show that the value s minimizing
D(ws‖qλ) depends continuously on λ. To this end, we introduce the function

`(λ, s) :=
d

ds
D(ws‖qλ) =

∫
(p(x)− 1) log

ws(x)

qλ
dx ,

where the last equality is derived in analogy to (32) by replacing f ′ with qλ in. Then

∂

∂λ
`(λ, s) = −

∫ 1

0

p(x)− 1

λr1(x) + (1− λ)r2(x)
(r1(x)− r2(x))dx

∂

∂s
`(λ, s) =

∫ 1

0

(p(x)− 1)2

ws(x)
dx .

Let b > 0 be a lower bound for r1 and r2 and d > 0 an upper bound for pX . We then obtain∣∣∣∣ ∂∂λ`(λ, s)
∣∣∣∣ ≤ d

b

∫
|r1(x)− r2(x)|dx . (35)

Moreover, ∣∣∣∣ ∂∂s`(λ, s)
∣∣∣∣ ≥ 1

1 + d

∫
(1− p(x))2dx . (36)

Since (36) is non-zero because pX is not the constant function 1 (otherwise it could not
correlate with log f ′), the law of implicit functions states that we can locally find a function
v (around some solution a) by

`(λ, v(λ)) = 0 ,

with

v′(λ) =
∂

∂λ
`(λ, a)

(
∂

∂s
`(λ, a)

)−1

.

The difference between the s-values s1 and s2 for r1 and r2, respectively, can be bounded
from above by

|v(1)− v(0)| ≤ sup
λ∈[0,1]

|v′(λ)| ≤ d(d+ 1)

b

∫
|r1(x)− r2(x)|dx∫

(1− p(x))2dx
, (37)

where the last inequality follows from combining (35) and (36). Since each f ′n is strictly
positive and f ′n converges uniformly to f ′, which is strictly positive on the compact interval
[0, 1], we can find a uniform lower bound b for the functions f ′n. Using (37) with r1 := f ′n
and r2 := r2 yields

|an − a| ≤
d(d+ 1)

b

∫
|f ′n(x)− f ′(x)|dx .

Then the right hand side converges to zero, again due to the uniform convergence of f ′n to
f ′.
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Appendix C. Using the Dual Independence Postulate

Straightforward computation shows that the ‘dual’ independence postulate

Cov[g′, log pE ] = 0

is equivalent to

D(g′‖pC) = D(g′‖u) + (u‖pC) .

Applying the function g to all distributions yields

D(u‖pE) = D(u‖g−1′) +D(g−1′‖pE) . (38)

For the function h defined in (31) we observe that

h′(1) =

∫ 1

0
(p(x)− u(x)) log

p(x)

f ′(x)
dx

= D(pX‖f ′) +D(u‖pX)−D(u‖f ′) .

Using

D(u‖pX) = D(u‖f ′) +D(f ′‖pX) ,

due to (38) yields

h′(1) = D(pX‖f ′) +D(f ′‖pX) ≥ 0 ,

with equality only for f ′ = pX , i.e., if pY is uniform. Therefore the unique minimum a of h
satisfies s ≤ 1 with equality only for uniform input.

Appendix D. Comparing the Two Interpolation Schemes

We now explain why the SSL interpolation in Subsection 4.2 differs from the one in Sub-
section 4.1 not only by the fact that the former infers one specific value ŷsn while the latter
provides a conditional distribution. We now see that the expectation of the conditional of
the SSL version of the Dirichlet process does not coincide with ŷsn in Subsection 4.1. To this
end, we recall that the expectation for the standard linear interpolation in Subsection 3.1
reads

ŷn =
xn − x◦i
x◦i+1 − x◦i

(y◦i+1 − y◦i ) + y◦i .

Now, we just have to replace each x-value by Ws(x) and obtain:

Lemma 20 (expectation of deformed interpolation)

ŷsn =
Ws(xn)−Ws(x

◦
i )

Ws(x◦i+1)−Ws(x◦i )
(y◦i+1 − y◦i ) + y◦i . (39)

To understand (39), we note that it amounts to multiplying the slope of fn with some factor:
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Lemma 21 (deformed interpolation in terms of derivatives)

(f̂sn)′ = f ′n−1

(1− s) + spn
(1− s) + spn−1

= f ′n−1

wsn
wsn−1

, (40)

with wsn := E[ws|Jn].

Proof: Rewrite (39) as

ŷsn − y◦i
xn − x◦i

=
y◦i+1 − y◦i
x◦i+1 − x◦i

Ws(xn)−Ws(x
◦
i )

xn − x◦i

x◦i+1 − x◦i
Ws(x◦i+1)−Ws(x◦i )

.

Then the right hand side can be written as f ′nw
s
n/w

s
n−1 .

To compare (40) to (23) we observe

s(pn − pn−1) = wsn − wsn−1 .

Hence, (23) can also be written as

(f̂sn)′ = f ′n−1 + wsn − wsn−1, .

Therefore the additively deformed interpolation modifies f ′n−1 by adding the difference
wsn − wsn−1 as summand, while the SSL interpolation in Subsection 4.2 is multiplicative in
the sense that it adds the quotient wsn/w

s
n−1 as factor.
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Abstract
We propose some axioms for hierarchical clustering of probability measures and investi-
gate their ramifications. The basic idea is to let the user stipulate the clusters for some
elementary measures. This is done without the need of any notion of metric, similarity
or dissimilarity. Our main results then show that for each suitable choice of user-defined
clustering on elementary measures we obtain a unique notion of clustering on a large set
of distributions satisfying a set of additivity and continuity axioms. We illustrate the
developed theory by numerous examples including some with and some without a density.
Keywords: axiomatic clustering, hierarchical clustering, infinite samples clustering, den-
sity level set clustering, mixed Hausdorff-dimensions

1. Introduction

Clustering is one of the most basic tools to investigate unsupervised data: finding groups
in data. Its applications reach from categorization of news articles over medical imaging to
crime analysis. For this reason, a wealth of algorithms have been proposed, among the best-
known being: k-means (MacQueen, 1967), linkage (Ward, 1963; Sibson, 1973; Defays, 1977),
cluster tree (Stuetzle, 2003), DBSCAN (Ester et al., 1996), spectral clustering (Donath and
Hoffman, 1973; von Luxburg, 2007), and expectation-maximization for generative models
(Dempster et al., 1977). For more information and research on clustering we refer the
reader to Jardine and Sibson (1971); Hartigan (1975); Kaufman and Rousseeuw (1990);
Mirkin (2005); Gan et al. (2007); Kogan (2007); Ben-David (2015); Menardi (2015) and the
references therein.

However, each ansatz has its own implicit or explicit definition of what clustering is.
Indeed for k-means it is a particular Voronoi partition, for Hartigan (1975, Section 11.13) it
is the collection of connected components of a density level set, and for generative models it
is the decomposition of mixed measures into the parts. Stuetzle (2003) stipulates a grouping
around the modes of a density, while Chacón (2014) uses gradient-flows. Thus, there is no
universally accepted definition.

A good notion of clustering certainly needs to address the inherent random variability in
data. This can be achieved by notions of clusterings for infinite sample regimes or complete
knowledge scenarios—as von Luxburg and Ben-David (2005) put it. Such an approach has
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various advantages: one can talk about ground-truth, can compare alternative clustering al-
gorithms (empirically, theoretically, or in a combination of both by using artificial data), and
can define and establish consistency and learning rates. Defining clusters as the connected
components of density level sets satisfies all of these requirements. Yet it seems to be slightly
ad-hoc and it will always be debatable, whether thin bridges should connect components,
and whether close components should really be separated. Similar concerns may be raised
for other infinite sample notions of clusterings such as Stuetzle (2003) and Chacón (2014).

In this work we address these and other issues by asking ourselves: What does the set
of clustering functions look like? What can defining properties—or axioms—of clustering
functions be and what are their ramifications? Given such defining properties, are there
functions fulfilling these? How many are there? Can a fruitful theory be developed? And
finally, for which distributions do we obtain a clustering and for which not?

These questions have led us to an axiomatic approach. The basic idea is to let the
user stipulate the clusters for some elementary measures. Here, his choice does not need
to rely on a metric or another pointwise notion of similarity though—only basic shapes for
geometry and a separation relation have to be specified. Our main results then show that
for each suitable choice we obtain a unique notion of clustering satisfying a set of additivity
and continuity axioms on a large set of measures. These will be motivated in Section 1.2
and are defined in Axioms 1, 2, and 3. The major technical achievement of this work is
Theorem 20: it establishes criteria (c.f. Definition 18) to ensure a unique limit structure,
which in turn makes it possible to define a unique additive and continuous clustering in
Theorem 21. Furthermore in Section 3.5 we explain how this framework is linked to density
based clustering, and in the examples of Section 4.3 we investigate the consequences in the
setting of mixed Hausdorff dimensions.

1.1 Related Work

Some axioms for clustering have been proposed and investigated, but to our knowledge, all
approaches concern clustering of finite data. Jardine and Sibson (1971) were probably the
first to consider axioms for hierarchical clusterings: these are maps of sets of dissimilarity
matrices to sets of e.g. ultrametric matrices. Given such sets they obtain continuity and
uniqueness of such a map using several axioms. This setting was used by Janowitz and
Wille (1995) to classify clusterings that are equivariant for all monotone transformations of
the values of the distance matrix. Later, Puzicha et al. (1999) investigate axioms for cost
functions of data-partitionings and then obtain clustering functions as optimizers of such cost
functions. They consider as well a hierarchical version, marking the last axiomatic treatment
of that case until today. More recently, Kleinberg (2003) put forward an impossibility result.
He gives three axioms and shows that any (non-hierarchical) clustering of distance matrices
can fulfill at most two of them. Zadeh and Ben-David (2009) remedy the impossibility by
restricting to k-partitions, and they use minimum spanning trees to characterize different
clustering functions. A completely different setting is Meilǎ (2005) where an arsenal of
axioms is given for distances of clustering partitions. They characterize some distances
(variation of information, classification error metric) using different subsets of their axioms.

One of the reviewers brought clustering of discrete data to our attention. As far as
we understand, consensus clustering (Mirkin, 1975; Day and McMorris, 2003) and additive
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clustering (Shepard and Arabie, 1979; Mirkin, 1987) are popular in social studies clustering
communities. What we call additive clustering in this work is something completely different
though. Still, application of our notions to clustering of discrete structures warrants further
research.

1.2 Spirit of Our Ansatz

Let us now give a brief description of our approach. To this end assume for simplicity that
we wish to find a hierarchical clustering for certain distributions on Rd. We denote the set
of such distributions by P. Then a clustering is simply a map c that assigns every P ∈ P
to a collection c(P ) of non-empty events. Since we are interested in hierarchical clustering,
c(P ) will always be a forest, i.e. we have

A,A′ ∈ c(P ) =⇒ A ⊥ A′ or A ⊂ A′ or A ⊃ A′. (1)

Here A ⊥ A′ means sufficiently distinct, i.e. A∩A′ = ∅ or something stronger (cf. Definition 1.
Following the idea that eventually one needs to store and process the clustering c(P ) on a
computer, our first axiom assumes that c(P ) is finite. For a distribution with a continuous
density the level set forest, i.e. the collection of all connected components of density level sets,
will therefore not be viewed as a clustering. For densities with finitely many modes, however,
this level set forest consists of long chains interrupted by finitely many branchings. In this
case, the most relevant information for clustering is certainly represented at the branchings
and not in the intermediate chains. Based on this observation, our second clustering axiom
postulates that c(P ) does not contain chains. More precisely, if s(F ) denotes the forest that
is obtained by replacing each chain in the forest F by the maximal element of the chain, our
structured forest axiom demands that

s(c(P )) = c(P ) . (2)

To simplify notations we further extend the clustering to the cone defined by P by setting

c(αP ) := c(P ) (3)

for all α > 0 and P ∈ P. Equivalently we can view P as a collection of finite non-trivial
measures and c as a map on P such that for α > 0 and P ∈ P we have αP ∈ P and
c(αP ) = c(P ). It is needless to say that this extended view on clusterings does not change
the nature of a clustering.

Our next two axioms are based on the observation that there do not only exist distribu-
tions for which the “right notion” of a clustering is debatable but there are also distributions
for which everybody would agree about the clustering. For example, if P is the uniform dis-
tribution on a Euclidean ball B, then certainly everybody would set c(P ) = {B}. Clearly,
other such examples are possible, too, and therefore we view the determination of distribu-
tions with such simple clusterings as a design decision. More precisely, we assume that we
have a collection A of closed sets, called base sets and a family Q = {QA}A∈A ⊂ P called
base measures with the property A = suppQA for all A ∈ A. Now, our base measure
axiom stipulates

c(QA) = {A}. (4)
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It is not surprising that different choices of A, Q, and ⊥ may lead to different clusterings. In
particular we will see that larger classes A usually result in more distributions for which we
can construct a clustering satisfying all our clustering axioms. On the other hand, taking a
larger class A means that more agreement needs to be sought about the distributions having
a trivial clustering (4). For this reason the choice of A can be viewed as a trade-off.

P

c(P )

+
P ′

c(P ′)

=
P + P ′

c(P ) ∪ (P ′)

Figure 1: Example of disjoint additivity for two distributions having a density.

Axiom (4) only describes distributions that have a trivial clustering. However, there are
also distributions for which everybody would agree on a non-trivial clustering. For example,
if P is the uniform distribution on two well separated Euclidean balls B1 and B2, then the
“natural” clustering would be c(P ) = {B1, B2}. Our disjoint additivity axiom generalizes
this observation by postulating

suppP1 ⊥ suppP2 =⇒ c(P1 + P2) = c(P1) ∪ c(P2) . (5)

In other words, if P consists of two spatially well separated sources P1 and P2, the clustering
of P should reflect this spatial separation, see also Figure 1. Moreover note this axiom
formalizes the vague term “spatially well separated” with the help of the relation ⊥, which,
like A and Q is a design parameter that usually influences the nature of the clustering.

The axioms (4) and (5) only described the horizontal behaviour of clusterings, i.e. the
depth of the clustering forest is not affected by (4) and (5). Our second additivity axiom
addresses this. To motivate it, assume that we have a P ∈ P and a base measure QA,
e.g. a uniform distribution on A, such that suppP ⊂ A. Then adding QA to P can be
viewed as pouring uniform noise over P . Intuitively, this uniform noise should not affect
the internal and possibly delicate clustering of P but only its roots, see also Figure 2. Our
base additivity axiom formalizes this intuition by stipulating

suppP ⊂ A =⇒ c(P +QA) = s
(
c(P ) ∪ {A}

)
. (6)

Here the structure operation s( · ) is applied on the right-hand side to avoid a conflict with
the structured forest axiom (2). Also note that it is this very axiom that directs our theory
towards hierarchical clustering, since it controls the vertical growth of clusterings under a
simple operation.

QA

A

+

P
c(P )

=
P +QA

c(P +QA) = {A} ∪ c(P )

Figure 2: Example of base additivity.
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Any clustering satisfying the axioms (1) to (6) will be called an additive clustering.
Now the first, and rather simple part of our theory shows that under some mild technical
assumptions there is a unique additive clustering on the set of simple measures on forests

S(A) :=

{ ∑
A∈F

αAQA | F ⊂ A is a forest and αA > 0 for all A ∈ F
}
.

Moreover, for P ∈ S(A) there is a unique representation P =
∑

A∈F αAQA and the additive
clustering is given by c(P ) = s(F ).

Unfortunately, the set S(A) of simple measures, on which the uniqueness holds, is usually
rather small. Consequently, additive clusterings on large collections P are far from being
uniquely determined. Intuitively, we may hope to address this issue if we additionally impose
some sort of continuity on the clusterings, i.e. an implication of the form

Pn → P =⇒ c(Pn)→ c(P ) . (7)

Indeed, having an implication of the form (7), it is straightforward to show that the clustering
is not only uniquely determined on S(A) but actually on the “closure” of S(A). To find a
formalization of (7), we first note that from a user perspective, c(Pn) → c(P ) usually
describes a desired type of convergence. Following this idea, Pn → P then describes a
sufficient condition for (7) to hold. In the remainder of this section we thus begin by
presenting desirable properties c(Pn)→ c(P ) and resulting necessary conditions on Pn → P .

Let us begin by assuming that all Pn are contained in S(A) and let us further denote
the corresponding forests in the unique representation of Pn by Fn. Then we already know
that c(Pn) = s(Fn), so that the convergence on the right hand side of (7) becomes

s(Fn)→ c(P ) . (8)

Now, every s(Fn), as well as c(P ), is a finite forest, and so a minimal requirement for (8)
is that s(Fn) and c(P ) are graph isomorphic, at least for all sufficiently large n. Moreover,
we certainly also need to demand that every node in s(Fn) converges to the corresponding
node in c(P ). To describe the latter postulation more formally, we fix graph isomorphisms
ζn : s(F1)→ s(Fn) and ζ : s(F1)→ c(P ). Then our postulate reads as

ζn(A)→ ζ(A), (9)

for all A ∈ s(F1). Of course, there do exist various notions for describing convergence of
sets, e.g. in terms of the symmetric difference or the Hausdorff metric, so at this stage we
need to make a decision. To motivate our choice, we first note that (9) actually contains
two statements, namely, that ζn(A) converges for n → ∞, and that its limit equals ζ(A).
Now recall from various branches of mathematics that definitions of continuous extensions
typically separate these two statements by considering approximating sequences that auto-
matically converge. Based on this observation, we decided to consider monotone sequences
in (9), i.e. we assume that A ⊂ ζ1(A) ⊂ ζ2(A) ⊂ . . . for all A ∈ s(F1). Let us denote the
resulting limit forest by F∞, i.e.

F∞ :=

{⋃
n

ζn(A) | A ∈ s(F1)

}
,
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which is indeed a forest under some mild assumptions on A and ⊥. Moreover, ζ∞ : s(F1)→
F∞ defined by ζ∞(A) :=

⋃
n ζn(A) becomes a graph isomorphism, and hence (9) reduces to

ζ∞(A) = ζ(A) P -almost surely for all A ∈ s(F1). (10)

Summing up our considerations so far, we have seen that our demands on c(Pn)→ c(P )
imply some conditions on the forests associated to the sequence (Pn), namely ζn(A) ↗ for
all A ∈ s(F1). Without a formalization of Pn → P , however, there is clearly no hope that
this monotone convergence alone can guarantee (7). Like for (9), there are again various
ways for formalizing a convergence of Pn → P . To motivate our decision, we first note
that a weak continuity axiom is certainly more desirable since this would potentially lead to
more instances of clusterings. Furthermore, observe that (7) becomes weaker the stronger
the notion of Pn → P is chosen. Now, if Pn and P had densities fn and f , then one of
the strongest notions of convergence would be fn ↗ f . In the absence of densities such a
convergence can be expressed by Pn ↗ P , i.e. by

Pn(B)↗ P (B) for all measurable B.

Combining these ideas we write (Pn, Fn)↗ P iff Pn ↗ P and there are graph isomorphisms
ζn : s(F1)→ s(Fn) with ζn(A)↗ for all A ∈ s(F1). Our formalization of (7) then becomes

(Pn, Fn)↗ P =⇒ F∞ = c(P ) in the sense of (10), (11)

which should hold for all Pn ∈ S(A) and their representing forests Fn.
While it seems tempting to stipulate such a continuity axiom it is unfortunately incon-

sistent. To illustrate this inconsistency, consider, for example, the uniform distribution P
on [0, 1]. Then P can be approximated by the following two sequences

P (1)
n := 1[1/n,1−1/n]P

P (2)
n := 1[0,1/2−1/n]P + 1[1/2,1]P

P P
(1)
n P P

(2)
n

By (11) the first approximation would then lead to the clustering c(P ) = {[0, 1]} while the
second approximation would give c(P ) = {[0, 1/2), [1/2, 1]}.

Interestingly, this example not only shows that (11) is inconsistent but it also gives a
hint how to resolve the inconsistency. Indeed the first sequence seems to be “adapted” to the
limiting distribution, whereas the second sequence (P

(2)
n ) is intuitively too complicated since

its members have two clusters rather than the anticipated one cluster. Therefore, the idea
to find a consistent alternative to (11) is to restrict the left-hand side of (11) to “adapted
sequences”, so that our continuity axiom becomes

(Pn, Fn)↗ P and Pn is P -adapted for all n =⇒ F∞ = c(P ) in the sense of (10).

In simple words, our main result then states that there exists exactly one such continuous
clustering on the closure of S(A). The main message of this paper thus is:
Starting with very simple building blocks Q = (QA)A∈A for which we (need to) agree that
they only have one trivial cluster {A}, we can construct a unique additive and continuous
clustering on a rich set of distributions. Or, in other words, as soon as we have fixed (A,Q)
and a separation relation ⊥, there is no ambiguity left what a clustering is.
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What is left is to explore how the choice of the clustering base (A,Q,⊥) influences the
resulting clustering. To this end, we first present various clustering bases, which, e.g. describe
minimal thickness of clusters, their shape, and how far clusters need to be apart from
each other. For distributions having a Lebesgue density we then illustrate how different
clustering bases lead to different clusterings. Finally, we show that our approach goes
beyond density-based clusterings by considering distributions consisting of several lower
dimensional, overlapping parts.

2. Additive Clustering

In this section we introduce base sets, separation relations, and simple measures, as well as
the corresponding axioms for clustering. Finally, we show that there exists a unique additive
clustering on the set of simple measures.

Throughout this work let Ω = (Ω, T ) be a Hausdorff space and let B ⊃ σ(T ) be a
σ-algebra that contains the Borel sets. Furthermore we assume thatM =MΩ is the set of
finite, non-zero, inner regular measures P on Ω. SimilarlyM∞Ω denotes the set of non-zero
measures on Ω if Ω is a Radon space and else of non-zero, inner regular measures on Ω. In
this respect, recall that any Polish space—i.e. a completely metrizable separable space—is
Radon. In particular all open and closed subsets of Rd are Polish spaces and thus Radon.
For inner regular measures the support is well-defined and satisfies the usual properties, see
Appendix A for details. The set MΩ forms a cone: for all P, P ′ ∈ MΩ and all α > 0 we
have P + P ′ ∈MΩ and αP ∈MΩ.

2.1 Base Sets, Base Measures, and Separation Relations

Intuitively, any notion of a clustering should combine aspects of concentration and contigu-
ousness. What is a possible core of this? On one hand clustering should be local in the sense
of disjoint additivity, which was presented in the introduction: If a measure P is understood
on two parts of its support and these parts are nicely separated then the clustering should
be just a union of the two local ones. Observe that in this case suppP is not connected! On
the other hand—in view of base clustering—base sets need to be impossible to partition into
nicely separated components. Therefore they ought to be nicely connected. Of course, the
meaning of nicely connected and nicely separated are interdependent, and highly disputable.
For this reason, our notion of clustering assumes that both meanings are specified in front,
e.g. by the user. Provided that both meanings satisfy certain technical criteria, we then
show, that there exists exactly one clustering. To motivate how these technical criteria may
look like, let us recall that for all connected sets A and all closed sets B1, . . . , Bk we have

A ⊂ B1 ∪̇ . . . ∪̇Bk =⇒ ∃!i ≤ k : A ⊂ Bi. (12)

The left hand side here contains the condition that the B1, . . . , Bk are pairwise disjoint, for
which we already introduced the following notation:

B ⊥∅ B′ :⇐⇒ B ∩B′ = ∅ .

In order to transfer the notion of connectedness to other relations it is handy to generalize
the notation B1 ∪̇ . . . ∪̇Bk. To this end, let ⊥ be a relation on subsets of Ω. Then we denote
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the union B1 ∪ . . . ∪Bk of some B1, . . . , Bk ⊂ Ω by

B1
⊥
∪ . . .

⊥
∪Bk ,

iff we have Bi ⊥ Bj for all i 6= j. Now the key idea of the next definition is to generalize the
notion of connectivity and separation by replacing ⊥∅ in (12) by another suitable relation.

Definition 1 Let A ⊂ B be a collection of closed, non-empty sets. A symmetric relation ⊥
defined on B is called a A-separation relation iff the following holds:

(a) Reflexivity: For all B ∈ B: B ⊥ B =⇒ B = ∅.

(b) Monotonicity: For all A,A′, B ∈ B:

A ⊂ A′ and A′ ⊥ B =⇒ A ⊥ B.

(c) A-Connectedness: For all A ∈ A and all closed B1, . . . , Bk ∈ B:

A ⊂ B1
⊥
∪ . . .

⊥
∪Bk =⇒ ∃i ≤ k : A ⊂ Bi.

Moreover, an A-separation relation ⊥ is called stable, iff for all A1 ⊂ A2 ⊂ . . . with An ∈ A,
all n ≥ 1, and all B ∈ B:

An ⊥ B for all n ≥ 1 =⇒
⋃
n≥1

An ⊥ B. (13)

Finally, given a separation relation ⊥ then we say that B,B′ are ⊥-separated, if B ⊥ B′.
We write B ◦◦ B′ iff not B ⊥ B′, and say in this case that B,B′ are ⊥-connected.

It is not hard to check that the disjointness relation ⊥∅ is a stable A-separation relation,
whenever all A ∈ A are topologically connected. To present another example of a separation
relation, we fix a metric d on Ω and some τ > 0. Moreover, for B,B′ ⊂ Ω we write

B ⊥τ B′ :⇐⇒ d(B,B′) ≥ τ .

In addition, recall that a B ⊂ Ω is τ -connected, if, for all x, x′ ∈ B, there exists x0, . . . , xn ∈
B with x0 = x, xn = x′, and d(xi−1, xi) < τ for all i = 1, . . . , n. Then it is easy to show
that ⊥τ is an stable A-separation relation if all A ∈ A are τ -connected. For more examples
of separation relations we refer to Section 4.1.

It can be shown that ⊥∅ is the weakest separation relation, i.e. for every A-separation
relation ⊥ we have A ⊥ A′ =⇒ A ⊥∅ A′ for all A,A′ ∈ A. We refer to Lemma 30, also
showing that ⊥-unions are unique, i.e., for all A1, . . . , Ak and all A′1, . . . , A′k′ in A we have

A1
⊥
∪ . . .

⊥
∪Ak = A′1

⊥
∪ . . .

⊥
∪A′k′ =⇒ {A1, . . . , Ak} = {A′1, . . . , A′k′}.

Finally, the stability implication (13) is trivially satisfied for finite sequences A1 ⊂ · · · ⊂ Am
in A, since in this case we have A1 ∪ · · · ∪ Am = Am. For this reason stability will only
become important when we will consider limits in Section 3.

We can now describe the properties a clustering base should satisfy.
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Definition 2 A (stable) clustering base is a triple (A,Q,⊥) where A ⊂ B \{∅} is a class
of non-empty sets, ⊥ is a (stable) A-separation relation, and Q = {QA}A∈A ⊂ M is a
family of probability measures on Ω with the following properties:

(a) Flatness: For all A,A′ ∈ A with A ⊂ A′ we either have QA′(A) = 0 or

QA( · ) =
QA′( · ∩A)

QA′(A)
.

(b) Fittedness: For all A ∈ A we have A = suppQA.

We call a set A a base set iff A ∈ A and a measure a ∈ M a base measure on A iff
A ∈ A and there is an α > 0 with a = αQA.

QA′
αQA

=⇒ αQA +QA′

Let us motivate the two conditions of clustering bases.
Flatness concerns nesting of base sets: Let A ⊂ A′ be base
sets and consider the sum of their base measures QA + QA′ .
If the clustering base is not flat, weird things can happen—
see the right. The way we defined flatness excludes such cases
without taking densities into account. As a result we will be able to handle aggregations
of measures of different Hausdorff-dimension in Section 4.3. Fittedness, on the other hand,
establishes a link between the sets A ∈ A and their associated base measures.

Probably, the easiest example of a clustering base has measures of the form

QA( · ) =
µ( · ∩A)

µ(A)
=

1A dµ

µ(A)
, (14)

where µ is some reference measure independent of QA. The next proposition shows that
under mild technical assumptions such distributions do indeed provide a clustering base.

Proposition 3 Let µ ∈M∞Ω and ⊥ be a (stable) A-separation relation for some A ⊂ K(µ),
where

K(µ) :=
{
C ∈ B | 0 < µ(C) <∞ and C = supp µ(· ∩ C)

}
denotes the set of µ-support sets. We write Qµ,A :=

{
QA | A ∈ A

}
, where QA is defined

by (14). Then (A,Qµ,A,⊥) is a (stable) clustering base.

Interestingly, distributions of the form (14) are not the only examples for clustering
bases. For further details we refer to Section 4.3, where we discuss distributions supported
by sets of different Hausdorff dimension.

2.2 Forests, Structure, and Clustering

As outlined in the introduction we are interested in hierarchical clusterings, i.e. in clustering
that map a finite measure to a forest of sets. In this section we therefore recall some
fundamental definitions and notations for such forests.
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Definition 4 Let A be a class of closed, non-empty sets, ⊥ be an A-separation relation,
and C be a class with A ⊂ C ⊂ B \ {∅}. We say that a non-empty F ⊂ C is a (C-valued)
⊥-forest iff

A,A′ ∈ F =⇒ A ⊥ A′ or A ⊂ A′ or A′ ⊂ A.

We denote the set of all such finite forests by FC and write F := FB\{∅}.

A finite ⊥-forest F ∈ F is partially ordered by the inclusion relation. The maximal
elements maxF := {A ∈ F : @A′ ∈ F s.t. A $ A′} are called roots and the minimal
elements minF := {A ∈ F : @A′ ∈ F s.t. A′ $ A} are called leaves. It is not hard to see
that A ⊥ A′, whenever A,A′ ∈ F is a pair of roots or leaves. Moreover, the ground of F is

G(F ) :=
⋃
A∈F

A ,

that is, G(F ) equals the union over the roots of F . Finally, F is a tree, iff it has only a single
root, or equivalently, G(F ) ∈ F , and F is a chain iff it has a single leaf, or equivalently, iff
it is totally ordered.

In addition to these standard notions, we often need a notation for describing certain
sub-forests. Namely, for a finite forest F ∈ F with A ∈ F we write

F
∣∣
%A := {A′ ∈ F | A′ % A}

for the chain of strict ancestors of A. Analogously, we will use the notations F
∣∣
⊃A, F

∣∣
⊂A, and

F
∣∣
$A for the chain of ancestors of A (including A), the tree of descendants of A (including

A), and the finite forest of strict descendants of A, respectively. We refer to Figure 3 for an
example of these notations.

Definition 5 Let F be a finite forest. Then we call A1, A2 ∈ F direct siblings iff A1 6= A2

and they have the same strict ancestors, i.e. F
∣∣
%A1

= F
∣∣
%A2

. In this case, any element

A′ ∈ minF
∣∣
%A1

= minF
∣∣
%A2

is called a direct parent of A1 and A2. On the other hand for A,A′ ∈ F we denote A′ as
a direct child of A, iff

A′ ∈ maxF
∣∣
$A.

Moreover, the structure of F is defined by

s(F ) :=
{
A ∈ F

∣∣A is a root or it has a direct sibling A′ ∈ F
}

and F is a structured forest iff F = s(F ).

For later use we note that direct siblings A1, A2 in a ⊥-forest F always satisfy A1 ⊥ A2.
Moreover, the structure of a forest is obtained by pruning all sub-chains in F , see Figure 3.
We further note that s(s(F )) = s(F ) for all forests, and if F, F ′ are structured ⊥-forests
with G(F ) ⊥ G(F ′) then we have s(F ∪ F ′) = F ∪ F ′.

Let us now present our first set of axioms for (hierarchical) clustering.
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F : s(F ):

Figure 3: Illustrations of a forest F and of its structure s(F ).

Axiom 1 (Clustering) Let (A,Q,⊥) be a clustering base and P ⊂ MΩ be a set of mea-
sures with Q ⊂ P. A map c : P → F is called an A-clustering if it satisfies:

(a) Structured: For all P ∈ P the forest c(P ) is structured, i.e. c(P ) = s(c(P )).

(b) ScaleInvariance: For all P ∈ P and α > 0 we have αP ∈ P and c(αP ) = c(P ).

(c) BaseMeasureClustering: For all A ∈ A we have c(QA) = {A}.

Note that the scale invariance is solely for notational convenience. Indeed, we could
have defined clusterings for distributions only, in which case the scale invariance would have
been obsolete. Moreover, assuming that a clustering produces structured forests essentially
means that the clustering is only interested in the skeleton of the cluster forest. Finally, the
axiom of base measure clustering means that we have a set of elementary measures, namely
the base measures, for which we already agreed upon that they can only be clustered in a
trivial way. In Section 4 we will present a couple of examples of (A,Q,⊥) for which such
an agreement is possible. Finally note that these axioms guarantee that if c : P → F is a
clustering and a is a base measure on A then a ∈ P and c(a) = {A}.

2.3 Additive Clustering

So far our axioms only determine the clusterings for base measures. Therefore, the goal of
this subsection is to describe the behaviour of clusterings on certain combinations of mea-
sures. Furthermore, we will show that the axioms describing this behaviour are consistent
and uniquely determine a hierarchical clustering on a certain set of measures induced by Q.

Let us begin by introducing the axioms of additivity which we have already described
and motivated in the introduction.

Axiom 2 (Additive Clustering) Let (A,Q,⊥) be a clustering base and P ⊂ MΩ be a
set of measures with Q ⊂ P. A clustering c : P → F is called additive iff the following
conditions are satisfied:

(a) DisjointAdditivity: For all P1, . . . , Pk ∈ P with mutually ⊥-separated supports, i.e.
suppPi ⊥ suppPj for all i 6= j, we have P1 + . . .+ Pk ∈ P and

c(P1 + . . .+ Pn) = c(P1) ∪ · · · ∪ c(Pn) .

(b) BaseAdditivity: For all P ∈ P and all base measures a with suppP ⊂ supp a we
have a + P ∈ P and

c(a + P ) = s
(
{supp a} ∪ c(P )

)
.
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Our next goal is to show that there exist additive clusterings and that these are uniquely
on a set S of measures that, in some sense, is spanned by Q. The following definition
introduces this set.

Definition 6 Let (A,Q,⊥) be a clustering base and F ∈ FA be an A-valued finite ⊥-forest.
A measure Q is simple on F iff there exist base measures aA on A ∈ F such that

Q =
∑
A∈F

aA. (15)

We denote the set of all simple measures with respect to (A,Q,⊥) by S := S(A) .

Figure 4 provides an example of a simple measure. The next lemma shows that the
representation 15 of simple measures is actually unique.

Lemma 7 Let (A,Q,⊥) be a clustering base and Q ∈ S(A). Then there exists exactly one
FQ ∈ FA such that Q is simple on FQ. Moreover, the representing base measures aA in (15)
are also unique and we have suppQ = GFQ.

Ω

Figure 4: Simple measure.

Using Lemma 7 we can now define certain restrictions of
simple measures Q ∈ S(A) with representation (15). Namely,
any subset F ′ ⊂ F gives a measure

Q
∣∣
F ′

:=
∑
A∈F ′

aA .

We write Q
∣∣
⊃A := Q

∣∣
F
∣∣
⊃A

and similarly Q
∣∣
%A, Q

∣∣
⊂A, Q

∣∣
$A.

With the help of Lemma 7 it is now easy to explain how a possible additive clustering
could look like on S(A). Indeed, for a Q ∈ S(A), Lemma 7 provides a unique finite forest
FQ ∈ FA that represents Q and therefore the structure s(FQ) is a natural candidate for a
clustering of Q. The next theorem shows that this idea indeed leads to an additive clustering
and that every additive clustering on S(A) retrieves the structure of the underlying forest
of a simple measure.

Theorem 8 Let (A,Q,⊥) be a clustering base and S(A) the set of simple measures. Then
we can define an additive A-clustering c : S(A)→ FA by

c(Q) := s(FQ) , Q ∈ S(A) . (16)

Moreover, every additive A-clustering c : P → F satisfies both S(A) ⊂ P and (16).

3. Continuous Clustering

As described in the introduction, we typically need, besides additivity, also some notion
of continuity for clusterings. The goal of this section is to introduce such a notion and to
show that, similarly to Theorem 8, this continuity uniquely defines a clustering on a suitably
defined extension of S(A).
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To this end, we first introduce a notion of monotone convergence for sequences of simple
measures that does not change the graph structure of the corresponding clusterings given
by Theorem 8. We then discuss a richness property of the clustering base, which essentially
ensures that we can approximate the non-disjoint union of two base sets by another base set.
In the next step we describe monotone sequences of simple measures that are in some sense
adapted to the limiting distribution. In the final part of this section we then axiomatically
describe continuous clusterings and show both their existence and their uniqueness.

3.1 Isomonotone Limits

The goal of this section is to introduce a notion of monotone convergence for simple measures
that preserves the graph structure of the corresponding clusterings.

Our first step in this direction is done in the following definition that introduces a sort
of monotonicity for set-valued isomorphic forests.

Definition 9 Let F, F ′ ∈ F be two finite forests. Then F and F ′ are isomorphic, denoted
by F ∼= F ′, iff there is a bijection ζ : F → F ′ such that for all A,A′ ∈ F we have:

A ⊂ A′ ⇐⇒ ζ(A) ⊂ ζ(A′). (17)

Moreover, we write F ≤ F ′ iff F ∼= F ′ and there is a map ζ : F → F ′ satisfying 17 and

A ⊂ ζ(A) , A ∈ F. (18)

In this case, the map ζ, which is uniquely determined by (17), (18) and the fact that F and
F ′ are finite, is called the forest relating map (FRM) between F and F ′.

Forests can be viewed as directed acyclic graphs: There is an edge between A and A′ in F
iff A ⊂ A′ and no other node is in between. Then F ∼= F ′ holds iff F and F ′ are isomorphic
as directed graphs. From this it becomes clear that ∼= is an equivalence relation. Moreover,
the relation F ≤ F ′ means that each node A of F can be graph isomorphically mapped to
a node of F ′ that contains A, see Figure 5 for an illustration. Note that ≤ is a partial order
on F and in particular it is transitive. Consequently, if we have finite forests F1 ≤ · · · ≤ Fk
then F1 ≤ Fk and there is an FRM ζk : F1 → Fk. This observation is used in the following
definition, which introduces monotone sequences of forests and their limit.

Definition 10
An isomonotone sequence of forests is a sequence of finite forests (Fn)n ⊂ F such that
s(Fn) ≤ s(Fn+1) for all n ≥ 1. If this is the case, we define the limit by

F∞ := lim
n→∞

s(Fn) :=

{ ⋃
n≥1

ζn(A) | A ∈ s(F1)

}
,

where ζn : s(F1)→ s(Fn) is the FRM obtained from s(F1) ≤ s(Fn).
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F

F ′

Figure 5: F ≤ F ′ and the ar-
rows indicate ζ.

It is easy to see that in general, the limit forest F∞ of an
isomonotone sequence of A-valued forests is not A-valued.
To describe the values of F∞ we define the monotone clo-
sure of an A ⊂ B by

Ā :=

{ ⋃
n≥1

An | An ∈ A and A1 ⊂ A2 ⊂ . . .
}
.

The next lemma states some useful properties of Ā and F∞.

Lemma 11 Let ⊥ be an A-separation relation. Then ⊥ is actually an Ā-separation relation.
Moreover, if ⊥ is stable and (Fn) ⊂ FA is an isomonotone sequence then F∞ := limn s(Fn)
is an Ā-valued ⊥-forest and we have s(Fn) ≤ F∞ for all n ≥ 1.

Unlike forests, it is straightforward to compare two measures Q1 and Q2 on B. Indeed,
we say that Q2 majorizes Q1, in symbols Q1 ≤ Q2, iff

Q1(B) ≤ Q2(B), for all B ∈ B.

For (Qn) ⊂ M and P ∈ M, we similarly speak of monotone convergence Qn ↑ P iff
Q1 ≤ Q2 ≤ · · · ≤ P and

lim
n→∞

Qn(B) = P (B), for all B ∈ B.

Clearly, Q ≤ Q′ implies suppQ ⊂ suppQ′ and it is easy to show, that Qn ↑ P implies

P
(

suppP \
⋃
n≥1

suppQn
)

= 0.

We will use such arguments throughout this section. For example, if a, a′ are base measures
on A,A′ with a ≤ a′ then A ⊂ A′. With the help of these preparations we can now define
isomonotone convergence of simple measures.

Definition 12 Let (A,Q,⊥) be a clustering base and (Qn) ⊂ S(A) be a sequence of sim-
ple measures on finite forests (Fn) ⊂ FA. Then isomonotone convergence, denoted by
(Qn, Fn) ↑ P , means that both

Qn ↑ P and s(F1) ≤ s(F2) ≤ . . . .

In addition, S̄ := S̄(A) denotes the set of all isomonotone limits, i.e.

S̄(A) =
{
P ∈M | (Qn, Fn) ↑ P for some (Qn) ⊂ S(A) on (Fn) ⊂ FA

}
.

For a measure P ∈ S̄(A) it is probably tempting to define its clustering by c(P ) :=
limn s(Fn), where (Qn, Fn) ↑ P is some isomonotone sequence. Unfortunately, such an
approach does not yield a well-defined clustering as we have discussed in the introduction.
For this reason, we need to develop some tools that help us to distinguish between “good”
and “bad” isomonotone approximations. This is the goal of the following two subsections.
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3.2 Kinship and Subadditivity

In this subsection we present and discuss a technical assumption on a clustering base that
will make it possible to obtain unique continuous clusterings.

Let us begin by introducing a notation that will be frequently used in the following. To
this end, we fix a clustering base (A,Q,⊥) and a P ∈M. For B ∈ B we then define

QP (B) := {αQA | α > 0, A ∈ A, B ⊂ A,αQA ≤ P} ,

i.e. QP (B) denotes the set of all basic measures below P whose support contains B. Now,
our first definition describes events that can be combined in a base set:

Definition 13 Let (A,Q,⊥) be a clustering base and P ∈ M. Two non-empty B,B′ ∈ B
are called kin below P , denoted as B ∼P B′, iff QP (B ∪ B′) 6= ∅, i.e., iff there is a base
measure a ∈ Q such that the following holds:

(a) B ∪B′ ⊂ supp a (b) a ≤ P.

Moreover, we say that every such a ∈ QP (B ∪B′) supports B and B′ below P .

P

A1 A2b A3

A1 ∼P A2,
A1 6∼P A3

Figure 6: Kinship.

Kinship of two events can be used to test whether
they belong to the same root in the cluster forest. To
illustrate this we consider two events B and B′ with
B 6∼P B′. Moreover, assume that there is an A ∈ A
with B ∪ B′ ⊂ A. Then B 6∼P B′ implies that for
all such A there is no α > 0 with αQA ≤ P . This
situation is displayed on the right-hand side of Fig-
ure 6. Now assume that we have two base measures
a, a′ ≤ P on A,A′ ∈ A that satisfy A ∼P A′ and

P (A ∩ A′) > 0. If A is rich in the sense of A ∪ A′ ∈ A, then we can find a base measure b
on B := A ∪A′ with a ≤ b ≤ P or a′ ≤ b ≤ P . The next definition relaxes the requirement
A ∪A′ ∈ A, see also Figure 7 for an illustration.

Definition 14 Let P ∈M∞Ω be a measure. For B,B′ ∈ B we write

B ⊥⊥P B′ :⇐⇒ P (B ∩B′) = 0 and
B ◦◦P B′ :⇐⇒ P (B ∩B′) > 0 .

Moreover, a clustering base (A,Q,⊥) is called P -subadditive iff for all base measures a, a′ ≤
P on A,A′ ∈ A we have

A ◦◦P A′ =⇒ ∃b ∈ QP (A ∪A′) : b ≥ a or b ≥ a′. (19)

P

A A′

a

a′

b

Figure 7: P -subadditivity.

Note that the implication (19) in particular en-
sures QP (A ∪ A′) 6= ∅, i.e. A ∼P A′. Moreover, the
relation ⊥⊥P is weaker than any separation relation
⊥ since we obviously have A ◦◦P A′ =⇒ A ◦◦∅
A′ =⇒ A ◦◦ A′, where the second implication is
shown in Lemma 30. The following definition intro-
duces a stronger notion of additivity.
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Definition 15 Let ◦◦ be a relation on B. An A ⊂ B is ◦◦-additive iff for all A,A′ ∈ A

A ◦◦ A′ =⇒ A ∪A′ ∈ A.

The next proposition compares the several notions of (sub)-additivity. In particular it
implies that if A is ◦◦∅-additive then (A,Qµ,A,⊥) is P -subadditive for all P ∈M.

Proposition 16 Let (A,Qµ,A,⊥) be a clustering base as in Proposition 3. If A is ◦◦P -
additive for some P ∈ M, then (A,Qµ,A,⊥) is P -subadditive. Conversely, if (A,Qµ,A,⊥)
is P -subadditive for all P � µ then A is ◦◦µ-additive and thus also ◦◦P -additive.

3.3 Adapted Simple Measures

We have already seen that isomonotone approximations by simple measures are not struc-
turally unique. In this subsection we will therefore identify the most economical structure
needed to approximate a distribution by simple measures. Such most parsimonious struc-
tures will then be used to define continuous clusterings.

Let us begin by introducing a different view on simple measures.

Definition 17 Let (A,Q,⊥) be a clustering base and Q be a simple measure on F ∈ FA
with the unique representation Q =

∑
A∈F αAQA. We define the map λQ : F → Q by

λQ(A) :=

( ∑
A′∈F : A′⊃A

αA′QA′(A)

)
·QA , A ∈ F.

Moreover, we call the base measure λQ(A) ∈ Q the level of A in Q.

λQ(A)A

Figure 8: Level.

In some sense, the level of an A in Q combines all ancestor
measures includingQA and then restricts this combination to A, see
Figure 8 for an illustration of the level of a node. With the help of
levels we can now describe structurally economical approximations
of measures by simple measures.

Definition 18 Let (A,Q,⊥) be a clustering base and P ∈ MΩ a finite measure. Then a
simple measure Q on a forest F ∈ FA is P -adapted iff all direct siblings A1, A2 in F are:

(a) P -grounded: if they are kin below P , i.e. QP (A1 ∪ A2) 6= ∅, then there is a parent
around them in F .

(b) P -fine: every b ∈ QP (A1 ∪ A2) can be majorized by a base measure b̃ that supports
all direct siblings A1, . . . , Ak of A1 and A2, i.e.

b ∈ QP (A1 ∪A2) =⇒ ∃b̃ ∈ QP (A1 ∪ . . . ∪Ak) with b̃ ≥ b.

(c) strictly motivated: for their levels a1 := λQ(A1) and a2 := λQ(A2) in Q there is
an α ∈ (0, 1) such that every base measure b that supports them below P is not larger
than αa1 or αa2, i.e.

∀b ∈ Q : b ≥ αa1 or b ≥ αa2 =⇒ b 6∈ QP (A1 ∪A2). (20)

1964



Towards an Axiomatic Approach to Hierarchical Clustering of Measures

Pa

a′

b

Not motivated:
∃b ∈ QP (A ∪A′) with a′ ≤ b

Pa

a′

a, a′ 6≤ b

b′ 6≤ P

Motivated

P

A1 A2

Not grounded: A1 ∼P A2

but without parent

P

b
A1 A2 A3

Grounded but not fine: b ∈ QP (A1 ∪A2)
cannot be majorized to support A3

P

Adapted: grounded, fine and motivated

Figure 9: Illustrations for motivated, grounded, fine, and therefore adapted.

Finally, an isomonotone sequence (Qn, Fn) ↑ P is adapted, if Qn is P -adapted for all n ≥ 1.

Since siblings are ⊥-separated, they are ⊥⊥P -separated, so strict motivation is no con-
tradiction to P -subadditivity. Levels are called motivated iff they satisfy condition (20)
for α = 1. Figure 9 illustrates the three conditions describing adapted measures. It can be
shown that if A is ◦◦-additive, then any isomonotone sequence can be made adapted.

The following self-consistency result shows that every simple measure is adapted to
itself. This result will guarantee that the extension of the clustering from S to S̄ is indeed
an extension.

Proposition 19 Let (A,Q,⊥) be a clustering base. Then every Q ∈ S(A) is Q-adapted.

3.4 Continuous Clustering

In this subsection we finally introduce continuous clusterings with the help of adapted,
isomonotone sequences. Furthermore, we will show the existence and uniqueness of such
clusterings.

Let us begin by introducing a notation that will be used to identify two clusterings as
identical. To this end let F1, F2 ∈ F be two forests and P ∈ MΩ be finite measure. Then
we write

F1 =P F2 ,

if there exists a graph isomorphism ζ : F1 → F2 such that P (A4ζ(A)) = 0 for all A ∈
F1. Now our first result shows that adapted isomonotone limits of two different sequences
coincide in this sense.

Theorem 20 Let (A,Q,⊥) be a stable clustering base and P ∈ MΩ be a finite measure
such that A is P -subadditive. If (Qn, Fn), (Q′n, F

′
n) ↑ P are adapted isomonotone sequences

then we have
lim
n
s(F∞) =P lim

n
s(F ′∞) .
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Theorem 20 shows that different adapted sequences approximating a measure P neces-
sarily have isomorphic forests and that the corresponding limit nodes of the forests coincide
up to P -null sets. This result makes the following axiom possible.

Axiom 3 (Continuous Clustering) Let (A,Q,⊥) be a clustering base, P ⊂ MΩ be a
set of measures. We say that c : P → F is a continuous clustering, if it is an additive
clustering and for all P ∈ P and all adapted isomonotone sequences (Qn, Fn) ↑ P we have

c(P ) =P lim
n
s(F∞) .

The following, main result of this section shows that there exist continuous clusterings
and that they are uniquely determined on a large subset of S̄(A).

Theorem 21 Let (A,Q,⊥) be a stable clustering base and set

PA :=
{
P ∈ S̄(A) | A is P -subadditive and there is (Qn, Fn)↗ P adapted

}
.

Then there exists a continuous clustering cA : PA → FĀ. Moreover, cA is unique on PA,
that is, for all continuous clusterings c : P̃ → F we have

cA(P ) =P c(P ) , P ∈ PA .

Recall from Proposition 16 that A is P -subadditive for all P ∈MΩ if A is ◦◦∅-additive.
It can be shown that if A is ◦◦A-additive, then any isomonotone sequence can be made
adapted. In this case we thus have PA = S̄(A) and Theorem 21 shows that there exists a
unique continuous clustering on S̄(A).

3.5 Density Based Clustering

Let us recall from Proposition 3 that a simple way to define a set of base measures Q was
with the help of a reference measure µ. Given a stable separation relation ⊥, we denoted
the resulting stable clustering base by (A,Qµ,A,⊥). Now observe that for this clustering
base every Q ∈ S(A) is µ-absolutely continuous and its unique representation yields the
µ-density f =

∑
A∈F αA1A for suitable coefficients αA > 0. Consequently, each level set

{f > λ} consists of some elements A ∈ F , and if all elements in A are connected, the
additive clustering c(Q) of Q thus coincides with the “classical” cluster tree obtained from
the level sets. It is therefore natural to ask, whether such a relation still holds for continuous
clusterings on distributions P ∈ PA.

Clearly, the first answer to this question needs to be negative, since in general the cluster
tree is an infinite forest whereas our clusterings are always finite. To illustrate this, let us
consider the Factory density on [0, 1], which is defined by

f(x) :=

{
1− x, if x ∈ [0, 1

2)

1, if x ∈ [1
2 , 1]

Clearly, this gives the following ⊥∅-decomposition of the level sets:

{f > λ} =

[0, 1], if λ < 1
2 ,

[0, 1− λ)
⊥∅
∪ [1

2 , 1], if 1
2 ≤ λ < 1,
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which leads to the clustering forest Ff =
{

[0, 1], [1
2 , 1]

}
∪
{

[0, 1 − λ) | 1
2 ≤ λ < 1

}
. Now

observe that even though Ff is infinite, it is as graph somehow simple: there is a root [0, 1], a
node [1

2 , 1], and an infinite chain [0, 1−λ), 1
2 ≤ λ < 1. Replacing this chain by its supremum

[0, 1
2) we obtain the structured forest{

[0, 1], [0, 1
2), [1

2 , 1]
}
,

for which we can then ask whether it coincides with the continuous clustering obtained from
(A,Qµ,A,⊥∅) if A consists of all closed intervals in [0, 1] and µ is the Lebesgue measure.

To answer this question we first need to formalize the operation that assigns a structured
to an infinite forest. To this end, let F be an arbitrary ⊥-forest. We say that C ⊂ F is a
pure chain, iff for all C,C ′ ∈ C and A ∈ F \ C the following two implications hold:

A ⊂ C =⇒ A ⊂ C ′,
C ⊂ A =⇒ C ′ ⊂ A.

Roughly speaking, the first implication ensures that no node above a bifurcation is contained
in the chain, while the second implication ensures that no node below a bifurcation is
contained in the chain. With this interpretation in mind it is not surprising that we can
define the structure of the forest F with the help of the maximal pure chains by setting

s(F ) :=

{ ⋃
C | C ⊂ F is a maximal pure chain

}
.

Note that for infinite forests the structure s(F ) may or may not be finite. For example, for
the factory density it is finite as we have already seen above.

We have seen in Lemma 11 that the nodes of a continuous clustering are ⊥-separated
elements of Ā. Consequently, it only makes sense to compare continuous clustering with
the structure of a level set forest, if this forest shares this property. This is ensured in the
following definition.

Definition 22 Let f : Ω → [0,∞] be a measurable function and (A,Q,⊥) be a stable clus-
tering base. Then f is of (A,Q,⊥)-type iff there is a dense subset Λ ⊂ [0, sup f) such
that for all λ ∈ Λ the level set {f > λ} is a finite union of pairwise ⊥-separated events
B1(λ), . . . , Bk(λ)(λ) ∈ Ā. If this is the case the level set ⊥-forest is given by

Ff,Λ := {Bi(λ) | i ≤ k(λ) and λ ∈ Λ}.

Note that for given f and Λ the forest Ff,Λ is indeed well-defined since ⊥ is an Ā-
separation relation by Lemma 11 and therefore the decomposition of {f > λ} into the sets
B1(λ), . . . , Bk(λ)(λ) ∈ Ā is unique by Lemma 30.

With the help of these preparations we can now formulate the main result of this sub-
section, which compares continuous clusterings with the structure of level set ⊥-forests:

Theorem 23 Let µ ∈MΩ, (A,Qµ,A,⊥) the stable clustering based described in Proposition
3, and P ∈ MΩ such that A is P -subadditive. Assume that P has a µ-density f that is of
(A,Q,⊥)-type with a dense subset Λ such that s(Ff,Λ) is finite and for all λ ∈ Λ and all
i < j ≤ k(λ) we have Bi(λ) ⊥ Bj(λ). Then we have P ∈ S̄(A) and

c(P ) =µ s(Ff,Λ) .
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On the other hand, it is not difficult to show that if P ∈ S̄(A) then P has a density of
(A,Q,⊥)-type. We do not know though whether there has to a density of (A,Q,⊥)-type
for that even the closure of siblings are separated.

If suppµ 6= Ω one might think that this is not true since on the complement of the
support anything goes. To be more precise—if µ is not inner regular and hence no support
is defined—assume there is an open set O ⊂ Ω with µ(O) = 0. This then means that there
is no base set A ⊂ O, because base sets are support sets. Hence anything that would happen
on O is determined by what happens in suppP !

In the literature density based clustering is only considered for continuous densities since
they may serve as a canonical version of the density. The following result investigates such
densities.

Proposition 24 For a compact Ω ⊂ Rd and a measure µ ∈ MΩ we consider the stable
clustering base (A,Qµ,A,⊥∅). We assume that all open, connected sets are contained in Ā
and that P ∈ MΩ is a finite measure such that A is P -subadditive. If P has a continuous
density f that has only finitely many local maxima x∗1, . . . , x

∗
k then P ∈ PA and there a

bijection ψ : {x∗1, . . . , x∗k} → min c(P ) such that

x∗i ∈ ψ(x∗i ) .

In this case c(P ) =µ

{
Biλ | i ≤ k(λ) and λ ∈ Λ0

}
where Λ0 =

{
0 = λ0 < . . . < λm <

sup f
}
is the finite set of levels at which the splits occur.

4. Examples

After having given the skeleton of this theory we now give more examples of how to use it.
This should as well motivate some of the design decisions. It will also become clear in what
way the choice of a clustering base (A,Q,⊥) influences the clustering.

4.1 Base Sets and Separation Relations

In this subsection we present several examples of clustering bases. Our first three examples
consider different separation relations.

Example 1 (Separation relations) The following define stable A-separation relations:

(a) Disjointness: If A ⊂ B is a collection of non-empty, closed, and topologically con-
nected sets then

B ⊥∅ B′ ⇐⇒ B ∩B′ = ∅.

(b) τ-separation: Let (Ω, d) be a metric space, τ > 0, and A ⊂ B be a collection of
non-empty, closed, and τ -connected sets then

B ⊥τ B′ :⇐⇒ d(B,B′) ≥ τ.

(c) Linear separation: Let H be a Hilbert space with inner product 〈 · | · 〉 and Ω ⊂ H.
Then non-empty events A,B ⊂ Ω are linearly separated, A ⊥` B, iff A ⊥∅ B and

∃v ∈ H \ {0}, α ∈ R ∀a ∈ A, b ∈ B : 〈 a | v 〉 ≤ α and 〈 b | v 〉 ≥ α.
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The latter means there is an affine hyperplane U ⊂ Ω such that A and B are on
different sides. Then ⊥` is a A separation relation if no base set A ∈ A can be
written as a finite union of pairwise ⊥`-disjoint closed sets. It is stable if H is finite-
dimensional.

Our next goal is to present some examples of base set collections A. Since these describe
the sets we need to agree upon that their can only be trivially clustered, smaller collections A
are generally preferred. Let µ be the Lebesgue measure on Rd. To define possible collections
A we will consider the following building blocks in Rd:

CDyad :=
{
axis-parallel boxes with dyadic coordinates

}
,

Cp :=
{
closed `dp-balls

}
, p ∈ [1,∞] ,

CConv :=
{
convex and compact µ-support sets

}
.

CDyad corresponds to the cells of a histogram whereas Cp has connections to moving-window
density estimation. When combined with ⊥∅ or ⊥τ and base measures of the form (14) these
collections may already serve as clustering bases. However, C̄• and S̄C are not very rich since
monotone increasing sequences in C• converge to sets of the same shape, and hence the sets
in C̄• have the same shape constraint as those in C•. As a result the sets of measures S̄C• for
which we can determine the unique continuous clustering are rather small. However, more
interesting collections can be obtained by considering finite, connected unions built of such
sets. To describe such unions in general we need the following definition.

Definition 25 Let ⊥⊥ be a relation on B, ◦◦ be its negation, and C ⊂ B be a class of non-
empty events. The ⊥⊥-intersection graph on C, G⊥⊥(C), has C as nodes and there is an
edge between A,B ∈ C iff A ◦◦ B. We define:

C⊥⊥(C) := {C1 ∪ . . . ∪ Ck | C1, . . . , Ck ∈ C and the graph G⊥⊥({C1, . . . , Ck}) is connected }.

Obviously any separation relation can be used. But one can also consider weaker relations
like ⊥⊥P , or e.g. A ⊥⊥ A′ if A∩A′ has empty interior, or if it contains no ball of size τ . Such
examples yield smaller A and indeed in these cases S̄ is much smaller.

The following example provides stable clustering bases.

Example 2 (Clustering bases) The following examples are ◦◦∅-additive:

ADyad := C⊥∅(CDyad) =
{
finite connected unions of boxes with dyadic coordinates

}
,

Ap := C⊥∅(Cp) =
{
finite connected unions of closed Lp-balls

}
,

AConv := C⊥∅(CConv) =
{
finite connected unions of convex µ-support sets

}
.

Then ADyad,Ap,AConv ⊂ K(µ). Furthermore the following examples are ◦◦τ -additive:

AτDyad := C⊥τ (CDyad), Aτp := C⊥τ (Cp), AτConv := C⊥τ (CConv).

This leads to the following examples of stable clustering bases:

(ADyad,Qµ,ADyad ,⊥∅), (Ap,Qµ,Ap ,⊥∅), (AConv,Qµ,AConv ,⊥∅),
(AτDyad,Q

µ,AτDyad ,⊥τ ), (Aτp ,Qµ,A
τ
p ,⊥τ ), (AτConv,Qµ,A

τ
Conv ,⊥τ ),

(ADyad,Qµ,ADyad ,⊥τ ), (Ap,Qµ,Ap ,⊥τ ), (AConv,Qµ,AConv ,⊥τ ).
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∈ ADyad ∈ A2
∈ ADyad, Ā2

Figure 10: Some examples of sets in ABox, AConv and their closure.

The first row is the most common case, using connected sets and their natural separation
relation. The second row is the τ -connected case. The third row shows how the fine tuning
can be handled: We consider connected base sets, but siblings need to be τ -separated, hence
e.g. saddle points cannot be approximated.

The larger the extended class Ā is, the more measures we can cluster. The following
proposition provides a sufficient condition for Ā being rich.

Proposition 26 Assume all A ∈ A are path-connected. Then all B ∈ Ā are path-connected.
Furthermore assume that A is intersection-additive and that it contains a countable neigh-
bourhood base. Then Ā contains all open, path-connected sets.

One can show that the first statement also holds for topological connectedness. Fur-
thermore note that CDyad is a countable neighbourhood base, and therefore ADyad, Ap, and
AConv fulfill the conditions of Proposition 26.

4.2 Clustering of Densities

Following the manual to cluster densities given in Theorem 23 by decomposing the density
level sets into ⊥-disjoint components, one first needs to understand the ⊥-disjoint com-
ponents of general events. In this subsection we investigate such decompositions and the
resulting clusterings. We assume µ to be the Lebesgue measure on some suitable Ω ⊂ Rd and
let the base measures be the ones considered in Proposition 3. For visualization purposes
we further restrict our considerations to the one- and two-dimensional case, only.

4.2.1 Dimension d = 1

In the one-dimensional case, in which Ω is an interval, the examples Ap = AConv simply con-
sist of compact intervals, and their monotone closures consist of all intervals. To understand
the resulting clusters let us first consider the twin peaks density:

f(x) := 1
3 −min

{
|x− 1

3 |, |x−
2
3 |
}
. f(x)

x

Clearly, this gives the following ⊥∅-decomposition of the level sets:

Hf (λ) = (λ, 1− λ) for λ < 1
6 , Hf (λ) = (λ, 1

2 − λ)
⊥∅
∪ (1

2 + λ, λ) for 1
6 ≤ λ <

1
3

and hence the ⊥∅-clustering forest is
{

(0, 1), (1
6 ,

1
2), (1

2 ,
5
6)
}
. Since, none of the boundary

points can be reached, any isomonotone, adapted sequence yields this result. However, the
clustering changes, if the separation relation ⊥τ is considered. We obtain

Hf (λ) = (λ, 1− λ), for λ < 1
6 + τ

2 , Hf (λ) = (λ, 1
2 − λ)

⊥τ∪ (1
2 + λ, λ), for 1

6 + τ
2 ≤ λ <

1
3
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Name Merlon Camel M Factory

Density

(Ap,⊥∅)

(Ap,⊥τ ) with τ small

(Ap,⊥τ ) with τ large

[ ]
[ ] [ ]

[ ]
[ ] [ ]

[ ]

( )( )( )

( )( ) ( )

( )

[ ][ )( ]

[ ][ ) ( ]

[ ]

[ ][ )[ ]

[ ][ ) [ ]

[ ]

Table 1: Examples of clustering in dimension d = 1 using Ap and three separation relations.

if τ ∈ (0, 1
3) and the resulting ⊥τ -clustering is

{
(0, 1), (1

6 + τ
2 ,

1
2−

τ
2 ), (1

2 + τ
2 ,

5
6−

τ
2 )
}
. Finally,

if τ ≥ 1
3 then all level sets are τ -connected and the forest is simply {(0, 1)}. In Table 1 more

examples of clustering of densities can be found.

4.2.2 Dimension d = 2

Our goal in this subsection is to understand the ⊥-separated decomposition of closed events.
We further present the resulting clusterings for some densities that are indicator functions
and illustrate clusterings for continuous densities having a saddle point.

Let us begin by assuming that P has a Lebesgue density of the form 1B, where B is some
µ-support set. Then one can show, see Lemma 50 for details, that adapted, isomonotone
sequences (Fn) of forests Fn ↑ B are of the form Fn = {An1 , . . . , Ank}, where the elements of
each forest Fn are mutually disjoint and can be ordered in such a way that A1

i ⊂ A2
i ⊂ . . ..

The limit forest F∞ then consists of the k pairwise ⊥-separated sets:

Bi :=
⋃
n≥1

Ani ,

and there is a µ-null set N ∈ B with

B = B1
⊥
∪ . . .

⊥
∪Bk

⊥
∪N. (21)

Let us now consider the base sets Ap in Example 2. By Proposition 26 we know that
Āp contains all open, path-connected sets and therefore all open Lq-balls. Moreover, all
closed Lq-balls B are µ-support sets with µ(∂B) = 0. Our initial consideration shows that
1B can be approximated by an adapted, isomonotone sequence (Fn) of forests of the form
Fn = {An} with An ∈ Ap. However, depending on p and q the µ-null set N in (21) may
differ.

Now that we have an understanding of Āp and adapted, isomonotone approximations
we can investigate some more interesting cases and appreciate the influence of the choice of
A on the outcome of the clustering in the following example.

Example 3 (Clustering of indicators) We consider 6 examples of µ-support sets B ∈
R2. The first 4 have two parts that only intersect at one point, the second to last has two
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A1 = C( ) A2 = C( ) A∞ = C( ) AConv Aτ2{
,

} {
,

} { } { } { }{ } {
,

} {
,

} { } { }{
,

} { } { } { } { }{ } { } {
,

} { } { }{
,

} {
,

} {
,

} {
,

} {
< τ

}{ } { } { } { } { }
Table 2: Clusterings of indicators.

topological components, and the last one is connected in a fat way. By natural approximations
we get the clusterings of Table 2. The red dots indicate points which never are achieved
by any approximation. Observe how the geometry encoded in A shapes the clustering. Since
AConv and A2 are invariant under rotation, they yield the same structure of clustering for
rotated sets. The classes A1 and A∞ on the other hand are not rotation-invariant and
therefore the clustering depends on the orientation of B.

After having familiarized ourselves with the clustering of indicator functions we finally
consider a continuous density that has a saddle point.

Example 4 On Ω := [−1, 1]2 consider the density f : Ω → [0, 2] given by f(x, y) :=
x · y + 1.Then we have the following ⊥∅-decomposition of the level sets Hf (λ) of f :

Hf (λ) =


{(x, y) : xy > λ− 1} if λ∈ [0, 1),

[−1, 0)2 ∪̇ (0, 1]2 if λ=1,

{(x, y) : x < 0 and xy > λ− 1} ∪̇{(x, y) : x > 0 and xy > λ− 1} if λ∈(1, 2).

For (Ap,Qµ,Ap ,⊥∅) the clustering forest is therefore given by:{
[−1, 1]2, [−1, 0)2, (0, 1]2

}
=
{

, ,
}
.

Moreover, for (Aτ2 ,Qµ,A
τ
2 ,⊥τ ) the clustering forest looks like

{
, ,

}
.

4.3 Hausdorff Measures

So far we have only considered clusterings of Lebesgue absolutely continuous distributions.
In this subsection we provide some examples indicating that the developed theory goes far
beyond this standard example. At first, lower dimensional base sets and their resulting clus-
terings are investigated. Afterwards we discuss collections of base sets of different dimensions
and provide clusterings for some measures that are not absolutely continuous to any Haus-
dorff measure. For the sake of simplicity we will restrict our considerations to ⊥∅-clusterings,
but generalizations along the lines of the previous subsections are straightforward.
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4.3.1 Lower Dimensional Base Sets

Let us begin by recalling that the s-dimensional Hausdorff-measure on B is defined by

Hs(B) := lim
ε→0

inf
{ ∞∑
i=1

(diam(Bi))
s | B ⊂

⋃
i

Bi and ∀i ∈ N : diam(Bi) ≤ ε
}
.

Moreover, the Hausdorff-dimension of a B ∈ B is the value s ∈ [0, d] at which s 7→ Hs(B)
jumps from ∞ to 0. If B has Hausdorff-dimension s, then Hs(B) can be either zero, finite,
or infinite. Hausdorff-measures are inner regular (Federer, 1969, Cor. 2.10.23) and Hd equals
the Lebesgue-measure up to a normalization factor. For a reference on Hausdorff-dimensions
and -measures we refer to Falconer (1993) and Federer (1969). Recall that given a Borel set
C ⊂ Rs a map ϕ : C → Ω is bi-Lipschitz iff there are constants 0 < c1, c2 <∞ s.t.

c1d(x, y) ≤ d(ϕ(x), ϕ(y)) ≤ c2d(x, y).

Lemma 27 If C is a Lebesgue-support set in Rs and ϕ : C → Ω is bi-Lipschitz then C ′ :=
ϕ(C) has Hausdorff-dimension s and it is an Hs-support set in Ω.

Motivated by Lemma 27, consider the following collection of s-dimensional base sets in Ω:

Cp,s :=
{
ϕ(C) ⊂ Ω | C is the closed unit p-ball in Rs and ϕ : C → Ω is bi-Lipschitz

}
.

Using the notation of Definition 25 and Proposition 3 we further write

Ap,s := C⊥∅(Cp,s) and Qp,s := QHs,Ap,s .

By A0 :=
{
{x} | x ∈ Ω

}
we denote the singletons and Q0 the collection of Dirac measures.

Since continuous mappings of connected sets are connected, (Ap,s,Qp,s,⊥∅) is a stable ⊥∅-
additive clustering base. Remark that we take the union after embedding into Rd and
therefore also crossings do happen, e.g. the cross [−1, 1]×{0}∪{0}× [−1, 1] ∈ Ap,1. Another
possibility would be to embed Ap via a set of transformations into Rd. Finally we confine
the examples here only to integer Hausdorff-dimensions—it would be interesting though to
consider e.g. the Cantor set or the Sierpinski triangle. The following example presents a
resulting clustering of an H1-absolutely continuous measure on R2.

Example 5 (Measures supported on curves in the plane)
On Ω := [−1, 1]2 consider the measure P1 := f dH1 whose density is given by

f(x, y) :=


fMerlon(x) if x ≥ 0 and y = 0,

fCamel(t) if x = −32t−2 and y = 3−2t,

fM(t) if x = 22t−2 and y = −2−2t .

Here the densities and clusterings for the Merlon, the Camel and the M can be seen in
Table 1. So for (Ap,1,Qp,1,⊥∅) with any fixed p ≥ 1 the clustering forest of P1 is given by:

c(P1) =

{ [0, 1]× {0}, [0, 1
3 ]× {0}, [2

3 , 1]× {0},
g1

(
(0, 1)

)
, g1

(
(0.2, 0.5)

)
, g1

(
(0.5, 0.8)

)
,

g2

(
[0, 1]

)
, g2

(
[0, 0.5)

)
, g2

(
(0.5, 1]

)
}

where gi : [0, 1]→ Ω are given by g1(t) = (−32t−2, 3−2t) and g2(t) = (22t−2,−2−2t).
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4.3.2 Heterogeneous Hausdorff-Dimensions

In this subsection we consider measures that can be decomposed into measures that are
absolutely continuous with respect to Hausdorff measures of different dimensions. To this
end, we write µ ≺ µ′ for two measures µ and µ′ on B, iff for all B ∈ B with B ⊂ suppµ ∩
suppµ′ we have

µ(B) <∞ =⇒ µ′(B) = 0.

For Q,Q′ ⊂MΩ we further write Q ≺ Q′ if µ ≺ µ′ for all µ ∈ Q and µ′ ∈ Q′. Clearly, the
relation ≺ is transitive. Moreover, we have Hs ≺ Ht whenever s < t. The next proposition
shows that clustering bases whose base measures dominate each other in the sense of ≺ can
be merged.

Proposition 28 Let (A1,Q1,⊥), . . . , (Am,Qm,⊥) be stable clustering bases sharing the
same separation relation ⊥ and assume Q1 ≺ · · · ≺ Qm. We define

A :=
⋃
i

Ai and Q :=
⋃
i

Qi.

Then (A,Q,⊥) is a stable clustering base.

Proposition 28 shows that the ⊥∅-additive, stable bases (Ap,s,Qp,s,⊥∅) on Rd can be
merged. Unfortunately, however, its union is no longer ⊥∅-additive, and therefore we need to
investigate P -subadditivity in order to describe distributions for which our theory provides
a clustering. This is done in the next proposition.

Proposition 29 Let (A1,Q1,⊥) and (A2,Q2,⊥) be clustering bases with Q1 ≺ Q2 and P1

and P2 be finite measures with P1 ≺ A2 and A1 ≺ P2. Furthermore, assume that Ai is
Pi-subadditive for both i = 1, 2 and let P := P1 + P2. Then we have

(a) For i = 1, 2 and all base measures a ∈ QiP we have a ≤ Pi,

(b) If for all base measures a ∈ Q2
P2

and suppP1 ◦◦ supp a there exists a base measure
ã ∈ Q2

P2
(suppP1) with a ≤ ã then A1 ∪ A2 is P -subadditive.

To illustrate condition (b) consider clustering bases (Ap,s,Qp,s,⊥∅) and (Ap,t,Qp,t,⊥∅)
for some s < t. The condition specifies that any such base measure a intersecting suppP1

can be majorized by one which supports suppP1. Then all parts of suppP1 intersecting at
least one component of suppP2 have to be on the same niveau line of P2. Note that this is
trivially satisfied if the suppP1 ∩ suppP1 = ∅. Recall that mixtures of the latter form have
already been clustered in Rinaldo and Wasserman (2010) by a kernel smoothing approach.
Clearly, our axiomatic approach makes it possible to define clusterings for significantly more
involved distributions as the following two examples demonstrate.

Example 6 (Mixture of atoms and Lebesgue measure)
Consider Ω = R. Let (A0,Q0,⊥∅) be the singletons with Dirac measures and consider for
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any fixed p ≥ 1 the clustering base (Ap,s,Qp,s,⊥∅). Both are ◦◦∅-additive and stable and we
have Q0 ≺ Qp,1. Now consider the measures

P0 := δ0 + 2δ1 + δ2 and P1(dx) := sin2(2x
π )H1(dx).

Then the assumptions of Proposition 29 are satisfied and the clustering of P := P0 + P1 is
given by

c(P ) = c(P0) ∪ c(P1) =
{
{0}, (0, 1

2), (1
2 , 1), {1}, {2}

}
.

Our last example combines Examples 4 and 5.

Example 7 (Mixtures in dimension 2) Consider Ω := [−1, 1]2 and the densities f1 and
f2 introduced in Examples 5 and 4, respectively. Furthermore, consider the measures

P2 := f2 dH2, P1 := f1 dH1

and the clustering bases (Ap,1,Qp,1,⊥∅) and (Ap′,2,Qp
′,2,⊥∅) for some fixed p, p′ ≥ 1. As

above Qp,1 ≺ Qp′,2. And by Proposition 29 the clustering forest of P = P1 + P2 is given by

c1(P1) ∪ c2(P2) =

{ [0, 1]× {0}, [0, 1
3 ]× {0}, [2

3 , 1]× {0},
g1

(
(0, 1)

)
, g1

(
(0.2, 0.5)

)
, g1

(
(0.5, 0.8)

)
,

g2

(
[0, 1]

)
, g2

(
[0, 0.5)

)
, g2

(
(0.5, 1]

)
,

[−1, 1]2, [−1, 0)2, (0, 1]2

}

where gi : [0, 1]→ Ω are given by g1(t) = (−32t−2, 3−2t) and g2(t) = (22t−2,−2−2t). Observe
that g1 and g2 lie on niveau lines of f2.

5. Proofs

5.1 Proofs for Section 2

We begin with some simple properties of separation relations.

Lemma 30 Let ⊥ be an A-separation relation. Then the following statements are true:

(a) For all B,B′ ∈ B with B ⊥ B′ we have B ∩B′ = ∅.

(b) Suppose that ⊥ is stable and (Ai)i≥1 ⊂ A is increasing. For A :=
⋃
nAn and all B ∈ B

we then have
An ⊥ B for all n ≥ 1 ⇐⇒ A ⊥ B

(c) Let A ∈ A and B1, . . . , Bk ∈ B be closed. Then:

A ⊂ B1
⊥
∪ . . .

⊥
∪Bk =⇒ ∃!i ≤ k : A ⊂ Bi

(d) For all A1, . . . , Ak ∈ A and all A′1, . . . , A
′
k′ ∈ A, we have

A1
⊥
∪ . . .

⊥
∪Ak = A′1

⊥
∪ . . .

⊥
∪A′k′ =⇒ {A1, . . . , Ak} = {A′1, . . . , A′k′}.
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Proof of Lemma 30: (a). Let us write B0 := B ∩ B′. Monotonicity and B ⊥ B′ implies
B0 ⊥ B′ and thus B′ ⊥ B0 by symmetry. Another application of the monotonicity gives
B0 ⊥ B0 and the reflexivity thus shows B ∩B′ = B0 = ∅.
(b). “⇒” is stability and “⇐” follows from monotonicity.
(c). Existence of such an i is A-connectedness. Now assume that there is an j 6= i with
A ⊂ Bj . Then ∅ 6= A ⊂ Bi ∩Bj contradicting Bi ⊥ Bj by (a).
(d). We write F := {A1, . . . , Ak} and F ′ := {A′1, . . . , A′k′}. By (c) we find an injection
I : F → F ′ such that A ⊂ I(A) and hence k ≤ k′. Analogously, we find an injection
J : F ′ → F such that A ⊂ J(A), and we get k = k′. Consequently, I and J are bijections.
Let us now fix an Ai ∈ F . For Aj := J◦I(Ai) ∈ F we then find Ai ⊂ I(Ai) ⊂ J(I(Ai)) = Aj .
This implies i = j, since otherwise Ai ⊂ Aj would contradict Ai ⊥ Aj by (a). Therefore we
find Ai = I(Ai) and the bijectivity of I thus yields the assertion.

Proof of Proposition 3: We first need to check that the support is defined for all restric-
tions µ|C := µ(· ∩ C) to sets C ∈ B that satisfy 0 < µ(C) <∞. To this end, we check that
µ|C is inner regular: If Ω is a Radon space then there is nothing to prove since µ|C is a finite
measure. If Ω is not a Radon space, then the definition ofM∞Ω guarantees that µ is inner
regular and hence µ|C is inner regular by Lemma 51.

Let us now verify that (A,Qµ,A,⊥) is a (stable) clustering base. To this end, we first
observe that each QA ∈ Qµ,A is a probability measure by construction and since we have
already seen that µ|C is inner regular for all C ∈ K(µ) we conclude that Qµ,A ⊂ M.
Moreover, fittedness follows from A ⊂ K(µ). For flatness let A,A′ ∈ A with A ⊂ A′ and
QA′(A) 6= 0. Then for all B ∈ B we have

QA(B) =
µ(B ∩A)

µ(A)
=

µ(B ∩A ∩A′)
µ(A | A′) · µ(A′)

=
µ(B ∩A | A′)
µ(A | A′)

=
QA′(B ∩A)

QA′(A)
.

Proof of Lemma 7: Let Q =
∑

A∈F αAQA and Q =
∑

A′∈F ′ α
′
A′QA′ be two representations

of Q ∈ Q. By part (d) of Lemma 51 we then obtain

suppQ = supp

(∑
A∈F

αAQA

)
=
⋃
A∈F

suppQA =
⋃
A∈F

A ,= GF

and since we analogously find suppQ = GF ′, we conclude that GF = GF ′. The latter
together with Lemma 30 gives maxF = maxF ′. To show that αA = α′A for all roots
A ∈ max F = maxF ′, we pick a root A ∈ max F and assume that αA < α′A. Now, if A has
no direct child, we set B := A. Otherwise we define B := A \ (A1 ∪ . . .∪Ak), where the Ak
are the direct children of A in F . Because of the definition of a direct child and part (d) of
Lemma 30 we find A1 ∪ . . . ∪Ak $ A in the second case. In both cases we conclude that B
is non-empty and relatively open in A = suppQA and by Lemma 51 we obtain QA(B) > 0.
Consequently, our assumption αA < α′A yields αAQA(B) < α′AQA(B) ≤ Q(B). However,
our construction also gives

Q(B) =
∑
A′′∈F

αA′′QA′′(B) = αAQA(B)+
∑
A′′$A

αA′′QA′′(B)+
∑
A′′⊥A

αA′′QA′′(B) = αAQA(B) ,
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i.e. we have found a contradiction. Summing up, we already know that max F = maxF ′

and αA = α′A for all A ∈ max F . This yields∑
A∈maxF

αAQA =
∑

A′∈maxF ′

α′A′QA′ .

Eliminating the roots gives the forests F1 := F \maxF and F ′1 := F ′ \maxF ′ and

Q1 :=
∑
A∈F1

αAQA = Q−
∑

A∈maxF

αAQA = Q−
∑

A′∈maxF ′

α′A′QA′ =
∑
A′∈F ′1

α′A′QA′ ,

i.e. Q1 has two representations based upon the reduced forests F1 and F ′1. Applying the
argument above recursively thus yields F = F ′ and α′A = α′A for all A ∈ F .
Proof of Theorem 8: We first show that (16) defines an additive clustering. Since Axiom 1
is obviously satisfied, it suffices to check the two additivity axioms for P := S(A). We begin
by establishing DisjointAdditivity. To this end, we pickQ1, . . . , Qk ∈ S(A) with representing
⊥-forests Fi such that suppQi = GFi are mutually ⊥-separated. For A ∈ maxFi and
A′ ∈ maxFj with i 6= j, we then have A ⊥ A′, and therefore

F := F1 ∪ . . . ∪ Fk
is the representing ⊥-forest of Q := Q1 + . . .+Qk. This gives Q ∈ S(A) and

c(Q) = s(F ) = s(F1) ∪ · · · ∪ s(Fk) = c(Q1) ∪ · · · ∪ c(Qk).

To check BaseAdditivity we fix a Q ∈ S(A) with representing ⊥-forest F and a base measure
a = αQA with suppQ ⊂ supp a. For all A′ ∈ F we then have A′ ⊂ GF = suppQ ⊂ A and
therefore F ′ := {A}∪F is the representing ⊥-forest of a+Q. This yields a+Q ∈ S(A) and

c(a +Q) = s(F ′) = s
(
{A} ∪ F

)
= s
(

supp a ∪ c(Q)
)
.

Let us now show that every additive A-clustering c : P → F satisfies both S(A) ⊂ P and
(16). To this end we pick a Q ∈ S(A) with representing forest F and show by induction over
|F | = n that both Q ∈ P and c(Q) = s(F ). Clearly, for n = 1 this immediately follows from
Axiom 1. For the induction step we assume that for some n ≥ 2 we have already proved
Q′ ∈ P and c(Q′) = s(F ′) for all Q′ ∈ S(A) with representing forest F ′ of size |F ′| < n.

Let us first consider the case in which F is a tree. Let A be its root and αA be corre-
sponding coefficient in the representation of Q. Then Q′ := Q− αAQA is a simple measure
with representing forest F ′ := F \A and since |F ′| = n−1 we know Q′ ∈ P and c(Q′) = s(F ′)
by the induction assumption. By the axiom of BaseAdditivity we conclude that

c(Q) = c(αAQA +Q′) = s({A} ∪ c(Q′)) = s({A} ∪ F ′) = s(F ) ,

where the last equality follows from the assumption that F is a tree with root A.
Now consider the case where F is a forest with k ≥ 2 roots A1, . . . , Ak. For i ≤ k we

define Qi := Q
∣∣
⊂Ai

. Then all Qi are simple measures with representing forests Fi := F
∣∣
⊂Ai

and we have Q = Q1 + · · · + Qk. Therefore, the induction assumption guarantees Qi ∈ P
and c(Qi) = s(Fi). Since suppQi = Ai and Ai ⊥ Aj whenever i 6= j, the axiom of
DisjointAdditivity then shows Q ∈ P and

c(Q) = c(Q1) ∪ · · · ∪ c(Qk) = s(F1) ∪ · · · ∪ s(Fk) = s(F ) .
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5.2 Proofs for Section 3

Proof of Lemma 11: For the first assertion it suffices to check Ā-connectedness. To this
end, we fix an A ∈ Ā and closed sets B1, . . . , Bk with A ⊂ B1

⊥
∪ . . .

⊥
∪Bk. Let (An) ⊂ A with

An ↗ A. For all n ≥ 1 part (c) of Lemma 30 then gives exactly one i(n) with An ⊂ Bi(n).
This uniqueness together with An ⊂ An+1 yields i(1) = i(2) = . . . and hence An ⊂ Bi(1) for
all n. We conclude that A ⊂ Bi(1) by part (b) of Lemma 30.

For the second assertion we pick an isomonotone sequence (Fn) ⊂ FA and define F∞ :=
limn s(Fn). Let us first show that F∞ is a ⊥-forest. To this end, we pick A,A′ ∈ F∞. By
the construction of F∞ there then exist A1, A

′
1 ∈ s(F1) such that for An := ζn(A1) and

A′n := ζn(A′1) we have An ↗ A and A′n ↗ A′ Now, if A1 ⊥ A′1 then An ⊥ A′n and thus
Am ⊥ A′n for all m,n by isomonotonicity. Using the stability of ⊥ twice we first obtain
A ⊥ A′n for all n and then A ⊥ A′. If A1 6⊥ A′1, we may assume A1 ⊂ A′1 since s(F1) is
a ⊥-forest. Isomonotonicity implies An ⊂ A′n ⊂ A′ for all n and hence A ⊂ A′. Finally,
s(Fn) ≤ F∞ is trivial.

Proof of Proposition 16: We first show that A is P -subadditive if A is ◦◦P -additive. To
this end we fix A,A′ ∈ A with A ◦◦P A′. Since A is ◦◦P -additive we find B := A ∪ A′ ∈ A.
This yields

QB(A) =
µ(A ∩B)

µ(B)
=
µ(A)

µ(B)
> 0

and analogously we obtain QB(A′) > 0. For αQA, α′QA′ ≤ P we can therefore assume that
β := α

QB(A) <
α′

QB(A′) . Setting b := βQB we now obtain by the flatness assumption

αQA(·) = α · QB(· ∩A)

QB(A)
= b(· ∩A) ≤ b(·).

Now assume that (A,Qµ,A,⊥) is P -subadditive for all P � µ. Let A,A′ ∈ A with A ◦◦µ A′.
Then we have P := QA + Q′A � µ and QA, QA′ ≤ P . Since A is P -subadditive there is a
base measure b ≤ P with A ∪A′ ⊂ supp b ⊂ suppP = A ∪A′ by Lemma 51. Consequently
we obtain A ∪A′ = supp b ∈ A.

Lemma 31 Let P ∈M and (A,Q,⊥) be a P -subadditive clustering base. Then the kinship
relation ∼P is a symmetric and transitive relation on {B ∈ B |P (B) > 0} and an equivalence
relation on the set {A ∈ A | ∃α > 0 such that αQA ≤ P}. Finally, for all finite sequences
A1, . . . , Ak ∈ A of sets that are pairwise kin below P there is b ∈ QP (A1 ∪ . . . ∪Ak).

Proof of Lemma 31: Symmetry is clear. Let B1 ∼P B2 and B2 ∼P B3 be events with
P (Bi) > 0. Then there are base measures c = γQC ∈ QP (B1∪B2) and c′ = γ′QC′ ∈ QP (B2∪
B3) supporting them. This yields B2 ⊂ C ∩ C ′ and thus P (C ∩ C ′) ≥ P (B2) > 0. In other
words, we have C ◦◦P C ′, and by subadditivity we conclude that there is a b ∈ QP (C ∪C ′).
This gives B1 ∪ B3 ⊂ C ∪ C ′ ⊂ supp b, and therefore B1 ∼P B3 at b. To show reflexivity
on the specified subset of A, we fix an A ∈ A and an α > 0 such that a := αQA ≤ P . Then
we have a ∈ αQP (A) and hence we obtain A ∼P A.

The last statement follows by induction over k, where the initial step k = 2 is simply
the definition of kinship. Let us therefore assume the statement is true for some k ≥ 2. Let
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A1, . . . , Ak+1 ∈ A be pairwise kin. By assumption there is a b ∈ QP (A1 ∪ . . . ∪ Ak). Since
this latter yields A1 ⊂ supp b we find A1 ∼P supp b and by transitivity of ∼P we hence have
Ak+1 ∼P supp b. By definition there is thus a b̃ ∈ QP (Ak+1 ∪ supp b) and since this gives
A1 ∪ . . . ∪Ak+1 ⊂ Ak+1 ∪ supp b ⊂ supp b̃ we find b̃ ∈ QP (A1 ∪ . . . ∪Ak+1).

Lemma 32 Let (A,Q,⊥) be a clustering base and Q ∈ S(A) with representing forest F ∈
FA. Then for all A ∈ F we have

Q( · ∩A) = λQ(A) +Q
∣∣
$A .

Proof of Lemma 32: Let A0 ∈ maxF be the root with A ⊂ A0. Then we can decompose
F into F = {A′ ∈ F : A′ ⊃ A} ∪̇{A′ ∈ F : A′ $ A} ∪̇{A′ ∈ F : A′ ⊥ A}. Moreover, flatness
of Q gives QA′(· ∩ A) = QA′(A) · QA(·) for all A′ ∈ A with A ⊂ A′ while fittedness gives
QA′(A) = 0 for all A′ ∈ A with A′ ⊥ A0 by the monotonicity of ⊥, part (a) of Lemma 30,
and part (b) of Lemma 51. For B ∈ B we thus have

Q(B ∩A) =
∑
A′⊃A

αA′QA′(B ∩A) +
∑
A′$A

αA′QA′(B ∩A) +
∑
A′⊥A0

αA′QA′(B ∩A)

=
∑
A′⊃A

αA′QA′(A)QA(B) +
∑
A′$A

αA′QA′(B ∩A)

= λQ(A)(B) +Q
∣∣
$A(B) ,

where the last step uses QA′(B ∩A) = QA′(B) for A′ ⊂ A, which follows from fittedness.

Lemma 33 Let (A,Q,⊥) be a clustering base and a, b be base measures on A,B ∈ A with
A ⊂ B. Then for all C0 ∈ B with a(C0 ∩A) > 0 we have

b(· ∩A) =
b(C0 ∩A)

a(C0 ∩A)
· a(· ∩A) .

Proof of Lemma 33: By assumption there are α, β > 0 with a = αQA and b = βQB.
Moreover, flatness guarantees QB(· ∩A) = QB(A) ·QA(·). For all C ∈ B we thus obtain

b(C ∩A) = βQB(C ∩A) = βQB(A) ·QA(C) = βQB(A) ·QA(C ∩A) =
βQB(A)

α
a(C ∩A) .

where in the second to last step we used QA(·) = QA(·∩A), which follows from A = suppQA.
For C0 ∈ B with a(C0 ∩ A) > 0 we thus find βQB(A)

α = b(C0∩A)
a(C0∩A) and inserting this in the

previous formula gives the assertion.

Lemma 34 Let (A,Q,⊥) be a clustering base and Q ∈ S(A) be a simple measure, a be a
base measures on some A ∈ A, and C ∈ B. Then the following statements are true:

(a) If a ≤ Q then there is a level b in Q with a ≤ b.

(b) If b(· ∩ C) ≤ a(· ∩ C) for all levels b of Q then Q(C) ≤ a(C).
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(c) For all P ∈M we have Q ≤ P if and only if b ≤ P for all levels b in Q.

Proof of Lemma 34: In the following we denote the representing forest of Q by F .
(a). By a ≤ Q we find A ⊂ suppQ = GF . Since the roots maxF form a finite ⊥-disjoint
union of closed sets of GF , the A-connectedness shows that A is already contained in one of
the roots, say A0 ∈ maxF . For F ′ := {A′ ∈ F | A ⊂ A′} we thus have A0 ∈ F ′. Moreover,
F ′ is a chain, since if there were ⊥-disjoint A′, A′′ ∈ F ′ then A would only be contained
in one of them by Lemma 30. Therefore there is a unique leaf B := minF ′ ∈ F and thus
A ⊂ B. We denote the level of B in Q by b. Then it suffices to show a ≤ b. To this end,
let {C1, . . . , Ck} = maxF

∣∣
$B be the direct children of B in F . By construction we know

A 6⊂ Ci for all i = 1, . . . , k and hence A-connectedness yields A 6⊂ C1
⊥
∪ . . .

⊥
∪Ck. Therefore

C0 := A \
⋃
iCi is non-empty and relatively open in A = suppQA. This gives a(C0∩A) > 0

by Lemma 51. Let us write b := λQ(B) for the level of B in Q. Lemma 32 applied to the
node B ∈ F then gives

Q(C0) = b(C0) +Q
∣∣
$B(C) = b(C0) +

∑
A′∈F :A′$B

αA′QA′(C0) = b(C0)

since for A′ ∈ F with A′ $ B we have A′ ⊂
⋃
iCi and thus suppQA′ ∩ C0 = A′ ∩ C0 = ∅.

Therefore, we find a(C0 ∩ A) = a(C0) ≤ Q(C0) = b(C0) = b(C0 ∩ B). By Lemma 33 we
conclude that b(· ∩ A) ≥ a(· ∩ A). For B′ ∈ B the decomposition B′ = (B′ \ A) ∪̇(B′ ∩ A)
and the fact that A = supp a ⊂ supp b then yields the assertion.
(b). For A ∈ F we define

BA := A \
⋃

A′∈F : A′$A

A′ ,

i.e. BA is obtained by removing the strict descendants from A. From this description it is
easy to see that {BA : A ∈ F} is a partition of G(F ) = suppQ. Hence we obtain

Q(C) =
∑
A∈F

Q(C ∩BA) =
∑
A∈F

∑
A′∈F

αA′QA′(C ∩BA)

=
∑
A∈F

∑
A′⊃A

αA′QA′(C ∩BA) +
∑
A∈F

∑
A′$A

αA′QA′(C ∩BA)

=
∑
A∈F

λQ(A)(C ∩BA) , (22)

where we used QA′(C ∩ BA) = QA′(C ∩ BA ∩ A) together with flatness applied to pairs
A ⊂ A′ as well as A′ ∩BA = ∅ applied to pairs A′ $ A. Our assumption now yields

Q(C) ≤
∑
A∈F

a(C ∩BA) = a(C ∩ suppQ) ≤ a(C).

(c). Let b := λQ(B) be a level of B in Q with b 6≤ P . Then there is a B′ ∈ B with
b(B′) > P (B) and for B′′ := B′ ∩ supp b = B′ ∩ B we find Q(B′′) ≥ a(B′′) = a(B′) >
P (B′) ≥ P (B′′). Conversely, assume b ≤ P for all levels b in Q. By the decomposition (22)
we then obtain

Q(C) =
∑
A∈F

λQ(A)(C ∩BA) ≤
∑
A∈F

P (C ∩BA) = P (C ∩ suppQ) ≤ P (C).
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Corollary 35 Let (A,Q,⊥) be a clustering base, Q ∈ S(A) a simple measure with repre-
senting forest F and A1, A2 ∈ F . Then for all a ∈ QQ(A1 ∪ A2) there exists a level b in Q
such that A1 ∪A2 ⊂ B and a ≤ b.

Proof of Corollary 35: Let us fix an a ∈ QQ(A1 ∪ A2). Since a ≤ Q, Lemma 34 gives a
level b in Q with a ≤ b. Setting B := supp b ∈ F then gives A1 ∪A2 ⊂ supp a ⊂ B.

Proof of Proposition 19: Let Q be a simple measure and Q =
∑

A∈F αAQA be its unique
representation. Moreover, let A1, A2 be direct siblings in F and a1, a2 be the corresponding
levels in Q. Then Q-groundedness follows directly from Corollary 35. To show that A1, A2

are Q-motivated and Q-fine, we fix an a ∈ QQ(A1 ∪ A2). Furthermore, let b be the level
in Q found by Corollary 35, i.e. we have A1 ∪ A2 ⊂ supp b =: B and a ≤ b ≤ Q. Now let
A3, . . . , Ak ∈ F be the remaining direct siblings of A1 and A2. Since B is an ancestor of A1

and A2 it is also an ancestor of A3, . . . , Ak and hence A1 ∪ · · · ∪Ak ⊂ B. This immediately
gives b ∈ QQ(A1 ∪ · · · ∪Ak) and we already know b ≥ a. In other words, A1, A2 are Q-fine.
Finally, observe that for B ⊂ A′ flatness gives QA′(B)QB(·) = QA′(· ∩ B). Since A1 ⊂ B
we hence obtain

a(A1) ≤ b(A1) =
∑
A′⊃B

αA′QA′(B)QB(A1) =
∑
A′⊃B

αA′QA′(A1)

and since QA1(A1) = 1 we also find

a1(A1) =
∑
A′⊃A1

αA′QA′(A1)QA1(A1) =
∑
A′⊃A1

αA′QA′(A1) =
∑
A′⊃B

αA′QA′(A1) + αA1 .

Since αA1 > 0 we conclude that a(A1) < (1− ε1)a1(A1) for a suitable ε1 > 0. Analogously,
we find an ε2 > 0 with a(A2) < (1− ε2)a2(A2) and taking α := 1−min{ε1, ε2} thus yields
Q-motivation.

5.2.1 Proof of Theorem 20

Lemma 36 Let (A,Q,⊥) be a clustering base, P ∈MΩ, and Q,Q′ ≤ P be simple measures
on finite forests F and F ′. If all roots in both F and F ′ are P -grounded, then any root in
one tree can only be kin below P to at most one root in the other tree.

Proof of Lemma 36: Let us assume the converse, i.e. we have an A ∈ maxF and
B,B′ ∈ maxF ′ such that A ∼P B and A ∼P B′. Let a, b, b′ be the respective sum-
mands in the simple measures Q and Q′. Then 0 < a(A) ≤ Q(A) ≤ P (A) and analogously
P (B), P (B′) > 0. Then by transitivity of ∼P established in Lemma 31 we have B ∼P B′

and by groundedness there has to be a parent for both in F ′, so they would not be roots.

Proposition 37 Let (A,Q,⊥) be a stable clustering base and P ∈ M such that A is P -
subadditive. Let (Qn, Fn) ↑ P , where all forests Fn have k roots A1

n, . . . , A
k
n, which, in

addition, are assumed to be P -grounded. Then Ai :=
⋃
nA

i
n are unique under all such

approximations up to a P -null set.
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Proof of Proposition 37: The A1, . . . , Ak are pairwise ⊥-disjoint by Lemma 11 and by
Lemma 53 they partition suppP up to a P -null set, i.e. P (suppP \

⋃
iA

i) = 0. Therefore
any B ∈ B with P (B) > 0 intersects at least one of the Ai. Moreover, we have 0 <
Q1(Ai1) ≤ P (Ai1) ≤ P (Ai), i.e. P (Ai) > 0. Now let (Q′n, F

′
n) ↑ P be another approximation

of the assumed type with roots Bi
n and limit roots B1, . . . , Bk′ . Clearly, our preliminary

considerations also hold for these limit roots. Now consider the binary relation i ∼ j, which
is defined to hold iff Ai ◦◦P Bj .

Since P (Ai) > 0 there has to be a Bj with P (Ai ∩ Bj) > 0, so for all i ≤ k there is a
j ≤ k′ with i ∼ j. Then, since Ain ∩B

j
n ↑ Ai ∩Bj , there is an n ≥ 1 with P (Ain ∩B

j
n) > 0.

By P -subadditivity of A we conclude that Ain and Bj
n are kin below P , and Lemma 36

shows that this can only happen for at most one j ≤ k′. Consequently, we have k ≤ k′ and
∼ defines an injection i 7→ j(i). The same argument also holds in the other direction and
we see that k = k′ and that i ∼ j defines a bijection. Clearly, we may assume that i ∼ j
iff i = j. Then P (Ai ∩ Bj) > 0 if and only if i = j, and since both sets of roots partition
suppP up to a P -null set, we conclude that P (Ai4Bi) = 0.

Lemma 38 Let (A,Q,⊥) be a clustering base and P ∈ M such that A is P -subadditive.
Moreover, let a1, . . . , ak ≤ P be base measures on A1, . . . , Ak ∈ A such that A1 ◦◦P Ai for
all 2 ≤ i ≤ k. Then there is b ∈ QP (A1 ∪ . . .∪Ak) and an ai such that b ≥ ai, and if k ≥ 3
and the a2, . . . , ak satisfy the motivation implication (20) pairwise, then b ≥ a1.

Proof of Lemma 38: The proof of the first assertion is based on induction. For k = 2 the
assertion is P -subadditivity. Now assume that the statement is true for k. Then there is a
b ∈ QP (A1 ∪ . . . ∪Ak) and an i0 ≤ k with b ≥ ai0 . The assumed A1 ◦◦P Ak+1 thus yields

P (Ak+1 ∩ supp b) ≥ P (Ak+1 ∩A1) > 0 ,

and hence P -subadditivity gives a b̃ ∈ QP (Ak+1∪ supp b) with b̃ ≥ ak+1 or b̃ ≥ b ≥ ai0 . For
the second assertion observe that b ∈ QP (Ai ∩Aj) for all i, j and hence (20) implies b 6≥ ai
for i ≥ 2.

Lemma 39 Let (A,Q,⊥) be a clustering base and Q ≤ P be a simple and P -adapted
measure with representing forest F . Let C1, . . . , Ck ∈ F be direct siblings for some k ≥ 2.
Then there exists an ε > 0 such that:

(a) For all a ∈ QP (C1 ∪ . . . ∪ Ck) and i ≤ k we have a(Ci) ≤ (1− ε) ·Q(Ci).

(b) Assume that A is P -subadditive and that a ≤ P is a simple measure with supp a ◦◦P Ci
for at least two i ≤ k. Then for all i ≤ k we have a(Ci) ≤ (1− ε) ·Q(Ci).

(c) If A is P -subadditive and Q′ ≤ P is a simple measure with representing forest F ′ such
that there is an i ≤ k with the property that for all B ∈ F ′ we have

B ◦◦P Ci =⇒ ∃j 6= i : B ◦◦P Cj .

Then Q′(· ∩ Ci) ≤ (1− ε)Q(· ∩ Ci) holds true.
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Proof of Lemma 39: Let c1, . . . , ck be the levels of C1, . . . , Ck in Q. Since Q is adapted,
(20) holds for some α ∈ (0, 1). We define ε := 1− α.
(a). We fix an a ∈ QP (C1 ∪ . . . ∪ Ck), an i ≤ k, and a j ≤ k with j 6= i. Let ci, cj be the
levels of Ci and Cj in Q. Since αci and αcj are motivated, we have a 6≥ αci and a 6≥ αcj .
Hence, there is a C0 ∈ B with a(C0) < αci(C0) and thus also a(C0 ∩ Ci) < αci(C0 ∩ Ci).
Lemma 33 then yields a(· ∩ Ci) ≤ αci(· ∩ Ci) and the definition of levels gives

a(Ci) ≤ αci(Ci) = αQ(Ci) = (1− ε)Q(Ci).

(b). We may assume supp a ◦◦P C1 and supp a ◦◦P C2. By the second part of Lemma 38
applied to supp a, C1, C2 there is an a′ ∈ QP (supp a∪C1 ∪C2) ⊂ QP (C1 ∪C2) with a′ ≥ a,
and since Q is P -fine, we may actually assume that a′ ∈ QP (C1 ∪ . . . ∪ Ck). Now part (a)
yields a′(Ci) ≤ (1− ε) ·Q(Ci) for all i = 1, . . . , k.
(c). We may assume i = 1. Our first goal is to show

b(· ∩ C1) ≤ (1− ε)c1(· ∩ C1) (23)

for all levels b in Q′, To this end, we fix a level b in Q′ and write B := supp b. If P (B∩C1) =
0, then (23) follows from

b(C1) = b(B ∩ C1) ≤ P (B ∩ C1) = 0 .

In the other case we have B ◦◦P C1 and our assumption gives a j 6= 1 with B ◦◦P Cj . By
the second part of Lemma 38 we find an a ∈ QP (B ∪ C1 ∪ Cj) ⊂ QP (C1 ∪ Cj) with a ≥ b,
and by (a) we thus obtain a(C1) ≤ (1 − ε)Q(C1) = (1 − ε)c1(C1). Now, Lemma 33 gives
a(· ∩ C1) ≤ (1− ε)c1(· ∩ C1) and hence (23) follows.

With the help of (23) we now conclude by part (b) of Lemma 34 that Q′(· ∩ C1) ≤
(1− ε)c1(· ∩ C1) and using c1(· ∩ C1) ≤ Q(· ∩ C1) we thus obtain the assertion.

Lemma 40 Let (A,Q,⊥) be a clustering base and P ∈ M such that A is P -subadditive.
Moreover, let Q,Q′ ≤ P be simple P -adapted measures on F, F ′, and S ∈ s(F ) and S′ ∈
s(F ′) be two nodes that have children in s(F ) and s(F ′), respectively. Let

{C1, . . . , Ck} = max s(F )
∣∣
$S and {D1, . . . , Dk′} = max s(F ′)

∣∣
$S′

be their direct children and consider the relation i ∼ j :⇔ Ci ◦◦P Dj. Then we have k, k′ ≥ 2
and if ∼ is left-total, i.e. for every i ≤ k there is a j ≤ k′ with i ∼ j, then it is right-unique,
i.e. for every i ≤ k there is at most one j ≤ k′ with i ∼ j.

Proof of Lemma 40: The definition of the structure of a forest gives k, k′ ≥ 2. Moreover,
we note that P (A) ≥ Q(A) > 0 for all A ∈ F and P (A) ≥ Q′(A) > 0 for all A ∈ F ′.
Now assume that ∼ is not right-unique, say 1 ∼ j and 1 ∼ j′ for some j 6= j′. Applying
P -subadditivity twice we then find a b ∈ QP (C1 ∪ Dj ∪ Dj′) with b ≥ c1 or b ≥ dj or
b ≥ dj′ , where c1, dj , and dj′ are the corresponding levels. Since dj , dj

′ are motivated we
conclude that b ≥ c1. Now, because of QP (C1 ∪Dj ∪Dj′) ⊂ QP (Dj ∪Dj′) and P -fineness
of Q′ there is a b′ ∈ QP (D1 ∪ . . . ∪Dk′) with b′ ≥ b. Now pick a direct sibling of C1, say
C2. Then there is a j′′ with 2 ∼ j′′, and since B′ := supp b′ ⊃ D1 ∪ . . . ∪Dk′ this implies
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P (B′ ∩ C2) ≥ P (Dj′′ ∩ Ci) > 0. By P -subadditivity we hence find a b′′ ∈ QP (B′ ∪ C2) ⊂
QP (C1 ∪ C2) with b′′ ≥ b′ or b′′ ≥ c2. Clearly, b′′ ≥ c2 violates the fact that C1, C2 are
motivated, and thus b′′ ≥ b′. However, we have shown b′ ≥ b ≥ c1, and thus b′′ ≥ c1. Since
this again violates the fact that C1, C2 are motivated, we have found a contradiction.

Proof of Theorem 20: We prove the theorem by induction over the generations in the
forests. For a finite forest F , we define s0(F ) := maxF and

sN+1(F ) := sN (F ) ∪
{
A ∈ s(F ) | A is a direct child of a leaf in sN (F )

}
.

We will now show by induction over N that there is a graph-isomorphism ζN : sN (F∞) →
sN (F ′∞) with P (A4ζN (A)) = 0 for all A ∈ sN (F∞). For N = 0 this has already been shown
in Proposition 37. Let us therefore assume that the statement is true for some N ≥ 0. Let
us fix an S ∈ min sN (F∞) and let S′ := ζN (S) ∈ min sN (F ′∞) be the corresponding node.
We have to show that both have the same number of direct children in sN+1(·) and that
these children are equal up to P -null sets. By induction this then finishes the proof.

Since S ∈ sN (F∞) ⊂ s(F∞), the node S has either no children or at least 2. Now, if
both S and S′ have no direct children then we are finished. Hence we can assume that S
has direct children C1, . . . , Ck for some k ≥ 2, i.e.

max(F∞
∣∣
$S) = {C1, . . . , Ck}.

Let Sn, C1
n, . . . , C

k
n ∈ s(Fn) and S′n ∈ s(F ′n) be the nodes that correspond to S,C1, . . . , Ck,

and S′, respectively. Since P (S4S′) = 0 we then obtain for all i ≤ k

P (S′ ∩ Ci) = P (S ∩ Ci) = P (Ci) ≥ Q1(Ci) ≥ Q1(Ci1) > 0 ,

that is S′ ◦◦P Ci for all i ≤ k. Since S′ =
⋃
n S
′
n and Ci =

⋃
nC

i
n this can only happen if

S′n ◦◦P Cin for all sufficiently large n. We therefore may assume without loss of generality
that

S′1 ◦◦P Cin for all i ≤ k and all n ≥ 1. (24)

Let us now investigate the structure of F ′n
∣∣
⊂S′n

. To this end, we will seek a kind of anchor
B′n ∈ F ′n

∣∣
⊂S′n

, which will turn out later to be the direct parent of the yet to find ζN+1(Ci) ∈
F ′∞. We define this anchor by

B′n := min{B ∈ F ′n | B ◦◦P Ci1 for all i = 1, . . . , k}.

This minimum is unique. Indeed, let B̃′n be any other minimum with B̃′n ◦◦P Ci1 for all
i ≤ k. Since both are minima, none is contained in the other and because F ′n is a forest this
means B′n ⊥ B̃′n. Let b′n and b̃′n be their levels in Q′n. Since Q′n is P -adapted, these two
levels are motivated. This means that there can be no base measure majorizing one of them
and supporting B′n∪ B̃′n. On the other hand, by the second part of Lemma 38 there exists a
b′′n ∈ Qp(B′n∪C1

1∪· · ·∪Ck1 ) with b′′n ≥ b′n. Now because of P (B̃′n∩supp b′′n) ≥ P (B̃′n∩C1
1 ) > 0

and P -subadditivity there exists a base measure majorizing b̃′n ≥ b′n or b′′n and supporting
B̃′n ∩ supp b′′n. This contradicts the motivatedness of b′n and b̃′n and hence the minimum B′n
is unique.
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Since B′n is the unique minimum among all B ∈ F ′n with B ◦◦P Ci1 for all i, we also have
B′n ⊂ B for all such B and hence B′n ⊂ S′n by (24). The major difficulty in handling B′n
though is that it may jump around as a function of n: Indeed we may have B′n ∈ F ′n \ s(F ′n)
and therefore the monotonicity s(F ′n) ≤ s(F ′n+1) says nothing about B′n. In particular, we
have in general B′n 6⊂ B′n+1.

Let us now enumerate the set minF ′n
∣∣
$B′n

of direct children of B′n by D1
n, . . . , D

kn
n ,

where kn ≥ 0. Again these Di
n can jump around as a function of n. The number kn specifies

different cases: we have B′n ∈ minF ′n, i.e. B′n is a leaf, iff kn = 0; on the other hand
Di
n ∈ s(F ′n) iff kn ≥ 2. Next we show that for all i ≤ k and all sufficiently large n there is

an index j(i, n) ∈ {1, . . . , kn} with

Ci1 ◦◦P Dj(i,n)
n . (25)

Note that this in particular implies kn ≥ 1 for sufficiently large n. To this end we fix
an i ≤ k. Suppose that Ci1 ⊥⊥P (D1

nm ∪ · · · ∪ D
knm
nm ) for infinitely many n1, n2, . . . . By

construction B′nm is the smallest element of F ′nm that ⊥⊥P -intersects Ci1. More precisely, for
any A ∈ F ′nm with A ◦◦P Ci1 we have A ⊃ B′nm and therefore A ◦◦P Ci

′
1 for all such A and

all i′ ≤ k. Hence, all Q′nm in this subsequence fulfill the conditions of the last statement in
Lemma 39 and we get an ε > 0 such that for all such nm

Q′nm(Ci1) ≤ (1− ε)Q1(Ci1) ≤ (1− ε)P (Ci1) (26)

which contradicts Q′nm(Ci1) ↑ P (Ci1) since P (Ci1) > 0.
Therefore for all i ≤ k and all sufficiently large n there is an index j(i, n) such that (25)

holds. Clearly, we may thus assume that there is such an j(i, n) for all n ≥ 1. Since j(i, n) ∈
{1, . . . , kn} we conclude that kn ≥ 1 for all n ≥ 1. Moreover, kn = 1 is impossible, since
kn = 1 yields j(i, n) = 1, and this would mean, that Ci1 ◦◦P D1

n for all i ≤ k contradicting
that B′n is the minimal set in F ′n having this property. Consequently B′n has the direct
children D1

n, . . . , D
kn
n where kn ≥ 2 for all n ≥ 1.

So far we have seen that D1
n, . . . , D

kn
n ∈ s(F ′n) are inside S′n. Therefore S′n is not a

leaf, and hence S′ /∈ minF ′∞ as well. But still for infinitely many n these Dj
n might not

be the direct children of S′n. Let us therefore denote the direct children of S′n ∈ s(F ′n) by
E1
n, . . . , E

k′
n ∈ s(F ′n), where we pick a numbering such that Ein ⊂ Ein+1 and by the definition

of the structure of a forest we have k′ ≥ 2.
For an arbitrary but fixed n we now show {D1

n, . . . , D
kn
n } = {E1

n, . . . , E
k′
n }. To this let

us assume the converse. Since the Ejn are the direct children of S′n in the structure s(F ′n)
there is a jn ≤ k′ with Dj

n ⊂ Ejnn for all j, and since B′n is the direct parent of the Dj
n we

conclude that B′n ⊂ Ejnn . Therefore we have Ci1 ◦◦P E
jn
n for all i ≤ k. Since Q1 and Q′n are

adapted we can use Lemma 40 to see that for all i ≤ k we have Ci1 ⊥⊥P Ejn for all j 6= jn.
Let us fix a j 6= jn. Our goal is to show

Qm(Ejn) < (1− ε)Q′n(Ejn) ,

for all sufficiently large m ≥ n, since this inequality contradicts the assumed convergence of
Qm(Ejn) to P (Ejn) ≥ Q′n(Ejn) > 0. By part (c) of Lemma 39 with Q′n as Q and Qm as Q′ it
suffices to show that for all A ∈ Fm and all sufficiently large m ≥ n we have

A ◦◦P Ejn =⇒ A ◦◦P Ejnn . (27)
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To this end, we fix an A ∈ Fm with A ◦◦P Ejn. Then we first observe that for all m ≥ n
we have P (A ∩ S′m) ≥ P (A ∩ S′n) ≥ P (A ∩ Ejn) > 0. Moreover, the induction assumption
ensures P (S4S′) = 0 and since Sm ↗ S and S′m ↗ S′, we conclude that P (A ∩ Sm) > 0
for all sufficiently large m. Now, C1

m ∪ · · · ∪Ckm are direct siblings and hence we either have
C1
m ∪ · · · ∪ Ckm ⊂ A or A ⊂ Ci0m for exactly one i0 ≤ k. In the first case we get

P (A ∩ Ejnn ) ≥ P (C1
m ∩ Ejnn ) ≥ P (C1

1 ∩ Ejnn ) > 0

by the already established Ci1 ◦◦P Ejnn for all i ≤ k. The second case is impossible, since it
contradicts adaptedness. Indeed, A ⊂ Ci0m implies Ci0m ◦◦P E

j
n and by the already established

Ci1 ◦◦P Ejnn for all i ≤ k, we also know Ci0m ◦◦P Ejnn . By the second part of Lemma 38 we
therefore find a c̃ ∈ QP (Ci0m ∪ E

j
n ∪ Ejnn ) with c̃ ≥ ci0m, where ci0m is the level of Ci0m in Qm.

Now fix any i ≤ k with i 6= i0 and observe that we have P (Cim ∩ supp c̃) ≥ P (Cim ∩ E
jn
n ) ≥

P (Ci1 ∩E
jn
n ) > 0, and hence P -subadditivity yields a c′′ ∈ QP (Cim ∪ supp c̃) with c′′ ≥ cim or

c′′ ≥ c̃ ≥ ci0m, where cim is the level of Cim in Qm. Since c′′ ∈ QP (Cim∪supp c̃) ⊂ QP (Cim∪Ci0m),
we have thus found a contradiction to the fact that the direct siblings Cim and Ci0m are P -
motivated.

So far we have shown {D1
n, . . . , D

kn
n } = {E1

n, . . . , E
k′
n } and kn = k′ for all n. Without

loss of generality we may thus assume that Dj
n = Ejn for all n and all j ≤ k′. In particular,

this means that the direct children of S′n in s(F ′n) equal the direct children of B′n in F ′n. Let
us write

Dj :=
⋃
n≥1

Dj
n, j = 1, . . . , k′

and i ∼ j iff Ci1 ◦◦P Dj
1. We have seen around (25) that for all i ≤ k there is at least one

j ≤ k1 = k′ with i ∼ j, namely j(i, 1). By Lemma 40 we then conclude that j(i, 1) is the
only index j ≤ k′ satisfying i ∼ j. By reversing the roles of Ci1 and Dj

1, which is possible
since Dj

1 = Ej1 is a direct children of S′n in s(F ′n), we can further see that for all j there is
an index i with i ∼ j and again by Lemma 40 we conclude that there is at most one i with
i ∼ j. Consequently, i ∼ j defines a bijection between {C1

1 , . . . , C
k
1 } and {D1

1, . . . , D
k′
1 } and

hence we have k = k′. Moreover, we may assume without loss of generality that i ∼ j iff
i = j. From the latter we obtain Ci1 ◦◦P D

j
1 iff i = j.

To generalize the latter, we fix n,m ≥ 1 and write i ∼ j iff Cin ◦◦P Dj
m. Since we have

P (Cin ∩ Di
m) ≥ P (Ci1 ∩ Di

1) > 0, we conclude that i ∼ i, and by Lemma 40 we again see
that i ∼ j is false for i 6= j. This yields Cin ◦◦P Dj

m iff i = j and by taking the limits, we
find Ci ◦◦P Dj iff i = j.

Next we show that P (Ci4Di) = 0 for all i ≤ k. Clearly, it suffices to consider the case
i = 1. To this end assume that R := C1\D1 satisfies P (R) > 0. For Rn := R∩C1

n = C1
n\D1,

we then have Rn ↑ R since C1
n ↑ C1 and R ⊂ C1. Consequently, 0 < P (R) = P (R ∩ C1)

implies P (Rn) > 0 for all sufficiently large n. On the other hand, we have P (R ∩D1) = 0
by the definition of R and P (R ∩ Dj) ≤ P (C1 ∩ Dj) = 0 for all j 6= 1 as we have shown
above.

We next show that Q′m(Rn) = Q′m
∣∣
⊃B′m

(Rn). To this end it suffices to show that for
any A ∈ F ′m with A /∈ F ′m

∣∣
⊃B′m

we have Q′m(A ∩ Rn) ≤ P (A ∩ Rn) = 0. Let us thus fix an
A ∈ F ′m with A /∈ F ′m

∣∣
⊃B′m

. Then we either have A $ B′m or A ⊥ B′m. In the first case there
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is j ≤ k with A ⊂ Dj
m which means, as shown above, that P (A∩Rn) ≤ P (Dj

m∩Rn) = 0. In
the second case, by definition of structure, we even have A ⊥ S′m. So there is a A′m ∈ s(F ′m)
with A ⊂ A′m and A′m ⊥ S′m and by isomonotonicity of the structure there is A′ ∈ F ′∞
with A′m ⊂ A′ and A′ ⊥ S′. Hence by induction assumption P (A ∩ Rn) ≤ P (A ∩ Sn) ≤
P (A ∩ S) ≤ P (A′ ∩ S) = P (A′ ∩ S′) = 0.

Using P (Ci ∩Di) > 0 we now observe that Q′m
∣∣
⊃B′m

fulfills the conditions of part (c) of
Lemma 39 for C1 and C2 and by Rn ⊂ C1

n we thus obtain

Q′m(Rn) = Q′m
∣∣
⊃B′m

(Rn) ≤ (1− ε)Qn(Rn) ≤ (1− ε)P (Rn).

This contradicts 0 < P (Rn) = limm→∞Q
′
m(Rn). So we can assume P (Rn) = 0 for all n

and therefore P (R) = limn→∞ P (Rn) = 0. By reversing roles we thus find P (D14C1) =
P (C1 \D1) + P (D1 \ C1) = 0 and therefore the children are indeed the same up to P -null
sets.

Finally, we are able to finish the induction: To this end we extend ζN to the map
ζN+1 : sN+1(F∞)→ sN+1(F ′∞) by setting, for every leaf S ∈ min sN (F∞),

ζN+1(Ci) := Di

where C1, . . . , Ck ∈ sN+1(F∞) are the direct children of S and D1, . . . , Dk ∈ sN+1(F ′∞) are
the nodes we have found during our above construction. Clearly, our construction shows
that ζN+1 is a graph isomorphism satisfying P (A4ζN+1(A)) = 0 for all A ∈ sN+1(F∞).

5.2.2 Proof of Theorem 21

Lemma 41 Let (A,Q,⊥) be a clustering base, P1, . . . , Pk ∈ M with suppPi ⊥ suppPj
for all i 6= j, and Qi ≤ Pi be simple measures with representing forests Fi. We define
P := P1 + . . .+ Pk, Q := Q1 + . . .+Qk, and F := F1 ∪ · · · ∪ Fk. Then we have:

(a) The measure Q is simple and F is its representing ⊥-forest.

(b) For all base measures a ≤ P there exists exactly one i with a ≤ Pi.

(c) If A is Pi-subadditive for all i ≤ k, then A is P -subadditive.

(d) if Qi is Pi-adapted for all i ≤ k, then Q is adapted to P .

Proof of Lemma 41: (a). Since Qi ≤ Pi ≤ P we have GFi = suppQi ⊂ suppPi. By the
monotonicity of ⊥ we then obtain GFi ⊥ GFj for i 6= j. From this we obtain the assertion.
(b). Let a ≤ P be a base measure on A ∈ A. Then we have A = supp a ⊂ suppP =⋃
i suppPi. By A-connectedness there thus exists a i with A ⊂ suppPi. For B ∈ B we then

find a(B) = a(B ∩ suppPi) ≤ P (B ∩ suppPi) = Pi(B ∩ suppPi) = Pi(B). Moreover, for
j 6= i we have a(A) > 0 and Pj(A) = 0 and thus i is unique.
(c). Let a, a′ ≤ P be base measures on base sets A,A′ with A ◦◦P A′. Since A ⊥ A′ implies
A ⊥∅ A′, we have A ◦◦ A′. By (b) we find unique indices i, i′ with a ≤ Pi and a′ ≤ Pi′ .
This implies A ⊂ suppPi and A′ ⊂ suppPj , and hence we have suppPi ◦◦ suppPi′ by
monotonicity. This gives i = i′, i.e. a, a′ ≤ Pi. Since A is Pi-subadditive there now is an
ã ∈ QPi(A ∪A′) with ã ≥ a or ã ≥ a′, and since ã ≤ Pi ≤ P we obtain the assertion.
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(d). From (b) we conclude QP (A1 ∪ A2) = ∅ for all roots A1 ∈ Fi and A2 ∈ Fj and all
i 6= j. This can be used to infer the groundedness and fineness of Q from the groundedness
and fineness of the Qi. Now let a, a′ ≤ P be the levels of some direct siblings A,A′ ∈ F in
Q and b ∈ QP (A ∪ A′) be any base measure. By (b) there is a unique i with b ≤ Pi, and
hence a, a′ ≤ Pi as well. Therefore Q inherits strict motivation from Qi.

Lemma 42 Let (A,Q,⊥) be a clustering base, P ∈ M, a be a base measure on A ∈ A
with suppP ⊂ A, and Q ≤ P be a simple measure with representing forest F . We define
P ′ := a + P , Q′ := a +Q, and F ′ := {A} ∪ F . Then the following statements hold:

(a) The measure Q′ is simple and F ′ is its representing ⊥-forest.

(b) Let a′ ≤ P ′ be a base measure on A′. Then either a′ ≤ a or there is an α ∈ (0, 1) such
that a′(· ∩A′) = a(· ∩A′) + αa′(· ∩A′).

(c) If A is P -subadditive then A is P ′-subadditive.

(d) If Q is P -adapted, then Q′ is P ′-adapted.

Proof of Lemma 42: (a). We have GF = suppQ ⊂ suppP ⊂ A and hence F ′ is a
⊥-forest, which is obviously representing Q.
(b). Let us assume that a′ 6≤ a, i.e. there is a C0 ∈ B with a′(C0) > a(C0) and thus we find
a′(C0∩A′) = a′(C0) > a(C0) ≥ a(C0∩A′). In addition, we have A′ = supp a′ ⊂ supp a = A,
and therefore Lemma 33 shows a(· ∩ A′) = γa′(· ∩ A′), where γ := a(C0∩A′)

a′(C0∩A′) < 1. Setting
α := 1− γ yields the assertion.
(c). Let a1, a2 ≤ P ′ be base measures on sets A1, A2 ∈ A with A1 ◦◦P ′ A2. Since suppP ′ =
A, we have A1 ∪ A2 ⊂ A, and thus a ∈ QP ′(A1 ∪ A2). Clearly, if a ≥ a1 or a ≥ a2, there is
nothing left to prove, and hence we assume a1 6≤ a and a2 6≤ a. Then (b) gives αi ∈ (0, 1)
with ai(·∩Ai) = a(·∩Ai)+αiai(·∩Ai). We conclude that a(·∩Ai)+αiai(·∩Ai) = ai(·∩Ai) ≤
P ′(· ∩ Ai) = a(· ∩ Ai) + P (· ∩ Ai), and thus αiai = αiai(· ∩ Ai) ≤ P (· ∩ Ai) ≤ P . Since A
is P -subadditive, we thus find an ã ∈ QP (A1 ∪ A2) with say ã ≥ α1a1. For Ã := supp ã we
then have

ã′ := a(· ∩ Ã) + ã(· ∩ Ã) ≥ a(· ∩ Ã) + α1a1(· ∩ Ã) ≥ a(· ∩A1) + α1a1(· ∩A1) = a1 ,

where we used supp a1 = A1 ⊂ Ã. Moreover Ã = supp ã ⊂ suppP ⊂ A, together with
flatness of Q shows that ã′ is a base measure, and we also have ã′ ≤ a + ã ≤ a + P = P ′.
Finally we observe that A1 ∪A2 ⊂ Ã = supp ã′, and hence ã′ ∈ QP ′(A1 ∪A2).
(d). Clearly, F ′ is grounded because it is a tree. Now let A1, . . . , Ak ∈ F ′, k ≥ 2 be direct
siblings and a′i be their levels in Q′. Since A is the only root it has no siblings, so for all i
we have Ai ∈ F . Moreover, the levels ai of Ai in Q are P -motivated and P -fine since Q is
P -adapted. Now let b ∈ QP ′(A1 ∪A2) and B := supp b.

To check that Q′ is P ′-fine, we first observe that in the case b ≤ a there is nothing
to prove since a ∈ QP ′(A1 ∪ . . . ∪ Ak) by construction. In the remaining case b 6≤ a we
find a β > 0 with b(· ∩ B) = a(· ∩ B) + βb(· ∩ B) by (b), and by P -fineness of Q, there
exists a b̃ ∈ QP (A1 ∪ . . . ∪ Ak) with b̃ ≥ βb. Since supp b̃ ⊂ suppP ⊂ supp a we see that
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a + b̃ is a simple measure, and hence we can consider the level b̃′ of supp b̃ in a + b̃. Since
b̃′ ≤ a+ b̃ ≤ a+P ≤ P ′, we then obtain b̃′ ∈ QP ′(A1∪ . . .∪Ak) and for C ∈ B we also have

b(C) = b(C ∩B) = a(C ∩B) + βb(C ∩B) ≤ a(C ∩B) + b̃(C ∩B) = b̃′(C ∩B) ≤ b̃′(C).

To check that Q′ is strictly P ′-motivated we fix the constant α ∈ (0, 1) appearing in the
strict P -motivation of Q. Then there are α̃i ∈ (0, 1) such that a(· ∩ Ai) + αai = α̃ia

′
i. We

set α̃ := max{α̃1, α̃2} ∈ (0, 1) and obtain a(· ∩ Ai) + αai ≤ α̃a′i for both i = 1, 2. Let us
first consider the case b ≤ a. Since our construction yields a′i = a(· ∩Ai) + ãi 6≤ a, there is a
C0 ∈ B with a′i(C0) > a(C0). This implies α̃a′i(C0) ≥ a(C0 ∩ Ai) + αai(C0) > a(C0 ∩ Ai) ≥
b(C0 ∩ Ai), i.e. b 6≥ α̃a′i. Consequently, it remains to consider the case b 6≤ a. By (b) and
supp b ⊂ suppP ′ = A there is a β ∈ (0, 1] with b(· ∩B) = a(· ∩B) + βb(· ∩B). Then

βb = βb(· ∩B) = b(· ∩B)− a(· ∩B) ≤ P ′(· ∩B)− a(· ∩B) = P (· ∩B) ≤ P ,

and since βb ∈ QP (A1 ∪ A2) we obtain βb 6≥ αai for i = 1, 2. Hence there is an event
C0 ⊂ supp b with βb(C0) < αai(C0), which yields b(C0∩Ai) = a(C0∩Ai∩B)+βb(C0∩Ai) <
a(C0 ∩A) + αai(C0 ∩Ai) ≤ α̃a′i(C0 ∩Ai), i.e. b 6≥ α̃a′i.
Proof of Theorem 21: For a P ∈ S̄(A) and a P -adapted isomonotone sequence (Qn, Fn)↗
P we define cA(P ) :=P limn→∞ s(Fn), which is possible by Theorem 20. By Proposition
19 we then now that cA(Q) = c(Q) for all Q ∈ Q, and hence cA satisfies the Axiom of
BaseMeasureClustering. Furthermore, cA is obviously structured and scale-invariant, and
continuity follows from Theorem 20.

To check that cA is disjoint-additive, we fix P1, . . . , Pk ∈ PA with pairwise ⊥-disjoint
supports and let (Qin, F

i
n) ↗ Pi be Pi-adapted isomonotone sequences of simple measures.

We set Qn := Q1
n + · · · + Qkn and P := P1 + . . . + Pk. By Lemma 41 Qn is simple on

Fn := F 1
n ∪ · · · ∪ F kn and P -adapted, and A is P -subadditive. Moreover, we have Qn ↗ P

and s(Fn) =
⋃
i s(F

i
n) inherits monotonicity as well. Therefore (Qn, Fn)↗ P is P -adapted

and lim s(Fn) =
⋃
i lim s(F in) implies disjoint-additive.

To check BaseAdditivity we fix a P ∈ PA and a base measure a with suppP ⊂ a.
Moreover, let (Qn, Fn) ↗ P be a P -adapted sequence. Let Q′n := a + Qn and P ′ :=
a + P . Then by Lemma 42 Q′n is simple on F ′n := {A} ∪ Fn and P ′-adapted, and A is
P ′-subadditive. Furthermore we have (Q′n, F

′
n) ↗ P ′ and therefore we find P ′ ∈ PA and

lim s(F ′n) = s({A} ∪ lim s(Fn)).
For the uniqueness we finally observe that Theorem 8 together with the Axioms of Ad-

ditivity shows equality on S(A) and the Axiom of Continuity in combination with Theorem
20 extends this equality to PA.

5.2.3 Proof of Theorem 23

Lemma 43 Let µ ∈M∞Ω , and consider (A,Qµ,A,⊥).

(a) If A,A′ ∈ A with A ⊂ A′ µ-a.s. then A ⊂ A′.

(b) Let P ∈MΩ such that A is P -subadditive and P has a µ-density f that is of (A,Q,⊥)-
type with a dense subset Λ such that s(Ff,Λ) is finite. For all λ ∈ Λ and all A1, . . . , Ak ∈
A with A1∪ . . .∪Ak ⊂ {f > λ} µ-a.s. there is B ∈ A with A1∪ . . .∪Ak ⊂ B pointwise
and B ⊂ {f > λ} µ-a.s.
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Proof of Lemma 43: (a). Let A,A′ ∈ A with A ⊂ A′ µ-a.s. and let x ∈ A. Now
B := A \A′ is relative open in A and if it is non-empty then µ(B) > 0 since A is a support
set. Since by assumption µ(B) = 0 we have B = ∅.
(b). Since H := {f > λ} ∈ Ā there is an increasing sequence Cn ↗ H of base sets. Let
dbn := λ1Bndµ ∈ QP . For all i ≤ k eventually Bn ◦◦µ Ai, so there is a n s.t. Bn is
connected to all of them. By P -subadditivity between bn and λ1A1 dµ, . . . , λ1Ak dµ there is
dc = λ′1C dµ ∈ QP that supports all of them and majorizes at least one of them. Hence
λ ≤ λ′ and thus A1 ∪ . . . ∪Ak ⊂ C ⊂ {f > λ′} ⊂ {f > λ} µ-a.s. By (a) we are finished.

Lemma 44 Let f be a density of (A,Q,⊥)-type, set P := f dµ and assume A is P -
subadditive and Ff,Λ is a chain. For all k ≥ 0 and all n ∈ N let Bn = C1 ∪ . . . ∪ Ck
be a (possibly empty) union of base sets C1, . . . , Ck ∈ A with Bn ⊂

{
f > λ

}
for all λ ∈ Λ.

Then P := f dµ ∈ P and there is (Qn, Fn) ↗ P adapted where for all n Fn is a chain and
Bn ⊂ minFn.

Proof of Lemma 44: Let (λn)n ⊂ Λ be a dense countable subset with λn < ρ and set
Λn := {λ1, . . . , λn}, Λ∞ :=

⋃
n Λn. Remark that max Λn < ρ for all n, |Λn| = n and

Λ1 ⊂ Λ2 ⊂ . . . . For very n we enumerate the n elements of Λn by λ(1, n) < . . . < λ(n, n).
For every λ ∈ Λ∞ we let nλ := min{n | λ ∈ Λn} ∈ N.

Since f is of (A,Q,⊥)-type, H(λ) := {f > λ} ∈ Ā for λ ∈ Λ. Therefore there is
Aλ,n ∈ A s.t. Aλ,n ↑ H(λ), where n ≥ 0. We would like to use these Aλ,n to construct Qn,
but they need to be made compatible in order that (Qn, Fn)n becomes isomonotone. Hence
we construct by induction a family of sets A(λ, n) ∈ A, λ ∈ Λn, n ∈ N with the following
properties:

Aλ,n ∪A(λ(i+ 1, n), n)∪A(λ, n− 1)∪Bn ⊂ A(λ, n) ⊂ H(λ) ∪̇N(λ, n), µ(N(λ, n)) = 0.

Here A(λ(i+ 1, n), n) is thought as empty if i = n and similarly A(λ, n− 1) = ∅ if n = 1 or
λ /∈ Λn−1. All of these involved sets C are base sets with C ⊂ H(λ) and hence by Lemma 43
there is such an A(n, λ). Since Aλ,n ↗n H(λ) we then also have A(λ, nλ + n) ↑ H(λ).

Now for all n consider the chain Fn := {A(λ, n) | λ ∈ Λn} ⊂ A and the simple measure
Qn on Fn given by:

hn :=

n∑
i=1

(
λ(i, n)− λ(i− 1, n)

)
· 1A(λ(i,n),n) =

∑
λ∈Λn

λ · 1A(λ,n)\
⋃
λ′>λ A(λ′,n) (λ(0, n) := 0)

Let x ∈ B. Let
Λn(x) := {λ ∈ Λn | x ∈ A(λ, n)}

Then hn(x) = max Λn(x). And if x ∈ A(λ, n) then x ∈ A(λ, n+ 1) so Λn(x) ⊂ Λn+1(x) and
we have:

hn(x) = max Λn(x) ≤ max Λn+1(x) = hn+1(x)

Furthermore if λ ∈ Λn(x) then x ∈ A(λ, n) ⊂ H(λ) implying h(x) > λ. Therefore h1 ≤
h2 ≤ · · · ≤ h.
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On the other hand for all ε > 0, since Λ∞ is dense, there is a n and λ ∈ Λn with
h(x)− ε ≤ λ < h(x)). Then x ∈ H(λ) and therefore for n big enough x ∈ A(λ, n) and then:

h(x) ≥ hn(x) ≥ λ ≥ h(x)− ε.

This means hn(x) ↑ h(x) for all x ∈ B so we have hn ↑ h pointwise and by monotone
convergence (Qn, Fn) ↑ P0.

Proof of Theorem 23: Let f be a density as supposed and set F := s(Ff,Λ). By assump-
tion F is finite. If |F | = 1 then Ff,Λ is a chain and the Theorem follows from Lemma 44
using Bn = ∅, n ∈ N, in the notation of the lemma. Hence we can now assume |F | > 1. We
prove by induction over |F | that f dµ ∈ S̄(A) and c(f dµ) =µ s(Ff,Λ) and assume that this
is true for all f ′ with level forests |s(Ff ′,Λ′ | < |F |. For readability we first handle the case
that F is not a tree.

Assume that F has two or more roots A1, . . . , Ak with k = k(0). Denote by fi := f
∣∣
Ai

the corresponding densities, hence f = f1 + . . . + fk, and set Fi := s(Ffi,Λ) = F
∣∣
⊂Ai

and
Pi := fi dµ. We cannot use DisjointAdditivity, because separation of the Ai does not
imply separation of the supports. Hence we have to construct a P -adapted isomonotone
sequence (Qn, Fn)↗ P . Since F = F1 ∪̇ . . . ∪̇Fk we have |Fi| < |F | and hence by induction
assumption for all i ≤ k we have c(Pi) = Fi, and there is an isomonotone Pi-adapted
sequence (Qi,n, Fi,n) ↗ Pi. For Qn := Q1,n + . . . + Qk,n and Fn := F1,n ∪ . . . ∪ Fk,n it is
clear that (Qn, Fn)↗ P is isomonotone. Let b ∈ QP and B := supp b. We show that this is
◦◦µ-connected to exactly one Ai. There is β > 0 s.t. db = β1Bdµ and β1B ≤ f µ-a.s. Now
let λ ∈ Λ with λ < β and λ < inf

{
λ′ ∈ Λ | k(λ′) 6= k(0)

}
. Because for all λ ∈ Λ also the

closures of clusters are ⊥-separated we have

B ⊂ Hf (λ) = B1(λ))
⊥
∪ . . .

⊥
∪Bk(λ)).

By connectedness there is a unique i ≤ k with B ⊂ Bi(λ) and by monotonicity B ⊥ Bj(λ)
for all i 6= j. Since this holds for all λ ∈ Λ small enough and Λ is dense, this means that B is
◦◦µ-connected to exactly i. Using this, P -adaptedness of Qn is inherited from Pi-adaptedness
of Qi,n. Therefore P = limnQn ∈ P and c(P ) = F .

Now assume that F is a tree. Since |F | > 1 there are direct children A1, . . . , Ak of
the root in the structured forest F with k ≥ 2. Let ρ := inf{λ ∈ Λ | k(λ) 6= 1}. Since
F is a tree, ρ > 0. Let f0(ω) := min{ρ, f(ω)} and f ′(ω) := max{0, f(ω) − ρ} for all
ω ∈ Ω, and set dP0 := f0 dµ and dP ′ := f ′ dµ. Then P = P0 + P ′ is split into a podest
corresponding to the root and its chain and the density corresponding to the children. We
set Λ′ :=

{
λ − ρ | λ ∈ Λ, λ > ρ

}
. Then |Ff ′,Λ′ | = |F | − 1 and by induction assumption

there is (Q′n, F
′
n) ↑ P ′ adapted. Set Bn := GF ′n and B :=

⋃
Bn. Then by Lemma 44 there

is (Qn, Fn)↗ P0 adapted, which is given by a density hn.
Now there might be a gap εn := ρ − suphn > 0. By construction εn → 0 but to be

precise we let

Q̃n := Q′n +
∑

A∈maxF ′n

εn · 1A dµ.

This is still a simple measure on F ′n and therefore (Qn + Q̃n, Fn ∪ F ′n) ↗ P . We have to
show P -adapted:
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Grounded: Is fulfilled, since we consider trees at the moment.

Fine: Let C1, . . . , Ck ∈ Fn ∪ F ′n be direct siblings. Then C1, . . . , Ck ∈ F ′n because Fn is
a chain. If they are contained in one of the roots of F ′n fineness is inherited from
adaptedness of Q′n. Else they are the roots of F ′n. Let a = α1Adµ ∈ QP be a
basic measure that ⊥⊥P -intersects say C1 and C2. Then is clear that α ≤ ρ and by
P -subadditivity fineness is granted.

Motivated Let C,C ′ ∈ Fn ∪ F ′n be direct siblings. Then again C,C ′ ∈ F ′n. If they are
contained in one of the roots of F ′n motivatedness is inherited from adaptedness of Q′n.
Else they are the roots of F ′n. Let a = α1Adµ ∈ QP be a base measure that supports
C1 ∪C2. Again it is clear that α ≤ ρ and hence it cannot majorize neither the level of
C nor the one of C ′.

Proof of Proposition 24: Since f is continuous, all Hf (λ) are open and it is the disjoint
union of its open connected components. We show any connected component contains at
least one of the x̂1, . . . , x̂k. To this end let λ0 ≥ 0 and B0 be a connected component of
Hf (λ0) (then B0 6= ∅). Because Ω is compact, so is the closure B̄0, and hence the maximum
of f on B̄0 is attained at some y0 ∈ B̄0. Since there is y1 ∈ B0 we have f(y0) ≥ f(y1) > λ
we have y0 ∈ Hf (λ). Now Hf (λ) is an open set, so y0 is an inner point of this open set, and
we know y0 ∈ B̄0, therefore y0 ∈ B0. Therefore y0 ∈ B0 is a local maximum.

Hence for all λ there are at most k components and f is of (A,Qµ,A,⊥∅)-type. The
generalized structure s̃(Ff ) is finite, since there are only k leaves.

Now, fix for the moment a local maximum x̂i. Since x̂i is a local maximum, there is ε0

s.t. f(y) ≤ f(x̂i) for all y with d(y, x̂i) < ε0. For all ε ∈ (0, ε0) consider the sphere

Sε(λ) :=
{
y ∈ Ω: f(y) ≥ λ and d(y, x̂i) = ε

}
.

Since Ω is compact and Sε(λ) is closed, it is also compact. So as λ ↑ f(x̂i) the Sε(λ) is a
monotone decreasing sequence of compact sets. Assume that all Sε(λ) were non-empty: Let
yn ∈ Sε0/(n+1)(λ) then (yn)n is a sequence in the compact set Sε0/2(λ), hence there would
be a subsequence converging to some yε. This subsequence eventually is in every Sε0/(n+1)

and hence yε ∈
⋂
λ<f(λ) Sε(λ), so this would be non-empty. This means that f(yε) ≥ f(x̂i).

On the other hand, since ε < ε0 we have f(yε) ≥ f(x̂i). Therefore all yε are local maxima,
yielding a contradiction to the assumption that there are only finitely many. Hence for all
ε, Sε(λ) = ∅ for all λ ∈ (λε, f(x̂i). From this follows, that all local maxima have from some
point on their own leaf in Ff . Therefore there is a bijection ψ : {x̂1, . . . , x̂k} → min c(P ) s.t.
x̂i ∈ ψ(x̂i).

Lastly, we need to show that also the closures of the connected components are separated,
to verify the conditions of Theorem 23. We are allowed to exclude a finite set of levels, in
this case the levels λ1, . . . , λm at which λ 7→ k(λ) ∈ N changes. Consider 0 ≤ λ0 < λ1 s.t.
for all λ ∈ (λ0, λ1) k(λ) stays constant. Set λ̃ := λ0+λ

2 ∈ (λ0, λ). Now let A,A′ be connected
components of Hf (λ) and let B,B′ be the connected components of Hf (λ̃) with A ⊂ B and
A′ ⊂ B′. First we show Ā ⊂ B: let y0 ∈ Ā. Then there is (yn) ⊂ A with yn → y0. Because
f is continuous we have

λ < f(yn)→ f(y0) ≥ λ > λ̃

and hence y0 ∈ B. Similarly we have Ā′ ⊂ B′ and B ⊥∅ B′ implies Ā ⊥∅ Ā′.
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5.3 Proofs for Section 4

Lemma 45 Let A,A′ be closed, non-empty, and (path-)connected. Then:

A ∪A′ is (path-)connected ⇐⇒ A ◦◦∅ A′.

Therefore any finite or countable union A1 ∪ . . . ∪ Ak, k ≤ ∞ of such sets is connected iff
the graph induced by the intersection relation is connected.

Proof of Lemma 45: Topological connectivity means that A ∪ A′ cannot be written as
disjoint union of closed non-empty sets. Hence, if A∪A′ is connected, then this union cannot
be disjoint. On the other hand if x ∈ A ∩ A′ 6= ∅ and A ∪ A′ = B ∪ B′ with non-empty
closed sets then x ∈ B or x ∈ B′. Say x ∈ B, then still B′ has to intersect A or A′, say
B′ ∩A 6= ∅. Then both B,B′ intersect A and both C := B ∩A and C ′ := B′ ∩A are closed
and non-empty. But since A = C ∪ C ′ is connected there is y ∈ C ∩ C ′ ⊂ B ∩ B′ and
therefore B ∪B′ is not a disjoint union.

For path-connectivity: If x ∈ A∩A′ 6= ∅ then for all y ∈ A∪A′ there is a path connecting
x to y, so A ∪ A′ is path-connected. On the other hand, if A ∪ A′ is path connected then
for any x ∈ A and x′ ∈ A′ there is a continuous path f : [0, 1]→ A ∪A′ connecting x to x′.
Then B := f−1(A) and B′ := f−1(A′) are closed and non-empty, and B ∪B′ = [0, 1]. Since
[0, 1] is topologically connected there is y ∈ B ∩B′ and so f(y) ∈ A ∩A′.

Proof of Example 1: Reflexivity and monotonicity are trivial for all the three relations.
Disjointness: Stability is trivial and connectedness follows from Lemma 45 and from the
observation:

A ⊂ B1

⊥∅
∪ . . .

⊥∅
∪ Bk ⇒ A = (A ∩B1)

⊥∅
∪ . . .

⊥∅
∪ (A ∩Bk)

τ -separation: Connectedness follows from the definition of τ -connectedness. For stability
let An ↑n A and An ⊥τ B for n ∈ N and observe

d(A,B) = sup
x∈A

d(x,B) = sup
n∈N

sup
x∈An

d(x,B) = sup
n∈N

d(An, B) ≥ τ.

Linear Separation: Connectedness follows from the condition on A since A ⊂ B1

⊥`∪ . . .
⊥`∪ Bk

implies A = A ∩B1

⊥`∪ . . .
⊥`∪ A ∩Bk. To prove stability let An ↑n A and An ⊥` B for n ∈ N.

Observe that
v 7→ sup{α ∈ R | 〈 v | a 〉 ≤ α∀a ∈ A}

is continuous and the same holds for the upper bound for the α. Hence for each n and
any vector v ∈ H with 〈 v | v 〉 = 1 there is a compact, possibly empty interval In(v) of α
fulfilling the separation along v. Since by assumption the unit sphere is compact so is the
semi-direct product In := {(v, α) | α ∈ In(v)}. Since In 6= ∅ and In ⊃ In+1 is a monotone
limit of non-empty compact sets, the limit

⋂
n In is non-empty.

Lemma 46 Let µ ∈M∞Ω . If C ⊂ K(µ) then C⊥⊥(C) ⊂ K(µ).
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Proof of Lemma 46: Let A = C1 ∪ . . . ∪ Ck ∈ C⊥⊥(C) then:

supp 1A dµ = supp(1C1 + · · ·+ 1Ck) dµ = C1 ∪ . . . ∪ Ck = A.

Lemma 47 Let C ⊂ B be a class of non-empty closed sets. We assume the following gen-
eralized stability: If B ∈ B and A1, . . . , Ak ∈ C form a connected subgraph of G⊥⊥(C):

Ai ⊥⊥ B ∀i ≤ k =⇒ A ⊥⊥ B.

Then C⊥⊥(C) is ⊥⊥-intersection additive. Furthermore the monotone closure C⊥⊥(C) is

C̄⊥⊥(C) := {C1 ∪ C2 ∪ . . . | C1, C2, . . . ∈ C and the graph G⊥⊥({C1, C2, . . .}) is connected }

Proof of Lemma 47: Let A = C1 ∪ . . . ∪ Cn, A′ = C ′1 ∪ . . . ∪ C ′n′ ∈ C(C) with A ◦◦ A′. If
for all j ≤ n′ we had C ′j ⊥⊥ A then by assumption A′ ⊥⊥ A and therefore there has to be
j ≤ n′ with C ′j ◦◦ A. By the same argument there then is i ≤ n with Ci ◦◦ Cj . Therefore
the intersection graph on C1, . . . , Cn, C

′
1, . . . , C

′
n′ is connected and

A ∪A′ = C1 ∪ . . . ∪ Cn ∪ C ′1 ∪ . . . ∪ C ′n′ ∈ C(C).

Let B ∈ C(C) and A1, A2, . . . ∈ C(C) with An ↑ B. Then for all n we have An =
Cn1 ∪ . . .∪Cnk(n) with Cnj ∈ C and their intersection graph is connected. Since An ⊂ An+1

for all Cnj there is j′ with Cnj ⊂ C(n+1),j′ which even gives Cnj ◦◦ C(n+1)j′ . Hence, the
family {Cnj}n,j being countable can be enumerated C̃1, C̃2, . . . s.t. for allm there is i(m) < m
with Cm ◦◦ Ci(m). Therefore for all m, the intersection graph on C̃1, . . . , C̃m is connected
and hence

Ãm := C̃1 ∪ . . . ∪ C̃m ∈ C(C).
And we see that

⋃
m Ãm ∈ C̄(C) and therefore

B =
⋃
n

An =
⋃
nj

Cnj =
⋃
m

C̃m ∈ C̄(C).

Now let B ∈ C̄(C) and B =
⋃
nCn with Cn ∈ C and s.t. the intersection graph on

C1, C2, . . . is connected. By Zorn’s Lemma it has a spanning tree. Since there are at most
countable many nodes, one can assume that this tree is locally countable and therefore
there is an enumeration of the nodes Cn(1), Cn(2), . . . s.t. they form a connected subgraph
for all m. Then the intersection graph on Cn(1), . . . , Cn(m) is connected for all m and
therefore Am := Cn(1) ∪ . . . ∪ Cn(m) ∈ C(C). Am ∈ Ci(C) ↑ B is monotone and we have
B =

⋃
Am ∈ Ci(C).

Proposition 48 Let C ⊂ B be a class of non-empty, closed events and ⊥ a C-separation
relation. We assume the following generalized countable stability: If B ∈ B and A1, A2, . . . ∈
C form a connected subgraph of G⊥(C):

An ⊥ B ∀n =⇒
⋃
n

An ⊥ B.

Then ⊥ is a C⊥(C)-separation relation.
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Proof of Proposition 48: Set Ã := C⊥. The assumption assures Ã-stability. We have to
show Ã-connectedness. So let A ∈ Ã and B1, . . . , Bk ∈ B closed with:

A ⊂ B1
⊥
∪ . . .

⊥
∪Bk.

By definition of C there are C1, . . . , Cn ∈ C with A = C1∪ . . .∪Cn and s.t. the ⊥-intersection
graph on {C1, . . . , Cn} is connected. For all j ≤ n we have Cj ⊂ A ⊂ B1 ∪ . . . ∪ Bk and
by C-connectedness there is i(j) ≤ k with Cj ⊂ Bi(j). Now, whenever i(j) 6= i(j′) since
Bi(j) ◦◦ Bi(j′) we have by monotonicity Cj ◦◦ Cj′ . So whenever there is an edge between Cj
and Cj′ then i(j) = i(j′). This means that i(·) is constant on connected components of the
graph, and hence on the whole graph.

Proposition 49 Let C ⊂ B be a class of non-empty, closed events and ⊥ a C-separation
relation with the following alternative C⊥(C)-stability: For all A1, A2, . . . ∈ C and B ∈ B:

G⊥⊥({A1, A2, . . .}) is connected and for all n : An ⊥ B =⇒
⋃
n

An ⊥ B. (28)

Then ⊥ is a C⊥(C)-separation relation and C⊥(C) is ⊥-intersection additive.
Assume furthermore ⊥⊥ is a weaker relation (B ⊥ B′ =⇒ B ⊥⊥ B′). Then ⊥ is a

C⊥⊥(C)-separation relation and C⊥⊥(C) is ⊥⊥-intersection additive.

Proof of Proposition 49: The first part is a corollary of Lemma 47 and Proposition 48.
For the second part observe C⊥⊥(C) ⊂ C⊥(C). hence ⊥ is also a C⊥⊥(C)-separation relation.
But now C⊥⊥(C) is only ⊥⊥-intersection additive.

Proof of Proposition 26: First if An ↑ B ∈ Ā then for all x, x′ ∈ B there is n with
x, x′ ∈ An and since An is path-connected there is a path connecting x and x′ in An ⊂ B,
so they are connected also in B.

Let O be open and path-connected. Let (An)n ⊂ A′ be the subsequence of all A ∈ A′
with A ⊂ O. Since O is open and A′ a neighborhood base O =

⋃
nAn. Consider the

graph on the (An)n given by the intersection relation. Then by Zorn’s Lemma there is a
spanning tree, and we can assume that it is locally at most countable. Therefore there is
an enumeration A′1, A′2, . . . such that {A′1, . . . , A′n} is a connected sub-graph for all n. By
intersection-additivity hence Ãn := A′1 ∪ . . . ∪A′n ∈ A and Ãn ↑ O.

Lemma 50 Let µ ∈ M∞Ω and assume there is a B ∈ K(µ) with dP = 1B dµ. Assume
that (A,Qµ,A,⊥A) is a P -subadditive stable clustering base and (Qn, Fn) ↑ P is adapted.
Then s(Fn) = {An1 , . . . , Ank} consists only of roots and can be ordered in such a way that
A1
i ⊂ A2

i ⊂ . . .. The limit forest F∞ then consists of the k pairwise ⊥A-separated sets:

Bi :=
⋃
n≥1

Ani ,

there is a µ-null set N ∈ B with

B = B1

⊥A∪ . . .
⊥A∪ Bk

⊥∅
∪ N. (29)
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Proof of Lemma 50: Once we have shown that all s(Fn) only consists of their roots, the
rest is a direct consequence of the isomonotonicity, and the fact that there is a µ-null set N
s.t.:

B = suppP = N
⊥∅
∪
⋃
n

suppQn = B1

⊥A∪ . . .
⊥A∪ Bk

⊥
∪N.

Now let A,A′ ∈ Fn be direct siblings and denote by a =, a′ ≤ P their levels inQn. Then there
are α, α′ > 0 with a = α1A dµ and a′ = α′1A′ dµ. Now, a, a′ ≤ P implies α1A, α

′1A′ ≤ 1B
(µ-a.s.) and hence α, α′ ≤ 1. Assume they have a common root A0 ∈ maxFn, i.e. A ∪A′ ⊂
A0 ⊂ B. Then α1A, α

′1a′ ≤ 1A0 ≤ 1B (µ-a.s.) and hence they cannot be motivated.

Proof of Lemma 27: The Hausdorff-dimension is calculated in (Falconer, 1993, Corollary
2.4). Proposition 2.2 therein gives for all events B ⊂ C and B′ ⊂ C ′:

Hs(ϕ(B)) ≤ cs2Hs(B) and Hs(ϕ−1(B′)) ≤ cs1Hs(B′).

We show that C ′ is a Hs-support set. Let B′ ⊂ C ′ be any relatively open set and set
B := ϕ−1(B′) ⊂ C. Then B ⊂ C is open because ϕ is a homeomorphism. And since C is a
support set we have 0 < Hs(B) <∞. This gives

0 < Hs(B) = Hs(ϕ−1(B′)) ≤ cs1Hs(B′) and Hs(B′) = Hs(ϕ(B)) ≤ cs2Hs(B) <∞.

Therefore C ′ is a Hs-support set.

Proof of Proposition 28: The proof is split into four steps: (a). We first show that for
all A ∈ A there is a unique index i(A) with A ∈ Ai(A). To this end, we fix an A ∈ A.
Then there is i ≤ m with A ∈ Ai. Let µ ∈ Qi be the corresponding base measure with
suppµ = A. Let j ≤ m and µ′ ∈ Qj be another measure with suppµ′ = A. Then µ(A) = 1
and µ′(A) = 1. If j > i then by assumption µ ≺ µ′ and this would give µ′(A) = 0. If j < i
we have µ′ ≺ µ and this would give µ(A) = 0. So i = j.
(b). Next we show that for all A,A′ ∈ A with A ⊂ A′ we have i(A) ≤ i(A′). To this
end we first observe that A = A ∩ A′ = suppQA ∩ suppQA′ . If we had i > j then
QA′ ∈ Qj ≺ Qi 3 QA and since QA′(A) ≤ QA′(A

′) = 1 < ∞ we would have QA(A) = 0.
Therefore i ≤ j.
(c). Now we show that ⊥ is a stable A-separation relation. Clearly, it suffices to show A-
stability and A-connectedness. The former follows since i(An) is monotone if A1 ⊂ A2 ⊂ . . .
by (b) and hence eventually is constant. For the latter let A ∈ Ai and B1, . . . , Bk ∈ B
closed with A ⊂ B1

⊥
∪ . . .

⊥
∪Bk. Then since ⊥ is an Ai-separation relation there is j ≤ k with

A ⊂ Bj .
(d). Finally, we show that (A,Q,⊥) is a stable clustering base. To this end observe that
fittedness is inherited from the individual clustering bases. Let A ∈ Ai and A′ ∈ Aj with
A ⊂ A′. Then i ≤ j by (b). If i = j then flatness follows from flatness of Ai. If i < j then
by assumption QA ≺ QA′ and because QA(A) = 1 <∞ we have QA′(A) = 0.

Proof of Proposition 29: (a). Let a ≤ P be a base measure on A ∈ Ai. If i =
1 then QA(A ∩ suppP2) ≤ QA(A) = 1 and by A1 ≺ P2 we have QA ≺ P2 and hence
P2(A ∩ suppP2) = P2(A) = 0. Now for all events C ∈ Ac therefore a(C) = 0 ≤ P1(C) and
for all C ⊂ A:

a(C) ≤ P (C) = α1P1(C) + α2P2(C) = α1P1(C).
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Now if i = 2 then by assumption P1 ≺ a and since 0 < P1(A ∩ suppP1) < ∞ we
therefore have a(A ∩ suppP1) ≤ a(suppP1) = 0 and for all events C ⊂ Ω \ suppP1 we have
a(C) ≤ P (C) = α2P2(C) and for all events C ⊂ suppP1:

a(C) ≤ a(suppP1) = 0 ≤ P1(C).

(b). Let a, a′ ≤ P be base measures on A ∈ Ai and A ∈ Aj with A ◦◦A A′. By the
previous statement we then already have a ≤ αiPi and a′ ≤ αjPj . Now, if i = j then by
Pi-subadditivity of Ai there is a base measure b ≤ Pi ≤ P on B ∈ Ai with B ⊃ A ∪A′.

Now if i 6= j consider say i = 2 and j = 1. Since A∩suppP2 ⊃ A∩A′ 6= ∅ by assumption
a can be majorized by a base measure ã ≤ P2 on Ã ∈ A2 with suppP1 ⊂ Ã and ã ≥ a. The
latter also gives A ⊂ Ã and hence ã supports A and suppP1 ⊃ supp a′ and ã ≥ a.
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Appendix A. Appendix: Measure and Integration Theoretic Tools

Throughout this subsection, Ω is a Hausdorff space and B is its Borel σ-algebra. Recall that
a measure µ on B is inner regular iff for all A ∈ B we have

µ(A) = sup
{
µ(K) | K ⊂ A is compact

}
.

A Radon space is a topological space such that all finite measures are inner regular. Cohn
(2013, Theorem 8.6.14) gives several examples of such spaces such as a) Polish spaces,
i.e. separable spaces whose topology can be described by a complete metric, b) open and
closed subsets of Polish spaces, and c) Banach spaces equipped with their weak topology. In
particular all separable Banach spaces equipped with their norm topology are Polish spaces
and infinite dimensional spaces equipped with the weak topology are not Polish spaces
but still they are Radon spaces. Furthermore Hausdorff measures, which are considered in
Section 4.3, are inner regular (Federer, 1969, Cor. 2.10.23). For any inner regular measure
µ we define the support by

suppµ := Ω \
⋃{

O ⊂ Ω | O is open and µ(O) = 0
}
.

By definition the support is closed and hence measurable. The following lemma collects
some more basic facts about the support that are used throughout this paper.

Lemma 51 Let µ be an inner regular measure and A ∈ B. Then we have:

(a) If A ⊥∅ suppµ, then we have µ(A) = 0.

(b) If ∅ 6= A ⊂ suppµ is relatively open in suppµ, then µ(A) > 0.
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(c) If µ′ is another inner regular measures and α, α′ > 0 then

supp(αµ+ α′µ′) = supp(µ) ∪ supp(µ′)

(d) The restriction µ|A of µ to A defined by µ|A(B) = µ(B∩A) is an inner regular measure
and suppµ|A ⊂ A ∩ suppµ.

If µ is not inner regular, (d) also holds provided that Ω is a Radon space and µ(A) <∞.

Proof of Lemma 51: (a). We show that A := Ω \ suppµ is a µ-null set. Let K ⊂ A be
any compact set. By definition A is the union of all open sets O ⊂ Ω with µ(O) = 0. So
those sets form an open cover of A and therefore of K. Since K is compact there exists a
finite sub-cover {O1, . . . , On} of K. By σ-subadditivity of µ we find

µ(K) ≤
n∑
i=1

µ(Oi) = 0,

and since this holds for all such compact K ⊂ A we have by inner regularity

µ(A) = sup
K⊂A

µ(K) = 0.

(b). By assumption there an open O ⊂ Ω with ∅ 6= A = O ∩ suppµ. Now O ∩ suppµ 6= ∅
implies µ(O) > 0. Moreover, we have the partition O = A∪(O\suppµ) and since O\suppµ
is open, we know µ(O \ suppµ) = 0, and hence we conclude that µ(O) = µ(A).
(c). This follows from the fact that for all open O ⊂ Ω we have

(αµ+ α′µ′)(O) = αµ(O) + α′µ′(O) = 0 ⇐⇒ µ(O) = 0 and µ′(O) = 0.

(d). The measure µ|A is inner regular since for B ∈ B we have

µ′(B) = sup
{
µ(K ′) | K ′ ⊂ B ∩A is compact

}
≤ sup

{
µ′(K ′) | K ′ ⊂ B is compact

}
≤ µ′(B).

Now observe that X \A ∩ suppµ ⊂ X \ (A∩ suppµ) = (X \A)∪ (X \ suppµ). For the open
set O := X \A ∩ suppµ we thus find

µ|A(O) ≤ µ|A(X \A) + µ|A(X \ suppµ) ≤ µ(X \ suppµ) = 0.

Lemma 52 Let Q,Q′ be σ-finite measures.

(a) If Q and Q′ have densities h, h′ with respect to some measure µ then

Q ≤ Q′ ⇐⇒ h ≤ h′ µ-a.s.
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(b) If Q ≤ Q′ then Q is absolutely continuous with respect to Q′, i.e. Q has a density
function h with respect to Q′, dQ = h dQ′ such that:

h(x) =

{
∈ [0, 1] if x ∈ suppQ′

0 else

Proof of Lemma 52: (a). "‘⇐"’ a direct calculation gives

Q(B) =

∫
B
h dµ ≤

∫
B
h′ dµ = Q′(B).

and monotonicity of the integral.
For "‘⇒"’ assume µ({x : h(x) > h′(x)}) > 0, then∫

h>h′
hdµ = Q({h > h′}) ≤ Q′({h > h′}) =

∫
h>h′

h′dµ <

∫
h>h′

hdµ,

where the last inequality holds since we assume µ({x : h(x) > h′(x)} > 0 and again the
monotonicity of the integral. Through this contradiction implies the statement.
(b). Q ≤ Q′ means every Q′-null set is a Q-null set. Furthermore since Q′ is σ-finite
Q is σ-finite as well. So we can use Radon-Nikodym theorem and there is a h ≥ 0 s.t.
dQ = h dQ′. Since the complement of suppQ′ is a Q′-null set, we can assume h(x) = 0 on
this complement.

We have to show that h ≤ 1 a.s. Let

En := {h ≥ 1 + 1
n} and E := {h > 1}.

Then En ↑ E and we have

Q′(En) ≥ Q(En) =

∫
En

h dQ′ ≥ (1 + 1
n) ·Q′(En),

which implies Q′(En) = 0 for all n. Therefore Q′(E) = limnQ
′(En) = 0.

Lemma 53 (a) Let Qn ↑ P , A := suppP and B :=
⋃
n suppQn. Then B ⊂ A and

P (B \A) = 0.

(b) Assume Q is a finite measure and Q1 ≤ Q2 ≤ . . . ≤ Q and let the densities hn := dQn
dQ .

Then h1 ≤ h2 ≤ . . . ≤ 1 Q-a.s. Furthermore, the following are equivalent:

(i) Qn ↑ Q
(ii) hn ↑ 1 Q-a.s.
(iii) hn ↑ 1 in L1.

Proof of Lemma 53:

(a) Since Qn ≤ P we have suppQn ⊂ A and therefore B ⊂ A. Because of (A \ B) ∩
suppQn = ∅ and the convergence we have for all n

P (A \B) = lim
n→∞

Qn(A \B) = 0.
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(b) By the previous lemma we have h1 ≤ h2 ≤ · ≤ 1 Q-a.s.

(i) ⇒ (ii): Since (hn)n is monotone Q-a.s. it converges Q-a.s. to a limit h ≤ 1. Let

En := {h ≤ 1− 1
n} and E := {h < 1}.

Then En ↑ E and we have by the monotone convergence theorem:

Qm(En) =

∫
En

hm dQ −−−−→
m→∞

∫
En

h dQ ≤ (1− 1
n)Q(En)

But since Qm(En) ↑m Q(En) this means that Q(En) = 0 for all n and therefore
Q(E) = limnQ(En) = 0.

(ii) ⇒ (iii): This follows from monotone convergence, because 1 ∈ L1(Q).

(iii) ⇒ (i): For all B ∈ B:

Q(B)−Qn(B) =

∫
B
|1− hn| dQ ≤

∫
|1− hn| dQ→ 0

because of hn → 1 in L1.

References

S. Ben-David. Computational Feasibility of Clustering under Clusterability Assumptions.
ArXiv e-prints, January 2015.

J. E. Chacón. A population background for nonparametric density-based clustering. ArXiv
e-prints, August 2014. URL http://arxiv.org/abs/1408.1381.

D. L. Cohn. Measure Theory. Birkhäuser, 2nd ed. edition, 2013.

W. Day and F. McMorris. Axiomatic Consensus Theory in Group Choice and Biomathe-
matics. Society for Industrial and Applied Mathematics, 2003.

D. Defays. An efficient algorithm for a complete link method. The Computer Journal, 20
(4):364–366, 1977.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39(1):1–38, 1977.

W.E. Donath and A.J. Hoffman. Lower bounds for the partitioning of graphs. IBM Journal
of Research and Development, 17(5):420–425, Sept 1973.

M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In International Conference on Knowledge
Discovery and Data Mining, pages 226–231. AAAI Press, 1996.

K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley, 1993.

2000

http://arxiv.org/abs/1408.1381


Towards an Axiomatic Approach to Hierarchical Clustering of Measures

H. Federer. Geometric Measure Theory. Springer, 1969.

G. Gan, C. Ma, and J. Wu. Data clustering. Theory, algorithms, and applications. SIAM,
2007.

John A. Hartigan. Clustering Algorithms. Wiley, 1975.

M. F. Janowitz and R. Wille. On the classification of monotone-equivariant cluster methods.
In Cox, Hansen, and Julesz, editors, Partitioning Data Sets: DIMACS Workshop 1993,
pages 117–142. AMS, 1995.

N. Jardine and R. Sibson. Mathematical Taxonomy. Wiley, 1971.

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, 1990.

J. M. Kleinberg. An impossibility theorem for clustering. In Becker, Thrun, and Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, pages 463–470.
MIT Press, 2003.

J. Kogan. Introduction to Clustering Large and High-Dimensional Data. Cambridge Uni-
versity Press, 2007.

J. MacQueen. Some methods for classification and analysis of multivariate observations.
In Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics,
pages 281–297. University of California Press, 1967.
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Abstract

We study the problem of predicting online the labeling of a graph. We consider a novel
setting for this problem in which, in addition to observing vertices and labels on the graph,
we also observe a sequence of just vertices on a second graph. A latent labeling of the
second graph selects one of K labelings to be active on the first graph. We propose a
polynomial time algorithm for online prediction in this setting and derive a mistake bound
for the algorithm. The bound is controlled by the geometric cut of the observed and latent
labelings, as well as the resistance diameters of the graphs. When specialized to multitask
prediction and online switching problems the bound gives new and sharper results under
certain conditions.

Keywords: online learning over graphs, kernel methods, matrix winnow, switching

1. Introduction

We consider the problem of learning online a set of K binary labelings of a graph. In a simple
scenario this set of labelings corresponds to a switching sequence of labelings. Initially we
focus on this setting before introducing our more general model. Consider the following
game for predicting the labeling of a graph: Nature presents a graph; nature queries a
vertex i1; the learner predicts ŷ1 ∈ {−1, 1} as the label of the vertex; nature presents a
label y1; nature queries a vertex i2; the learner predicts ŷ2; and so forth. The learner’s goal
is to minimize the total number of mistakes M = |{t : ŷt 6= yt}|. If nature is adversarial,
the learner will always mispredict, but if nature is regular or simple, there is hope that a
learner may make only a few mispredictions. Thus, a central goal of online learning is to
design algorithms whose total mispredictions can be bounded relative to the complexity of
nature’s labeling.

To predict a single labeling of a graph, one may employ a kernel perceptron algorithm
based on the graph Laplacian (Herbster and Pontil, 2006). This method achieves a bound
of M ≤ O(Rφ), where φ is the cut (the number of edges joining disagreeing labels) and R
is the (resistance) diameter of the graph. Thus φ measures the complexity of the labeling
and R is a structural parameter of the graph independent of the labeling. Such a bound
is particularly appealing when the parameters are mildly dependent or independent of the
number of vertices in the graph (see Herbster and Pontil, 2006, for a discussion).

c©2015 Mark Herbster, Stephen Pasteris and Massimiliano Pontil.
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In the switching setting, we now consider a sequence colored by K graph labelings with
S ≥ K switches. We illustrate a switching sequence in Figure 1. In this color illustration

t=1 t=5 t=7 t=10 t=14 t=16

k=1k=3k=2 k=3k=2k=1

Figure 1: A switching sequence over 20 trials with K=3 graph labelings and S=5 switches.

there are S = 5 switches between K = 3 graph labelings. At each trial, a vertex of the
graph is labeled according to one of the K binary functions. There are at most S trials at
which the binary function currently in use is changed. In the specific example, the labeling
1 is used in trials 1–4 and 16–20, labeling 2 is used in trials 5–6 and 10–13, and labeling 3
is used in trials 7–9 and 14–15.

We will give an algorithm that achieves

M ≤ Õ
((

S +R
K∑
k=1

φk

)
K log(n)

)
, (1)

where φk is the cut of the k-th binary labeling, n is the number of vertices in the graph, and
the Õ(x) notation absorbs a polylogarithmic factor in x. Note that the term R

∑K
k=1 φk is

the cost of learning the K binary labelings, given the information of which labeling is active
on each trial. Since this information is not available to the learner, we pay a multiplicative
term K log(n) and an additive term for the number of switches S. The particularly salient
feature of this bound is that we pay the cost R

∑K
k=1 φk of learning all the binary labelings

only once. This, and the fact that S ≥ K, implies that the algorithm is maintaining an
implicit memory of past graph labelings learned.

In the more general setting, the learner is given two graphs: an observed n-vertex graph
G and a p-vertex latent graph H. Hidden from the learner is a set {ω1, . . . ,ωK} of K binary
labelings of G. On each trial one of these labelings is active, the learner receives a pair of
vertices, i ∈ G and j ∈ H, and the learner’s aim is to predict the currently active binary
label of vertex i. It is the unknown K-ary label of j that determines the active labeling of
G and hence the current label of i. After making its prediction the learner receives only the
current label of i. The learner never receives the label of j. Note that if the learner did in
fact receive the label of j, the learning problem would separate into K independent graph
labeling tasks. Thus the graph H is called latent because the vertex labels of this graph are
never observed, although it controls which of the K labelings of G is active at each given
trial.

We propose a polynomial time algorithm for predicting the labelings of the observed
graph and we derive a mistake bound for this algorithm. The bound involves two additive
terms, which measure the complexity of the K binary labelings, and the complexity of the
latent labeling, respectively; as well as a multiplicative term of the order of K log(K(n+p)).
Returning to the switching example, the latent graph can be thought of as a “line” graph,
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where the sequence of vertices corresponds to the sequence of trials (although as we shall
see in Section 6, for technical reasons we will need instead a binary support tree). The
latent K-labeling function will then have a cut equal to S, the number of switches; and the
bound (1) will be obtained as a special case of the general result described in this paper.

The paper is organized in the following manner. In Section 2, we comment about related
work. In Section 3, we introduce the learning problem. In Section 4, we discuss the proposed
learning algorithm. Section 5 presents our main result and details its proof. In Section 6,
we illustrate our result in two specific examples and make final remarks.

2. Related Work

The problem of learning a labeling of a graph is a natural one in the online learning setting
(Herbster et al., 2005; Herbster and Pontil, 2006), as well as a foundational technique
for a variety of semi-supervised learning methods (Blum and Chawla, 2001; Kondor and
Lafferty, 2002; Zhu et al., 2003). In the online setting, fast algorithms have been developed
that operate on trees and path graphs (Herbster et al., 2008, 2009; Cesa-Bianchi et al.,
2009, 2010; Vitale et al., 2011).

Our main application is to learning a switching sequence of graph labelings. Switching
has been studied extensively in the online learning literature. The results divide largely
into two directions: switching in the “experts” model (Herbster and Warmuth, 1998; Vovk,
1999; Bousquet and Warmuth, 2003; Gyorfi et al., 2005; Koolen and Rooij, 2008; Hazan
and Seshadhri, 2009; Adamskiy et al., 2012; Cesa-Bianchi et al., 2012); and switching in
online linear prediction model, see e.g. (Herbster and Warmuth, 2001; Kivinen et al., 2004;
Cesa-Bianchi and Gentile, 2006). As we may view learning a graph labeling as learning a
linear classifier based on a Laplacian kernel, our algorithm is directly comparable to these
previous results. The implicit assumption of those switching techniques is that they learn a
sequence of linear classifiers w1, w2, . . . and that this sequence is slowly changing over time,
i.e, they are interested in predicting well when a drifting cost O(

∑
t ‖wt − wt+1‖) is small.

Our assumption is different: we consider that there exists a small set of K distinct classifiers,
and we switch repeatedly between classifiers within this set. This setting is analogous to
the setting proposed in an open problem by Freund (2000). Freund’s challenge was to give
an efficient algorithm in the expert advice model for the problem of switching repeatedly
between a small set of experts within a larger set of experts. The problem was solved
by Bousquet and Warmuth (2003) (see also Adamskiy et al., 2012). Those results, however,
do not directly transfer to the graph labeling setting as the number of needed experts is
2n for an n-vertex graph, and computing the marginal probabilities with a natural prior
(i.e., an Ising distribution) on a graph even without switching is a well-known #P-complete
problem (Goldberg and Jerrum, 2007).

An example of predicting in our more general setting applies to online multitask learning
and is inspired by Cavallanti et al. (2010, Corollary 3). We adapt their model to our graph
labeling set-up. Further related work includes (Dekel et al., 2007), which considered learning
multiple tasks related through a joint loss function; and (Avishek et al., 2011), which
generalized the usual setting to include negatively correlated tasks as well as positively
correlated tasks. Rather than learning a group of interelated linear classifiers it is also
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natural to consider multi-task learning with expert advice. Two prominent results include
those of Abernethy et al. (2007) and Adamskiy et al. (2012).

Our main technical debt is to the following four papers. Firstly, the mistake bound
analysis of matrix winnow (Warmuth, 2007), which strongly informs the proof of our main
result. Secondly, our analysis of using matrix winnow on graphs is inspired by the graph
Laplacian construction in (Gentile et al., 2013). Thirdly, our first two techniques require
a modification of the Laplacian to ensure strict positive definiteness, and here we used the
simple construction from (Herbster and Pontil, 2006). Finally we use the binary support
tree construction (Herbster et al., 2008) to model the trial sequence in the switching setting.

3. Problem

In this section, we present the problem under study. We begin by introducing some graph
terminology.

We are given two undirected graphs, an n-vertex graph G and a p-vertex graph H. We
let V(G) and V(H) be the set of vertices in G and H, respectively, and let LG and LH be the
corresponding graph Laplacians. For every positive integer d, we define Nd = {1, . . . , d},
the set of integers from 1 and up to including d. Unless confusion arises, for simplicity we
identify vertices by their indices. Indices i, i′, it ∈ Nn will always be associated with vertices
in G, and indices j, j′, jt ∈ Np will be associated with vertices in H.

A labeling of a graph is a function which maps vertices on the graph to a set of labels.
We define the cut induced by a labeling of a graph as the number of edges whose end vertices
have different labels. Note that this definition is independent of the number of labels used.
We will use the notation cutG(u) to denote the cut associated with the labeling u of graph
G. In particular if u is a binary labelling with label set {−1, 1} then cutG(u) = 1

4uTLGu.

In the paper we refer to G as the observed graph since during the learning process we will
observe both a vertex of G and a corresponding label, whereas we refer to H as the latent
graph because we will only observe a vertex of H but never observe the corresponding label.
As we will see, the latent graph provides side information which can guide the prediction
tasks on the observed graph. The goal is to predict well the binary labels associated to
vertices in G using sequential information of the form (it, jt, yt) ∈ V(G) × V(H) × {−1, 1}
for t = 1, 2, . . . , T ; the true label yt is determined by using one of the K binary classifiers,
and which of these is active at each trial is determined by a K-class classifier which acts on
the latent graph H. Specifically, we let ω1, . . .ωK be the binary classifiers (labelings) on
graph G. Each ωk is a function from V(G) to {−1, 1}. The latent labeling controls which
of the K labelings of G is currently active and it is given by a function µ : V(H)→ NK . In
the paper, when confusion does not arise, we simply regard the functions ωk as vectors in
{−1, 1}n and µ as a vector in {1, . . . ,K}p.

We consider the following online learning game between nature and learner. The learner
knows the graphs G and H from the outset but does not initially know the labelings
ω1, . . . ,ωK , and as we already noted never observes the latent labeling µ. On trial t
nature presents the learner with vertices (it, jt) ∈ Nn × Np, the learner predicts a value
ŷt ∈ {−1, 1} and then the true label yt is revealed to the learner. This label is computed
by nature as yt = ωµjt ,it , that is the it-th component of the binary vector ωµjt . We define
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Algorithm 1

Input: An n-vertex graph G and p-vertex graph H.

Parameters: K, θ̂, η.

Initialization: W 0 ← I
K(n+p) , where I is the (n+ p)×(n+ p) identity matrix.

For t = 1, . . . , T

• Get pair of vertices it, jt ∈ V(G)× V(H).

• Define the matrix Xt := 1
2xtx

T
t , with xt given by Equation (4).

• Predict

ŷt =

{
1 if Tr (W t−1Xt) ≥ K+1

2Kθ̂
,

−1 otherwise.

• Receive label yt ∈ {−1, 1} and if ŷt 6= yt update

W t ← exp (log (W t−1) + η(yt − ŷt)Xt) . (2)

the set of mistakes as M := {t : ŷt 6= yt} and the number of mistakes M := |M|. The aim
of the learner is for M to be small.

Before presenting the learning algorithm we require some more notation. Given a matrix
A we define A+, AT and Tr (A) to be its pseudoinverse, transpose and trace respectively.
We let Sd be the set of d×d symmetric matrices and let Sd+ and Sd++ be the subset of positive
semidefinite and strictly positive definite matrices. Recall that the set of symmetric matrices
Sd+ has the following partial ordering: for every A,B ∈ Sd+ we say that A � B if and only
if B − A ∈ Sd+. Every real valued function f induces a spectral function f : Sd → Sd

which is obtained by applying f to the eigenvalues of A. Specifically, if {λi,ui}di=1 is an
eigensystem of A, that is, u1, . . . ,ud are orthonormal vectors and λi are real numbers
such that A =

∑d
i=1 λiuiu

T
i , then we define f(A) =

∑d
i=1 f(λi)uiu

T
i . Examples of spectral

functions which we will use are exp(t), log(t) and t log t. Note that the last two functions are
well defined only on Sd++ and the last function can be extended to Sd+ as a limiting process.
Finally, for vectors α ∈ Rn and β ∈ Rp we define [α,β] ∈ Rn+p to be the concatenation of
α and β, which we regard as a column vector. Hence [α,β]T

[
ᾱ, β̄

]
= αT ᾱ+ βT β̄.

4. The Algorithm

The learning algorithm we propose fits into the broad category of online matrix learning.
At the core of the algorithm is an implicit spectral regularization, and we use a modification
of matrix winnow (Warmuth, 2007) as our base algorithm.

As input the algorithm is given the graphs G and H. The algorithm then depends on
two input parameters, K > 1 and θ̂. The first parameter is the number labelings of the
observed graph, which then determines the learning rate η. The second parameter θ̂ is a
scaled threshold for the linear classifier. The parameter θ̂ is an upper bound on a measure
of the complexity of the underlying learning problem, which is denoted by θ (cf. (6)).
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We map a pair of vertices on the observed and latent graphs to a rank one positive
semidefinite matrix, and use a linear classifier in the embedded space. Specifically, we map
(it, jt) ∈ V(G)× V(H) to Xt ∈ Sn+p+ given by the equation

Xt :=
1

2
xtx

T
t (3)

where

xt :=

[
1√
ρ(G)

(G
1
2 )it ,

1√
ρ(H)

(H
1
2 )jt

]
, (4)

matrices G ∈ Sn++ and H ∈ Sp++ are prescribed and we defined ρ(G) := maxni=1 Gii and
ρ(H) := maxpj=1 Hjj . The algorithm works for any such embeddings but the mistake bound
presented in Theorem 1 below is obtained by choosing

G = L+
G +RG11T and H = L+

H +RH11T (5)

where 1 denotes the vector (1, . . . , 1)T and RG = maxni=1(L
+
G )ii and RH = maxpj=1(L

+
H)jj

are (essentially) the resistance diameters1 of G and H, respectively.
At each trial we predict by a linear threshold function in the embedded space, namely

we predict positive if Tr (W t−1Xt) >
K+1
2Kθ̂

and negative otherwise, where W t ∈ Sn+p+ is
a parameter matrix which is updated by the algorithm after each trial and initially set to
a positive multiple of the identity matrix. Specifically, W t is updated via Equation (2)
only when a mistake is made. The worst case cost of an update is in the order of (n+ p)3

since this requires computing an eigensystem of an (n + p) × (n + p) matrix. However if
the number of mistakes is much smaller than n + p then the computation per trial can
be substantially reduced because the weight matrix can be decomposed as the sum of a
multiple of the identity matrix plus a low rank matrix (specifically the rank at trial t is
equal to the current number of mistakes plus one). In this paper we are primarily concerned
with the mistake bound and postpone further discussions on large scale implementations of
the algorithm to a future occasion.

5. Main Result

In this section, we present our main result and give a detailed proof.

Theorem 1 Let

θ = 8RG

K∑
k=1

cutG(ωk) + 4RHcutH(µ) + 2

K∑
k=1

(
1

n

n∑
i=1

ωk,i

)2

+ 2

K∑
k=1

1

p

p∑
j=1

I(µj = k) ,

and let c̄ := (5 log(5/3)− 2)−1 ≤ 1.81. The number of mistakes made by Algorithm 1 with

θ ≤ θ̂ and learning rate η := 1
2 log

(
K+3
K+1

)
is upper bounded by

4Kc̄

(
2RG

K∑
k=1

cutG(ωk) +RHcutH(µ) +K

)(
log(K(n+ p)) +

θ̂

θ
− 1

)
.

1. Specifically, maxn
i=1(L+

G )ii is a lower bound on the resistance diameter of G, see (Herbster and Pontil,
2006, Eq. (9)).

2008



Predicting a Switching Sequence of Graph Labelings

To prepare for the proof we introduce some notation. The K-class labeling µ induces
K boolean labelings on H, denoted by µk ∈ {0, 1}p, k ∈ NK , and is defined componentwise
as µk,j = 1 if µj = k and µk,j = 0 otherwise. We also define, for every k ∈ NK ,

Φk := µT
kH

−1µk, and Φ′k := ωT
kG
−1ωk.

For i ∈ Nn, we let ei be the i-th unit basis vector, that is, ei,i′ = 0 if i 6= i′ and ei,i = 1.
We let

zk :=
[√

ρ(G)G−
1
2ωk,

√
ρ(H)H−

1
2µk

]
and define the k-th embedded classifier associated with the k-th labelings as

Zk :=
zkz

T
k

θ̂
,

with θ̂ ≥ θ where

θ :=
K∑
k=1

‖zk‖2 = ρ(G)
K∑
k=1

ωT
kG
−1ωk + ρ(H)

K∑
k=1

µT
kH

−1µk . (6)

Note that the representation of the k-th embedded classifier depends on the k-th labeling
of the observed graph and the k-th “one versus all” labeling of the latent graph.

We have the following proposition.

Proposition 2 For all k ∈ NK and trials t it holds that

(i) Tr
(
ZT
kXt

)
=

(ωk,it + µk,jt)
2

2θ̂

(ii)

K∑
k=1

Tr
(
ZT
kXt

)
=

(K + 1 + 2yt)

2θ̂

(iii) Xt has eigenvalues in [0, 1]

(iv) ‖zk‖2 = ρ(H)Φk + ρ(G)Φ′k

(v) Tr (Zk log (Zk)) < 0.

Proof (i): Note that Tr
(
ZT
kXt

)
=

Tr(zkz
T
k (xtxT

t ))
2θ̂

=
(xT

t zk)
2

2θ̂
. The result then follows since

xTt zk = eT
it
ωk + eT

jt
µk = ωk,it + µk,jt .

(ii): If k 6= µjt then µk,jt = 0 and by part (i) we have

Tr
(
ZT
kXt

)
=

1

2θ̂
(ωk,it + µk,jt)

2 =
1

2θ̂
(ωk,it)

2 =
1

2θ̂
.

Suppose now that k = µjt . By the definition of yt we have yt = ωµjt ,it = ωk,it so since
µk,jt = 1 when k = µjt we have, by part (i) that

Tr
(
ZT
kXt

)
=

1

2θ̂
(ωk,it + µk,jt)

2 =
1

2θ̂
(1 + yt)

2 =
1

2θ̂
(1 + 2yt + y2t ) =

(1 + yt)

θ̂
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as y2t = 1. By summing the above over k we get the result.

(iii): Note that

Xt :=
1

2
xtx

T
t =

‖xt‖2

2

xt
‖xt‖

xTt
‖xt‖

.

Thus Xt is a rank one positive semidefinite matrix and its only nonzero eigenvalue is
‖xt‖2/2. A direct computation then gives that ‖xt‖2 ≤ 2. The result follows.

(iv): ‖zk‖2 = zTk zk = ρ(G)ωT
kG
−1ωk + ρ(H)µT

kH
−1µk = ρ(G)Φ′k + ρ(H)Φk.

(v): Note that Zk is a positive semidefinite rank one matrix. Hence denoting with λ
the non-trivial eigenvalue we have Tr (Zk log (Zk)) = λ log λ. The result then follows if we
show that λ ∈ (0, 1). To see this we write

Zk =
zkz

T
k

θ̂
=
‖zk‖2

θ̂

zk
‖zk‖

zTk
‖zk‖

.

By definition θ =
∑K

k=1 ‖zk‖2 so since θ ≤ θ̂ we have ‖zk‖2

θ̂
≤ 1 as required.

We now define the quantum relative entropy, which plays a central role in the amortized
analysis of the algorithm. We note that this technique was previously employed in online
learning by Tsuda et al. (2005).

Definition 3 The quantum relative entropy of symmetric positive semidefinite square ma-
trices A and B is

∆(A,B) := Tr (A log (A)−A log (B) +B −A) .

We will utilize the following lemmas.

Lemma 4 For t ∈M we have that

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t)) ≥
c

Kθ̂
.

where c := 5 log(5/3)− 2.

Proof When t ∈M we have, for all k ∈ NK , that

∆(Zk,W t−1)−∆(Zk,W t)

= Tr (Zk log (W t)−Zk log (W t−1)) + Tr (W t−1)− Tr (W t)

=η(yt − ŷt) Tr (ZkXt) + Tr (W t−1)− Tr (exp (log (W t−1) + η(yt − ŷt)Xt)) (7)

≥η(yt − ŷt) Tr (ZkXt) + Tr (W t−1)− Tr (exp (log (W t−1)) exp (η(yt − ŷt)Xt)) (8)

=η(yt − ŷt) Tr (ZkXt) + Tr (W t−1(I − exp (η(yt − ŷt)Xt)))

≥η(yt − ŷt) Tr (ZkXt) + (1− eη(yt−ŷt)) Tr (W t−1Xt) (9)
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where Equation (7) comes from the algorithm’s update of W t−1 (see Equation (2)), Equa-
tion (8) comes from Lemma A.8 with A := log (W t−1) and B := η(yt − ŷt)Xt, and Equa-
tion (9) comes by first applying Lemma A.9 with a := η(yt − ŷt) and A := Xt (using
Proposition 2-(iii)), and then applying Lemma A.10 with A := W t−1.
We hence have

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t))

≥η(yt − ŷt)
K∑
k=1

Tr (ZkXt) +K(1− eη(yt−ŷt)) Tr (W t−1Xt)

=η(yt − ŷt)
(K + 1 + 2yt)

2θ̂
+K(1− eη(yt−ŷt)) Tr (W t−1Xt) (10)

where Equation (10) comes from Proposition 2-(ii).

Let ρ be the right hand side of Equation (10). Noting that η := 1
2 log

(
K+3
K+1

)
we have the

following. When yt = 1 and ŷt = −1 then (1−eη(yt−ŷt)) is negative and Tr (W t−1Xt) <
K+1
2Kθ̂

and thus

ρ ≥ η(K + 3)(θ̂)−1 +
K + 1

2
(1− e2η)(θ̂)−1

=
1

2
log

(
K + 3

K + 1

)
(K + 3)(θ̂)−1 +

K + 1

2

(
1− K + 3

K + 1

)
(θ̂)−1

=

(
1

2
log

(
K + 3

K + 1

)
(K + 3)− 1

)
(θ̂)−1

≥ c

Kθ̂
. (11)

Alternately, when yt = −1 and ŷt = 1 then (1 − eη(yt−ŷt)) is positive and Tr (W t−1Xt) ≥
K+1
2Kθ̂

and thus

ρ ≥ −η(K − 1)(θ̂)−1 +
K + 1

2
(1− e−2η)(θ̂)−1

= −1

2
log

(
K + 3

K + 1

)
(K − 1)(θ̂)−1 +

K + 1

2

(
1− K + 1

K + 3

)
(θ̂)−1

=

(
K + 1

K + 3
− 1

2
log

(
K + 3

K + 1

)
(K − 1)

)
(θ̂)−1

≥ c

Kθ̂
. (12)

The constant c in Equations (11) and (12) is derived from the following argument. For
K ≥ 2 the functions

K

(
1

2
log

(
K + 3

K + 1

)
(K + 3)− 1

)
(13)

and

K

(
K + 1

K + 3
− 1

2
log

(
K + 3

K + 1

)
(K − 1)

)
(14)
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are monotonic increasing (see Lemmas A.12 and A.13) so

K

[
1

2
log

(
K + 3

K + 1

)
(K + 3)− 1

]
≥ 2

[
1

2
log

(
2 + 3

2 + 1

)
(2 + 3)− 1

]
= 5 log

(
5

3

)
− 2 = c

and

K

[
K + 1

K + 3
− 1

2
log

(
K + 3

K + 1

)
(K − 1)

]
≥ 2

[
2 + 1

2 + 3
− 1

2
log

(
2 + 3

2 + 1

)
(2− 1)

]
=

6

5
− log

(
5

3

)
> c.

Hence 1
2 log

(
K+3
K+1

)
(K + 3)− 1 ≥ c

K and K+1
K+3 −

1
2 log

(
K+3
K+1

)
(K − 1) ≥ c

K .

Lemma 5 It holds that
K∑
k=1

∆(Zk,W 0) ≥ |M| cKθ̂ .

Proof We have

K∑
k=1

∆(Zk,W 0) ≥
K∑
k=1

(∆(Zk,W 0)−∆(Zk,W T ))

=

K∑
k=1

T∑
t=1

(∆(Zk,W t−1)−∆(Zk,W t))

=
T∑
t=1

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t))

=
∑
t∈M

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t)) +
∑
t/∈M

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t))

≥ |M| c
Kθ̂

(15)

where Equation (15) comes from Lemma 4 and the fact that on a trial t /∈ M we have
W t = W t−1 and hence ∆(Zk,W t−1) = ∆(Zk,W t) for all k ∈ NK .

Lemma 6 It holds that
K∑
k=1

∆(Zk,W 0) ≤ θ
θ̂

log (K(n+ p)) +
(

1− θ
θ̂

)
.

2012



Predicting a Switching Sequence of Graph Labelings

Proof of Lemma 6 Recall that W 0 = I
K(n+p) , where I is the (n + p)× (n + p) identity

matrix. We observe that

K∑
k=1

∆(Zk,W 0) =

K∑
k=1

(Tr (Zk log (Zk))− Tr (Zk log (W 0)) + Tr (W 0)− Tr (Zk))

≤ −
K∑
k=1

Tr (Zk log (W 0)) +
K∑
k=1

Tr (W 0)−
K∑
k=1

Tr (Zk) (16)

= −
K∑
k=1

Tr

(
Zk log

(
I

K(n+ p)

))
+

K∑
k=1

Tr

(
I

K(n+ p)

)
−

K∑
k=1

Tr (Zk)

= log (K(n+ p))
K∑
k=1

Tr (Zk) +
1

K(n+ p)

K∑
k=1

Tr (I)−
K∑
k=1

Tr (Zk)

= log (K(n+ p))

K∑
k=1

Tr (Zk) + 1−
K∑
k=1

Tr (Zk)

= 1 + (log (K(n+ p)− 1))
K∑
k=1

Tr (Zk)

= 1 + (log (K(n+ p)− 1))
K∑
k=1

Tr

(
zkz

T
k

θ̂

)

= 1 + (log (K(n+ p)− 1))
1

θ̂

K∑
k=1

zTk zk

= 1 +

(
log (K(n+ p)− 1)

θ

θ̂

)
(17)

=
θ

θ̂
log (K(n+ p)) +

(
1− θ

θ̂

)

where Equation (16) comes from Proposition 2-(v) and Equation (17) comes from the defi-
nition of θ.

We are now ready to prove our main result.

Proof of Theorem 1 Combining Lemmas 6 and 5 we have

|M| c
Kθ̂
≤

K∑
k=1

∆(Zk,W 0) ≤
θ

θ̂
log (K(n+ p)) +

(
1− θ

θ̂

)
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which gives

|M| ≤ Kθ̂

c

θ

θ̂
log (K(n+ p)) +

Kθ̂

c

(
1− θ

θ̂

)
=
Kθ

c
log (K(n+ p)) +

Kθ

c

θ̂

θ

(
1− θ

θ̂

)
=
Kθ

c

(
log (K(n+ p)) +

(
θ̂

θ
− 1

))
.

Finally we compute θ by choosing the matrices H and G as per Equation (5). A direct
computation gives, for any vector ω ∈ Rn, that

ωTG−1ω = ωT (L+
G +RG11T )−1ω = ωTLGω +

1

RG

(
1

n

n∑
i=1

ωi

)2

and, likewise, for any vector µ ∈ Rp

µTH−1µ = µT (L+
H +RH11T )−1µ = µTLHµ +

1

RH

(
1

p

p∑
j=1

µj

)2

.

For the observed labelings we have ωT
kLGωk = 4cut(ωk). Using this and ρ(G) = 2RG , a

direct computation gives

ρ(G)
K∑
k=1

ωT
kG
−1ωk = 2RG

(
4

K∑
k=1

cut(ωk) +
1

RG

K∑
k=1

( 1

n

n∑
i=1

ωk,i

)2)

≤ 8RG

K∑
k=1

cut(ωk) + 2K.

For the latent labeling we have
∑K

k=1µ
T
kLHµk = 2cut(µ). Using this and ρ(H) = 2RH, we

obtain

ρ(H)

K∑
k=1

µT
kH

−1µk = 2RH

(
2cut(µ) +

1

RH

K∑
k=1

( 1

n

n∑
i=1

µk,i

)2)
≤ 4RHcut(µ) + 2K.

We conclude that

θ =
K∑
k=1

‖zk‖2 = ρ(G)
K∑
k=1

ωT
kG
−1ωk + ρ(H)

K∑
k=1

µT
kH

−1µk

≤ 4

(
2RG

K∑
k=1

cut(ωk) +RHcut(µ) +K

)
.

The result now follows by substituting the last inequality in the mistake bound.
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6. Discussion

In this section, we consider two special cases of the problem studied in this paper and make
final remarks. We tailor Theorem 1 to these cases and then compare to similar mistake
bounds available in the literature.

6.1 Uniform Multitask Prediction

In the uniform multitask problem we suppose that we have p tasks corresponding to pre-
dicting the binary labeling of a graph. We assume that the tasks are interrelated so that
only K � p graph labelings are needed. To solve this problem we assume each task is given
a number in {1, . . . , p}. Each task number denotes a unique vertex in the latent graph
which is a p-vertex clique. Applying the bound of Theorem 1 gives

M ≤ O

(( K∑
k=1

cutG(ωk)RG + p

)
K log(K(n+ p))

)
.

This follows immediately from the fact that the clique has resistance diameter O(1p) and

the cut of a K-“coloring” is O(p2).
In (Cavallanti et al., 2010), a broad range of results are given for online multi-task

learning in generic reproducing kernel Hilbert spaces. We apply their Corollary 3 to our
problem with the kernel G−1 := L+

G +RG11T . In their setting there is no parameter K and
instead they learn p distinct graph labelings, and thus obtain

M ≤ O

1

p

( p∑
k=1

cutG(ωk) +

p∑
i<j

(ωi − ωj)TG(ωi − ωj)
)
RG

 .

This is small when each of the p binary labelings are near one another in the norm induced
by the Laplacian. This is distinct from our bound where we pay a fixed price for each of
the p tasks of K log(K(n+ p)). Thus our bound is stronger when K � p and the averaged
squared norm between labelings of the p tasks is larger than K log(K(n+ p)).

6.2 Switching

We now consider the case where we have a switching sequence of graph labelings with S
switches betweenK labelings. We sketch a proof of the bound announced in the introduction
(cf. Equation (1)), namely

M ≤ Õ

((
S +RG

K∑
k=1

cutG(ωk)

)
K log(n)

)
,

where the Õ(x) notation absorbs a polylogarithmic factor in x. Notice that the apparently
natural structure for the proof would be to choose a latent graph which is a “line” with T
vertices, where the linear ordering of the vertices reflects the linear trial sequence. Unfor-
tunately, the resistance diameter of this line graph would then be equal to T which would
make the bound vacuous. We overcome this difficulty by borrowing a trick from (Herbster
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et al., 2008) and we instead use a binary tree with T leaves and thus a resistance diameter
of 2 log2 T . We assume that for each trial we receive a label of a leaf along the natural linear
ordering of the leaves. If φ is the cut along the leaves such a labeling may be extended to
a labeling of the complete binary tree in a way that the cut increases by no more than a
factor of log2 T . This extension works by choosing the label of the parent of each vertex to
be consistent with the label of either of its children. The result follows since the labeling
on each successive “level” of the tree down to the root is now a subsequence of the previous
labeling, and the cut of a subsequence can only decrease. Hence with log2 T levels the cut
increases by no more than a logarithmic factor. A second insight is that we do not actu-
ally need a tree with T leaves, we in fact only need M leaves corresponding to when the
algorithm incurs a mistake, hence,

M ≤ O

((
S(log(M))2 +RG

K∑
k=1

cutG(ωk)

)
K log(K(n+ p))

)

which we upper bound by

M ≤ O

(
log(M)3

(
S +RG

K∑
k=1

cutG(ωk)

)
K log(Kn)

)
.

Then the following technical lemma gives the result (proof in the Appendix).

Lemma 7 Given a function M : R→ R, a constant e > 0 such that M(x) ≤ ex log(M(x))3,
then there exist constants a, b > 0 such that M(x) ≤ ax log(x)3 for all x > b.

We may also apply the technique of Herbster and Warmuth (1998) to the switching
problem. Here, the underlying learning algorithm would be the perceptron with the kernel
G−1 := L+

G + RG11T . As in (Cavallanti et al., 2010) the implicit assumption is that the
underlying switching process is smooth and thus there is no parameter K, just a sequence
of S + 1 graph labelings. The other ingredient needed for a tracking kernel perceptron is
an upper bound φ̂ := maxk∈{1,...,S+1}ω

T
kGωk. The upper bound is then used to define

an additional update to the perceptron, which maintains the hypothesis vector in a ball
of squared norm equal to φ̂. This perceptron update and projection step then lead to the
bound (Herbster and Warmuth, 1998, Theorem 10),

M ≤ O

(( S∑
k=1

√
φ̂(ωk − ωk+1)TG(ωk − ωk+1) + cutG(ωS+1)

)
RG

)
.

Thus we observe with the projection kernel perceptron we pay a cost of√
φ̂(ωk − ωk+1)TG(ωk − ωk+1)RG

for each switch k ∈ {1, . . . , S}. Whereas when K � S the dominant non poly-logarithmic
term we pay per switch is O(K log n).
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6.3 Final Remarks

In this paper we presented a novel setting for online prediction over a graph. Our model is
governed by K binary labelings and a latent K-labeling (defined on a second graph) which
determines which one of the binary labelings is active at each trial.

We proposed an efficient algorithm for online prediction in this setting and derived a
bound on the number of mistakes made by the algorithm. An interesting feature of this
bound is that it mimics the bound one would obtain having a-priori information about
which binary labeling is active at each trial. A shortcoming of the bound is that it requires
knowledge of the number of binary labelings K and the threshold θ. In practice these
parameters are not known in advance and techniques based on the “doubling trick” could
be employed to tune the parameters.

Finally, we note that the problem considered in this paper could also be applied to the
batch learning setting and our bound may be converted to a batch bound using techniques
from (Cesa-Bianchi et al., 2004). In the batch setting a natural algorithm is given by empir-
ical error minimization (Vapnik, 1998) over a hypothesis space of binary classifiers defined
on the graph. This space is obtained by a certain function composition involving the binary
labelings and the latent labeling. We conjecture that the problem of performing empirical
error minimization over such a hypothesis space is NP-hard. Therefore in future work our
algorithm could be employed to obtain an efficient sub-optimal solution to empirical error
minimization in this challenging setting.
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Appendix A. Appendix

In this appendix, we state some auxiliary results which are used in the main body of the
paper.

The first result is the famous Golden-Thompson Inequality, whose proof can be found,
for example, in (Bhatia, 1997).

Lemma A.8 For any symmetric matrices A and B we have that

Tr (exp (A+B)) ≤ Tr (exp (A) exp (B)) .

The next two results are taken from (Tsuda et al., 2005).

Lemma A.9 If A ∈ Sd+ with eigenvalues in [0, 1] and a ∈ R, then

(1− ea)A � I − exp (aA) .

Lemma A.10 If A ∈ Sd+ and B,C are symmetric matrices such that B � C, then

Tr (AB) ≤ Tr (AC) .
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Next we show that the functions (13) and (14) are monotonic increasing. We will use the
following lemma.

Lemma A.11 For every x > 0 it holds that 2x
2+x < log(1 + x) < x√

x+1
.

Proof To prove the right inequality, we let

f(x) =
x√
x+ 1

− log(x+ 1).

Since f(x) = 0 as x → 0, the result follows if we show that f ′(x) > 0 for x > 0. We have
that

f ′(x) =
x− 2

√
x+ 1 + 2

2(x+ 1)3/2
.

With a change of variable x→ z2 − 1, we have

x− 2
√
x+ 1 + 2

2(x+ 1)3/2
=

(1− z)2

2z3
,

which is positive for z ∈ (1,∞] and hence x ∈ (0,∞).
The proof of the left inequality follows a similar pattern.

Lemma A.12 The following function

f(k) = k

(
1

2
(k + 3) log

(
k + 3

k + 1

)
− 1

)
is increasing for k ≥ 2.

Proof Differentiating, we have

f ′(k) =

(
2k2 + 5k + 3

)
log
(
k+3
k+1

)
− 4k − 2

2(k + 1)
.

We will check to see if the numerator of the above expression is positive. Using the left
inequality in Lemma A.11 we have that

(2k2 + 5k + 3) log

(
k + 3

k + 1

)
− 4k − 2 ≥ 2(2k2 + 5k + 3)

2 + k
− 4k − 2 =

2

2 + k
> 0.

Lemma A.13 The following function

g(k) = k

(
k + 1

k + 3
− 1

2
(k − 1) log

(
k + 3

k + 1

))
is increasing for k ≥ 2.
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Proof Differentiating, we have

g′(k) =
2
(
2k3 + 9k2 + 6k + 3

)
− (k + 3)2

(
2k2 + k − 1

)
log
(
k+3
k+1

)
2(k + 1)(k + 3)2

. (18)

We will show that the numerator of the above expression is positive. The right inequality
in Lemma A.11 gives that

log

(
k + 3

k + 1

)
<

2
√

k+3
k+1

k + 3
.

Using this, we lower bound the numerator in the r.h.s. of equation (18) by

2

(
−(k + 3)

√
k + 3

k + 1

(
2k2 + k − 1

)
+ k(k(2k + 9) + 6) + 3

)
.

With a change of variable k → 3−y2
y2−1 , we have

8
(
y6 − 7y3 + 12y2 + 3y4 (y − 2)− 3

)
(y2 − 1)3

.

Note k ∈ [2,∞) implies y ∈ (1,
√

5
3 ]. Since we are checking for positivity we strike the term

8
(y2−1)3 which gives

y6 + 3(y − 2)y4 − 7y3 + 12y2 − 3 .

Factoring the above gives

(−1 + y)3(3 + y(3 + y)2) ,

which is positive for y ∈ (1,
√

5
3 ] .

Proof of Lemma 7. Without loss of generality let e = 1 (else consider the function M ′,
defined by M ′(x) := M(x/e), instead of M (noting that log(ex)3 ∈ O(log(x)3))).

Note first that we have some d such that for all y > d we have that the function y → y
log(y)3

is increasing.

Since exp(x) ∈ ω(x6) we have exp
(
x

1
3

)
∈ ω(x2) so 1

x exp
(
x

1
3

)
∈ ω(x). There hence

exists a c such that for all x > c we have 1
x exp

(
x

1
3

)
> x.

Let b := max{c, log(d)3}. Now suppose we have some x > b. We then prove the in-
equality log(M(x))3 ≤ x. To show this consider the converse, that log(M(x))3 > x.

Then M(x) > exp
(
x

1
3

)
. Since the function y → y/ log(y)3 is increasing for y > d and

exp
(
x

1
3

)
> d, we then have that M(x)/ log(M(x))3 > 1

x exp
(
x

1
3

)
, which is greater than

x since x > c. But this contradicts the fact that M(x) ≤ x log(M(x))3. So we have shown
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that log(M(x))3 ≤ x.

If we have M(x) > 8x log(x)3 then we have 8x log(x)3 < M(x) ≤ x log(M(x))3 so we
must have 2 log(x) < log(M(x)) so we have x2 < M(x). But, by above, log(M(x))3 ≤ x,
and hence M(x) ≤ x log(M(x))3 ≤ x2 which is a contradiction. Hence we have that
M(x) ≤ 8x log(x)3 as required.
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Abstract

This paper describes a new paradigm of machine learning, in which Intelligent Teacher
is involved. During training stage, Intelligent Teacher provides Student with information
that contains, along with classification of each example, additional privileged information
(for example, explanation) of this example. The paper describes two mechanisms that
can be used for significantly accelerating the speed of Student’s learning using privileged
information: (1) correction of Student’s concepts of similarity between examples, and (2)
direct Teacher-Student knowledge transfer.

Keywords: intelligent teacher, privileged information, similarity control, knowledge
transfer, knowledge representation, frames, support vector machines, SVM+, classification,
learning theory, kernel functions, similarity functions, regression

1. Introduction

During the last fifty years, a strong machine learning theory has been developed. This
theory (see Vapnik and Chervonenkis, 1974, Vapnik, 1995, Vapnik, 1998, Chervonenkis,
2013) includes:

• The necessary and sufficient conditions for consistency of learning processes.

• The bounds on the rate of convergence, which, in general, cannot be improved.

• The new inductive principle called Structural Risk Minimization (SRM), which always
converges to the best possible approximation in the given set of functions1.

1. Let a set S of functions f(x, α), α ∈ Λ be given. We introduce a structure S1 ⊂ S2 ⊂ ... ⊂ S on this
set, where Sk is the subset of functions with VC dimension k. Consider training set (x1, y1), . . . , (x`, y`).
In the SRM framework, by choosing an element Sk and a function in this element to minimize the CV
bound for samples of size `, one chooses functions f(x, α`) ∈ Sk such that the sequence {f(x, α`}, `→∞,

c©2015 Vladimir Vapnik and Rauf Izmailov.
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• The effective algorithms, such as Support Vector Machines (SVM), that realize the
consistency property of SRM principle2.

The general learning theory appeared to be completed: it addressed almost all standard
questions of the statistical theory of inference. However, as always, the devil is in the detail:
it is a common belief that human students require far fewer training examples than any
learning machine. Why?

We are trying to answer this question by noting that a human Student has an Intelligent
Teacher3 and that Teacher-Student interactions are based not only on brute force methods
of function estimation. In this paper, we show that Teacher-Student interactions can include
special learning mechanisms that can significantly accelerate the learning process. In order
for a learning machine to use fewer observations, it can use these mechanisms as well.

This paper considers a model of learning with the so-called Intelligent Teacher, who
supplies Student with intelligent (privileged) information during training session. This is
in contrast to the classical model, where Teacher supplies Student only with outcome y for
event x.

Privileged information exists for almost any learning problem and this information can
significantly accelerate the learning process.

2. Learning with Intelligent Teacher: Privileged Information

The existing machine learning paradigm considers a simple scheme: given a set of training
examples, find, in a given set of functions, the one that approximates the unknown decision
rule in the best possible way. In such a paradigm, Teacher does not play an important role.

In human learning, however, the role of Teacher is important: along with examples,
Teacher provides students with explanations, comments, comparisons, metaphors, and so
on. In the paper, we include elements of human learning into classical machine learning
paradigm. We consider a learning paradigm called Learning Using Privileged Information
(LUPI), where, at the training stage, Teacher provides additional information x∗ about
training example x.

The crucial point in this paradigm is that the privileged information is available only
at the training stage (when Teacher interacts with Student) and is not available at the test
stage (when Student operates without supervision of Teacher).

In this paper, we consider two mechanisms of Teacher–Student interactions in the frame-
work of the LUPI paradigm:

1. The mechanism to control Student’s concept of similarity between training exam-
ples.

strongly uniformly converges to the function f(x, α0) that minimizes the error rate on the closure of
∪∞k=1Sk (Vapnik and Chervonenkis, 1974), (Vapnik, 1982), (Devroye et al., 1996), (Vapnik, 1998).

2. Solutions of SVM belong to Reproducing Kernel Hilbert Space (RKHS). Any subset of functions in
RKHS with bounded norm has a finite VC dimension. Therefore, SRM with respect to the value of
norm of functions satisfies the general SRM model of strong uniform convergence. In SVM, the element
of SRM structure is defined by parameter C of SVM algorithm.

3. This is how a Japanese proverb assesses teacher’s influence: “Better than a thousand days of diligent
study is one day with a great teacher.”
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2. The mechanism to transfer knowledge from the space of privileged information
(space of Teacher’s explanations) to the space where decision rule is constructed.

The first mechanism (Vapnik, 2006) was introduced in 2006 using SVM+ method. Here
we reinforce SVM+ by constructing a parametric family of methods SVM∆+; for ∆ =
∞, the method SVM∆+ is equivalent to SVM+. The first experiments with privileged
information using SVM+ method were described in Vapnik and Vashist (2009); later, the
method was applied to a number of other examples (Sharmanska et al., 2013; Ribeiro et al.,
2012; Liang and Cherkassky, 2008).

The second mechanism was introduced recently (Vapnik and Izmailov, 2015b).

2.1 Classical Model of Learning

Formally, the classical paradigm of machine learning is described as follows: given a set of
iid pairs (training data)

(x1, y1), ..., (x`, y`), xi ∈ X, yi ∈ {−1,+1}, (1)

generated according to a fixed but unknown probability measure P (x, y), find, in a given
set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗) that minimizes the
probability of incorrect classifications (incorrect values of y ∈ {−1,+1}). In this model,
each vector xi ∈ X is a description of an example generated by Nature according to an
unknown generator P (x) of random vectors xi, and yi ∈ {−1,+1} is its classification defined
according to a conditional probability P (y|x). The goal of Learning Machine is to find the
function y = f(x, α∗) that guarantees the smallest probability of incorrect classifications.
That is, the goal is to find the function which minimizes the risk functional

R(α) =
1

2

∫
|y − f(x, α)|dP (x, y) (2)

in the given set of indicator functions f(x, α), α ∈ Λ when the probability measure P (x, y) =
P (y|x)P (x) is unknown but training data (1) are given.

2.2 LUPI Paradigm of Learning

The LUPI paradigm describes a more complex model: given a set of iid triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`), xi ∈ X, x∗i ∈ X∗, yi ∈ {−1,+1}, (3)

generated according to a fixed but unknown probability measure P (x, x∗, y), find, in a
given set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗) that guarantees
the smallest probability of incorrect classifications (2).

In the LUPI paradigm, we have exactly the same goal of minimizing (2) as in the classical
paradigm, i.e., to find the best classification function in the admissible set. However, during
the training stage, we have more information, i.e., we have triplets (x, x∗, y) instead of pairs
(x, y) as in the classical paradigm. The additional information x∗ ∈ X∗ belongs to space
X∗, which is, generally speaking, different from X. For any element (xi, yi) of training
example generated by Nature, Intelligent Teacher generates the privileged information x∗i
using some (unknown) conditional probability function P (x∗i |xi).
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In this paper, we first illustrate the work of these mechanisms on SVM algorithms; after
that, we describe their general nature.

Since the additional information is available only for the training set and is not available
for the test set, it is called privileged information and the new machine learning paradigm
is called Learning Using Privileged Information.

Next, we consider three examples of privileged information that could be generated by
Intelligent Teacher.

Example 1. Suppose that our goal is to find a rule that predicts the outcome y of
a surgery in three weeks after it, based on information x available before the surgery. In
order to find the rule in the classical paradigm, we use pairs (xi, yi) from previous patients.

However, for previous patients, there is also additional information x∗ about procedures
and complications during surgery, development of symptoms in one or two weeks after
surgery, and so on. Although this information is not available before surgery, it does exist
in historical data and thus can be used as privileged information in order to construct a
rule that is better than the one obtained without using that information. The issue is how
large an improvement can be achieved.

Example 2. Let our goal be to find a rule y = f(x) to classify biopsy images x into two
categories y: cancer (y = +1) and non-cancer (y = −1). Here images are in a pixel space
X, and the classification rule has to be in the same space. However, the standard diagnostic
procedure also includes a pathologist’s report x∗ that describes his/her impression about
the image in a high-level holistic language X∗ (for example, “aggressive proliferation of cells
of type A among cells of type B” etc.).

The problem is to use the pathologist’s reports x∗ as privileged information (along with
images x) in order to make a better classification rule for images x just in pixel space
X. (Classification by a pathologist is a time-consuming procedure, so fast decisions during
surgery should be made without consulting him or her).

Example 3. Let our goal be to predict the direction of the exchange rate of a currency
at the moment t. In this problem, we have observations about the exchange rates before t,
and we would like to predict if the rate will go up or down at the moment t+ ∆. However,
in the historical market data we also have observations about exchange rates after moment
t. Can this future-in-the-past privileged information be used for construction of a better
prediction rule?

To summarize, privileged information is ubiquitous: it usually exists for almost any
machine learning problem.

Section 4 describes the first mechanism that allows one to take advantage of privileged
information by controlling Student’s concepts of similarity between training examples. Sec-
tion 5 describes examples where LUPI model uses similarity control mechanism. Section
6 is devoted to mechanism of knowledge transfer from space of privileged information X∗

into decision space X.

However, first in the next Section we describe statistical properties of machine learning
that enable the use of privileged information.
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3. Statistical Analysis of the Rate of Convergence

According to the bounds developed in the VC theory (Vapnik and Chervonenkis, 1974),
(Vapnik, 1998), the rate of convergence depends on two factors: how well the classification
rule separates the training data

(x1, y1), ..., (x`, y`), x ∈ Rn, y ∈ {−1,+1}, (4)

and the VC dimension of the set of functions in which the rule is selected.
The theory has two distinct cases:

1. Separable case: there exists a function f(x, α`) in the set of functions f(x, α), α ∈ Λ
with finite VC dimension h that separates the training data (4) without errors:

yif(xi, α`) > 0 ∀i = 1, ..., `.

In this case, for the function f(x, α`) that minimizes (down to zero) the empirical risk
(on training set (4)), the bound

P (yf(x, α`) ≤ 0) < O∗
(
h− ln η

`

)
holds true with probability 1 − η, where P (yf(x, α`) ≤ 0) is the probability of error
for the function f(x, α`) and h is the VC dimension of the admissible set of functions.
Here O∗ denotes order of magnitude up to logarithmic factor.

2. Non-separable case: there is no function in f(x, α), α ∈ Λ finite VC dimension h
that can separate data (4) without errors. Let f(x, α`) be a function that minimizes
the number of errors on (4). Let ν(α`) be its error rate on training data (4). Then,
according to the VC theory, the following bound holds true with probability 1− η:

P (yf(x, α`) ≤ 0) < ν(α`) +O∗

(√
h− ln η

`

)
.

In other words, in the separable case, the rate of convergence has the order of magnitude
1/`; in the non-separable case, the order of magnitude is 1/

√
`. The difference between these

rates4 is huge: the same order of bounds requires 320 training examples versus 100,000
examples. Why do we have such a large gap?

3.1 Key Observation: SVM with Oracle Teacher

Let us try to understand why convergence rates for SVMs differ so much for separable and
non-separable cases. Consider two versions of the SVM method for these cases.

SVM method first maps vectors x of space X into vectors z of space Z and then con-
structs a separating hyperplane in space Z. If training data can be separated with no
error (the so-called separable case), SVM constructs (in space Z that we, for simplicity,

4. The VC theory also gives a more accurate estimate of the rate of convergence; however, the scale of
difference remains essentially the same.

2027



Vapnik and Izmailov

consider as an N -dimensional vector space RN ) a maximum margin separating hyperplane.
Specifically, in the separable case, SVM minimizes the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ 1, ∀i = 1, ..., `;

whereas in the non-separable case, SVM minimizes the functional

T (w) = (w,w) + C
∑̀
i=1

ξi

subject to the constraints

(yi(w, zi) + b) ≥ 1− ξi, ∀i = 1, ..., `,

where ξi ≥ 0 are slack variables. That is, in the separable case, SVM uses ` observations
for estimation of N coordinates of vector w, whereas in the nonseparable case, SVM uses `
observations for estimation of N + ` parameters: N coordinates of vector w and ` values of
slacks ξi. Thus, in the non-separable case, the number N + ` of parameters to be estimated
is always larger than the number ` of observations; it does not matter here that most of
slacks will be equal to zero: SVM still has to estimate all ` of them. Our guess is that the
difference between the corresponding convergence rates is due to the number of parameters
SVM has to estimate.

To confirm this guess, consider the SVM with Oracle Teacher (Oracle SVM). Suppose
that Teacher can supply Student with the values of slacks as privileged information: during
training session, Student is supplied with triplets

(x1, ξ
0
1 , y1), ..., (x`, ξ

0
` , y`),

where ξ0
i , i = 1, ..., ` are the slacks for the Bayesian decision rule. Therefore, in order to

construct the desired rule using these triplets, the SVM has to minimize the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ ri, ∀i = 1, ..., `,

where we have denoted

ri = 1− ξ0
i , ∀i = 1, ..., `.

One can show that the rate of convergence is equal to O∗(1/`) for Oracle SVM. The following
(slightly more general) proposition holds true (Vapnik and Vashist, 2009).
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Proposition 1. Let f(x, α0) be a function from the set of indicator functions f(x, α),
with α ∈ Λ with VC dimension h that minimizes the frequency of errors (on this set)
and let

ξ0
i = max{0, (1− f(xi, α0))}, ∀i = 1, ..., `.

Then the error probability p(α`) for the function f(x, α`) that satisfies the constraints

yif(x, α) ≥ 1− ξ0
i , ∀i = 1, ..., `

is bounded, with probability 1− η, as follows:

p(α`) ≤ P (1− ξ0 < 0) +O∗
(
h− ln η

`

)
.

3.2 From Ideal Oracle to Real Intelligent Teacher

Of course, real Intelligent Teacher cannot supply slacks: Teacher does not know them.
Instead, Intelligent Teacher can do something else, namely:

1. define a space X∗ of (correcting) slack functions (it can be different from the space
X of decision functions);

2. define a set of real-valued slack functions f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗ with VC
dimension h∗, where approximations

ξi = f∗(x, α∗)

of the slack functions5 are selected;

3. generate privileged information for training examples supplying Student, instead
of pairs (4), with triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`). (5)

During training session, the algorithm has to simultaneously estimate two functions using
triplets (5): the decision function f(x, α`) and the slack function f∗(x∗, α∗

` ). In other words,
the method minimizes the functional

T (α∗) =
∑̀
i=1

max{0, f∗(x∗i , α∗)} (6)

subject to the constraints

yif(xi, α) > −f∗(x∗i , α∗), i = 1, ..., `. (7)

Let f(x, α`) and f∗(x∗, α∗
` ) be functions that solve this optimization problem. For these

functions, the following proposition holds true (Vapnik and Vashist, 2009).

5. Note that slacks ξi introduced for the SVM method can be considered as a realization of some function
ξ = ξ(x, β0) from a large set of functions (with infinite VC dimension). Therefore, generally speaking,
the classical SVM approach can be viewed as estimation of two functions: (1) the decision function, and
(2) the slack function, where these functions are selected from two different sets, with finite and infinite
VC dimensions, respectively. Here we consider both sets with finite VC dimensions.
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Proposition 2. The solution f(x, α`) of optimization problem (6), (7) satisfies the
bounds

P (yf(x, α`) < 0) ≤ P (f∗(x∗, α∗
` ) ≥ 0) +O∗

(
h+ h∗ − ln η

`

)
with probability 1 − η, where h and h∗ are the VC dimensions of the set of decision
functions f(x, α), α ∈ Λ, and the set of correcting functions f∗(x∗, α∗), α∗ ∈ Λ∗,
respectively.

According to Proposition 2, in order to estimate the rate of convergence to the best possi-
ble decision rule (in spaceX) one needs to estimate the rate of convergence of P{f∗(x∗, α∗

` ) ≥
0} to P{f∗(x∗, α∗

0) ≥ 0} for the best rule f∗(x∗, α∗
0) in space X∗. Note that both the space

X∗ and the set of functions f∗(x∗, α∗
` ), α

∗ ∈ Λ∗ are suggested by Intelligent Teacher that
tries to choose them in a way that facilitates a fast rate of convergence. The guess is that
a really Intelligent Teacher can indeed do that.

As shown in the VC theory, in standard situations, the uniform convergence has the
order O∗(

√
h∗/`), where h∗ is the VC dimension of the admissible set of correcting functions

f∗(x∗, α∗), α∗ ∈ Λ∗. However, for special privileged space X∗ and corresponding functions
f∗(x∗, α∗), α∗ ∈ Λ∗, the convergence can be faster (as O∗([1/`]δ), δ > 1/2).

A well-selected privileged information space X∗ and Teacher’s explanation P (x∗|x) along
with sets {f(x, α`), α ∈ Λ} and {f∗(x∗, α∗), α∗ ∈ Λ∗} engender a convergence that is
faster than the standard one. The skill of Intelligent Teacher is being able to select of
the proper space X∗, generator P (x∗|x), set of functions f(x, α`), α ∈ Λ, and set of func-
tions f∗(x∗, α∗), α∗ ∈ Λ∗: that is what differentiates good teachers from poor ones.

4. Similarity Control in LUPI Paradigm

4.1 SVM∆+ for Similarity Control in LUPI Paradigm

In this section, we extend SVM method of function estimation to the method called SVM+,
which allows one to solve machine learning problems in the LUPI paradigm (Vapnik, 2006).
The SVMε+ method presented below is a reinforced version of the one described in Vapnik
(2006) and used in Vapnik and Vashist (2009).

Consider the model of learning with Intelligent Teacher: given triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`),

find in the given set of functions the one that minimizes the probability of incorrect classi-
fications in space X.

As in standard SVM, we map vectors xi ∈ X onto the elements zi of the Hilbert space
Z, and map vectors x∗i onto elements z∗i of another Hilbert space Z∗ obtaining triples

(z1, z
∗
1 , y1), ..., (z`, z

∗
` , y`).

Let the inner product in space Z be (zi, zj), and the inner product in space Z∗ be (z∗i , z
∗
j ).

Consider the set of decision functions in the form

f(x) = (w, z) + b,
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where w is an element in Z, and consider the set of correcting functions in the form

ξ∗(x∗, y) = [y((w∗, z∗) + b∗)]+,

where w∗ is an element in Z∗ and [u]+ = max{0, u}.
Our goal is to we minimize the functional

T (w,w∗, b, b∗) =
1

2
[(w,w) + γ(w∗, w∗)] + C

∑̀
i=1

[yi((w
∗, z∗i ) + b∗)]+

subject to the constraints

yi[(w, zi) + b] ≥ 1− [yi((w
∗, z∗i )− b∗)]+.

The structure of this problem mirrors the structure of the primal problem for standard
SVM. However, due to the elements [ui]+ = max{0, ui} that define both the objective
function and the constraints here we faced non-linear optimization problem.

To find the solution of this optimization problem, we approximate this non-linear opti-
mization problem with the following quadratic optimization problem: minimize the func-
tional

T (w,w∗, b, b∗) =
1

2
[(w,w) + γ(w∗, w∗)] + C

∑̀
i=1

[yi((w
∗, z∗i ) + b∗) + ζi] + ∆C

∑̀
i=1

ζi (8)

(here ∆ > 0 is the parameter of approximation6) subject to the constraints

yi((w, zi) + b) ≥ 1− yi((w∗, z∗) + b∗)− ζi, i = 1, ..., `, (9)

the constraints
yi((w

∗, z∗i ) + b∗) + ζi ≥ 0, ∀i = 1, ..., `, (10)

and the constraints
ζi ≥ 0, ∀i = 1, ..., `. (11)

To minimize the functional (8) subject to the constraints (10), (11), we construct the La-
grangian

L(w, b, w∗, b∗, α, β) = (12)

1

2
[(w,w) + γ(w∗, w∗)] + C

∑̀
i=1

[yi((w
∗, z∗i ) + b∗) + (1 + ∆)ζi]−

∑̀
i=1

νiζi −

∑̀
i=1

αi [yi[(w, zi) + b]− 1 + [yi((w
∗, z∗i ) + b∗) + ζi]]−

∑̀
i=1

βi[yi((w
∗, z∗i ) + b∗) + ζi],

where αi ≥ 0, βi ≥ 0, νi ≥ 0, i = 1, ..., ` are Lagrange multipliers.
To find the solution of our quadratic optimization problem, we have to find the saddle

point of the Lagrangian (the minimum with respect to w,w∗, b, b∗ and the maximum with
respect to αi, βi, νi, i = 1, ..., `).

6. In Vapnik (2006), parameter ∆ was set at a sufficiently large value.
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The necessary conditions for minimum of (12) are

∂L(w, b, w∗, b∗, α, β)

∂w
= 0 =⇒ w =

∑̀
i=1

αiyizi (13)

∂L(w, b, w∗, b∗, α, β)

∂w∗ = 0 =⇒ w∗ =
1

γ

∑̀
i=1

yi(αi + βi − C)z∗i (14)

∂L(w, b, w∗, b∗, α, β)

∂b
= 0 =⇒

∑̀
i=1

αiyi = 0 (15)

∂L(w, b, w∗, b∗, α, β)

∂b∗
= 0 =⇒

∑̀
i=1

yi(C − αi − βi) = 0 (16)

∂L(w, b, w∗, b∗, α, β)

∂ζi
= 0 =⇒ αi + βi + νi = (C + ∆C) (17)

Substituting the expressions (13) in (12) and, taking into account (14), (15), (16), and
denoting δi = C − βi, we obtain the functional

L(α, δ) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

(zi, zj)yiyjαiαj −
1

2γ

∑̀
i,j=1

(δi − αi)(δj − αj)(z∗i , z∗j )yiyj .

To find its saddle point, we have to maximize it subject to the constraints7

∑̀
i=1

yiαi = 0 (18)

∑̀
i=1

yiδi = 0 (19)

0 ≤ δi ≤ C, i = 1, ..., ` (20)

0 ≤ αi ≤ δi + ∆C, i = 1, ..., ` (21)

Let vectors α0, δ0 be a solution of this optimization problem. Then, according to (13) and
(14), one can find the approximations to the desired decision function

f(x) = (w0, zi) + b =
∑̀
i=1

α∗
i yi(zi, z) + b

and to the slack function

ξ∗(x∗, y) = yi((w
∗
0, z

∗
i ) + b∗) + ζ =

∑̀
i=1

yi(α
0
i − δ0

i )(z
∗
i , z

∗) + b∗ + ζ.

7. In SVM+, instead of constraints (21), the constraints αi ≥ 0 were used.
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The Karush-Kuhn-Tacker conditions for this problem are
α0
i [yi[(w0, zi) + b+ (w∗

0, z
∗
i ) + b∗] + ζi − 1] = 0

(C − δ0
i )[(w

∗
0, z

∗
i ) + b∗ + ζi] = 0

ν0
i ζi = 0

Using these conditions, one obtains the value of constant b as

b = 1− yk(w0, zk) = 1− yk

[∑̀
i=1

α0
i (zi, zk)

]
,

where (zk, z
∗
k, yk) is a triplet for which α0

k 6= 0, δ0
k 6= C, zi 6= 0.

As in standard SVM, we use the inner product (zi, zj) in space Z in the form of Mer-
cer kernel K(xi, xj) and inner product (z∗i , z

∗
j ) in space Z∗ in the form of Mercer kernel

K∗(x∗i , x
∗
j ). Using these notations, we can rewrite the SVM∆+ method as follows: the

decision rule in X space has the form

f(x) =
∑̀
i=1

yiα
0
iK(xi, x) + b,

where K(·, ·) is the Mercer kernel that defines the inner product for the image space Z of
space X (kernel K∗(·, ·) for the image space Z∗ of space X∗) and α0 is a solution of the
following dual space quadratic optimization problem: maximize the functional

L(α, δ) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

yiyjαiαjK(xi, xj)−
1

2γ

∑̀
i,j=1

yiyj(αi − δi)(αj − δj)K∗(x∗i , x
∗
j )

subject to constraints (18) – (21).
Remark. Note that if δi = αi or ∆ = 0, the solution of our optimization problem

becomes equivalent to the solution of the standard SVM optimization problem, which max-
imizes the functional

L(α, δ) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

yiyjαiαjK(xi, xj)

subject to constraints (18) – (21) where δi = αi.
Therefore, the difference between SVM∆+ and SVM solutions is defined by the last

term in objective function (8). In SVM method, the solution depends only on the values
of pairwise similarities between training vectors defined by the Gram matrix K of elements
K(xi, xj) (which defines similarity between vectors xi and xj). The SVM∆+ solution is
defined by objective function (8) that uses two expressions of similarities between observa-
tions: one (K(xi, xj) for xi and xj) that comes from space X and another one (K∗(x∗i , x

∗
j )

for x∗i and x∗j ) that comes from space of privileged information X∗. That is how Intelligent
Teacher changes the optimal solution by correcting the concepts of similarity.
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The last term in equation (8) defines the instrument for Intelligent Teacher to control
the concept of similarity of Student.

Efficient computational implementation of this SVM+ algorithm for classification and
its extension for regression can be found in Pechyony et al. (2010) and Vapnik and Vashist
(2009), respectively.

4.1.1 Simplified Approach

The described method SVM∆+ requires to minimize the quadratic form L(α, δ) subject to
constraints (18) – (21). For large ` it can be a challenging computational problem. Consider
the following approximation. Let

f∗(x∗, α∗
` ) =

∑̀
i=1

α∗
iK

∗(x∗i , x) + b∗

be be an SVM solution in space X∗ and let

ξ∗i = [1− f∗(x∗, α∗
` )− b∗]+

be the corresponding slacks. Let us use the linear function

ξi = tξ∗i + ζi, ζi ≥ 0

as an approximation of slack function in space X. Now we minimize the functional

(w,w) + C
∑̀
i=1

(tξ∗i + (1 + ∆)ζi), ∆ ≥ 0

subject to the constraints
yi((w, zi) + b) > 1− tξ∗i + ζi,

t > 0, ζi ≥ 0, i = 1, ..., `

(here zi is Mercer mapping of vectors xi in RKHS).
The solution of this quadratic optimization problem defines the function

f(x, α`) =
∑̀
i=1

αiK(xi, x) + b,

where α is solution of the following dual problem: maximize the functional

R(α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyjK(xi, xj)

subject to the constraints ∑̀
i=1

yiαi = 0

∑̀
i=1

αiξ
∗
i ≤ C

∑̀
i=1

ξ∗i

0 ≤ αi ≤ (1 + ∆)C, i = 1, ..., `
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4.2 General Form of Similarity Control in LUPI Paradigm

Consider the following two sets of functions: the set f(x, α), α ∈ Λ defined in space X
and the set f∗(x∗, α∗), α∗ ∈ Λ∗, defined in space X∗. Let a non-negative convex functional
Ω(f) ≥ 0 be defined on the set of functions f(x, α), α ∈ Λ, while a non-negative convex
functional Ω∗(f∗) ≥ 0 be defined on the set of functions f(x∗, α∗), α∗ ∈ Λ∗. Let the sets
of functions θ(f(x, α)), α ∈ Λ, and θ(f(x∗, α∗)), α∗ ∈ Λ∗, which satisfy the corresponding
bounded functionals

Ω(f) ≤ Ck

Ω∗(f∗) ≤ Ck,

have finite VC dimensions hk and hk, respectively. Consider the structures

S1 ⊂ ... ⊂ Sm....

S∗
1 ⊂ ... ⊂ S∗

m...

defined on corresponding sets of functions.

Let iid observations of triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`)

be given. Our goal is to find the function f(x, α`) that minimizes the probability of the test
error.

To solve this problem, we minimize the functional

∑̀
i=1

f∗(x∗i , α)

subject to constraints

yi[f(x, α) + f(x∗, α∗)] > 1

and the constraint

Ω(f) + γΩ(f∗) ≤ Cm

(we assume that our sets of functions are such that solutions exist).

Then, for any fixed sets Sk and S∗
k , the VC bounds hold true, and minimization of these

bounds with respect to both sets Sk and S∗
k of functions and the functions f(x, α`) and

f∗(x(, α∗
` ) in these sets is a realization of universally consistent SRM principle.

The sets of functions defined in previous section by the Reproducing Kernel Hilbert
Space satisfy this model since any subset of functions from RKHS with bounded norm
has finite VC dimension according to the theorem about VC dimension of linear bounded
functions in Hilbert space8.

8. This theorem was proven in mid-1970s (Vapnik and Chervonenkis, 1974) and generalized for Banach
spaces in early 2000s (Gurvits, 2001; Vapnik, 1998).
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5. Transfer of Knowledge Obtained in Privileged Information Space to
Decision Space

In this section, we consider the second important mechanism of Teacher-Student interaction:
using privileged information for knowledge transfer from Teacher to Student9.

Suppose that Intelligent Teacher has some knowledge about the solution of a specific
pattern recognition problem and would like to transfer this knowledge to Student. For
example, Teacher can reliably recognize cancer in biopsy images (in a pixel space X) and
would like to transfer this skill to Student.

Formally, this means that Teacher has some function y = f0(x) that distinguishes cancer
(f0(x) = +1 for cancer and f0(x) = −1 for non-cancer) in the pixel space X. Unfortunately,
Teacher does not know this function explicitly (it only exists as a neural net in Teacher’s
brain), so how can Teacher transfer this construction to Student? Below, we describe a
possible mechanism for solving this problem; we call this mechanism knowledge transfer.

Suppose that Teacher believes in some theoretical model on which the knowledge of
Teacher is based. For cancer model, he or she believes that it is a result of uncontrolled
multiplication of the cancer cells (cells of type B) that replace normal cells (cells of type A).
Looking at a biopsy image, Teacher tries to generate privileged information that reflects his
or her belief in development of such process; Teacher may describe the image as:

Aggressive proliferation of cells of type B into cells of type A.

If there are no signs of cancer activity, Teacher may use the description

Absence of any dynamics in the of standard picture.

In uncertain cases, Teacher may write

There exist small clusters of abnormal cells of unclear origin.

In other words, Teacher has developed a special language that is appropriate for de-
scription x∗i of cancer development based on the model he or she believes in. Using this
language, Teacher supplies Student with privileged information x∗i for the image xi by
generating training triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`). (22)

The first two elements of these triplets are descriptions of an image in two languages: in
language X (vectors xi in pixel space), and in language X∗ (vectors x∗i in the space of
privileged information), developed for Teacher’s understanding of cancer model.

Note that the language of pixel space is universal (it can be used for description of
many different visual objects; for example, in the pixel space, one can distinguish between
male and female faces), while the language used for describing privileged information is very
specific: it reflects just a model of cancer development. This has an important consequence:

9. In machine learning, transfer learning refers to the framework, where experience obtained for solving
one problem is used (with proper modifications) for solving another problem, related to the previous
one; both problems are assumed to be in the same space, with only some parameters being changed.
The knowledge transfer considered here is different: it denotes the transfer of knowledge obtained in one
(privileged) space to another (decision) space.
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the set of admissible functions in space X has to be rich (has a large VC dimension), while
the set of admissible functions in space X∗ may be not rich (has a small VC dimension).

One can consider two related pattern recognition problems using triplets (22):

1. The problem of constructing a rule y = f(x) for classification of biopsy in the pixel
space X using data

(x1, y1), ..., (x`, y`). (23)

2. The problem of constructing a rule y = f∗(x∗) for classification of biopsy in the space
X∗ using data

(x∗1, y1), ..., (x∗` , y`). (24)

Suppose that language X∗ is so good that it allows to create a rule y = f∗` (x∗) that
classifies vectors x∗ corresponding to vectors x with the same level of accuracy as the best
rule y = f`(x) for classifying data in the pixel space10.

In the considered example, the VC dimension of the admissible rules in a special space
X∗ is much smaller than the VC dimension of the admissible rules in the universal space
X and, since the number of examples ` is the same in both cases, the bounds on the error
rate for the rule y = f∗` (x∗) in X∗ will be better11 than those for the rule y = f`(x) in
X. Generally speaking, the knowledge transfer approach can be applied if the classification
rule y = f∗` (x∗) is more accurate than the classification rule y = f`(x) (the empirical error
in privileged space is smaller than the empirical error in the decision space).

The following problem arises: how one can use the knowledge of the rule
y = f∗` (x∗) in space X∗ to improve the accuracy of the desired rule y = f`(x) in space X?

5.1 Knowledge Representation for SVMs

To answer this question, we formalize the concept of representation of the knowledge about
the rule y = f∗` (x∗).

Suppose that we are looking for our rule in Reproducing Kernel Hilbert Space (RKHS)
associated with kernel K∗(x∗i , x

∗). According to Representer Theorem (Kimeldorf and
Wahba, 1971; Schölkopf et al., 2001), such rule has the form

f∗` (x∗) =
∑̀
i=1

γiK
∗(x∗i , x

∗) + b, (25)

where γi, i = 1, ..., ` and b are parameters.

Suppose that, using data (24), we found a good rule (25) with coefficients γi = γ∗i , i =
1, ..., ` and b = b∗. This is now the knowledge about our classification problem. Let us
formalize the description of this knowledge.

Consider three elements of knowledge representation used in Artificial Intelligence (Brach-
man and Levesque, 2004):

10. The rule constructed in space X∗ cannot be better than the best possible rule in space X, since all
information originates in space X.

11. According to VC theory, the guaranteed bound on accuracy of the chosen rule depends only on two
factors: the frequency of errors on training set and the VC dimension of admissible set of functions.
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1. Fundamental elements of knowledge.

2. Frames (fragments) of the knowledge.

3. Structural connections of the frames (fragments) in the knowledge.

We call the fundamental elements of the knowledge a limited number of vectors u∗1...., u
∗
m

from space X∗ that can approximate well the main part of rule (25). It could be the support
vectors or the smallest number of vectors12 ui ∈ X∗:

f∗` (x∗)− b =
∑̀
i=1

γ∗iK
∗(x∗i , x

∗) ≈
m∑
k=1

β∗kK
∗(u∗k, x

∗). (26)

Let us call the functions K∗(u∗k, x
∗), k = 1, ...,m the frames (fragments) of knowledge. Our

knowledge

f∗` (x∗) =

m∑
k=1

β∗kK
∗(u∗k, x

∗) + b

is defined as a linear combination of the frames.

5.1.1 Scheme of Knowledge Transfer Between Spaces

In the described terms, knowledge transfer from X∗ into X requires the following:

1. To find the fundamental elements of knowledge u∗1, ..., u
∗
m in space X∗.

2. To find frames (m functions) K∗(u∗1, x
∗), ...,K∗(u∗m, x

∗) in space X∗.

3. To find the functions φ1(x), ..., φm(x) in space X such that

φk(xi) ≈ K∗(u∗k, x
∗
i ) (27)

holds true for almost all pairs (xi, x
∗
i ) generated by Intelligent Teacher that uses some

(unknown) generator P (x∗, x) = P (x∗|x)P (x).

Note that the capacity of the set of functions from which φk(x) are to be chosen can be
smaller than that of the capacity of the set of functions from which the classification function
y = f`(x) is chosen (function φk(x) approximates just one fragment of knowledge, not the
entire knowledge, as function y = f∗` (x∗), which is a linear combination (26) of frames).
Also, as we will see in the next section, estimates of all the functions φ1(x), ..., φm(x) are
done using different pairs as training sets of the same size `. That is, we hope that transfer
of m fragments of knowledge from space X∗ into space X can be done with higher accuracy
than estimating the function y = f`(x) from data (23).

After finding images of frames in space X, the knowledge about the rule obtained in
space X∗ can be approximated in space X as

f`(x) ≈
m∑
k=1

δkφk(x) + b∗,

where coefficients δk = γk (taken from (25)) if approximations (27) are accurate. Otherwise,
coefficients δk can be estimated from the training data, as shown in Section 6.3.

12. In machine learning, it is called the reduced number of support vectors (Burges, 1996).

2038



Learning Using privileged Information

5.1.2 Finding the Smallest Number of Fundamental Elements of Knowledge

Let our functions φ belong to RKHS associated with the kernel K∗(x∗i , x
∗), and let our

knowledge be defined by an SVM method in space X∗ with support vector coefficients αi.
In order to find the smallest number of fundamental elements of knowledge, we have to
minimize (over vectors u∗1, ..., u

∗
m and values β1, ..., βm) the functional

R(u∗1, ..., u
∗
m;β1, ..., βm) = (28)∣∣∣∣∣

∣∣∣∣∣∑̀
i=1

yiαiK
∗(x∗i , x

∗)−
m∑
s=1

βsK
∗(u∗s, x

∗)

∣∣∣∣∣
∣∣∣∣∣
2

RKHS

=

∑̀
i,j=1

yiyjαiαjK
∗(x∗i , x

∗
j )− 2

∑̀
i=1

m∑
s=1

yiαiβsK
∗(x∗i , u

∗
s) +

m∑
s,t=1

βsβtK
∗(u∗s, u

∗
t ).

The last equality was derived from the following property of the inner product for functions
in RKHS (Kimeldorf and Wahba, 1971; Schölkopf et al., 2001):(

K∗(x∗i , x
∗),K(x∗j , x

∗)
)
RKHS

= K∗(x∗i , x
∗
j ).

5.1.3 Smallest Number of Fundamental Elements of Knowledge for
Homogeneous Quadratic Kernel

For general kernel functions K∗(·, ·), minimization of (28) is a difficult computational prob-
lem. However, for the special homogeneous quadratic kernel

K∗(x∗i , x
∗
j ) = (x∗i , x

∗
j )

2,

this problem has a simple exact solution (Burges, 1996). For this kernel, we have

R =
∑̀
i,j=1

yiyjαiαj(x
∗
i , x

∗
j )

2 − 2
∑̀
i=1

m∑
s=1

yiαiβs(x
∗
i , u

∗
s)

2 +
m∑

s,t=1

βsβt(u
∗
s, u

∗
t )

2. (29)

Let us look for solution in set of orthonormal vectors u∗i , ..., u
∗
m for which we can rewrite

(29) as follows

R̂ =
∑̀
i,j=1

yiyjαiαj(x
∗
i , x

∗
j )

2 − 2
∑̀
i=1

m∑
s=1

yiαiβs(x
∗
i , u

∗
s)

2 +
m∑
s=1

β2
s (u∗s, u

∗
s)

2. (30)

Taking derivative of R̂ with respect to u∗k, we obtain that the solutions u∗k, k = 1, ...,m
have to satisfy the equations

dR̂

duk
= −2βk

∑̀
i=1

yiαix
∗
ix

∗T
i u∗k + 2β2

ku
∗
k = 0.

Introducing notation

S =
∑̀
i=1

yiαix
∗
ix

∗T
i , (31)
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we conclude that the solutions satisfy the equation

Su∗k = βku
∗
k, k = 1, ...,m.

Let us chose from the set u∗1, ..., u
∗
m of eigenvectors of the matrix S the vectors corresponding

to the largest in absolute values eigenvalues β1, . . . , βm, which are coefficients of expansion
of the classification rule on the frames (uk, x

∗)2, k = 1, . . . ,m.
Using (31), one can rewrite the functional (30) in the form

R̂ = 1TS21−
m∑
k=1

β2
k, (32)

where we have denoted by S2 the matrix obtained from S with its elements si,j replaced
with s2

i,j , and by 1 we have denoted the (`× 1)-dimensional matrix of ones.
Therefore, in order to find the fundamental elements of knowledge, one has to solve the

eigenvalue problem for (n×n)-dimensional matrix S and then select an appropriate number
of eigenvectors corresponding to eigenvalues with largest absolute values. One chooses such
m eigenvectors for which functional (32) is small. The number m does not exceed n (the
dimensionality of matrix S).

5.1.4 Finding Images of Frames in Space X

Let us call the conditional expectation function

φk(x) =

∫
K∗(u∗k, x

∗)p(x∗|x) dx∗

the image of frame K∗(u∗k, x
∗) in space X. To find m image functions φk(x) of the frames

K(u∗k, x
∗), k = 1, ...,m in space X, we solve the following m regression estimation problems:

find the regression function φk(x) in X, k = 1, . . . ,m, using data

(x1,K
∗(u∗k, x

∗
1)), ..., (x`,K

∗(u∗k, x
∗
` )), k = 1, . . . ,m, (33)

where pairs (xi, x
∗
i ) belong to elements of training triplets (22).

Therefore, using fundamental elements of knowledge u∗1, ...u
∗
m in space X∗, the corre-

sponding frames K∗(u∗1, x
∗), ...,K∗(u∗m, x

∗) in space X∗, and the training data (33), one
constructs the transformation of the space X into m-dimensional feature space13

φ(x) = (φ1(x), ...φm(x)),

where k-th coordinate of vector function φ(x) is defined as φk = φk(x).

5.1.5 Algorithms for Knowledge Transfer

1. Suppose that our regression functions can be estimated accurately: for a sufficiently
small ε > 0 the inequalities

|φk(xi)−K∗(u∗k, x
∗
i )| < ε, ∀k = 1, ...,m and ∀i = 1, ..., `

13. One can choose any subset from (m+ n)-dimensional space (φ1(x), ...φm(x)), x1, ..., xn).
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hold true for almost all pairs (xi, x
∗
i ) generated according to P (x∗|y). Then the approxima-

tion of our knowledge in space X is

f(x) =
m∑
k=1

β∗kφk(x) + b∗,

where β∗k, k = 1, ...,m are eigenvalues corresponding to eigenvectors u∗1, ..., u
∗
m.

2. If, however, ε is not too small, one can use privileged information to employ both
mechanisms of intelligent learning: controlling similarity between training examples and
knowledge transfer.

In order to describe this method, we denote by vector φi the m-dimensional vector with
coordinates

φi = (φ1(xi), ..., φm(xi))
T .

Consider the following problem of intelligent learning: given training triplets

(φ1, x
∗
1, y1), ..., (φ`, x

∗
` , y`),

find the decision rule

f(φ(x)) =
∑̀
i=1

yiα̂iK̂(φi, φ) + b. (34)

Using SVM∆+ algorithm described in Section 4, we can find the coefficients of expansion
α̂i in (34). They are defined by the maximum (over α̂ and δ) of the functional

R(α̂, δ) =
∑̀
i=1

α̂i −
1

2

∑̀
i,j=1

yiyjα̂iα̂jK̂(φi, φj)−
1

2γ

∑̀
i,j=1

yiyj(α̂i − δi)(α̂j − δj)K∗(x∗i , x
∗
j )

subject to the equality constraints

∑̀
i=1

α̂iyi = 0,
∑̀
i=1

α̂i =
∑̀
i=1

δi

and the inequality constraints

0 ≤ α̂i ≤ δi + ∆C, 0 ≤ δi ≤ C, i = 1, . . . , `

(see Section 4).

5.2 General Form of Knowledge Transfer

One can use many different ideas to represent knowledge obtained in space X∗. The main
factors of these representations are concepts of fundamental elements of the knowledge.
They could be, for example, just the support vectors (if the number of support vectors is
not too big) or coordinates (features) xt∗, t = 1, . . . , d of d-dimensional privileged space
X∗ (if the number of these features not too big). In the latter case, the small number of
fundamental elements of knowledge would be composed of features x∗k in the privileged
space that can be then approximated by regression functions φk(x). In general, using
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privileged information it is possible to try transfer set of useful features for rule in X∗ space
into their image in X space.

The space where depiction rule is constructed can contain both features of space X
and new features defined by the regression functions. The example of knowledge transfer
described further in subsection 5.5 is based on this approach.

In general, the idea is to specify small amount important feature in privileged space and
then try to transfer them (say, using non-linear regression technique) in decision space to
construct useful (additional) features in decision space.

Note that in SVM framework, with the quadratic kernel the minimal number m of
fundamental elements (features) does not exceed the dimensionality of space X∗ (often, m
is much smaller than dimensionality. This was demonstrated in multiple experiments with
digit recognition by Burges 1996): in order to generate the same level of accuracy of the
solution, it was sufficient to use m elements, where the value of m was at least 20 times
smaller than the corresponding number of support vectors.

5.3 Kernels Involved in Intelligent Learning

In this paper, among many possible Mercer kernels (positive semi-definite functions), we
consider the following three types:

1. Radial Basis Function (RBF) kernel:

KRBFσ(x, y) = exp{−σ2(x− y)2}.

2. INK-spline kernel. Kernel for spline of order zero with infinite number of knots is
defined as

KINK0(x, y) =
d∏

k=1

(min(xk, yk) + δ)

(δ is a free parameter) and kernel of spline of order one with infinite number of knots
is defined in the non-negative domain and has the form

KINK1(x, y) =

d∏
k=1

(
δ + xkyk +

|xk − yk|min{xk, yk}
2

+
(min{xk, yk})3

3

)
where xk ≥ 0 and yk ≥ 0 are k coordinates of d-dimensional vector x.

3. Homogeneous quadratic kernel

KPol2 = (x, y)2,

where (x, y) is the inner product of vectors x and y.

The RBF kernel has a free parameter σ > 0; two other kernels have no free parameters.
That was achieved by fixing a parameter in more general sets of functions: the degree of
polynomial was chosen to be 2, and the order of INK-splines was chosen to be 1.

It is easy to introduce kernels for any degree of polynomials and any order of INK-
splines. Experiments show excellent properties of these three types of kernels for solving
many machine learning problems. These kernels also can be recommended for methods that
use both mechanisms of Teacher-Student interaction.

2042



Learning Using privileged Information

5.4 Knowledge Transfer for Statistical Inference Problems

The idea of privileged information and knowledge transfer can be also extended to Statistical
Inference problems considered in Vapnik and Izmailov (2015a) and Vapnik et al. (2015).

For simplicity, consider the problem of estimation14 of conditional probability P (y|x)
from iid data

(x1, y1), ..., (x`, y`), x ∈ X, y ∈ {0, 1}, (35)

where vector x ∈ X is generated by a fixed but unknown distribution function P (x) and
binary value y ∈ {0, 1} is generated by an unknown conditional probability function P (y =
1|x) (similarly, P (y = 0|x) = 1−P (y = 1|x)); this is the function we would like to estimate.

As shown in Vapnik and Izmailov (2015a) and Vapnik et al. (2015), this requires solving
the Fredholm integral equation∫

θ(x− t)P (y = 1|t)dP (t) = P (y = 1, x),

where probability functions P (y = 1, x) and P (x) are unknown but iid data (35) generated
according to joint distribution P (y, x) are given. Vapnik and Izmailov (2015a) and Vapnik
et al. (2015) describe methods for solving this problem, producing the solution

P`(y = 1|x) = P (y = 1|x; (x1, y1), ..., (x`, y`)).

In this section, we generalize classical Statistical Inference problem of conditional probability
estimation to a new model of Statistical Inference with Privileged Information. In this
model, along with information defined in the space X, one has the information defined in
the space X∗.

Consider privileged space X∗ along with space X . Suppose that any vector xi ∈ X has
its image x∗i ∈ X∗. Consider iid triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`) (36)

that are generated according to a fixed but unknown distribution function
P (x, x∗, y). Suppose that, for any triplet (xi, x

∗
i , yi), there exist conditional probabilities

P (yi|x∗i ) and P (yi|xi). Also, suppose that the conditional probability function P (y|x∗),
defined in the privileged space X∗, is better than the conditional probability function P (y|x),
defined in space X; here by “better” we mean that the conditional entropy for P (y|x∗) is
smaller than conditional entropy for P (y|x):

−
∫

[log2 P (y = 1|x∗) + log2 P (y = 0|x∗)] dP (x∗) <

−
∫

[log2 P (y = 1|x) + log2 P (y = 0|x)] dP (x).

Our goal is to use triplets (36) for estimating the conditional probability
P (y|x; (x1, x

∗
1, y1), ..., (x`, x

∗
` , y`)) in space X better than it can be done with training pairs

(35). That is, our goal is to find such a function

P`(y = 1|x) = P (y = 1|x; (x1, x
∗
1, y1), ..., (x`, x

∗
` , y))

14. The same method can be applied to all the problems described in Vapnik and Izmailov (2015a) and Vapnik
et al. (2015).
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that the following inequality holds:

−
∫

[log2 P (y = 1|x; (xi, x
∗
i , yi)

`
1) + log2 P (y = 0|x; (xi, x

∗
i , yi)

`
1)]dP (x) <

−
∫

[log2 P (y = 1|x; (xi, yi)
`
1) + log2 P (y = 0|x; (xi, yi)

`
1, )]dP (x).

Consider the following solution for this problem:

1. Using kernel K(u∗, v∗), the training pairs (x∗i , yi) extracted from given training triplets
(36) and the methods of solving our integral equation described in Vapnik and Izmailov
(2015a) and Vapnik et al. (2015), find the solution of the problem in space of privileged
information X∗:

P (y = 1|x∗; (x∗i , yi)
`
1) =

∑̀
i=1

α̂iK(x∗i , x
∗) + b.

2. Find the fundamental elements of knowledge: vectors u∗1, ..., u
∗
m.

3. Using some universal kernels (say RBF or INK-Spline), find in the space X the ap-
proximations φk(x), k = 1, . . . ,m of the frames (u∗k, x

∗)2, k = 1, ...,m.

4. Find the solution of the conditional probability estimation problem
P (y|φ; (φi, yi)

`
1) in the space of pairs (φ, y), where φ = (φ1(x), . . . , φm(x)).

5.5 Example of Knowledge Transfer Using Privileged Information

In this subsection, we describe an example where privileged information was used in the
knowledge transfer framework. In this example, using set of of pre-processed video snapshots
of a terrain, one has to separate pictures with specific targets on it (class +1) from pictures
where there are no such targets (class −1).

The original videos were made using aerial cameras of different resolutions: a low reso-
lution camera with wide view (capable to cover large areas quickly) and a high resolution
camera with narrow view (covering smaller areas and thus unsuitable for fast coverage of
terrain). The goal was to make judgments about presence or absence of targets using wide
view camera that could quickly span large surface areas. The narrow view camera could be
used during training phase for zooming in the areas where target presence was suspected,
but it was not to be used during actual operation of the monitoring system, i.e., during test
phase. Thus, the wide view camera with low resolution corresponds to standard information
(space X), whereas the narrow view camera with high resolution corresponds to privileged
information (space X∗).

The features for both standard and privileged information spaces were computed sepa-
rately, using different specialized video processing algorithms, yielding 15 features for deci-
sion space X and 116 features for space of privileged information X∗.

The classification decision rules for presence or absence of targets were constructed using
respectively,

• SVM with RBF kernel trained on 15 features of space X;
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Figure 1: Comparison of SVM and knowledge transfer error rates: video snapshots example.

• SVM with RBF kernel trained on 116 features of space X∗;

• SVM with RBF kernel trained 15 original features of space X augmented with 116
knowledge transfer features, each constructed using regressions on the 15-dimensional
decision space X (as outlined in subsection 5.2).

Parameters for SVMs with RBF kernel were selected using standard grid search with 6-fold
cross validation.

Figure 1 illustrates performance (defined as an overage of error rate) of three algorithms
each trained of 50 randomly selected subsets of sizes 64, 96, 128, 160, and 192: SVM in
space X, SVM in space X∗, and SVM in space with transferred knowledge.

Figure 1 shows that, the larger is the training size, the better is the effect of knowledge
transfer. For the largest training size considered in this experiment, the knowledge transfer
was capable to recover almost 70% of the error rate gap between the error rates of SVM using
only standard features and SVM using privileged features. In this Figure, one also can see
that, even in the best case, the error rate using SVM in the space of privileged information
is half of that of SVM in the space of transferred knowledge. This gap, probably, can be
reduced even further by better selection of the fundamental concepts of knowledge in the
space of privileged information and / or by constructing better regression.

5.6 General Remarks about Knowledge Transfer

5.6.1 What Knowledge Does Teacher Transfer?

In previous sections, we linked the knowledge of Intelligent Teacher about the problem of
interest in X space to his knowledge about this problem in X∗ space15.

15. This two space learning paradigm with knowledge transfer for one space to another space reminds Plato’s
idea about space of Ideas and space of Things with transfer of knowledge from one space to another.
This idea in different forms was explored by many philosophers.
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One can give the following general mathematical justification for our model of knowledge
transfer. Teacher knows that the goal of Student is to construct a good rule in space X
with one of the functions from the set f(x, α), x ∈ X, α ∈ Λ with capacity V CX . Teacher
also knows that there exists a rule of the same quality in space X∗ – a rule that belongs to
the set f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗ and that has a much smaller capacity V CX∗ . This
knowledge can be defined by the ratio of the capacities

κ =
V CX
V CX∗

.

The larger is κ, the more knowledge Teacher can transfer to Student; also the larger is κ,
the fewer examples will Student need to select a good classification rule.

5.6.2 Learning from Multiple Intelligent Teachers

Model of learning with Intelligent Teachers can be generalized for the situation when Student
has m > 1 Intelligent Teachers that produce m training triplets

(xk1 , x
k∗
k1 , y1), ..., (xk` , x

k∗
k`
, y`),

where xkt , k = 1, ...,m, t = 1, ..., ` are elements x of different training data generated by
the same generator P (x) and xk∗kt , k = 1, ...,m, t = 1, ..., ` are elements of the privileged

information generated by kth Intelligent Teacher that uses generator Pk(x
k∗|x). In this

situation, the method of knowledge transfer described above can be expanded in space X
to include the knowledge delivered by all m Teachers.

5.6.3 Quadratic Kernel

In the method of knowledge transfer, the special role belongs to the quadratic kernel
(x1, x2)2. Formally, only two kernels are amenable for simple methods of finding the smallest
number of fundamental elements of knowledge: the linear kernel (x1, x2) and the quadratic
kernel (x1, x2)2.

Indeed, if linear kernel is used, one constructs the separating hyperplane in the space of
privileged information X∗

y = (w∗, x∗) + b∗,

where vector of coefficients w∗ also belongs to the space X∗, so there is only one fundamental
element of knowledge, i.e., the vector w∗. In this situation, the problem of constructing the
regression function y = φ(x) from data

(x1, (w
∗, x∗1)), ..., (x`, (w

∗, x∗` )) (37)

has, generally speaking, the same level of complexity as the standard problem of pattern
recognition in space X using data (35). Therefore, one should not expect performance
improvement when transferring the knowledge using (37).

With quadratic kernel, one obtains fewer than d fundamental elements of knowledge in
d-dimensional space X∗ (experiments show that the number of fundamental elements can
be significantly smaller than d). According to the methods described above, one defines the
knowledge in space X∗ as a linear combination of m frames. That is, one splits the desired
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function into m fragments (a linear combination of which defines the decision rule) and then
estimates each of m functions φk(x) separately, using training sets of size `. The idea is
that, in order to estimate a fragment of the knowledge well, one can use a set of functions
with a smaller capacity than is needed to estimate the entire function y = f(x), x ∈ X.
Here privileged information can improve accuracy of estimation of the desired function.

To our knowledge, there exists only one nonlinear kernel (the quadratic kernel) that
leads to an exact solution of the problem of finding the fundamental elements of knowledge.
For all other nonlinear kernels, the problems of finding the minimal number of fundamental
elements require difficult (heuristic) computational procedures.

6. Conclusions

In this paper, we tried to understand mechanisms of learning that go beyond brute force
methods of function estimation. In order to accomplish this, we used the concept of In-
telligent Teacher who generates privileged information during training session. We also
described two mechanisms that can be used to accelerate the learning process:

1. The mechanism to control Student’s concept of similarity between training examples.

2. The mechanism to transfer knowledge from the space of privileged information to the
desired decision rule.

It is quite possible that there exist more mechanisms in Teacher-Student interactions and
thus it is important to find them.

The idea of privileged information can be generalized to any statistical inference problem
creating non-symmetric (two spaces) approach in statistics.

Teacher-Student interaction constitutes one of the key factors of intelligent behavior and
it can be viewed as a basic element in understanding intelligence (for both machines and
humans).
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Alexey Chervonenkis’s Bibliography: Introductory Comments
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Computer Learning Research Centre, Department of Computer Science
Royal Holloway, University of London

This introduction to Alexey Chervonenkis’s bibliography, which is published next in this
issue, mainly consists of historical notes. The bibliography is doubtless incomplete, and it
is just a first step in compiling more comprehensive ones. En route we also give some basic
information about Alexey as a researcher and person; for further details, see, e.g., the short
biography (Editors, 2015) in the Chervonenkis Festschrift. In this introduction, the numbers
in square brackets refer to Chervonenkis’s bibliography, and the author/year citations refer
to the list of references at the end of this introduction.

Alexey Chervonenkis was born in Moscow in 1938. In 1955 he became a student at
the MIPT, Moscow Institute of Physics and Technology (Faculty 1, Radio Engineering,
nowadays Radio Engineering and Cybernetics). As part of his course of studies at the
MIPT, he was attached to a laboratory at the ICS (the Institute of Control Sciences, called
the Institute of Automation and Remote Control at the time), an institution in a huge
system known as the Soviet Academy of Sciences.

In 1961 Alexey graduated from the MIPT and started his work for the ICS, where he
stayed for the rest of his life. His first project at the ICS was very applied and devoted
to designing a light organ for an exhibition in London (Russian Trade Fair, Earls Court,
1961). After completion of this project, Alexey was given an opportunity to concentrate
on problems of cybernetics, namely pattern recognition; at that time cybernetics became
extremely popular in the USSR, perhaps as a reaction to its earlier perception as a pseudo-
science invented by the capitalist society and a “whore of imperialism” (Novoseltsev, 2015,
p. 43).

In 1962 the joint work of Vapnik and Chervonenkis began. At that time they were
members of the laboratory headed by Aleksandr Lerner, a leading cyberneticist. Lerner’s
laboratory was allowed to work on pattern recognition as a counterbalance to another lab-
oratory, led by Mark Aizerman, which was the first to start work on this topic at the ICS:
it was part of the strategy of Vadim Trapeznikov, the Institute director, to foster rivalry
between different laboratories. Vapnik, a newly admitted PhD student, and Chervonenkis,
hired a few months earlier as an engineer, were supposed to work as a pair. In hindsight,
it appears that it was a perfect match; as Novoseltsev (2015) writes in his reminiscences, it
is said that Vapnik was often inventing new things while Chervonenkis was proving them.

1. Foundations of Statistical Learning

Now Alexey Chervonenkis and Vladimir Vapnik are known, first of all, as the creators of
the statistical theory of machine learning. However, their earliest joint work was devoted
to non-statistical approaches to learning, as Alexey describes in [66]; it appears that this
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work is not reflected at all in their joint publications. It was only in March 1963 that they
brought statistics into their research.

When they started their joint work in Autumn 1962, they were interested in a problem
that had more to do with the power of the teacher than the power of the learner. Suppose
there are N decision rules, and one of them, say F , is used for classifying each point in a
sequence x1, . . . , xl. The question is how small l can be so that there is only one decision
rule (namely, F itself) compatible with the observed sequence x1, . . . , xl and the classes
F (x1), . . . , F (xl). By choosing such a sequence the teacher can teach the learner to classify
new points perfectly.

This problem is somewhat reminiscent of the problem of finding the counterfeit coin in a
pile of N coins all but one of which are genuine. In the latter problem, we can take l of the
order logN , and the hope was that this remains true for the former. However, this is not
the case. Consider N decision rules F1, . . . , FN and N − 1 points x1, . . . , xN−1 such that

Fi(x) :=

{
1 if x = xi

0 if not,
i = 1, . . . , N − 1,

and FN (x) = 0 for all x. If FN is used for classifying the points, seeing a new labelled point
will allow the learner to discard at most one decision rule, and in order to discard all apart
from the true one, we need N − 1 observations. Therefore, the required value of l can be as
large as N−1, which the two young researchers perceived as a failure of their non-statistical
setting.

The statistical approach was first successfully used in [2] and [3]; the latter was prepared
for a conference of young specialists in Spring 1963 (Editors, 2015). It was applicable to
algorithms with full memory, introduced by Vapnik, Lyudmila Dronfort, and Chervonenkis
in 1963, i.e., to algorithms that make no errors on the training set (the term “with full
memory” was coined by Lyudmila). Suppose we are given two parameters, κ (the desired
upper bound on the risk of the chosen decision rule) and η (the desired upper bound on
the probability that the risk will in fact exceed κ). Let the true decision rule be Fi and
the decision rule Fj chosen after l observations have a risk exceeding κ. The probability
of getting all l labels right for Fj is at most (1 − κ)l, and the probability that at least one
decision rule with risk exceeding κ will get all l labels right is at most N(1− κ)l. To ensure
that N(1− κ)l ≤ η it suffices to require

l ≥ log η − logN

log(1− κ)
. (1)

(This is Theorem 1 in [2].) As − log(1− κ) ≥ κ, the simpler inequality

l ≥ logN − log η

κ

is also sufficient (and approximately equivalent to (1) for a small κ).
In might seem strange nowadays, but the presence of N in (1) was a real breakthrough.

In [66] Alexey vividly describes discussions about the necessity of such an adjustment. The
common reasoning among their colleagues (in related contexts) was that, since the proba-
bility of getting all labels right is at most (1 − κ)l for any Fj , this is also true for the Fj
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actually chosen by the algorithm, and so the fact that Fj is chosen a posteriori is irrelevant.
Their colleagues, some of them very distinguished, could not be impressed by results like
(1) believing that better results could be proved for a continuum of decision rules.

Alexey remembered a heated discussion with Yakov I. Khurgin (Lerner’s friend and
Professor of the Russian State University of Oil and Gas at the time) in Summer 1965.
Khurgin’s argument was, as usual, that a probabilistic statement that is true for all decision
rules must be true for the one that was chosen by the algorithm. Alexey’s counterargument
was “The probability to meet randomly a syphilitic in Moscow is, say, 10−5. But if you went
to a venereal clinic, it is significantly greater, even though it is also in Moscow. Looking for
the best decision rule is like a trip to a venereal clinic.” In the context of infinitely many
decision rules (e.g., linear), Khurgin argued that Vapnik and Chervonenkis were playing on
the non-compactness of the Hilbert ball and, crucially, that they were demanding uniform
convergence. Alexey agreed. This was the first time that the words “uniform convergence”
were mentioned in this context. Later they became part of the titles of the fundamental
papers [10,11,28,57].

Paper [2] applied the general performance guarantee (1) to the problem of classification
of binary vectors of dimension n using perceptrons. For simplicity, in this introduction we
will only discuss binary decision rules, in which case a decision rule can be identified with a
set in the input space, and perceptrons then become half-spaces. The authors bounded above
the number of ways in which an n − 1-dimensional hyperplane can split the n-dimensional
Boolean cube by 2n(n+1)/(n+ 1)!, which gives the sample size

l ≥ log η − n(n+ 1) + log((n+ 1)!)

log(1− κ)
≈ log η − n2

log(1− κ)

for the Boolean input space with n attributes, where log now stands for binary logarithm.
In [5] Vapnik and Chervonenkis introduced a new learning framework, which they called

“extremal imitation teaching”. Suppose we observe a sequence of random pairs (X(k), Y (k)),
k = 1, 2, . . ., generated independently from the same distribution P and also observe, at
each step k, the value g(X(k), Y (k)) of a “reward function” g. For each k, we are allowed to
replace Y (k) by our chosen value Y ∗(k), in which case we observe g(X(k), Y ∗(k)) instead
of g(X(k), Y (k)). This can be a model of, e.g., a chemical process at a chemical plant:
X(k) describes the kth batch of raw materials, Y (k) describes the parameters of the process
(such as temperature, pressure, or reagents) chosen by an experienced plant operator, and
g(X(k), Y (k)) is the quality of the choice (assumed observable and determined by X(k) and
Y (k) alone). It is supposed that g belongs to a known finite set Q of functions, say of size
N , and that it takes values in a known interval [a, b]. The learning problem involves three
positive parameters, ε, κ, and η, and is to find l = l(N, ε, κ, η) (as small as possible) such
that after l steps we can come up with a strategy of choosing Y ∗ as a function of X that
satisfies, with a probability at least 1− η over the training set,

P (g(X,Y ) > g(X,Y ∗) + ε) < κ,

where P is the probability over the random choice of (X,Y ). Vapnik and Chervonenkis’s
proposed strategy is, in their terminology, sequential: first it observes (X(k), Y (k)), k =
1, 2, . . ., and then it “trains”, replacing Y (k) by its own Y ∗(k) from some k on. The strategy
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requires

l = O

(
logN

εκ
(log logN − log ε− log η)

)
,

where the O notation refers to N →∞, η → 0, κ→ 0, and ε→ 0; a and b are regarded as
fixed constants. Namely, the strategy first makes

l1 = O

(
logN − log η

εκ

)
(2)

passive observations, and then it starts d = O((logN)/ε) active training periods of length

l0 = O

(
log logN − log ε− log η

κ

)
each; in each training period it tests a new strategy of choosing Y ∗ until it fails, in some
sense (if it never fails during the l0 steps, training is complete and the learning procedure is
stopped).

They derive a very interesting corollary in the spirit of prediction with expert advice
(Cesa-Bianchi and Lugosi, 2006). Suppose, in the language of our example, we can observe
n experienced plant operators instead of just one. Observing each of the operators for l1
steps (see (2)) and then training as before, our resulting strategy is likely to be competitive
with the best operator at each step: with a probability at least 1− η over the training set,

P

(
max

i=1,...,n
g(X,Y i) > g(X,Y ∗) + ε

)
< κ,

where Y i is the ith operator’s output (being competitive at each step is unusual from the
point of view of prediction with expert advice, where the goal is to be competitive in the
sense of cumulative rewards or losses). Now passively observing takes nl1 steps, whereas
active training still takes l2 := dl0 steps.

In [6] Vapnik and Chervonenkis extended the methods of [5] to limited infinite classes
of reward functions, and in [7] they applied them to the problem of playing an unknown
zero-sum game.

Until Summer 1966 Vapnik and Chervonenkis could prove performance guarantees only
for a finite number of decision rules. At the level of mathematical rigour that they set
for themselves, they could not accept their colleagues’ argument (see above) although they
shared their optimism about, say, the learnability of the linear decision rules in Euclidean
space. The first breakthrough came in July 1966 [66], when they extended their learnability
results to classes of decision rules with a slow growth function (see below), and the second
in September 1966, when they characterized the classes with slow growth functions in terms
of what is now known as VC dimension. The main definitions (very well known by now)
that we will need to talk about these developments are:

• Given a class S of decision rules on (i.e., subsets of) an input spaceX, let ∆S(x1, . . . , xl)
be the number of different restrictions of those decision rules to the finite set {x1, . . . , xl}
in X; Vapnik and Chervonenkis called ∆(x1, . . . , xl) the index of S with respect to
x1, . . . , xl.
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• They called the maximum

mS(l) := max
x1,...,xl

∆S(x1, . . . , xl)

(as function of l) the growth function of S.

• The value
VC(S) := max{l | mS(l) = 2l}

is now known as the VC-dimension of the class S. See Dudley (2015b, Section 4.6) for
a discussion of the origin of the expression “VC-dimension”; the earliest mention of it
seems to be in the article by Blumer et al. (1986) (in the form “Vapnik–Chervonenkis
dimension”, which was abbreviated to “VC dimension” in the journal version), whereas
the abbreviation VC was coined by Dudley himself (Bottou, 2013).

The key fact about the growth function is now known as Sauer’s lemma: if VC(S) = ∞,
mS(l) = 2l for all l; otherwise,

mS(l) ≤
VC(S)∑
j=0

(
l

j

)
= O(lVC(S)) (3)

for all l (the binomial coefficient is defined to be 0 when j > l). Therefore, we have the
Vapnik–Chervonenkis dichotomy : the rate of growth of mS is either exponential or at most
polynomial. Sauer’s lemma is more precise and also gives the degree of the polynomial
(VC(S), which Sauer referred to as the density of S).

The main papers in which the 1966 breakthrough was announced and described were
published in 1968 and 1971:

• In the first 1968 paper [9] Vapnik and Chervonenkis showed that the class S is learn-
able, in the now standard sense, if the rate of growth of mS is polynomial (or slower).

• The second 1968 paper [10] is the famous announcement of their main results ob-
tained during this period; it was “the true beginnings of Statistical Learning Theory”
according to Bottou (2013).

• In [11] (1971), they gave detailed proofs.

• In their other 1971 paper [12] they explained in detail how the results of [11] can be
applied to machine learning.

The results of [9] were obtained in July 1966, as Alexey describes in [66]. At that time Vapnik
and Chervonenkis started to suspect that there are only two kinds of growth functions:
exponential and (at most) polynomial. Vapnik said that even if this were true, it would be
very difficult to prove it, but Chervonenkis presented a proof two months later (Novoseltsev,
2015).

A footnote in [9] says that after the paper had been submitted, the authors discovered
that either mS(l) = 2l for all l or mS(l) ≤ lVC(S)+1 for all l. (This should have said “for all
l > 1”.) The date of submission is given as 20 September 1966.
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Announcement [10] was published in Doklady AN SSSR (usually translated as Proceed-
ings of the USSR Academy of Sciences). This journal only publishes papers presented by
full and corresponding members of the Academy. The announcement stated the Vapnik–
Chervonenkis dichotomy, in the form of the footnote in [9], as Theorem 1. It was first
submitted for publication in 1966. The authors wanted Academician Andrei N. Kolmogorov
to present their note, but submitted it directly to the journal, which forwarded it to Kol-
mogorov, who gave it to Boris V. Gnedenko to read. The authors did not hear from the
journal for a long time, and a chain of enquiries led them to Gnedenko. Gnedenko explained
to the young authors that what they were doing was not statistics; statistics was what Kol-
mogorov, Gnedenko himself, and their students were doing, and there was no chance that
Gnedenko or his students would work in this new area. In the end the note was presented
by the ICS Director Trapeznikov and submitted for publication on the same date, 6 Oc-
tober 1967; as compared to the original 1966 submission the authors only changed 2 lines
in their manuscript: “Presented by Academician A. N. Kolmogorov” became “Presented by
Academician V. A. Trapeznikov”. The topic to which the note was assigned in the journal
changed from “Probability theory” to “Cybernetics”.

In [11], the authors still have Sauer’s lemma with VC(S)+1 instead of VC(S) (for the first
time they will give the optimal exponent VC(S) in (3) in their book [18]). That paper was
written in 1966, at the same time as their Doklady announcement [10], as it was customary
for such announcements to be submitted together with a full paper, so that proofs of their
statements could be checked. The key results of [11] were the VC dichotomy (Theorem 1),
the uniform convergence of frequencies to probabilities over classes with polynomial growth
functions (Theorem 3 and its small-sample counterpart Theorem 2), and an elegant necessary
and sufficient condition for the uniform convergence of frequencies to probabilities in terms
of the entropy HS(l) := E log ∆S(x1, . . . , xl) (Theorem 4).

In the four papers [9–12], Vapnik and Chervonenkis made a great leap forward in math-
ematical rigour. However, the required assumptions of measurability were very subtle, and
even Vapnik and Chervonenkis did not get them quite right. After a modest description of
his own mistakes in related measurability conditions, Dudley (2015a) points out that their
requirement (in the penultimate paragraph of the Introduction to [11]) of

(x1, . . . , xl) 7→ sup
A∈S

∣∣∣ν(l)
A (x1, . . . , xl)− P (A)

∣∣∣ (4)

(where ν(l)
A (x1, . . . , xl) := nA/l and nA is the frequency of A in the sample x1, . . . , xl) being

measurable is not sufficient, as shown in the introduction to Dudley (1999, Chap. 5). The
condition that is actually needed in the proof is that

(x1, . . . , x2l) 7→ sup
A∈S

∣∣∣ν(l)
A (x1, . . . , xl)− ν

(l)
A (xl+1, . . . , x2l)

∣∣∣
be measurable.

The notion of growth function introduced in [9,10] was innovative but had had several
interesting precursors, as described by Dudley (2015b). Already by 1852 Schläfli (1814–
1895) found the growth function for the class S of all half-spaces in Rd containing 0 on their
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boundary,

mS(l) = 2
d−1∑
j=0

(
l − 1

j

)
= O(ld−1) (l→∞). (5)

Schläfli’s memoir containing this result was published only in 1901 despite being written in
1850–1852. Among other fundamental achievements of this memoir were the introduction of
d-dimensional Euclidean geometry (mathematicians had only treated the case d ≤ 3 before)
and the extension of the ancient Greeks’ result that there are only five platonic solids, i.e.,
convex regular polytopes in R3, to the case of Rd with d > 3 (it turned out that for d > 4
there are only three trivial platonic solids, the generalizations of the tetrahedron, cube, and
octahedron, whereas for d = 4 there are six). Cover (1965) pointed out that, using Schläfli’s
method, one can obtain

mS(l) = 2

d∑
j=0

(
l − 1

j

)
= O(ld) (l→∞) (6)

for the class S of all half-spaces in Rd; he also obtained similar results for other classes, such
as the parts of Rd bounded by hyperspheres or hypercones.

Richard Dudley wrote enthusiastic reviews of both [10] and [11] for Mathematical Re-
views; interestingly, his review of [10] was instrumental in obtaining the permission to publish
[11] (Bottou, 2012, with a reference to Vapnik). These reviews attracted attention of some
leading mathematicians, and it seems likely that they were the means through which the
VC dichotomy, in the form of a conjecture, reached the attention of Sauer and another
independent discoverer, Shelah (together with his PhD student Perles).

The first statement of convergence of frequencies of events to their probabilities was
James Bernoulli’s (1713) celebrated law of large numbers, stating that, for all ε > 0, events
A, and probability measures P ,

P l
(∣∣∣ν(l)

A − P (A)
∣∣∣ > ε

)
→ 0 (7)

as l → ∞ (using the notation ν
(l)
A introduced in (4) and under unnecessary but mild re-

strictions on P (A) and ε). Now we know that the convergence (7) is uniform in P , but
Bernoulli did not know that, which might have been one of his reasons for not completing
his manuscript (published in 1713 posthumously by his nephew): if the convergence is uni-
form, we can easily invert (7) to obtain a confidence interval for P (A) given the observed
frequency ν

(l)
A . (This is one of the two reasons put forward by Hald 2003, p. 263; other

authors have come up with more.)
Uspensky (1937) gives a “modernized” version of James Bernoulli’s proof that does give

a uniform convergence in (7) (cf. Hald 2003, p. 268). Nowadays, the most standard proof is
based on Chebyshev’s inequality and immediately gives uniform convergence:

P l
(∣∣∣ν(l)

A − P (A)
∣∣∣ > ε

)
≤ P (A)(1− P (A))

lε2
≤ 1

4lε2
→ 0.

(Although large-deviation inequalities, such as Hoeffding’s, often give better results.)
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Vapnik and Chervonenkis came up with a much deeper, and entirely different, statement
of uniformity: for a fixed P ,

P l

(
sup
A∈S

∣∣∣ν(l)
A − P (A)

∣∣∣ > ε

)
→ 0

for many interesting classes S of events; the requirement of uniformity was again motivated
by statistical applications. If we require uniformity in both A and P ,

sup
P
P l

(
sup
A∈S

∣∣∣ν(l)
A − P (A)

∣∣∣ > ε

)
→ 0

(i.e., that S be a uniformly Glivenko–Cantelli class), the condition VC(S) < ∞ becomes
both necessary and sufficient, for any ε ∈ (0, 1); Vapnik and Chervonenkis understood this
well already in 1966 (Editors, 2015).

In 1974 Vapnik and Chervonenkis published their book [18] in which they gave a survey
of their work so far on the foundations of statistical learning (in Part II) and the method of
generalized portrait (see the next section). They introduced a name for VC(S) (Chapter V,
Section 7), namely the capacity of S (емкость S). The authors sent a copy of the book to
Mathematical Reviews, requesting that it be sent to Richard Dudley to review. Whereas the
papers [10] and [11] were reviewed quickly, in 1969 and 1972, respectively, reviewing [18]
took five years, and Dudley’s review appeared only in 1979. Dudley (2015b) explains this
by the Peter principle: as reviewer, he was promoted to reviewing more and more difficult
publications by Vapnik and Chervonenkis until his knowledge of the Russian language and
pattern recognition became insufficient for the task.

In their book Vapnik and Chervonenkis gave Sauer’s (1972) form of their dichotomy,
which is obviously sharp in general: it suffices to take as S the class of all sets of cardinality
VC(S) in an infinite input space X. For specific classes, however, even very important ones,
the bound can be far from being sharp: e.g., for Schläfli’s and Cover’s cases Sauer’s lemma
only gives

mS(l) ≤
d∑

j=0

(
l

j

)
= Ω(ld) and mS(l) ≤

d+1∑
j=0

(
l

j

)
= Ω(ld+1)

in place of (5) and (6), respectively.
An important contribution of the book [18], alongside with the papers [16,17], was the

introduction of the method of Structural Risk Minimization (in Chapter VI) and its appli-
cation to various specific problems. An appendix to Chapter VI (Section 14) gives lower
bounds for the performance guarantees of learning algorithms in terms of the VC dimension.

In [28] Vapnik and Chervonenkis extended their necessary and sufficient condition of
uniform convergence for classes of events (Theorem 4 of [11]) to classes of functions, defin-
ing the functional analogue of the entropy function HS using Kolmogorov and Tikhomirov’s
ε-entropy. In [38] they found necessary and sufficient conditions for one-sided uniform con-
vergence (Theorem Б of [38], where Б is the second letter of the Russian alphabet), which
is particularly important from the viewpoint of machine learning because of its equivalence
to the consistency of the method of empirical risk minimization (Theorem А of [38], where
А is the first letter of the Russian alphabet).
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Alexey’s last great mathematical achievement [57,58] was the definitive quantitative
form of Michel Talagrand’s result about the existence of “bad sets” in machine learning
(Talagrand, 1987, Theorem 5, and Talagrand, 1996, Theorem 2.1), which he first discovered
just a few year’s after Talagrand discovered his (Talagrand, 2014) but could prove rigorously
only in the last years of his life (see [67], Theorem 13.1). Typically, he did this without any
knowledge of Talagrand’s work (Novoseltsev, 2015). Alexey’s result says that if HS(l)/l→ c
as l → ∞ (the limit always exists), there exists a set E ⊆ X of probability c such that for
any n almost all sequences in En are shattered by S (a sequence x1, . . . , xn is shattered by
S if ∆S(x1, . . . , xn) = 2n). Talagrand’s result only asserts, for c > 0, the existence of E of
positive probability satisfying the last condition. A precursor of this result was stated in
[38] as Theorem В (В being the third letter of the Russian alphabet), and the result found
its way into Vapnik (1998, Theorem 3.6).

Chervonenkis and Talagrand met in Paris in May 2011 and discussed the former’s quan-
titative form of the latter’s result (which Talagrand was really proud of but which, as he
says, would not have been even conceivable without Chervonenkis’s previous contributions).
Chervonenkis asked Talagrand whether the quantitative form should be published. Tala-
grand replied that the quantitative form did not seem to have much use and so discouraged
Chervonenkis from its publication (Talagrand, 2014).

2. Generalized Portrait and Optimal Separating Hyperplane

Vapnik and Chervonenkis’s first joint paper [1] introduced the method of generalized por-
trait, which is a linear precursor of support vector machines, in the case of supervised
learning. The idea of the method itself was first published by Vapnik and Lerner (1963) a
year earlier, and Vapnik, Lerner, and Chervonenkis started discussing the method already in
1962 (see [61], which is an excellent source for the early history of support vector machines).

Vapnik and Lerner (1963) work in the context of unsupervised learning. The starting
point of the early versions of the method of generalized portrait was that patterns were
represented by points on the unit sphere in a Hilbert space. (Vapnik and Lerner consider
a family of mappings from the patterns to the unit sphere, but let us, for simplicity, fix
such a mapping, assume that it is a bijection, and identify patterns with the corresponding
points of the unit sphere.) A set F of patterns divides into n images F1, . . . , Fn (these are
disjoint subsets of F ) if for each Fi there is a point φi on the sphere such that, for all i,
j 6= i, fi ∈ Fi, and fj ∈ Fj , it is true that (φi, fi) > (φi, fj). Under a further restriction (the
images should be “definite”), φi is called a generalized portrait for Fi. In their definition,
Vapnik and Lerner do not specify a precise optimization problem with a unique solution
that generalized portraits are required to solve. Later in the paper they do give two ideas
for such optimization problems:

• In Section 4, they say that, for a given Fi, φi can be defined to maximize the recognition
threshold minf∈Fi

(φi, f). (This is the optimization problem that Alexey describes in
the section devoted to Vapnik and Lerner’s 1963 paper in his historical contribution
to the Vapnik Festschrift: see [61], Section 3.1.1.) The overall optimization problem
(to be solved before dividing F into images), however, remains unspecified.
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• In the concluding Section 5 of their paper, Vapnik and Lerner make the problem
of “self-learning” (unsupervised learning in this context) more precise by requiring
that the generalized portraits φ1, . . . , φn maximize the order of distinguishability 1−
maxi,j(φi, φj). This optimization problem will rarely determine generalized portraits
completely: e.g., in the case of two images, n = 2, this condition only restricts φ1

and φ2 to being anti-collinear. And only rarely will any of its solutions maximize the
recognition thresholds.

In [1] Vapnik and Chervonenkis made several important steps in the development of
the method of generalized portrait; in particular, they defined it in the case of supervised
learning and expressed it as a precise optimization problem. Suppose we are interested in
a class K1 of patterns and K2 is the union of the other classes; these are assumed to be
subsets of the unit sphere in a Hilbert space. The generalized portrait of K1 is defined in
this paper as the unit vector φ solving the optimization problem

(φ,X) ≥ c, ∀X ∈ K1,

(φ, Y ) ≤ c, ∀Y ∈ K2, (8)
c→ max .

When the solution (φ, c) = (φ0, C(φ0)) exists (i.e., when the class K1 is linearly separable
from the rest of data), it is unique, and the vectors X ∈ K1 and Y ∈ K2 satisfying (φ0, X) =
C(φ0) or (φ0, Y ) = C(φ0), respectively, were called themarginal vectors; these are precursors
of support vectors. It was shown that the generalized portrait is a linear combination of
marginal vectors (with nonnegative coefficients if they belong to K1 and nonpositive if not).

Another contribution of [1] was that the method was rewritten in terms of scalar products
between input vectors, which was an important step towards support vector machines. As
it often happens, necessity was the mother of invention ([61], Section 3.3; Editors, 2015).
At that time the ICS only had analogue computers, and inputting data was difficult. The
easiest way was to calculate the scalar products by hand or using calculators, and then input
them into the analogue computers by adjusting corresponding resistors. In 1964 the first
digital computers arrived, and the dual form of the method lost much of its appeal for a few
dozen years.

Vapnik and Chervonenkis kept the name “method of generalized portrait” in [1]. This
might have been the first application of their decision (Novoseltsev, 2015) not to coin a new
name for each new modification of their main recognition method; Vladimir proposed to use
the same name for all modifications, the method of generalized portrait, and Alexey agreed.
(There might have been one exception: it appears that in print the method of optimal
separating hyperplane has not been explicitly referred to as that of “generalized portrait”.
In particular, the methods of generalized portrait and optimal separating hyperplane are
treated as different ones in [61].)

As Alexey discusses in his historical paper [61] (Sections 3.1–3.2), already in 1962 he
and Vladimir considered a more general version of the method, with (φ, Y ) ≤ kc in place of
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(φ, Y ) ≤ c in (8), for a given constant k < 1:

(φ,X) ≥ c, ∀X ∈ K1, (9)
(φ, Y ) ≤ kc, ∀Y ∈ K2, (10)

c→ max . (11)

In the same year they obtained the possibility of decomposition of the generalized portrait
via marginal vectors directly, without the use of the Kuhn–Tucker theorem.

The generalization (9)–(11) was first published in [9], where the assumption that the
training patterns should belong to a unit hypersphere is no longer mentioned. The authors
retained the name “generalized portrait” for this more general setting. Using the Kuhn–
Tucker theorem, they showed that the generalized portrait can be found by minimizing a
quadratic function over the positive quadrant and developed several algorithms for solving
such problems.

Further important developments were made in the 1973 papers [14,15] published in the
same book edited by Vapnik and describing a library of computer programs written by
Zhuravel’ and Glazkova and implementing the method of generalized portrait (improved
versions are described in [18], Chapter XV). In [14], Vapnik, Chervonenkis, and their co-
authors consider the method of generalized portrait (9)–(11), whereas in [15] they consider
a new method, that of optimal separating hyperplane. Given two linearly separable sets
of vectors, X and X̄ (the notation they use for K1 and K2 in this paper), they define the
optimal separating hyperplane as the hyperplane that separates the two sets and is as far as
possible from their convex closures. They notice that the optimal separating hyperplane can
be represented by the equation (ψ, x) = (c1 +c2)/2, where ψ is the shortest vector satisfying
(ψ, z) ≥ 1 for all z of the form z = x− x̄, x ∈ X and x̄ ∈ X̄, and

c1 = min
X

(ψ, x), c2 = max
X̄

(ψ, x̄).

Together with the fact that ψ can be represented as a linear combination of margin vectors,
this serves as the basis of their algorithm GP-4 for finding the optimal separating hyperplane.

The fundamental 1974 book [18] consists of three parts, one of which, Part III, is de-
voted to the methods of generalized portrait and optimal separating hyperplane (Part I
is introductory and Part II is called “Statistical foundations of the theory”). In this part
(Chapter XIV, Section 12) the authors derive another kind of performance guarantees for
the two methods, which, as they say, are much closer to the lower bounds of Section VI.14
(already mentioned in Section 1 above) and so demonstrate special statistical properties of
the method. A simple performance guarantee of this kind is that the (unconditional) proba-
bility of error does not exceed m/(l+1), where l is the length of the training sequence and m
is the expectation of the number of essential support vectors (which they called informative
marginal vectors at the time). Since, in their context, m does not exceed the dimension n
(assumed finite) of the input space, the probability of error is also bounded by n/(l + 1).
This result was obtained by Alexey in June 1966 [66], but Vladimir was reluctant to publish
it as it was embarrassingly simple. Let us call this type of error bounds VC74 bounds and
the type of bounds discussed in the previous section VC68 bounds (following Vovk 2015).
There were hints of VC74 bounds in [9], Section 5.3, and [14], pp. 91–92; however, the first
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precise statements were first published only in the 1974 book [18]. It is interesting that, as
Alexey says at the end of Section 3.6 of [61], VC74 bounds led to the notions of the growth
function and VC dimension and to conditions for uniform convergence; it can be concluded
that VC74 bounds led to VC68 bounds.

At the beginning of Chapter XIV the authors emphasize that in many cases the optimal
separating hyperplane should be constructed not in the original input space but in a feature
space (спрямляемое пространство). They only discuss finite-dimensional feature spaces,
but since they already have the dual form of the optimization problem, there is only one
step to support vector machines: to combine their algorithms with the idea of kernels that
was already used by their competitors in Aizerman’s laboratory (Aizerman et al., 1964); but
this step had to wait for another 20 years.

The book [18] treats the methods of generalized portrait and optimal separating hyper-
plane more or less on equal footing, and studies relations between them, such as the latter
being a special case of the former corresponding to a certain value of k. In the historical
paper [61] Alexey mentions that in his and Vladimir’s experience the number of support
vectors for the optimal separating hyperplane often turned out to be larger than that for the
generalized portrait for other values of k. His suggestion is to return to the method of gener-
alized portrait (surely in combination with kernel methods—Eds.) looking for k providing the
fewest number of support vectors. His intuition was that in the case of two approximately
equal classes the method of optimal separating hyperplane is preferable. However, in the
case where a small class is being separated from a much larger one (such as separating the
letter “a” from the other letters of the English alphabet) the method of generalized portrait
with a constant k close to 1 is preferable.

3. Other Publications

Approximately one half of Alexey’s publications are devoted to applications of machine
learning in various fields, such as natural language systems, geology, and medicine. This
work was mainly done in collaboration with colleagues at the Institute of Control Sciences,
the University of London, and Yandex.

In 1975–1983 Alexey and his colleagues at the ICS published a series of papers [19,21–
27,29] describing their interactive data-retrieval system using a subset of the Russian lan-
guage to control a large sea port. Alexey’s main co-author was Leonid Mikulich, who also
worked in Lerner’s laboratory starting from 1961. In the course of numerous conversations
between them Alexey proposed a formal logical calculus for describing non-trivial linguistic
structures [19]. They also often discussed modelling evolution, and much later they were
surprised to discover that it had become popular under the name of evolutionary and genetic
programming.

Alexey’s next significant area of applied research was geology [30–33,35,37,39–41,43,44].
This work included designing mathematical models for geological processes and non-para-
metric alternatives to the popular method of Kriging for restoring conditional distributions
from empirical data. On the practical side, Alexey created a system for optimal automatic
delineation of ore bodies that has been in operation at the world’s largest gold deposit
Murun-Tau since 1986 (Novoseltsev, 2015). For the creation of this system he was awarded
the State Prize of the USSR (formerly Stalin Prize) in 1987.
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Alexey’s first work in medicine was done in 1971 [13] jointly with Vapnik and Lerner,
but most of his papers in this area [51,53,56,59,60,68] were written together with his col-
leagues at Royal Holloway, University of London (whose Professor he formally became in
2000). A closely related application area in which Alexey was active is bioinformatics: see
[45–47]. In the course of his work on bioinformatics he independently (albeit significantly
later) rediscovered Watkins’s (2000) and Haussler’s (1999) string kernels. In general, inde-
pendent rediscoveries were a typical feature of his research, arising naturally when a creative
mind does not follow current literature preferring instead to invent new directions for itself
at the risk of “discovering” well-known results and concepts. (A good example of this is
Werner Heisenberg’s rediscovery of matrix algebra in developing his approach to quantum
mechanics.) Another independent rediscovery was his combination of Bayes and maximum
likelihood methods for regression [42], which he later found in the work of David MacKay
and finally [42,52] traced to a 1970 paper (Turchin et al., 1971).

Among Alexey’s other applied papers were those devoted to energy load forecasting [49]
and aircraft engineering [55]. One of Alexey’s last applied research areas was the problem
of optimal placement of advertisements among the results of a web search [63–65], which is
of great interest to Yandex, the Russian analogue of Google, with which he was affiliated
(alongside the ICS and Royal Holloway, University of London) since 2011.

From 2007 Alexey lectured at the School of Data Analysis founded by Yandex, and it
is due to this activity that we owe his excellent textbook [52]. We are also lucky to have
historical papers and notes published or prepared for publication during the last years of his
life, namely the two sets of reminiscences in Vladimir Vapnik’s and his own Festschriften
[61,66] and his review [67] (preceded by the abstract [62]).

A lot remains unwritten or unfinished. Alexey was active, physically and mentally, and
full of ideas until the very moment of his tragic death in the early hours of 22 September
2014 in Elk Island just outside Moscow.
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1964

[1] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On a class of perceptrons. Au-
tomation and Remote Control, 25(1):103–109, 1964. Russian original: В. Н. Вапник,
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Abstract

Nonlinear photonic delay systems present interesting implementation platforms for machine
learning models. They can be extremely fast, offer great degrees of parallelism and poten-
tially consume far less power than digital processors. So far they have been successfully
employed for signal processing using the Reservoir Computing paradigm. In this paper we
show that their range of applicability can be greatly extended if we use gradient descent
with backpropagation through time on a model of the system to optimize the input encod-
ing of such systems. We perform physical experiments that demonstrate that the obtained
input encodings work well in reality, and we show that optimized systems perform signifi-
cantly better than the common Reservoir Computing approach. The results presented here
demonstrate that common gradient descent techniques from machine learning may well be
applicable on physical neuro-inspired analog computers.
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1. Introduction

Applied research in neural networks is currently strongly influenced by available computer
architectures. Most strikingly, the increasing availability of general-purpose graphical pro-
cessing unit (GPGPU) programming has sped up the computations required for training
(deep) neural networks by an order of magnitude. This development allowed researchers
to dramatically scale up their models, in turn leading to the major improvements on state-
of-the-art performances on tasks such as computer vision (Krizhevsky et al., 2012; Cireşan
et al., 2010).
One class of neural models which has only seen limited effects of the boost in speed from
GPUs are recurrent models. Recurrent neural networks (RNNs) are very interesting for
processing time series, as they can take into account an arbitrarily long context of their in-
put history. This has important implications in tasks such as natural language processing,
where the desired output of the system may depend on context that has been presented to
the network a relatively long time ago. In common feedforward networks such dependen-
cies are very hard to include without scaling up the model to an impractically large size.
Recurrent networks, however, can–at least in principle–carry along relevant context as they
are being updated.
In practice, recurrent models suffer from two important drawbacks. First of all, where
feedforward networks fully benefit from massively parallel architectures in terms of scal-
ability, recurrent networks, with their inherently sequential nature do not fit so well into
this framework. Even though GPUs have been used to speed up training RNNs (Sutskever
et al., 2011; Hermans and Schrauwen, 2013), the total obtainable acceleration for a given
GPU architecture will still be limited by the number of sequential operations required in
an RNN, which is typically much higher than in common neural networks. The second
issue is that training RNNs is a notoriously slow process due to problems associated with
fading gradients, which is especially cumbersome if the network needs to learn long-term
dependencies within the input time series. Recent attempts to solve this problem using
the Hessian-free approach have proved promising (Martens and Sutskever, 2011). Other
attempts using stochastic gradient descent combined with more heuristic ideas have been
described in Bengio et al. (2013).
In this paper we will consider a radical alternative to common, digitally implemented RNNs.
A steadily growing branch of research is concerned with Reservoir Computing (RC), a con-
cept which employs high-dimensional, randomly initialized dynamical systems (termed the
reservoir) to perform feature extraction on time series (Jaeger, 2001; Jaeger and Haas, 2004;
Maass et al., 2002; Steil, 2004; Lukosevicius and Jaeger, 2009). Despite its simplicity, RC
has several important advantages over traditional gradient descent training methods. First
of all, the training process is extremely fast. Only output weights are trained, and this is
performed by solving a single linear system of equations. Second, and of great importance,
the RC concept is applicable to any non-linear dynamical system, as long as it exhibits
consistent responses, a high-dimensional state space, and fading memory. This has opened
lines of research that go beyond common digital implementations and into analog physical
implementations. The RC concept has been demonstrated to work on a variety of physical
implementation platforms, such as water ripples (Fernando and Sojakka, 2003), mechanical
constructs and tensegrity structures (Caluwaerts et al., 2013; Hauser et al., 2011), electro-
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optical devices (Larger et al., 2012; Paquot et al., 2012), fully optical devices (Brunner et al.,
2013) and nanophotonic circuits (Vandoorne et al., 2008, 2014). As opposed to digital im-
plementations, physical systems can offer great speed-ups, inherent massive parallelism, and
great reductions in power consumption. In this sense, physical dynamical systems as ma-
chine learning implementation platforms may one day break important barriers in terms of
scalability. In the near future, especially optical computing devices might find applications
in several tasks where fast processing is essential, such as in optical header recognition,
optical signal recovery, or fast control loops.
The RC paradigm, despite its notable successes, still suffers from an important drawback.
Its inherently unoptimized nature makes it relatively inefficient for many important machine
learning problems. When the dimensionality of the input time series is low, the expansion
into a high-dimensional nonlinear space offered by the reservoir will provide a sufficiently di-
verse set of features to approximate the desired output. If the input dimensionality becomes
larger, however, relying on random features becomes increasingly difficult as the space of
possible features becomes so massive. Here, optimization with gradient descent still has an
important edge over the RC concept: it can shape the necessary nonlinear features auto-
matically from the data.
In this paper we aim to integrate the concept of gradient descent in neural networks with
physically implemented analog machine learning models. Specifically, we will employ a
physical dynamical system that has been studied extensively from the RC paradigm, a
delayed feedback electro-optical system (Larger et al., 2012; Paquot et al., 2012; Soriano
et al., 2013). In order to use such a system as a reservoir, an input time series is encoded
into a continuous time signal and subsequently used to drive the dynamics of the physical
setup. The response of the device is recorded and converted to a high-dimensional feature
set, which in turn is used with linear regression in the common RC setup. In this particular
case, the randomness of RC is incorporated in the input encoding. This encoding is per-
formed offline on a computer, but is usually completely random. Even though efforts have
been performed to improve this encoding in a generic way (by ensuring a high diversity in
the network’s response, discussed in Rodan and Tino (2011) and Appeltant et al. (2014)),
a way to create task-specific input encodings is still lacking.
In Hermans et al. (2014b), the possibility to use backpropagation through time (BPTT)
(Rumelhart et al., 1986) as a generic optimization tool for physical dynamical systems was
addressed. It was found that BPTT can be used to find remarkably intricate solutions to
complicated problems in dynamical system design. In Hermans et al. (2014a) simulated
results of BPTT used as an optimization method for input encoding in the physical sys-
tem described above were presented. In this paper we go beyond this work and show for
the first time experimental evidence that model-based BPTT is a viable training strategy
for physical dynamical systems. We choose two often-used high-dimensional data sets for
validation, and we show that input encoding that is optimized using BPTT in a common
machine learning approach, provides a significant boost in performance for these tasks when
compared to random input encodings. This not only demonstrates that machine learning
approaches are more broadly applicable than is generally assumed, but also that physical
analog computers can in fact be considered as parametrizable machine learning models, and
may play a significant role in the next generation of signal processing hardware.
This paper is structured as follows: first of all we discuss the physical system and its corre-
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sponding model in detail. We explain how we convert the continuous-time dynamics of the
system into a discrete-time update equation which we use as model in our simulation. Next,
we present and analyze the results on the tasks we considered and compare experimental
and simulated results.

2. Physical System

In this section we will explain the details of the physical system. We will start by formally
introducing its delay dynamics operating in continuous time. Next, we will explain how the
feedback delay can be used for realizing a high-dimensional state space encoded in time,
and we demonstrate that–combined with special input and output encoding–the setup can
be seen as a special case of RNN. Finally we explain how we discretize the system’s input
and output encoding, which enables us to approximate the dynamics of the system by a
discrete-time update equation.
The physical system we employ in this paper is a delayed feedback system exhibiting Ikeda-
type dynamics (Larger et al., 2004; Weicker et al., 2012). We provide a schematic depiction
of the physical setup in Figure 1. It consists of a laser source, a Mach-Zehnder modulator, a
long optical fiber (≈ 4 km) which acts as a physical delay line, and an electronic circuit which
transforms the optical beam intensity in the fiber into a voltage. This voltage is amplified
and low-pass filtered and can be measured to serve as the system output. Moreover, it
is added to an external input voltage signal, and then serves as the driving signal for the
Mach-Zehnder modulator. The measured output signal is well described by the following
differential equation (Larger et al., 2012):

T ȧ(t) = −a(t) + β
[
sin2(a(t−D) + z(t) + φ)− 1/2

]
. (1)

Here, the signal a(t) corresponds to a measured voltage signal (down to a constant scaling
and bias factor). The factor T is the time scale of the low-pass filtering operation in the
electronic circuit, equal to 0.241 µs, β is the total amplification in the loop, which in the
experiments can be varied by changing the power of the laser source. D is the delay of the
system, which has been chosen as 20.82 µs. z(t) is the external input signal, and φ is a
constant offset phase (which can be controlled by setting a bias voltage), which we set at
π/4 for all results presented in this paper. For ease of notation we will call the system a
delay-coupled Mach-Zehnder, which we abbreviate as DCMZ.
Note that the parameters β and φ, together with the global scaling of the input signal z(t),
control the global dynamical behavior of the system (Larger et al., 2012). Indeed, previous
research in the RC context have identified the role of these parameters in connection with
task performance. They found that good performance is usually found when the parameters
put the system in an asymptotically stable regime. For instance, if we keep φ = π/4, and
β < 1, the system state will always fall back to zero in the absence of input. In the case of
β > 1, the state of the system will spontaneously start to oscillate, which has a detrimental
effect on task performance. In this paper we will simply use values for β and φ that were
found to generally work well in the reservoir setup.
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2.1 Input and Output Encoding

Delay-coupled systems have–in principle–an infinite-dimensional state space, as these sys-
tems directly depend on their full history covering an interval of one delay time. This prop-
erty has been the initial motivation for using delay-coupled systems in the RC paradigm
in the past years. Suppose we have a multivariate input time series, which we will denote
by si, for i ∈ {1, 2, · · · , S}, S being the total number of instances (the length of the input
sequence). Each si is a column vector of size Nin× 1, with Nin the number of input dimen-
sions. We wish to construct an accompanying output time series yi. We convert each data
point si to a continuous-time segment zi(t) as follows:

zi(t) = m0(t) + mT(t)si,

where m0(t) and m(t) are masking signals, which are defined for t ∈ [0 · · ·P ], with P the
masking period. The signal m0(t) is scalar, and constitutes a bias signal, and m(t) is a
column vector of size Nin × 1. The total input signal z(t) is then constructed by time-
concatenation of the segments zi(t):

z(t) = zi(t mod P ) for t ∈ {(i− 1)P · · · iP}.

Similarly, we define an output mask u(t). We divide the state variable time traces a(t) in
segments ai(t) of duration P such that

a(t) = ai(t mod P ) for t ∈ {(i− 1)P · · · iP}.

The output time series yi is then defined as

yi = y0 +

∫ P

0
dt ai(t)u(t). (2)

It is possible to see the delay-coupled dynamical system combined with the masking prin-
ciple as a special case of an infinite-dimensional discrete-time recurrent neural network, as
illustrated in Figure 2. The recurrent weights, connecting the hidden states over time, are
fixed, and manifested by the delayed feedback connection. The input and output weights
correspond to the input and output masks.
The role of the parameters D and P is important to consider. If they are equal to each other
the recurrent network analogy, as shown in Figure 2b, reduces to a network where all nodes
have self-connections, and interaction between different nodes between different tasking pe-
riods is due to a combination of the low-pass filtering effect and the self-connection. If the
difference between D and P is small, there will be direct time-interaction between different
nodes. In fact, using a difference of one masking step between D and P has been the basis
for opto-electronic systems that do not have a low-pass filter (Paquot et al., 2012). If the
difference between D and P becomes significant it is difficult to anticipate how performance
will be affected. If D � P , most interactions will happen within a single masking period,
such that there will be little useful interaction between the nodes at different time steps. If
D � P , the nodes interact over connections that bridge several time steps. We found that,
for small differences of D and P , there is little to no noticeable effect on performance, such
that we kept D = P , as was used in previous publications.
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Figure 1: Schematic depiction of a delay-coupled Mach-Zehnder interferometer.

In practice, we cannot measure the state trajectory with infinite time resolution, nor can
we produce signals with an arbitrary time dependency, as there will always be constraints
that limit the maximum bandwidth of the generated signals. Therefore, we assume that
m0(t), m(t) and u(t) all consist of piecewise constant signals1, which are segmented in Nm

parts, Nm being the number of masking steps:

m0(t) = m0k for t ∈ {(k − 1)Pm · · · kPm},

m(t) = mk for t ∈ {(k − 1)Pm · · · kPm},

u(t) = uk for t ∈ {(k − 1)Pm · · · kPm}, (3)

where the length of each step is given by Pm = P/Nm. This means that we now have a finite
number of parameters that fully determine m0(t), m(t) and u(t). Note that, due to our
choice of P = D, Pm will by definition be an integer number of times the delay length D.
This is convenient for the next section, where we will make a discrete-time approximation
of the system, but it is not a necessary requirement of the system to perform well.

2.2 Converting the System to a Trainable Machine Learning Model

In Hermans et al. (2014b) it was shown that BPTT can be applied to models of continuous-
time dynamical systems. Indeed, it is perfectly possible to simulate the system using differ-
ential equation solvers and consequently compute parameter gradients. One issue, however,
is the significant computational cost. Note that, in a common discrete-time RNN, a single
state update corresponds to a single matrix-vector multiplication and the application of a
nonlinearity. In our case it involves the sequential computation of the full time trace of
ai(t). This is considerably more costly to compute, especially given the fact that–as in most
gradient descent algorithms–we may need to compute it on large amounts of data and this
for multiple thousands of iterations.
Due to the piecewise constant definition of u(t) we can make a good approximation of a(t).

1. Note that with a finite frequency bandwidth we cannot produce immediate jumps from one constant
level to the next. Therefore, we make sure that the duration of each constant part is much longer than
the transient in between, and we can safely ignore it.
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Figure 2: Schematic representation of the masking principle. a: Depiction of the input time
series si and the way it is converted into a continuous-time signal by means of
the input masking signals m(t). The horizontal line in the middle shows the time
evolution of the system state a(t). We have depicted two connection arrows at
one point in time, which indicate that a(t) depends on its immediately preceding
value (due to the low-pass filtering operation), and its delayed value. The state
trajectories are divided into segments each of which are projected to an output
instance yi. b: The same picture as in panel a, but now represented as a time-
unfolded RNN. We have shown the connections between the states as light grey
arrows, but note that there are in principle infinitely many connections.)

First we combine Equations 2 and 3. This gives us:

yi =

Nm∑
k=1

∫ kPm

(k−1)Pm

dt ukai(t) =

Nm∑
k=1

ukāik,

where āik =
∫ kPm

(k−1)Pm
dt ai(t). This means that we can represent ai(t) by a finite set of

variables āik. To represent the full time trace of a(t) we adopt a simplified notation as
follows2: āj = āik, where j = (i− 1)Nm + k.
Now we make the following approximation: we assume that for the duration of a single
masking step, we can replace the term a(t − D) by āi−Nm , that is, we consider it to be
constant. With this assumption, we can solve Equation 1 for the duration of one masking
step:

a(t) = γi + (âi − γi) exp

(
− t

T

)
for t ∈ {0 · · ·Pm}, (4)

with
γi = β

[
sin2(āi−Nm + z(t) + φ)− 1/2

]
,

and âi the value of a(t) at the start of the interval. Integrating over the interval t =
{0 · · ·Pm} we find:

āi = (âi − γi)κ+ Pmγi,

2. Please do not confuse with the index i in ai(t). Here the index indicates single masking steps, rather
than full mask periods.

2087



Hermans, Soriano, Dambre, Bienstman, and Fischer

with κ = 1− e−Pm/T . We can eliminate âi as follows. First we derive from Equation 4 that
âi+1 = (âi − γi)e−Pm/T + γi. If we combine this expression with the following two:

āi = (âi − γi)κ+ Pmγi,

āi+1 = (âi+1 − γi+1)κ+ Pmγi+1,

we can eliminate âi, and we end up with the following update equation for āi:

āi+1 = ρoāi + ρ1γi + ρ2γi+1,

with ρ0 = e−Pm/T , ρ1 = Tκ−Pme−Pm/T , and ρ2 = Pm−Tκ. This leads to a relatively quick-
to-compute update equation to simulate the system. BPTT can also be readily applied on
this formula, as it is a simple update equation just like for a common RNN. This is the
simulation model we used for training the input and output masks of the system.
We verified the accuracy of this approximation both on measured data of the DCMZ and
on a highly accurate simulation of the system. For the parameters used in the DCMZ we
got very good correspondence with the model (obtaining a correlation coefficient between
simulated and measured signals of 99.6%).

2.3 Hybrid Training Approach

One challenge we faced when trying to match the model with the experimentally measured
data was that we obtained a sufficiently good correspondence only when we very carefully
fitted the values for β and φ. We can physically control these parameters, but exactly
setting their numerical values turned out not to be trivial in the experiments, especially
since they tend to show slight drifting behavior over longer periods of time (in the order of
hours). As a consequence, it turned out to be a challenge to train parameters in simulation,
and simply apply them directly on the DCMZ. Therefore, we applied a hybrid approach
between gradient descent and the RC approach. We train both the input and output masks
in simulations. Next, we only use the input masks for the physical setup. After recording all
the data, we retrained the output weights using gradient descent, this time on the measured
data itself. The idea is that the input encoding will produce highly useful features for the
system even when it is trained on a model that may show small, systematic differences with
the physical setup.

2.4 Input Limitations

One additional physical constraint is the fact that the voltages that can be generated by
the electronic part of the system are limited within a range set by its supply voltage. The
output voltage of the electronic part serves as the input of the Mach-Zehnder interferometer,
and corresponds to the term a(t−D)+z(t) in the argument of the squared sine in Equation
1 (the offset phase φ is controlled by a separate voltage source). The voltage range we were
able to cover before the amplifiers started to saturate, roughly corresponded to a range of
[−π/2 · · ·π/2] in Equation 1: one full wavelength. Instead of accounting for the saturation
of the amplifiers in our simulations, we made sure that when the input argument z(t) went
outside of this range, we mapped it back into this range by adding or subtracting π. Note
that this has no effect on Equation 1 due to the periodicity of the squared sine. Due to the
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addition of the input signal with the delayed feedback a(t−D), there is still a chance that
the total argument falls out of the range [−π/2 · · ·π/2], but in practice such occurrences
turned out to be rare, and could safely be ignored.

3. Experiments

We tested the use of BPTT for training the input masks both in simulation and in exper-
iment on two benchmark tasks. First, we considered the often-used MNIST written digit
recognition data set, where we use the dynamics of the system indirectly. Next, we applied
it on the TIMIT phoneme data set. For the MNIST experiment we used Nm = 400 masking
steps. For TIMIT we used Nm = 600.

3.1 MNIST

To classify static images using a dynamical system, we follow an approach similar to the
one introduced in Rolfe and LeCun (2013). Essentially, we repeat the same input segment
several times until the state vector ai(t) of the DCMZ no longer changes. Next we choose
the final instance of ai(t) to classify the image. In practice we used 10 iterations for each
image in the MNIST data set (i.e., each input digit is repeated for 10 masking periods).
This sufficed for ai(t) to no longer depend on its initial conditions, and in practice this
meant that we were able to present all digits to the network right after each other.
Input masks were trained using 106 training iterations, where for each iteration the gradient
was determined on 500 randomly sampled digits. For training we used Nesterov momen-
tum (Sutskever et al., 2013), with momentum coefficient 0.9, and a learning rate of 0.01
which linearly decayed to zero over the duration of the training. As regularization we only
performed 1-pixel shifts for the digits. Note that these 1-pixel shifts were used for training
the input masks, but we did not include them when retraining the output weights, as we
only presented the DCMZ with the original 60,000 training examples.
After training the input weights, we gathered both physical and simulated data for the 4
experiments as described below, and retrained the output weights to obtain a final score.
Output weights are trained using the cross-entropy loss function over 106 training iterations,
where for each iteration the gradient was determined on 1000 randomly sampled digits. We
again used Nesterov momentum, with momentum coefficient 0.9. The learning rate was
chosen at 0.002 and linearly decayed to zero. Meta-parameter optimization was performed
using 10,000 randomly selected examples from the training set.
We performed 4 tests on MNIST. First of all we directly compared performances between
the simulated and experimental data. When we visualized the features that the trained
input masks generated, we noticed that they seemed ordered (see Figure 3). Indeed, for
each masking step, a single set of weights mk, which can be seen as a receptive field, is ap-
plied to the input image, and the resulting signals from the receptive fields are injected into
the physical setup one after each other. Apparently, the trained input masks have similar
features grouped together in time. To confirm that this ordering in time is a purposeful
property, we shuffled the features mk over a single masking period to obtain a new input
mask without a natural ordering in the features. Next we tested (in simulation) how much
the performance degraded when using these masks. Finally, we also tested classification
employing masks with completely random elements, where only the scaling of the weights
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Figure 3: Depiction of the image features present in the input masks for the MNIST task.
We have shown the input weights of the 400 masking steps, which we have re-
shaped into a 20×20 grid of 28×28 pixel representations, corresponding to the
receptive fields of each masking step (which can be considered virtual ”neurons”).
Time (progression of the masking steps, and hence physical time) runs row by
row. Notice that the order in which they occur is not random, but rather similar
features are grouped in time.
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Figure 4: Depiction of the input mask trained on the TIMIT task. We have shown the input
weights of the 600 masking steps (horizontal axis) for each channel (vertical axis).
For the sake of visualization we have here depicted the natural logarithm of the
absolute value of the mask plus 0.1. This enhances the difference in scaling for
the different channels.

MNIST test error TIMIT frame error rate

Experimental data 1.16% 33.2%
Simulated data 1.08% 31.7%

Simulated data: time-shuffled 1.41% 32.8%
Simulated data: random 6.72% 40.5%

Best in literature 0.23% 25.0%
(Cireşan et al., 2012) (Cheng et al., 2009)

Table 1: Benchmark performances for different experimental setups.

was optimized (which is the RC approach).
Results are presented in the middle column of Table 1. The difference between experimental
and simulation results is very small. The time shuffled features do indeed cause a notable
increase in the classification error rate, indicating that the optimized input masks actively
make use of the internal dynamics of the system, and not just offer a generically good fea-
ture set.
For the sake of comparison we have added the current state-of-the-art result on MNIST. For
a comprehensive overview of results on MNIST please consult http://yann.lecun.com/

exdb/mnist/. Our result are comparable to the best results obtained using neural networks
with a single hidden layer (denoted as a 2-layer NN on the previously mentioned website).
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3.2 TIMIT

We applied frame-wise phoneme recognition to the TIMIT data set (Garofolo et al., 1993).
The data was pre-processed to 39-dimensional feature vectors using Mel Frequency Cepstral
Coefficients (MFCCs). The data consists of the log energy, and the first 12 MFCC coeffi-
cients, enhanced with their first and second derivative (the so-called delta and delta-delta
features). The phonemes were clustered into a set of 39 classes, as is the common approach.
Note that we did not include the full processing pipeline to include segmentation of the
labels and arrive at a phoneme error rate. Here, we wish to illustrate the potential of our
approach and demonstrate how realizations of physical computers can be extended to fur-
ther concepts, rather than to claim state-of-the-art performance. Given that, in addition,
the input masks are trained to perform frame-wise phoneme classification, including the
whole processing pipeline would not be informative.
Input masks are trained using 50, 000 training iterations, where for each iteration the gra-
dient was determined on 200 randomly sampled sequences of a length of 50 frames. For
training we again used Nesterov momentum, with momentum coefficient 0.9, and a learning
rate of 0.2 which linearly decayed to zero over the duration of the training. As we were in
a regime far from overfitting, we simply chose the training error for meta-parameter opti-
mization. We have depicted the optimized input mask in Figure 4. Note that the training
process strongly rescaled the masking weights for different input channels, putting more
emphasis on the delta and delta-delta features (respectively channels 14 to 26 and 27 to 39
).
We repeated the four scenarios previously discussed: using optimized masks in simulation
and experiment, using time-shuffled masks, and using random masks. The resulting frame
error rates are presented in the right column of Table 1. The simulated and experimental
data differ by 1.5%, a relatively small difference, indicating that input masks optimized in
simulation are useful in practice, even in the presence of unavoidable discrepancies between
the used model and the DCMZ. Results for random masks are significantly worse than those
with optimized input masks.
Comparison to literature is not straightforward as most publications do not mention frame
error rate, but rather the error rate after segmentation. We included the lowest frame error
rate mentioned in literature to our knowledge, though it should be stated that other works
may have even lower values, even when they are not explicitly mentioned. For an overview
of other results on frame error rate please check Keshet et al. (2011).
The decrease in performance when using time-shuffled masks is quite modest, suggesting
that in this case, most of the improvement over random masks is due directly from the
features themselves, and the precise details of the dynamics of the system are less crucial
than was the case in the MNIST task 3. Although further testing is needed, we suggest two
possible reasons for this. First of all, the TIMIT data set we used contained the first and
second derivatives of the first thirteen channels, which already provides information on the
preceding and future values and acts as an effective time window. Indeed as can be seen
from Figure 4, the input features amplify these derivatives. Therefore, a lot of temporal

3. Note that, when the features are shuffled in time over a single masking period, this indirectly also affects
the way information is passed on between different masking periods as the communication between
specific nodes between masking periods is a combined effect of the low-pass filter and the self connection.
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context is already embedded in a single input frame, reducing the need for recurrent con-
nections. Secondly, the lack of control over the way information is mixed over time may
still pose an important obstacle to effectively use the recurrence in the system. Currently,
input features are trained to perform two tasks at once: provide a good representation of
the current input, and at the same time design the features in such a way that they can
make use of the (fixed) dynamics present within the system. It may prove the case that
the input masks do not have enough modeling power to fulfill both tasks at once, or that
the way temporal mixing occurs in the network cannot be effectively put to use for this
particular task.

4. Discussion and Future Work

In this paper we presented an experimental survey of the use of backpropagation through
time on a physical delay-coupled electro-optical dynamical system, in order to use it as a
machine learning model. We have shown that such a physical setup can be approached as
a special case of recurrent neural network, and consequently can be trained with gradient
descent using backpropagation. Specifically, we have shown that both the input and output
encodings (input and output masks) for such a system can be fully optimized in this way,
and that the encodings can be successfully applied to the real physical setup.
Previous research in the usage of electro-optical dynamical systems for signal processing
used random input encodings, which are quite inefficient in scenarios where the input di-
mensionality is high. We focused on two tasks with a relatively high input dimensionality:
the MNIST written digit recognition data set and the TIMIT phoneme recognition data
set. We showed that in both cases, optimizing the input encoding provides a significant
performance boost over random masks. We also showed that the input encoding for the
MNIST data set seems to directly utilize the inherent dynamics of the system, and hence
does more than simply provide a useful feature set.
Note that the comparison with Reservoir Computing is based on the constraints by a given
physical setup and a given set of resources. We note that the Reservoir Computing setup
could give good results on the proposed tasks too, if we were greatly scaling up its effec-
tive dimensionality. This has been evidenced in, for example, Triefenbach et al. (2010),
where good results on the TIMIT data set were achieved by using Echo State Networks (a
particular kind of Reservoir Computing) of up to 20,000 nodes. In our setup this would
be achieved by increasing the number of masking steps Nm within one masking period.
In reality, however, we will face two practical problems. First of all, there are bandwidth
limitations in signal generation and measurement. Parts of the signal that fluctuate rapidly
would be lost when reducing the duration of a single masking step. If one would scale up
by keeping the length of the mask steps fixed but use a longer physical delay, for instance
a fiber of tens or hundreds of kilometers, the potential gain in performance comes at the
cost of one of the systems important advantages: its speed. Also it is hard to foresee how
other optical effects in such long fibers such as dispersion and attenuation, would affect
performance. This would be an interesting research topic for future investigations.
At the current stage we did not quantify how much the results in this paper hinge on the
ability to model the system mathematically. This particular system can be modeled rather
precisely, but it is unclear how fast the usefulness of the presented approach would degrade
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when the model becomes less acute.
Several directions for future improvements are apparent. The most obvious one is that we
could greatly simplify the training process by putting the DCMZ measurements directly in
the training loop: instead of optimizing input masks in simulations, we could just as well
directly use real, measured data. The Jacobians required for the backpropagation phase
can be computed from the measured data. A training iteration would then consist of the
following steps: sample data, produce the corresponding input to the DCMZ with the cur-
rent input mask, measure the output, perform backpropagation in simulation, and update
the parameters. The benefit would be that we directly end up with functional input and
output masks, without the need for retraining. On top of that, data collection would be
much faster. The only additional requirement for this setup would be the need for a single
computer controlling both signal generation and signal measurement.
The next direction for improvement would be to rethink the design of the system from a
machine learning perspective. The current physical setup on which we applied backprop-
agation finds its origins in reservoir computing research. As we argue in Section 2, the
system can be considered as a special case of recurrent network with a fixed, specific con-
nection matrix between the hidden states at different time steps. In the reservoir computing
paradigm, one always uses fixed dynamical systems that remain largely unoptimized, such
that in the past this fact was not particularly restrictive. However, given the possibility
of fully optimizing the system that was demonstrated in this paper, the question on how
to redesign this system such that we can assert more control over the recurrent connection
matrix, and hence the dynamics of the system itself, becomes far more relevant. Currently
we have a fixed dynamical system of which we optimize the input signal to accommodate
a certain signal processing task. As explained at the end of Section 3.2, it appears that
backpropagation can currently only leverage the recurrence of the system to a limited de-
gree, when using a single delay loop. Therefore it would be more desirable to optimize both
the input signal and the internal dynamics of the system to accommodate a certain task.
Alternatively, the configuration can be easily extended to multiple delay loops, allowing for
a richer recurrent connectivity.
The most significant result of this paper is that we have shown experimentally that the
backpropagation algorithm, a highly abstract machine learning algorithm, can be used as
a tool in designing analog hardware to perform signal processing. This means that we may
be able to vastly broaden the scope of research into physical and analog realizations of
neural architectures. In the end this may result in systems that combine the best of both
worlds: powerful processing capabilities at a tremendous speed and with a very low power
consumption.
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Abstract

Beamforming is a widely used technique for source localization in signal processing and
neuroimaging. A number of vector-beamformers have been introduced to localize neuronal
activity by using magnetoencephalography (MEG) data in the literature. However, the ex-
isting theoretical analyses on these beamformers have been limited to simple cases, where
no more than two sources are allowed in the associated model and the theoretical sensor
covariance is also assumed known. The information about the effects of the MEG spatial
and temporal dimensions on the consistency of vector-beamforming is incomplete. In the
present study, we consider a class of vector-beamformers defined by thresholding the sensor
covariance matrix, which include the standard vector-beamformer as a special case. A gen-
eral asymptotic theory is developed for these vector-beamformers, which shows the extent
of effects to which the MEG spatial and temporal dimensions on estimating the neuronal
activity index. The performances of the proposed beamformers are assessed by simulation
studies. Superior performances of the proposed beamformers are obtained when the signal-
to-noise ratio is low. We apply the proposed procedure to real MEG data sets derived from
five sessions of a human face-perception experiment, finding several highly active areas in
the brain. A good agreement between these findings and the known neurophysiology of the
MEG response to human face perception is shown.

Keywords: MEG neuroimaging, vector-beamforming, sparse covariance estimation,
source localization and reconstruction

1. Introduction

MEG is a non-invasive imaging technique that records brain activity with high temporal
resolution. Postsynaptic current flow within the dendrites of active neurons generates a
magnetic field that can be measured close to the scalp surface by use of sensors (Hämäläinen
et al., 1993). The magnitude of these measured fields is directly related to neuronal current
strength, and hence their measurement will reflect the amplitude of brain activity. The
major challenge, however, is to localize active regions inside the head, given the measured
magnetic fields outside the head (i.e., given MEG data). This is an ill-posed problem
of source localization since the magnetic fields could be caused by an infinite number of
neuronal regions. Mathematically, the problem can be stated as follows: one observes a
vector of time-series Y(t) = (Y1(t), ..., Yn(t))T ∈ Rn, t = tj , 1 ≤ j ≤ J from n sensors,
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which are linked to candidate sources located at rk, 1 ≤ k ≤ p in the brain via the model

Y(t) =

p∑
k=1

Hkmk(t) + ε(t), (1.1)

where Hk is an n × 3 lead field matrix at rk (i.e., the unit output of the candidate source
at location rk, which is derived from Maxwell’s equations), mk(t) with covariance matrix
Σk is a 3× 1 moment (time-course) at time t and location rk, ε(t) with covariance matrix
σ20In represents white noises at the MEG channels, and In is the n × n identity matrix.
See Mosher et al. (1999) for more details. In practice, when candidate source locations
(i.e., voxels) are created by discretizing the source space in the brain, the number of these
sources can be substantially larger than the number of available sensors. Moreover, unlike
the traditional functional data, not only source time courses but also sensor readings are
spatially correlated. Therefore, searching for a small set of latent sources of non-null powers
from a large number of candidates poses a challenge to standard i.i.d. sample-based methods
in functional data analysis (Ramsay, 2006). Here, the source power at location rk is referred
as the trace of the covariance matrix Σk.

Two types of approaches have been proposed for handling the above problem in the
literature: global approach and local approach (e.g., Henson et al., 2011; Bolstad et al.,
2009; Van Veen et al., 1997; Robinson, 1999; Huang et al., 2004; Quraan et al., 2011). In the
global approach, one puts all candidate sources into the model and solves a sparse estimation
problem. In the local approach, on other hand, one invokes a list of local models, each is
tailored to a particular candidate region. The global approach often requires to specify
parametric models, while the local approach is model-free. When the number of candidate
sources p is small or moderate compared to the number of available sensors n, one may use a
Bayesian method to infer latent sources, with helps of computationally intensive algorithms
(e.g., Henson et al., 2011). To make an accurate inference, a large p should be chosen.
However, when p is large, the global approach may be computationally intractable and the
local approach is preferred. Here, we focus on the so-called linearly constrained minimum
variance (LCMV) beamforming (also called vector-beamforming), a local method for solving
the above large-p-small-n problem. It involves two steps as follows:

• Projection step. For location rk in the source space, one searches for the optimal
n × 3 weighting-matrix W by minimizing the trace of the sample covariance of the
projected data W TY (tj), 1 ≤ j ≤ J , subject to W THk = I3, where I3 is a 3 × 3
identity matrix. This gives the optimal trace

Ŝk = tr([HT
k Ĉ
−1Hk]

−1), (1.2)

where Ĉ is a sensor covariance estimator and for any invertible matrix A, A−1 denotes
its inverse, and tr(·) stands for the matrix trace operator. See Van Veen et al. (1997)
for the details.

• Mapping step. For each location rk, calculate the neuronal activity index
Ŝk/(σ

2
0tr([HT

k Hk]
−1)), where σ20 is estimated by certain baseline noise data such as

the pre-stimulus data. Plot the index against the grid points, creating a neuronal
activity map over a given temporal window.

2100



LCMV Beamforming

In the projection step, the procedure aims at estimating the desired signal from each
chosen location while minimizing the contributions of other unknown locations in the pres-
ence of noises by optimizing the variation of the projected data. This can be easily seen from
the following decomposition of the projected covariance under the constrain W THk = I3:

tr
(
cov(W TY(t))

)
= tr(Σk) + tr(W T cov(

∑
j 6=k

Hjmj(t) + ε(t))W )

+2tr(cov(mk(t),W
T (
∑
j 6=k

Hjmj(t) + ε(t)))),

where the first term is the underlying signal strength at rk and the last two terms are the
contributions of other locations and background noises to the estimated strength of the
signal at rk. Therefore, minimizing the trace of the projected covariance of the data with
respect to W is equivalent to minimizing the the contributions of other locations and back-
ground noises to estimating the true signal strength at rk. The further mathematical details
can be found in Sekihara and Nagarajan (2008). As pointed out before, in practice, we often
have the baseline noise data. Performing the above projection procedure on the noise data
under the assumption that the noise covariance matrix is approximately σ20In, we obtain the
optimal trace of the covariance matrix of the projected noise at rk, σ

2
0tr([HT

k Hk]
−1). This

implies that the above neuronal activity index is a signal-to-noise ratio (SNR) at location
rk. Therefore, the map generated in the mapping step is a SNR map. A similar formula
can be derived under a general model of the noise covariance. However, to avoid high-
dimensional effects on estimating sensor covariance matrices, we often employed a diagonal
noise covariance model even when the true one is not diagonal.

Both theoretical and empirical studies have suggested that the vector-beamforming can
provide excellent performance given a sufficient number of observations (e.g., Sekihara et al.,
2004; Brookes et al., 2008; Quraan et al., 2011). However, the existing theoretical analy-
ses have been limited to simple cases, where no more than two sources are allowed in the
model and the theoretical sensor covariance is assumed known. In limited data scenarios
the estimated sensor covariance may possess considerable variation and thus deteriorate the
performance of localization. Empirical studies have also demonstrated that the sampling
window and rate are generally required to increase as the number of spatial sensors increases.
For example, when using the sample covariance matrix to estimate the sensor covariance
matrix, the number of statistically independent data records should be three or more times
the number of sensors in order to obtain statistically stable source location estimates (e.g.,
Rodŕıguez-Rivera et al., 2006). Consequently, the potential advantages of having a large
number of sensors are offset by the requirement for increased sampling window and rate.
Therefore, it is important to develop a general framework for users to examine the extent
of effects to which the spatial dimension (i.e., the lead field matrix) and the temporal di-
mension (i.e., the temporal correlations of sensor measurements) of MEG on the accuracy
of source localization. Furthermore, most brain activities are conducted by neural networks
which consist of multiple sources. For example, in the so-called evoked median-nerve MEG
response study, scientists have found the relatively large number of neuronal sources ac-
tivated in a relatively short period of time by the median-nerve stimulation with typical
repetition rates, which challenges covariance-based analysis techniques such as beamformer
due to source cancellations (Huang et al., 2004). We need to understand how the accuracy
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of localization is affected by source cancellations both theoretically and empirically. In
particular, we need to address the fundamental questions of whether the neuronal activity
map can reveal the true sources when the number of sensors and the width of the sampling
window are large enough and of how much multiple source cancellation effects are reduced
by increasing spatial and temporal dimensions of MEG.

The goal of the present study is to demonstrate at both theoretical and empirical levels
the behavior of a class of vector-beamforming techniques which includes the standard vector-
beamformer as a special example. These beamformers are based on thresholding the sample
sensor covariance matrix. By thresholding, we aim at reducing the noise level in the sample
sensor covariance. We provide an asymptotic theory on these beamformers when the sensor
covariance matrix is consistently estimated and when multiple sources exist. We show
that the estimated source power is consistent when multiple sources are asymptotically
separable in terms of a lead field distance. We further assess the performance of the proposed
procedure by both simulations and real data analyses.

The paper is organized as follows. The details of the proposed procedures are given in
Section 2. The asymptotic analysis is provided in Section 3. Other covariance estimator-
based beamformers are introduced in Section 4. The simulation studies on these beamform-
ers and an application to face-perception data are conducted in Section 5. The discussion
and conclusion are made in Section 6. The proofs of the theorems and corollaries are de-
ferred to Section 7. Throughout the paper, let ||A|| denote the operator norm of matrix
A. For a sequence of matrix An, we mean by An = O(1) that ||An|| is bounded and by
An = o(1) that ||An|| = o(1). Similarly, we define the notations Op and op for a sequence of
random matrices An. For non-negative matrices A and B, we say A < B if aTAa < aTBa
for any a with ||a|| = 1. We say that random matrix An is asymptotically larger than ran-
dom matrix Bn in probability if min||a||=1 a

T (An − Bn)a is asymptotically bounded below
from zero in probability.

2. Methodology

Suppose that the sensor measurements (Y(tj) : 1 ≤ j ≤ J) are weakly stationary time-
courses observed from n sensors. We want to identify a small set of non-null sources that
underpin these observations. To this end, we introduce a family of vector-beamformers
based on thresholding sensor covariance as follows.

2.1 Thresholding the sensor covariance matrix

The sensor covariance matrix of Y(t), C can be estimated by the sample covariance matrix

Ĉ = (ĉij) =
1

J

J∑
j=1

Y(tj)Y(tj)
T − ȲȲ

T
,

where Ȳ is the sample mean of (Y(tj) : 1 ≤ j ≤ J). It is well-known that the sample
covariance estimator can breakdown when the dimension n is large (Bickel and Levina,
2008). In the statistical literature (Bickel and Levina, 2008), various sparse estimation pro-
cedures have been proposed to fix the sample covariance, including the following thresholded
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estimator:

Ĉ(τnJ) = (ĉij(τnJ))

with ĉij(τnJ) = ĉijI(|ĉij | ≥ τnJ), where τnJ is a varying constant in n and J .

As with the i.i.d. case (Bickel and Levina, 2008), the above thresholded estimator will
be shown to converges to positive definite limit with probability tending to 1 in the Lemma
7.2 in Section 7 below. Although the thresholded estimator has good theoretical properties,
it may not be always positive definite when the sample size is finite or when sensors are
spatially too close to each other. To tackle the issue, we assume that Ĉ(τnJ) has the eigen-
decomposition Ĉ(τnJ) =

∑n
k=1 λ̂kv

T
k vk and then a positive semidefinite estimator can be

obtained by setting these negative eigenvalues to zeros. We further shrinkage the covariance
matrix estimator by artificially adding ε0In to it in our implementation, where we choose
ε0 to be a tuning constant which is equal to or slightly larger than the maximum eigenvalue
of the noise covariance matrix. We will show in the following sections that adding ε0In to
the thresholded covariance matrix does not affect the consistency of the neuronal activity
index.

2.2 Beamforming

As before, let Σk denote the covariance matrix of the moment mk(t) at the location rk.
Based on the thresholded sensor covariance estimator Ĉ(τnJ), we estimate Σk, 1 ≤ k ≤ p
and create a neuronal activity map in the following two steps.

In the projection step, for 1 ≤ k ≤ p, we search for an n×3 weight matrix Ŵk which at-
tains the minimum trace of W T Ĉ(τnJ)W subject to W THk = I3. When Ĉ(τnJ) is invertible,
it follows from Van Veen et al. (1997) that

Ŵk = Ĉ(τnJ)−1Hk

[
HT
k Ĉ(τnJ)−1Hk

]−1
with the resulting moment covariance matrix and trace estimators

Σ̂k =
[
HT
k Ĉ
−1(τnJ)Hk

]−1
, Ŝk = tr

{[
HT
k Ĉ(τnJ)−1Hk

]−1}
respectively. In the mapping step, we calculate the so-called neuronal activity index

NAI(rk) = Ŝk/
(
σ20tr

([
HT
k Hk

]−1))
,

creating a brain activity map, where σ20 is estimated from baseline data (i.e., called pre-
stimulus data in the next subsection). One of the underlying sources can be then estimated
by the global peak on the map with the associated latent time-course estimated by projecting
the data along the optimal weighting vector. The multiple sources can also be identified by
grouping the local peaks on the transverse slices of the brain.

2.3 Choosing the thresholding level

In practice, the MEG imaging is often run on a subject first without stimulus and then
with stimulus. This allows us to calculate the sample covariance Ĉ for the stimulus data
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as well as the sample covariance Ĉ0 for the pre-stimulus data. The latter can provide
an estimator of the background noise level. In the next section, we will show that the
convergence rate of the thresholded sample covariance is O(

√
log(n)/J). In light of this,

we set τnJ = c0σ̂
2
0

√
log(n)/J with a tuning constant c0 and threshold Ĉ by τnJ , where

σ̂20 is the minimum diagonal element in Ĉ0 and c0 is a tuning constant. Note that, when
c0 = 0, the proposed procedure reduces to the standard vector-beamformer implemented in
the software FieldTrip (Oostenveld et al., 2010). For each value of c0, we apply the proposed
procedure to the data and calculate the maximum neuronal activity index

NAIc0 = max{NAI(r) : r is running over the grid}. (2.3)

In simulations, we will show that c0 ∈ D0 = {0, 0.5, 1, 1.5, 2} has covered its useful range.
Our simulations also suggests that there is an optimal value of c0, which depends on several
factors including the strengths of signals and source interferences. To exploit these two
factors, we choose c0 in which NAIc0 attains maximum or minimum, resulting in two proce-
dures called ma and mi respectively. By choosing c0, the procedure ma intends to increase
the maximum SNR value, while the procedure mi tries to reduce source interferences. The
simulation studies in Section 5 suggest that mi can perform better than ma when sources
are correlated.

2.4 Two sets of stimuli

Suppose now that MEG measurements (Y(1)(t)) and (Y(2)(t)) are made under two dif-
ferent sets of stimuli and pre-stimuli with the associated neuronal activity indices de-
noted by NAI(1)(rk) and NAI(2)(rk) respectively. The previous strategy for selecting the
tuning constant c0 can be adopted here when we calculate these indices. To identify
source locations that respond to the change of stimulus set, we calculate a log-contrast
log(NAI(1)(rk)/NAI(2)(rk)) between the two sets of stimuli at location rk, 1 ≤ k ≤ p, cre-
ating a log-contrast map. The resulting log-contrast map is equivalent to the map based
on index ratio NAI(1)(rk)/NAI(2)(rk), which was often seen in the literature (e.g., Hillebrand
et al., 2005). We further take the global peak of the log-contrast as the maximum location
estimator for a source location that contributes to the difference between the two sets of
MEG measurements.

3. Theory

In this section, we develop a theory on the consistency as well as the convergence rate of the
hard thresholding-based beamformer estimator under regularity conditions. In particular,
we show that the consistency holds true under regularity conditions if we let the hard
threshold τnJ = A

√
log(n)/J with constant A. This provides a theoretical basis for using

the proposed procedures ma and mi.

Without loss of generality, we assume that the first q ≤ p moment vectors are of non-
zero covariance matrices Σk, 1 ≤ k ≤ q, where q is unknown and often much smaller than
p in practice. For the simplicity of mathematical derivations, we also assume that Σk does
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not grow with the number of sensors n. Our task is to identify the unknown true model

Y(t) =

q∑
k=1

Hkmk(t) + ε(t), (3.4)

from the working model (1.1) by using the proposed procedure, where the unknown moments
mk(t), 1 ≤ k ≤ q are of non-zero powers tr(Σk), 1 ≤ k ≤ q. To establish a theory for the
proposed procedures, we assume that

(A1): Both the moment vectors (mk(t) : 1 ≤ k ≤ q) and the white noise process (ε(t))
are stationary with zero means and temporally uncorrelated with each other. Also, mk(t)
is temporally uncorrelated with mj(t) for k 6= j.

Under Condition (A1), the sensor covariance matrix of Y(t), C can be expressed in the
form

C =

q∑
k=1

HkΣkH
T
k + σ20In.

As pointed out by Sekihara and Nagarajan (2008, Chapter 9), Condition (A1) is one of
fundamental assumptions in the vector-beamforming. However, source activities in the
brain are inevitably correlated to some degree, and in strict sense, (A1) cannot be satisfied.
The theoretical influence of temporally correlated sources has been investigated by Sekihara
and Nagarajan (2008, Chapter 9). The equation (9.3) in Sekihara and Nagarajan (2008,
Chapter 9) implies that the influence can be ignored if the partial correlations between
sources are close to zeros in order of o(1/n) when the number of sensors n is sufficiently
large. Note that although in practice the number of sensors is limited to a few hundreds,
we still ideally let n tend to infinity to identify potential spatial factors that affect the
performance of a vector-beamformer. In the next section, by using simulations, we will
demonstrate that the source correlations can mask some true sources.

To show the consistency of the estimators Σ̂k and Sk, we need more notations and
condition as follows. Let Hk denote the lead field matrix at the location rk. For the
simplicity of the technical derivations later, we further assume that the lead field matrices
satisfy the condition that for any location rk, H

T
k Hk/n→ G in terms of the operator norm

as n tends infinity, where G is a 3× 3 positive definite matrix.
Under the above condition, we can find a positive definite matrix Qk satisfying that

HT
k Hk = nQkQ

T
k and Q−1k HT

k HkQ
−T
k = nI3 when n is large enough, where I3 is an identity

matrix. Letting H∗k = HkQ
−T
k , m∗k(t) = QTkmk and Σ∗k = QTk ΣkQk, we reparametrize the

model (1.1) as follows:

Y(t) =

p∑
k=1

H∗km
∗
k + ε(t)

with the covariance matrix C =
∑p

k=1H
∗
kΣ∗kH

∗T
k + σ20In. Then, under the reparametrized

model, the estimators

Σ̂∗k =
[
H∗Tk Ĉ(τnJ)−1H∗k

]−1
=
[
Q−1k HT

k Ĉ(τnJ)−1HkQ
−T
k

]−1
= QTk Σ̂kQk.

Ŝk = tr(Q−Tk Σ̂∗kQ
−1
k ).
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Consequently, Σ̂∗k is consistent with Σ∗k if and only if Σ̂k is consistent with Σk. Therefore,
without loss of generality, hereinafter we assume that

(A2): HT
k Hk = nI3 for any location rk.

We process the remaining analysis in two stages: In the first stage, we develop an
asymptotic theory for the proposed vector-beamformers when the sensor covariance matrix
C is known. The sensor covariance matrix can be assumed known if the width of the
sampling window can be arbitrarily large. In the second stage, we extend the theory to the
case where C is estimated by Ĉ(τnJ).

3.1 Beamformer analysis when C is known

We begin with introducing some more notations. For any locations rx and ry, let Hx and Hy

denote their lead field matrices. Define the lead field coherent matrix by ρxy = ρ(rx, ry) =
HT
x Hy/n. Note that ρxy+ρyx = I3−(Hx−Hy)

T (Hx−Hy)/(2n). Therefore, I3−(ρxy+ρyx)
indicates how close rx is to ry. In general, the partial coherence factor matrices (or called
partial correlation matrices) ayx|k, 1 ≤ k ≤ q are defined iteratively by the so-called sweep
operation (Goodnight, 1979) as follows:

ayx|1 = σ−20 ρ(ry, r1, rx) = σ−20 (ρ(ry, rx)− ρ(ry, r1)ρ(r1, rx)) ,

ayx|(k+1) = ayx|k − ay(k+1)|k
[
a(k+1)(k+1)|k

]−1
a(k+1)x|k, 1 ≤ k ≤ q − 1.

For example, we have

σ20ayx|1 = ρyx − ρy1ρ1x, σ20a22|1 = I3 − ρT12ρ12,

σ20a33|2 = I3 − ρT13ρ13 −
(
ρ23 − ρT12ρ13

)T [
I3 − ρT12ρ12

]−1 (
ρ23 − ρT12ρ13

)
.

Note that σ20a(k+1)(k+1)|k gauges the partial variability of rk+1 given the previous r′ks while
σ20ayx|(k+1) shows the partial coherence between rx and ry given {r1, ..., rk+1}. We expect
that ayx|(k+1) will be small if ry and rx are spatially far away from each other. We define

byx|k, 1 ≤ k ≤ q, by letting byx|1 = ρy1Σ
−1
1 ρ1x and

byx|k = byx|(k−1) − byk|(k−1)
[
akk|(k−1)

]−1
akx|(k−1) − ayk|(k−1)

[
akk|(k−1)

]−1
bkx|(k−1)

+ayk|(k−1)
[
akk|(k−1)

]−1 {
Σ−1k + bkk|(k−1)

} [
akk|(k−1)

]−1
akx|(k−1).

We also define cjj|k, 1 ≤ j ≤ k ≤ q by

cjj|k =

{
−Σ−1k

[
akk|(k−1)

]−1
Σ−1k , j = k

cjj|(k−1) − bjk|(k−1)
[
akk|(k−1)

]−1
bTjk|(k−1), 1 ≤ j ≤ k − 1.

Let anq = nmin1≤k≤q−1 ||a(k+1)(k+1)|k||, and let km = 0 if anq →∞ and km = min{1 ≤
k ≤ q−1 : n||a(k+1)(k+1)|k|| = O(1)} if anq = O(1). Let dx|q = max2≤k≤q ||akx|(k−1)a−1kk|(k−1)||,
which measures the maximum absolute partial correlation among q sources by using their
lead field matrix. As the lead field matrix measures the unit outputs of sources recorded by
sensors, the maximum absolute partial correlation may increase when the number of sensors
n increases. In the following theorem, for any location rx of interest, the condition that
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dx|q = O(1) (i.e., the maximum absolute partial correlation will be bounded) is imposed
on the lead field matrix. The condition is used to ensure the coherence stability for the
grid approximation to the lead field. Our numerical experience suggests that the condi-
tion roughly holds when the underlying sources are asymptotically not close to each other.
See the discussion in Section 7. The following theorem shows when the source covariance
estimator is consistent and when it is not.

Theorem 1 Under Conditions (A1)∼(A2) and C is known, we have:

(1) If anq = O(1) and max1≤k≤q dk|q = O(1), then the estimated source covariance at

rkm+1

[
Hkm+1

TC−1Hkm+1

]−1
is asymptotically larger than Σkm+1.

(2) If anq →∞, then for 1 ≤ j ≤ q, the estimated source covariance at rj admits

[
HT
j C
−1Hj

]−1
= Σj +

1

n
Σjcjj|qΣj +O(a−2nq ),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1nq ) as n→∞.

(3) If anq →∞, then for rx 6∈ {r1, ..., rq}, the estimated source covariance at rx admits

[
HT
x C
−1Hx

]−1
=

1

n
a−1xx|q −

1

n2
a−1xx|qbxx|qa

−1
xx|q +O(a−3nq ),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→∞.

The following lemma shows when the source power estimator is consistent.

Corollary 2 Under Condition (A1)∼(A2), we have:

(1) If anq = O(1) and max1≤k≤q dk|q = O(1), then the estimated source power at rkm+1

tr
([
Hkm+1

TC−1Hkm+1

]−1)
is asymptotically larger than tr (Σkm+1).

(2) If anq →∞, then for 1 ≤ j ≤ q, the estimated source power at rj admits

tr
([
HT
j C
−1Hj

]−1)
= tr(Σj) +

1

n
tr(Σjcjj|qΣj) +O(a−2nq ),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1nq ) as n→∞.

(3) If anq →∞, then for rx 6∈ {r1, ..., rq}, the estimated source power at rx admits

tr
([
HT
x C
−1Hx

]−1)
=

1

n
tr(a−1xx|q)−

1

n2
tr(a−1xx|qbxx|qa

−1
xx|q) +O(a−3nq ),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→∞.
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Remark 3 It follows from the definition that cjj|q is proportional to σ20, which implies the
convergence rate of the neuronal activity index is of order O(σ20/(σ

2
0anq)), where σ20anq is

independent of σ20. Therefore, the effect of adding ε0In to C on the above convergence rate
is increasing or decreasing the rate by the amount of O(ε0/((σ

2
0 + ε0)anq)). In particular,

adding ε0In to C does not affect the consistency of the neuronal activity index if anq tends
infinity.

Remark 4 From the proof in Section 7, we can see that if we relax the coherence stability
condition max1≤k≤q dk|q = O(1) to max1≤k≤q dk|q = O(log(n)), then the convergence rates
in the theorem will be reduced by a factor of log(n).

Remark 5 If there are MEG measurements made under two different sets of stimuli and

pre-stimuli, we let C(1) =
∑p

k=1H
T
k Σ

(1)
k Hk + σ201In and C(2) =

∑p
k=1H

T
k Σ

(2)
k Hk + σ202In

be the corresponding sensor covariance matrices. We perform the proposed beamformers on
C(1) and C(2) respectively. Then, under certain conditions, Theorem 1 can be extended to
this setting. When rk is a source location for both sets of stimuli, the log-contrast tends to
the true one as n → ∞; when rk is a source for stimulus set 1 but not for stimulus set
2, the log-contrast tends to infinite; when rk is a source location for stimulus set 2 but not
for stimulus set 1, the log-contrast tends to −∞; when rj is neither a source for stimulus
set 1 nor a source for stimulus 2, the log-contrast tends to a finite value depending on the
associated values of axx|q. The details are omitted here.

3.2 Beamformer analysis when C is estimated

We now estimate the sensor covariance matrix by using the sensor observations over J
time instants. Following Bickel and Levina (2008) and Fan et al. (2011), we establish the
asymptotic theory for the resulting beamformer estimators when both n and J are tending
to infinity.

In addition to Conditions (A1) and (A2), we need the following two conditions for
conducting the asymptotic analysis above. The first one is imposed to regularize the tail
behavior of the sensor processes.

(A3): There exist positive constants κ1 and τ1 such that for any u > 0 and all t,

max
1≤i≤n

P (||Yi(t)|| > u) ≤ exp(1− τ1uκ1)

and max1≤i≤nE||Yi(t)||2 < +∞, where the noise covariance matrix is σ20In and || · || is the
L2 norm.

Note that Condition (A3) holds if Y(t) is a multivariate normal.
In the second additional condition, we assume that the sensor processes are strong

mixing. Let F0
−∞ and F∞k denote the σ-algebras generated by {Y(t) : −∞ ≤ t ≤ 0} and

{Y(t) : t ≥ k} respectively. Define the mixing coefficient

α(k) = sup
A∈F0

−∞,B∈F∞k
|P (A)P (B)− P (AB)|.

The mixing coefficient α(k) quantifies the degree of the temporal dependence of the process
{Y(t)} at lag k. We assume that α(k) is decreasing exponentially fast as lag k is increasing.
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(A4): There exist positive constants κ2 and τ2 such that

α(k) ≤ exp(−τ2kκ2).

Condition (A4) is a commonly used assumption for studying asymptotic behavior of
time series.

For a constant A, let τnJ = A
√

log(n)/J . As before, let Ȳi be the sample mean of the
i-th sensor and

ĉik =
1

J

J∑
j=1

(Yi(tj)− Ȳi)(Yk(tj)− Ȳk), Ĉ(τnJ) = (ĉikI(ĉik ≥ τnJ)),

where I(·) is the indicator.
We are now in position to generalize Theorem 1 to the case where the sensor covariance

is estimated by the thresholded covariance estimator.

Theorem 6 Under Conditions (A1)∼(A4) and assuming that n2
√

log(n)/J = o(1) as n
and J tend to infinity, we have:

(1) If anq = O(1) and max1≤k≤q dk|q = O(1), then as n and J tend to infinity, the

estimated source covariance at rkm+1 Σ̂km+1 is asymptotically larger than Σkm+1 in
probability.

(2) If anq → ∞, then as n and J tend to infinity, for 1 ≤ j ≤ q, the estimated source
covariance at rj admits

Σ̂j = Σj +
1

n
Σjcjj|qΣj +Op(a

−2
nq + n2

√
log(n)/J),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1nq ) as n→∞.

(3) If anq →∞, then as n and J tend to infinity, for rx 6∈ {r1, ..., rq}, the estimated source
covariance at rx admits

Σ̂x =
1

n
a−1xx|q −

1

n2
a−1xx|qbxx|qa

−1
xx|q +O(a−3nq + n2

√
log(n)/J),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→∞.

Corollary 7 Under Conditions (A1)∼(A4) and assuming that n2
√

log(n)/J = o(1) as n
and J tend to infinity, we have:

(1) If anq = O(1), max1≤k≤q dk|q = O(1), as n and J tend to infinity, the estimated source

power at rkm+1, Ŝkm+1 is asymptotically larger than tr (Σkm+1).

(2) If anq → ∞, then as n and J tend to infinity, for 1 ≤ j ≤ q, the estimated source
power at rj admits

Ŝj = tr(Σj) +
1

n
tr(Σjcjj|qΣj) +O(a−2nq + n2

√
log(n)/J),

provided max1≤k≤q dk|q = O(1), where ||Σjcjj|qΣj/n|| = O(a−1nq ) as n→∞.
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(3) If anq →∞, then as n and J tend to infinity, for rx 6∈ {r1, ..., rq}, the estimated source
power at rx admits

Ŝx =
1

n
tr(a−1xx|q)−

1

n2
tr(a−1xx|qbxx|qa

−1
xx|q) +O(a−3nq + n2

√
log(n)/J),

provided max1≤j≤q dj|q = O(1), ||naxx|q|| → ∞, and dx|q = O(1) as n tends to infinity,
where bxx|q = O(1) as n→∞.

Remark 8 Theorem 6 indicates the convergence rate of the vector-beamformer estimation
is much slower than the empirical rate suggested by Rodŕıguez-Rivera et al. (2006). However,
the result is in agreement with an empirical result of Brookes et al. (2008). In fact, using
their heuristic arguments, we can show that the error of the power estimation at location rx
is determined by the factor Hx(Ĉ(τnJ)−1 − C−1)Hx, which has a rate of n2

√
log(n)/J.

Theorem 6 can be also extended to the scenarios where MEG data are obtained under
two different sets of stimuli.

Remark 9 From the proof of Theorem 6, we can see that the thresholded covariance is still
consistent with the true C even when the underlying sources are correlated.

4. Other covariance estimator-based beamformers

There are various ways to estimate the sensor covariance matrix. Each can be used to
construct a beamformer. These covariance estimators can be roughly divided into two cat-
egories, namely global shrinkage-based methods and elementwise thresholding-based meth-
ods. In shrinkage-based settings, the sample covariance is shrinking toward a target struc-
ture (for example, a diagonal matrix). The so-called optimal shrinkage estimator belongs
to this category (Ledoit and Wolf, 2004). In thresholding-based settings, an elementwise
thresholding is applied to the sample covariance estimator. Examples of these approaches
include hard thresholding, generalized thresholding and adaptive thresholding (Bickel and
Levina, 2008; Rothman et al., 2009; Cai and Liu, 2011). Here, we focus on the following
three methods recommended by the above authors.

The optimal shrinkage covariance matrix is defined by

Ĉopt =
b2n
d2n
µnIn +

d2n − b2n
d2n

Ĉ,

where

µn =
〈
Ĉ, In

〉
, d2n =

〈
Ĉ − µnIn, Ĉ − µnIn

〉
,

b̄2n =
1

J2

J∑
j=1

〈
YjY

T
j − Ĉ,YjY

T
j − Ĉ

〉
, b2n = min(b̄2n, d

2
n),

and the operator < A,B >= tr(ABT )/n for any n × n matrices A and B. The idea
behind the above estimator is to find the optimal weighted average of the sample covariance
matrix Ĉ and the identity matrix via minimizing the expected squared loss. Under certain
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conditions Ĉopt converges to the true covariance C as n tends infinity, implying that Ĉopt
can be degenerate if C is degenerate (Ledoit and Wolf, 2004). As before, we tackle the
issue by adding ε0In to Ĉopt, where ε0 is determined by the maximum eigenvalue of the
pre-stimulus sample covariance matrix. The beamformer based on the above covariance
estimator is denoted as sh.

A family of generalized thresholding-based covariance estimators indexed by tuning
constants c0 ≥ 0 and δ0 > 0 can be defined by replacing the hard thresholding in Subsection
2.1 with the generalized thresholding, i.e.,

Ĉg = (g(ĉij))

with g(ĉij) = ĉij(1− (τnJ/|ĉij |)δ0), where τnJ = c0σ̂
2
0

√
log(n)/J and σ̂20 is estimated from a

baseline sample. Following the suggestion of Rothman et al. (2009), we choose δ0 = 4. The
same maximum/minimum strategy as in Subsection 2.3 can be adapted to choose the tuning
constant c0 when we use the above estimator to construct a beamformer. The corresponding
beamformers are denoted by gmax and gmin respectively.

Similarly, an adaptive thresholding estimator can be introduced by replacing the above

τnJ in the g function by λij = 2
√
θ̂ij log(n)/J, where θ̂ij is the estimated variance of the

(i, j)-th entry ĉij and is defined by

θ̂ij =
1

J

J∑
k=1

[(Yik − Ȳi)(Yjk − Ȳj)− ĉij ]2

and Ȳi and Ȳj are the sample means of the i-th and the j-th sensors. See Cai and Liu
(2011). The corresponding beamformer is denoted by adp.

5. Numerical results

In this section, we compare the proposed procedures to the standard vector-beamformer
(with the tuning c0 = 0) and to the other covariance estimator-based beamformers in terms
of localization bias by simulation studies and real data analyses. Here, for any estimator
r̂ of a source location r, the localization bias |r̂ − r| is the L1 distance between r̂ and r.
The spatial correlation ρmax between locations r1 and r2 is measured by the maximum
correlation between the projected lead field vectors at r1 and r2:

ρmax(r1, r2) =

{
max

||η1||=1,||η2||=1

(l(r1)η1)
T l(r1)η1

||l(r1)η1||| · |l(r2)η2||

}
.

By simulations, we attempted to answer the following questions:

• Has the vector-beamformer been improved by using the thresholded covariance esti-
mator?

• To what extent will the performance of the proposed beamformer procedure deterio-
rate by source interferences (or source cancellations) and source spatial correlations?

• Can the proposed beamformers ma and mi be superior to the other covariance
estimator-based beamformers?
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5.1 Simulated data

We started with specifying the following two head models (Sarvas, 1987). The simple head
model that uses a homogeneous sphere in simulating the magnetic fields emanating from
current electric dipole neuronal activity possesses the advantage that the lead field matrix
can be calculated analytically. However, with more realistic head models, the numerical ap-
proximations such as a finite element method have to be used when we calculate the lead field
matrix. Here, we considered both of them: the simple one is a spherical volume conductor
with 10cm radius from the origin and with 91 sensors, created by using the software Field-
Trip (Oostenveld et al., 2010), and the realistic one is a single shell head model by using the
magnetic resonance imaging (MRI) scan of a human brain provided by Henson et al. (2011).
We then discretized the inside brain space into a 3D-grid of resolution 1 cm. This yielded a
grid with 2222 points for the simple model and 1487 points for the realistic model. The grids
was further sliced into 10 and 14 transverse layers along the z-axis of the brain respectively.
We put two non-null sources at r1 and r2 or three sources at r1, r2 and r3 respectively, where
two sources {r1, r2} are equal to {(3,−1, 4)T , (−5, 2, 6)T } cm or {(−5, 5, 6)T , (−6,−2, 5)T }
cm, and three sources {r1, r2, r3} are equal to {(3,−1, 4)T , (−5, 2, 6)T , (5, 5, 6)T } in the
Subject Coordinate System (SCS/CTF). Note that the second set of source locations was
obtained in our real data analyses which will be presented later. These sources were located
in the region of the parietal and occipital lobes, where visual, auditory and touch informa-
tion is processed. We considered two types of sources in the brain: evoked responses that
are phase-locked to the stimulus and induced responses that are not. The induced responses
often have oscillatory patterns. Combining these sources with the two head models, we had
the following four scenarios:

• Scenario 1: For the simple head model, we put two oscillatory sources at locations
r1 = (3,−1, 4)T and r2 = (−5, 2, 6)T with time-courses

mk(t) = ηk cos(20tπ), k = 1, 2,

respectively, where η1 = (10, 1, 1)T and η2 = (8, 0, 0)T . We considered two values of
the signal-to-noise-ratio (SNR): 0.04 and 1/0.64 = 1.5625.

• Scenario 2: For the simple head model, we put the above oscillatory sources at
locations r1 = (−5, 5, 6)T and r2 = (−6,−2, 5)T . We also considered two values of the
SNR: 0.04 and 1/0.64 = 1.5625.

• Scenario 3: For the realistic head model, we put the following evoked response
sources at locations r1 = (3,−1, 4)T and r2 = (−5, 2, 6)T with moments (i.e., time-
courses)

mk(t) = αk exp(−(t− τk1)2/ω2
k) sin(fk2π(t− τk2)), k = 1, 2,

respectively, where α1 = (5, 0, 0)T , α2 = (20, 0, 0)T , τ11 = 0.239, τ12 = 0.139, τ21 =
0.199, τ22 = 0.139, f1 = 4.75, f2 = 6.25, and ω1 = ω2 = 0.067. We considered three
values of the SNR: 1/0.352 = 8.16, 1/0.42 = 6.25, 1/0.52 = 4.
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• Scenario 4: For the realistic head model, we put the following evoked response
sources at locations r1 = (−5, 5, 6)T and r2 = (−6,−2, 5)T with moments (i.e., time-
courses)

mk(t) = αk exp(−(t− τk1)2/ω2
k) sin(fk2π(t− τk2)), k = 1, 2,

respectively, where α1 = (2, 0, 0)T , α2 = (18, 0, 0)T , τ11 = 0.439, τ12 = 0.139, τ21 =
0.399, τ22 = 0.139, f1 = 6, f2 = 9, and ω1 = ω2 = 2. We considered three values of
the SNR: 1/0.72 = 2.04, 1/0.762 = 1.73, 1/0.782 = 1.64.

• Scenario 5: We added another evoked response source at location r3 = (5, 5, 6)T to
the model in Scenario 3 with moment

m3(t) = α3 exp(−(t− τ31)2/ω2
3) sin(f32π(t− τ32)),

where α3 = (2.5, 0.25, 0.25), τ31 = 0.1, τ32 = 0.139, f3 = 1.25, and w3 = 0.067. The
three source locations are highly spatially correlated with the pairwise spatial corre-
lations ρ(r1, r2) = 0.7289, ρ(r1, r3) = 0.7935, and ρ(r2, r3) = 0.5924. We considered
the same SNR values as in Scenario 3.

The pair sources mk(t), k = 1, 2 for the first four scenarios and the treble sources mk(t), k =
1, 2, 3 for Scenario 5 are plotted respectively in Figure 1. By Scenarios 1 and 2, we com-
pared the proposed procedure to the standard vector-beamformer (with c0 = 0) and to
the other estimator-based beamformer, when there existed two highly correlated oscillatory
sources (they have the same frequency and phase, but with slightly different amplitudes).
By Scenarios 3 and 4, we tested these beamformers when there existed two unbalanced
evoked response (or slightly dumped-oscillatory) sources. By Scenario 5, we assessed these
beamformers when there were three spatially correlated source locations. In each scenario,
with time-window width 1 and sample rate J , we sampled 30 data sets of Y(t) from the
model

Y(t) =

p∑
k=1

Hkmk(t) + ε(t), (5.5)

where in Scenarios 1∼4, mk(t), k = 1, 2 are non-null time-courses at the two locations and
mk(t), 3 ≤ k ≤ p are null time-courses at other grid points, while in Scenario 5, mk(t),
k = 1, 2, 3 are non-null time-courses at the three locations and mk(t), 4 ≤ k ≤ p are null
time-courses at other grid points. As before, {ε(t)} is a white noise process with noise
level σ20. We considered various combinations of (n, p) = (91, 2222) and (102, 1487), and
J = 500, 1000, 2000, and 3000. Note that p is substantially larger than n and that the
sources are sparse in the sense that there are only two or three non-null sources among p
candidates.

We first applied the proposed procedures ma, mi and sh to each data set. We calculated
the maximum indices over the grids and the L1-biases of the maximum location estimates
to two sources respectively. For each combination of (n, p, J) and the SNR, we then summa-
rized these values in the form of a box-whisker plot as in Figures 2, 3, 4, and 5 corresponding
to Scenarios 1, 2, 3, and 4 respectively. The results demonstrate that the proposed hard
thresholding-based procedure mi can outperform both the conventional vector-beamformer
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Figure 1: The amplitude plots of mk(t), k = 1, 2 for Scenarios 1 to 4 and the amplitude plots
of mk(t), k = 1, 2, 3 for Scenario 5. In these plots, the blue, green and red colored
curves are corresponding to the amplitudes of mk(t), k = 1, 2, 3 respectively.

and the procedures ma and sh in all four scenarios, in particular when the SNR is low. We
note that in several cases, the localization bias and the maximum index were degenerate to
a single value with some outliers, indicating that random variations have not changed the
global peak location although they have effects on local peaks on the map. The simulations
also suggest that the proposed procedure may be unable to detect evoked response sources
of low SNR values. The local peak box-whisker plots in these figures reveal that all the
local peaks on the transverse slices are not close to the source location r1, implying that
the source at r1 has been masked on the neuronal activity index-based map even when two
sources have a similar power level. This may be due to source cancellations as the lead
field vectors at these two locations were correlated and the sensor positions might favor the
detection of r2. Finally, we note that the results are robust to the choice of J in the sense
that increasing sampling frequency has only slightly reduced both the mean and standard
error of localization bias.
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To compare the procedures ma, mi and sh with the procedures gma, gmi and adp
based on the generalized and adaptive thresholding, we again generated 30 data sets from
model (5.5) for each of the above four scenarios and for each combination of (n, p) =
(91, 2222) and (102, 1487), and J = 500, 1000, 2000, and 3000. We applied these procedures
to each data set and calculated their localization biases respectively. As before, we displayed
these biases by multiple box-whisker plots in Figures 6, 7 and 8. From these figures,
we can see a dramatic improvement in localization performance of the hard thresholding-
based procedure mi over the other procedures in Scenarios 1 and 2 and a slightly better
or similar performance to ma, gma, gmi, adp and sh in Scenarios 3 and 4. This is
striking because the existing studies have already shown that the soft (or generalized)
and adaptive thresholding-based covariance estimators can improve the hard thresholding-
based covariance estimator in terms of estimation loss. The potential explanations for this
phenomena are as follows: (1) The procedure adp may lose efficiency by not using the pre-
stimulus data. (2) The existing covariance estimators were aimed to improve the estimation
accuracy by reducing the estimation loss (the distance between the estimator and the true
covariance matrix) or by increasing the sensitivity and specificity in recovering sparse entries
in the true covariance matrix (Rothman et al., 2009; Cai and Liu, 2011). Unfortunately, the
sparsity in MEG means a sparse signal distribution, which is quite different from the entry
sparsity of the sensor covariance matrix. Therefore, these estimators may be not efficient
for improving the accuracy of the beamformer estimation which is related to the signal
sparsity. In fact, our simulation experience suggests that besides the covariance estimation,
there are other factors that can affect the performance of a beamformer such as the lead
field matrix and the spatial distribution of signals in the brain. Therefore, the covariance
estimator with a smaller estimation loss may not give rise to a beamformer with a lower
localization bias.

To assess the performances of the six procedures ma, mi, gma, gmi, adp and sh when
there are more than two spatially correlated sources, we applied these procedures to the
30 data sets generated for Scenario 5. We calculated the average localization bias for each
procedure and presented them in Figure 9. It can be seen from these plots that like in two-
source scenarios, mi can have superior performance over the other procedures. However,
compared the above result to those in Scenario 3, we can see that the source cancellation
from r3 has increased the average localization bias from zero to the value of three.

Note that although Theorem 2 suggests that in general the localization bias will be
reduced as the sampling rate increases, it does not implies the localization bias is a monotone
function of the sampling rate (or the number of time instances). In fact, from row 4 in
Figure 2 and row one in Figure 9, it can be seen that the localization bias when J = 500 is
smaller than when J = 1000, 2000 and 3000. A potential explanation is that in finite cases
a higher sampling rate may cause a higher amount of leakage of background noises (in a
neighborhood of the target location) into the neuronal activity index calculation.

Finally, we notice that we also carried out simulations with the soft thresholding (δ0 = 1).
The result is very similar to the case with δ0 = 4. For reasons of space, we do not report it
here.
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5.2 Face-perception data

We applied the proposed methodology to human MEG data acquired in five sessions by
Wakeman and Henson (Henson et al., 2011). In each session, 96 face trials and 50 scrambled
face trials were performed on a healthy young adult subject. Each trial started with a
central fixation cross (presented for a random duration of 400 to 600 ms), followed by a face
or scrambled face (presented for a random duration of 800 to 1000 ms), and followed by a
central circle for 1700 ms. The subject used either his/her left or right index finger to report
whether he/she thought the stimulus was symmetrical or asymmetrical vertically through
its center. The data were collected with a Neuromag VectorView system, containing a
magnetometer and two orthogonal, planar gradiometers located at each of 102 positions
within a hemispherical array situated in a light, magnetically shielded room. The sampling
rate was 1100Hz. We focused our analysis on localizing non-null source positions, where
neuronal activity increases for the face stimuli relative to the scrambled face stimuli.

For this purpose, we normalized the subject’s MRI scan to a MRI template by using the
FieldTrip, on which a grid CTF system of 1 cm resolution was created with 1487 points.
For each session, we applied the neuroimaging software SPM8 to read and preprocess the
recorded data, and to epoch and average the data generated from the face stimulus trials and
the scrambled face stimulus trials respectively. This gives rise to five 306×771 data matrices:
the first 220 columns for 200ms pre-stimuli and the later 551 columns for the stimuli. For
each session, we calculated the sample covariance Ĉ and noise covariance Ĉ0 by using the
stimulus data and the pre-stimulus data respectively. We estimated the baseline noise level
by σ̂20, the minimum diagonal element in Ĉ0. We applied the beamforming procedures
ma, mi, gma, gmi, adp, and sh to the face data set and the scrambled face data set
respectively, obtaining the log-contrasts at each grid point. Here, if there exist the negative
eigenvalues of the covariance estimators (used in ma, mi, gma, gmi, adp and sh), we set
them to zeros and added ε0 to them to make the resulting covariance estimators positive
definite, where ε0 was determined by the maximum eigenvalue of the noise matrix Ĉ0. For
each procedure, we interpolated and overlaid its log-contrasts on the structural MRI of the
subject, obtaining its index map. There were no visible differences among the maps derived
from ma, mi, gma, gmi and sh. The map derived from the adp slightly differed from the
rest. So, we reported only the mi-based and adp-based maps below.

For each session, we first identified the global peak location from each map, followed by
slicing the maps through their global peak locations as shown in Figure 10. For sessions
1 ∼ 4, the global peaks derived from the mi and adp were the same, which were located
at (−4, 3, 8)cm, (−1,−6, 8)cm, (−6,−2, 5)cm, and (−4,−4, 6)cm respectively. However,
for session 5, the global peaks derived from the mi and the adp were located at two
slightly different positions, (−4,−4, 6)cm and (−7,−3, 6)cm. We then projected the data
along the associated optimal weight directions, obtaining estimated time-courses at these
global peaks. For reasons of space, we presented only these time-courses derived from the
procedure mi. See Figure 12. Finally, we made 20 transverse slices along the z-axis to
identify the local peaks. There were some subtle differences between the mi-based and the
adp-based local peaks. For example, in session 1, the mi-based local peaks were located
at (1, 5, 2) cm, (0,−1, 11) cm, (3, 2, 10) cm, (3, 4, 9) cm, (−5,−3, 3) cm, (−4,−3, 4) cm,
(−2, 1, 1) cm,(−4,−3,−1) cm,(−2, 1, 0) cm,(−4,−5, 5) cm,(−4, 2, 6) cm,(−5, 3, 7) cm and
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(−4, 3, 8) cm, whereas the adp-based local peaks were located at (3, 2, 2)cm, (0,−1, 11)cm,
(−4, 3, 9)cm, (−6,−2, 1)cm, (−4,−3, 4)cm, (2, 3, 10)cm, (−4,−3,−1) cm, (−1, 1, 0) cm,
(−3, 6, 3) cm, (−4,−4, 5) cm, (−4, 2, 6) cm, (−5, 3, 7) cm, and (−4, 3, 8)cm. They are not
the same as shown in Figure 11. Note that the previous simulations demonstrated that
the procedure mi was expected to give a more accurate localization result than did the
procedure adp.

Although the areas highlighted in Figures 10 and 11 were varying over sessions, they did
reveal the following known regions of face perception: the occipital face area (OFA), the
inferior occipital gyrus (IOG), and the superior temporal sulcus (STS), and the precuneus
(PCu). Interestingly, in each session, we identified a pair of nearly symmetric sources, of
which one was strongly powered while the other was weakly powered. This phenomenon
occurred due to source cancellations that prevented the second source from identification
as we have demonstrated in our simulation studies. The time-courses plots in Figure 12
showed the response differences under face stimuli and scrambled face stimuli during the
time period 100ms∼300ms. The results are consistent with recent findings in face-perception
studies by using an MEG-based multiple sparse prior approach (Friston et al., 2006; Henson
et al., 2011) and by other empirical approaches (e.g., Pitcher et al., 2011; Kanwisher et al.,
1997). However, in the first two papers, the authors made a parametric model assumption
on source temporal correlation structures and imposed a limit on the number of candidate
sources in the model, whereas in our approach, the model is non-parametric and allows for
arbitrary number of candidate sources.

6. Discussion and Conclusion

In the present study, we have proposed a class of vector-beamformers by thresholding the
sensor sample covariance matrix. The consistency and the convergence rate of the proposed
vector-beamformer estimation have been proved in the presence of multiple sources. The
theory has provided a basis for choosing the threshold τnJ = c0σ

2
0

√
log(n)/J in the beam-

former construction. However, it requires a number of conditions. As pointed out in Section
3, conditions (A1)∼(A4) are commonly used assumptions in literature for studying multiple
time series (Sekihara and Nagarajan, 2008; Fan et al., 2011). We only need to validate the
coherence stability condition which is new. Intuitively, the strength of correlations between
sensors (therefore the absolute partial correlation) will increase when the number of sensors
increases in general. Taking the face-perception data (session 1) as an example, we show
how to validate it empirically by random sub-samples of the 306 sensors below. We take
the first two peaks in Figure 8 as two true sources. They are located at CTF (-4,3,8) cm
and (-4,-5,5) cm respectively. First, we reparametrize the lead field matrix as in Section
3. Then, for k = 1, 2, ..., 306, we randomly choose k sensors, obtaining a k × 4461 sub lead
field matrix for the 1487 voxels in the brain. We calculate the maximum absolute partial
correlation d12(k) = max{d1|2, d2|2} between the two sources and the maximum absolute
correlation dmax(k) = max dx|2 for all voxels, where x is running over these voxels. Finally,
we plot d12(k), dmax(k), and log(log(k)) against k = 1, 2, ..., 306 respectively as displayed
in Figure 13. As expected, the result shows that both d12(k) and dmax(k) change very
slowly when the number of sensors k changes, with a rate much slower than log(log(k)).
This implies that the coherence stability condition nearly holds.
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In real world situations, the underlying number of true sources, q needs to be estimated.
The influence of q on the beamformer estimators can be measured by the lead field partial
correlation coefficient anq defined in Section 3. In this paper, local peaks on transverse
slices have been used to reduce the search space of sources. We can cluster the local peak
values into two groups, one of which is taken as a group of potential sources. The size of the
selected group gives an estimate of q. In the face-perception data, we have only presented
the first two sources which are ranked higher than the remaining local peaks, because these
two are of clear neurological implications. Our approach is non-parametric in the sense
that we have not made any parametric assumptions on the model (1.1). However, if we
are willing to assume a family of parametric models for background noises, then we can
determine q via model selection criteria such as Bayesian information criterion.

By theoretical and empirical studies, we have shown that due to source cancellations,
the beamformer power estimator can be inconsistent if the underlying multiple sources are
not well separated in terms of a lead field distance. Unlike the existing theories in the
literature, the new theory is applicable to more general scenarios, where multiple sources
exist and the sensor covariance matrix are estimated from the data. In the new theory, we
do assume that the powers of the unknown no-null sources as well as the underlying number
q are not growing with the number of sensors n. This assumption is natural to neurologists
and has simplified mathematical derivations of the theory very much. However, the theory
can be extended to the case where these quantities are growing with n. In the theory, we
have not impose any constraint on p as we only consider local behavior of beamformers. If
we want to investigate global properties of the neuronal activity map, then some constraints
need to be imposed on the growth rate of p with respect to n.

The performances of the proposed beamformers have further been assessed by simula-
tions and real data analyses. We have demonstrated that thresholding the sensor covariance
matrix can help reduce the source localization bias when the data have a low SNR value. We
have applied the vector-beamformer to an MEG data set for identifying the active regions
related to human face perception. Some excellent agreements have been found between the
current results and the existing neurological facts on human face perception. Finally, we
note that there are other ways to measure the contrast between two source covariances such
as the information-divergence. The theory can be easily extended to this case. The details
will be presented elsewhere.

7. Proofs

In this section we prove the theorems and corollaries in Section 3.
To prove Theorem 1, we need the following lemma.

Lemma 10 If anq →∞ as n→∞, then we have

HT
j C
−1
k Hj = bjj|k +

cjj|k

n
+O(a−2nk ), bjj|k = Σ−1j , for 1 ≤ j ≤ k

HT
j1C
−1
k Hj2 =

cj1j2|k

n
+O(a−2nk ), for 1 ≤ j1 6= j2 ≤ k

HT
j C
−1
k Hx = bjx|k +

cjx|k

n
+O(a−2nk ), for 1 ≤ j ≤ k, x /∈ Rk

HT
y C
−1
k Hx = nayx|k + byx|k +O(a−1nk ), for x, y /∈ Rk
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where ank = nmin1≤j≤k−1 tr
(
a(j+1)(j+1)|j

)
, Rk = {r1, . . . , rk}, Ck =

∑k
j=1H

T
j ΣjHj+σ20In,

and ayx|k, byx|k and cjj|k are defined before and the other c′s are defined iteratively as follows:

cj1j2|k =


bj1k|(k−1)Σ

−1
k a−1kk|(k−1), 1 ≤ j1 ≤ k − 1, j2 = k

Σ−1k a−1kk|(k−1)bkj2|(k−1), 1 ≤ j2 ≤ k − 1, j1 = k

cj1j2|(k−1) − bj1k|(k−1)a
−1
kk|(k−1)bkj2|(k−1), 1 ≤ j1 6= j2 ≤ k − 1.

cjx|k =



(
akk|(k−1)Σk

)−1 {
bkx|(k−1)

−
(
I3 + bkk|(k−1)

) (
akk|(k−1)Σk

)−1
akx|(k−1)

}
, j = k

cjx|(k−1) − cjk|(k−1)a−1kk|(k−1)akx|(k−1)
−bjk|(k−1)a−1kk|(k−1)bkx|(k−1) 1 ≤ j ≤ k − 1

+bjk|(k−1)a
−1
kk|(k−1)

[
Σ−1k + bkk|(k−1)

]
a−1kk|(k−1)akx|(k−1).

Proof Note that under the stability condition and the assumption that anq →∞, we have
byx|k = O(1), 1 ≤ k ≤ q. And for any rx in the source space,

c1x|1

n
= O(n−1),

cyx|k

n
= O(a−1n(k−1)), 1 ≤ y ≤ k, 2 ≤ k ≤ q.

We prove the lemma by induction. For k = 1, we have

C−11 = σ−20 In − σ−40 H1(Σ
−1
1 + nσ−20 I3)

−1HT
1 ,

HT
1 C
−1
1 H1 = nσ−20 I3 − n2σ−40 (Σ−11 + nσ−20 I3)

−1

= nσ−20

(
I3 −

(
I3 + Σ−11

σ20
n

)−1)
= nσ−20

(
I3 + nΣ1σ

−2
0

)−1
= Σ−11

(
I3 − σ20Σ−11 /n

)
+O(n−2)

= Σ−11 − Σ−11 σ20Σ−11 /n+O(n−2)

= b11|1 +
c11|1

n
+O(n−2),

where
b11|1 = Σ−11 , c11|1 = −σ20Σ−21 .

Analogously,

HT
1 C
−1
1 Hx = σ−2HT

1 Hx − σ−40 n(Σ−11 + nσ−20 I3)
−1HT

1 Hx

=
(
I3 −

(
I3 + Σ−11 σ20/n

)−1)
HT

1 Hx

=

(
I3 +

n

σ20
Σ1

)−1
HT

1 Hx

= Σ−11

(
I3 +

σ20
n

Σ−11

)−1
ρ1x

= Σ−11 ρ1x − Σ−11 σ20Σ−11 ρ1x/n+O(n−2)

= b1x|1 +
c1x|1

n
+O(n−2),
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where
b1x|1 = Σ−11 ρ1x, c11|1 = −Σ−21 σ20ρ1x.

And

HT
y C
−1
1 Hx = σ−20 HT

y Hx − σ−40 HT
y H1(Σ

−1
1 + nσ−20 I3)

−1HT
1 Hx

= nσ−20 ρyx − σ−40 HT
y H1

σ20
n

(
I3 + σ20Σ−11 /n

)−1
HT

1 Hx

= nσ−20 ρyx − nσ−20 ρy1
(
I3 − σ20Σ−11 /n

)
ρ1x +O(n−1)

= nσ−20 ρy1x + ρy1Σ
−1
1 ρ1x +O(n−1)

= nayx|1 + byx|1 +O(n−1),

where
ρy1x = ρyx − ρy1ρ1x, ayx|1 = σ−20 ρy1x, byx|1 = ρy1Σ

−1
1 ρ1x.

This implies the lemma holds for k = 1.
Assuming the lemma holds for the cases with less or equal to k sources, we show that

it is also true for the case with k + 1 sources by invoking the matrix inversion formulas

C−1k+1 = C−1k − C
−1
k Hk+1

(
Σ−1k+1 +HT

k+1C
−1
k Hk+1

)−1
HT
k+1C

−1
k , (7.6)

C−1k = C−1k+1 + C−1k+1Hk+1Σk+1H
T
k+1C

−1
k .

The details are as follows.
For 1 ≤ j ≤ k,

HT
j C
−1
k+1Hj = HT

j C
−1
k Hj −

(
HT
j C
−1
k Hk+1

)
×
(
Σ−1k+1 +HT

k+1C
−1
k Hk+1

)−1 (
HT
k+1C

−1
k Hj

)
= bjj|k +

cjj|k

n
+O(a−2nk )−

(
bj(k+1)|k +

cj(k+1)|k

n
+O(a−2nk )

)
×
(
Σ−1k+1 + na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1nk )

)−1
×
(
bj(k+1)|k +

cj(k+1)|k

n
+O(a−2nk )

)T
= bjj|k +

cjj|k

n
+O(a−2nk )

−
(
bj(k+1)|k +O(a−1nk

) (
(na(k+1)(k+1)|k)

−1 −O(a−2n(k+1))
)

×
(
bj(k+1)|k +O(a−1nk )

)T
= bjj|k +

cjj|k

n
− 1

n
bj(k+1)|ka

−1
(k+1)(k+1)|kb

T
j(k+1)|k +O(a−2n(k+1))

= bjj|(k+1) +
cjj|(k+1)

n
+O(a−2n(k+1)).

For j = k + 1, we have

HT
j C
−1
k+1Hj = HT

k+1C
−1
k+1Hk+1 = HT

k+1C
−1
k Hk+1

(
I3 + Σk+1H

T
k+1C

−1
k Hk+1

)−1
=

(
na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1nk )

)
×
(
I3 + Σk+1

(
na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1nk )

))−1
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=
(
na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1nk )

) (
na(k+1)(k+1)|k

)−1
×
(
I3 + (na(k+1)(k+1)|k)

−1Σ−1k+1 +O(a−2n(k+1))
)−1

Σ−1k+1

= Σ−1k+1 −
1

n
Σ−1k+1a

−1
(k+1)(k+1)|kΣ

−1
k+1 +O(a−2n(k+1))

= b(k+1)(k+1)|(k+1) +
c(k+1)(k+1)|(k+1)

n
+O(a−2n(k+1)).

This completes the proof of the first equation in the lemma.
To prove the second equation in the lemma, we let

B =
[
Σk+1na(k+1)(k+1)|k

]−1
+
[
Σk+1na(k+1)(k+1)|k

]− 1
2

×Σk+1b(k+1)(k+1)|k
[
Σk+1na(k+1)(k+1)|k

]− 1
2 .

Then, when 1 ≤ j1 ≤ k, j2 = k + 1, we have

HT
j1C
−1
k+1Hj2 = HT

j1C
−1
k+1Hk+1 = HT

j1C
−1
k Hk+1

{
I3 + Σk+1H

T
k+1C

−1
k Hk+1

}−1
=

(
bj1(k+1)|k +

1

n
cj1(k+1)|k +O(a−2nk )

)
×
(
I3 + Σk+1

(
na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1nk

))−1
=

(
bj1(k+1)|k +

1

n
cj1(k+1)|k +O(a−2nk )

)[
Σk+1na(k+1)(k+1)|k

]− 1
2

×(I3 +B +O(a−2n(k+1)))
−1 [Σk+1na(k+1)(k+1)|k

]− 1
2

= bj1(k+1)|k
[
Σk+1na(k+1)(k+1)|k

]− 1
2

×
(
I3 +O

(
(na(k+1)(k+1)|k)

−1)) [Σk+1na(k+1)(k+1)|k
]− 1

2 +O(a−2n(k+1))

=
1

n
bj1(k+1)|kΣ

−1
k+1a

−1
(k+1)(k+1)|k +O(a−2n(k+1))

=
cj1(k+1)|(k+1)

n
+O(a−2n(k+1)).

Similarly, when 1 ≤ j1 6= j2 ≤ k, we have

HT
j1C
−1
k+1Hj2 = HT

j1C
−1
k Hj2 −HT

j1C
−1
k Hk+1

(
Σ−1k+1 +HT

k+1C
−1
k Hk+1

)−1
HT
k+1C

−1
k Hj2

=
1

n
cj1j2|k +O(a−2nk )− 1

n
bj1(k+1|k)a

−1
(k+1)(k+1)|kb(k+1)j2|k +O(a−2n(k+1))

=
1

n
cj1j2|(k+1) +O(a−2n(k+1)).

We complete the proof of the second equation in the lemma.
To prove the third equation in the lemma, we let

D =
(
na(k+1)(k+1)|kΣk+1

)−1
+
(
na(k+1)(k+1)|kΣk+1

)− 1
2

×b(k+1)(k+1|k)Σk+1

(
na(k+1)(k+1)|kΣk+1

)− 1
2 ,

F = (na(k+1)(k+1)|k)
− 1

2
(
Σ−1k+1 + b(k+1)(k+1)|k

)
(na(k+1)(k+1)|k)

− 1
2 .
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Then, for j = k + 1,

HT
j C
−1
k+1Hx =

[
I3 +HT

k+1C
−1
k Hk+1Σk+1

]−1
HT
k+1C

−1
k Hx

=
[
I3 + na(k+1)(k+1)|kΣk+1 + b(k+1)(k+1)|kΣk+1 +O(a−1nk )

]−1
×
[
na(k+1)x|k + b(k+1)x|k +O(a−1nk )

]
=

(
na(k+1)(k+1)|kΣk+1

)− 1
2 (I3 +D +O(a−2n(k+1)))

−1 (na(k+1)(k+1)|kΣk+1

)− 1
2

×
[
na(k+1)x|k + b(k+1)x|k +O(a−1nk )

]
=

(
a(k+1)(k+1)|kΣk+1

)− 1
2

{
I3 −D +O(a−2n(k+1))

}
×
(
a(k+1)(k+1)|kΣk+1

)− 1
2
(
a(k+1)x|k + b(k+1)x|k/n+O(a−1nk )/n

)
=

(
a(k+1)(k+1)|kΣk+1

)−1
a(k+1)x|k

−
(
a(k+1)(k+1)|kΣk+1

)−1/2
D
(
a(k+1)(k+1)|kΣk+1

)−1/2
a(k+1)x|k

+O(a−3n(k+1)) +
1

n

(
a(k+1)(k+1)|kΣk+1

)−1
b(k+1)x|k +O(a−2n(k+1))

=
(
a(k+1)(k+1)|kΣk+1

)−1
a(k+1)x|k +

1

n

(
a(k+1)(k+1)|kΣk+1

)−1
×
{
b(k+1)x|k −

(
I3 + b(k+1)(k+1)|kΣk+1

) (
a(k+1)(k+1)|kΣk+1

)−1
a(k+1)x|k

}
+O(a−2n(k+1))

= b(k+1)x|(k+1) +
1

n
c(k+1)x|(k+1) +O(a−2n(k+1)).

For 1 ≤ j ≤ k, we have

HT
j C
−1
k+1Hx = HT

j C
−1
k Hx −HT

j C
−1
k Hk+1

(
Σ−1k+1 +HT

k+1C
−1
k Hk+1

)−1
HT
k+1C

−1
k Hx

= bjx|k +
1

n
cjx|k +O(a−2nk )−

(
bj(k+1)|k +

1

n
cj(k+1)|k +O(a−2nk )

)
×
(
Σ−1k+1 + na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−2nk )

)−1
×
(
na(k+1)x|k + b(k+1)x|k +O(a−1nk )

)
= bjx|k +

1

n
cjx|k +O(a−2nk )−

(
bj(k+1)|k +

1

n
cj(k+1)|k +O(a−2nk )

)
×(na(k+1)(k+1)|k)

−1/2 [I3 + F +O(a−2nk )
]−1

(na(k+1)(k+1)|k)
−1/2

×
(
na(k+1)x|k + b(k+1)x|k +O(a−1nk )

)
= bjx|k +

1

n
cjx|k +O(a−2nk )−

(
bj(k+1)|k +

1

n
cj(k+1)|k +O(a−2nk )

)
×
(
a−1(k+1)(k+1)|ka(k+1)x|k − a

−1/2
(k+1)(k+1)|kFa

−1/2
(k+1)(k+1)|ka(k+1)x|k +O(a−2nk )

(na(k+1)(k+1)|k)
−1b(k+1)x|k − a

−1/2
(k+1)(k+1)|kFa

−1/2
(k+1)(k+1)|kb(k+1)x|k/n

+O(a−2n(k+1))
)
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= bjx|k +
1

n
cjx|k +O(a−2nk )−

(
bj(k+1)|k +

1

n
cj(k+1)|k +O(a−2nk )

)
×
(
a−1(k+1)(k+1)|ka(k+1)x|k −

1

n
a−1(k+1)(k+1)|k(Σ

−1
k+1 + b(k+1)(k+1)|k)

×a−1(k+1)(k+1)|ka(k+1)x|k
1

n
a−1(k+1)(k+1)|kb(k+1)x|k +O(a−2n(k+1))

)
= bjx|k +

1

n
cjx|k − bj(k+1)|ka

−1
(k+1)(k+1)|ka(k+1)x|k

− 1

n

{
cj(k+1)|ka

−1
(k+1)(k+1)|ka(k+1)x|k + bj(k+1)|ka

−1
(k+1)(k+1)|kb(k+1)x|k

−bj(k+1)|ka
−1
(k+1)(k+1)|k

[
Σ−1k+1 + b(k+1)(k+1)|k

]
a−1(k+1)(k+1)|ka(k+1)x|k

}
+O(a−2n(k+1))

= bjx|k − bj(k+1)|ka
−1
(k+1)(k+1)|ka(k+1)x|k +

1

n
cjx|(k+1) +O(a−2n(k+1)). (7.7)

Note that for k = j,

ajx|j = ajx|(j−1) − ajj|(j−1)a−1jj|(j−1)ajx|(j−1) = 0.

Assuming that for k = j + m,m > 0, the statement is true, i.e., ajx|(k+m) = 0 for all x.
Then,

ajx|(j+m+1) = ajx|(j+m) − aj(j+m+1)|(j+m)a
−1
(j+m+1)(j+m+1)|(j+m)a(j+m+1)x|(j+m)

= 0.

By induction, we have that ajx|k = 0 for all x, j ≤ k. This implies that and

bjx|(k+1) = bjx|k − bj(k+1)|ka
−1
(k+1)(k+1)|ka(k+1)x|k

by the definition of bjx|(k+1). Combining this with (7.7), we complete the proof of the third
equation in the lemma.

Finally, we turn to the last equation in the lemma. Assume that the equation holds for
the case k. We show that it also holds for k + 1 below. For x, y /∈ Rk+1 (thus x, y /∈ Rk),
by the assumption, we have

HT
y C
−1
k Hx = nayx|k + byx|k +O(a−1nk ).

This together with (7.6) yields

HT
y C
−1
k+1Hx = HT

y C
−1
k Hx −HT

y C
−1
k Hk+1

(
Σ−1k+1 +HT

k+1C
−1
k Hk+1

)−1
HT
k+1C

−1
k Hx

= nayx|k + byx|k +O(a−1nk )−
(
nay(k+1)|k + by(k+1)|k +O(a−1nk )

)
×
(
Σ−1k+1 + na(k+1)(k+1)|k + b(k+1)(k+1)|k +O(a−1nk )

)−1
×
(
na(k+1)x|k + b(k+1)x|k +O(a−1nk )

)
= nayx|k + byx|k +O(a−1nk )−

(
nay(k+1)|k + by(k+1)|k +O(a−1nk )

)
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×
(

(na(k+1)(k+1)|k)
−1 − 1

n2
a−1(k+1)(k+1)|k

(
Σ−1k+1 + b(k+1)(k+1)|k

)
×a−1(k+1)(k+1)|k +O(a−3n(k+1))

) (
nay(k+1)|k + by(k+1)|k +O(a−1nk )

)
= nayx|k + byx|k +O(a−1nk )−

{
ay(k+1)|ka

−1
(k+1)(k+1)|k

−ay(k+1)|ka
−1
(k+1)(k+1)|k

(
Σ−1k+1 + b(k+1)(k+1)|k

)
a−1(k+1)(k+1)|k/n

+by(k+1)|ka
−1
(k+1)(k+1)|k/n+O(a−2n(k+1))

}
×
(
na(k+1)x|k + b(k+1)x|k +O(a−1nk )

)
= n

[
ayx|k − ay(k+1)|ka

−1
(k+1)(k+1)|ka(k+1)x|k

]
+
[
byx|k − by(k+1)|ka

−1
(k+1)(k+1)|ka(k+1)x|k − ay(k+1)|ka

−1
(k+1)(k+1)|kb(k+1)x|k

+ay(k+1)|ka
−1
(k+1)(k+1)|k

(
Σ−1k+1 + b(k+1)(k+1)|k

)
a−1(k+1)(k+1)|ka(k+1)x|k

]
+O(a−1n(k+1))

= nayx|(k+1) + byx|(k+1) +O(a−1n(k+1)).

The proof is completed.

Proof of Theorem 1. Note that byx|1 = ρ(ry, r1)Σ
−1
1 ρ(x1, x), ayx|1 = σ−20 (ρyx−ρy1ρ1x),

and both are bounded. By induction and the stability condition, it can be shown that ayx|k
and byx|k are bounded for 2 ≤ k ≤ q. If anq is bounded, then there exists km such that
na(km+1)(km+1)|km = O(1) and ankm = min1≤j≤km−1 na(j+1)(j+1)|j → ∞ as n tends to
infinity. By Lemma 10, we have

HT
km+1C

−1
km
Hkm+1 = na(km+1)(km+1)|km + b(km+1)(km+1)|km +O(a−1nkm),

which is bounded and non-negative definite. Furthermore, there exists an orthogonal matrix
Q and a diagonal matrix D = diag(d1, d2, d3) such that

Σ
1/2
km+1H

T
km+1C

−1
km
Hkm+1Σ

1/2
km+1 = QDQT .

Therefore,

HT
km+1C

−1
km+1Hkm+1

= HT
km+1C

−1
km
Hkm+1

(
I3 −

(
Σ−1km+1 +HT

km+1C
−1
km
Hkm+1

)−1
HT
km+1C

−1
km
Hkm+1

)
= HT

km+1C
−1
km
Hkm+1

(
Σ−1km+1 +HT

km+1C
−1
km
Hkm+1

)−1
Σ−1km+1

= HT
km+1C

−1
km
Hkm+1Σ

1/2
km+1

(
I3 + Σ

1/2
km+1H

T
km+1C

−1
km
Hkm+1Σ

1/2
km+1

)−1
Σ
−1/2
km+1

= Σ
−1/2
km+1QDQ

T
(
I3 +QDQT

)−1
Σ
−1/2
km+1

= Σ
−1/2
km+1

(
I3 +QD−1QT

)−1
Σ
−1/2
km+1

= Σ
−1/2
km+1

(
Q(I3 +D−1)QT

)−1
Σ
−1/2
km+1

= Σ
−1/2
km+1Q(I3 +D−1)−1QTΣ

−1/2
km+1. (7.8)
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Note that Σ
1/2
km+1H

T
km+1C

−1
km
Hkm+1Σ

1/2
km+1 = O(1), which implies that dk ≥ 0, 1 ≤ k ≤ 3 are

bounded. We can find a positive constant ε0 such that max1≤k≤3(1 + d−1k )−1 < (1 + ε0)
−1

when n is large enough. Consequently, for any vector a ∈ R3 with ||a|| = 1, we have

aTΣ
1/2
km+1Q(I3 +D−1)QTΣ

1/2
km+1a > (1 + ε0)a

TΣ
1/2
km+1QQ

TΣ
1/2
km+1a,

which shows that Σ
1/2
km+1Q(I3 +D−1)QTΣ

1/2
km+1 (thus

[
HT
km+1C

−1
km+1Hkm+1

]−1
due to (7.8))

is asymptotically larger than Σkm+1(1 + ε0).

We now consider the case where anq →∞. For j = q, by Lemma 10, we have

cqq|q

n
= −Σ−1q

[
naqq|(q−1)

]−1
Σ−1l = O(a−1nq ),[

HT
q C
−1
q Hq

]−1
=

[
Σ−1q +

cqq|q

n
+O(a−2nq )

]−1
,

= Σ1/2
q

[
I3 + Σ1/2

q

cqq|q

n
Σ1/2
q +O(a−2nq )

]−1
Σ1/2
q

= Σ1/2
q

[
I3 − Σ1/2

q

cqq|q

n
Σ1/2
q +O(a−2nq )

]
Σ1/2
q

= Σq −
[
naqq|(q−1)

]−1
+O(a−2nq )

as n→∞. For 1 ≤ j ≤ q − 1, by Lemma 10, we have

HT
j C
−1
q Hj = Σ−1j +

cjj|q

n
+O(a−2nq ),

where
cjj|q
n = O(a−1nq ). This entails

[
HT
j C
−1
q Hj

]−1
= Σ

1/2
j

(
I3 +

1

n
Σ
1/2
j cjj|qΣ

1/2
j +O(a−2nq )

)−1
Σ
1/2
j

= Σ
1/2
j

(
I3 −

1

n
Σ
1/2
j cjj|qΣ

1/2
j +O(a−2nq )

)
Σ
1/2
j

= Σj −
1

n
Σjcjj|qΣj +O(a−2nq ).

For any location rx, by Lemma 10, we have

[
HT
x C
−1
q Hx

]−1
=

1

n

[
I3 +

1

n
a−1xx|qbxx|q +O(a−2nq )

]−1
a−1xx|q

=
1

n

[
I3 −

1

n
a−1xx|qbxx|q +O(a−2nq )

]
a−1xx|q

=
1

n
a−1xx|q −

1

n2
a−1xx|qbxx|qa

−1
xx|q +O(a−3nq ).

The proof is completed.

Proof of Corollary 2. First, let An =
[
Hkm+1

TC−1l Hkm+1

]−1
. If anq = O(1) and

max1≤k≤q dk|q = O(1), then by Theorem (1), there exists a positive constant ε0 such that
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min||a||=1 a
T (An − Σkm+1)a > ε0 for large n. Let a1 = (1, 0, 0)T , a2 = (0, 1, 0)T and a3 =

(0, 0, 1)T . Then, we have

tr(An) = tr(An

3∑
k=1

aka
T
k ) =

3∑
k=1

tr(Anaka
T
k )

=
3∑

k=1

aTkAnak > 3ε0 +
3∑

k=1

akΣkm+1a
T
k

= 3ε0 +

3∑
k=1

tr(Σkm+1aka
T
k ) = 3ε0 + tr(Σkm+1

3∑
k=1

aka
T
k )

= 3ε0 + tr(Σkm+1),

which implies tr(An) is asymptotically larger than Σkm+1.
To prove Theorem 2, we need two more lemmas as follows and the following condition

(A1′) : {Y(tj) : 1 ≤ j ≤ J} is stationary and has a finite covariance matrix.

Lemma 11 Under Conditions (A1’) and (A3)∼(A4), if τnJ = O(
√

log(n)/J) and nτnJ =
o(1) as n→∞ and J →∞, then

(i) max1≤i,j≤n |ĉij − cij | = Op(
√

log(n)/J),

(ii) ||Ĉ(τnJ)− C|| = Op(mn

√
log(n)/J),

(iii) ||Ĉ(0)− C|| ≤ (mn + n)τnJ ,

where mn = max1≤i≤n
∑n

j=1 I(cij 6= 0) ≤ n.

Proof. Let κ3 = max{2(2/κ1+1/κ2)−1, (4/3)(1/κ1+1/κ2)−1/3, 1}. Then n
√

log(n)/J =
o(1) yields (log(n))κ3/J = o(1). We adopted the techniques of Bickel and Levina (2008);
Fan et al. (2011); Zhang et al. (2014) to prove it. To prove (i), we set up more notations.
Let τ(t) be the so-called Dedecker-Prieur τ -mixing coefficients (Merlevède et al., 2011, see).
Let

Θ(u, t) =∞{v > 0 : P (|y1(t)y2(t)| > v) ≤ u}, ψy(M, t) = max{min{yi(t)yj(t),M},−M}.

It follows from Lemma 7 in Dedecker and Prieur (2004) that

sup
t

Θ(u, t) ≤ b1(1− log(u))2/κ1 ,

which, under Condition (A4), gives τ(t) ≤ b2 exp(−b3tκ2). Similarly, it is derived from
Remark 3 in Merlevède et al. (2011) that

sup
M>0

[sup
t

var(ψy(M, t)) + 2
∑
t1>t2

|cov(ψy(M, t1), ψy(M, t2))]

≤ sup
M>0

sup
t

var(ψy(M, t))

+2

(
sup
M>0

sup
t

var(ψy(M, t)) + 4
∑
t>0

∫ 2α(t)

0
(sup
t

Θ(u))2du

)
<∞.
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Let 1/κ = 2/κ1 + 1/κ2. By Theorem 1 in Merlevède et al. (2011), we can find positive
constants dk, 1 ≤ k ≤ 5 that only depend on τ1, κ2, b2, b3 such that

P

(
| 1
J

∑
t=1

yi(t)yj(t)− cij | ≥ u

)
≤ J exp

(
−(Ju)κ

d1

)
+ exp

(
− (Ju)2

d2(1 + Jd3)
)

)

+ exp

(
−(Ju)2

d4J
exp

(
(Ju)κ(1−κ)

d5(log(Ju))κ

))
.

Consequently,

P

(
max

1≤i,j≤n
| 1
J

J∑
t=1

yi(t)yj(t)− cij | > u

)

≤ n2 max
1≤i,j≤n

P

(
| 1
J

J∑
t=1

yi(t)yj(t)− cij | > u

)

≤ n2J exp

(
−(Ju)κ

d1

)
+ n2 exp

(
− (Ju)2

d2(1 + Jd3)

)
+n2 exp

(
−(Ju)2

d4J
exp

(
(Ju)κ(1−κ)

d5(log(Ju))κ

))
.

Let u = A
√

log(n)/J . Then Ju =
√
J log(n). When both n and J tend to infinity, we have

n2J exp

(
−(Ju)κ

d1

)
= exp

(
2 log(n) + log(J)−

(A
√
J log(n))κ

d1

)

= exp

(
(2

(log(n))1−κ/2

Jκ/2
− A

d1
)(J log(n))κ/2 + log(J)

)
= o(1),

since (log(n))1−κ/2/Jκ/2 = o(1). Similarly, if we choose A >
√

2d2(d3 + 1), we have

n2 exp

(
− (Ju)2

d2(1 + Jd3)

)
= n2 exp

(
− A2J log(n)

d2(1 + Jd3)

)
= exp

((
2− A2

d2(d3 + 1/J)

)
log(n)

)
= o(1).

And

n2 exp

(
−(Ju)2

d4J
exp

(
(Ju)κ(1−κ)

d5(log(Ju))κ

))

= exp

(
log(n)

(
2− A2

d4
exp

(
Aκ(1−κ)(J log(n))κ(1−κ)/2

d5(log(A
√
J log(n)))κ

)))
= o(1).
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Therefore,

P

(
max

1≤i,j≤n
| 1
J

J∑
t=1

yi(t)yj(t)− cij | > u

)
= o(1). (7.9)

Note that for u = A
√

log(n)/J , there exist positive constants dk, 1 ≤ k ≤ 5 so that

P ( max
1≤i,j≤n

|ȳi||ȳj | > u) = P ( max
1≤i≤n

|ȳi| >
√
u)

≤ n max
1≤i≤n

P (|ȳi| >
√
u)

= nJ exp

(
−(J
√
u)κ1

d1

)
+ n exp

(
− (J

√
u)2

d2(1 + Jd3)

)
+n exp

(
−(J
√
u)2

d4J
exp

(
(J
√
u)κ1(1−κ1)

d5(log(Ju))κ1

))
= o(1),

since (log(n))4/(3κ1)−1/3/J = o(1) and log(n)/J = o(1). This together with (7.9) yields that
for u = O(

√
log(n)/J),

P

(
max

1≤i,j≤n
|ĉij − cij | > u

)
≤ P

(
max

1≤i,j≤n
| 1
J

J∑
t=1

yi(t)yj(t)− cij | > u

)

+P

(
max

1≤i,j≤n
|ȳi||ȳj | > u

)
= o(1),

which implies

max
1≤i,j≤n

|ĉij − cij | = Op

(√
log(n)/J

)
.

We turn to Ĉ(τnJ) in (ii). Let T1 = ||(ĉijI(|ĉij | > τnJ)− cijI(|cij | > τnJ))||. We have

||Ĉ(τnJ)− C|| ≤ ||(ĉijI(|ĉij | > τnJ)− cijI(|cij | > τnJ))||+ ||(cijI(|cij | ≤ τnJ))||

≤ T1 + max
i

n∑
j=1

|cij |I(|cij | ≤ τnJ)

≤ T1 + τnJmn. (7.10)

Similarly, we have

||Ĉ(0)− C|| ≤ T1 + τnJmn + max
i

n∑
j=1

|ĉij |I(|ĉij | ≤ τnJ)

≤ T1 + (mn + n)τnJ .

Note that

T1 ≤ max
i

n∑
j=1

|ĉijI(|ĉij | > τnJ)− cijI(|cij | > τnJ)|
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= max
i

n∑
j=1

|ĉij (I(|ĉij | > τnJ , |cij | ≤ τnJ) + I(|ĉij | > τnJ , |cij | > τnJ))

−cij (I(|cij | > τnJ , |ĉij | > τnJ) + I(|cij | > τnJ , |ĉij | ≤ τnJ)) |
≤ I +II +III,

where

I = max
i

n∑
j=1

|ĉij − cij |I(|ĉij | > τnJ , |cij | > τnJ),

II = max
i

n∑
j=1

|ĉij |I(|ĉij | > τnJ , |cij | ≤ τnJ),

III = max
i

∑
J

|cij |I(|cij | > τnJ , |ĉij | ≤ τnJ).

We bound the above three terms as follows.

I ≤ max
i,j
|ĉij − cij |max

i

n∑
j=1

I(|cij | > 0)

= Op

(
mn

√
log(n)/J

)
. (7.11)

For δ > 0, using the equality in (i), we have

II ≤ max
i

n∑
j=1

|ĉij − cij |I(|ĉij | > τnJ , |cij | ≤ τnJ)

+ max
i

n∑
j=1

|cij |I(|cij | ≤ τnJ)

≤ max
i

n∑
j=1

|ĉij − cij |I(|ĉij | > τnJ , |cij | ≤ δτnJ)

+ max
i

n∑
j=1

|ĉij − cij |I(|ĉij | > τnJ , δτnJ < |cij | < τnJ) + τnJmn

≤ max
i,j
|ĉij − cij |

max
i

n∑
j=1

I(|ĉij | > τnJ , |cij | ≤ δτnJ) +mn

+ τnJmn

≤ Op(
√

log(n)/J)

max
i

n∑
j=1

I(|ĉij − cij | ≥ (1− δ)τnJ) +mn

+ τnJmn

= Op(
√

log(n)/J)(op(1) +mn) + τnJmn = Op(τnJmn), (7.12)

since

P

max
i

n∑
j=1

I(|ĉij − cij | ≥ (1− δ)τnJ) > ε

 ≤ P

(
max
i,j
|ĉij − ci,j | ≥ (1− δ)τnJ

)
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= o(1).

Similarly,

III ≤ max
i

n∑
j=1

(|ĉij − cij |+ |ĉij ||) I(|cij | > τnJ , |ĉij | ≤ τnJ)

≤ max
i,j
|ĉij − cij |

n∑
j=1

I(|cij | > τnJ) + τnJ max
i

n∑
j=1

I(|cij | > τnJ)

≤ Op(τnJ)mn + τnJmn = Op(τnJmn).

Combining this with (7.11), (7.12) and (7.10), we obtain the desired result in (ii). The proof
is completed.

Lemma 12 Under Conditions (A1’) and (A3)∼(A4), if τnJ = O(
√

log(n)/J) and nτnJ =
o(1) as n→∞ and J →∞, then

(i) ||Ĉ(τnJ)−1 − C−1|| = Op(mnτnJ) and ||Ĉ(τnJ)−2 − C−2|| = Op(mnτnJ),

(ii) ||Ĉ(0)−1 − C−1|| ≤ Op(τnJ(mn + n)); ||Ĉ(0)−2 − C−2|| ≤ Op(τnJ(mn + n)),

where mn = max1≤i≤n
∑n

j=1 I(cij 6= 0) ≤ n.

Proof. Let κ3 = max{2(2/κ1+1/κ2)−1, (4/3)(1/κ1+1/κ2)−1/3, 1}. Then n
√

log(n)/J
= o(1) yields (log(n))κ3/J = o(1). If let λmin(C) denote the minimum eigenvalue of C,

then we have that λmin(C) ≥ σ20. If let λmin(Ĉ(τnJ)) denote the minimum eigenvalue of

Ĉ(τnJ), then it follows from Lemma 11 that

λmin(Ĉ(τnJ)) = λmin(C) +Op(mnτnJ)

≥ σ20 +Op(mnτnJ),

which is bounded below by σ20/2 if τnJmn is small enough. Therefore, we have

||Ĉ(τnJ)−1 − C−1|| = ||Ĉ(τnJ)−1(C − Ĉ(τnJ))C−1||
≤ ||Ĉ(τnJ)−1||(||C − Ĉ(τnJ)||)||C−1||
≤ λmin(Ĉ(τnJ))−1λmin(C)−1||C − Ĉ(τnJ)|| = Op(τnJmn).

||Ĉ(τnJ)−2 − C−2|| ≤ ||Ĉ(τnJ)−1(Ĉ(τnJ)−1 − C−1)||+ ||(Ĉ(τnJ)−1 − C−1)C−1||
≤ ||Ĉ(τnJ)−1||||Ĉ(τnJ)−1 − C−1||+ ||Ĉ(τnJ)−1 − C−1||||C−1||
= (λmin(Ĉ(τnJ))−1 + λmin(C)−1)||Ĉ(τnJ)−1 − C−1||
= Op(τnJmn).

||Ĉ(0)−1 − C−1|| ≤ Op(τnJ(mn + n)),

||Ĉ(0)−2 − C−2|| ≤ Op(τnJ(mn + n)).
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Proof of Theorem 6. Note that for any x, HT
x Hx = n. We have

||
[
HT
j Ĉ(τnJ)−1Hj

]−1
−
[
HT
j C
−1Hj

]−1 ||
= ||

[
HT
j Ĉ(τnJ)−1Hj

]−1 (
HT
j C
−1Hj −HT

j Ĉ(τnJ)−1Hj

) [
HT
j C
−1Hj

]−1 ||
≤ 1

n
||
[
HT
j Ĉ(τnJ)−1Hj/n

]−1
||||HT

j C
−1Hj/n−HT

j Ĉ(τnJ)−1Hj/n||

×||
[
HT
j C
−1Hj/n

]−1 ||
≤ 1

n
||
[
HT
j Ĉ(τnJ)−1Hj/n

]−1
||||C−1 − Ĉ(τnJ)−1||||

[
HT
j C
−1Hj/n

]−1 ||,
which combining with Lemma 11 yields

||
[
HT
j Ĉ(τnJ)−1Hj

]−1
−
[
HT
j C
−1Hj

]−1 ||
≤ Op(n2

√
log(n)/J)||

[
HT
j Ĉ(τnJ)−1Hj

]−1
||||
[
HT
j C
−1Hj

]−1 ||. (7.13)

Let λm and λ̂m denote the smallest eigenvalues of HT
j C
−1Hj and HT

j Ĉ(τnJ)−1Hj respec-

tively. Invoking Theorem 1, (HT
j C
−1Hj)

−1 = Σj + o(1). There exists a positive constant

ε0 such that for large n, λm ≥ ε0. By the definition, there exists am ∈ R3 with ||am|| = 1,
such that λ̂m = aTmH

T
j Ĉ(τnJ)−1Hjam. So

|λ̂m − aTmHT
j C
−1Hjam| = |(Hiam)T (Ĉ−1 − C−1)Hiam| ≤ n||Ĉ(τnJ)−1 − C−1||

≤ Op(n
2
√

log(n)/J),

which implies

λ̂m ≥ aTmH
T
j C
−1Hjam −Op(n2

√
log(n)/J)

≥ λm −Op(n2
√

log(n)/J) ≥ ε0 −Op(n2
√

log(n)/J).

This shows that for large n, λ̂m is bounded below from zero. Consequently, we have

||
[
HT
j Ĉ(τnJ)−1Hj

]−1
|| = O(1), ||

[
HT
j C
−1Hj

]−1 || = O(1).

This together with (7.13) proves that

||
[
HT
j Ĉ(τnJ)−1Hj

]−1
−
[
HT
j C
−1Hj

]−1 || = Op(n
2
√

log(n)/J).

The proof is completed.
Proof of Corollary 7. It follows from Theorem 6 directly. The details are omitted.
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Figure 2: Scenario 1: Two sources located at CTF coordinates (3,−1, 4)T cm and
(−5, 2, 6)T cm respectively. The first four rows display the box-and-whisker
plots of the index values and the localization biases against the tuning con-
stant c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 91,
SNR= 1/25, 1/0.64, and J = 500, 1000, 2000, 3000 respectively. Here, ma and mi
stand for the proposed hard-thresholded covariance based methods. sh stands
for the optimal shrinkage-based method. With a slightly abuse of notation,
c0 = ma,mi, sh refer to that ma, mi, and sh are used. The remaining rows
present the box-and-whisker plots of the local localization bias to the sources r1
and r2 against the transverse slice indices from 0 to 10 when c0 was selected by
the minimum strategy for the above combinations respectively. The red colored
lines in the boxes are the medians. Note that when the distribution of the lo-
calization biases are degenerate, the upper and lower quartiles and medians of
localization biases will be equal. Consequently, the box in the plot will reduce to
a red colored line. The plots in the last four rows show that all the local peaks
on the transverse slices are not close to the source location r1, implying that the
source 1 has been masked on the neuronal activity map by source cancellations.
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Figure 3: Scenario 2: Two sources located at CTF coordinates (−5, 5, 6)T cm and
(−6,−2, 5)T cm respectively. The first four rows display the box-and-whisker
plots of the index values and the localization biases against the tuning con-
stant c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 91,
SNR= 1/25, 1/0.64, and J = 500, 1000, 2000, 3000 respectively. The remaining
rows present the box-and-whisker plots of the minimum local localization bias
to the sources r1 and r2 against the transverse slice indices from 0 to 10 when
c0 is selected by the minimum strategy for the above combinations respectively.
The red colored lines in the boxes are the medians. When the upper and lower
quartiles and medians of localization biases have the same value, the box in the
plot will reduce to a red colored line. The plots in the last four rows show that
all the local peaks on the transverse slices are not close to the source location r1,
implying the source 1 has been masked on the neuronal activity map by source
cancellations.
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Figure 4: Scenario 3: Two sources located at CTF coordinates (3,−1, 4)T cm and
(−5, 2, 6)T cm respectively. The first six rows show the box-and-whisker plots
of the index values and the localization biases against the tuning constant
c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 102 sensors,
SNR= 1/0.352, 1/0.42, 1/0.52, and the sample rates J = 500, 1000, 2000, 3000 re-
spectively. The last six rows give the box-and-whisker plots of the minimum local
localization bias to the sources r1 and r2 against the transverse slice indices from
0 to 10 when c0 is selected by the minimum strategy for these combinations re-
spectively. The red colored lines in the boxes are the medians. When the upper
and lower quartiles and medians of localization biases are equal, the box in the
plot will reduce to a red colored line. The last six rows of the plots show all
the local peaks on the transverse slices are not close to the source location r1,
implying the source 1 has been masked on the neuronal activity map by source
cancellations.
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Figure 5: Scenario 4: Two sources located at CTF coordinates (−5, 5, 6)T cm and
(−6,−2, 5)T cm respectively. The first six rows show the box-and-whisker plots
of the index values and the localization biases against the tuning constant
c0 = 0, 0.5, 1, 1.5, 2, ma, mi and sh for the combinations of n = 102 sensors,
SNR= 1/0.352, 1/0.42, 1/0.52, and the sample rates J = 500, 1000, 2000, 3000 re-
spectively. The last six rows give the box-and-whisker plots of the minimum local
localization bias to the sources r1 and r2 against the transverse slice indices from
0 to 10 when c0 was selected by the minimum strategy for these combinations
respectively. The red colored lines in the boxes are the medians. When the upper
and lower quartiles and medians of localization biases are equal, the box in the
plot will reduce to a red colored line. The last six rows of the plots show all
the local peaks on the transverse slices are not close to the source location r1,
implying the source 1 has been masked on the neuronal activity map by source
cancellations.
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Figure 6: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenarios 1 and 2. Here, ma and mi stand for the hard-
thresholded covariance based methods when the tuning constant c0 is chosen
by use of the maximum strategy and the minimum strategy respectively; gma
and gmi stand for the generalized thresholded covariance based methods when
the tuning constant c0 is chosen by use of the maximum strategy and the mini-
mum strategy respectively; adp and sh stand for the adaptive thresholding-based
method and the optimal shrinkage-based method. The upper two rows of mul-
tiple box-whisker plots are for the combinations of n = 91, SNR= 1/25, 1/0.64,
and J = 500, 1000, 2000, 3000 in Scenario 1, while the lower two rows are for the
combinations of n = 91, SNR= 1/25, 1/0.64, and J = 500, 1000, 2000, 3000 in
Scenario 2. Each panel shows the localization biases against the above six dif-
ferent beamformer methods. The red colored lines in the boxes are the medians.
When the upper and lower quartiles and medians of localization biases are equal,
the box in the plot will reduce to a red colored line.
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Figure 7: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenario 3. Multiple box-whisker plots of localization biases
are displayed for the combinations of n = 102, SNR= 1/0.352, 1/0.42, 1/0.52,
and J = 500, 1000, 2000, 3000. Each panel shows the localization biases against
the six different beamformer methods, namely ma, mi, gma, gmi, adp and sh.
The red colored lines in the boxes are the medians. When the upper and lower
quartiles and medians of localization biases are equal, the box in the plot will
reduce to a red colored line.
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Figure 8: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenario 4. Multiple box-whisker plots of localization biases
are displayed for the combinations of n = 102, SNR= 1/0.352, 1/0.42, 1/0.52, and
J = 500, 1000, 2000, 3000 in Scenario 4. Each panel shows the localization biases
against the six different beamformer methods, namely ma, mi, gma, gmi, adp
and sh. The red colored lines in the boxes are the medians. When the upper and
lower quartiles and medians of localization biases are equal, the box in the plot
will reduce to a red colored line.
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Figure 9: Performance comparison of the six different beamformers, namely ma, mi, gma,
gmi, adp and sh in Scenario 5. Multiple box-whisker plots of localization biases
are displayed for the combinations of n = 102, SNR= 1/0.352, 1/0.42, 1/0.52, and
J = 500, 1000, 2000, 3000 respectively. Each panel shows the localization biases
against the six different beamformer methods, namely ma, mi, gma, gmi, adp
and sh.
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Figure 10: Plots of the log-contrasts between the faces and scrambled faces on three or-
thogonal slices through the peak locations for each of five sessions, which are
overlaid on the subject’s MRI scan. The plots in the left-hand two columns
and the right-hand two columns are derived from the procedures mi and adp
respectively. Rows 1 and 2, 3 and 4, 5 and 6, and 7 and 8 are for sessions 1 ∼ 5
respectively. The highlighted yellow colored areas revealed neuronal activity
increases or decreases for the faces relative to the scrambled faces. The areas
shown in the left-hand two columns are in or close to the IOG, STS, and PCu
regions which are known to be related to the human face perception.
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Figure 11: Plots of the log-contrasts between the faces and scrambled faces on 20 transverse
slices for each of five sessions, which are overlaid on the subject’s MRI scan.
The plots in the left-hand column and the right-hand column are derived from
the procedures mi and adp respectively. Rows 1 ∼ 5 are for sessions 1 ∼ 5
respectively. The highlighted yellow colored areas revealed neuronal activity
increases for the faces relative to the scrambled faces. The areas highlighted in
the first column are in or close to the OFA, IOG, STS, and PCu regions which
are known to be related to the human face perception.
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Figure 12: Plots of the estimated time-courses at the global peaks along x, y and z-axes
respectively for each of five sessions. The solid curve and the dashed curve in
each plot stand for the estimated time-courses under the faces and the scrambled
faces respectively. The plots are ordered from the top left panel to the right panel
to the bottom panel corresponding to sessions 1 ∼ 5.
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Figure 13: Plots of d12(k) and dmax(k) against k = 1, 2, ..., 306 respectively, where k stands
for k randomly chosen sensors from the 306 sensors in the face-perception data,
two sources are located at CTF (-4, 3,8)cm and (-4,-5,5) cm respectively, and
the dashed curve in each plot is for the function log(log(k)).
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Abstract

Scientific practice typically involves repeatedly studying a system, each time trying to un-
ravel a different perspective. In each study, the scientist may take measurements under
different experimental conditions (interventions, manipulations, perturbations) and mea-
sure different sets of quantities (variables). The result is a collection of heterogeneous data
sets coming from different data distributions. In this work, we present algorithm COm-
bINE, which accepts a collection of data sets over overlapping variable sets under different
experimental conditions; COmbINE then outputs a summary of all causal models indicat-
ing the invariant and variant structural characteristics of all models that simultaneously fit
all of the input data sets. COmbINE converts estimated dependencies and independencies
in the data into path constraints on the data-generating causal model and encodes them
as a SAT instance. The algorithm is sound and complete in the sample limit. To account
for conflicting constraints arising from statistical errors, we introduce a general method
for sorting constraints in order of confidence, computed as a function of their correspond-
ing p-values. In our empirical evaluation, COmbINE outperforms in terms of efficiency
the only pre-existing similar algorithm; the latter additionally admits feedback cycles, but
does not admit conflicting constraints which hinders the applicability on real data. As a
proof-of-concept, COmbINE is employed to co-analyze 4 real, mass-cytometry data sets
measuring phosphorylated protein concentrations of overlapping protein sets under 3 dif-
ferent interventions.

Keywords: causality, causal discovery, graphical models, maximal ancestral graphs,
semi-Markov causal models, randomized experiments, latent variables

1. Introduction

Causal discovery is an abiding goal in almost every scientific field. In order to discover the
causal mechanisms of a system, scientists typically have to perform a series of experiments
(interchangeably: manipulations, interventions, or perturbations). Each experiment adds
to the existing knowledge of the system and sheds light to the sought-after mechanism
from a different perspective. In addition, each measurement may include a different set of
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quantities (variables), when for example the technology used allows only a limited number
of measured quantities.

However, for the most part, machine learning and statistical methods focus on analyzing
a single data set. They are unable to make joint inferences from the complete collection of
available heterogeneous data sets, since each one is following a different data distribution
(albeit stemming from the same system under study). Thus, data sets are often analyzed in
isolation and independently of each other; the resulting knowledge is typically synthesized
ad hoc in the researcher’s mind.

The proposed work tries to automate the above inferences. We propose a general,
constraint-based algorithm named COmbINE for learning causal structure characteristics
from the integrative analysis of collections of data sets. The data sets can be heterogeneous
in the following manners: they may be measuring different overlapping sets of variables Oi

under different hard manipulations on a set of observed variables Ii. A hard manipulation
on a variable I, corresponds to a Randomized Controlled Trial (Fisher, 1935) where the
experimentation procedure completely eliminates any other causal effect on I (e.g., ran-
domizing mice to two groups having two different diets; the effect of all other factors on the
diet is completely eliminated).

What connects together the available data sets and allows their co-analysis is the as-
sumption that there exists a single underlying causal mechanism that generates the data,
even though it is measured with a different experimental setting each time. A causal model
is plausible as an explanation if it simultaneously fits all data sets when the effect of ma-
nipulations and selection of measured variables is taken into consideration.

COmbINE searches for the set of causal models that simultaneously fits all available
data sets in the sense given above. The algorithm outputs a summary network that includes
all the variant and invariant pairwise causal characteristics of the set of fitting models. For
example, it indicates the causal relations upon which all fitting models agree, as well as
the ones for which conflicting explanations are plausible. As our formalism of choice for
causal modeling, we employ Semi-Markov Causal Models (SMCMs). SMCMs (Tian and
Pearl, 2003) are extensions of Causal Bayesian Networks (CBNs) that can account for
latent confounding variables, but do not admit feedback cycles. Internally, the algorithm
also makes heavy use of the theory and learning algorithm for Maximal Ancestral Graphs
(MAGs) (Richardson and Spirtes, 2002).

The algorithm builds upon the ideas in Triantafillou et al. (2010) to convert the observed
statistical dependencies and independencies in the data to path constraints on the plausible
data generating structures. The constraints are encoded as a SAT instance and solved with
modern SAT engines, exploiting the efficiency of state-of-the-art solvers. However, due to
statistical errors in the determination of dependencies and independencies, conflicting con-
straints may arise. In this case, the SAT instance is unsolvable and no useful information
can be inferred. COmbINE includes a technique for sorting constraints according to con-
fidence: The constraints are added to the SAT instance in decreasing order of confidence,
and the ones that conflict with the set of higher-ranked constraints are discarded. The tech-
nique is general and the ranking score is a function of the p-values of the statistical tests
of independence. It can therefore be applied to any type of data, provided an appropriate
test exists.
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COmbINE is empirically compared against a similar, recently developed algorithm by
Hyttinen et al. (2013). The latter is also based on conversion to SAT and is able to addi-
tionally deal with cyclic structures, but assumes lack of statistical errors and corresponding
conflicts. It can therefore not be directly applied to typical real problems that may generate
such conflicts. COmbINE proves to be more efficient than Hyttinen et al. (2013) and scales
to larger problem sizes, due to an inherently more compact representation of the path-
constraints. The empirical evaluation also includes a quantification of the effect of sample
size, number of data sets co-analyzed, and other factors on the quality and computational
efficiency of learning. In addition, the proposed conflict resolution technique’s superiority is
demonstrated over several other alternative conflict resolution methods. Finally, we present
a proof-of-concept computational experiment by applying the algorithm on 5 heterogeneous
data sets from Bendall et al. (2011) and Bodenmiller et al. (2012) measuring overlapping
variable sets under 3 different manipulations. The data sets measure protein concentrations
in thousands of human cells of the autoimmune system using mass-cytometry technologies.
Mass cytometers can perform single-cell measurements with a rate of about 10,000 cells per
second, but can currently only measure up to circa 30 variables per run. Thus, they seem
to form a suitable test-bed for integrative causal analysis algorithms.

The rest of this paper is organized as follows: Section 2 presents the related literature on
learning causal models and combining multiple data sets. Section 3 reviews the necessary
theory of MAGs and SMCMs and discusses the relation between the two and how hard
manipulations are modeled in each. Section 4 is the core of this paper, and it is split in
three subsections; presenting the conversion to SAT; introducing the algorithm and proving
soundness and completeness with respect to the observed independence models; introducing
the conflict resolution strategy. Section 5 is devoted to the experimental evaluation of
the algorithm: testing the algorithm’s performance in several settings and presenting an
actual case study where the algorithm can be applied. Finally, Section 6 summarizes the
conclusions and proposes some future directions of this work.

2. Related Work

Methods for causal discovery have been, for the most part, limited to the analysis of a single
data set. However, the great advancement of intervention and data collection technology has
led to a vast increase of available data sets, both observational and experimental. Therefore,
over the last few years, there have been a number of works that focus on causal discovery
from multiple sources. Algorithms in that area may differ in the formalism they use to
model causality or in the type of heterogeneity in the studies they co-analyze. In any case,
the goal is always to discover the single underlying data-generating causal mechanism.

One group of algorithms focuses on combining observational data that measure overlap-
ping variables. Tillman et al. (2008) and Triantafillou et al. (2010) both provide sound and
complete algorithms for learning the common characteristics of MAGs from data sets mea-
suring overlapping variables. Tillman et al. (2008) handles conflicts by ignoring conflicting
evidence, while the method presented in Triantafillou et al. (2010) only works with an oracle
of conditional independence. Tillman and Spirtes (2011) present an algorithm for the same
task that handles a limited type of conflicts (those concerning p-values for the same pair
of variables stemming from different data sets) by combining the p-values for conditional

2149



Triantafillou and Tsamardinos

independencies that are testable in more than one data sets. Claassen and Heskes (2010b)
present a sound, but not complete, algorithm for causal structure learning from multiple
independence models over overlapping variables by transforming independencies into a set
of causal ancestry rules.

Another line of work deals with learning causal models from multiple experiments.
Cooper and Yoo (1999) use a Bayesian score to combine experimental and observational
data in the context of causal Bayesian networks. Hauser and Bühlmann (2012) extend the
notion of Markov equivalence for DAGs to the case of interventional distributions arising
from multiple experiments, and propose a learning algorithm. Tong and Koller (2001) and
Murphy (2001) use Bayesian network theory to propose experiments that are most informa-
tive for causal structure discovery. Eberhardt and Scheines (2007) and Eaton and Murphy
(2007b) discuss how some other types of interventions can be modeled and used to learn
Bayesian networks. Hyttinen et al. (2012a) provides an algorithm for learning linear cyclic
models from a series of experiments, along with sufficient and necessary conditions for iden-
tifiability. This method admits latent confounders but uses linear structural equations to
model causal relations and is therefore inherently limited to linear relations. Meganck et al.
(2006) propose learning SMCMs by learning the Markov equivalence classes of MAGs from
observational data and then designing the experiments necessary to convert it to a SMCM.

Finally, there is a limited number of methods that attempt to co-analyze data sets mea-
suring overlapping variables under different experimental conditions. In Hyttinen et al.
(2012b) the authors extend the methods of Hyttinen et al. (2012a) to handle overlap-
ping variables, again under the assumption of linearity. Hyttinen et al. (2013) propose
a constraint-based algorithm for learning causal structure from different manipulations of
overlapping variable sets. The method works by transforming the observed m-connection
and m-separation constraints into a SAT instance. The method uses a path analysis heuris-
tic to reduce the number of tests translated into path constraints. Causal insufficiency is
allowed, as well as feedback cycles. However, this method cannot handle conflicts and there-
fore relies on an oracle of conditional independence. Moreover, the method can only scale up
to about 12 variables. Claassen and Heskes (2010a) present an algorithm for learning causal
models from multiple experiments; the experiments here are not hard manipulations, but
general experimental conditions, modeled like variables that have no parents in the graph
but can cause other variables in some of the conditions.

To the best of our knowledge, COmbINE is the first algorithm to address both overlap-
ping variables and multiple interventions for acyclic structures without relying on specific
parametric assumptions or requiring an oracle of conditional independence. While the lim-
its of COmbINE in terms of input size have not been exhaustively checked, the algorithm
scales up to networks of up to 100 variables for relatively sparse networks (maximum number
of parents equals 5).

3. Mixed Causal Models

Causally insufficient systems are often described using Semi-Markov causal models (SM-
CMs) (Tian and Pearl, 2003) or Maximal Ancestral Graphs (MAGs) (Richardson and
Spirtes, 2002; Richardson, 2003). Both of them are mixed graphs, meaning they can
contain both directed ( ) and bi-directed ( ) edges. We use the term mixed causal
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graph to denote both. In this section, we will briefly present their common and unique
properties. First, let us review the basic mixed graph notation:

In a mixed graph G = (V,E), a path is a sequence of distinct nodes 〈V0, V1, . . . , Vn〉
s.t for 0 ≤ i < n, Vi and Vi+1 are adjacent in G. X is called a parent of Y and Y a
child of X in G if X Y in G. A path from V0 to Vn is directed if for 0 ≤ i < n, Vi
is a parent Vi+1. X is called an ancestor of Y and Y is called a descendant of X in
G if X = Y in G or there exists a directed path from X to Y in G. We use the notation
PaG(X),ChG(X),AnG(X),DescG(X) to denote the set of parents, children, ancestors and
descendants of nodes X in G. A directed cycle in G occurs when X → Y ∈ E and
Y ∈ AnG(X). An almost directed cycle in G occurs when X ↔ Y ∈ E and Y ∈ AnG(X).
Given a path p in a mixed graph, a non-endpoint node V on p is called a collider if the
two edges incident to V on p are both into V . Otherwise V is called a non-collider. A
path p = 〈X,Y, Z〉, where X and Z are not adjacent in G is called an unshielded triple.
If Y is a collider on this path, the triple is called an unshielded collider.

MAGs and SMCMs are graphical models that represent both causal relations and condi-
tional independencies among a set of measured (observed) variables O, and can be viewed as
generalizations of causal Bayesian networks that can account for latent confounders. MAGs
can also account for selection bias, but in this work we assume selection bias is not present.

3.1 Semi-Markov Causal Models

Semi-Markov causal models (SMCMs), introduced by Tian and Pearl (2003), often also
reported as Acyclic Directed Mixed Graphs (ADMGs), are causal models that implicitly
model hidden confounders using bi-directed edges. A directed edge X Y denotes that X is
a direct cause of Y in the context of the variables included in the model. A bi-directed edge
X Y denotes that X and Y are confounded by an unobserved variable. Two variables
can be joined by at most two edges, one directed and one bi-directed.

Semi-Markov causal models are designed to represent marginals of causal Bayesian net-
works. In DAGs, the probabilistic properties of the distribution of variables included in
the model can be determined graphically using the criterion of d-separation. The natural
extension of d-separation to mixed causal graphs is called m-separation:

Definition 1 (m-connection, m-separation. ) In a mixed graph G = (E,V), a path p
between A and B is m-connecting given (conditioned on) a set of nodes Z , Z ⊆ V\{A,B}
if

1. Every non-collider on p is not a member of Z.

2. Every collider on the path is an ancestor of some member of Z.

A and B are said to be m-separated by Z if there is no m-connecting path between A and
B relative to Z. Otherwise, we say they are m-connected given Z. We use the notation
Jm(G) to denote the set of m-separations that hold in G.

Let G be a SMCM over a set of variables O, Π the joint probability distribution (JPD)
over the same set of variables and J (Π) the independence model, defined as the set of
conditional independencies that hold in Π. We use 〈X,Y|Z〉 to denote the conditional
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independence of variables in X with variables in Y given variables in Z. Under the Causal
Markov (CMC) and Faithfulness (FC) conditions (Spirtes et al., 2001), every m-separation
present in G corresponds to a conditional independence in J (Π) and vice-versa: Jm(G) =
J (Π).

In causal Bayesian networks, every missing edge in G corresponds to a conditional in-
dependence in J (Π) (resp. an m-separation in G), meaning there exists a subset of the
variables in the model that renders the two non-adjacent variables independent. Respec-
tively, every conditional independence in J (Π) corresponds to a missing edge in the DAG
G. This is not always true for SMCMs. Figure 1 illustrates an example of a SMCM where
two non-adjacent variables are not independent given any subset of observed variables.

Evans and Richardson (2010, 2011) deal with the factorization and parameterization
of SMCMs for discrete variables. Based on this parameterization, score-based methods
have also recently been explored (Richardson et al., 2012; Shpitser et al., 2013), but are
still limited to small sets of discrete variables. The skeleton of a SMCM is not uniquely
identifiable by the corresponding conditional independence model on the same variables
(see Figure 1 for an example). Richardson and Spirtes (2002) overcome this obstacle by
introducing a causal mixed graph with slightly different semantics, the maximal ancestral
graph.

3.2 Maximal Ancestral Graphs

Maximal ancestral graphs (MAGs) (Richardson and Spirtes, 2002), are ancestral mixed
graphs, meaning that they contain no directed or almost directed cycles, where an almost
directed cycle occurs if X Y and X causes Y . Every pair of variables X, Y in an ancestral
graph is joined by at most one edge. The orientation of this edge represents (non) causal
ancestry: A bi-directed edge X Y denotes that X does not cause Y and Y does not cause
X, but (under the faithfulness assumption) the two share a latent confounder. A directed
edge X Y denotes causal ancestry: X is a causal ancestor of Y . Thus, if X causes Y
(not necessarily directly in the context of observed variables) and they are also confounded,
there is an edge X Y in the corresponding MAG. Undirected edges can also be present in
MAGs that account for selection bias. As mentioned above, we assume no selection bias in
this work and the theory of MAGs presented here is restricted to MAGs with no undirected
edges.

Like SMCMs, ancestral graphs are also designed to represent marginals of causal Bayesian
networks. Thus, under the causal Markov and faithfulness conditions for a MAG M and a
jpd Π, X and Y are m-separated given Z in an ancestral graphM if and only if 〈X,Y |Z〉 is
in the corresponding independence model J (Π). Still, like in SMCMs, a missing edge does
not necessarily correspond to a conditional independence. The following definition describes
a subset of ancestral graphs in which every missing edge (non-adjacency) corresponds to a
conditional independence:

Definition 2 (Maximal Ancestral Graph, MAG) A mixed graph is called ancestral if
it contains no directed and almost directed cycles. An ancestral graph G is called maximal
if for every pair of non-adjacent nodes (X,Y ), there is a (possibly empty) set Z, X,Y /∈ Z
such that 〈X,Y |Z〉 ∈ Jm(G).
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A
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D A

B C

D

(a) (b)

Figure 1: Maximality and primitive inducing paths.(a) Both (i) a semi Markov causal model
over variables {A, B, C, D}; variables A and D are m-connected given any
subset of observed variables, but they do not share a direct relationship in the
context of observed variables and (ii) a non-maximal ancestral graph over vari-
ables {A, B, C, D}. (b) The corresponding MAG. A and D are adjacent, since
they cannot be m-separated given any subset of {B,C}. Path 〈A,B,C,D〉 is a
primitive inducing path. This example was presented in Zhang (2008b).

Figure 1 illustrates an ancestral graph that is not maximal, and the corresponding
maximal ancestral graph. MAGs are closed under marginalization (Richardson and Spirtes,
2002). Thus, if G is a MAG faithful to Π, then there is a unique MAG G′ faithful to any
marginal distribution of Π.

We use [L to denote the act of marginalizing out variables L, thus, if G is a MAG
over variables O ∪ L faithful to a joint probability distribution Π, G[L is the MAG over
O faithful to the marginal joint probability distribution of Π. We use J [L to denote the
marginal independence model of J , i.e. the set of conditional independencies {X ⊥⊥ Y | Z ∈
J : (X ∪Y ∪Z)∩L = ∅}. Obviously, the DAG of a causal Bayesian network is also a MAG.
For a MAG G over O and a set of variables L ⊂ O, the marginal MAG G[L is defined as
follows:

Definition 3 (Marginal MAG) (Richardson and Spirtes, 2002) MAG G[L has node set
O \ L and edges specified as follows: If X, Y are s.t. ∀Z ⊂ O \ L ∪ {X,Y }, X and Y are
m-connected given Z in G, then

if


X /∈ AnG(Y );Y /∈ AnG(X)
X ∈ AnG(Y );Y /∈ AnG(X)
X /∈ AnG(Y );Y ∈ AnG(X)

 then


X ↔ Y
X → Y
X ← Y

 in G[L

The following theorem was proved in Richardson and Spirtes (2002):

Theorem 4 If G is a MAG over V = O ∪ L, then Jm(G[L) = Jm(G)[L.

Proof See proof of Theorem 4.18 in Richardson and Spirtes (2002).

As mentioned above, every conditional independence in an independence model J cor-
responds to a missing edge in the corresponding faithful MAG G. Conversely, if X and
Y are dependent given every subset of observed variables, then X and Y are adjacent in
G. Thus, given an oracle of conditional independence it is possible to learn the skeleton of
a MAG G over variables O from a data set. Still, some of the orientations of G are not
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distinguishable by mere observations. The set of MAGs G faithful to distributions Π that
entail a set of conditional independencies J (Π) form a Markov equivalence class.

It is well known that two DAGs are Markov equivalent if and only if they share the
same adjacencies and unshielded colliders. Markov equivalent MAGs also share adjacencies
and unshielded colliders, but this is not sufficient to characterize Markov equivalent graphs.
The emergence of bi-directed edges imposes also a set of shielded colliders on the Markov
equivalent MAGs. These colliders are discriminated by discriminating paths:

Definition 5 (Discriminating path) A path p = 〈X, . . . ,W, V, Y 〉 is called discrimi-
nating for V if X is not adjacent to Y and every node on the path from X to V is a
collider and a parent of Y .

Discriminating paths, their properties and their connection to Markov equivalence is
discussed in detail in Ali et al. (2009). Unfortunately, two Markov equivalent MAGs may
not share the same discriminating paths. Moreover, a triple may be discriminated to be a
collider in MAG M1 but not in MAG M2 in the same Markov equivalence class. There
exists however, a subset of discriminating paths that (a) are present in all the Markov
equivalent MAGs and (b) the colliders discriminated by these paths are necessary and
sufficient for Markov equivalence (Ali et al., 2009). The following definition from Ali et al.
(2009) is relevant:

Definition 6 (Colliders with order) Let Di, i ≥ 0 be a set of triples of order i in MAG
M, defined recursively as follows:

• Order 0: A triple 〈X,Y, Z〉 ∈ D0 if X and Z are not adjacent.

• Order i: A triple 〈X,Y, Z〉 ∈ Di+1 if,

1. for all j < i+ 1, 〈X,Y, Z〉 6∈ Dj and

2. There is a discriminating path 〈W,V1, . . . , Vn, Y,Q〉 such that either 〈X,Y, Z〉 =
〈Vn, Y,Q〉 or 〈X,Y, Z〉 = 〈Q,Y, Vn〉 and the n colliders:

〈W,V1, V2〉, . . . , 〈Vn−1, Vn, Y 〉 ∈
⋃
j≤i

Dj

If 〈X,Y, Z〉 ∈ Di, the triple has order i. If the triple has order i for some i, then we say
the triple has order. If 〈X,Y, Z〉 is a triple with order and X Y Z is in M, then the
triple is a collider with order i in M. Otherwise, the triple is a definite non-collider
with order in M. A discriminating path p has order i if all colliders on the path (except
from the collider 〈Vn, Y,Q〉 discriminated by the path) have order at most i − 1, and there
exists at least one collider with order i− 1. If a discriminating path has order i for some i,
then we say that the discriminating path has order. In this work we (abusively) call (non)
colliders with order ≥ 1 discriminating (definite non) colliders.

Note that not every triple on a mixed graph has order. The order (if any) of a shielded
triple is the minimum of the orders of all discriminating paths with order for that triple.
Triples with order 0 are the unshielded triples. Discriminating paths with order ≥ 1 are
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present in all Markov equivalent MAGs, and therefore colliders with order ≥ 1 are the
triples that are colliders in all the Markov equivalent MAGs. Colliders with order, along
with adjacencies, are necessary and sufficient to characterize Markov equivalent MAGs:

Theorem 7 Two MAGs over the same variable set are Markov equivalent if and only if
they share the same edges and the same colliders with order.

Proof See proof of Theorem 3.7 in Ali et al. (2009).

We use [G] to denote the class of MAGs that are Markov equivalent to G. A partial
ancestral graph (PAG) is a representative graph of this class, and has the skeleton shared
by all the graphs in [G], and all the orientations invariant in all the graphs in [G]. Endpoints
that can be either arrows or tails in different MAGs in G are denoted with a circle “◦” in the
representative PAG. We use the symbol as a wild card to denote any of the three marks.
We use the notation M ∈ P to denote that MAG M belongs to the Markov equivalence
class represented by PAG P.

For a MAGM and a probability distribution Π faithful to each other, Jm(M) = J (Π).
Thus, the set of m-separations entailed in M are exactly the conditional independencies
that hold in Π. FCI Algorithm (Spirtes et al., 2001; Zhang, 2008a) is a sound and complete
algorithm for learning the complete (maximally informative) PAG of the MAGs faithful to
a distribution Π over variables O in which a set of conditional independencies J (Π) hold.
An important advantage of FCI is that it employs CMC, faithfulness and some graph theory
to reduce the number of tests required to identify the correct PAG.

3.3 Correspondence Between SMCMs and MAGs

Semi Markov Causal Models and Maximal Ancestral Graphs both represent causally in-
sufficient causal structures. They both entail the conditional independence structure and
the causal ancestry structure of the observed variables. Thus, under CMC and FC, the
SMCM G and the MAG M over a set of variables O entail the same independence model:
Jm(S) = Jm(M). They also entail the same ancestral relationships: X is an ancestor of Y
in S if and only if X is an ancestor of Y in M.

Nevertheless, SMCMs and MAGs also have significant differences: SMCMs describe the
causal relations among observed variables, while MAGs encode independence structure with
partial causal ordering. Edge semantics in SMCMs are closer to the semantics of causal
Bayesian networks, whereas edge semantics in MAGs are more complicated. On the other
hand, unlike in DAGs and MAGs, a missing edge in a SMCM does not necessarily correspond
to a conditional independence (SMCMs do not obey a pairwise Markov property).

Figure 2 summarizes the main differences of SMCMs and MAGs. It shows two different
DAGs, and the corresponding marginal SMCMs and MAGs over four observed variables.
SMCMs have a many-to-one relationship to MAGs: For a MAG M, there can exist more
than one SMCMs that entail the same probabilistic and causal ancestry relations. On the
other hand, for any given SMCM there exists only one MAG entailing the same probabilistic
and causal ancestry relations. This is clear in Figure 2, where a unique MAG, M1 =M2

entails the same information as two different SMCMs, S1 and S2 in the same figure.
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G1:
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S1:
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M1:

A B C D

P1:

A B C D

G2:

A B C D

S2:

A B C D

M2:

A B C D

P2:

Figure 2: An example two different DAGs and the corresponding mixed causal graphs
over observed variables. On the left we can see DAGs G1 over variables
{A, B, C, D, L} (top) and G2 over variables {A, B, C, D} (bottom). From left
to right, on the same row as the underlying causal DAG, we can see the respective
SMCMs S1 and S2 over {A, B, C, D}; the respective MAGs M1 = G1[L and
M2 = G2 over variables {A, B, C, D}; finally, the respective PAGs P1 and P2.
Notice that, M1 and M2 are identical, despite representing different underlying
causal structures.

Directed edges in a SMCM denote a causal relation that is direct in the context of
observed variables. In contrast, a directed edge in a MAG merely denotes causal ancestry;
the causal relation is not necessarily direct. An edge X Y can be present in a MAG even
though X does not directly cause Y ; this happens when X is a causal ancestor of Y and
the two cannot be rendered independent given any subset of observed variables. Depending
on the structure of latent variables, this edge can be either missing or bi-directed in the
respective SMCM.

In Figure 2 we can see examples of both cases. For example, A is a causal ancestor of
D in DAG G1, but not a direct cause (in the context of observed variables). Therefore, the
two are not adjacent in the corresponding SMCM S1 over {A,B,C,D}. However, the two
cannot be rendered independent given any subset of {B,C}, and therefore A D is in the
respective MAG M1.

On the same DAG, B is another causal ancestor (but not a direct cause) of D. The
two variables share the common cause L. Thus, in the corresponding SMCM S1 over
{A,B,C,D} we can see the edge B D. However, a bi-directed edge between B and D is
not allowed in MAG M1, since it would create an almost directed cycle. Thus, B D is
in M1.

We must also note that unlike SMCMs, MAGs only allow one edge per variable pair.
Thus, if X directly causes Y and the two are also confounded, both edges will be in a
relevant SMCM (X Y ), while the two will share a directed edge from X to Y in the
corresponding MAG.

Overall, a SMCM has a subset of the adjacencies (but not necessarily edges) of its MAG
counterpart. These extra adjacencies in MAGs correspond to pairs of variables that cannot
be m-separated given any subset of observed variables, but neither directly causes the other,
and the two are not confounded. These adjacencies can be checked in a SMCM using a
special type of path, called inducing path (Richardson and Spirtes, 2002).
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Figure 3: Effect of manipulating variable C on the causal graphs of Figure 2. From right
to left we can see the manipulated DAGs GC1 (top) and GC2 (bottom), the ma-
nipulated SMCMs SC1 (top) and SC2 (bottom) over variables {A, B, C, D}, the
manipulated MAGs MC

1 = GC1 [L (top) and MC
2 = GC2 (bottom) over the same

set of variables, and the corresponding PAGs PC1 (top) and PC2 (bottom). No-
tice that edge A D is removed in MC

1 , even though it is not adjacent to the
manipulated variable. Moreover, on the same graph, edge B D is now B D.

Definition 8 (Inducing path) A path p = 〈V1, V2, . . . , Vn〉 on a mixed causal graph G
over a set of variables V = O∪̇L is called inducing with respect to L if every non-collider
on the path is in L and every collider is an ancestor of either V1 or Vn. A path that is
inducing with respect to the empty set is called a primitive inducing path.

Obviously, an edge joining X and Y is a primitive inducing path. Intuitively, an inducing
path with respect to L is m-connecting given any subset of variables that does not include
variables in L. Path A B L D is an inducing path with respect to L in G1 of Figure
2, and A B D is an inducing path with respect to the empty set in S1 of the same
figure. Inducing paths are extensively discussed in Richardson and Spirtes (2002), where
the following theorem is proved:

Theorem 9 If G is an ancestral graph over variables V = O∪̇L, and X,Y ∈ O then the
following statements are equivalent:

1. X and Y are adjacent in G[L.

2. There is an inducing path with respect to L in G.

3. ∀Z, Z ⊆ V \ L ∪ {X,Y }, X and Y are m-connected given Z in G.

Proof See proof of Theorem 4.2 in Richardson and Spirtes (2002).

This theorem links inducing paths in an ancestral graph to m-separations in the same
graph and to adjacencies in any marginal ancestral graph. The equivalence of (ii) and (iii)
can also be proved for SMCMs, using the proof presented in Richardson and Spirtes (2002)
for Theorem 9:

Theorem 10 If G is a SMCM over variables V = O∪̇L, and X,Y ∈ O then the following
statements are equivalent:

2157



Triantafillou and Tsamardinos

1. There is an inducing path with respect to L in G.

2. ∀Z, Z ⊆ V \ L ∪ {X,Y }, X and Y are m-connected given Z in G.

Proof See proof of Theorem 4.2 in Richardson and Spirtes (2002).

The following proposition follows from Theorems 9 and 10:

Proposition 12 . Let O be a set of variables and J the independence model over O. Let
S be a SMCM over variables O that is faithful to J and M be the MAG over the same
variables that is faithful to J . Let X,Y ∈ O. Then there is an inducing path between X
and Y with respect to L, L ⊆ O in S if and only if there is an inducing path between X
and Y with respect to L in M.

Proof See Appendix A.

Primitive inducing paths are connected to the notion of maximality in ancestral graphs:
Every ancestral graph can be transformed into a maximal ancestral graph with the addition
of a finite number of bi-directed edges. Such edges are added between variables X,Y that
are m-connected through a primitive inducing path (Richardson and Spirtes, 2002).
Path A B C D in Figure 1 is an example of a primitive inducing path.

Inducing paths are crucial in this work because adjacencies and non-adjacencies in
marginal ancestral graphs can be translated into existence or absence of inducing paths in
causal graphs that include some additional variables. For example, path A B L D
is an inducing path w.r.t. L in G1 in Figure 2, and therefore A and D are adjacent in
M1. Thus, inducing paths are useful for combining causal mixed graphs over overlapping
variables.

Inducing paths are also necessary to decide whether two variables in an SMCM will
be adjacent in a MAG over the same variables without having to check all possible m-
separations. Algorithm 1 describes how to turn a SMCM into a MAG over the same
variables.

Algorithm 1 takes as input a SMCM S and adds the necessary edges to transform it
into a MAG M by looking for primitive inducing paths. The procedure can be viewed as
a special case of marginalizing out variables in DAGs, presented in Spirtes and Richardson
(1996) and Zhang (2008b). Similar algorithms are also presented in Sadeghi (2012), where
the relationship among different types of mixed causal graphs representing the same inde-
pendence model is discussed in detail. The algorithm is sound, i.e. the output MAG shares
the same causal ancestry relations and entails the same independence model as S:

Theorem 13 . Let O be a set of variables and J the independence model over O. Let S
be a SMCM over variables V that is faithful to J . Let M = SMCMtoMAG(S). Then S
and M share the same ancestry relations and Jm(S) = Jm(M).

Proof See Appendix A.
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Algorithm 1: SMCMtoMAG

input : SMCM S
output: MAG M

1 M←S;
2 foreach ordered pair of variables X, Y not adjacent in S do
3 if ∃ primitive inducing path from X to Y in S then
4 if X ∈ AnS(Y ) then
5 add X Y to M;
6 else if Y ∈ AnS(X) then
7 add Y X to M;
8 else
9 add Y X to M;

10 end

11 end

12 end
13 foreach X Y in M do
14 remove X Y ;
15 end

The algorithm is also complete, since there only exists one such MAG. The inverse pro-
cedure, converting a MAG into the underlying SMCM, is not possible, since we cannot know
in general which of the edges correspond to direct causation or confounding and which are
there because of a (non-trivial) primitive inducing path. Note though that, there exist sound
and complete algorithms that identify all edges for which such a determination is possible
(Borboudakis et al., 2012). In addition, in the next section we show that co-examining ma-
nipulated distributions can indicate that some edges stand for indirect causality (or indirect
confounding).

3.4 Manipulations Under Causal Insufficiency

An important motivation for using causal models is to predict causal effects. In this work, we
focus on hard manipulations, where the value of the manipulated variables is set exclusively
by the manipulation procedure. We also adopt the assumption of locality, denoting that
the intervention of each manipulated variable should not directly affect any variable other
than its direct target, and more importantly, local mechanisms for other variables should
remain the same as before the intervention (Zhang, 2006). Thus, the intervention is merely
a local surgery with respect to causal mechanisms. These assumptions may seem a bit
restricting, but this type of experiment is fairly common in several modern fields where the
technical capability for precise interventions is available, such as, for example, molecular
biology. Finally, we assume that the manipulated model is faithful to the corresponding
manipulated distributions.

In the context of causal Bayesian networks, hard interventions are modeled using what
is referred to as “graph surgery”, in which all edges incoming to the manipulated variables
are removed from the graph. The resulting graph is referred to as the manipulated graph.
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Naturally, DAGs are closed under manipulation. We use the term intervention target to
denote a set of manipulated variables. For a DAG G and an intervention target I, we use GI
to denote the manipulated DAG. Parameters of the distribution that refer to the probability
of manipulated variables given their parents are replaced by the parameters set by the
manipulation procedure, while all other parameters remain intact. We use ΠI to denote
this manipulated joint probability distribution, and J I to denote the corresponding
manipulated independence model.

Graph surgery can be easily extended to SMCMs: One must simply remove edges into
the manipulated variables. Again, we use the notation SI to denote the graph resulting
from a SMCM S after the manipulation of variables in I. In contrast, predicting the effect
of manipulations in MAGs is not trivial. Due to the complicated semantics of the edges,
the manipulated graph is usually not unique.

This becomes more obvious by looking at Figures 2 and 3. Figure 2 shows two different
causal DAGs and the corresponding SMCMs and MAGs, and Figure 3 shows the effect
of a manipulation on the same graphs. In Figure 2 the marginals of DAGs D1 and D2

are represented by the same MAG M1 =M2. However, after manipulating variable C,
the resulting manipulated MAGsMC

1 andMC
2 do not belong to the same equivalence class

(they do not even share the same skeleton). We must point out, that the indistinguishability
of M1 and M2 refers to m-separation only; the absence of a direct causal edge between A
and D could be detected using other types of tests, like the Verma constraint (Verma and
Pearl, 2003).

While we cannot predict the effect of manipulations on a MAG M, given a data set
measuring variables O when variables in I ⊂ O are manipulated, we can obtain (assuming
an oracle of conditional independence) the PAG representative of the actual manipulated
MAG MI. We use PI to denote this PAG.

We must point out here that we use PI as the representative of the Markov equivalence
class of models that are faithful to the manipulated conditional independence model J (ΠI),
as opposed to the representative of the interventional Markov equivalence class of manip-
ulated MAGs. The information on manipulations, not included in the present use of PI,
defines a smaller Markov equivalence class: For example, in Figure 3, MAGs in the inter-
ventional Markov equivalence class of MC

1 share the additional invariant characteristic of
a tail into C on the edge C D. This invariant feature however is not oriented in PC1 . To
the best of our knowledge, no sound and complete algorithm for identifying the maximally
informative PAG for the interventional Markov equivalence class of MI exists (however,
orienting all edges out of the manipulated variables is a trivially sound method).

By observing PAGs {PIi} that stem from known, different manipulations of the same
underlying distribution, we can infer some refined information for the underlying causal
model. Let’s suppose, for example, that G1 in Figure 2 is the true underlying causal graph
for variables {A,B,C,D,L} and that we have the learnt PAGs PA1 and PC1 from relevant
data sets. Graph PA1 is not shown, but is identical to P1 in Figure 2 since A has no incoming
edges in the underlying DAG (and SMCM). PC1 is illustrated in Figure 3. Edge A D
is present in PA1 , but is missing in PC1 even though neither A nor D are manipulated in
PC1 . By reasoning on the basis of both graphs, we can infer that edge A D in PA1
cannot denote a direct causal relation among the two variables, but must be the result of a
primitive, non-trivial inducing path.
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4. Learning Causal Structure From Multiple Data Sets Measuring
Overlapping Variables Under Different Manipulations

In the previous section we described the effect of manipulation on MAGs and saw an exam-
ple of how co-examining PAGs faithful to different manipulations of the same underlying
distribution can help classify an edge between two variables as not direct.

In this section, we expand this idea and present a general, constraint-based algorithm
for learning causal structure from overlapping manipulations. The algorithm takes as input
a set of data sets measuring overlapping variable sets {Oi}Ni=1; in each data set, some of the
observed variables can be manipulated. The set of manipulated variables in experiment i
is also provided and is denoted with Ii.

In the rest of this paper, we make the following assumptions:

A1 We assume that there exists an underlying causal mechanism over a set of variables
O that can be described with a semi Markov causal model G over O. If Π is the joint
probability distribution over O, we assume that Π and G are faithful to each other,
i.e. Jm(G) = J (Π). We also say that G is faithful to the independence model J (Π).

A2 We assume that we collect data sets in N different experiments, where in experiment i
we observe variables Oi ⊆ O, while variables Li = O\Oi are latent and variables Ii ⊂
O are manipulated. We also assume O =

⋃N
i=1 Oi. We assume that manipulations

are ideal hard interventions and that they result in removal of all edges in G that are
incoming to the manipulated variables.

A3 We assume faithfulness for the manipulated SMCMs and distributions, i.e. Jm(GIi) =
J (ΠIi).

Unless mentioned otherwise, the following notation is used:

• Oi denotes the set of observed variables in experiment i.

• Ii denotes the set of manipulated variables in experiment i.

• O = ∪iOi denotes the union of observed variables.

• Li = O \Oi denotes the set of latent variables (with respect to the union of observed
variables) in experiment i.

• Di denotes a data set for experiment i, sampled from the mechanism described by
(GIi ,ΠIi), measuring variables in Oi.

• Ji denotes the independence model that holds in data set Di. In the sample limit,
Ji is equal to the set of m-separations that hold for sets of variables in Oi after
manipulating Ii in the underlying causal model: Ji = J (ΠIi)[Li

= Jm(GIi)[Li
.

• Pi denotes the maximally informative PAG for the (observational) Markov equivalence
class of MAGs faithful to Ji. Thus, for any MAG Mi ∈ Pi, Jm(Mi) = Ji. Notice
that, since SMCMs and MAGs over the same variables represent the same indepen-
dence model, for an oracle of conditional independence, Pi = [SMCMtoMAG(GIi)[Li ].
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Under the assumptions described above, we are interested in combining information
across data sets collected from different manipulations and marginalizations of the same
system under study, to identify features of the possible underlying causal mechanism. If S
is a SMCM that describes this underlying causal mechanism, then this SMCM must agree
with all the observed independence models {Ji}Ni=1. This means that for each experiment,
the respective manipulated SIi must entail all and only the conditional independencies that
hold in data set Di (in the sample limit Ji can be obtained correctly from the data). For
the family of independence models {Ji}Ni=1, and a family of intervention targets {Ii}Ni=1 a
possibly underlying SMCM is defined as follows:

Definition 11 (Possibly underlying SMCM) If {Ji}Ni=1 is a family of independence
models over variable sets {Oi}Ni=1 and {Ii}Ni=1 is a family of intervention targets such that
Ii ⊆ Oi ∀i, then a SMCM S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1

iff:

∀X,Y,Z ⊆ Oi, [X is m-separated from Y given Z in SIi ]⇔ X ⊥⊥ Y | Z ∈ Ji,

Intuitively, S is a SMCM such that once the effects of manipulations are modeled (i.e. SIi
is constructed), it entails all and only the independencies Ji observed in the corresponding
data set. Thus, S is a possible causal model that explains all data. Since each independence
model Ji can be graphically represented by a PAG Pi, one can recast this definition in
graph-theoretic terms: S is a possibly underlying SMCM if, after graph surgery, results in
a marginal MAG that belongs in Pi:

Theorem 14 If S is a SMCM, {Ji}Ni=1 is a family of independence models, {Ii}Ni=1 is a
family of intervention targets and Pi is the PAG of the Markov equivalence class of MAGs
faithful to Ji, the following statements are equivalent:

• S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

• Mi ∈ Pi ∀i, where Mi = SMCMtoMAG(SIi)[Li.

Proof See Appendix A.

As mentioned above, PAGs Pi here denote the maximally informative representatives of
the Markov equivalence class of MAGs that entail independence models Ji, instead of the
interventional Markov equivalence class of MAGs that entail both Ji and the interven-
tional constraints following the manipulation of targets Ii. Hence, this graphical criterion
may seem incomplete, since the actual MAGs belong to thinner equivalence classes, which
include some additional orientations: tails towards any manipulated variable and addi-
tional orientations stemming from the combination of m-separation and acyclicity with
these aforementioned tails. However, MAGs Mi = SMCMtoMAG(SIi)[Li are constructed
after graph surgery has been applied to the (candidate) possibly underlying SMCM and
abide by definition the constraints that correspond to interventional information (i.e. tail
orientations towards manipulated variables), since SIi and SMCMtoMAG(SIi) share the
same ancestral relations. Thus, the resulting MAGs Mi belong (by construction) to the
thinner interventional Markov equivalence class of MAGs, and testing Markov equivalence
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in the observational sense is a sound and complete graphical criterion to determine whether
a SMCM is possibly underlying for a family of independence models coupled with a family
of intervention targets.

Notice that PAG Pi can be learnt with a sound and complete algorithm such as FCI.
We can now benefit by the compact representation of Markov equivalence classes of MAGs
described in Theorem 7, to check whether a SMCM S is possibly underlying for a family
of independence models {Ji}Ni=1 and a family of intervention targets {Ii}Ni=1: Instead of
checking all conditional dependencies (resp. independencies) in Ji to be m-connections
(resp. m-separations) in the corresponding SMCM SIi , we can construct the corresponding
MAGs Mi = SMCMtoMAG(SIi)[Li for each experiment and check whether they belong
to the Markov equivalence class represented by Pi. By Theorem 7, we only need to check
adjacencies and colliders with order.

In the next section, we present an algorithm that converts the problem of identifying a
SMCM S that is possibly underlying for a family of observed independence models {Ji}Ni=1

and a family of intervention targets {Ii}Ni=1 into a constraint satisfaction problem. Specifi-
cally, we will create a satisfiability instance s.t. a SMCM is possibly underlying for {Ji}Ni=1

and {Ii}Ni=1 if and only if it corresponds to a truth-setting assignment for the SAT instance.
For a family of independence models {Ji}Ni=1 and a family of intervention targets {Ii}Ni=1,
several SMCMs may be possibly underlying. We can then use the equivalent SAT instance
to query properties shared by all possibly underlying SMCMs, or to identify a single possibly
underlying SMCM with some desirable characteristics. In this work, we use the equivalent
SAT instance to identify all edges and endpoints that are invariant in all possibly underlying
SMCMs.

4.1 Conversion to SAT

Theorem 14 implies thatMi has the same edges (adjacencies), and the same colliders with
order (unshielded colliders and discriminating colliders with order) as any MAG in Pi, for
all i. We impose these constraints on S by converting them to a SAT instance. We express
the constraints in terms of the following core variables, denoting edges and orientations in
any possibly underlying SMCM S.

• edge(X, Y ): true if X and Y are adjacent in S, false otherwise.

• tail(X, Y ): true if there exists an edge between X and Y in S that is out of Y , false
otherwise.

• arrow(X, Y ): true if there exists an edge between X and Y in S that is into Y , false
otherwise.

Variables tail and arrow are not mutually exclusive, enabling us to represent X Y
edges when tail(Y,X)∧arrow(Y,X). Each independence model Ji is entailed by the (non)
adjacencies and (non) colliders in each observed PAG Pi. These structural characteristics
correspond to paths in any possibly underlying SMCM as follows:

1. ∀X,Y ∈ Oi, X and Y are adjacent in Pi if and only if there exists an inducing path
between X and Y with respect to Li in SIi (by Theorems 9 and 10 and Proposition
12).
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adjacent(X,Y,Pi)↔ ∃pXY : inducing(pXY , i)

/?X and Y are adjacent in Pi iff

there exists an inducing path from X to Y with respect to Li in SIi . ?/

collider(〈X,Y, Z〉,Pi)↔ ¬ancestor(Y,X, i) ∧ ¬ancestor(Y,Z, i)
/? Triple 〈X,Y, Z〉 is collider in Pi iff

Y is not an ancestor of X or Z in SIi . ?/

unshielded(〈X,Y, Z〉,Pi)↔
adjacent(X,Y,Pi) ∧ adjacent(Y,Z,Pi) ∧ ¬adjacent(X,Z,Pi)

/? Triple 〈X,Y, Z〉 is unshielded in Pi iff
(X, Y ), (Y , Z) are adjacent in Pi, (X,Z) are not adjacent in Pi. ?/

discriminating(〈V0, . . . , Vn−1, Vn, Vn+1〉, Vn,Pi)↔
¬adjacent(V0, Vn+1,Pi) ∧ ∀j ∈ [0, . . . , n]adjacent(Vj , Vj+1,Pi)∧
∀j ∈ [1, . . . , n− 1]

(
collider(〈Vj−1, Vj , Vj+1〉,Pi)

∧ adjacent(Vj , Vn+1,Pi) ∧ ancestral(Vj , Vn+1, i)
)

/? Path 〈V0, . . . , Vn+1〉 is discriminating for Vn in Pi iff
V0, Vn+1 are not adjacent in Pi, V0, . . . , Vn+1 is a path in Pi,
every node between V0 and Vn is a collider on the path

and a parent of Vn+1 in Pi. ?/

Figure 4: Formulae relating properties of observed PAGs to the underlying SMCM S. In
each PAG, all features that are necessary and sufficient for Markov equivalence
impose constraints on possibly underlying SMCMs. Constraints are expressed us-
ing the literals and formulae introduced here. Index i is used to denote properties
of an underlying SMCM in experiment i, where variables Li are latent and vari-
ables Ii are manipulated. We use use pXY to denote a path between X and Y in
S. Conjunction and disjunction are assumed to have precedence over implication
with regard to bracketing. Each formula is followed by an explanation in natural
language (in star-slash comments).
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inducing(〈V0, . . . , Vn+1〉, i)↔
(n = 0→ edge(V0, Vn+1))∧(
n > 0→ (∀j ∈ [1, . . . , n] unblocked(〈Vj−1, Vj , Vj+1〉, V0, Vn+1, i))

)
∧

(V0 ∈ Ii → tail(V1, V0)) ∧ (Y ∈ Ii → tail(Vn, Vn+1))

/? Path 〈V0, . . . , Vn+1〉 is inducing with respect to Li in SIi iff
if the path has only two variables, V0 is adjacent to Vn in S
else each triple is unblocked for the endpoints with respect to Li,

if V0 (Vn+1) is manipulated in i then the path is out of V0 (Vn+1) in S. ?/

unblocked(〈Z, V,W 〉, X, Y, i)↔
edge(Z, V ) ∧ edge(V,W )∧
[V ∈ Li → ¬head2head(〈Z, V,W 〉, i) ∨ ancestor(V,X, i) ∨ ancestor(V, Y, i)]∧

[V 6∈ Li → head2head(〈Z, V,W 〉, i) ∧ (ancestor(V,X, i) ∨ ancestor(V, Y, i))]

/? Triple 〈Z, V,W 〉 is unblocked for X, Y with respect to Li iff
(Z, V ) (V , W ) are adjacent in S
if V is latent, if V is head2head then it is an ancestor of X or Y in SIi

if V is not latent, V is a head2head and an ancestor of X or Y in SIi . ?/

head2head(〈X,Y, Z〉, i)↔ Y 6∈ Ii ∧ arrow(X,Y ) ∧ arrow(Z, Y )

/? Triple 〈X,Y, Z〉 is head2head in SIi iff
Y is not manipulated in experiment i, X is into Y , Z is into Y in S. ?/

ancestor(X,Y, i)↔ ∃pXY : ancestral(pXY , i)

/? X is an ancestor of Y in experiment i iff

there exists an ancestral path from X to Y in SIi . ?/

ancestral(〈V0, . . . , Vn+1〉, i)↔
∀j ∈ [1, . . . , n+ 1]

(
Vj 6∈ Ii ∧ (edge(Vj−1, Vj) ∧ tail(Vj , Vj−1) ∧ arrow(Vj−1, Vj))

)
/? Path 〈V0, . . . , Vn+1〉 is ancestral in experiment i iff

every variable (apart from possibly V0) is not manipulated in SIi
every variable is a parent of the next in S. ?/

Figure 5: Formulae reducing path properties of the graphs SIi to the core variables: Graph
properties of S in each experiment, inferred by the observed PAGs using the
formulae in Figure 4, are now expressed as boolean formulae using the “core”
variables edge, arrow and tail. Index i is used to denote properties of an under-
lying SMCM in experiment i, where variables Li are latent and variables Ii are
manipulated. Conjunction and disjunction are assumed to have precedence over
implication with regard to bracketing. Each formula is followed by an explanation
in in natural language (in star-slash comments).
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2. If 〈X,Y, Z〉 is an unshielded definite non collider in Pi, then 〈X,Y, Z〉 is an unshielded
triple in Pi and Y is an ancestor of either X or Z in SIi (by the semantics of edges
in MAGs).

3. If 〈X,Y, Z〉 is an unshielded collider in Pi, then 〈X,Y, Z〉 is an unshielded triple in Pi
and Y is not an ancestor of X nor Z in SIi (by the semantics of edges in MAGs).

4. If 〈W, . . . ,X, Y, Z〉 is a discriminating collider in Pi, then 〈W . . . ,X, Y, Z〉 is a dis-
criminating path for Y in Pi and Y is not an ancestor of X nor Z in SIi (by the
semantics of edges in MAGs).

5. If 〈W, . . . ,X, Y, Z〉 is a discriminating definite non collider in Pi, then 〈W . . . ,X, Y, Z〉
is a discriminating path for Y in Pi and Y is an ancestor of either X or Z in SIi (by
the semantics of edges in MAGs).

These constraints are expressed using the core variables (edges, tails and arrows), as
described in Figures 4 and 5. Figure 4 describes how features of a PAG are imposed as
path constraints in a possibly underlying SMCM. More specifically, an adjacency, a tail and
an arrowhead in a PAG Pi correspond to an inducing path, a causal ancestry and the lack
of causal ancestry on any possibly underlying SMCM, respectively. Unshielded triples and
discriminating paths are expressed on the basis of these basic PAG features. In each PAG,
the observed features depend on the latent and manipulated variables. When constraints are
imposed on the candidate underlying SMCMs, the latent and manipulated variables in the
experiment are taken under consideration: If an adjacency is observed in Pi in experiment
i, where variables Li are latent and Ii are manipulated, then any path on S that explains
this adjacency must be inducing with respect to Li in SIi . Any truth-assignment to the
core variables that does not entail the presence of such an inducing path should not satisfy
the SAT instance. The following constraints are added to ensure that the graphs satisfying
constraints 1-5 above are SMCMs:

6. ∀X,Y ∈ O, either X is not an ancestor of Y or Y is not an ancestor of X in S (no
directed cycles).

7. ∀X,Y ∈ O, at most one of tail(X,Y ) and tail(Y,X) can be true (no selection bias).

8. ∀X,Y ∈ O, at least one of tail(X,Y ) and arrow(Y,X) must be true.

Naturally, Constraints 7 and 8 are meaningful only if X and Y are adjacent (if edge(X, Y)
is true), and redundant otherwise.

4.2 Algorithm COmbINE

We now present algorithm COmbINE (Causal discovery from Overlapping INtErventions)
that learns causal features from multiple, heterogeneous data sets. The algorithm takes as
input a set of data sets {Di}Ni=1 over a set of overlapping variable sets {Oi}Ni=1. In each
data set, a (possibly empty) subset of the observed variables Ii ⊂ Oi may be manipulated.
Each data set entails an independence model Ji. FCI is run on each data set and the
corresponding PAGs {Pi}Ni=1 are produced. The algorithm then creates a candidate under-
lying SMCM Hin. Subsequently, for each PAG Pi, the features of Pi are translated into
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Algorithm 2: COmbINE

input : data sets {Di}Ni=1, sets of intervention targets {Ii}Ni=1, FCI parameters
params, maximum path length mpl, conflict resolution strategy str

output: Summary graph H
1 foreach i do Pi ← FCI(Di, params);
2 Hin ← initializeSMCM ({Pi}Ni=1);
3 (Φ,F)← addConstraints (H, {Pi}Ni=1, {Ii}Ni=1, mpl);
4 F ′ ← select a subset of non-conflicting literals F ′ according to strategy str ;
5 H ← backBone (Φ ∧ F ′)

constraints, expressed in terms of edges and endpoints in Hin, using the formulae in Figures
4 and 5 . In the sample limit (and under the assumptions discussed above), the SAT for-
mula Φ ∧F produced by this procedure is satisfied by all and only the possibly underlying
SMCMs for {Ji}Ni=1 and {Ii}. In the presence of statistical errors, however, Φ ∧ F may be
unsatisfiable. To handle conflicts, the algorithm takes as input a strategy for selecting a
non-conflicting subset of constraints F ′ and ignores the rest. Finally, COmbINE queries
the SAT formula for variables that have the same truth-value in all satisfying assignments,
translates them into graph features, and returns a graph that summarizes the invariant
edges and orientations of all possibly underlying SMCMs. In the rest of this paper we call
the graphical output of COmbINE a summary graph.

The pseudocode for COmbINE is presented in Algorithm 2. Apart from the set of data
sets described above, COmbINE takes as input the chosen parameters for FCI (threshold
α, maximum conditioning set maxK), the maximum length of paths to consider and a
strategy for selecting a subset of non-conflicting constraints.

Initially, the algorithm runs FCI on each data set Di and produces the corresponding
PAG Pi. Then the candidate SMCM Hin is initialized: Hin is the graph upon which all
path constraints will be imposed. Path constraints are realized on the basis of the plausible
configurations of Hin. We say that a path p in Hin is possibly inducing with respect
to L, if we can create a graph H′in by orienting circle endpoints in Hin such that path p is
inducing with respect to L in H′in. We say that a path p in Hin is possibly ancestral, if
we can create a graph H′in by orienting circle endpoints in Hin such that path p is ancestral
H′in. To ensure the soundness of the algorithm, if p is an inducing (ancestral) path in S,
it must be a possibly inducing (ancestral) path in Hin. Thus, Hin must have at least a
superset of edges and at most a subset of orientations of any possibly underlying SMCM S.

An obvious–yet not very smart–choice for Hin would be the complete unoriented graph.
However, looking for possibly inducing and possibly ancestral paths on the complete unori-
ented graph over the union of variables could make the problem intractable even for small
input sizes. To reduce the number of possibly inducing and possibly ancestral paths, we
use Algorithm 3 to construct Hin.

Algorithm 3 constructs a graph Hin that has all edges observed in any PAG Pi as well
as some additional edges that would not have been observed even if they existed: Edges
connecting variables that have never been observed together, and edges connecting variables
that have been observed together, but at least one of them was manipulated in each joint
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Algorithm 3: initializeSMCM

input : PAGs {Pi}Ni=1

output: initial graph Hin
1 Hin ← empty graph over ∪Oi;
2 foreach i do
3 Hin ← add all edges in Pi unoriented;
4 end
5 Orient only arrowheads that are present in every Pi;
/* Add edges between variables never measured unmanipulated together */

6 foreach pair X, Y of non-adjacent nodes do
7 if 6 ∃i s.t. X,Y ∈ Oi \ Ii then
8 add X Y to Hin;
9 if ∃i s.t. X,Y ∈ Oi, X ∈ Ii, Y 6∈ Ii then add arrow into X;

10 if ∃i s.t. X,Y ∈ Oi, Y ∈ Ii, X 6∈ Ii then add arrow into Y ;

11 end

12 end

appearance in a data set. For example, variables X9 and X15 in Figure 6 are measured
together in two data sets: D2 and D3. If X9 X15 in the underlying SMCM, this edge
would be present in P3. Similarly, if X15 X9 in the underlying SMCM, the variables
would be adjacent in P2. We can therefore rule out the possibility of a directed edge
between the two variables in S. However, it is possible that X15 and X9 are confounded
in S, and the edge disappears by the manipulation procedure in both P2 and P3. Thus,
Algorithm 3 will add these possible edges in Hin. In addition, in Line 5, Algorithm 3 adds
all the orientations found so far in all Pi’s that are invariant.1 The resulting graph has, in
the sample limit, a superset of edges and a subset of orientations compared to the actual
underlying SMCM. Lemma 15 in Appendix A formalizes and proves this property.

Having initialized the search graph, Algorithm 2 proceeds to generate the constraints.
This procedure is described in detail in Algorithm 4, that is the core of COmbINE. These
are: (i) the bi-conditionals regarding the presence/absence of edges (Line 4), (ii) conditionals
regarding unshielded and discriminating colliders (Lines 14, 13, 20 and 19), (iii) constraints
that ensure that any truth-setting assignment is a SMCM, i.e., it has no directed cycles and
that every edge has at least one arrowhead (Lines 8 and 9 respectively). Literal col (resp.
dnc) is used to represent both unshielded and discriminating colliders (resp. unshielded and
discriminating non colliders).

The constraints are realized on the basis of the plausible configurations of Hin: Thus,
for the constraints corresponding to adjacent(X,Y, i) the algorithm finds all paths between

1. Other options would be to keep all non-conflicting arrows, or keep non-conflicting arrows and tails after
some additional analysis on definitely visible edges (see Zhang 2008b, Borboudakis et al. 2012 for more
on this subject). These options are asymptotically correct and would constrain search even further.
Nevertheless, orientation rules in FCI seem to be prone to error propagation and we chose a more
conservative strategy giving a chance to the conflict resolution strategy to improve the learning quality.
Naturally, if an oracle of conditional independence is available or there is a reason to be confident on
certain features, one can opt to make additional orientations.
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Algorithm 4: addConstraints

input : Hin, {Pi}Ni=1, {Ii}Ni=1, mpl
output: Φ, list of literals F

1 Φ← ∅ foreach X,Y do
2 foreach i do
3 posIndPaths← paths in Hin of maximum length mpl that are possibly

inducing with respect to Li;
4 Φ← Φ∧

[
adjacent(X,Y,Pi)↔ ∃pXY ∈posIndPaths s. t. inducing(pXY , i)

]
;

5 if X, Y are adjacent in Pi then add adjacent(X,Y,Pi) to F ;
6 else add ¬adjacent(X,Y,Pi) to F ;

7 end
8 Φ← Φ ∧

[
¬ancestor(X,Y ) ∨ ¬ancestor(Y,X)

]
;

9 Φ← Φ ∧
[
¬tail(X,Y ) ∨ ¬tail(Y,X)

]
∧
[
(arrow(X,Y ) ∨ tail(X,Y )

]
;

10 end
11 foreach i do
12 foreach unshielded triple in Pi do
13 Φ← Φ ∧

[
col(X,Y, Z,Pi)→ unshielded(X,Y, Z,Pi) ∧ collider(X,Y, Z,Pi)

]
;

14 Φ← Φ∧
[
dnc(X,Y, Z,Pi)→ unshielded(X,Y, Z,Pi)∧¬collider(X,Y, Z,Pi)

]
;

15 if 〈X,Y, Z〉 is a collider in Pi then add col(X,Y, Z,Pi) to F ;
16 else add dnc(X,Y, Z,Pi) to F ;

17 end
18 foreach discriminating path pWZ = 〈W, . . . ,X, Y, Z〉 do
19 Φ← Φ ∧

[
col(X,Y, Z,Pi)→

discriminating(pWZ , Y,Pi) ∧ collider(X,Y, Z,Pi)
]
;

20 Φ← Φ ∧
[
dnc(X,Y, Z,Pi)→

discriminating(pWZ , Y,Pi) ∧ ¬collider(X,Y, Z,Pi)
]
;

21 if X, Y , Z is a collider in Pi then add col(X,Y, Z,Pi) to F ;
22 else add dnc(X,Y, Z,Pi) to F ;

23 end

24 end

X and Y in Hin that are possibly inducing. Then, for the literal adjacent(X,Y, i) to be
true, at least one of these paths is constrained to be inducing; for the opposite, none of
these paths is allowed to be inducing. This step is the most computationally expensive part
of the algorithm. The parameter mpl controls the length of the possibly inducing paths;
instead of finding all paths between X and Y that are possibly inducing, the algorithm
looks for all paths of length at most mpl. This plays a major part in the ability of the
algorithm to scale up, since finding all possible paths between every pair of variables can
blow up even in relatively small networks, particularly in the presence of unoriented cliques
or in relatively dense networks.

Notice that the information on manipulations is included in the satisfiability instance
through the encoding of the constraints: For every adjacency between X and Y observed
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in Pi, the plausible inducing paths are consistent with the respective intervention targets:
No inducing path is allowed to include an edge that is incoming to a manipulated variable.

As an example, consider the following variation of the instance presented in Figure 7.
Assume that variable X is manipulated in experiment 1, and no variable is manipulated in
experiment 2. Since no information concerning experiments is employed up to the initial-
ization of the search graph, the resulting PAGs are the P1 and P2 shown in Figure 7. Thus,
in the initial search graph Hin, X Y and X Z Y are the two possibly inducing
paths for X and Y in experiment i. Then the following constraint will be imposed:

adjacent(X,Y, 1)↔ inducing(〈X,Y 〉, 1) ∨ inducing(〈X,Z, Y 〉, 1)

For path 〈X,Y 〉, the corresponding constraint is reduced to the properties of S as follows:

inducing(〈X,Y 〉, 1)↔
(X ∈ I1 → tail(Y,X)) ∧ (Y ∈ I1 → tail(X,Y )) ∧ edge(X,Y )

which is then added in Φ as inducing(〈X,Y 〉, 1)↔ tail(Y,X) ∧ edge(X,Y ) since X ∈ I1 is
true and Y ∈ I1 is false. For the path 〈X,Z, Y 〉 the corresponding constraint finally added
in Φ is

inducing(〈X,Z, Y 〉)↔
tail(Z,X) ∧ [¬head2head(〈X,Z, Y 〉) ∨ ancestral(Z,X) ∨ ancestral(Z, Y )]

Thus, in a SMCM that satisfies the final formula, if inducing(〈X,Y 〉, i) is true, there
will be an inducing path from X to Y consistent with the manipulation information.

Also notice how this constraint is propagated in the SAT: For example, X Z Y W
is a plausible skeleton for a possibly underlying SMCM. By the constraints mentioned above,
X → Z Y is the inducing path for X and Y with respect to L1 = Z. By the constraints
added for the definite non collider 〈X,Z,W 〉 for P2, Z has to be an ancestor of either X or
Y in S∅. Therefore, the path Z Y W has to be an ancestral path in S, which implies
that Y Z in S. Thus, the orientation Y Z is imposed by a combination of constraints
stemming from different PAGs, for two variables never jointly measured.

As mentioned above, in the absence of statistical errors, all the constraints stemming
from all PAGs Pi are simultaneously satisfiable. In practical settings however, it is pos-
sible that some of the PAGs have some erroneous features due to statistical errors, and
these features can lead to conflicting constraints. To tackle this problem, Algorithm 4
uses the following technique: For every observed feature, instead of imposing the im-
plied constraints on the formula Φ, the algorithm adds a bi-conditional connecting the
feature to the constraints. For example, if X and Y are found adjacent in Pi, then in-
stead of adding the constraints ∃pXY : inducing(X,Y, i) to Φ, we add the bi-conditional
adjacent(X,Y,Pi) ↔ ∃pXY : inducing(X,Y, i). The antecedents of the conditionals are
stored in a list of literals F . The conflict resolution strategy is then imposed on this list of
literals, selecting a subset F ′ that results in a satisfiable SAT formula Φ∧F ′. The formula
Φ∧F ′ is expressed in Conjunctive Normal Form (CNF) so it can be input to standard SAT
solvers.

Recall that the propositional variables of Φ correspond to the features of the actual
underlying SMCM (its edges and endpoints). Some of these variables have the same value
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Figure 6: An example of COmbINE input - output. Graph S is the actual, data-generating,
underlying SMCM over 12 variables. PAGs P1,P2 and P3 are the output of FCI
ran with an oracle of conditional independence on three different marginals of G.
H is the output of COmbINE algorithm. The sets of latent variables (with respect
to the union of observed variables) per data set are: L1 = {X9}, L2 = {∅}, L3 =
{X18}. The sets of manipulated variables (annotated as rectangle nodes instead
of circles in the respective graphs) are: I1 = {X14, X34}, I2 = {X15, X8},
I3 = {X9, X12}. Notice that X10 and X31 are adjacent in P2, but not in P1 or
P3. This happens because there exists an inducing path in the underlying SMCM
(X31 X14 X10 in S) that is “broken” by the manipulation of X14 and X12,
respectively. Also notice a dashed edge between X9 and X15, which cannot be
excluded since the variables have never been observed unmanipulated together.
Even if the link existed, it would be destroyed in both P2 and P3, where both
variables are observed. All graphs were visualized in Cytoscape (Smoot et al.,
2011).

in all the possible truth-setting assignments of Φ ∧ F ′, meaning the respective features are
invariant in all possibly underlying SMCMs. Such variables are called backbone variables
of Φ ∧ F ′ (Hyttinen et al., 2013). The actual value of a backbone variable is called the
polarity of the variable. For sake of brevity, we say an edge or endpoint has polarity 0/1 if
the corresponding variable is a backbone variable in Φ∧F ′ and has polarity 0/1. Based on
the backbone of Φ ∧F ′, the final step of COmbINE is to construct the summary graph S.
S has the following types of edges and endpoints:
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X Y Z W

P1 : X Y W

P2 : X Z W
X Y Z W

Figure 7: A detailed example of a non-trivial inference. From left to right: The true un-
derlying SMCM over variables X, Y , Z, W ; PAGs P1 and P2 over {X,Y,W}
and {X,Z,W}, respectively; The output H of Algorithm 2 ran with an oracle
of conditional independence. Notice that, the edges in P1 can not both simul-
taneously occur in a consistent SMCM S: This would make X Y W an
inducing path for X and W with respect to L2 = {Y } and contradict the features
of P2, where X and W are not adjacent. Similarly, X Z W cannot occur in
any possibly underlying SMCM S. The only possible edge structures that explain
all the observed adjacencies and definite non colliders are X Y Z W or
X Z Y W . Either way, Y and Z share an edge in all consistent SMCMs,
and the algorithm will predict a solid edge between Y and Z, even if the two have
not been measured in the same data set. This example is discussed in detail in
(Tsamardinos et al., 2012).

• Solid Edges: Edges in H that have polarity 1 in Φ ∧ F ′, meaning that they are
present in all possibly underlying SMCMs.

• Absent Edges: Edges that are not in H or edges in H that have polarity 0 in Φ∧F ′,
meaning that they are absent in all possibly underlying SMCMs.

• Dashed Edges: Edges in H that are not backbone variables in Φ∧F ′, meaning that
there exists at least one possibly underlying SMCM where this edge is present and
one where this edge is absent.

• Solid Endpoints: Endpoints in H that are backbone variables in Φ ∧ F ′, meaning
that this orientation is invariant in all possibly underlying SMCMs.

• Dashed (circled) Endpoints: Endpoints in H that are not backbone variables in
Φ ∧ F ′, meaning that there exists at least one possibly underlying SMCM where this
orientation does not hold.

We use the term solid features of the summary graph to denote the set of solid edges,
absent edges and solid endpoints of the summary graph.

Overall, Algorithm 2 takes as input a set of data sets and a list of parameters and outputs
a summary graph that has all invariant edges and orientations of the SMCMs that satisfy
as many constraints as possible (according to some strategy). The algorithm is capable of
non-trivial inferences, like for example the presence of a solid edge among variables never
measured together. Figures 6 and 7 illustrate the output of Algorithm 2, along with the
corresponding input PAGs.

We claim that, given an oracle of conditional independence, the SAT-generating pro-
cedure described in Algorithm 4 results in a SAT instance Φ ∧ F that is satisfied by all
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and only the possibly underlying SMCMs for {Ji}Ni=1 and {Ii}Ni=1 (i.e., every SMCM that
entails the exact same conditional independencies as those obtained by the oracle for every
experiment, after the removal of edges incoming to the manipulated variables). Lemma 17
proves that the every possibly underlying SMCM satisfies Φ ∧ F , while Lemma 19 proves
that if S is a mixed graph satisfying Φ ∧ F , S is a possibly underlying SMCM for {Ji}Ni=1

and {Ii}Ni=1.

In all subsequent lemmas, theorems and proofs we employ the assumptions A1-A3 and
the notation presented in the beginning of Section 4. We also assume the algorithms are run
with an oracle of conditional independence and infinite maximum conditioning set size and
maximum path length. We only present the main lemmas and theorems here. Auxiliary
lemmas and all proofs can be found in Appendix A.

Lemma 17 For an oracle of conditional independence, if S is a possibly underlying model
for {Ji}Ni=1 and {Ii}Ni=1, and Φ ∧ F is the conjunction of the outputs of Algorithm 4, S
satisfies Φ ∧ F .

Proof See Appendix A.

Lemma 19. For an oracle of conditional independence, if Φ ∧ F is the conjunction of the
outputs of Algorithm 4, and S a mixed graph that satisfies Φ ∧ F , then S is a possibly
underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

Proof See Appendix A.

Soundness and completeness of Algorithm 2 stems from the Lemmas 17 and 19: For
the summary graph that is the output of COmbINE soundness means that if a feature
is solid in H, the feature is present in all possibly underlying SMCMs for {Ji}Ni=1 and
{Ii}Ni=1. Completeness means that if a feature is dashed in H, there exists at least two
possibly underlying SMCM where this feature has different truth values. Since Φ ∧ F
implicitly represents the entire solution space, and it is satisfied by all and only the possibly
underlying SMCMs, soundness and completeness of Algorithm 2 easily follows.

Theorem 20 (Soundness and completeness of Algorithm 2) If H is the output of
Algorithm 2, then the following hold:
Soundness: If a feature (edge, absent edge, endpoint) is solid in H, then this feature is
present in all SMCMs that are possibly underlying for {Ji}Ni=1 and {Ii}Ni=1.
Completeness: If a feature is present in all SMCMs that are possibly underlying for
{Ji}Ni=1 and {Ii}Ni=1, the feature is solid in H.

Proof See Appendix A.
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4.3 A Strategy for Conflict Resolution Based on the Maximum Posterior Ratio

In this section, we present a method for assigning a measure of confidence to every literal
in list F described in Algorithm 2, and a strategy for selecting a subset of non-conflicting
constraints. List F includes four types of literals, expressing different statistical information:

1. adjacent(X,Y,Pi): X and Y are not independent given any subset of Oi.

2. ¬adjacent(X,Y,Pi): X and Y are independent given some Z ⊂ Oi

3. col(〈X,Y, Z〉,Pi): Y is in no subset of Oi that renders X and Z independent.

4. dnc(〈X,Y, Z〉,Pi): Y is in every subset of Oi that renders X and Z independent.

For the scope of this work, we will focus on ranking the first two types of antecedents:
Adjacencies and non-adjacencies. We will then assign colliders and non-colliders with order
to the same rank as the non-adjacency of the corresponding discriminating path’s endpoints.
Naturally, this criterion of sorting colliders and non-colliders is merely a heuristic, as more
than one tests of independence are involved in deciding that a triple is a (non) collider.

Assigning a measure of likelihood or posterior probability to every single (non) adjacency
would enable their comparison. A non-adjacency in a PAG corresponds to a conditional
independence given some subset of the observed variables. In contrast, an adjacency corre-
sponds to the lack of such a subset. Thus, an edge between X and Y should be present in
Pi if the evidence (data) is less in favor of hypothesis:

H0 : ∃Z ⊂ Oi : X ⊥⊥ Y | Z than the alternative H1 : @Z ⊂ Oi : X ⊥⊥ Y | Z (1)

This is a complicated set of hypotheses, that involves multiple tests of independence. We try
to approximate testing by using a single test of independence as a surrogate: During FCI,
several conditioning sets are tested for every pair of variables X and Y . Let ZXY be the
conditioning test for which the highest p-value is identified for the given pair of variables.
Notice that it is this maximum p-value that is employed in FCI and similar algorithms to
determine whether an edge is included in the output or not. We use the set of hypotheses

H0 : X ⊥⊥ Y | ZXY against the alternative H1 : X 6⊥⊥ Y | ZXY

as a surrogate for the set of hypotheses in Equation 1. Under the null hypothesis, the
p-values follow a uniform U([0, 1]) distribution,2 also known as the Beta(1, 1) distribution.
Under the alternative hypothesis, the density of the p-values should be decreasing in p.
One class of decreasing densities is the Beta(ξ, 1) distribution for 0 < ξ < 1, with density
f(p|ξ) = ξpξ−1. Thus, we can approximate the null and alternative hypotheses in terms of
the p-value as

H0 : pXY.Z ∼ Beta(1, 1) against H1 : pXY.Z ∼ Beta(ξ, 1) for some ξ ∈ (0, 1). (2)

Taking the Beta alternatives was presented as a method for calibrating p-values in Sellke
et al. (2001). For the purpose of this work, we use them to estimate whether dependence

2. This is actually an approximation in this case, since these p-values are maximum p-values over several
tests.
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is more probable than independence for a given p-value p, by estimating which of the Beta
alternatives it is most likely to follow.

Let F be a set of M literals corresponding to adjacencies and non-adjacencies, and
{pj}Mj=1 the respective maximum p-values: If the j-th literal in F is (¬)adjacent(X,Y,Pi),
then pj is the maximum p-value obtained for X, Y during FCI over Di. We assume that
this population of p-values follows a mixture of Beta(ξ, 1) and Beta(1, 1) distribution. If
π0 is the proportion of p-values following Beta(ξ, 1), the probability density function is

f(p|ξ, π0) = π0 + (1− π0)ξpξ−1

and the likelihood for a set of p-values {pj}Mj=1 is

L(ξ, π0) =
∏
j

(π0 + (1− π0)ξpξ−1
j ).

The respective negative log likelihood is

−LL(ξ, π0) = −
∑
j

log(π0 + (1− π0)ξpξ−1
j ). (3)

For given estimates π̂0 and ξ̂, the posterior ratio of H0 against H1 is

E0(p) =
P (p|H0)P (H0)

P (p|H1)P (H1)
=
P (p|p ∼ Beta(1, 1))P (p ∼ Beta(1, 1))

P (p|p ∼ Beta(ξ̂, 1))P (p ∼ Beta(ξ̂, 1))
=

π̂0

ξ̂pξ̂−1(1− π̂0)
.

E0(p) > 1 implies that for the test of independence represented by the p-value p, indepen-
dence is more probable than dependence, while E0(p) < 1 implies the opposite. Moreover,
the value of E0(p) quantifies this belief. Conversely, the corresponding posterior ratio of
H1 against H0 is

E1(p) =
ξ̂pξ̂−1(1− π̂0)

π̂0
.

We define the maximum posterior ratio (MPR) for a p-value p to be the maximum
between the two:

E(p) = max
{ π̂0

ξ̂pξ̂−1(1− π̂0)
,
ξ̂pξ̂−1(1− π̂0)

π̂0

}
. (4)

MPR estimates heuristically quantify our confidence in the observed adjacencies and
non-adjacencies and are employed to create a list of literals as follows: Let X and Y be a
pair of observed variables, and pXY be the maximum p-value reported during FCI for these
variables. Then, if E0(pXY ) > E1(pXY ), the literal ¬adjacent(X,Y, i) is added to F with
confidence estimate E(pXY ). Otherwise, the literal adjacent(X,Y, i) is added to F with a
confidence estimate E(pXY ). The list can then be sorted in order of confidence, and the
literals can be satisfied incrementally. Whenever a literal in the list is encountered that
cannot be satisfied in conjunction with the ones already selected, it is ignored.
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Figure 8: Behaviour and calibration of MPR estimates. (left) Log of the maximum poste-
rior ratio E(p) versus log of the p-value p for π̂0 = 0.6 and various ξ̂. For ξ̂ = 0.1,
an adjacency supported by a maximum p-value of 0.0038 corresponds to the same
E as a non-adjacency supported by a p-value of 0.6373. The intersection point
of the line with the x axis is the p for which E0(p) = E1(p) = 1. (center) Prob-
ability calibration plots for confidence estimates obtained using MPR estimates
(1/(1 + E0(p)) for adjacencies, E0(p)/(1 + E0(p)) for non-adjacencies). For each
interval of length 0.1 in [0.5, 1], the estimated confidences are plotted against the
actual frequency of correctness of the corresponding constraints. The green lines
correspond to estimates obtained using BCCDR (see Section 5) The confidence
estimates correspond to the experiments presented in Figure 10. (right). Number
of confidences in each interval.

Notice that, it is possible that for a p-value E0(pXY ) > E1(pXY ) (i.e., MPR determines
independence is more probable), even though pXY is smaller than the FCI threshold used. In
other words, given a fixed FCI threshold, dependence maybe accepted; but, when analyzing
the set of p-values encountered to compute MPR, independence seems more probable. The
reverse situation is also possible. The pseudo-code in Algorithm 5 (Lines 6—10) accepts the
MPR decisions for dependencies and independencies; this implies that some of the decisions
made by FCI will be reversed. Nevertheless, in anecdotal experiments we found that the
literals for which this situation occurs are near the end of the sorted list; thus, whether
one accepts the initial decisions of FCI based on a fixed threshold, or a dynamic threshold
based on MPR usually does not have a large impact on the output of the algorithm.

Figure 8 shows how the MPR varies with the p-value for π̂0 = 0.6 and several ξ̂’s.
The lowest possible value of the MPR is 1, and corresponds to the p-value p for which
E0(p) = E1(p). Naturally, for the same ξ, this p-value (where the odds switch in favor of
non-adjacency) is larger for a lower π0. In Figure 8 for π0 = 0.6 we can see an example
of two p-values that correspond to the same E: An adjacency represented by a p-value of
0.0038 (0.0038 being the maximum p-value of any test performed by FCI for the pair of
variables) is as likely as a non-adjacency represented by a p-value of 0.6373 (0.6373 being
the p-value based on which FCI removed this edge).

To obtain MPR estimates, we need to estimate π0 and ξ. We used the method described
in Storey and Tibshirani (2003) to estimate π0 on the pooled (maximum) p-values {pj}Mj=1
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Figure 9: Distribution of p-values and estimated π̂0. We used the method of Storey and
Tibshirani (2003) to estimate π̂0 for a sample of p-values corresponding to 2 (left),
5 (center) and 10 (right) input data sets. We generated networks by manipulat-
ing a marginal of the ALARM network (Beinlich et al., 1989) consisting of 14
variables. In each experiment, at most 3 variables were latent and at most 2
variables were manipulated. We simulated data sets of 100 samples each from
the resulting manipulated graphs. We ran FCI on each data set with α = 0.1 and
maxK = 5 and cached the maximum p-value reported for each pair of variables.
We used the p-values from all data sets to estimate π̂0. The dashed line corre-
sponds to the proportion of p-values that come from the null distribution based
on the estimated π̂0.

over all data sets obtained during FCI. For a given π̂0, Equation 3 can then be easily
optimized for ξ.

The method used to obtain π̂0 assumes independent p-values, which is of course not
the case since the test schedule of FCI depends on previous decisions. In addition, each
p-value may be the maximum of several p-values; these maximum p-values may not follow a
uniform distribution even when the non-adjacency (null hypothesis) is true. Finally, given
that p-values stem from tests over different conditioning set sizes, p-values corresponding
to adjacencies do not necessarily follow the same beta distribution. Thus, the approach
presented here is at best an approximation.

In the algorithm as presented, a single beta is fit from the pooled p-values of FCI runs
over all data sets. This strategy is perhaps more appropriate when individual data sets
have a small number of p-values, so the pooled set provides a larger sample size for the
fitting. Other strategies though, are also possible. One could instead fit a different beta for
each data-set and its corresponding set of p-values. This approach could perhaps be more
appropriate in case the PAG structures Pi vary greatly in terms of sparseness. In addition,
one could also fit different beta distributions for each conditioning set size. Figure 9 shows
the empirical distribution of p-values and the estimated π̂0 based on the p-values returned
from FCI on 2, 5 and 10 input data sets, simulated from a network of 14 variables.

The strategy for selecting non-conflicting constraints based on the MPR is presented
in Algorithm 5. MPR is a general criterion that can be used to compare confidence in
dependencies and independencies. The method is based on p-values and thus, can be
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Algorithm 5: MPRstrategy

input : SAT formula Φ, list of literals F , their corresponding p-values {pj}
output: List of non conflicting literals F ′

1 F ′ ← ∅;
2 Estimate π̂0 from {pj} using the method described in Storey and Tibshirani (2003);

3 Find ξ̂ that minimizes −∑j log(π̂0 + (1− π̂0)ξpξ−1
j );

4 foreach literal (¬)adjacent(X,Y,Pi) ∈ F with p-value pj do

5 E0(pj)← π̂0

ξ̂pξ̂−1
j (1−π̂0)

, E1(pj)←
ξ̂pξ̂−1
j (1−π̂0)

π̂0
;

6 if E1(pj) < E0(pj) then
7 add ¬adjacent(X,Y,Pi) to F
8 else
9 add adjacent(X,Y,Pi) in F

10 end
11 Score(literal)← max{E0(pj), E1(pj)};
12 end
13 foreach literal collider(X,Y, Z,Pi), dnc(X,Y, Z,Pi) do
14 if X, Y , Z is an unshielded triple in Pi then
15 Score(literal)← Score(X,Z,Pi);
16 else if 〈W . . .X, Y, Z〉 is discriminating for Y in Pi then
17 Score(literal)← Score(W,Z,Pi);
18 end

19 end
20 F ← sort F by descending score;
21 foreach φ ∈ F do
22 if Φ ∧ φ is satisfiable then
23 Φ← Φ ∧ φ;
24 Add φ to F ′;
25 end

26 end

applied in different types of data (e.g., continuous and discrete) in conjunction with any
appropriate test of independence. Moreover, since it is based on cached p-values, and fitting
a beta distribution is efficient, it adds minimal computational complexity. On the other
hand, the estimation of maximum posterior ratios is based on heuristic assumptions and
approximations. Nevertheless, experiments presented in the following section showcase that
the method works similarly if not better than other conflict resolution methods, while being
orders of magnitude computationally more efficient.

5. Experimental Evaluation

We present a series of experiments to characterize how the behavior of COmbINE is affected
by the characteristics of the problem instance and compare it against another alternative
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Problem attribute Default value used

Number of variables in the generating DAG 20

Maximum number of parents per variable 5

Number of input data sets 5

Maximum number of latent variables per data set 3

Maximum number of manipulated variables per data set 2

Sample size per data set 1000

Table 1: Default values used in generating experiments in each iteration of COmbINE. Un-
less otherwise stated, the input data sets of COmbINE were generated according
to these values.

algorithm in the literature. We also present a comparative evaluation of conflict resolution
methods, including the one based on the proposed MPR estimation technique. Finally, we
present a proof-of-concept application on real mass cytometry data on human T-cells. In
more detail, we initially compare the complete version of COmbINE (i.e., without restric-
tions on the maximum path length or the conditioning set) against SBCSD (Hyttinen et al.,
2013) in ideal conditions (i.e., both algorithms are provided with an independence oracle).
We perform a series of experiments to explore the (a) learning accuracy of COmbINE as a
function of the maximum path length considered by the algorithm, the density and size of
the network to reconstruct, the number of input data sets, the sample size, and the number
of latent variables, and (b) the computational time as a function of the above factors.

All experiments were performed on data simulated from randomly generated networks
as follows. The graph of each network is a DAG with a specified number of variables and
maximum number of parents per variable. Variables are randomly sorted topologically and
for each variable the number of parents is uniformly selected between 0 and the maximum
allowed. The parents of each variable are selected with uniform probability from the set
of preceding nodes. Each DAG is then coupled with random parameters to generate con-
ditional linear Gaussian networks. To avoid very weak interactions, minimum absolute
conditional correlation was set to 0.2. Before generating a data set, the variables of the
graph are partitioned to unmanipulated, manipulated, and latent. Mean value and stan-
dard deviation for the manipulated variables were set to 0 and 1, respectively. Subsequently,
data instances are sampled from the network distribution, considering the manipulations
and removing the latent variables. All experiments are performed on conservative families
of targets; the term was introduced in Hauser and Bühlmann (2012) to denote families of
intervention targets in which all variables have been observed unmanipulated at least once.

For each invocation of the algorithm, the problem instance (set of data sets) is generated
using the parameters shown in Table 1. COmbINE default parameters were set as follows:
maximum path length = 3, α = 0.1 and maximum conditioning set maxK = 5, and the
Fisher z-test of conditional independence. As far as orientations are concerned, in our
experience, FCI is very prone to error propagation, we therefore used the rule in (Ramsey
et al., 2006) for conservative colliders. Unless otherwise stated, Algorithm 5 is employed to
resolve conflicts. SAT instances were solved using MINISAT2.0 (Eén and Sörensson, 2004)
along with the modifications presented in Hyttinen et al. (2013) for iterative solving and
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computing the backbone with some minor modifications for sequentially performing literal
queries. In the subsequent experiments, one of the problem parameters in Table 1 is varied
each time, while the others retain the values above.

To measure learning performance, ideally one should know the correct output, i.e., the
structure that the algorithm would learn if ran with an oracle of conditional independence,
and unrestricted infinite maxK and maximum path length parameters. Notice that the
original generating DAG structure cannot serve as the correct output for comparison. This
is because the presence of manipulated and latent variables implies that not all structural
features of the generating DAG can be recovered. For example, for the problem instance
presented in Figure 7 (middle), the correct output, shown in Figure 7 (right), has one solid
edge out of 5, no solid endpoint, one absent, and four dashed edges. Dashed edges and
endpoints in the output of the algorithm can only be evaluated if one knows this correct
output. Unfortunately, the correct output cannot be recovered in a timely fashion in most
problems involving more than 15 variables, as shown in Section 5.1.

As a surrogate, we defined metrics that do not consider dashed edges or endpoints and
can be directly computed by comparing the “solid” features of the output with the original
data generating graph. Specifically, we used two types of precision and recall; one for
edges (s-Precision/s-Recall) and one for orientations (o-Precision/o-Recall). Let G be the
graph that generated the data (the SMCM stemming from the initial random DAG after
marginalizing out variables latent in all data sets), and H be the summary graph returned
by COmbINE. s-Precision and s-Recall were then calculated as follows:

s-Precision =
# solid edges in H that are also in G

# solid edges in H

and

s-Recall =
# solid edges in H that are also in G

# edges in G .

Similarly, orientation precision and recall are calculated as follows:

o-Precision =
# endpoints in G correctly oriented in H

# of orientations(arrows/tails) in H

and

o-Recall =
# endpoints in G correctly oriented in H

# endpoints in G .

Since dashed edges and endpoints do not contribute to these metrics, precision in particular
could be favorable for conservative algorithms that tend to categorize all edges (endpoints)
as dashed. To alleviate this problem, we accompany each precision / recall figure with the
percentage of dashed edges out of all edges in the output graph to indicate how conservative
is the algorithm. Similarly, we present the percentage of dashed (circled) endpoints out of
all endpoints in the output graph. Finally, we note that in the experiments that follow,
unless otherwise stated, we report the median, 5, and 95 percentile over 100 runs of the
algorithm with the same settings.
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Running time Completed instances/
# # max Median (5 %ile, 95 %ile) total instances

variables parents COmbINE SBCSD SBCSD′ COmbINE SBCSD SBCSD′

10
3 17(1, 113) 149(14, 470)∗ 91(30, 369)∗ 50/50 30/50 48/50
5 80(4, 1192) 365(133, 500)∗ 264(68, 554)∗ 50/50 16/50 32/50

14
3 28(4, 6361)∗ − 451(407, 492)∗ 49/50 0/50 4/50
5 272(23, 16107)∗ − − 43/50 0/50 0/50

Table 2: Comparison of running times for COmbINE and SBCSD for networks of 10 and
14 variables. The table reports the median running time along with the 5 and
95 percentiles, as well as the number of instances (problem inputs) in which each
algorithm managed to complete; ∗numbers are computed only on the problems for
which the algorithm completed.

5.1 COmbINE vs. SBCSD

Hyttinen et al. (2013) presented a similar algorithm, named SAT-based causal structure dis-
covery (SBCSD). SBCSD is also capable of learning causal structure from manipulated data
sets over overlapping variable sets. In addition, if linearity is assumed, it can admit feedback
cycles. SBCSD also uses similar techniques for converting conditional (in)dependencies into
a SAT instance. However, the algorithm requires all m-connections to constrain the search
space (at least the ones that guarantee completeness), while COmbINE uses inducing paths
to avoid that. For each adjacency X Y in a data set, COmbINE creates a constraint
specifying that at least one path between the variables is inducing with respect to Li. In
contrast, SBCSD creates a constraint specifying that at least one path between the variables
is m-connecting path given each possible conditioning set. So, both algorithms are forced
to check every possible path, yet COmbINE examines each path once (with respect to Li),
while SBCSD examines it for multiple possible conditioning sets. The latter choice may
be necessary to deal with cyclic structures, but leads to significantly larger SAT problems
when acyclicity is assumed.

SBCSD is not presented with a conflict resolution strategy and so it can only be tested by
using an oracle of conditional independence. Equipping SBCSD with such a strategy is pos-
sible, but it may not be straightforward: SBCSD computes the SAT backbone incrementally
for efficiency, which complicates pre-ranking constraints according to some criterion. Since
SBCSD cannot handle conflicts, we compared it to the complete version of our algorithm
(infinite maxK and maximum path length) using an oracle of conditional independence.
Since no statistical errors are assumed, the initial search graph for COmbINE includes all
observed arrows. Both algorithms are sound and complete, hence we only compare run-
ning time. SBCSD uses a path-analysis heuristic to limit the number of tests to perform.
However, the authors suggest that in cases of acyclic structures, this heuristic could be
substituted with the FCI test schedule. To better characterize the behavior of SBCSD
on acyclic structures, we equipped the original implementation as suggested.3 We denote
this version of the algorithm as SBCSD′. Also note, that the available implementation of

3. However, we do not include the Possible d-Separating step of FCI; this step hardly influences the quality
of the algorithm (Colombo et al., 2012). Thus, the timing results of Table 2 are a lower bound on the
execution time of the SBCSD algorithm.
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SBCSD by its authors has an option to restrict the search to acyclic structures, which was
employed in the comparative evaluation. Finally, we note that SBCSD is implemented in
C, while COmbINE is implemented in Matlab.

For the comparative evaluation, we simulated random acyclic networks with 10 and 14
variables. The default parameters were used to generate 50 problem instances for networks
with 3 and 5 maximum parents per variable. Both algorithms were run on the same com-
puter, with 4GB of available memory. SBCSD reached maximum memory and aborted
without concluding in several cases for networks of 10 variables, and in all cases for net-
works of 14 variables. SBCSD′ slightly improves the running time over SBCSD. Median
running time along with the 5 and 95 percentiles as well as number of cases completed are
reported in Table 2. The metrics for each algorithm were calculated only on the cases where
the algorithm completed.

The results in Table 2 indicate that COmbINE is more time-efficient than SBCSD and
SBCSD′. While the running times do depend on implementation, the fact that SBCSD have
much higher memory requirements indicates that the results must be at least in part due
to the more compact representation of constraints by COmbINE . COmbINE managed to
complete all cases for networks of 10 and most cases for 14 variables, while SBCSD completed
less than 50% and 0%, respectively. SBCSD′ completed most cases for 10 variables but only
4% of cases for 14 variables. Interestingly, the percentiles for COmbINE are quite wide
spanning two orders of magnitude for problems with maxParents equal to 5 (we cannot
compute the actual 95 percentile for SBCSD since it did not complete for most problems).
Thus, performance highly depends on the input structure. Such heavy-tailed distributions
are well-noted in the constraint satisfaction literature (Gomes et al., 2000). We also note
the fact that COmbINE seems to depend more on the sparsity and less on the number of
variables, while SBCSD’s time increases monotonically with the number of variables. Based
on these results, we would suggest the use of COmbINE for problems where acyclicity is a
reasonable assumption and the number of variables is relatively high.

5.2 Evaluation of Conflict Resolution Strategies

In this section we evaluate our Maximum Map Ratio strategy (MPR) against three other al-
ternatives: A ranking strategy where constraints are sorted based on Bayesian probabilities
as proposed in Claassen and Heskes (2012) (BCCDR), as well as a Max-SAT (MaxSAT)
and a weighted max-SAT (wMaxSAT) approach.

MPR: This strategy sorts constraints according to the Maximum Map Ratio (Algorithm
5) and greedily satisfies constraints in order of confidence; whenever a new constraint is not
satisfiable given the ones already selected, it is ignored (Lines 21- 25 in Algorithm 5).

BCCDR: BCCDR sorts constraints according to Bayesian probability estimates of the
literals in F as presented in Claassen and Heskes (2012). The same greedy strategy for
satisfying constraints in order is employed. Briefly, the authors propose a method for
calculating Bayesian probabilities for any feature of a causal graph (e.g. adjacency, m-
connection, causal ancestry). To estimate the probability of a feature, for a given data
set D, the authors calculate the score of all DAGs of N variables. Let G ` f denote
that a feature f is present in DAG G. The probability of the feature is then calculated
as P (f) =

∑
G`f P (D|G)P (G). Scoring all DAGs is practically infeasible for networks with
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Figure 10: Learning performance of COmbINE with various conflict resolution strategies.
From left to right: Median s-Precision, s-Recall, proportion of dashed edges
(top) and o-Precision, o-Recall and proportion of dashed endpoints (bottom) for
networks of several sizes for various conflict resolution strategies. Each data set
consists of 100 samples. The numbers for wMaxSAT and maxSAT correspond
to 22 and 23 cases, respectively, in which the algorithms managed to return
a solution within 500 seconds. Coloured bars indicate 5 and 95 percentiles.
Asterisks in the top right figure show the absolute number of literals rejected by
each strategy (y axis on the right). Asterisks on x tick labels indicate cases where
the behaviour of MPR and BCCDR are significantly different (paired t-test of
equality of means with unknown but equal variances).

more than 5 or 6 variables. Thus, for data sets with more variables, a subset of variables
must be selected for the calculation of the probability of a feature. Following (Claassen and
Heskes, 2012), we use 5 as the maximum N attempted.

The literals in F represent information on adjacencies: (¬)adjacent(X,Y,Pi) and col-
liders: (¬)collider(X,Y, Z,Pi). To apply the method above for a given feature, we have to
select the variables used in the DAGs, a suitable scoring function, and suitable DAG priors.
For (non) adjacencies X Y in PAG Pi, we scored the DAGs over variables X, Y and Z,
for the conditioning set Z maximizing the p-value of the tests X⊥⊥Y | Z performed by FCI.
Since the total number of variables cannot exceed 5, the maximum conditioning set for FCI
is limited to 3 in all experiments in this section for a fair comparison. (Non) colliders are
assigned the same score as the non adjacency of their endpoints.

We use the BGE metric for Gaussian distributions (Geiger and Heckerman, 1994) as
implemented in the BDAGL package Eaton and Murphy (2007a) to calculate the likelihoods
of the DAGs. This metric is score equivalent, so we pre-computed representatives of the
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Markov equivalent networks of up to 5 nodes, and scored only one network per equivalence
class to speed up the method. Priors for the DAGs were also pre-computed to be consistent
with respect to the maximum attempted number of nodes (i.e. 5) as suggested in Claassen
and Heskes (2012).

MaxSAT: This approach tries to satisfy as many literals in F as possible. Recall
that the SAT problem consists of a set of hard-constraints (conditionals, no cycles, no
tail-tail edges), which should always be satisfied (hard constraints), and a set of literals
F . Maximum SAT solvers cannot be directly applied to the entire SAT formula since
they do not distinguish between hard and soft constraints. To maximize the number of
literals satisfied, while ensuring all hard-constraints are satisfied we resorted to the following
technique: we use the akmaxsat (Kuegel, 2010) weighted max SAT solver that tries to
maximize the sum of the weights of the satisfied clauses. Each literal is assigned a weight
of 1, and each hard-constraint is assigned a weight equal to the sum of all weights in F
plus 10000. The summary graph returned by Algorithm 2 is based on the backbone of the
subset of literals selected by akmaxsat.

wMaxSAT: Finally, we augmented the above technique with a different weighted strat-
egy that considers the importance of each literal. Specifically, each literal was weighted
proportionally to the logarithm of the corresponding MPR. Again, each hard-constraint
was assigned a weight equal to the sum of all weights in F plus 10000, to ensure that the
solver will always satisfy these statements. The summary graph returned by Algorithm 2
is based on the backbone of the subset of literals selected by akmaxsat.

We ran all methods for networks of 10, 20, 30, 40 and 50 variables for data sets of 100
samples to test them on cases where statistical errors are common. For each network size
we performed 50 iterations. MaxSAT and wMaxSAT often failed to complete in a timely
fashion; to complete the experiments we aborted the solver after 500 seconds. We note that
this amount of time corresponds to more than 10 times the maximum running time of the
MPR method (calculating MPRs and solving the SAT instance), and more than twice times
the maximum running time of the BCCDR-based method (for 50 variables). Cases where
the solver did not complete were not included in the reported statistics. Unfortunately, the
methods using weighted max SAT solving failed to complete in most cases for 10 variables,
and all cases for more than 10 variables.

The results are shown in Figure 10, where we can see the median performance of both
algorithms over 50 iterations. Overall, MPR exhibits better Precision and identifies more
solid edges, while BCCDR exhibits slightly better Recall. BCCDR is better for variable
size equal to 10, which could be explained from the fact that MPR is not provided with
sufficient number of p-values to estimate π̂0 and ξ̂. In terms of computational complexity,
for networks of 50 variables, estimating the BCCDR ratios takes about 150 seconds on
average, while estimating the MPR ratios takes less than a second. The more sophisticated
search strategies MaxSAT and wMaxSAT do not seem to offer any significant quality
benefits, at least for the single variable size for which we could evaluate them. Based on
these results, we believe that MPR is a reasonable and relatively efficient conflict resolution
strategy.
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Figure 11: Learning performance of COmbINE against maximum path length. From left
to right: s-Precision, s-Recall, percentage dashed edges and o-Precision, o-Recall
and percentage of dashed endpoints (bottom) for varying maximum path length,
averaged over all networks. Shaded area ranges from the 5 to the 95 percentile.
Maximum path length 3 seems to be a be a reasonable trade-off between per-
formance, percentage of dashed features, and efficiency.

5.3 COmbINE Performance with Increasing Maximum Path Length

In this section, we examine the behavior of the algorithm when the length of the paths con-
sidered is limited, in which case the output is an approximation of the actual solution. The
COmbINE pseudo-code in Algorithm 2 accepts the maximum path length as a parameter.

Learning performance as a function of the maximum path length is shown in Figure 11.
Notice that when the path length is increased from 1 to 2 there is drop in the percentage
of dashed endpoints, implying more orientations are possible. For length equal to 1, only
unshielded and discriminating colliders are identified, while for length larger than 2 further
orientations become possible thanks to reasoning with the inducing paths. When length
is 1, notice that there are almost no dashed edges (except for the edges added in Line 5
of Algorithm 3). When the maximum length increases, adjacencies in one data set, can
be explained with longer inducing paths in the underlying graph and more dashed edges
appear. The learning performance of the algorithm is not monotonic with the maximum
length. Explaining an association (adjacency) through the presence of a long inducing path
may be necessary for asymptotic correctness. However, in the presence of statistical errors,
allowing such long paths could lead to complicated solutions or the propagation of errors.
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Figure 12: Learning performance of COmbINE for various network sizes and densities.
From left to right: Median s-Precision, s-Recall, proportion of dashed edges
(top) and o-Precision, o-Recall and proportion of dashed endpoints (bottom) for
varying network size and density. Density is controlled by limiting the number
of possible parents per variable. Coloured bars indicate 5 and 95 percentiles. As
expected, the performance deteriorates as networks become denser.

Overall, it seems any increase of the maximum path length above 3 does not significantly
affect performance. It seems that a maximum path length of 3 is a reasonable trade-
off among learning performance (precision and recall), percentage of uncertainties, and
computational efficiency. These experiments justify our choice of maximum length 3 as the
default parameter value of the algorithm.

5.4 COmbINE Performance as a Function of Network Density and Size

In Figure 12 the learning performance of the algorithm is presented as a function of network
density and size. Density was controlled by the maximum parents allowed per variable, set
by parameter maxParents during the generation of the random networks. For all network
sizes, learning performance monotonically decreases with increased density, while the per-
centage of dashed features does not significantly vary. The size of the network has a smaller
impact on the performance, particularly for the sparser networks. For dense networks,
performance is relatively poor and becomes worse with larger sizes.

We also calculated confusion matrices for edges and endpoints inferred by COmbINE
against the correct output structure H for networks of 10 variables, where H can be ob-
tained by running COmbINE with an oracle of conditional independence and unrestricted
path length and conditioning set size. Table 3 shows the resulting confusion matrices for
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Actual H
maxParents 3 maxParents 5

Edges solid dashed absent solid dashed absent

Ĥ

solid 8.0 (4.0, 12.0) 0.0 (0.0, 5.0) 0.0 (0.0, 4.0) 9.0 (3.0, 13.0) 1.0 (0.0, 10.0) 1.0 (0.0, 5.0)
dashed 0.0 (0.0, 3.0) 0.0 (0.0, 4.0) 0.0 (0.0, 2.0) 0.5 (0.0, 4.0) 0.5 (0.0, 3.0) 1.0 (0.0, 2.0)
absent 1.0 (0.0, 4.0) 0.0 (0.0, 3.0) 31.0 (24.0, 36.0) 2.5 (0.0, 8.0) 1.5 (0.0, 9.0) 24.0 (14.0, 34.0)

Endpoints arrow circle tail arrow circle tail
arrow 8.0 (4.0, 12.0) 1.0 (0.0, 5.0) 0.0 (0.0, 3.0) 8.0 (4.0, 13.0) 3.0 (0.0, 8.0) 2 (0.0, 5.0)
circle 1.0 (0.0, 3.0) 3.0 (0.0, 14.0) 0.0 (0.0, 2.0) 1.0 (0.0, 5.0) 3.0 (0.0, 8.0) 1.0 (0.0, 4.0)
tail 0.0 (0.0, 2.0) 0.0 (0.0, 5.0) 4.0 (0.0, 8.0) 1.0 (0.0, 5.0) 1 (0.0, 54.0) 3.0 (1.0, 6.0)

Table 3: Confusion matrices reporting edge and endpoint counts of the output of COmbINE
Ĥ versus the actual summary graph H. Results are shown for 10 variables and 5
data sets of 1000 samples each. H was obtained using COmbINE with an oracle
of conditional independence, and unconstrained maxK and maximum path length
parameters. The table reports median values (bold) along with the 5 and 95
percentiles (in parenthesis). Results are in agreement with the metrics used for
larger networks.

maxParents 3 and 5 and 5 data sets of sample size 1000. Overall, the results are in concor-
dance with the metrics used for larger networks, and confirm that the method works best
for sparser networks. Notice that for dense networks (for N=10 and maxParents =5, the
networks have about 40% of all possible edges), there are cases where the actual correct
output includes a large proportion of dashed edges, while constricting the maximum path
length forces the algorithm to accept more solid features (hence the wide percentiles).

5.5 COmbINE Performance over Sample Size and Number of Input Data Sets

Figure 13 shows the performance of the algorithm with increasing the number of input data
sets. As expected, the percentage of uncertainties (dashed features) is steadily decreasing
with increased number of input data sets. Recall also steadily improves, while Precision is
relatively unaffected. Figure 14 holds the number of input data set constant to the default
value 5, while increasing the sample size per data set. Recall in particular improves with
larger sample sizes, while the percentage of dashed endpoints drops.

5.6 COmbINE Performance for Increasing Number of Latent Variables

We also examine the effect of confounding to the performance of COmbINE . To do so, we
generated semi-Markov causal models instead of DAGs in the generation of the experiments:
We generated random DAG networks of 30 variables and then marginalized out a percentage
of the variables. Figure 15 depicts COmbINE’s performance against 3, 6, and 9 of latent
variables, corresponding to 10%, 20% and 30% of the total number of variables in the
graph, respectively. Overall, confounding does not seem to greatly affect the performance
of COmbINE. We must point out however, that s-Recall is lower than the s-Recall with no
confounded variables for the same network size (see Figure 12).
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Figure 13: Learning performance of COmbINE for varying number of input data sets.
From left to right: Median s-Precision, s-Recall, Proportion of dashed edges
(top) and o-Precision, o-Recall and proportion of dashed endpoints of (bottom)
for varying number of input data sets. Shaded area ranges from the 5 to the 95
percentile. Increasing the number of input data sets improves the performance
of the algorithm.

5.7 Running Time for COmbINE

The running time of COmbINE depends on several factors, including the ones examined in
the previous experiments: Maximum path length, number of input data sets and sample size,
and, naturally, the number of variables. Figure 16 illustrates the running time of COmbINE
against these factors. As we can see in Figure 16, the restriction on the maximum path
length is the most critical factor for the scalability of the algorithm.

5.8 A Case Study: Mass Cytometry Data

Mass cytometry (Bendall et al., 2011) is a recently introduced technique that enables mea-
suring protein activity in cells, and its main use is to classify hematopoietic cells and identify
signaling profiles in the immune system. Therefore, the proteins are usually measured in
a sample of cells and then in a different sample of the same (type of) cells after they have
been stimulated with a compound that triggers some kind of signaling behavior. Identify-
ing the causal succession of events during cell signaling is crucial to designing drugs that
can trigger or suppress immune reaction. Therefore in several studies both stimulated and
un-stimulated cells are treated with several perturbing compounds to monitor the potential
effect on the signaling pathway.
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Figure 14: Learning performance of COmbINE for varying sample size per data set. From
left to right: s-Precision, s-Recall, Proportion of dashed edges (top) and o-
Precision, o-Recall and proportion of dashed endpoints of (bottom) for varying
sample size per data set. Shaded area ranges from the 5 to the 95 percentile.
Increasing the sample size improves the performance of the algorithm.

Mass cytometry data seem to be a suitable test-bed for causal discovery methods: The
proteins are measured in single cells instead of representing tissue averages, the latter being
known to be problematic for causal discovery (Chu et al., 2003), and the samples range in
thousands. However, the mass cytometer can measure only up to 34 variables, which may
be too low a number to measure all the variables involved in a signaling pathway. Moreover,
about half of these variables are surface proteins that are necessary to distinguish (gate) the
cells into sub-populations, but are not functional proteins involved in the signaling path-
way. It is therefore reasonable for scientists to perform experiments measuring overlapping
variable sets.

Bendall et al. (2011) and Bodenmiller et al. (2012) both use mass cytometry to measure
protein abundance in cells of the immune system. In both studies, the samples were treated
with several different signaling stimuli. Some of the stimuli were common in both studies.
After stimulation with each activating compound, Bodenmiller et al. (2012) also test the
cell’s response to 27 inhibitors. One of these inhibitors is also used in Bendall et al. (2011).
For this inhibitor, Bendall et al. (2011) measured bone marrow cell samples of a single donor.
In Bodenmiller et al. (2012), measurements were taken from peripheral blood mononuclear
cell (PBMC) samples of a (different) single donor. Despite differences in the experimental
setup, the signaling pathway of every stimulus and every sub-population of cells is considered
universal across (healthy) donors, so the data should reflect the same underlying causal
structure.
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Figure 15: Learning performance of COmbINE for varying percentage of confounded vari-
ables. From left to right: s-Precision, s-Recall, percentage of dashed edges (top)
and o-Precision, o-Recall and percentage of dashed endpoints (bottom) for vary-
ing number of confounded nodes for networks of 30 variables. Shaded area ranges
from the 5 to the 95 percentile. Overall, the number of confounding variables
does not seem to greatly affect the algorithm’ s performance.

We focused on two sub-populations of the cells, CD4+ and CD8+ T-cells, which are
known to play a central role in immune signaling. The data were manually gated by the
researchers in the original studies. We also focused on one of the stimuli present in both
studies, PMA-Ionomycin, which is known to have prominent effects on T-cells. Proteins
pBtk, pStat3, pStat5, pNfkb, pS6, pp38, pErk, pZap70, pSHP2 and pPlcg2 are measured
in both data sets (initial p denotes that the concentration of the phosphorylated protein is
measured). Four additional variables were included in the analysis, pAkt, pLat and pStat1
measured only in Bodenmiller et al. (2012) and pMAPK measured only in Bendall et al.
(2011). To be able to detect signaling behavior, we formed data sets that contain both
stimulated and unstimulated samples.

As mentioned above, the cells were treated with several inhibitors. Some of these in-
hibitors target a specific protein, and some of them perturb the system in a more general or
unidentified way. Specific inhibitors can be abundance inhibitors, which affect the level of
measured protein, and activity inhibitors, which affect the function of measured proteins.
The former are closer to ideal hard interventions. Activity inhibitors have been modelled
in several ways in the literature. Sachs et al. (2005) model them as ideal interventions by
manually setting the values to the lowest discretization level. Itani et al. (2010) propose
splitting the target variable in two nodes, one used to represent the inhibition and the other
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Figure 16: Running time of COmbINE. From left to right: Running time (in seconds) is
plotted in logarithmic scale against maximum parents per variable and number
of variables (top row); number of data sets and maximum path length (bottom
row). Shaded area ranges from the 5 to the 95 percentile. The number of
variables and the maximum path length seem to be the most critical factors of
computational performance. Notice that, COmbINE scales up to problems with
100 total variables for limited path length and relatively sparse networks.

used to represent the abundance. Mooij and Heskes (2013) propose modelling activity inhi-
bitions by removing outgoing edges of the target variable. Notice that this type of modelling
can be easily encoded in a SAT representation.

We used abundance inhibitors that we believe can be modeled as hard interventions (i.e.
the compounds used to target these proteins are known to be specific and to have an effect
in the phosphorylation levels of the target). The maximum dosage of each inhibitor was
used. For all three interventions, the distribution of the target variable under zero dosage
is differs significantly (according to a Kolmogorov-Smirnov test with significance threshold
0.05) from the distribution of the target variable for the maximum dosage, indicating that
the inhibitor has an effect on the abundance of the target protein. Nevertheless, we must
point out that the interventions may not be entirely ideal. More information on the specific
compounds can be found in the respective publications.

We ended up with four data sets for each sub-population. Details can be found in Table
4. Protein interactions are typically non-linear, so we discretized the data into 4 bins. We
ran Algorithm 2 with maximum path length 3. We used the G2 test of independence for
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Data set Source latent (Li): manipulated(Ii) Donor

D1 Bodenmiller et al. (2012) pMAPK pAkt 1

D2 Bodenmiller et al. (2012) pMAPK pBtk 1

D3 Bodenmiller et al. (2012) pMAPK pErk 1

D4 Bendall et al. (2011) pAkt, pLat, pStat1 pErk 2

Table 4: Summary of the mass cytometry data sets co-analyzed with COmbINE. The pro-
cedure was repeated for two sub-populations of cells, CD4+ cells and CD8+ cells.

pZap70

pErk

pNFkB

pStat1

pPlcg2

pP38

pS6

pAkt

pSHP2

pBtk

pStat5

pMAPK

pStat3

pLat pLat

pSHP2

pBtk

pMAPK

pStat5

pStat3

pPlcg2

pP38

pNFkB

pAkt

pStat1

pS6

pZap70

pErk

Figure 17: A case study for COmbINE: Mass cytometry data. COmbINE was run on 4
different mass cytometry data for two different cell populations: CD4+ T-cells
(left) and CD8+ T-cells (right). In each data set, one variable was manipulated
(pAkt, pBTk, pErk, pErk respectively). Variables pAkt, pLat and pStat1 are
only measured in data sets 1-3, while pMAPK is only measured in data set 4.

FCI with α = 0.05 and maxK=5. We used Cytoscape (Smoot et al., 2011) to visualize the
summary graphs produced by COmbINE, illustrated in Figure 17.

Unfortunately, the ground truth for this problem is not known for a full quantitative
evaluation of the results. Nevertheless, this set of experiments demonstrates the availability
of real and important data sets and problems that are suited integrative causal analysis.
Second, these experiments provide a proof-of-concept for the specific algorithm. One type
of interesting type of inference possible with COmbINE and similar algorithms is the pre-
diction of a direct relation of pAkt and pMAPK in CD4+ cells, even though the variables
are not jointly measured in any of the input data sets. Thus, methods for learning causal
structure from multiple manipulations over overlapping variables potentially constitute a
powerful tool in the field of mass cytometry.

We do not make any claims for the validity of the output graphs and they are presented
only as a proof-of-concept, as there are several potential pitfalls. In addition to the potential
imperfect manipulations described above, COmbINE also assumes lack of feedback cycles,
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which is not guaranteed in this system. We note however, that acyclic networks have been
successfully used for reverse engineering protein pathways in the past (Sachs et al., 2005).

6. Conclusions and Future Work

We have presented COmbINE, a sound and complete algorithm that performs causal dis-
covery from multiple data sets that measure overlapping variable sets under different inter-
ventions in acyclic domains. COmbINE works by converting the constraints on inducing
paths in the sought out semi Markov causal model (SMCMs) that stem from the discovered
(in)dependencies into a SAT instance. COmbINE outputs a summary of the structural
characteristics of the underlying SMCM, distinguishing between the characteristics that are
identifiable from the data (e.g., causal relations that are postulated as present), and the
ones that are not (e.g., relations that could be present or not). In the empirical evaluation
the algorithm outperforms in efficiency a recently published similar one (Hyttinen et al.,
2013) that, given an oracle of conditional independence, performs the same inferences by
checking all m-connections necessary for completeness.

COmbINE is equipped with a conflict resolution technique that ranks dependencies
and independencies discovered according to confidence as a function of their p-values. This
technique allows it to be applicable on real data that may present conflicting constraints
due to statistical errors. To the best of our knowledge, COmbINE is the only implemented
algorithm of its kind that can be applied on real data.

The algorithm is empirically evaluated in various scenarios, where it is shown to exhibit
high precision and recall and reasonable behavior against sample size and number of input
data sets. It scales up to networks with up to 100 variables for relatively sparse networks.
Moreover, it is possible for the user to trade the number of inferences for improved compu-
tational efficiency by limiting the maximum path length considered by the algorithm. As
a proof-of-concept application, we used COmbINE to analyze a real set of experimental
mass-cytometry data sets measuring overlapping variables under three different interven-
tions.

COmbINE outputs a summary of the characteristics of the underlying SMCM that can
be identified by computing the backbone of the corresponding SAT instance. The conver-
sion of a causal discovery problem to a SAT instance makes COmbINE easily extendable
to other inference tasks. One could instead produce all SAT solutions and obtain all the
SMCMs that are plausible (i.e., fit all data sets). In this case, COmbINE with input a
single PAG would output all SMCMs that are Markov Equivalent with the PAG; there is
no other known procedure for this task. Alternatively, one could easily query whether there
are solution models with certain structural characteristics of interest (e.g., a directed path
from A to B); this is easily done by imposing additional SAT clauses expressing the presence
of these features. Incorporating certain types of prior knowledge such as causal precedence
information can also be achieved by imposing additional path constraints. Future work
includes extending this work for admitting soft interventions and known instrumental vari-
ables. The conflict resolution technique proposed could be employed to standard causal
discovery algorithms that learn from single data sets, in an effort to improve their learning
quality.
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Appendix A. Proofs

We now present proofs for propositions and theorems presented in the main section.

Proposition 12 Let O be a set of variables and J the independence model over O. Let
S be a SMCM over variables O that is faithful to J and M be the MAG over the same
variables that is faithful to J . Let X,Y ∈ O. Then there is an inducing path between X
and Y with respect to L, L ⊆ O in S if and only if there is an inducing path between X
and Y with respect to L in M.

Proof (⇒) Assume there exists a path p in S that is inducing w.r.t. L. Then by Theorem
10 there exists no Z ⊆ O \ L ∪ {X,Y } such that X and Y are m-separated given Z in S,
and since S andM entail the same m-separations there exists no Z ⊆ O \L∪ {X,Y } such
that X and Y are m-separated given Z inM. Thus, by Theorem 9 there exists an inducing
path between X and Y with respect to L in M.
(⇐) Similarly, assume there exists a path p in M that is inducing w.r.t. L. Then by The-
orem 9 there exists no Z ⊆ O \ L ∪ {X,Y } such that X and Y are m-separated given Z in
M, and since S and M entail the same m-separations there exists no Z ⊆ O \ L ∪ {X,Y }
such that X and Y are m-separated given Z in S. Thus, by Theorem 10 there exists an
inducing path between X and Y with respect to L in S.

Theorem 13 Let O be a set of variables and J the independence model over O. Let S be
a SMCM over variables O that is faithful to J . Let M = SMCMtoMAG(S). Then S and
M share the same ancestry relations and Jm(S) = Jm(M), hence the two graphs entail the
same independence model.

Proof S and M share the same ancestry relations, since during Algorithm 1 a directed
edge X Y is added only if X is an ancestor of Y in S, and no directed edges are removed.
To prove that the Jm(S) = Jm(M), consider a DAG G constructed from S as follows:
For every bi-directed edge X Y , introduce a new node LXY . Remove X Y and add
X LXY Y . Let {LViVj} be the set of nodes added by this procedure. Obviously, G
is a DAG and G and S share the same ancestry relations and the same m-separations for
variables in O, thus Jm(S) = Jm(G)[L. If 〈X,V1, . . . , Vn, Y 〉 is a primitive inducing path
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in S, then 〈X,LXV1 , V1, . . . , LVn−1Vn , Vn, LVnY , Y 〉 is an inducing path with respect to L in
G and vice versa. Thus, X and Y are adjacent in G[L if only if there exists a primitive
inducing path between X and Y in S, and G shares the same ancestry relations with S
for variables in O, thus by Definition 3, G[L=M. By Theorem 4 (Richardson and Spirtes,
2002) Jm(M) = Jm(G[L) = Jm(G)[L= Jm(S).

In all subsequent lemmas, theorems and proofs we employ the assumptions and notation
presented in Section 4 (Assumptions A1-A3 and notation presented beneath them). We
also assume the algorithms are run with an oracle of conditional independence and infinite
maximum conditioning set size and maximum path length.

The following theorem proves that a S is possibly underlying SMCM for {Ji}ni=1 and
{Ii}Ni=1 if and only if the result of manipulating Ii, adding necessary edges to create a
Markov equivalent MAG and then marginalizing out variables in Li produces a MAG Mi

that belongs to the Markov equivalence class represented by Pi for all experiments.

Theorem 14 If S is a SMCM, {Ji}Ni=1 is a family of independence models, {Ii}Ni=1 is a
family of intervention targets and Pi is the PAG of the Markov equivalence class of MAGs
faithful to Ji, the following statements are equivalent:

• S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

• ∀i,Mi ∈ Pi, where Mi = SMCMtoMAG(SIi)[Li.

Proof The following hold:

S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1 ⇔ Jm(SIi)[Li= Ji ∀i

(by definition)

Jm(SMCMtoMAG(SIi))[Li= Jm(SIi)[Li= Ji ∀i (by Theorem 13)

Jm(SMCMtoMAG(SIi)[Li) = Jm(SMCMtoMAG(SIi))[Li= Ji ∀i (by Theorem 4)

Jm(Mi) = Ji ∀i, and by definition of Pi, Mi ∈ Pi ∀i.

The following Lemma proves that no inducing and ancestral paths present in the true
underlying SMCM are ruled out during the construction of the initial search graph, and is
necessary for subsequent proofs. We prove that Hin has a superset of edges and a subset
of orientations compared to S.

Lemma 15 If Hin is the initial search graph returned by Algorithm 3 for {Pi}Ni=1, and S
is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1, then the following hold: If p is an
ancestral path in S, then p is a possibly ancestral path in Hin. Similarly, if p is an inducing
path with respect to L in S, then p is a possibly inducing path with respect to L in Hin.
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Proof We will first prove that Hin has a superset of edges compared to S, and therefore
any path in S is a path also in Hin. If X and Y are adjacent in S, then one of the following
holds:

1. ∃i s.t. X,Y ∈ Oi \ Ii. Then the edge is present in SIi , and X and Y are adjacent in
Pi: the edge is added to Hin in Line 3 of Algorithm 3.

2. 6 ∃i s.t. X,Y ∈ Oi \ Ii. Then the edge is added to Hin in Line 8 of Algorithm 3.

Therefore, every edge in S is present also in Hin. We must also prove that no orientation
in H is oriented differently in S: Hin has only arrowhead orientations, so we must prove
that, if X Y in Hin and X and Y are adjacent in both graphs, X Y in S.

Arrowheads are added to Hin in Lines 5, 9 or 10 of the Algorithm. Arrowheads added
in Line 5 occur in all Pi. If X Y in any Pi, this means that Y is not an ancestor of X
in SIi . Assume that X Y in S: If X in Ii, the edge would be absent in SIi and Pi. If
X 6∈ Ii, X would be ancestor of Y in SIi , which is a contradiction. Therefore, if X and Y
are adjacent in S, X Y in S.

Arrows added to Hin in Lines 9 and 10 correspond to cases where an edge is not present
in any Pi, @i s.t. X,Y ∈ Oi \ Ii, but ∃i s.t. X,Y ∈ Oi, X ∈ Ii and Y 6∈ Ii. Then an arrow
is added towards X. Assume the opposite holds: X Y in S, then X Y in SIi , and
since both variables are observed in experiment i the edge would be present in Pi, which is
a contradiction. Thus, if the edge is present in S, the edge is oriented into X.

Thus, Hin has a superset of edges of S, and for any edge present in both graphs, the
orientations are the same. Thus, if p is an ancestral path in S, then p is a possibly ancestral
path in Hin. Similarly, if p is a possibly inducing path with respect to L in S, then p is a
possibly inducing path with respect to L in Hin.

We can now prove that if a SMCM S entails all and only the observed conditional
independencies for all experiments (and is therefore a possibly underlying SMCM for {Ji}Ni=1

and {Ii}Ni=1), then S satisfies Φ ∧ F . We say that S satisfies a constraint φ if the truth-
values assigned to edge, arrow and tail variables by their corresponding configuration in S
satisfies φ. To simplify the proof, we first prove the following lemma:

Lemma 16 If S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1, and X Y is
in Pi, then S satisfies ancestor(X,Y, i). Similarly, if X Y is in Pi, then S satisfies
¬ancestor(Y,X, i).

Proof By Theorem 14 SMCMtoMAG (SIi)[Li∈ Pi. Thus, if X Y is in Pi, then X is an
ancestor of Y in SIi (there exists an ancestral path from X to Y in SIi). Let p1, . . . , pM be
the possibly ancestral paths (there exists at least one: if X Y in Pi, then X Y is a pos-
sibly inducing path in Hin) from X to Y in Hin. The constraint ancestor(X,Y, i) is realized
in Φ ∧ F as ancestor(Y,X, i) ∧ [ancestor(Y,X, i)↔ ancestral(p1, i) ∨ ancestral(p2, i) · · · ∨
ancestral(pM , i)]. This is equivalent to ancestral(p1, i)∨ancestral(p2, i) · · ·∨ancestral(pM , i).
If a path is ancestral in SIi , the path is also ancestral in S. By Lemma 15, if a path is
ancestral in S, the path is possibly ancestral in Hin. Hence, at least one of p1, . . . , pM is
ancestral in SIi , and S satisfies ancestor(X,Y, i).
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If X Y is in Pi, then, since SMCMtoMAG (SIi)[Li∈ Pi, there can be no ancestral
path from Y to X in SIi). Let p1, . . . , pM be the possibly ancestral paths (if any) from Y
to X in Hin. The constraint ¬ancestral(Y,X, i) is realized in Φ∧F as ¬ancestor(Y,X, i)∧
[ancestor(Y,X, i)↔ ancestral(p1, i)∨ancestral(p2, i) · · ·∨ancestral(pM , i)]. This is equiv-
alent to ¬ancestral(p1, i) ∧ ¬ancestral(p2, i) · · · ∧ ¬ancestral(pM , i). None of these paths
are ancestral in SIi , therefore S satisfies ancestor(X,Y, i).

We can now prove that any possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1 satisfies
Φ ∧ F .

Lemma 17 For an oracle of conditional independence, if S is a possibly underlying model
for {Ji}Ni=1 and {Ii}Ni=1, and Φ ∧ F is the conjunction of the outputs of Algorithm 4, S
satisfies Φ ∧ F .

Proof By Theorem 14, since S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1,
Mi = SMCMtoMAG(SIi)[Li∈ Pi ∀i.

1. Constraints added in Lines 8, 9 of Algorithm 4. These constraints are satisfied
since S is an acyclic mixed graph.

2. Adjacency constraints added in Lines 4, 5, 6 of Algorithm 4. Assume that
for a pair of variables X, Y adjacent in Pi, there exist M possibly inducing paths
in Hin, namely p1, , . . . , pM . For this adjacency, the following constraint is added in
Φ ∧ F in Lines 4 and 5 of Algorithm 4:

adjacent(X,Y,Pi)∧ [adjacent(X,Y,Pi)↔ inducing(p1, i)∨· · ·∨ inducing(pM , i)],

which is equivalent to

inducing(p1, i) ∨ · · · ∨ inducing(pM , i).

Since Mi ∈ Pi, X and Y are adjacent in Mi. By Proposition 12 there exists an
inducing path p∗ between X and Y with respect to Li in SIi . By Lemma 15, this
path is a possibly inducing path in Hin, thus, ∃i ∈ [1, . . . ,M ] such that p∗ = pi. Thus,
the constraint inducing(p1, i) ∨ · · · ∨ inducing(pM , i) is satisfied by S.

Similarly, if X and Y are not adjacent in Pi, the constraint

¬adjacent(X,Y,Pi)∧ [adjacent(X,Y,Pi)↔ inducing(p1, i)∨· · ·∨ inducing(pM , i)]

is added to Φ ∧ F in Lines 4 and 6 of Algorithm 4. The constraint is equivalent to

¬inducing(p1, i) ∧ · · · ∧ ¬inducing(pM , i).

Since X and Y are not adjacent in Mi, by Proposition 12 there exists no inducing
path with respect to Li in SIi . Thus, none of the paths (if any) p1, . . . , pM is inducing
with respect to Li in SIi , and the constraint ¬inducing(p1, i)∧· · ·∧¬inducing(pM , i)
is satisfied by S.
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3. Unshielded (non) collider constraints added in Lines 13,14, 15,16 of Algo-
rithm 4. For an unshielded collider X Y Z in Pi, the constraint

col(〈X,Y, Z〉,Pi)∧[
col(〈X,Y, Z〉,Pi)→ unshielded(〈X,Y, Z〉,Pi) ∧ collider(〈X,Y, Z〉,Pi)

]
,

which is equivalent to

unshielded(〈X,Y, Z〉,Pi) ∧ collider(〈X,Y, Z〉,Pi)

is added in Lines 14 and 15. As shown in Figure 4,

unshielded(〈X,Y, Z〉,Pi)↔ adjacent(X,Y,Pi)∧adjacent(Y,Z,Pi)∧¬adjacent(X,Z,Pi)

and

collider(〈X,Y, Z〉,Pi)↔ ¬ancestor(Y,X, i) ∧ ¬ancestor(Y, Z, i)

. Since Mi ∈ Pi, X Y Z is an unshielded triple in Mi, adjacent(X,Y,Pi) ∧
adjacent(Y, Z,Pi)∧¬adjacent(X,Z,Pi) is satisfied (as described above for adjacency
constraints). Since X Y Z in Pi, by Lemma 16 constraints ¬ancestor(Y,X, i)∧
¬ancestor(Y, Z, i) are satisfied by S.

For an unshielded definite non collider X Y Z in Pi, the constraint

dnc(〈X,Y, Z〉,Pi)∧[
dnc(〈X,Y, Z〉,Pi)→ unshielded(〈X,Y, Z〉,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi)

]
,

is added in Lines 13 and 16 of Algorithm 4, which is equivalent to

unshielded(〈X,Y, Z〉,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi).

SinceMi ∈ Pi, X Y Z is an unshielded triple inMi, so unshielded(〈X,Y, Z〉,Pi)
is satisfied by S as described above. Moreover, since either Y X in Mi, or Y Z
in Mi, by Lemma 16 ancestor(Y,X, i) ∨ ancestor(Y,Z, i) is satisfied by S.

4. Discriminating (non) collider constraints added in Lines 19, 20,21, 22 of
Algorithm 4. If 〈W, . . . ,X, Y, Z〉 is a discriminating path for Y in Pi, and Y is a
collider on the path in Pi, the following constraint is added in Φ ∧ F and in Lines 19
and 21 of Algorithm 4:

col(〈X,Y, Z〉,Pi)∧[
col(〈X,Y, Z〉,Pi)→ discriminating(pWZ , Y,Pi) ∧ collider(〈X,Y, Z〉,Pi)

]
,

which is equivalent to

discriminating(pWZ , Y,Pi) ∧ collider(〈X,Y, Z〉,Pi).

Since Mi ∈ Pi, the path is discriminating for Y in Mi and the triple is a collider in
Mi. The constraint for the discriminating path is analyzed as a conjunction of the
individual features ((non) adjacencies and endpoints) of the path as shown in Figure
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4. Since the path is discriminating inMi, all these adjacency and ancestry constraints
are satisfied by S, by the proof for adjacency constraints and Lemma 16. In addition,
the triple is a collider inMi, thus collider(〈X,Y, Z〉,Pi) is satisfied by S as described
for unshielded colliders.

Similarly, if 〈W, . . . ,X, Y, Z〉 is a discriminating path for Y in Pi, and Y is a definite
non collider on the path in Pi, the following constraint is added in Φ∧F and in Lines
20 and 22 of Algorithm 4:

dnc(〈X,Y, Z〉,Pi)∧[
dnc(〈X,Y, Z〉,Pi)→ discriminating(pWZ , Y,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi)

]
,

which is equivalent to

discriminating(pWZ , Y,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi).

SinceMi ∈ Pi, the path is discriminating for Y inMi and the triple is a non-collider
in Mi. The constraint for the discriminating path satisfied by S as described above.
In addition, the triple is a non-collider inMi, thus ¬collider(〈X,Y, Z〉,Pi) is satisfied
by S as described for unshielded definite non colliders.

Thus, S satisfies all constraints in Φ ∧ F .

To prove completeness for Algorithm 4, we must show that the opposite also holds: If S
is a truth-setting assignment of Φ∧F , S entails all and only the conditional independencies
observed in {Ji}Ni=1 for each experiment. According to Theorem 14, we need to show that
any truth setting assignment of Φ ∧ F results, in each experiment i (after the respective
procedures of manipulation, conversion to MAG and marginalization) in a MAG Mi that
belongs to the Markov equivalence class represented by Pi. Thus, we need to show thatMi

has the same adjacencies and colliders with order as any MAG M′ ∈ Pi. Proving that Mi

and any M′ ∈ Pi have the same adjacencies is straight-forward. We then use induction to
the order of the triple to show that the two MAGs also share the same colliders with order.
The following lemma proves that discriminating paths with order are present in all members
of the equivalence class, and therefore they are (definite) discriminating paths with order
in Pi (Lemma 18.) Thus, all (non) colliders with order in Pi are identified and added to
the SAT formula in Lines 19 and 20 of Algorithm 4.

Lemma 18 If p = 〈W,V1, . . . , Vn, Y,Q〉 is a discriminating path with order r in M, then
the path is a discriminating path with order r in P = [M].

Proof We will show that the path is a discriminating path with order r in any M′ ∈ P.
SinceM′ andM are Markov equivalent, the two share the same colliders with order. Thus,
every triple 〈Vi−1, Vi, Vi+1〉 is a collider with order in M. Lemma 3.10 in Ali et al. (2009)
states that if a path 〈W,V1, . . . , Vn, Y,Q〉 is discriminating for Y in a MAGM, then in any
Markov equivalent MAG M′ in which Vi are colliders on the same path, Vi → Q in M′ for
i = 1, . . . , N , and therefore the path is discriminating with order r in M′. Thus, the path
is discriminating with order r in all members of [M]. It is therefore a discriminating path
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with order r in P.

We can now prove that any truth-setting assignment for Φ∧F corresponds to a SMCM
S that is possibly underlying for {Ji}Ni=1 and {Ii}Ni=1.

Lemma 19 For an oracle of conditional independence, if Φ ∧ F is the conjunction of the
outputs of Algorithm 4, and S a mixed graph that satisfies Φ ∧ F , then S is a possibly
underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

Proof We need to prove that (a) S is an acyclic mixed graph and (b)Mi = SMCMtoMAG(SIi)[Li∈
Pi ∀i. To prove the latter, we need to prove that for each i, if M′ ∈ Pi, Mi and M′ are
Markov equivalent. Thus, we must show thatMi andM′ share the same edges and colliders
with order.

• S is a SMCM: S satisfies the constraints added in Lines 8 and 9 respectively. There-
fore, S has no tail-tail edges, every endpoint is an arrow or a tail (not exclusively)
and S has no directed cycles.

• Mi and M′ share the same edges: If X and Y are adjacent in M′, then X and
Y are adjacent in Pi. S satisfies the constraints added in Line 4 of Algorithm 4,
therefore there exists an inducing path with respect to Li in SIi . Thus, X and Y are
adjacent in Mi. If X and Y are not adjacent in M′, X and Y are not adjacent in Pi
and by the same constraints there exists no inducing path with respect to Li in SIi ,
therefore X and Y are not adjacent in Mi.

• Mi andM′ share the same colliders with order: We will prove this by induction
to order r: For order = 0, if 〈X,Y, Z〉 is an unshielded collider inM′, the triple is an
unshielded collider in Pi. Since M′ and Mi share the same edges, X Y Z is
an unshielded triple in Mi. S satisfies the constraints added in Line 13 of Algorithm
4, and therefore Y is not an ancestor of X nor Z in SIi . Thus, X Y Z in Mi.
If the triple is an unshielded collider in Mi, then the triple is unshielded in M′. If
the triple is a non-collider in M′, then S satisfies the constraints added in Line 14
of Algorithm 4, and Y is an ancestor of either X or Z in SIi . But then the triple
is a non-collider in Mi, which is a contradiction. Thus, Mi and M′ share the same
colliders with order 0.

For the induction step, we assume thatMi andM′ share the same colliders with order
s < r. We will show that the two MAGs also share the same colliders with order r.
We will first show that a path 〈W,V1, . . . , Vn, Y,Q〉 is discriminating for 〈Vn, Y,Q〉
with order r in Mi iff the path is discriminating for 〈Vn, Y,Q〉 with order r in M′.
If 〈W,V1, . . . , Vn, Y,Q〉 is discriminating with order r in M′, by Lemma 18 the path
is discriminating with order r in Pi. S satisfies the constraints added in Lines 20 and
19 and therefore the path is discriminating inMi. Moreover, every triple on the path
is a collider with order < r inM′ and by the induction hypothesisM′ andMi share
the same colliders with order < r, thus the path has order r in Mi.

If 〈W,V1, . . . , Vn, Y,Q〉 is discriminating with order r in Mi, then, by the induction
hypothesis, every triple on the path is a collider with the same order < r in M′.
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We will show that Vi → Q ∀i, and therefore 〈W,V1, . . . , Vn, Y,Q〉 is a discriminating
path with order r in M′.
The proof is similar to that of Lemma 3.10 in Ali et al. (2009). We will use induction
on i. First, consider the (V1, Q) edge in M′. If V1 Q, then W V1 Q forms
a collider with order 0 in M′, but an non-collider with order 0 in Mi, which is a
contradiction. Thus, V1 Q in M′.
Suppose that Vj Q for 1 ≤ j ≤ i in M′. Then, the path 〈W,V1, . . . , Vi, Q〉 forms a
discriminating path for Vi with the same order < r in both graphs, and 〈Vi−1, Vi, Q〉 is
a non-collider in Mi. By Lemma 18, the path is a discriminating path with order in
Pi, and therefore Φ ∧ F includes discriminating path constraints for this path added
in Lines 19 and 21 or 20 and 22 of Algorithm 4. Thus, the triple can only be a non-
collider in Mi if it is a non-collider in M′. Since Vi−1 Vi in M′, Vi Q ∀i and
the path is discriminating in M′ with order r.

We have shown that Mi and M′ share the same discriminating paths with order r.
It is now easy to show that a triple is a collider with order r in M′ iff it is a collider
with order r in Mi. If 〈Vn, Y, Z〉 is a collider with order r in M′, then there exists
a discriminating path with order r in both graphs and in Pi. Thus, S satisfies the
constraints added in Lines 19 and 21 of Algorithm 4, by which Y is not an ancestor of
Vn nor Q in SIi , and therefore the triple is a collider in Mi, and it has order at most
r. But by the induction hypothesis, the M′ and Mi share the same colliders with
order < r, thus the triple has order r in Mi. Similarly, if the triple is a collider with
order r inMi, there exists a discriminating path with order r inM; and therefore in
Pi. Thus, S satisfies the constraints added in Lines 19 and 21 of Algorithm 4 or in
Lines 20 and 22 of Algorithm 4. Hence, the triple must be inM′, otherwise the triple
would be a non-collider in Mi. In addition, the triple has order at most r in M′ and
by the induction hypothesis the triple can not have order < r inM′, so the triple has
order r in M′. Thus, M′ and Mi share the same colliders with order.

Thus, if S a mixed graph that satisfies Φ∧F , then S is a SMCM and SMCMtoMAG(SIi)[Li∈
Pi ∀i, so by Theorem 14, S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

We can now prove soundness and completeness of Algorithm 2:

Theorem 20 (Soundness and completeness of Algorithm 2) If H is the output of
Algorithm 2, then the following hold:
Soundness: If a feature (edge, absent edge, endpoint) is solid in H, then this feature is
present in all SMCMs that are possibly underlying for {Ji}Ni=1 and {Ii}Ni=1.
Completeness: If a feature is present in all SMCMs that are possibly underlying for
{Ji}Ni=1 and {Ii}Ni=1, the feature is solid in H.

Proof Soundness: Solid features correspond to backbone variables. By Lemma 17 every
possibly underlying SMCM S for {Ji}Ni=1 and {Ii}Ni=1 satisfies the final formula Φ∧F . Thus,
if a core variable has the same value in all the possible truth-setting assignments of Φ ∧F ,
this feature is present in all possibly underlying SMCMs. Completeness: By Lemma 19 the
final formula Φ ∧ F of Algorithm 2 is satisfied only by possibly underlying SMCMs. Thus,
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if a core variable is present in all consistent SMCMs, the corresponding core variable will
be a backbone variable for Φ ∧ F .
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Abstract

To discuss the existence and uniqueness of proper scoring rules one needs to extend the
associated entropy functions as sublinear functions to the conic hull of the prediction set.
In some natural function spaces, such as the Lebesgue Lp-spaces over Rd, the positive cones
have empty interior. Entropy functions defined on such cones have directional derivatives
only, which typically exist on large subspaces and behave similarly to gradients. Certain
entropies may be further extended continuously to open cones in normed spaces containing
signed densities. The extended entropies are Gâteaux differentiable except on a negligible
set and have everywhere continuous subgradients due to the supporting hyperplane theo-
rem. We introduce the necessary framework from analysis and algebra that allows us to
give an affirmative answer to the titular question of the paper. As a result of this, we give
a formal sense in which entropy functions have uniquely associated proper scoring rules.
We illustrate our framework by studying the derivatives and subgradients of the following
three prototypical entropies: Shannon entropy, Hyvärinen entropy, and quadratic entropy.

Keywords: proper scoring rules, entropy, characterisation, existence, uniqueness, quasi-
interior, directional derivative, Gâteaux derivative, subgradient, sublinear, convex analysis

1. Introduction

Proper scoring rules have attracted a lot of interest in recent years in disparate fields such as
statistics, decision theory, machine learning, game theory, finance, meteorology, etc. They
provide practical measures for assessing the accuracy and precision of probabilistic forecasts.
In this paper, we build a general measure-theoretic framework for proper scoring rules that
allows us to consider their existence and uniqueness as subgradients of sublinear functions.

1.1 Definitions

Let (Ω,A, µ) be a measure space and P be a convex set of probability densities on Ω with
respect to the measure µ. A random variable X takes values in Ω with unknown true density
p ∈ P. We refer to P and its elements as a prediction set and predictive densities for X,
respectively. By L(P) we denote the set of all µ-measurable functions f : Ω→ R such that∫

Ω
|f(x)| p(x)dµ(x) <∞

for all p ∈ P. We call the elements of L(P) P-integrable functions.

c©2015 Evgeni Y. Ovcharov.
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A scoring rule S : P → L(P) assigns for each predictive density q ∈ P a P-integrable
function S(q). The value of S(q) at x ∈ Ω is interpreted as a numerical score assigned to
the outcome x. We take scoring rules to be positively orientated, that is, they are viewed as
incentives which a forecaster wishes to maximise. It is customary to term S proper if the
expected value of S at q,

p · S(q) :=

∫
Ω
S(q)(x)p(x)dµ(x),

is maximised in q at the true density q = p, and strictly proper, if the true density is the
only maximiser.

Strictly proper scoring rules could be used as a bonus system under which truth-telling
is the only optimal long-term strategy (Gneiting and Raftery, 2007). For such an S, the
optimal expected reward is the (negative) entropy induced by S,

Φ : P → R, Φ(p) = p · S(p),

(Parry et al., 2012). In what follows, we refer to Φ simply as the entropy function associated
to S, as there is no danger of confusion between negative and positive entropy functions in
the present context. The regret for quoting q instead of the true density p is expressed by
the function

D : P × P → R, D(p, q) = p · S(p)− p · S(q),

which in the statistics literature is also known as the divergence induced by S. In the
present paper, we shall use the notions of entropy and divergence in a more general sense
by replacing strict propriety with propriety.

General overviews of proper scoring rules may be found in Gneiting and Raftery (2007);
Gneiting and Katzfuss (2014) in connection to probabilistic forecasting, and also in Dawid
and Musio (2014), where the emphasis is on statistical inference. Theoretical aspects of
proper scoring rules are studied in Dawid (2007); Grünwald and Dawid (2004); Williamson
(2014). Frongillo and Kash (2014) investigate proper scoring rules in connection with the
elicitation of private information. The remaining references throughout the text provide
links to more specific uses of scoring rules.

1.2 Motivation and Scope of the Paper

In this paper we adopt the theoretical framework of Hendrickson and Buehler (1971). This
approach is characterised by exploiting a beautiful connection with Euler’s homogeneous
function theorem, which presupposes that we extend our quantities of interest as homo-
geneous functions to the conic hull of the prediction set. To that end, we introduce the
prediction cone P+ = {λp |λ > 0, p ∈ P} and extend S and Φ to P+ as homogeneous
functions of degrees zero and one, respectively. Any P-integrable function q∗ satisfying

Φ(p) ≥ p · q∗, ∀p ∈ P+,

with equality for p = q, is called a P-integrable subgradient of Φ at q. The subgradient
is called strict if the above inequality is strict for all p ∈ P+ not positively collinear to
q. Suppose that Φ has a subgradient S(q) ∈ L(P) at each q ∈ P+ and the resulting
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map S : P+ → L(P) is homogeneous of degree zero. We call S a P-integrable subgradient
of Φ on P+. We recall that a (strictly) convex homogeneous function of degree one is a
(strictly) sublinear function. We may now state Hendrickson and Buehler’s classical result
in a slightly more contemporary language.

Theorem 1.1 Let P be a prediction set with respect to the measure space (Ω,A, µ). A
scoring rule S : P+ → L(P) is (strictly) proper if and only if there is a (strictly) sublinear
function Φ : P+ → R such that S is a subgradient of Φ on P+.

Theorem 1.1 provides us with a basic but insufficient theoretical framework to discuss the
titular question of this paper. In support of this claim, in Example B.2 we show the existence
of a sublinear function that has unique but non-P-integrable subgradients at some points
of its domain, while at other points it has multiple P-integrable subgradients. The most
important structure missing in Theorem 1.1 is the notion of interior of a convex domain,
which lies at the intersection of geometry, algebra, and topology, and may have different
incarnations depending on the context (Borwein and Vanderwerff, 2010; Rockafellar, 1972).
For example, studying proper local scoring rules on discrete sample spaces, Dawid et al.
(2012) apply Theorem 1.1 in a context where the prediction cone is the interior of the
positive orthant in Rd. In this case, well-known results from convex analysis give necessary
and sufficient conditions for an affirmative answer to our basic question. The real focus of our
paper is thus the non-Euclidean case in the abstract measure-theoretic setting introduced
above.

In Proposition 2.4 and Example B.3, we show that at boundary points sublinear func-
tions have either no subgradient, or infinitely many. Therefore, it is paramount to try to
define entropy functions on interiors of positive cones. In infinite dimensions, however, this
is not always possible. Indeed, it is well-known that the positive cones in many natural func-
tion spaces (such as the Lebesgue Lp-spaces over Rd) have empty interiors (Borwein and
Lewis, 1992) and are negligible sets in terms of Baire category. This calls for a more subtle
approach to our problem in which we need to refine our notion of interior and boundary.
Inspired by geometric functional analysis, we adapt an algebraic refinement of the notion
of interior of convex sets, whose better known topological analogues are often referred to as
quasi-interior (Fullerton and Braunschweiger, 1963; Borwein and Lewis, 1992). Common
entropies whose domains are positive cones with empty interior but nonempty quasi-interior
are the Shannon entropy, the Hyvärinen entropy, and in principle, the entropies associated
with the proper local scoring rules of arbitrary orders. These entropies are formally not
differentiable functions but possess directional derivatives on large subspaces, which display
similar properties to standard gradients.

Other entropies, such as those that are associated with the families of power scoring
rules and pseudospherical scoring rules may be extended continuously to open cones in
normed spaces that contain signed densities. Geometrically, this setting is similar to the
Euclidean setting. One applies the supporting hyperplane theorem and other standard
results in analysis relating subgradients and Gâteaux derivatives. The latter entropies are
Gâteaux differentiable (either everywhere or outside a negligible set), which we illustrate in
the context of the quadratic scoring rule.

The original part of the paper is concerned with the analysis of the notion of P-integrable
subgradient introduced by Hendrickson and Buehler (1971) and the associated most ba-
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sic general framework for proper scoring rules. To address the question of existence and
uniqueness of proper scoring rules, we equip this framework with a notion of algebraic
quasi-interior. As an illustration, we show that the Hyvärinen scoring rule is the unique
0-homogeneous P-integrable subgradient of its entropy function on the (non-empty) quasi-
interior of a suitable positive cone.

The paper is organised as follows. In Section 2, we introduce the notation and present
all the background facts. Section 3 contains our main results which formulate necessary and
sufficient conditions for existence and uniqueness of subgradients of entropy functions. In
Section 4, we illustrate the theory with applications to three prototypical entropy functions,
namely, the Shannon, Hyvärinen, and quadratic entropy. These examples formalise the
meaning with respect to which we may consider each entropy to have a uniquely associated
proper scoring rule. We complete the main part of the paper in Section 5 with some
closing remarks. The proofs of all formal assertions made in the text are given in Appendix
A. In Appendix B, we present additional facts that illustrate various points made in the
Introduction or later in the text.

2. Notation and Preliminaries

Let E, E1, E2 be sets of µ-measurable functions on Ω. For α ∈ R, we use the notation

αE1 = {αf | f ∈ E1}
E1 + E2 = {f + g | f ∈ E1, g ∈ E2}.

The (blunt) cone of E is the set E+ = {λf |λ > 0, f ∈ E}, while the pointed cone of E is
the set E+ ∪ {0}. The convex hull of E,

coE =

{
k∑
i=1

αifi

∣∣∣∣∣k ≥ 1, fi ∈ E, αi ≥ 0,

k∑
i=1

αi = 1

}
,

is the set of all convex combinations of elements of E. The conic hull of E,

coneE =

{
k∑
i=1

αifi

∣∣∣∣∣k ≥ 1, fi ∈ E, αi ≥ 0

}
,

is the set of all conic combinations of elements of E. By

spanE =

{
k∑
i=1

αifi

∣∣∣∣∣k ≥ 1, fi ∈ E, αi ∈ R

}
we denote the set of all linear combinations of elements of E, and we refer to it as the linear
span of E.

A set E is called convex if coE = E, a cone if E = E+ or E = E+ ∪ {0}, a convex
cone if E = coneE or E = coneE \ {0}, and a linear space if E = spanE. If E is convex,
E+ = coneE \ {0} is a convex cone.

The epigraph of Φ : E → R is the set in spanE × R given by

epi Φ = {(f, y) | f ∈ E, y ∈ R, y ≥ Φ(f)}.
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The graph of Φ is the set {(f,Φ(f)) | f ∈ E}.
A function Φ : E → R is called convex if its epigraph is a convex set. The definition

implies that E is convex. Therefore, Φ is convex if, for any f, g ∈ E and λ ∈ (0, 1), Φ
satisfies

Φ((1− λ)f + λg) ≤ (1− λ)Φ(f) + λΦ(g).

If the inequality is strict for f 6= g, then Φ is called strictly convex.

A function Φ : E+ → R is said to be (positively) homogeneous of degree k, for k ∈ R, or
(positively) k-homogeneous, if for every f ∈ E+ and every λ > 0, it holds Φ(λf) = λkΦ(f).
A function Φ : E → R is said to be subadditive if Φ satisfies

Φ(f + g) ≤ Φ(f) + Φ(g)

for all f, g ∈ E, and strictly subadditive, if the above inequality is strict for f 6= g. We need
to modify slightly the latter definition in the case when Φ : E+ → R is 1-homogeneous.
Then we say that Φ is strictly subadditive if the above inequality is strict whenever f, g ∈ E+

are not positively collinear. Functions that are 1-homogeneous and (strictly) subadditive
are called (strictly) sublinear. It is easy to see that Φ : E+ → R is (strictly) sublinear if
and only if Φ is (strictly) convex on E and 1-homogeneous on E+.

Let P be a prediction set with respect to (Ω,A, µ) and let E ⊂ spanP. By E⊥ we
denote the annihilator of E in L(P), that is, all f ∈ L(P) such that

p · f = 0

for all p ∈ E. Clearly, E⊥ is a linear subspace of L(P). In the case when E⊥ = {0}, we say
that E has a trivial annihilator.

By a direction in a vector space we understand the equivalence class of all positively
collinear vectors to a given nonzero vector. Note that any 0-homogeneous function is a
function of directions. For q ∈ P+, we define the set of directions from q to the points in
P+ as

D(q) = {p ∈ spanP | ∃εp > 0, ∀t ∈ [0, εp], q + tp ∈ P+}
= {p ∈ spanP | ∃εp > 0, q + εpp ∈ P+}.

We have the latter identity due to the convexity of P+.

A point q ∈ P+ is an algebraically interior point of P+ if D(q) = spanP. The collection
of all algebraically interior points of P+ is called the algebraic interior of P+. In the case
of a topological vector space, the topological interior of a set is always contained in the
algebraic interior of the set. Moreover, when the topological interior is not empty, the two
notions coincide. If q is not algebraically interior for P+, that is, D(q) 6= spanP, we say
that q is a boundary point for P+. If P+ has empty algebraic interior, then the prediction
cone consists entirely of boundary points. This case occurs frequently in the context of
continuous sample spaces, see e.g. Proposition B.1.

Lemma 2.1 For each q ∈ P+, we have the representation

D(q) = cone(P+ − q).
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For a point q ∈ P+, we define O(q) = D(q) ∩−D(q). This is the subset of directions in
D(q) whose inverse is also in D(q). The set may be identified with these directions in spanP
along which there is an open line segment that contains q and is contained in P+. Clearly,
q is algebraically interior for P+ if and only if O(q) = D(q) = spanP. By construction,
O(q) is a linear subspace of spanP. The sets of directions D(q) and O(q) are instrumental
for defining various notions of directional derivatives.

The most basic directional derivative is the following one.

Definition 2.2 For a function Φ : P+ → R, the right directional derivative of Φ at q ∈ P+

along p ∈ D(q) is defined as

Φ′+(p, q) = lim
t→0+

Φ(q + tp)− Φ(q)

t
(1)

if the limit exists.

We gather below the main properties of Φ′+(p, q).

Proposition 2.3 Let Φ : P+ → R be a sublinear function and q ∈ P+. We have

(a) for each p ∈ D(q),

Φ′+(p, q) = inf
t>0

Φ(q + tp)− Φ(q)

t
∈ R ∪ {−∞},

and the infimum is finite for p ∈ O(q);

(b) Φ′+(·, q) : D(q)→ R ∪ {−∞} is sublinear;

(c) for each λ > 0, Φ′+(p, λq) = Φ′+(p, q);

(d) for each p ∈ P+,

Φ(p) ≥ Φ′+(p, q),

with equality for p = q;

(e) for each p ∈ O(q), −Φ′+(−p, q) ≤ Φ′+(p, q);

(f) the set

O′(q) = {p ∈ O(q) | − Φ′+(−p, q) = Φ′+(p, q)}

is a linear subspace of O(q) and the restriction Φ′+(·, q)
∣∣
O′(q)

is linear.

We next consider the other two types of directional derivatives. First, if we take the
limit (1) with the restriction t ≤ 0 instead t ≥ 0, we obtain the left directional derivative
of Φ, denoted Φ′−(·, q). It is easy to see that Φ′−(·, q) can be defined on O(q) and we have
Φ′−(p, q) = −Φ′+(−p, q), for each p ∈ O(q). Thus part (e) above can be rewritten as

Φ′−(p, q) ≤ Φ′+(p, q)
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for all p ∈ O(q). On the subspace O′(q) introduced above in part (f), we have that

Φ′−(·, q) = Φ′+(·, q)

is in fact the two-sided directional derivative of Φ at q, denoted Φ′(·, q). The latter can be
defined as the limit (1) without any restriction on t. In the most important case in practice,
we have that O(q) = O′(q). If in addition O(q) 6= spanP, then Φ has no standard functional
derivative. For an illustration of this fact in the context of Shannon and Hyvärinen entropies,
see Section 4.

By LinP we denote the space of all real-valued linear functionals on spanP, i.e., the
algebraic dual of spanP. By “·” we denote the bilinear pairing on spanP × LinP, so if
q ∈ spanP and q∗ ∈ LinP, q · q∗ is the value of q∗ at q.

Let Φ : P+ → R be 1-homogeneous. We say that q∗ ∈ LinP is a subgradient of Φ at q if

Φ(p) ≥ p · q∗

for all p ∈ P+, with equality for p = q. The collection of all subgradients of Φ at q is called
the subdifferential of Φ at q and is denoted by ∂Φ(q). A subgradient q∗ is strict if and only
if the inequality Φ(p) > p · q∗ holds for all p ∈ P+ not positively collinear with q.

If h ∈ LinP, the hyperplane H in spanP × R given by

z = p · h, ∀p ∈ spanP,

supports Φ at q if the epigraph of Φ lies above H, and H contains the point (q,Φ(q)).
Clearly, H supports Φ at q if and only if h ∈ ∂Φ(q).

The following proposition describes the intimate connection between one-sided and two-
sided directional derivatives and the subdifferential of a sublinear function.

Proposition 2.4 For a point q ∈ P+, we have

(a) q∗ ∈ ∂Φ(q) if and only if
p · q∗ ≤ Φ′+(p, q)

for all p ∈ P+, with equality for p = q;

(b) if D(q) = spanP and Φ′(·, q) exists on spanP, then ∂Φ(q) = {Φ′(·, q)};

(c) if D(q) = spanP and Φ′(·, q) does not exist on spanP, then ∂Φ(q) has multiple elements;

(d) if D(q) 6= spanP and Φ′+(p, q) is finite for all p ∈ P+, then ∂Φ(q) has multiple elements;

(e) if D(q) 6= spanP and there is p ∈ P+ such that Φ′+(p, q) = −∞, then ∂Φ(q) = ∅.

Part (a) above is the standard characterisation of the subdifferential of a sublinear func-
tion. Parts (b) and (c) give additional information in the case of algebraically interior
points. Parts (d) and (e) do the same for boundary points. Notice that the latter imply the
statement from the Introduction that at boundary points either the existence or uniqueness
of subgradient fails. (See also Example B.3.) In the next section, we show that unique-
ness might be sometimes recovered at certain boundary points if we confine ourselves to a
regularity class such as L(P).

We next give a formal definition of a scoring rule and elaborate some of its implications.
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Definition 2.5 Let P be a prediction set with respect to the measure space (Ω,A, µ). Any
0-homogeneous map S : P+ → L(P) is called a scoring rule.

If X is a random variable on Ω with unknown true density p ∈ P, then for each predictive
density q ∈ P+, S(q)(X) is a random function of X. The condition S(q) ∈ L(P) guarantees
that the expectation of S is always finite. The uncertainty function associated to S is the
function Φ : P+ → R, Φ(p) = p · S(p). Clearly, Φ is 1-homogeneous. When S is proper, it
is customary to call Φ an entropy function.

Suppose now that S : P+ → L(P) is a proper scoring rule with entropy Φ. The
condition that the expected score of S is maximised in q at the true density q = p means
that S satisfies the inequality

Φ(p) ≥ p · S(q),

for each p, q ∈ P+, with equality for q = p. If S is strictly proper, then p is the only
maximiser up to a scaling factor. In this case, the inequality above is strict for any q that
is not positively collinear to p. So, the assumption of propriety is equivalent to S being a
subgradient of Φ on P+. Moreover, strict propriety corresponds to strict subgradients on
P+. The existence of a subgradient on P+ implies that Φ is sublinear, see Lemma A.1.
We conclude that (strictly) proper scoring rules are P-integrable subgradients of (strictly)
sublinear functions. Therefore, it is reasonable in the context of scoring rules to restrict the
notion of subgradient to the class L(P) ⊂ Lin(P). In the next section, and in particular
in Theorem 3.1 and Theorem 3.2, we discuss the existence and uniqueness of P-integrable
subgradients.

In some special cases, we may add to our notion of subgradient a topological structure.
Let P+ be a prediction cone such that spanP may be identified with a normed space
(N, ‖·‖), and let the continuous dual of N , denoted N∗, be a subset of L(P). Suppose that
P+ ⊂ C, where C is an open convex cone in N , and Φ may be extended to C as a continuous
sublinear function.

We recall that Φ is Gâteaux differentiable at q ∈ C if there is q∗ ∈ N∗ such that for
every p ∈ N , the limit

p · q∗ = lim
t→0

Φ(q + tp)− Φ(q)

t

exists. The functional q∗ is called the Gâteaux derivative of Φ at q and is also denoted
by ∇Φ(q). Notice that by definition the Gâteaux derivative is applicable only to interior
points. See Theorems 3.3 and 3.4 for an answer to our two main questions.

If Φ is Gâteaux differentiable at q, taking p = q in the above limit, we recover Euler’s
homogeneous function theorem

q · ∇Φ(q) = Φ(q).

More generally, if Φ is sublinear and has a subgradient S on P+, then we have that q ·S(q) =
Φ(q), for every q ∈ P+, (Hendrickson and Buehler, 1971). The proof also follows from
Proposition 2.4 (a) and Proposition 2.3 (d). This beautiful generalisation of Euler’s theorem
is only visible after extending S and Φ to denormalised densities as homogeneous functions.

Suppose now that a scoring rule S : P → L(P) is given. Then, setting

S(q) = S

(
q

q · 1

)
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for any q ∈ P+, extends S as a 0-homogeneous function to the prediction cone. Here

q · 1 =

∫
Ω
q(x)dµ(x)

is the normalising constant of q. Similarly, let an entropy function Φ : P → R be given.
Setting

Φ(q) = (q · 1)Φ

(
q

q · 1

)
for any q ∈ P+, extends Φ as a 1-homogeneous function to the prediction cone. See Section
4 for an illustration. Working directly with denormalised predictive densities could also be
advantageous in numerical computation (Hyvärinen, 2005, 2007; Dawid and Musio, 2012,
2014).

3. Main Results

Our first result gives a necessary and sufficient condition for existence of a P-integrable
subgradient at a point. The result can be easily generalised to subgradients on P+.

Theorem 3.1 Let Φ : P+ → R be a sublinear function. Then Φ has a P-integrable subgra-
dient at a point q ∈ P+ if and only if there is q∗ ∈ L(P) such that

p · q∗ ≤ Φ′+(p, q)

for all p ∈ P+, with equality for p = q.

In the light of Theorem 1.1 and the above result, we call any sublinear function Φ an
entropy if Φ has a P-integrable subgradient at each point of its domain. In most cases of
practical interest, one may choose the prediction cone appropriately so that Φ′+(·, q) = q∗

for some q∗ ∈ L(P). This means that Φ′+(·, q) is a P-integrable subgradient of Φ at q
and that Φ′+(·, q) = Φ′(·, q) is also a two-sided directional derivative on the subspace O(q)
of spanP. In our next result, we show that if O(q) is a sufficiently large subspace, then
Φ′+(·, q) is the unique P-integrable subgradient of Φ at q.

Theorem 3.2 Let P be a prediction set and Φ : P+ → R be a sublinear function. Suppose
that at a point q ∈ P+ the subspace O(q) of spanP has a trivial annihilator in L(P). If
there is a q∗ ∈ L(P) such that

p · q∗ = Φ′+(p, q) (2)

for all p ∈ P+, then q∗ is the unique P-integrable subgradient of Φ at q.

In the above result, the condition that O(q) has a trivial annihilator in L(P) can be
interpreted to say that the set of directions at which q ∈ P+ is boundary to the cone P+ is
negligible. The latter condition represents an algebraic analogue to the property of q being
a quasi-interior point of P+, which is better known in its topological forms presented in
Fullerton and Braunschweiger (1963); Borwein and Lewis (1992). The collection of all quasi-
interior points of P+ is the quasi-interior of P+. As an illustration, in the next section we
define Shannon and Hyvärinen entropies on positive cones with nonempty quasi-interiors.
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Presently, however, we do not investigate the proposed variant of quasi-interior in full. This
analysis is not necessary for the application of Theorem 3.2 and may be a subject of future
work. Notice also that uniqueness of subgradient is understood and valid only within the
class L(P).

We now consider the case of topological subgradients. Our main assumption is the
following: {

P+ ⊂ C, where C is an open convex cone in a normed space N

Φ : C → R is a continuous sublinear function.
(3)

Theorem 3.3 If (3) holds, then Φ admits a subgradient S : C → N∗.

The result is generally known as the supporting hyperplane theorem. For proof see e.g.
Niculescu and Persson (2006); Borwein and Vanderwerff (2010); Zalinescu (2002); Rudin
(1973). Any subgradient S : C → N∗ of Φ may be identified with a proper scoring rule on
P+ by restricting S to P+.

Theorem 3.4 Assume (3). Then, Φ is Gâteaux differentiable on C if and only if Φ admits
a unique subgradient S : C → N∗. In this case S = ∇Φ is the Gâteaux derivative of Φ.

This is a standard result in convex analysis. See e.g. Borwein and Vanderwerff (2010);
Zalinescu (2002). See Example B.2 for an illustration of the case where the assumption
N∗ ⊂ L(P) is not satisfied.

4. Applications

In this section, we apply our main results to three important entropies: Shannon entropy,
Hyvärinen entropy, and quadratic entropy. For each entropy, we investigate an appropriate
domain with nonempty quasi-interior for which we show the existence of a unique subgra-
dient.

4.1 Shannon Entropy

The Shannon entropy function for densities on Rd is given by

Φ(p) =

∫
Rd

p(x) ln
p(x)

p · 1
dx (4)

where p(x) ≥ 0 is assumed to be sufficiently regular. More facts about Shannon entropy
may be found e.g. in Dawid (2007); Parry et al. (2012); Dawid et al. (2012).

We first show that Shannon entropy may only be defined for nonnegative functions in
a natural way. The kernel of Φ is the function φ(t) = t ln t for t > 0 and φ(0) = 0. Clearly,
φ(t) is strictly convex on t ≥ 0 since, for t > 0, φ′′(t) = 1/t > 0, and φ is continuous at the
endpoint t = 0. Notice that φ(t) has a vertical tangent at t = 0 since φ′(t) = ln t + 1. We
conclude that φ(t) cannot be extended as a convex function to t < 0. This furnishes our
claim.

The positive cone of L1(Rd) comprises of all nonnegative functions in L1(Rd) and is
denoted by L1

+(Rd). In Proposition B.1 we give a direct proof that L1
+(Rd) is a nowhere
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dense subset of L1(Rd). Since the domain of Shannon entropy is a subset of L1
+(Rd), it too

is a nowhere dense set.
We now proceed to find a suitable prediction set. For a ≥ d+ 1, we set

P+ =
{
p ∈ C(R)

∣∣∣ p(x) > 0 ,∃C1, C2 > 0 :
C1

(1 + |x|)a
≤ p(x) ≤ C2

(1 + |x|)d+1

}
.

Notice that L(P) ⊂ L1
loc(Rd). Indeed, for any f ∈ L(P) consider

pt(x) =

1 0 < |x| < t(
1+t

1+|x|

)d+1
t ≤ |x| .

Since pt ∈ P+, the P-integrability of f implies that∫
|x|≤t
|f(x)| dx <∞

for all t > 0.
Let us next see that for any q ∈ P+, O(q) has a trivial annihilator in L(P). Clearly,

O(q) contains all p ∈ spanP that have faster or equal decay at infinity compared to q.
Suppose that f ∈ O(q)⊥. Choosing an appropriate approximation of the identity, {pn},
pn ∈ O(q), we get that f ∗ pn(x)→ f(x) for every x in the Lebesgue set of f . Hence f = 0
a.e. on Rd. We conclude that O(q)⊥ = {0}.

After this preparation, we may now define Φ rigorously as the map from P+ to R given
by (4). Strict convexity of Φ follows from the strict convexity of t ln t, for t ≥ 0, while its
1-homogeneity is trivial. Therefore, Φ is strictly sublinear on P+. Let us compute the right
directional derivative of Φ.

For q ∈ P+ and p ∈ D(q), we set qt = q + tp. We have

lim
t→0+

Φ(q + tp)− Φ(q)

t
=

d

dt

∣∣∣∣∣
t=0

(
qt · ln

qt
qt · 1

)
= p · ln q

q · 1
+ q ·

(
p

q
− p · 1
q · 1

)
= p · ln q

q · 1
.

Therefore,

Φ′+(p, q) =

∫
Rd

p(x) ln
q(x)

q · 1
dx.

Clearly, the function

S(q)(x) = ln
q(x)

q · 1
is in L(P). Indeed, the claim follows from the fact that S(q) is continuous in x and grows
logarithmically as |x| → ∞. In view of Theorem 3.2, S is the unique P-integrable subgra-
dient of Φ on P+ since Φ′+(p, q) = p · S(q) for every p, q ∈ P+. The map is known as the
logarithmic scoring rule.
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The uniqueness of the logarithmic scoring rule as a subgradient of Shannon entropy is
in no way an absolute fact. Using the Hahn-Banach theorem as illustrated in Example B.3
and the fact that L1

+(Rd) consists entirely of boundary points, one may construct other
subgradients of Φ that lie outside L(P). Moreover, if q lies on the quasi-boundary of P+

(i.e. the points where the condition O(q)⊥ = {0} is violated), then uniqueness will fail even
within L(P).

4.2 Hyvärinen Entropy

Hyvärinen entropy for densities on Rd is defined as

Φ(p) =

∫
Rd

|∇p(x)|2

p(x)
dx. (5)

Here ∇ is the gradient on Rd. Hyvärinen and related entropies are considered e.g. in Parry
et al. (2012); Ehm and Gneiting (2012); Forbes and Lauritzen (2014); Dawid and Musio
(2012); Hyvärinen (2005, 2007); Sánchez-Moreno et al. (2012).

We first show that there is no natural way to extend Hyvärinen entropy to signed
densities. For simplicity, we confine ourselves to the case d = 1. Suppose that p changes
sign at some x0 ∈ R that has multiplicity one. The assumption is generic and it means
that x0 is not an inflection point of p. It follows that the above integral is divergent at x0.
Indeed, the claim is a direct consequence of the asymptotic expansion of the term

|p′(x)|2

p(x)
=

1

x− x0
+O(x− x0)

near x0. On the other hand, if p has a zero of higher multiplicity at x0, one may check
that the above asymptotics will be bounded and the integral will be convergent in a neigh-
bourhood of x0. Nevertheless, the example shows that Φ cannot be generally defined for
densities that change sign.

We proceed to define a suitable domain for Φ. Suppose that P+ consists of all positive,
twice continuously differentiable functions p(x) on Rd that satisfy the bounds:

(a) there are C1 > 0 and k > 0 such that∣∣∣∣∇p(x)

p(x)

∣∣∣∣+

∣∣∣∣∆p(x)

p(x)

∣∣∣∣ ≤ C1(1 + |x|)k;

(b) there is C2 > 0 such that

|p(x)| ≤ C2

(1 + |x|)d+1+k2
,

where ∆ = ∂2/∂x2
1 + · · · + ∂2/∂x2

d is the Laplacian on Rd. In view of the above, we have
the following limit

lim
R→∞

1

R

∫
|y|=R

(
y∇q(y)

q(y)

)
p(y)dy = 0 (6)
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for any p, q ∈ P+. Note that here

y∇q(y) = y1
∂q(y)

∂y1
+ · · ·+ yd∂q(y)

∂yd

denotes the scalar product of y and ∇q(y) and the integral in (6) is a surface integral over
the sphere centred at the origin of radius R. The class P is broad, e.g. it contains the
Gaussians, and all positive continuous densities that have bounded first and second-order
derivatives and decay at infinity sufficiently fast. Just like in Section 4.1, we have that
L(P) ⊂ L1

loc(Rd) and that for any q ∈ P+ the annihilator of O(q) in L(P) is trivial. In the
light of Proposition B.1, P+ is nowhere dense in L1(Rd) as P+ ⊂ L1

+(Rd).
We now formally define Hyvärinen entropy as the map from P+ to R given in (5).

Convexity of Φ follows from the convexity of the function

φ(t, t1, . . . , dd) =
t21 + · · ·+ t2d

t
, for t > 0, (t1, . . . , td) ∈ Rd,

while its 1-homogeneity is trivial. Hence, Φ is sublinear. Let us compute its right directional
derivative.

For q ∈ P+ and p ∈ D(q), we set qt = q + tp. We have

lim
t→0+

Φ(q + tp)− Φ(q)

t
=

∫
Rd

d

dt

∣∣∣∣∣
t=0

(
|∇qt(x)|2

qt(x)

)
dx

=

∫
Rd

(
2
∇q(x)

q(x)

∇p(x)

p(x)
− |∇q(x)|2

q2(x)

)
p(x)dx.

By integration by parts we get

∫
|x|≤R

(
2∇q(x)∇p(x)

q(x)
− |∇q(x)|2

q2(x)
p(x)

)
dx

=

∫
|x|≤R

(
−2∆q(x)

q(x)
+
|∇q(x)|2

q2(x)

)
p(x)dx+

2

R

∫
|y|=R

(
y∇q(y)

q(y)

)
p(y)dy.

Letting R→∞ and using (6), we obtain

Φ′+(p, q) =

∫
Rd

(
−2∆q(x)

q(x)
+
|∇q(x)|2

q2(x)

)
p(x)dx.

The assumptions on P+ guarantee that

S(q)(x) = −2∆q(x)

q(x)
+
|∇q(x)|2

q2(x)

is P-integrable for every q ∈ P+. In view of Theorem 3.2, S(q) is the unique P-integrable
subgradient of Φ on P+. The map is known as the Hÿvarinen scoring rule (Parry et al.,
2012).
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In fact, S(q) is a strict subgradient of Φ on P+. This can be shown if we notice that
the divergence induced by S has the representation

p · S(p)− p · S(q) =

∫
Rd

∣∣∣∣∇p(x)

p(x)
− ∇q(x)

q(x)

∣∣∣∣2 p(x)dx.

The latter identity can be proved by integration by parts. The divergence is zero if and
only if

∇(ln p(x)− ln q(x)) = 0.

This is equivalent to p = Cq for some constant C > 0, i.e., p and q being positively collinear.
This concludes the proof of the claim.

4.3 Quadratic Entropy

Here we consider the quadratic entropy

Φ(q) =
1

q · 1

∫
Ω
q2(x)dx, (7)

where (Ω,A, µ) is a Lebesgue measure space with Ω ⊂ Rd. In what follows, we show that
its Gâteaux derivative is the quadratic scoring rule, also known as Brier score (Brier, 1950).
The quadratic entropy is a member of the important family of power entropy functions. The
corresponding power scoring rules have been studied in connection to robust estimation e.g.
in Basu et al. (1998); Kanamori and Fujisawa (2015, 2014).

We proceed to choose a suitable domain for Φ. In contrast to the previous two entropies
we now introduce a topology. To that end, we begin with a description of some normed
spaces. Let w : Ω→ [0,∞) be a measurable function which we call a weight. By Lp(Ω, w),
for p ≥ 1, we denote the Lebesgue space of functions on Ω whose p-th power is absolutely
integrable with respect to the weight w(x). By ‖·‖p,w we denote the corresponding weighted
Lp-norm. When w is identically equal to one we get the usual Lebesgue space and norm.
In this case we drop w from our notation. We now set

w(x) = (1 + |x|)d+1.

Notice that L2(Ω, w) embeds continuously in L1(Ω). Indeed, for f ∈ L1(Ω), we have∫
Ω
|f(x)| dx =

∫
Ω
w−1/2(x) |f(x)|w1/2(x)dx

≤
(∫

Ω
w−1(x)dx

) 1
2
(∫

Ω
|f(x)|2w(x)dx

) 1
2

≤ C ‖f‖2,w ,

where C > 0 is a constant. Clearly, L2(Ω, w) also embeds continuously in L2(Ω) and hence
the same conclusion holds for L2(Ω, w) for all intermediate spaces Lp(Ω) with 1 ≤ p ≤ 2.
Hence, we have the inequality

‖f‖p ≤ C ‖f‖2,w
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for some fixed C > 0 and all p ∈ [1, 2].

We have that f ∈ L2(Ω, w) if and only if fw1/2 ∈ L2(Ω). Clearly, the weight is needed
only when Ω is unbounded as otherwise the weighted and the ordinary Lp-norms are equiv-
alent. The continuous dual space of L2(Ω, w) may be identified with the space L2(Ω, w−1).
Therefore, g ∈ L2(Ω, w−1) if and only if gw−1/2 ∈ L2(Ω). Hence, the dual space L2(Ω, w−1)
contains the constants and also the elements of L2(Ω, w).

We now specify a prediction set P ⊂ L2
+(Ω, w) with the following property: there are

constants k1 > 0 and k2 > 0 such that

k1 ≤ ‖q‖2,w ≤ k2

for all q ∈ P. Choose 0 < ε < min(1, k1). For p ∈ L2(Ω), let Bρ(p) denote the open ball
about p of radius ρ > 0. Choose δ > 0 so small that for every p ∈ Bδ(0) we have ‖p‖1 ≤ ε
and ‖p‖2,w ≤ ε. Let q ∈ P and consider r ∈ Bδ(q). It is easy to show that

k1 − ε ≤ ‖r‖2,w ≤ k2 + ε

for all r ∈ Bδ(q). Similarly, we also have

1− ε ≤ r · 1 ≤ 1 + ε

for all r ∈ Bδ(q). Here we have used the fact that r = p+ q, where q · 1 = 1 and ‖p‖1 ≤ ε.
We now set

C0 = P +Bδ(0) = ∪q∈PBδ(q).

It follows that C0 is convex as both P and Bδ(0) are convex. Finally, let C = C+
0 be the

cone of C0. Clearly, C is an open convex cone in L2(Ω, w).

We may now formally define Φ as the map from C to R given by (7). We have that Φ is
strictly convex on C0 as the kernel function φ(t) = t2 is strictly convex for t ∈ R. Therefore,
Φ is strictly sublinear on C. It is not hard to see that Φ is also continuous on C. Theorem
3.3 implies that Φ has a subgradient on C. The following computation shows that Φ is
Gâteaux differentiable. Indeed, for q ∈ C and p ∈ L2(Ω, w), we have

lim
t→0

Φ(q + tp)− Φ(q)

t
=

∫
Ω

d

dt

∣∣∣∣∣
t=0

(q(x) + tp(x))2

(q + tp) · 1
dx

= 2

∫
Ω

q(x)p(x)

q · 1
dx−

∫
Ω

q2(x)

(q · 1)2
dx

∫
Ω
p(x)dx.

We obtain that

∇Φ(q) =
2q

q · 1
− q · q

(q · 1)2

is the Gâteaux derivative of Φ as clearly ∇Φ(q) ∈ L2(Ω, w−1). In view of Theorem 3.4,
S = ∇Φ|P+ defines a strictly proper scoring rule on P+. We have that ∇Φ is the unique
subgradient of quadratic entropy on the cone C, but as discussed before, by using the Hahn-
Banach theorem one may show that uniqueness fails on P+ when Ω is unbounded. The rule
S is known as the quadratic scoring rule.
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5. Conclusion

We were originally motivated to understand the implications of the fact that Shannon and
Hyvärinen entropies are only finite on domains with empty interiors. As no notion of
functional derivative is applicable to these entropies, the question whether the logarithmic
and Hyvärinen scoring rules are the unique subgradients of their respective entropy functions
is not obvious. In contrast, the quadratic entropy may be continuously extended to signed
densities, which allows us to interpret the quadratic scoring rule as the Gâteaux derivative
of its entropy. We realised that in order to answer the titular question of the paper, one
must introduce additional structures to the basic measure-theoretic framework known in
the literature of scoring rules (Hendrickson and Buehler, 1971). The most important new
aspect is the notion of interior and its refinement (known as quasi-interior) in the context
of domains with empty interior. Another crucially important idea is to use directional
derivatives to describe the subdifferentials of entropy functions. Finally, our approach
marks a shift in emphasis from proper scoring rules to a greater focus on entropy functions.
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Appendix A. Proofs

Lemma A.1 Let P be a prediction set and Φ : P+ → R be a 1-homogeneous function. If
Φ has a (strict) subgradient on P+, then Φ is a (strictly) sublinear function.

Proof Let S : P+ → LinP be a (strict) subgradient of Φ. Then S (strictly) satisfies

Φ(p) ≥ p · S((1− λ)p+ λq)

Φ(q) ≥ q · S((1− λ)p+ λq)

for every p, q ∈ P+ (p and q not positively collinear), and every 0 < λ < 1. Multiplying the
first inequality by 1− λ, the second one by λ, and then adding them up, we obtain that Φ
(strictly) satisfies

Φ(1− λ)p+ λq) ≤ (1− λ)Φ(p) + λΦ(q).

Proof [of Lemma 2.1] We first show that cone(P+ − q) ⊂ D(q). It is easy to see that
D(q) is closed under taking conic combinations. The claim follows from the fact that
(P+− q) ⊂ D(q). We now show that D(q) ⊂ cone(P+− q). If p ∈ D(q), then there is εp > 0
and r ∈ P+ such that q + εpp = r. Then p = (r − q)ε−1

p and hence p ∈ cone(P+ − q).
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Proof [of Proposition 2.3] (a) For p ∈ D(q) arbitrary, consider the line in spanP with
parametric equation

γ(t) = q + t(p− q), t ∈ R,

passing through q and p. Clearly, γ(0) = q and γ(1) = p. Moreover, there is some ε > 0
such that the interval [0, ε] is mapped entirely in P+ under γ (if p ∈ P+, then ε ≥ 1). Then
the function

φ(t) = Φ(q + t(p− q)), t ∈ [0, ε],

is convex and its slope function

sφ(t1, t2) =
φ(t2)− φ(t1)

t2 − t1
, t1, t2 ∈ [0, ε],

is nondecreasing (Rockafellar, 1972; Niculescu and Persson, 2006). We have that

Φ′+(p, q) = lim
t2→0+

φ(t2)− φ(0)

t2
= inf

t2>0

φ(t2)− φ(0)

t2
.

If p ∈ O(q), then there is some δ > 0 such that the interval [−δ, δ] is mapped entirely in
P+ under γ. Let −δ ≤ t1 < 0 < t2 ≤ δ. To prove that Φ′+(p, q) is finite, we consider

φ(0)− φ(t1)

−t1
≤ φ(t2)− φ(0)

t2
,

and take the infimum in t2.

(b) Homogeneity of Φ′+(·, q) follows from:

Φ+(λp, q) = lim
τ→0+

Φ(q + τλp)− Φ(q)

τ
≤ λ lim

τ→0+

Φ(q + λτp)− Φ(q)

λτ

= λΦ+(p, q).

Let p1, p2 ∈ D(q). Subadditivity of Φ′+(·, q) follows from:

Φ′+(p1 + p2, q) = lim
τ→0+

Φ(q + τ(p1 + p2))− Φ(q)

τ

≤ lim
τ→0+

Φ(q/2 + τp1)− Φ(q)/2

τ
+ lim
τ→0+

Φ(q/2 + τp2)− Φ(q)/2

τ

= lim
τ→0+

Φ(q + 2τp1)− Φ(q)

2τ
+ lim
τ→0+

Φ(q + 2τp2)− Φ(q)

2τ

= Φ′+(p1, q) + Φ′+(p2, q).

(c) The claim follows from

Φ′+(p, λq) = lim
τ→0+

Φ(λq + τp)− Φ(λq)

τ
= lim

τ→0+

Φ(q + τp/λ)− Φ(q)

τ/λ

= Φ′+(p, q).
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(d) We have

Φ(p) ≥ Φ(q + p)− Φ(q) ≥ Φ(q + τp)− Φ(q)

τ
≥ Φ′+(p, q),

where 0 < τ < 1. The first inequality follows from sublinearity of Φ, while the second and
third follow from the fact that the slope function of Φ is nondecreasing. It remains to show
that Φ(q) = Φ′+(q, q). This follows immediately from

Φ(q) = lim
τ→0+

(1 + τ)Φ(q)− Φ(q)

τ
= lim

τ→0+

Φ(q + τq)− Φ(q)

τ

= Φ′+(q, q).

(e) The claim is a direct consequence of

0 = Φ′+(0, q) = Φ′+(p− p, q) ≤ Φ′+(p, q) + Φ′+(−p, q).

(f) To show that O′(q) is a linear subspace of O(q) it is enough to show that it is closed
under scalar multiplication and vector addition. Let λ ∈ R and p ∈ O′(q). Then, for λ ≥ 0,
Φ′+(λp, q) = λΦ′+(p, q). Analogously, for λ < 0 we have

Φ′+(λp, q) = Φ′+(−λ(−p), q) = −λΦ′+(−p, q) = λ(−Φ′+(−p, q)) = λΦ′+(p, q).

Therefore, Φ′+(λp, q) = λΦ′+(p, q) for any λ ∈ R and p ∈ O′(q). Then multiplying by λ both
sides of the identity

−Φ′+(−p, q) = Φ′+(p, q)

and using the previous identity, we get that λp ∈ O′(q). Hence, O′(q) is closed under scalar
multiplication.

Suppose now that p, r ∈ O′(q). We have

Φ′+(p+ r, q) ≤ Φ′+(p, q) + Φ′+(r, q) = −(Φ′+(−p, q) + Φ′+(−r, q))
≤ −Φ′+(−p− r, q) ≤ Φ′+(p+ r, q),

where the last inequality follows from (e). Clearly, we must have equalities throughout. In
particular,

−Φ′+(−p− r, q) = Φ′+(p+ r, q)

and

Φ′+(p+ r, q) = Φ′+(p, q) + Φ′+(r, q).

Hence p+r ∈ O′(q). We conclude that O′(q) is a linear subspace and Φ′+(·, q)
∣∣
O′(q)

is linear.

Proof [of Proposition 2.4] (a) The sufficient part of the claim follows from Proposition 2.3
(d). Let us now show the necessary part. To that end, let q∗ ∈ LinP be a subgradient of
Φ at q, and let p ∈ P+ be arbitrary. Setting qt = q + (1 − t)p, we have Φ(qt) ≥ qt · q∗ for
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all t ∈ [0, 1]. Subtracting Φ(q) from both sides of the inequality and dividing by (1− t), for
t ∈ (0, 1), we get

Φ(q + (1− t)p)− Φ(q)

1− t
≥ p · q∗.

Letting t ↑ 1, we get
Φ′+(p, q) ≥ p · q∗

as desired.
(b) The claim follows by restricting Φ to 1-dimensional affine spaces through q. On

these spaces Φ is convex and differentiable and therefore has a unique subgradient. Since
these subspaces cover the whole of spanP, it follows that the directional derivative Φ′(·, q)
is the unique subgradient of Φ there.

(c) In view of Proposition 2.3 (a), Φ′+(p, q) is finite for each p ∈ O(q) = spanP. The
hypothesis implies that there is at least one 1-dimensional linear subspace of spanP on
which Φ′+(·, q) is not linear. There are infinitely many ways we can choose a linear function
on that space that is dominated by Φ′+(·, q). The claim now follows from the Hahn-Banach
theorem stated below as Theorem B.4.

(d) Since O(q) 6= spanP, it follows that P+ \ O(q) is nonempty. Take any p in that set
and consider the 1-dimensional linear space generated by the span of p. Since Φ′+(·, q) is
defined only on its positive half-space, there are infinitely many linear functions that are
dominated by Φ′+(·, q) on the whole space. The proof now follows from Theorem B.4.

(e) There is no element of LinP that satisfies the condition in part (a) of this proposi-
tion. Therefore, ∂Φ(q) = ∅.

Proof [of Theorem 3.1] Suppose that q∗ ∈ L(P) satisfies p · q∗ ≤ Φ′+(p, q) for all p ∈ P+,
with equality for p = q. In view of Proposition 2.3 (d), we have that p · q∗ ≤ Φ(p) for all
p ∈ P+, and q · q∗ = Φ(q). Hence, q∗ is a P-integrable subgradient of Φ at q.

The converse claim, that is, if q∗ is a P-integrable subgradient of Φ at q, then p · q∗ ≤
Φ′+(p, q) for all p ∈ P+, with equality for p = q, follows from Proposition 2.4 (a).

Proof [of Theorem 3.2] The hypothesis implies that Φ′+(·, q) is linear on O(q) ⊂ P+. By
restricting Φ to 1-dimensional subspaces of O(q) it follows immediately that any subgradi-
ent of Φ must agree with q∗ on O(q). The assumption that O(q)⊥ = {0} implies that Φ
may have at most one P-integrable subgradient at q. Then the claim follows from the fact
that q∗ is a subgradient of Φ at q.

Appendix B. Some Additional Facts

The positive cones in many standard function spaces are nowhere dense sets. Let us show
this for the Lebesgue space L1(Rd). The positive cone of L1(Rd) consists of all Lebesgue
integrable functions f ≥ 0 a.e. on Rd and is denoted by L1

+(Rd). We recall that a set in a
topological vector space is nowhere dense if its closure has empty interior.

Proposition B.1 The positive cone of L1(Rd) is nowhere dense.
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Proof We show that for every f ≥ 0 a.e., there is g ≥ 0 a.e. such that, for every α > 0,
f − αg 6∈ L1

+(Ω). This means that no open ball about f is contained in L1
+(Rd). Since

L1
+(Rd) is closed, then this would imply that L1

+(Rd) is nowhere dense.

To prove our claim, we use the fact that there is no absolutely convergent series with a
slowest rate of decay at infinity. We begin by partitioning Rd into dyadic regions

ωk = {2k ≤ |x| < 2k+1}

for k ∈ Z. For f ∈ L1(Rd), we set

ak =

∫
ωk

f(x)dx.

We have that the series
∞∑
k=0

ak =

∫
Rd

f(x)dx

is absolutely convergent. If rk =
∑

i≥k ai is the tail of the series for each k, then the series∑
k≥0 ak/

√
rk is also convergent (Rudin, 1976). Notice that the ratio of the common term

of the second to the first series tends to infinity as k → ∞. Therefore, the second series
has a strictly slower rate of convergence. There exists a function g ∈ L1

+(Rd) such that the
integrals of g on ωk are bk = ak/

√
rk and

∞∑
k=0

bk =

∫
Rd

g(x)dx.

Clearly, for any α > 0, the difference f − αg changes sign for some ωk, and hence f − αg 6∈
L1

+(Rd).

The next example illustrates the notion of topological subgradient in the case when the
assumption N∗ ⊂ L(P) is not satisfied.

Example B.2 Consider a Lebesgue measure space (Ω,A, µ) with Ω a compact subset of
Rd. We set P+ to be the positive cone of C(Ω), that is, the set of all nonnegative continuous
functions on Ω. The continuous dual of C(Ω) is the space of all real-valued Radon measures
on Ω. The fact that P+ contains constants implies that L(P) ⊆ L1(Ω). Actually, L(P) =
L1(Ω) and hence the P-integrable functions are the Radon measures that have a Lebesgue
density. Since L1(Ω) ( (C(Ω))∗, we see that in this case the notion of a P-integrable
subgradient is more restrictive than that of a topological subgradient.

We proceed to examine the implications of the latter observation on a concrete sublinear
function. Let Φ : C(Ω)→ R be the supremum function, that is,

Φ(p) = sup
x∈Ω

p(x).

It is easy to check that Φ is non-strictly sublinear and continuous. The supporting hyper-
plane theorem guarantees the existence of a topological subgradient of Φ at each point in its
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domain that is a real Radon measure. Let us see whether the subgradient is regular enough
to be a proper scoring rule.

We first demonstrate that there are points q ∈ P+ at which Φ has no subgradient in
L(P). To that end, let M(q) denote the set of modes of q, that is, the subset of Ω where q
reaches its maximum. Notice that M(q) is always compact. It can be shown that

Φ′+(p, q) = sup
x∈M(q)

p(x),

the proof of which is left to the reader. When M(q) = {x0} is a singleton, Φ′+(·, q) =
δ(x − x0) is Dirac’s delta function. Clearly, in this case Φ is Gâteaux differentiable with
derivative δ(x − x0). We claim that Φ has no P-integrable subgradient for any density q
with µ(M(q)) = 0.

Suppose conversely that q∗ ∈ L(P), q∗ 6= 0, is a subgradient of Φ at q. Then

Φ′+(p, q) ≥ p · q∗

for all p ∈ P+. We shall show that this inequality implies q∗(x) ≤ 0 a.e. on Ω, which leads
to a contradiction with Φ(q) = q · q∗ > 0.

To show the latter claim, notice that Ω\M(q) is open, and hence for any y ∈ Ω\M(q),
there is εy > 0 such that the ball about y of radius εy lies in the complement of M(q) with
respect to Ω. Let {pk} be a sequence of densities approximating δ(x−y) entirely supported
on this ball. Since Φ′+(pk, q) = 0, we get that pk · q∗ ≤ 0. If y is a Lebesgue point of q∗,
then we have the limit

lim
k→∞

pk · q∗ = δ(· − y) · q∗ = q∗(y).

Since almost every point of q∗ is a Lebesgue point, we get that q∗(x) ≤ 0 a.e. on Ω. This
completes the proof of the claim.

In the case µ(M(q)) > 0, we may find a P-integrable subgradient of Φ at q. Consider
the function

q∗(x) =

{
1

µ(M(q)) x ∈M(q)

0 x ∈ Ω \M(q).

Clearly, q · q∗ = supx∈Ω q(x) and p · q∗ ≤ supx∈Ω p(x) for all p ∈ P+. This furnishes our
claim.

In our final example, we illustrate the fact that at boundary points a sublinear function
has either no subgradient, or infinitely many.

Example B.3 Take Φ(x, y) = x + y on R2
+ = {(x, y) |x ≥ 0, y ≥ 0}. The graph of Φ is

a part of a plane, so it is easy to see that Φ has infinitely many supporting planes at the
boundaries of R2

+. Consider now

Φ(x, y) = x ln
x

x+ y
+ y ln

y

x+ y

on R2
+, which is Shannon entropy for binary variables. A computation shows that

∇Φ(x, y) = ln
x

x+ y
+ ln

y

x+ y
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and hence ∇Φ(x, y) → −∞ when (x, y) tends to the boundary of R2
+. This means that

Φ has vertical tangent planes through the coordinate axes, which implies that Φ has no
subgradient on the boundary of its domain.

The situation is the same when P+ is a subset of an infinite dimensional vector space.
For example, one may use the Hahn-Banach theorem presented below to show the existence
of multiple supporting hyperplanes at boundary points q for which Φ′+(p, q) is finite for all
p ∈ P+. If, instead, there is p ∈ P+ for which Φ′+(p, q) = −∞, then Φ has no subgradient
at q.

We now state a slight generalisation of the classical Hahn-Banach theorem. Let E be a
real vector space and K ⊂ E be a convex cone.

Theorem B.4 (Hahn-Banach theorem) Let φ : K → R be a sublinear function and
l0 : E0 → R be a linear functional on a linear subspace E0 ⊆ E which is dominated by φ on
E0 ∩K, i.e.

l0(q) ≤ φ(q), ∀q ∈ E0 ∩K.

Then there exists a linear extension l : E → R of l0 to the whole space E such that

l(q) = l0(q), ∀q ∈ E0,

l(q) ≤ φ(q), ∀q ∈ E ∩K.

In the classical formulation of the theorem, we have K = E. The proof of the version
with K ⊂ E is the same. In fact, if anything, the condition K ⊂ E is easier to satisfy than
K = E when extending l0.
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3 Műegyetem rkp.

1111 Budapest, Hungary

Editor: Nicolas Vayatis

Abstract

We consider the problem of stratified sampling for Monte Carlo integration of a random
variable. We model this problem in a K-armed bandit, where the arms represent the K
strata. The goal is to estimate the integral mean, that is a weighted average of the mean
values of the arms. The learner is allowed to sample the variable n times, but it can decide
on-line which stratum to sample next. We propose an UCB-type strategy that samples the
arms according to an upper bound on their estimated standard deviations. We compare its
performance to an ideal sample allocation that knows the standard deviations of the arms.
For sub-Gaussian arm distributions, we provide bounds on the total regret: a distribution-
dependent bound of order poly(λ−1

min)Õ(n−3/2)1 that depends on a measure of the disparity

λmin of the per stratum variances and a distribution-free bound poly(K)Õ(n−7/6) that does
not. We give similar, but somewhat sharper bounds on a proxy of the regret. The problem-
independent bound for this proxy matches its recent minimax lower bound in terms of n
up to a log n factor.

Keywords: adaptive sampling, bandit theory, stratified Monte Carlo, minimax strategies,
active learning

1. Introduction

Estimation of mean values (or, especially, probabilities) can be considered as a special
case of most problems in stochastic machine learning (e.g., regression function estimation,
classification, clustering), thus understanding all of its aspects is crucial to tackle more

∗. Also affiliated to Inria Lille - Nord Europe, France
†. During parts of this work he was with the Computer and Automation Research Institute of the Hungarian

Academy of Sciences, Budapest, Hungary.
1. The notation an = poly(bn) means that there exist C,α > 0 such that an ≤ Cbαn for n large enough.

Moreover, an = Õ(bn) means that an/bn = poly(logn) for n large enough.
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complex problems. Consider a polling institute that has to estimate as accurately as possible
the average income of a country, given a finite budget for polls. The institute has call centers
in every region in the country, and gives a part of the total sampling budget to each center
so that they can call random people in the area and ask about their income. A naive method
would allocate a budget proportionally to the number of people in each area. However some
regions show a high variability in the income of their inhabitants whereas others are very
homogeneous. Now if the polling institute knows the level of variability within each region,
it could adjust the budget allocated to each region in a more clever way (allocating more
polls to regions with high variability) in order to reduce the final estimation error.

This example is just one of many for which an efficient method of sampling a function
with natural strata (i.e., the regions) is of great importance. Note that even in the case
that there are no natural strata, it is always a good strategy to design arbitrary strata and
allocate a budget to each stratum that is proportional to the size of the stratum, compared
to a crude Monte Carlo. There are many good surveys on the topic of stratified sampling
for Monte Carlo (Glasserman, 2004; Rubinstein and Kroese, 2008, Subsection 5.5). It is
sometimes used in conjunction with other variance reduction techniques, such as importance
sampling, antithetic sampling, or control-variables. However, in contrast with those men-
tioned above, stratified sampling can be used even without substantial knowledge about the
function to be evaluated or the sampling distribution (though, to construct effective strata,
some knowledge on the variance on different domain areas is better).

The main problem for performing an efficient sampling is that the variances within
the strata (in the previous example, the income variability per region) are unknown. One
possibility is to estimate the variances online while sampling the strata. There is some
interesting research along this direction (Arouna, 2004; Etoré and Jourdain, 2010; Kawai,
2010). The work of Etoré and Jourdain (2010) matches exactly our problem of designing
an efficient adaptive sampling strategy. In this paper, they propose to sample according
to the empirical estimates of the standard deviations of the strata, whereas Kawai (2010)
addresses a computational complexity problem which is slightly different from ours. The
recent work of Etoré et al. (2011) describes a strategy that enables to sample asymptotically
according to the (unknown) standard deviations of the strata and at the same time adapts
the shape (and number) of the strata online. This is a very difficult problem, especially in
high dimension, that we will not address here, although we think this is a very interesting
and promising direction for further research.

These works provide asymptotic convergence of the variance of the estimate to the
targeted stratified variance divided by the sample size (Rubinstein and Kroese, 2008, Sub-
section 5.5), see also (5) in this paper. They also prove that the number of pulls within
each stratum converges asymptotically to the desired number of pulls, that is, the optimal
allocation if the variances per stratum were known. Like Etoré and Jourdain (2010), we
consider a stratified Monte Carlo setting with fixed strata. Our contribution is to design a
sampling strategy for which we can derive a finite-time analysis (where ’time’ refers to the
number of samples). This enables us to predict the quality of our estimate for any given
budget n.

We model this problem using the setting of multi-armed bandits where our goal is to
estimate a weighted average of the mean values of the arms. For quite complete surveys on
the classical bandit setting, see for example, the surveys of Cesa-Bianchi and Lugosi (2006);
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Bubeck and Cesa-Bianchi (2012), and see also the seminal papers of Lai and Robbins (1985),
and Auer et al. (2002). Although our goal is different from a usual bandit problem where
the objective is to play the best arm as often as possible, this problem also exhibits an
exploration-exploitation trade-off. The arms have to be pulled both in order to estimate the
initially unknown variability of the arms (exploration) and to allocate correctly the budget
according to our current knowledge of the variability (exploitation).

This topic has already been formalized in terms of a bandit problem in the master
thesis of Grover (2009), where an algorithm named GAFS-WL (Greedy Allocation with
Forced Selection - Weighted Loss) is presented. It deals with stratified sampling, that is,
it targets an allocation which is proportional to the standard deviation (and not to the
variance) of a stratum times its size, see the book of Rubinstein and Kroese (2008) and
also as explained later on in this paper. Grover (2009) defines a proxy on the overall mean
squared error (MSE, defined in Equation 1 below), the weighted sum of the per stratum
MSE’s (defined in Equation 3 below), that he calls loss. He proves that the difference
between this loss of GAFS-WL and the optimal static loss is of order poly(K)Õ(n−3/2),
where the Õ(·) depends of the arm distributions. Another approach for this problem, still
with a bandit formalism, can be found in the paper of Carpentier and Munos (2011), where
another algorithm, based on Upper-Confidence-Bounds (UCB) on the standard deviations,
was proposed. This algorithm is inspired by the celebrated UCB strategy (Auer et al.,
2002), that is designed for the classical bandit setting. The algorithm, called MC-UCB,
samples the arms proportionally to an UCB on the standard deviation times the size of the
stratum. The authors provided finite-time, problem-dependent and problem-independent
bounds for the weighted MSE loss of this algorithm. The first one corresponds to the bound
in the work of Grover (2009), the latter one differs from it. Finally, Carpentier and Munos
(2012) developed a lower bound for this problem, stating that the pseudo-regret (defined
in Section 2 below) of any algorithm for this problem cannot be significantly smaller in a

problem-independent minimax sense than K1/3

n4/3 . In addition, they prove that the problem-
independent upper bound on the pseudo-regret of MC-UCB matches this bound up to some
log n factor.

Note that a different, but closely analogous problem is when, instead of a weighted sum
of the per arm MSE’s, the maximum of these MSE’s have to be minimized (e.g., because the
weights are unknown). This is dealt with by Carpentier et al. (2011, 2015) for UCB-type
algorithms (CH-AS, B-AS) and by Antos et al. (2010) for GAFS-type algorithm (GAFS-
MAX).

Recall that in our original stratified sampling problem, however, the natural intuitive
measure of performance is not the weighted MSE loss defined by Grover (2009); Carpentier
and Munos (2011, 2012), but the total MSE of estimating the weighted average of the mean
values of the strata. It is a very important open question to link this total MSE loss to the
weighted MSE loss. Without this link, the theoretical analyses which are provided do not
give bounds in terms of the natural performance measure.

Contributions. In this paper we extend the analysis of MC-UCB by Carpentier and Munos
(2011). Our contributions are the following:

• We provide finite-time bounds on the MSE of the estimate of the mean value. To the
best of our knowledge, these are the first finite-time results for the problem of adaptive

2233



Carpentier, Munos and Antos

stratified Monte Carlo which target directly a usual loss measure (i.e., the total MSE).
These consist of: (i) A distribution-dependent bound of order poly(λ−1

min)Õ(n−3/2)
that depends on the disparity λmin of the strata (a measure of the problem complexity
defined in Equation 6 below), and which corresponds to a stationary regime where the
budget n is large compared to this complexity. (ii) A distribution-free bound of order
poly(K)Õ(n−7/6) that does not depend on the disparity of the strata, and corresponds
to a transitory regime where n is small compared to the problem complexity. (iii) The
latter bound is sharpened to order poly(K)Õ(n−4/3) when each arm distribution is
symmetric. Notably, all these bounds yield o(1/n) regret rate.

• We detail the proofs of Carpentier and Munos (2011), which have not been published in
full version due to space constraints. They correspond to two pseudo-regret bounds:

a distribution-dependent one of order λ
−3/2
min Õ(n−3/2) and a distribution-free one of

order K1/3Õ(n−4/3).

The rest of the paper is organized as follows. In Section 2 we formalize the problem
and introduce the notations used throughout the paper. Section 3 introduces the MC-
UCB algorithm and reports performance bounds on the number of pulls, the weighted MSE
loss, the total MSE loss, and the pseudo-loss under sub-Gaussian assumption on the arm
distributions. We then discuss the results in Section 4. Finally, Section 5 concludes the
paper and suggests future works. The appendices contain useful lemmata and the proofs.

2. Preliminaries

The allocation problem mentioned in the previous section is formalized as a K-armed bandit
problem where each arm (stratum) k = 1, . . . ,K is characterized by a distribution νk with
mean value µk and variance σ2

k. At each round t ≥ 1, an allocation strategy (or algorithm)
A selects an arm kt adaptively based on past samples, and then receives a sample drawn
from νkt that is conditionally independent of the past samples given kt. Let (wk)k=1,...,K

denote a known set of positive weights (measure of stratum i) which sum to 1. The goal
is to define a strategy that estimates as precisely as possible µ =

∑K
k=1wkµk using a total

budget of n samples.
Let I{E} be the indicator variable of event E, that is, I{E} = 1 if and only if E holds,

otherwise I{E} = 0. Let us write Tk,t =
∑t

s=1 I{ks = k} for the number of times arm k has

been pulled up to time t and µ̂k,t = 1
Tk,t

∑Tk,t
s=1Xk,s for the empirical estimate of the mean

µk at time t, where Xk,s denotes the sample received when pulling arm k for the sth time.
After n rounds, an algorithm A returns the empirical estimate µ̂k,n of µk for each arm and

also their weighted average µ̂n =
∑K

k=1wkµ̂k,n as the empirical estimate of µ.
For any algorithm A, we use the total mean (expected) squared error (MSE) loss of µ̂n

as performance measure in estimating µ:

L̄n(A) = E
[
(µ̂n − µ)2

]
= E

[( K∑
k=1

wk(µ̂k,n − µk)
)2
]
, (1)

where E[·] is the expectation integrated over all the samples of all arms. The goal is to
define an allocation strategy that minimizes the total MSE loss defined by (1). The total
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MSE loss can be decomposed as

L̄n(A) =
K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
︸ ︷︷ ︸

Ln(A)

+
K∑
k=1

∑
k′ 6=k

wkwk′E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
. (2)

Here the weighted MSE loss

Ln(A) =
K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
(3)

is equal to the loss defined by Grover (2009); Carpentier and Munos (2011). Thus our
analysis for stratified sampling problem implicitly covers the other problem, where instead
of estimating µ, the goal is estimating all µk simultaneously under a weighted MSE loss
L′n(A) =

∑K
k=1 pk(µ̂k,n−µk)2, since this loss is essentially the same as Ln(A). Such a setting

is referred to sometimes as an active learning (or active regression estimation) problem in
the literature (e.g., Grover, 2009). This case is even simpler in the sense that we do not
have to bother with the cross product-terms in (2).

Note that if all the Tk,n are deterministic, then in the cross product-terms

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
= E

[
(µ̂k,n − µk)

]
E
[
(µ̂k′,n − µk′)

]
= 0 · 0 = 0,

and also E
[
(µ̂k,n − µk)2

]
= σ2

k/Tk,n. This implies that in this case

L̄n(A) = Ln(A) =

K∑
k=1

w2
k

σ2
k

Tk,n
. (4)

This gives rise to the definition of

L̃n(A) =
K∑
k=1

w2
kE
[
σ2
k

Tk,n

]
for any algorithm A (with sample dependent Tk,n’s) as an alternative performance measure.

We call L̃n(A) pseudo-loss, as it is a proxy of L̄n(A) and Ln(A). It is obviously equal to
them for deterministic Tk,n’s.

2.1 Optimal Allocation

Although (4) does not hold when the numbers of pulls of an adaptive algorithm depend on
the observed samples and thus are random, it holds when each arm is pulled a deterministic
number of times. Thus if the variances of the arms were known in advance, one could design
an optimal deterministic (i.e., static, non-adaptive) allocation strategy A∗ by choosing
Tk,n = T ∗k,n such that they minimize L̄n under the constraint

∑K
k=1 T

∗
k,n = n. This optimal

deterministic allocation of A∗ is to pull each arm k proportionally to wkσk (up to rounding
effects), that is, given by

T ∗k,n =
wkσk∑K
i=1wiσi

n.
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This achieves the loss

L̄n(A∗) = Ln(A∗) = L̃n(A∗) =
Σ2
w

n
, (5)

where Σw
def
=
∑K

k=1wkσk. We assume in the sequel that Σw > 0, that is, ∃k that σk > 0.

We define also Σ̄
def
= maxk σk. In the following, we write

λk
def
=

T ∗k,n
n

=
wkσk
Σw

for the optimal allocation proportion for arm k and

λmin
def
= min

1≤k≤K
λk , w

def
= min

1≤k≤K
wk. (6)

Note that a small λmin means a large disparity of the quantities {wkσk}k≤K . It will turn
out that λmin seems to characterize the hardness of a problem.

2.2 Uniform Allocation

Another possible deterministic allocation is the proportional or uniform strategy Au which
assumes uniform standard deviations (e.g., since the σk’s are unknown and thus the optimal
allocation is out of reach), that is, allocates such that T uk = wk∑K

i=1 wi
n = wkn. Its loss is

L̄n(Au) = Ln(Au) = L̃n(Au) =
K∑
k=1

wkσ
2
k

n
=

Σw,2

n
,

where Σw,2 =
∑K

k=1wkσ
2
k. Note that using either Jensen’s or Cauchy-Schwarz’s inequality,

we can see that Σ2
w ≤ Σw,2 with equality if and only if all the σk’s are equal. Thus A∗ is

always at least as good as Au. In addition, since
∑

k wk = 1, we have

Σw,2 − Σ2
w =

∑
k

wk(σk − Σw)2.

The difference between those two quantities is the weighted quadratic variation of the σk’s
(1 ≤ k ≤ K) around their weighted mean Σw. As a result the gain of A∗ compared to Au
grows with the disparity of the σk’s.

We would like to do better than the uniform strategy by considering an adaptive strategy
A that would estimate all σk at the same time as it tries to implement an allocation strategy
as close as possible to the optimal allocation algorithm A∗. This introduces a natural trade-
off between exploration needed to improve the estimates of the variances and exploitation
of the current estimates to allocate the pulls near optimally.

2.3 Definition of Regret

In order to assess how well A solves the exploration-exploitation trade-off above and man-
ages to sample according to the true standard deviations without knowing them in advance,
we compare its performance to that of the optimal allocation strategy A∗. For this purpose
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we define the notion of total/weighted MSE regret of an adaptive algorithm A as the differ-
ence between the total/weighted MSE loss incurred by A and the optimal loss, respectively:

R̄n(A) = L̄n(A)− Σ2
w

n
, Rn(A) = Ln(A)− Σ2

w

n
.

The total MSE regret indicates how much we loose in terms of MSE by not knowing in
advance the standard deviations σk. Note that since L̄n(A∗) ∝ 1/n by (5), a consistent
strategy, that is, one which is asymptotically equivalent to the optimal strategy, is obtained
whenever its regret is negligible compared to 1/n.

We also define the pseudo-regret, a proxy for the MSE regret, as the difference between
the pseudo-loss incurred by the algorithm and the optimal loss:

R̃n(A) = L̃n(A)− Σ2
w

n
.

It is important to derive bounds for R̄n(A) when Tk,n’s are random. Taking the decom-
position (2), a natural way to proceed is to prove that both
(i) Rn(A) is small and
(ii) the cross product-terms E

[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
are small.

Note that for K = 1, for any A, T1,n = T ∗1,n = n and R̄n(A) = Rn(A) = R̃n(A) = 0,
thus we assume K ≥ 2 from now on.

3. Allocation Based on Monte Carlo Upper Confidence Bound

We now describe the main algorithm and the associated bounds.

3.1 The Algorithm

In this section, we introduce our adaptive algorithm for the allocation problem, called Monte
Carlo Upper Confidence Bound (MC-UCB). The algorithm computes a high-probability
bound on the standard deviation of each arm and samples the arms proportionally to their
bounds times the corresponding weights. The MC-UCB algorithm, AMC-UCB, is described
in Figure 1. It requires a parameter β as input, which should be chosen as explained below
after Assumption 1.

Input: β
Initialize: Pull each arm twice.
for t = 2K + 1, . . . , n do

Compute Bk,t using (7) for each arm 1 ≤ k ≤ K
Pull an arm kt ∈ arg max1≤k≤K Bk,t

end for
Output: µ̂k,n for each arm 1 ≤ k ≤ K and µ̂n

Figure 1: The pseudo-code of the MC-UCB algorithm.
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The algorithm starts by pulling each arm twice in rounds t = 1 to 2K. From round
t = 2K + 1 on, it computes an upper confidence bound

Bk,t =
wk

Tk,t−1

(
σ̂k,t−1 +

2β√
Tk,t−1

)
(7)

on the standard deviation σk for each arm k, and then pulls the one with largest Bk,t. The
bounds Bk,t are built by using Lemma 10 (and Corollary 16) and based on the empirical
standard deviation σ̂k,t−1:

σ̂2
k,t−1 =

1

Tk,t−1 − 1

Tk,t−1∑
i=1

(Xk,i − µ̂k,t−1)2, (8)

where Xk,i is the i-th sample received when pulling arm k and Tk,t−1 is the number of pulls
allocated to arm k up to time t− 1. After n rounds, AMC-UCB returns the empirical mean
µ̂k,n for each arm 1 ≤ k ≤ K and also their weighted average µ̂n.

The motivation to use such an adaptive algorithm instead of classical strategies using,
for example, a limited pre-run to get preliminary estimates of the variances is that the latter
needs to know the sample size in advance, and will not be able to adapt the length of the
exploration phase to the difficulty of the problem. For instance, a strategy that uses e.g.,
≈ n2/3 samples for variance estimation will have minimax-optimal problem-independent rate
(up to a log factor) but will display a suboptimal problem-dependent regret rate, i.e., n−4/3.
On the other hand, a strategy that uses e.g., ≈ n/ log n samples for variance estimation will
have an optimal problem-dependent regret (of order n−3/2 up to a log factor). The main
advantage of adaptive strategies such as the one we provide is that it adapts the length of
exploration phase to the difficulty of the problem.

We are giving two analyses of AMC-UCB, a problem-dependent and a problem-independent
one, which are interesting in the stationary and the transitory regimes of the run time of
the algorithm, respectively. We will comment on this later in Section 4.

3.2 Assumption on the Arm Distributions and Setting β

Before stating the main results of this section, we state the assumption that the distributions
are sub-Gaussian, which includes, for example, Gaussian or bounded distributions. See the
paper of Buldygin and Kozachenko (1980) for more precision.

Assumption 1 There exist c1, c2 > 0 such that for all 1 ≤ k ≤ K and any ε > 0,

PX∼νk(|X − µk| ≥ ε) ≤ c2 exp(−ε2/c1). (9)

The parameters c1 and c2 characterize the maximal heaviness of the tails of the arm distri-
butions. Since (9) is equivalent to

P
(
|Xk,t − µk| ≥

√
c1 log(c2/δ)

)
≤ δ for any 0 < δ < c2,√

c1 log(c2/δ) can be seen as a high probability bound on the centered samples.
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For bounded arm distributions, parameter β of AMC-UCB should be generally set as
c
√

log(2/δ), where c is the maximum range of the distributions and δ is a chosen significance
level corresponding to the estimation of the standard deviations (see Theorem 12). In
particular, δ will be chosen as an appropriate decreasing function of n (here n−9/2) giving
β = βn ∝ c

√
log n.

For unbounded distributions satisfying Assumption 1, the role of c is taken by ∝√
c1 log(c2/δ), and the expressions become more involved. Then β will be set as the follow-

ing function of c1, c2, δ, and the total sample size n

β = βn(δ)
def
= 2

√
c1 log(c2/δ) log(2/δ) +

√
c1nδ log(ec2/δ)

2(1− δ)
. (10)

This particular form comes from the way we extend a tail inequality for sub-Gaussian
random variables in Proposition 14 of Appendix B. In particular, substituting δ = n−9/2

into (10) β = βn will be set as the following function of n, c1, and c2

βn
def
=
√
c1 log(c2

2n
9) log(4n9) +

√
c1 log(ec2n4.5)

2(1− n−4.5)n7/4
. (11)

To help the reader, subscript n will be used after this substitution. Moreover, note that
Bk,t, kt, Tk,t, µ̂k,t, and σ̂k,t, beside depending on the time step t ≤ n, depend, possibly in an
indirect way, also on β, and so on δ, the budget n, c1, and c2. An accurate notation would
denote also these in some indices to avoid confusion. However, since we consider mostly
fixed n, δ, c1, and c2, we keep the lighter notations above for the sake of concision.

3.3 High-Probability Bounds on the Number of Pulls

For 2 ≤ t ≤ n, 1 ≤ k ≤ K, write

ŝ2
k,t

def
=

1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
t′=1

Xk,t′

)2
(12)

for the unbiased empirical variances corresponding to the first t samples from arm k and

also ŝk,t
def
=
√
ŝ2
k,t. Then we have σ̂k,t = ŝk,Tk,t as computed in (8).

To conduct our analysis, first we state upper and lower bounds on the difference between
the allocation Tk,n implemented by the MC-UCB algorithm run by parameter β and the
optimal allocation T ∗k,n for each arm which hold on the event that all standard deviation
estimations ŝk,t are quite accurate, namely on

ξ = ξK,n(δ)
def
=

⋂
1≤k≤K, 2≤t≤n

{
|ŝk,t − σk| ≤

2β√
t

}
, (13)

where β is given by (10). Later Corollary 16 will show that a small δ implies a high
probability P(ξ) under Assumption 1, thus we can use these results to derive the various
regret bounds in Subsections 3.4–3.7 for the algorithm. The proofs of Lemma 1 and 2 are
in Appendix A.
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Problem-dependent bound. All of our problem-dependent bounds (Lemma 1, Proposi-
tions 3, 8, partially Proposition 6 and Theorem 7) contain 1/λmin and so become void
(actually trivial) if λmin = 0.2 Thus we assume λmin > 0 in their proofs.

Lemma 1 Let Assumption 1 hold. For any 0 < δ ≤ 1, n ≥ 4K, and any arm 1 ≤ p ≤ K,
on ξ, the allocation Tp,n implemented by AMC-UCB satisfies

wpσp
Tp,n

≤ Σw

n
+

12β

n3/2λ
3/2
min

+
4KΣw

n2
, (14)

and consequently Tp,n − T ∗p,n satisfies

−4λp

(
3β

Σwλ
3/2
min

√
n+K

)
≤ Tp,n − T ∗p,n ≤ 4

(
3β

Σwλ
3/2
min

√
n+K

)
, (15)

where β is given by (10).

In (15), |Tp,n − T ∗p,n| is bounded by a quantity of order
√
n. This is directly linked to the

parametric rate of convergence of the estimation of σk, which is of order 1/
√
n. Note that

(15) also shows the inverse dependency on the smallest optimal allocation proportion λmin.

Problem-independent bound.

Lemma 2 Let Assumption 1 hold. For any 0 < δ ≤ 1, n ≥ 4K, and any arm 1 ≤ p ≤ K,
on ξ, the allocation Tp,n implemented by AMC-UCB satisfies

Tp,n ≥
(wpn)2/3

γ2
and (16)

wpσp
Tp,n

≤ Σw

n
+

12K1/3βγ

n4/3
+

4KΣw

n2
, (17)

and consequently Tp,n − T ∗p,n satisfies

−4λp

(
3K1/3βγ

Σw
n2/3 +K

)
≤ Tp,n − T ∗p,n ≤ 4

(
3K1/3βγ

Σw
n2/3 +K

)
,

where β is given by (10) and γ = γn(δ)
def
= (Σ̄/β +

√
8)1/3.

Unlike in the bounds proved in Lemma 1, here |Tp,n − T ∗p,n| is bounded by a quantity of

order n2/3 without any inverse dependency on λmin.

2. There are good chances in this case that by refined analyses and setting λmin = min1≤k≤K:λk>0 λk (that
is > 0), the same formulae can be proven giving finite bounds.
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3.4 Bounds on the Weighted MSE Regret of AMC-UCB

To simplify our bounds, we introduce

Cβ = Cβ,n
def
=
√
c1(9 log n+ 1.6 log(c2 + 1)) and (18)

Cξ = Cξ,n
def
= c1 log(ec2n

7/2/2K) (19)

( < c1(7 log n/2 + log c2) for K ≥ 2 ),

which depend only polynomially on log n,
√
c1, and log c2. We now report the bounds on

Rn(AMC-UCB). The proofs are given in Appendix D.

Problem-dependent bound. This result depends crucially on λ−1
min which is a measure of

the disparity of the products of the standard deviations and the weights. For this reason
we refer to it as “distribution-dependent” result. Its proof relies on the upper- and lower
bounds on Tk,t − T ∗k,t in Lemma 1.

Proposition 3 Let Assumption 1 be verified for two parameters c1, c2 ≥ 1. If βn is given
by (11), then for n ≥ 4K it holds for AMC-UCB that

Rn(AMC-UCB) ≤
24ΣwCβ

n3/2λ
3/2
min

+
288C2

β

n2λ3
min

+

√
KCξ + 32KΣ2

w

2n2
,

where Cβ and Cξ are given by (18) and (19).

Problem-independent bound. Now we report our second bound on Rn(AMC-UCB) that does
not depend on λ−1

min at all. This is obtained at the price of the worse rate K1/3Õ(n−4/3).
Its proof relies on the upper- and lower bounds on Tk,t − T ∗k,t in Lemma 2.

Proposition 4 Let Assumption 1 be verified for two parameters c1, c2 ≥ 1. If βn is given
by (11), then for n ≥ 4K it holds for AMC-UCB that

Rn(AMC-UCB) ≤
36K1/3ΣwCβ

n4/3
+
K2/3(2058C2

β + 32Σ2
w) +K1/6Cξ

(2n)5/3
,

where Cβ and Cξ are given by (18) and (19).

Note that this bound is not entirely distribution free, since Σw appears. But, as proven in
Appendix B.3 using Assumption 1, Σ2

w ≤ c1 log(ec2).
For Gaussian distributions with variance 1, we can take c1 = c2 = 1, and the main

coefficient of log n/(nλmin)3/2 in Proposition 3 and of K1/3 log n/n4/3 in Proposition 4 are
upper bounded by 216 and 324, respectively.

3.5 Bounds on the Cross Product-Terms

The difficulty in bounding the cross product-terms, that is, the second term in the right-hand
side of (2), comes from the fact that the (Tk,n)k≤K depend on the samples (in particular,
for AMC-UCB, on the empirical standard deviations (σ̂k,t)k≤K,t≤n). This dependence can
make correlation between µ̂k,n and µ̂k′,n. Thus, for general distributions, we cannot see
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obvious, direct reason why a cross product-term should be equal to the product of the
corresponding biases, and so be close to 0. We give three results for these cross product-
terms. The first one corresponds to the specific case where the distributions of the arms are
symmetric. The next two provide a problem-dependent and a problem-independent bound
in the general case. All these are partial results for proving bounds on R̄n(AMC-UCB) and
proven in Appendix E.

Arms with symmetric distributions. The first result holds in the specific case of symmetric
distributions. Intuitively speaking, in this setting, conditioning on the empirical standard
deviations does not change the mean of the samples (and sample averages). This implies
that for k 6= k′, µ̂k,n − µk and µ̂k′,n − µk′ are conditionally uncorrelated. From that we
deduce the following result.

Proposition 5 Assume that each distribution νk is symmetric around µk, respectively. For
AMC-UCB launched with any parameter βn, we have that

K∑
k=1

∑
k′ 6=k

wkwk′E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
= 0.

Though mostly of theoretical interest, the significance of this result is its indication that
the rate might be improvable for other distributions, as well.

Problem-dependent and problem-independent bound in general. The following proposition
gives bounds on the cross product-terms. This can be seen as an intermediary step in linking
the weighted MSE regret and the true regret. Its proof relies on the specific structure of
AMC-UCB through the use of Lemma 1 and 2.

Proposition 6 Let Assumption 1 be verified for two parameters c1, c2 ≥ 1. If βn is given by
(11), then (for n large enough compared to K, c1, log c2, and 1/Σw) the cross product-terms
for AMC-UCB are bounded as

K∑
k=1

∑
q 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ poly(Σwc1 log c2/λmin)Õ(n−3/2),

and
K∑
k=1

∑
q 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ poly(KΣwc1 log c2/w)Õ(n−7/6),

where w is given by (6) (and Õ(·) does not depend on λmin).

Note that the latter bound, depending on w, is not really problem-independent (considering
wk’s to be part of the problem), but it is independent of the arm distributions, particularly
of λmin.
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3.6 Bounds on the Total-Regret

From the decomposition (2) for AMC-UCB and Propositions 3, 4, 6, and 5, we can deduce
our main result, a bound on the true regret R̄n(AMC-UCB):

Theorem 7 Let Assumption 1 be verified for two parameters c1 > 0, c2 ≥ 1. If βn is given
by (11), then (for n large enough compared to K, c1, log c2, and 1/Σw) the true regret of
AMC-UCB is bounded as

R̄n(AMC-UCB) = poly(Σwc1 log c2/λmin)Õ(n−3/2),

and
R̄n(AMC-UCB) = poly(KΣwc1 log c2/w)Õ(n−7/6)

(thus, in particular, R̄n = o(1/n)). If each distribution νk is symmetric around µk, then
the cross product-terms are 0, and the following tighter problem-independent bound holds

R̄n(AMC-UCB) = Rn(AMC-UCB) = poly(KΣwc1 log c2)Õ(n−4/3).

3.7 Bounds on the Pseudo-Regret

We bound R̃n(AMC-UCB) by a problem-dependent and a problem-independent upper bound
that are of the same order in n as the bounds in Propositions 3 and 4, respectively. The
proofs are given in Appendix C.

Problem-dependent bound.

Proposition 8 Let Assumption 1 be verified for two parameters c1 > 0, c2 ≥ 1. If βn is
given by (11), then the pseudo-regret of AMC-UCB launched with n ≥ 4K is bounded as

R̃n(AMC-UCB) ≤
12ΣwCβ

n3/2λ
3/2
min

+
(4K +

√
2/16)Σ2

w

n2
,

where Cβ is given by (18).

Problem-independent bound.

Proposition 9 Let Assumption 1 be verified for two parameters c1 > 0, c2 ≥ 1. If βn is
given by (11), then the pseudo-regret of AMC-UCB launched with n ≥ 4K is bounded as

R̃n(AMC-UCB) ≤
18K1/3ΣwCβ

n4/3
+

(4K +
√

2/16)Σ2
w

n2
,

where Cβ is given by (18).

For Gaussian distributions with variance 1, we can consider c1 = c2 = 1, and the main
coefficient of log n/(nλmin)3/2 in Proposition 8 and of K1/3 log n/n4/3 in Proposition 9 are
upper bounded by 108 and 162, respectively.

4. Discussion on the Results

We make several comments on the algorithm MC-UCB in this section.
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4.1 Problem-Dependent and -Independent Bounds on Rn(A) and R̃n(A)

Our problem-dependent λ−3
minÕ(n−3/2) upper bound on Rn(AMC-UCB) in Proposition 3 is

similar and comparable to the one provided for GAFS-WL by Grover (2009), where the loss
measure is Ln(AGAFS-WL). Beside this λmin-dependent bound for AMC-UCB, Propositions 4
gives a λmin-independent bound of order K1/3Õ(n−4/3). (Note however, that when there
is an arm with 0 variance, GAFS-WL is likely to perform better than MC-UCB, as it
will only sample this arm O(

√
n) times, while MC-UCB usually samples it Ω(n2/3) times.)

Similarly, Proposition 8 provides a pseudo-regret bound of order λ
−3/2
min Õ(n−3/2), whereas

Proposition 9 gives a λmin-independently bound of order K1/3Õ(n−4/3).

Hence, for a given problem, that is, a given λmin, the distribution-free results of Proposi-
tion 4 and 9 are more informative than the distribution-dependent results of Proposition 3
and 8, respectively, in the transitory regime, that is, when n is small compared to λ−1

min.
Proposition 3 and 8 is better in the stationary regime, that is, for n large enough. This dis-
tinction reminds us of the difference between distribution-dependent and distribution-free
bounds for the UCB algorithm in usual multi-armed bandits. In that setting, the distri-
bution dependent bound is in O(K log n/∆), where ∆ is the difference between the mean
value of the two best arms, and the distribution-free bound is in O(

√
Kn) as explained by

Auer et al. (2002); Audibert and Bubeck (2009). In many works, these two types of results
are called individual and uniform bounds. For several models, the two bounds correspond
with each other, at least in their convergence rates in the sample size for the best possible
algorithms (i.e., in some minimax sense). See the thesis of Antos (1999) for a discussion.
Our results and proofs suggest that our stratified sampling model is another interesting
exception, where these two types of rates must be different.

At first sight, the problem of Monte Carlo integration seems to be more related to
the problem of pure exploration (Bubeck et al., 2011; Audibert et al., 2010) than to the
usual bandit setting: indeed, similarly to the setting of pure exploration, an intermediate
objective (linked to the overall objective) is to allocate the number of pulls of the arms
proportionally to some unknown problem-dependent quantities. However, we believe that
our problem is actually more related to the standard bandit problem, since it gives rise to
an exploration-exploitation trade-off.

4.2 The Parameter β of the Algorithm

We saw in (11) that the parameter βn of AMC-UCB should depend on n, c1, c2. It is actually
such that βn ≈ c′ log n, where c′ can be interpreted as a high probability bound on the range
of the samples. We thus simply require a rough bound on the magnitude of the samples. As
we saw, in the case of bounded distributions, βn can be chosen as βn = c

√
5 log n, where c is

a true bound on the range of the variables. This is easy to deduce by comparing Corollary 13
and Proposition 14 in Appendix B. The interpretation of this parameter β is quite similar
to the interpretation of the parameter in the UCB algorithm of Auer et al. (2002), and its
order of magnitude is roughly the same. (In that paper, it is assumed that the distributions
of the arms are bounded.) On the other hand, the interpretation of this quantity is quite
different from the interpretation of the parameter a of the algorithm UCB-E of Audibert
et al. (2010), which characterizes here the complexity of the problem. This is yet another
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illustration from the fact that this problem is somehow more related to the standard bandit
problem than to the problem of pure exploration.

4.3 Finite-Time Bounds for R̄n(AMC-UCB) and Asymptotic Optimality

The first result in Theorem 7 states that R̄n(AMC-UCB) is of order poly(λ−1
min)Õ(n−3/2). This

corresponds to the λmin-dependent bound on Rn(AMC-UCB). Theorem 7 also states that
an upper bound on R̄n(AMC-UCB) is of order poly(K)Õ(n−7/6). This corresponds to the
λmin-independent bound on Rn(AMC-UCB). Unfortunately, in this case, we do not obtain
the same order for R̄n(AMC-UCB) as for Rn(AMC-UCB), that is, poly(K)Õ(n−4/3). This
comes from the fact that the bound on the cross product-terms in Proposition 6 is of order
poly(K/w)Õ(n−7/6). Whether this bound is tight or not is an open problem.

As we bound R̄n(AMC-UCB) as o(1/n), L̄n(AMC-UCB) is asymptotically not more than
L̄n(A∗) = Σ2

w/n for any problem satisfying Assumption 1. This can be said as AMC-UCB is
(weakly) consistent; just like the algorithms of Kawai (2010); Etoré and Jourdain (2010).

Note also that whenever there is some disparity among the arms, that is, when Σ2
w <

Σ2,w, AMC-UCB is asymptotically strictly more efficient than the uniform strategy.

4.4 Pseudo-Regret of AMC-UCB and the Lower Bound

Carpentier and Munos (2012) provided a λmin-independent minimax lower bound for R̃n(A)
that is of order K1/3Ω(n−4/3). An important achievement is that the λmin-independent
upper bound on R̃n(AMC-UCB) in Proposition 9 is of the same order up to a logarithmic
factor. Thus, regarding R̃n(A), it is impossible to improve this strategy uniformly for every
sub-Gaussian problem more than by a log factor.

Although we do not have a λmin-dependent lower bound on R̃n(A) yet, we believe that
the Õ(n−3/2) rate of Proposition 8 cannot be improved in n for general distributions. As it
seems from the proofs in Appendix A and C, this rate is a direct consequence of the high
probability bounds on the estimates of the standard deviations of the arms which are in
O(1/

√
n), and those bounds are tight. Because of the minimax lower bound that is of order

K1/3Ω(n−4/3), it is however clear that there exists no algorithm with a regret of order n−3/2

without any dependence on λ−1
min (or another related problem-dependent quantity).

4.5 Making AMC-UCB Anytime

An interesting question is whether and how it is possible to make AMC-UCB anytime, that
is, not requiring the knowledge of the sample horizon n in advance. Although we will not
provide formal proofs of this result in this paper, we believe that setting a δ that evolves
with the current time as δt = t−9/2, is sufficient to make all the regret bounds of this paper
hold with slightly modified constants. Some ideas on how to prove these results can be
found in the literature (Grover, 2009; Antos et al., 2010; Auer et al., 2002).

4.6 Domains of Application

Monte Carlo integration has many relevant applications in machine learning. Being able to
compute precisely an integral is a prerequisite in many methods or algorithms in this field.
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Some examples of possible application of the stratified Monte Carlo technique are listed
below.

• There are more and more applications in machine learning that are targeting the
allocation and placement of various kinds of sensors (as e.g., pollution sensors, tem-
perature sensors, cameras of various kinds, network sensors, etc.). It is a challenge
to find a way to place them efficiently, or choose at which frequency to observe their
output. The placement of these sensors should depend of the objective that they have
to fulfill. In some cases, one wants to use these sensors to compute an integral (for
instance, the average pollution level or temperature in a region, the average amount
of traffic at a certain time, the average number of customers in a given place in a
supermarket, or the average amount of exchange in a network, etc.). The approach of
this paper can be used to decide adaptively how to place these sensors, how frequently
to inspect them, or how many of them to put depending on the area. In some other
cases, the objective is that the sensors provide a good estimate of what they measure
in each zone (e.g., local water pressure on a dyke). As mentioned earlier, our algorithm
minimizes, with respect to the sample allocation, a weighted (over the strata) mean
squared error of estimations. Therefore, our approach also provides good results in
such a setting where the objective is to estimate the mean value in each zone, rather
than an overall integral.

• A huge domain that is commonly handled in the machine learning community, and
in which the aim is often to compute precisely integrals is Bayesian methodology.
Indeed, expectations under the posterior distribution are often good estimators for
some relevant parameters of the model. Being able to compute these expectations
(which are well defined integrals) fast and precisely is both desirable and challenging,
and our method provides an alternative for MCMC methods in the computation of
such integrals.

• There are many applications in mathematical finance, for example, in the domain
of pricing (which essentially sums up to the computation of a complex stochastic
integral).

As mentioned below (3), omitting the cross product-terms and focusing on the weighted
MSE loss our setting can be interpreted as an active learning framework. This can be a
suitable model also in production quality testing, adaptive study design, drug discovery,
crowd-sourcing, etc.

5. Conclusions

We provide a finite-time analysis for stratified sampling for Monte Carlo in the case of fixed
strata with sub-Gaussian distributions. We report two bounds on the weighted MSE regret:
(i) a distribution dependent bound of order poly(λ−1

min)Õ(n−3/2) which is of interest when
n is large compared to a measure of disparity λ−1

min of the standard deviations (stationary

regime), and (ii) a distribution free bound of order Õ(K1/3n−4/3) which is of interest when
n is small compared to λ−1

min (transitory regime). We also link the weighted MSE loss to
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the total MSE loss of algorithm MC-UCB, that is the natural measure of performance for
the problem. We provide poly(λ−1

min)Õ(n−3/2) problem-dependent and poly(K)Õ(n−7/6)
problem-independent bounds for the total MSE regret, as well. In case of symmetric
arm distributions, the latter rate is improved to poly(K)Õ(n−4/3). We give a distribu-
tion dependent bound of order poly(λ−1

min)Õ(n−3/2) and a distribution free bound of order

Õ(K1/3n−4/3) also on the pseudo-regret. The latter matches its minimax lower bound in
terms of n up to a log n factor.

Possible directions for future work include: (i) making the MC-UCB algorithm anytime
(i.e., not requiring the knowledge of n in advance) and (ii) deriving distribution-dependent
lower bound for this problem determining the necessary dependence on λmin.

Acknowledgements This research was partially supported by the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 270327 (Com-
pLACS).

Appendices

These appendices contain the proofs of the theorems in the paper. Their organization is as
follows.

• Appendix A contains the proofs of the (problem-dependent) Lemma 1) and the
(problem-independent) Lemma 2) stating that the number of pulls of any arm is
not too far from the optimal allocation for that arm on event ξ.

• Appendix B states some preliminary results which are useful in the regret bound
proofs. It first gives (conditional) variance bound for sub-Gaussian random variables.
Then it shows that ξ has high probability. It also contains the proof that for any
t ≤ n, Tk,t is a stopping time, and applies Wald’s identity to the samples from an
arm. Next, it states bounds on some other technical quantities outside ξ that are
used afterwards. Finally, it gives bounds on the parameters βn and γn.3

• Appendix C contains the proofs of the (problem-dependent) Proposition 8 and the
(problem-independent) Proposition 9 upper bounding R̃n(AMC-UCB) based on Lemma 1
and 2, respectively. These proofs are simpler than those in Appendix D and can serve
as an introduction for the latter.

• Appendix D contains the proofs of the (problem-dependent) Proposition 3 and the
(problem-independent) Proposition 4 upper boundingRn(AMC-UCB) based on Lemma 1
and 2, respectively. These proofs are quite similar to the ones for bounding R̃n(AMC-UCB)
in Appendix C. However, those have to be extended by additional technical steps, for
example, using Wald’s second identity for sums with random number of terms, to
bound Rn(AMC-UCB) with a quantity reminding to R̃n(AMC-UCB).

• Appendix E provides the proofs of the three bounds on the cross product-terms. The
first one holds when the arm distributions are symmetric: then the cross product-terms
are exactly 0. The two other bounds, a problem-dependent and a problem-independent

3. As for β, γn will be used for γ after this substituting δ = n−9/2.
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one, concern the general sub-Gaussian case. These bounds rely on Lemma 1 and 2.
Using these together with the results in Appendix D gives bounds on the total regret.

• Appendix F provides the proof of some general technical lemmata.

Appendix A. Proof of the Bounds on the Number of Pulls of the Arms

In this section, we prove Lemma 1 and 2. Recall that their statements hold on the event ξ.
This event plays an important role in the proofs of the regret bounds; several statements
will be proven on ξ. We transcribe the definition (13) of ξ into the following lemma when
the number of samples Tk,t are random.

Lemma 10 For k = 1, . . . ,K and t = 2K, . . . , n, let Tk,t be any random variable taking
values in {2, . . . , n}. Let σ̂2

k,t be the empirical variance computed from (8) and β be given
by (10). Then, on ξ, we have:

|σ̂k,t − σk| ≤
2β√
Tk,t

.

All statements in the proofs of this section are meant to hold on ξ.

A.1 Problem-Dependent Bound; Proof of Lemma 1

Proof of Lemma 1 The proof consists of the following three main steps.

Step 1. Properties of the algorithm. Recall the definition of the upper bound used in
AMC-UCB when t > 2K:

Bq,t+1 =
wq
Tq,t

(
σ̂q,t +

2β√
Tq,t

)
, 1 ≤ q ≤ K.

From Lemma 10, we obtain the following upper and lower bounds for Bq,t+1 on ξ:

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq +

4β√
Tq,t

)
. (20)

Note that as n ≥ 4K, there exists an arm pulled after the initialization. Let k be such
an arm and t + 1 > 2K be the time step when k is pulled for the last time, that is,
Tk,t = Tk,n − 1 ≥ 2 and Tk,t+1 = Tk,n. Since arm k is chosen at time t+ 1, we have for any
arm p

Bp,t+1 ≤ Bk,t+1. (21)

From (20) and the fact that Tk,t = Tk,n − 1, we obtain on ξ

Bk,t+1 ≤
wk
Tk,t

(
σk +

4β√
Tk,t

)
=

wk
Tk,n − 1

(
σk +

4β√
Tk,n − 1

)
. (22)

Using the lower bound in (20) and the fact that Tp,t ≤ Tp,n, we may lower bound Bp,t+1 on
ξ as

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (23)

2248



Adaptive Strategy for Stratified Monte Carlo

Combining (21), (22), and (23), we obtain on ξ

wpσp
Tp,n

≤ wk
Tk,n − 1

(
σk +

4β√
Tk,n − 1

)
. (24)

Note that at this point there is no dependency on t, and on ξ, (24) holds for any p and for
any k such that Tk,n > 2.

Step 2. Lower bound on Tp,n. From the constraints
∑

k(Tk,n−2) = n−2K and
∑

k λk = 1,
we can deduce (by indirect proof) that there exists an arm k with Tk,n−2 ≥ λk(n−2K) > 0,
that is, Tk,n > 2. Thus k satisfies (24). Using (24), Tk,n−1 > λk(n−2K), and λk = wkσk/Σw

implies for any arm p

wpσp
Tp,n

<
wk
nλk

1

1− 2K/n

(
σk +

4β√
nλk(1− 2K/n)

)
≤ Σw

n
+

4KΣw

n2
+

8
√

2β

n3/2λ
3/2
k

,

because n ≥ 4K. The previous inequality combined with the fact that λk ≥ λmin gives the
first inequality (14) of the lemma

wpσp
Tp,n

≤ Σw

n
+

12β

n3/2λ
3/2
min

+
4KΣw

n2
.

By rearranging it, we obtain the lower bound on Tp,n in (15)

Tp,n ≥
wpσp

Σw
n + 12β

n3/2λ
3/2
min

+ 4KΣw
n2

≥ T ∗p,n − 4λp

(
3β

Σwλ
3/2
min

√
n+K

)
, (25)

where in the second inequality we use 1/(1 + x) ≥ 1− x (for x > −1). Note that the lower
bound holds on ξ for any arm p.

Step 3. Upper bound on Tp,n. Using (25) and the fact that
∑

k Tk,n = n, we obtain

Tp,n = n−
∑
k 6=p

Tk,n ≤
(
n−

∑
k 6=p

T ∗k,n

)
+
∑
k 6=p

4λk

(
3β

Σwλ
3/2
min

√
n+K

)
.

Since
∑

k 6=p λk ≤ 1 and
∑

k T
∗
k,n = n, we deduce

Tp,n ≤ T ∗p,n + 4

(
3β

Σwλ
3/2
min

√
n+K

)
. (26)

The lemma follows by combining the lower and upper bounds in (25) and (26).

A.2 Problem-Independent Bound; Proof of Lemma 2
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Proof of Lemma 2

Step 1. Lower bound of order Ω(n2/3). Recall the definition of the upper bound Bq,t+1

used in AMC-UCB when t > 2K:

Bq,t+1 =
wq
Tq,t

(
σ̂q,t +

2β√
Tq,t

)
, 1 ≤ q ≤ K.

Using Lemma 10 it follows that on ξ, for any q such that Tq,t ≥ 2,

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq +

4β√
Tq,t

)
. (27)

Let k be the index of an arm that is such that Tk,n− 2 ≥ wk(n− 2K). Such an arm always
exists for any possible allocation strategy, as n− 2K =

∑
q(Tq,n − 2) and

∑
q wq = 1. This

implies Tk,n ≥ 3 as n ≥ 4K, thus arm k is pulled after the initialization. Let t + 1 ≤ n be
the last time at which it was pulled, that is, Tk,t = Tk,n − 1 and Tk,t+1 = Tk,n. From (27)
and the fact that Tk,t > wk(n− 2K) and Tk,t ≥ 2, we obtain on ξ

Bk,t+1 ≤
wk
Tk,t

(
σk +

4β√
Tk,t

)
<

maxp σp +
√

8β

n− 2K
. (28)

Since at time t+ 1 the arm k has been pulled, then for any arm q, we have

Bq,t+1 ≤ Bk,t+1. (29)

From the definition of Bq,t+1, and also using the fact that Tq,t ≤ Tq,n, we deduce on ξ that

Bq,t+1 ≥
2βwq

T
3/2
q,t

≥ 2βwq

T
3/2
q,n

. (30)

Combining (28)–(30), we obtain on ξ

2βwq

T
3/2
q,n

<
maxp σp +

√
8β

n− 2K
=

Σ̄ +
√

8β

n− 2K
.

Finally, this implies on ξ that for any q,

Tq,n ≥
(

2βwq(n− 2K)

Σ̄ +
√

8β

)2/3

=

(
2− 4K/n

Σ̄/β +
√

8
wqn

)2/3

≥ (wqn)2/3

(Σ̄/β +
√

8)2/3
=

(wqn)2/3

γ2

recalling γ = (Σ̄/β +
√

8)1/3, which proves (16).

Step 2. Properties of the algorithm. We follow a similar analysis to Step 1 of the proof of
Lemma 1. Note that as n ≥ 4K, there exists an arm pulled after the initialization. Let q
be any such arm and t + 1 > 2K be the time step when q is pulled for the last time, that
is, Tq,t = Tq,n − 1 ≥ 2 and Tq,t+1 = Tq,n. Since arm q is chosen at time t + 1, we have for
any arm p

Bp,t+1 ≤ Bq,t+1. (31)

2250



Adaptive Strategy for Stratified Monte Carlo

From (27) and Tq,t = Tq,n − 1, we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq +

4β√
Tq,t

)
=

wq
Tq,n − 1

(
σq +

4β√
Tq,n − 1

)
. (32)

Furthermore, since Tp,t ≤ Tp,n and Tp,t ≥ 2 (as t ≥ 2K), then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (33)

Combining (31)–(33), we obtain on ξ

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq +

4β√
Tq,n − 1

)
.

Note that this inequality holds on ξ for any p and for any q such that Tq,n ≥ 3. Summing
over all such q on both sides, we obtain on ξ for any arm p

wpσp
Tp,n

∑
q:Tq,n≥3

(Tq,n − 1) ≤
∑

q:Tq,n≥3

wq

(
σq +

4β√
Tq,n − 1

)
.

This implies

wpσp
Tp,n

(n− 2K) ≤
K∑
q=1

wq

(
σq +

4β√
Tq,n − 1

)
, (34)

because
∑

q:Tq,n≥3(Tq,n − 1) = n−K −
∑

q:Tq,n≤2(Tq,n − 1) ≥ n−K −K = n− 2K.

Step 3. Lower bound. Plugging (16) into (34),

wpσp
Tp,n

(n− 2K) ≤
∑
q

wq

(
σq +

4β√
Tq,n − 1

)

≤
∑
q

wq

(
σq + 4β

√
2γ2

(wqn)2/3

)

≤ Σw +
4
√

2βγ

n1/3

∑
q

w2/3
q ≤ Σw +

6βγK1/3

n1/3
,

on ξ, since Tq,n−1 ≥ Tq,n
2 (as Tq,n ≥ 2) and because

∑
q w

2/3
q ≤ K1/3 by Jensen’s inequality.

Finally as n ≥ 4K, we obtain on ξ the first inequality (17) of the lemma

wpσp
Tp,n

≤ Σw

n
+

12K1/3βγ

n4/3
+

4KΣw

n2
.

We now invert this bound and obtain on ξ the final lower bound on Tp,n as follows

Tp,n ≥
wpσp

Σw
n + 12K1/3βγn−4/3 + 4KΣw

n2

≥ T ∗p,n − 4λp

(
3K1/3βγ

Σw
n2/3 +K

)
,
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as 1
1+x ≥ 1− x. Note that this lower bound holds with high probability for any arm p.

Step 4. Upper bound. An upper bound on Tp,n on ξ follows by using Tp,n = n−
∑

q 6=p Tq,n
and the previous lower bound, that is

Tp,n ≤ n−
∑
q 6=p

T ∗q,n +
∑
q 6=p

4λq

(
3K1/3βγ

Σw
n2/3 +K

)
≤ T ∗p,n + 4

(
3K1/3βγ

Σw
n2/3 +K

)
,

because
∑

q 6=p λq ≤ 1.

Appendix B. Main Tools for the Bounds on the Regrets

In this section, we first give a high probability uniform upper bound on the estimation errors
of the unbiased empirical standard deviations for sub-Gaussian random variables, then
describe other technical tools, properties, and inequalities. Several of these use the following
simple lemma giving (conditional) variance bound for sub-Gaussian random variables proven
in Appendix F:

Lemma 11 Let A be an event with P(A) ≤ δ. Let X have a distribution with µ
def
= EX

satisfying (9) of Assumption 1 with c1 > 0, c2 ≥ δ, and any ε > 0. Then

E
[
|X − µ|2I{A}

]
≤ δc1 log(ec2/δ).

Particularly, the case P(A) = δ = 1 gives VarX ≤ c1 log(ec2) if c2 ≥ 1.

B.1 High Probability Uniform Upper Bound on the Variance Estimation
Errors

In this subsection, let n ≥ 2, X1, . . . , Xn be i.i.d. random variables with mean µ, variance
σ2, and unbiased empirical variances

ŝ2
t =

1

t− 1

t∑
i=1

(
Xi −

1

t

t∑
t′=1

Xt′

)2
(35)

corresponding to the first t variables, and also ŝt =
√
ŝ2
t (2 ≤ t ≤ n).

The upper confidence bounds Bk,t used in the MC-UCB algorithm is motivated by the
following theorem of Maurer and Pontil (2009) (see also the paper of Audibert et al., 2009,
for a variant), that gives a high probability bound on the estimation error of ŝt:

Theorem 12 (Theorem 10 of Maurer and Pontil, 2009) If ∀t ≤ n, Xt ∈ [a, a + c],
then for 0 < δ ≤ 2, with probability at least 1− δ

|ŝn − σ| ≤ c
√

2 log(2/δ)

n− 1
.

Using the union bound and t/(t−1) ≤ 2 for t ≥ 2 this implies the following uniform bound:
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Corollary 13 If ∀t ≤ n, Xt ∈ [a, a+ c], then for 0 < δ ≤ 2, the event

⋂
2≤t≤n

{
|ŝt − σ| ≤ 2c

√
log(2/δ)

t

}
.

has probability at least 1− nδ.

We extend this result to sub-Gaussian random variables:

Proposition 14 Let the distribution of Xt’s satisfy (9) of Assumption 1 with c1 > 0,
c2 ≥ 1, and any ε > 0. Define the following event for any 0 < δ < 1/e

ξn(δ) =
⋂

2≤t≤n

{
|ŝt − σ| ≤

2β√
t

}
,

where β is given by (10). Then P(ξn(δ)) ≥ (1− nδ)2.

Proof of Proposition 14 Step 1. Truncating sub-Gaussian variables. Let the conditional

variance of Xt be σ̃2 def
= Var[Xt|(Xt−µ)2 ≤ c1 log(c2/δ)]. We characterize σ̃ by the following

lemma (proven in Appendix F):

Lemma 15 Let X have a distribution with µ
def
= EX and σ2 def

= VarX satisfying (9) of

Assumption 1 with c1 > 0, c2 ≥ 1, and any ε > 0. Let 0 < δ < 1/e, A
def
= {|X − µ|2 ≤

c1 log(c2/δ)}, and σ̃2 def
= Var[X|A]. Then P(AC) ≤ δ and

0 ≤ σ − σ̃ ≤
√
c1δ log(ec2/δ)

1− δ
.

Step 2. Application of tail inequalities. Define the event

ξ1 = ξ1,n(δ) =
⋂

1≤t≤n

{
|Xt − µ|2 ≤ c1 log(c2/δ)

}
.

We have that P(ξC1 ) ≤ nδ using the union bound and (9). Given ξ1, (Xt)1≤t≤n are n i.i.d.
bounded random variables with common conditional variance σ̃2.

Now let ξ2 = ξ2,n(δ) be the event:

ξ2 =
⋂

2≤t≤n

{
|ŝt − σ̃| ≤ 4

√
c1 log(c2/δ)

log(2/δ)

t

}
.

Using Corollary 13, we deduce that P(ξ2|ξ1) ≥ 1− nδ, and thus

P(ξ1 ∩ ξ2) = P(ξ2|ξ1)P(ξ1) ≥ (1− nδ)2.

Moreover, from Lemma 15, we have 0 ≤ σ − σ̃ ≤
√
c1δ log(ec2/δ)

1−δ , and thus on ξ2, for all
2 ≤ t ≤ n:

|ŝt − σ| ≤ |ŝt − σ̃|+ |σ̃ − σ| ≤ 4

√
c1 log(c2/δ)

log(2/δ)

t
+

√
c1δ log(ec2/δ)

1− δ
≤ 2β√

t
,
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implying ξ2 ⊆ ξn(δ). From this, we deduce

P(ξn(δ)) ≥ P(ξ2) ≥ P(ξ1 ∩ ξ2) ≥ (1− nδ)2

proving the proposition.

Corollary 16 Let n ≥ 2. Let Assumption 1 hold with c1 > 0, c2 ≥ 1, and any ε > 0. For
any 0 < δ < 1/e and for event ξ defined by (13), P(ξ) ≥ (1− nδ)2K ≥ 1− 2nKδ.

Proof of Corollary 16 Since for each 1 ≤ k ≤ K, Proposition 14 implies that the
probability of ⋂

2≤t≤n

{
|ŝk,t − σk| ≤

2β√
t

}
is at least (1−nδ)2, the intersection of these independent events, ξ, has probability at least
(1− nδ)2K . The last inequality comes from the convexity of (1− x)2K .

B.2 Tk,t is Stopping Time, Wald’s Identity for the Variance of the Sum of Tk,t
Centered Samples of One Arm

For a given k, let (F (k)
t )t≤n be the filtration associated to the process (Xk,t)t≤n, and E−k =

E−k,n be the σ-algebra generated by (Xk′,t′)t′≤n,k′ 6=k (“environment”). Define the filtration

(G(k)
t )t≤n by

G(k)
t = G(k,n)

t
def
= σ(F (k)

t , E−k).

Tk,t is a stopping time. We prove the following proposition.

Proposition 17 For each 1 ≤ n′ ≤ n, Tk,n′ is a stopping time w.r.t. (G(k)
t )t≤n.

Proof We prove the statement for fixed budget n by induction for n′ = 1, . . . , n.
For n′ ≤ 2K (initialization), Tk,n′ is deterministic, so for any t, {Tk,n′ ≤ t} is either the

empty set or the whole probability space (and is thus measurable according to G(k)
t ).

Let us now assume that for a given time step 2K ≤ n′ < n, and for any t, {Tk,n′ ≤ t}
is G(k)

t -measurable. We consider now time step n′ + 1. Note first that for t = 0, {Tk,n′+1 ≤
t} = {Tk,n′+1 ≤ 0} is the empty set and is thus G(k)

t -measurable. If t > 0, then

{Tk,n′+1 ≤ t} =
(
{Tk,n′ = t} ∩ {kn′+1 6= k}

)
∪ {Tk,n′ ≤ t− 1}. (36)

By induction assumption, {Tk,n′ = t} and {Tk,n′ ≤ t − 1} are G(k)
t -measurable (since for

any t′, {Tk,n′ ≤ t′} is G(k)
t′ -measurable). On {Tk,n′ = t}, kn′+1 is also G(k)

t -measurable since
it is determined only by the values of the upper bounds {Bq,n′+1}1≤q≤K (which depend
only on {Xk′,t′}t′≤n,k′ 6=k and on (Xk,1, . . . , Xk,t)). Hence, {Tk,n′ = t} ∩ {kn′+1 6= k} is

G(k)
t -measurable, and thus using (36), we have that {Tk,n′+1 ≤ t} is G(k)

t -measurable, as
well.
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We have thus proved by induction that Tk,n′ is a stopping time w.r.t. the filtration

(G(k)
t )t≤n.

Wald’s second identity for the variance. We also need to express the variance of the sum
of random number of centered terms when this random number is a stopping time. Thus,
we recall the following theorem from Athreya and Lahiri (2006) (this variant is quoted from
Lemma 10 of Antos et al. (2010))

Proposition 18 (Theorem 13.2.14 of Athreya and Lahiri (2006)) Let (Ft)t=1,...,n be
a filtration and (Xt)t=1,...,n be an Ft adapted sequence of i.i.d. random variables with finite
expectation µ and variance σ2. Assume that Ft and σ({Xs : s ≥ t + 1}) are independent
for any t ≤ n, and let T (≤ n) be a stopping time w.r.t. Ft. Then

E

[( T∑
t=1

(Xt − µ)

)2
]

= E[T ]σ2.

Application to arm k and samples (Xk,t)t≤n.

Corollary 19 For any 1 ≤ k ≤ K and n′ ≤ n,

E

( Tk,n′∑
t=1

(Xk,t − µk)
)2

 = E[Tk,n′ ]σ
2
k.

Proof Proposition 17, the fact that G
(k)
t and σ({Xk,s : s ≥ t+ 1}) are independent for any

t ≤ n, and Tk,n′ ≤ n guarantee that we can apply Proposition 18 with filtration (G(k)
t )t≤n,

(Xk,t)t≤n, and Tk,n′ leading to the equality.

B.3 Other Technical Inequalities

Now we state and prove some further technical inequalities.

Bounds on the loss and the variance of the sum of the centered samples of one arm on event
ξC .

Lemma 20 Let n ≥ 2 and 0 < δ < 1/e. Let Assumption 1 hold with c2 ≥ max(1, 2nKδ).
Then for each arm k,

E
[
|µ̂k,n − µk|2I

{
ξC
} ]
≤ Kn2δCξ(δ) and

E

( Tk,n∑
t=1

(Xk,t − µk)
)2

I
{
ξC
} ≤ 2Kn3δCξ(δ),
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where Cξ(δ) = Cξ,n(δ)
def
= c1 log(ec2/2nKδ). Consequently, for every arms k and q,∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{ξC} ]∣∣ ≤ Kn2δCξ(δ) and∣∣∣∣∣∣E

( Tk,n∑
t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)
I
{
ξC
}∣∣∣∣∣∣ ≤ 2Kn3δCξ(δ).

Proof of Lemma 20 c2 ≥ 1 and Corollary 16 imply P(ξC) ≤ 2nKδ. Due to this, c2 ≥
2nKδ, and Assumption 1, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, Lemma 11 implies

E
[
(Xk,t − µk)2I

{
ξC
}]
≤ 2nKδc1 log(ec2/2nKδ) = 2KnδCξ(δ).

The first claim follows from the fact that

E
[
(µ̂k,n − µk)2I

{
ξC
}]
≤ E

[∑Tk,n
t=1 (Xk,t − µk)2

Tk,n
I
{
ξC
}]

≤
n∑
t=1

E
[
(Xk,t − µk)2I

{
ξC
}]

2
≤ Kn2δCξ(δ).

The second claim follows from the fact that( Tk,n∑
t=1

(Xk,t − µk)
)2

≤
( n∑
t=1

|Xk,t − µk|
)2

≤ n
n∑
t=1

(Xk,t − µk)2,

and so

E
[( Tk,n∑

t=1

(Xk,t − µk)
)2

I
{
ξC
} ]
≤ n

n∑
t=1

E
[
(Xk,t − µk)2I

{
ξC
} ]
≤ 2Kn3δCξ(δ).

The third claim follows from the first one by Cauchy-Schwarzs inequality∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{ξC} ]∣∣ ≤√E[(µ̂k,n − µk)2I{ξC}]
√

E[(µ̂q,n − µq)2I{ξC}],

and the fourth one follows from the second one, analogously.

We get the following corollary by substituting δ = n−9/2:

Corollary 21 Let n ≥ K ≥ 2. Let Assumption 1 hold with c2 ≥ 1. Then for each arm k,

E
[
|µ̂k,n − µk|2I

{
ξC
} ]
≤
KCξ

n5/2
and

E

( Tk,n∑
t=1

(Xk,t − µk)
)2

I
{
ξC
} ≤ 2KCξ

n3/2
.
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where Cξ = Cξ(n
−9/2) = c1 log(ec2n

7/2/2K) as in (19). Consequently, for every arms k
and q,

∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{ξC} ]∣∣ ≤ KCξ

n5/2
and∣∣∣∣∣∣E

( Tk,n∑
t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)
I
{
ξC
}∣∣∣∣∣∣ ≤ 2KCξ

n3/2
.

Upper and lower bound on βn of (11) for δ = n−9/2. Using n ≥ 4K ≥ 8, c2 ≥ 1, and
monotonicity in n we have

βn =
√
c1 log(c2

2n
9) log(4n9) +

√
c1 log(ec2n4.5)

2(1− n−4.5)n7/4

≤
√
c1

log(c2
2n

9) + log(4n9)

2
+

√
c1 log(ec284.5)

2(1− 8−4.5)87/4

≤
√
c1

(
9 log n+ log(4c2

2)/2 +
log(e2c2

289)

25/4(82 − 8−2.5)
√

log(e84.5)

)
.

Using

log(e2c2
289) ≤ log(e2c2

2(c2 + 1)27) ≤ 29 log(c2 + 1) + 2 log(c2 + 1)/ log 2 ≤ 32 log(c2 + 1)

and 4c2
2 ≤ (c2 + 1)3

βn ≤
√
c1

(
9 log n+ 1.5 log(c2 + 1) +

32 log(c2 + 1)

489

)
≤
√
c1(9 log n+ 1.6 log(c2 + 1)) = Cβ

recalling (18). On the other hand, keeping only the first term of βn

βn ≥
√
c1 log(c2

2n
9) log(4n9) ≥

√
c1 log(89c2

2)29 log 2 ≥
√

58c1 log 2 log(ec2) ≥
√

40c1 log(ec2).

Upper bound on γn of Lemma 2 when δ = n−9/2. If Assumption 1 is satisfied with c2 ≥ 1
then Lemma 11 implies σ2

k ≤ c1 log(ec2) for any 1 ≤ k ≤ K, thus recalling Σ̄ = maxp σp
we have Σw ≤ Σ̄ ≤

√
c1 log(ec2). For δ = n−9/2, the lower bound above on βn leads to

Σ̄/βn ≤ 1/
√

40 and

γn = (Σ̄/βn +
√

8)1/3 ≤ (1/
√

40 +
√

8)1/3 < 1.5.

Appendix C. Proof of Proposition 8 and 9

In this section, we use Lemmata 1 and 2 to prove Proposition 8 and 9, respectively.
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C.1 Proof of Proposition 8

Proof of Proposition 8 By definition, the pseudo-loss of the algorithm is

L̃n(AMC-UCB) =

K∑
k=1

w2
kσ

2
kE
[I{ξ}
Tk,n

]
+

K∑
k=1

w2
kσ

2
kE
[I{ξC}
Tk,n

]
≤

K∑
k=1

w2
kσ

2
kP(ξ)

infω∈ξ Tk,n(ω)
+

K∑
k=1

w2
kσ

2
k

P(ξC)

2
, (37)

because Tk,n ≥ 2 by the definition of AMC-UCB. Recalling (14) from Lemma 1 that upper
bounds wkσk/Tk,n on ξ, we obtain

K∑
k=1

w2
kσ

2
kP(ξ)

infξ Tk,n
≤

K∑
k=1

wkσk

(Σw

n
+

12βn

n3/2λ
3/2
min

+
4KΣw

n2

)
=

Σ2
w

n
+

12Σwβn

n3/2λ
3/2
min

+
4KΣ2

w

n2

using
∑

k wkσk = Σw. Finally, using (37) and the previous inequality and recalling P(ξC) ≤
2nKδ from Corollary 16, δ = n−9/2, and βn ≤ Cβ from Appendix B.3, we have

R̃n(AMC-UCB) = L̃n(AMC-UCB)− Σ2
w

n

≤ 12Σwβn

n3/2λ
3/2
min

+
4KΣ2

w

n2
+ nKδ

K∑
k=1

w2
kσ

2
k

≤
12ΣwCβ

n3/2λ
3/2
min

+
4KΣ2

w

n2
+
KΣ2

w

n7/2

≤
12ΣwCβ

n3/2λ
3/2
min

+
(4K +

√
2/16)Σ2

w

n2
,

that concludes the proof.

C.2 Proof of Proposition 9

Proof of Proposition 9 We decompose and bound L̃n(AMC-UCB) on ξ and ξC again as
in (37). Recalling (17) from Lemma 2 that upper bounds wkσk/Tk,n on ξ, we obtain

K∑
k=1

w2
kσ

2
kP(ξ)

infξ Tk,n
≤

K∑
k=1

wkσk

(Σw

n
+

12K1/3βnγn

n4/3
+

4KΣw

n2

)
=

Σ2
w

n
+

12K1/3Σwβnγn

n4/3
+

4KΣ2
w

n2
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using
∑

k wkσk = Σw. Finally, using (37) and the previous inequality and recalling P(ξC) ≤
2nKδ from Corollary 16, δ = n−9/2, βn ≤ Cβ, and γn < 1.5 from Appendix B.3, we have

R̃n(AMC-UCB) = L̃n(AMC-UCB)− Σ2
w

n

≤ 12K1/3Σwβnγn

n4/3
+

4KΣ2
w

n2
+ nKδ

K∑
k=1

w2
kσ

2
k

≤
18K1/3ΣwCβ

n4/3
+

4KΣ2
w

n2
+
KΣ2

w

n7/2

≤
18K1/3ΣwCβ

n4/3
+

(4K +
√

2/16)Σ2
w

n2
,

that concludes the proof.

Appendix D. Bounds on Rn(AMC-UCB)

This section contains the proofs of the regret bounds for AMC-UCB.

D.1 Problem-Dependent Bound

Proof of Proposition 3 By definition, we have

Ln(AMC-UCB) =
K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
+

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I

{
ξC
} ]
. (38)

Using the definition of µ̂k,n, we have

(µ̂k,n − µk)2I{ξ} ≤
(∑Tk,n

t=1 (Xk,t − µk)
)2

infω∈ξ T
2
k,n(ω)

I{ξ} ≤
(∑Tk,n

t=1 (Xk,t − µk)
)2

infξ T
2
k,n

.

Taking expectation and using Corollary 19

E
[
(µ̂k,n − µk)2I{ξ}

]
≤

E
[(∑Tk,n

t=1 (Xk,t − µk)
)2]

infξ T
2
k,n

=
E[Tk,n]σ2

k

infξ T
2
k,n

,

so we bound the first sum of (38) as

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
≤

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

. (39)

Recalling (14) from Lemma 1 that upper bounds wkσk/Tk,n on ξ, we obtain

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
K∑
k=1

(Σw

n
+

12βn

n3/2λ
3/2
min

+
4KΣw

n2

)2
E[Tk,n]. (40)
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Since
∑

k Tk,n = n, we have
∑

k E[Tk,n] = n, (40) can be rewritten as

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
(Σw

n
+

12βn

n3/2λ
3/2
min

+
4KΣw

n2

)2
n

≤
(Σ2

w

n2
+

24Σwβn

n5/2λ
3/2
min

+
8KΣ2

w

n3
+

288β2
n

n3λ3
min

+
32K2Σ2

w

n4

)
n

≤ Σ2
w

n
+

24Σwβn

n3/2λ
3/2
min

+ 16
KΣ2

w

n2
+

288β2
n

n2λ3
min

.

Finally, using (38), (39), and the previous inequality and recalling δ = n−9/2, Corollary 21,
and βn ≤ Cβ from Appendix B.3 we have

Rn(AMC-UCB) = Ln(AMC-UCB)− Σ2
w

n

≤ 24Σwβn

n3/2λ
3/2
min

+ 16
KΣ2

w

n2
+

288β2
n

n2λ3
min

+
KCξ

n5/2

≤
24ΣwCβ

n3/2λ
3/2
min

+
288C2

β

n2λ3
min

+ 16
KΣ2

w

n2
+

√
KCξ
2n2

≤
24ΣwCβ

n3/2λ
3/2
min

+
288C2

β

n2λ3
min

+

√
KCξ + 32KΣ2

w

2n2
.

This concludes the proof.

D.2 Problem-Independent Bound

Proof of Proposition 4 Again, we decompose Ln(AMC-UCB) on ξ and ξC as in (38), and
bound it on ξ as in (39). Recalling (17) from Lemma 2 that upper bounds wkσk/Tk,n on ξ,
we obtain

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
K∑
k=1

(Σw

n
+

12K1/3βnγn

n4/3
+

4KΣw

n2

)2
E[Tk,n]. (41)

Since
∑

k Tk,n = n, we have
∑

k E[Tk,n] = n, (41) can be rewritten as

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
(Σw

n
+

12K1/3βnγn

n4/3
+

4KΣw

n2

)2
n

≤
(Σ2

w

n2
+

24K1/3Σw

n7/3
βnγn +

8KΣ2
w

n3
+

288K2/3

n8/3
β2
nγ

2
n +

32K2Σ2
w

n4

)
n

≤ Σ2
w

n
+

24K1/3Σw

n4/3
βnγn +

288K2/3

n5/3
β2
nγ

2
n +

16KΣ2
w

n2
.
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Finally, using (38), (39), and the previous inequality and recalling δ = n−9/2, Corollary 21,
βn ≤ Cβ, and γn < 1.5 from Appendix B.3 we have

Rn(AMC-UCB) = Ln(AMC-UCB)− Σ2
w

n

≤ 24K1/3Σw

n4/3
βnγn +

288K2/3

n5/3
β2
nγ

2
n +

16KΣ2
w

n2
+
KCξ

n5/2

≤
36K1/3ΣwCβ

n4/3
+

648K2/3C2
β

n5/3
+

√
KCξ + 32KΣ2

w

2n2

≤
36K1/3ΣwCβ

n4/3
+
K2/3(2058C2

β + 32Σ2
w) +K1/6Cξ

(2n)5/3
.

This concludes the proof.

Remark 22 Observe that in the proof of Proposition 8 and 9, we already bounded a linear
combination of E[I{ξ} /Tk,n] (leading to the desired rates), that is clearly upper bounded
also by E[Tk,n]/ infξ T

2
k,n appearing in both proofs above. Unfortunately, a reverse inequal-

ity does not directly hold, thus here we had to proceed in a more involved way leading to
looser constants. If one could derive such a reverse inequality and then use the bounds on
R̃n(AMC-UCB), that might give sharper constants also in the bounds on Rn(AMC-UCB).

Appendix E. Bounds on the Cross Product-Terms

In this appendix, we prove Proposition 5 and 6 stating that the cross product-terms in
(2) are 0 for symmetric distributions and decrease at polynomial rate in n in the general
sub-Gaussian case.

E.1 Vanishing of the Terms for Symmetric Arm Distributions

Proof of Proposition 5

Step 1: Conditioning on a pair of numbers of pulls. Recall that (ŝk,t)k≤K,t≤n are the
unbiased empirical variances (see Equation 12). At each time step t > 2K, AMC-UCB chooses
kt based on the values of (Bp,t)p≤K , which depend on {Tp,t−1}p≤K and {σ̂p,t−1}p≤K . Thus
{Tp,t}p≤K is a deterministic map of {Tp,t−1}p≤K and {σ̂p,t−1}p≤K . Hence, by induction,
each Tk,n is a deterministic function of {σ̂p,t}p≤K,t<n, and so of {ŝp,t}p≤K,t≤n, as well.

Now fix arms k,k′ and 1 ≤ s,s′ ≤ n such that P(Tk,n = s, Tk′,n = s′) > 0. Then we have

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

∣∣Tk,n = s, Tk′,n = s′
]

= E
[(1

s

s∑
t=1

Xk,t − µk
)( 1

s′

s′∑
t=1

Xk′,t − µk′
)∣∣∣∣Tk,n = s, Tk′,n = s′

]
(42)

= E
[
E
[(1

s

s∑
t=1

Xk,t − µk
)( 1

s′

s′∑
t=1

Xk′,t − µk′
)∣∣∣{ŝp,t}p≤K,t≤n]∣∣∣∣Tk,n = s, Tk′,n = s′

]
.
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Since the full sample sequences of the individual arms are independent, the sequences
(Xk,1, . . . , Xk,s) and (Xk′,1, . . . , Xk′,s′) remain conditionally independent conditioning on
{ŝp,t}p≤K,t≤n. This leads to:

E
[(1

s

s∑
t=1

Xk,t − µk
)( 1

s′

s′∑
t=1

Xk′,t − µk′
)∣∣∣{ŝp,t}p≤K,t≤n] (43)

= E
[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝp,t}p≤K,t≤n]E[ 1

s′

s′∑
t=1

Xk′,t − µk′
∣∣∣{ŝp,t}p≤K,t≤n].

Step 2: For any k ≤ K and s ≤ n, E
[

1
s

∑s
t=1Xk,t − µk

∣∣{ŝp,t}p≤K,t≤n] = 0 a.s. We first
state the following Lemma proven in Appendix F:

Lemma 23 Let ν be a symmetric distribution on R around 0, X = (X1, . . . , Xn) be gen-
erated in an i.i.d. way according to ν, and ŝ2,. . . ,ŝn are the unbiased empirical standard
deviations given by (35). Then for 1 ≤ t ≤ n, E[Xt|{ŝt′}t′≤n] = 0 a.s.

As νk is symmetric, Lemma 23 applies to X = (Xk,1−µk, . . . , Xk,n−µk) and {ŝk,t}t≤n,
that is,

E
[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝk,t}t≤n] =

1

s

s∑
t=1

E[Xk,t − µk|{ŝk,t′}t′≤n] = 0 a.s.

By definition, {ŝp,t}p6=k,t≤n is independent of (Xk,1, . . . , Xk,s, {ŝk,t}t≤n), hence

E
[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝp,t}p≤K,t≤n] = E

[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝk,t}t≤n] = 0 a.s. (44)

Step 3: The cross product-terms E[(µ̂k,n − µk)(µ̂k′,n − µk′)] = 0. We combine (42), (43),
and (44) to get in case of P(Tk,n = s, Tk′,n = s′) > 0

E[(µ̂k,n − µk)(µ̂k′,n − µk′)|Tk,n = s, Tk′,n = s′] = E[0 · 0|Tk,n = s, Tk′,n = s′] = 0.

Conditioning on {Tk,n = s, Tk′,n = s′} and using the equation above

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
=

n∑
s=2

n∑
s′=2

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)|Tk,n = s, Tk′,n = s′

]
P
(
Tk,n = s, Tk′,n = s′

)
= 0.

Taking the weighted sum over k and k′ concludes the proof.
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E.2 Bounds on the Terms for General Arm Distributions

The following lemma proven in Appendix F will be used for the proof:

Lemma 24 Let X be a random variable. Let (Ωu)u=1,...,p be a partition of an event Ω′ of
the probability space. Let au ∈ R for u = 1, . . . , p, and a = min1≤u≤p au, ā = max1≤u≤p au.
We have∣∣∣E[X p∑

u=1

auI{Ωu}
]∣∣∣− ∣∣aE[XI

{
Ω′
}

]
∣∣ ≤ ∣∣∣E[X p∑

u=1

auI{Ωu}
]
− aE[XI

{
Ω′
}

]
∣∣∣

≤ (ā− a)E|XI
{

Ω′
}
|.

Proof of Proposition 6 For any given k 6= q, introduce

Zkq
def
=

Tk,n∑
t=1

(Xk,t − µk)

Tq,n∑
t=1

(Xq,t − µq)

 = Tk,nTq,n(µ̂k,n − µk)(µ̂q,n − µq).

Then it suffices to bound |wkwqE[Zkq/(Tk,nTq,n)]|.

Step 1: E[Zkq] = 0. Let Tk,t
def
= min{s ≥ 1 : Tk,s ≥ t}, that is, that random time step when

AMC-UCB pulls arm k the tth time. (Tk,t =∞ if k is not pulled t times.) Now

E[Zkq] = E
[( n∑

t=1

(Xk,t − µk)I{Tk,n ≥ t}
)( n∑

t=1

(Xq,t − µq)I{Tq,n ≥ t}
)]

=
n∑
t=1

n∑
t′=1

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′

} ]
=

n∑
t=1

n∑
t′=1

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t < Tq,t′

} ]
+

n∑
t=1

n∑
t′=1

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

} ]
.

Fix any 1 ≤ t, t′ ≤ n. Proposition 17 implies that {Tk,n ≤ t − 1} ∈ G(k)
t−1 (defined in

Proposition 17), and thus also {Tk,n ≥ t} ∈ G
(k)
t−1. Tk,t > Tq,t′ means that for some time step

s ≥ t′, {Tq,s ≥ t′}, but {Tk,s < t}. Thus,

{Tk,t > Tq,t′} =

∞⋃
s=t′

{Tq,s ≥ t′} ∩ {Tk,s < t}.

Intersecting this by {Tk,n ≥ t} and noting that for s ≥ n, {Tk,s < Tk,n} = ∅

{Tk,t > Tq,t′} ∩ {Tk,n ≥ t} =
n−1⋃
s=t′

{Tq,s ≥ t′} ∩ {Tk,s < t ≤ Tk,n}.
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Now, by Proposition 17 for any s ≤ n, {Tk,s < t} = {Tk,s ≤ t − 1} ∈ G(k)
t−1. Moreover,

on {Tk,s < t}, Tq,s is G(k)
t−1-measurable, thus {Tq,s ≥ t′} ∩ {Tk,s < t} ∈ G(k)

t−1. Hence

{Tk,t > Tq,t′} ∩ {Tk,n ≥ t} ∈ G(k)
t−1, as well. Observe that Tk,n ≥ t and Tk,t > Tq,t′ together

imply Tq,n ≥ t′, so I
{
Tk,t > Tq,t′ ∧ Tk,n ≥ t ∧ Tq,n ≥ t′

}
is G(k)

t−1-measurable. Also Xq,t′ is

obviously G(k)
t−1-measurable, while Xk,t is independent of G(k)

t−1. Thus, conditioning on G(k)
t−1,

we have

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

} ]
= E

[
(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

}
E
[
Xk,t − µk|G

(k)
t−1

]]
= E

[
(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

}
0
]

= 0.

By summing for t,t′ and repeating the same reasoning for the other term of E[Zkq] with
arm q, we obtain that E[Zkq] = 0.

Step 2: Bounding the terms on ξC . By Corollary 21 we have∣∣∣∣E [ Zkq
Tk,nTq,n

I
{
ξC
}]∣∣∣∣ ≤ KCξ

n5/2
and

∣∣E [ZkqI{ξC}]∣∣ ≤ 2KCξ

n3/2
, (45)

implying, since E[Zkq] = 0 (Step 1), also

|E[ZkqI{ξ}]| ≤
2KCξ

n3/2
. (46)

Step 3: Bounding the terms on ξ. We recall that under Assumption 1, n ≥ 4K, and
δ = n−9/2, combining Lemmata 1 (Equation 15) and 2 we have that AMC-UCB run by βn
given by (11) satisfies on ξ for all arm p, −λpM ≤ Tp,n − T ∗p,n ≤M , where

M
def
= 4 min

(
3βn

Σwλ
3/2
min

√
n+K,K1/3 3βnγn

Σw
n2/3 +K

)

and γn = (Σ̄/βn +
√

8)1/3 as in Lemma 2. Recalling βn ≤ Cβ and γn < 1.5 from Ap-
pendix B.3 M is upper bounded by min

(
B
√
n,An2/3

)
, where

B
def
=

12Cβ

Σwλ
3/2
min

+ 2
√
K and A

def
= K1/3

(
18Cβ
Σw

+ 41/3

)
.

Moreover, by (16) of Lemma 2,

Tp,n ≥ (wpn)2/3

γ2n
> 4(wn)2/3/9 = En2/3 on ξ,

where w
def
= mink wk and E

def
= 4w2/3/9 > 0. Note that B displays a dependency on λ−1

min,
but A and E do not. Summarizing these inequalities on Tp,n we have

Tp,n ≥ max
(
T ∗p,n − λp min

(
B
√
n,An2/3

)
, En2/3

)
def
= T p,n

and Tp,n ≤ T ∗p,n + min
(
B
√
n,An2/3

) def
= T̄p,n
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on ξ. Note that using n ≥ 4K ≥ 8, Σ2
w ≤ c1 log(ec2), c2 ≥ 1, and λmin ≤ 1/K it is easy to

see that each T̄p,n > 643. Since now

{{Tk,n = t, Tq,n = t′} ∩ ξ : T k,n ≤ t ≤ T̄k,n, T q,n ≤ t′ ≤ T̄q,n}

is a partition of ξ, we have by Lemma 24

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ =

∣∣∣E[Zkq T̄k,n∑
t=Tk,n

T̄q,n∑
t′=T q,n

1

tt′
I
{
{Tk,n = t, Tq,n = t′} ∩ ξ

} ]∣∣∣
≤ E|ZkqI{ξ} |

( 1

T k,nT q,n
− 1

T̄k,nT̄q,n

)
+

1

T̄k,nT̄q,n
|E[ZkqI{ξ}]|.

Note now that by Cauchy-Schwarz’s inequality

E|ZkqI{ξ} | ≤ E|Zkq| ≤

√√√√E
[( Tk,n∑

t=1

(Xk,t − µk)
)2
]
E
[( Tq,n∑

t=1

(Xq,t − µq)
)2
]
.

Using Corollary 19 the right-hand side is bounded by
√

ETk,nσ2
kETq,nσ2

q . Since

ETk,n = E[Tk,nI{ξ}] + E[Tk,nI
{
ξC
}

] ≤ T̄k,nP(ξ) + 2Kn2δ ≤ T̄k,n + 2Kn−5/2 ≤ T̄k,n +
√

2/64

by definition of T̄k,n and T̄k,n > 643, ETk,n < (1 +
√

2/41152)T̄k,n < 1.01T̄k,n. Similarly,

ETq,n < 1.01T̄q,n. Thus we have E|ZkqI{ξ} | ≤ 1.01σkσq

√
T̄k,nT̄q,n. From this and (46), one

gets

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 1.01wkσkwqσq

√
T̄k,nT̄q,n

(
1

T k,nT q,n
− 1

T̄k,nT̄q,n

)
+

2wkwq
T̄k,nT̄q,n

KCξ

n3/2

≤ 1.01
wkσkwqσq
T k,nT q,n

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

+
1.3KCξ

106n3/2
.

Now for n large enough (compared to K, c1, log c2, 1/Σw, and log n), n ≥ 8A3 (i.e.,
An2/3 ≤ n/2) holds. Thus

T p,n ≥ T ∗p,n −Aλpn2/3 = λp(n−An2/3)

implies also
wpσp
T p,n

≤ Σw
n−An2/3 ≤ 2Σw

n for any arm p. This leads to the bound

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 4.04

Σ2
w

n2

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

+
1.3KCξ

106n3/2
. (47)
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Step 4: problem-dependent upper bound. We deduce that

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

≤
(
nλk +B

√
n
)(
nλq +B

√
n
)
−
(
nλk −Bλk

√
n
)(
nλq −Bλq

√
n
)√

nλknλq

=
B(λk + λq + 2λkλq)n

√
n+B2(1− λkλq)n

n
√
λkλq

≤ B
√
n

(
1 +B/

√
n√

λkλq
+ 2
√
λkλq

)

≤ B

(
1 +B/

√
8

λmin
+ 1

)
√
n

using n ≥ 4K ≥ 8 and λkλq ≤ 1/4. Thus, we have from this and (47)

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 5B

(
1 +B/

√
8

λmin
+ 1

)
Σ2
w

n3/2
+

1.3KCξ

106n3/2
=
C1 + 1.3KCξ/106

n3/2
,

where C1
def
= 5B((1 +B/

√
8)/λmin + 1)Σ2

w.
Finally, using (45), we have∣∣∣wkwqE[ Zkq

Tk,nTq,n

]∣∣∣ ≤ wkwq∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣+ wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I
{
ξC
} ]∣∣∣

≤
C1 + 1.3KCξ/106

n3/2
+
KCξ

4n5/2

≤
C1 + (1.3K/106 + 1/16)Cξ

n3/2
,

where C1 and Cξ depend only polynomially on log n, λ−1
min, K, Σw, c1, and log c2. This

concludes the proof for the problem-dependent bound.

Step 4’: problem-independent upper bound. Using T̄k,n ≥ T k,n ≥ En2/3, which implies

that T̄k,n ≥ max(λkn,En
2/3), we deduce that

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

≤
(
nλk +An2/3

)(
nλq +An2/3

)
−
(
nλk −Aλkn2/3

)(
nλq −Aλqn2/3

)√
max

(
λkn,En2/3

)
max

(
λqn,En2/3

)
=
A(λk + λq + 2λkλq)nn

2/3 +A2(1− λkλq)n4/3√
max

(
λkλqn2, Emax(λk, λq)nn2/3, E2n4/3

)
≤ A

[
(λk + λq)n

5/3√
Emax(λk, λq)n5/3

+
2λkλqn

5/3√
λkλqn

+
An4/3

En2/3

]

≤ An5/6

[√
λk + λq√
E/2

+
2
√
λkλq

n1/6
+

A

En1/6

]

≤ A√
2

(
2√
E

+ 1 +
A

E

)
n5/6
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using n ≥ 4K ≥ 8 and λkλq ≤ 1/4. Thus, we have from this and (47) that

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 2.02

√
2A

(
2√
E

+ 1 +
A

E

)
Σ2
w

n7/6
+

1.3KCξ

106n3/2
≤
C2 + 9K2/3Cξ/107

n7/6
,

where C2 = 3A(2/
√
E + 1 +A/E)Σ2

w.
Finally, using (45), we have∣∣∣wkwqE[ Zkq

Tk,nTq,n

]∣∣∣ ≤ wkwq∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣+ wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I
{
ξC
} ]∣∣∣

≤
C2 + 9K2/3Cξ/107

n7/6
+
KCξ

4n5/2

≤
C2 + (9K2/3/107 + 1/32)Cξ)

n7/6
,

where C2 and Cξ depend only polynomially on log n, K, Σw, c1, log c2, and 1/w. This
concludes the proof for the problem-independent bound.

Appendix F. Proofs of Technical Lemmata

Proof of Lemma 11 Using that log(c2/δ) ≥ 0

E
[
|X − µ|2I{A}

]
=

∞∫
0

P
(
|X − µ|2 > ε,A

)
dε

≤
c1 log(c2/δ)∫

0

P(A) dε+

∞∫
c1 log(c2/δ)

P
(
|X − µ|2 > ε

)
dε

≤ δc1 log(c2/δ) +

∞∫
c1 log(c2/δ)

c2e
−ε/c1 dε = δc1 log(ec2/δ).

Proof of Lemma 15 Using (9) for ε2 = c1 log(c2/δ)(> 0) we have

P(AC) ≤ c2e
−c1 log(c2/δ)/c1 = δ and P(A) ≥ 1− δ > 0, (48)

so Var[X|A] and also µ̃
def
= E[X|A] = E[XI{A}]/P(A) make sense. If P(A) = 1 then σ̃ = σ,

and the claim follows. Now assume P(A) < 1. Since E[|X − µ|2|AC ] ≥ c1 log(c2/δ) ≥
E[|X − µ|2|A], we have

σ2 = E[|X − µ|2] = E[|X − µ|2|AC ]P(AC) + E[|X − µ|2|A]P(A) ≥ E[|X − µ|2|A]. (49)

Moreover,
σ̃2 = E[|X − µ̃|2|A] = E[|X − µ|2|A]− |µ− µ̃|2,
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and thus

σ2 − σ̃2 = σ2 − E[|X − µ|2|A] + |µ− µ̃|2 ≥ 0 (50)

by (49). But (49) implies also that

σ2 − E[|X − µ|2|A] =
σ2P(A)− E[|X − µ|2I{A}]

P(A)
=

E[|X − µ|2I
{
AC
}

]− σ2P(AC)

P(A)

=
E[(|X − µ|2 − σ2)I

{
AC
}

]

P(A)
. (51)

Using that δ ≤ 1/e and Lemma 11 imply c1 log(c2/δ) ≥ c1 log(ec2) ≥ σ2, we have

E
[
(|X − µ|2 − σ2)I

{
AC
} ]

=

∞∫
0

P(|X − µ|2 − σ2 > ε′, AC) dε′ =

∞∫
σ2

P(|X − µ|2 > ε,AC) dε

=

c1 log(c2/δ)∫
σ2

P(AC) dε+

∞∫
c1 log(c2/δ)

P(|X − µ|2 > ε) dε

≤ δ(c1 log(c2/δ)− σ2) +

∞∫
c1 log(c2/δ)

c2e
−ε/c1 dε (by Equations 48 and 9)

= δc1 log(c2/δ)− δσ2 + c1c2e
−c1 log(c2/δ)/c1 = δc1 log(ec2/δ)− δσ2.

This, (51), and (48) imply

σ2 − E[|X − µ|2|A] ≤ δ c1 log(ec2/δ)− σ2

1− δ
. (52)

For the last term of (50), noticing that E[XI
{
AC
}

] + E[XI{A}] = µ we have

|µ− µ̃| =
∣∣∣∣µP(A)− E[XI{A}]

P(A)

∣∣∣∣ =

∣∣E[XI
{
AC
}

]− µP(AC)
∣∣

P(A)
=

∣∣E[(X − µ)I
{
AC
}

]
∣∣

P(A)

≤
√

E[|X − µ|2]E[I{AC}]
P(A)

(by Cauchy-Schwarz’s inequality) (53)

=
σ
√

P(AC)

P(A)
≤ σ
√
δ

1− δ

using again (48). From (50), (52), and (53), we derive

σ2 − σ̃2 ≤ δ c1 log(ec2/δ)− σ2

1− δ
+

δσ2

(1− δ)2
≤ c1δ

log(ec2/δ)

(1− δ)2
.

Since (σ − σ̃)2 ≤ (σ + σ̃)(σ − σ̃) = σ2 − σ̃2, the claim follows.
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Proof of Lemma 23 Denote (ŝ2, . . . , ŝn) by Ŝ(X). Then Ŝ(X) = Ŝ(−X) holds due to the
quadratic form of the empirical variances. Thus, by the symmetry of ν,

E[Xt|Ŝ(X)] = E[−Xt|Ŝ(−X)] = −E[Xt|Ŝ(X)] a.s.,

implying E[Xt|{ŝt′}t′≤n] = E[Xt|Ŝ(X)] = 0 a.s.

Proof of Lemma 24 By the definition of ā and a,

X

p∑
u=1

auI{Ωu} ≤ XI{X ≥ 0} āI
{

Ω′
}

+XI{X < 0} aI
{

Ω′
}
.

This implies

E
[
X

p∑
u=1

auI{Ωu}
]
≤ E

[
XI{X ≥ 0} āI

{
Ω′
}

+XI{X < 0} aI
{

Ω′
} ]

= E
[
(ā− a)XI{X ≥ 0} I

{
Ω′
}

+ aX(I{X < 0}+ I{X ≥ 0})I
{

Ω′
} ]

= (ā− a)E
[
XI{X ≥ 0} I

{
Ω′
} ]

+ aE[XI
{

Ω′
}

]

≤ (ā− a)E|XI
{

Ω′
}
|+ aE[XI

{
Ω′
}

].

By applying the inequality above for −X we have

E
[
X

p∑
u=1

auI{Ωu}
]
≥ −(ā− a)E|XI

{
Ω′
}
|+ aE[XI

{
Ω′
}

].

Those two inequalities lead to the second inequality of the lemma, while the first one follows
from the triangle inequality.
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Abstract

We develop a penalized likelihood estimation framework to learn the structure of Gaussian
Bayesian networks from observational data. In contrast to recent methods which accelerate
the learning problem by restricting the search space, our main contribution is a fast algo-
rithm for score-based structure learning which does not restrict the search space in any way
and works on high-dimensional data sets with thousands of variables. Our use of concave
regularization, as opposed to the more popular `0 (e.g. BIC) penalty, is new. Moreover,
we provide theoretical guarantees which generalize existing asymptotic results when the
underlying distribution is Gaussian. Most notably, our framework does not require the
existence of a so-called faithful DAG representation, and as a result, the theory must han-
dle the inherent nonidentifiability of the estimation problem in a novel way. Finally, as a
matter of independent interest, we provide a comprehensive comparison of our approach
to several standard structure learning methods using open-source packages developed for
the R language. Based on these experiments, we show that our algorithm obtains higher
sensitivity with comparable false discovery rates for high-dimensional data and scales effi-
ciently as the number of nodes increases. In particular, the total runtime for our method
to generate a solution path of 20 estimates for DAGs with 8000 nodes is around one hour.

Keywords: Bayesian networks, concave penalization, directed acyclic graphs, coordinate
descent, nonconvex optimization

1. Introduction

The problem of estimating Bayesian networks (BNs) has received a significant amount of
attention over the past decade, with applications ranging from medicine and genetics to
expert systems and artificial intelligence. The idea of using directed graphical models such
as Bayesian networks to model real-world phenomena is certainly nothing new, and while
the calculus of these models has been well-developed, the development of fast algorithms to
accurately estimate these models in high-dimensions has been slow. The basic problem can
be formulated as follows: Given observations from a probability distribution, is it possible to
construct a directed acyclic graph (DAG) which decomposes the distribution into a sparse
Bayesian network?

Based on observational data alone, it is well-known that there are many Bayesian net-
works that are consistent in the Markov sense with a given distribution. What we are
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interested in is finding the sparsest possible Bayesian network, estimated purely from i.i.d.
observations without any experimental data. When the number of variables is small, there
are many practical algorithms for solving this problem. Unfortunately, as the number of
variables increases, this problem becomes notoriously difficult: the learning problem is non-
convex, NP-hard, and scales super-exponentially with the number of variables (Chickering,
1996; Chickering and Meek, 2002; Robinson, 1977). Since many realistic networks can have
upwards of thousands or even tens of thousands of nodes—genetic networks being a promi-
nent example of great importance—the development of new statistical methods for learning
the structure of Bayesian networks is critical.

In this work, we use a penalized likelihood estimation framework to learn the structure
of Gaussian Bayesian networks from observational data. Our framework is based on recent
work by Fu and Zhou (2013) and van de Geer and Bühlmann (2013), who show how these
ideas lead to a family of estimators with good theoretical properties and whose estimation
performance is competitive with traditional approaches. Neither of these works, however,
consider the computational challenges associated with high-dimensional data sets for which
the dimension scales to thousands of variables, which is a key challenge in Bayesian network
learning. With these computational challenges in mind, we sought to develop a score-based
method that:

• Does not restrict or prune the search space in any way;

• Does not assume faithfulness;

• Does not require a known variable ordering;

• Works on observational data (i.e. without experimental interventions);

• Works effectively in high dimensions (p� n);

• Is capable of handling graphs with several thousand variables.

While various methods in the literature cover a few of these requirements, none that we are
aware of simultaneously cover all of them. The main contribution of the present work is a
fast algorithm for score-based structure learning that accomplishes precisely that.

One of the key developments in our method is the application of modern regularization
techniques, including both `1 and concave penalties. Although `1 regularization is well-
understood with attractive high-dimensional and computational properties (Bühlmann and
van de Geer, 2011), as we shall see, in the context of Bayesian networks many of these
advantages disappear. While our approach still allows for `1-based penalties in practice,
our results will indicate that concave penalties such as the SCAD (Fan and Li, 2001) and
MCP (Zhang, 2010) offer improved performance. This is in line with recent advances in
sparse learning that have highlighted the advantages of nonconvex regularization in linear
and generalized linear models (Lv and Fan, 2009; Fan and Lv, 2010, 2011; Zhang and Zhang,
2012; Huang et al., 2012; Fan and Lv, 2013). Notwithstanding, both our theory and our
method apply to a general class of penalties which can be chosen based on the application
at hand.
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In this light, our method also represents a major conceptual departure from existing
methods in the literature on Bayesian networks through its deep involvement of recent de-
velopments in sparse regression, as well as using parametric modeling via structural equa-
tions as its foundation, in contrast to the more common approach using graph theory and
Markov equivalence. These techniques have long been known to be useful in regression
modeling, covariance estimation, matrix factorization, and image processing, but their ap-
plication to Bayesian networks, as far as we can tell, is a recent development (Schmidt
et al., 2007; Xiang and Kim, 2013; Fu and Zhou, 2013, 2014). Finally, our method offers
new insights into accelerating score-based algorithms in order to compete with hybrid and
constraint-based methods which, as we will show, are generally faster and more effective
than traditional score-based algorithms.

The organization of the rest of this paper is as follows: In the remainder of this section
we review previous work and compare our contributions with the existing literature. In
Section 2, we establish the necessary preliminaries for our approach via structural equations.
In Section 3 we define and discuss the penalized estimator that is the focus of this paper.
Section 4 then provides the necessary finite-dimensional theory to justify the use of our
estimator. A complete description of our algorithm is outlined in Section 5, followed by
an empirical evaluation of the algorithm in Section 6. Section 6 also offers a side-by-side
comparison of our algorithm with four other structure learning algorithms, and Section 7
provides an evaluation of these algorithms using a real-world data set. We finally conclude
with a discussion of some future directions for this research.

1.1 Related Work

The idea of using penalized likelihood estimation and sparse regression to learn Gaussian
Bayesian networks in high dimensions is a recent development, and the theoretical basis for
`0 penalization has been instigated by van de Geer and Bühlmann (2013). Their work relies
on the interpretation of Gaussian Bayesian networks in terms of structural equation models
(Drton and Richardson, 2008; Drton et al., 2011), which provides a natural interpretation of
network edges in terms of coefficients of a regression model. To the best of our knowledge,
the work of van de Geer and Bühlmann (2013) is the first high-dimensional analysis of
a score-based approach in the literature, and has not yet been generalized to the case of
continuous `1 or concave penalties. As the nontrivial and novel nature of this analysis would
detract from our primary goal of addressing computational challenges, we will not pursue
a corresponding high-dimensional theory here. Given this foundational work, our goal is
to show that these ideas can be translated into a family of fast algorithms for score-based
learning of Bayesian network structures.

While the traditional approach to estimating Bayesian networks uses `0-based penalties
such as the Bayesian information criterion (BIC), Fu and Zhou (2013) recently introduced
the idea of using continuous penalties via the adaptive `1 penalty and showed that it can be
competitive in practice. They combine a novel method of enforcing acyclicity with a block
coordinate descent algorithm in order to compute an `1-penalized maximum likelihood
estimator for structure learning. Their algorithm is adapted to the case of intervention
data and does not exploit the underlying convexity of the Gaussian likelihood function;
as a result, it cannot be used on high-dimensional data and is limited to graphs with
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200 or so nodes. By contrast, the method proposed here adapts this algorithm for use
with observational, high-dimensional data, and takes explicit advantage of convexity and
sparsity. We also extend these ideas to a general class of penalties which includes both
`0 and `1 regularization as special cases. The result is an algorithm which easily handles
thousands of nodes in a matter of minutes. Moreover, in contrast to the theory proposed
in Fu and Zhou (2013), our theory does not rely on faithfulness or identifiability.

1.2 Review of Structure Learning

Traditionally, there are three main approaches to learning Gaussian Bayesian networks.

Score-based. In the score-based approach, a scoring function is defined over the space of
DAG structures, and one searches this space for a structure that optimizes the chosen
scoring function. The most commonly used scoring functions are based on the a poste-
riori probability of a network structure (Geiger and Heckerman, 2013), while others use
minimum-description length, which is equivalent to BIC (Lam and Bacchus, 1994). In
terms of implementation, the standard algorithmic approach is greedy hill-climbing (Heck-
erman et al., 1995), for which various improvements have been offered over the years (e.g.
Chickering, 2003). Monte Carlo methods have also been used to sample network structures
according to an a posteriori distribution (Ellis and Wong, 2008; Zhou, 2011).

Constraint-based. In the constraint-based approach, repeated conditional independence
tests are used to check for the existence of edges between nodes. The idea is to search for
statistical independence between variables, which indicates that an edge cannot exist in the
underlying DAG structure as long as certain assumptions are satisfied. These assumptions
tend to be very strong in practice, and this constitutes the main drawback of this approach.
Conversely, since the tests of independence can be efficient, constraint-based approaches
tend to be faster than score-based approaches. Two popular approaches in this spirit
are the PC algorithm (Spirtes and Glymour, 1991; Kalisch and Bühlmann, 2007) and the
MMPC algorithm (Tsamardinos et al., 2006).

Hybrid. In the hybrid approach, constraint-based search is used to prune the search space
(e.g. to find the skeleton or a moral graph representation), which is then used as an input
to restrict a score-based search. By removing as many edges as possible in the first step,
the second step can be significantly faster than unrestricted score-based searching. This
technique has been shown to work well in practice by combining the advantages of score-
based and constraint-based approaches (Tsamardinos et al., 2006; Gámez et al., 2011, 2012).

As previously noted, the main issue with modern approaches to structure learning is
scaling algorithms to data sets of ever-increasing sizes. Tsamardinos et al. (2006) show
how their hybrid MMHC algorithm scales to 5,000 variables, although the running time
of 13 days left much to be desired. By assuming the underlying DAG is sparse, Kalisch
and Bühlmann (2007) show how exploiting sparsity in the PC algorithm leads to significant
computational gains. More recently, Gámez et al. (2012) have proposed modifications to
hybrid hill-climbing that scale to 1000 or so variables. By taking advantage of distributed
computation, Scutari (2014) shows how to scale constraint-based approaches to thousands
of variables. Notably, none of these methods fall into the first category of score-based
methods. In contrast, the method proposed in the present work is a genuine score-based
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method and scales efficiently to graphs with thousands of variables. To the best of our
knowledge, this is one of the first purely score-based methods that accomplishes this in the
sense that we rely neither on significance tests (as in the constraint-based approach) nor
pruning the search space (as in the hybrid approach).

2. Preliminaries

We will develop our framework by using a multivariate Gaussian distribution as our start-
ing point, which we will then decompose into a Bayesian network in order to define our
estimator. Our approach is purely algebraic, relying on the uniqueness of the Cholesky
decomposition in order to factorize a Gaussian distribution into a set of linear structural
equations. In what follows, the reader may recall that the structure of a Bayesian network
is completely determined by a directed acyclic graph, and hence learning the structure of
a Bayesian network reduces to learning directed acyclic graphs. In order to maintain con-
sistency and ease of translation, much of our notation is adapted from van de Geer and
Bühlmann (2013).

2.1 Background and Notation

We assume throughout that the data are generated from a p-variate Gaussian distribution,

(X1, . . . , Xp) ∼ N (0,Σ0), (1)

where the covariance matrix Σ0 ∈ Rp×p is positive definite. Such a model can always be
written as a set of Gaussian structural equations as follows (see Dempster, 1969):

Xj =

p∑
i=1

β0
ijXi + εj , j = 1, . . . , p, (2)

where the εj are mutually independent with εj ∼ N (0, (ω0
j )

2), εj is independent of Π0
j =

{Xi : β0
ij 6= 0}, and β0

jj = 0. This decomposition is not unique, and we will let B0 = (β0
ij)

denote any matrix of coefficients that satisfies (2). The matrix B0 = (β0
ij) can then be

regarded as the weighted adjacency matrix of a directed acyclic graph and represents a
Bayesian network for the distribution N (0,Σ0). Recall that a directed acyclic graph B is a
directed graph containing no directed cycles. In a slight abuse of notation, we will identify
a DAG B with its weighted adjacency matrix, which we will also denote by B = (βij).

The nodes of B are in one-to-one correspondence with the random variables X1, . . . , Xp

in our model. Following tradition, we make no distinction between random variables and
nodes or vertices, and will use these terms interchangeably. We say that Xk is a parent of
Xj if Xk → Xj , and the set of parents of Xj will be denoted by Πj := Πj(B). We will
denote the number of edges in B by sB := |{βij 6= 0}|. When the underlying graph is clear
from context, we will suppress the dependence on B and simply denote the number of edges
by s.

Unless otherwise noted, ‖·‖ shall always mean the standard Euclidean norm and ‖·‖F will
denote the standard `2 Frobenius norm on matrices. For a general matrix A = (aij)n×p ∈
Rn×p, its columns will be denoted using lowercase and single subscripts, so that

A = [a1 | · · · | ap], ai ∈ Rn for i = 1, . . . , p.
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The square brackets signal that A is a matrix with p columns given by a1, . . . , ap. In
particular, we will write B = [β1 | · · · |βp] for an arbitrary DAG. The support of a matrix
is defined by supp(B) := {(i, j) : βij 6= 0}.

If X = [x1 | · · · |xp] is an n× p data matrix of i.i.d. observations from (1), then we can
rewrite (2) as a matrix equation,

X = XB0 + E, (3)

where E ∈ Rn×p is the matrix of noise vectors. This model has p(p − 1) + p = p2

free parameters, which we encode through two matrices given by (B0,Ω0). Here, Ω0 =
diag((ω0

1)2, . . . , (ω0
p)

2) is the matrix of error variances. We denote the matrix of error vari-
ances by Ω in order to avoid confusion with the covariance matrix Σ.

There are thus two unknown parameters in (2):

B := (βij) ∈ Rp×p,
Ω := diag(ω2

1, . . . , ω
2
p) ∈ Rp×p.

Given n i.i.d. observations of the variables (X1, . . . , Xp), the negative log-likelihood of the
data X ∈ Rn×p is easily seen to be

L(B,Ω |X) =

p∑
j=1

[
n

2
log(ω2

j ) +
1

2ω2
j

‖xj −Xβj‖2
]
. (4)

Observe that the function in (4) is nonconvex; this fact will play an important role in the
development of our method.

Remark 1. The vast majority of the literature on Bayesian networks focuses on discrete
data, in contrast to our method which assumes the data are Gaussian. As the motivation for
this work is to scale penalized likelihood methods for high-dimensional data, the Gaussian
case is a natural starting point, as much of the high-dimensional statistical theory is tailored
towards this case. Recent work has shown how to adapt our techniques to the discrete case
via multi-logit regression (Fu and Zhou, 2014). Further generalizations to more general
continuous distributions remain for future work. Finally, even though our method implicitly
assumes the data are Gaussian, one may naively use our algorithm on discrete data and
still obtain reasonable results (see Section 7).

Thus far we have viewed the distribution N (0,Σ0) as the data-generating mechanism,
rewriting this in terms of (B0,Ω0) by using well-known properties of the Gaussian distribu-
tion. We could just as well have gone the other way around: Given a DAG B and variance
matrix Ω = diag(ω2

1, . . . , ω
2
p), the parameters (B,Ω) uniquely define a structural equation

model as in (2), and this model defines a N (0,Σ) distribution. By (3), we have for any
(B,Ω),

Σ = (I −B)−TΩ(I −B)−1, (5)

and hence Σ is uniquely determined by (B,Ω). Considering instead the inverse covariance
matrix Θ = Σ−1, we can define

Θ = Θ(B,Ω) = (I −B)Ω−1(I −B)T . (6)
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By using (6) and defining Sn := XTX, the negative log-likelihood in (4) can be rewritten
in terms of Θ = Θ(B,Ω) directly as

L(Θ |X) = −n
2

log det Θ +
1

2
tr(ΘSn). (7)

By combining (4) and (7), we have L(B,Ω |X) = L(Θ(B,Ω) |X). This expression shows
how the weighted adjacency matrix of a DAG can be considered as a reparameterization of
the usual normal distribution, and gives us an explicit connection between inverse covariance
estimation and DAG estimation, which will be explored further in the next subsection.

Since the decomposition of a normal distribution as a linear structural equation model
(SEM) as in (2) is not unique, we can define the following equivalence class of DAGs:

E(Θ) := {(B,Ω) : Θ(B,Ω) = Θ} . (8)

When (B,Ω) ∈ E(Θ), we shall say that B represents, or is consistent with, Θ. Two DAGs
(B,Ω), (B′,Ω′) will be called equivalent if they belong to the same equivalence class E(Θ).

This definition of equivalence in terms of equivalent parameterizations is indeed different
from the usual definition of distributional or Markov equivalence that is common in the
Bayesian network literature. Furthermore, while it is commonplace to assume that the true
underlying distribution is faithful to the DAG B0—which roughly speaking entails that B0

contains exactly the same conditional independence constraints as the true distribution—we
have deliberately sidestepped considerations of this hypothesis since our theory does not
rely on faithfulness.

Remark 2. Strictly speaking, a Gaussian Bayesian network is specified by both a weighted
adjacency matrix B and a variance matrix Ω, however, we will frequently refer to a BN
simply by its adjacency matrix B. Although it may not be explicitly mentioned, when there
is any ambiguity one may assume that there is an assumed variance matrix Ω paired with
B.

2.2 Comparison of Graphical Models

The previous section showed how the weighted adjacency matrix of a DAG can be considered
as a reparameterization of the usual normal distribution, and gave an explicit connection
between inverse covariance estimation and DAG estimation: Equation (6) shows how any
DAG (B,Ω) uniquely defines an inverse covariance matrix Θ = Θ(B,Ω). It follows that any
estimate (B̂, Ω̂) of the true DAG yields an estimate of Θ0 given by Θ̂ := Θ(B̂, Ω̂). In the
context of the PC algorithm, this has been studied by Rütimann and Bühlmann (2009). As a
result, one may also view our framework as defining an estimator for the inverse covariance
matrix. Covariance selection and precision matrix estimation have a long history in the
statistical literature (Dempster, 1972), with recent approaches employing regularization
in various incarnations (e.g. Meinshausen and Bühlmann, 2006; Chaudhuri et al., 2007;
Banerjee et al., 2008; Friedman et al., 2008; Ravikumar et al., 2011). A detailed survey of
recent progress in this area can be found in Pourahmadi (2013). We will not pursue this
connection in detail here, however, a few comments are in order.

First, while these two problems are deeply connected, estimating an inverse covariance
matrix is significantly easier: The estimation problem is statistically identifiable and the
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parameter space is convex. This stands in stark contrast to the more difficult problem of
estimating an underlying DAG, which we have shown to be simultaneously nonidentifiable
and nonconvex. As a result, while the high-dimensional properties of regularized covariance
estimation are well-understood, the high-dimensional properties of DAG estimation have
proven much more difficult to ascertain. The only significant results we are aware of are in
van de Geer and Bühlmann (2013) and Kalisch and Bühlmann (2007).

Second, our approach is also distinct from existing methods that directly regularize
Cholesky factors (Huang et al., 2006; Lam and Fan, 2009), as they make implicit use of an
a priori ordering amongst the variables. As such, the consistency theory in Lam and Fan
(2009) for the sparse Cholesky decomposition does not apply directly to our method. Finally,
while there are important similarities between Bayesian networks and other undirected
models such as Markov random fields and Ising models, our framework has so far only been
applied to the former. For applications of Bayesian networks to inferring so-called Markov
blankets, see Aliferis et al. (2010a,b).

Part of the justification for our framework is that it produces sparse BNs that yield good
fits to the true distribution, which is tantamount to producing good estimates of the inverse
covariance matrix Θ0. This will be established through the theory presented in Section 4,
as well as empirically via the simulations discussed in Section 6. Because of the significance
and popularity of covariance selection methods, it would of course be interesting to compare
our estimate of Θ0 to the methods cited in the above discussion. As our desire is to keep
the focus on estimating Bayesian networks, such comparisons are left to future work.

2.3 Permutations and Equivalence

In this section we wish to exhibit the connection between equivalent DAGs as defined in (8)
and the choice of a permutation of the variables. Recall that a topological sort of a directed
graph is an ordering on the nodes, often denoted by ≺, such that the existence of a directed
edge Xk → Xj implies Xk ≺ Xj in the ordering. A directed graph has a topological sort if
and only if it is acyclic, and in general such a sort need not be unique.

When describing equivalent DAGs, it is easier to interpret an ordering in terms of a
permutation of the variables. Let P denote the collection of all permutations of the indices
{1, . . . , p}. For an arbitrary matrix A and any π ∈ P, let us denote by PπA the matrix
obtained by permuting the rows and columns of A according to π, so that (PπA)ij = aπ(i)π(j).
Then a DAG can be equivalently defined as any graph whose adjacency matrix B admits
a permutation π such that PπB is strictly triangular. When the order of the nodes in PπB
matches a topological sort of B, that is if Xk ≺ Xj =⇒ π−1(k) < π−1(j), then the matrix
PπB will be strictly upper triangular. For our purposes, however, it will be easier to use a
lower -triangularization, which we now describe.

A DAG B will be called compatible with the permutation π if PπB is lower-triangular,
which is equivalent to saying that Xk → Xj (i.e. Xk ≺ Xj) in B implies π−1(k) > π−1(j).
Similarly, π will also be called compatible with B. Such a permutation π may be obtained
by simply reversing any topological sort for B, so that parents come after their children.
Formally, suppose X1 ≺ X2 ≺ · · · ≺ Xp is a topological sort of B. Then the permutation

π(i) = p− i+ 1, i = 1, . . . , p,
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is compatible with B. Our decision to use lower-triangular matrices is for consistency with
existing literature and to allow a convenient interpretation of the matrix B as the weighted
adjacency matrix of a graph. This will also simplify the technical discussion below (e.g.
compare equation (6) above with (9) below).

Suppose Θ0 is a fixed positive definite matrix and π ∈ P. Then the matrix PπΘ0

represents the same covariance structure as Θ0 up to a reordering of the variables. We may
use the Cholesky decomposition to write PπΘ0 uniquely as

PπΘ0 = (I − L)D−1(I − L)T = Θ(L,D), (9)

where L is strictly lower triangular and D is diagonal. It follows from Lemma 8 in the
Appendix that PπΘ(L,D) = Θ(PπL,PπD) for any π, so we can rewrite (9) as

Θ0 = Θ(Pπ−1L,Pπ−1D).

For each π, define

B̃0(π) := Pπ−1L,

Ω̃0(π) := Pπ−1D.

By (6), this gives us the unique decomposition of Θ0 into a DAG (B̃0(π), Ω̃0(π)) that is
compatible with the permutation π. The DAGs (B̃0(π), Ω̃0(π)) that are compatible with
some permutation π define a subset of the equivalence class E(Θ0); it is easy to check that
in fact, this subset is the entire equivalence class.

Lemma 1. Suppose Σ0 is a positive definite covariance matrix and let Θ0 := Σ−1
0 . Then

E(Θ0) = {(Pπ−1L,Pπ−1D) : PπΘ0 = Θ(L,D), π ∈ P}
= {(B̃0(π), Ω̃0(π)) : π ∈ P}.

Note that the relationship between DAGs and permutations is not bijective: multiple per-
mutations can lead to the same DAG. For example, the trivial DAG with no edges is
compatible with all possible permutations.

The question now arises: which DAG (B̃0(π), Ω̃0(π)) do we want to estimate? In the
presence of experimental data, one may consider issues of causality, in which case each
DAG represents a different causal structure. In the absence of such data, however, we can
make no such distinctions. All of the DAGs in E(Θ0) are statistically indistinguishable
based on observational data alone, so a natural objective is to estimate the DAG that most
parsimoniously represents the parameter Θ0 in the sense that it has the fewest number of
edges. This choice can also be motivated as it represents a so-called minimal I-map.

Under this assumption, there is an obvious connection between our approach and the
sparse Cholesky factorization problem: Given a symmetric, positive definite matrix A, find
a permutation π such that the Cholesky factor of PπA has the fewest number of nonzero
entries possible. In the oracle setting in which we know Θ0, this is exactly the same
problem as finding a permutation π such that B̃0(π) has the fewest number of edges. This
connection has been studied in more detail by Raskutti and Uhler (2014). They show
that in this oracle setting, there is an equivalence between `0-penalized estimation and
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sparse Cholesky factorization. In contrast, here we seek to estimate Θ0 as well as find a
sparse permutation π, and in this sense we provide a non-oracular, computationally feasible
alternative to searching across all p! permutations when p is large.

Example 1. Suppose the DAG B0 has the structure X1 → X2 → X3 with edge weights
β12 = 1 and β23 = 1, and ωj = 1 for each j. In this case, we have

B0 =

0 1 0
0 0 1
0 0 0

 , Ω0 =

1 0 0
0 1 0
0 0 1

 , Θ(B0,Ω0) =

 2 −1 0
−1 2 −1
0 −1 1

 .

A topological sort for B0 is X1 ≺ X2 ≺ X3 (i.e. B0 is already sorted), but B0 is lower
triangularized by the permutation π0 = (3, 2, 1) that swaps X1 and X3. Thus B0 = B̃0(π0).

Now consider another DAG, defined by

B1 =

0 1/2 1
0 0 0
0 1/2 0

 , Ω1 =

1 0 0
0 1/2 0
0 0 2

 , Θ(B1,Ω1) =

 2 −1 0
−1 2 −1
0 −1 1

 .

Since Θ(B1,Ω1) = Θ(B0,Ω0), the DAG (B1,Ω1) is equivalent to (B0,Ω0). Thus, according
to Lemma 1, there must be a permutation π1 such that B1 = B̃0(π1) and Ω1 = Ω̃0(π1).
Indeed, if we let π1 = (2, 3, 1), one can check (by (9)) that these identities hold. Furthermore,
if we reverse the order of the variables in π1, we obtain a topological sort for B1: X1 ≺
X3 ≺ X2.

This example highlights two important points: (i) For the reader familiar with Markov
equivalence of DAGs, it is obvious that B0 and B1 are not Markov equivalent, so our
definition of equivalence is indeed different; and (ii) Equivalent DAGs in the sense we
have defined need not have the same number of edges. This is the primary complication our
framework must manage: Amongst all the DAGs which are equivalent to the true parameter
Θ0, we wish to find one which has the fewest number of edges.

2.4 Structural Equation Modeling

We have chosen to focus on the problem of structure estimation of Bayesian networks, which
is not to be confused with the problem of causal inference. We view the data-generation
mechanism as a multivariate Gaussian distribution as in (1). From this perspective, there
are many linear structural equations (2) that may generate (1). Our focus is on finding the
most parsimonious representation of the true distribution as a set of structural equations.

Alternatively, one could view the structural equation model (2) as the data-generating
mechanism, in which case there is a particular set of structural equations that we wish to
estimate. This is the perspective commonly adopted in the social sciences and in public
health, in which the structural equations model causal relationships between the variables.
In this set-up, it is well-known that one cannot expect to recover the directionality of causal
relationships based on observational data alone, and the issues of causality, confounding
and identifiability take center stage. Since we are only considering observational data, our
framework does not address these questions.
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3. The Concave Penalization Framework

Now that the necessary preliminaries have been discussed, in the remainder of the paper
we will develop the estimation framework thus far described at a high-level. Our approach
is to use a penalized maximum likelihood estimator to estimate a sparse DAG B0 that
represents Θ0. Recall that the negative log-likelihood is given by L(B,Ω |X) in (4). This
will be our loss function, however in order to promote sparsity and avoid overfitting, we will
minimize a penalized loss instead. In what follows, let pλ : [0,∞) → R be a nonnegative
and nondecreasing penalty function that depends on the tuning parameter λ and possibly
one or more additional shape parameters. Our framework is valid for a general class of
penalties, so in what follows we will allow pλ(·) to be arbitrary. The details of choosing the
penalty function will be discussed in Section 3.3.

Once pλ is chosen, one may seek to find a solution to

arg min
B,Ω

{
L(B,Ω |X) + n

∑
i,j

pλ(|βij |) : B is a DAG
}
. (10)

When L is taken to be a more general scoring function such as a posterior probability, (10)
resembles most familiar score-based methods. When pλ(·) is taken to be the `0 penalty, we
recover the estimator discussed in van de Geer and Bühlmann (2013). Our approach differs
from the aforementioned in two ways:

1. Our choice of the penalty term pλ(·) is different from traditional approaches and
results in a continuous optimization problem,

2. Due to the nonconvexity of the loss function, we reparameterize the problem in order
to obtain a convex loss function.

Thus, in general our estimator will not be the same as (10).

Remark 3. If we further constrain the minimization problem in (10) to include only DAGs
which are compatible with a fixed topological sort, we can reduce the problem to a series
of p individual regression problems. Given a topological sort ≺, the parents of Xj must be
a subset of the variables that precede Xj in ≺. In terms of the permutation π described
in Section 2.3, we require Π0

j ⊂ {Xk : π−1(k) > π−1(j)}. The true neighbourhood of Xj

can then be determined by projecting Xj onto this subset of nodes, which can be done via
penalized least squares. Consistency in structure learning and parameter estimation can
then be established through standard penalized regression theory.

3.1 Reparameterization

One of the drawbacks of the loss in (4) is that it is nonconvex, which complicates the
minimization of the penalized loss. If we minimize (4) with respect to Ω and use the
adaptive Lasso penalty, we obtain the estimator described in Fu and Zhou (2013). By
keeping the p variance terms, however, we can exploit a clever reparameterization of the
problem, introduced in Städler et al. (2010), which leads to a convex loss.
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The idea is to define new variables by ρj = 1/ωj and φij = βij/ωj , which yields the
reparameterized negative log-likelihood

L(Φ, R |X) =

p∑
j=1

[
−n log(ρj) +

1

2
‖ρjxj −Xφj‖2

]
, (11)

where Φ = [φ1 | · · · |φp] and R = diag(ρ1, . . . , ρp). The loss function in (11) is easily seen
to be convex. Furthermore, if we interpret Φ as the adjacency matrix of a directed graph,
then Φ has exactly the same edges and nonzero entries as B, and thus in particular Φ is
acyclic if and only if B is acyclic.

In analogy with the parameterization (B,Ω), define

Θ(Φ, R) = (R− Φ)(R− Φ)T , (12)

which gives a formula for the inverse covariance matrix in the parameterization (Φ, R).
Note that if Φ = Φ(B,Ω) and R = R(B,Ω), then Θ(B,Ω) = Θ(Φ, R), and hence also
L(B,Ω) = L(Φ, R).

This reparameterization is not the same as the likelihood in (7), which is well-known to
lead to a convex program (see, for instance, Boyd and Vandenberghe, 2009, §7.1). Indeed,
plugging (6) into (7) leads back to (4), which is nonconvex in the parameters βij and ωj . To
wit, the problem is convex in Θ but not in (B,Ω). The key insight from Städler et al. (2010)
is to observe that one may recover convexity by switching to the alternate parameterization
in terms of φij and ρj . Unfortunately, the DAG constraint in (10) is still nonconvex. The
idea behind this reparameterization is to allow our algorithm to exploit convexity wherever
possible in order to reap at least some computational and analytical gains. As we shall see,
the gains are indeed significant.

3.2 The Estimator

We are now prepared to introduce the formal definition of the DAG estimator which is the
focus of this work.

Fix a penalty function pλ(·). Then given

(Φ̂, R̂) := arg min
Φ,R

{
L(Φ, R |X) + n

∑
i,j

pλ(|φij |) : Φ is a DAG
}

(13)

= arg min
Φ,R

{ p∑
j=1

[
−n log(ρj) +

1

2
‖ρjxj −Xφj‖2

]
+ n

∑
i,j

pλ(|φij |) : Φ is a DAG
}
,

we define our estimator to be

(B̂, Ω̂) =


β̂ij = φ̂ij/ρ̂j , i 6= j

β̂jj = 0,

ω̂2
j = 1/ρ̂2

j , j = 1, . . . , p

(14)
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where φ̂ij and ρ̂j denote the respective components of (Φ̂, R̂). When we wish to emphasize

the estimator’s dependence on λ, we shall denote it by (Φ̂(λ), R̂(λ)).

There is an intuitive interpretation of the problem in (13): By the identity L(Φ, R |X) =
L(Θ(Φ, R) |X), it is evident that the loss function for (Φ, R) is simply the negative log-
likelihood of the resulting estimate of Θ = Θ(Φ, R). In this sense, we are implicitly ap-
proximating the true parameter Θ0. The key ingredient, however, is the penalty term: We
only penalize the edge weights φij , which has the effect of self-selecting for DAGs which
are sparse. In this way, the solution to (13) produces a sparse Bayesian network whose
distribution is close to the true, underlying distribution.

Remark 4. For most choices of the penalty, the solution to (13) is not the same as the
solution to (10) since we are penalizing different terms. In the original parameterization, we
penalize the coefficients βij , whereas after reparameterizing we are penalizing the rescaled
coefficients φij = βij/ωj . Thus we are also penalizing choices of coefficients which overfit
the data, i.e., which have small ωj . A notable exception, however, occurs when pλ(·) is
taken to be the `0 penalty. In this special case, the problems in (10) and (13) are the same,
and thus in particular the analysis in van de Geer and Bühlmann (2013) applies.

3.3 Choice of Penalty Function

The standard approach in the Bayesian network literature is to use AIC or BIC to penalize
overly complex models, although `1-based methods have been slowly gaining in popularity.
Traditionally, `1 regularization is viewed as a convex relaxation of optimal `0 regularization,
which results in a convex program that is computationally efficient to solve. Unfortunately,
in our situation the constraint that B is a DAG is also nonconvex, so there is little hope to
recover a convex program. Thus, there is nothing lost in using concave penalties, which have
more attractive theoretical properties than `1-based alternatives. We will briefly review the
details here.

Fan and Li (2001) introduce the fundamental theory of concave penalized likelihood
estimation and outline three principles that should guide any variable selection procedure:
unbiasedness, sparsity, and continuity. They argue that the following conditions are suffi-
cient to guarantee that a penalized least squares estimator has these properties:

1. (Unbiasedness) p′λ(t) = 0 for large t;

2. (Sparsity) The minimum of t+ p′λ(t) is positive;

3. (Continuity) The minimum of t+ p′λ(t) is attained at zero.

Condition (1) only guarantees unbiasedness for large values of the parameter; in general we
cannot expect a penalized procedure to be totally unbiased. Note also that (1-3) imply that
pλ must be a concave function of t.

In the methodological developments which follow, it will not be necessary to assume
that the penalty function is concave. The theory developed in Section 4 will illuminate how
the properties of the penalty function influence the theoretical properties of the estimator
(13, 14), however, the only strict requirement on the penalty function needed for the pro-
posed algorithm is that there exists a corresponding threshold function S(·, λ) to perform
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Figure 1: Comparison of penalty functions. The solid red line is the minimax concave
penalty (MCP), the dot-dashed blue line is the smoothly clipped absolute devia-
tion penalty (SCAD), and the dashed black line is the `1 or Lasso penalty. Both
the MCP and SCAD represent smooth interpolations of the `1 and `0 penalties
and hence have better statistical properties, whereas the `1 penalty exhibits bias
due to its divergence as t→∞.

the single parameter updates (see Section 5.2 for details). Examples of common penalty
functions in the literature include `1 (or Lasso, Tibshirani, 1996), SCAD (Fan and Li, 2001)
and MCP (Zhang, 2010). The SCAD penalty represents a smooth quadratic interpolation
between the `1 and `0 penalties, and the MCP translates the `1 portion of the SCAD to
the origin. See Figure 1 for a visual comparison of these three penalties. The key difference
between the `1 penalty and SCAD or MCP is the flat part of the penalty, which helps to
reduce bias.

In our computations we chose to use the MCP, defined for t ≥ 0 by

pλ(t; γ) := λ

(
t− t2

2λγ

)
1(t < λγ) +

λ2γ

2
1(t ≥ λγ) (15)

=

{
λ
(
t− t2

2λγ

)
, t < λγ,

λ2γ
2 , t ≥ λγ.

The γ parameter in the MCP controls the concavity of the penalty: As γ → 0, MCP
approaches the `0 penalty and as γ → ∞, it approaches the `1 penalty. In the sequel we
will thus refer to γ as the concavity parameter and λ as the regularization parameter. From
the above formula, MCP is easily seen to be a quadratic spline between the origin and the
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`0 penalty with a knot at t = λγ. To demonstrate the differences and potential advantages
of a concave penalty, we also implemented our method with the `1 penalty, pλ(|t|) = λ|t|.

As the `1 penalty does not satisfy the unbiasedness condition (Condition (1) above),
it yields biased estimates in general. Allowing ourselves to be motivated by some recent
developments in regression theory, we can say even more. There the assumptions required
for consistency are rather strong and require a so-called irrepresentability condition (Zhao
and Yu, 2006), also known as neighbourhood stability (Meinshausen and Bühlmann, 2006).
The bias issues can be circumvented by employing the adaptive Lasso (Zou, 2006), an idea
which has been explored in Fu and Zhou (2013). Recent theoretical analysis of regulariza-
tion with concave penalties has shown that, compared to `1 penalties, the assumptions on
the data needed for consistency can be relaxed substantially. Generalizing these ideas to
Bayesian network models, we will show in Section 4 how our estimator is consistent in both
parameter estimation and structure learning when concave regularization is used; with `1
regularization we only obtain parameter estimation consistency. These theoretical results
are supported by the comparisons in Section 6.

3.4 The Role of Sparsity

For a given Θ0, the equivalence class E(Θ0) will typically consist of graphs with different
numbers of edges, and in general there need not be a sparse representation (B̃0(π), Ω̃(π))
with sB̃0(π) := s̃0(π)� p2. Moreover, the asymptotic theory to be developed in Section 4 will
not require such an assumption. When we evaluate our method in Sections 5-7, however,
we will focus our attention on the case where there exists a DAG in E(Θ0) which is sparse,
that is, satisfying the condition s̃0(π) = O(p).

Our justification for this assumption is both practical and theoretical. In terms of the
true graph, sparsity implies that we expect either (a) only a subset of the variables are truly
involved, or (b) on average, each variable has only a few parents. In case (a), estimating
a Bayesian network is similar to the variable screening problem. Both of these scenarios
are commonly encountered in practice, as many realistic DAG models tend to be sparse in
one of these two senses. Moreover, for data sets with p very large, we typically have fewer
observations than variables. In fact, we expect p � n, with p on the order of thousands
or tens of thousands. When this happens, we can only expect to obtain reasonable results
when each node has at most n parents, although in practice far fewer than n parents is
typical. For these reasons, we chose to tailor our algorithm to the sparse, high-dimensional
regime. Along with the nonconvexity of the constraint space, this is the main reason for
emphasizing the use of concave penalties, whose superior performance in the p� n regime
has been already established for regression models. Furthermore, by assuming that the true
graph is sparse, we can take advantage of several computational enhancements that allow
our algorithm to leverage sparsity for speed. The result is an efficient algorithm when we
are confident that the underlying model admits a sparse representation.

4. Asymptotic Theory

In this section we provide theoretical justification for the use of the estimator (13, 14) in
the finite-dimensional regime. That is, we will assume p is fixed and let n → ∞. The
purpose of this section is not to provide novel theoretical insights, but rather simply to

2287



Aragam and Zhou

show that under the right conditions we can always guarantee that the estimator defined in
the previous section has good estimation properties. Most importantly, we establish that
these conditions can always be satisfied when the MCP is used for regularization.

In the statistics literature, a procedure which attains consistency in structure learning
with high probability is sometimes referred to as model selection consistent. This can be
confusing as model selection is also used to refer to the problem of selecting the tuning
parameter λ. In the sequel, we use the following conventions: (i) A procedure is structure
estimation consistent if P (supp(B̂) = supp(B0)) → 1, (ii) A procedure is parameter esti-

mation consistent if ‖B̂−B0‖F
P→ 0, and (iii) Model selection will refer only to the problem

of choosing λ.

4.1 Nonidentifiability and Sparsity

Since our optimization problem is nonconvex, we must be careful when discussing “solu-
tions” to (13). The estimator is defined to be the global minimum of the penalized loss,
but theoretical guarantees are generally only available for local minimizers. Our theory is
no exception, and it is furthermore complicated by identifiability issues: Based on observa-
tional data alone, the inverse covariance matrix Θ0 is identifiable, but the DAG (B0,Ω0) is
not. The usual theory of maximum likelihood estimation assumes identifiability, but it is
possible to derive similar optimality results when the true parameter is nonidentifiable (see
for instance Redner, 1981).

When the model is identifiable, one establishes the existence of a consistent local min-
imizer for the true parameter, which is unique (e.g as in Fan and Li, 2001). It turns out
that even if the model is nonidentifiable, we can still obtain a consistent local minimizer
for each equivalent parameter. As long as there are finitely many equivalent parameters,
these minimizers are unique to each parameter. In particular, in the context of DAG es-
timation, there are up to p! equivalent parameters in the equivalence class E0 (Lemma 1).
Thus we have a finite collection of local minimizers that serve as “candidates” for the global
minimum; the question that remains is which one of these minimizers does our estimator
produce?

Each equivalent parameter has the same likelihood, so the only quantity we have to
distinguish these minimizers is the penalty term. Our theory will show that by properly
controlling the amount of regularization, it is possible to distinguish the sparsest DAGs in E0

in the sense that they will each have strictly smaller penalized loss than their competitors.
Moreover, this analysis can be transferred over to the empirical local minimizers, so that the
sparsest local minimizer has the smallest penalized loss. Because of nonconvexity, however,
it is hard to guarantee that these minimizers are the only local minimizers, and hence that
the sparsest DAGs are the global minimizers. The simulations in Section 6 give us good
empirical evidence that our estimator indeed approximates the sparsest DAG representation
of Θ0, as opposed to another DAG with many more edges.

The remainder of this section undertakes the details of this analysis. To stay consis-
tent with the literature, instead of minimizing the penalized loss (13) we will maximize the
penalized log-likelihood, which is of course only a technical distinction. We begin with a
discussion of the technical results and assumptions which establish the existence of consis-
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tent local maximizers before stating our main result in Section 4.3. We also briefly discuss
the high-dimensional scenario in which p is allowed to depend on n.

Remark 5. For some classes of models, including nonlinear and non-Gaussian models, the
DAG estimation problem considered here is known to be identifiable based on observational
data alone (Shimizu et al., 2006; Peters et al., 2012), and some methods have been developed
to estimate such models (Hyvärinen et al., 2010; Anandkumar et al., 2013). In contrast to
these developments, the main technical difficulty in our analysis is the nonidentifiability of
the general Gaussian model.

4.2 Existence of Local Maximizers

In the ensuing theoretical analysis, it will be easier to work with a single parameter vector
(vs. the two matrices Φ and R), so we first transform our parameter space in this way
without any loss of generality. To the end, define U := R + Φ and let ν = vec(U) =
vec(R + Φ) ∈ Rp2 be the vectorized copy of U in Rp2 . Our parameter space is then the
subset D of Rp2 such that ν ∈ D implies (Φ, R) is a DAG, where ν = vec(R + Φ). In the
sequel, we will refer to such a ν as a DAG. For a more in-depth treatment of the abstract
framework, see Section A.1 in the Appendix.

The true distribution is uniquely defined by its inverse covariance matrix, Θ0. By
equation (12), given (Φ̂, R̂) we may consider the resulting estimate of the inverse covariance
matrix Θ̂ = Θ(Φ̂, R̂). By analogy, for any DAG ν ∈ Rp2 , we may define in the obvious way
the matrix Θ(ν). Thus the parameter ν is simply another parameterization of the normal
distribution: For any Θ0, there exists ν ∈ D such that Θ0 = Θ(ν). Let E0 = E(Θ0) = {ν ∈
Rp2 : Θ(ν) = Θ0}. We will denote an arbitrary element of E0 by ν0 and a minimal-edge
DAG in E0 by ν∗.

As is customary, we denote the support set of a vector by supp(ν) := {j : νj 6= 0},
and likewise for matrices supp(B) := {(i, j) : βij 6= 0}. Let `n(ν |X) be the unpenalized
log-likelihood of the parameter vector ν and define

pλ(ν) =
∑
i 6=j

pλ(|uij |), (16)

where uij denote the elements of U . Note that we are penalizing only the off-diagonal
elements of U , which correspond to the elements of Φ. Now let

F (ν) := `n(ν |X)− n pλn(ν). (17)

We are interested in maximizing F over D.
For any ν0 ∈ E0 which represents a DAG (Φ0, R0) = ((φ0

ij), (ρ
0
j )) as described above,

define two sequences which depend on the choice of penalty pλ:

an(ν0) := max{|p′λn(|φ0
ij |)| : φ0

ij 6= 0}, (18)

bn(ν0) := max{|p′′λn(|φ0
ij |)| : φ0

ij 6= 0}. (19)

When it is clear from context, the dependence of an and bn on ν0 will be suppressed. Finally,
let τ(λ) := supt pλ(t), which may be infinite. For the MCP we have τ(λ) = λ2γ/2 and for
the `1 penalty τ(λ) = +∞.
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The following result, which is similar in spirit to Theorem 2 of Fu and Zhou (2013),
guarantees the existence of a consistent local maximizer:

Theorem 2. Fix p ≥ 1. If there exists ν0 ∈ E0 with bn(ν0) → 0, then there is a local
maximizer ν̂n of F (ν) such that

‖ν̂n − ν0‖ = OP (n−1/2 + an(ν0)).

When an = O(n−1/2), we obtain a n1/2-consistent estimator of ν0. Note that by Lemma 1,
if ν0 ∈ E0 then ν0 = (B̃0(π), Ω̃0(π)) for some permutation π. For this reason, in the sequel
we shall refer to the local maximizer ν̂n as the π-local maximizer of F for the permutation
π. This theorem says that as long as the curvature of the penalty at (B̃0(π), Ω̃0(π)) tends
to zero, the penalized likelihood has a π-local maximizer that converges to (B̃0(π), Ω̃0(π))
as n→∞.

Under additional assumptions on the penalty function, we may further strengthen this
result to include consistency in structure estimation when p remains fixed:

Theorem 3. Assume that the penalty function satisfies

lim inf
n→∞

lim inf
t→0+

p′λn(t)/λn > 0. (20)

Assume further that ν0 ∈ E0 satisfies an(ν0) = O(n−1/2), bn(ν0) → 0, and let ν̂n be a
π-local maximizer from Theorem 2. If λn → 0 and λnn

1/2 →∞, then

P (supp(ν̂n) = supp(ν0))→ 1. (21)

In fact, this follows immediately from Theorem 2 above and Theorem 2 in Fan and Li
(2001). An obvious corollary is that P (ŝn = s0)→ 1.

We must be careful in interpreting these theorems correctly: They do not imply neces-
sarily that the estimator defined in (13, 14) is consistent. These theorems simply show that
under the right conditions, there is a local maximizer of F that is consistent. It remains to
establish that the global maximizer of F is indeed one of these local maximizers.

Remark 6. If we assume that the conditions of Theorems 2 and 3 hold for all ν0 ∈ E0, then
we can conclude that every equivalent DAG has a π-local maximizer that selects the correct
sparse structure. This is trivial since we assume p to be fixed as n → ∞, which allows
us to bound the probabilities over all p! choices of ν0 simultaneously. Since the number
of equivalent DAGs grows super-exponentially as p increases, bounding these probabilities
when p = pn grows with n is the main obstacle to achieving useful results in high-dimensions.

The proofs of these two theorems are found in the appendix. In the course of the proofs,
we will need the following lemma:

Lemma 4. If B1 6= B2 are DAGs that have a common topological sort, then for any
choices of Ω1 and Ω2, we have Θ(B1,Ω1) 6= Θ(B2,Ω2). A similar result holds in the
parameterization (Φ, R).
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The assumption that two DAGs have a common topological sort is equivalent to each DAG
being compatible with the same permutation π. The following lemma shows that the ν0 are
isolated, which guarantees that π-local maximizers do not cluster around multiple ν0. For
any ε > 0, we denote the ε-neighbourhood of ν0 in D by B(ν0, ε) := {ν ∈ D : ‖ν−ν0‖ < ε}.

Lemma 5. For any positive definite Θ0 there exists ε > 0 such that E0 ∩ B(ν0, ε) = {ν0}
for any ν0 ∈ E0.

The proofs of these lemmas are also found in the appendix.

4.3 The Main Result

We will now significantly strengthen Theorems 2 and 3 by showing that, under a concave
penalty, a sparsest DAG ν∗ ∈ E0 maximizes the penalized likelihood amongst all the possible
equivalent representations of the covariance matrix Θ0. Under the assumptions of Theo-
rem 2, there is a π-local maximizer ν̂∗n of F (ν) such that ‖ν̂∗n− ν∗‖ = OP (n−1/2 + an(ν∗)).
Ideally, when ν0 has more edges than ν∗, we would like these π-local maximizers to satisfy
F (ν̂∗n) > F (ν̂n) with high probability.

Intuitively, when an(ν0) = bn(ν0) = 0, all of the nonzero coefficients lie in the flat part
of the penalty where p′λn(|φ0

ij |) = p′′λn(|φ0
ij |) = 0. When this happens, the penalty “acts”

like the `0 penalty by penalizing all of the coefficients equally by the amount τ(λn), and
any DAG with more edges than ν∗ will see a heavier penalty. In order to quantify “how
close” ν0 is to lying in the flat part of the penalty, we define

cn(ν0) := min{pλn(|φ0
ij |) : φ0

ij 6= 0}.

When cn(ν0) = τ(λn), the penalty mimics the `0 penalty, and since the likelihood `n(ν0 |X)
is constant for all ν0, we would then have

pλn(ν∗) < pλn(ν0) ⇐⇒ `n(ν∗ |X)− n pλn(ν∗) > `n(ν0 |X)− n pλn(ν0).

One would hope that for local maximizers ν̂n that are sufficiently close to the ν0, the
continuity of F would guarantee that this intuition persists. As long as the amount of
regularization grows fast enough, this is precisely the case:

Theorem 6. Suppose that pλ(t) is nondecreasing and concave for t ≥ 0 with pλ(0) = 0.
Assume further that the conditions for Theorem 3 hold for all ν0 ∈ E0. Recall that τ(λn) :=
supt pλn(t). If

1. cn(ν0) = τ(λn) +O(n−1/2) for all ν0 ∈ E0,

2. lim supn τ(λn) <∞,

3. τ(λn)n1/2 →∞,

then for any DAG ν0 ∈ E0 with strictly more edges than ν∗, P (F (ν̂∗n) > F (ν̂n)) → 1 as
n→∞.
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The restriction to ν0 with strictly more edges than ν∗ is necessary since ν∗ may not be
unique in general. Theorem 6 essentially answers the question of which DAG in the true
equivalence class E0 our estimator approximates. As we have discussed, there is a subtle
technicality in which it is possible that there are other maximizers of F (ν) besides the
π-local maximizers, but this is unlikely in practice.

These theorems provide general technical statements which can be used when weaker
assumptions are necessary. By imposing all the conditions in Theorems 2, 3, and 6 uniformly,
we can combine all of the results in order to characterize the behaviour of the estimates
in terms of the parameterization (B̂, Ω̂) given by (14). Before stating the main theorem,
we will need some notation to distinguish π-local maximizers. Assuming the conditions of
Theorem 2 hold for all π, denote the collection of π-local maximizers by Mn. Continuing
our notation from the previous section, we also let (B∗,Ω∗) denote any graph in E0 with the
fewest number of edges, and let (B̂∗, Ω̂∗) be the corresponding π-local maximizer. Recall
that given a DAG estimate (B̂, Ω̂), we define Θ̂ = Θ(B̂, Ω̂).

Theorem 7. Suppose that pλ(t) is nondecreasing and concave for t ≥ 0 with pλ(0) = 0.
Fix p ≥ 1 and assume that the penalty function satisfies

lim inf
n→∞

lim inf
t→0+

p′λn(t)/λn > 0.

Assume further that an(ν0) = O(n−1/2), bn(ν0) → 0, and cn(ν0) = τ(λn) + O(n−1/2) for
each DAG in E0. If λn → 0, λnn

1/2 → ∞, lim supn τ(λn) < ∞, and τ(λn)n1/2 → ∞, then
for any permutation π, there is a local maximizer (B̂, Ω̂) of F such that

1. ‖B̂ − B̃0(π)‖F + ‖Ω̂− Ω̃0(π)‖F = OP (n−1/2),

2. P (supp(B̂) = supp(B̃0(π)))→ 1,

3. ‖Θ̂−Θ0‖F = OP (n−1/2).

Furthermore,

P

(
F (B̂∗, Ω̂∗) = max

(B̂,Ω̂)∈Mn

F (B̂, Ω̂)

)
→ 1.

The proof of Theorem 7 is immediate from the properties of the Frobenius norm and The-
orems 2, 3, and 6.

Remark 7. Using an adaptive `1 penalty, Fu and Zhou (2013) first obtained results similar
to Theorems 2 and 3. These results assume a weakened form of faithfulness, however, and
require experimental data with interventions in order to guarantee identifiability of the true
causal DAG. The results here generalize this theory to observational data without needing
faithfulness. The keys to this generalization are the notion of parametric equivalence in (8)
(as opposed to Markov equivalence) and the use of a concave penalty to rule out equivalent
DAGs with too many edges. The role of concavity is highlighted by the observation that
convex penalties cannot satisfy the conditions for Theorem 6.
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4.4 Discussion of the Assumptions

The general theme behind the theory described in the previous sections is that as long as
the penalty is chosen cleverly enough, there will be a consistent local maximizer for the
constrained penalized likelihood problem (13). We pause now to discuss these conditions
more carefully, and show that they can always be satisfied.

The parameters an(ν0) and bn(ν0) measure respectively the maximum slope and con-
cavity of the penalty function, and the conditions on these terms are derived directly from
Fan and Li (2001). The idea is that as long as the concavity of the penalty is overcome
by the local convexity of the log-likelihood function, our intuition from classical maximum
likelihood theory continues to hold true. In order to simultaneously guarantee consistency
in parameter estimation and structure learning, it is necessary that these parameters vanish
asymptotically.

Furthermore, the assumptions on an and bn in Theorems 2 and 3 highlight the advantages
of concave regularization over `1 regularization. In particular, the `1 penalty trivially sat-
isfies bn → 0, but cannot simultaneously satisfy an(ν0) = λn = O(n−1/2) and λnn

1/2 →∞.
Thus, for the `1 penalty, we may apply Theorem 2 to obtain a local maximizer which is con-
sistent in parameter estimation, but we cannot guarantee structure estimation consistency
through Theorem 3. In contrast, these conditions are easily satisfied by a concave penalty;
in particular they are satisfied when pλ is the MCP. These observations were first made in
Fan and Li (2001).

The conditions on τ(λn) in Theorem 6 are more interesting. When the true parameter
is identifiable, there is no concern about dominating the penalized likelihood for nonsparse
parameters. Since our set-up is decidedly nonidentifiable—there are up to p! choices of the
“true” graph—it is essential to control the growth of the penalty, and more specifically, how
the penalty grows at the various equivalent DAGs ν0 ∈ E0. As long as this grows at the
right rate, nonsparse graphs will see the penalty term dominate, and as a result the sparsest
graph (B∗,Ω∗) emerges as the best estimate of the true graph. Since τ(λn) = +∞ for any
convex penalty, Theorem 6 along with the remainder of this discussion do not apply to `1
regularization.

In order to quantify the behaviour of the penalty, we need to control the growth of two
different quantities: the maximum penalty τ(λn), and the rate of convergence of cn(ν0).
By rate of convergence, we refer to the fact that the assumptions on an(ν0) and bn(ν0)
alone require that cn(ν0) = τ(λn)+o(1), or equivalently pλn(|φ0

ij |) = τ(λn)+o(1) whenever

φ0
ij 6= 0. The stronger assumption that cn(ν0) = τ(λn) + O(n−1/2) in Theorem 6 shows

that it is not enough that this convergence occurs at an arbitrary rate. One may think of
this as a requirement on the zeroth-order convergence of pλn , in contrast to the first- and
second-order convergence required by Theorems 2 and 3. In practice, it is sufficient to have
cn(ν0) = τ(λn) for sufficiently large n, and hence also an = bn = 0.

Of course, none of this is relevant if we cannot construct a penalty which satisfies all of
these conditions simultaneously along with associated regularization parameters λn. When
the penalty is chosen to be the MCP, all of the conditions required for Theorem 7 are
satisfied as long as

lim sup
n

λnγn < min
ν0∈E0

min{|φ0
ij | : φ0

ij 6= 0} and λn = O(n−α), 0 < α < 1/2. (22)
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Remark 8. To better understand the conditions on τ(λn) in Theorems 6 and 7, it is
instructive to consider the simplified case in which the penalty factors as pλn(t) = λnρ(t)
for some function ρ(t) (not to be confused with the parameters ρj in our model). In this
case, the penalty is bounded as long as limt→∞ ρ(t) < ∞ and the conditions on τ(λn) in
Theorem 6 reduce to lim supn λn <∞ and λnn

1/2 →∞. When λn → 0, these conditions are
simply the assumptions in Theorem 3. Thus, the extra conditions on τ(λn) in Theorems 6
and 7 are redundant when the penalty factors in this way.

Example 2. Although the usual formula for the MCP does not satisfy the factorization
property in Remark 8, we may reparameterize it so that it does. To do this, define a new
penalty by

pλ(t; δ) := λ

(
t− t2

2δ

)
1(t < δ) +

λδ

2
1(t ≥ δ), t ≥ 0.

Then pλ(t; δ) = λ · pλ=1(t; δ), and by choosing δ = λγ we may recover the usual formula for
the MCP given by (15). Furthermore, the condition in (22) becomes

lim sup
n

δn < min
ν0∈E0

min{|φ0
ij | : φ0

ij 6= 0},

which is independent of λn.

4.5 Score-Based Theory in High-Dimensions

The theory in this section so far has assumed that p is fixed with n > p, the classical
low-dimensional scenario. It would be interesting to obtain results for this method when p
is allowed to depend on n, and in particular the case when p > n. While the simulations
in Section 6 give good empirical evidence that our method is applicable to this scenario,
formal theoretical results are not available yet. Here we take a moment to discuss some
current work in this direction.

If we fix a permutation π, we have already described in Remark 3 how to modify our
method in order to estimate the equivalent DAG that is compatible with π, which we have
denoted by (B̃0(π), Ω̃0(π)). When the order of the variables is fixed, the problem reduces
to standard multiple regression with a concave penalty, in which case Theorems 2 and 3
can be generalized to high-dimensions, for instance using the results in Fan and Lv (2010).
This is in the spirit of similar results in the `1 case obtained by Shojaie and Michailidis
(2010). Of course, in our set-up, we do not know in advance which permutation is optimal,
so this does not tell the whole story. Theorem 6 shows how our estimator selects the right
permutation automatically based on the data, and eliminates the need to assume this prior
knowledge.

Recently, van de Geer and Bühlmann (2013) obtained some positive results using `0
regularization in which it is not assumed that π is known in advance. Under the same
Gaussian framework we have adopted in this work, they show the following: When pλ(t) =
λ21(t 6= 0) and under certain strong regularity conditions, any global minimizer of (10)
satisfies

‖B̂ − B̃0(π̂)‖2F + ‖Ω̂− Ω̃0(π̂)‖2F = OP (λ2s0), (23)
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where π̂ is the permutation compatible with (B̂, Ω̂). Furthermore, they establish that the
estimated number of edges are all of the same order: ŝ = OP (s̃0(π̂)) = OP (s0). These results
represent the first significant analysis of score-based structure learning in high-dimensions
that we know of, however, they have some drawbacks. First, they do not guarantee structure
estimation consistency, and instead only give an upper bound on the number of estimated
edges, which is to be of the same order as a minimal-edge DAG. With respect to compu-
tations, these results only hold for the intractable `0 penalty, and no suggestions are made
to allow computation of this estimator in practice. Furthermore, since the optimization
problem is nonconvex, theoretical guarantees for global minimizers are less practical than
guarantees for local minimizers. We have already observed (Remark 4) that the estimator
defined in van de Geer and Bühlmann (2013) is a special case of (13), and so this theory
applies to our framework under `0 regularization.

A common interpretation of concave penalization is as a continuous relaxation of the
discrete `0 penalty. Our framework can thus be seen in this light. Previous work has shown
that penalized likelihood estimators can have near optimal performance when compared
with the `0 estimator (Zhang and Zhang, 2012), and thus we have good reason to believe
the same holds true for our estimator. The key idea from the analysis in van de Geer and
Bühlmann (2013) is to control the behaviour of the estimates over all p! possible permu-
tations, which requires careful analysis using exponential-type concentration inequalities.
Based on our preliminary work, we believe that such an analysis can be carried out for
more general penalties, however, the details remain to be worked out and are expected to
be technical.

Recently there has been some reported progress in high-dimensions for hybrid meth-
ods that consist of multiple learning stages. The general outline of these methods is the
following:

1. Estimate an initial (undirected, directed, or partially directed) graph G0,

2. Search for an optimal DAG structure Ĝ subject to the constraint that Ĝ is a subgraph
of G0.

This approach is motivated by the fact that searching for an undirected or partially directed
graph in the first step can be substantially faster than searching for a DAG. In this light,
Loh and Bühlmann (2013) consider using inverse covariance estimation to restrict the search
space, and Bühlmann et al. (2014) convert the problem into three separate steps: prelimi-
nary neighborhood selection, order search, and maximum likelihood estimation. Since these
ideas use multiple stages, they do not apply directly to the framework developed here.

5. Algorithm Details

Both the objective function and the constraint set in (13) are nonconvex, which makes tradi-
tional gradient descent algorithms for performing the necessary minimization inapplicable.
One could employ naive gradient descent to find a local minimizer of (13), but it would
still be difficult to enforce the DAG constraint. Thus, a different approach must be taken
altogether. Extending the algorithm of Fu and Zhou (2013), we employ a cyclic coordinate-
descent based algorithm that relies on checking the DAG constraint at each update. By
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properly exploiting the sparsity of the estimates and the reparameterization (11), however,
we will be able to perform the single parameter updates and enforce the constraint with
ruthless efficiency.

5.1 Overview

Before outlining the technical details of implementing our algorithm, we pause to provide
a high-level overview of our approach.

The idea behind cyclic coordinate descent is quite simple: Instead of minimizing the
objective function over the entire parameter space simultaneously, we restrict our attention
to one variable at a time, perform the minimization in that variable while holding all
others constant (hereafter referred to as a single parameter update), and cycle through the
remaining variables. This procedure is repeated until convergence. Coordinate descent is
ideal in situations in which each single parameter update can be performed quickly and
efficiently. For more details on the statistical perspective on coordinate descent, see Wu
and Lange (2008); Friedman et al. (2007).

Moreover, due to acyclicity, we know a priori that the parameters φkj and φjk cannot
simultaneously be nonzero for k 6= j. This suggests performing the minimization in blocks,
minimizing over {φkj , φjk} simultaneously. An immediate consequence of this is that we
reduce the number of free parameters from p2 to p(p− 1)/2 + p, a substantial savings.

In order to enforce acyclicity, we use a simple heuristic: For each block {φkj , φjk}, we
check to see if adding an edge from Xk → Xj induces a cycle in the estimated DAG. If
so, we set φkj = 0 and minimize with respect to φjk. Alternatively, if the edge Xj → Xk

induces a cycle, we set φjk = 0 and minimize with respect to φkj . If neither edge induces a
cycle, we minimize over both parameters simultaneously.

Before we outline the details, let us introduce some functions which will be useful in the
sequel. Define

Q(Φ, R) := L(Φ, R) +
∑
i,j

pλ(|φij |) (24)

to be our objective function for coordinate descent. Note that we have suppressed the
dependence of the log-likelihood on the data X as well as the dependence of the penalty
term on n. In fact, in the computations we may treat n as fixed, so we can absorb this
term into the penalty function pλ. This simply amounts to rescaling the regularization
parameter λ, which causes no problems in computing (Φ̂, R̂). Thus solving (13) is equivalent
to minimizing Q.

Now define the single-variable functions

Q1(φkj) =
1

2

∥∥∥∥∥ρjxj −
p∑
i=1

φijxi

∥∥∥∥∥
2

+ pλ(|φkj |), (25)

Q2(ρj) = −n log ρj +
1

2

∥∥∥∥∥ρjxj −
p∑
i=1

φijxi

∥∥∥∥∥
2

. (26)

The function Q1 is Q(Φ, R) in (24) considered as a function of the single parameter φkj ,
while holding the other p2−1 variables fixed and ignoring terms that do not depend on φkj ,
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Algorithm 1 CCDr Algorithm

Input: Initial estimates (Φ0, R0); penalty parameters (λ, γ); error tolerance ε > 0; maximum
number of iterations M .

1. Cycle through ρj for j = 1, . . . , p, minimizing Q2 with respect to ρj at each step.

2. Cycle through the p(p − 1)/2 blocks {φkj , φjk} for j, k = 1, . . . , p, j 6= k, minimizing
with respect to each block:

(a) If φkj ⇐ 0, then minimize Q1 with respect to φjk and set (φkj , φjk) = (0, φ∗jk),
where φ∗jk = arg minQ1(φjk);

(b) If φjk ⇐ 0, then minimize Q1 with respect to φkj and set (φkj , φjk) = (φ∗kj , 0),
where φ∗kj = arg minQ1(φkj);

(c) If neither 2(a) nor 2(b) applies, then choose the update which leads to a smaller
value of Q.

3. Repeat steps 1 and 2 l times, until either maxj,k |φ
(l−1)
kj − φ(l)

kj | < ε or l > M .

4. Transform the final estimates (Φ̂, R̂) back to the original parameter space (B̂, Ω̂) (see
equation (14)) and output these values.

and Q2 is the corresponding function for the parameter ρj . We express the dependence of
Q1 and Q2 on k and/or j implicitly through their respective argument, φkj or ρj .

An overview of the algorithm is given in Algorithm 1. We use the notation φkj ⇐ 0 to
mean that φkj must be set to zero due to acyclicity, as outlined above. The remainder of
this section is devoted to the details of implementing the above algorithm, which we call
Concave penalized Coordinate Descent with reparameterization (CCDr).

5.2 Coordinate Descent

In what follows, we assume that the data have been appropriately normalized so that each
column xj has unit norm, ‖xj‖2 =

∑
h x

2
hj = 1. Furthermore, although the details of

the algorithm do not depend on the choice of penalty, we will focus on the MCP and `1
penalties, as these are the methods implemented and discussed in Sections 6 and 7.

5.2.1 Update for φkj

Mazumder et al. (2011) show that the minimum of (25) can be found by solving

arg min
β

Q1(β), where Q1(β) :=
1

2
(β − β̃)2 + pλ(|β|). (27)
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The solution to (27) is given by a so-called threshold function which is associated to each
choice of penalty. For the MCP with γ > 1 this is defined by

Sγ(β̃, λ) =


0, |β̃| ≤ λ,
sgn(β̃)

(
|β̃|−λ
1−1/γ

)
, λ < |β̃| ≤ λγ,

β̃, |β̃| > λγ.

(28)

For the `1 penalty, we have

S(β̃, λ) =

{
0, |β̃| ≤ λ,
sgn(β̃)(|β̃| − λ), |β̃| > λ.

(29)

To see how to convert (25) into (27), note that

Q1(φkj) =
1

2

n∑
h=1

ρjxhj −∑
i 6=k

φijxhi − φkjxhk

2

+ pλ(|φkj |) (30)

=
1

2

n∑
h=1

x2
hk

(
1

xhk
r

(h)
kj − φkj

)2

+ pλ(|φkj |),

where r
(h)
kj := ρjxhj−

∑
i 6=k φijxhi. Expanding the square in the last line and using

∑
h x

2
hk =

1,

Q1(φkj) =
1

2

{
n∑
h=1

(r
(h)
kj )2 − 2φkj

n∑
h=1

xhkr
(h)
kj + φ2

kj

}
+ pλ(|φkj |) (31)

=
1

2

(
φkj −

n∑
h=1

xhkr
(h)
kj

)2

+ pλ(|φkj |) + const. (32)

The constant term in (32) does not depend on φkj and hence does not affect the minimization
of Q1. Thus minimizing Q1(φkj) is equivalent to minimizing Q1(β) in (27) with β̃ =∑

h xhkr
(h)
kj . Hence for MCP with γ > 1,

arg minQ1(φkj) = Sγ

(∑
h

xhkr
(h)
kj , λ

)
, (33)

and similarly for the `1 penalty. The existence of a closed-form solution to the single
parameter update for φkj is a key ingredient to our method, and is one of the reasons
we chose the MCP and `1 penalties in our comparisons. Many other penalty functions,
however, allow for closed-form solutions to (27), and our algorithm applies for any such
penalty function.
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5.2.2 Update for ρk

The single parameter update for ρj is straightforward to compute and is given by

arg minQ2(ρj) =
c+
√
c2 + 4n

2
, with c =

∑
i 6=j

φij
∑
h

xhixhj . (34)

Since Q2(ρj) is a strictly convex function, this is the only minimizer.

5.3 Regularization Paths

In practice, it is difficult to select optimal choices of the penalty parameters (λ, γ) in advance.
Thus it is necessary to compute several models at many discrete choices of (λi, γj), and then
perform model selection. In testing, we observed a dependence on the concavity parameter
γ, however, for simplicity we will consider γ fixed in the sequel, and postpone further study
of the method’s dependence on γ to future work.

The regularization parameter λ, on the other hand, has a strong effect on the estimates.
In particular, as λ → ∞, Φ̂(λ) → 0, and as λ → 0 we obtain the unpenalized maximum
likelihood estimates. It is thus desirable to obtain a sequence of estimates (Φ̂(λi), R̂(λi))
for some sequence λi > λi+1 > 0, i = 0, 1, . . . , L. In practice, we will always choose λ0 so
that Φ̂(λ0) = 0, with successive values of λi decreasing on a linear scale. One can easily
check that if we use an initial guess of Φ0 = 0, then the choice λ0 = n1/2 ensures that the
null model is a local minimizer of Q.

Once we have estimated a sequence of models (Φ̂(λi), R̂(λi)), i = 0, 1, . . . , L, we must
choose the best model from these L + 1 models. This is the model selection problem, and
is beyond the scope of this paper. The present work should be considered a “proof of
concept,” showing that under the right conditions, there exists a λ that estimates the true
DAG with high fidelity. The problem of correctly selecting this parameter is left for future
work, but some preliminary empirical analysis is provided in Section 6.5. See Wang et al.
(2007) for some positive results concerning the SCAD penalty, and Fu and Zhou (2013) for
a relevant discussion of some difficulties that are idiosyncratic to structure estimation of
BNs. In particular, it is worth re-emphasizing here that cross-validation is suboptimal, and
should be avoided.

5.4 Implementation Details

As presented so far, the CCDr algorithm is not particularly efficient. Fortunately, there are
several computational enhancements we can exploit to greatly improve the efficiency of the
algorithm. Many of these ideas are adapted from Friedman et al. (2010), and the reader is
urged to refer to this paper for an excellent introduction to coordinate descent for penalized
regression problems.

In implementing the CCDr algorithm, we use warm starts and an active set of blocks as
described in Friedman et al. (2010); Fu and Zhou (2013). We also use a sparse implementa-
tion of the parameter matrix Φ to speed up internal calculations. Naive recomputation of

the n weighted residual factors r
(h)
kj for h = 1, . . . , n for every update incurs a cost of O(np)

operations, which is prohibitive in general, and is the main bottleneck in the algorithm.
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Friedman et al. (2010) observe that this calculation can be reduced to O(p) operations by
noting that the sum in (33) can be written as

n∑
h=1

xhkr
(h)
kj = ρj〈xj , xk〉 −

∑
i 6=k

φij〈xi, xk〉. (35)

The inner products above do not change as the algorithm progresses, and hence can be
computed once at a cost of O(n2 log n) operations. This is a substantial improvement over
several million O(np) computations, which is typical for large p.

Similar reasoning applies to the computation of (34), which highlights why the repara-
meterization (11) is useful: the single parameter update for each ρj only requires O(p)
operations, compared with O(p2) required operations for the standard residual estimate for
ω2
j in the original parameterization. Since we perform p of these updates in each cycle,

we reduce the total number of operations per cycle from O(p3) down to O(p2), which is
a substantial savings. Moreover, by leveraging sparsity, both (33) and (34) become O(1)
calculations when the maximum number of parents per node is bounded.

As stated, our algorithm will take a pre-specified sequence of λ-values and compute an
estimate (Φ̂(λi), R̂(λi)) for all L + 1 choices of λi. In general, we do not know in advance
what the smallest value of λ appropriate for the data is, and we typically choose λL as
some small value. Since the model complexity (in terms of the number of edges) increases
as λ decreases, more and more time is spent computing complex models for small λ. We
can exploit these facts in order to avoid wasting time on computing unnecessarily complex
models. As the algorithm proceeds calculating estimates for each λi, if the estimated number
of edges ŝi := s

B̂(λi)
is too large, we know that we need not continue computing new models

for smaller λ. We can justify this as follows: either the true model is sparse, in which case
we know that complex models with ŝi large can be ignored, or the true model is not sparse,
in which case our algorithm is less competitive. Thus, in this sense, prior knowledge or
intuition of the sparsity of the true model is needed. In practice, we implement this by
halting the algorithm whenever ŝi > αp, where α > 0 is a pre-specified parameter. While
the choice of α should be application driven, we will use α = 3 unless reported otherwise.
In the sequel, α shall be referred to as the threshold parameter.

5.5 Full Algorithm

A complete, detailed description of the algorithm is given in Algorithm 2, including the
implementation details discussed in the previous section. We refer to steps (1-2) of Algo-
rithm 1 as a single “sweep” of the algorithm (i.e. performing a single parameter update for
every parameter in the active set).

Finally, note that it is trivial to adapt the SparseNet procedure from Mazumder et al.
(2011) to our algorithm in order to compute a grid of estimates

(Φ̂(λi, γj), R̂(λi, γj)), i = 0, . . . , L, j = 0, . . . , J,

if one wishes to adjust the γ parameter in addition to λ.
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Algorithm 2 Full CCDr Algorithm

Input: Initial estimates (Φ0
0, R

0
0); sequence of regularization parameters λ0 > λ1 > · · · > λL;

concavity parameter γ > 1; error tolerance ε > 0.

1. Normalize the data so that ‖xj‖2 = 1 and compute the inner products 〈xi, xj〉 for all
i, j = 1, . . . , p.

2. For each λi:

1. If i > 0, set (Φ0
i , R

0
i ) = (Φ̂(λi−1), R̂(λi−1)).

2. Perform a full sweep of all parameters using (Φ0
i , R

0
i ) as initial values, and identify

the active set.

3. Sweep over the active set l times, until either maxj,k |φ
(l−1)
kj −φ(l)

kj | < ε or l > M .

4. Repeat (2-3) m times (using the current estimates as initial values) until the
active set does not change, or m > M .

5. If ŝi > αp, then halt the algorithm. If not, continue by computing
(Φ̂(λi+1), R̂(λi+1)).

3. Transform the final estimates (Φ̂(λi), R̂(λi)) back to the original parameter space
(B̂(λi), Ω̂(λi)) (see equation (14)) and output these values.

6. Numerical Simulations and Results

In order to assess the accuracy and efficiency of the CCDr algorithm, we compared our
algorithm with four other well-known structure learning algorithms: the PC algorithm
(Spirtes and Glymour, 1991), the max-min hill-climbing algorithm (MMHC; Tsamardinos
et al., 2006), Greedy Equivalent Search (GES; Chickering, 2003), and standard greedy hill-
climbing (HC). This selection was based on a pre-screening in which we compared the
performance of several more algorithms in order to select those which showed the best per-
formance in terms of accuracy and efficiency, and is by no means intended to be exhaustive.
We were mainly interested in the accuracy and timing performance of each algorithm as a
function of the model parameters (p, s0, n). Details on the implementations used and our
experimental choices will be discussed in Section 6.1.

Our comparisons thus consist of two score-based methods (GES, HC), one constraint-
based method (PC), and one hybrid method (MMHC). For brevity, in the ensuing discussion
we will frequently refer to both PC and MMHC as constraint-based methods since both
methods employ some form of constraint-based search whereas GES and HC do not. In
order to compare the effects of regularization, we also compared each of these algorithms to
two implementations of CCDr: One using MCP as the penalty (CCDr-MCP), and a second
with the `1 penalty (CCDr-`1). This gives us a total of six algorithms overall. To offer a
sense of scale, the experiments in this section total over 140, 000 individual DAG estimates
for almost 1,000 “gold-standard” DAGs.
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We begin with a comprehensive evaluation in low-dimensions (n ≥ p) of all six algorithms
using randomly generated DAGs, the main purpose of which is to show that hill-climbing
and GES are significantly slower and less accurate in comparison with the other approaches.
This supports our first claim that CCDr represents a clear improvement over existing score-
based methods. We then move onto a similar assessment for high-dimensional data, which
will show the advantages of our method over the constraint-based methods when sample
sizes are limited and the number of nodes increases. Once this has been done, we show
that our method scales efficiently on graphs with up to 2000 nodes as well as discuss some
issues related to model selection and timing. We conclude this section with some detailed
discussions about our experiments.

6.1 Experimental Set-Up

All of the algorithms were implemented in the R language for statistical computing (R Core
Team, 2014). For the PC and GES algorithms, we used the pcalg package (version 2.0-3,
Kalisch et al., 2012), and for the MMHC and HC algorithms we used the bnlearn package
(version 3.6, Scutari, 2010). Both packages employ efficient, optimized implementations of
each algorithm, and were updated as recently as July 2014. At the time of the experiments,
these were the most up-to-date publicly available versions of either package. All of the tests
were performed on a late 2009 Apple iMac with a 2.66GHz Intel Core i5 processor and 4GB
of RAM, running Mac OS X 10.7.5.

For all the experiments described in this section, DAGs were randomly generated ac-
cording to the Erdös-Renyi model, in which edges are added independently with equal
probability of inclusion. In each experiment, an array of values were chosen for each of
the three main parameters: p, s0, and n. For every possible combination of (p, s0, n), N
individual tests were then run with these parameters fixed. For each test, a DAG was ran-
domly generated using the pcalg function randomDAG with p nodes and s0 expected edges,
and then n random samples were generated using the function rmvDAG, according to the
structural model (2). For tests involving different choices of the sample size, the same DAG
was used for each choice of n to generate data sets of different sizes. Since the edges were
selected at random, the simulated DAGs did not have exactly s0 edges, but instead s0 edges
on average. For each simulation, the nonzero coefficients β0

ij were chosen randomly and

uniformly from the interval [0.5, 2] and the error variances were fixed at ω0
j = 1 for all j.

With the exception of HC and GES, each algorithm has a tuning parameter which
strongly affects the accuracy of the final estimates. For CCDr, this is λ, which controls the
amount of regularization, and for PC and MMHC it is α, the significance level. In order
to study the dependence of each algorithm on these parameters, we chose a sequence of
parameters to use for each algorithm. For CCDr, we used a linear sequence of 20 values,
starting from λmax = n1/2. For both PC and MMHC, we used

α ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}.

Our choices for α were motivated by the recommendations in Kalisch and Bühlmann (2007)
and Tsamardinos et al. (2006), respectively, as well as by computational concerns: It was
necessary to use a much smaller sequence for these algorithms since their running times are
significantly longer than CCDr. Furthermore, we found that setting α < 0.0001 results in
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estimates with too few edges, and setting α > 0.05 can lead to runtimes well in excess of
24 hours.

When using the MCP, we must also select the concavity parameter γ in addition to λ.
In order to keep our experiments constrained to a reasonable size, we elected not to study
the effect of this parameter in detail. Based on the extensive evaluations in Zhang (2010),
we chose γ = 2, which was supported by internal tests to gauge the effect of this parameter.
This value represents a fair balance between convexity (γ → ∞) and complexity (γ → 0).
The CCDr algorithm also has three other user-specific parameters: ε, M , and α. Based
on our simulations, ε and M have a minimal impact on the accuracy of the estimates, and
can simply be chosen to be small and large respectively. The default parameters we used
in these simulations were: ε = 10−4, M = p1/2 ∨ 10, and α = 3. Recall that in the full
algorithm (Algorithm 2), for each λi there are at most M2 = p ∨ 100 sweeps. When p is
small a maximum of 100 iterations is more than enough.

Remark 9. Traditionally, the PC algorithm produces either a skeleton or a CPDAG,
depending on how many phases of the algorithm are run (for the definition of a CPDAG
and its relation to the PC algorithm, see Kalisch and Bühlmann, 2007). As discussed in
Rütimann and Bühlmann (2009), however, it is possible to orient a DAG given its CPDAG
using the function pdag2dag from the pcalg package. This works well in practice, although
we found that in some cases the provided method was not able to orient the edges in
the CPDAG successfully. In this case, we were able to compare skeletons but not DAGs
for the PC algorithm. In the analysis, we treated this situation agnostically by ignoring
such problematic estimates and entering them as missing values in the final analysis. This
situation arose in less than 5% of cases, so it was not a significant issue.

6.2 Performance Metrics

Our emphasis will be on the performance of each algorithm with respect to structure learn-
ing; that is, how well each algorithm reconstructs the DAG which is used to generate the
data. Thus for every estimated structure, we compare both the final oriented DAG and its
skeleton (i.e. the undirected graph that results by ignoring the directionality of the edges) to
those of the true DAG. For a directed graph, we distinguish between true edges (or true pos-
itives)—edges which are estimated with the correct orientation—and reversed edges—edges
which are in the skeleton but have the wrong direction. No such distinction can be made for
the skeletons, of course. A false positive is any edge—regardless of directionality—which is
not in the skeleton of the true graph.

We gauge the performance of the algorithms on the following metrics:

1. P = number of estimated (predicted) edges,

2. TP = number of true positives,

3. R = number of reversed edges,

4. FP = number of false positives,

5. SHD of the estimated DAG,
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6. SHD of the estimated skeleton,

7. Test-data log-likelihood,

8. Test-data BIC,

9. Total and average running time in seconds.

SHD refers to the structural Hamming distance, which measures the minimum number of
edge reversals, additions, and/or removals necessary to convert an estimated graph into the
true graph. This is a useful metric since it gives an absolute sense of “how far” away the
estimates are from the true graph. For the precise definition of the structural Hamming
distance, see Tsamardinos et al. (2006). Also, in order to compute the log-likelihood and
BIC, it is necessary to estimate the parameters given the estimated structures, which we did
by simple ordinary linear regression. As p increases the time to compute these parameters
becomes burdensome, and so comparisons of the log-likelihood and BIC were only performed
for the low-dimensional experiments with p ≤ 200. While our primary concern in these
evaluations is accuracy in structure learning, these two metrics give us a sense of the implied
parameter estimation consistency.

We will also sometimes refer to the following common normalizations of the above met-
rics:

1. False discovery rate (FDR) = (R+ FP )/P ,

2. True positive rate (TPR) = TP/T ,

3. False positive rate (FPR) = (R+ FP )/F ,

Here, T is number of edges in the true graph and F = 1
2p(p− 1)−T is the number of edges

absent from the true graph. In some literature, the complement of the false discovery rate
(i.e. 1 − FDR) is sometimes called specificity, while TPR is also variously called recall or
sensitivity.

Finally, when comparing the timing data it is important to recall that each algorithm
computes a different number of estimates: HC and GES only produce one, the implementa-
tions of PC and MMHC used here produce exactly six, and both CCDr approaches produce
up to 20 estimates. Thus it is necessary to consider both the total running time for each
algorithm as well as the average time per estimate, which gives a better sense of the com-
putational complexity of each approach. In the sequel, the total runtime is defined as the
real processor time required to run an algorithm over a full sequence of tuning parameters,
and the average runtime is defined as the total runtime divided by the number of graphs
estimated, i.e., the number of tuning parameters in the sequence.

6.3 Experiments on Random Graphs

In this section we provide detailed results comparing the performance of each algorithm on
randomly generated DAGs, across a wide range of choices of (p, s0, n), using the metrics
described in Section 6.2.

In order to properly compare the algorithms, a single model needed to be selected from
each sequence of estimates generated by each algorithm. To keep things simple, and since
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we have not considered a theoretical analysis of consistent model selection, we simply chose
the most accurate model produced by each algorithm by selecting the DAG estimate with
the smallest SHD. While this may seem artificial, it provides a good assessment of the po-
tential of each approach. This choice of model selection results in DAGs with somewhat low
sensitivity, but nonetheless it still provides a consistent method of comparing the perfor-
mance of different algorithms. In Section 6.5 we will discuss some interesting issues related
to model selection.

6.3.1 Low-Dimensions

We first generated relatively small random graphs along with low-dimensional data sets
according to the following settings:

• p ∈ {50, 100, 200};

• s0/p ∈ {0.2, 0.5, 1.0, 2.0};

• n/p ∈ {1, 5};

• Algorithms: CCDr-MCP, CCDr-`1, GES, HC, MMHC, PC.

For all combinations of (p, s0, n), we ran N = 50 tests each. The result was 600 random
DAGs, 1200 data sets, and 86,400 individual estimates across all six algorithms tested.

The results are shown in Table 1 and Figure 2. For each p, the results are averaged over
all 50 tests and each value of s0 and n. In the low-dimensional regime, it is expected that
constraint-based algorithms will show good performance as the statistical tests on which
they rely are more reliable and consistent when n ≥ p. As expected, in our experiments,
both PC and MMHC produced the most accurate results in this setting (Table 1). This is
further substantiated by the seemingly counterintuitive observation that the performance of
both algorithms improves as p increases; this is explained by recalling that n also increases
as p increases, so for larger p the statistical tests also have increased power.

The score-based algorithms GES and HC, on the other hand, easily perform the worst
in terms of structure learning: these algorithms include far too many edges and as a result
obtain high sensitivity but also high false discovery rates. For example, when p = 200 and
the simulated DAGs had 185 edges on average, both HC and GES estimate well over 500
edges, almost three times the true number, and exhibit false discovery rates greater than
70%. Notwithstanding, GES does noticeably outperform HC, which was anticipated.

Both CCDr methods fall in the middle, with CCDr-MCP outperforming CCDr-`1 by
a few edges in each case. Both methods estimate fewer edges than their score-based
competitors—150 and 140 edges respectively when p = 200—but slightly more than the
constraint-based methods, which estimate 135 edges (PC) and 129 edges (MMHC). This
shows that CCDr represents a clear improvement over both GES and HC, and this is even
without consideration of efficiency, which we will discuss shortly (Section 6.3.3).

The results for the test-data log-likelihood and the BIC score highlight several difficulties
with existing methods which the proposed methods help to overcome. GES and HC both
show higher log-likelihood than the others, and since the results are computed based on
test data, this cannot be attributed to overfitting. What’s more, even though both methods
produce far more edges than the others, they each only estimate roughly 3 edges per node,
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p = 50, T = 46.48 CCDr-MCP CCDr-`1 GES HC MMHC PC

P 26.50 22.98 109.83 113.78 26.46 26.39
TP 14.35 11.86 33.20 27.49 15.88 16.64
R 8.38 7.96 8.19 12.29 9.14 8.26
FP 3.78 3.15 68.44 74.00 1.44 1.48
SHD (DAG) 35.92 37.77 81.72 92.99 32.04 31.32
SHD (skeleton) 27.54 29.81 73.53 80.69 22.89 23.06
TPR 0.31 0.26 0.71 0.59 0.34 0.36
FDR 0.46 0.48 0.70 0.76 0.40 0.37

p = 100, T = 91.48 CCDr-MCP CCDr-`1 GES HC MMHC PC

P 67.14 60.32 241.71 256.20 60.97 60.33
TP 36.40 30.85 74.30 60.24 39.03 39.85
R 18.95 19.87 12.90 23.16 18.71 17.33
FP 11.79 9.60 154.51 172.81 3.22 3.15
SHD (DAG) 66.86 70.23 171.69 204.05 55.67 54.78
SHD (skeleton) 47.91 50.36 158.79 180.88 36.95 37.45
TPR 0.40 0.34 0.81 0.66 0.43 0.44
FDR 0.46 0.49 0.69 0.76 0.36 0.34

p = 200, T = 185.06 CCDr-MCP CCDr-`1 GES HC MMHC PC

P 150.44 140.51 553.78 591.55 134.72 128.73
TP 83.60 73.28 158.38 127.69 90.74 89.23
R 39.05 42.58 22.35 45.65 37.59 34.28
FP 27.79 24.65 373.06 418.21 6.39 5.22
SHD (DAG) 129.24 136.43 399.74 475.58 100.70 96.69
SHD (skeleton) 90.19 93.86 377.39 429.93 63.12 65.25
TPR 0.45 0.40 0.86 0.69 0.49 0.48
FDR 0.44 0.48 0.71 0.78 0.33 0.31

Table 1: Average estimation performance of algorithms in low-dimensions.

which is further evidence that these methods are not necessarily overfitting. Rather, going
back to (7), we see that the log-likelihood is a function of Θ alone, which means the test-
data log-likelihood is not influenced by the accuracy of the graph structure estimated by
an algorithm. This results in two distinct issues in evaluating algorithms on the basis of
test-data log-likelihood:

• Even if ‖Θ̂ − Θ0‖F is small, i.e. Θ̂ is a good estimate of the true parameter, the
estimated equivalence class can still be different from the true equivalence class;

• Even if the equivalence class is correctly estimated, the chosen representation may not
be the sparsest.
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Figure 2: Comparison of test-data log-likelihood and BIC scores (low dimensions). The
data are presented relative to the scores for CCDr-MCP. For log-likelihood, larger
scores (positive values in the plot) are better; for BIC smaller scores (nega-
tive values) are better. (C = CCDr-MCP, L = CCDr-`1, G = GES, H = HC,
M = MMHC, P = PC)

This explains why GES and HC perform the best on this metric: They do a good job
of estimating Θ0, as opposed to a sparse Bayesian network. By contrast, the constraint-
based methods do not use the log-likelihood at all and thus exhibit the worst generalization
in terms of log-likelihood. For methods which estimate approximately the same number
of edges, CCDr-MCP is optimal, falling in between the score-based and constraint-based
approaches (Figure 2). A similar discussion applies to the BIC scores, with the added
complication of the BIC penalty. The fact that GES and HC still perform the best with
respect to BIC—in spite of estimating far too many edges—underscores the fact that the
BIC penalty is too lenient for estimating DAGs. This observation is further substantiated
and discussed in more detail in Section 6.5.

6.3.2 High-Dimensions

In this section we use the same random set-up as in the previous section, however, our focus
is now on high-dimensional estimation. Both HC and GES were omitted in this experiment
because of their poor performance—both in terms of accuracy and timing—in the low-
dimensional setting. This allowed us to scale up the experiments to p = 500. In order to
ensure a reasonable signal was detectable in each test, we fixed n = 50 for the tests. The
following settings were used:

• p ∈ {100, 200, 500};

• s0/p ∈ {0.2, 0.5, 1.0, 2.0};
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• n = 50 fixed for all models;

• Algorithms: CCDr-MCP, CCDr-`1, MMHC, PC.

For all combinations of (p, s0, n), we ran N = 20 tests each, resulting in 240 tests. These
tests give us a better sense of the performance of the algorithms when the sample size is
small relative to p.

The results are shown in Table 2. As before, the results are presented for each value
of p, averaged over all tests and each value of s0 (note that n did not change in these
tests). In contrast to the low-dimensional scenario in which the constraint-based methods
outperform our method, in high-dimensions we begin to see the advantages of CCDr in
structure learning. As p increases and n remains fixed, the gap between CCDr-MCP and
both PC and MMHC increases. In particular, across each value of p, the false discovery
rates for all the methods are comparable, however, the increased sensitivity (true positive
rate) and lower SHD indicates that CCDr-MCP provides a higher quality reconstruction of
the true network. The numbers are illuminating: when p = 500, for graphs which have 460
edges on average, CCDr-MCP estimates approximately 100 more edges while maintaining
roughly the same false discovery rate and including 50-70 more true edges on average.

By comparison, CCDr-`1 estimates fewer edges, obtaining lower sensitivity, and more
closely mirrors the performance of PC and MMHC. This discrepancy in the performance
of concave and `1 regularization in high dimensions highlights the advantages of concave
regularization and supports the conclusions in the literature on sparse regression. This is
not altogether surprising since our framework is closely tied to the Gaussian linear model
and regression analysis.

Comparing Tables 1 and 2 when p = 100, 200, we also see that the CCDr methods
are more robust to smaller sample sizes. When p = 200, for example, the net decrease in
true positives between low- and high-dimensions is roughly 18 edges for CCDr-MCP, 26
edges for CCDr-`1, 46 edges for MMHC, and 42 edges for PC. Similar patterns are observed
for p = 100, and for other metrics as well. This confirms what we already know about
constraint-based methods: they are more reliable when sample sizes are large. Moreover, in
spite of the fact that GES and HC were omitted from the high-dimensional experiments, we
of course do not expect improved performance when n decreases. These observations con-
firm our expectations that regularization can improve the performance of structure learning
algorithms in high-dimensions, with concave regularization providing a noticeable improve-
ment upon `1 regularization.

6.3.3 Timing Comparison

A comparison of the total and average runtimes for all the algorithms is provided by Fig-
ures 3 and 4. The results are displayed graphically here; detailed tables can be found in the
Supplementary Materials (Tables S1 and S2).

In low-dimensions, both GES and HC produce a single DAG estimate and take 15s
and 25s, respectively, to estimate graphs with 200 nodes. This is compared with 3-5s for
both CCDr-MCP and CCDr-`1, in which time both methods compute approximately 20
estimates. Amongst all the compared methods, the fastest alternative is the PC algorithm,
however, the difference in timing is still roughly an order of magnitude: When p = 200, PC
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p = 100, T = 92.31 CCDr-MCP CCDr-`1 MMHC PC

P 52.74 43.95 43.02 43.89
TP 27.59 21.48 23.82 24.12
R 16.95 16.29 16.07 16.19
FP 8.20 6.19 3.12 3.58
SHD (DAG) 72.92 77.03 71.61 71.76
SHD (skeleton) 55.98 60.74 55.54 55.58
TPR 0.30 0.23 0.26 0.26
FDR 0.48 0.51 0.45 0.45

p = 200, T = 181.89 CCDr-MCP CCDr-`1 MMHC PC

P 122.05 97.36 82.71 86.41
TP 65.14 47.40 44.71 46.70
R 35.75 34.89 31.40 33.17
FP 21.16 15.07 6.60 6.54
SHD (DAG) 137.91 149.56 143.78 141.72
SHD (skeleton) 102.16 114.67 112.38 108.55
TPR 0.36 0.26 0.25 0.26
FDR 0.47 0.51 0.46 0.46

p = 500, T = 460.21 CCDr-MCP CCDr-`1 MMHC PC

P 319.94 252.56 195.07 202.64
TP 172.34 121.75 101.49 104.33
R 88.51 89.33 75.50 82.60
FP 59.09 41.49 18.09 15.71
SHD (DAG) 346.96 379.95 376.81 371.60
SHD (skeleton) 258.45 290.62 301.31 289.00
TPR 0.37 0.26 0.22 0.23
FDR 0.46 0.52 0.48 0.49

Table 2: Average estimation performance of algorithms in high-dimensions.

takes a little less than 4s on average for a single estimate, whereas CCDr takes approximately
one-fifth of a second per estimate. This translates to a total runtime of less than 4s for
20 CCDr estimates—faster than the time to compute a single model, on average, for the
PC algorithm. Furthermore, CCDr-MCP is slightly faster than CCDr-`1, although the
difference is small. Similar observations continue to hold in high-dimensions up to the
tested limit of p = 500. Interestingly, both PC and MMHC are significantly faster in high-
dimensions than in low-dimensions (see Tables S1 and S2 in the Supplementary Materials),
which we suspect is due to how these algorithms scale with n: data sets with more samples
require more time to process (see Section 6.6 for more details).

Combined with the improved performance in high-dimensions (Section 6.3.2), these
results support our claim that CCDr is an improvement in both timing and accuracy over
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Figure 3: Timing comparison in low dimensions for all six algorithms (C = CCDr-MCP,
L = CCDr-`1, G = GES, H = HC, M = MMHC, P = PC).
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Figure 4: Timing comparison in high dimensions, excluding GES and HC (C = CCDr-MCP,
L = CCDr-`1, M = MMHC, P = PC).
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existing methods for high-dimensional data when p ≤ 500. To see how CCDr performs when
p > 500, we will show in the next subsection that the CCDr algorithm scales efficiently to
high-dimensional problems with thousands of variables with almost no loss in reconstruction
accuracy.

6.4 Large Graphs

The previous section offered a detailed assessment of the performance of the CCDr algorithm
when p ≤ 500. In order to test how our algorithm scales as the number of nodes increases,
we ran further tests up to p = 2000 using CCDr-MCP. The purpose of these tests is to show
how the proposed method scales as p increases in terms of timing and accuracy. Since the
timing is acutely dependent on the relationship between the dimension, the sparsity of the
true graph, and the number of samples, we opted to compare the timing over random choices
of the latter two parameters. This also gives us a sense of how the algorithm performs when
faced with a more realistic scenario in which the relationship between p, s0, and n can be
unpredictable. Specifically, we ran N = 20 tests with the following parameters:

• p ∈ {100, 200, 500, 1000, 1500, 2000};

• s0/p ∈ {0.2, 0.3, 0.4, . . . , 2};

• n/p ∈ {0.1, 0.2, 0.3, . . . , 5}.

The parameters s0 and n were chosen randomly from the above sets in each test, which
resulted in an average sparsity level of s0/p = 1.06. The results are displayed in Table 3
and Figure 5. Since the timing of the algorithm depends crucially on the total number of
models estimated, and also on the threshold parameter α, we have plotted both the total
and average runtimes for two scenarios: The time it took to estimate DAGs with up to p
edges, and then the full running time with the edge threshold set at α = 3. When p = 1000,
the total running time is just under six minutes, with an average time per model of about
20 seconds. When p = 2000, the total running time is just under thirty minutes, with an
average time per model of about 85 seconds.

In terms of accuracy, Table 3 shows that the results are comparable to those in Sec-
tion 6.3. Furthermore, as p increases we notice that TPR increases while FDR decreases,
which is likely due to the increased number of samples (on average) as p increases; when
p = 100, there were n = 114 samples on average vs. n = 2260 when p = 2000. Combined
with the timing data in Figure 5, this confirms that CCDr scales efficiently in terms of both
n and p when the underlying graph is sparse.

After these experiments in this work were completed, the performance of our method
was further improved, so that the total runtime for p = 2000 is now less than five minutes.1

These changes were made to the underlying codebase, and not to the algorithm, thus the
improvements were purely in terms of code efficiency. Using this updated implementation,
we can report that our method has been successfully tested on graphs with up to 8000
nodes, with comparable accuracy to the results exhibited in Table 3. The total runtime
for 20 estimates was 75 minutes, which may be compared with the 13 days reported for

1. A comprehensive comparison of the updated implementation vs. the numbers reported here can be found
in Figure S1 in the Supplementary Materials.
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Number of nodes (p) 100 200 500 1000 1500 2000

Number of samples (n) 114 190 520 1280 1470 2260
T 83.15 237.15 538.15 1186.35 1550.15 2057.95
P 66.15 191.90 488.30 1082.20 1434.20 1926.90
TP 36.15 111.50 279.80 636.70 854.25 1156.10
R 20.75 46.45 115.80 226.45 323.75 447.90
FP 9.25 33.95 92.70 219.05 256.20 322.90
SHD (DAG) 56.25 159.60 351.05 768.70 952.10 1224.75
SHD (skeleton) 35.50 113.15 235.25 542.25 628.35 776.85
TPR 0.43 0.47 0.52 0.54 0.55 0.56
FDR 0.45 0.42 0.43 0.41 0.40 0.40

Table 3: Average estimation performance of CCDr-MCP from Section 6.4, averaged over
N = 20 random choices of s0 and n for each p.
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Figure 5: Timing data for CCDr-MCP up to p = 2000. The solid line is the total runtime
and the dashed line is the average runtime. (left) Time to estimate graphs with
at most p edges; (right) Full runtime with edge threshold α = 3.
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MMHC on a graph with p = 5000 in Tsamardinos et al. (2006). Regarding the internal
implementation of our method, we did not make use of an internal cache, memoization, or
efficient data structures (i.e. besides standard vectors), all of which are common strategies
used in existing methods. It stands to reason that an optimized implementation would yield
even faster results. For instance, we perform the acyclicity check statically with each edge
addition; one could imagine a more sophisticated strategy such as incremental topological
sorting would lead to significant performance enhancements.

6.5 Model Selection

Thus far, we have used the “best estimate” according to distance from the true graph,
measured by SHD, in order to select models from the estimated solution paths for CCDr,
MMHC, and PC. This choice provides a consistent comparison, but results in relatively
sparse estimates since missing edges are penalized equally against false positives. One of
the advantages of CCDr is that it is able to estimate models with higher sensitivity much
more efficiently than PC or MMHC. Alternatively, one could use empirical model selection
techniques such as BIC or cross-validation. It has already been noted that these empirical
model selection techniques are suboptimal in high-dimensions, particularly for graphical
models. This has been previously reported in the literature, see for instance Fu and Zhou
(2013). Here we briefly discuss the results of some tests to confirm this behaviour for our
method.

Using both conventional BIC and the extended BIC for high-dimensional problems de-
veloped in Foygel and Drton (2010), we selected the tuning parameters for CCDr-MCP,
CCDr-`1, PC, and MMHC. The results confirm that BIC tends to select models with too
many edges by insufficiently penalizing the model complexity, consistent with Figure 2.
One may ask if all the algorithms suffer equally, and the answer is no. For the reasons
already discussed, we were not able to test the performance of either PC or MMHC for
α > 0.05, which is the regime in which more edges tend to be selected. Thus, in using BIC
to select the significance level, the maximum value of α = 0.05 was over-represented. We
suspect that if we had run PC and MMHC with α > 0.05 in order to produce estimates
with extraneous edges, BIC would also select these models. As a result of these limitations,
in selecting models based on BIC, CCDr appeared to perform worse relative to either PC
or MMHC than reported in previous sections.

To correct for this, we ran the same model selection test using BIC as the selection
criterion, but this time restricting the set of CCDr candidates to those with at most as
many edges as the most produced by either the PC algorithm or the MMHC algorithm.
Using the same data as in Section 6.3.1, the results resemble those previously reported
(Table S3 in the Supplementary Materials). Across the board, graphs with more edges
were selected, but the qualitative observations between CCDr and PC / MMHC remain the
same.

6.6 Further Discussion

The experiments and results described already, while providing a general overview of the
performance of the algorithms tested, also raise several questions which we address briefly
in this section.
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While we tested a variety of sparsity levels in Section 6.3, we have not provided a de-
tailed assessment of how the performance of the algorithms varies as the sparsity increases
or decreases. An analysis of the effect of sparsity shows that the same qualitative behaviour
observed in Sections 6.3.1 and 6.3.2 persists (see Figures S3 and S4 in the Supplementary
Materials). We do observe a small decrease in reconstruction accuracy for the CCDr meth-
ods when the graph is more dense (s0/p = 2); improving our method when the true graph
is more dense remains for future work.

For the CCDr algorithm, in order to provide a reasonable balance of complexity and
efficiency in the resulting estimation problem, we fixed γ = 2. Nonetheless, this parameter
was observed to have a non-negligible effect on the results and a more in-depth study in the
future would account for the effect of this parameter. Another parameter which we have not
discussed is the maximum neighbourhood size in the true graph, which we controlled in our
simulations by controlling the expected neighbourhood size. Keeping the neighbourhoods
small is critical for keeping the running time of the PC algorithm reasonable. Further
simulations in which we allowed each node to have arbitrarily many parents showed that
the running time of the CCDr algorithm does not depend on this parameter. Moreover,
restricting the maximum size of the conditioning sets used in the conditional independence
tests in the PC algorithm, as suggested by the work of Anandkumar et al. (2012), also
had a negligible effect. Finally, both PC and MMHC show relatively poor computational
complexity with respect to the sample size n, with more instances requiring more time
to process. Our tests indicate that the complexity of CCDr is essentially independent of
n—the only dependence on sample size enters through the computation of the correlation
matrix in the first step.

7. Real Networks

While the random set-up in the previous section provided a convenient setting to test many
random structures quickly and efficiently, random graphs may not be good representatives
of realistic network structures. For this reason, we augmented these experiments with
tests on real network structures, using both simulated and scientific (unsimulated) data.
Our first experiment uses network structures from the Bayesian Network Repository,2 a
standardized collection of networks which is commonly used as a benchmark for structure
learning methods, as well as a simulated scale-free network. In order to assess the impact of
these methods on actual scientific data, we also compare the performance of the algorithms
on the well-known flow cytometry data set (Sachs et al., 2005).

7.1 Bayesian Network Repository

All of the networks examined in this experiment were loaded using the bnlearn package.3

We then used the graph structures to generate data according to a structural equation model
as in the previous section. Furthermore, in order to keep the focus on high-dimensional
estimation, we fixed the number of samples at n = 50, which narrowed the choice of networks
to those that satisfy p > 50. Seven such network structures were tested, to which we added

2. The original repository can be found at: http://www.cs.huji.ac.il/site/labs/compbio/Repository/.
3. A mirror of the repository used by the bnlearn package can be found at: http://www.bnlearn.com/

bnrepository/.
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one randomly generated scale-free structure with 200 nodes. The scale-free network was
created using the igraph package. For each network, we generated random coefficients in
the interval [0.5, 1] for each edge and generated a single random data set with unit variances
for testing. This procedure was replicated N = 50 times, and the number of true positives
and false positives were tracked for each algorithm. We also increased the length of the
regularization path used for the CCDr methods to 50 estimates while keeping both PC
and MMHC fixed at six estimates for each graph. Based on the results in the previous
section—particularly with respect to timing—both HC and GES were excluded from these
tests.

We have already observed in Section 6.5 how traditional model selection techniques such
as BIC and cross-validation perform poorly. For this reason, we chose to present the results
graphically by their ROC curves in order to compare the true positive rate against the
false positive rate as a function of the tuning parameters. The resulting ROC curves are
displayed in Figure 6.

In terms of reconstruction accuracy, with only one exception, we see that the CCDr
methods perform as well or better than the other methods in these experiments. Consistent
with the previously reported experiments on random graphs, the CCDr methods tend to
show higher sensitivity with comparable false positive rates in high dimensions. In some
cases the improvements are dramatic—for instance, pathfinder, scalefree, and pigs.
The one exception is the win95pts network, in which the PC algorithm attains slightly
higher sensitivity and lower FDR compared with the CCDr methods as well as MMHC.
These results further highlight the tradeoffs in learning between each approach and confirm
the patterns observed previously in the literature: constraint-based methods tend to miss
edges in the true skeleton, resulting in lower false discovery rates and lower sensitivity,
whereas regularization tends to increase overall sensitivity with the risk of higher false
positive rates if the amount of regularization is not calibrated properly.

More interesting is the comparison between CCDr-MCP and CCDr-`1. Compared with
the simulation results in Section 6, there is a more pronounced difference between the
performance of concave vs `1 regularization, with the former outperforming the latter. This
is most visible in the hailfinder and pigs networks, where both methods show comparable
sensitivity but CCDr-MCP exhibits lower false positive rates. The only network in which `1
regularization is preferable is pathfinder, where CCDr-`1 obtains higher sensitivity later
in the solution path.

Consistent with the previous experiments, however, the main advantages of CCDr come
in the form of efficiency: Figure S2 in the Supplementary Materials contains a comparison
of runtime for each network and method. Unlike in the previous experiments, for these
experiments the estimated solution path for the CCDr methods was 2.5 times longer, with
up to 50 estimates per solution path. Notwithstanding, the CCDr methods were consistently
the fastest. For example, using PC and MMHC, the pathfinder network with p = 135
nodes took 110x and 150x longer on average per estimate to compute, respectively. At the
other end of the spectrum, the hardest graph to reconstruct was the pigs network, which
took 39s for CCDr-MCP, 29s for CCDr-`1, 71s for PC, and 147s for MMHC. In both cases
CCDr-MCP easily did the best job reconstructing the true networks.
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Figure 6: ROC curves for real networks (black © = CCDr-MCP, red 4 = CCDr-`1, blue
× = MMHC, green + = PC).

7.2 Application to Real Data

We analyzed the well-known flow cytometry data set, generated by Sachs et al. (2005),
which has been previously analyzed by Fu and Zhou (2013); Shojaie and Michailidis (2010);
Friedman et al. (2008) among others. The data set contains n = 7466 measurements of
p = 11 continuous variables corresponding to proteins and phospholipids in human immune
system cells. The underlying network, constructed through a careful series of biological
experiments, has s0 = 20 edges, and represents a gold-standard for comparison currently
accepted by the biology community. Hereafter, we regard this consensus network as the true
network in order to assess the algorithms. While this data set is hardly high-dimensional,
it represents one of the few continuous data sets for which we have oracular knowledge of
the true underlying DAG as well as real data from which to infer the true structure.

The original data set contains a mixture of both observational and experimental data.
Since the methods presented here assume the data are normally distributed, we first tested
the original continuous variables for normality, and much as expected the data were highly
non-normal. To correct for this, we applied a logarithm transform, which produced variables
that were much closer to Gaussian. This data set was used for our tests on continuous data.

We also analyzed a discretized version of the data set containing n = 5400 measurements,
created by transforming the continuous data into three nonnegative levels which correspond
to high, medium, and low, so that magnitudes were partially preserved (Sachs et al., 2005).
This data set is especially interesting for a number of reasons. First, it represents a test
of model misspecification: Our method was developed for continuous data, but nothing
prevents us from naively feeding this data set into the algorithm. By treating the three
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levels as numeric values (high = 2, medium = 1, low = 0), we can compute the correlation
matrix and proceed with the second and third steps in Algorithm 2. Since the data are
clearly not Gaussian, the results of this test give us a sense of how well our method performs
on discrete, non-Gaussian data. Second, as a result of postprocessing to clean up the data
as well as the discretization itself, it is much less noisy than the original data set, which
provides an interesting side-by-side comparison.

A few changes were made to the set-up used in previous experiments. First, since the
number of variables was small, it was feasible to run the constraint-based methods on a
longer sequence of significance levels. Thus, we used a sequence of 10 levels:

α ∈ {10−6, 5× 10−6, 10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 0.01, 0.05}.

Furthermore, in a majority of the tests we ran, the PC algorithm was unable to orient all
the edges in the final step, leading to a partially directed graph (formally a CPDAG, see
Remark 9). As a result, we had to modify our metrics to allow for undirected edges. We did
this favourably for the PC algorithm by counting an undirected edge as a true edge as long
as the same edge exists in the skeleton of the true graph. Any edge that was successfully
oriented by the PC algorithm was treated as a directed edge. Finally, we split each data set
in half in order to obtain a testing data set on which to compute the log-likelihood of the
estimated models. Since the PC algorithm was not able to estimate DAGs, log-likelihood
scores could not be computed for the continuous data set.

Tables 4 and 5 summarize the results for a sample run, which are indicative of the
general behaviour when different random splits are tested. Instead of selecting the best
estimates as in Section 6, we chose estimates with comparable numbers of edges, selected
to match the true graph as closely as possible with s0 = 20. The results for CCDr-MCP are
visualized in Figure 7. Both GES and HC consistently estimated too many edges, which
matches the behaviour observed in Section 6.3.1. For the continuous data set, CCDr-MCP
and MMHC perform the best with almost identical metrics, while for the discrete data set
CCDr-MCP is clearly optimal with fewer false positives and smaller SHD across the board.
This indicates that even though this method was developed with continuous Gaussian data
in mind, it can still be applied to discrete data with reasonable results.

Due to the small size of the graph with only p = 11 nodes, the differences in timing are
largely negligible, taking fractions of a second to complete. Because of this, the processor
time is subject to fluctuations in low-level bottlenecks most likely unrelated to the core
algorithms themselves, and so we do not report exact times here. At a high level we did
observe that HC and GES show much improved performance relative to PC and MMHC,
however, the CCDr methods are still consistently the fastest.

8. Conclusion

We have introduced a general penalized likelihood framework for estimating sparse Bayesian
networks, along with a fast algorithm that is easily implemented on a personal computer.
In the finite dimensional scenario, the resulting estimator has good theoretical properties.
Through a series of tests designed to test the limits of this new algorithm, we have shown
that our approach accurately estimates networks with 2000 nodes while scaling efficiently
to handle networks with up to 8000 nodes. The proposed method is compatible with high-
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p = 11, T = 20 CCDr-MCP CCDr-`1 GES HC MMHC PC

P 20 20 41 38 20 20
TP 7 7 9 10 7 7
R 2 1 7 6 2 2
FP 11 12 25 22 11 11
SHD (DAG) 24 25 36 32 24 25
SHD (skeleton) 22 24 29 26 22 22
Test Log-likelihood -2.05 -2.19 -0.34 -1.09 -2.03 —

Table 4: Structure estimation performance for all algorithms using the log-transformed con-
tinuous cytometry data.

p = 11, T = 20 CCDr-MCP CCDr-`1 GES HC MMHC PC

P 20 20 43 35 20 20
TP 6 3 13 7 3 6
R 5 6 4 7 5 2
FP 9 11 26 21 12 12
SHD (DAG) 23 28 33 34 29 26
SHD (skeleton) 18 22 29 27 24 24
Test Log-likelihood -0.68 -1.86 -0.10 0.18 -2.32 -2.01

Table 5: Structure estimation performance for all algorithms using discretized cytometry
data.
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Figure 7: Comparison of the consensus network (left) against the DAGs estimated by the
CCDr-MCP algorithm for both data sets: (middle) Log-transformed continuous
data set; (right) Discretized data set.

dimensional data where p � n, and outperforms many existing methods in both speed
and accuracy in this regime. Tests on real networks have validated the performance and
applicability of this method in a variety of domains.
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Our focus in this work has been on structure recovery, which is closely related to statisti-
cal inference and should not be confused with the complementary problem of prediction. For
this reason, the metrics we employed require knowledge of the true underlying graph. Alter-
natively, one could inquire into the predictive performance and generalizability of learning
methods, in which case metrics such as the prediction loss and test-data likelihood can be
assessed without prior knowledge of the true graph. Indeed, our simulations indicate that
existing score-based methods such as GES may perform better with respect to such predic-
tive metrics. We have already discussed in Section 6.3.1 why this may be, and it remains
for future work to study this phenomenon in more depth.

While we have focused on the use of cyclic coordinate descent to minimize the penalized
log-likelihood, it would be interesting to compare more sophisticated optimization tech-
niques such as adaptive and stochastic coordinate descent. It also remains to incorporate
prior knowledge either via whitelists and blacklists, or through a more sophisticated hybrid
Bayesian approach. As nonconvex optimization is a rapidly developing field of study, the
methods presented here merely scratch the surface of how such techniques can be applied to
the structure learning problem for Bayesian networks. An R package which implements the
proposed algorithm along with some of these improvements is currently under development.

The central theme of exploiting convexity to solve nonconvex problems is an intriguing
prospect for the development of new algorithms in statistics and machine learning. Indeed,
the main difficulties with nonconvex regularization are computational in nature. Although
recent progress has broken this barrier in the case of least squares regression, to our knowl-
edge the algorithm presented here is one of the first to approximate this type of nonconvex
optimization problem when p is in the thousands. Moreover, since our method revolves
around a continuous optimization problem, we avoid approaches that rely on individual
edge additions and removals, which are intrinsically discrete. As a result, future advances
in nonconvex optimization will directly affect how we solve the maximum likelihood problem
presented here.
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Appendix A. Proofs of Main Results

We collect here the proofs of our main results.

A.1 Formal Preliminaries

Conceptually our theory is quite simple: we have a function F on Rp2 which we would like
to maximize over a subset defined by the space of DAGs, D. In order to properly specify a
topology for this space, and to ensure that the translation between our statistical model for
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(B,Ω) and the mathematical model for ν is coherent, we carefully outline the mathematical
set-up here.

Given a DAG (B,Ω), consider the reparameterization (Φ, R) given by

Φ = BΩ−1/2 (36)

R = Ω−1/2. (37)

This is of course just the matrix version of the reparameterization that leads to (11). Now
define the following function which maps (Φ, R) ∈ Rp×p × Rp×p into Rp2 :

ν(Φ, R) = vec(U) = (u1, . . . , up), where U = [u1 | . . . |up] = R+ Φ.

Recall that Φ has zeroes on the diagonal and R is a diagonal matrix, so that the sum
U := R + Φ has the same number of nonzero entries as R and Φ separately. Furthermore,
the sparsity pattern of the off-diagonal elements of U exactly matches that of Φ.

In the proofs, when there is no confusion we will simply write ν = U = (Φ, R) =
(B,Ω) to mean that these are all equivalent representations of the same DAG in various
parameterizations. In particular, for any ν0 ∈ E0, we have ν0 = U0 = (Φ0, R0) = (B0,Ω0).
Mathematically, we will work with ν, however, our results should always be interpreted in
terms of the original model (B,Ω).

The space of DAGs is formally defined as follows:

D :=
{
ν = ν(Φ, R) ∈ Rp

2
: Φ ∈ Rp×p is a DAG, ρj > 0 for all j

}
.

This space inherits its topology from the ambient space Rp2 , and it is this space on which
we wish to maximize the function F (ν) = `n(ν)− npλn(ν).

A.2 Proof of Theorem 2

We begin by formalizing some of the background material on the Cholesky decomposition
used in Section 2.3, which will also be used in the proof of Lemma 4. First recall the
following standard result:

Lemma 8. For any symmetric positive definite matrix A ∈ Rp×p and permutation π ∈ P,
the Cholesky decomposition A = LDLT satisfies

PπA = (PπL)(PπD)(PπL)T ,

where L is lower triangular and D is a diagonal matrix.

Now suppose Θ is given and use the Cholesky decomposition to write Θ = Θ(L,D) as
in (9). Then, taking A = Θ(L,D) in Lemma 8, we obtain PπΘ(L,D) = Θ(PπL,PπD).
Alternatively, suppose (B,Ω) ∈ E(Θ) and suppose π ∈ P is compatible with (B,Ω). Since
PπB is lower-triangular, by taking A = Θ(PπB,PπΩ), we may similarly deduce

Pπ−1Θ(PπB,PπΩ) = Θ(B,Ω) =⇒ Θ(PπB,PπΩ) = PπΘ(B,Ω).

This proves the following lemma, which will be useful:
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Lemma 9. Let (B,Ω) be a DAG. For any permutation π ∈ P that is compatible with (B,Ω),
we have

PπΘ(B,Ω) = Θ(PπB,PπΩ).

We now prove Lemma 4, which will be used in the proof of Theorem 2.

Proof of Lemma 4 We only prove this for the original parameterization (B,Ω); the
reparameterized case is similar.

Since B1 and B2 have a common topological sort, there is a permutation π of the
vertices that orders B1 and B2 simultaneously, so that PπB1 and PπB2 are both strictly
lower triangular. Suppose then that Θ(B1,Ω1) = Θ(B2,Ω2) := Θ̃, so that (using Lemma 9
above)

PπΘ(B1,Ω1) = PπΘ(B2,Ω2)

⇐⇒ Θ(PπB1, PπΩ1) = Θ(PπB2, PπΩ2)

⇐⇒ (I − PπB1)(PπΩ1)−1(I − PπB1)T = (I − PπB2)(PπΩ2)−1(I − PπB2)T .

The last expression is equal to PπΘ̃, which is a symmetric positive definite matrix. By the
uniqueness of the Cholesky factorization, we must have

I − PπB1 = I − PπB2

(PπΩ1)−1 = (PπΩ2)−1,

which implies

B1 = B2, Ω1 = Ω2.

Since B1 was assumed to be distinct from B2, this contradiction establishes the desired
result.

Proof of Theorem 2 Suppose ν0 ∈ E0 with bn(ν0) → 0. It suffices to check Conditions
(A)-(C) from Fan and Li (2001), which are simply the standard regularity conditions for
asymptotic efficiency of ordinary maximum likelihood estimates. Model identifiability is
not an issue since the same analysis can be carried out for any equivalent parameter (see
Section 4.1). Since the densities f(· |ν) are Gaussian, the only condition that needs to be
checked is that the Fisher information is positive definite at ν0 restricted to the DAG space
D. Theorem 2 will then follow immediately from Theorem 1 in Fan and Li (2001).

Let I(ν0) denote the usual Fisher information matrix at this point; we will show that
I(ν0) is positive definite. Since f is always a Gaussian density, it will suffice to show that
f(· |ν) 6= f(· |ν0) for ν in a sufficiently small neighbourhood of ν0.

Now suppose ν = (Φ, R) is in an arbitrarily small neighbourhood of ν0 = (Φ0, R0).
Then it must hold that φij 6= 0 whenever φ0

ij 6= 0. Indeed, otherwise

‖Φ− Φ0‖2 ≥ (φij − φ0
ij)

2 = |φ0
ij |2.
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Thus, φ0
ij 6= 0 implies φij 6= 0, or i → j in Φ0 implies i → j in any DAG close to Φ0. In

particular, Φ contains all the edges (including orientation) in Φ0, with the possible addition
of extra edges. That is, Φ0 is a subgraph of Φ. It follows that there is an ordering of the
vertices that is compatible with Φ and Φ0 simultaneously. Since Φ 6= Φ0, it follows from
Lemma 4 that Θ(ν) 6= Θ(ν0), whence f(· |ν) 6= f(· |ν0).

Proof of Lemma 5 Note that Lemma 1 implies that the equivalence class E0 is finite. Set
ε = minν0∈E0 mini,j{|φ0

ij | : φ0
ij 6= 0} > 0. Then if ‖Φ− Φ0‖ ≤ ‖ν − ν0‖ < ε, the arguments

in the proof of Theorem 2 guarantee the existence of an ordering that is compatible with Φ
and Φ0, and the result follows from Lemma 4.

A.3 Proof of Theorem 6

Instead of directly proving Theorem 6, we will prove a slightly more general statement under
weaker assumptions. Theorem 6 will then follow as a special case.

The following technical lemmas ensure that the objective function F (ν) is well-behaved
with respect to taking limits. The first is a standard application of the uniform law of large
numbers (see, for example, Ferguson, 1996, §16) and the second is a direct consequence of
concavity.

Lemma 10. Fix ν0 and suppose νn is a sequence with ‖νn − ν0‖ = o(1). If the empirical
log-likelihood `n(ν) is continuous for all n, then

P

(
lim
n→∞

1

n
`n(νn) = lim

n→∞

1

n
`n(ν0)

)
= 1.

Lemma 11. Suppose that pλ(t) is nondecreasing and concave for t ≥ 0 with pλ(0) = 0. If
lim supn τ(λn) < ∞, then for any x0 > 0 there exists a constant C, depending only on x0,
such that

|pλn(x)− pλn(x0)| ≤ C|x− x0| for all x ≥ 0 and all n.

Recall that f(n) = ω(g(n)) ⇐⇒ g(n) = o(f(n)), that is, for every C > 0,

f(n) ≥ Cg(n) for all large n.

As in Section 4, we use ν̂n and ν̂∗n to denote the local maximizers close to ν0 and ν∗,
respectively, whose existence is guaranteed by Theorem 2.

Theorem 12. Suppose that pλ(t) is nondecreasing and concave for t ≥ 0 with pλ(0) = 0.
Let ν0 ∈ E0 be a DAG with strictly more edges than ν∗. Assume further that the conditions
for Theorem 3 hold for both ν0 and ν∗. If

1. cn(ν∗) = τ(λn) +O(n−1/2) and cn(ν0) = τ(λn) +O(n−1/2),

2. lim supn τ(λn) <∞,

2322



Concave Penalized Estimation of BNs

3. τ(λn) = ω(n−1/2),

then for every ε > 0,

P (`n(ν̂∗n)− n pλn(ν̂∗n) > `n(ν̂n)− n pλn(ν̂n)) ≥ 1− ε for sufficiently large n.

Proof Since we assume Theorem 3 holds for both ν0 and ν∗, we may assume without loss
of generality that supp(ν̂∗n) = supp(ν∗) and supp(ν̂n) = supp(ν0).

Since `n is continuous for each n, ‖ν̂n−ν0‖ = OP (n−1/2), and ‖ν̂∗n−ν∗‖ = OP (n−1/2),
Lemma 10 implies that

1

n
(`n(ν̂n)− `n(ν̂∗n))→ 0

almost surely. It is easy to show that in fact n−1(`n(ν̂n)− `n(ν̂∗n)) = OP (n−1/2).
It will suffice to show that for any ε > 0, there exists an N such that for all n > N , we

have

P

(
pλn(ν̂n)− pλn(ν̂∗n)− 1

n
(`n(ν̂n)− `n(ν̂∗n)) > 0

)
≥ 1− ε.

Given ε > 0, there exists M > 0 such that

P

(
1

n
(`n(ν̂n)− `n(ν̂∗n)) ≤Mn−1/2

)
≥ 1− ε,

so that it suffices to check that pλn(ν̂n)− pλn(ν̂∗n) > Mn−1/2 for sufficiently large n.
Lemma 11 implies that for each φ0

ij 6= 0,

|pλn(φ̂0
ij)− pλn(φ0

ij)| ≤ C|φ̂0
ij − φ0

ij | = O(n−1/2),

and similarly for all φ∗ij 6= 0. Thus we can write pλn(ν̂n) = pλn(ν0) + OP (n−1/2) and
similarly for ν̂∗. It thus suffices to show that

pλn(ν0)− pλn(ν∗) = ω(n−1/2).

Now, using Condition 1,

pλn(ν0)− pλn(ν∗) =
∑
φ0ij 6=0

pλn(|φ0
ij |)−

∑
φ∗ij 6=0

pλn(|φ∗ij |)

≥ s0cn(ν0)− s∗τ(λn) + s∗τ(λn)−
∑
φ∗ij 6=0

pλn(|φ∗ij |)

= (s0 − s∗)τ(λn) +O(n−1/2) +
∑
φ∗ij 6=0

(τ(λn)− pλn(φ∗ij))

≥ (s0 − s∗)τ(λn) +O(n−1/2).

Since τ(λn) = ω(n−1/2) (Condition 3), it follows that pλn(ν0) − pλn(ν∗) ≥ ω(n−1/2), from
which the claim follows.

Proof of Theorem 6 Condition 3 in Theorem 12 is equivalent to τ(λn)/n−1/2 →∞, and
Theorem 6 follows as a special case since the equivalence class E0 is finite.
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Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coordi-
nate optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the Graphical Lasso. Biostatistics, 9(3):432–441, 2008.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1, 2010.

Fei Fu and Qing Zhou. Learning sparse causal Gaussian networks with experimental in-
tervention: Regularization and coordinate descent. Journal of the American Statistical
Association, 108(501):288–300, 2013.

Fei Fu and Qing Zhou. Penalized estimation of sparse directed acyclic graphs from categor-
ical data under intervention. arXiv Preprint arXiv:1403.2310, 2014.
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Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H Maathuis, and Peter
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Philipp Rütimann and Peter Bühlmann. High dimensional sparse covariance estimation via
directed acyclic graphs. Electronic Journal of Statistics, 3:1133–1160, 2009.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan.
Causal protein-signaling networks derived from multiparameter single-cell data. Science,
308(5721):523–529, 2005.

Mark Schmidt, Alexandru Niculescu-Mizil, and Kevin Murphy. Learning graphical model
structure using L1-regularization paths. In AAAI, volume 7, pages 1278–1283, 2007.

Marco Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statis-
tical Software, 35(i03), 2010.

Marco Scutari. Bayesian network constraint-based structure learning algorithms: Par-
allel and optimised implementations in the bnlearn R package. arXiv Preprint
arXiv:1406.7648, 2014.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-
Gaussian acyclic model for causal discovery. The Journal of Machine Learning Research,
7:2003–2030, 2006.

Ali Shojaie and George Michailidis. Penalized likelihood methods for estimation of sparse
high-dimensional directed acyclic graphs. Biometrika, 97(3):519–538, 2010.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs.
Social Science Computer Review, 9(1):62–72, 1991.
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Abstract

Motivated by problems in insurance, our task is to predict finite upper bounds on a future draw from
an unknown distribution p over natural numbers. We can only use past observations generated indepen-
dently and identically distributed according to p. While p is unknown, it is known to belong to a given
collection P of probability distributions on the natural numbers.

The support of the distributions p ∈ P may be unbounded, and the prediction game goes on for
infinitely many draws. We are allowed to make observations without predicting upper bounds for some
time. But we must, with probability 1, start and then continue to predict upper bounds after a finite
time irrespective of which p ∈ P governs the data.

If it is possible, without knowledge of p and for any prescribed confidence however close to 1, to come
up with a sequence of upper bounds that is never violated over an infinite time window with confidence
at least as big as prescribed, we say the model class P is insurable.

We completely characterize the insurability of any class P of distributions over natural numbers
by means of a condition on how the neighborhoods of distributions in P should be, one that is both
necessary and sufficient.

Keywords: insurance, `1 topology of probability distributions over countable sets, non-parametric
approaches, prediction of quantiles of distributions, universal compression

1. Introduction

Insurance is a means of managing risk by transferring a potential sequence of losses to an insurer for
a price paid on a regular basis, the premium. The insurer attempts to break even by balancing the
possible loss that may be suffered by a few with the guaranteed premiums of many. We aim to study the
fundamentals of this problem when the losses can be unbounded and a precise model for the probability
distribution of the aggregate loss in each period either does not exist or is infeasible to get.

A systematic, theoretical, as opposed to empirical, study of insurance goes back to 1903 when Filip
Lundberg defined a natural probabilistic setting as part of his thesis—see, e.g., the chapter on Lundberg
in Englund and Martin-Löf (2001). In particular, Lundberg formulated a collective risk problem pooling
together the risk of all the insured parties into a single entity, which we call the insured. A substantial
part of statistical work on insurance depend on working with specific models for the loss distribution,
e.g. compound Poisson models, after which questions of interest in practice, such as the relation between
the size of the premiums charged and the probability of the insurer going bankrupt, can be analyzed.

c©2015 Narayana Santhanam and Venkat Anantharam.
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A rather comprehensive theory of insurance along these lines has evolved, see Cramer (1969) and more
recently in Asmussen and Albrecher (2010). This theory is able to incorporate several model classes for
the distribution of the losses over time other than compound Poisson processes, including some heavy
tailed distribution classes.

We will outline our approach in the next subsection. In addition, from a learning theory perspective,
our formulation is positioned in between the notions of uniform and pointwise consistency as we outline
in subsection 1.2. Finally, in subsection 1.3 we compare our approach to the closely connected notions
of universal compression and regret.

1.1 Approach

Our approach departs from the existing literature on insurance in two important respects.

No upper bound on loss. The first departure relates to the practice among insurers to limit pay-
ments to a predetermined ceiling, even if the loss suffered by the insured exceeds this ceiling. In both
the insurance industry and the legal regulatory framework surrounding it, this is assumed to be common
sense. But is it always necessary to impose such ceilings? Moreover, in scenarios such as reinsurance, a
ceiling on compensation is not only undesirable, but may also limit the very utility of the business. As
we will see, we may be able to handle scenarios where the loss can be unbounded.

Universal approach. The second aspect of our approach arises from our motivation to deal with
several new settings for which some sort of insurance is desirable, but where insurers are hesitant to
enter the market due to lack of sufficient data. Examples of such settings include insuring against
network outages or attacks against future smart grids, where the cascade effect of outages or attacks
could be catastrophic. In these settings, it is not clear today what should constitute a reasonable risk
model because of the absence of usable information about what might cause the outages or motivate
the attacks.

We address the second issue by working with a class of models, i.e., a set of probability laws over
loss sequences that adheres to any assumptions the insurer may want to make or any information it
may already have. In this paper we will only consider loss models that are independent and identically
distributed (i.i.d.) from period to period, so we can equivalently think of a model class as defined in
terms of its one dimensional marginals.

As an example, we may want to consider the set of all finite moment probability distributions over
the nonnegative integers as our class of possible models for the loss distribution in each period. Now, we
ask the question: what classes of models are the ones on which the insurer can learn from observations
and set premiums so as to remain solvent? In this paper, we completely answer this question by giving
a necessary and sufficient condition that characterizes what classes of models lend themselves to this
insurance task.

This setup for insurability is very reminiscent of the universal compression/estimation/prediction
approaches as seen in Shtarkov (1987); Fittingoff (1972); Rissanen (1984) and Ryabko (2008). There
is also extensive work regarding learning from experts that has a related flavor, see Cesa-Bianchi and
Lugosi (2006) for a survey. We will discuss the compression angle in more depth shortly as well.

Formulation. Formally, we adopt the collective risk approach, namely, we abstract the problem to
include just two agents, the insurer and the insured. Losses incurred by the insured are considered to
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form a discrete time sequence of random variables, with the sequence of losses denoted by {Xi, i ≥ 1},
and we assume that Xi ∈ N for all i ≥ 1, where N denotes the set of natural numbers, {0, 1, 2, . . .}.

A model class P∞ is a collection of measures on infinite length loss sequences, and is to be thought
of as the set of all potential probability laws governing the loss sequence. Each element of P∞ is a
model for the sequence of losses. Any prior knowledge on the structure of the problem is accounted for
in the definition of P∞. We focus on measures corresponding to i.i.d. samples, i.e. each member of
P∞ induces marginals that are product distributions. We denote by P the set of distributions on N
obtained as one dimensional marginals of P∞. Since there is no risk of confusion, we will also refer to
the distributions in P as models and to P as the model class.

The actual model in P governing the law of the loss in each period remains unknown to the insurer.
We assume no ceiling on the loss, and require the insurer to compensate the insured in full for the
loss in each period at the end of that period. The insurer is assumed to start with some initial capital
Π0 ∈ R+, a nonnegative real number. The insurer then sets a sequence of premiums based on the past
losses—at time i, the insurer collects a premium Π(Xi−1

1 ) at the beginning of the period, and pays
out full compensation for loss Xi at the end of the period. If the built up capital till step i (including
Π(Xi−1

1 ), and after having paid out all past losses) is less than Xi, the insurer is said to be bankrupted.

Given a class P∞ of loss models, we ask if, for every prescribed upper bound η > 0 on the probability
of bankruptcy, the insurer can set (finite) premiums at every time step based only on the loss sequence
observed thus far and with no further knowledge of which law p ∈ P∞ governs the loss sequence, while
simultaneously ensuring that the insurer remains solvent with probability bigger than 1 − η under p
irrespective of which p ∈ P∞ is in effect. If the probability of the insurer ever going bankrupt over an
infinite time window can be made arbitrarily small in this sense, the class of i.i.d. loss measures P∞ is
said to be insurable.

A couple of clarifications are in order here. First, to make the problem non-trivial, we allow the
insurer to observe the loss sequence for some arbitrary finite length of time without having to provide
compensations. We require that the insurer has to eventually provide insurance with probability 1 no
matter which p ∈ P∞ is in effect. The insurer cannot quit providing insurance once it has entered into
the insurance contract with the insured. Premiums set before the entry time can be thought of as being
0 and the question of bankruptcy only arises after the insurer has entered into the contract. Secondly,
at this point of research, we do not concern ourselves with incentive compatibility issues on the part of
the insured and assume that the insured will accept the contract once the insurer has entered, agreeing
to pay the premiums as set by the insurer.

It turns out that the fact that the capital available to the insurer at any time is built up from past
premiums does not play any role in whether a model class is insurable or not. In fact, the problem is
basically one of finding a sequence of finite upper bounds Φ(Xi−1

1 ) on the loss Xi for all i ≥ 1. We refer
to the sequence {Φ(Xi−1

1 ), i ≥ 1} as the loss dominating sequence and call Φ(Xi−1
1 ) the loss dominant

at step i.

The notion of insurability of a model class P comes down to whether for each η > 0 there is a way
of choosing the loss dominants such that the probability of the loss Xi ever exceeding the loss dominant
Φ(Xi−1

1 ) is smaller than η irrespective of which model p in the model class P∞ is in effect. Here again
we allow some initial finite number of periods for which the loss dominant can be set to ∞, but it must
become finite with probability 1 under each p ∈ P∞ and stay finite from that point onwards.

Results. For a model class to be insurable, roughly speaking, close distributions must have com-
parable percentiles. Distributions in the model class that, in every neighborhood, have some other
distribution with arbitrarily different percentiles are said to be deceptive. In Section 3, we define what

2331



Santhanam and Anantharam

it means for distributions to be close, and what it means for distributions to have comparable percentiles.
In Section 4, we provide several examples of insurable and non-insurable model classes. Our main result
is Theorem 1 of Section 3, which states that P∞ is insurable iff it has no deceptive distributions. We
prove this theorem in Sections 5 and 6. In the rest of this section, we discuss the problem of insurability
in the broader contexts of uniform and pointwise convergence of estimators and universal compression.

1.2 Pointwise vs. Uniform Convergence

Theoretically, the flexibility we have permitted regarding when to start proposing finite loss dominants
allows us to categorize the insurance problem formulated above as one that admits what we call data-
derived pointwise convergent estimators.

When dealing with large alphabets or high dimensions, it may be too restrictive to only deal with
model classes or problem formulations that admit uniformly convergent estimators. We are particularly
interested in richer cases where uniform learnability may not be possible.

In such cases, often guarantees on estimators are provided that hold pointwise for all models. Typi-
cally, the results proven in such cases are of consistency, or bounds on rate of convergence of estimators
that depend on the parameters of the model in force—of course, the model by itself is usually not known
a-priori. Therefore the practical issue with such pointwise guarantees is that they may not say much
about what is happening with the specific sample at hand. Namely, if we know that an estimator for a
problem is consistent and we have model dependent convergence bounds, for a given sample (from an
unknown model) there may be no way of telling how good or bad the estimate currently is.

It can be shown that the insurance problem outlined here is equivalent to learning an upper bound
on every percentile of the unknown distribution from P, using only samples of i.i.d. draws from the
distribution. However, we allow for model classes that are rich enough that there may be no bound on
a given percentile that holds uniformly over the entire class P.

Yet, we can still salvage the situation if for any given finite sample, we had some way to tell from
the sample if the estimate was doing well or not relative to the true unknown model. In other words,
we ask for model dependent convergence bound that depends on the model only through the sample
that we observe.

Data-driven pointwise convergence is at the heart of insurability as well, and it shows up specifically
because we provide a finite (but not bounded uniformly over all models and observations) observation
window before the insurer enters the game. While we consider complex P where there may be no
possible way to bound any given percentile over the entire class, we can tell when the bounds obtained
from a sample is good against the model that generated the sample. The point at which we decide our
bounds are good against the model underlying the sample observed is related to the entry point defined
in the formulation above. In section 4 we provide several examples of classes that are insurable and
those that are not.

This principle of using the sample to gauge the performance of a pointwise consistent estimate has
been incorporated into several other setups as well. A few examples that stand out are the notions of
luckiness NML in compression proposed in Grunwald (2007), in the PAC-Bayesian bounds for classifica-
tion in McAllester (2013) and in the estimation of slow mixing Markov processes in Asadi et al. (2014).
For the luckiness NML formulation, an appropriate slack function can be interpreted as a bound on
how far we are from the code length of the underlying source. The PAC-Bayesian bounds of McAllester
(2013) can also be used to provide data-dependent confidence bounds for classifiers in scenarios where
classes may be very rich. In Asadi et al. (2014) again, data-dependent confidence bounds are provided
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for the estimates of transition and stationary probabilities of an underlying slow mixing, long memory
Markov sources.

To illustrate this concept, we provide a simple running example below that we will also use to
demonstrate connections with compression in subsection 1.3.

Example 1 [Birthday Problem] Consider the problem of estimating the size of a discrete, finite, set
S ⊂ N (specifically, there is no upper bound on the size of S) if we can draw as many random samples
from S as needed. If we have independent, uniform draws from S, one simple way to estimate the size of
S is keep sampling till some element from S is drawn twice. This is the first repeat. A simple back of the
envelope calculation analogous to the Birthday Problem shows that if N1 is the sample size when the
first repeat occurred, then a good estimate of the set size is N2

1 /2. One can then provide PAC-learning
kind of bounds that, with some confidence, the above estimate based on the first repeat is accurate to
a certain level.

This is an example where there can be no uniformly convergent estimator of the set size. Given a
fixed sample of size n, if the size of S is Ω(n2) the sample consists of n distinct symbols with probability
close to 1. If we can assume no further structure on S, there is no way to distinguish between samples
obtained from any two sets with size Ω(n2)—thus no estimator can distinguish between these large sets.
It is therefore futile, with a finite sample size, to expect an estimator that can estimate the set size to
any non-trivial accuracy no matter what the set is. Equivalently, there can be no uniformly convergent
estimator of the set size.

The simple “Birthday Problem” estimator above only converges pointwise. It may take an arbitrarily
larger sample for some models to give an answer. That is the nature of the problem. But the estimator
is imbued with a very useful property—with a guaranteed confidence, the estimator does not make a
mistake even though it may not always have an answer. If the sample has no repeats yet, the estimator
does not overreach and volunteer a wrong answer. Hence, we can tell from the sample if we can do well
or not. 2

1.3 Universal Compression

The approach we take is not unconnected with the universal compression literature, as well as certain
learning formulations involving regret with log-loss. There are many variations in how compression
problems are formulated, and the following example illustrates the main variants studied. It also serves
to provide an example of the “data-derived” pointwise estimation introduced in the last section, and
hence places insurability in context of the universal compression literature.

Example 2 We will study the so-called “Birthday problem” from the previous example in a little
more depth. Let B denote the collection of all distributions pM (M ≥ 1), where pM is a uniform
distribution over {0, . . . ,M}. We use this example to distinguish between uniformly good compressors
(strongly universal) and compressors that are only good pointwise (weakly universal).

Suppose we consider one draw from an unknown distribution p ∈ B. The worst case regret or worst-
case redundancy quantifies the minimum possible excess code length of a universal distribution q over
N over the (unknown) distribution p

inf
q

sup
p∈B

sup
x∈N

log
p(x)

q(x)
. (1)

Note that the regret of any class of distributions is always ≥ 0. We could, of course, consider a sequence
of n independent draws from an unknown p ∈ B, and ask now for a measure q over infinite sequences
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of numbers that is universal for all the i.i.d. measures corresponding to distributions in B. We then
concentrate on the redundancy

Rn(B)
def
= inf

q
sup
p∈B

sup
xn∈Nn

1

n
log

p(xn)

q(xn)
,

where we abuse notation and write for all p ∈ B

p(xn) =
n∏
j=1

p(xj)

to be the probability assigned to xn by independent draws from p. Of course, we could similarly define
redundancy for length n sequences for any collection of measures over infinite sequences from a countable
alphabet, not necessarily i.i.d.. Strongly compressible classes are those sets P∞ of measures over infinite
sequences satisfying

lim
n→∞

Rn(P∞)→ 0.

For the single-letter formulation in (1), clearly the optimal universal distribution gives any number
x a probability proportional to the highest probability that number gets from any model in B, followed
by a normalization. But the highest probability a model in B gives any x ∈ N is 1/(x + 1), which is
not summable over x. Thus the redundancy is infinite here—or equivalently, no matter what universal
distribution q we choose and no matter how large a number M we pick, there is a p′ ∈ B and a number
x′ ∈ N such that

log
p′(x′)

q(x′)
> M.

In this case, we will therefore not have redundancy bounds holding uniformly for the model class. We
say B is not strongly compressible. With a very similar argument, it is easy to see that Rn(B∞) = ∞
for all n, where we use B∞ to denote the set of i.i.d. measures over infinite sequences constructed as
above from marginals in B.

But we can say something more. Consider again compressing sequences of numbers drawn i.i.d.
from an unknown distribution in B. Noting that B is countable, we focus on a measure q over infinite
sequences that gives a sequence xn the probability

qw(xn) =
∑
pi∈B

1

i(i+ 1)
pi(x

n).

It is easy to verify that qw above satisfies

sup
p∈B∞

lim
n→∞

sup
xn∈Nn

1

n
log

p(xn)

qw(xn)
= 0, (2)

or that qw matches every p pointwise over the model class B. Such classes of sources are weakly universal.
The code length of the universal measure qw matches that of p for every p ∈ B, but at arbitrarily slower
rates for some sources (since the class cannot be strongly compressed).

A couple of points. Note that admittedly it has been easy to define qw here since B was countable
to begin with. If not, a condition reminiscent of countability above is necessary and sufficient for a
class to be weakly universal as shown in (Kieffer, 1978). To emphasize, qw is guaranteed to satisfy (2),
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implying that it does not underestimate relative to any p for sufficiently long sequences. But how long
is “sufficiently long” depends on p, and for a given length-n sequence without knowing p, it may not be
possible to say if qw is doing well or not. This second aspect of knowing when an estimator is good is
crucial to insurance formulations.

One could also replace the sup over xn with expectation, and get average case versions for both
strong and weak’ universality. 2

Strong compression is well known and is the more studied version of universal compression and
regret formulations involving log loss. As one might expect, we show in (Santhanam and Anantharam,
2012) that strong compression implies insurability but not vice-versa.

However, the insurance formulation has more in common with weak compression and pointwise
convergence, rather than strong compression and uniform convergence. The connection between insura-
bility and weak compression turns out to be rather interesting. In (Santhanam and Anantharam, 2012),
we show classes of models that can be weakly compressed but are not insurable. At the same time, we
also construct classes of models in (Santhanam and Anantharam, 2012) that are insurable, but cannot
be weakly compressed.

To summarize, our formulation is interesting precisely in cases where the strong notions of (worst-
case or average-case) redundancy fail. Namely, classes of distributions whose redundancy is not finite.
The universal compression formulation closer to our notion of insurability here is in the idea of weak
universal compression in Kieffer (1978). However, weak compression formulations thus far have never
included the aspect of determining from the data at hand when a compressor is doing well—a crucial
part of our problem.

There may be one insight that we conjecture can be generalized beyond insurability to all problems
with the flavor of data-derived pointwise convergence of estimates. What matters seems to be the local
complexity as opposed to global complexity of model classes. Insurability of model classes does not
depend on global complexity measures of model classes—as with the (strong) redundancy of model
classes (which is determined by the integral of the square root of absolute Fisher information over
the entire model class) or the Rademacher complexity. Instead, insurability is related to how local
neighborhoods look; in particular it depends on local tightness as we will see in Section 3.

2. Precise Formulation of Insurability

We model the loss at each time by a random variable taking values in N = {0, 1, . . .}. Denote the
sequence of losses by X1, X2 . . . where Xi ∈ N. Let N∗ be the set of all finite length sequences from
N, including the empty sequence. We will write xn for the sequence x1, . . . ,xn. Where it appears, x0

denotes the empty sequence. A loss distribution is a probability distribution on N. Let P be a set of
loss distributions. P∞ is the collection of i.i.d. measures over infinite sequences of symbols from N such
that the set of one dimensional marginals over N they induce is P.

We write R+ for the set of nonnegative real numbers and use := for equality by definition.

Consider an insurer with an initial capital Π0 ∈ R+. An insurance scheme for P is comprised of a
pair (τ,Π).

Here τ : N∗ 7→ {0, 1} satisfies τ(x1, . . . , xn) = 1 =⇒ τ(x1, . . . , xn+1) = 1 for all xn and also
p(supn τ(Xn) = 1) = 1 for all p ∈ P∞. τ should be thought of as defining an entry time for the insurer
with the property that once the insurer has entered it stays entered and that the insurer enters with
probability 1 irrespective of which p ∈ P∞ is in effect. Here we say the insurer enters after seeing the
sequence xn ∈ N∗ (possibly the empty sequence) if τ(xn) = 1. The other ingredient of an insurance
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scheme is the premium setting scheme Π : N∗ → R+, satisfying Π(xn) = 0 if τ(xn) = 0, with Π(xn)
being interpreted as the premium demanded by the insurer from the insured after the loss sequence
xn ∈ N∗ is observed.

Let 1(·) denote the indicator function of its argument. The event that the insurer goes bankrupt is
the event that

Π0 +
n∑
i=1

(Π(Xi−1)−Xi)1(τ(Xi−1) = 1) < 0 for some n ≥ 1 .

In words, this is the event that in some period n ≥ 1 after the insurer has entered, the loss Xn incurred
by the insured exceeds the built up capital of the insurer, namely the sum of its initial capital and all
the premiums it has collected after it has entered (including the currently charged premium Π(Xn−1))
less all the losses paid out so far.

Definition 1 A class P∞ of laws on loss sequences is called insurable by an insurer with initial
capital Π0 ∈ R+ if ∀ η > 0, there exists an insurance scheme (τ,Π) such that ∀ p ∈ P∞,

p((τ,Π) goes bankrupt ) < η .

We should remark that despite the apparent role of the initial capital of the insurer in this definition,
it plays no role from a mathematical point of view. To see this note first that if a model class P∞ is
insurable by an insurer with capital Π0 it is clearly insurable by all insurers with initial capital at least
Π0, since such an insurer can use the same entry time and premium setting scheme as the insurer with
initial capital Π0. On the other hand, an insurer with initial capital less than Π0 can use the same
entry time as an insurer with initial capital Π0 and simply charge an additional premium at the time
of entry which in effect builds up its initial capital to Π0, and then proceed with the same premium
setting scheme as that used by the insurer with initial capital Π0. This feature is an artifact of the
complete flexibility we give the insurer in setting premiums; for more on this see the concluding remarks
in Section 7.

As indicated in the introductory Section 1, we will first show that whether a model class of loss
distributions is insurable is equivalent to whether we can find suitable loss-domination sequences for
the sequence of losses. We next make this connection and the associated terminology precise.

Definition 2 A loss-domination scheme for P is a mapping Φ : N∗ 7→ R+∪{∞}, where for xn ∈ N∗,
we interpret Φ(xn) as an estimated upper bound on xn+1. We call {Φ(Xi−1), i ≥ 1} the loss-domination
sequence and Φ(Xi−1) the loss dominant at step i. We require for all xn ∈ N∗ that

Φ(x1, . . . , xn) <∞ =⇒ Φ(x1, . . . , xn+1) <∞

and also that for all p ∈ P∞,

p( inf
n≥1

Φ(Xn) <∞) = 1. 2

We think of Φ(xn) = ∞ as saying that the scheme has not yet committed to proposing finite loss
dominants after having seen the sequence xn, while if Φ(xn) < ∞ it has. Once the scheme commits
to proposing finite loss dominants it has to continue to propose finite loss dominants from that point
onwards. Further, with probability 1 under every p ∈ P∞, the scheme has to eventually start proposing
finite loss dominants.
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Definition 3 Given our motivation from the insurance problem, we will say the loss-domination
scheme Φ goes bankrupt if Φ(Xn−1) < Xn for some n ≥ 1. 2

The connection between the insurance problem and the problem of selecting loss dominants can now
be made precise as follows.

Observation 1 Let P∞ be a model class and η > 0. Let Π0 ∈ R+. An insurer with initial capital
Π0 can find an insurance scheme (τ,Π) such that the probability of remaining solvent is bigger than
1 − η irrespective of which p ∈ P∞ is in effect if and only if there is a loss-domination scheme Φ such
that the probability of it going bankrupt is less than η irrespective of which p ∈ P∞ is in effect.
Proof Given an insurance scheme (τ,Π) consider the loss-domination scheme Φ that has Φ(xn) :=∞
iff τ(xn) = 0 and

Φ(Xn−1) := Π0 +
n−1∑
i=1

(Π(Xi−1)−Xi)1(τ(Xi−1) = 1) + Π(Xn−1) ,

if τ(Xn) = 1. Since τ enters (become equal to 1) with probability 1 under each p ∈ P∞ and stays equal
to 1 once it has become 1, Φ becomes finite with probability 1 under each p ∈ P∞ and stays finite
once it has become finite. Thus Φ is indeed a loss-domination scheme. It is straightforward to check
that if the insurance scheme (τ,Π) stays solvent with probability bigger than 1−η irrespective of which
p ∈ P∞ is in effect then the loss-domination scheme Φ becomes bankrupt with probability less than η
irrespective of which p ∈ P∞ is in effect.

Conversely, given a loss-domination scheme Φ define the insurance scheme (τ,Π) by setting τ(xn) :=
0 iff Φ(Xn) = ∞ (and τ(xn) := 1 iff Φ(xn) < ∞) and defining Π(xn) := 0 if Φ(xn) = ∞ and
Π(xn) := Φ(xn) if Φ(xn) <∞.

One sees that τ as defined becomes 1 with probability 1 under each p ∈ P∞ and stays equal to 1
once it becomes 1. Further, the premiums set at each time are finite and equal to 0 till the entry time.
Thus (τ,Π) as defined is indeed an insurance scheme.

It is straightforward to check if Φ becomes bankrupt with probability less than η irrespective of
which p ∈ P∞ is in effect, then (τ,Π) stays solvent with probability bigger than 1 − η irrespective of
which p ∈ P∞ is in effect. Hence the above observation. 2

We may therefore conclude that a model class P∞ is insurable iff for all η > 0 there is a loss-
domination scheme Φ such that the probability of going bankrupt under Φ is less than η irrespective
of which p ∈ P∞ is in effect. In the rest of the paper we will therefore focus mainly on whether the
model class P∞ is such that for every η > 0 a loss-domination sequence Φ exists with its probability
of bankruptcy being less than η irrespective of which model in the model class governs the sequence of
losses.

In Theorem 1, we provide a condition on P that is both necessary and sufficient for insurability.

3. Statement of Main Result

We go through a few technical points before spelling out the results in detail in 3.3.

3.1 Close Distributions

Insurability of P∞ depends on the neighborhoods of the probability distributions among its one di-
mensional marginals P. The relevant measure of closeness between distributions in P that decides the
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neighborhoods is

J (p, q) := D

(
p||p+ q

2

)
+D

(
q||p+ q

2

)
.

Note that the above is the Jensen-Shannon divergence (with an additional factor of 2) and is not a true
distance. Here D(p||q) denotes the relative entropy of p with respect to q, where p and q are probability
distributions on N, defined by

D(p||q) :=
∑
y∈N

p(y) log
p(y)

q(y)
.

The logarithm is assumed to be taken to base 2 (we use ln for the logarithm to the natural base).
The reason for choosing the Jensen-Shannon (JS) divergence is that it has two convenient properties—

(i) for the necessary part, it becomes easy to quantify how “close” distributions yield very similar mea-
sures on sequences, (ii) for the sufficient part, we bound the JS divergence with the `1 norm in Lemma 4
which in turn lets us work with the `1 topology induced on the class P of distributions. Specifically, we
show that if p and q are probability distributions on N, then

1

4 ln 2
|p− q|21 ≤ J (p, q) ≤ 1

ln 2
|p− q|1 .

3.2 Cumulative Distribution Function

Since we would like to discuss percentiles, it is convenient to use a non-standard definition for the
cumulative distribution function of a probability distribution on N.

For our purposes, the cumulative distribution function of any probability distribution p on N is a
function Fp : R+∪{∞} → [0, 1] defined in an unconventional way. We obtain Fp by first defining Fp on
points in the support of p in the way cumulative distribution functions are normally defined. We define
Fp for all other nonnegative real numbers by linearly interpolating between the values in the support of
p. Finally, Fp(∞) := 1.

Let F−1p : [0, 1] 7→ R+ ∪ {∞} denote the inverse function of Fp. Then F−1p (x) = 0 for all
0 ≤ x < Fp(0). If p has infinite support then F−1p (1) =∞, else F−1p (1) is the smallest natural number
y such that Fp(y) = 1.

Two simple and useful observations can now be made. Consider a probability distribution p with
support A ⊂ N. For δ > 0, let (T for tail)

Tp,δ := {y ∈ A : y ≥ F−1p (1− δ)},

and let (H for head)
Hp,δ := {y ∈ A : y ≤ 2F−1p (1− δ/2)}.

It is easy to see that
p(Tp,δ) > δ (3)

and that
p(Hp,δ) > 1− δ. (4)

Suppose that for some δ > 0 we have F−1p (1− δ) > 0 and the loss dominant at the beginning of period
i ≥ 1 happens to be set to F−1p (1 − δ), then the probability under p of the loss in period i exceeding
the loss dominant is bigger than δ. If the loss dominant at the beginning of period i happens to be set
to 2F−1p (1 − δ/2), then the probability that the loss in period i exceeds the loss dominant is less than
δ. We will use these observations in the proofs to follow.

2338



Insurability

3.3 Condition that is Necessary and Sufficient for Insurability

Existence of close distributions with very different quantiles is what kills insurability. A loss-domination
scheme could be “deceived” by some process p ∈ P∞ into setting low loss dominants, while a close enough
distribution hits the scheme with too high a loss. The conditions for insurability of P∞ are phrased in
terms of the set of its one dimensional marginals, P.

Formally, a distribution p in P is not deceptive if some neighborhood around p is tight. For a more
complete development of the concept of tightness, see e.g., Billingsley (1995). Specifically, ∃ εp > 0,
such that ∀ δ > 0, ∃ f(δ) ∈ R, such that all distributions q ∈ P with

J (p, q) < εp

satisfy

F−1q (1− δ) ≤ f(δ).

Equivalently, a probability distribution p in P is deceptive if no neighbourhood of P around p is
tight. Specifically, ∀ ε > 0, ∃ δ > 0 such that that no matter what f(δ) ∈ R+ is chosen, ∃ a (bad)
distribution q ∈ P such that

J (p, q) < ε

and

F−1q (1− δ) > f(δ).

In the above definition, f(δ) is simply an arbitrary nonnegative real number. However, it is useful to
think of this number as the evaluation of a function f : (0, 1)→ R at δ.

Our main theorem is the following, which we prove in Sections 5 and 6.

Theorem 1 P∞ is insurable, iff no p ∈ P is deceptive. 2

4. Examples

Consider U , the collection of all uniform distributions over finite supports of form {m,m+ 1, . . . ,M}
for all positive integers m and M with m ≤ M . Let the sequence of losses be i.i.d. samples from
distributions in U—call the resulting model class over infinite loss sequences U∞.

Note that no distribution in U is deceptive. Around each distribution in U is a neighborhood that
that contains no other distribution of U .

Example 3 U∞ is insurable.

Proof If the threshold probability of ruin is η, choose the loss-domination scheme Φ as follows. For
all sequences xn with n ≤ log 1

η + 1 set Φ(xn) = ∞. For all sequences xn with n > log 1
η + 1, the loss

dominant Φ(xn) is set to be twice the largest loss observed thus far. It is easy to see that this scheme
is bankrupted with probability less than η irrespective of which p ∈ U∞ is in effect. 2

Consider the set N∞1 of all i.i.d. processes such that the one dimensional marginals have finite
first moment. Namely, ∀p ∈ N∞1 , EpX < ∞ where X ∈ N is distributed according to the single letter
marginal of p. If N1 is the collection of single letter marginals from N∞1 , it is easy to verify as below
that every distribution in N1 is deceptive.
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Example 4 N∞1 is not insurable.
Proof Note that the loss process that puts probability 1 on the all zero sequence exists in N∞1 , since
it corresponds to the one dimensional marginal loss distribution that produces loss 0 in each period.
Since every loss-domination scheme enters with probability 1 no matter which p ∈ N∞1 is in force, every
loss-domination scheme must enter after seeing some finite number of zeros. Fix any loss-domination
scheme Φ. Suppose the scheme starts to set finite loss dominants after seeing N losses of size 0. To
show that N∞1 is not insurable, we show that ∃η > 0 and ∃p ∈ N∞1 such that

p( Φ goes bankrupt ) ≥ η.

Fix δ = 1− η. Let ε be small enough that

(1− ε)N > 1− δ/2,

and let M be a number large enough that

(1− ε)M < δ/2.

Note that since 1 − δ/2 ≥ δ/2, we have N < M . Let L be greater than any of the loss dominants set
by Φ for the sequences 0N , 0N+1, . . . 0M . Let p ∈ N∞1 satisfy, for all i,

p(Xi) =

{
1− ε if Xi = 0

ε if Xi = L.

For the i.i.d. loss process having the law p, the insurer is bankrupted on all sequences that contain
loss L in between the N -th and M -th steps. These sequences, 0NL, 0N+1L, . . . ,0M−1L, have respective
probabilities (under p)

(1− ε)N ε, (1− ε)N+1ε, . . . , (1− ε)M−1,
and they also form a prefix free set. Therefore, summing up the geometric series and using the assump-
tions on ε above,

p( Φ is bankrupted ) ≥ (1− ε)N − (1− ε)M ≥ 1− δ/2− δ/2 = η. 2

A reading of the proof above shows that we can say something much stronger. The distributions
that break insurability have all their moments finite. Suppose N∞∗ is the collection of measures each
of whose single letter marginal has all moments finite. Namely for all p ∈ N∞∗ and all finite r ≥ 0,
EpXr

1 <∞. It follows that

Example 5 N∞∗ is not insurable. 2

Consider the collection of all i.i.d. loss distributions with monotone one dimensional marginals. A
monotone probability distribution p on N is one that satisfies p(y+ 1) ≤ p(y) for all y ∈ N. LetM∞ be
the set of all i.i.d. loss processes, with one dimensional marginal distribution fromM, the collection of
all monotone probability distributions over N.

Again, it is easily shown that every distribution inM is deceptive. It follows from Theorem 1 that

Example 6 M∞ is not insurable.
Proof To see that any distribution p ∈M is deceptive, consider distributions of form p′ = (1−ε)p+εq,
where q ∈ U is a monotone uniform distribution and ε > 0.

Clearly, the `1 distance between p′ and q is ≤ 2ε (and therefore so is the JS divergence, up to a
constant factor). But for all M > 0 and δ < ε, we can pick q ∈ U over a sufficiently large support that
the 1− δ−percentile of p′ can be made ≥M . Therefore, no neighborhood around p′ is tight. 2
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Note also that if p has finite entropy, so does every p′ obtained by the above construction. Let
M∗ ⊂ M be the collection of finite entropy monotone distributions. The above example also implies
that

Example 7 M∞∗ is not insurable. 2

Now for h > 0, we consider the set Mh ⊂ M of all monotone distributions over N whose entropy
is bounded above by h. Let M∞h be the set of all i.i.d. loss processes with one dimensional marginals
from Mh. Then

Example 8 M∞h is insurable.
Proof From Markov inequality, if p ∈Mh and X ∼ p,

p(X > M) = p(log(X + 1) > log(M + 1)) <
Ep log(X + 1)

log(M + 1)
≤
Ep log 1

p(X)

log(M + 1)
≤ h

log(M + 1)
.

To see the second inequality above, note that p is monotone therefore for i ∈ N, p(i) ≤ 1
i+1 . Therefore,

for all p ∈Mh,

F−1p (1− δ) ≤ 2
h
δ .

Thus no p ∈Mh is deceptive, and M∞h is insurable. 2

In the class U above, there was a neighborhood around each distribution p ∈ U with no other model
from U , Hence U trivially satisfied the local tightness condition that we will prove is necessary and
sufficient for insurability. The above case is another extreme—the entire model class Mh is tight. The
following example illustrates a insurable class of models where neither extreme holds.

For a distribution q over N, let q(R)(i + R) = q(i) for all i ∈ N. Furthermore let the span of any
finite support probability distribution over naturals be the largest natural number which has non-zero
probability. Then, let

Fh =
{

(1− ε)p1 + εp
(span(p1)+1)
2 : ∀p1 ∈ U , p2 ∈Mh and 1 > ε > 0

}
.

As always F∞h is the set of measures on infinite sequences obtained by i.i.d. sampling from distributions
in Fh.

Example 9 F∞h is insurable.
Proof Let the base of any probability distribution over the naturals be the smallest natural number

which has non-zero probability. Consider any distribution p = (1 − ε)p1 + εp
(span(p1)+1)
2 ∈ Fh with

p1 ∈ U , p2 ∈ Mh, and 1 > ε > 0. Let m denote base(p), and m + M − 1 denote span(p1). Thus
|support(p1)| = M , and we have M ≥ 1. Of course, we also have base(p1) = base(p).

Consider any other distribution q = (1 − ε′)q1 + ε′q
(span(q1)+1)
2 ∈ Fh, where q1 ∈ U , q2 ∈ Mh, and

1 > ε′ > 0. Let m′ denote base(q) (which equals base(q1)) and let m′ + M ′ − 1 denote span(q1), so
|support(q1)| = M ′, and we have M ′ ≥ 1.

It suffices to show that there is an `1 ball around p of sufficiently small radius, such that for all δ > 0
we can find a uniform bound on the (1− δ)-th percentile of all q in this ball.

If m′ > m, then the `1 distance between p and q is at least 1−ε
M . Hence, whenever the `1 distance

between p and q is strictly less than 1−ε
M we must have m′ ≤ m. Thus we may assume that m′ ≤ m.
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Suppose m′ +M ′ − 1 ≥ m+ 2M
1−ε . Then M

M ′ ≤
1−ε
2 , from which, because support(p1) ⊆ support(q1),

we can conclude that the `1 distance between q and p is at least 1−ε
2 . Thus we may assume that

m′ +M ′ − 1 < m+ 2M
1−ε .

Now, for any i ≥ 0, we have

q(m′ +M ′ + i) = ε′q2(i) ≤ ε′
1

i+ 1
≤ 1

i+ 1
.

Thus for any K ≥ 0 we have

q(X > m+
2M

1− ε
+K) ≤ q(X > m′ +M ′ +K) ≤ h

log(K + 1)

by an argument similar to that in the preceding example, which gives the desired conclusion that no
p ∈ F∞h is deceptive, and hence that F∞h is insurable. 2

5. Necessary Condition for Insurability

Theorem 2 shows that lack of deceptive distributions in P is necessary for insurability of P∞.

Theorem 2 If P∞ is insurable, then no p ∈ P is deceptive.
Proof To keep notation simple, we will denote by p (or q) both a measure in P∞ as well as the
corresponding one dimensional marginal distribution, which is a member of P. The context will clarify
which of the two is meant. We prove the contrapositive of the theorem: if some p ∈ P is deceptive,
then P∞ is not insurable.

Pick α > 0. Suppose p ∈ P is deceptive. Let Φ be any loss-domination scheme. Recall that Φ enters
on p with probability 1, in the sense that the loss dominants set by Φ will eventually become finite with
probability 1 under p. For all n ≥ 1, let

Rn := {xn : Φ(xn) <∞}

be the set of sequences of length n on which Φ has entered and let N ≥ 1 be a number such that

p(RN ) > 1− α/2. (5)

Fix 0 < η < 1
2(1 − α − 2

N )(1 − 1/e2). We prove that P∞ is not insurable by finding, for each loss-
domination scheme Φ, a probability distribution q ∈ P such that

q( Φ goes bankrupt ) ≥ η.

The basic idea is that because Φ has to enter with probability 1 under p, it would have been forced to
set premiums that are too low for q.

For any sequence xn, let A(xn) be the set of symbols that appear in it. Recall that the head of the
distribution p, Hp,γ , was defined in Section 3.2 to be the set {y ∈ Ap : y ≤ 2F−1p (1− γ/2)}, where Ap
is the support of p. Further, define for all γ > 0

Rp,γ,n := {xn ∈ Rn : A(xn) ⊆ Hp,γ)}.

Given δ > 0, pick γp(δ) so small that

(1− γp(δ))N+1/δ ≥ 1− α/2. (6)
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A word about this parameter γp(δ), since it may not be immediately apparent why this should be
defined. The advantage of doing so is technical—we will be able to handle p (and q which will be chosen
later) as though they were distributions with finite span.

Set1 ε = 1
16(ln 2)N8 . Applying Lemma 5 to distributions over length-N sequences induced by the

distributions p, q ∈ P such that J (p, q) ≤ ε, we have for each δ > 0 that

q(XN ∈ Rp,γp(δ),N ) ≥ 1− α− 2

N
. (7)

This implies that Φ has entered with probability (under q) at least 1− α− 2
N for length N sequences.

We will find a suitable δ > 0 and a suitable q such that J (p, q) ≤ ε, and such that the scheme Φ is
bankrupted with probability > η.

Since p is deceptive, there exists δ′ > 0 such that

sup
q∈P:
J (p,q)<ε

F−1q (1− δ′) =∞.

Define
∆p,ε = {δ′ : sup

q:J (p,q)<ε
F−1q (1− δ′) =∞}.

In connection with this definition, note that if the δ′ tails of distributions in the ε−neighborhood of p
are not bounded, neither are the δ′′ tails for all δ′′ < δ′. Furthermore if sup ∆p,ε ≥ 1/2, we are done
since for some δ ≥ 1/2, there is a q satisfying J (p, q) ≤ ε and

F−1q (1− δ) ≥ max
xN∈Rp,γp,N

Φ(xN ).

Therefore, conditioned on the event {XN ∈ Rp,γp(δ),N}, this q will be bankrupted with probability
≥ 1/2. From (7) above we thus have

q( Φ goes bankrupt ) ≥
1− α− 2

N

2
> η.

If not, we have ∆p,ε < 1/2. Pick δ and r = 2δ such that δ ∈ ∆p,ε, but r /∈ ∆p,ε. For convenience,
let M = d1δ e. We consider now a set S of strings of lengths ranging from N to N + M defined by the
following properties:

• every string in S has its prefix of length N belonging to Rp,γp(δ),N ;

• every string of length k in S, N + 1 ≤ k ≤ N +M , has all its symbols at times N + 1 through to k
belonging to Hq′,2r for some q′ ∈ P such that J (p, q′) < ε.

To clarify this definition, we recall once again that Hq′,2r is the {y ∈ Aq′ : y ≤ 2F−1q′ (1−r)}, where Aq′
denotes the support of q′. Note that since r /∈ ∆p,ε, S is finite. Again, we pick q satisfying J (p, q) ≤ ε
and

F−1q (1− δ) ≥ max
xk∈S

N≤k≤N+M−1

Φ(xk).

1. Please note that in the interest of simplicity, we have not attempted to provide the best scaling for ε or the tightest
possible bounds in arguments below

2343



Santhanam and Anantharam

Therefore if a symbol from Tq,δ follows any string in S, the scheme goes bankrupt under q. There
may be symbols in the complement of Tq,δ that also bankrupt the scheme if they follow a string in S.
Taking a different perspective, it could happen that no string in S contains symbols in Tq,δ, or that
strings S contain symbols from Tq,δ. We consider both these variations below.

Let q1 be the probability (under q) of all sequences in Rp,γp,N under which the scheme Φ has not
yet been bankrupted, and let q2 be the probability (under q) of all sequences in Rp,γp,N where Φ has
already been bankrupted. Therefore q1 + q2 = q(Rp,γp,N ).

Define a sequence in S to be a survivor if the loss-domination scheme Φ has not yet been bankrupted
on this sequence under q. Thus, for instance, q2 is the probability, under q, of survivor sequences of
length N . To continue, we need to consider two cases:

Case (i). Strings in S do not contain symbols of Tq,δ (when supq′:J (p,q′)<ε 2F−1q′ (1−r) ≤ F−1q (1−δ)).
In this case, Hq,2r is contained in the complement of Tq,δ and we show the probability under q with

which Φ is bankrupted is bounded below by

q2 + q1
(
δ + (1− r)δ + . . .+ (1− r)Mδ

)
.

Given that the sequence seen so far is a survivor sequence, one can classify the next symbol in one
of four ways: (a) it is in Tq,δ (which automatically implies bankruptcy); (b) it is in the complement
of Tq,δ ∪ Hq,2r which we ignore; (c) it is in Hq,2r and results in bankruptcy; (d) it is in Hq,2r and
does not result in bankruptcy. We ignore case (b) since we are only interested in a lower bound. In
case (c) the contribution to the conditional probability of bankruptcy given a survivor sequence is 1,
but we lower bound it for survivor sequences of length N + l (0 ≤ l ≤ M − 1) by the running sum(
δ + (1− r)δ + . . .+ (1− r)M−l−1δ

)
. This has the effect that the lower bound looks as though symbols

in Hq,2r never contribute to bankruptcy (and hence always lead to survivor sequences).

Case (ii). Strings in S could contain symbols of Tq,δ (when supq′:J (p,q′)<ε 2F−1q′ (1−r) > F−1q (1−δ).)
We show here that the probability under q with which Φ is bankrupted is bounded below by

q2 + q1
(
δ + (1− δ)δ + . . .+ (1− δ)Mδ

)
.

This can be seen, as in the preceding case, by classifying the next symbol following a survivor sequence
into three types: (a) it is in Tq,δ (which implies bankruptcy); (b) it is the complement of Tq,δ and results
in bankruptcy; (c) it is the complement of Tq,δ and does not result in bankruptcy. In case (b), the
conditional probability of bankruptcy given a survivor sequence of length N+l (0 ≤ l ≤M−1) is 1, but,
as before we lower bound the contribution to by the running sum

(
δ + (1− δ)δ + . . .+ (1− δ)M−l−1δ

)
.

Similar to the prior case, this has the effect that the lower bound looks as though symbols in the
complement of Tq,δ never contribute to bankruptcy (and hence always lead to survivor sequences).

However, we have 1 − δ ≥ 1 − r, so once again in case (ii) the probability under q with which Φ is
bankrupted is bounded below by

q2 + q1
(
δ + (1− r)δ + . . .+ (1− r)Mδ

)
.
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Thus we see that irrespective of which case is in force, under q the loss-domination scheme Φ is
bankrupted with probability at least

q2 + q1
(
δ + (1− r)δ + . . .+ (1− r)Mδ

)
= q2 + q1

(
1− (1− 2δ)d1/δe

2

)
≥ 1

2
q(Rp,γp,N )

(
1− (1− 2δ)d1/δe

)
≥ 1

2

(
1− α− 2

N

)(
1− 1

e2

)
.

The theorem follows. 2

6. Sufficient Condition for Insurability

When no p ∈ P is deceptive, for any η > 0 Theorem 3 constructs a loss-domination scheme that goes
bankrupt with probability ≤ η.

If no p ∈ P is deceptive, there is for each p ∈ P a number εp > 0 such that, for every percentile
δ > 0, there is a uniform bound on the δ-percentile over the set of probability distributions in the
neighborhood

{p′ ∈ P : J (p′, p) < εp}, .

We pick such an εp for each p ∈ P and call it the reach of p. For p ∈ P, the set

Bp = {p′ ∈ P : J (p, p′) < εp},

where εp is the reach of p, will play the role of the set of probability distributions in P for which it will
be okay to eventually set loss dominants assuming p is in force.

To prove that P∞ is insurable if no distribution among its one dimensional marginals P is deceptive,
we will need to find a way to cover P with countably many sets of the form Bp above. Unfortunately,
J (p, q) is not a metric, so it is not immediately clear how to go about doing this. On the other hand
note that J (p′, p) ≤ |p− p′|1/ ln 2, where |p− p′|1 denotes the `1 distance between p and p′ (see Lemma
4 in the Appendix). Therefore, we can instead bootstrap off an understanding of the topology induced
on P by the `1 metric.

6.1 Topology of P with `1 Metric

The topology induced on P by the `1 metric is Lindelöf, i.e. any covering of P with open sets in the `1
topology has a countable subcover. See e.g., (Dugundji, 1970, Defn. 6.4) for definitions and properties
of Lindelöf topological spaces.

We can show that P with the `1 topology is Lindelöf by appealing to the fact that the set of all
probability distributions on N with the `1 topology, is second countable, i.e. that it has a countable
basis. The set of all distributions on N along with `1 topology has a countable basis because it has
a countable norm-dense set (consider the set of all probability distributions on N with finite support
and with all probabilities being rational). Now, P, as a topological subspace of a second countable
topological space is also second countable (Dugundji, 1970, Theorem 6.2(2)). Finally, every second
countable topological space is Lindelöf (Dugundji, 1970, Thm. 6.3), hence P is Lindelöf.
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6.2 Sufficient Condition

We now have the machinery required to prove that if no p ∈ P is deceptive, then P∞ is insurable, which
is the other direction of Theorem 1, as stated next.

Theorem 3 If no p ∈ P is deceptive, then P∞ is insurable.

Proof The proof is constructive. For any 0 < η < 1, we obtain a loss-domination scheme Φ such that
for all p ∈ P∞, p(Φ goes bankrupt ) < η.

For p ∈ P, let

Qp =

{
q : |p− q|1 <

εp
2(ln 2)2

16

}
,

where εp is the reach of p. We will call Qp as the zone of p. The set Qp is non-empty when εp > 0.

For large enough n, the set of loss sequences of length n with empirical distribution in Qp will ensure
that the loss-domination scheme Φ to be proposed enters with probability 1 when p is in force. Note
that if εp > 0 is small enough then Qp ∩ P ⊂ Bp—we will assume wolog that εp > 0 is always taken so
that Qp ∩ P ⊂ Bp.

Since no p ∈ P is deceptive, none of the zones Qp are empty and the space P of distributions can
be covered by the sets Qp ∩ P, namely

P = ∪p∈P(Qp ∩ P).

From Section 6.1, we know that P is Lindelöf under the `1 topology. Thus, there is a countable set
P̃ ⊆ P, such that P is covered by the collection of relatively open sets

{Qp̃ ∩ P : p̃ ∈ P̃}.

We let the above collection be denoted byQP̃ . We will refer to P̃ as the quantization of P and to elements

of P̃ as centroids of the quantization, borrowing from commonly used literature in classification.

We index the countable set of centroids, P̃ (and reuse the index for the corresponding elements of
QP̃) by ι : P̃ → N.

We now describe the loss-domination scheme Φ having the property that for all p ∈ P∞,

p(Φ goes bankrupt ) < η.

Preliminaries. Consider a length-n sequence xn on which Φ has not entered thus far. Let the
empirical distribution of the sequence be q, and let

P ′q := {p′ ∈ P̃ : q ∈ Qp′}

be the set of centroids in the quantization of P (elements of P̃) which can potentially capture q. Note
that q in general need not belong to P̃ or P.

If P ′q 6= ∅, we will further refine the set of distributions that could capture q further to Pq ⊂ P ′q as
described below. Refining P ′q to Pq ensures that models in P ′q do not prematurely capture loss sequences.

Let p be the model in force, which remains unknown. The idea is that we want sequences generated
by (unknown) p to be captured by those centroids of the quantization P̃ that have p in their reach. We
will require (8) below to ensure that the probability (under the unknown p) of all sequences that may

2346



Insurability

get captured by centroids p′ ∈ Pq not having p in its reach remains small. In addition, we impose (9)
as well to resolve a technical issue since q need not, in general, belong to P.

For p′ ∈ P ′q, let the reach of p′ be ε
p′ , and define

D
p′ :=

εp′
4(ln 2)4

256
.

In case the underlying distribution p happens to be out of the reach of p′ (wrong capture), the quantity
D
p′ will later lower bound the distance of the empirical q in question from the underlying p.

Specifically, we place p′ in Pq if n satisfies

exp
(
−nD

p′/18
)
≤ η

2C(p′)ι(p′)2n(n+ 1)
, (8)

and

2F−1q (1−
√
D
p′/6) ≤ logC(p′), (9)

where C(p′) is

C(p′) := 2
2

(
supr∈Bp′

F−1
r (1−

√
D
p′ /6)

)
.

Note that C(p′) is finite since p′ is not deceptive. Comparison with Lemma 7 will give a hint as to why
the equations above look the way they do.

Description of Φ. For the sequence xn with type q, if Pq = ∅, the scheme does not enter yet. If
Pq 6= ∅, let pq denote the distribution in Pq with the smallest index.

All sequences with prefix xn (namely sequences obtained by concatenating xn with by any other
sequence of symbols) are then said to be trapped by pq—namely, loss dominants will be based on pq.
The loss dominant assigned for a length-m sequence trapped by pq is

2gpq

(
η

4n(n+ 1)

)
:= 2 sup

r∈Bpq
F−1r

(
1− η

4n(n+ 1)

)
.

Φ enters with probability 1. First, we verify that the scheme enters with probability 1, no matter
what distribution p ∈ P is in force. Every distribution p ∈ P is contained in at least one of the elements
of the cover QP̃ .

Recall the enumeration of P̃. Let p′ be centroid with the smallest index among all centroids in P̃
whose zones contain p. Let Q be the zone of p′. There is thus some γ > 0 such that the neighborhood
around p given by

I(p, γ) := {q : |p− q|1 < γ}

satisfies I(p, γ) ⊆ Q. Note in particular that p is in the reach of p′.
With probability 1, sequences generated by p will have their empirical distribution within I(p, γ).

For the proof of this well known result in the countably infinite alphabet case, see Chung (1961) or for
an alternate approach, see Lemma 7. Next (8) will hold for all sequences whose empirical distributions
that fall in I(p, γ) whose length n is large enough—since C(p′) and ι(p′) do not change with n, the right
hand side diminishes to zero polynomially with n while the left hand side diminishes exponentially to
zero. Thus we conclude (8) will be satisfied with probability 1.
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Next, (9) will also hold almost surely, for if q is the empirical probability of sequences generated by
p, then (with a little abuse of notation)

F−1q (1−
√
D
p′/6)→ F−1p (1−

√
D
p′/6)

with probability 1. Note that the quantity on the left is actually a random variable that is sequence
dependent (since q is the empirical distribution of the sequence). Furthermore, we also have

2F−1p (1−
√
D
p′/6) ≤ 2

(
sup
r∈Bp′

F−1r (1−
√
D
p′/6)

)
= logC(p′),

where the first inequality follows since p is in the reach of p′.

Thus the scheme enters with probability 1 no matter which p ∈ P is in force.

Probability of bankruptcy ≤ η. We now analyze the scheme. Consider any p ∈ P. Among sequences
on which Φ has entered, we will distinguish between those that are in good traps and those in bad traps.
If a sequence xn is trapped by p′ such that p ∈ Bp′ , p′ is a good trap. Conversely, if p /∈ Bp′ , p′ is a bad
trap.

(Good traps) Suppose a length-n sequence xn is in a good trap, namely, it is trapped by a distribution
p′ such that p ∈ Bp′ . Recall that the loss dominant assigned is

2gp′

(
η

4n(n+ 1)

)
≥ 2F−1p

(
1− η

4n(n+ 1)

)
,

where the inequality follows because p′ is not deceptive, and p is within the reach of p′. Therefore
from (4), given any sequence in a good trap the scheme is bankrupted with conditional probability
at most δ′ = η/2n(n + 1) in the next step. Therefore, summing over all n, sequences in good traps
contribute at most η/2 to the probability of bankruptcy.

(Bad traps) We will show that the probability with which sequences generated by p fall into bad
traps ≤ η/2. Pessimistically, the conditional probability of bankruptcy in the very next step given a
sequence falls into a bad trap is going to be bounded above by 1. Thus the contribution to bankruptcy
by sequences in bad traps is at most η/2.

Let q be any length-n empirical distribution trapped by p̃ with reach ε̃ such that p /∈ Bp̃.
If p is “far” from p̃ (because p is not in p̃’s reach), namely

J (p̃, p) ≥ ε̃,

but q is “close” to p̃ (because q has to be in p̃’s zone to be captured by it), namely

|p̃− q|1 <
ε̃2(ln 2)2

16
,

then we would like q to be far from p. That is exactly what we obtain from the triangle-inequality like
Lemma 6, namely that

J (p, q) ≥ ε̃2 ln 2

16
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and hence, for all q trapped by p̃ that

|p− q|21 ≥ J 2(p, q)(ln 2)2 ≥ ε̃4(ln 2)4

256
= D2

p̃
.

We need not be concerned that the right side above depends on p̃, and there may be actually no way
to lower bound the rhs as a function of just p. Rather, we take care of this issue by setting the entry
point appropriately via (8).

Thus, for p ∈ P∞, the probability length-n sequences with empirical distribution q is trapped by a
bad p̃ is, using (8) and (9)

≤ p
(
|q − p|2 ≥ Dp̃ and 2F−1q (1−

√
Dp̃

6
) ≤ logC(p̃)

)
(a)

≤ (C(p̃)− 2) exp

(
−
nDp̃

18

)
(b)

≤ η(C(p̃)− 2)

2C(p̃)ι(p̃)2n(n+ 1)

≤ η

2ι(p̃)2n(n+ 1)
,

where the inequality (a) follows from Lemma 7 and (b) from (8). Therefore, the probability of sequences
falling into bad traps

≤
∑
n≥1

∑
p̃∈P̃

η

2ι(p̃)2n(n+ 1)
≤ η/2

since
∑

p̃∈P̃
1

ι(p̃)2
≤
∑

n≥1
1

n(n+1) = 1. The theorem follows. 2

7. Concluding Remarks

7.1 Observations

We make a few observations about insurability that, while evident from the proofs and approaches we
have taken, are interesting in themselves and worth highlighting.

Finite unions of insurable classes. The first is relative simple—finite unions of insurable model
classes are insurable in themselves. If P1, . . . ,Pm are m insurable model collections, then ∪mi=1Pi is
insurable.

Countable unions of insurable classes. The union of countably infinitely many classes of models each
of which is insurable need not be insurable. As we have seen, the collection of monotone distributions
with entropy ≤ h, Mh, is insurable for all h ∈ N. However, the collection M∞∗ = ∪h∈NMh is not
insurable.

Countable unions of tight sets. Note that from our arguments while proving the sufficiency criterion,
it follows that every insurable model class is a countable union of tight sets. The converse is not however
true. Note that Mh is a tight set for any h > 0, yet M∞∗ = ∪h∈NMh is not insurable.

2349



Santhanam and Anantharam

7.2 General Remarks

The loss-domination problem formulated and solved in this paper appears to be of natural interest.
However, there are several features of the insurance problem formulated here that might appear troubling
even to the casual reader. In practice an insured party entering into an insurance contract would
expect some stability in the premiums that are expected to be paid. A natural direction for further
research is therefore to study how the notion of insurability of a model class changes when one imposes
restrictions on how much the premium set by the insurer can vary from period to period. Another
obvious shortcoming of the formulation of the insurance problem studied here is the assumption that
the insured will accept any contract issued by the insurer. Since the insured in our model represents an
aggregate of individual insured parties, a natural direction to make the framework more realistic would
be to think of the insured parties as being of different types. This would in effect make the total realized
premium from the insured (the aggregate of the insured parties) and the distribution of the realized
loss in each period a function of the size of the premium per insured party set by the insurer in that
period. Characterizing which model classes are insurable when the realized premium and the realized
loss are functions of a set premium per insured party would be of considerable interest.

Both for the loss-domination problem and for the insurance problem, working with model classes for
the loss sequence that allow for dependencies in the loss from period to period, for instance Markovian
dependencies, would be another interesting direction for further research. Considering models with
multiple, possibly competing insurers, as well as considering an insurer operating in multiple markets,
where losses in one market can be offset by gains in another, also seem to be useful directions to
investigate.
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Appendix

Lemma 4 Let p and q be probability distributions on N. Then

1

4 ln 2
|p− q|21 ≤ J (p, q) ≤ 1

ln 2
|p− q|1 .

If, in addition, r is a probability distribution on N, then

J (p, q) + J (q, r) ≥ J 2(p, r)
ln 2

8
.

Proof The lower bound in the first statement follows from Pinsker’s inequality on KL divergences,

D

(
p||p+ q

2

)
≥ 1

2 ln 2

1

4
|p− q|21
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and similarly for D
(
q||p+q2

)
. See e.g., Cover and Thomas (1991) for more details about Pinsker’s

inequality.

Since ln(1 + z) ≤ z for all z ≥ 0, the upper bound in the first statement follows as below:

J (p, q) ln 2 ≤
∑

x:p(x)≥q(x)

p(x)

(
p(x)− q(x)

p(x) + q(x)

)
+

∑
x′:q(x′)≥p(x′)

q(x′)

(
q(x′)− p(x′)
p(x′) + q(x′)

)
≤ |p− q|1.

To prove the triangle-like inequality, note that

J (p, q) + J (q, r) ≥ 1

4 ln 2

(
|p− q|21 + |q − r|21

)
≥ 1

8 ln 2
(|p− q|1 + |q − r|1)2

≥ 1

8 ln 2
(|p− r|1)2

≥ ln 2

8
J (p, r)2,

where the last inequality follows from the upper bound on J (p, r) already proved. 2

Lemma 5 Let p and q be probability distributions on a countable set A with J (p, q) ≤ ε. Let pN

and qN be distributions over AN obtained by i.i.d. sampling from p and q respectively (the distribution
induced by the product measure). For any RN ⊂ AN and α > 0, if pN (RN ) ≥ 1− α, then

qN (RN ) ≥ 1− α− 2N3
√

4ε ln 2− 1

N
.

Proof Let

B1 =

{
i ∈ A : q(i) ≤ p(i)

(
1− 1

N2

)}
,

and let

B2 =

{
i ∈ A : p(i) ≤ q(i)

(
1− 1

N2

)}
,

If J (p, q) ≤ ε, then we have
√
ε ≥

√
J (p, q) ≥ |p− q|1√

4 ln 2
.

It can then be easily seen that

p(B1 ∪ B2) ≤ 2N2
√

4ε ln 2 and q(B1 ∪ B2) ≤ 2N2
√

4ε ln 2 (10)

because

|p− q|1 ≥
∑
x∈B1

(p(x)− q(x)) ≥ p(B1)
N2

≥ q(B1)
N2

and similarly

N2|p− q|1 ≥ q(B2) ≥ p(B2).
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Let S = A− B1 ∪ B2. We have for all x ∈ S,

q(x) ≥ p(x)

(
1− 1

N2

)
. (11)

and from (10) we have p(S) ≥ 1 − 2N2
√

4ε ln 2. Now, we focus on the set SN ⊂ AN containing all
length-N strings of symbols from S. Clearly

p(SN ) ≥ 1− 2N3
√

4ε ln 2.

Thus we have
p(RN ∩ SN ) ≥ 1− 2N3

√
4ε ln 2− α.

From (11), for all xN ∈ SN ,

q(xN ) ≥ p(xN )

(
1− 1

N2

)N
≥ p(xN )

(
1− 1

N

)
.

Therefore,

q(RN ) ≥ q(RN ∩ SN ) ≥ (1− 2N3
√

4ε ln 2− α)

(
1− 1

N

)
≥ 1− α− 2N3

√
4ε ln 2− 1

N
. 2

Lemma 6 Let ε0 > 0. If

|p0 − q|1 ≤
ε20(ln 2)2

16
,

then for all p ∈ P with J (p, p0) ≥ ε0, we have

J (p, q) ≥ ε20 ln 2

16
.

Proof Since

|p0 − q|1 ≤
ε20(ln 2)2

16
,

Lemma 4 implies that

J (p0, q) ≤
ε20 ln 2

16
.

Further, Lemma 4 then implies that

J (p, q) +
ε20 ln 2

16
≥ J (p, q) + J (p0, q) ≥

J 2(p, p0) ln 2

8
≥ ε20 ln 2

8
,

where the last inequality follows since J (p, p0) ≥ ε0. 2

Lemma 7 Let p be any probability distribution on N. Let δ > 0 and let k ≥ 2 be an integer. Let
Xn

1 be a sequence generated i.i.d. with marginals p and let q(Xn) be the empirical distribution of Xn
1 .

Then

p
(
|q(Xn)− p| > δ and 2F−1q (1− δ/6) ≤ k

)
≤ (2k − 2) exp

(
−nδ

2

18

)
.
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Remark There is a lemma that looks somewhat similar in Ho and Yeung (2010). The difference
from Ho and Yeung (2010) is that the right side of the inequality above does not depend on p, and this
property is crucial for its use here. 2

Proof The starting point is the following result. Suppose p′ is a probability distribution on N with
finite support of size L. Then from Weissman et al. (2005), if we consider length n sequences,

p′(|q(Xn)− p′|1 ≤ t) ≥ 1− (2L − 2) exp

(
−nt

2

2

)
. (12)

Since k ≥ 2, consider the distributions p′ and q′ with support A = {1, . . . ,k − 1} ∪ {−1}, obtained as

p′(i) =

{
p(i) 1 ≤ i < k∑∞

j=k p(j) i = −1,

and similarly for q′.
From (12),

p′(|p′ − q′|1 > δ/3) ≤ (2k − 2) exp

(
−nδ

2

18

)
.

We will see that all sequences generated by p with empirical distributions q satisfying

|p− q|1 > δ and 2F−1q (1− δ/6) ≤ k

are now mapped into sequences generated by p′ with empirical q′ satisfying

|p′ − q′|1 > δ/3 and q′(−1) ≤ δ/3. (13)

Thus, we will have

p(|q(Xn)− p|1 > δ and 2F−1q (1− δ/6) ≤ k)

≤ p′(|p′ − q′|1 > δ/3 and q′(−1) ≤ δ/3)

≤ (2k − 2) exp

(
−nδ

2

18

)
.

Finally we observe (13) as in Ho and Yeung (2010)

|p− q|1 −
k−1∑
l=1

|p(l)− q(l)|

≤
∞∑
j=k

(p(j)− q(j)) + 2
∞∑
j=k

q(j)

≤ |p′(−1)− q′(−1)|+ 2δ/3,

where the last inequality above follows from (4). Since p(l) = p′(l) and q(l) = q′(l) for all l = 1, . . . ,k−1,
we have

|p′ − q′|1 ≥ |p− q|1 − 2δ/3.

If |p− q|1 ≥ δ in addition, |p′ − q′|1 ≥ δ/3. 2
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Abstract

The normalized maximum likelihood distribution achieves minimax coding (log-loss) re-
gret given a fixed sample size, or horizon, n. It generally requires that n be known in
advance. Furthermore, extracting the sequential predictions from the normalized maxi-
mum likelihood distribution is computationally infeasible for most statistical models. Sev-
eral computationally feasible alternative strategies have been devised. We characterize
the achievability of asymptotic minimaxity by horizon-dependent and horizon-independent
strategies. We prove that no horizon-independent strategy can be asymptotically minimax
in the multinomial case. A weaker result is given in the general case subject to a condition
on the horizon-dependence of the normalized maximum likelihood. Motivated by these
negative results, we demonstrate that an easily implementable Bayes mixture based on a
conjugate Dirichlet prior with a simple dependency on n achieves asymptotic minimaxity
for all sequences, simplifying earlier similar proposals. Our numerical experiments for the
Bernoulli model demonstrate improved finite-sample performance by a number of novel
horizon-dependent and horizon-independent algorithms.

Keywords: on-line learning, prediction of individual sequences, normalized maximum
likelihood, asymptotic minimax regret, Bayes mixture

1. Introduction

The normalized maximum likelihood (NML) distribution is derived as the optimal solution
to the minimax problem that seeks to minimize the worst-case coding (log-loss) regret with
fixed sample size n (Shtarkov, 1987). In this problem, any probability distribution can be
converted into a sequential prediction strategy for predicting each symbol given an observed
initial sequence, and vice versa. A minimax solution yields predictions that have the least
possible regret, i.e., excess loss compared to the best model within a model class.

The important multinomial model, where each symbol takes one of m > 1 possible
values, has a long history in the extensive literature on universal prediction of individual
sequences especially in the Bernoulli case, m = 2 (see e.g. Laplace, 1795/1951; Krichevsky
and Trofimov, 1981; Freund, 1996; Krichevsky, 1998; Merhav and Feder, 1998; Cesa-Bianchi
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and Lugosi, 2001). A linear time algorithm for computing the NML probability of any indi-
vidual sequence of full length n was given by Kontkanen and Myllymäki (2007). However,
this still leaves two practical problems. First, given a distribution over sequences of length
n, obtaining the marginal and conditional probabilities needed for predicting symbols before
the last one requires evaluation of exponentially many terms. Second, the total length of the
sequence, or the horizon, is not necessarily known in advance in so called online scenarios
(see e.g. Freund, 1996; Azoury and Warmuth, 2001; Cesa-Bianchi and Lugosi, 2001). The
predictions of the first ñ symbols under the NML distribution depend on the horizon n in
many models, including the multinomial. In fact, Bartlett et al. (2013) showed that NML is
horizon-dependent in this sense in all one-dimensional exponential families with three excep-
tions (Gaussian, Gamma, and Tweedy). When this is the case, NML cannot be applied, and
consequently, minimax optimality cannot be achieved without horizon-dependence. Simi-
larly, in a somewhat different adversarial setting, Luo and Schapire (2014) show a negative
result that applies to loss functions bounded within the interval [0, 1].

Several easily implementable nearly minimax optimal strategies have been proposed
(see Shtarkov, 1987; Xie and Barron, 2000; Takeuchi and Barron, 1997; Takimoto and
Warmuth, 2000; Kot lowski and Grünwald, 2011; Grünwald, 2007, and references therein).
For asymptotic minimax strategies, the worst-case total log-loss converges to that of the
NML distribution as the sample size tends to infinity. This is not equivalent to the weaker
condition that the average regret per symbol converges to zero. It is known, for instance,
that neither the Laplace plus-one-rule that assigns probability (k+ 1)/(n+m) to a symbol
that has appeared k times in the first n observations, nor the Krichevsky-Trofimov plus-one-
half-rule, (k + 1/2)/(n+m/2), which is also the Bayes procedure under the Jeffreys prior,
are asymptotically minimax optimal over the full range of possible sequences (see Xie and
Barron, 2000). Xie and Barron (2000) showed that a Bayes procedure defined by a modified
Jeffreys prior, wherein additional mass is assigned to the boundaries of the parameter space,
achieves asymptotic minimax optimality. Takeuchi and Barron (1997) studied an alternative
technique for a more general model class. Both these strategies are horizon-dependent. An
important open problem has been to determine whether a horizon-independent asymptotic
minimax strategy for the multinomial case exists.

We investigate achievability of asymptotic minimaxity by horizon-dependent and horizon-
independent strategies. Our main theorem (Theorem 2) answers the above open problem
in the negative: no horizon-independent strategy can be asymptotic minimax for multino-
mial models. We give a weaker result that applies more generally under a condition on
the horizon-dependence of NML. On the other hand, we show that an easily implementable
horizon-dependent Bayes procedure defined by a simpler prior than the modified Jeffreys
prior by Xie and Barron (2000) achieves asymptotic minimaxity. The proposed proce-
dure assigns probability (k + αn)/(n + mαn) to any outcome that has appeared k times
in a sequence of length n, where m is the alphabet size and αn = 1/2 − ln 2/(2 lnn) is a
prior mass assigned to each outcome. We also investigate the behavior of a generalization
of the last-step minimax algorithm, which we call the k-last-step minimax algorithm and
which is horizon-independent. Our numerical experiments (Section 5) demonstrate supe-
rior finite-sample performance by the proposed horizon-dependent and horizon-independent
algorithms compared to existing approximate minimax algorithms.
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2. Preliminaries

Consider a sequence xn = (x1, · · · , xn) and a parametric model

p(xn|θ) =
n∏
i=1

p(xi|θ),

where θ = (θ1, · · · , θd) is a d-dimensional parameter. We focus on the case where each xi is
one of a finite alphabet of symbols and the maximum likelihood estimator

θ̂(xn) = argmax
θ

ln p(xn|θ)

can be computed.
The optimal solution to the minimax problem,

min
p

max
xn

ln
p(xn|θ̂(xn))

p(xn)
,

assuming that the solution exists, is given by

p
(n)
NML(xn) =

p(xn|θ̂(xn))

Cn
, (1)

where Cn =
∑

xn p(x
n|θ̂(xn)) and is called the normalized maximum likelihood (NML)

distribution (Shtarkov, 1987). For model classes where the above problem has no solution
and the normalizing term Cn diverges, it may be possible to reach a solution by conditioning
on some number of initial observations (see Liang and Barron, 2004; Grünwald, 2007).
The regret of the NML distribution is equal to the minimax value lnCn for all xn. We

mention that in addition to coding and prediction, the code length − ln p
(n)
NML(xn) can be

used as a model selection criterion according to the minimum description length (MDL)
principle (Rissanen, 1996); (see also Grünwald, 2007; Silander et al., 2010, and references
therein).

In cases where the minimax optimal NML distribution cannot be applied (for reasons
mentioned above), it can be approximated by another strategy, i.e., a sequence of distri-
butions (g(n))n∈N. A strategy is said to be horizon-independent if for all 1 ≤ ñ < n, the
distribution g(ñ) matches with the marginal distribution of xñ obtained from g(n) by sum-
ming over all length n sequences that are obtained by concatenating xñ with a continuation
xnñ+1 = (xñ+1, · · · , xn):

g(ñ)(xñ) =
∑
xnñ+1

g(n)(xn). (2)

For horizon-independent strategies, we omit the horizon n in the notation and write g(xn) =
g(n)(xn). This also implies that the ratio g(xnñ+1|xñ) = g(xn)/g(xñ) is a valid conditional
probability distribution over the continuations xnñ+1 assuming that g(xñ) > 0.1

1. Note that even if a strategy is based on assuming a fixed horizon (or an increasing sequence or horizons
like in the so called doubling-trick, see Cesa-Bianchi et al., 1997), as long as the assumed horizon is
independent of the true horizon, the strategy is horizon-independent.
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A property of interest is asymptotic minimax optimality of g, which is defined by

max
xn

ln
p(xn|θ̂(xn))

g(xn)
≤ lnCn + o(1), (3)

where o(1) is a term converging to zero as n→∞.
Hereafter, we focus mainly on the multinomial model with x ∈ {1, 2, · · · ,m},

p(x|θ) = θx,
m∑
j=1

θj = 1, (4)

extended to sequences by the i.i.d. assumption. The corresponding conjugate prior is the
Dirichlet distribution. In the symmetric case where each outcome x ∈ {1, . . . ,m} is treated
equally, it takes the form

q(θ|α) =
Γ(mα)

Γ(α)m

m∏
j=1

θα−1
j ,

where Γ(x) =
∫∞

0 tx−1e−tdt is the gamma function and α > 0 is a hyperparameter. Proba-
bilities of sequences under Bayes mixtures with Dirichlet priors can be obtained from

pB,α(xn) =

∫ n∏
i=1

p(xi|θ)q(θ|α)dθ =
Γ(mα)

Γ(α)m

∏m
j=1 Γ(nj + α)

Γ(n+mα)
, (5)

where nj is the number of js in xn. The Bayes mixture is horizon-dependent if α depends
on n and horizon-independent otherwise.

The minimax regret is asymptotically given by Xie and Barron (2000),

lnCn =
m− 1

2
ln

n

2π
+ ln

Γ(1/2)m

Γ(m/2)
+ o(1). (6)

3. (Un)achievability of Asymptotic Minimax Regret

We now give our main result, Theorem 2, showing that no horizon-independent asymptotic
minimax strategy for the multinomial case exists. In the proof, we use the following lemma.
The proof of the lemma is given in Appendix A.

Lemma 1 Let

f(x) = ln Γ

(
x+

1

2

)
− x lnx+ x− 1

2
ln 2π,

for x > 0 and f(0) = − ln 2
2 . Then for x ≥ 0,

− ln 2

2
≤ f(x) < 0 (7)

and limx→∞ f(x) = 0.

Theorem 2 For the multinomial model in (4), no horizon-independent strategy is asymp-
totic minimax.
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Proof Let g be an arbitrary horizon-independent strategy satisfying (2). First, by the

properties of the Gamma function, we have ln Γ(n+ m
2 ) = ln Γ(n+ 1

2) + (m−1)
2 lnn+ o(1).

Applying this to (5) in the case of the Jeffreys mixture pB,1/2 yields

ln pB,1/2(xn) = ln
Γ(m/2)

Γ(1/2)m
+

m∑
j=1

{
ln Γ(nj + 1/2)

}
− ln Γ(n+ 1/2)− m− 1

2
lnn+ o(1). (8)

We thus have

ln
p

(n)
NML(xn)

pB,1/2(xn)
=

m∑
j=1

{
− ln Γ (nj + 1/2) + nj lnnj − nj +

1

2
ln 2π

}
+ ln Γ(n+ 1/2)− n lnn+ n− 1

2
ln 2π + o(1)

= −
m∑
j=1

f(nj) + f(n) + o(1). (9)

By Lemma 1, for the sequence of all js (for any j ∈ {1, 2, · · · ,m}),

ln
p

(n)
NML(xn)

pB,1/2(xn)
→ m− 1

2
ln 2 (n→∞),

which means that the Jeffreys mixture is not asymptotically minimax. Hence, we can
assume that g is not the Jeffreys mixture and pick ñ and xñ such that for some positive
constant ε,

ln
pB,1/2(xñ)

g(xñ)
≥ ε. (10)

By (9) and Lemma 1, we can find n0 such that for all n > n0 and all sequences xn,

ln
p

(n)
NML(xn)

pB,1/2(xn)
≥ −ε

2
. (11)

Then for all n > max{ñ, n0}, there exists a sequence xn which is a continuation of the xñ

in (10), such that

ln
p

(n)
NML(xn)

g(xn)
= ln

p
(n)
NML(xn)

pB,1/2(xn)
+ ln

pB,1/2(xn)

g(xn)

= ln
p

(n)
NML(xn)

pB,1/2(xn)
+ ln

pB,1/2(xnñ+1|xñ)

g(xnñ+1|xñ)
+ ln

pB,1/2(xñ)

g(xñ)

≥ −ε
2

+ ε =
ε

2
, (12)

where the identity ln g(xn) = ln g(xnñ+1|xñ) + ln g(xñ) implied by horizon-independence is
used on the second row. The last inequality follows from (10), (11) and the fact that
g(xnñ+1|xñ) is a conditional probability distribution of xnñ+1. Note that since (11) holds
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for all continuations of xñ, it is sufficient that there exists one continuation for which
pB,1/2(xnñ+1|xñ)/g(xnñ+1|xñ) ≥ 1 holds on the second row of (12).

It will be interesting to study whether similar results as above can be obtained for other
models than the multinomial. For models where the NML is horizon-dependent and the
Jeffreys mixture satisfies the convergence to NML in the sense of (11), we can use the same
proof technique to prove the non-achievability by horizon-independent strategies. Here we
provide an alternative approach that leads to a weaker result, Theorem 3, showing that
a slightly stronger notion of asymptotic minimaxity is unachievable under the following
condition on the horizon-dependence of the NML distribution.

Assumption 1 Suppose that for ñ satisfying ñ→∞ and ñ
n → 0 as n→∞ (e.g. ñ =

√
n),

there exist a sequence xñ and a unique constant M > 0 such that

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

→M (n→∞). (13)

Assumption 1 means that the NML distribution changes over the sample size n by
an amount that is characterized by M . The following theorem proves that under this
assumption, a stronger notion of asymptotic minimaxity is never achieved simultaneously
for the sample sizes ñ and n by a strategy g that is independent of n.

Theorem 3 Under Assumption 1, if a distribution g is horizon-independent, then it never
satisfies

lnCn −M + o(1) ≤ ln
p(xn|θ̂(xn))

g(xn)
≤ lnCn + o(1), (14)

for all xn and any M < M , where M is the constant appearing in Assumption 1 and o(1)
is a term converging to zero uniformly on xn as n→∞.

The proof is given in Appendix B.
The condition in (14) is stronger than the usual asymptotic minimax optimality in

(3), where only the second inequality in (14) is required. Intuitively, this stronger notion of
asymptotic minimaxity requires not only that for all sequences, the regret of the distribution
g is asymptotically at most the minimax value, but also that for no sequence, the regret is
asymptotically less than the minimax value by a margin characterized by M . Note that
non-asymptotically (without the o(1) terms), the corresponding strong and weak minimax
notions are equivalent.

The following additional result provides a way to assess the amount by which the NML
distribution depends on the horizon in the multinomial model. At the same time, it evaluates
the conditional regret of the NML distributions as studied by Rissanen and Roos (2007),
Grünwald (2007), and Hedayati and Bartlett (2012).

Let lj be the number of js in xñ (0 ≤ lj ≤ ñ,
∑m

j=1 lj = ñ). It follows that

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

= ln

∏m
j=1

(
lj
ñ

)lj∑
nj≥lj

(
n−ñ
nj−lj

)∏m
j=1

(nj
n

)nj + ln
Cn
Cñ

, (15)
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where
(
n−ñ
nj−lj

)
≡
(

n−ñ
n1−l1,···,nm−lm

)
is the multinomial coefficient and

∑
nj≥lj denotes the

summation over njs satisfying n1 + · · ·+ nm = n and nj ≥ lj for j = 1, 2, · · · ,m. Lemma 4
evaluates

Cn|xñ ≡
∑
nj≥lj

(
n− ñ
nj − lj

) m∏
j=1

(nj
n

)nj
in (15). The proof is in Appendix C.2

Lemma 4 Cn|xñ is asymptotically evaluated as

lnCn|xñ =
m− 1

2
ln

n

2π
+ ln C̃ 1

2
+ o(1), (16)

where C̃α is defined for α > 0 and {lj}mj=1 as

C̃α =

∏m
j=1 Γ(lj + α)

Γ(ñ+mα)
. (17)

Substituting (16) and (6) into (15), we have

ln
p

(ñ)
NML(xñ)

p
(n)
NML(xñ)

= −m− 1

2
ln

ñ

2π
+

m∑
j=1

lj ln
lj
ñ
− ln

∏m
j=1 Γ(lj + 1/2)

Γ(ñ+m/2)
+ o(1),

where p
(n)
NML(xñ) =

∑
xnñ+1

p
(n)
NML(xn). Applying Stirling’s formula to ln Γ(ñ+m/2) expresses

the right hand side as

−
m∑
j=1

f(lj) + o(1),

where f is the function defined in Lemma 1.

To illustrate the degree to which the NML distribution depends on the horizon, take

l1 = ñ, lj = 0 for j = 2, · · · ,m. By Lemma 1, we then have ln p
(ñ)
NML(xñ) − ln p

(n)
NML(xñ) =

1
2(m− 1) ln 2 + o(1).

4. Asymptotic Minimax via Simpler Horizon-Dependence

We examine the asymptotic minimaxity of the Bayes mixture in (5). More specifically, we
investigate the minimax optimal hyperparameter

argmin
α

max
xn

ln
p(xn|θ̂(xn))

pB,α(xn)
(18)

2. For the Fisher information matrix I(θ) whose ijth element is given by (I(θ))ij = −
∑
x p(x|θ)

∂2 ln p(x|θ)
∂θi∂θj

=

δi,j/θj , the constant C̃1/2 coincides with
∫ √
|I(θ)|

∏m
j=1 θ

ljdθ. This proves that the asymptotic expres-
sion of the regret of the conditional NML (Grünwald, 2007, Equation (11.47), p.323) is valid for the
multinomial model with the full parameter set rather than the restricted parameter set discussed by
Grünwald (2007).
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and show that it is asymptotically approximated by

αn =
1

2
− ln 2

2

1

lnn
. (19)

As a function of (n1, · · · , nm−1), the regret of pB,α is

ln
p(xn|θ̂(xn))

pB,α(xn)
=

m∑
j=1

{nj lnnj − ln Γ(nj + α)}+ κ (20)

where nm = n−
∑m−1

j=1 nj and κ denotes a constant that does not depend on (n1, · · · , nm−1).
We first prove the following lemma (Appendix D).

Lemma 5 The possible worst-case sequences in (18) have l nonzero counts (l = 1, 2, · · · ,m),
each of which is bnl c or bnl c + 1 with all the other counts are zeros. Here b·c is the floor
function, the largest integer not exceeding the argument.

From this lemma, we focus on the regrets of the two extreme cases of xn consisting of a
single symbol repeated n times and xn with a uniform number n/m of each symbol j. Let
the regrets of these two cases be equal,

Γ(α)m−1Γ(n+ α) = Γ(n/m+ α)mmn. (21)

Equating the regrets of these two cases also equates the regrets of (n/l, · · · , n/l, 0, · · · , 0) for
1 ≤ l ≤ m up to o(1) terms, which is verified by directly calculating the regrets. Note that
equating the regrets of the m possible worst-case sequences leads to the least maximum
regret. This is because the regrets at the m possible worst-case sequences are not equal,
we can improve by reducing the regret at the actual worst-case sequence until it becomes
equal to the other cases.

Taking logarithms, using Stirling’s formula and ignoring diminishing terms in (21), we
have

(m− 1)

(
α− 1

2

)
lnn− (m− 1) ln Γ(α)−m

(
α− 1

2

)
lnm+ (m− 1)

ln 2π

2
= 0. (22)

This implies that the optimal α is asymptotically given by

αn '
1

2
− a

lnn
, (23)

for some constant a. Substituting this back into (22) and solving it for a, we obtain (19).

We numerically calculated the optimal hyperparameter defined by (18) for the Bernoulli
model (m = 2). Figure 1 shows the optimal α obtained numerically and its asymptotic
approximation in (19). We see that the optimal hyperparameter is well approximated by
αn in (19) for large n. Note here the slow convergence speed, O(1/ lnn) to the asymptotic
value, 1/2.

The next theorem shows the asymptotic minimaxity of αn (the second inequality in (24)).
We will examine the regret of αn numerically in Section 5.1.
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Figure 1: Minimax optimal hyperparameter α for sample size n

Theorem 6 For the multinomial model in (4), the Bayes mixture defined by the prior
Dir(αn, · · · , αn) is asymptotic minimax and satisfies

lnCn −M + o(1) ≤ ln
p(xn|θ̂(xn))

pB,αn(xn)
≤ lnCn + o(1), (24)

for all xn where M = (m−1) ln 2/2, and lnCn is the minimax regret evaluated asymptotically
in (6).

The proof is given in Appendix E.

5. Numerical Results

In this section, we numerically calculate the maximum regrets of several methods in the
Bernoulli model (m = 2). The following two subsections respectively examine horizon-
dependent algorithms based on Bayes mixtures with prior distributions depending on n
and last-step minimax algorithms, which are horizon-independent.

5.1 Optimal Conjugate Prior and Modified Jeffreys Prior

We calculated the maximum regrets of the Bayes mixtures in (5) with the hyperparameter
optimized by the golden section search and with its asymptotic approximation in (19). We
also investigated the maximum regrets of Xie and Barron’s modified Jeffreys prior which is
proved to be asymptotic minimax (Xie and Barron, 2000). The modified Jeffreys prior is
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defined by

q
(n)
MJ(θ) =

εn
2

{
δ

(
θ − 1

n

)
+ δ

(
θ − 1 +

1

n

)}
+ (1− εn)b1/2(θ),

where δ is the Dirac’s delta function and b1/2(θ) is the density function of the beta distribu-
tion with hyperparameters 1/2, Beta(1/2, 1/2), which is the Jeffreys prior for the Bernoulli
model. We set εn = n−1/8 as proposed by Xie and Barron (2000) and also optimized εn by
the golden section search so that the maximum regret

max
xn

ln
p(xn|θ̂(xn))∫
p(xn|θ)q(n)

MJ(θ)dθ

is minimized.
Figure 2(a) shows the maximum regrets of these Bayes mixtures: asymptotic and opti-

mized Beta refer to mixtures with Beta priors (Section 4), and modified Jeffreys methods
refer to mixtures with a modified Jeffreys prior as discussed above. Also included for com-
parison is the maximum regret of the Jeffreys mixture (Krichevsky and Trofimov, 1981),
which is not asymptotic minimax. To better show the differences, the regret of the NML
distribution, lnCn, is subtracted from the maximum regret of each distribution.

We see that the maximum regrets of these distributions, except the one based on Jef-
freys prior, decrease toward the regret of NML as n grows as implied by their asymptotic
minimaxity. The modified Jeffreys prior with the optimized weight performs best of these
strategies for this range of the sample size. For moderate and large sample sizes (n > 100),
the asymptotic minimax hyperparameter, which can be easily evaluated by (19), performs
almost as well as the optimized strategies which are not known analytically. Note that
unlike the NML, Bayes mixtures provide the conditional probabilities p(xñ | x1, . . . , xñ−1)
even if the prior depends on n. The time complexity for online prediction will be discussed
in Section 5.3.

5.2 Last-Step Minimax Algorithms

The last-step minimax algorithm is an online prediction algorithm that is equivalent to the
so called sequential normalized maximum likelihood method in the case of the multinomial
model (Rissanen and Roos, 2007; Takimoto and Warmuth, 2000). A straightforward gener-
alization, which we call the k-last-step minimax algorithm, normalizes p(xt|θ̂(xt)) over the
last k ≥ 1 steps to calculate the conditional distribution of xtt−k+1 = {xt−k+1, · · · , xt},

pkLS(xtt−k+1|xt−k) =
p(xt|θ̂(xt))

Lt,k
,

where Lt,k =
∑

xtt−k+1
p(xt|θ̂(xt)). Although this generalization was mentioned by Takimoto

and Warmuth (2000), it was left as an open problem to examine how k affects the regret of
the algorithm.

Our main result (Theorem 2) tells that k-last-step minimax algorithm with k indepen-
dent of n is not asymptotic minimax. We numerically calculated the regret of the k-last-step
minimax algorithm with k = 1, 10, 100 and 1000 for the sequence xn = 1010101010 · · · since
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Figure 2: Maximum regret for sample size n. The regret of the NML distribution, lnCn, is
subtracted from the maximum regret of each strategy. The first two algorithms
(from the top) in each panel are from earlier work, while the remaining ones are
novel.

it is infeasible to evaluate the maximum regret for large n. The regret for this particular
sequence provides a lower bound for the maximum regret. Figure 2(b) shows the regret
as a function of n together with the maximum regret of the Jeffreys mixture. The theo-
retical asymptotic regret for the Jeffreys mixture is ln 2

2 ≈ 0.34 (Krichevsky and Trofimov,
1981), and the asymptotic bound for the 1-last-step minimax algorithm is slightly better,
1
2

(
1− ln π

2

)
≈ 0.27 (Takimoto and Warmuth, 2000). We can see that although the regret

decreases as k grows, it still increases as n grows and does not converge to that of the NML
(zero in the figure).

5.3 Computational Complexity

As mentioned above, in the multinomial model, the NML probability of individual sequences
of length n can be evaluated in linear time (Kontkanen and Myllymäki, 2007). However,
for prediction purposes in online scenarios, we need to compute the predictive probabili-

ties p
(n)
NML(xt|xt−1) by summing over all continuations of xt. Computing all the predictive

probabilities up to n by this method takes the time complexity of O(mn). For all the other
algorithms except NML, the complexity is O(n) when m is considered fixed. More specifi-
cally, for Bayes mixtures, the complexity is O(mn) and for k-laststep minimax algorithms,
the complexity is O(mkn).

We mention that it was recently proposed that the computational complexity of the
prediction strategy based on NML may be significantly reduced by representing the NML
distribution as a Bayes-like mixture with a horizon-dependent prior (Barron et al., 2014).
The authors show that for a parametric family with a finite-valued sufficient statistic, the
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exact NML is achievable by a Bayes mixture with a signed discrete prior designed depending
on the horizon n. The resulting prediction strategy may, however, require updating as many
as n/2 + 1 weights on each prediction step even in the Bernoulli case, which leads to total
time complexity of order n2.

6. Conclusions

We characterized the achievability of asymptotic minimax coding regret in terms of horizon-
dependency. The results have implications on probabilistic prediction, data compression,
and model selection based on the MDL principle, all of which depend on predictive mod-
els or codes that achieve low logarithmic losses or short code-lengths. For multinomial
models, which have been very extensively studied, our main result states that no horizon-
independent strategy can be asymptotic minimax. A weaker result involving a stronger
minimax notion is given for more general models. Future work can focus on obtaining
precise results for different model classes where achievability of asymptotic minimaxity is
presently unknown.

Our numerical experiments show that several easily implementable Bayes and other
strategies are nearly optimal. In particular, a novel predictor based on a simple asymptoti-
cally optimal horizon-dependent Beta (or Dirichlet) prior, for which a closed form expression
is readily available, offers a good trade-off between computational cost and worst-case regret.
Overall, differences in the maximum regrets of many of the strategies under the Bernoulli
model (Figure 2) are small (less than 1 nat). Such small differences may nevertheless be
important from a practical point of view. For instance, it has been empirically observed
that slight differences in the Dirichlet hyperparameter, leading to relatively small changes
in the marginal probabilities, can be significant in Bayesian network structure learning (Si-
lander et al., 2007). Furthermore, the differences are likely to be greater under multinomial
(m > 2) and other models, which is another direction for future work.
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Appendix A. Proof of Lemma 1

Proof The function f is non-decreasing since f ′(x) = ψ(x + 1/2) − lnx ≥ 0 where
ψ(x) = (ln Γ(x))′ is the digamma function (Merkle, 1998). limx→∞ f(x) = 0 is derived
from Stirling’s formula,

ln Γ(x) =

(
x− 1

2

)
lnx− x+

1

2
ln(2π) +O

(
1

x

)
.

It immediately follows from f(0) = − ln 2
2 and this limit that − ln 2

2 ≤ f(x) < 0 for x ≥ 0.
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Appendix B. Proof of Theorem 3

Proof Under Assumption 1, we suppose (14) holds for all sufficiently large n and derive
contradiction. The inequalities in (14) are equivalent to

−M + o(1) ≤ ln
p

(n)
NML(xn)

g(xn)
≤ o(1).

For a horizon-independent strategy g we can expand the marginal probability g(xñ) in terms
of the following sum and apply the above lower bound to obtain

g(xñ) =
∑
xnñ+1

g(xn) =
∑
xnñ+1

p
(n)
NML(xn)e

− ln
p
(n)
NML

(xn)

g(xn)

≤ eM+o(1)
∑
xnñ+1

p
(n)
NML(xn) (25)

for all xñ. Then we have

max
xñ

ln
p

(ñ)
NML(xñ)

g(xñ)
= max

xñ

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

+ ln

∑
xnñ+1

p
(n)
NML(xn)

g(xñ)


≥ max

xñ

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

−M + o(1)

≥ ε+ o(1),

where ε = M −M > 0. The first inequality follows from (25) and the second inequality

follows from Assumption 1, which implies maxxñ ln
p
(ñ)
NML(xñ)∑

xn
ñ+1

p
(n)
NML(xn)

≥M + o(1). The above

inequality contradicts the asymptotic minimax optimality in (14) with n replaced by ñ.

Appendix C. Proof of Lemma 4

Proof In order to prove Lemma 4, we modify and extend the proof in Xie and Bar-
ron (2000) for the asymptotic evaluation of lnCn = ln

∑
xn p(x

n|θ̂(xn)) given by (6) to

that of lnCn|xñ = ln
∑

xnñ+1
p(xn|θ̂(xn)), which is conditioned on the first ñ samples, xñ.

More specifically, we will prove the following inequalities. Here, pB,w denotes the Bayes
mixture defined by the prior w(θ), pB,1/2 and pB,αn are those with the Dirichlet priors,

Dir(1/2, · · · , 1/2) (Jeffreys mixture) and Dir(αn, · · · , αn) where αn = 1
2 −

ln 2
2

1
lnn respec-

tively.

m− 1

2
ln

n

2π
+ C̃ 1

2
+ o(1) ≤

∑
xnñ+1

pB,1/2(xnñ+1|xñ) ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
(26)
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≤ max
w

∑
xnñ+1

pB,w(xnñ+1|xñ) ln
p(xn|θ̂(xn))

pB,w(xnñ+1|xñ)

= max
w

min
p

∑
xnñ+1

pB,w(xnñ+1|xñ) ln
p(xn|θ̂(xn))

p(xnñ+1|xñ)

≤ min
p

max
xnñ+1

ln
p(xn|θ̂(xn))

p(xnñ+1|xñ)

= ln
∑
xnñ+1

p(xn|θ̂(xn)) = lnCn|xñ

≤ max
xnñ+1

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)

≤ m− 1

2
ln

n

2π
+ C̃ 1

2
+ o(1), (27)

where the first equality follows from Gibbs’ inequality, and the second equality as well as
the second to last inequality follow from the minimax optimality of NML (Shtarkov, 1987).
Let us move on to the proof of inequalities (26) and (27). The rest of the inequalities
follow from the definitions and from the fact that maximin is no greater than minimax. To

derive both inequalities, we evaluate ln p(xn|θ̂(xn))
pB,α(xnñ+1|xñ)

for the Bayes mixture with the prior

Dir(α, · · · , α) asymptotically. It follows that

ln
p(xn|θ̂(xn))

pB,α(xnñ+1|xñ)
= ln

∏m
j=1

(nj
n

)nj
Γ(ñ+mα)
Γ(n+mα)

∏m
j=1

Γ(nj+α)
Γ(lj+α)

=

m∑
j=1

nj lnnj − n lnn−
m∑
j=1

ln Γ(nj + α) + ln Γ(n+mα) + ln C̃α

=
m∑
j=1

{
nj lnnj − nj − ln Γ(nj + α) +

1

2
ln(2π)

}

+

(
mα− 1

2

)
lnn− (m− 1)

1

2
ln(2π) + ln C̃α + o(1), (28)

where C̃α is defined in (17) and we applied Stirling’s formula to ln Γ(n+mα).
Substituting α = 1/2 into (28), we have

ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
=

m∑
j=1

(
cnj +

ln 2

2

)
+
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1),

where

ck = k ln k − k − ln Γ(k + 1/2) +
1

2
lnπ, (29)

for k ≥ 0. Since from Lemma 1, − ln 2
2 < ck,

ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
>
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1),
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holds for all xn, which proves the inequality (26).

Substituting α = αn = 1
2 −

ln 2
2

1
lnn into (28), we have

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
=

m∑
j=1

{
nj lnnj − nj − ln Γ(nj + αn) +

1

2
lnπ

}
+
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1).

Assuming that the first l njs (j = 1, · · · , l) are finite and the rest are large (tend to infinity
as n→∞) and applying Stirling’s formula to ln Γ(nj + αn) (j = l + 1, · · · ,m), we have

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
=

l∑
j=1

cnj +
m∑

j=l+1

dnj +
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1), (30)

where ck is defined in (29) and

dk =
ln 2

2

(
ln k

lnn
− 1

)
for 1 < k ≤ n. Since ck ≤ 0 follows from Lemma 1 and dk ≤ 0, we obtain

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
≤ m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1), (31)

for all xn, which proves the inequality (27).

Appendix D. Proof of Lemma 5

Proof The summation in (20) is decomposed into three parts,

{n1 lnn1 − ln Γ(n1 + α)}+ {(n′ − n1) ln(n′ − n1)− ln Γ(n′ − n1 + α)}

+
m−1∑
j=2

{nj lnnj − ln Γ(nj + α)} ,

where n′ = n−
∑m−1

j=2 nj . We analyze the regret of the multinomial case by reducing it to
the binomial case since the summation in the above expression is constant with respect to
n1. Hence, we focus on the regret of the binomial case with sample size n′,

R(z) = z ln z − ln Γ(z + α) + (n′ − z) ln(n′ − z)− ln Γ(n′ − z + α),

as a function of 0 ≤ z ≤ n′

2 because of the symmetry. We prove that the maximum of R

is attained at the boundary (z = 0) or at the middle z = n′

2 . We will use the following
inequalities for z ≥ 0, (

Ψ′(z)
)2

+ Ψ(2)(z) > 0, (32)
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and

2
(
−Ψ(2)(z)

)3/2
−Ψ(3)(z) > 0, (33)

which are directly obtained from Theorem 2.2 of Batir (2007).
The derivative of R is

R′(z) = h(z)− h(n′ − z),

where
h(z) = ln z −Ψ(z + α).

We can prove that h′(z) = 1
z − Ψ′(z + α) has at most one zero since (32) shows that the

derivative of the function z − 1
Ψ′(z+α) is positive, which implies that it is monotonically

increasing from −1/Ψ′(α) < 0 and hence has at most one zero coinciding with the zero of
h′. Noting also that limz→0 h(z) = −∞ and limz→∞ h(z) = 0, we see that there are the
following two cases: (a) h(z) is monotonically increasing in the interval (0, n′), and (b) h(z)
is unimodal with a unique maximum in (0, n′). In the case of (a), R′ has no zero in the
interval (0, n′/2), which means that R is V-shaped, takes global minimum at z = n′

2 , and
has the maxima at the boundaries. In the case of (b), R′(z) = 0 has at most one solution
in the interval (0, n′/2), which is proved as follows.

The higher order derivatives of R are

R(2)(z) = h′(z) + h′(n′ − z),
R(3)(z) = h(2)(z)− h(2)(n′ − z),

where h(2)(z) = − 1
z2
− Ψ(2)(z + α). Let the unique zero of h′(z) be z∗ (if there is no

zero, let z∗ = ∞). If z∗ < n′

2 , since for z∗ ≤ z < n′/2, h′(z) ≤ 0 and h′(n′ − z) ≤ 0,

we have R(2)(z) ≤ 0, which means that R′(z) is monotonically decreasing to R′
(
n′

2

)
= 0.

That is, R′(z) > 0 for z∗ ≤ z < n′

2 . Hence, we focus on z ≤ z∗ and prove that R′(z)
is concave for z ≤ z∗, which, from limz→0R

′(z) = −∞, means that R′(z) has one zero if

R(2)
(
n′

2

)
= 2h′

(
n′

2

)
< 0, and R′(z) has no zero otherwise.3

For z ≤ z∗, since 1
z > Ψ′(z + α) holds, we have

h(2)(z) = − 1

z2
−Ψ(2)(z + α) < −Ψ′(z + α)2 −Ψ(2)(z + α) < 0, (34)

from (32). Define h̃(z) = z − 1√
−Ψ(2)(z+α)

, for which h̃(z) = 0 is equivalent to h(2)(z) = 0.

Then h̃(0) < 0 and it follows from (33) that

h̃′(z) = 1− Ψ(3)(z + α)

2
(
−Ψ(2)(z + α)

)3/2 > 0,

which implies that h̃(z) is monotonically increasing, and hence that h(2)(z) = 0 has at most
one solution. Let z∗∗ be the unique zero of h(2)(z) (if there is no zero, let z∗∗ =∞). Noting

3. In case (b) where h(z) is unimodal with a maximum in (0, n′), the condition that h′
(
n′

2

)
≥ 0 is

equivalent to z∗ ≥ n′

2
.
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that limz→0 h
(2)(z) = −∞, we see that h(2)(z) < 0 for z < z∗∗ and h(2)(z) > 0 for z > z∗∗.

From (34), z∗ < z∗∗ holds. For z < z∗∗, since h(2)(z) < 0 implies that − 1
z2
< Ψ(2)(z + α),

and hence 1
z >

√
−Ψ(2)(z + α) holds, it follows from (33) that

h(3)(z) =
2

z3
−Ψ(3)(z + α) > 2

(
−Ψ(2)(z + α)

)3/2
−Ψ(3)(z + α) > 0.

This means that h(2)(z) is monotonically increasing for z < z∗∗. Therefore, h(2)(z) is
negative and monotonically increasing for z < z∗∗, implying that R(3)(z) has no zero for
z ≤ z∗∗ since h(2)(z) < h(2)(n′ − z), that is, R(3)(z) < 0 holds. Thus R′(z) is concave for
z ≤ z∗ < z∗∗, and hence R′(z) has at most one zero between 0 and z∗.

Note that limz→0R
′(z) = −∞ and R′(n′/2) = 0. If R′(z) = 0 has no solution in

(0, n′/2), that is, if h′
(
n′

2

)
= 2

n′ − Ψ′
(
n′

2 + α
)
≥ 0, the regret function looks similarly to

the case of (a), and the maxima are attained at the boundaries. If R′(z) = 0 has a solution

in (0, n′/2), that is, if 2
n′ − Ψ′

(
n′

2 + α
)
< 0, R′ changes its sign around the solution from

negative to positive as z grows. In this case, R is W-shaped with possible maximum at the
boundaries or at the middle.

We see that in any case, the maximum is always at the boundary or at the middle.
Therefore, as a function of the count n1, R(n1) is maximized at n1 = 0 or at n1 = bn′2 c (or

n1 = bn′2 c+1 if n′ is odd). The same argument applies to optimizing nj (j = 2, 3, · · · ,m−1).
Thus, if the counts are such that for any two indices, i and j, ni > nj + 1 > 1, then we can
increase the regret either by replacing one of them by the sum, ni+nj and the other one by
zero or by replacing them by new values n′i and n′j such that |ni − nj | ≤ 1. This completes
the proof of the lemma.

Appendix E. Proof of Theorem 6

Proof The proof of Lemma 4 itself applies to the case where ñ = 0 and lj = 0 for

j = 1, · · · ,m as well. Since, in this case, C̃1/2 = ln Γ(1/2)m

Γ(m/2) , the inequality (31) in the proof

gives the right inequality in (24).
Furthermore, in (30), we have

l∑
j=1

cnj +

m∑
j=l+1

dnj > −(m− 1)
ln 2

2
+ o(1). (35)

This is because, from Lemma 1 and definition, cnj , dnj > − ln 2
2 and for at least one of j, nj is

in the order of n since
∑n

j=1 nj = n, which means that dnj = o(1) for some j. Substituting

(35) into (30), we obtain the left inequality in (24) with M = 1
2(m− 1) ln 2.
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Abstract

We study the sample complexity of multiclass prediction in several learning settings. For the
PAC setting our analysis reveals a surprising phenomenon: In sharp contrast to binary clas-
sification, we show that there exist multiclass hypothesis classes for which some Empirical
Risk Minimizers (ERM learners) have lower sample complexity than others. Furthermore,
there are classes that are learnable by some ERM learners, while other ERM learners will
fail to learn them. We propose a principle for designing good ERM learners, and use this
principle to prove tight bounds on the sample complexity of learning symmetric multiclass
hypothesis classes—classes that are invariant under permutations of label names. We fur-
ther provide a characterization of mistake and regret bounds for multiclass learning in the
online setting and the bandit setting, using new generalizations of Littlestone’s dimension.

Keywords: multiclass, sample complexity, ERM

1. Introduction

Multiclass prediction is the problem of classifying an object into one of several possible
target classes. This task surfaces in many domains. Common practical examples include
document categorization, object recognition in computer vision, and web advertisement.

The centrality of the multiclass learning problem has spurred the development of various
approaches for tackling this task. Most of these approaches fall under the following general
description: There is an instance domain X and a set of possible class labels Y. The goal
of the learner is to learn a mapping from instances to labels. The learner receives training
examples, and outputs a predictor which belongs to some hypothesis class H ⊆ YX , where
YX is the set of all functions from X to Y. We study the sample complexity of the task
of learning H, namely, how many random training examples are needed for learning an
accurate predictor from H. This question has been extensively studied and is quite well
understood for the binary case (i.e, where |Y| = 2). In contrast, as we shall see, existing
theory of the multiclass case is less complete.
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In the first part of the paper we consider multiclass learning in the classical PAC setting
of Valiant (1984). Since the 1970’s, following Vapnik and Chervonenkis’s seminal work on
binary classification (Vapnik and Chervonenkis, 1971), it was widely believed that exclud-
ing trivialities, if a problem is at all learnable, then uniform convergence holds, and the
problem is also learnable by every Empirical Risk Minimizer (ERM learner). The equiva-
lence between learnability and uniform convergence has been proved for binary classification
and for regression problems (Kearns et al., 1994; Bartlett et al., 1996; Alon et al., 1997).
Recently, Shalev-Shwartz et al. (2010) have shown that in the general setting of learning
of Vapnik (1995), learnability is not equivalent to uniform convergence. Moreover, some
learning problems are learnable, but not with every ERM. In particular, this was shown
for an unsupervised learning problem in the class of stochastic convex learning problems.
The conclusion in Shalev-Shwartz et al. (2010) is that the conditions for learnability in the
general setting are significantly more complex than in supervised learning. In this work
we show that even in multiclass learning, uniform convergence is not equivalent to learn-
ability. We find this result surprising, since multiclass prediction is very similar to binary
classification.

This result raises once more the question of determining the true sample complexity of
multiclass learning, and the optimal learning algorithm in this setting. We provide condi-
tions under which tight characterization of the sample complexity of a multiclass hypothesis
class can be provided. Specifically, we consider the important case of hypothesis classes
which are invariant to renaming of class labels. We term such classes symmetric hypothesis
classes. We show that the sample complexity for symmetric classes is tightly characterized
by a known combinatorial measure called the Natarajan dimension. We conjecture that
this result holds for non-symmetric classes as well.

We further study multiclass sample complexity in other learning models. Overall, we
consider the following categorization of learning models:

• Interaction with the data source (batch vs. online protocols): In the batch protocol,
we assume that the training data is generated i.i.d. by some distribution D over X×Y.
The goal is to find, with a high probability over the training samples, a predictor h
such that Pr(x,y)∼D(h(x) 6= y) is as small as possible. In the online protocol we receive
examples one by one, and are asked to predict the label of each given example on the
fly. Our goal is to make as few prediction mistakes as possible in the worst case (see
Littlestone 1987).

• The type of feedback (full information vs. bandits): In the full information setting,
we receive the correct label of every example. In the bandit setting, the learner first
sees an unlabeled example, and then outputs its prediction for the label. Then, a
binary feedback is received, indicating only whether the prediction was correct or not,
but not revealing the correct label in the case of a wrong guess (see for example Auer
et al. 2003, 2002; Kakade et al. 2008).

The batch/full-information model is the standard PAC setting, while the online/full-information
model is the usual online setting. The online/bandits model is the usual multiclass-bandits
setting. We are not aware of a treatment of the batch/bandit model in previous works.
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1.1 Paper Overview

After presenting formal definitions and notations in Section 2, we begin our investigation
of multiclass sample complexity in the classical PAC learning setting. Previous results
have provided upper and lower bounds on the sample complexity of multiclass learning
in this setting when using any ERM algorithm. The lower bounds are controlled by the
Natarajan dimension, a combinatorial measure which generalizes the VC dimension for the
multiclass case, while the upper bounds are controlled by the graph dimension, which is
another generalization of the VC dimension. The ratio between these two measures can be
as large as Θ(ln(k)), where k = |Y| is the number of class labels. In Section 3 we survey
known results, and also present a new improvement for the upper bound in the realizable
case. All the bounds here are uniform, that is, they hold for all ERM learners.

These uniform bounds are the departure point of our research. Our goal is to find a
combinatorial measure, similar to the VC-Dimension, that characterizes the sample com-
plexity of a given class, up to logarithmic factors, independent of the number of classes.
We delve into this challenge in Section 4. First, we show that no uniform bound on arbi-
trary ERM learners can tightly characterize the sample complexity: We describe a family
of concept classes for which there exist ‘good’ ERM learners and ‘bad’ ERM learners, with
a ratio of Θ(ln(k)) between their sample complexities. We further show that if k is infinite,
then there are hypothesis classes that are learnable by some ERM learners but not by other
ERM learners. Moreover, we show that for any hypothesis class, the sample complexity of
the worst ERM learner in the realizable case is characterized by the graph dimension.

These results indicate that classical concepts which are commonly used to provide up-
per bounds for all ERM learners of some hypothesis class, such as the growth function,
cannot lead to tight sample complexity characterization for the multiclass case. We thus
propose algorithmic-dependent versions of these quantities, that allow bounding the sample
complexity of specific ERM learners.

We consider three cases in which we show that the true sample complexity of multiclass
learning in the PAC setting is fully characterized by the Natarajan dimension. The first
case includes any ERM algorithm that does not use too many class labels, in a precise sense
that we define via the new notion of essential range of an algorithm. In particular, the
requirement is satisfied by any ERM learner which only predicts labels that appeared in the
sample. The second case includes any ERM learner for symmetric hypothesis classes. The
third case is the scenario where we have no prior knowledge on the different class labels,
which we defined precisely in Section 4.3.

We conjecture that the upper bound obtained for symmetric classes holds for non-
symmetric classes as well. Such a result cannot be implied by uniform convergence alone,
since, by the results mentioned above, there always exist ERM learners with a sample
complexity that is higher than this conjectured upper bound. It therefore follows that a
proof of our conjecture will require the derivation of new learning rules. We hope that this
would lead to new insights in other statistical learning problems as well.

In Section 5 we study multiclass learnability in the online model and in the bandit
model. We introduce two generalizations of the Littlestone dimension, which characterize
multiclass learnability in each of these models respectively. Our bounds are tight for the
realizable case.
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2. Problem Setting and Notation

Let X be a space, Y a discrete space1 and H a class of functions from X to Y. Denote
k = |Y| (note that k can be infinite). For a distribution D over X×Y, the error of a function
f : X → Y with respect to D is defined as Err(f) = ErrD(f) = Pr(x,y)∼D(f(x) 6= y).
The best error achievable by H on D, namely, ErrD(H) := inff∈H ErrD(f), is called the
approximation error of H on D.

In the PAC setting, a learning algorithm for a class H is a function, A : ∪∞n=0(X ×Y)n →
YX . We denote a training sequence by Sm = {(x1, y1), . . . , (xm, ym)}. An ERM learner for
class H is a learning algorithm that for any sample Sm returns a function that minimizes
the empirical error relative to any other function in H. Formally, the empirical error of a
function f on a sample Sm is

Err
Sm

(f) =
1

m
|{i ∈ [m] : f(xi) 6= yi}|.

A learning algorithm A of class H is an ERM learner if ErrSm(A(Sm)) = minf∈H ErrSm(f).
The agnostic sample complexity of a learning algorithm A is the function ma

A,H defined
as follows: For every ε, δ > 0, ma

A,H(ε, δ) is the minimal integer such that for every m ≥
ma
A,H(ε, δ) and every distribution D on X × Y,

Pr
Sm∼Dm

(
Err
D

(A(Sm)) > Err
D

(H) + ε

)
≤ δ. (1)

Here and in subsequent definitions, we omit the subscript H when it is clear from context.
If there is no integer satisfying the inequality above, define ma

A(ε, δ) = ∞. H is learnable
with A if for all ε and δ the agnostic sample complexity is finite. The agnostic sample
complexity of a class H is

ma
PAC,H(ε, δ) = inf

A
ma
A,H(ε, δ) ,

where the infimum is taken over all learning algorithms for H. The agnostic ERM sample
complexity of H is the sample complexity that can be guaranteed for any ERM learner. It
is defined by

ma
ERM,H(ε, δ) = sup

A∈ERM
ma
A,H(ε, δ) ,

where the supremum is taken over all ERM learners forH. Note that always mPAC ≤ mERM.
We say that a distribution D is realizable by a hypothesis class H if there exists some

f ∈ H such that ErrD(f) = 0. The realizable sample complexity of an algorithm A for a
class H, denoted mr

A, is the minimal integer such that for every m ≥ mr
A(ε, δ) and every

distribution D on X × Y which is realizable by H, Equation (1) holds. The realizable
sample complexity of a class H is mr

PAC,H(ε, δ) = infAm
r
A(ε, δ), where the infimum is taken

over all learning algorithms for H. The realizable ERM sample complexity of a class H is
mr

ERM,H(ε, δ) = supA∈ERMmr
A(ε, δ), where the supremum is taken over all ERM learners

for H.
Given a subset S ⊆ X , we denote H|S = {f |S : f ∈ H}, where f |S is the restriction of

f to S, namely, f |S : S → Y is such that for all x ∈ S, f |S(x) = f(x).

1. To avoid measurability issues, we assume that X and Y are countable.

2380



Multiclass Learnability and the ERM Principle

3. Uniform Sample Complexity Bounds for ERM Learners

We first recall some known results regarding the sample complexity of multiclass learning.
Recall the definition of the Vapnik-Chervonenkis dimension (Vapnik, 1995):

Definition 1 (VC dimension) Let H ⊆ {0, 1}X be a hypothesis class. A subset S ⊆ X is
shattered by H if H|S = {0, 1}S. The VC-dimension of H, denoted VC(H), is the maximal
cardinality of a subset S ⊆ X that is shattered by H.

The VC-dimension, a cornerstone in statistical learning theory, characterizes the sample
complexity of learning binary hypothesis classes, as the following bounds suggest.

Theorem 2 (Vapnik, 1995 and Bartlett and Mendelson, 2002) There are absolute
constants C1, C2 > 0 such that for every H ⊆ {0, 1}X ,

C1

(
VC(H) + ln(1

δ )

ε

)
≤ mr

PAC(ε, δ) ≤ mr
ERM(ε, δ) ≤ C2

(
VC(H) ln(1

ε ) + ln(1
δ )

ε

)
,

and

C1

(
VC(H) + ln(1

δ )

ε2

)
≤ ma

PAC(ε, δ) ≤ ma
ERM(ε, δ) ≤ C2

(
VC(H) + ln(1

δ )

ε2

)
.

One of the important implications of this result is that in binary classification, all ERM
learners are as good, up to a multiplicative factor of ln(1/ε).

It is natural to seek a generalization of the VC-dimension to hypothesis classes of non-
binary functions. We recall two generalizations, both introduced by Natarajan (1989). In
both generalizations, shattering of a set S is redefined by requiring that for any partition
of S into T and S \ T , there exists a g ∈ H whose behavior on T differs from its behavior
on S \ T . The two definitions are distinguished by their definition of “different behavior”.

Definition 3 (Graph dimension) Let H ⊆ YX be a hypothesis class and let S ⊆ X . We
say that H G-shatters S if there exists an f : S → Y such that for every T ⊆ S there is a
g ∈ H such that

∀x ∈ T, g(x) = f(x), and ∀x ∈ S \ T, g(x) 6= f(x).

The graph dimension of H, denoted dG(H), is the maximal cardinality of a set that is
G-shattered by H.

Definition 4 (Natarajan dimension) Let H ⊆ YX be a hypothesis class and let S ⊆ X .
We say that H N-shatters S if there exist f1, f2 : S → Y such that ∀y ∈ S, f1(y) 6= f2(y),
and for every T ⊆ S there is a g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S \ T, g(x) = f2(x).

The Natarajan dimension of H, denoted dN (H), is the maximal cardinality of a set that is
N-shattered by H.
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Both of these dimensions coincide with the VC-dimension for k = 2. Note also that we
always have dN ≤ dG. By reductions to and from the binary case, similarly to Natarajan
(1989) and Ben-David et al. (1995) one can show the following result:

Theorem 5 For the constants C1, C2 from Theorem 2, for every H ⊆ YX we have

C1

(
dN (H) + ln(1

δ )

ε

)
≤ mr

PAC(ε, δ) ≤ mr
ERM(ε, δ) ≤ C2

(
dG(H) ln(1

ε ) + ln(1
δ )

ε

)
,

and

C1

(
dN (H) + ln(1

δ )

ε2

)
≤ ma

PAC(ε, δ) ≤ ma
ERM(ε, δ) ≤ C2

(
dG(H) + ln(1

δ )

ε2

)
.

Proof (sketch) For the lower bound, let H ⊆ YX be a hypothesis class of Natarajan
dimension d and Let Hd := {0, 1}[d]. We claim that mr

PAC,Hd ≤ mr
PAC,H, and similarly for

the agnostic sample complexity, so the lower bounds are obtained by Theorem 2. Let A be
a learning algorithm for H. Consider the learning algorithm, Ā, for Hd defined as follows.
Let S = {s1, . . . , sd} ⊆ X be a set and let f0, f1 be functions that witness the N -shattering
of H. Given a sample ((xi, yi))

m
i=1 ⊆ [d] × {0, 1}, let g = A((sxi , fyi(sxi))

m
i=1). Ā returns

f : [d] → {0, 1} such that f(i) = 1 if and only if g(si) = f1(si). It is not hard to see that
mr
Ā,Hd

≤ mr
A,H, thus mr

PAC,Hd ≤ m
r
PAC,H and similarly for the agnostic case.

For the upper bound, let H ⊆ YX be a hypothesis class of graph dimension d. For
every f ∈ H define f̄ : X × Y → {0, 1} by setting f̄(x, y) = 1 if and only if f(x) = y
and let H̄ = {f̄ : f ∈ H}. It is not hard to see that VC(H̄) = dG(H). Let A be
an ERM algorithm for H. Let Ā be an ERM algorithm for H̄ such that for a sample
(((xi, zi), yi))

m
i=1 ⊆ X ×Y ×{0, 1}, if for all i, yi = 1, Ā returns f̄ , where f = A((xi, zi)

m
i=1).

It is easy to check that Ā is consistent and therefore can be extended to an ERM learner
for H̄, and that mr

A,H ≤ mr
Ā,H̄. Thus mr

ERM,H ≤ mr
ERM,H̄. The analogous inequalities hold

for the agnostic sample complexity as well. Thus the desired upper bounds follow from
Theorem 2.

This theorem shows that the finiteness of the Natarajan dimension is a necessary con-
dition for learnability, and the finiteness of the graph dimension is a sufficient condition
for learnability. In Ben-David et al. (1995) it was proved that for every hypotheses class
H ⊆ YX ,

dN (H) ≤ dG(H) ≤ 4.67 log2(k)dN (H) . (2)

It follows that if k <∞ then the finiteness of the Natarajan dimension is both a necessary
and a sufficient condition for learnability.2 Incorporating Equation (2) into Theorem 5, it
can be seen that the Natarajan dimension, as well as the graph dimension, characterize the
sample complexity of H ⊆ YX up to a multiplicative factor of O(ln(k) ln(1

ε )). Precisely, the
following result can be derived:

2. The result of Ben-David et al. (1995) in fact holds also for a rich family of generalizations of the VC
dimension, of which the Graph dimension is one example.
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Theorem 6 There are constants C1, C2 such that, for every H ⊆ YX ,

C1

(
dN (H) + ln(1

δ )

ε

)
≤ mr

PAC(ε, δ) ≤ mr
ERM(ε, δ) ≤ C2

(
dN (H) ln(k) · ln(1

ε ) + ln(1
δ )

ε

)
,

and

C1

(
dN (H) + ln(1

δ )

ε2

)
≤ ma

PAC(ε, δ) ≤ ma
ERM(ε, δ) ≤ C2

(
dN (H) ln(k) + ln(1

δ )

ε2

)
.

3.1 An Improved Upper Bound for the Realizable Case

The following theorem provides a sample complexity upper bound which provides a tighter
dependence on ε.

Theorem 7 For every concept class H ⊆ YX ,

mr
ERM(ε, δ) = O

(
dN (H)

(
ln(1

ε ) + ln(k) + ln(dN (H))
)

+ ln(1
δ )

ε

)
.

The proof of this theorem is immediate given Theorem 13, which is provided in Section 4.
We give the short proof of this theorem thereafter. While a proof for the Theorem can be
established by a simple adaptation of previous techniques, we find it valuable to present
this result here, as we could not find it in the literature.

4. PAC Sample Complexity with ERM Learners

In this section we study the sample complexity of multiclass ERM learners in the PAC
setting. First, we show that unlike the binary case, in the multiclass setting different ERM
learners can have very different sample complexities.

Example 1 (A Large Gap Between ERM Learners) Let X be any finite or countable
domain set. Let Pf (X ) denote the collection of finite and co-finite subsets A ⊆ X . We will
take the label space to be Pf (X ) together with a special label, denoted by ∗ (I.e. Y =
Pf (X ) ∪ {∗}). For every A ∈ Pf (X ), define fA : X → Y by

fA(x) =

{
A if x ∈ A
∗ otherwise,

and consider the hypothesis class HX = {fA : A ∈ Pf (X )}. It is not hard to see that
dN (HX ) = 1. On the other hand, if X is finite then X is G-shattered using the function f∅,
therefore dG(HX ) = |X |. If X is infinite, then every finite subset of X is G-shattered, thus
dG(HX ) =∞.

Consider two ERM algorithms for HX , Abad and Agood, which satisfy the following
properties. For Abad, whenever a sample of the form Sm = {(x1, ∗), . . . , (xm, ∗)} is observed,
Abad returns f{x1,...,xm}c. Intuitively, while Abad selects a hypothesis that minimizes the
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empirical error, its choice for Sm seems to be sub-optimal. We will show later, based on

Theorem 9, that the sample complexity of Abad is Ω
(
|X |+ln( 1

δ
)

ε

)
.

For Agood, we require that the algorithm only ever returns either f∅, or a hypothesis
A such that the label A appeared in the sample—One can easily verify that there exists an
ERM algorithm that satisfies this condition. Specifically, this means that for the sample
Sm = {(x1, ∗), . . . , (xm, ∗)}, Agood necessarily returns f∅. We have the following guarantee
for Agood:

Claim 1 mr
Agood,HX

(ε, δ) ≤ 1
ε ln 1

δ , and ma
Agood,HX

(ε, δ) ≤ 1
ε2

ln(1
ε ) ln 1

δ .

Proof We prove the bound for the realizable case. The bound for the agnostic case will be
immediate using Cor. 15, which we prove later.

Let D be a distribution over X ×Y and suppose that the correct labeling for D is fA. Let
m be the size of the sample. For any sample, Agood returns either f∅ or fA. If it returns
fA then its error on D is zero. On the other hand, ErrD(f∅) = Pr(X,Y )∼D(X ∈ A). Thus,
Agood returns a hypothesis with error ε or more only if Pr(X,Y )∼D(X ∈ A) ≥ ε and all the

m examples in the sample are from Ac. Assume m ≥ 1
ε ln(1

δ ), then the probability of the
latter event is (P (Ac))m ≤ (1− ε)m ≤ e−εm ≤ δ.

This example shows that the gap between two different ERM learners can be as large
as the gap between the Natarajan dimension and the graph dimension. By considering HX
with an infinite X , we conclude the following corollary.

Corollary 8 There exist sets X , Y and a hypothesis class H ⊆ YX , such that H is learnable
by some ERM learner but is not learnable by some other ERM learner.

In Example 1, the bad ERM indeed requires as many examples as the graph dimension,
while the good ERM requires only as many as the Natarajan dimension. Do such a ‘bad’
ERM and a ‘good’ ERM always exist? Our next result answers the question for the ‘bad’
ERM in the affirmative. Indeed, the graph dimension determines the learnability of H using
the worst ERM learner.

Theorem 9 There are constants C1, C2 > 0 such that the following holds. For every
hypothesis class H ⊆ YX of Graph dimension ≥ 2, there exists an ERM learner Abad

such that for every ε < 1
12 and δ < 1

100 ,

C1

(
dG(H) + ln(1

δ )

ε

)
≤ mr

Abad
(ε, δ) ≤ mr

ERM(ε, δ) ≤ C2

(
dG(H) ln(1

ε ) + ln(1
δ )

ε

)
.

Proof The upper bound is simply a restatement of Theorem 5. It remains to prove that

there exists an ERM learner, Abad, with mr
Abad(ε, δ) ≥ C1

(
dG(H)+ln( 1

δ
)

ε

)
.

First, assume that d = dG(H) < ∞. Let S = {x0, . . . , xd−1} ⊆ X be a set which is
G-Shattered by H using the function f0. Let Abad be an ERM learner with the following
property. Upon seeing a sample T ⊆ S which is consistent with f0, Abad returns a function
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that coincides with f0 on T and disagrees with f0 on S \ T . Such a function exists since S
is G-shattered using f0.

Fix δ < 1
100 and ε < 1

12 . Note that 1− 2ε ≥ e−4ε. Define a distribution on X by setting
Pr(x0) = 1−2ε and for all 1 ≤ i ≤ d−1, Pr(xi) = 2ε

d−1 . Suppose that the correct hypothesis
is f0 and let {(Xi, f0(Xi))}mi=1 be a sample. Clearly, the hypothesis returned by Abad will err
on all the examples from S which are not in the sample. By Chernoff’s bound, if m ≤ d−1

6ε ,

then with probability at least 1
100 ≥ δ, the sample will include no more than d−1

2 examples
from S \ {x0}, so that the returned hypothesis will have error at least ε. To see that, define
r.v. Yi, 1 ≤ i ≤ m by setting Yi = 1 if Xi 6= x0 and 0 otherwise. By Chernoff’s bound, if
r = bd−1

6ε c then

Pr

(
m∑
i=1

Yi ≥
d− 1

2

)
≤ Pr

(
r∑
i=1

Yi ≥ 3εk

)
≤ exp

(
−

1
2

2

3
2εr

)
< 0.99 .

Moreover, the probability that the sample includes only x0 (and thus Abad will return a
hypothesis with error 2ε) is (1 − 2ε)m ≥ e−4εm, which is more than δ if m ≤ 1

4ε ln(1
δ ). We

therefore obtain that

mr
Abad

(ε, δ) ≥ max

{
d− 1

6ε
,

1

2ε
ln(1/δ)

}
≥ d− 1

12ε
+

1

4ε
ln(1/δ) ,

as required.
If dG(H) =∞, let Sn, n = 2, 3, . . . be a sequence of pairwise disjoint shattered sets such

that |Sn| = n. For every n, suppose that fn0 indicated that Sn is G-shattered. Let Abad

be an ERM learner with the following property. Upon seeing a sample T ⊆ Sn labeled by
fn0 , Abad returns a function that coincides with fn0 on T and disagrees with f0 on Sn \ T .
Repeating the argument of the finite case for Sn instead of S shows that for every ε < 1

12

and δ < 1
100 it holds that mAbad

(ε, δ) ≥ C1

(
n+ln( 1

δ
)

ε

)
. Since it holds for every n, we conclude

that mr
Abad

(ε, δ) =∞.

To get the sample complexity lower bound for the ERM learner Abad in Example 1, observe
that this algorithm satisfies the specifications of a bad ERM algorithm from the proof above.

We conclude that for any multiclass learning problem there exists a ‘bad’ ERM learner.
The existence of ‘good’ ERM learners turns out to be a more involved question. We con-
jecture that for every class there exists a ‘good’ ERM learner – that is, a learning al-

gorithm whose realizable sample complexity is Õ
(
dN
ε

)
(where the Õ notation may hide

poly-logarithmic factors of 1
ε , dN and 1/δ but not of |Y |). As we describe in the rest of this

section, in this work we prove this conjecture for several families of hypothesis classes.
What is the crucial feature that makes Agood better than Abad in Example 1? For

the realizable case, if the correct labeling is fA ∈ HX , then for any sample, Agood would
return only one of at most two functions: either fA or f∅. On the other hand, if the correct
labeling is f∅, then Abad might return every function in HX . Thus, to return a hypothesis
with error at most ε, Agood needs to reject at most one hypothesis, while Abad might need
to reject many more. Following this intuition, we propose the following rough principle:
A good ERM learner is one that, for every target hypothesis, considers a small number of
hypotheses.
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We would like to use this intuition to design ERMs with a better sample complexity
than the one that can be guaranteed for a general ERM as in Theorem 7. Classical sample
complexity upper bounds that hold for all ERM learners hinge on the notion of a growth
function, which counts the number of different hypotheses induced by the hypothesis class
on a sample of a certain size. To bound the sample complexity of a specific ERM learner,
we define algorithm-dependent variants of the concept of a growth function.

Definition 10 (Algorithm-dependent growth function) Fix a hypothesis class H ⊆
YX . Let A be a learning algorithm for H. For m > 0 and a sample S = ((xi, yi))

2m
i=1 of size

2m, let XS = {x1, . . . , x2m}, and define

FA(S) = {A(S′)|XS | S
′ ⊆ S, |S′| = m}.

Let R(H) be the set of samples which are consistent with H, that is S = ((xi, f(xi)))
2m
i=1 for

some f ∈ H. Define the realizable algorithm-dependent growth function of A by

Πr
A(m) = sup

S∈R(H),|S|=2m
|FA(S)|.

Define the agnostic algorithm-dependent growth function of A for sample S by

Πa
A(m) = sup

S∈(X×Y)2m
|FA(S)|.

These definitions enable the use of a ‘double sampling’ argument, similarly to the one
used with the classical growth function (see Anthony and Bartlett, 1999, chapter 4). This
argument is captured by the following lemma.

Lemma 11 (The Double Sampling Lemma) Let A be an ERM learner, and let D be
a distribution over X × Y. Denote ε = ErrD(A(Sm))− ErrD(H), and let δ ∈ (0, 1).

1. If D is realizable by H then with probability at least 1− δ,

ε ≤ 12 ln(2Πr
A(m)/δ)/m.

2. For any D, with probability at least 1− δ,

ε ≤
√

32 ln((4Πa
A(m) + 4)/δ)

m
.

Proof The proof idea of the this lemma is similar to the one of the ‘double sampling’
results of Anthony and Bartlett (1999) (see their Theorems 4.3 and 4.8).

For the first part of the claim, let D be a realizable distribution for H. For m ≤ 8, the
claim trivially holds, therefore assume m ≥ 8. Let ν = 12 ln(2Πr

A(m)/δ)/m and assume
w.l.o.g. that ν ≤ 1.

Suppose that for some S ∈ (X × Y)m, ErrD(A(S)) ≥ ν. Let T ∈ (X × Y)m be another
sample drawn from Dm, independently from S. We show that ErrT (A(S)) ≥ ν/2 with
probability at least 1

2 . For ν ≤ 1
2 , by Chernoff’s bound, this holds with probability at least

1− exp(−mν/16), which is larger than 1
2 by the definition of ν. For ν ≥ 1

2 , by Hoeffding’s

2386



Multiclass Learnability and the ERM Principle

inequality, this holds with probability at least 1 − exp(−mν2/2) ≥ 1 − exp(−m/8), which
is larger than 1

2 , since m ≥ 8. It follows that

1

2
Pr

S∼Dm
(Err
D

(A(S)) ≥ ν) ≤ Pr
(S,T )∼D2m

(Err
T

(A(S)) ≥ ν/2). (3)

Let Z = (z1, . . . , z2m) ∈ R(H), and let σ : [2m]→ [2m] be a permutation. We write Z1
σ

to mean (zσ(1), . . . , zσ(m)) and Z2
σ to mean (zσ(m+1), . . . , zσ(2m)).

Similarly to Lemma 4.5 in Anthony and Bartlett (1999), for σ drawn uniformly from
the set of permutations,

Pr
(S,T )∈D2m

(Err
T

(A(S)) ≥ ν/2) = E
Z∼D2m

(Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ν/2)) (4)

≤ sup
Z∈R(H),|Z|=2m

Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ν/2).

To bound the right hand side, note that since A is an ERM algorithm, for any fixed
Z ∈ R(H) and any σ, ErrZ1

σ
(A(Z1

σ)) = 0. Thus

Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ν/2) ≤ Pr

σ
(∃h ∈ FA(Z), Err

Z1
σ

(h) = 0 and Err
Z2
σ

(h) ≥ ν/2).

For any fixed h, if the right hand side is not zero, then there exist at least νm/2 elements
(x, y) in Z such that h(x) 6= y. In the latter case, the probability (over σ) that all such
elements are in Z2

σ is at most 2−νm/2. With a union bound over h ∈ FA(Z), we conclude
that for any Z,

Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ν/2) ≤ |FA(Z)|2−νm/2.

Combining with Equation (4) gives

Pr
(S,T )∈D2m

(Err
T

(A(S)) ≥ ν/2) ≤ sup
Z∈R(H)

|FA(Z)|2−νm/2 = Πr
A(m)2−νm/2.

By Equation (3) and the definition of ν,

Pr
S∼Dm

(Err
D

(A(S)) ≥ ν) ≤ 2Πr
A(m)2−νm/2 ≤ δ.

This proves the first part of the claim.
For the second part of the claim, let D be a distribution over X × Y. Denote ε∗ =

ErrD(H), and let h∗ ∈ H such that ErrD(h∗) = ε∗.

Let ν =

√
32 ln((4ΠaA(m)+4)/δ)

m . Suppose that for some S ∈ (X × Y)m, ErrD(A(S)) ≥
ε∗ + ν. Let T ∈ (X ×Y)m be a random sample drawn from Dm independently from S. By
Hoeffding’s inequality, with probability at least 1 − exp(−mν2/2), which is at least 1

2 by
the definition of ν2, ErrT (A(S)) ≥ ε∗ + ν/2. It follows that

1

2
Pr

S∼Dm
(Err
D

(A(S)) ≥ ε∗ + ν) ≤ Pr
(S,T )∼D2m

(Err
T

(A(S)) ≥ ε∗ + ν/2). (5)

Let Z = (z1, . . . , z2m) ∈ (X × Y)2m, and let σ : [2m]→ [2m] be a permutation. Denote
Z1
σ and Z2

σ as above.
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Denote Z = {Z ∈ (X × Y)2m | ErrZ(A(Z1
σ)) ≤ ε∗ + ν/8}. By lemma 4.5 in Anthony

and Bartlett (1999) again, for σ drawn uniformly from the set of permutations,

Pr
(S,T )∈D2m

(Err
T

(A(S)) ≥ ε∗ + ν/2) = E
Z∼D2m

(Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ε∗ + ν/2)) (6)

≤ E
Z∼D2m

(
Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ε∗ + ν/2)

∣∣∣Z ∈ Z)+ Pr(Z /∈ Z).

To bound the right hand side, first note that by Hoeffding’s inequality, the second term is
bounded by

Pr(Z /∈ Z) ≤ exp(−ν2m/16). (7)

For the first term, ErrZ2
σ
(A(Z1

σ)) ≥ ε∗ + ν/2 implies that unless ErrZ1
σ
(A(Z1

σ)) > ε∗ +
ν/4, necessarily ErrZ2

σ
(A(Z1

σ)) − ErrZ1
σ
(A(Z1

σ)) ≥ ν/4. Since A is an ERM algorithm,
ErrZ1

σ
(A(Z1

σ)) > ε∗ + ν/4 only if also ErrZ1
σ
(h∗) > ε∗ + ν/4. Therefore, for any Z,

Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ε∗ + ν/2) ≤

Pr
σ

(Err
Z1
σ

(h∗) > ε∗ + ν/4) + Pr
σ

(Err
Z2
σ

(A(Z1
σ))− Err

Z1
σ

(A(Z1
σ)) > ν/4). (8)

ErrZ1
σ
(h∗) is an average of m random variables of the form I[h∗(xi) 6= yi], that are sampled

without replacement from the finite population Z, with population average ErrZ(h∗). For
Z ∈ Z, ErrZ(h∗) ≤ ε∗ + ν/8. Therefore, by Hoeffding’s inequality for sampling without
replacements from a finite population (Hoeffding, 1963), for Z ∈ Z,

Pr
σ

(Err
Z1
σ

(h∗) > ε∗ + ν/4) ≤ Pr
σ

(Err
Z1
σ

(h∗)− Err
Z

(h∗) > ν/8) ≤ exp(−ν2m/32). (9)

In addition, by the same inequality, and applying the union bound over h ∈ FA(Z), for any
Z

Pr
σ

(Err
Z2
σ

(A(Z1
σ))− Err

Z1
σ

(A(Z1
σ)) > ν/4) ≤ Pr

σ
(∃h ∈ FA(Z),Err

Z2
σ

(h)− Err
Z1
σ

(h) > ν/4)

≤ Pr
σ

(∃h ∈ FA(Z),Err
Z2
σ

(h)− Err
Z

(h) > ν/8) + Pr
σ

(∃h ∈ FA(Z),Err
Z1
σ

(h)− Err
Z

(h) > ν/8)

≤ 2Πa
A(m) exp(−ν2m/32). (10)

Combined with Equation (8) and Equation (9), it follows that for Z ∈ Z,

Pr
σ

(Err
Z2
σ

(A(Z1
σ)) ≥ ε∗ + ν/2) ≤ (2Πa

A(m) + 1) exp(−ν2m/32).

With Equation (5), Equation (6), and Equation (7), we conclude that

Pr
S∼Dm

(Err
D

(A(S)) ≥ ε∗ + ν) ≤ (4Πa
A(m) + 4) exp(−ν2m/32) ≡ δ.

The claim follows since ε = ErrD(A(S))− ε∗.

As we shall presently see, Lemma 11 can be used to provide better sample complexity
bounds for some ‘good’ ERM learners.
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4.1 Learning with a Small Essential Range

A key tool that we will use for providing better bounds is the notion of essential range,
defined below. The essential range of an algorithm quantifies the number of different labels
that can be emitted by the functions the algorithm might return for samples of a given size.
In this definition we use the notion of the range of a function. Formally, for a function
f : X → Y, its range is the set of labels to which it maps X , denoted by range(f) = {f(x) |
x ∈ X}.

Definition 12 (Essential range) Let A be a learning algorithm for H ⊆ YX . The real-
izable essential range of A is the function rrA : N→ N, defined as follows.

rrA(m) = sup
S∈R(H),|S|=2m

∣∣∪S′⊂S, |S′|=m range(A(S′))
∣∣ .

The agnostic essential range of A is the function raA : N→ N, defined as follows.

raA(m) = sup
S⊆X×Y,|S|=2m

∣∣∪S′⊂S, |S′|=m range(A(S′))
∣∣ .

Intuitively, an algorithm with a small essential range uses a smaller set of labels for any
particular distribution, thus it enjoys better convergence guarantees. This is formally quan-
tified in the following result.

Theorem 13 Let A be an ERM learning algorithm for H ⊆ YX with essential ranges
rrA(m) and raA(m). Denote ε = ErrD(A(Sm))− ErrD(H). Then,

• If D is realizable by H and δ < 0.1 then with probability at least 1− δ,

ε ≤ O
(
dN (H)(ln(m) + ln(rrA(m))) + ln(1/δ)

m

)
.

• For any probability distribution D, with probability at least 1− δ,

ε ≤ O

(√
dN (H)(ln(m) + ln(raA(m)) + ln(1/δ)

m

)
.

To prove the realizable part of this theorem, we use the following combinatorial lemma
by Natarajan:

Lemma 14 (Natarajan, 1989) For every hypothesis class H ⊆ YX , |H| ≤ |X |dN (H)|Y|2dN (H).

Proof [of Theorem 13] For the realizable sample complexity, the growth function can be
bounded as follows. Let S ∈ R(H) such that |S| = 2m, and consider the function class
FA(S) (see Definition 10). By definition, the domain of FA(S) is XS of size 2m, and the
range of FA(S) is of size at most rrA(m). Lastly, the Natarajan dimension of FA(S) is at
most dN (H), since FA(S) ⊆ H|S .

Therefore, by Lemma 14, |FA(S)| ≤ (2m)dN (H)rrA(m)2dN (H). Taking the supremum over
all such S, we get

Πr
A(m) ≤ (2m)dN (H)rrA(m)2dN (H).
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The bound on ε follows from the first part of Lemma 11.
For the agnostic sample complexity, a similar argument shows that

Πa
A(m) ≤ (2m)dN (H)raA(m)2dN (H),

and the bound on ε follows from the second part of Lemma 11.

Theorem 7, which provides an improved bound for the realizable case, now follows from
the fact that the essential range is never more than k. But the essential range can also be
much smaller than k. For example, the essential range of the algorithm from Example 1 is
bounded by 2m + 1 (the 2m labels appearing in the sample together with the ∗ label). In
fact, we can state a more general bound, for any algorithm which never ‘invents’ labels it
did not observe in the sample.

Corollary 15 Let A be an ERM learner for a hypothesis class H ⊆ YX . Suppose that for
every sample S, the function A(S) never outputs labels which have not appeared in S. Then

mr
A(ε, δ) = O

(
dN (H)(ln(1

ε ) + ln(dN (H))) + ln(1
δ )

ε

)
,

and

ma
A(ε, δ) = O

(
dN (H)(ln(1

ε ) + ln(dN (H))) + ln(1
δ )

ε2

)
.

This corollary is immediate from Theorem 13 by setting rrA(m) = raA(m) = 2m.
From this corollary, we immediately get that every hypothesis class which admits such

algorithms, and has a large gap between the Natarajan dimension and the graph dimension
realizes a gap between the sample complexities of different ERM learners. Indeed, the graph
dimension can even be unbounded, while the Natarajan dimension is finite and the problem
is learnable. This is demonstrated by the following example.

Example 2 Denote the ball in Rn with center z and radius r by Bn(z, r) = {x | ‖x− z‖ ≤
r}. For a given ball B = Bn(z, r) with z ∈ Rn and r > 0, let hB : Rn → Rn ∪ {∗} be the
function defined by hB(x) = z if x ∈ B and hB(x) = ∗ otherwise. Let h∗ be a hypothesis
that always returns ∗. Define the hypothesis class Hn of hypotheses from Rn to Rn ∪{∗} by

Hn = {hB | ∃z ∈ Rn,∞ ≥ r > 0, such that B = Bn(z, r)} ∪ {h∗}.

Relying on the fact that the VC dimension of balls in Rn is n+ 1, it is not hard to see that
dG(Hn) = n + 1. Also, it is easy to see that dN (Hn) = 1. It is not hard to see that there
exists an ERM, Agood, satisfying the requirements of Corollary 15. Thus,

mr
Agood

(ε, δ) ≤ O
(

ln(1/ε) + ln(1/δ)

ε

)
, ma

Agood
(ε, δ) ≤ O

(
ln(1/δ)

ε2

)
.

On the other hand, Theorem 9 implies that there exists a bad ERM learner, Abad with

ma
Abad

(ε, δ) ≥ mr
Abad

(ε, δ) ≥ C1

(
n+ ln(1/δ)

ε

)
.
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Our results so far show that whenever an ERM learner with a small essential range
exists, the sample complexity of learning the multiclass problem can be improved over the
worst ERM learner. In the next section we show that this is indeed the case for hypothesis
classes which satisfy a natural condition of symmetry.

4.2 Learning with Symmetric Classes

We say that a hypothesis class H is symmetric if for any f ∈ H and any permutation
φ : Y → Y on labels we have that φ ◦ f ∈ H as well. Symmetric classes are a natural
choice if there is no prior knowledge on properties of specific labels in Y (See also the
discussion in Section 4.3.1 below). We now show that for symmetric classes, the Natarajan
dimension characterizes the optimal sample complexity up to logarithmic factors. It follows
that a finite Natarajan dimension is a necessary and sufficient condition for learnability of a
symmetric class. We will make use of the following lemma, which provides a key observation
on symmetric classes.

Lemma 16 Let H ⊆ YX be a symmetric hypothesis class of Natarajan dimension d. Then
any h ∈ H has a range of size at most 2d+ 1.

Proof If k ≤ 2d + 1 we are done. Thus assume that there are 2d + 2 distinct elements
y1, . . . , y2d+2 ∈ Y. Assume to the contrary that there is a hypothesis h ∈ H with a range
of more than 2d + 1 values. Thus there is a set S = {x1, . . . , xd+1} ⊆ X such that h|S
has d + 1 values in its range. Since H is symmetric, we can show that H N-shatters S as
follows: Since H is symmetric, we can rename all the labels in the range of h|S as we please
and get another function in H. Thus there are two functions f1, f2 ∈ H such that for all
i ≤ d + 1, f1(xi) = yi and f2(xi) = yd+1+i. Now, let S ⊆ T . Since H is symmetric we can
again rename the labels in the range of h|S to get a function g ∈ H such that g(x) = f1(x)
for every x ∈ T and g(x) = f2(x) for every x ∈ S \T . Therefore the set S is shattered, thus
the Natarajan dimension of H is at least d+ 1, contradicting the assumption.

First, we provide an upper bound on the sample complexity of ERM in the realizable case.

Theorem 17 There are absolute constants C1, C2 such that for every symmetric hypothesis
class H ⊆ YX

C1

(
dN (H) + ln(1

δ )

ε

)
≤ mr

ERM(ε, δ) ≤ C2

(
dN (H)

(
ln(1

ε ) + ln(dN (H))
)

+ ln(1
δ )

ε

)
Proof The lower bound is a restatement of Theorem 5. For the upper bound, first note
that if k ≤ 4dN (H) + 2 the upper bound trivially follows from Theorem 7. Thus assume
k > 4dN (H) + 2. We define an ERM learner A with a small essential range, as required
in Theorem 13: Fix a set Z ⊆ Y of size |Z| = 2dN (H) + 1. Assume an input sample
(x1, f(x1)), . . . , (xm, f(xm)), and denote the set of labels that appear in the sample by
L = {f(xi) | i ∈ [m]}. We require that A return a hypothesis which is consistent with the
sample and has range in L ∪ Z.

To see that such an ERM learner exists, observe that by Lemma 16, the range of f has at
most 2dN (H)+1 distinct labels. Therefore, there is a set R ⊆ Y such that |R| ≤ 2dN (H)+1
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and the range of f is L ∪ R. Due to the symmetry of H, we can rename the labels in R
to labels in Z, and get another function g ∈ H, that is consistent with the sample and has
range in L ∪ Z. This function can be returned by A.

The range of A over all samples that are labeled by a fixed function f ∈ H is thus in the
union of Z and the range of f . |Z| ≤ 2dN (H) + 1 and by Lemma 16, the range of f is also
at most 2dN (H) + 1. Therefore the realizable essential range of A is at most 4dN (H) + 2.
The desired bound for the sample complexity of A thus follows from Theorem 13.

We now show that the same bound in fact holds for all ERM learners for H. Suppose
that A′ is an ERM learner for which the bound does not hold. Then there is a function
f and a distribution D over X × Y which is consistent with f , and there are m, ε and
δ for which m ≥ mr

A(ε, δ), such that with probability greater than δ over samples Sm,
ErrD(A′(Sm)) − ErrD(H) > ε. Consider A as defined above, with a set Z that does not
overlap with the range of f . For every sample Sm consistent with f , denote f̂ = A′(Sm),
and let A return g which results from renaming the labels in f̂ as follows: For any label that
appeared in Sm, the same label is used in g. For any label that did not appear in Sm, a label
from Z is used instead. Clearly, ErrD(A(Sm)) ≥ ErrD(A′(Sm)). But this contradicts the
upper bounds on mr

A(ε, δ). We conclude that the upper bound holds for all ERM learners.

Second, we have the following upper bound for the agnostic case.

Theorem 18 There are absolute constants C1, C2 such that for every symmetric hypothesis
class H ⊆ YX

C1

(
dN (H) + ln(1

δ )

ε2

)
≤ ma

ERM(ε, δ) ≤ C2

(
dN (H) ln(min{dN (H), k}) + ln(1

δ )

ε2

)
,

Proof 3 The lower bound is a restatements of Theorem 6. For the upper bound, first
note that if k ≤ 6dN (H) then the upper bound follows from Theorem 6. Thus assume
k ≥ 6dN (H) ≥ 4dN (H) + 2. Fix a set Z ⊆ Y of size |Z| = 4dN (H) + 2. Denote H′ =

{f ∈ H : f(X ) ⊆ Z}. By Lemma 16, the range of every function in H contains at most |Z|2
elements. Thus, by symmetry, it is easy to see that dG(H) = dG(H′) and dN (H) = dN (H′).
By equation (2) and the fact that the range of functions in H′ is Z, we conclude that

dG(H) = dG(H′) = O(dN (H′) ln(|Z|))
= O(dN (H′) ln(min{dN (H′), k}) = O(dN (H) ln(dN (H))).

Using Theorem 5 we obtain the desired upper bounds.

These results indicate that for symmetric classes, the sample complexity is determined by
the Natarajan dimension up to logarithmic factors. Moreover, the ratio between the sample
complexities of worst ERM and the best ERM in this case is also at most logarithmic in ε
and the Natarajan dimension. We present the following open question:

Open question 19 Are there symmetric classes such that there are two different ERM
learners with a sample complexity ratio of Ω(ln(dN )) between them?

3. We note that this proof show that for symmetric classes dG = O (dN log(dN )). Hence, it can be adopted
to give a simpler proof of Theorem 17, but with a multiplicative (rather than additive) factor of log

(
1
ε

)
.
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4.3 Learning with No Prior Knowledge on Labels

Suppose we wish to learn some multiclass problem and have some hypothesis class that we
wish to use for learning. The hypothesis class is defined using arbitrary label names, say
Y = {1, . . . , k} = [k]. In many learning problems, we do not have any prior knowledge on
a preferred mapping between these arbitrary label names and the actual real-world labels
(e.g., names of topics of documents). Thus, any mapping between the real-world class labels
and the arbitrary labels in [k] is as reasonable as any other. We formalize the last assertion
by assuming that this mapping is chosen uniformly at random 4. In this section we show
that in this scenario, when k = Ω(dN (H)), it is likely that we will achieve poor classification
accuracy.

Formally, let H ⊂ [k]X be a hypothesis class. Let L be the set of real-world labels,
|L| = k. A mapping of the label names [k] to the true labels L is a bijection φ : [k] → L.
For such φ we let Hφ = {φ ◦ f : f ∈ H}. 5

The following theorem lower-bounds the approximation error when φ is chosen at ran-
dom. The result holds for any distribution with fairly balanced label frequencies. Formally,
we say that D over X × L is balanced if for any l ∈ L, the probability that a random pair
drawn from D has label l is at most 10/k.

Theorem 20 Fix α > 0. There exist a constant Cα > 0 such that for any k > 0, any
hypothesis class H ⊆ [k]X such that dN (H) ≤ Cαk, and any balanced distribution D over
X × L, with probability at least 1− o(2−k) over the choice of φ, ErrD(Hφ) ≥ 1− α.

Remark 21 Theorem 20 is tight, in the sense that a similar proposition cannot be obtained
for all dN ≤ f(k) for some f(k) ∈ ω(k). To see this, consider the class H = [k][k], for which
dN (H) = k. For any φ, Hφ = H. Thus, for any distribution such that ErrD(H) = 0, we
have ErrD(Hφ) = 0.

To prove Theorem 20, we prove the following lemma, which provides a lower bound on
the error of any hypothesis with a random bijection.

Lemma 22 Let h : X → [k] and let φ : [k]→ L be a bijection chosen uniformly at random.

Let S = {(x1, l1), . . . , (xm, lm)} ⊆ X × L. Denote, for l ∈ L, p̂l =
|{j:lj=l}|

m . Fix α > 0, and

let γ = α2∑
l∈L p̂

2
l
. Then

Pr[Err
S

(φ ◦ h) < 1− α] ≤
(

8ke

γ2

) γ
2

.

Proof Denote P =
√∑

l∈L p̂
2
l . For a sample S ⊂ X ×L and a function f : X → L denote

GainS(f) = 1 − ErrS(f). For l ∈ L denote Sl = ((xi, li))i:li=l. By Cauchy-Schwartz, we
have

Gain
S

(φ ◦ h) =
∑
l∈L

p̂l ·Gain
Sl

(φ ◦ h) ≤ P ·

√√√√∑
l∈L

(
Gain
Sl

(φ ◦ h)

)2

.

4. We note also that choosing this mapping at random is sometimes advocated for multiclass learning,
e.g., for a filter tree Beygelzimer et al. (2007) and for an Error Correcting Output Code (Dietterich and
Bakiri, 1995; Allwein et al., 2000).

5. Several notions, originally defined w.r.t. functions from X to Y (e.g. ErrD(h)), can be naturally extended
to functions from X to L. We will freely use these extensions.
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Assume that ErrS(φ ◦ h) ≤ 1− α. Then

∑
l∈L

Gain
Sl

(φ ◦ h) ≥
∑
l∈L

(
Gain
Sl

(φ ◦ h)

)2

≥ (GainS(φ ◦ h))2

P 2
≥ α2

P 2
= γ.

Note first that the left hand side is at most k, thus γ ≤ k. Since for every l ∈ L it holds
that 0 ≤ GainSl(φ ◦ h) ≤ 1, we conclude that there are at least n = dγ2 e labels l ∈ L such
that

Gain
Sl

(φ ◦ h) ≥ γ

2k
.

For a fixed set of n labels l1, . . . , ln ∈ L, the probability that ∀i, GainSli (φ ◦ h) ≥ γ
2k is at

most
n∏
i=1

2k

(k + 1− i)γ
≤
(

2k

(k + 1− n)γ

)n
.

To see that, suppose that φ is sampled by first choosing the value of φ−1(l1) then φ−1(l2)
and so on. For every li, there are at most 2k

γ values for φ−1(li) for which GainSli (φ◦h) ≥ γ
2k .

Thus, after the values of φ−1(l1), . . . , φ−1(li−1) have been determined, the probability that
φ−1(li) is one of these values is at most 2k

(k+1−i)·γ .

It follows that the probability that GainSl(φ ◦ h) ≥ γ
2k for n different labels l is at most(

k

n

)
·
(

2k

(k + 1− n)γ

)n
≤

(
ek

n

)n
·
(

2k

(k + 1− n)γ

)n
≤

(
2ke

γ

)n
·
(

2k

(k − γ/2)γ

)n
≤

(
8ke

γ2

)n
.

If 8ke
γ2
≥ 1 then the bound in the statement of the lemma holds trivially. Otherwise, the

bound follows since n ≥ γ/2.

Proof [Proof of Theorem 20] Denote pl = Pr(X,L)∼D[L = l]. Let S = {(x1, l1), . . . , (xm, lm)} ⊆
X × L be an i.i.d. sample drawn according to D. Denote p̂l =

|{j:lj=l}|
m .

For any fixed bijection φ, by Theorem 6, with probability 1− δ over the choice of S,

Err
D

(Hφ) ≥ inf
h∈H

ErrS(φ ◦ h)−O

(√
ln(k)dN (H) + ln(1/δ)

m

)
.

Since there are less than kk such bijections, we can apply the union bound to get that with
probability 1− δ over the choice of S,

∀φ, Err
D

(Hφ) ≥ inf
h∈H

ErrS(φ ◦ h)−O

(√
ln(k)dN (H) + k ln(k) + ln(1/δ)

m

)
.
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Assume k ≥ C · dN (H) for some constant C > 0, and let m = Θ
(
k·ln(k)
α2

)
such that with

probability at least 3/4,

∀φ, Err
D

(Hφ) ≥ inf
h∈H

ErrS(φ ◦ h)− α/2. (11)

We have

E[
∑
l∈L

p̂2
l ] = 2

1

m2

∑
l∈L

((
m

2

)
p2
l +mpl

)
≤ 2k ·

(
m(m− 1)

2m2

100

k2
+

10

mk

)
≤ 120

k
.

Thus, by Markov’s inequality, with probability at least 1
2 over the samples we have∑

l∈L
p̂2
l <

240

k
. (12)

Thus, with probability at least 1/4, both (12) and (11) hold. In particular, there exists a sin-
gle sample S for which both (12) and (11) hold. Let us fix such an S = {(x1, l1), . . . , (xm, lm)}.

Assume now that φ : Y → L is sampled uniformly. For a fixed h ∈ H and for γ =
(α/2)2/

∑
l∈L p̂

2
l ≥ kα2/960, we have, by Lemma 22 that

Pr
φ

[
ErrS(φ ◦ h) < 1− α

2

]
≤
(

8ke

γ2

) γ
2

≤ (C1kα
4)−C2kα2

:= η,

for constants C1, C2 > 0. By Lemma 14, |H|{x1,...,xm}| ≤ (m · k)2dN (H). Thus, with prob-

ability ≥ 1 − (m · k)2d · η over the choice of φ, infh∈H ErrS(φ ◦ h) ≥ 1 − α
2 and by (11)

also
ErrD(Hφ) ≥ 1− α. (13)

By our choice of m, and since k ≥ dN (H), for some universal constant C1 ≥ 1, m ≤ C1 · k
2

α2 .
Considering α a constant, we have, for some constants Ci > 0,

(m · k)2dN (H) · η ≤ (C3k)6dN (H) · (C4k)−C5k.

By requiring that k ≥ 12dN (H)/C5, we get that the right hand side is at most o(2−k).

4.3.1 Symmetrization

From Theorem 20 it follows that if there is no prior knowledge about the labels, and the
label frequencies are balanced, we must use a class of Natarajan dimension Ω(k) to obtain
reasonable approximation error. As we show next, in this case, there is almost no loss
in the sample complexity if one instead uses the symmetrization of the class, obtained by
considering all the possible label mappings φ : [k] → L. Formally, let H ⊂ [k]X be some
hypothesis class and let L be a set with |L| = k. The symmetrization of H is the symmetric
class

Hsym = {φ ◦ h | h ∈ H, φ : [k]→ L is a bijection}.
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Lemma 23 Let H ⊆ [k]X be a hypothesis class with Natarajan dimension d. Then

dN (Hsym) = O(max{d log(d), k log(k)}).

Proof Let ds = dN (Hsym). Let X ⊂ X be a set of cardinality ds that is N-shattered by
Hsym. By Lemma 14, |H|X | ≤ (dsk

2)d. It follows that |Hsym|X | ≤ k!(dsk
2)d. On the other

hand, since Hsym N-shatters X, |Hsym|X | ≥ 2|X| = 2ds . It follows that 2ds ≤ k!(dsk
2)d.

Taking logarithms we obtain that ds ≤ k log(k) + d(ln(ds) + 2 ln(k)). The Lemma follows.

5. Other Learning Settings

In this section we consider the characterization of learnability in other learning settings:
The online setting and the bandit setting.

5.1 The Online Model

Learning in the online model is conducted in a sequence of consecutive rounds. On each
round t = 1, 2, . . . , T , the environment presents a sample xt ∈ X , then the algorithm should
predict a value ŷt ∈ Y, and finally the environment reveals the correct value yt ∈ Y. The
prediction at time t can be based only on the examples x1, . . . , xt and the previous outcomes
y1, . . . , yt−1. Our goal is to minimize the number of prediction mistakes in the worst case,
where the number of mistakes on the first T rounds is LT = |{t ∈ [T ] : ŷt 6= yt}|. Assume
a hypothesis class H ⊆ YX . In the realizable setting, we assume that for some function
f ∈ H all the outcomes are evaluations of f , namely, yt = f(xt).

Learning in the realizable online model has been studied by Littlestone (1987), who
showed that a combinatorial measure, called the Littlestone dimension, characterizes the
min-max optimal number of mistakes for binary hypotheses classes in the realizable case.
We propose a generalization of the Littlestone dimension to multiclass hypotheses classes.

Consider a rooted tree T whose internal nodes are labeled by elements from X and
whose edges are labeled by elements from Y, such that the edges from a single parent to
its child-nodes are each labeled with a different label. The tree T is shattered by H if, for
every path from root to leaf which traverses the nodes x1, . . . , xk, there is a function f ∈ H
such that f(xi) is the label of the edge (xi, xi+1). We define the Littlestone dimension of a
multiclass hypothesis class H, denoted L-Dim(H), to be the maximal depth of a complete
binary tree that is shattered by H (or ∞ if there are a shattered trees for arbitrarily large
depth).

As we presently show, the number L-Dim(H) fully characterizes the worst-case mistake
bound for the online model in the realizable setting. The upper bound is achieved using
the following algorithm.

Algorithm: Standard Optimal Algorithm (SOA)
Initialization: V0 = H.
For t = 1, 2 . . .,

receive xt
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for y ∈ Y, let V
(y)
t = {f ∈ Vt−1 : f(xt) = y}

predict ŷt ∈ arg maxy L-Dim(V
(y)
t )

receive true answer yt

update Vt = V
(yt)
t

Theorem 24 The SOA algorithm makes at most L-Dim(H) mistakes on any realizable
sequence. Furthermore, the worst-case number of mistakes of any deterministic online
algorithm is at least L-Dim(H). For any randomized online algorithm, the expected number
of mistakes on the worst sequence is at least 1

2 L-Dim(H).

Proof (sketch) First, we show that the SOA algorithm makes at most L-Dim(H) mis-
takes. The proof is a simple adaptation of the proof of the binary case (see Littlestone,
1987; Shalev-Shwartz, 2012). We note that for each t there is at most one y ∈ Y with

L-Dim(V
(y)
t ) = L-Dim(Vt), and for the rest of the labels we have L-Dim(V

(y)
t ) < L-Dim(Vt)

(otherwise, it is not hard to construct a tree of depth L-Dim(Vt) + 1, whose root is xt, that
is shattered by Vt). Thus, whenever the algorithm errs, the Littlestone dimension of Vt
decreases by at least 1, so after L-Dim(H) mistakes, Vt is composed of a single function.

For the second part of the theorem, it is not hard to see that, given a shattered tree
of depth L-Dim(H), the environment can force any deterministic online learning algorithm
to make L-Dim(H) mistakes. Note also that allowing the algorithm to make randomized
predictions cannot be too helpful. It is easy to see that given a shattered tree of depth
L-Dim(H), the environment can enforce any randomized online learning algorithm to make
at least L-Dim(H)/2 mistakes on average, by traversing the shattered tree, and providing
at every round the label that the randomized algorithm is less likely to predict.

In the agnostic case, the sequence of outcomes, y1, . . . , ym, is not necessarily consistent
with some function f ∈ H. Thus, one wishes to bound the regret of the algorithm, instead
of its absolute number of mistakes. The regret is the difference between the number of
mistakes made by the algorithm and the number of mistakes made by the best-matching
function f ∈ H. The agnostic case for classes of binary-output functions has been studied
in Ben-David et al. (2009). It was shown that, as in the realizable case, the Littlestone
dimension characterizes the optimal regret bound.

We show that the generalized Littlestone dimension characterizes the optimal regret
bound for the multiclass case as well. The proof follows the paradigm of ‘learning with
expert advice’ (see e.g. Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2012), which we now
briefly describe. Suppose that at each step, t, before the algorithm chooses its prediction,
it observes N advices (f t1, . . . , f

t
N ) ∈ YN , which can be used to determine its prediction.

We think of f ti as the prediction made by the expert i at time t and denote the loss of the
expert i at time T by Li,T = |{t ∈ [T ] : fi,t 6= yt}| . The goal here it to devise an algorithm
that achieves a loss which is comparable with the loss of the best expert. Given T , the
following algorithm (Cesa-Bianchi and Lugosi, 2006, chapter 2) achieves expected loss at

most mini∈[N ] Li,T +
√

1
2 ln(N)T .

Algorithm: Learning with Expert Advice (LEA)
Parameters: Time horizon – T
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Set η =
√

8 ln(N)/T
For t = 1, 2 . . . , T

receive expert advices (f t1, . . . , f
t
N ) ∈ YN

predict ŷt = fi,t with probability proportional to exp(−ηLi,t−1)
receive true answer yt

We use this algorithm and its guarantee to prove the following theorem.

Theorem 25 In the agnostic online multiclass setting, the expected loss of the optimal

algorithm on the worst-case sequence is at most minf∈H Lf,T +
√

1
2 L-Dim(H)T log(Tk).

Proof First, we construct an expert for every f ∈ H, whose advice at time t is f(xt). Denote
the loss of the expert corresponding to f at time t by Lf,t. Running the algorithm LEA
with this set of experts yields an algorithm whose expected error is at most minf∈H Lf,T +√

1
2 ln(|H|)T . Our goal now is to construct a more compact set of experts, which will allow

us to bound the loss in terms of L-Dim(H) instead of ln(|H|).
Given time horizon T , let AT = {A ⊂ [T ] | |A| ≤ L-Dim(H)}. For every A ∈ AT

and φ : A → Y, we define an expert EA,φ. The expert EA,φ imitates the SOA algorithm
when it errs exactly on the examples {xt | t ∈ A} and the true labels of these examples are
determined by φ. Formally, the expert EA,φ proceeds as follows:

Set V1 = H.
For t = 1, 2 . . . , T

Receive xt.
Set lt = argmaxy∈Y L-Dim({f ∈ Vt : f(xt) = y}).
If t ∈ A, Predict φ(t) and update Vt+1 = {f ∈ Vt : f(xt) = φ(t)}.
If t 6∈ A, Predict lt and update Vt+1 = {f ∈ Vt : f(xt) = lt}.

The number of experts we constructed is
∑L-Dim(H)

j=0

(
T
j

)
(k − 1)j ≤ (Tk)L-Dim(H). Denote

the number of mistakes made by the expert EA,φ after T rounds by LA,φ,T . If we apply the
LEA algorithm with the set of experts we have constructed, the resulting algorithm makes
at most

min
A,φ

LA,φ,T +

√
1

2
T L-Dim(H) ln(Tk)

mistakes. We claim that minA,φ LA,φ,T ≤ minf∈H Lf,T : Let f ∈ H. Denote by A ⊂
[T ] the set of rounds in which the SOA algorithm errs when running on the sequence
(x1, f(x1)), . . . , (xT , f(xT )) and define φ : A → Y by φ(t) = f(xt). Since the SOA al-
gorithm makes at most L-Dim(H) mistakes, |A| ≤ L-Dim(H). It is not hard to see that
the predictions of the expert EA,φ coincide with the predictions of the expert Ef . Thus,
LA,φ,T = Lf,T .

Adapting the proof of Lemma 14 from Ben-David et al. (2009), we conclude a corre-
sponding lower bound:
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Theorem 26 In the agnostic online multiclass setting, the expected loss of every algorithm

on the worst-case sequence is at least minf∈H Lf,T +
√

1
8 L-Dim(H)T .

We leave as an open question to close the gap between the bounds in the above Theorems.
Note that this gap is analogous to the sample complexity gap for ERM learners in the PAC
setting, seen in Theorem 6.

5.2 The Bandit Setting

So far we have assumed that the label of each training example is fully revealed. In this
section we deal with the bandit setting. In this setting, the learner does not get to see the
correct label of a training example. Instead, the learner first receives an instance x ∈ X ,
and should guess a label, ŷ. The learner then receives a binary response, which indicates
only whether the guess was correct or not. If the guess is correct then the learner knows
the identity of the correct label. If the guess is wrong, the learner only knows that ŷ is not
the correct label, and not the identity of the correct label.

5.2.1 Bandit vs. Full Information in the Batch Model

In this section we consider the bandit setting in the batch model. In this setting the
sample is drawn i.i.d. as before, but the learner first observes only the instances x1, . . . , xm.
The learner then guesses a label for each of the instances, and receives a binary response
indicating for each label whether it was the correct one.

Let H ⊆ YX be a hypothesis class and let k = |Y|. Our goal is to analyze the realizable
bandit sample complexity of H, which we denote by mr

b(ε, δ), and the agnostic bandit sample
complexity ofH, which we denote by ma

b (ε, δ). The following theorem provides upper bounds
on the sample complexities.

Theorem 27 Let H ⊆ YX be a hypothesis class. Then,

mr
b(ε, δ) = O

(
k ·

dG(H) · ln
(

1
ε

)
+ ln(1

δ )

ε

)
and ma

b (ε, δ) = O

(
k ·

dG(H) + ln(1
δ )

ε2

)
.

Proof Let Af be a (full information) ERM learner forH. Consider the following algorithm,
denoted Ab, for the bandit setting: Given a sample (xi, yi)

m
i=1, for each i the algorithm

guesses a label ŷi ∈ Y drawn uniformly at random. Then the algorithm calls Af with an
input sample which consists only of the sample pairs for which the binary response indicated
that the guess ŷi was correct. Thus, the input sample is {(xi, ŷi) | ŷi = yi}. Ab then returns
whatever hypothesis Af returned.

We show that mr
Ab(ε, δ) ≤ 3k ·mr

Af (ε, δ2) + 3
2 log

(
2
δ

)
=: m′ and similarly for the agnostic

case, so that the theorem is implied by the bounds in the full information setting (Theo-
rem 5). Indeed, suppose that m examples suffice for Af to return a hypothesis with excess
error at most ε, with probability at least 1 − δ

2 . Let (xi, yi)
m′
i=1 be a sample for the bandit

algorithm. By Chernoff’s bound, with probability at least 1 − δ
2 , Ab guesses correctly the

label of at least m examples. Therefore Af runs on a sample of at least this size. The
sample that Af receives is a conditionally i.i.d. sample, given the size of the sample, with
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the same conditional distribution as the one the original sample was sampled from. Thus,
with probability at least 1− δ

2 , Af (and, consequently, Ab) returns a hypothesis with excess
error at most ε.

An interesting quantity to consider is the price of bandit information in the batch model:
LetH be a hypotheses class, and define PBIH(ε, δ) = mr

b,H(ε, δ)/mr
PAC,H(ε, δ). By Theorems

27 and 6 and Equation 2 we see that, PBI(ε, δ) = O(ln(1
ε )k ln(k)). This is essentially tight

since it is not hard to see that if both X ,Y are finite and we let H = YX , then PBIH = Ω(k).
Using Theorems 27 and 5 and Equation 2 we can further conclude that, as in the full

information case, the finiteness of the Natarajan dimension is necessary and sufficient for
learnability in the bandit setting as well. However, the ratio between the upper bound
due to Theorem 27 and the lower bound, due to Theorem 5, is Ω(ln(k) · k). It would be
interesting to find a more tight characterization of the sample complexity in the bandit
setting. This characterization cannot depend solely on the Natarajan dimension, or other
quantities which are strongly related to it (such as the graph dimension or other notion of
dimension defined in Ben-David et al. (1995)): For example, the classes [k][d] and [2][d] have
the same Natarajan dimension, but their bandit sample complexity differs by a factor of
Ω(k).

5.2.2 Bandit vs. Full Information in the Online Model

We now consider Bandits in the online learning model. We focus on the realizable case, in
which the feedback provided to the learner is consistent with some function f0 ∈ H. We
define a new notion of dimension of a class, that determines the sample complexity in this
setting.

As in Section 5.1, consider a rooted tree T whose internal nodes are labeled by elements
from X and whose edges are labeled by elements from Y, such that the edges from a
single parent to its child-nodes are each labeled with a different label. The tree T is BL-
shattered by H if, for every path from root to leaf x1, . . . , xk, there is a function f ∈ H such
that for every i, f(xi) is different from the label of (xi, xi+1). The Bandit-Littlestone
dimension of H, denoted BL-dim(H), is the maximal depth of a complete k-ary tree that
is BL-shattered by H.

Theorem 28 Let H be a hypothesis class with L = BL-Dim(H). Then every deterministic
online bandit learning algorithm for H will make at least L mistakes in the worst case.
Moreover, there is an online learning algorithm that makes at most L mistakes on every
realizable sequence.

Proof First, let T be a BL-shattered tree of depth L. We show that for every deterministic
learning algorithm there is a sequence x1, . . . , xL and a labeling function f0 ∈ H such that
the algorithm makes L mistakes on this sequence. The sequence consists of the instances
attached to nodes of T , when traversing the tree from the root to one of its leaves, such
that the label of each edge (xi, xi+1) is equal to the algorithm’s prediction ŷi. The labeling
function f0 ∈ H is one such that for all i, f0(xi) is different from the label of edge (xi, xi+1).
Such a function exists since T is BL-shattered, and the algorithm will clearly make L
mistakes on this sequence.
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Second, the following online learning algorithm makes at most L mistakes on any real-
izable input sequence.

Algorithm: Bandit Standard Optimal Algorithm (BSOA)
Initialization: V0 = H.
For t = 1, 2 . . .,

Receive xt

For y ∈ Y, let V
(y)
t = {f ∈ Vt−1 : f(xt) 6= y}

Predict ŷt ∈ arg miny BL-Dim(V
(y)
t )

Receive an indication whether ŷt = f(xt)

If the prediction is wrong, update Vt = V
(ŷt)
t .

To see that BSOA makes at most L mistakes, note that at each time t, there is at least one

V
(y)
t with BL-Dim(V

(y)
t ) < BL-Dim(Vt−1). This can be seen by assuming to the contrary

that this is not so, and concluding that if BL-Dim(V
(y)
t ) = BL-Dim(Vt−1) for all y ∈ [k],

then one can construct a shattered tree of size BL-Dim(Vt−1) + 1 for Vt−1, thus reaching a
contradiction.

Thus, whenever the algorithm errs, the dimension of Vt decreases by one. Thus, after L
mistakes, the dimension is 0, which means that there is a single function that is consistent
with the sample, so no more mistakes can occur.

The price of bandit information: Let PBI(H) = BL-Dim(H)/L-Dim(H) and fix
k ≥ 2. How large can PBI(H) be when H is a class of functions from a domain X to a
range Y of cardinality k? We refer the reader to Daniely and Helbertal (2013), where it is
shown that PBI(H) ≤ 4k log(k). This bound is tight up to the logarithmic factor.

6. Discussion

We have shown in this work that even in the simple case of multiclass learning, different
ERM learners for the same problem can have large gaps in their sample complexities. To
put our results in a more general perspective, consider the General Setting of Learning
introduced by Vapnik (1998). In this setting, a learning problem is a triplet (H,Z, l),
where H is a hypothesis class, Z is a data domain, and l : H × Z → R is a loss function.
We emphasize that H is not necessarily a class of functions but rather an abstract set of
models. The goal of the learner is, given a sample S ∈ Zm, sampled from some (unknown)
distribution D over Z, to find a hypothesis h ∈ H that minimizes the expected loss, l(h) =
Ez∼D[l(h, z)].

The general setting of learning encompasses multiclass learning as follows: given a
hypotheses class H ⊂ YX , take Z = X × Y and define l : H × Z → R by l(h, (x, y)) =
1[h(x) 6= y]. However, the general learning setting encompasses many other problems as
well, for instance:

• Regression with the squared loss: Here, Z = Rn × R, H is a set of real-valued
functions over Rn and l(h, (x, y)) = (h(x)− y)2.
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• k-means: Here, Z = Rn, H = (Rn)k and, for h = (c1, . . . , ck) ∈ H and x ∈ Z, the
loss is l((c1, . . . , ck), x) = minj∈[k] ||cj − x||2.

• Density estimation: Here, Z is an arbitrary finite set, H is some set of probability
density functions over Z, and the loss function is the log loss, l(p, x) = − ln(p(x)).

A learning problem is learnable in the general setting of learning if there exists a function
A : ∪∞m=1Zm → H such that for every ε > 0 and δ > 0 there exists an m such that for every
distribution D over Z,

Pr
S∼Zm

(
l(A(S)) ≥ inf

h∈H
l(h) + ε

)
< δ

A learning problem converges uniformly if, for every ε > 0,

lim
m→∞

Pr
S∼Zm

(
sup
h∈H
|l(h)− lS(h)| > ε

)
= 0

where for S = (z1, . . . , zm) ∈ Zm, lS(h) = 1
m

∑m
i=1 l(h, zi) is the empirical loss of h on

the sample S. An easy observation is that uniform convergence implies learnability, and a
classical result is that for binary classification and for regression (with absolute or squared
loss), the inverse implication also holds. Thus, it was believed that excluding some trivi-
alities, learnability is equivalent to uniform convergence. In Shalev-Shwartz et al. (2010)
it is shown that for stochastic convex optimization, learnability does not imply uniform
convergence, giving an evidence that the above belief might be misleading. Our results in
this work can be seen as another step in this direction, as we have shown that even in mul-
ticlass classification – a simple, natural and popular generalization of binary classification,
the above mentioned equivalence no longer holds.

We conclude with an open question. In view of our results in Section 4, the following
conjecture suggests itself.

Conjecture 29 There exists a constant C such that, for every hypothesis class H ⊆ YX ,

mr
PAC(ε, δ) ≤ C

(
dN (H) ln(1

ε ) + ln(1
δ )

ε

)
In light of Theorem 9 and the fact that there are cases where dG ≥ log2(k − 1)dN , the
conjecture can only be proved if this learning rate can be achieved by a learning algorithm
that is not just an arbitrary ERM learner. So far, all the general upper bounds that we are
aware of are valid for any ERM learner. Understanding how to select among ERM learners
is fundamental as it teaches us what is the optimal way to learn. We hope that our examples
from section 4 and our result for symmetric classes will lead to a better understanding of
the optimal learning method.

Remark 30 A subsequent paper (Daniely and Shalev-Shwartz, 2014) established several
results that are highly related to the subject of this paper. First, they have shown that the
ERM rule is suboptimal even for multiclass classification with linear classes. Second, they
have shown that for some classes, an optimal learner must be improper – that is, it must
have the ability to return a hypothesis that does not belong to the learnt class. Finally,
they have show that the one-inclusion algorithm (Rubinstein et al., 2006) is optimal for
multiclass classification. We note that Conjecture 29 is still open.
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Abstract

Conditional restricted Boltzmann machines are undirected stochastic neural networks with
a layer of input and output units connected bipartitely to a layer of hidden units. These
networks define models of conditional probability distributions on the states of the output
units given the states of the input units, parameterized by interaction weights and biases.
We address the representational power of these models, proving results on their ability to
represent conditional Markov random fields and conditional distributions with restricted
supports, the minimal size of universal approximators, the maximal model approximation
errors, and on the dimension of the set of representable conditional distributions. We
contribute new tools for investigating conditional probability models, which allow us to
improve the results that can be derived from existing work on restricted Boltzmann machine
probability models.

Keywords: conditional restricted Boltzmann machine, universal approximation, Kullback-
Leibler approximation error, expected dimension

1. Introduction

Restricted Boltzmann Machines (RBMs) (Smolensky, 1986; Freund and Haussler, 1994)
are generative probability models defined by undirected stochastic networks with bipartite
interactions between visible and hidden units. These models are well-known in machine
learning applications, where they are used to infer distributed representations of data and
to train the layers of deep neural networks (Hinton et al., 2006; Bengio, 2009). The restricted
connectivity of these networks allows to train them efficiently on the basis of cheap inference
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and finite Gibbs sampling (Hinton, 2002, 2012), even when they are defined with many
units and parameters. An RBM defines Gibbs-Boltzmann probability distributions over
the observable states of the network, depending on the interaction weights and biases. An
introduction is offered by Fischer and Igel (2012). The expressive power of these probability
models has attracted much attention and has been studied in numerous papers, treating,
in particular, their universal approximation properties (Younes, 1996; Le Roux and Bengio,
2008; Montúfar and Ay, 2011), approximation errors (Montúfar et al., 2011), efficiency of
representation (Martens et al., 2013; Montúfar and Morton, 2015), and dimension (Cueto
et al., 2010).

In certain applications, it is preferred to work with conditional probability distribu-
tions, instead of joint probability distributions. For example, in a classification task, the
conditional distribution may be used to indicate a belief about the class of an input, with-
out modeling the probability of observing that input; in sensorimotor control, it can de-
scribe a stochastic policy for choosing actions based on world observations; and in the con-
text of information communication, to describe a channel. RBMs naturally define models
of conditional probability distributions, called conditional restricted Boltzmann machines
(CRBMs). These models inherit many of the nice properties of RBM probability models,
such as the cheap inference and efficient training. Specifically, a CRBM is defined by clamp-
ing the states of an input subset of the visible units of an RBM. For each input state one
obtains a conditioned distribution over the states of the output visible units. See Figure 1
for an illustration of this architecture. This kind of conditional models and slight variants
thereof have seen success in many applications; for example, in classification (Larochelle and
Bengio, 2008), collaborative filtering (Salakhutdinov et al., 2007), motion modeling (Tay-
lor et al., 2007; Zeiler et al., 2009; Mnih et al., 2011; Sutskever and Hinton, 2007), and
reinforcement learning (Sallans and Hinton, 2004).

So far, however, there is not much theoretical work addressing the expressive power
of CRBMs. We note that it is relatively straightforward to obtain some results on the
expressive power of CRBMs from the existing theoretical work on RBM probability models.
Nevertheless, an accurate analysis requires to take into account the specificities of the
conditional case. Formally, a CRBM is a collection of RBMs, with one RBM for each
possible input value. These RBMs differ in the biases of the hidden units, as these are
influenced by the input values. However, these hidden biases are not independent for all
different inputs, and, moreover, the same interaction weights and biases of the visible units
are shared for all different inputs. This sharing of parameters draws a substantial distinction
of CRBM models from independent tuples of RBM models.

In this paper we address the representational power of CRBMs, contributing theoretical
insights to the optimal number of hidden units. Our focus lies on the classes of conditional
distributions that can possibly be represented by a CRBM with a fixed number of inputs
and outputs, depending on the number of hidden units. Having said this, we do not dis-
cuss the problem of finding the optimal parameters that give rise to a desired conditional
distribution (although our derivations include an algorithm that does this), nor problems
related to incomplete knowledge of the target conditional distributions and generalization
errors. A number of training methods for CRBMs have been discussed in the references
listed above, depending on the concrete applications. The problems that we deal with here
are the following: 1) are distinct parameters of the model mapped to distinct conditional
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distributions; what is the smallest number of hidden units that suffices for obtaining a model
that can 2) approximate any target conditional distribution arbitrarily well (a universal ap-
proximator); 3) approximate any target conditional distribution without exceeding a given
error tolerance; 4) approximate selected classes of conditional distributions arbitrarily well?
We provide non-trivial solutions to all of these problems. We focus on the case of binary
units, but the main ideas extend to the case of discrete non-binary units.

This paper is organized as follows. Section 2 contains formal definitions and elemen-
tary properties of CRBMs. Section 3 investigates the geometry of CRBM models in three
subsections. In Section 3.1 we study the dimension of the sets of conditional distributions
represented by CRBMs and show that in most cases this is the dimension expected from
counting parameters (Theorem 4). In Section 3.2 we address the universal approximation
problem, deriving upper and lower bounds on the minimal number of hidden units that
suffices for this purpose (Theorem 7). In Section 3.3 we analyze the maximal approxima-
tion errors of CRBMs (assuming optimal parameters) and derive an upper bound for the
minimal number of hidden units that suffices to approximate every conditional distribution
within a given error tolerance (Theorem 11). Section 4 investigates the expressive power of
CRBMs in two subsections. In Section 4.1 we describe how CRBMs can represent natural
families of conditional distributions that arise in Markov random fields (Theorem 14). In
Section 4.2 we study the ability of CRBMs to approximate conditional distributions with
restricted supports. This section addresses, especially, the approximation of deterministic
conditional distributions (Theorem 21). In Section 5 we offer a discussion and an outlook.
In order to present the main results in a concise way, we have deferred all proofs to the
appendices. Nonetheless, we think that the proofs are interesting in their own right, and
we have prepared them with a fair amount of detail.

2. Definitions

We will denote the set of probability distributions on {0, 1}n by ∆n. A probability dis-
tribution p ∈ ∆n is a vector of 2n non-negative entries p(y), y ∈ {0, 1}n, adding to one,∑

y∈{0,1}n p(y) = 1. The set ∆n is a (2n − 1)-dimensional simplex in R2n .

We will denote the set of conditional distributions of a variable y ∈ {0, 1}n, given
another variable x ∈ {0, 1}k, by ∆k,n. A conditional distribution p(·|·) ∈ ∆k,n is a 2k × 2n

row-stochastic matrix with rows p(·|x) ∈ ∆n, x ∈ {0, 1}k. The set ∆k,n is a 2k(2n − 1)-

dimensional polytope in R2k×2n . It can be regarded as the 2k-fold Cartesian product ∆k,n =
∆n × · · · × ∆n, where there is one probability simplex ∆n for each possible input state
x ∈ {0, 1}k. We will use the abbreviation [N ] := {1, . . . , N}, where N is a natural number.

Definition 1 The conditional restricted Boltzmann machine (CRBM) with k input units, n
output units, and m hidden units, denoted RBMk

n,m, is the set of all conditional distributions
in ∆k,n that can be written as

p(y|x) =
1

Z(W, b, V x+ c)

∑
z∈{0,1}m

exp(z>V x+z>Wy+b>y+c>z), ∀y ∈ {0, 1}n, x ∈ {0, 1}k,
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Figure 1: Architecture of a CRBM. An RBM is the special case with k = 0.

with normalization function

Z(W, b, V x+ c) =
∑

y∈{0,1}n

∑
z∈{0,1}m

exp(z>V x+ z>Wy + b>y + c>z), ∀x ∈ {0, 1}k.

Here, x, y, and z are column state vectors of the k input units, n output units, and m
hidden units, respectively, and > denotes transposition. The parameters of this model
are the matrices of interaction weights V ∈ Rm×k, W ∈ Rm×n and the vectors of biases
b ∈ Rn, c ∈ Rm. When there are no input units (k = 0), the model RBMk

n,m reduces to the
restricted Boltzmann machine probability model with n visible units and m hidden units,
denoted RBMn,m.

We can view RBMk
n,m as a collection of 2k restricted Boltzmann machine probability

models with shared parameters. For each input x ∈ {0, 1}k, the output distribution p(·|x) is
the probability distribution represented by RBMn,m for the parameters W, b, (V x+ c). All
p(·|x) have the same interaction weights W , the same biases b for the visible units, and differ
only in the biases (V x + c) for the hidden units. The joint behavior of these distributions
with shared parameters is not trivial.

The model RBMk
n,m can also be regarded as representing block-wise normalized versions

of the joint probability distributions represented by RBMn+k,m. Namely, a joint distribution
p ∈ RBMn+k,m ⊆ ∆k+n is an array with entries p(x, y), x ∈ {0, 1}k, y ∈ {0, 1}n. Condition-
ing p on x is equivalent to considering the normalized x-th row p(y|x) = p(x, y)/

∑
y′ p(x, y

′),
y ∈ {0, 1}n.

3. Geometry of Conditional Restricted Boltzmann Machines

In this section we investigate three basic questions about the geometry of CRBM models.
First, what is the dimension of a CRBM model? Second, how many hidden units does a
CRBM need in order to be able to approximate every conditional distribution arbitrarily
well? Third, how accurate are the approximations of a CRBM, depending on the number
of hidden units?

3.1 Dimension

The model RBMk
n,m is defined by marginalizing out the hidden units of a graphical model.

This implies that several choices of parameters may represent the same conditional distri-
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butions. In turn, the dimension of the set of representable conditional distributions may be
smaller than the number of model parameters, in principle.

When the dimension of RBMk
n,m is equal to min{(k + n)m+ n+m, 2k(2n − 1)}, which

is the minimum of the number of parameters and the dimension of the ambient polytope of
conditional distributions, the CRBM model is said to have the expected dimension. In this
section we show that RBMk

n,m has the expected dimension for most triplets (k, n,m). In
particular, we show that this holds in all practical cases, where the number of hidden units
m is smaller than exponential with respect to the number of visible units k + n.

The dimension of a parametric model is given by the maximum of the rank of the
Jacobian of its parameterization (assuming mild differentiability conditions). Computing
the rank of the Jacobian is not easy in general. A resort is to compute the rank only in the
limit of large parameters, which corresponds to considering a piece-wise linearized version
of the original model, called the tropical model. Cueto et al. (2010) used this approach to
study the dimension of RBM probability models. Here we apply their ideas to address the
dimension of CRBM conditional models.

The following functions from coding theory will be useful for phrasing the results:

Definition 2 Let A(n, d) denote the cardinality of a largest subset of {0, 1}n whose ele-
ments are at least Hamming distance d apart. Let K(n, d) denote the smallest cardinality of
a set such that every element of {0, 1}n is at most Hamming distance d apart from that set.

Cueto et al. (2010) showed that dim(RBMn,m) = nm+ n+m for m+ 1 ≤ A(n, 3), and
dim(RBMn,m) = 2n − 1 for m ≥ K(n, 1). It is known that A(n, 3) ≥ 2n−dlog2(n+1)e and
K(n, 1) ≤ 2n−blog2(n+1)c. In turn, for most pairs (n,m) the probability model RBMn,m has
the expected dimension (although for many values of n there is a range of values of m where
the results are inconclusive about this). Noting that dim(RBMk

n,m) ≥ dim(RBMk+n,m) −
(2k−1), these results on the dimension of RBM probability models directly imply following
bounds on the dimension of CRBM models:

Proposition 3 The conditional model RBMk
n,m satisfies the following:

• dim(RBMk
n,m) ≥ (n+ k)m+ n+m+ k − (2k − 1) for m+ 1 ≤ A(k + n, 3).

• dim(RBMk
n,m) = 2k(2n − 1) for m ≥ K(k + n, 1).

This result shows that, when m ≥ K(k + n, 1), the CRBM model has the maximum
possible dimension, equal to the dimension of ∆k,n. In all other cases, however, the dimen-
sion bounds are too loose and do not allow us to conclude whether or not the CRBM model
has the expected dimension. Hence we need to study the conditional model in more detail.
We obtain the following result:

Theorem 4 The conditional model RBMk
n,m satisfies the following:

• dim(RBMk
n,m) = (k + n)m+ n+m for m+ 1 ≤ A(k + n, 4).

• dim(RBMk
n,m) = 2k(2n − 1) for m ≥ K(k + n, 1).
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Montúfar, Ay, and Ghazi-Zahedi

We note the following practical version of the theorem, which results from inserting
appropriate bounds on the functions A and K:

Corollary 5 The conditional model RBMk
n,m has the expected dimension in the following

cases:

• dim(RBMk
n,m) = (n+ k)m+ n+m for m ≤ 2(k+n)−blog2((k+n)2−(k+n)+2)c.

• dim(RBMk
n,m) = 2k(2n − 1) for m ≥ 2(k+n)−blog2(k+n+1)c.

These results show that, in all cases of practical interest, where m is less than exponential
in k + n, the dimension of the CRBM model is indeed equal to the number of model
parameters. In all these cases, almost every conditional distribution that can be represented
by the model is represented by at most finitely many different choices of parameters. We
should note that there is an interval of exponentially large values of m where the results
remain inconclusive, namely the interval A(k + n, 4) ≤ m < K(k + n, 1). This is similar
to the gap already mentioned above for RBM probability models and poses interesting
theoretical problems (see also Montúfar and Morton, 2015).

On the other hand, the dimension alone is not very informative about the ability of a
model to approximate target distributions. In particular, it may be that a high dimensional
model covers only a tiny fraction of the set of all conditional distributions, or also that a
low dimensional model can approximate any target conditional relatively well. We address
the minimal dimension and number of parameters of a universal approximator in the next
section. In the subsequent section we address the approximation errors depending on the
number of parameters.

3.2 Universal Approximation

In this section we ask for the smallest number of hidden units m for which the model
RBMk

n,m can approximate every conditional distribution from ∆k,n arbitrarily well.

Note that each conditional distribution p(y|x) can be identified with the set of joint
distributions of the form r(x, y) = q(x)p(y|x), with strictly positive marginals q(x). In
particular, by fixing a marginal distribution, we obtain an identification of ∆k,n with a subset
of ∆k+n. Figure 2 illustrates this identification in the case n = k = 1 and q(0) = q(1) = 1

2 .

This implies that universal approximators of joint probability distributions define uni-
versal approximators of conditional distributions. We know that RBMn+k,m is a universal
approximator whenever m ≥ 1

22k+n − 1 (see Montúfar and Ay, 2011), and therefore:

Proposition 6 The model RBMk
n,m can approximate every conditional distribution from

∆k,n arbitrarily well whenever m ≥ 1
22k+n − 1.

This improves previous results by Younes (1996) and van der Maaten (2011). On the
other hand, since conditional models do not need to model the input distributions, in
principle it is possible that RBMk

n,m is a universal approximator even if RBMn+k,m is not
a universal approximator. In fact, we obtain the following improvement of Proposition 6,
which does not follow from corresponding results for RBM probability models:
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Figure 2: The polytope of conditional distributions ∆1,1 embedded in the simplex of prob-
ability distributions ∆2.

Theorem 7 The model RBMk
n,m can approximate every conditional distribution from ∆k,n

arbitrarily well whenever

m ≥


1
22k(2n − 1), if k ≥ 1
3
82k(2n − 1) + 1, if k ≥ 3
1
42k(2n − 1 + 1/30), if k ≥ 21

.

In fact, the model RBMk
n,m can approximate every conditional distribution from ∆k,n ar-

bitrarily well whenever m ≥ 2kK(r)(2n − 1) + 2S(r)P (r), where r is any natural number
satisfying k ≥ 1 + · · · + r =: S(r), and K and P are functions (defined in Lemma 30 and
Proposition 32) which tend to approximately 0.2263 and 0.0269, respectively, as r tends to
infinity.

We note the following weaker but practical version of Theorem 7:

Corollary 8 Let k ≥ 1. The model RBMk
n,m can approximate every conditional distribution

from ∆k,n arbitrarily well whenever m ≥ 1
22k(2n − 1) = 1

22k+n − 1
22k.

These results are significant, because they reduce the bounds following from univer-
sal approximation results for probability models by an additive term of order 2k, which
corresponds precisely to the order of parameters needed to model the input distributions.

As expected, the asymptotic behavior of the theorem’s bound is exponential in the
number of input and output units. This lies in the nature of the universal approximation
property. A crude lower bound on the number of hidden units that suffices for universal
approximation can be obtained by comparing the number of parameters of the model and
the dimension of the conditional polytope:

Proposition 9 If the model RBMk
n,m can approximate every conditional distribution from

∆k,n arbitrarily well, then necessarily m ≥ 1
(n+k+1)(2k(2n − 1)− n).
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Figure 3: Schematic illustration of the maximal approximation error of a model of condi-
tional distributions Mk,n ⊆ ∆k,n.

The results presented above highlight the fact that CRBM universal approximation
may be possible with a drastically smaller number of hidden units than RBM universal
approximation, for the same number of visible units. However, even with these reductions
the universal approximation property requires an enormous number of hidden units. In order
to provide a more informative description of the approximation capabilities of CRBMs, in
the next section we investigate how the maximal approximation error decreases as hidden
units are added to the model.

3.3 Maximal Approximation Errors

From a practical perspective it is not necessary to approximate conditional distributions
arbitrarily well, but fair approximations suffice. This can be especially important if the
number of required hidden units grows disproportionately with the quality of the approxi-
mation. In this section we investigate the maximal approximation errors of CRBMs depend-
ing on the number of hidden units. Figure 3 gives a schematic illustration of the maximal
approximation error of a conditional model.

The Kullback-Leibler divergence of two probability distributions p and q in ∆k+n is
given by

D(p‖q) :=
∑
x

∑
y

p(x)p(y|x) log
p(x)p(y|x)

q(x)q(y|x)

=D(pX‖qX) +
∑
x

p(x)D(p(·|x)‖q(·‖x)),

where pX =
∑

y∈{0,1}n p(x, y) denotes the marginal distribution over x ∈ {0, 1}k. The
divergence of two conditional distributions p(·|·) and q(·|·) in ∆k,n is given by

D(p(·|·)‖q(·|·)) :=
∑
x

uX(x)D(p(·|x)‖q(·|x)),
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where uX denotes the uniform distribution over x. Even if the divergence between two joint
distributions does not vanish, the divergence between their conditional distributions may
vanish.

Consider a model Mk+n ⊆ ∆k+n of joint probability distributions and a correspond-
ing model Mk,n ⊆ ∆k,n of conditional distributions. More precisely, Mk,n consists of all
conditional distributions of the form q(y|x) = q(x, y)/

∑
y′∈{0,1}n q(x, y

′), for all y ∈ {0, 1}n
and x ∈ {0, 1}k, where q(·, ·) is any joint probability distribution from Mk+n satisfying∑

y′∈{0,1}n q(x, y
′) > 0, for all x ∈ {0, 1}k. The divergence from a conditional distribution

p(·|·) ∈ ∆k,n to the model Mk,n is given by

D(p(·|·)‖Mk,n) := inf
q∈Mk,n

D(p(·|·)‖q(·|·)) = inf
q∈Mk+n

D(uXp(·|·)‖q)−D(uX‖qX).

In turn, the maximum of the divergence from a conditional distribution to Mk,n satisfies

DMk,n
:= max

p(·|·)∈∆k,n

D(p(·|·)‖Mk,n) ≤ max
p∈∆k+n

D(p‖Mk+n) =: DMk+n
.

Hence we can bound the maximal divergence of a CRBM by the maximal divergence of an
RBM (studied by Montúfar et al., 2011) and obtain the following:

Proposition 10 If m ≤ 2(n+k)−1−1, then the divergence from any conditional distribution
p(·|·) ∈ ∆k,n to the model RBMk

n,m is bounded by

DRBMk
n,m
≤ DRBMk+n,m

≤ (n+ k)− blog2(m+ 1)c − m+ 1

2blog2(m+1)c .

This proposition implies the universal approximation result from Proposition 6 as the
special case with vanishing approximation error, but it does not imply Theorem 7 in the
same way. Taking more specific properties of the conditional model into account, we can
improve the proposition and obtain the following:

Theorem 11 Let l ∈ [n]. The divergence from any conditional distribution in ∆k,n to the
model RBMk

n,m is bounded from above by

DRBMk
n,m
≤ n− l, whenever m ≥


1
22k(2l − 1), if k ≥ 1
3
82k(2l − 1) + 1, if k ≥ 3
1
42k(2l − 1 + 1/30), if k ≥ 21

.

In fact, the divergence from any conditional distribution in ∆k,n to RBMk
n,m is bounded from

above by DRBMk
n,m
≤ n−l, where l is the largest integer with m ≥ 2k−S(r)F (r)(2l−1)+R(r).

In plain terms, this theorem shows that the worst case approximation errors of CRBMs
decrease at least with the logarithm of the number of hidden units. Given an error toler-
ance, we can use these bounds to find a sufficient number of hidden units that guarantees
approximations within this error tolerance. Furthermore, the result implies the universal
approximation result from Theorem 7 as the special case with vanishing approximation
error. We note the following weaker but practical version of Theorem 11 (analogue to
Corollary 8):
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Corollary 12 Let k ≥ 1 and l ∈ [n]. The divergence from any conditional distribution in
∆k,n to the model RBMk

n,m is bounded from above by DRBMk
n,m
≤ n − l, whenever m ≥

1
22k(2l − 1).

In this section we have discussed the worst case approximation errors of CRBMs. On
the other hand, in practice one is not interested in approximating all possible conditional
distributions, but only special classes. One can expect that CRBMs can approximate certain
classes of conditional distributions better than others. This is the subject of the next section.

4. Representation of Special Classes of Conditional Models

In this section we ask about the classes of conditional distributions that can be compactly
represented by CRBMs and whether CRBMs can approximate interesting conditional dis-
tributions using only a moderate number of hidden units.

The first part of the question is about familiar classes of conditional distributions that
can be expressed in terms of CRBMs, which in turn would allow us to compare CRBMs
with other models and to develop a more intuitive picture of Definition 1.

The second part of the question clearly depends on the specific problem at hand.
Nonetheless, some classes of conditional distributions may be considered generally inter-
esting, as they contain solutions to all instances of certain classes of problems. An example
is the class of deterministic conditional distributions, which suffices to solve any Markov
decision problem in an optimal way.

4.1 Representation of Conditional Markov Random Fields

In this section we discuss the ability of CRBMs to represent conditional Markov random
fields, depending on the number of hidden units that they have. The main idea is that each
hidden unit of an RBM can be used to model the pure interaction of a group of visible
units. This idea appeared in previous work by Younes (1996), in the context of universal
approximation.

Definition 13 Consider a simplicial complex I on [N ]; that is, a collection of subsets of
[N ] = {1, . . . , N} such that A ∈ I implies B ∈ I for all B ⊆ A (in particular ∅ ∈ I). The
random field EI ⊆ ∆N with interactions I is the set of probability distributions of the form

p(x) =
1

Z
exp

(∑
A∈I

θA
∏
i∈A

xi

)
, for all x = (x1, . . . , xN ) ∈ {0, 1}N ,

with normalization Z =
∑

x′∈{0,1}N exp(
∑

A∈I θA
∏
i∈A x

′
i) and parameters θA ∈ R, A ∈ I.

Given a set S, we will denote the set of all subsets of S by 2S . We obtain the following
result:

Theorem 14 Let I be a simplicial complex on [k+n] and let J = 2[k]∪{{k+1}, . . . , {k+n}}.
If m ≥ |I \ J |, then the model RBMk

n,m can represent every conditional distribution of
(xk+1, . . . , xk+n), given (x1, . . . , xk), that can be represented by EI ⊆ ∆k+n.
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Figure 4: Example of a Markov random field and a corresponding RBM architecture that
can represent it. Visible units are depicted in black and hidden units in white.

An interesting special case is when each output distribution can be chosen arbitrarily
from a given Markov random field:

Corollary 15 Let I be a simplicial complex on [n] and for each x ∈ {0, 1}n let px be some
probability distribution from EI ⊆ ∆n. If m ≥ 2k(|I| − 1) − |{A ∈ I : |A| = 1}|, then the
model RBMk

n,m can represent the conditional distribution defined by q(y|x) = px(y), for all

y ∈ {0, 1}n, for all x ∈ {0, 1}k.

We note the following direct implication for RBM probability models:

Corollary 16 Let I be a simplicial complex on [n]. If m ≥ |{A ∈ I : |A| > 1}|, then
RBMn,m can represent any probability distribution p from EI .

Figure 4 illustrates a Markov random field and an RBM that can represent it.

4.2 Approximation of Conditional Distributions with Restricted Supports

In this section we continue the discussion about the classes of conditional distributions that
can be represented by CRBMs, depending on the number of hidden units. Here we focus on
a hierarchy of conditional distributions defined by the total number of input-output pairs
with positive probability.

Definition 17 For any k, n, and 0 ≤ d ≤ 2k(2n − 1), let Ck,n(d) ⊆ ∆k,n denote the union
of all d-dimensional faces of ∆k,n; that is, the set of conditional distributions that have a
total of 2k + d or fewer non-zero entries, Ck,n(d) := {p(·|·) ∈ ∆k,n : |{(x, y) : p(y|x) > 0}| ≤
2k + d}.

Note that Ck,n(2k(2n − 1)) = ∆k,n. The vertices (zero-dimensional faces) of ∆k,n are the
conditional distributions which assign positive probability to only one output, given each
input, and are called deterministic. By Carathéodory’s theorem, every element of Ck,n(d)
is a convex combination of (d+ 1) or fewer deterministic conditional distributions.

The sets Ck,n(d) arise naturally in the context of reinforcement learning and partially
observable Markov decision processes (POMDPs). Namely, every finite POMDP has an
associated effective dimension d, which is the dimension of the set of all state processes
that can be generated by stationary stochastic policies. Montúfar et al. (2015) showed that
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the policies represented by conditional distributions from the set Ck,n(d) are sufficient to
generate all the processes that can be generated by ∆k,n. In general, the effective dimension
d is relative small, such that Ck,n(d) is a much smaller policy search space than ∆k,n.

We have the following result:

Proposition 18 If m ≥ 2k+d−1, then the model RBMk
n,m can approximate every element

from Ck,n(d) arbitrarily well.

This result shows the intuitive fact that each hidden unit can be used to model the
probability of an input-output pair. Since each conditional distribution has 2k input-output
probabilities that are completely determined by the other probabilities (due to normaliza-
tion), it is interesting to ask whether the amount of hidden units indicated in Proposition 18
is strictly necessary. Further below, Theorem 21 will show that, indeed, hidden units are
required for modeling the positions of the positive probability input-output pairs, even if
their specific values do not need to be modeled.

We note that certain structures of positive probability input-output pairs can be modeled
with fewer hidden units than stated in Proposition 18. An simple example is the following
direct generalization of Corollary 8:

Proposition 19 If d is divisible by 2k and m ≥ d/2, then the model RBMk
n,m can approxi-

mate every element from Ck,n(d) arbitrarily well, when the set of positive-probability outputs
is the same for all inputs.

In the following we will focus on deterministic conditional distributions. This is a partic-
ularly interesting and simple class of conditional distributions with restricted supports. It is
well known that any finite Markov decision processes (MDPs) has an optimal policy defined
by a stationary deterministic conditional distribution (see Bellman, 1957; Ross, 1983). Fur-
thermore, Ay et al. (2013) showed that it is always possible to define simple two-dimensional
manifolds that approximate all deterministic conditional distributions arbitrarily well.

Certain classes of conditional distributions (in particular deterministic conditionals)
coming from feedforward networks can be approximated arbitrarily well by CRBMs. We
use the following definitions. A linear threshold unit with inputs x ∈ {0, 1}k is a function
that outputs 1 when

∑
j Vijxj + ci > 0, and outputs 0 otherwise. A sigmoid belief unit with

inputs z ∈ {0, 1}m is a stochastic function that outputs 1 with probability p(yi = 1|z) =
σ(
∑

jWijzj + bi), where σ(s) = 1
1+exp(−s) , and outputs 0 with complementary probability.

Theorem 20 The model RBMk
n,m can approximate every conditional distribution arbitrar-

ily well, which can be represented by a feedforward network with k input units, a hidden layer
of m linear threshold units, and an output layer of n sigmoid belief units. In particular,
the model RBMk

n,m can approximate every deterministic conditional distribution from ∆k,n

arbitrarily well, which can be represented by a feedforward linear threshold network with k
input, m hidden, and n output units.

The representational power of feedforward linear threshold networks has been studied
intensively in the literature. For example, Wenzel et al. (2000) showed that a feedforward
linear threshold network with k ≥ 1 input, m hidden, and n = 1 output units, can represent
the following:
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• Any Boolean function f : {0, 1}k → {0, 1}, when m ≥ 3 · 2k−1−blog2(k+1)c; e.g., when
m ≥ 3

k+22k.

• The parity function fparity : {0, 1}k → {0, 1}; x 7→∑
i xi mod 2, when m ≥ k.

• The indicator function of any union of m linearly separable subsets of {0, 1}k.

Although CRBMs can approximate this rich class of deterministic conditional distribu-
tions arbitrarily well, the next result shows that the number of hidden units required for
universal approximation of deterministic conditional distributions is rather large:

Theorem 21 The model RBMk
n,m can approximate every deterministic conditional distri-

bution from ∆k,n arbitrarily well if m ≥ min
{

2k − 1, 3n
k+22k

}
and only if m ≥ 2k/2− (n+k)2

2n .

This theorem refines the statement of Proposition 18 in the special case d = 0. By this
theorem, in order to approximate all deterministic conditional distributions arbitrarily well,
a CRBM requires exponentially many hidden units, with respect to the number of input
units.

5. Conclusion

This paper gives a theoretical description of the representational capabilities of conditional
restricted Boltzmann machines (CRBMs) relating model complexity and model accuracy.
CRBMs are based on the well studied restricted Boltzmann machine (RBM) probability
models. We proved an extensive series of results that generalize recent theoretical work on
the representational power of RBMs in a non-trivial way.

We studied the problem of parameter identifiability. We showed that every CRBM with
up to exponentially many hidden units (in the number of input and output units) represent
a set of conditional distributions of dimension equal to the number of model parameters.
This implies that in all practical cases, CRBMs do not waste parameters, and, generically,
only finitely many choices of the interaction weights and biases produce the same conditional
distribution.

We addressed the classical problems of universal approximation and approximation qual-
ity. Our results show that a CRBM with m hidden units can approximate every conditional
distribution of n output units, given k input units, without surpassing a Kullback-Leibler ap-
proximation error of the form n− log2(m/2k−1 + 1) (assuming optimal parameters). Thus
this model is a universal approximator whenever m ≥ 1

22k(2n − 1). In fact we provided
tighter bounds depending on k. For instance, if k ≥ 21, then the universal approxima-
tion property is attained whenever m ≥ 1

42k(2n − 29/30). Our proof is based on an upper
bound for the complexity of an algorithm that packs Boolean cubes with sequences of non-
overlapping stars, for which improvements may be possible. It is worth mentioning that the
set of conditional distributions for which the approximation error is maximal may be very
small. This is a largely open and difficult problem. We note that our results can be plugged
into certain analytic integrals (see Montúfar and Rauh, 2014) to produce upper-bounds for
the expectation value of the approximation error when approximating conditional distribu-
tions drawn from a product Dirichlet density on the polytope of all conditional distributions.
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For future work it would be interesting to extend our (optimal-parameter) considerations
by an analysis of the CRBM training complexity and the errors resulting from non-optimal
parameter choices.

We also studied specific classes of conditional distributions that can be represented by
CRBMs, depending on the number of hidden units. We showed that CRBMs can represent
conditional Markov random fields by using each hidden unit to model the interaction of a
group of visible variables. Furthermore, we showed that CRBMs can approximate all binary
functions with k input bits and n output bits arbitrarily well if m ≥ 2k − 1 or m ≥ 3n

k+22k

and only if m ≥ 2k/2 − (n+ k)2/2n. In particular, this implies that there are exponentially
many deterministic conditional distributions which can only be approximated arbitrarily
well by a CRBM if the number of hidden units is exponential in the number of input units.
This aligns with well known examples of functions that cannot be compactly represented
by shallow feedforward networks, and reveals some of the intrinsic constraints of CRBM
models that may prevent them from grossly over-fitting.

We think that the developed techniques can be used for studying other conditional
probability models as well. In particular, for future work it would be interesting to compare
the representational power of CRBMs and of combinations of CRBMs with feedforward nets
(combined models of this kind include CRBMs with retroactive connections and recurrent
temporal RBMs). Also, it would be interesting to apply our techniques to study stacks of
CRBMs and other multilayer conditional models. Finally, although our analysis focuses on
the case of binary units, the main ideas can be extended to the case of discrete non-binary
units.
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Appendix A. Details on the Dimension

Proof of Proposition 3 Each joint distribution of x and y has the form p(x, y) =
p(x)p(y|x) and the set ∆k of all marginals p(x) has dimension 2k − 1. The items follow
directly from the corresponding statements for the probability model (Cueto et al., 2010).

We will need two standard definitions from coding theory:

Definition 22 Let r and k be two natural numbers with r ≤ k. A radius-r Hamming ball
in {0, 1}k is a set B consisting of a length-k binary vector, together with all other length-
k binary vectors that are at most Hamming distance r apart from that vector; that is,
B = {x ∈ {0, 1}k : dH(x, z) ≤ r} for some z ∈ {0, 1}k, where dH(x, z) := |{i ∈ [k] : xi 6= zi}|
denotes the Hamming distance between x and z. Here [k] := {1, . . . , k}.
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Definition 23 An r-dimensional cylinder set in {0, 1}k is a set C of length-k binary vectors
with arbitrary values in r coordinates and fixed values in the other coordinates; that is,
C = {x ∈ {0, 1}k : xi = zi for all i ∈ Λ} for some z ∈ {0, 1}k and some Λ ⊆ [k] with
k − |Λ| = r.

The geometric intuition is simple: a cylinder set corresponds to the vertices of a face of a
unit cube. A radius-1 Hamming ball corresponds to the vertices of a corner of a unit cube.
The vectors in a radius-1 Hamming ball are affinely independent. See Figure 5A for an
illustration.
Proof of Theorem 4 The proof is based on the ideas developed by Cueto et al. (2010) for
studying the RBM probability model. We prove a stronger (more technical) statement than
the one given in the theorem: The set {0, 1}k+n contains m disjoint radius-1 Hamming balls
whose union does not contain any set of the form [x] := {(x, y) ∈ {0, 1}k+n : y ∈ {0, 1}n}
for x ∈ {0, 1}k, and whose complement has full affine rank, as a subset of Rk+n.

We consider the Jacobian of RBMk
n,m for the parameterization given in Definition 1.

The dimension of RBMk
n,m is the maximum rank of the Jacobian over all possible choices

of θ = (W,V, b, c) ∈ RN , N = n+m+ (n+ k)m. Let hθ(v) := argmaxz∈{0,1}m p(z|v) denote
the most likely hidden state of RBMk+n,m given the visible state v = (x, y), depending on
the parameter θ. After a few direct algebraic manipulations, we find that the maximum
rank of the Jacobian is bounded from below by the maximum over θ of the dimension of
the column-span of the matrix Aθ with rows(

(1, x>, y>), (1, x>, y>)⊗ hθ(x, y)>
)
, for all (x, y) ∈ {0, 1}k+n,

modulo vectors whose (x, y)-th entries are independent of y given x. Here ⊗ is the Kronecker
product, which is defined by (aij)i,j⊗(bkl)k,l = (aijbkl)ik,jl. The modulo operation has the ef-
fect of disregarding the input distribution p(x) in the joint distribution p(x, y) = p(x)p(y|x)
represented by the RBM. For example, from the first block of Aθ we can remove the columns
that correspond to x, without affecting the mentioned column-span. Summarizing, the max-
imal column-rank of Aθ modulo the vectors whose (x, y)-th entries are independent of y
given x is a lower bound for the dimension of RBMk

n,m.

Note that Aθ depends on θ in a discrete way: the parameter space RN is partitioned in
finitely many regions where Aθ is constant. The piece-wise linear map thus emerging, with
linear pieces represented by the Aθ, is the tropical CRBM morphism, and its image is the
tropical CRBM model.

Each linear region of the tropical morphism corresponds to a function hθ : {0, 1}k+n →
{0, 1}m taking visible state vectors to the most likely hidden state vectors. Geometrically,
such an inference function corresponds to m slicings of the (k + n)-dimensional unit hy-
percube. Namely, every hidden unit divides the visible space {0, 1}k+n ⊂ Rk+n in two
halfspaces, according to its preferred state.

Each of these m slicings defines a column block of the matrix Aθ. More precisely,

Aθ = (A,AC1 , · · · , ACm) ,

where A is the matrix with rows (1, v1, . . . , vk+n) for all v ∈ {0, 1}k+n, and AC is the same
matrix, with rows multiplied by the indicator function of the set C of points v classified as
positive by a linear classifier (slicing).
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If we consider only linear classifiers that select rows of A corresponding to disjoint
Hamming balls of radius one (that is, such that the Ci are disjoint radius-one Hamming
balls), then the rank of Aθ is equal to the number of such classifiers times (n+k+1) (which
is the rank of each block ACi), plus the rank of A{0,1}k+n\∪i∈[m]Ci

(which is the remainder

rank of the first block A). The column-rank modulo functions of x is equal to the rank
minus k+ 1 (which is the dimension of the functions of x spanned by columns of A), minus
at most the number of cylinder sets [x] = {(x, y) : y ∈ {0, 1}n} for some x ∈ {0, 1}k that are
contained in ∪i∈[m]Ci. This completes the proof of the claim.

The bound given in the first item is a consequence of the following observations. Each
cylinder set [x] contains 2n points. If a given cylinder set [x] intersects a radius-1 Hamming
ball B but is not contained in it, then it also intersects the radius-2 Hamming sphere
around B. Choosing the radius-1 Hamming ball slicings C1, . . . , Cm to have centers at least
Hamming distance 4 apart, we can ensure that their union does not contain any cylinder
set [x].

The second item is by the second item of Proposition 3; when the probability model
RBMn+k,m is full dimensional, then RBMk

n,m is full dimensional.

Proof of Corollary 5 For the maximal cardinality of distance-4 binary codes of length l it
is known thatA(l, 4) ≥ 2r, where r is the largest integer with 2r < 2l

1+(l−1)+(l−1)(l−2)/2 (Gilbert,

1952; Varshamov, 1957), and so A2(l, 4) ≥ 2l−blog2(l2−l+2)c. Furthermore, for the minimal
size of radius-one covering codes of length l it is known that K(l, 1) ≤ 2l−blog2(l+1)c (Cueto
et al., 2010).

Appendix B. Details on Universal Approximation

In the following two subsections we address the minimal sufficient and the necessary number
of hidden units for universal approximation.

B.1 Sufficient Number of Hidden Units

This subsection contains the proof of Theorem 7 about the minimal size of CRBM universal
approximators. The proof is constructive: given any target conditional distribution, it
proceeds by adjusting the weights of the hidden units successively until obtaining the desired
approximation. The idea of the proof is that each hidden unit can be used to model the
probability of an output vector, for several different input vectors. The probability of a
given output vector can be adjusted at will by a single hidden unit, jointly for several
input vectors, when these input vectors are in general position. This comes at the cost of
generating dependent output probabilities for all other inputs in the same affine space. The
main difficulty of the proof lies in the construction of sequences of successively conflict-free
groups of affinely independent inputs, and in estimating the shortest possible length of such
sequences exhausting all possible inputs. The proof is composed of several lemmas and
propositions. We start with a few definitions:
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Definition 24 Given two probability distributions p and q on a finite set X , the Hadamard
product or renormalized entry-wise product p∗q is the probability distribution on X defined
by (p ∗ q)(x) = p(x)q(x)/

∑
x′ p(x

′)q(x′) for all x ∈ X . When building this product, we
assume that the supports of p and q are not disjoint, such that the normalization term does
not vanish.

The probability distributions that can be represented by RBMs can be described in terms
of Hadamard products. Namely, for every probability distribution p that can be represented
by RBMn,m, the model RBMn,m+1 with one additional hidden unit can represent precisely
the probability distribution of the form p′ = p ∗ q, where q = λ′r + (1 − λ′)s is a mixture,
with λ′ ∈ [0, 1], of two strictly positive product distributions r(x) =

∏
i∈[n] ri(xi) and

s(x) =
∏
i∈[n] si(xi). For clarity, the notations are x = (x1, . . . , xn) ∈ {0, 1}n, r, s ∈ ∆n,

and ri, si ∈ ∆1 for all i ∈ [n] = {1, . . . , n}. In other words, each additional hidden unit
amounts to Hadamard-multiplying the distributions representable by an RBM with the
distributions representable as mixtures of product distributions. The same result is obtained
by considering only the Hadamard products with mixtures where r is equal to the uniform
distribution. In this case, the distributions p′ = p ∗ q are of the form p′ = λp+ (1− λ)p ∗ s,
where s is any strictly positive product distribution and λ = λ′

λ′+2n(1−λ′)∑x p(x)s(x) is any

weight in [0, 1].

Definition 25 A probability sharing step is a transformation taking a probability distribu-
tion p to p′ = λp+ (1− λ)p ∗ s, for some strictly positive product distribution s and some
λ ∈ [0, 1].

In order to prove Theorem 7, for each k ∈ N and n ∈ N we want to find an mk,n ∈ N such
that: for any given strictly positive conditional distribution q(·|·), there exists p ∈ RBMn+k,0

and mk,n probability sharing steps taking p to a strictly positive joint distribution p′ with
p′(·|·) = q(·|·). The idea is that the starting distribution is represented by an RBM with
no hidden units, and each sharing step is realized by adding a hidden unit to the RBM. In
order to obtain these sequences of sharing steps, we will use the following technical lemma:

Lemma 26 Let B be a radius-1 Hamming ball in {0, 1}k and let C be a cylinder subset of
{0, 1}k containing the center of B. Let λx ∈ (0, 1) for all x ∈ B ∩ C, let ỹ ∈ {0, 1}n and
let δỹ denote the Dirac delta on {0, 1}n assigning probability one to ỹ. Let p ∈ ∆k+n be a
strictly positive probability distribution with conditionals p(·|x) and let

p′(·|x) :=

{
λxp(·|x) + (1− λx)δỹ, for all x ∈ B ∩ C
p(·|x), for all x ∈ {0, 1}k \ C

.

Then, for any ε > 0, there is a probability sharing step taking p to a joint distribution p′′

with conditionals satisfying
∑

y |p′′(y|x)− p′(y|x)| ≤ ε for all x ∈ (B ∩ C) ∪ ({0, 1}k \ C).

Proof We define the sharing step p′ = λp + (1 − λ)p ∗ s with a product distribution s
supported on C × {ỹ} ⊆ {0, 1}k+n. Note that given any distribution q on C and a radius-1
Hamming ball B whose center is contained in C, there is a product distribution s on C such
that s|C∩B ∝ q|C∩B. In other words, the restriction of a product distribution s to a radius-1
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Hamming ball B can be made proportional to any non-negative vector of length |B|. To
see this, recall that a product distribution is a vector with entries s(x) =

∏
i∈[k] si(xi),

x = (x1, . . . , xk) ∈ {0, 1}k. Without loss of generality let B be centered at (0, . . . , 0); that
is, B = {x ∈ {0, 1}k :

∑
i∈[k] xi ≤ 1}. The restriction of s to B is given by

s|B =
( ∏
i∈[k]

si(0), s1(1)
∏

i∈[k]\{1}
si(0), s2(1)

∏
i∈[k]\{2}

si(0), . . . , sk(1)
∏

i∈[k]\{k}
si(0)

)
=

( ∏
i∈[k]

si(0),
s1(1)

s1(0)

∏
i∈[k]

si(0),
s2(1)

s2(0)

∏
i∈[k]

si(0), . . . ,
sk(1)

sk(0)

∏
i∈[k]

si(0)
)

∝
(

1,
s1(1)

s1(0)
,
s2(1)

s2(0)
, . . . ,

sk(1)

sk(0)

)
.

Now, by choosing the factor distributions si = (si(0), si(1)) ∈ ∆1 appropriately, the vector( s1(1)
s1(0) , . . . ,

sk(1)
sk(0)

)
can be made arbitrary in Rk+.

We have the following two implications of Lemma 26:

Corollary 27 For any ε > 0 and q(·|x) ∈ ∆n for all x ∈ B ∩ C, there is an ε′ > 0
such that, for any strictly positive joint distribution p ∈ ∆k+n with conditionals satisfying∑

y |p(y|x) − δ0(y)| ≤ ε′ for all x ∈ B ∩ C, there are 2n − 1 sharing steps taking p to
a joint distribution p′′ with conditionals satisfying

∑
y |p′′(y|x) − p′(y|x)| ≤ ε for all x ∈

(B ∩ C) ∪ ({0, 1}k \ C), where δ0 is the Dirac delta on {0, 1}n assigning probability one to
the vector of zeros and

p′(·|x) :=

{
q(·|x), for all x ∈ B ∩ C
p(·|x), for all x ∈ {0, 1}k \ C

.

Proof Consider any x ∈ B∩C. We will show that the probability distribution q(·|x) ∈ ∆n

can be written as the transformation of a Dirac delta by 2n−1 sharing steps. Then the claim
follows from Lemma 26. Let σ : {0, 1}n → {0, . . . , 2n − 1} be an enumeration of {0, 1}n.
Let p(0)(y|x) = δσ−1(0)(y) be the starting distribution (the Dirac delta concentrated at the

state ỹ ∈ {0, 1}n with σ(ỹ) = 0) and let the t-th sharing step be defined by p(t)(y) =
λxσ−1(t)p

(t−1)(y|x) + (1 − λxσ−1(t))δσ−1(t)(y), for some weight λxσ−1(t) ∈ [0, 1]. After 2n − 1
sharing steps, we obtain the distribution

p(2n−1)(y|x) =
∑
ỹ

( ∏
ỹ′ : σ(ỹ′)>σ(ỹ)

λxỹ′
)

(1− λxỹ)δỹ(y), for all y ∈ {0, 1}n,

whereby λxỹ := 0 for σ(ỹ) = 0. This distribution is equal to q(·|x) for the following choice
of weights:

λxỹ := 1− q(ỹ|x)

1−∑ỹ′ : σ(ỹ′)>σ(ỹ) q(ỹ
′|x)

, for all ỹ ∈ {0, 1}n.

It is easy to verify that these weights satisfy the condition λxỹ ∈ [0, 1] for all ỹ ∈ {0, 1}n,
and λxỹ = 0 for that ỹ with σ(ỹ) = 0, independently of the specific choice of σ.
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Note that this corollary does not make any statement about the rows p′′(·|x) with
x ∈ C \B. When transforming the (B ∩C)-rows of p according to Lemma 26, the (C \B)-
rows get transformed as well, in a non-trivial dependent way. Fortunately, there is a sharing
step that allows us to “reset” exactly certain rows to a desired point measure, without
introducing new non-trivial dependencies:

Corollary 28 For any ε > 0, any cylinder set C ⊆ {0, 1}k, and any ỹ ∈ {0, 1}n, any
strictly positive joint distribution p can be transformed by a probability sharing step to a joint
distribution p′′ with conditionals satisfying

∑
y |p′′(y|x) − p′(y|x)| ≤ ε for all x ∈ {0, 1}k,

where

p′(·|x) :=

{
δỹ, for all x ∈ C
p(·|x), for all x ∈ {0, 1}k \ C

.

Proof The sharing step can be defined as p′′ = λp+(1−λ)p∗s with s close to the uniform
distribution on C × {ỹ} and λ close to 0 (close enough depending on ε).

We will refer to a sharing step as described in Corollary 28 as a reset of the C-rows
of p. Furthermore, we will denote by star the intersection of a radius-1 Hamming ball and
a cylinder set containing the center of the ball. See Figure 5A.

With all the observations made above, we can construct an algorithm that generates
an arbitrarily accurate approximation of any given conditional distribution by applying a
sequence of sharing steps to any given strictly positive joint distribution. The details are
given in Algorithm 1. The algorithm performs sequential sharing steps on a strictly positive
joint distribution p ∈ ∆k+n until the resulting distribution p′ has a conditional distribution
p′(·|·) satisfying

∑
y |p′(y|x)− q(y|x)| ≤ ε for all x.

In order to obtain a bound on the number m of hidden units for which RBMk
n,m can

approximate a given target conditional distribution arbitrarily well, we just need to evaluate
the number of sharing steps run by Algorithm 1. For this purpose, we investigate the
combinatorics of sharing step sequences and evaluate their worst case lengths. We can
choose as starting distribution some p ∈ RBMn+k,0 with conditionals satisfying

∑
y |p(y|x)−

δ0(y)| ≤ ε′ for all x ∈ {0, 1}k, for some ε′ > 0 small enough depending on the target
conditional q(·|·) and the targeted approximation accuracy ε.

Definition 29 A sequence of stars B1, . . . , Bl packing {0, 1}k with the property that the
smallest cylinder set containing any of the stars in the sequence does not intersect any
previous star in the sequence is called a star packing sequence for {0, 1}k.

The number of sharing steps run by Algorithm 1 is bounded from above by (2n−1) times
the length of a star packing sequence for the set of inputs {0, 1}k. Note that the choices of
stars and the lengths of the possible star packing sequences are not unique. Figure 5B gives
an example showing that starting a sequence with large stars is not necessarily the best
strategy to produce a short sequence. The next lemma states that there is a class of star
packing sequences of a certain length, depending on the size of the input space. Thereby,
this lemma upper-bounds the worst case complexity of Algorithm 1.

2423
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Algorithm 1 Algorithmic illustration of the proof of Theorem 7.

Input: Strictly positive joint distribution p, target conditional distribution q(·|·), and ε > 0
Output: Transformation p′ of the input p with

∑
y |p′(y|x)− q(y|x)| ≤ ε for all x

Initialize B ← ∅ {Here B ⊆ {0, 1}k denotes the set of inputs x that have been readily
processed in the current iteration}
while B 6⊇ {0, 1}k do

Choose (disjoint) cylinder sets C1, . . . , CK packing {0, 1}k \ B
If needed, perform at most K sharing steps resetting the Ci rows of p for all i ∈ [K],
taking p(·|x) close to δ0 for all x ∈ Ci for all i ∈ [K] and leaving all other rows close to
their current values, according to Corollary 28
for each i ∈ [K] do

Perform at most 2n − 1 sharing steps taking p(·|x) close to q(·|x) for all x ∈ Bi,
where Bi is some star contained in Ci, and leaving the ({0, 1}k \ Ci)-rows close to
their current values, according to Corollary 27

end for
B ← B ∪ (∪i∈[K]B

i)
end while

Lemma 30 Let r ∈ N, S(r) := 1 + 2 + · · · + r, k ≥ S(r), fi(z) := 2S(i−1) + (2i − (i +
1))z, and F (r) := fr(fr−1(· · · f2(f1))). There is a star packing sequence for {0, 1}k of
length 2k−S(r)F (r). Furthermore, for this sequence, Algorithm 1 requires at most R(r) :=∏r
i=2(2i − (i+ 1)) resets.

Proof The star packing sequence is constructed by the following procedure. In each step,
we define a set of cylinder sets packing all sites of {0, 1}k that have not been covered by
stars so far, and include a sub-star of each of these cylinder sets in the sequence.

• As an initialization step, we split {0, 1}k into 2k−S(r) S(r)-dimensional cylinder sets,
denoted D(j1), j1 ∈ {1, . . . , 2k−S(r)}.

• In the first step, for each j1, the S(r)-dimensional cylinder set D(j1) is packed by
2S(r−1) r-dimensional cylinder sets C(j1),i, i ∈ {1, . . . , 2S(r−1)}. For each i, we define
the star B(j1),i as the radius-1 Hamming ball within C(j1),i centered at the smallest
element of C(j1),i (with respect to the lexicographic order of {0, 1}k), and include it
in the sequence.

• At this point, the sites in D(j1) that have not yet been covered by stars is D(j1) \
(∪iB(j1),i). This set is split into 2r− (r+ 1) S(r− 1)-dimensional cylinder sets, which
we denote by D(j1,j2), j2 ∈ {1, . . . , 2r − (r + 1)}.

• Note that ∪j1D(j1,j2) is a cylinder set, and hence, for each j2, the (∪j1D(j1,j2))-rows
of a conditional distribution being processed by Algorithm 1 can be jointly reset by
one single sharing step to achieve p′(·|x) ≈ δ0 for all x ∈ ∪j1D(j1,j2).

• In the second step, for each j2, the cylinder set D(j1,j2) is packed by 2S(r−2) (r − 1)-
dimensional cylinder sets C(j1,j2),i, i ∈ {1, . . . , 2S(r−2)}, and the corresponding stars
are included in the sequence.

2424



Geometry and Expressive Power of CRBMs

A

b

b

b

b

b

b

b

b

[
0
1
0

]

[
0
0
0

]

[
0
1
1

]

[
0
0
1

]

[
1
0
0

]

[
1
0
1

]

[
1
1
0

]

[
1
1
1

]

b

b
b

b

b

b
b

b

b

b
b

[
0
1
0

]

[
0
0
0

] [
1
0
0

]

[
1
1
0

]

b

b
b

b

b

b
b

b b[
0
0
0

] [
1
0
0

]
b b

B

b

b

b
b

1

b

b 2b
b

3
4

b

b
b

1

2 b
b

b

b

b 3

1

2

3
4

b

b

b

b

b

b

b

b

C

b b
b

b

b b
b

b

b b
b

b

b b
b

b

b b
b

b

b b
b

b

b b
b

b

b b
b

b

B(1),1 B(1),2

B(1),3 B(1),4

B(1),5 B(1),6

B(1),7 B(1),8

b

b

B(1,1,1),1

b b

b

b b
b

B(1,1),1

B(1,1),2

D(1) = {0, 1}6

Figure 5: A) Examples of radius-1 Hamming balls in cylinder sets of dimension 3, 2, and 1.
The cylinder sets are shown as bold vertices connected by dashed edges, and the
nested Hamming balls (stars) as bold vertices connected by solid edges. B) Three
examples of star packing sequences for {0, 1}3. C) Illustration of the star packing
sequence constructed in Lemma 30 for {0, 1}6.

• The procedure is iterated until the r-th step. In this step, each D(j1,...,jr) is a 1-
dimensional cylinder set and is packed by a single 1-dimensional cylinder set C(j1,...,jr),1 =
B(j1,...,jr),1. Hence, at this point, all of {0, 1}k has been exhausted and the procedure
terminates.

Summarizing, the procedure is initialized by creating the branches D(j1), j1 ∈ [2k−S(r)]. In
the first step, each branch D(j1) produces 2S(r−1) stars and splits into the branches D(j1,j2),
j2 ∈ [2r − (r + 1)]. More generally, in the i-th step, each branch D(j1,...,ji) produces 2S(r−i)

stars, and splits into the branches D(j1,...,ji,ji+1), ji+1 ∈ [2r−(i−1) − (r + 1− (i− 1))].

The total number of stars D(j1,...,jr) is given precisely by 2k−S(r) times the value of
the iterative function F (r) = fr(fr−1(· · · f2(f1))), whereby f1 = 1. The total number of
resets is given by the number of branches created from the first step on, which is precisely
R(r) =

∏
i∈[r](2

i − (i+ 1)).

Figure 5C offers an illustration of these star packing sequences. It shows the case
k = S(3) = 6. In this case there is only one initial branch D(1) = {0, 1}6. The stars
B(1),i, i ∈ [2S(2)] = [8] are shown in solid blue, B(1,1),i, i ∈ [2S(1)] = [2] in dashed red, and
B(1,1,1),1 in dotted green. For clarity, only these stars are highlighted. The stars B(1,j2),i

and B(1,j2,1),1 resulting from split branches are similar to those highlighted.

With this, we obtain the general bound of the theorem:
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m
(r)
n,k =

r 2k 2−S(r) F (r) (2n − 1) + R(r)

1 2k 2−1 1 (2n − 1) + 0
2 2k 2−3 3 (2n − 1) + 1
3 2k 2−6 20 (2n − 1) + 4
4 2k 2−10 284 (2n − 1) + 44
5 2k 2−15 8408 (2n − 1) + 1144
...

...
...

...
...

...

> 17 2k 0.2263 (2n − 1) + 2S(r)0.0269

Table 1: Numerical evaluation of the bounds from Proposition 31. Each row evaluates the

universal approximation bound m
(r)
n,k for a value of r.

Proposition 31 (Theorem 7, general bound) Let k ≥ S(r). The model RBMk
n,m can

approximate every conditional distribution from ∆k,n arbitrarily well whenever m ≥ m
(r)
k,n,

where m
(r)
k,n := 2k−S(r)F (r)(2n − 1) +R(r).

Proof This is in view of the complexity of Algorithm 1 for the sequence described in
Lemma 30.

In order to make the universal approximation bound more comprehensible, in Table 1

we evaluated the sequence m
(r)
n,k for r = 1, 2, 3 . . . and k ≥ S(r). Furthermore, the next

proposition gives an explicit expression for the coefficients 2−S(r)F (r) and R(r) appearing

in the bound. This yields the second part of Theorem 7. In general, the bound m
(r)
n,k

decreases with increasing r, except possibly for a few values of k when n is small. For a

pair (k, n), any m
(r)
n,k with k ≥ S(r) is a sufficient number of hidden units for obtaining a

universal approximator.

Proposition 32 (Theorem 7, explicit bounds) The function K(r) := 2−S(r)F (r) is
bounded from below and above as K(6)

∏r
i=7

(
1− i−3

2i

)
≤ K(r) ≤ K(6)

∏r
i=7

(
1− i−4

2i

)
for all r ≥ 6. Furthermore, K(6) ≈ 0.2442 and K(∞) ≈ 0.2263. Moreover, R(r) :=∏r
i=2(2i − (i+ 1)) = 2S(r)P (r), where P (r) := 1

2

∏r
i=2(1− (i+1)

2i
), and P (∞) ≈ 0.0269.

Proof From the definition of S(r) and F (r), we obtain that

K(r) = 2−r +K(r − 1)(1− 2−r(r + 1)). (1)

Note that K(1) = 1
2 , and that K(r) decreases monotonically.

Now, note that if K(r−1) ≤ 1
c , then the left hand side of Equation (1) is bounded from

below as K(r) ≥ K(r − 1)(1− 2−r(r + 1− c)). For a given c, let rc be the first r for which
K(r − 1) ≤ 1

c , assuming that such an r exists. Then

K(r) ≥ K(rc − 1)

r∏
i=rc

(
1− i+ 1− c

2i

)
, for all r ≥ rc. (2)
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Similarly, if K(r) > 1
d for all r ≥ rb, then

K(r) ≤ K(rb − 1)
r∏

i=rb

(
1− i+ 1− b

2i

)
, for any r ≥ rb.

Direct computations show that K(6) ≈ 0.2445 ≤ 1
4 . On the other hand, using the compu-

tational engine Wolfram—Alpha(access June 01, 2014) we obtain
∏∞
i=0

(
1− i−3

2i

)
≈

7.7413. Plugging both terms into Equation (2) yields that K(r) is always bounded from
below by 0.2259.

SinceK(r) is never smaller than or equal to 1
5 , we obtainK(r) ≤ K(r′−1)

∏r
i=r′

(
1− i−4

2i

)
,

for any r′ and r ≥ r′. Using r′ = 7, the right hand side evaluates in the limit of large r to
approximately 0.2293.

Numerical evaluation of K(r) from Equation (1) for r up to one million (using Matlab
R2013b) indicates that, indeed, K(r) tends to approximately 0.2263 for large r.

We close this subsection with the remark that the proof strategy can be used not only
to study universal approximation, but also approximability of selected classes of conditional
distributions:

Remark 33 If we only want to model a restricted class of conditional distributions, then
adapting Algorithm 1 to these restrictions may yield tighter bounds for the number of
hidden units that suffices to represent these restricted conditionals. For example:

If we only want to model the target conditionals q(·|x) for the inputs x from a subset
S ⊆ {0, 1}k and do not care about q(·|x) for x 6∈ S, then in the algorithm we just need to
replace {0, 1}k by S. In this case, a cylinder set packing of S\B is understood as a collection
of disjoint cylinder sets C1, . . . , CK ⊆ {0, 1}k with ∪i∈[K]C

i ⊇ S \B and (∪i∈[K]C
i)∩B = ∅.

Furthermore, if for some cylinder set Ci and a corresponding star Bi ⊆ Ci the condi-
tionals q(·|x) with x ∈ Bi have a common support set T ⊆ {0, 1}n, then the Ci-rows of
p can be reset to a distribution δy with y ∈ T , and only |T | − 1 sharing steps are needed
to transform p to a distribution whose conditionals approximate q(·|x) for all x ∈ Bi to
any desired accuracy. In particular, for the class of target conditional distributions with
supp q(·|x) = T for all x, the term 2n−1 in the complexity bound of Algorithm 1 is replaced
by |T | − 1.

B.2 Necessary Number of Hidden Units

Proposition 9 follows from simple parameter counting arguments. In order to make this
rigorous, first we make the observation that universal approximation of (conditional) prob-
ability distributions by Boltzmann machines or any other models based on exponential
families, with or without hidden variables, requires the number of model parameters to be
as large as the dimension of the set being approximated. We denote by ∆X ,Y the set of
conditionals with inputs form a finite set X and outputs from a finite set Y. Accordingly,
we denote by ∆Y the set of probability distributions on Y.

Lemma 34 Let X , Y, and Z be some finite sets. Let M ⊆ ∆X ,Y be defined as the set
of conditionals of the marginal M′ ⊆ ∆X×Y of an exponential family E ⊆ ∆X×Y×Z . If
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M is a universal approximator of conditionals from ∆X ,Y , then dim(E) ≥ dim(∆X ,Y) =
|X |(|Y| − 1).

The intuition of this lemma is that, for models defined by marginals of exponential
families, the set of conditionals that can be approximated arbitrarily well is essentially
equal to the set of conditionals that can be represented exactly, implying that there are no
low-dimensional universal approximators of this type.

Proof of Lemma 34 We consider first the case of probability distributions; that is, the
case with |X | = 1 and X × Y ∼= Y. Let M be the image of the exponential family E by
a differentiable map f (for example, the marginal map). The closure E , which consists of
all distributions that can be approximated arbitrarily well by E , is a compact set. Since f
is continuous, the image of E is also compact, and M = f(E) = f(E). The model M is a
universal approximator if and only if M = ∆Y . The set E is a finite union of exponential
families; one exponential family EF for each possible support set F of distributions from E .
When dim(E) < dim(∆Y), each point of each EF is a critical point of f (the Jacobian is not
surjective at that point). By Sard’s theorem, each EF is mapped by f to a set of measure
zero in ∆Y . Hence the finite union ∪F f(EF ) = f(∪FEF ) = f(E) = M has measure zero
in ∆Y .

For the general case, with |X | ≥ 1, note that M⊆ ∆X ,Y is a universal approximator if
and only if the joint model ∆XM = {p(x)q(y|x) : p ∈ ∆X , q ∈ M} ⊆ ∆X×Y is a universal
approximator. The latter is the marginal of the exponential family ∆X ∗ E = {p ∗ q : p ∈
∆X , q ∈ E} ⊆ ∆X×Y×Z . Hence the claim follows from the first part.

Proof of Proposition 9 If RBMk
n,m is a universal approximator of conditionals from

∆k,n, then the model consisting of all probability distributions of the form p(x, y) =
1
Z

∑
z exp(z>Wy + z>V x + b>y + c>z + f(x)) is a universal approximator of probability

distributions from ∆k+n. The latter is the marginal of an exponential family of dimension

mn+mk + n+m+ 2k − 1. Thus, by Lemma 34, m ≥ 2k+n−2k−n
(n+k+1) .

Appendix C. Details on the Maximal Approximation Errors

Proof of Proposition 10 We have that DRBMk
n,m
≤ maxp∈∆k+n : pX=uX D(p‖RBMn+k,m).

The right hand side is bounded by n, since the RBM model contains the uniform distribu-
tion. It is also bounded by the maximal divergence DRBMn+k,m

≤ (n+ k)−blog2(m+ 1)c−
m+1

2blog2(m+1)c (Montúfar et al., 2013).

In order to prove Theorem 11, we will upper bound the approximation errors of CRBMs
by the approximation errors of submodels of CRBMs. First, we note the following:

Lemma 35 The maximal divergence of a conditional model that is a Cartesian product
of a probability model is bounded from above by the maximal divergence of that probability
model: if M = ×x∈{0,1}kN ⊆ ∆k,n for some N ⊆ ∆n, then DM ≤ DN .
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Proof For any p ∈ ∆k,n, we have

D(p‖M) = inf
q∈M

1

2k

∑
x

D(p(·|x)‖q(·|x))

=
1

2k

∑
x

inf
q(·|x)∈N

D(p(·|x)‖q(·|x))

≤ 1

2k

∑
x

DN = DN .

This proves the claim.

Definition 36 Given a partition Z = {Y1, . . . ,YL} of {0, 1}n, the partition model PZ ⊆
∆n is the set of all probability distributions on {0, 1}n with constant value on each partition
block.

The set {0, 1}l, l ≤ n naturally defines a partition of {0, 1}n into cylinder sets {y ∈
{0, 1}n : y[l] = z} for all z ∈ {0, 1}l. The divergence from PZ is bounded from above by

DPZ ≤ l − n. Now, the model RBMk
n,m can approximate certain products of partition

models arbitrarily well:

Proposition 37 Let Z = {0, 1}l with l ≤ n. Let r be any integer with k ≥ S(r). The
model RBMk

n,m can approximate any conditional distribution from the product of partition

models PkZ := PZ × · · · × PZ arbitrarily well whenever m ≥ 2k−S(r)F (r)(|Z| − 1) +R(r).

Proof This is analogous to the proof of Proposition 19, with a few differences. Each
element z of Z corresponds to a cylinder set {y ∈ {0, 1}n : y[l] = z} and the collection of
cylinder sets for all z ∈ Z is a partition of {0, 1}n. Now we can run Algorithm 1 in a slightly
different way, with sharing steps defined by p′ = λp + (1 − λ)uz, where uz is the uniform
distribution on the cylinder set corresponding to z.

Proof of Theorem 11 This follows directly from Lemma 35 and Proposition 37.

Appendix D. Details on the Representation of Conditional Distributions
from Markov Random Fields

The proof of Theorem 14 is based on ideas from Younes (1996), who discussed the universal
approximation property of Boltzmann machines. We will use the following:

Lemma 38 (Younes 1996, Lemma 1) Let % be a real number. Consider a fixed integer
N and binary variables x1, . . . , xN . There are real numbers w and b such that:

• If % ≥ 0, log (1 + exp(w(x1 + · · ·+ xN ) + b)) = %
∏
i xi +Q(x1, . . . , xN ).

• If % ≤ 0, log (1 + exp(w(x1 + · · ·+ xN−1 − xN ) + b)) = %
∏
i xi +Q(x1, . . . , xN ).
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Where Q is in each case a polynomial of degree less than N − 1 in x1, . . . , xN .

The following is a generalization of another result from the same work:

Lemma 39 Let I and J be two simplicial complexes on [n] with J ⊆ I. If p is any
distribution from EI and m ≥ |{A ∈ I \ J : |A| > 1}|, then there is a distribution p′ ∈ EJ ,
such that p ∗ p′ is contained in RBMn,m.

Proof The proof follows closely the arguments presented by Younes (1996, Lemma 2). Let
K = {A ∈ I \ J : |A| > 1}. Consider an RBM with n visible units and m = |K| hidden
units. Consider a joint distribution q(x, u) = 1

Z exp(H(x, u)) of the fully observable RBM,
defined as follows. We label the hidden units by subsets A ∈ K. For each A ∈ K, let s(A)
denote the largest element of A, and let

H(x, u) =
∑
A∈K

uA
(
wAS

εA
A (xA) + bA

)
+
∑
s∈[n]

bsxs,

where

SεAA (xA) =
( ∑
s∈A,s<s(A)

xs

)
+ εAxs(A),

for some εA ∈ {−1,+1}, wA, bA, bs ∈ R that we will specify further below.

Denote the log probabilities of p(x) and p′(x) by

E(x) =
∑
A∈I

θA
∏
i∈A

xi and E′(x) =
∑
A∈J

ϑA
∏
i∈A

xi.

We obtain the desired equality (p ∗ p′)(x) =
∑

u q(x, u) when

E(x) = log

(∑
u

exp(H(x, u))

)
−
∑
A∈J

ϑA
∏
i∈A

xi, (3)

for some choice of ϑA, for A ∈ J , some choice of εA, wA, bA, for A ∈ K, and some choice of
bs, for s ∈ [n]. We have

log

(∑
u

exp(H(x, u))

)
= log

∑
u

exp
(∑

A

uA(wAS
εA
A (xA) + bA) +

∑
s∈[n]

bsxs

)
= log

(∑
u

∏
A

exp(uA(wAS
εA
A (xA) + bA))

)
exp

( ∑
s∈[n]

bsxs

)
= log

(∏
A

∑
uA

exp(uA(wAS
εA
A (xA) + bA))

)
exp

( ∑
s∈[n]

bsxs

)
=

∑
A

log(1 + exp(wAS
εA
A (xA) + bA)) +

∑
s∈[n]

bsxs.
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The terms φεAA (xA) := log
(
1 + exp(wAS

εA
A (xA) + bA)

)
are of the same form as the func-

tions from Lemma 38. To solve Equation (3), we first apply Lemma 38 on φεAA to cancel the
terms θA

∏
i∈A xi of E(x) for which A is a maximal element of I \J of cardinality more than

one. This involves choosing appropriate εA ∈ {−1,+1}, wA and bA, for the corresponding
A. The remaining polynomial consists of terms with strictly smaller monomials. We apply
lemma 38 repeatedly on this polynomial, until only monomials with A ∈ J or |A| = 1
remain. These terms are canceled with ϑA

∏
i∈A xi, A ∈ J , or with bsxs, s ∈ [n].

Proof of Theorem 14 By Lemma 39, there is a p′ ∈ EJ , J = 2[k], such that p ∗ p′ is in
RBMk+n,m. Now, the conditionals distribution (p ∗ p′)(y|x) of the last n units, given the
first k units, are independent of p′, since this is independent of y.

Proof of Corollary 15 The statement follows from Theorem 14, considering the simplicial
complex I = 2[k] × J and a joint probability distribution p ∈ EI ⊆ ∆k+n with the desired
conditionals p(·|x) = px.

Appendix E. Details on the Approximation of Conditional Distributions
with Restricted Supports

Proof of Proposition 18 This follows from the fact that RBMn+k,m can approximate
any probability distribution with support of cardinality m + 1 arbitrarily well (Montúfar
and Ay, 2011).

Proof of Proposition 19 This is analogous to the proof of Proposition 31. The com-
plexity of Algorithm 1 as evaluated there does not depend on the specific structure of the
support sets, but only on their cardinality, as long as they are the same for all x.

The following lemma states that a CRBM can compute all deterministic conditionals
that can be computed by a feedforward linear threshold network with the same number of
hidden units. Recall that the Heaviside step function, here denoted hs, maps a real number
a to 0 if a < 0, to 1/2 if a = 0, and to 1 if a > 0. A linear threshold function with N input
bits and M output bits is just a function of the form {0, 1}N → {0, 1}M ; y 7→ hs(Wy + b)
with a generic choice of W ∈ RM×N and b ∈ RM .

Lemma 40 Consider a function f : {0, 1}k → {0, 1}n. The model RBMk
n,m can approxi-

mate the deterministic policy p(y|x) = δf(x)(y) arbitrarily well, whenever this can be repre-
sented by a feedforward linear threshold network with m hidden units; that is, when

f(x) = hs(W>(hs(V x+ c)) + b), for all x ∈ {0, 1}k,

for some generic choice of W,V, b, c.

Proof Consider the conditional distribution p(·|x). This is the visible marginal of p(y, z|x) =
1
Z exp((V x+c)>z+b>y+z>Wy). Consider weights α and β, with α large enough, such that
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argmaxz(αV x+αc)>z = argmaxz(αV x+αc)>z+ (βW>z+βb)>y for all y ∈ {0, 1}n. Note
that for generic choices of V and c, the set argmaxz(αV+αc)>z consists of a single point z∗ =
hs(V x+ c). We have argmax(y,z)(αV x+αc)>z+(βW>z+βb)>y = (z∗, argmaxy(βW

>z∗+

βb)>y). Here, again, for generic choices of V and b, the set argmaxy(βW
>z∗ + βb)>y con-

sists of a single point y∗ = hs(W>z∗ + b). The joint distribution p(y, z|x) with parameters
tβW, tαV, tβb, tαc tends to the point measure δ(y∗,z∗)(y, z) as t → ∞. In this case p(y|x)

tends to δy∗(y) as t → ∞, where y∗ = hs(W>z∗ + b) = hs(W> hs(V x + c) + b), for all
x ∈ {0, 1}k.

Proof of Theorem 20 The second statement is precisely Lemma 40. For the more
general statement the arguments are as follows. Note that the conditional distribution
p(y|z) of the output units, given the hidden units, is the same for a CRBM and for its
feedforward network version. Furthermore, for each input x, the CRBM output distribution
is p(y|x) =

∑
z(q(z|x) ∗ p(z))p(y|z), where

q(z|x) =
exp(z>V x+ c>z)∑
z′ exp(z′>V x+ c>z′)

is the conditional distribution represented by the first layer,

p(y, z) =
exp(z>Wy + b>y)∑

y′,z′ exp(z′>Wy′ + b>y′)

is the distribution represented by the RBM with parameters W, b, 0, and

q(z|x) ∗ p(z) =
q(z|x)p(z)∑
z′ q(z

′|x)p(z′)
, for all z,

is the renormalized entry-wise product of the conditioned distribution q(·|x) and the RBM
hidden marginal distribution

p(z) =
∑
y

p(y, z).

Now, if q is deterministic, then q(z|x)∗p(z) is the same as q(z|x), regardless of p(z) (strictly
positive).

The proof of Theorem 21 builds on the following lemma, which describes a combinatorial
property of the deterministic policies that can be approximated arbitrarily well by CRBMs.

Lemma 41 Consider a function f : {0, 1}k → {0, 1}n. The model RBMk
n,m can approxi-

mate the deterministic policy p(y|x) = δf(x)(y) arbitrarily well only if there is a choice of
the model parameters W,V, b, c for which

f(x) = hs(W> hs([W,V ]
[
f(x)
x

]
+ c) + b), for all x ∈ {0, 1}k,

where the Heaviside function hs is applied entry-wise to its argument.
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Proof Consider a choice of W,V, b, c. For each input state x, the conditional represented
by RBMk

n,m is equal to the mixture distribution p(y|x) =
∑

z p(z|x)p(y|x, z), with mix-

ture components p(y|x, z) = p(y|z) ∝ exp((z>W + b>)y) and mixture weights p(z|x) ∝∑
y′ exp((z>W +b>)y′+z>(V x+c)) for all z ∈ {0, 1}m. The support of a mixture distribu-

tion is equal to the union of the supports of the mixture components with non-zero mixture
weights. In the present case, if

∑
y |p(y|x)−δf(x)(y)| ≤ α, then

∑
y |p(y|x, z)−δf(x)(y)| ≤ α/ε

for all z with p(z|x) > ε, for any ε > 0. Choosing α small enough, α/ε can be made arbi-
trarily small for any fixed ε > 0. In this case, for every z with p(z|x) > ε, necessarily

(z>W + b>)f(x)� (z>W + b>)y, for all y 6= f(x), (4)

and hence
sgn(z>W + b>) = sgn(f(x)− 1

2).

Furthermore, the probability assigned by p(z|x) to all z that do not satisfy Equation (4)
has to be very close to zero (upper bounded by a function that decreases with α). The
probability of z given x is given by

p(z|x) =
1

Zz|x
exp(z>(V x+ c))

∑
y′

exp((z>W + b>)y′).

In view of Equation (4), for all z with p(z|x) > ε, if α is small enough, p(z|x) is arbitrarily
close to

1

Zz|x
exp(z>(V x+ c)) exp((z>W + b>)f(x)).

This holds, in particular, for every z that maximizes p(z|x). Therefore,

argmaxz p(z|x) = argmaxz z
>(Wf(x) + V x+ c).

Each of these z must satisfy Equation (4). This completes the proof.

Proof of Theorem 21 We start with the sufficient condition. The bound 2k − 1 follows
directly from Proposition 18. For the second bound, note that any function f : {0, 1}k →
{0, 1}n; x 7→ y can be computed by a parallel composition of the functions fi : x 7→ yi, for
all i ∈ [n]. Hence the bound follows from Lemma 40 and the fact that a feedforward linear
threshold network with 3

k+22k hidden units can compute any Boolean function.
We proceed with the necessary condition. Lemma 41 shows that each determinis-

tic policy that can be approximated by RBMk
n,m arbitrarily well corresponds to the y-

coordinate fixed points of a map defined as the composition of two linear threshold functions
{0, 1}k+n → {0, 1}m; (x, y) 7→ hs([W,V ] [ yx ] + c) and {0, 1}m → {0, 1}n; z 7→ hs(W>z + b).
In particular, we can upper bound the number of deterministic policies that can be ap-
proximated arbitrarily well by RBMk

n,m, by the total number of compositions of two linear
threshold functions; one with n+ k inputs and m outputs and the other with m inputs and
n outputs.

Let LTF(N,M) be the number of linear threshold functions with N inputs and M
outputs. It is known that (Ojha, 2000; Wenzel et al., 2000)

LTF(N,M) ≤ 2N
2M .
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The number of deterministic policies that can be approximated arbitrarily well by RBMk
n,m

is thus bounded above by LTF(n+ k,m) · LTF(m,n) ≤ 2m(n+k)2+nm2
. The actual number

may be smaller, in view of the fixed-point and shared parameter constraints. On the other
hand, the number of deterministic policies in ∆k,n is as large as (2n)2k = 2n2k . The claim
follows from comparing these two numbers.
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Abstract

The relationship between statistical dependency and causality lies at the heart of all sta-
tistical approaches to causal inference. Recent results in the ChaLearn cause-effect pair
challenge have shown that causal directionality can be inferred with good accuracy also
in Markov indistinguishable configurations thanks to data driven approaches. This paper
proposes a supervised machine learning approach to infer the existence of a directed causal
link between two variables in multivariate settings with n > 2 variables. The approach
relies on the asymmetry of some conditional (in)dependence relations between the mem-
bers of the Markov blankets of two variables causally connected. Our results show that
supervised learning methods may be successfully used to extract causal information on the
basis of asymmetric statistical descriptors also for n > 2 variate distributions.

Keywords: causal inference, information theory, machine learning

1. Introduction

The relationship between statistical dependency and causality lies at the heart of all sta-
tistical approaches to causal inference and can be summarized by two famous statements:
correlation (or more generally statistical association) does not imply causation and causa-
tion induces a statistical dependency between causes and effects (or more generally descen-
dants) (Reichenbach, 1956). In other terms it is well known that statistical dependency is
a necessary yet not sufficient condition for causality. The unidirectional link between these
two notions has been used by many formal approaches to causality to justify the adoption
of statistical methods for detecting or inferring causal links from observational data. The
most influential one is the Causal Bayesian Network approach, detailed in (Koller and Fried-
man, 2009) which relies on notions of independence and conditional independence to detect
causal patterns in the data. Well known examples of related inference algorithms are the
constraint-based methods like the PC algorithms (Spirtes et al., 2000) and IC (Pearl, 2000).
These approaches are founded on probability theory and have been shown to be accurate
in reconstructing causal patterns in many applications (Pourret et al., 2008), notably in
bioinformatics (Friedman et al., 2000). At the same time they restrict the set of configu-
rations which causal inference is applicable to. Such boundary is essentially determined by
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the notion of distinguishability which defines the set of Markov equivalent configurations on
the basis of conditional independence tests. Typical examples of indistinguishability are the
two-variable setting and the completely connected triplet configuration (Guyon et al., 2007)
where it is impossible to distinguish between cause and effects by means of conditional or
unconditional independence tests.

If on one hand the notion of indistinguishability is probabilistically sound, on the other
hand it should not prevent us from addressing interesting yet indistinguishable causal pat-
terns. In fact, indistinguishability results rely on two main aspects: i) they refer only to
specific features of dependency (notably conditional or unconditional independence) and
ii) they state the conditions (e.g. faithfulness) under which it is possible to distinguish
(or not) with certainty between configurations. Accordingly, indistinguishability results do
not prevent the existence of statistical algorithms able to reduce the uncertainty about the
causal pattern even in indistinguishable configurations. This has been made evident by
the appearance in recent years of a series of approaches which tackle the cause-effect pair
inference, like ANM (Additive Noise Model) (Hoyer et al., 2009), IGCI (Information Ge-
ometry Causality Inference) (Daniusis et al., 2010; Janzing et al., 2012), LiNGAM (Linear
Non Gaussian Acyclic Model) (Shimizu et al., 2006) and the algorithms described in (Mooij
et al., 2010) and (Statnikov et al., 2012)1. What is common to these approaches is that
they use alternative statistical features of the data to detect causal patterns and reduce the
uncertainty about their directionality. A further important step in this direction has been
represented by the recent organization of the ChaLearn cause-effect pair challenge (Guyon,
2014). The good (and significantly better than random) accuracy obtained on the basis
of observations of pairs of causally related (or unrelated) variables supports the idea that
alternative strategies can be designed to infer with success (or at least significantly better
than random) indistinguishable configurations.

It is worthy to remark that the best ranked approaches2 in the ChaLearn competition
share a common aspect: they infer from statistical features of the bivariate distribution
the probability of the existence and then of the directionality of the causal link between
two variables. The success of these approaches shows that the problem of causal inference
can be successfully addressed as a supervised machine learning approach where the inputs
are features describing the probabilistic dependency and the output is a class denoting the
existence (or not) of a directed causal link. Once sufficient training data are made available,
conventional feature selection algorithms (Guyon and Elisseeff, 2003) and classifiers can be
used to return a prediction better than random.

The effectiveness of machine learning strategies in the case of pairs of variables encour-
ages the extension of the strategy to configurations with a larger number of variables. In
this paper we propose an original approach to learn from multivariate observations the prob-
ability that a variable is a direct cause of another. This task is undeniably more difficult
because

• the number of parameters needed to describe a multivariate distribution increases
rapidly (e.g. quadratically in the Gaussian case),

1. A more extended list of recent algorithms is available in http://www.causality.inf.ethz.ch/

cause-effect.php?page=help.
2. We took part in the ChaLearn challenge and we ranked 8th in the final leader board.
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• information about the existence of a causal link between two variables is returned
also by the nature of the dependencies existing between the two variables and the
remaining ones.

The second consideration is evident in the case of a collider configuration z1 → z2 ← z3: in
this case the dependency (or independency) between z1 and z3 tells us more about the link
z1 → z2 than the dependency between z1 and z2. This led us to develop a machine learning
strategy (described in Section 2) where descriptors of the relation existing between mem-
bers of the Markov blankets of two variables are used to learn the probability (i.e. a score)
that a causal link exists between two variables. The approach relies on the asymmetry of
some conditional (in)dependence relations between the members of the Markov blankets of
two variables causally connected. The resulting algorithm (called D2C and described in
Section 3) predicts the existence of a direct causal link between two variables in a multi-
variate setting by (i) creating a set of of features of the relationship based on asymmetric
descriptors of the multivariate dependency and (ii) using a classifier to learn a mapping
between the features and the presence of a causal link.

In Section 4 we report the results of a set of experiments assessing the accuracy of the
D2C algorithm. Experimental results based on synthetic and published data show that the
D2C approach is competitive and often outperforms state-of-the-art methods.

2. Learning the Relation between Dependency and Causality in a
Configuration with n > 2 Variables.

This section presents an approach to learn, from a number of observations, the relationships
existing between the n variate distribution of Z = [z1, . . . , zn] and the existence of a directed
causal link between two variables zi and zj , 1 ≤ i 6= j ≤ n, in the case of no confounding,
no selection bias and no feedback configurations. Several parameters may be estimated
from data in order to represent the multivariate distribution of Z, like the correlation or
the partial correlation matrix. Some problems however arise in this case like: (i) these
parameters are informative in case of Gaussian distributions only, (ii) identical (or close)
causal configurations could be associated to very different parametric values, thus making
difficult the learning of the mapping and (iii) different causal configurations may lead to
identical (or close) parametric values.

In other terms it is more relevant to describe the distribution in structural terms (e.g.
with notions of conditional dependence/independence) rather than in parametric terms.
Two more aspects have to be taken into consideration. First since we want to use a learning
approach to identify cause-effect relationships we need some quantitative features to describe
the structure of the multivariate distribution. Second, since asymmetry is a distinguishing
characteristic of a causal relationship, we expect that effective features should share the
same asymmetric properties.

In this paper we will use information theory to represent and quantify the notions
of (conditional) dependence and independence between variables and to derive a set of
asymmetric features to reconstruct causality from dependency.
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2.1 Notions of Information Theory

Let us consider three continuous random variables z1, z2 and z3 having a joint Lebesgue
density3. Let us start by considering the relation between z1 and z2. The mutual informa-
tion (Cover and Thomas, 1990) between z1 and z2 is defined in terms of their probabilistic
density functions p(z1), p(z2) and p(z1, z2) as

I(z1; z2) =

∫ ∫
log

p(z1, z2)

p(z1)p(z2)
p(z1, z2)dz1dz2 = H(z1)−H(z1|z2) (1)

where H is the entropy and the convention 0 log 0
0 = 0 is adopted. This quantity measures

the amount of stochastic dependence between z1 and z2 (Cover and Thomas, 1990). Note
that, if z1 and z2 are Gaussian distributed the following relation holds

I(z1; z2) = −1

2
log(1− ρ2) (2)

where ρ is the Pearson correlation coefficient between z1 and z2.
Let us now consider a third variable z3. The conditional mutual information (Cover

and Thomas, 1990) between z1 and z2 once z3 is given is defined by

I(z1; z2|z3) =

∫ ∫ ∫
log

p(z1, z2|z3)
p(z1|z3)p(z2|z3)

p(z1, z2, z3)dz1dz2dz3 =

= H(z1|z3)−H(z1|z2, z3) (3)

The conditional mutual information is null if and only if z1 and z2 are conditionally inde-
pendent given z3.

A structural notion which can be described in terms of conditional mutual information is
the notion of Markov Blanket (MB). The Markov Blanket of variable zi in an n dimensional
distribution is the smallest subset of variables belonging to Z \ zi (where \ denotes the set
difference operator) which makes zi conditionally independent of all the remaining ones. In
information theoretic terms let us consider a set Z of n random variables, a variable zi and
a subset Mi ⊂ Z\zi. The subset Mi is said to be a Markov blanket of zi if it is the minimal
subset satisfying

I(zi; (Z \ (Mi ∪ zi))|Mi) = 0

Effective algorithms have been proposed in literature to infer a Markov Blanket from
observed data (Tsamardinos et al., 2003b). Feature selection algorithms are also useful to
construct a Markov blanket of a given target variable once they rely on notions of conditional
independence to select relevant variables (Meyer and Bontempi, 2014).

2.2 Causality and Asymmetric Dependency Relationships

The notion of causality is central in science and also an intuitive notion of everyday life.
The remarkable property of causality which distinguishes it from dependency is asymmetry.

In probabilistic terms a variable zi is dependent on a variable zj if the density of zi,
conditional on the observation zj = zj , is different from the marginal one

p(zi|zj = zj) 6= p(zi)

3. Boldface denotes random variables.
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In information theoretic terms the two variables are dependent if I(zi; zj) = I(zj ; zi) > 0.
This implies that dependency is symmetric. If zi is dependent on zj , then zj is dependent
on zi too as shown by

p(zj |zi = zi) 6= p(zj)

The formal representation of the notion of causality demands an extension of the syntax
of the probability calculus as done by Pearl (1995) with the introduction of the operator do
which allows to distinguish the observation of a value of zj (denoted by zj = zj) from the
manipulation of the variable zj (denoted by do(zj = zj)). Once this extension is accepted
we say that a variable zj is a cause of a variable zi (e.g. ”diseases cause symptoms”) if the
distribution of zi is different from the marginal one when we set the value zj = zj

p(zi|do(zj = zj)) 6= p(zi)

but not vice versa (e.g. ”symptoms do not cause disease”)

p(zj |do(zi = zi)) = p(zj)

The extension of the probability notation made by Pearl allows to formalize the intuition
that causality is asymmetric. Another notation which allows to represent causal expres-
sion is provided by graphical models or more specifically by Directed Acyclic Graphs
(DAG) (Koller and Friedman, 2009). In this paper we will limit to consider causal re-
lationships modeled by DAG, which proved to be convenient tools to understand and use
the notion of causality. Furthermore we will make the assumption that the set of causal
relationships existing between the variables of interest can be described by a Markov and
faithful DAG (Pearl, 2000). This means that the DAG is an accurate map of dependencies
and independencies of the represented distribution and that using the notion of d-separation
it is possible to read from the graph if two sets of nodes are (in)dependent conditioned on
a third.

The asymmetric nature of causality suggests that if we want to infer causal links from
dependency we need to find some features (or descriptors) which describe the dependency
and share with causality the property of asymmetry. Let us suppose that we are interested
in predicting the existence of a directed causal link zi → zj where zi and zj are components
of an observed n-dimensional vector Z = [z1, . . . , zn].

We define as dependency descriptor of the ordered pair 〈i, j〉 a function d(i, j) of the
distribution of Z which depends on i and j. Example of dependency descriptors are the cor-
relation ρ(i, j) between zi and zj , the mutual information I(zi; zj) or the partial correlation
between zi and zj given another variable zk, i 6= j, j 6= k, i 6= k.

We call a dependency descriptor symmetric if d(i, j) = d(j, i) otherwise we call it asym-
metric. Correlation and mutual information are symmetric descriptors since

d(i, j) = I(zi; zj) = I(zj ; zi) = d(j, i)

Because of the asymmetric property of causality, if we want to maximize our chances to
reconstruct causality from dependency we need to identify relevant asymmetric descriptors.
In order to define useful asymmetric descriptors we have recourse to the Markov Blankets
of the two variables zi and zj .
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c(1)i c(2)i

e(1)i
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s(1)i

s(1)j

ai

di

Figure 1: Two causally connected variables and their Markov Blankets.
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Relation i, j Relation j, i

∀k zi 6⊥⊥ c
(k)
j |zj ∀k zj ⊥⊥ c

(k)
i |zi

∀k e
(k)
i 6⊥⊥ c

(k)
j |zj ∀k e

(k)
j ⊥⊥ c

(k)
i |zi

∀k c
(k)
i 6⊥⊥ c

(k)
j |zj ∀k c

(k)
j ⊥⊥ c

(k)
i |zi

∀k zi ⊥⊥ c
(k)
j ∀k zj 6⊥⊥ c

(k)
i

Table 1: Asymmetric (un)conditional (in)dependance relationships between members of the
Markov Blankets of zi and zj in Figure 1.

Let us consider for instance the portion of a DAG represented in Figure 1 where the
variable zi is a direct cause of zj . The figure shows also the Markov Blankets of the two
variables (denoted Mi and Mj respectively) and their components, i.e. the direct causes
(denoted by c), the direct effects (e) and the spouses (s) (Pellet and Elisseeff, 2008).

In what follows we will make two assumptions: (i) the only path between the sets zi∪Mi

and zj ∪Mj is the edge zi → zj and (ii) there is no common ancestor of zi (zj) and its
spouses si (sj). We will discuss these assumptions at the end of the section. Given these
assumptions and because of d-separation (Geiger et al., 1990), a number of asymmetric
conditional (in)dependence relations holds between the members of Mi and Mj (Table 1).
For instance (first line of Table 1), by conditioning on the effect zj we create a dependence
between zi and the direct causes of zj while by conditioning on the zi we d-separate zj and
the direct causes of zi.

The relations in Table 1 can be used to define the following set of asymmetric descriptors,

d
(k)
1 (i, j) = I(zi; c

(k)
j |zj), (4)

d
(k)
2 (i, j) = I(e

(k)
i ; c

(k)
j |zj), (5)

d
(k)
3 (i, j) = I(c

(k)
i ; c

(k)
j |zj), (6)

d
(k)
4 (i, j) = I(zi; c

(k)
j ), (7)

whose asymmetry is given by

d
(k)
1 (i, j) = I(zi; c

(k)
j |zj) > 0, d

(k)
1 (j, i) = I(zj ; c

(k)
i |zi) = 0, (8)

d
(k)
2 (i, j) = I(e

(k)
i ; c

(k)
j |zj) > 0, d

(k)
2 (j, i) = I(e

(k)
j ; c

(k)
i |zi) = 0, (9)

d
(k)
3 (i, j) = I(c

(k)
i ; c

(k)
j |zj) > 0, d

(k)
3 (j, i) = I(c

(k)
j ; c

(k)
i |zi) = 0, (10)

d
(k)
4 (i, j) = I(zi; c

(k)
j ) = 0, d

(k)
4 (j, i) = I(zj ; c

(k)
i ) > 0. (11)
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Relation i, j Relation j, i

∀k zi 6⊥⊥ e
(k)
j ∀k zj 6⊥⊥ e

(k)
i

∀k zi ⊥⊥ s
(k)
j ∀k zj ⊥⊥ s

(k)
i

∀k zi ⊥⊥ e
(k)
j |zj ∀k zj ⊥⊥ e

(k)
i |zi

∀k zi ⊥⊥ s
(k)
j |zj ∀k zj ⊥⊥ s

(k)
i |zi

∀k e
(k)
i ⊥⊥ e

(k)
j |zi ∀k e

(k)
j ⊥⊥ e

(k)
i |zj

∀k e
(k)
i ⊥⊥ s

(k)
j |zj ∀k e

(k)
j ⊥⊥ s

(k)
i |zi

Table 2: Symmetric (un)conditional (in)dependance relationships between members of the
Markov Blankets of zi and zj in Figure 1.

At the same time we can write a set of symmetric conditional (in)dependence relations
(Table 2) and the equivalent formulations in terms of mutual information terms:

I(zj ; e
(k)
i ) > 0, (12)

I(zi; e
(k)
j ) > 0, (13)

I(zj ; s
(k)
i ) = I(zi; s

(k)
j ) = 0, (14)

I(zi; e
(k)
j |zj) = I(zj ; e

(k)
i |zi) = I(zi; s

(k)
j |zj) = I(zj ; s

(k)
i |zi) = 0, (15)

I(e
(k)
j ; e

(k)
i |zi) = I(e

(k)
i ; e

(k)
j |zj) = I(e

(k)
i ; s

(k)
j |zj) = I(e

(k)
j ; s

(k)
i |zi) = 0. (16)

2.3 From Asymmetric Relationships to Distinct Distributions

The asymmetric properties of the four descriptors (4)-(7) is encouraging if we want to
exploit dependency related features to infer causal properties from data. However, this
optimism is undermined by the fact that all the descriptors require already the capability
of distinguishing between the causes (i.e. the terms c) and the effects (i.e. the terms e)
of the Markov Blanket of a given variable. Unfortunately this discriminating capability is
what we are looking for!

In order to escape this circularity problem we consider two solutions. The first is to have
recourse to a preliminary phase that prioritizes the components of the Markov Blanket
and then use this result as starting point to detect asymmetries and then improve the
classification of causal links. This is for instance feasible by using a filter selection algorithm,
like mIMR (Bontempi and Meyer, 2010; Bontempi et al., 2011), which aims to prioritize the
direct causes in the Markov Blanket by searching for pairs of variables with high relevance
and low interaction.

The second solution is related to the fact that the asymmetry of the four descriptors
induces a difference in the distributions of some information theoretic terms which do not
require the distinction between causes and effects within the Markov Blanket. The conse-
quence is that we can replace the descriptors (4)-(7) with other descriptors (denoted with
the letter D) that can be actually estimated from data.
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Let m(k) denote a generic component of the Markov Blanket with no distinction between
cause, effect or spouse. It follows that a population made of terms depending on m(k) is a
mixture of three subpopulations, the first made of causes, the second made of effects and
the third of spouses, respectively. It follows that the distribution of the population is a finite
mixture (McLaughlan, 2000) of three distributions, the first related to the causes, the second
to the effects and the third to the spouses. Since the moments of the finite mixture are
functions of the moments of each component, we can derive some properties of the resulting
mixture from the properties of each component. For instance if we can show that all the
subpopulations but one are identical (e.g. all the elements of the third subpopulation in
the first mixture are larger than the elements of the analogous subpopulation in the second
mixture), we can derive that the two mixture distributions are different.

Consider for instance the quantity I(zi;m
(kj)
j |zj) where m

(kj)
j , kj = 1, . . . ,Kj is a

member of the set Mj \ zi. From (8) and (15) it follows that the mixture distribution

associated to the populations D1(i, j) = {I(zi;m
(kj)
j |zj), kj = 1, . . . ,Kj} and D1(j, i) =

{I(zj ;m
(ki)
i |zi), ki = 1, . . . ,Ki} are different since{

I(zi;m
(kj)
j |zj) > I(zj ;m

(ki)
i |zi), if m

(kj)
j = c

(kj)
j ∧m

(ki)
i = c

(ki)
i

I(zi;m
(kj)
j |zj) = I(zj ;m

(ki)
i |zi), else

(17)

It follows that even if we are not able to distinguish between a cause cj ∈ Mj and an
effect ej ∈ Mj , we know that the distribution of the population D1(i, j) differs from the
distribution of the population D1(j, i). We can therefore use the population D1(i, j) (or
some of its moments) as descriptor of the causal dependency.

Similarly we can replace the descriptors (5), (6) with the distributions of the population

D2(i, j) = {I(m
(ki)
i ;m

(kj)
j |zj), kj = 1, . . . ,Kj , ki = 1, . . . ,Ki}. From (9), (10) and (16) we

obtain that the distributions of the populations D2(i, j) and D2(j, i) are different.

If we make the additional assumption that I(zj ; e
(k)
i ) = I(zi; e

(k)
j ) > 0 from (11) we

obtain also that the distribution of the population D3(i, j) = {I(zi;m
(kj)
j ), kj = 1, . . . ,Kj}

is different from the one of D3(j, i) = {I(zj ;m
(ki)
i ), ki = 1, . . . ,Ki}.

The previous results are encouraging and show that though we are not able to distinguish
between the different components of a Markov Blanket, we can notwithstanding compute
some quantities (in this case distributions of populations) whose asymmetry is informative
about the causal relationships zi → zj .

As a consequence by measuring from observed data some statistics (e.g. quantiles)
related to the distribution of these asymmetric descriptors, we may obtain some insight
about the causal relationship between two variables. This idea is made explicit in the
algorithm described in the following section.

Though these results rely on the two assumptions made before (i.e. single path and no
common ancestors), two considerations are worthy to be made. First, the main goal of the
approach is to shed light on the existence of dependency asymmetries also in multivariate
contributions. Secondly we expect that the second layer (based on supervised learning)
will eventually compensate for configurations not compliant with the assumptions and take
advantage of complementarity or synergy of the descriptors in discriminating between causal
configurations.
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3. The D2C Algorithm

The rationale of the D2C algorithm is to predict the existence of a causal link between
two variables in a multivariate setting by (i) creating a set of features of the relationship
between the members of the Markov Blankets of the two variables and (ii) using a classifier
(e.g. a Random Forest as in our experiments) to learn a mapping between the features and
the presence of a causal link.

We use two sets of features to summarize the relation between the two Markov blankets:
the first one accounts for the presence (or the position if the MB is obtained by ranking)
of the terms of Mj in Mi and vice versa. For instance it is evident that if zi is a cause of
zj we expect to find zi highly ranked between the causal terms of Mj but zj absent (or
ranked low) among the causes of Mi. The second set of features is based on the results of
the previous section and is obtained by summarizing the distributions of the asymmetric
descriptors with a set of quantiles.

We propose then an algorithm (D2C) which for each pair of measured variables zi and
zj :

1. infers from data the two Markov Blankets (e.g. by using state-of-the-art approaches)
Mi and Mj and the subsets Mi\zj = {m(ki), ki = 1, . . . ,Ki} and Mj\zi = {m(kj), kj =
1, . . . ,Kj}. Most of the existing algorithms associate to the Markov Blanket a ranking
such that the most strongly relevant variables are ranked before.

2. computes a set of (conditional) mutual information terms describing the dependency
between zi and zj

I = [I(zi; zj), I(zi; zj |Mj \ zi), I(zi; zj |Mi \ zj)] (18)

3. computes the positions P
(ki)
i of the members m(ki) of Mi\zj in the ranking associated

to Mj\zi and the positions P
(kj)
j of the terms m(kj) in the ranking associated to Mi\zj .

Note that in case of the absence of a term of Mi in Mj , the position is set to Kj + 1
(respectively Ki + 1).

4. computes the populations based on the asymmetric descriptors introduced in Sec-
tion 2.3:

(a) D1(i, j) = {I(zi;m
(kj)
j |zj), kj = 1, . . . ,Kj}

(b) D1(j, i) = {I(zj ;m
(ki)
i |zi), ki = 1, . . . ,Ki}

(c) D2(i, j) = {I(m
(ki)
i ;m

(kj)
j |zj), ki = 1, . . . ,Ki, kj = 1, . . . ,Kj} and

(d) D2(j, i) = {I(m
(kj)
j ;m

(ki)
i |zi), ki = 1, . . . ,Ki, kj = 1, . . . ,Kj}

(e) D3(i, j) = {I(zi;m
(kj)
j ), kj = 1, . . . ,Kj},

(f) D3(j, i) = {I(zj ,m
(ki)
i ), ki = 1, . . . ,Ki}

5. creates a vector of descriptors

x = [I,Q(P̂i),Q(P̂j),Q(D̂1(i, j)),Q(D̂1(j, i)),

Q(D̂2(i, j)),Q(D̂2(j, i)),Q(D̂3(i, j)),Q(D̂3(j, i))] (19)
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where P̂i and P̂j are the empirical distributions of the populations {P (ki)
i } and {P (kj)

j },
D̂h(i, j) denotes the empirical distribution of the corresponding population Dh(i, j)
and Q returns a set of sample quantiles of a distribution (in the experiments we set
the quantiles to 0.1, 0.25, 0.5, 0.75, 0.9).

The vector x can be then derived from observational data and used to create a vector of
descriptors to be used as inputs in a supervised learning paradigm.

The rationale of the algorithm is that the asymmetries between Mi and Mj (e.g. Table 1)
induce an asymmetry on the distributions P̂ and D̂ and that the quantiles of those distri-
butions provide information about the directionality of causal link (zi → zj or zj → zi.)
In other terms we expect that the distribution of these variables should return useful in-
formation about which is the cause and the effect. Note that these distributions would be
more informative if we were able to rank the terms of the Markov Blankets by prioritizing
the direct causes (i.e. the terms ci and cj) since these terms play a major role in the asym-
metries of Table 1. The D2C algorithm can then be improved by choosing an appropriate
Markov Blanket selector algorithms, like the mIMR filter.

In the experiments (Section 4) we derive the information terms as difference between
(conditional) entropy terms (see Equations 1 and 3) which are themselves estimated by
a Lazy Learning regression algorithm (Bontempi et al., 1999) by making an assumption
of Gaussian noise. Lazy Learning returns a leave-one-out estimation of conditional vari-
ance which can be easily transformed in entropy under the normal assumption (Cover and
Thomas, 1990). The (conditional) mutual information terms are then obtained by using
the relations (1) and (3).

3.1 Complexity Analysis

In this subsection we make a complexity analysis of the approach: first it is important to
remark that since the D2C approach relies on a classifier, its learning phase can be time-
consuming and dependent on the number of samples and dimension. However, this step is
supposed to be performed only once and from the user perspective it is more relevant to
consider the cost in the testing phase. Given two nodes for which a test of the existence of
a causal link is required, three steps have to be performed:

1. computation of the Markov blankets of the two nodes. The information filters we
used have a complexity O(Cn2) where C is the cost of the computation of mutual
information (Meyer and Bontempi, 2014). In case of very large n this complexity may
be bounded by having the filter preceded by a ranking algorithm with complexity
O(Cn). Such ranking may limit the number of features taken into consideration by
the filters to n′ < n reducing then considerably the cost.

2. once a number Ki (Kj) of members of MBi (MBj) have been chosen, the rest of
the procedure has a complexity related to the estimation of a number O(KiKj) of
descriptors. In this paper we used a local learning regression algorithm to estimate
the conditional entropies terms. Given that each regression involves at most three
terms, the complexity is essentially related linearly to the number N of samples
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3. the last step consists in the computation of the Random Forest predictions on the test
set. Since the RF has been already trained, the complexity of this step depends only
on the number of trees and not on the dimensionality or number of samples.

For each test, the resulting complexity has then a cost of the order O(Cn+Cn′2 +KiKjN).
It is important to remark that an advantage of D2C is that, if we are interested in pre-
dicting the causal relation between two variables only, we are not forced to infer the entire
adjacency matrix (as typically the case in constraint-based methods). This mean also that
the computation of the entire matrix can be easily made parallel.

4. Experimental Validation

In this section the D2C (Section 3) algorithm is assessed in a set of synthetic experiments
and published data sets.

4.1 Synthetic Data

This experimental session addresses the problem of inferring causal links from synthetic
data generated for linear and non-linear DAG configurations of different sizes. All the
variables are continuous, and the dependency between children and parents is modelled by
the additive relationship

xi =
∑

j∈par(i)

fi,j(xj) + εi, i = 1, . . . , n (20)

where the noise εi ∼ N(0, σi) is Normal, fi,j(x) ∈ L(x) and three sets of continuous functions
are considered:

• linear: L(x) = {f | f(x) = a0 + a1x}

• quadratic: L(x) = {f | f(x) = a0 + a1x+ a2x
2}

• sigmoid: L(x) = {f | f(x) = 1
1+exp(a0+a1x)

}

In order to assess the accuracy with respect to dimensionality, we considered three network
sizes:

• small: number of nodes n is uniformly sampled in the interval [20, 30],

• medium: number of nodes n is uniformly sampled in the interval [100, 200],

• large: number of nodes n is uniformly sampled in the interval [500, 1000],

The assessment procedure relies on the generation of a number of DAG structures4 and
the simulation, for each of them, of N (uniformly random in [100, 500]) node observations
according to the dependency (20). In each data set we removed the observations of five
percent of the variables in order to introduce unobserved variables.

4. We used the function random dag from the R package gRbase (Dethlefsen and Højsgaard, 2005).
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For each DAG, on the basis of its structure and the data set of observations, we collect
a number of pairs 〈xd, yd〉, where xd is the descriptor vector returned by (19) and yd is the
class denoting the existence (or not) of the causal link in the DAG topology.

Several sizes of training set are considered. The largest D2C training set is made of
D = 60000 pairs 〈xd, yd〉 and is obtained by generating DAGs and storing for each of them
the descriptors associated to at most 4 positives examples (i.e. a pair where the node zi is
a direct cause of zj) and at most 6 negatives examples (i.e. a pair where the node zi is not
a direct cause of zj). A Random Forest classifier is trained on the balanced data set: we
use the implementation from the R package randomForest (Liaw and Wiener, 2002) with
default setting.

The test set is obtained by considering a number of independently simulated DAGs. We
consider 190 DAGs for the small and medium configurations and 90 for the large configu-
ration. For each testing DAG we select 4 positives examples (i.e. a pair where the node
zi is a direct cause of zj) and 6 negatives examples (i.e. a pair where the node zi is not a
direct cause of zj). The predictive accuracy of the trained Random Forest classifier is then
assessed on the test set.

The D2C approach is compared in terms of classification accuracy (Balanced Error Rate
(BER)) to several state-of-the-art approaches:

• ANM: Additive Noise Model (Hoyer et al., 2009) using a Gaussian process with RBF
kernel and the Hilbert-Schmidt Independence Criterion (pvalue=0.02)5

• DAGL1: DAG-Search score-based algorithm with potential parents selected with a L1
penalization (Schmidt et al., 2007)6.

• DAGSearch: unrestricted DAG-Search score-based algorithm (multiple restart greedy
hill-climbing, using edge additions, deletions, and reversals) (Schmidt et al., 2007)6,

• DAGSearchSparse: DAG-Search score-based algorithm with potential parents re-
stricted to the 10 most correlated features (Schmidt et al., 2007)6,

• gs: Grow-Shrink constraint-based structure learning algorithm (Margaritis, 2003)7,

• hc: hill-climbing score-based structure learning algorithm (Daly and Shen, 2007)7,

• iamb: incremental association MB constraint-based structure learning algorithm (Tsamardi-
nos et al., 2003b)7,

• mmhc: max-min hill climbing hybrid structure learning algorithms (Tsamardinos et al.,
2010)7,

• PC: Estimate the equivalence class of a DAG using the PC algorithm8 (this method was
used only for the small size configuration (Figure 3) for computational time reasons)

5. The code is available in https://staff.fnwi.uva.nl/j.m.mooij/code/additive-noise.tar.gz.
6. The code is available in http://www.cs.ubc.ca/~murphyk/Software/DAGlearn/.
7. The code is available in the R package bnlearn (Scutari, 2010).
8. The code is available in the R package pcalg (Kalisch et al., 2012)
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• si.hiton.pc: Semi-Interleaved HITON-PC local discovery structure learning algo-
rithms (Tsamardinos et al., 2003a)7,

• tabu: tabu search score-based structure learning algorithm7.

The BER of six versions of the D2C method are compared to the BER of state-of-the-art
methods in Figures 3 (small), Figure 4 (medium) and Figure 5 (large). The six versions
of D2C are obtained by considering two types of training data (i.e. one based on linear
dependency and one based on the same dependency used for testing) and three training set
sizes (equal to 400, 3000 and 60000 respectively) Each subfigure corresponds to the three
types of stochastic dependency (top: linear, middle: quadratic, bottom: sigmoid).

A series of considerations can be made on the basis of the experimental results:

• the n-variate approach D2C obtains competitive results with respect to several state-
of-the-art techniques in the linear case,

• the improvement of D2C wrt state-of-the-art techniques (often based on linear assump-
tions) tends to increase when we move to more nonlinear configurations, In particular
the accuracy of the D2C algorithm is able to generalize to DAG with different number
of nodes and different distributions also when trained only on data observed for linear
DAGs (see accuracy of D2Cxlin in the second and third row of Figures 3, 4 and 5)

• the accuracy of the D2C approach improves by increasing the number of training
examples,

• with a small number of examples (i.e. N = 400) it is already possible to learn a
classifier D2C whose accuracy is competitive with state-of-the-art methods,

• the ANM approach is not able to return accurate information about causal dependency
by taking into consideration only bivariate information,

• the analysis of the importance of the D2C descriptors (based on the Mean Decrease
Accuracy of the Random Forest in Figure 2) shows that the most relevant variables
in the vector (19) are the terms in I, D1 and D3.

The D2C code is available in the CRAN R package D2C (Bontempi et al., 2014).

4.2 Published Data

The second part of the assessment relies on the simulated and resimulated data sets proposed
in Table 11 of (Aliferis et al., 2010). These 103 data sets were obtained by simulating data
from known Bayesian networks and also by resimulation, where real data is used to elicit
a causal network and then data is simulated from the obtained network. We split the 103
data sets in two portions: a training portion (made of 52 sets) and a second portion (made
of 51 sets) for testing. This was done in order to assess the accuracy of two versions of
the D2C algorithm: the first uses as training set only 40000 synthetic samples generated as
in the previous section, the second includes in the training set also the 52 data sets of the
training portion. The goal is to assess the generalization accuracy of the D2C algorithm with
respect to DAG distributions never encountered before and not included in the training set.
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Figure 2: Importance of D2C features returned by the Random Forest mean decrease
accuracy. Ii denotes the ith component of the descriptor vector (18) while
Q(Dx(i, j))k denotes the kth quantile of the population of descriptor Dx(i, j).
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GS IAMB IAMBnPC interIAMBnPC mRMR mIMR
W-L 48-3 (32-0) 43-8 (21-0) 46-5 (26-0) 46-5 (25-0) 42-9 (17-0) 34-17 (12-0)

Table 3: D2C trained on synthetic data only: number of data sets for which D2C has an
AUPRC (significantly (pval < 0.05)) higher/lower than the method in the column.
W-L stands for Wins-Losses.

GS IAMB IAMBnPC interIAMBnPC mRMR mIMR
W-L 49-2 (36-0) 49-2 (27-0) 49-2 (32-0) 49-2 (32-0) 42-9 (17-0) 46-5 (19-1)

Table 4: D2C trained on synthetic data and 52 training data sets: number of data sets for
which the D2C has an AUPRC (significantly (pval < 0.05)) higher/lower than the
method in the column. W-L stands for Wins-Losses.

In this section we compare D2C to a set of algorithms implemented by the Causal Explorer
software (Aliferis et al., 2003)9:

• GS: Grow/Shrink algorithm

• IAMB: Incremental Association-Based Markov Blanket

• IAMBnPC: IAMB with PC algorithm in the pruning phase

• interIAMBnPC: IAMB with PC algorithm in the interleaved pruning phase

and two filters based on information theory, mRMR (Peng et al., 2005) and mIMR (Bon-
tempi and Meyer, 2010). The comparison is done as follows: for each data set and for
each node (having at least a parent) the causal inference techniques return the ranking of
the inferred parents. The ranking is assessed in terms of the average of Area Under the
Precision Recall Curve (AUPRC) and a t-test is used to assess if the set of AUPRC values
is significantly different between two methods. Note that the higher the AUPRC the more
accurate is the inference method.

The summary of the paired comparisons is reported in Table 3 for the D2C algorithm
trained on the synthetic data only and in Table 4 for the D2C algorithm trained on both
synthetic data and the 52 training data sets.

It is worthy to remark that

• the D2C algorithm is extremely competitive and outperforms the other techniques
taken into consideration,

• the D2C algorithm is able to generalize to DAG with different number of nodes and
different distributions also when trained only on synthetic data simulated on linear
DAGs,

9. Note that we use Causal Explorer here because, unlike bnlearn which estimates the entire adjacency
matrix, it returns a ranking of the inferred causes for a given node.
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• the D2C algorithm takes advantage from the availability of more training data and in
particular of training data related to the causal inference task of interest, as shown
by the improvement of the accuracy from Table 3 to Table 4,

• the two filters (mRMR and mIMR) algorithm appears to be the least inaccurate
among the state-of-the-art algorithms,

• though the D2C is initialized with the results returned by the mIMR algorithm, it is
able to improve its output and to significantly outperform it.

5. Conclusion

Two attitudes are common with respect to causal inference for observational data. The first
is pessimistic and motivated by the consideration that correlation (or dependency) does not
imply causation. The second is optimistic and driven by the fact that causation implies
correlation (or dependency). This paper belongs evidently to the second school of thought
and relies on the confidence that causality leaves footprints in the form of stochastic de-
pendency and that these footprints can be detected to retrieve causality from observational
data. The results of the ChaLearn challenge and the preliminary results of this paper con-
firm the potential of machine learning approaches in predicting the existence of causality
links on the basis of statistical descriptors of the dependency. We are convinced that this
will open a new research direction where learning techniques may be used to reduce the
degree of uncertainty about the existence of a causal relationships also in indistinguishable
configurations which are typically not addressed by conditional independence approaches.

Further work will focus on 1) discovering additional features of multivariate distributions
to improve the accuracy 2) addressing and assessing other related classification problems
(e.g. predicting if a variable is an ancestor or descendant of a given one) 3) extending the
work to partial ancestral graphs (Zhang, 2008) (e.g. exploiting the logical relations presented
in Claassen and Heskes (2011)) extending the validation to real data sets and configurations
with a still larger number of variables (e.g. network inference in bioinformatics).

Acknowledgments

This work was supported by the ARC project ”Discovery of the molecular pathways regu-
lating pancreatic beta cell dysfunction and apoptosis in diabetes using functional genomics
and bioinformatics” funded by the Communauté Française de Belgique and the BridgeIRIS
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M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann. Causal inference
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Abstract

The Libra Toolkit is a collection of algorithms for learning and inference with discrete proba-
bilistic models, including Bayesian networks, Markov networks, dependency networks, and
sum-product networks. Compared to other toolkits, Libra places a greater emphasis on
learning the structure of tractable models in which exact inference is efficient. It also in-
cludes a variety of algorithms for learning graphical models in which inference is potentially
intractable, and for performing exact and approximate inference. Libra is released under a
2-clause BSD license to encourage broad use in academia and industry.

Keywords: probabilistic graphical models, structure learning, inference

1. Introduction

The Libra Toolkit is a collection of algorithms for learning and inference with probabilistic
models in discrete domains. What distinguishes Libra from other toolkits is the types
of methods and models it supports. Libra includes a number of algorithms for structure
learning for tractable probabilistic models in which exact inference can be done efficiently.
Such models include sum-product networks (SPN), mixtures of trees (MT), and Bayesian
and Markov networks with compact arithmetic circuits (AC). These learning algorithms are
not available in any other open-source toolkit. Libra also supports structure learning for
graphical models, such as Bayesian networks (BN), Markov networks (MN), and dependency
networks (DN), in which inference is not necessarily tractable. Some of these methods are
unique to Libra as well, such as using dependency networks to learn Markov networks. Libra
provides a variety of exact and approximate inference algorithms for answering probabilistic
queries in learned or manually specified models. Many of these are designed to exploit local
structure, such as conjunctive feature functions or tree-structured conditional probability
distributions.

The overall goal of Libra is to make these methods available to researchers, practition-
ers, and students for use in experiments, applications, and education. Each algorithm in
Libra is implemented in a command-line program suitable for interactive use or scripting,
with consistent options and file formats throughout the toolkit. Libra also supports the de-
velopment of new algorithms through modular code organization, including shared libraries
for different representations and file formats.

c©2015 Daniel Lowd and Amirmohammad Rooshenas.
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Learning General Models
◦ BN structure with tree CPDs (Chickering et al., 1997)

DN structure with tree/boosted tree/LR CPDs (Heckerman et al., 2000)
• MN structure from DNs (Lowd, 2012)

MN parameters (pseudo-likelihood)
Learning Tractable Models

• Tractable BN/AC structure (Lowd and Domingos, 2008)
• Tractable MN/AC structure (Lowd and Rooshenas, 2013)
• Mixture of trees (MT) (Meila and Jordan, 2000)
• SPN structure (ID-SPN algorithm) (Rooshenas and Lowd, 2014)

Chow-Liu algorithm (Chow and Liu, 1968)
• AC parameters (maximum likelihood)

Approximate Inference
Gibbs sampling (BN,MN,•DN) (Heckerman et al., 2000) (DN)
Mean field (BN,MN,•DN) (Lowd and Shamaei, 2011) (DN)
Loopy belief propagation (BN,MN)
Max-product (BN,MN)
Iterated conditional modes (BN,MN,•DN)

• Variational optimization of ACs (Lowd and Domingos, 2010)
Exact Inference

◦ AC variable elimination (BN,MN) (Chavira and Darwiche, 2007)
◦ Marginal and MAP inference (AC,SPN,MT) (Darwiche, 2003)

Table 1: Learning and inference algorithms implemented in Libra. Filled circles (•) indicate
algorithms that are unique to Libra, and hollow circles (◦) indicate algorithms with
no other open-source implementation.

Libra is available under a modified (2-clause) BSD license, which allows modification
and reuse in both academia and industry. Libra’s source code and documentation can be
found at http://libra.cs.uoregon.edu.

2. Functionality

Libra includes a variety of learning and inference algorithms, many of which are not available
in any other open-source toolkit. See Table 1 for a brief overview.

Libra’s command-line syntax is designed to be simple. For example, to learn a tractable
BN, run the command: “libra acbn -i train.data -mo model.bn -o model.ac” where
train.data is the input data, model.bn is the filename for saving the learned BN, and
model.ac is the filename for the corresponding AC representation, which allows for ef-
ficient, exact inference. To compute exact conditional marginals in the learned model:
“libra acquery -m model.ac -ev test.ev -marg”. To compute approximate marginals
in the BN with loopy belief propagation: “libra bp -m model.bn -ev test.ev”. Addi-
tional command-line parameters can be used to specify other options, such as the priors
and heuristics used by acbn or the maximum number of iterations for bp. These are just
three of more than twenty commands included in Libra.

Libra supports a variety of file formats. For data instances, Libra uses comma separated
values, where each value is a zero-based index indicating the discrete value of the corre-
sponding variable. For evidence and query files, unknown or missing values are represented
with the special value “*”. For model files, Libra supports the XMOD representation from
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Representation Inference Learning
Toolkit Model Types Factors Exact Approx. Param. Structure
Libra BN,MN,DN,SPN,AC Tree,Feature ACVE G,BP,MF ML,PL BN,. . . ,AC
FastInf BN,MN Table JT Many ML,EM -
libDAI BN,MN Table JT,E Many ML,EM -
OpenGM2 BN,MN Sparse - Many - -
Banjo BN,DBN Table - - - BN
BNT BN,DBN,ID LR,OR,NN JT,VE,E G,LW,BP ML,EM BN
Deal BN Table - - - BN
OpenMarkov BN,MN,ID Tree,ADD,OR JT LW ML BN,MN
SMILE BN,DBN,ID Table JT Sampling ML,EM BN
UnBBayes BN,ID Table JT G,LW - BN

Table 2: Comparison of Libra to several other probabilistic inference and learning toolkits.

the WinMine Toolkit, the Bayesian interchange format (BIF), and the simple representation
from the UAI inference competition. Libra converts among these different formats using
the provided mconvert utility, as well as to its own internal formats for BNs, MNs, and
DNs (.bn, .mn, .dn). Libra has additional representations for ACs and SPNs (.ac, .spn).
These formats are designed to be easy for humans to read and programs to parse.

Libra is implemented in OCaml. OCaml is a statically typed language that supports
functional and imperative programming styles, compiles to native machine code on multiple
platforms, and uses type inference and garbage collection to reduce programmer errors and
effort. OCaml has a good foreign function interface, which Libra uses for linking to C
libraries and a few memory-intensive subroutines. The code to Libra includes nine support
libraries, which provide modules for input, output, and representation of different types of
models, as well as commonly used algorithms and utility methods.

3. Comparison to Other Toolkits

In Table 2, we compare Libra to other toolkits in terms of representation, learning, and
inference.

In terms of representation, Libra is the only open-source software package that supports
ACs and one of a very small number that support DNs or SPNs. Libra does not currently
support dynamic Bayesian networks (DBN) or influence diagrams (ID). For factors, Libra
supports tables, trees, and arbitrary conjunctive feature functions. BNT (Murphy, 2001)
and OpenMarkov (CISIAD, 2013) also support additional types of CPDs, such as logistic
regression, noisy-OR, neural networks, and algebraic decision diagrams, but they only sup-
port tabular CPDs for structure learning. OpenGM2 (Andres et al., 2012) supports sparse
factors, but iterates through all factor states during inference. Libra is unique in its ability
to learn models with local structure and exploit that structure in inference.

For exact inference, the most common algorithms are junction tree (JT), enumeration
(E), and variable elimination (VE). Libra provides ACVE (Chavira and Darwiche, 2007),
which is similar to building a junction tree, but it can exploit structured factors to run
inference in many high-treewidth models. For approximate inference, Libra provides Gibbs
sampling (G), loopy belief propagation (BP), and mean field (MF), all of which are op-
timized for structured factors. A few learning toolkits offer likelihood weighting (LW) or
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Figure 1: Running time of belief propagation and Gibbs sampling in Libra and libDAI,
evaluated on grid-structured MNs of various sizes.

additional sampling algorithms for BNs. FastInf (Jaimovich et al., 2010), libDAI (Mooij,
2010), and OpenGM2 offer the most algorithms but only support tables.

For learning, Libra supports maximum likelihood (ML) parameter learning for BNs,
ACs, and SPNs, and pseudo-likelihood (PL) optimization for MNs and DNs. Libra does
not yet support expectation maximization (EM) for learning with missing values. Structure
learning is one of Libra’s greatest strengths. Most toolkits only provide algorithms for
learning BNs with tabular CPDs or MNs using the PC algorithm (Spirtes et al., 1993). Libra
includes methods for learning BNs, MNs, DNs, SPNs, and ACs, and all of its algorithms
support learning with local structure.

In experiments on grid-structured MNs, Libra’s implementations of BP and Gibbs sam-
pling were at least as fast as libDAI, a popular C++ implementation of many inference
algorithms. The accuracy of both toolkits was equivalent. Parameter settings, such as the
number of iterations, were identical. See Figure 1 for more details.

4. Conclusion

The Libra Toolkit provides algorithms for learning and inference in a variety of probabilistic
models, including BNs, MNs, DNs, SPNs, and ACs. Many of these algorithms are not
available in any other open-source software. Libra’s greatest strength is its support for
tractable probabilistic models, for which very little other software exists. Libra makes it
easy to use these state-of-the-art methods in experiments and applications, which we hope
will accelerate the development and deployment of probabilistic methods.
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Abstract

We consider the query and computational complexity of learning multiplicity tree au-
tomata in Angluin’s exact learning model. In this model, there is an oracle, called the
Teacher, that can answer membership and equivalence queries posed by the Learner. Mo-
tivated by this feature, we first characterise the complexity of the equivalence problem for
multiplicity tree automata, showing that it is logspace equivalent to polynomial identity
testing.

We then move to query complexity, deriving lower bounds on the number of queries
needed to learn multiplicity tree automata over both fixed and arbitrary fields. In the
latter case, the bound is linear in the size of the target automaton. The best known upper
bound on the query complexity over arbitrary fields derives from an algorithm of Habrard
and Oncina (2006), in which the number of queries is proportional to the size of the target
automaton and the size of a largest counterexample, represented as a tree, that is returned
by the Teacher. However, a smallest counterexample tree may already be exponential in the
size of the target automaton. Thus the above algorithm has query complexity exponentially
larger than our lower bound, and does not run in time polynomial in the size of the target
automaton.

We give a new learning algorithm for multiplicity tree automata in which counterex-
amples to equivalence queries are represented as DAGs. The query complexity of this
algorithm is quadratic in the target automaton size and linear in the size of a largest coun-
terexample. In particular, if the Teacher always returns DAG counterexamples of minimal
size then the query complexity is quadratic in the target automaton size—almost matching
the lower bound, and improving the best previously-known algorithm by an exponential
factor.

Keywords: exact learning, query complexity, multiplicity tree automata, Hankel matri-
ces, DAG representations of trees, polynomial identity testing

1. Introduction

Trees are a basic object in computer science and a natural model of hierarchical data, such
as syntactic structures in natural language processing and XML data on the web. Trees
arise across a broad range of applications, including natural text and speech processing,
computer vision, bioinformatics, web information extraction, and social network analysis.
Many of these applications require representing probability distributions over trees and more
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general functions from trees into the real numbers. A broad class of such functions can be
defined by multiplicity tree automata, a powerful algebraic model which strictly generalises
probabilistic tree automata.

Multiplicity tree automata were introduced by Berstel and Reutenauer (1982) under
the terminology of linear representations of tree series. They augment classical finite tree
automata by assigning to each transition a value in a field. They also generalise multiplicity
word automata, introduced by Schützenberger (1961), since words are a special case of trees.
Multiplicity tree automata define many natural structural properties of trees and can be used
to model probabilistic processes running on trees. Multiplicity word and tree automata have
been applied to a wide variety of machine learning problems, including speech recognition,
image processing, character recognition, and grammatical inference; see the paper of Balle
and Mohri (2012) for references.

The task of learning automata from examples and queries has been extensively studied
since the 1960s. Two notable results in this domain show the impossibility of efficiently
learning deterministic finite automata from positive and negative examples alone. First,
Gold (1978) showed that the problem of exactly identifying the smallest deterministic finite
automaton consistent with a set of accepted and rejected words is NP-hard. Later, Kearns
and Valiant (1994) showed that the concept class of regular languages is not efficiently PAC
learnable using any polynomially-evaluable hypothesis class under standard cryptographic
assumptions.

A significant positive result on learning regular languages was achieved by Angluin
(1987), who considered a Learner that did not just passively receive data but that was
also able to ask queries. Specifically, Angluin considered membership queries, in which the
Learner asks an oracle whether a given word belongs to the target language, and equivalence
queries, in which the Learner asks an oracle whether a hypothesis is correct, obtaining a
counterexample if it is not. Subsequent research has sought to establish the learnability of
many other hypothesis classes in the same setting, including classes of Boolean formulae,
decision trees, context-free languages, and polynomials; see the book of Kearns and Vazirani
(1994, Chapter 8) for more details and references.

In this paper we study the problem of learning multiplicity tree automata in the exact
learning model of Angluin (1988), outlined above. Formally, in this model a Learner actively
collects information about the target function from a Teacher through membership queries,
which ask for the value of the function on a specific input, and equivalence queries, which
suggest a hypothesis to which the Teacher provides a counterexample if one exists. A class
of functions C is exactly learnable if there exists an exact learning algorithm such that for
any function f ∈ C , the Learner identifies f using polynomially many membership and
equivalence queries in the size of a shortest representation of f and the size of a largest
counterexample returned by the Teacher during the execution of the algorithm. The exact
learning model is an important theoretical model of the learning process. It is well known
that learnability in the exact learning model also implies learnability in the PAC model
with membership queries (Valiant, 1985).

We are interested in questions of succinctness and computational efficiency, both from
the point of view of the Teacher and the Learner. From the point of view of the Teacher,
one of the main questions is checking equivalence of multiplicity tree automata, i.e., whether
two multiplicity tree automata define the same function on trees. Seidl (1990) proved that
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equivalence of multiplicity tree automata is decidable in polynomial time assuming unit-cost
arithmetic, and in randomised polynomial time in the usual bit-cost model. No finer analysis
of the complexity of this problem exists to date. In contrast, the complexity of equivalence
for classical nondeterministic word and tree automata has been completely characterised:
PSPACE-complete over words (Aho et al., 1974) and EXPTIME-complete over trees (Seidl,
1990).

Our first contribution, in Section 3, is to show that the equivalence problem for multi-
plicity tree automata is logspace equivalent to polynomial identity testing, i.e., the problem
of deciding whether a polynomial given as an arithmetic circuit is zero. The latter problem is
known to be solvable in randomised polynomial time (DeMillo and Lipton, 1978; Schwartz,
1980; Zippel, 1979), whereas solving it in deterministic polynomial time is a well-studied
and longstanding open problem (see Arora and Barak, 2009).

Our second contribution, in Section 5, is to give lower bounds on the number of queries
needed to learn multiplicity tree automata in the exact learning model, both for the case
of an arbitrary and a fixed underlying field. The bound in the former case is linear in the
automaton size. In the latter case, the bound is linear in the automaton size for alphabets
of a fixed maximal rank. To the best of our knowledge, these are the first lower bounds on
the query complexity of exactly learning multiplicity tree automata.

Habrard and Oncina (2006) give an algorithm for learning multiplicity tree automata
in the exact learning model. Consider a target multiplicity tree automaton whose minimal
representation A has n states. The algorithm of Habrard and Oncina, op. cit., makes at
most n equivalence queries and number of membership queries proportional to |A| ·s, where
|A| is the size of A and s is the size of a largest counterexample returned by the Teacher.
Since this algorithm assumes that the Teacher returns counterexamples represented explic-
itly as trees, s can be exponential in |A|, even for a Teacher that returns counterexamples
of minimal size (see Example 3). This observation reveals an exponential gap between the
query complexity of the algorithm of Habrard and Oncina (2006) and our above-mentioned
lower bound, which is only linear in |A|. Another consequence is that the worst-case time
complexity of this algorithm is exponential in the size of the target automaton.

Given two inequivalent multiplicity tree automata with n states in total, the algorithm
of Seidl (1990) produces a subtree-closed set of trees of cardinality at most n that contains
a tree on which the automata differ. It follows that the counterexample contained in this
set has at most n subtrees, and hence can be represented as a DAG with at most n vertices
(see Section 3.2). Thus in the context of exact learning it is natural to consider a Teacher
that can return succinctly-represented counterexamples, i.e., trees represented as DAGs.

DAGs have been used as succinct representations of trees in a number of domains,
including classification problems (Sperduti and Starita, 1997) and query evaluation for
XML (Buneman et al., 2003; Frick et al., 2003). Tree automata that run on DAG represen-
tations of finite trees were first introduced by Charatonik (1999) as extensions of ordinary
tree automata, and were further studied by Anantharaman et al. (2005). The automata
considered by Charatonik (1999) and Anantharaman et al. (2005) run on fully-compressed
DAGs. Fila and Anantharaman (2006) extend this definition by introducing tree automata
that run on DAGs that may be partially compressed. In this paper, we employ the latter
framework in the context of learning multiplicity automata.
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Marušić and Worrell

In Section 4, we present a new exact learning algorithm for multiplicity tree automata
that achieves the same bound on the number of equivalence queries as the algorithm of
Habrard and Oncina (2006), while using number of membership queries quadratic in the
target automaton size and linear in the largest counterexample size, even when counterex-
amples are given as DAGs. Assuming that the Teacher provides minimal DAG representa-
tions of counterexamples, our algorithm therefore makes quadratically many queries in the
target automaton size. This is exponentially fewer queries than the best previously-known
algorithm (Habrard and Oncina, 2006) and quadratic in the above-mentioned lower bound.
Furthermore, our algorithm performs a quadratic number of arithmetic operations in the
size of the target automaton, and can be implemented in randomised polynomial time in
the Turing model.

Like the algorithm of Habrard and Oncina (2006), our algorithm constructs a matricial
representation of the target automaton, called the Hankel matrix (Carlyle and Paz, 1971;
Fliess, 1974). However on receiving a counterexample tree z, the former algorithm adds a
new column to the Hankel matrix for every suffix of z, while our algorithm adds (at most)
one new row for each subtree of z. Crucially the number of suffixes may be exponential in
the size of a DAG representation of z, whereas the number of subtrees is only linear in the
size of a DAG representation.

An extended abstract (Marušić and Worrell, 2014) of this work appeared in the proceed-
ings of MFCS 2014. The current paper contains full proofs of all results reported there, the
formal definition of multiplicity tree automata running on DAGs, and a refined complexity
analysis of the learning algorithm.

1.1 Related Work

One of the earliest results about the exact learning model was the proof of Angluin (1987)
that deterministic finite automata are learnable. This result was generalised by Drewes and
Högberg (2007) to show exact learnability of deterministic finite (bottom-up) tree automata,
generalising also a result of Sakakibara (1990) on the exact learnability of context-free
grammars from their structural descriptions1.

The learning algorithm of Drewes and Högberg (2007) was generalised by Maletti (2007)
to show that deterministic weighted tree automata over a (commutative) semifield are ex-
actly learnable, generalising also an earlier result of Drewes and Vogler (2007) which was
restricted to the class of deterministic all-accepting (i.e., every final weight is non zero)
weighted tree automata. Recently, a unifying framework for exact learning of deterministic
weighted tree automata over a semifield has been proposed (Drewes et al., 2011). Specifi-
cally, Drewes et al., op. cit., introduce the notion of abstract observation tables, an abstract
data type for learning deterministic weighted tree automata in the exact learning model,
and show that every correct implementation of abstract observation tables yields a correct
learning algorithm.

Exact learnability of nondeterministic weighted automata over a field (here called mul-
tiplicity automata) has also been extensively studied. Beimel et al. (2000) show that mul-
tiplicity word automata can be learned efficiently, and apply this to learn various classes
of DNF formulae and polynomials. These results were generalised by Klivans and Shpilka

1. Structural descriptions of a context-free grammar are unlabelled derivation trees of the grammar.
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(2006) to show exact learnability of restricted algebraic branching programs and noncom-
mutative set-multilinear arithmetic formulae. Bisht et al. (2006) give an almost tight (up to
a log factor) lower bound on the number of queries made by any exact learning algorithm
for the class of multiplicity word automata.

An exact learning algorithm for a class of nondeterministic tree automata, namely resid-
ual finite tree automata, is given by Kasprzik (2013). The latter paper identifies the size
of counterexamples as a hidden exponential factor in the complexity of the learning algo-
rithm, observing in particular that a smallest counterexample can have exponential size
in the number of states of the target automaton. Such a phenomenon does not prevent
the class of tree automata from being exactly learnable since in the exact learning model
the complexity measure takes into account the size of a largest counterexample. However,
this does raise the question of developing a learning algorithm whose complexity would
be polynomial in the size of succinctly-represented counterexamples, which is one of the
motivations for the present work.

Denis and Habrard (2007) consider the problem of learning probability distributions
over trees that are recognised by a multiplicity tree automaton from samples drawn in-
dependently according to the target distribution. They give an inference algorithm that
exactly identifies such recognisable probability distributions in the limit with probability
one (with respect to the randomly-drawn examples). Most closely related to the topic of
the present paper is the work of Habrard and Oncina (2006), who give an algorithm for
learning multiplicity tree automata in the exact learning model, as discussed above.

A variety of spectral methods have been employed for learning multiplicity word and tree
automata (Bailly et al., 2009; Balle and Mohri, 2012; Denis et al., 2014; Gybels et al., 2014).
This line of research originates in earlier work of Hsu et al. (2012) that gives a spectral
learning algorithm (based on singular value decomposition) for hidden Markov models.
Particularly close to the present paper is the work of Bailly et al. (2010), which learns
probability distributions over trees that are recognised by some multiplicity tree automaton.
Their approach lies within a passive learning framework in which one is given a sample
of trees independently drawn according to a target distribution, and the aim is to infer a
multiplicity tree automaton that approximates the target. As in our approach, the notion of
a Hankel matrix plays a central role in the algorithm of Bailly et al. (2010). There the Hankel
matrix is called an observation matrix, and it encodes an empirical distribution on trees
obtained by sampling from the target distribution. Bailly et al., op. cit., apply principal
component analysis in order to identify a low-dimensional approximation of the vector space
spanned by the residuals of the target probability distribution. From this approximation
they build an automaton whose associated tree series approximates the target distribution.
They moreover obtain bounds on the estimation error of the output tree series with respect
to the target distribution in terms of the sample size and the desired confidence.

In contrast to the above-described approach of Bailly et al. (2010), in our work the target
dimension (i.e., number of states) is not part of the input since our aim is to learn a minimal
multiplicity tree automaton that exactly represents the target tree series. Moreover, in the
present paper the entries of the Hankel matrix are determined by active queries rather than
passive observations, and the learning process continues until we know a sufficient number
of entries to be able to exactly construct a representation of the target.
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2. Preliminaries

Let N and N0 denote the set of all positive and nonnegative integers, respectively. Let
n ∈ N. We write [n] for the set {1, 2, . . . , n} and In for the identity matrix of order n.
For every i ∈ [n], we write ei for the ith n-dimensional coordinate row vector. For any
n-dimensional vector v, we write vi for its ith entry.

For any matrix A, we write Ai for its ith row, Aj for its jth column, and Ai,j for its (i, j)th

entry. Given nonempty subsets I and J of the rows and columns of A, respectively, we write
AI,J for the submatrix (Ai,j)i∈I,j∈J of A. For singletons, we write simply Ai,J := A{i},J and
AI,j := AI,{j}. We also consider matrices whose rows and columns are indexed by tuples of
natural numbers ordered lexicographically.

Given a set V , we denote by V ∗ the set of all finite ordered tuples of elements from
V . For any subset S ⊆ V , the characteristic function of S (relative to V ) is the function
χS : V → {0, 1} such that χS(x) = 1 if x ∈ S, and χS(x) = 0 otherwise.

2.1 Kronecker Product

Let A be a matrix of dimension m1 × n1 and B a matrix of dimension m2 × n2. The
Kronecker product of A by B, written as A ⊗ B, is a matrix of dimension m1m2 × n1n2

where (A⊗B)(i1,i2),(j1,j2) = Ai1,j1 ·Bi2,j2 for every i1 ∈ [m1], i2 ∈ [m2], j1 ∈ [n1], j2 ∈ [n2].

The Kronecker product is bilinear, associative, and has the following mixed-product
property : For any matrices A, B, C, D such that products A · C and B ·D are defined, it
holds that (A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D).

Let k ∈ N and A1, . . . , Ak be matrices such that for every l ∈ [k], matrix Al has nl rows.
It can easily be shown using induction on k that for every (i1, . . . , ik) ∈ [n1]× · · · × [nk], it
holds that

(A1 ⊗ · · · ⊗Ak)(i1,...,ik) = (A1)i1 ⊗ · · · ⊗ (Ak)ik . (1)

We write
⊗k

l=1Al := A1 ⊗ · · · ⊗Ak.
For every k ∈ N0 we define the k-fold Kronecker power of a matrix A, written as A⊗k,

inductively by A⊗0 = I1 and A⊗k = A⊗(k−1) ⊗A for k ≥ 1.

Let k ∈ N0. For any square matrices A and B, we have

(A⊗B)k = Ak ⊗Bk. (2)

For any matrices A1, . . . , Ak and B1, . . . , Bk where product Al ·Bl is defined for every l ∈ [k],
we have

(A1 ⊗ · · · ⊗Ak) · (B1 ⊗ · · · ⊗Bk) = (A1 ·B1)⊗ · · · ⊗ (Ak ·Bk). (3)

Equations (2) and (3) follow easily from the mixed-product property by induction on k.

2.2 Finite Trees

A ranked alphabet is a tuple (Σ, rk) where Σ is a nonempty finite set of symbols and
rk : Σ→ N0 is a function. Ranked alphabet (Σ, rk) is often written Σ for short. For every
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k ∈ N0, we define the set of all k-ary symbols Σk := rk−1({k}). If σ ∈ Σk then we say that
σ has rank (or arity) k. We say that Σ has rank m if m = max{rk(σ) : σ ∈ Σ}.

The set of Σ-trees (trees for short), written as TΣ, is the smallest set T satisfying the
following two conditions: (i) Σ0 ⊆ T ; and (ii) if k ≥ 1, σ ∈ Σk, t1, . . . , tk ∈ T then
σ(t1, . . . , tk) ∈ T . Given a Σ-tree t, a subtree of t is a Σ-tree consisting of a node in t and
all of its descendants in t. The set of all subtrees of t is denoted by Sub(t).

Let Σ be a ranked alphabet and F be a field. A tree series over Σ with coefficients in F
is a function f : TΣ → F. For every t ∈ TΣ, we call f(t) the coefficient of t in f . The set of
all tree series over Σ with coefficients in F is denoted by F〈〈TΣ〉〉.

We define the tree series height , size,#σ ∈ Q〈〈TΣ〉〉 where σ ∈ Σ, as follows: (i) if t ∈ Σ0

then height(t) = 0, size(t) = 1, #σ(t) = χ{t=σ}; and (ii) if t = a(t1, . . . , tk) where k ≥ 1,
a ∈ Σk, t1, . . . , tk ∈ TΣ then height(t) = 1 + max i∈[k]height(ti), size(t) = 1 +

∑
i∈[k] size(ti),

#σ(t) = χ{a=σ} +
∑

i∈[k] #σ(ti), respectively. For every n ∈ N0, we define the sets T<nΣ :=

{t ∈ TΣ : height(t) < n}, TnΣ := {t ∈ TΣ : height(t) = n}, and T≤nΣ := T<nΣ ∪ TnΣ .

Let 2 be a nullary symbol not contained in Σ. The set CΣ of Σ-contexts (contexts for
short) is the set of all ({2} ∪ Σ)-trees in which 2 occurs exactly once. The concatenation
of c ∈ CΣ and t ∈ TΣ ∪̇CΣ, written as c[t], is the tree obtained by substituting t for 2

in c. Intuitively, the 2-labelled leaf of c acts as a variable in that substituting a Σ-tree
(respectively, Σ-context) t for that variable yields a new Σ-tree (Σ-context) c[t].

A suffix of a Σ-tree t is a Σ-context c such that t = c[t′] for some Σ-tree t′. The Hankel
matrix of a tree series f ∈ F〈〈TΣ〉〉 is the matrix H : TΣ × CΣ → F such that Ht,c = f(c[t])
for every t ∈ TΣ and c ∈ CΣ.

2.3 Multiplicity Tree Automata

Let F be a field. An F-multiplicity tree automaton (F-MTA) is a quadruple A = (n,Σ, µ, γ)
which consists of the dimension n ∈ N0 representing the number of states, a ranked alphabet
Σ, a family of transition matrices µ = {µ(σ) : σ ∈ Σ}, where µ(σ) ∈ Fnrk(σ)×n, and the final
weight vector γ ∈ Fn×1. The size of the automaton A, written as |A|, is defined as

|A| :=
∑
σ∈Σ

nrk(σ)+1 + n.

That is, the size of A is the total number of entries in all transition matrices and the final
weight vector.2

Example 1 Let Σ = {0, 1,+,×,−} be a ranked alphabet where 0, 1 are nullary symbols and
+,×,− are binary symbols. We define an F-multiplicity tree automaton A = (2,Σ, µ, γ) as

follows. Automaton A has two states, q1 and q2, and has final weight vector γ =
[
0 1

]>
.

This means that states q1 and q2 have final weights γ1 = 0 and γ2 = 1, respectively. Given
a symbol σ ∈ Σ of rank k, the transition matrix µ(σ) has dimension 2k × 2 and stores the
weights of transitions from each k-tuple of origin states to each destination state. Let the

2. We measure size assuming explicit rather than sparse representations of the transition matrices and final
weight vector because minimal automata are only unique up to change of basis (see Theorem 4).
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transition matrices of A be µ(0) =
[
1 0

]
, µ(1) =

[
1 1

]
,

µ(+) =


1 0
0 1
0 1
0 0

 , µ(−) =


1 0
0 −1
0 1
0 0

 , and µ(×) =


1 0
0 0
0 0
0 1

 .
Entry µ(1)2 = 1 means that there is a transition 1

1→ q2 with weight 1 into state q2 on reading

symbol 1. Similarly, entry µ(+)(2,1),2 = 1 means that there is a transition +(q2, q1)
1→ q2

with weight 1 from pair of states (q2, q1) into state q2 on reading symbol +.

We extend µ from Σ to TΣ by defining

µ(σ(t1, . . . , tk)) := (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ)

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ. The tree series ‖A‖ ∈ F〈〈TΣ〉〉 recognised by A is
defined by ‖A‖(t) = µ(t) · γ for every t ∈ TΣ. Note that a 0-dimensional multiplicity tree
automaton necessarily recognises a zero tree series. Two automata A1, A2 are said to be
equivalent if ‖A1‖ ≡ ‖A2‖.

We further extend µ from TΣ to CΣ by treating 2 as a unary symbol and defining
µ(2) := In. This allows to define µ(c) ∈ Fn×n for every c = σ(t1, . . . , tk) ∈ CΣ inductively
by writing µ(c) := (µ(t1)⊗ · · · ⊗ µ(tk))·µ(σ). It can easily be shown that µ(c[t]) = µ(t)·µ(c)
for every t ∈ TΣ and c ∈ CΣ.

Example 2 Let us consider the computation of F-MTA A = (2,Σ, µ, γ) from Example 1
on the following Σ-tree t:

+

×

1 1

+

0 1

The transition matrices define bottom-up runs of A on t. Intuitively, a run on t corresponds
to multiple copies of automaton A walking along t from leaves to the root. Every such run
has a weight in F which is defined as the product of the weights of all transitions taken.

On tree t, automaton A has one nonzero-weight run ending in state q1, as follows:

+q1

×q1

1q1 1q1

+q1

0q1 1q1
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Moreover, automaton A has two nonzero-weight runs ending in state q2, as follows:

+q2

×q2

1q2 1q2

+q1

0q1 1q1

+q2

×q1

1q1 1q1

+q2

0q1 1q2

Each of the above three runs has weight 1. Therefore, the total weight of all runs of au-
tomaton A on tree t in which the root is labelled q1 is 1, and the total weight of all runs in
which the root is labelled q2 is 2. Indeed, algebraically, by definition of µ we have that

µ(t) = (µ(×(1, 1))⊗ µ(+(0, 1))) · µ(+)

= (((µ(1)⊗ µ(1)) · µ(×))⊗ ((µ(0)⊗ µ(1)) · µ(+))) · µ(+)

=


([1 1

]
⊗
[
1 1

])
·


1 0
0 0
0 0
0 1


⊗

([1 0
]
⊗
[
1 1

])
·


1 0
0 1
0 1
0 0



 ·


1 0
0 1
0 1
0 0



=


[1 1 1 1

]
·


1 0
0 0
0 0
0 1


⊗

[1 1 0 0
]
·


1 0
0 1
0 1
0 0



 ·


1 0
0 1
0 1
0 0



=
([

1 1
]
⊗
[
1 1

])
·


1 0
0 1
0 1
0 0

 =
[
1 1 1 1

]
·


1 0
0 1
0 1
0 0

 =
[
1 2

]
.

Finally, the weight ‖A‖(t) of tree t is the sum of the weights of all runs on t, where the
weight of each run is multiplied by the final weight of its root label. Algebraically, we have

‖A‖(t) = µ(t) · γ =
[
1 2

]
·
[
0 1

]>
= 2.

Let A1 = (n1,Σ, µ1, γ1) and A2 = (n2,Σ, µ2, γ2) be two F-multiplicity tree automata.
The product of A1 by A2, written as A1×A2, is the F-multiplicity tree automaton (n,Σ, µ, γ)
where:

• n = n1 · n2;

• If σ ∈ Σk then µ(σ) = Pk · (µ1(σ)⊗µ2(σ)) where Pk is a permutation matrix of order
(n1 · n2)k uniquely defined (see Remark 1 below) by

(u1 ⊗ · · · ⊗ uk)⊗ (v1 ⊗ · · · ⊗ vk) = ((u1 ⊗ v1)⊗ · · · ⊗ (uk ⊗ vk)) · Pk (4)

for all u1, . . . , uk ∈ F1×n1 and v1, . . . , vk ∈ F1×n2 ;
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• γ = γ1 ⊗ γ2.

Remark 1 We argue that for every k ∈ N0 such that k is the rank of a symbol in Σ,
matrix Pk is well-defined by Equation (4). In order to do this, it suffices to show that Pk is
well-defined on a set of basis vectors of F1×n1 and F1×n2 and then extend linearly. To that
end, let (e1

i )i∈[n1] and (e2
j )j∈[n2] be bases of F1×n1 and F1×n2, respectively. Let us define sets

of vectors

E1 := {(e1
i1 ⊗ · · · ⊗ e

1
ik

)⊗ (e2
j1 ⊗ · · · ⊗ e

2
jk

) : i1, . . . , ik ∈ [n1], j1, . . . , jk ∈ [n2]}

and

E2 := {(e1
i1 ⊗ e

2
j1)⊗ · · · ⊗ (e1

ik
⊗ e2

jk
) : i1, . . . , ik ∈ [n1], j1, . . . , jk ∈ [n2]}.

Then, E1 and E2 are two bases of the vector space F1×n1n2. Therefore, Pk is well-defined
as an invertible matrix mapping basis E1 to basis E2.

Essentially the same product construction as in the proof of the first part of the following
proposition is given by Berstel and Reutenauer (1982, Proposition 5.1) using the terminology
of linear representations of tree series rather than multiplicity tree automata.

Proposition 2 Let A1 and A2 be F-multiplicity tree automata over a ranked alphabet Σ.
Then, for every t ∈ TΣ it holds that ‖A1×A2‖(t) = ‖A1‖(t) · ‖A2‖(t). Furthermore, in case
F = Q, automaton A1 ×A2 can be computed from A1 and A2 in logarithmic space.

Proof Let A1 = (n1,Σ, µ1, γ1), A2 = (n2,Σ, µ2, γ2), and A1 × A2 = (n,Σ, µ, γ). First we
show that for any t ∈ TΣ,

µ(t) = µ1(t)⊗ µ2(t). (5)

We prove that Equation (5) holds for all t ∈ TΣ using induction on height(t). The base
case t = σ ∈ Σ0 holds immediately by definition since P0 = I1. For the induction step, let
h ∈ N0 and assume that Equation (5) holds for every t ∈ T≤hΣ . Take any t ∈ T h+1

Σ . Then

t = σ(t1, . . . , tk) for some k ≥ 1, σ ∈ Σk, and t1, . . . , tk ∈ T≤hΣ . By induction hypothesis,
Equation (4), and the mixed-product property of Kronecker product we now have

µ(t) = (µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ)

= ((µ1(t1)⊗ µ2(t1))⊗ · · · ⊗ (µ1(tk)⊗ µ2(tk))) · Pk · (µ1(σ)⊗ µ2(σ))

= ((µ1(t1)⊗ · · · ⊗ µ1(tk))⊗ (µ2(t1)⊗ · · · ⊗ µ2(tk))) · (µ1(σ)⊗ µ2(σ))

= ((µ1(t1)⊗ · · · ⊗ µ1(tk)) · µ1(σ))⊗ ((µ2(t1)⊗ · · · ⊗ µ2(tk)) · µ2(σ))

= µ1(t)⊗ µ2(t).

This completes the proof of Equation (5) by induction. For every t ∈ TΣ, we now have

‖A1 ×A2‖(t) = µ(t) · γ = (µ1(t)⊗ µ2(t)) · (γ1 ⊗ γ2)

= (µ1(t) · γ1)⊗ (µ2(t) · γ2) = ‖A1‖(t)⊗ ‖A2‖(t) = ‖A1‖(t) · ‖A2‖(t).
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Automaton A1 × A2 can be computed by a Turing machine which scans the transition
matrices and the final weight vectors of A1 and A2, and then writes down the entries of the
transition matrices and the final weight vector of their product A1 × A2 onto the output
tape. This computation requires maintaining only a constant number of counters to store
the indices of transition matrices, which takes logarithmic space in the representation of
automata A1 and A2. Hence, the Turing machine computing A1×A2 uses logarithmic space
in the work tape.

A tree series f is called recognisable if it is recognised by some multiplicity tree automa-
ton; such an automaton is called an MTA-representation of f . An MTA-representation of
f that has the smallest dimension is called minimal. The set of all recognisable tree series
in F〈〈TΣ〉〉 is denoted by Rec(Σ,F).

The following result was first shown by Bozapalidis and Louscou-Bozapalidou (1983);
an essentially equivalent result was later shown by Habrard and Oncina (2006).

Theorem 3 (Bozapalidis and Louscou-Bozapalidou, 1983) Let Σ be a ranked alpha-
bet and F be a field. Let f ∈ F〈〈TΣ〉〉 and let H be the Hankel matrix of f . It holds that
f ∈ Rec(Σ,F) if and only if H has finite rank over F. In case f ∈ Rec(Σ,F), the dimension
of a minimal MTA-representation of f equals the rank of H.

The following result by Bozapalidis and Alexandrakis (1989, Proposition 4) states that
for any recognisable tree series, its minimal MTA-representation is unique up to change of
basis.

Theorem 4 (Bozapalidis and Alexandrakis, 1989) Let Σ be a ranked alphabet and F
be a field. Let f ∈ Rec(Σ,F) and let r be the rank (over F) of the Hankel matrix of f . Let
A1 = (r,Σ, µ1, γ1) be an MTA-representation of f . Given an F-multiplicity tree automaton
A2 = (r,Σ, µ2, γ2), it holds that A2 recognises f if and only if there exists an invertible
matrix U ∈ Fr×r such that γ2 = U · γ1 and µ2(σ) = U⊗rk(σ) · µ1(σ) · U−1 for every σ ∈ Σ.

2.4 DAG Representations of Finite Trees

A directed multigraph consists of a set of nodes V and a multiset of directed edges E ⊆ V ×V .
We say that a directed multigraph is acyclic if the underlying directed graph has no cycles;
we say it is ordered if a linear order on the successors of each node is assumed. A directed
multigraph is rooted if there is a distinguished root node v such that all other nodes are
reachable from v.

Let Σ be a ranked alphabet. A DAG representation of a Σ-tree (Σ-DAG or DAG for
short) is a rooted acyclic ordered directed multigraph whose nodes are labelled with symbols
from Σ such that the outdegree of each node is equal to the rank of the symbol it is labelled
with. Formally a Σ-DAG consists of a set of nodes V , for each node v ∈ V a list of successors
succ(v) ∈ V ∗, and a node labelling λ : V → Σ where for each node v ∈ V it holds that
λ(v) ∈ Σ|succ(v)|. Note that Σ-trees are a subclass of Σ-DAGs.

Let G be a Σ-DAG. The size of G, denoted by size(G), is the number of nodes in G.
The height of G, denoted by height(G), is the length of a longest directed path in G. For
any node v in G, the sub-DAG of G rooted at v, denoted by G|v, is the Σ-DAG consisting

2475



Marušić and Worrell

of the node v and all of its descendants in G. Clearly, if v is the root of G then G|v = G.
The set {G|v : v is a node in G} of all the sub-DAGs of G is denoted by Sub(G).

For any Σ-DAG G, we define its unfolding into a Σ-tree, denoted by unfold(G), induc-
tively as follows: If the root of G is labelled with a symbol σ and has the list of successors
v1, . . . , vk, then

unfold(G) = σ(unfold(G|v1
), . . . , unfold(G|vk)).

The next proposition follows easily from the definition.

Proposition 5 If G is a Σ-DAG, then Sub(unfold(G)) = unfold [Sub(G)].

Because a context has exactly one occurrence of symbol 2, any DAG representation
of a Σ-context is a ({2} ∪ Σ)-DAG that has a unique path from the root to the (unique)
2-labelled node. The concatenation of a DAG K, representing a Σ-context, and a Σ-DAG
G is the Σ-DAG, denoted by K[G], obtained by substituting the root of G for 2 in K.

Proposition 6 Let K be a DAG representation of a Σ-context, and let G be a Σ-DAG.
Then, unfold(K[G]) = unfold(K)[unfold(G)].

Proof The proof is by induction on height(K). For the base case, let height(K) = 0. Then,
we have that K = 2 and therefore unfold(2[G]) = unfold(G) = unfold(2)[unfold(G)] for
any Σ-DAG G.

For the induction step, let h ∈ N0 and assume that the result holds if height(K) ≤ h.
Let K be a DAG representation of a Σ-context such that height(K) = h + 1. Let the
root of K have label σ and list of successors v1, . . . , vk. By definition, there is a unique
path in K going from the root to the 2-labelled node. Without loss of generality, we can
assume that the 2-labelled node is a successor of v1. Take an arbitrary Σ-DAG G. Since
height(K|v1

) ≤ h, we have by the induction hypothesis that

unfold(K[G]) = σ(unfold(K|v1
[G]), unfold(K|v2

), . . . , unfold(K|vk))

= σ(unfold(K|v1
)[unfold(G)], unfold(K|v2

), . . . , unfold(K|vk))

= σ(unfold(K|v1
), unfold(K|v2

), . . . , unfold(K|vk))[unfold(G)]

= unfold(K)[unfold(G)].

This completes the proof by induction.

2.5 Multiplicity Tree Automata on DAGs

In this section, we introduce the notion of a multiplicity tree automaton running on DAGs.
To the best of our knowledge, this notion has not been studied before.

Let F be a field, and A = (n,Σ, µ, γ) be an F-multiplicity tree automaton. The compu-
tation of automaton A on a Σ-DAG G = (V,E) is defined as follows: A run of A on G is a
mapping ρ : Sub(G) → Fn such that for every node v ∈ V , if v is labelled with σ and has
the list of successors succ(v) = v1, . . . , vk then

ρ(G|v) = (ρ(G|v1
)⊗ · · · ⊗ ρ(G|vk)) · µ(σ).
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Automaton A assigns to G a weight ‖A‖(G) ∈ F where ‖A‖(G) = ρ(G) · γ.
In the following proposition, we show that the weight assigned by a multiplicity tree

automaton to a DAG is equal to the weight assigned to its tree unfolding.

Proposition 7 Let F be a field, and A = (n,Σ, µ, γ) be an F-multiplicity tree automaton.
For any Σ-DAG G, it holds that ρ(G) = µ(unfold(G)) and ‖A‖(G) = ‖A‖(unfold(G)).

Proof Let V be the set of nodes of G. First we show that for every v ∈ V ,

ρ(G|v) = µ(unfold(G|v)). (6)

The proof is by induction on height(G|v). For the base case, let height(G|v) = 0. This
implies that G|v = σ ∈ Σ0. Therefore, by definition we have that

ρ(G|v) = µ(σ) = µ(unfold(σ)) = µ(unfold(G|v)).

For the induction step, let h ∈ N0 and assume that Equation (6) holds for every v ∈ V
such that height(G|v) ≤ h. Take any v ∈ V such that height(G|v) = h+ 1. Let the root of
G|v be labelled with a symbol σ and have list of successors succ(v) = v1, . . . , vk. Then for
every j ∈ [k], we have that height(G|vj ) ≤ h and thus ρ(G|vj ) = µ(unfold(G|vj )) holds by
the induction hypothesis. This implies that

ρ(G|v) = (ρ(G|v1
)⊗ · · · ⊗ ρ(G|vk)) · µ(σ)

= (µ(unfold(G|v1
))⊗ · · · ⊗ µ(unfold(G|vk))) · µ(σ)

= µ(σ(unfold(G|v1
), . . . , unfold(G|vk)))

= µ(unfold(G|v)),

which completes the proof of Equation (6) for all v ∈ V by induction.
Taking v to be the root of G, we get from Equation (6) that ρ(G) = µ(unfold(G)).

Therefore, ‖A‖(G) = ρ(G) · γ = µ(unfold(G)) · γ = ‖A‖(unfold(G)).

Example 3 Let Σ = {σ0, σ2} be a ranked alphabet such that rk(σ0) = 0 and rk(σ2) = 2.
Take any n ∈ N. Let tn, depicted in Figure 1, be the perfect binary Σ-tree of height n− 1.
Note that size(tn) = O(2n). Define an F-MTA A = (n,Σ, µ, e1) such that µ(σ0) = en ∈ F1×n

and µ(σ2) ∈ Fn2×n where µ(σ2)(i+1,i+1),i = 1 for every i ∈ [n − 1], and all other entries of
µ(σ2) are zero. It is easy to see that ‖A‖(tn) = 1 and ‖A‖(t) = 0 for every t ∈ TΣ \ {tn}.

Let B be the 0-dimensional F-MTA over Σ (so that ‖B‖ ≡ 0). Suppose we were to
check whether automata A and B are equivalent. Then the only counterexample to their
equivalence, namely the tree tn, has size O(2n). Note, however, that tn has an exponentially
more succinct DAG representation Gn, given in Figure 2.

2.6 Arithmetic Circuits

An arithmetic circuit is a finite acyclic vertex-labelled directed multigraph whose vertices,
called gates, have indegree 0 or 2. Vertices of indegree 0 are called input gates and are
labelled with a constant 0 or 1, or a variable from the set {xi : i ∈ N}. Vertices of indegree
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Marušić and Worrell

σ2 n

σ2

σ2

...

σ0

σ2

...

· · ·

σ2 n− 1

σ2

...

· · ·

σ2 n− 2

...

σ0 1

Figure 1: Tree tn

σ0 1

...

σ2 n− 2

σ2 n− 1

σ2 n

Figure 2: DAG Gn

2 are called internal gates and are labelled with an arithmetic operation +, ×, or −. We
assume that there is a unique gate with outdegree 0 called the output gate. An arithmetic
circuit is called variable-free if all input gates are labelled with 0 or 1.

Given two gates u and v of an arithmetic circuit C, we call u a child of v if (u, v) is a
directed edge in C. The size of C is the number of gates in C. The height of a gate v in C,
written as height(v), is the length of a longest directed path from an input gate to v. The
height of C is the maximal height of a gate in C.

An arithmetic circuit C computes a polynomial over the integers as follows: An input
gate of C labelled with α ∈ {0, 1} ∪ {xi : i ∈ N} computes the polynomial α. An internal
gate of C labelled with ∗ ∈ {+,×,−} computes the polynomial p1 ∗ p2 where p1 and p2

are the polynomials computed by its children. For any gate v in C, we write fv for the
polynomial computed by v. The output of C, written as fC , is the polynomial computed by
the output gate of C. The arithmetic circuit identity testing (ACIT) problem asks whether
the output of a given arithmetic circuit is equal to the zero polynomial.

Remark 8 Any variable-free arithmetic circuit C can be seen as a Σ-DAG with the ranked
alphabet Σ = {0, 1,+,×,−} where 0, 1 are nullary symbols and +,×,− are binary symbols.
Let A = (2,Σ, µ, γ) be the multiplicity tree automaton from Example 1. Then, for any gate
v in C it holds that µ(C|v) =

[
1 fv

]
, where C|v is the sub-DAG of C rooted at v and

fv is the number computed at gate v. (This result can be easily proved using induction on
height(C|v).) In particular, when v is the output gate of C we get that

‖A‖(C) = µ(C) · γ =
[
1 fC

]
·
[
0 1

]>
= fC .

Hence, automaton A evaluates the circuit C.
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2.7 The Learning Model

In this paper we work with the exact learning model of Angluin (1988): Let f be a target
function. A Learner (learning algorithm) may, in each step, propose a hypothesis function
h by making an equivalence query to a Teacher. If h is equivalent to f , then the Teacher
returns YES and the Learner succeeds and halts. Otherwise, the Teacher returns NO with
a counterexample, which is an assignment x such that h(x) 6= f(x). Moreover, the Learner
may query the Teacher for the value of the function f on a particular assignment x by
making a membership query on x. The Teacher returns the value f(x) to such a query.

We say that a class of functions C is exactly learnable if there is a Learner that for
any target function f ∈ C , outputs a hypothesis h ∈ C such that h(x) = f(x) for all
assignments x, and does so in time polynomial in the size of a shortest representation of f
and the size of a largest counterexample returned by the Teacher. We moreover say that
the class C is exactly learnable in (randomised) polynomial time if the learning algorithm
can be implemented to run in (randomised) polynomial time in the Turing model.

3. Equivalence Queries

In the exact learning model, one of the principal algorithmic questions from the point of
view of the Teacher is the computational complexity of equivalence testing. In this section
we characterise the computational complexity of equivalence testing for multiplicity tree
automata, showing that this problem is logspace equivalent to polynomial identity testing.
The latter is a well-studied problem for which there are numerous randomised polynomial-
time algorithms, with the existence of a deterministic polynomial-time algorithm being a
longstanding open problem. Moreover in this section, we explain why it is natural to expect
the Teacher to return succinct DAG counterexamples in the case of inequivalence.

3.1 Computational Complexity of MTA Equivalence

A key algorithmic component of the exact learning framework is checking the equivalence
of the hypothesis and the target function: a task for the Teacher rather than the Learner.
The existence of efficient algorithms to perform such equivalence checks is important for
several applications of the exact learning framework (see, e.g., Feng et al., 2011). With this
in mind, in this subsection we characterise the computational complexity of the equivalence
problem for Q-multiplicity tree automata. Here we specialise the weight field to be Q since
we want to work within the classical Turing model of computation. Parts of this section
also exploit the fact that Q is an ordered field.

Our main result is:

Theorem 9 The equivalence problem for Q-multiplicity tree automata is logspace interre-
ducible with ACIT.

A related result, characterising equivalence of probabilistic visibly pushdown automata on
words in terms of polynomial identity testing, was shown by Kiefer et al. (2013). On several
occasions in this section, we will implicitly make use of the fact that a composition of two
logspace reductions is again a logspace reduction (Arora and Barak, 2009, Lemma 4.17).
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3.1.1 From MTA Equivalence to ACIT

First, we present a logspace reduction from the equivalence problem for Q-MTAs to ACIT.
We start with the following lemma.

Lemma 10 Given an integer n ∈ N and a Q-multiplicity tree automaton A over a ranked
alphabet Σ, one can compute, in logarithmic space in |A| and n, a variable-free arithmetic
circuit that has output

∑
t∈T<nΣ

‖A‖(t).

Proof Let A = (r,Σ, µ, γ), and let m be the rank of Σ. By definition, it holds that

∑
t∈T<nΣ

‖A‖(t) =

 ∑
t∈T<nΣ

µ(t)

 · γ. (7)

We have
∑

t∈T<1
Σ
µ(t) =

∑
σ∈Σ0

µ(σ). Furthermore for every i ∈ N, it holds that

T<i+1
Σ = {σ(t1, . . . , tk) : k ∈ {0, . . . ,m}, σ ∈ Σk, t1, . . . , tk ∈ T<iΣ }

and thus by bilinearity of Kronecker product,

∑
t∈T<i+1

Σ

µ(t) =
m∑
k=0

∑
σ∈Σk

∑
t1∈T<iΣ

· · ·
∑

tk∈T<iΣ

(µ(t1)⊗ · · · ⊗ µ(tk)) · µ(σ)

=

m∑
k=0

∑
σ∈Σk

 ∑
t1∈T<iΣ

µ(t1)

⊗ · · · ⊗
 ∑
tk∈T<iΣ

µ(tk)

 · µ(σ)

=
m∑
k=0

 ∑
t∈T<iΣ

µ(t)

⊗k ∑
σ∈Σk

µ(σ). (8)

In the following we define a variable-free arithmetic circuit Φ that has output
∑

t∈T<nΣ
‖A‖(t).

First, let us denote G(i) :=
∑

t∈T<iΣ
µ(t) for every i ∈ N. Then by Equation (8) we have

G(i + 1) =
∑m

k=0G(i)⊗k · S(k) where S(k) :=
∑

σ∈Σk
µ(σ) for every k ∈ {0, . . . ,m}. In

coordinate notation, for every j ∈ [r] we have by Equation (1) that

G(i+ 1)j =
m∑
k=0

∑
(l1,...,lk)∈[r]k

k∏
a=1

G(i)la · S(k)(l1,...,lk),j . (9)

We present Φ as a straight-line program, with built-in constants

{µσ(l1,...,lk),j , γj : k ∈ {0, . . . ,m}, σ ∈ Σk, (l1, . . . , lk) ∈ [r]k, j ∈ [r]}

representing the entries of the transition matrices and the final weight vector of A, internal
variables {sk(l1,...,lk),j : k ∈ {0, . . . ,m}, (l1, . . . , lk) ∈ [r]k, j ∈ [r]} and {gi,j : i ∈ [n], j ∈ [r]}
evaluating the entries of matrices S(k) and vectors G(i) respectively, and the final internal
variable f computing the value of Φ.
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1. For j ∈ [r] do g1,j ←
∑
σ∈Σ0

µσj

2. For k ∈ {0, . . . ,m}, (l1, . . . , lk) ∈ [r]k, j ∈ [r] do sk(l1,...,lk),j ←
∑
σ∈Σk

µσ(l1,...,lk),j

3. For i = 1 to n− 1 do

3.1. For k ∈ {0, . . . ,m}, (l1, . . . , lk) ∈ [r]k, j ∈ [r] do

hi,k(l1,...,lk),j ←
k∏
a=1

gi,la · sk(l1,...,lk),j

3.2. For j ∈ [r] do

gi+1,j ←
m∑
k=0

∑
(l1,...,lk)∈[r]k

hi,k(l1,...,lk),j

4. For j ∈ [r] do fj ← gn,j · γj

5. f ←
∑
j∈[r]

fj .

Table 1: Straight-line program Φ

Formally, the straight-line program Φ is given in Table 1. Here the statements are given
in indexed-sum and indexed-product notation, which can easily be expanded in terms of
the corresponding binary operations. It follows from Equations (7) and (9) that the output
of Φ is G(n) · γ =

∑
t∈T<nΣ

‖A‖(t).
The input gates of Φ are labelled with rational numbers. By separately encoding nu-

merators and denominators, we can in logarithmic space reduce Φ to an arithmetic circuit
where all input gates are labelled with integers. Moreover, without loss of generality we can
assume that every input gate of Φ is labelled with 0 or 1. Any other integer label given in
binary can be encoded as an arithmetic circuit.

Recalling that a composition of two logspace reductions is again a logspace reduction,
we conclude that the entire computation takes logarithmic space in |A| and n.

Before presenting the reduction in Proposition 12, we recall the following characterisa-
tion (Seidl, 1990, Theorem 4.2) of equivalence of two multiplicity tree automata over an
arbitrary field.

2481
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Proposition 11 (Seidl, 1990) Suppose A and B are multiplicity tree automata of dimen-
sion n1 and n2, respectively, and over a ranked alphabet Σ. Then, A and B are equivalent
if and only if ‖A‖(t) = ‖B‖(t) for every t ∈ T<n1+n2

Σ .

We now turn to the reduction:

Proposition 12 The equivalence problem for Q-multiplicity tree automata is logspace re-
ducible to ACIT.

Proof Let A and B be Q-multiplicity tree automata over a ranked alphabet Σ, and let n
be the sum of their dimensions. Proposition 2 implies that∑

t∈T<nΣ

(‖A‖(t)− ‖B‖(t))2 =
∑
t∈T<nΣ

(
‖A‖(t)2 + ‖B‖(t)2 − 2‖A‖(t)‖B‖(t)

)
=
∑
t∈T<nΣ

(‖A×A‖(t) + ‖B ×B‖(t)− 2‖A×B‖(t)) .

Thus by Proposition 11, automata A and B are equivalent if and only if∑
t∈T<nΣ

‖A×A‖(t) +
∑
t∈T<nΣ

‖B ×B‖(t)− 2
∑
t∈T<nΣ

‖A×B‖(t) = 0. (10)

We know from Proposition 2 that automata A×A, B×B, and A×B can be computed in
logarithmic space. Thus by Lemma 10 one can compute, in logarithmic space in |A| and |B|,
variable-free arithmetic circuits that have outputs

∑
t∈T<nΣ

‖A×A‖(t),
∑

t∈T<nΣ
‖B×B‖(t),

and
∑

t∈T<nΣ
‖A × B‖(t) respectively. Using Equation (10), we can now easily construct a

variable-free arithmetic circuit that has output 0 if and only if A and B are equivalent.

3.1.2 From ACIT to MTA Equivalence

We now present a converse reduction: from ACIT to the equivalence problem for Q-MTAs.
Allender et al. (2009, Proposition 2.2) give a logspace reduction of the general ACIT

problem to the special case of ACIT for variable-free circuits. The latter can, by repre-
senting arbitrary integers as differences of two nonnegative integers, be reformulated as the
problem of deciding whether two variable-free arithmetic circuits with only + and ×-internal
gates compute the same number. With this result at hand, we turn to the reduction:

Proposition 13 ACIT is logspace reducible to the equivalence problem for Q-multiplicity
tree automata.

Proof Let C1 and C2 be two variable-free arithmetic circuits whose internal gates are
labelled with + or ×. By padding with extra gates, without loss of generality we can
assume that in each circuit the children of a height-i gate both have height i − 1, +-gates
have even height, ×-gates have odd height, and the output gate has an even height h.

In the following we define two Q-MTAs, A1 and A2, that are equivalent if and only if
circuits C1 and C2 have the same output. Automata A1 and A2 are both defined over a
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ranked alphabet Σ = {σ0, σ1, σ2} where σ0 is a nullary, σ1 is a unary, and σ2 is a binary
symbol. Intuitively, automata A1 and A2 both recognise the common ‘tree unfolding’ of
circuits C1 and C2.

We now derive A1 from C1; A2 is analogously derived from C2. Let {v1, . . . , vr} be the
set of gates of C1 where vr is the output gate. Automaton A1 has a state qi for every gate
vi of C1. Formally, A1 = (r,Σ, µ, e>r ) where for every i ∈ [r]:

• If vi is an input gate with label 1 then µ(σ0)i = 1, otherwise µ(σ0)i = 0.

• If vi is a +-gate with children vj1 and vj2 then µ(σ1)j1,i = µ(σ1)j2,i = 1 if j1 6= j2,
µ(σ1)j1,i = 2 if j1 = j2, and µ(σ1)l,i = 0 for every l 6∈ {j1, j2}. If vi is an input gate or
a ×-gate then µ(σ1)i = 0r×1.

• If vi is a ×-gate with children vj1 and vj2 then µ(σ2)(j1,j2),i = 1, and µ(σ2)(l1,l2),i = 0
for every (l1, l2) 6= (j1, j2). If vi is an input gate or a +-gate then µ(σ2)i = 0r2×1.

We define a sequence of trees (tn)n∈N0 ⊆ TΣ by t0 = σ0, tn+1 = σ1(tn) for n odd, and
tn+1 = σ2(tn, tn) for n even. In the following we show that ‖A1‖(th) = fC1 . For every gate
v of C1, by assumption it holds that all paths from v to the output gate have equal length.
We now prove that for every i ∈ [r],

µ(thi)i = fvi (11)

where hi := height(vi). The proof uses induction on hi ∈ {0, . . . , h}. For the base case, let
hi = 0. Then, vi is an input gate and thus by definition of automaton A1 we have

µ(thi)i = µ(t0)i = µ(σ0)i = fvi .

For the induction step, let n ∈ [h] and assume that Equation (11) holds for every gate vi
of height less than n. Take an arbitrary gate vi of C1 such that hi = n. Let gates vj1 and
vj2 be the children of vi. Then hj1 = hj2 = hi − 1 = n − 1 by assumption. The induction
hypothesis now implies that µ(thi−1)j1 = fvj1 and µ(thi−1)j2 = fvj2 . Depending on the label
of vi, there are two possible cases as follows:

(i) If vi is a +-gate, then hi is even and thus by definition of A1 we have

µ(thi)i = µ(σ1(thi−1))i = µ(thi−1) · µ(σ1)i

= µ(thi−1)j1 + µ(thi−1)j2 = fvj1 + fvj2 = fvi .

(ii) If vi is a ×-gate, then hi is odd and thus by definition of A1 and Equation (1) we have

µ(thi)i = µ(σ2(thi−1, thi−1))i = µ(thi−1)⊗2 · µ(σ2)i

= µ(thi−1)j1 · µ(thi−1)j2 = fvj1 · fvj2 = fvi .

This completes the proof of Equation (11) by induction. Now for the output gate vr of C1,
we get from Equation (11) that µ(th)r = fvr since hr = h. Therefore,

‖A1‖(th) = µ(th) · e>r = µ(th)r = fvr = fC1 .
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Analogously, it holds that ‖A2‖(th) = fC2 . It is moreover clear by construction that
‖A1‖(t) = 0 and ‖A2‖(t) = 0 for every t ∈ TΣ \ {th}. Therefore, automata A1 and A2 are
equivalent if and only if arithmetic circuits C1 and C2 have the same output.

Propositions 12 and 13 together imply Theorem 9. On a positive note, it should be
remarked that there are numerous efficient randomised algorithms for ACIT. Indeed, it
was already known that there is a randomised polynomial-time algorithm for equivalence of
multiplicity tree automata (Seidl, 1990). On the other hand, we have shown that obtaining a
deterministic polynomial-time algorithm for multiplicity tree automaton equivalence would
imply also a deterministic polynomial-time algorithm for ACIT.

3.2 DAG Counterexamples

In the exact learning model, when answering an equivalence query the Teacher not only
checks equivalence but also provides a counterexample in case of inequivalence. As men-
tioned before, there is a randomised polynomial-time algorithm for checking MTA equiva-
lence (Seidl, 1990). In this subsection, we explain why a Teacher using this algorithm would
naturally give succinct DAG counterexamples.

Although the paper of Seidl (1990) does not mention counterexamples, they can be
easily extracted from the algorithm presented therein. Indeed the correctness proof of
the algorithm shows, inter alia, that for any two inequivalent MTAs A1 = (n1,Σ, µ1, γ1)
and A2 = (n2,Σ, µ2, γ2), there exists a tree t such that ‖A1‖(t) 6= ‖A2‖(t) and t can be
represented by a DAG with at most n1 + n2 vertices. To see this, we now briefly describe
the main idea behind the procedure: Given MTAs A1 and A2 as above, a prefix-closed set
of trees S ⊆ TΣ is maintained such that {

[
µ1(t) µ2(t)

]
: t ∈ S} is a linearly independent

set of vectors. Note that since this set of vectors lies in Fn1+n2 , it necessarily holds that
|S| ≤ n1 + n2. The algorithm terminates when

span
{[
µ1(t) µ2(t)

]
: t ∈ S

}
= span

{[
µ1(t) µ2(t)

]
: t ∈ TΣ

}
and reports that A1 and A2 are inequivalent just in case a tree t ∈ S is found such that[

µ1(t) µ2(t)
]
·
[
γ1

−γ2

]
6= 0,

i.e., ‖A1‖(t) 6= ‖A2‖(t). Such a tree t, if one exists, has at most n1 + n2 subtrees and thus
has a DAG representation of size at most n1 + n2. As we have seen in Example 3, the
number of vertices of tree t may be exponential in n1 + n2, thus it is very natural that a
Teacher that resolves equivalence queries using the algorithm of Seidl (1990) would return
counterexamples represented succinctly as DAGs.

4. The Learning Algorithm

In this section, we give an exact learning algorithm for multiplicity tree automata. Our
algorithm is polynomial in the size of a minimal automaton equivalent to the target and the
size of a largest counterexample given as a DAG. As seen in Example 3, DAG counterexam-
ples can be exponentially more succinct than tree counterexamples. Therefore, achieving a
polynomial bound in the context of DAG representations is a more exacting criterion.
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Over an arbitrary field F, the algorithm can be seen as running on a Blum-Shub-Smale
machine that can write and read field elements to and from its memory at unit cost and
that can also perform arithmetic operations and equality tests on field elements at unit
cost (see Arora and Barak, 2009). Over Q, the algorithm can be implemented in randomised
polynomial time by representing rationals as arithmetic circuits and using a coRP algorithm
for equality testing of such circuits (see Allender et al., 2009).

This section is organised as follows: In Section 4.1 we present the learning algorithm. In
Section 4.2 we prove correctness on trees, and then argue in Section 4.3 that the algorithm
can be faithfully implemented using a DAG representation of trees. Finally, in Section 4.4
we give a complexity analysis of the algorithm assuming the DAG representation.

4.1 The Algorithm

Let f ∈ Rec(Σ,F) be the target function. The algorithm learns an MTA-representation of
f using its Hankel matrix H, which has finite rank over F by Theorem 3.

The algorithm iteratively constructs a full row-rank submatrix of the Hankel matrix H.
At each stage, the algorithm maintains the following data:

• An integer n ∈ N.

• A set of n ‘rows’ X = {t1, . . . , tn} ⊆ TΣ.

• A finite set of ‘columns’ Y ⊆ CΣ such that 2 ∈ Y .

• A submatrix HX,Y of H that has full row rank.

These data determine a hypothesis automaton A of dimension n, whose states correspond to
the rows of HX,Y , with the ith row corresponding to the state reached after reading tree ti.
The Learner makes an equivalence query on the hypothesis A. In case the Teacher answers
NO, the Learner receives a counterexample z. The Learner then parses z bottom-up to find
a minimal subtree of z that is also a counterexample, and uses this subtree to augment the
row set X and the column set Y in a way that increases the rank of the submatrix HX,Y .

Formally, the algorithm LMTA is given in Table 2. Here for any k-ary symbol σ ∈ Σ we
define σ(X, . . . ,X) := {σ(ti1 , . . . , tik) : (i1, . . . , ik) ∈ [n]k}.

Algorithm LMTA follows a classical scheme: it generalises the procedure of Beimel et al.
(2000) by working with a more general notion of a Hankel matrix that is appropriate for
tree series. Moreover, LMTA differs from the procedure of Habrard and Oncina (2006) in
the way counterexamples are treated and the hypothesis automaton updated; we provide
more details on this point at the end of this section.

4.2 Correctness Proof

In this subsection, we prove the correctness of the exact learning algorithm LMTA. Specif-
ically, we show that, given a target f ∈ Rec(Σ,F), algorithm LMTA outputs a minimal
MTA-representation of f after at most rank(H) iterations of the main loop.

The correctness proof naturally breaks down into several lemmas. First, we show that
matrix HX,Y has full row rank.

2485
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Algorithm LMTA

Target: f ∈ Rec(Σ,F), where Σ has rank m and F is a field

1. Make an equivalence query on the 0-dimensional F-MTA over Σ.
If the answer is YES then output the 0-dimensional F-MTA over Σ and halt.
Otherwise the answer is NO and z is a counterexample. Initialise:
n← 1, tn ← z, X ← {tn}, Y ← {2}.

2. 2.1. For every k ∈ {0, . . . ,m}, σ ∈ Σk, and (i1, . . . , ik) ∈ [n]k:
If Hσ(ti1 ,...,tik ),Y is not a linear combination of Ht1,Y , . . . ,Htn,Y then

n← n+ 1, tn ← σ(ti1 , . . . , tik), X ← X ∪ {tn}.
2.2. Define an F-MTA A = (n,Σ, µ, γ) as follows:

• γ = HX,2.

• For every k ∈ {0, . . . ,m} and σ ∈ Σk:

Define matrix µ(σ) ∈ Fnk×n by the equation

µ(σ) ·HX,Y = Hσ(X,...,X),Y . (12)

3. 3.1. Make an equivalence query on A.
If the answer is YES then output A and halt.
Otherwise the answer is NO and z is a counterexample. Searching bottom-up,
find a subtree σ(τ1, . . . , τk) of z that satisfies the following two conditions:

(i) For every j ∈ [k], Hτj ,Y = µ(τj) ·HX,Y .

(ii) For some c ∈ Y , Hσ(τ1,...,τk),c 6= µ(σ(τ1, . . . , τk)) ·HX,c.

3.2. For every j ∈ [k] and (i1, . . . , ij−1) ∈ [n]j−1:
Y ← Y ∪ {c[σ(ti1 , . . . , tij−1 ,2, τj+1, . . . , τk)]}.

3.3. For every j ∈ [k]:
If Hτj ,Y is not a linear combination of Ht1,Y , . . . ,Htn,Y then
n← n+ 1, tn ← τj , X ← X ∪ {tn}.

3.4. Go to 2.

Table 2: Exact learning algorithm LMTA for the class of multiplicity tree automata

Lemma 14 Linear independence of the set of vectors {Ht1,Y , . . . ,Htn,Y } is an invariant of
the loop consisting of Step 2 and Step 3.

Proof We argue inductively on the number of iterations of the loop. The base case n = 1
clearly holds since f(z) 6= 0.

For the induction step, suppose that the set {Ht1,Y , . . . ,Htn,Y } is linearly independent at
the start of an iteration of the loop. If a tree t ∈ TΣ is added to X during Step 2.1, then Ht,Y

is not a linear combination of Ht1,Y , . . . ,Htn,Y , and therefore {Ht1,Y , . . . ,Htn,Y , Ht,Y } is a
linearly independent set of vectors. Hence, the set {Ht1,Y , . . . ,Htn,Y } is linearly independent
at the start of Step 3.
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Unless the algorithm halts in Step 3.1, it proceeds to Step 3.2 where the set of columns
Y is increased, which clearly preserves linear independence of vectors Ht1,Y , . . . ,Htn,Y . If a
tree τj is added to X in Step 3.3, then Hτj ,Y is not a linear combination of Ht1,Y , . . . ,Htn,Y

which implies that the vectors Ht1,Y , . . . ,Htn,Y , Hτj ,Y are linearly independent. Hence, the
set {Ht1,Y , . . . ,Htn,Y } is linearly independent at the start of the next iteration of the loop.
This completes the induction step.

Secondly, we show that Step 2.2 of LMTA can always be performed.

Lemma 15 Whenever Step 2.2 starts, for every k ∈ {0, . . . ,m} and σ ∈ Σk there exists a

unique matrix µ(σ) ∈ Fnk×n satisfying Equation (12).

Proof Take any (i1, . . . , ik) ∈ [n]k. Step 2.1 ensures that Hσ(ti1 ,...,tik ),Y can be represented
as a linear combination of vectors Ht1,Y , . . . ,Htn,Y . This representation is unique since
Ht1,Y , . . . ,Htn,Y are linearly independent vectors by Lemma 14. Row µ(σ)(i1,...,ik) ∈ F1×n

is, therefore, uniquely defined by the equation µ(σ)(i1,...,ik) ·HX,Y = Hσ(ti1 ,...,tik ),Y .

Thirdly, we show that Step 3.1 of LMTA can always be performed.

Lemma 16 Suppose that upon making an equivalence query on A in Step 3.1, the Learner
receives the answer NO and a counterexample z. Then, there exists a subtree σ(τ1, . . . , τk)
of z that satisfies the following two conditions:

(i) For every j ∈ [k], Hτj ,Y = µ(τj) ·HX,Y .

(ii) For some c ∈ Y , Hσ(τ1,...,τk),c 6= µ(σ(τ1, . . . , τk)) ·HX,c.

Proof Towards a contradiction, assume that there exists no subtree σ(τ1, . . . , τk) of z that
satisfies conditions (i) and (ii). We claim that then for every subtree τ of z, it holds that

Hτ,Y = µ(τ) ·HX,Y . (13)

In the following we prove this claim using induction on height(τ). The base case τ ∈ Σ0

follows immediately from Equation (12). For the induction step, let 0 ≤ h < height(z) and
assume that Equation (13) holds for every subtree τ ∈ T≤hΣ of z. Take an arbitrary subtree

τ ∈ T h+1
Σ of z. Then τ = σ(τ1, . . . , τk) for some k ∈ [m], σ ∈ Σk, and τ1, . . . , τk ∈ T≤hΣ , where

τ1, . . . , τk are subtrees of z. The induction hypothesis implies that Hτj ,Y = µ(τj) · HX,Y

holds for every j ∈ [k]. Hence, subtree τ satisfies condition (i). By assumption, no subtree
of z satisfies both conditions (i) and (ii). Thus τ does not satisfy condition (ii), i.e., it holds
that Hτ,Y = µ(τ) ·HX,Y . This completes the proof by induction.

Equation (13) for τ = z gives Hz,Y = µ(z) · HX,Y . Since 2 ∈ Y , this in particular
implies that

f(z) = Hz,2 = µ(z) ·HX,2 = µ(z) · γ = ‖A‖(z),

which yields a contradiction since z is a counterexample for the hypothesis A.

Finally, we show that the row set X is augmented with at least one element in each
iteration of the main loop.
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Lemma 17 Every complete iteration of the Step 2 - 3 loop strictly increases the cardinality
of the row set X.

Proof It suffices to show that in Step 3.3 at least one of the trees τ1, . . . , τk is added to X.
By Lemma 14, at the start of Step 3.2 vectors Ht1,Y , . . . ,Htn,Y are linearly independent.
Thus by condition (i) of Step 3.1, for every j ∈ [k] it holds that

Hτj ,Y = µ(τj) ·HX,Y (14)

and, moreover, Equation (14) is the unique representation of vector Hτj ,Y as a linear com-
bination of vectors Ht1,Y , . . . ,Htn,Y . Clearly, vectors Ht1,Y , . . . ,Htn,Y remain linearly inde-
pendent when Step 3.2 ends.

Towards a contradiction, assume that in Step 3.3 none of the trees τ1, . . . , τk is added to
X. This means that for every j ∈ [k], vector Hτj ,Y can be represented as a linear combina-
tion of Ht1,Y , . . . ,Htn,Y . The latter representation is unique, since vectors Ht1,Y , . . . ,Htn,Y

are linearly independent, and is given by Equation (14). By condition (ii) of Step 3.1 and
Equations (12) and (1), we now have that

Hσ(τ1,...,τk),c 6= µ(σ(τ1, . . . , τk)) ·HX,c

= (µ(τ1)⊗ · · · ⊗ µ(τk)) · µ(σ) ·HX,c

= (µ(τ1)⊗ . . .⊗ µ(τk)) ·Hσ(X,...,X),c

=
∑

(i1,...,ik)∈[n]k

 k∏
j=1

µ(τj)ij

 ·Hσ(ti1 ,...,tik ),c. (15)

By Step 3.2, it holds that c[σ(ti1 , . . . , tij−1 ,2, τj+1, . . . , τk)] ∈ Y for every j ∈ [k] and every
(i1, . . . , ij−1) ∈ [n]j−1. Thus by Equation (14) for j = k, we have

∑
(i1,...,ik)∈[n]k

 k∏
j=1

µ(τj)ij

 ·Hσ(ti1 ,...,tik ),c

=
∑

(i1,...,ik−1)∈[n]k−1

k−1∏
j=1

µ(τj)ij

 ·∑
i∈[n]

µ(τk)i ·Hti,c[σ(ti1 ,...,tik−1
,2)]

=
∑

(i1,...,ik−1)∈[n]k−1

k−1∏
j=1

µ(τj)ij

 · µ(τk) ·HX,c[σ(ti1 ,...,tik−1
,2)]

=
∑

(i1,...,ik−1)∈[n]k−1

k−1∏
j=1

µ(τj)ij

 ·Hτk,c[σ(ti1 ,...,tik−1
,2)]. (16)

Proceeding inductively as above and applying Equation (14) for every j ∈ {k − 1, . . . , 1},
we get that the expression of (16) is equal to Hτ1,c[σ(2,τ2,...,τk)]. However, this contradicts
Equation (15). The result follows.

Putting together Lemmas 14 - 17, we conclude the following:

2488



Equivalence and Learning for Multiplicity Tree Automata

Proposition 18 Let Σ be a ranked alphabet and F be a field. Let f ∈ Rec(Σ,F), let H be
the Hankel matrix of f , and let r be the rank (over F) of H. On target f , algorithm LMTA
outputs a minimal MTA-representation of f after at most r iterations of the loop consisting
of Step 2 and Step 3.

Proof Lemmas 15 and 16 show that every step of algorithm LMTA can be performed.

Theorem 3 implies that r is finite. From Lemma 14 we know that, whenever Step 2
starts, matrix HX,Y has full row rank and thus n = |X| ≤ r. Lemma 17 implies that n
increases by at least one in each iteration of the Step 2 - 3 loop. Therefore, the number of
iterations of the loop is at most r.

The proof follows by observing that LMTA halts only upon receiving the answer YES
to an equivalence query.

4.3 Succinct Representations

In this subsection, we explain how algorithm LMTA can be correctly implemented using a
DAG representation of trees. In particular, we assume that membership queries are made
on Σ-DAGs, that the counterexamples are given as Σ-DAGs, the elements of X are Σ-DAGs,
and the elements of Y are DAG representations of Σ-contexts, i.e., ({2} ∪ Σ)-DAGs.

As shown in Section 2.5, multiplicity tree automata can run directly on DAGs and,
moreover, they assign equal weight to a DAG and to its tree unfolding. Crucially also, as
explained in the proof of Theorem 19, Step 3.1 can be run directly on a DAG representation
of the counterexample, without unfolding. Specifically, Step 3.1 involves multiple executions
of the hypothesis automaton on trees. By Proposition 7, we can faithfully carry out these
executions on DAG representations of trees. Step 3.1 also involves considering all the
subtrees of a given counterexample. However, by Proposition 5, this is equivalent to looking
at all the sub-DAGs of a DAG representation of the counterexample.

At various points in the algorithm, we take c ∈ Y , t ∈ X and compute their concatena-
tion c[t] in order to determine the corresponding entry Ht,c of the Hankel matrix by making
a membership query. Proposition 6 implies that this can be done faithfully using DAG
representations of Σ-trees and Σ-contexts.

4.4 Complexity Analysis

In this subsection, we give a query and computational complexity analysis of our algorithm
and compare it to the best previously-known exact learning algorithm for multiplicity tree
automata (Habrard and Oncina, 2006) showing in particular an exponential improvement
on the query complexity and the running time in the worst case.

Theorem 19 Let f ∈ Rec(Σ,F) where Σ has rank m and F is a field. Let A be a minimal
MTA-representation of f , and let r be the dimension of A. Then, f is learnable by the
algorithm LMTA, making r + 1 equivalence queries, |A|2 + |A| · s membership queries, and
O(|A|2+|A|·r ·s) arithmetic operations, where s denotes the size of a largest counterexample
z, represented as a DAG, that is obtained during the execution of the algorithm.
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Proof Let H be the Hankel matrix of f . Note that, by Theorem 3, the rank of H is
equal to r. Proposition 18 implies that on target f , algorithm LMTA outputs a minimal
MTA-representation of f after at most r iterations of the Step 2 - 3 loop, thereby making
at most r + 1 equivalence queries.

From Lemma 14 we know that matrix HX,Y has full row rank, which implies that
|X| ≤ r. As for the cardinality of the column set Y , at the end of Step 1 we have |Y | = 1.
Furthermore, in each iteration of Step 3.2 the number of columns added to Y is at most

k∑
j=1

nj−1 ≤
k∑
j=1

rj−1 =
rk − 1

r − 1
≤ rm − 1

r − 1
,

where k and n are as defined in Step 3.2. Since the number of iterations of Step 3.2 is at
most r − 1, we have |Y | ≤ rm.

The number of membership queries made in Step 2 over the whole algorithm is(∑
σ∈Σ

|σ(X, . . . ,X)|+ |X|

)
· |Y |

because the Learner needs to ask for the values of the entries of matrices HX,Y and
Hσ(X,...,X),Y for every σ ∈ Σ.

To analyse the number of membership queries made in Step 3, we now detail the pro-
cedure by which an appropriate sub-DAG of the counterexample z is found in Step 3.1.
By Lemma 16, there exists a sub-DAG τ of z such that Hτ,Y 6= µ(τ) · HX,Y . Thus given
a counterexample z in Step 3.1, the procedure for finding a required sub-DAG of z is as
follows: Check if Hτ,Y = µ(τ) ·HX,Y for every sub-DAG τ of z in a nondecreasing order of
height; stop when a sub-DAG τ is found such that Hτ,Y 6= µ(τ) ·HX,Y .

In each iteration of Step 3, the Learner makes size(z) · |Y | ≤ s · |Y | membership queries
because, for every sub-DAG τ of z, the Learner needs to ask for the values of the entries of
vector Hτ,Y . All together, the number of membership queries made during the execution of
the algorithm is at most(∑

σ∈Σ

|σ(X, . . . ,X)|+ |X|

)
· |Y |+ (r − 1) · s · |Y |

≤

(∑
σ∈Σ

rrk(σ) + r

)
· rm + (r − 1) · s · rm ≤ |A|2 + |A| · s.

As for the arithmetic complexity, in Step 2.1 one can determine if a vector Hσ(ti1 ,...,tik ),Y

is a linear combination of Ht1,Y , . . . ,Htn,Y via Gaussian elimination using O(n2 · |Y |) arith-
metic operations (see Cohen, 1993, Section 2.3). Analogously, in Step 3.3 one can determine
if Hτj ,Y is a linear combination of Ht1,Y , . . . ,Htn,Y via Gaussian elimination using O(n2 ·|Y |)
arithmetic operations. Since |X| ≤ r and |Y | ≤ rm, all together Step 2.1 and Step 3.3 re-
quire at most O(|A|2) arithmetic operations.

Lemma 15 implies that in each iteration of Step 2.2, for every σ ∈ Σ there exists a unique
matrix µ(σ) ∈ Fnrk(σ)×n that satisfies Equation (12). To perform an iteration of Step 2.2,
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we first put matrix HX,Y in echelon form and then, for each σ ∈ Σ, solve Equation (12) for
µ(σ) by back substitution. It follows from standard complexity bounds on the conversion
of matrices to echelon form (Cohen, 1993, Section 2.3) that the total operation count for
Step 2.2 can be bounded above by O(|A|2).

Finally, let us consider the arithmetic complexity of Step 3.1. In every iteration, for each
sub-DAG τ of the counterexample z the Learner needs to compute the vector µ(τ) and the
product µ(τ) ·HX,Y . Note that µ(τ) can be computed bottom-up from the sub-DAGs of τ .
Since z has at most s sub-DAGs, Step 3.1 requires at most O(|A| · r · s) arithmetic opera-
tions. All together, the algorithm requires at most O(|A|2+|A|·r·s) arithmetic operations.

Algorithm LMTA can be used to show that over Q, multiplicity tree automata are exactly
learnable in randomised polynomial time. The key idea is to represent numbers as arithmetic
circuits. In executing LMTA, the Learner need only perform arithmetic operations on
circuits (addition, subtraction, multiplication, and division), which can be done in constant
time, and equality testing, which can be done in coRP (see Arora and Barak, 2009). These
suffice for all the operations detailed in the proof of Theorem 19; in particular they suffice
for Gaussian elimination, which can be used to implement the linear-independence checks
in LMTA.

The complexity of algorithm LMTA should be compared to the complexity of the algo-
rithm of Habrard and Oncina (2006), which learns multiplicity tree automata by making
r+1 equivalence queries, |A| ·s membership queries, and a number of arithmetic operations
polynomial in |A| and s, where s is the size of a largest counterexample given as a tree.
Note that the algorithm of Habrard and Oncina (2006) cannot be straightforwardly adapted
to work directly with DAG representations of trees since when given a counterexample z,
every suffix of z is added to the set of columns. However, the tree unfolding of a DAG can
have exponentially many different suffixes in the size of the DAG. For example, the DAG in
Figure 2 has size n, and its tree unfolding, shown in Figure 1, has O(2n) different suffixes.

5. Lower Bounds on Query Complexity of Learning MTA

In this section, we study lower bounds on the query complexity of learning multiplicity
tree automata in the exact learning model. Our results generalise the corresponding lower
bounds for learning multiplicity word automata by Bisht et al. (2006), and make no as-
sumption about the computational model of the learning algorithm.

First, we give a lower bound on the total number of queries required by an exact learning
algorithm that works over any field, which is the situation of our algorithm in Section 4.
Note that when we say that an algorithm works over any field, we mean that it just uses
field arithmetic, equality testing, and the ability to store and communicate field elements
to the Teacher, and its correctness depends only on these operations satisfying the field
axioms.

Theorem 20 Any exact learning algorithm that learns the class of multiplicity tree au-
tomata of dimension at most r, over a ranked alphabet (Σ, rk) and any field, must make at
least

∑
σ∈Σ r

rk(σ)+1 − r2 queries.
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Proof Take an arbitrary exact learning algorithm L that learns the class of multiplicity
tree automata of dimension at most r, over a ranked alphabet (Σ, rk) and over any field.

Let F be any field. Let K := F({zσi,j : σ ∈ Σ, i ∈ [rrk(σ)], j ∈ [r]}) be an extension field

of F, where the set {zσi,j : σ ∈ Σ, i ∈ [rrk(σ)], j ∈ [r]} is algebraically independent over F. We

define a ‘generic’ K-multiplicity tree automaton A := (r,Σ, µ, γ) where γ = e>1 ∈ Fr×1 and

µ(σ) = [zσi,j ]i,j ∈ Krrk(σ)×r for every σ ∈ Σ. We define a tree series f := ‖A‖. Observe that
every r-dimensional F-MTA over Σ can be obtained from A by substituting values from the
field F for the variables zσi,j . Thus if the Hankel matrix of f had rank less than r, then every
r-dimensional F-MTA over Σ would have Hankel matrix of rank less than r. Therefore, the
Hankel matrix of f has rank r.

We run algorithm L on the target function f . By assumption, the output of L is an
MTA A′ = (r,Σ, µ′, γ′) such that ‖A′‖ ≡ f . Let n be the number of queries made by L on
target f . Let t1, . . . , tn ∈ TΣ be the trees on which L either made a membership query, or
which were received as the counterexample to an equivalence query. Then for every l ∈ [n],
there exists a multivariate polynomial pl ∈ F[(zσi,j)i,j,σ] such that f(tl) = pl.

Note that both A and A′ are minimal MTA-representations of f . Thus by Theorem 4,
there exists an invertible matrix U ∈ Kr×r such that γ = U ·γ′ and µ(σ) = U⊗rk(σ)·µ′(σ)·U−1

for every σ ∈ Σ. This implies that the entries of matrices µ(σ), σ ∈ Σ, lie in an extension
of F generated by the entries of U and {pl : l ∈ [n]}, i.e., by at most r2 + n elements. But
since the entries of matrices µ(σ), σ ∈ Σ, form an algebraically independent set over F, the
total number

∑
σ∈Σ r

rk(σ)+1 of such entries is at most r2 + n. Therefore, the number of

queries n is at least
∑

σ∈Σ r
rk(σ)+1 − r2.

One may wonder whether a learning algorithm could do better over a specific field F by
exploiting particular features of that field such as having zero characteristic, being ordered,
or being algebraically closed. In this setting, we have the following lower bound.

Theorem 21 Let F be a fixed but arbitrary field. Any exact learning algorithm that learns
the class of F-multiplicity tree automata of dimension at most r, over a ranked alphabet
(Σ, rk) that has rank m and contains at least one unary symbol, must make number of
queries at least

1

2m+1
·

(∑
σ∈Σ

rrk(σ)+1 − r2 − r

)
.

Proof Without loss of generality, we can assume that r is even and can, therefore, define a
natural number n := r/2. Let L be an exact learning algorithm for the class of F-multiplicity
tree automata of dimension at most r, over a ranked alphabet (Σ, rk) of rank m such that
rk−1({1}) 6= ∅. We will identify a class of functions C such that L has to make at least∑

σ∈Σ n
rk(σ)+1 − n2 − n queries to distinguish between the members of C.

Let σ0, σ1 ∈ Σ be a nullary and a unary symbol, respectively. Let P ∈ Fn×n be the
permutation matrix corresponding to the cycle (1, 2, . . . , n). Define A to be the set of all
F-multiplicity tree automata (2n,Σ, µ, γ) where:

• µ(σ0) =
[
1 0

]
⊗ e1 and µ(σ1) = I2 ⊗ P ;
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• For each k-ary symbol σ ∈ Σ \ {σ0, σ1}, there exists B(σ) ∈ Fnk×n such that

µ(σ) =
[
1 1

]
⊗

([
In
−In

]⊗k
·B(σ)

)
;

• γ =
[
1 0

]> ⊗ e>1 .

We define a set of recognisable tree series C := {‖A‖ : A ∈ A}.
In Lemma 22 we state some properties of the functions in C. Specifically, we show that

the coefficient of a tree t ∈ TΣ in any series f ∈ C fundamentally depends on whether t
has zero, one, or at least two nodes whose label is not σ0 or σ1. Here for every i ∈ N0 and
t ∈ TΣ, we use σi1(t) to denote the tree σ1(σ1(. . . σ1(︸ ︷︷ ︸

i

t) . . .)).

Lemma 22 The following properties hold for every f ∈ C and t ∈ TΣ:

(i) If t = σj1(σ0) where j ∈ {0, 1, . . . , n− 1}, then f(σ0) = 1 and f(σj1(σ0)) = 0 for j > 0.

(ii) If t = σj1(σ(σi11 (σ0), . . . , σik1 (σ0))) where k ∈ {0, 1, ...,m}, σ ∈ Σk \ {σ0, σ1}, and
j, i1, . . . , ik ∈ {0, 1, . . . , n− 1}, then f(t) = B(σ)(1+i1,...,1+ik),(1+n−j) mod n.

(iii) If
∑

σ∈Σ\{σ0,σ1}#σ(t) ≥ 2, then f(t) = 0.

Proof Let A = (2n,Σ, µ, γ) ∈ A be such that ‖A‖ ≡ f . First, we prove property (i).
Using Equation (2) and the mixed-product property of Kronecker product, we get that

µ(σj1(σ0)) = µ(σ0) · µ(σ1)j = (
[
1 0

]
⊗ e1) · (I2 ⊗ P j) =

[
1 0

]
⊗ e1P

j (17)

and therefore

f(σj1(σ0)) = µ(σj1(σ0)) · γ = (
[
1 0

]
⊗ e1P

j) · (
[
1 0

]> ⊗ e>1 )

= (
[
1 0

]
·
[
1 0

]>
)⊗ (e1P

j · e>1 ) = ej+1 · e>1 . (18)

If j = 0 then the expression of (18) is equal to 1, otherwise the expression of (18) is equal
to 0. This completes the proof of property (i).

Next, we prove property (ii). By the mixed-product property of Kronecker product and
Equations (2), (3), and (17), we have

µ(σj1(σ(σi11 (σ0), . . . , σik1 (σ0))))

=

(
k⊗
l=1

µ(σil1 (σ0))

)
· µ(σ) · µ(σ1)j

=

([
1
]
⊗

k⊗
l=1

µ(σil1 (σ0))

)
·

([
1 1

]
⊗

([
In
−In

]⊗k
·B(σ)

))
· (I2 ⊗ P )j

=

(([
1
]
·
[
1 1

])
⊗

(
k⊗
l=1

µ(σil1 (σ0)) ·
[
In
−In

]⊗k
·B(σ)

))
· (I2 ⊗ P j)
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=

([
1 1

]
⊗

(
k⊗
l=1

(([
1 0

]
⊗ e1P

il
)
·
[
In
−In

])
·B(σ)

))
· (I2 ⊗ P j)

=

([
1 1

]
⊗

(
k⊗
l=1

e1P
il ·B(σ)

))
· (I2 ⊗ P j)

=
([

1 1
]
· I2

)
⊗

(
k⊗
l=1

e1+il ·B(σ) · P j
)

=
[
1 1

]
⊗ (B(σ)(1+i1,...,1+ik) · P j) (19)

and therefore, using the fact that Pn = In, we get that

f(σj1(σ(σi11 (σ0), . . . , σik1 (σ0)))) = µ(σj1(σ(σi11 (σ0), . . . , σik1 (σ0)))) · γ

= (
[
1 1

]
⊗ (B(σ)(1+i1,...,1+ik) · P j)) · (

[
1 0

]> ⊗ e>1 )

= (
[
1 1

]
·
[
1 0

]>
)⊗ (B(σ)(1+i1,...,1+ik) · P j · e>1 )

= B(σ)(1+i1,...,1+ik) · (e1P
n−j)>

= B(σ)(1+i1,...,1+ik),(1+n−j) mod n.

Finally, we prove property (iii). If
∑

σ∈Σ\{σ0,σ1}#σ(t) ≥ 2, then there exists a subtree

σ′(t1, . . . , tk) of t where k ≥ 1, σ′ ∈ Σk \ {σ1}, and
∑

σ∈Σ\{σ0,σ1}#σ(ti) = 1 for some

i ∈ [k]. It follows from Equation (19) that µ(ti) =
[
1 1

]
⊗ α for some α ∈ F1×n. By the

mixed-product property of Kronecker product and Equation (3), we have

µ(σ′(t1, . . . , tk)) =

 k⊗
j=1

µ(tj)

 ·([1 1
]
⊗

([
In
−In

]⊗k
·B(σ′)

))

=
[
1 1

]
⊗

 k⊗
j=1

µ(tj) ·
[
In
−In

]⊗k
·B(σ′)


=
[
1 1

]
⊗

 k⊗
j=1

(
µ(tj) ·

[
In
−In

])
·B(σ′)

 = 01×2n

where the last equality holds because

µ(ti) ·
[
In
−In

]
=
[
α α

]
·
[
In
−In

]
= 01×n.

Since σ′(t1, . . . , tk) is a subtree of t, we now have that µ(t) = 01×2n and thus f(t) = 0.

Remark 23 As Pn = In, we have µ(σ1)n = I2n. Thus for every f ∈ C, k ∈ {0, 1, ...,m},
σ ∈ Σk \ {σ0, σ1}, and j, i1, . . . , ik ∈ N0, it holds that f(σj1(σ0)) = f(σj mod n

1 (σ0)) and

f(σj1(σ(σi11 (σ0), . . . , σik1 (σ0)))) = f(σj mod n
1 (σ(σi1 mod n

1 (σ0), . . . , σik mod n
1 (σ0)))).
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Returning to the proof of Theorem 21, let us run the learning algorithm L on a target
f ∈ C. Lemma 22 (i) and Remark 23 imply that when L makes a membership query on
t = σj1(σ0) where j ∈ N0, the Teacher returns 1 if j mod n = 0 and returns 0 otherwise.
Furthermore, by Lemma 22 (iii), when L makes a membership query on t ∈ TΣ such that∑

σ∈Σ\{σ0,σ1}#σ(t) ≥ 2, the Teacher returns 0. In these cases, L does not gain any new
information about f since every function in C is consistent with the values returned by the
Teacher.

When L makes a membership query on a tree t = σj1(σ(σi11 (σ0), . . . , σik1 (σ0))), where
k ∈ {0, 1, ...,m}, σ ∈ Σk \ {σ0, σ1}, and j, i1, . . . , ik ∈ N0, the Teacher returns an arbitrary
number from the field F if the value f(t) is not already known from an earlier query. It
follows from Lemma 22 (ii) and Remark 23 that L thereby learns the entry

B(σ)(1+(i1 mod n),...,1+(ik mod n)),(1+n−j) mod n.

When L makes an equivalence query on a hypothesis h ∈ C, the Teacher finds some
entry B(σ)(i1,...,ik),j that L does not already know from previous queries and returns the

tree σ1+n−j
1 (σ(σi1−1

1 (σ0), . . . , σik−1
1 (σ0))) as the counterexample.

With each query, the Learner L learns at most one entry of B(σ) where σ ∈ Σ\{σ0, σ1}.
The number of queries made by L on target f is, therefore, at least the total number of
entries of matrices B(σ) for all σ ∈ Σ \ {σ0, σ1}. The latter number is equal to∑

σ∈Σ\{σ0,σ1}

nrk(σ)+1 ≥ 1

2m+1
·

∑
σ∈Σ\{σ0,σ1}

rrk(σ)+1

=
1

2m+1
·

(∑
σ∈Σ

rrk(σ)+1 − r2 − r

)
.

This completes the proof.

The lower bounds of Theorem 20 and Theorem 21 are both linear in the target automa-
ton size. Note that when the alphabet rank is fixed, the lower bound for learning over
a fixed field (Theorem 21) is the same, up to a constant factor, as for learning over an
arbitrary field (Theorem 20).

Assuming a Teacher that represents counterexamples as succinctly as possible (see Sec-
tion 3.2 for details), the upper bound of algorithm LMTA from Theorem 19 is quadratic in
the target automaton size and, therefore, also quadratic in the lower bound of Theorem 20.

6. Conclusions and Future Work

In this work, we have characterised the query and computational complexity of learning
multiplicity tree automata in the exact learning model. We gave the first-known lower
bound on the number of queries needed by any exact learning algorithm to learn a target
recognisable tree series. This bound is linear in the size of a smallest multiplicity tree
automaton recognising the series. We also gave a new learning algorithm whose query
complexity is quadratic in the size of a smallest automaton recognising the target tree
series and linear in the size of a largest DAG counterexample provided by the Teacher. With
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regard to computational complexity, we show that the problem of deciding equivalence of
multiplicity tree automata is logspace equivalent to polynomial identity testing.

The algebraic theory of recognisable word series, notably the connection to finite-rank
Hankel matrices, generalises naturally to recognisable tree series and underlies many of the
approaches to learning tree automata, including the present paper (see Section 1.1 for more
details). In the case of trees, however, the issue of succinctness of automaton and counterex-
ample representations comes to the fore. As we have noted, the smallest counterexample
to the equivalence of two tree automata may be exponential in their total size. Therefore,
in order to obtain even a polynomial query complexity, our learning algorithm works with
a succinct representation of trees in terms of DAGs. The assumption of a Teacher that
provides succinct DAG counterexamples is reasonable in light of the fact that the algorithm
of Seidl (1990) for deciding equivalence of multiplicity tree automata can easily be modified
to produce DAG counterexamples of minimal size in case of inequivalence.

The issue of succinctness of automaton representations seems to be more subtle and
has not been addressed in the present paper. Here we have used the standard definition
of automaton size, in which an automaton with n states and maximum alphabet rank m
necessarily has size at least nm+1. Adopting a sparse encoding of the transition matrices
may result in an exponentially more succinct automaton representation. However, it seems
a difficult problem to efficiently learn an automaton of minimal size under a sparse repre-
sentation of transition matrices. In this regard, note that two different MTAs recognising
the same tree series, both with a minimal number of states, can have considerably different
sizes under a sparse representation since minimal MTAs are only unique up to change of
basis.

One route to obtaining succinct automaton representations in the case of alphabets of
unbounded rank is to use the encoding of unranked alphabets into binary alphabets pre-
sented by Comon et al. (2007) and Bailly et al. (2010). Such an encoding would potentially
allow to use our learning algorithm to learn recognisable tree series over an arbitrary alpha-
bet Σ (including even unranked alphabets) while maintaining hypothesis automaton and
Hankel matrix over a binary alphabet. Note though that if the algorithm were required
to present its hypotheses to the Teacher as automata over the original alphabet Σ, then
it would need to translate automata over the binary encoding to corresponding automata
over Σ—potentially leading to an exponential blow-up.

With regard to applications of tree-automaton learning algorithms to other problems,
we recall that Beimel et al. (2000) apply their exact learning algorithm for multiplicity word
automata to show exact learnability of certain classes of polynomials over both finite and
infinite fields. Beimel et al. (2000) also prove the learnability of disjoint DNF formulae (i.e.,
DNF formulae in which each assignment satisfies at most one term) and, more generally,
disjoint unions of geometric boxes over finite domains.

The learning framework considered in this paper concerns multiplicity tree automata,
which are strictly more expressive than multiplicity word automata. Moreover, our result on
the computational complexity of equivalence testing for multiplicity tree automata shows
that, through equivalence queries, the Learner essentially has an oracle for polynomial
identity testing. Thus a natural direction for future work is to seek to apply our algorithm to
derive new results on exact learning of other concept classes, such as propositional formulae
and polynomials (both in the commutative and noncommutative cases). In this direction, we
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plan to examine the relationship of our work with that of Klivans and Shpilka (2006) on exact
learning of algebraic branching programs and arithmetic circuits and formulae. The latter
paper relies on rank bounds for Hankel matrices of polynomials in noncommuting variables,
obtained by considering a generalised notion of partial derivative. Here we would like to
determine whether the extra expressiveness of tree series can be used to show learnability
of more general classes of formulae and circuits than have hitherto been handled using
learnability of word series.

Sakakibara (1990) showed that context-free grammars (CFGs) can be learned efficiently
from their structural descriptions in the exact learning model, using structural member-
ship queries and structural equivalence queries. Specifically, Sakakibara, op. cit., notes
that the set of structural descriptions of a context-free grammar constitutes a rational tree
language, and thereby reduces the problem of learning a context-free grammar from its
structural descriptions to the problem of learning a tree automaton. Given the important
role of weighted and probabilistic CFGs across a range of applications including linguistics,
a natural next step would be to apply our algorithm to learn weighted CFGs. The idea is
to reduce the problem of learning a weighted context-free grammar using structural mem-
bership queries and structural equivalence queries to the problem of learning a multiplicity
tree automaton in the exact learning model. The basis for applying our algorithm in this
setting is the fact that the tree series that maps unlabelled derivation trees to their total
weights under a given weighted context-free grammar is recognisable.
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Abstract

Capturing predictor-dependent correlations amongst the elements of a multivariate re-
sponse vector is fundamental to numerous applied domains, including neuroscience, epi-
demiology, and finance. Although there is a rich literature on methods for allowing the
variance in a univariate regression model to vary with predictors, relatively little has been
done in the multivariate case. As a motivating example, we consider the Google Flu Trends
data set, which provides indirect measurements of influenza incidence at a large set of lo-
cations over time (our predictor). To accurately characterize temporally evolving influenza
incidence across regions, it is important to develop statistical methods for a time-varying
covariance matrix. Importantly, the locations provide a redundant set of measurements
and do not yield a sparse nor static spatial dependence structure. We propose to reduce
dimensionality and induce a flexible Bayesian nonparametric covariance regression model
by relating these location-specific trajectories to a lower-dimensional subspace through a
latent factor model with predictor-dependent factor loadings. These loadings are in terms
of a collection of basis functions that vary nonparametrically over the predictor space. Such
low-rank approximations are in contrast to sparse precision assumptions, and are appro-
priate in a wide range of applications. Our formulation aims to address three challenges:
scaling to large p domains, coping with missing values, and allowing an irregular grid of
observations. The model is shown to be highly flexible, while leading to a computationally
feasible implementation via Gibbs sampling. The ability to scale to large p domains and
cope with missing values is fundamental in analyzing the Google Flu Trends data.

Keywords: covariance regression, dictionary learning, Gaussian process, latent factor
model, nonparametric Bayes, time series

1. Introduction

Spurred by the increasing prevalence of high-dimensional data sets and the computational
capacity to analyze them, capturing heteroscedasticity in multivariate processes has become
a growing focus in many applied domains. For example, within the field of financial time
series modeling, capturing the time-varying volatility and co-volatility of a collection of risky
assets is key in devising a portfolio management scheme. Likewise, the spatial statistics
community is often faced with multivariate measurements (e.g., temperature, precipitation,
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etc.) recorded at a large collection of locations, necessitating methodology to model the
strong spatial (and spatio-temporal) variations in correlations. Within neuroscience, there
is interest in analyzing the time-varying coactivation patterns in brain activity, referred to
as functional connectivity.

As a motivating example, we focus on the problem of modeling the changing correlations
in flu activity amongst a large collection of regions in the United States as a function of
time. The Google Flu Trends data set (available at http://www.google.org/flutrends/)
provides estimates of flu activity in 183 regions on a weekly basis. The regions consist
of the U.S. national level, 50 states, 10 regions, and 122 cities. A common strategy for
modeling such data are Markov random fields (cf. Mugglin et al., 2002) (and relatedly, the
kriging exploratory flu analysis of Sakai et al. (2004).) However, in addition to assuming
(temporal) homoscedasticity, a limitation of such approaches is the typical reliance on a
locally defined neighborhood structure that does not directly capture potential long-range
dependencies (e.g., between New York and California.) Indeed, influenza spread can occur
rapidly between non-contiguous regions (e.g., by air travel (Brownstein et al., 2006).) From
exploratory data analysis, we find that the flu data does not yield a sparse graphical model
structure. Instead, the redundancy between time series (e.g., Los Angeles and California)
is naturally modeled via low-rank approximations that embed the observed trajectories
in a low-dimensional subspace. Beyond its dimensionality, another challenge posed by
this data set is the extent of missing data. For example, 25% of regions do not report
data in the first year. The existing influenza modeling approaches described above rely
on imputing such missing values, which we aim to avoid. The data attributes presented
by the Google Flu Trends data set—redundancy in high dimensions, changing correlations,
missing observations—are common to many applications.

In general terms, let y = (y1, . . . , yp)
′ ∈ <p denote a multivariate response and x =

(x1, . . . , xq)
′ ∈ X ⊂ <q an arbitrary multivariate predictor (e.g., time, space, etc.). In

the flu analysis, p is the number of regions and q = 1 with x representing a scalar time
index. A typical focus is on capturing the conditional mean E(y|x) = µ(x), assuming a
homoscedastic model with conditional covariance cov(y|x) = Σ. Recall that this covariance
matrix captures key correlations between the elements of the response vector (e.g., flu
activity in the various regions). In our exploratory analysis of the flu data in Appendix
G, the residuals from a smoothing spline fit indicate that a model of i.i.d. errors across
time is inappropriate for this data. In such cases, an assumption of homoscedasticity can
have significant ramifications on inferences (e.g., predictive accuracy) as we demonstrate in
Sections 4 and 5.2.2. It is possible to decrease residual correlation through a more intricate
mean model, but the complexities of doing so motivate us to instead turn to modeling the
conditional covariance. In particular, our focus is on developing Bayesian methods that
allow not only E(y|x) = µ(x) but also cov(y|x) = Σ(x) to change flexibly with x ∈ X .

Classical strategies for estimating Σ(x) rely on standard regression methods applied
to the elements of the log or Cholesky decomposition of Σ(x) or Σ(x)−1 (Chiu et al.,
1996; Pourahmadi, 1999; Leng et al., 2010; Zhang and Leng, 2012). This involves fitting
p(p + 1)/2 separate regression models, and hence these methods are ill-suited to high-
dimensional applications due to the curse of dimensionality. Hoff and Niu (2012) instead
proposed modeling Σ(x) as a quadratic function of x plus a baseline positive definite matrix.
The mapping from predictors to covariance assumes a parametric form, thus limiting the
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model’s expressivity. A nonparametric Nadaraya-Watson kernel estimator was proposed by
Yin et al. (2010). Their approach is only appropriate for random x (i.e., not time series) and
the kernel is required to be symmetric with a single bandwidth for all elements of Σ(x). The
result is a kernel estimator that may not be locally adaptive. For time series, heteroscedastic
modeling has a long history (Chib et al., 2009), with the main approaches being multivariate
generalized autoregressive conditional heteroscedasticity (GARCH) (Engle, 2002) (limited to
applications with p ≤ 5), multivariate stochastic volatility models (Harvey et al., 1994), and
Wishart processes (Philipov and Glickman, 2006a,b; Gouriéroux et al., 2009). Central to
the cited volatility models are assumptions of (i) Markov dynamics, limiting the ability
to capture long-range dependencies, (ii) observation times that are equally spaced with no
missing values, (iii) challenges in model fitting, and (iv) limited theory to justify flexibility.

We instead propose a Bayesian nonparametric approach to simultaneously modeling
µ(x) and Σ(x). Using low-rank approximations as a parsimonious modeling technique
when p is not small, we consider latent factor models with predictor-dependent factor load-
ings. In particular, we characterize the loadings as a sparse combination of unknown basis
functions, with Gaussian processes providing a convenient prior for basis elements varying
nonparametrically over X . The induced covariance is then a regularized quadratic function
of these basis elements. The proposed approach is provably flexible and admits a latent
variable representation with simple conjugate posterior updates, which facilitates tractable
posterior computation in moderate to high dimensions. In addition to being able to state
theoretical properties of our proposed prior—such as large support integral to a Bayesian
nonparametric approach—the proposed methodology has numerous practical advantages
over previous covariance regression frameworks:

1. Scaling to high dimensions in the presence of limited data (via structured latent factor
models)

2. Handling irregular grid of observations (via continuous functions as basis elements)
3. Tractable computations (via simple conjugate posterior updates)
4. Coping with ignorable missing data (no data imputation required)
5. Robustness to outlying observations (via sharing information in the latent basis).

Importantly, our framework enables analytic marginalization of missing data from the com-
plete data likelihood, and without introducing extra dependencies amongst the remaining
variables. The benefits of this analytic marginalization are two-fold: (1) we do not spend
computational resources imputing the missing values, and (2) compared to the otherwise
dramatically increased Markov chain Monte Carlo (MCMC) state space that includes the
missing values, we can improve convergence and mixing rates through marginalization (Liu
et al., 1994). Combined with the model’s flexible sharing of information via the latent basis
functions, we are able to handle data sets with substantial missing data, such as in the flu
application of Section 5. Finally, the Google Flu Trends estimates are based on user search
queries, and as such are susceptible to the types of malicious attacks that Google regularly
guards against in other domains. Our model is well-geared for handling some forms of these
situations: the inherent redundancy and borrowing of information across locations provides
robustness to limited amounts of inaccurate estimates. Note that these inaccurate estimates
may not be malicious in nature, but instead represent outliers arising from unusual spurs
in search activity and poorly calibrated models (Cook et al., 2011). As long as these errors
do not form systematic or stochastic trends or explosive processes (Fuller, 2009), our model
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appears to be robust, as we demonstrate in Section 5.2.3. This is in contrast to approaches
that look at rates in individual locations (e.g., Dukić et al. (2012)).

An earlier version of this work appeared in a technical report (Fox and Dunson, 2011);
the current version provides significant additions including revised proofs, an extended
model presentation, new experiments on the Google Flu Trends data, and an extensive
model assessment. The recent work of Durante et al. (2014) builds on our framework and
has shown great promise, but with a focus on time series applications and without handling
missing data or scaling to large p domains.

The paper is organized as follows. In Section 2, we describe our proposed Bayesian
nonparametric covariance regression model and analyze the theoretical properties of the
model. Section 3 details the Gibbs sampling steps involved in our posterior computations.
Finally, a number of simulation studies are examined in Section 4, with an application to
the Google Flu Trends data set presented in Section 5.

2. Covariance Regression Priors

In this section, we consider the specific form for our Bayesian nonparametric covariance
regression. Section 2.1 examines our assumed covariance structuring whereas Section 2.2
details our prior specification for the various model components.

2.1 Model Specification

We focus on a multivariate Gaussian nonparametric mean-covariance regression model

yi = µ(xi) + εi, εi ∼ Np(0,Σ(xi)), i = 1, . . . , n, (1)

with xi ∈ X , X a compact subset of <q, and the εis independent. We focus on x non-
random. In the flu application, q = 1 with {x1, . . . , xn} a set of week indices and yi = log ri,
the vector of log Google-estimated ILI rates in the 183 regions (p = 183) at time xi. To
cope with large p, we take model (1) to be induced through the factor model

yi = Λ(xi)ηi + εi, ηi ∼ Nk(ψ(xi), Ik), εi ∼ Np(0,Σ0) (2)

where Λ(x) is a p×k factor loadings matrix specific to predictor value x, ηi = (ηi1, . . . , ηik)
′

are latent factors associated with observation yi, and Σ0 = diag(σ2
1, . . . , σ

2
p).

A latent factor model harnesses a lower-dimensional description of the observations,
assuming k � p. ψ(x) captures the evolution of the latent factors whereas Λ(x) dictates
a low-rank evolution to the conditional covariance of the response vector. In particular,
marginalizing out ηi, the mean and covariance regression models are expressed as

µ(x) = Λ(x)ψ(x), Σ(x) = Λ(x)Λ(x)′ + Σ0. (3)

To make this concrete, in our flu application, ηi captures a small latent set of flu responses
(not necessarily standard ILI rates) at week i, ψ(x) the evolution of these latent responses,
and Λ(xi) a low-rank description of the spatial correlations at week i. The motivation for
modeling the mean as in (3) arises from a desire to have a parsimonious model in large
p domains. This is in contrast to, for example, a model yi = Λ(xi)ηi + µ(xi) + εi where
ηi ∼ Nk(0, Ik) and µ(xi) is a p-dimensional mean regression.
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Before specifying our priors for each of the components in (2), we first place our formu-
lation within the context of dynamic latent factor models.

2.1.1 Relationship to Dynamic Latent Factor Models

A standard latent factor model characterizes independent observations yi via independent
latent factors ηi:

yi = Ληi + εi, ηi ∼ Nk(0, Ik), εi ∼ Np(0,Σ0). (4)

Marginalizing the latent factors ηi yields yi ∼ Np(0,Σ) with Σ = ΛΛ′ + Σ0. The ideas
of latent factor analysis have also been applied to the time-series domain by assuming a
latent factor process. Such dynamic latent factor models have a rich history. Typically,
the dynamics of the latent factors are assumed to follow a simple Markov evolution with a
time-invariant parameterization (West, 2003; Lopes et al., 2008):

ηi = Γηi−1 + νi, νi ∼ Nk(0, Ik)

yi = Ληi + εi, εi ∼ Np(0,Σ0),
(5)

where Γ ∈ <k×k is the dynamic matrix for the latent factor evolution. Assuming a stationary
process on ηi, then yi ∼ Np(0,Σ) with Σ = ΛΣηΛ

′ + Σ0. Here, Ση denotes the marginal
covariance of ηi. If we restrict our attention to cases in which xi is a discrete time index, as
in our flu application, then our proposed model of (2) can be related to the class of dynamic
latent factor models as follows. The latent factor evolution is governed by ψ rather than
a standard linear autoregression: ηi = ψ(xi) + νi, νi ∼ Nk(0, Ik). In Section 2.2, we
specify ψ via Gaussian processes, providing a nonparametric evolution in continuous time.
Importantly, the factor loadings matrix Λ(x) also evolves in time: yi = Λ(xi)ηi + εi with
conditional covariance Σ(x) = Λ(x)Λ(x)′ + Σ0. Again, this analogy relies on assuming x
represents time. The formulation of (2) is proposed for general predictors x ∈ X .

2.2 Prior specification

To capture the evolution of ψ(x) and Λ(x), we use Gaussian processes as a set of basis
functions. We first briefly review Gaussian processes and then describe how this basis is
used in our model.

2.2.1 Gaussian Processes

A Gaussian process provides a distribution over real-valued functions f : X → <, with the
property that the function evaluated at any finite collection of points is jointly Gaussian.
The Gaussian process, denoted GP(m, c), is uniquely defined by its mean function m and
covariance kernel c. In particular, f ∼ GP(m, c) if and only if for all n and x1, . . . ,xn,

p(f(x1), . . . , f(xn)) ∼ Nn(µ,K), (6)

with µ = [m(x1), . . . ,m(xn)] and K the n × n Gram matrix with entries Kij = c(xi,xj).
The properties (e.g., continuity, smoothness, periodicity, etc.) of functions drawn from a
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given Gaussian process are determined by the covariance kernel. One example leading to
smooth functions is the squared exponential, or Gaussian, kernel:

c(x,x′) = d exp(−κ||x− x′||22), (7)

where d is a scale hyperparameter and κ the bandwidth, which determines the extent of the
correlation in f over X . See Rasmussen and Williams (2006) for further details.

2.2.2 Latent Factor Mean Process

Letting ψ(x) = {ψ1(x), . . . , ψk(x)}, we specify independent Gaussian process priors for
each ψh as a convenient and flexible choice. In particular, ψh ∼ GP(0, cψ) with cψ(x,x′) =
exp(−κψ||x− x′||22) a squared exponential covariance kernel. We assume unit variance for
reasons of identifiability seen in (3) through the multiplication of the latent factors with
Λ(x).

2.2.3 Idiosyncratic Noise

We choose independent inverse gamma priors for the diagonal elements of Σ0 by letting
σ−2
j ∼ Ga(aσ, bσ). The off-diagonal elements are deterministically set to zero.

2.2.4 Factor Matrix Process

Specifying a prior for Λ(x) is more challenging, as naive approaches, such as independent
Gaussian process priors for each element of the p × k matrix, may have poor performance
in large p application domains even for small k. Likewise, the computational demands for
considering p × k Gaussian processes can be prohibitive depending on the choice of p, k, n
(see Section 3). Instead, we take the factor loadings to be a weighted combination of a
much smaller set of basis elements ξlh,

Λ(x) = Θξ(x), Θ ∈ <p×L, ξ(x) = {ξlh(x), l = 1, . . . , L, h = 1, . . . , k}, (8)

where Θ is a matrix of coefficients that maps the L × k array of basis functions ξ(x)
to the predictor-dependent loadings matrix Λ(x). Typically, k � p and L � p. Again, k
defines the factor dimension (i.e., assumed subspace that captures the statistical variability)
whereas L controls the size of the basis for any fixed choice of k. We once again choose
independent Gaussian process priors ξlh ∼ GP(0, c), with c(x,x′) = exp(−κ||x − x′||22) a
squared exponential covariance kernel. The choice of unit variance Gaussian processes again
arises for reasons of identifiability, but now with the multiplication with Θ.

To allow for an adaptive choice of the basis size, we in theory let L → ∞ and employ
the shrinkage prior of Bhattacharya and Dunson (2011) for Θ,

θjl ∼ N(0, φ−1
jl τ

−1
l ), φjl ∼ Ga(γ/2, γ/2), τl =

l∏
h=1

δh, (9)

with φjl a local precision specific in element j, l, and τl a column-specific multiplier, which
is assigned a multiplicative gamma process prior to favor increasing shrinkage of elements in
later columns by letting δ1 ∼ Ga(a1, 1) and δh ∼ Ga(a2, 1), h ≥ 2, with a2 > 1. If a column
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of Θ is shrunk towards zero, the corresponding row of the basis ξ(x) has insignificant effect
in defining {µ(x),Σ(x)}. Our chosen prior specification increasingly shrinks columns with
column index, effectively truncating Θ. That is, despite an arbitrarily large L, the effective
dimension of the basis is much smaller, providing our desired dimensionality reduction. In
practice, of course, a finite truncation L̄ is chosen. See Appendix E for a discussion on other
possible decompositions of Λ(x) and prior specifications.

At any point x ∈ X , the different ξlk(x)s are independently Gaussian distributed, and
hence ξ(x)ξ(x)′ is Wishart distributed. Conditioned on Θ, Θξ(x)ξ(x)′Θ′ is also Wishart
distributed and, as x varies, follows the matrix-variate Wishart process of Gelfand et al.
(2004) with Wilson and Ghahramani (2011) recently considering a related specification.
However, these alternative specifications do not have the dimensionality reduction struc-
ture, which is key to the performance of our approach in moderate to high dimensions.
Furthermore, they do not provide the theoretical statements of large support we show in
Section 2.4 nor a framework for coping with missing data. Marginalizing over the prior for
Θ, one obtains a type of adaptively scaled mixture of Wishart processes that has funda-
mentally different behavior than the Wishart. Our prior is also somewhat related to the
spatial dynamic factor model of Lopes et al. (2008), though their focus is on space-time
dependence in univariate observations. Finally, following our early technical report version
of this paper (Fox and Dunson, 2011), Fosdick and Hoff (2014) examine factor-structured
separable covariance models for general M -array data. Considering a 2-array of space and
time, the model assumes a spatial structure ΛsΛ

′
s+Σ0,s and temporal structure ΛtΛ

′
t+Σ0,t.

That is, the model is low rank in both space and time. In contrast, our covariance decom-
position at any predictor x assumes the factor structure Λ(x)Λ(x)′ + Λ0 for the response
vector (e.g., indexed by spatial location); however, the dependence between predictors x
and x′ (e.g., across time) is described via a stochastic process.

2.2.5 Identifiability

The factorizations for µ(x) and Σ(x) are not unique but instead we obtain a many-to-one
specification. It is not necessary to enforce identifiability constraints, as our focus is on
inducing a prior for µ(x) and Σ(x) that favors an effectively low-dimensional representa-
tion without constraining the possible changes in the mean and covariance with predictors
beyond minimal regularity conditions.

2.3 Parsimony of Covariance Decomposition

Through the chosen covariance decomposition Σ(x) = Θξ(x)ξ(x)′Θ′ + Σ0 specified in (3)
and (8), we have transformed the problem of modeling p(p + 1)/2 predictor dependent
elements to one of modeling p × (L + 1) non-predictor dependent elements (comprising Θ
and Σ0) plus L×k predictor dependent elements (comprising ξ(·)). A substantial reduction
in parameterization occurs when k � p and L � p. Such an assumption is appropriate in
modeling a large class of covariance regressions Σ(x) that arise when analyzing real data.

For arbitrary Θ and ξ(·), this parameterization still scales poorly to large data sets.
It is only through the implied regularization effect of our chosen prior specification that
a parsimonious model arises (even for L large, as previously discussed). Specifically, the
continuity of the latent Gaussian process basis elements ξ`k combined with the shrinkage
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properties of the prior on Θ forms a flexible, adaptive hierarchical structure that borrows
information and can collapse on an effectively lower dimensional structure.

Another important aspect of the covariance decomposition is the implied transfer of
knowledge property that allows us to cope with substantial missing or corrupted data. Let
xm correspond to a point in the predictor space at which the jth response component ymj
is missing or corrupted. In our model, the estimates of Σj·(xm) = Θj·ξ(xm)ξ(xm)′Θ′+ Σ0j·
are improved by the fact that (i) the rows Θj· are informed by all available observations yij
at predictor locations xi 6= xm, and (ii) the latent basis functions ξ(xm) are informed by
the available response components ymk, k 6= j, at the predictor location xm and at nearby
locations via the continuity of the basis functions. By employing a small collection of latent
basis elements with non-predictor-dependent weights, our model better copes with limited
data and is more robust to corrupted values than one in which the elements of Σ(x) are
modeled independently.

2.4 Properties

Our proposed Bayesian nonparametric covariance regression framework of Section 2 yields
various important theoretical properties, such as large prior support and stationarity, which
we examine here.

2.4.1 Large Support

We induce a prior {Σ(x),x ∈ X} ∼ ΠΣ through priors Πξ,ΠΘ and ΠΣ0 for ξ,Θ and Σ0,
respectively. In this section, we explore the properties of the induced prior ΠΣ. Most fun-
damentally, we establish that this prior has large support in Theorem 2. Large support
implies that the prior can generate a covariance regression function Σ : X → P+

p arbitrarily
close to any continuous function Σ∗ : X → P+

p , with P+
p the space of p×p positive semidef-

inite matrices. Such a support property is the defining feature of a Bayesian nonparametric
approach and cannot simply be assumed. Often, seemingly flexible models can have quite
restricted support due to hidden constraints in the model and not to real prior knowledge
that certain values are implausible. The proofs associated with the theoretical statements
made in this section can be found in Appendix A.

We start by introducing a notion of k-decomposability of a covariance regression function
Σ(x).

Definition 1 Σ : X → P+
p is said to be k-decomposable if Σ(x) = Λ(x)Λ(x)′ + Σ0 for

Λ(x) ∈ <p×k, Σ0 ∈ XΣ0, and for all x ∈ X .
In Appendix A, we show that such a decomposition always exists for k sufficiently large.
Now assume our model Σ(x) = Θξ(x)ξ(x)′Θ′ + Σ0 with priors Πξ and ΠΣ0 as specified in
Section 2.2. For ΠΘ, we aim to make our statement of prior support as general as possible
and thus simply assume that ΠΘ satisfies the following two conditions. The proof that
Assumptions 2.1 and 2.2 are satisfied by our shrinkage prior (9) is provided in Appendix A.

Assumption 2.1 ΠΘ is such that
∑

` E(|θj`|) < ∞, ensuring that the prior for Θ shrinks
the elements towards zero fast enough as `→∞.

Assumption 2.2 ΠΘ is such that ΠΘ (rank(Θ) = p) > 0. That is, there is positive prior
probability of Θ being full rank.
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Our main result on prior support now follows.

Theorem 2 Let ΠΣ denote the induced prior on {Σ(x),x ∈ X} based on Πξ ⊗ ΠΘ ⊗
ΠΣ0, with ΠΘ satisfying Assumptions 2.1 and 2.2. Assume X is compact. Then, for all
continuous functions Σ∗ : X → P+

p that are k∗-decomposable and for all ε > 0 and k ≥ k∗,

ΠΣ

(
sup
x∈X

||Σ(x)− Σ∗(x)||2 < ε

)
> 0.

Informally, Theorem 2 states that there is positive prior probability of random covariance
regressions Σ(x) that stay within an L2 ε-ball of any specified continuous Σ∗(x) everywhere
over the predictor space X . Intuitively, the support on continuous covariance functions
Σ∗(x) arises from the continuity of the Gaussian process basis functions. However, since we
are mixing over infinitely many such basis functions, we need the mixing weights specified by
Θ to tend towards zero, and to do so “fast enough”—this is where Assumption 2.1 becomes
important. We also rely on the large support of ΠΣ at any point x0 ∈ X . Combining the
large support of the Wishart distribution for Θξ(x0)ξ(x0)′Θ′ (Θ fixed) with that of the
gamma distribution on the inverse elements of Σ0 provides the desired large support of the
induced prior ΠΣ at each predictor location x0.

Remark 3 Our theory holds for L→∞ (an arbitrarily large set of latent basis functions);
however, our large support result only relies on choosing L = p. Assuming Σ∗ is k∗-
decomposable with k∗ � p such that we can select k � p, this still represents a reduction in
parameterization relative to a full model necessitating p×p basis functions. The reliance on
L = p is to be able to capture any k∗-decomposable Σ∗. We can further introduce a concept
of L-decomposability where Σ(x) = Λ(x)Λ(x)′ + Σ0 with Λ(x) = Θξ(x) for Θ ∈ <p×L
and for all x ∈ X , which represents a second factor assumption. Assuming L� p is likely
reasonable for large p. Then for a (k∗, L∗)-decomposable Σ∗, and choosing k > k∗ and
L > L∗ (rather than relying on L = p), the theory of large support follows straightforwardly.

Even when selecting L = p, due to our shrinkage prior for Θ of Section 2.2.4, we find
in practice that many columns tend to be shrunk to zero a posteriori such that choosing a
truncation L̄� p suffices. See Sections 4 and 5.2.4.

2.4.2 Moments and Stationarity

To better understand the relationship between our hyperparameter settings and resulting
covariance regressions, it is useful to analyze the moments of {Σ(x),x ∈ X} ∼ ΠΣ. Lemma
4 provides the prior mean and Lemma 5 the covariance between elements of Σ(x) and Σ(x′).
As the distance between x and x′ increases, the correlation decreases at a rate depending
on the Gaussian process covariance kernel c(x,x′).

Lemma 4 Let µσ denote the mean of σ2
j , j = 1, . . . , p. Then,

E [Σ(x)] = diag

(
k
∑
`

φ−1
1` τ

−1
` + µσ, . . . , k

∑
`

φ−1
p` τ

−1
` + µσ

)
.
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That is, the expected covariance at x is diagonal with expected variance elements depending
on our latent dimension k.

Lemma 5 Let σ2
σ denote the variance of σ2

j , j = 1, . . . , p. Then,

cov(Σij(x),Σij(x
′)) ={

k c(x,x′)
(
5
∑

` φ
−2
i` τ

−2
` + (

∑
` φ
−1
i` τ

−1
` )2

)
+ σ2

σ i = j,

k c(x,x′)
(∑

` φ
−1
i` φ

−1
j` τ

−2
` +

∑
` φ
−1
i` τ

−1
`

∑
`′ φ
−1
j`′ τ

−1
`′

)
i 6= j.

(10)

For Σij(x) and Σuv(x
′) with i 6= u or j 6= v, cov(Σij(x),Σuv(x

′)) = 0.

Here, we see how our Gaussian process covariance function c(x,x′) controls the dependence
over X in an interpretable, linear fashion.

From Lemma 5, the autocorrelation ACF (x) = corr(Σij(0),Σij(x)) is simply specified
by c(0,x). When we choose a Gaussian process kernel c(x,x′) = exp(−κ||x − x′||22), we
have

ACF (x) = exp(−κ||x||22). (11)

Thus, the length-scale parameter κ directly determines the shape of the autocorrelation
function. This property aids in the selection of κ via a data-driven mechanism (i.e., a quasi-
empirical Bayes approach), as outlined in Appendix C. One can also consider selecting κ
using methods akin to those proposed by Higdon et al. (2008); Paulo (2005).

Finally, Lemma 6 shows that the stochastic process Σ has stationarity properties, an
often desirable property of a covariance process specification since Σ itself captures het-
eroscedasticity in the observation process.

Lemma 6 The process {Σ(x),x ∈ X} ∼ ΠΣ is first-order stationary in that for all x,x′ ∈
X , ΠΣ(Σ(x)) = ΠΣ(Σ(x′)). Furthermore, assuming a stationary covariance function c(x,x′),
the process is wide sense stationary: cov(Σij(x),Σuv(x

′)) solely depends upon ||x− x′||.

3. Posterior Computation via Gibbs Sampling

Based on a fixed truncation level L̄ and a latent factor dimension k̄, we propose a Gibbs
sampler for posterior computation. For the model of Section 2, the full joint probability is
given by pobs · pparams · phypers where

pobs =

n∏
i=1

p(yi | Θ, ξ,ηi,Σ0)

k̄∏
k=1

p(ηik | ψk)

 phypers =

L̄∏
`=1

p(τ`) p∏
j=1

p(φj`)


pparams =

k̄∏
k=1

p(ψk) L̄∏
`=1

p(ξ`k)

 p∏
j=1

p(σ2
j )

L̄∏
`=1

p(θj` | φj`, τ`)

 (12)

The resulting sampler is outlined in Steps 1-5 below. Step 1 is derived in Appendix B. In
this section, we equivalently represent the latent factor process of (2) as ηi = ψ(xi) + νi,
with νi ∼ Nk(0, Ik).
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Step 1. Update each basis function ξ`m from the conditional posterior given {yi}, Θ,
{ηi}, Σ0. We can rewrite the observation model for the jth component of the ith response

as yij =
∑k̄

m=1 ηim
∑L̄

`=1 θj`ξ`m(xi) + εij . Conditioning on ξ−`m = {ξrs, r 6= `, s 6= m}, ξ`m(x1)
...

ξ`m(xn)

 | {yi}, {ηi},Θ, ξ−`m,Σ0 ∼ Nn

Σ̃ξ

 η1m
∑p

j=1 θj`σ
−2
j ỹ1j

...

ηnm
∑p

j=1 θj`σ
−2
j ỹnj

 , Σ̃ξ

 ,

where ỹij = yij−
∑

(r,s)6=(`,m) θjrξrs(xi) and, taking K to be the Gaussian process covariance
matrix with Kij = c(xi,xj),

Σ̃−1
ξ = K−1 + diag

η2
1m

p∑
j=1

θ2
j`σ
−2
j , . . . , η2

nm

p∑
j=1

θ2
j`σ
−2
j

 .

Step 2. Sample each latent factor mean function ψl. Letting Ωi = Θξ(xi), we have
yi = Ωiψ(xi) + Ωiνi + εi. Marginalizing out νi, yi = Ωiψ(xi) + ωi with ωi ∼ N(0, Σ̃i =
ΩiΩ

′
i + Σ0). Assuming ψ` ∼ GP(0, c), the posterior of ψ` follows analogously to that of ξ`m

resulting in ψl(x1)
...

ψl(xn)

 | {yi}, {ηi},ψ−l,Θ, ξ,Σ0 ∼ Nn

Σ̃ψ

 Ω′1lΣ̃
−1
1 ỹ−l1
...

Ω′nlΣ̃
−1
n ỹ

−l
n

 , Σ̃ψ

 ,

where ỹ−li = yi −
∑

(r 6=l) Ωirψr(xi), Ωil is the lth column vector of Ωi, and

Σ̃−1
ψ = K−1 + diag

(
Ω′1lΣ̃

−1
1 Ω1l, . . . ,Ω

′
nlΣ̃
−1
n Ωnl

)
.

Step 3. Sample νi. Defining ỹi = yi − Ωiψ(xi) such that ỹi = Ωiνi + εi, we draw νi
given ỹi,ψ(xi),Θ, ξ(xi),Σ0 from the conditional posterior,

Nk̄

({
I + ξ(xi)

′Θ′Σ−1
0 Θξ(xi)

}−1
ξ(xi)

′Θ′Σ−1
0 ỹi,

{
I + ξ(xi)

′Θ′Σ−1
0 Θξ(xi)

}−1
)
.

Step 4. Sample σ2
j . Letting θj· denote the jth row vector of Θ, we draw

σ−2
j | {yi}, {ηi},Θ, ξ ∼ Ga

(
aσ +

n

2
, bσ +

1

2

n∑
i=1

(yij − θj·ξ(xi)ηi)2

)
.

Step 5. Sample θj·. The conditional posterior on the row vectors of Θ is

θj· | {yi}, {ηi}, ξ, φ, τ ∼ NL̄

(
Σ̃θη̃

′σ−2
j (y1j , . . . , ynj)

′, Σ̃θ

)
,

where η̃ = {ξ(x1)η1, . . . , ξ(xn)ηn}′ and Σ̃−1
θ = σ−2

j η̃
′η̃ + diag(φj1τ1, . . . , φjL̄τL̄).

Step 6. Finally, for the hyperparameters in the shrinkage prior for Θ, we have

φjl | θjl, τl ∼ Ga

(
2,
γ + τlθ

2
jl

2

)
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δ1 | Θ, τ (−1) ∼ Ga

a1 +
pL̄

2
, 1 +

1

2

L̄∑
l=1

τ
(−1)
l

p∑
j=1

φj`θ
2
jl



δh | Θ, τ (−h) ∼ Ga

a2 +
p(L̄− h+ 1)

2
, 1 +

1

2

L̄∑
l=1

τ
(−h)
l

p∑
j=1

φjlθ
2
jl

 ,

where τ
(−h)
l =

∏l
t=1,t 6=h δt for h = 1, . . . , p.

Each of the above steps is straightforward to implement involving sampling from stan-
dard distributions. We have observed good rates of convergence and mixing in our con-
sidered applications (see Section 5). As with other models involving Gaussian processes,
computational bottlenecks can arise as n increases due to O(n3) matrix computation. Stan-
dard computational approaches can be used for dealing with this problem, as discussed in
Section 6. We find inferences to be somewhat robust to the Gaussian process covariance
parameter κ due the quadratic mixing over the basis functions. In the applications de-
scribed below, we estimate κ from the data as an empirical Bayes approach, with details in
Appendix C.

4. Simulation Example

We assess the performance of the proposed approach in terms of both covariance estimation
and predictive performance. In Case 1 we simulated from the proposed model, while in Case
2 we simulated from a parametric model. In Case 1, we let X = {1, . . . , 100}, p = 10, L = 5,
k = 4, a1 = a2 = 10, γ = 3, aσ = 1, bσ = 0.1 and κψ = κ = 10 in the Gaussian process after
scaling X to (0, 1] with an additional nugget of 1e−5In added to K. Figure 1 displays the
resulting values of the elements of µ(x) and Σ(x). For inference, we use truncation levels
k̄ = L̄ = 10, which we found to be sufficiently large from the fact that the last few columns
of the posterior samples of Θ were consistently shrunk close to 0. We set a1 = a2 = 2,
γ = 3, and placed a Ga(1, 0.1) prior on the precision parameters σ−2

j . The length-scale
parameter κ was set from the data according to the heuristic described in Appendix C,
and was determined to be 10 (after rounding). Details on initialization are available in
Appendix D. We simulated 10,000 Gibbs iterations, discarded the first 5,000 and saved
every 10th iteration.

The residuals between the true and posterior mean over all components are displayed
in Figure 2(a) and (b). Figure 2(c) compares the posterior samples of the elements σ2

j of
the residual covariance Σ0 to the true values. In Figure 3 we display a select set of plots of
the true and posterior mean of components of µ(x) and Σ(x), along with the 95% highest
posterior density intervals computed pointwise. From Figures 2 and 3, we see that we
are clearly able to capture heteroscedasticity in combination with a nonparametric mean
regression. The true values of the mean and covariance components are all contained within
the 95% highest posterior density intervals, with these intervals typically narrow.

For the same simulated data set, we assessed predictive performance compared to ho-
moscedastic models y ∼ Np(µ(x),Σ), with µj(x) either arising as independent GP(0, c)
draws or through a latent factor regression model with µ(x) = Θξ(x)ψ(x) just as in the
heteroscedastic formulation; in both cases, Σ was assigned an inverse-Wishart prior. By
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Figure 1: Plot of each component of the (a) true mean vector µ(x) and (b) true covariance
matrix Σ(x) over X = {1, . . . , 100}.
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Figure 2: Differences between each component of the true and posterior mean of (a) the
mean µ(x), and (b) covariance Σ(x). The y-axis scale matches that of Figure 1.
(c) Box plot of posterior samples of log(σ2

j ) for j = 1, . . . , p compared to the true
value (green).

comparing to this latter homoscedastic model, we can directly analyze the benefits of our
heteroscedastic model since both share exactly the same mean regression formulation. To
generate a hold out sample, we removed 48 of the 1,000 observations by deleting observa-
tions yij with probability pi, where pi was chosen to vary with xi to slightly favor removal
in regions with more concentrated conditional response distributions.

We first calculated the average Kullback-Leibler divergence between the estimated and
true predictive distribution of the missing elements yij given the observed elements of yi.
The average values were 0.341, 0.291 and 0.122 for the homoscedastic mean regression, ho-
moscedastic latent factor mean regression and heteroscedastic latent factor mean regression,
respectively. In this scenario, the missing observations yij are imputed as an additional step
in the MCMC computations.1 The results clearly indicate that our Bayesian nonparamet-
ric covariance regression model provides more accurate predictive distributions. We also
observed improvements in estimating the mean µ(x) for the heteroscedastic approach.

1. Note that it is not necessary to impute the missing yij within our proposed Bayesian covariance regression
model because of the conditional independencies at each Gibbs step. In Section 5, we simply sample based
only on actual observations. Here, however, we impute in order to directly compare our performance to
the homoscedastic models.
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Figure 3: Plots of truth (red) and posterior mean (green) for select components of the
mean µp(x) (left), variances Σpp(x) (middle), and covariances Σpq(x) (right).
The point-wise 95% highest posterior density intervals are shown in blue. The
top row represents the component with the lowest L2 error between the truth
and posterior mean. Likewise, the middle row represents median L2 error and
the bottom row the worst L2 error. The size of the box indicates the relative
magnitudes of each component.

In Case 2, we generated 30 replicates from a 30-dimensional parametric heteroscedastic
model with y ∼ Np(0,Σ(x)) and X = {1, . . . , 500}. To generate Σ(x), we chose a set of 5
evenly spaced knots xk and generated S(xk) ∼ N(0,Σs), with Σs =

∑30
j=1 sjs

′
j and sj ∼

N((−29,−27, . . . , 27, 29)′, I30). The covariance is constructed as Σ(x) = αS̃(x)S̃(x)′ + Σ0,
x = 1, . . . , 500, where S̃(x) is a spline fit to the S(xk) and Σ0 is a diagonal matrix with a
N(0, 1) truncated to be positive on its diagonal elements. The constant α is chosen to scale
the maximum value of αS̃(x)S̃(x)′ to 1.

Our hyperparameters and initialization scheme are as in Case 1, but we use truncation
levels k̄ = L̄ = 5 based on an initial analysis with k̄ = L̄ = 17. A posterior mean estimate
of Σ(x) is displayed in Figure 4(c). Compare to the true Σ(x) shown in Figure 4(a).
Figure 4(b) shows the mean and 95% highest posterior density intervals of the log Frobenius
norm log ||Σ(τ,m)(x) − Σ(x)||2 over Gibbs iterations τ and replicates m = 1, . . . , 30. The
average (un-logged) norm error over X is around 3, which is equivalent to each element of
the inferred Σ(τ,m)(x) deviating from the true Σ(x) by 0.1. Since the covariance elements
are approximately in the range of [−1, 1] and the variances in [0, 3], these values indicate
good estimation performance. We compare to a Wishart matrix discounting approach of
Prado and West (2010), which is commonly used in stochastic volatility modeling. Details
on our implementation are included in Appendix F. From Figures 4(b) and (d), Wishart
discounting has substantially worse performance, with estimation error particularly large
at high xs due to accumulation of errors in forward filtering.
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Figure 4: (a) Plot of each component of the true Σ(x) over X = {1, . . . , 500}; (c) cor-
responding posterior means for our proposed approach; and (d) results for a
Wishart discounting method, with (c)–(d) based on a single simulation replicate.
(b) Mean and 95% highest posterior density intervals of the log Frobenius norm,
log ||Σ(τ,m)(x)−Σ(x)||2, for the proposed approach (blue and green) and Wishart
discounting (red and black). Results are aggregated over 100 posterior samples
and replicates m = 1, . . . , 30.

5. Analysis of Spatio-temporal Trends in Flu

We now turn to our analysis of the Google Flu Trends data, described in detail in Section 5.1.
Our focus is on applying our Bayesian nonparametric covariance regression model to capture
the heteroscedasticity noted in the exploratory analysis of Appendix G. We also examine
how our modeling approach is robust to (i) inaccuracies in the mean model, (ii) missing
data, and (iii) outlying estimates.

Surveillance of influenza has been of growing interest following a series of pandemic
scares (e.g., SARS and avian flu) and the 2009 H1N1 (“swine flu”) pandemic. Although
influenza pandemics have a long history, a convergence of factors—such as the rapid rate
by which geographically distant cases of influenza can spread worldwide—have increased
the current public interest in influenza surveillance. A number of papers have recently
analyzed the temporal (Mart́ınez-Beneito et al., 2008) and spatio-temporal dynamics of
influenza transmission (Stark et al., 2012; Dukić et al., 2012; Hooten et al., 2010; Sakai
et al., 2004; Viboud et al., 2004; Mugglin et al., 2002). These approaches focus on data
from a modest number of locations, and make restrictive assumptions about the spatial
dependence structure, which itself may evolve temporally. Our focus is on addressing these
limitations.
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For example, Dukić et al. (2012) also examine portions of the Google Flu Trends data,
but with the goal of on-line tracking of influenza rates on either a national, state, or regional
level. Specifically, they employ a state-space model with particle learning. Our goal differs
considerably. We aim to jointly analyze the full 183-dimensional data, as opposed to univari-
ate modeling. Through such joint modeling, we can uncover important spatial dependencies
lost when analyzing components of the data individually. Such spatial information can be
key in predicting influenza rates based on partial observations from select regions or in retro-
spectively imputing missing data. Additionally, the inherent redundancy and borrowing of
information across locations provided by our model should lead to robustness to inaccuracies
of flu estimates caused by malicious attacks to the Google infrastructure or unaccounted for
sudden spikes in web searches (see Section 5.2.3). Hooten et al. (2010) consider the temporal
dynamics of the state-level Google estimates, building on a susceptible–infected–recovered
(SIR) model to capture the complexities of intra- and inter-state dynamics of flu disper-
sal. Such a model aims to captures the intricate mechanistic structure of flu transmission,
whereas our goals are focused primarily on fit using metrics such as predictive performance,
with an eye towards scalability and robustness. Our exploratory data analysis of Appendix
G shows that even with a very flexible and well-fit mean model, temporally changing spatial
structure persist in the residuals motivating a heteroscedastic approach. In Section 4, we
demonstrated that actually modeling such heteroscedasticity can improve predictive perfor-
mance. Here, we show that the model of Section 2 can effectively capture such time-varying
correlations in region-specific Google-estimated ILI rates, even when considering 183 regions
jointly and in the presence of significant missing data.

5.1 Influenza Monitoring and Google Flu Trends

The surveillance of rates of influenza-like illness (ILI) within the United States is coordinated
by the Centers for Disease Control and Prevention (CDC), which consolidates data from a
large network of diagnostic laboratories, hospitals, clinics, individual healthcare providers,
and state health departments. The CDC produces weekly reports (http://www.cdc.gov/
flu/weekly/) for 10 geographic regions and a U.S. aggregate rate. A plot of the number
of isolates tested positive by the WHO and NREVSS from September 28, 2003 to October
24, 2010 is shown in Figure 5 (left). From these data and the CDC weekly flu reports,
we defined a set of six events (Events A-F) corresponding to the 2003-2004, 2004-2005,
2005-2006, 2006-2007, 2007-2008, and 2009-2010 flu seasons, respectively. See the specific
dates listed in Figure 5 (right). The 2003-2004 flu season began earlier than normal, and
coincided with a flu vaccination shortage in many states. Additionally, the CDC found that
the vaccination was “not effective or had very low effectiveness” (CDC, 2004). Finally, the
2009-2010 flu season coincides with the emergence of the 2009 H1N1 (“swine flu”) subtype
in the U.S..

To aid in a more rapid response to influenza activity, researchers at Google devised a
model in collaboration with the CDC based on Google user search queries that is meant to be
predictive of CDC ILI rates, measured as cases per 100,000 physician visits (Ginsberg et al.,
2008). The Google Flu Trends methodology was devised based on a two-stage procedure:
(i) a massive variable selection procedure was used to select a subset of search queries, and
(ii) using these queries as the explanatory variable, region-independent univariate linear
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Figure 5: Left: Number of isolates of Influenza A and B tested positive by the WHO and
NREVSS over the period of September 29, 2003 to May 23, 2010, with Influenza
A broken down into various subtypes. The green line indicates the time periods
determined to be flu events. Right: Corresponding date ranges for flu events A-F.

models were fit to the weekly CDC ILI rates from 2003-2007. The fitted models are then
used for making estimates in any region based on the ILI-related query rates from that
region. A key advantage of the Google data is that the ILI rate predictions are available 1
to 2 weeks before the CDC weekly reports are published. Additionally, a user’s IP address
is typically connected with a specific geographic area and can thus provide information at
a finer scale than the 10-regional and U.S. aggregate reporting provided by the CDC.

There has, however, been significant recent debate about the accuracy of the Google
Flu Trend estimates (Butler, 2013; Lazer et al., 2014; Harris, 2014). For this paper, we
take a backseat in this discussion and simply use this data set to demonstrate the po-
tential impact of our methods in this domain. Revised Google-estimated ILI rates could
likewise be used in our framework, as could other recent sources of rapid ILI estimates,
e.g., using Twitter data (Lamb et al., 2013; Achrekar et al., 2012) or platforms that in-
corporate user-contributed reported cases (e.g., https://flunearyou.org). Regardless, as
we demonstrate in Section 5.2.3, our formulation provides some robustness to inaccurate
estimates.

5.1.1 Data Description and Key Features

We analyze the Google Flu Trends data—produced on a weekly basis—from September 28,
2003 through October 24, 2010, totaling 370 weeks. These data provide ILI estimates in
183 regions, consisting of the U.S. national level, 50 states, 10 U.S. Department of Health
& Human Services surveillance regions, and 122 cities. For our modeling, we take our
observation vectors yi = (yi1, . . . , yip) to be the log of the Google-estimated ILI rates in
the p = 183 regions at week i. We denote the untransformed rates by ri = (ri1, . . . , rip).
Our predictor xi is simply a discrete time index indicating the current week (xi = i, i =
1, . . . , 370).

Since the Google model fits regions independently, it is not the case that city counts add
to regional counts which add to state counts, and so on. That is, the dimensions of yi are not
deterministic functions of each other. There is, however, inherent redundancy (e.g., between
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the estimated ILI rates for California and Los Angeles) that is naturally accommodated by
a latent factor approach. Another important note is that there is substantial missing data
with entire blocks of observations unavailable (as opposed to certain weeks sporadically
being omitted). At the beginning of the examined time frame only 114 of the 183 regions
were reporting. By the end of Year 1, there were 130 regions. These numbers increased to
173, 178, 180, and 183 by the end of Years 2, 3, 4, and 5, respectively.

5.2 Analysis via Bayesian Nonparametric Covariance Regression

We apply our Bayesian nonparametric covariance regression model as follows: log ri ∼
N(µ(xi),Σ(xi)). Recall that ri simply stacks all region-specific measurements rij into
a 183-dimensional vector for each week xi. The spatial conditional correlation structure
at week xi is then captured by the covariance Σ(xi) = Θξ(xi)ξ(xi)

′Θ′ + Σ0 and the
mean by µ(xi) = Θξ(xi)ψ(xi). Temporal changes are implicitly modeled through the
proposed mean-covariance regression framework that allows for continuous variations in
{µ(xi),Σ(xi)} via our Gaussian-process-based formulation. As such, we can also examine
{µ(x),Σ(x)} for unobserved time points x ∈ X occurring between the weekly measurements.

We emphasize that our model does not explicitly encode any spatial structure between
the regions (comprising the dimensions of the response vector yi), which is in contrast to
many spatial and spatio-temporal models that build in a notion of neighborhood struc-
ture. This is motivated both by the fact that, as we see in the correlation maps of the
exploratory data analysis in Appendix G, the definition of “neighborhood” is not necessar-
ily straightforward to encode using Euclidean distance since geographically distant regions
might have significant correlation2. Likewise, this structure need not remain fixed across
time. Finally, the full set of 183 regions—comprised of cities, states, regions, and the
U.S. national level—represents a type of multiresolution spatial description of flu activ-
ity. Although multiresolution-based spatial structures could be imposed based on known
relationships, the inherent redundancy of these observations in this task is very well accom-
modated by a latent factor model. As we have shown, such a structure is very simple to
work with computationally and enables our ability to straightforwardly cope with missing
data without imputing these values. We could consider a model that combines latent factor
and neighborhood based approaches, leading to low-rank plus sparse precision forms for the
covariance. This is a topic that has received considerable recent attention (Chandrasekaran
et al., 2012). We leave this as a direction of future research.

Details on our model and MCMC setup are provided in Section 5.2.4.

5.2.1 Qualitative Assessment

We begin by producing correlation map snapshots similar to those of the exploratory data
analysis in Appendix G, but here with an ability to examine instantaneous correlations
that utilize (i) all 183 regions jointly and (ii) the entire time course. In contrast, the
analysis of Appendix G reduces dimensionality to state-level, aggregates data amongst flu
versus non-flu events to cope with data scarcity, and discards data prior to Event B due to
significant missing values. The results presented in Figures 6 and 7 clearly demonstrate that

2. Perhaps this effect arises from air travel (Brownstein et al., 2006), which was found to be a statistically
significant driver in the state-level model of Hooten et al. (2010).
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Figure 6: (a) Plot of posterior means of the nonparametric mean function µj(x) for each of
the 183 Google Flu Trends regions. The thick yellow line indicates the empirical
mean of the log Google-estimated ILI rates, log rij , across regions j. (b) For New
York, the 25th, 50th, and 75th quantiles of correlation with the 182 other regions
based on the posterior mean estimate of Σ(x). The black line is a scaled version
of the log Google-estimated United States ILI rate. The shaded gray regions
indicate the time periods determined to be flu events (see Figure 5).

we are able to capture temporal changes in the spatial correlations of the Google Flu Trends
data, even in the presence of substantial missing information. In Figure 6(b), we plot the
posterior mean of the 183 components of µ(x), showing trends that follow the empirical
mean Google-estimated ILI rate. Although this mean model provides a slightly worse fit
than the smoothing splines, our quantitative assessment of Section 5.2.2 demonstrates that
modeling heteroscedasticity allows for a well-calibrated joint model. That is, we are robust
to our simple choice for the mean regression function. (We note that more complicated mean
models could be used within this framework, but this analysis demonstrates the flexibility of
joint mean-covariance modeling.) For New York, in Figure 6(c) we plot the 25th, 50th, and
75th quantiles of correlation with the 182 other states and regions based on the posterior
mean estimate of Σ(x). From this plot, we immediately notice the time-varying correlations.

The specific time-varying geographic structure of the inferred correlations is displayed
in Figure 7. Qualitatively, we see changes in the residual structure not just between flu
and non-flu periods as in Appendix G, but also between flu events. In the more mild 2005-
2006 season, we see much more local correlation structure than the more severe 2007-2008
season (which still maintains stronger regional than distant correlations.) The November
2009 H1N1 event displays overall regional correlation structure and values similar to the
2007-2008 season, but with key geographic areas that are less correlated. The 2006-2007
season is rather typical, with correlation maps very similar to those of the exploratory
data analysis in Figure 12. Note that some geographically distant states, such as New York
and California, are often highly correlated. Interestingly, the strong local spatial correlation
structure for South Dakota in February 2006 has been inferred before any data are available
for that state. Actually, no data are available for South Dakota from September 2003 to
November 2006. Despite this missing data, the inferred correlation structures over these
years are fairly consistent with those of neighboring states and change in manners similar to
the flu-to-non-flu changes inferred after data for South Dakota are available. (See the movies
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Figure 7: For the states in Figure 12 and each of four key dates (February 2006 of Event
C, February 2007 of Event D, February 2008 of Event E, and November 2009 of
Event F), correlation maps based on the posterior mean estimate of Σ(x) using
samples [5000 : 10 : 10000] from 10 chains. The color scale is exactly the same
as in Figure 12. The plots indicate spatial structure captured by Σ(x), and that
these spatial dependencies change over time. Note that no geographic information
was included in our model.

provided in the Online Appendix.) This is enabled by the transfer of knowledge property
described in Section 2.3. In particular, the row of Θ corresponding to South Dakota is
informed by all of South Dakota’s available data while the latent GP basis elements ξ`k are
informed by all of the other regions’ data, in addition to assumed continuity of ξ`k which
shares information across time.

Comparing the maps of Figure 7 to those of the sample-based estimates in Figure 12, we
see much of the same correlation structure, which at a high level validates our findings. Since
the sample-based estimates aggregate data over Events B-F (containing those displayed in
Figure 7), they tend to represent a time-average of the event-specific correlation structure
we uncovered. Note that due to the dimensionality of the data set, the sample-based
estimates are based solely on state-level measurements and thus are unable to harness the
richness (and crucial redundancy) provided by the other regional reporting agencies. The
high-dimensionality and missing data structure of this data set also limit our ability to
compare to alternative methods such as those cited in Section 1—none yield results directly
comparable to the full analysis we have provided here. Instead, they are either limited
to examination of the small subset of data for which all observations are present and/or
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Figure 8: Top: Based on the nonparametric Nadaraya-Watson kernel estimator
of Yin et al. (2010) using three different bandwidth settings ((κ/2)−1/2 =
0.07, 0.02, 0.0008), plots of the nonparametric mean estimate µ̂j(x) for each of
the 183 regions, as in Figure 6(b). The estimate is based on averaging samples
[500 : 10 : 1000] from a stochastic EM chain that iterated between imputing
missing values and computing the kernel estimate. Note that in the rightmost
panel, the y-axis is truncated and the estimates in Event A actually extend to
above 12. Bottom: Associated plots of correlations between California and all
other states during February 2006 based on the nonparametric Nadaraya-Watson
kernel estimator of the covariance function Σ̂(x). The color scale is exactly the
same as in Figures 12 and 7.

a lower-dimensional selection (or projection) of observations. For example, the common
GARCH models cannot handle missing data and are limited to typically no more than 5
dimensions. On the other hand, our proposed algorithm can readily utilize all information
available to model the heteroscedasticity present here.

In an attempt to make a comparison, we propose a stochastic EM algorithm (Diebolt and
Ip, 1995) for handling missing data within the framework of the nonparametric Nadaraya-
Watson kernel estimator of Yin et al. (2010). Details are provided in Appendix H. The
results based on a Gaussian kernel, as employed in Yin et al. (2010), are summarized in
Figure 8. We examine three settings for the kernel bandwidth parameter: one (0.0008)
based on the cross validation technique proposed in Yin et al. (2010) using the last portion
of the time series without any missing values, one (0.02) tuned to match the smoothness of
the mean function estimated from the Bayesian nonparametric method proposed herein (see
Figure 6(b)), and one large setting (0.07) that leads to substantial sharing of information,
but over-smooths the mean. The leave-one-out cross validation method leads to a very
small bandwidth because of the specific temporal structure of the data (intuitively, the
best estimate of a missing flu rate is achieved by averaging the nearest neighbors in time).
However, this setting leads to poor predictive performance in the presence of consecutive
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missing values. In Figure 8(a), we see the unreasonably large mean values estimated at the
beginning of the time series when there is substantial missing data. The smoothness of the
mean function using a bandwidth of 0.02 captures the global changes in flu activity, leaving
the covariance to explain the residual correlations in the observations, better matching
our goals. However, the covariance, as visualized through the California correlation map
of February 2006 (Figure 8(middle)), lacks key geographic structure such as the strong
correlation between California and New York. This correlation is present during other flu
events, and is unlikely to be truly missing from this event. Instead, the failure to capture
this and other correlations is likely due to the increased uncertainty from the substantial
early missing data and lack of global sharing of information. Using a much larger bandwidth
of 0.07 necessarily leads to more sharing of information, and results in the presence of these
correlations. The resulting over-smooth mean function, however, does not capture global
flu variations. On the other hand, our Bayesian nonparametric method is able to maintain
a local description of the data while sharing information across the entire time series, thus
ameliorating sensitivity to missing data.

5.2.2 Model Calibration

The plots of Section 5.2.1 qualitatively demonstrate that we are able to capture time-varying
changes in the spatial conditional correlation structure of the (log) Google-estimated ILI
rates. Despite not encoding spatial structure in our latent-factor-based model, we note that
some local geographic structure has emerged, while still allowing for long-range correlations
and temporal changes in this structure. We now turn to a quantitative assessment of the
fit and robustness of our model. To this end, we examine posterior predictive intervals of
randomly heldout data. More specifically, from the available observations (omitting the
significant number of truly missing observations), we randomly held out 10% of the values
uniformly across time and regions. We then simulated from our Gibbs sampler treating
these values as missing data and analytically marginalizing them from the complete data
likelihood, just as we do for the truly missing values. Based on each of our MCMC samples,
we form µ(x) and Σ(x) for each x = 1, . . . , 370 and compute the predictive distribution for
the heldout data given any available state-level observations at week x (i.e., we condition
on a subset of observed regions, ignoring non-state-level measurements). Averaging over
MCMC samples, we then form 95% posterior predictive intervals and associated coverage
rates for each x. We run this experiment of randomly holding out 10% of the observed data
twice.

As a comparison, we consider an artificially generated homoscedastic model where we
simply form Σ̂ =

∑370
i=1 Σ(xi) for each of our MCMC samples. In this case, both models

have exactly the same mean regression, µ(x). Likewise, the underlying µ(x) and Σ(x) (and
thus Σ̂) were all informed using the same low-dimensional embedding of the observations,
harnessing the previously described benefits of such a latent factor approach. The only
difference is whether we consider the week-specific covariance, Σ(x), or instead its mean, Σ̂,
in forming our predictive intervals for week x. Considering the two experiments separately,
we find that 94.4% and 94.6% of the heldout observations were covered by our 95% poste-
rior predictive intervals, respectively. This result indicates that our joint mean-covariance
regression model is well-calibrated and robust to the rather simple mean model. In compar-
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Figure 9: Comparison of posterior predictive intervals using our heteroscedastic model ver-
sus a homoscedastic model. Top: Scatter plots of week-specific coverage rates
and interval lengths, aggregated over two experiments. Bottom: Differences in
coverage rates and interval lengths by week, separating the experiments via an
offset for clarity.

ison, the artificially generated homoscedastic model had coverage rates of 93.7% and 93.8%,
respectively. Importantly, the better calibrated coverage rates of our heteroscedastic model
came from shorter predictive intervals with average lengths of 1.2272 and 1.2268 compared
to 1.2469 and 1.2475 for the homoscedastic model.

Figure 9 explores the differences between these posterior predictive intervals on a week-
by-week basis. In Figure 9 (top) we see that a majority of the week-specific intervals have
higher coverage rates and shorter interval lengths (i.e., most coverage rate comparisons are
on or above the x− y line whereas most interval length comparisons are below this line of
equal performance). Time courses of the rates and interval lengths are shown separately for
the two experiments in Figure 9 (bottom), where the temporal patterns in these differences
become clear. There are stretches of weeks with identical coverage rates, leading to the
similarity in overall rates for the two methods, though with the heteroscedastic approach
using shorter intervals. The difference of going from overall rates of roughly 93.7% to 94.5%
is attributed to certain bursts of time where capturing heteroscedasticity is really key. These
time points can sometimes be attributed to the heteroscedastic approach providing wider
intervals.
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Figure 10: Comparison of posterior mean estimates of µ(x) and Σ(x) using the full data
versus using the data with the outlying weeks of April 26, 2009 and May 3, 2009
removed. Denote the resulting estimates by {µ̂(x), Σ̂(x)} and {µ̂out(x), Σ̂out(x)},
respectively. The two outlying weeks are highlighted by the gray shaded region.
The blue lines indicate 0.05 and 0.95 pointwise-quantiles of the components (left)
µ̂j(x) − µ̂outj (x) and (right) Σ̂ij(x) − Σ̂out

ij (x). The red line is the median. The
green and cyan lines are the corresponding 0.05, 0.5, and 0.95 quantiles of the full
data µ̂j(x) and Σ̂ij(x) shown for scale. We omit the first year with significant
missing data to hone in on the smaller scale variability in subsequent years.
No quantiles (blue/green lines) overlapped in this first year for the covariance
elements, and trends were of the same scale for the mean elements.

5.2.3 Sensitivity to Outliers

As discussed in Section 5.1, there has been some debate about the accuracy of the Google
Flu Trends estimates. In Cook et al. (2011), the two weeks of April 26, 2009 and May 3, 2009
were highlighted as having inflated Google estimates based on the significant media attention
spurred by the H1N1 virus. In theory, our mean-covariance regression model has two
defenses against such outliers. The first is due to the implicit shrinkage and regularization
achieved through our use of a small set of latent basis functions. The second is the fact
that an outlier at time x only has limited impact on inferences at time points x′ that are
“far” from x. This is formalized by in Lemma 5, where we see that the covariance between
Σij(x) and Σuv(x

′) decays with (x − x′)2 (for univariate x and our squared exponential
kernel c(x, x′)).

To empirically examine the impact of these outliers on our inferences, we removed all of
the data from the weeks of April 26, 2009 and May 3, 2009 and simulated from our Gibbs
sampler treating these data as missing. In Figure 10, we examine the differences between
the posterior mean estimates of µ(x) and Σ(x) using the full data and this data set with the
outlying weeks removed. We see that the most significant differences in our estimates are
localized in time around these removed outlying weeks, as we would expect. Likewise, the
sheer magnitude of these differences (which of course are larger for the harder-to-estimate
covariance process) are quite small relative to the scale of the parameters in our model.
These results demonstrate a robustness to outliers and allude to a robustness to certain
types of malicious attacks.
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5.2.4 MCMC Details, Sensitivity Analysis, and Convergence Diagnostics

We simulated 5 chains each for 10,000 MCMC iterations, discarded the first 5,000 for burn-
in, and thinned the chains by examining every 10 samples. Each chain was initialized with
parameters sampled from the prior. The hyperparameters were set as in the simulation
study, except with larger truncation levels L̄ = 10 and k̄ = 20 and with the Gaussian
process length-scale hyperparameter set to κψ = κ = 100 to account for the time scale
(weeks) and the rate at which ILI incidences change. By examining posterior samples of
Θ, we found that the chosen truncation level was sufficiently large. To assess convergence,
we performed the modified Gelman-Rubin diagnostic of Brooks and Gelman (1998) on
the MCMC samples of the variance terms Σjj(xi). We also performed hyperparameter
sensitivity, letting κψ = κ = 200 to induce less temporal correlation and using a larger
truncation level of L̄ = k̄ = 20 with less stringent shrinkage hyperparameters a1 = a2 =
2 (instead of a1 = a2 = 10). The results were essentially identical to those presented.
Note that after taking the log transformation, the data were preprocessed by removing the
empirical mean of each region and scaling the entire data set by one over the largest variance
of any of the 183 time series.

5.2.5 Computational Complexity

Each of our chains of 10,000 Gibbs iterations based on a naive implementation in MATLAB
(R2010b) took approximately 12 hours on a machine with four Intel Xeon X5550 Quad-
Core 2.67GHz processors and 48 GB of RAM. For a sense of scaling of computations, the
p = 10, n = 100 simulation study of Section 4 took 10 minutes for 10,000 Gibbs iterations
while the p = 30, n = 500 scenario of took 3 hours for 10,000 Gibbs iterations. In terms of
memory and storage, our method only requires maintaining samples of a p × L matrix Θ,
the p elements of Σ0, and an L× k × q × n matrix for the basis functions ξ(x). (Compare
to maintaining the p× p× q× n dimensional matrix for the Nadaraya-Watson estimates of
Σ(x) in the stochastic EM algorithm to which we compared.)

6. Discussion

In this paper, we have presented a Bayesian nonparametric approach to covariance regression
which allows an unknown p × p dimensional covariance matrix Σ(x) to vary flexibly over
x ∈ X , where X is some arbitrary (potentially multivariate) predictor space. As a concrete
example, we considered multivariate heteroscedastic modeling of the Google Flu Trends data
set, where p represents the 183 regions and x a weekly index. Key to this analysis is our
model’s ability to (i) scale to the full 183 regions (large p) and (ii) cope with the significant
missing data without relying on imputing these values. Inherent to both of these capabilities
is our predictor-dependent latent factor model that enables efficient sharing of information
in a low-dimensional subspace. The factor loadings are based on a quadratic mixing over
a collection of basis elements, assumed herein to be Gaussian process random functions,
defined over X . The Gaussian processes define a continuous evolution over X (e.g., time
in the flu analysis), allowing us cope with an irregular grid of observations. Our proposed
methodology also yields computationally tractable algorithms for posterior inference via
fully conjugate Gibbs updates—this is crucial in our being able to analyze high-dimensional
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multivariate data sets. In our Google Flu Trends analysis, we demonstrated the scalability,
calibration, and robustness of our formulation.

There are many possible extensions of the proposed covariance regression framework.
The most immediate are those that fall into the categories of (i) avoiding the multivariate
Gaussian assumption, and (ii) scaling to data sets with larger numbers of observations.

In terms of (i), a natural possibility is to embed the proposed model within a richer
hierarchical framework. For example, a promising approach is to use a Gaussian copula
while allowing the marginal distributions to be unknown as in Hoff (2007). One can also
use more flexible distributions for the latent variables and residuals, such as mixtures of
Gaussians. Additionally, it would be trivial to extend our framework to accommodate mul-
tivariate categorical responses, or joint categorical and continuous responses, by employing
the latent variable probit model of Albert and Chib (1993).

In terms of (ii), our sampler relies on L̄ × k̄ draws from an n-dimensional Gaussian
(i.e., posterior draws of our Gaussian process random basis functions). For very large n,
this becomes infeasible in practice since computations are, in general, O(n3). Standard
tools for scaling up Gaussian process computation to large data sets, such as covariance
tapering (Kaufman et al., 2008; Du et al., 2009) and the predictive process (Banerjee et al.,
2008), can be applied directly in our context. Additionally, one might consider using the
integrated nested Laplace approximations of Rue et al. (2009) for computations. One could
also consider replacing the chosen basis elements with a basis expansion, wavelets, or simply
autoregressive (i.e., band-limited) Gaussian processes. Including flat basis elements allows
the model to collapse on homoscedasticity, enabling testing for heteroscedasticity.

It is also interesting to consider extensions that harness a known, predictor-independent
structured covariance. One approach is to assume a low rank plus sparse model (instead
of our low rank plus diagonal) in which the residuals have a sparse conditional dependence
structure. For example, in the Google flu application the residuals could be modeled via a
Markov random field to capture static local spatial dependencies while the low-rank portion
captures time variation about this nominal structure. One could similarly extend to un-
known sparse structures. Such formulations might allow for fewer latent factor dimensions.

There are also a number of interesting theoretical directions related to showing posterior
consistency and rates of convergence including in cases in which the dimension p increases
with sample size n.
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Appendix A: Proofs of Theorems and Lemmas

In Lemma 7, we show that our proposed factorization of Σ(x) in (3) and (8) is sufficiently
flexible to characterize any {Σ(x), x ∈ X} for sufficiently large k. Let Xξ denote the space
of all possible L× k arrays of X → < functions, XΣ0 all p× p diagonal matrices with non-
negative entries, and XΘ all p × L real-valued matrices such that ΘΘ′ has finite elements.
Recall that our modeling specification considers L→∞.

Lemma 7 Given Σ : X → P+
p , for sufficiently large k there exists {ξ(·),Θ,Σ0} ∈ Xξ ⊗

XΘ ⊗XΣ0 such that Σ(x) = Θξ(x)ξ(x)′Θ′ + Σ0, for all x ∈ X .
Proof Assume without loss of generality that Σ0 = 0p×p and take k ≥ p. Consider

Θ = [Ip 0p×1 0p×1 . . . ], ξ(x) =


chol(Σ(x)) 0p×k−p

01×p 01×k−p
01×p 01×k−p

...
...

 . (13)

Then, Σ(x) = Θξ(x)ξ(x)′ΘT for all x ∈ X .

Proof [Proof of Theorem 2] Since X is compact, for every ε0 > 0 there exists an open
covering of ε0-balls Bε0(x0) = {x : ||x − x0||2 < ε0} with a finite subcover such that⋃
x0∈X0

Bε0(x0) ⊃ X , where |X0| = n. Then,

ΠΣ

(
sup
x∈X
||Σ(x)− Σ∗(x)||2 < ε

)
= ΠΣ

(
max
x0∈X0

sup
x∈Bε0 (x0)

||Σ(x)− Σ∗(x)||2 < ε

)
. (14)

Define Z(x0) = supx∈Bε0 (x0) ||Σ(x)− Σ∗(x)||2. Since

ΠΣ

(
max
x0∈X′

Z(x0) < ε

)
> 0 ⇐⇒ ΠΣ (Z(x0) < ε) > 0, ∀x0 ∈ X0, (15)

we only need to look at each ε0-ball independently, which we do as follows.

ΠΣ

(
sup

x∈Bε0 (x0)
||Σ(x)− Σ∗(x)||2 < ε

)

≥ ΠΣ

(
sup

x∈Bε0 (x0)
||Σ∗(x0)− Σ∗(x)||2 + sup

x∈Bε0 (x0)
||Σ(x0)− Σ(x)||2

+ ||Σ(x0)− Σ∗(x0)||2 < ε

)
≥ ΠΣ

(
sup

x∈Bε0 (x0)
||Σ∗(x0)− Σ∗(x)||2 < ε/3

)

·ΠΣ

(
sup

x∈Bε0 (x0)
||Σ(x0)− Σ(x)||2 < ε/3

)
ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ε/3) (16)
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where the first inequality comes from repeated uses of the triangle inequality, and the second
inequality follows from the fact that each of these terms is an independent event. We
evaluate each of these terms in turn. The first follows directly from the assumed continuity
of Σ∗(·). The second will follow from a statement of (almost sure) continuity of Σ(·) that
arises from the (almost sure) continuity of the ξ`k(·) ∼ GP(0, c) and the shrinkage prior on
θ`k (i.e., θ`k → 0 almost surely as `→∞, and does so “fast enough”.) Finally, the third will
follow from the support of the conditionally Wishart prior on Σ(x0) at every fixed x0 ∈ X .

Based on the continuity of Σ∗(·), for all ε/3 > 0 there exists an ε0,1 > 0 such that

||Σ∗(x0)− Σ∗(x)||2 < ε/3, ∀||x− x0||2 < ε0,1. (17)

Therefore, ΠΣ

(
supx∈Bε0,1 (x0) ||Σ∗(x0)− Σ∗(x)||2 < ε/3

)
= 1.

Based on Theorem 8, each element of Λ(·) , Θξ(·) is almost surely continuous on X
assuming k finite. Letting gjk(x) = [Λ(x)]jk,

[Λ(x)Λ(x)′]ij =
k∑

m=1

gim(x)gjm(x), ∀x ∈ X . (18)

Eq. (18) represents a finite sum over pairwise products of almost surely continuous functions,
and thus results in a matrix Λ(x)Λ(x)′ with elements that are almost surely continuous on
X . Therefore, Σ(x) = Λ(x)Λ(x)′ + Σ0 = Θξ(x)ξ(x)′Θ′ + Σ0 is almost surely continuous on
X . We can then conclude that for all ε/3 > 0 there exists an ε0,2 > 0 such that

ΠΣ

(
sup

x∈Bε0,2 (x0)
||Σ(x0)− Σ(x)||2 < ε/3

)
= 1. (19)

To examine the third term, we first note that

ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ε/3)

= ΠΣ

(
||Θξ(x0)ξ(x0)′Θ′ + Σ0 −Θ∗ξ∗(x0)ξ∗(x0)′Θ∗

′ − Σ∗0||2 < ε/3
)
, (20)

where {ξ∗(x0),Θ∗,Σ∗0} is any element of Xξ⊗XΘ⊗XΣ0 such that Σ∗(x0) = Θ∗ξ∗(x0)ξ∗(x0)′Θ∗
′
+

Σ∗0 with Θ∗ξ∗(x0)ξ∗(x0)′Θ∗
′

having rank k∗. Such a factorization exists by the assumption
of Σ∗ being k∗-decomposable. If k∗ = p, Lemma 7 states that such a decomposition exists
for any Σ∗. We can then bound this prior probability by

ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ε/3)

≥ ΠΣ

(
||Θξ(x0)ξ(x0)′Θ′ −Θ∗ξ∗(x0)ξ∗(x0)′Θ∗

′ ||2 < ε/6
)

ΠΣ0 (||Σ0 − Σ∗0||2 < ε/6)

≥ ΠΣ

(
||Θξ(x0)ξ(x0)′Θ′ −Θ∗ξ∗(x0)ξ∗(x0)′Θ∗

′ ||2 < ε/6
)

ΠΣ0 (||Σ0 − Σ∗0||∞ < ε/(6
√
p)) , (21)

where the first inequality follows from the triangle inequality, and the second from the
fact that for all A ∈ <p×p, ||A||2 ≤

√
p||A||∞, with the sup-norm defined as ||A||∞ =

2528



Bayesian Nonparametric Covariance Regression

max1≤i≤p
∑p

i=1 |aij |. Since Σ0 = diag(σ2
1, . . . , σ

2
p) with σ2

i
i.i.d.∼ Ga(aσ, bσ), the support of

the gamma prior implies that

ΠΣ0 (||Σ0 − Σ∗0||∞ < ε/(6
√
p)) = ΠΣ0

(
max
1≤i≤p

|σ2
i − σ∗2i | < ε/(6

√
π)

)
> 0. (22)

Recalling that [ξ(x0)]`k = ξ`k(x0) with ξ`k(x0)
i.i.d.∼ N (0, 1) and taking Θ a real matrix with

rank(Θ) = p,

Θξ(x0)ξ(x0)′Θ′ | Θ ∼W(k,ΘΘ′). (23)

By Assumption 2.2, there is positive probability under ΠΘ on the set of Θ such that
rank(Θ) = p. Since Θ∗ξ∗(x0)ξ∗(x0)′Θ∗

′
is an arbitrary symmetric positive semidefinite

matrix in <p×p with rank k ≥ k∗, and based on the support of the Wishart distribution,

ΠΣ

(
||Θξ(x0)ξ(x0)′Θ′ −Θ∗ξ∗(x0)ξ∗(x0)′Θ∗

′ ||2 < ε/6
)
> 0. (24)

We thus conclude that ΠΣ (||Σ(x0)− Σ∗(x0)||2 < ε/3) > 0.
For every Σ∗(·) and ε > 0, let ε0 = min(ε0,1, ε0,2) with ε0,1 and ε0,2 defined as above.

Then, combining the positivity results of each of the three terms in Eq. (16) completes the
proof.

Theorem 8 Assuming X compact, for every finite k and L→∞ (or L finite), Λ(·) = Θξ(·)
is almost surely continuous on X .

Proof [Proof of Theorem 8] We can represent each element of Λ(·) as follows:

[Λ(·)]jk = lim
L→∞



θ11 θ12 . . . θ1L

θ21 θ22 . . . θ2L
...

...
. . .

...
θp1 θp2 . . . θpL



ξ11(·) ξ12(·) . . . ξ1k(·)
ξ21(·) ξ22(·) . . . ξ2k(·)

...
...

. . .
...

ξL1(·) ξL2(·) . . . ξLk(·)



jk

=
∞∑
`=1

θj`ξ`k(·). (25)

If ξ`k(x) is continuous for all `, k and sn(x) =
∑n

`=1 θj`ξ`k(x) uniformly converges almost
surely to some gjk(x), then gjk(x) is almost surely continuous. That is, if for all ε > 0 there
exists an N such that for all n ≥ N

Pr

(
sup
x∈X
|gjk(x)− sn(x)| < ε

)
= 1, (26)

then sn(x) converges uniformly almost surely to gjk(x) and we can conclude that gjk(x) is
continuous based on the definition of sn(x). To show almost sure uniform convergence, it
is sufficient to show that there exists an Mn with

∑∞
n=1Mn almost surely convergent and

sup
x∈X
|θjnξnk(x)| ≤Mn. (27)
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Let cnk = supx∈X |ξnk(x)|. Then,

sup
x∈X
|θjnξnk(x)| ≤ |θjn|cnk. (28)

Since ξnk(·)
i.i.d.∼ GP(0, c) and X is compact, cnk <∞ and E[cnk] = c̄ with c̄ finite. Defining

Mn = |θjn|cnk,

EΘ,c

[ ∞∑
n=1

Mn

]
= EΘ

[
Ec|Θ

[ ∞∑
n=1

|θjn|cnk | Θ

]]
= EΘ

[ ∞∑
n=1

|θjn|c̄

]

= c̄
∞∑
n=1

EΘ [|θjn|] , (29)

where the last equality follows from Fubini’s theorem. Based on Assumption 2.1, we con-
clude that E[

∑∞
n=1Mn] <∞ which implies that

∑∞
n=1Mn converges almost surely.

Lemma 9 Assuming the prior specification of expression (9) with a2 > 2 and γ > 2, the
rows of Θ are absolutely summable in expectation:

∑
` E(|θj`|) < ∞, satisfying Assump-

tion 2.1.

Proof [Proof of Lemma 9] Recall that θj` ∼ N (0, φ−1
j` τ

−1
` ) with φj` ∼ Ga(γ/2, γ/2) and

τ` =
∏`
h=1 δh for δ1 ∼ Ga(a1, 1), δh ∼ Ga(a2, 1). Using the fact that if x ∼ N (0, σ2) then

E[|x|] = σ
√

2/π and if y ∼ Ga(a, b) then 1/y ∼ Inv-Ga(a, 1/b) with E[1/y] = 1/(b · (a−1)),
we derive that

∞∑
`=1

Eθ[|θj`|] =
∞∑
`=1

Eφ,τ [Eθ|φ,τ [|θj`| | φj`, τ`]] =

√
2

π

∞∑
`=1

Eφ,τ [φ−1
j` τ

−1
` ]

=

√
2

π

∞∑
`=1

Eφ[φ−1
j` ]Eτ [τ−1

` ] =
4

γ(γ − 2)

√
2

π

∞∑
`=1

Eδ

[∏̀
h=1

1

δh

]

=
1

a1 − 1

4

γ(γ − 2)

√
2

π

∞∑
`=1

(
1

a2 − 1

)`−1

. (30)

When a2 > 2 and γ > 2, we conclude that
∑

`E[|θj`|] <∞.

Proof [Proof of Lemma 4] Recall that Σ(x) = Θξ(x)ξ(x)′Θ′+Σ0 with Σ0 = diag(σ2
1, . . . , σ

2
p).

The elements of the respective matrices are independently distributed as θi` ∼ N (0, φ−1
i` τ

−1
` ),

ξ`k(·) ∼ GP(0, c), and σ−2
i ∼ Gamma(aσ, bσ). Let µσ and σ2

σ represent the mean and vari-
ance of the implied inverse gamma prior on σ2

i , respectively. In all of the following, we first
condition on Θ and then use iterated expectations to find the marginal moments.

The expected covariance matrix at any predictor location x is simply derived as

E[Σ(x)] = E[E[Σ(x) | Θ]] = E[E[Θξ(x)ξ(x)′Θ′ | Θ]] + µσIp = kE[ΘΘ′] + µσIp

= diag(k
∑
`

φ−1
1` τ

−1
` + µσ, . . . , k

∑
`

φ−1
p` τ

−1
` + µσ).
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Here, we have used the fact that conditioned on Θ, Θξ(x)ξ(x)′Θ′ is Wishart distributed
with mean kΘΘ′ and

E[ΘΘ′]ij =
∑
`

∑
`′

E[θi`θj`′ ] =
∑
`

E[θ2
i`]δij =

∑
`

var(θi`)δij =
∑
`

φ−1
i` τ

−1
` δij .

Proof [Proof of Lemma 5] One can use the conditionally Wishart distribution of Θξ(x)ξ(x)′Θ′

to derive cov(Σij(x),Σuv(x)). Specifically, let S = Θξ(x)ξ(x)′Θ′. Then S =
∑k

n=1 z
(n)z(n)′

with z(n) | Θ ∼ N (0,ΘΘ′) independently for each n. Then, using standard Gaussian second
and fourth moment results,

cov(Σij(x),Σuv(x) | Θ) = cov(Sij , Suv | Θ) + σ2
σδijuv

=
k∑

n=1

E[z
(n)
i z

(n)
j z(n)

u z(n)
v | Θ]− E[z

(n)
i z

(n)
j | Θ]E[z(n)

u z(n)
v | Θ] + σ2

σδijuv

= k((ΘΘ′)iu(ΘΘ′)jv + (ΘΘ′)iv(ΘΘ′)ju) + σ2
σδijuv.

Here, δijuv = 1 if i = j = u = v and is 0 otherwise. Taking the expectation with respect
to Θ yields cov(Σij(x),Σuv(x)). However, instead of looking at one slice of the predictor
space, we are interested in how the correlation between elements of the covariance matrix
changes with predictors. Thus, we work directly with the latent Gaussian processes to
derive cov(Σij(x),Σuv(x

′)). Let

gin(x) =
∑
`

θi`ξ`n(x), (31)

implying that gin(x) is independent of all gim(x′) for any m 6= n and all x′ ∈ X . Since
each ξ`n(·) is distributed according to a zero mean Gaussian process, gin(x) is zero mean.
Using this definition, we condition on Θ (which is dropped in the derivations for notational
simplicity) and write

cov(Σij(x),Σuv(x
′) | Θ) =

k∑
n=1

cov(gin(x)gjn(x), gun(x′), gvn(x′)) + σ2
σδijuv

=

k∑
n=1

E[gin(x)gjn(x)gun(x′), gvn(x′)]

− E[gin(x)gjn(x)]E[gun(x′), gvn(x′)] + σ2
σδijuv

We replace each gkn(x) by the form in Eq. (31), summing over different dummy indices for
each. Using the fact that ξ`n(x) is independent of ξ`′n(x′) for any ` 6= `′ and that each
ξ`n(x) is zero mean, all cross terms in the resulting products cancel if a ξ`n(x) arising from
one gkn(x) does not share an index ` with at least one other ξ`n(x) arising from another

2531



Fox and Dunson

gpn(x). Thus,

cov(Σij(x),Σuv(x
′) | Θ) =

k∑
n=1

∑
`

θi`θj`θu`θv`E[ξ2
`n(x)ξ2

`n(x′)]

+
∑
`

θi`θu`E[ξ`n(x)ξ`n(x′)]
∑
`′ 6=`

θj`′θv`′E[ξ`′n(x)ξ`′n(x′)]

+
∑
`

θi`θj`E[ξ2
`n(x)]

∑
`′ 6=`

θu`′θv`′E[ξ2
`′n(x′)]

−
∑
`

θi`θj`E[ξ2
`n(x)]

∑
`′

θu`′θv`′E[ξ2
`′n(x′)] + σ2

σδijuv

The Gaussian process moments are given by

E[ξ2
`n(x)] = 1

E[ξ`n(x)ξ`n(x′)] = E[E[ξ`n(x) | ξ`n(x′)]ξ`n(x′)] = c(x, x′)E[ξ2
`n(x′)] = c(x, x′)

E[ξ2
`n(x)ξ2

`n(x′)] = E[E[ξ2
`n(x) | ξ`n(x′)]ξ2

`n(x′)]

= E[{(E[ξ`n(x) | ξ`n(x′)])2 + var(ξ`n(x) | ξ`n(x′))}ξ2
`n(x′)]

= c2(x, x′)E[ξ4
`n(x′)] + (1− c2(x, x′))E[ξ2

`n(x′)] = 2c2(x, x′) + 1,

from which we derive that

cov(Σij(x),Σuv(x
′) | Θ)

= k

{
(2c2(x, x′) + 1)

∑
`

θi`θj`θu`θv` + c2(x, x′)
∑
`

θi`θu`
∑
`′ 6=`

θj`′θv`′

+
∑
`

θi`θj`
∑
`′ 6=`

θu`′θv`′ −
∑
`

θi`θj`
∑
`′

θu`′θv`′

}
+ σ2

σδijuv

= kc2(x, x′)

{∑
`

θi`θj`θu`θv` +
∑
`

θi`θu`
∑
`′

θj`′θv`′

}
+ σ2

σδijuv.

An iterated expectation with respect to Θ yields the following results. When i 6= u
or j 6= v, the independence between θi` (or θj`) and the set of other θk` implies that
cov(Σij(x),Σuv(x

′)) = 0. When i = u and j = v, but i 6= j,

cov(Σij(x),Σij(x
′)) = kc2(x, x′)

{∑
`

E[θ2
i`]E[θ2

j`] +
∑
`

E[θ2
i`]
∑
`′

E[θ2
j`′ ]

}

= kc2(x, x′)

{∑
`

φ−1
i` φ

−1
j` τ

−2
` +

∑
`

φ−1
i` τ

−1
`

∑
`′

φ−1
j`′ τ

−1
`′

}
.

2532



Bayesian Nonparametric Covariance Regression

Finally, when i = j = u = v,

cov(Σii(x),Σii(x
′)) = kc2(x, x′)

2
∑
`

E[θ4
i`] +

∑
`

E[θ2
i`]
∑
`′ 6=`

E[θ2
i`′ ]

+ σ2
σ

= kc2(x, x′)

6
∑
`

φ−2
i` τ

−2
` +

∑
`

φ−1
i` τ

−1
`

∑
`′ 6=`

φ−1
i`′ τ

−1
`′

+ σ2
σ

= kc2(x, x′)

{
5
∑
`

φ−2
i` τ

−2
` + (

∑
`

φ−1
i` τ

−1
` )2

}
+ σ2

σ.

Proof [Proof of Lemma 6] The first-order stationarity follows immediately from the station-
arity of the Gaussian process dictionary elements ξ`k and recalling that Σ(x) = Θξ(x)ξ(x)′Θ′+
Σ0. Assuming a Gaussian process kernel c(x, x′) that solely depends upon the distance be-
tween x and x′, Lemma 5 implies that the defined process is wide sense stationary.

Appendix B: Derivation of Gibbs Sampler

In this Appendix, we derive the conditional distribution for sampling the Gaussian process
dictionary elements. Combining Eq. (1) and Eq. (8), we have that

yi = Θ


ξ11(xi) ξ12(xi) . . . ξ1k(xi)
ξ21(xi) ξ22(xi) . . . ξ2k(xi)

...
...

. . .
...

ξL1(xi) ξL2(xi) . . . ξLk(xi)

 ηi + εi = Θ


∑k

m=1 ξ1m(xi)ηim
...∑k

m=1 ξLm(xi)ηLm

+ εi (32)

implying that

yij =

L∑
`=1

k∑
m=1

θj`ηimξ`m(xi) + εij . (33)

Conditioning on ξ(·)−`m, we rewrite Eq. (32) as

yi = ηim

θ1`
...
θp`

 ξ`m(xi) + ε̃i, ε̃i ∼ N

µ`m(xi) ,


∑

(r,s) 6=(`,m) θ1rηisξrs(xi)
...∑

(r,s)6=(`,m) θprξrs(xi)

 ,Σ0

 . (34)

Let θ·` =
[
θ1` . . . θp`

]′
. Then,y1

...
yn

 =


η1mθ·` 0 . . . 0

0 η2mθ·` . . . 0
...

...
. . .

...
0 0 . . . ηnmθ·`



ξ`m(x1)
ξ`m(x2)

...
ξ`m(xn)

+


ε̃1
ε̃2
...
ε̃n

 (35)
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Defining A`m = diag(η1mθ·`, . . . , ηnmθ·`), our Gaussian process prior on the dictionary ele-
ments ξ`m(·) implies the following conditional posterior

ξ`m(x1)
ξ`m(x2)

...
ξ`m(xn)

 | {yi},Θ, η, ξ(·),Σ0 ∼ N

Σ̃A′`m

Σ−1
0

. . .

Σ−1
0


ỹ1

...
ỹn

 , Σ̃


= N

Σ̃

η1m
∑p

j=1 θj`σ
−2
j ỹ1j

...

ηnm
∑p

j=1 θj`σ
−2
j ỹnj

 , Σ̃
 , (36)

where ỹi = yi − µ`m(xi) and, taking K to be the matrix of correlations Kij = c(xi, xj)
defined by the Gaussian process parameter κ,

Σ̃−1 = K−1 +A′`m

Σ−1
0

. . .

Σ−1
0

A`m
= K−1 + diag

η2
1m

p∑
j=1

θ2
j`σ
−2
j , . . . , η2

nm

p∑
j=1

θ2
j`σ
−2
j

 . (37)

Appendix C: Hyperparameter Sampling and Empirical Bayes

One can also consider sampling the Gaussian process length-scale hyperparameter κ. Due
to the linear-Gaussianity of the proposed covariance regression model, we can analytically
marginalize the latent Gaussian process random functions in considering the posterior of
κ. Taking µ(x) = 0 for simplicity, our posterior is based on marginalizing the Gaussian
processes random vectors ξ

`m
= [ξ`m(x1) . . . ξ`m(xn)]′. Noting that[

y′1 y′2 . . . y′n
]′

=
∑
`m

[diag(η·m)⊗ θ·`] ξ`m +
[
ε′1 ε′2 . . . ε′n

]′
, (38)

and letting Kκ denote the Gaussian process covariance matrix based on a length-scale κ,[
y′1 · · · y′n

]′ | κ,Θ, η,Σ0 ∼

Nnp

∑
`,m

[diag(η·m)⊗ θ·`]Kκ [diag(η·m)⊗ θ·`]′ + In ⊗ Σ0

 . (39)

We can then Gibbs sample κ based on a fixed grid and prior p(κ) on this grid. Note,
however, that computation of the likelihood specified in Eq. (39) requires evaluation of an
np-dimensional Gaussian for each value κ specified in the grid. For large p scenarios, or
when there are many observations yi, this may be computationally infeasible. In such cases,
a naive alternative is to iterate between sampling ξ given Kκ and Kκ given ξ. However, this
can lead to extremely slow mixing. Alternatively, one can consider employing the recent
Gaussian process hyperparameter slice sampler of Adams and Murray (2011).
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In general, because of the quadratic mixing over Gaussian process dictionary elements,
our model is relatively robust to the choice of the length-scale parameter and the compu-
tational burden imposed by sampling κ is typically unwarranted. Instead, one can pre-
select a value for κ using a data-driven heuristic, which leads to a quasi-empirical Bayes
approach. Lemma 5 implies that the autocorrelation ACF (x) = corr(Σij(0),Σij(x)) is
simply specified by c(0, x). As given by Eq. (11), when we choose a Gaussian process ker-
nel c(x, x′) = exp(−κ||x − x′||22), we have ACF (x) = exp(−κ||x||22). Thus, we see that
the length-scale parameter κ directly determines the shape of the autocorrelation function.
If one can devise a procedure for estimating the autocorrelation function from the data,
one can set κ accordingly. We propose the following, most easily implemented for scalar
predictor spaces X , but also feasible (in theory) for multivariate X .

1. For a set of evenly spaced knots xk ∈ X , compute the sample covariance Σ̂(xk) from a
local bin of data. If the bin contains fewer than p observations, add a small diagonal
component to ensure positive definiteness.

2. Compute the Cholesky decomposition C(xk) = chol(Σ̂(xk)).
3. Fit a spline through the elements of the computed C(xk). Denote the spline fit of the

Cholesky by C̃(x) for each x ∈ X
4. For i = 1, . . . , n, compute a point-by-point estimate of Σ(xi) from the splines: Σ(xi) =
C̃(xi)C̃(xi)

′.
5. Compute the autocorrelation function of each element Σij(x) of this kernel-estimated

Σ(x).
6. According to − log(ACF (x)) = κ||x||22, choose κ to best fit the most correlated Σij(x)

(since less correlated components can be captured via weightings of dictionary ele-
ments with stronger correlation.)

Appendix D: Initialization of Gibbs Sampler

Experimentally we found that our sampler was fairly insensitive to initialization (after a
short burn-in period) and one can just initialize each of Θ, ξ, Σ0, ηi, and the shrinkage
parameters φj` and δh from their respective priors. However, in certain scenarios, the
following more intricate initialization can improve mixing rates. The predictor-independent
parameters Θ and Σ0 are sampled from their respective priors (first sampling the shrinkage
parameters φj` and δh from their priors). The variables ηi and ξ(xi) are set via a data-driven
initialization scheme in which an estimate of Σ(xi) for i = 1, . . . , n is formed using Steps
1-4 outlined above. Then, Θξ(xi) is taken to be a k∗-dimensional low-rank approximation
to the Cholesky of the estimates of Σ(xi). The latent factors ηi are sampled from their
posterior using this data-driven estimate of Θξ(xi). Similarly, the ξ(xi) are initially taken
to be spline fits of the pseudo-inverse of the low-rank Cholesky at the knot locations and
the sampled Θ. We then iterate a couple of times between sampling: (i) ξ given {yi}, Θ,
Σ0, and the data-driven estimates of η, ξ; (ii) Θ given {yi}, Σ0, η, and the sampled ξ; (iii)
Σ0 given {yi}, Θ, η, and ξ; and (iv) determining a new data-driven approximation to ξ
based on the newly sampled Θ.
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Appendix E: Other Prior Specifications

Intuitively, the chosen prior on Θ flexibly shrinks the columns of this matrix towards zero
as the column index increases, implying that the effect of dictionary elements ξ`k(x) on the
induced covariance matrix Σ(x) decreases with row index `. Harnessing this idea, one can
extend the framework to allow for variable-smoothness dictionary elements by introducing
row-dependent bandwidth parameters κ`. For example, one could encourage increasingly
bumpy dictionary elements ξ`k(·) for large ` in order to capture multiple resolutions of
smoothness in the covariance regression. The prior on Θ would then encourage the smoother
dictionary elements to be more prominent in forming Σ(x), with the bumpier elements be-
ing more heavily regularized. One could, of course, also consider other dictionary element
specifications such as based on basis expansions or with a finite autoregressive (band-limited
covariance) structure. Such specifications could ameliorate some of the computational bur-
den associated with Gaussian processes, but might induce different prior support for the
covariance regression.

Likewise, just as we employed a shrinkage prior on Θ to be more robust to the choice
of L̄, one could similarly cope with k̄ by considering an augmented formulation in which

Λ(x) = Θξ(x)Γ, (40)

where Γ = diag(γ1, . . . , γk) is a diagonal matrix of parameters that shrink the columns of
ξ(x) towards zero. One can take these shrinkage parameters to be distributed as

γi ∼ N(0, ω−1
i ), ωi =

i∏
h=1

ζh, ζ1 ∼ Ga(a3, 1), ζh ∼ Ga(a4, 1) h = 2, . . . , k. (41)

For a4 > 1, such a model shrinks the γi values towards zero for large indices i just as in
the shrinkage prior on Θ. Computations in this augmented model are a straightforward
extension of the developed Gibbs sampler.

Appendix F: Simulation Studies

For the simulation studies of Case 2, the Wishart matrix discounting method to which we
compared is given as follows, with details in Section 10.4.2 of Prado and West (2010). Let
Φt = Σ−1

t . The Wishart matrix discounting model assumes Σ−1
t | y1:t−1, β ∼W (βht−1, (βDt−1)−1),

with Dt = βDt−1 + yty
′
t and ht = βht−1 + 1, such that E[Σ−1

t | y1:t−1] = E[Σ−1
t−1 | y1:t−1] =

ht−1D
−1
t−1, but with certainty discounted by a factor determined by β. The update with

observation yt is conjugate, maintaining a Wishart posterior on Σ−1
t . A limitation of this

construction is that it constrains ht > p−1 (or ht integral) implying that β > (p−2)/(p−1).
We set h0 = 40 and β = 1 − 1/h0 such that ht = 40 for all t and ran the forward filter-
ing backward sampling (FFBS) algorithm outlined in Prado and West (2010), generating
100 independent samples. Increasing ht can mitigate the large errors for high xs seen in
Figure 4(b) and (d), but shrinks the model towards homoscedasticity. In general, the for-
mulation is sensitive to the choice of ht, and in high-dimensional problems this degree of
freedom is forced to take large (or integral) values.
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Figure 11: (a) Plot of smoothing spline fits f̂j(x) for each of the 183 Google Flu Trends
regions. The thick yellow line indicates the empirical mean of the log Google-
estimated ILI rates, log yij , across regions j. (b) Residuals log rij − f̂j(xi). The
shaded gray regions indicate the flu events of Figure 5.

Appendix G: Exploratory Data Analysis

To examine the spatial correlation structure of the Google-estimated ILI rates and how
these correlations vary across time, we performed the following exploratory data analysis.
First, we consider a log transform of our rate data and a model

log rij = fj(xi) + εij , i = 1, . . . , 370, j = 1, . . . , 183, (42)

with fj(·) taken to be a region-specific smoothing spline. These spline fits are shown along
with the residuals εij in Figure 11. We then examine the spatial correlations of these
residuals in Figure 12. We omit data prior to Event B because of the extent of missing
values. Due to the dimensionality of the data (183 dimensions) and limited number of
observations (157 event and 127 non-event observations), we simply consider state-level
observations plus District of Columbia (resulting in 51 dimensions) and then aggregate the
data over Events B-F to create a “flu event” maximum likelihood (ML) estimate, Σ̂flu. We
likewise examine an aggregation of data between events to form a “non-event” estimate
Σ̂nonflu.

From Figure 12, we see that the correlations between regions is much lower during non-
event periods than event periods. For event periods, there is clear spatial correlation, defined
both locally and with long-range dependencies. Note that because of the dimensionality and
limited data, these exploratory methods cannot handle the full set of regions nor examine
smoothly varying correlations. Instead, the plots simply provide insight into the geographic
structure of the correlations and the fact that this structure is clearly different within and
outside of flu event periods. As such, an i.i.d. model for εi is inappropriate, motivating our
heteroscedastic model of Section 2. In Section 5, we analyze how our proposed covariance
regression model enables analysis of the changing extent and intensity of the correlations as
a function of time. The method allows us to harness all of the available data, both across
regions and time.

2537



Fox and Dunson

N
e
w

Y
o
rk

C
a
li
fo

rn
ia

G
e
o
rg

ia
S

o
u

th
D

a
k
o
ta

Non-Flu Flu

 

 

20 40 60 80 100 120

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

−0.2

0

0.2

0.4

0.6

0.8

Figure 12: For each of four geographically distinct states (New York, California, Georgia,
and South Dakota), plots of correlations between the state and all other states
based on the sample covariance estimate from state-level data. The estimates
are for data aggregated over non-event periods following event B (left) and event
periods B-F (right). The data are taken to be the residuals of smoothing spline
estimates fit independently for each region using log ILI rates. Event A was
omitted due to an insufficient number of states reporting. Note that South
Dakota is missing 58 of the 157 event B-F observations.

Appendix H: Details on Nadaraya-Watson Approach

Our proposed stochastic EM algorithm for the nonparametric Nadaraya-Watson kernel es-
timator iterates between (i) sampling missing values from the predictive distribution as-
sociated with the current kernel estimates of the mean and covariance functions and the
available data, and (ii) computing the kernel-estimate of the mean and covariance functions
using the available data and imputed missing values. We initialize by pooling all available
data to form a static mean and covariance estimate from which the missing values are ini-
tially sampled. Due to the high-dimensionality compared to the limited bandwidth, we add
a diagonal element 1e−6Ip to the estimate Σ̂(x) to ensure positive definiteness.
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V. Dukić, H.F. Lopes, and N.G. Polson. Tracking epidemics with Google Flu Trends data
and a state-space SEIR model. Journal of the American Statistical Assocaition, 107(500):
1410–1426, 2012.

D. Durante, B. Scarpa, and D. B. Dunson. Locally adaptive factor processes for multivariate
time series. The Journal of Machine Learning Research, 15(1):1493–1522, 2014.

R. Engle. New frontiers for ARCH models. Journal of Applied Econometrics, 17(5):425–446,
2002.

B. K. Fosdick and P. D. Hoff. Separable factor analysis with applications to mortality data.
Annals of Applied Statistics, 8(1):120–147, 2014.

E. B. Fox and D. B. Dunson. Bayesian nonparametric covariance regression. arXiv preprint
arXiv:1101.2017, 2011.

W. A. Fuller. Introduction to Statistical Time Series, volume 428. John Wiley & Sons,
2009.

A.E. Gelfand, A.M. Schmidt, S. Banerjee, and C.F. Sirmans. Nonstationary multivariate
process modeling through spatially varying coregionalization. Test, 13(2):263–312, 2004.

J. Ginsberg, M.H. Mohebbi, R.S. Patel, L. Brammer, M.S. Smolinski, and L. Brilliant.
Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012–
1014, 2008.

C. Gouriéroux, J. Jasiak, and R. Sufana. The Wishart autoregressive process of multivariate
stochastic volatility. Journal of Econometrics, 150(2):167–181, 2009.

R. Harris. Google’s flu tracker suffers from sniffles.
http://www.npr.org/blogs/health/2014/03/13/289802934/googles-flu-tracker-suffers-
from-sniffles, March 2014.

A.C. Harvey, E. Ruiz, and N. Shephard. Multivariate stochastic variance models. Review
of Economic Studies, 61:247–264, 1994.

D. Higdon, C. Nakhleh, J. Gattiker, and B. Williams. A Bayesian calibration approach
to the thermal problem. Computer Methods in Applied Mechanics and Engineering, 197
(29):2431–2441, 2008.

P. D. Hoff and X. Niu. A covariance regression model. Statistica Sinica, 22:729–753, 2012.

P.D. Hoff. Extending the rank likelihood for semiparametric copula estimation. Annals of
Applied Statistics, 1(1):265–283, 2007.

M. B. Hooten, J. Anderson, and L. A. Waller. Assessing North American influenza dynamics
with a statistical SIRS model. Spatial and Spatio-temporal Epidemiology, 1(2):177–185,
2010.

2540



Bayesian Nonparametric Covariance Regression

C.G. Kaufman, M.J. Schervish, and D.W. Nychka. Covariance tapering for likelihood-based
estimation in large spatial data sets. Journal of the American Statistical Association, 103
(484):1545–1555, 2008.

A. Lamb, M. J. Paul, and M. Dredze. Separating fact from fear: Tracking flu infections on
Twitter. In Proceedings of NAACL-HLT, pages 789–795, 2013.

D. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of Google Flu: Traps in
big data analysis. Science, 343(6176):1203–1205, 2014.

C. Leng, W. Zhang, and J. Pan. Semiparametric mean-covariance regression analysis for
longitudinal data. Journal of the American Statistical Association, 105(489):181–193,
2010.

J.S. Liu, W.H. Wong, and A. Kong. Covariance structure of the Gibbs sampler with appli-
cations to the comparisons of estimators and augmentation schemes. Biometrika, 81(1):
27–40, 1994.

H.F. Lopes, E. Salazar, and D. Gamerman. Spatial dynamic factor analysis. Bayesian
Analysis, 3(4):759–792, 2008.

M.A. Mart́ınez-Beneito, D. Conesa, A. López-Qúılez, and A. López-Maside. Bayesian
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Abstract

Forward stagewise regression follows a very simple strategy for constructing a sequence
of sparse regression estimates: it starts with all coefficients equal to zero, and iteratively
updates the coefficient (by a small amount ε) of the variable that achieves the maximal
absolute inner product with the current residual. This procedure has an interesting connec-
tion to the lasso: under some conditions, it is known that the sequence of forward stagewise
estimates exactly coincides with the lasso path, as the step size ε goes to zero. Further-
more, essentially the same equivalence holds outside of least squares regression, with the
minimization of a differentiable convex loss function subject to an `1 norm constraint (the
stagewise algorithm now updates the coefficient corresponding to the maximal absolute
component of the gradient).

Even when they do not match their `1-constrained analogues, stagewise estimates pro-
vide a useful approximation, and are computationally appealing. Their success in sparse
modeling motivates the question: can a simple, effective strategy like forward stagewise
be applied more broadly in other regularization settings, beyond the `1 norm and spar-
sity? The current paper is an attempt to do just this. We present a general framework for
stagewise estimation, which yields fast algorithms for problems such as group-structured
learning, matrix completion, image denoising, and more.
Keywords: forward stagewise regression, lasso, ε-boosting, regularization paths

1. Introduction

In a regression setting, let y ∈ Rn denote an outcome vector and X ∈ Rn×p a matrix of
predictor variables, with columns X1, . . . Xp ∈ Rn. For modeling y as a linear function of X,
we begin by considering (among the many possible candidates for sparse estimation tools) a
simple method: forward stagewise regression. In plain words, forward stagewise regression
produces a sequence of coefficient estimates β(k), k = 0, 1, 2, . . ., by iteratively decreasing
the maximal absolute inner product of a variable with the current residual, each time by
only a small amount. A more precise description of the algorithm is as follows.

Algorithm 1 (Forward stagewise regression)

Fix ε > 0, initialize β(0) = 0, and repeat for k = 1, 2, 3, . . .,

β(k) = β(k−1) + ε · sign
(
XT
i (y −Xβ(k−1))

)
· ei, (1)

where i ∈ argmax
j=1,...p

|XT
j (y −Xβ(k−1))|. (2)

c©2015 Ryan J. Tibshirani.
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In the above, ε > 0 is a small fixed constant (e.g., ε = 0.01), commonly referred to as the
step size or learning rate; ei denotes the ith standard basis vector in Rp; and the element
notation in (2) emphasizes that the maximizing index i need not be unique. The basic
idea behind the forward stagewise updates (1), (2) is highly intuitive: at each iteration we
greedily select the variable i that has the largest absolute inner product (or correlation, for
standardized variables) with the residual, and we add siε to its coefficient, where si is the
sign of this inner product. Accordingly, the fitted values undergo the update:

Xβ(k) = Xβ(k−1) + ε · siXi.

Such greediness, in selecting variable i, is counterbalanced by the small step size ε > 0;
instead of increasing the coefficient of Xi by a (possibly) large amount in the fitted model,
forward stagewise only increases it by ε, which “slows down” the learning process. As a
result, it typically requires many iterations to produce estimates of reasonable interest with
forward stagewise regression, e.g., it could easily take thousands of iterations to reach a
model with only tens of active variables (we use “active” here to refer to variables that are
assigned nonzero coefficients). See the left panel of Figure 1 for a small example.

This “slow learning” property is a key difference between forward stagewise regression
and the closely-named forward stepwise regression procedure: at each iteration, the latter
algorithm chooses a variable in a similar manner to that in (2)1, but once it does so, it
updates the fitted model by regressing y on all variables selected thus far. While both are
greedy algorithms, the stepwise procedure is much greedier; after k iterations, it produces
a model with exactly k active variables. Forward stagewise and forward stepwise are old
techniques (some classic references for stepwise regression methods are Efroymson, 1966
and Draper and Smith, 1966, but there could have been earlier relevant work). According
to Hastie et al. (2009), forward stagewise was historically dismissed by statisticians as being
“inefficient” and hence less useful than methods like forward or backward stepwise. This
is perhaps understandable, if we keep in mind the limited computational resources of the
time. From a modern perspective, however, we now appreciate that “slow learning” is a
form of regularization and can present considerable benefits in terms of the generalization
error of the fitted models—this is seen not only in regression, but across variety of settings.
Furthermore, by modern standards, forward stagewise is computationally cheap: to trace
out a path of regularized estimates, we repeat very simple iterations, each one requiring (at
most) p inner products, computations that could be trivially parallelized.

The revival of interest in stagewise regression began with the work of Efron et al. (2004),
where the authors derived a surprising connection between the sequence of forward stagewise
estimates and the solution path of the lasso (Tibshirani, 1996),

β̂(t) = argmin
β∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖1 ≤ t, (3)

over the regularization parameter t ≥ 0. The relationship between stagewise and the lasso
will be reviewed in Section 2.1 in detail, but the two panels in Figure 1 tell the essence

1. If A denotes the active set at the end of iteration k − 1, then at iteration k forward stepwise chooses
the variable i such that the sum of squared errors from regressing y onto the variables in A ∪ {i} is
smallest. This is equivalent to choosing i such that |X̃T

i (y −Xβ(k−1))| is largest, where β(k−1) denote
the coefficients from regressing y on the variables in A, and X̃i is the residual from regressing Xi on the
variables in A.
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Figure 1: A simple example using the prostate cancer data from Hastie et al. (2009), where the log
PSA score of n = 67 men with prostate cancer is modeled as a linear function of p = 8
biological predictors. The left panel shows the forward stagewise regression estimates
β(k) ∈ R8, k = 1, 2, 3, . . ., with the 8 coordinates plotted in different colors. The stagewise
algorithm was run with ε = 0.01 for 250 iterations, and the x-axis here gives the `1 norm
of the estimates across iterations. The right panel shows the lasso solution path, also
parametrized by the `1 norm of the estimate. The similarity between the stagewise and
lasso paths is visually striking; for small enough ε, they appear identical. This is not a
coincidence and has been rigorously studied by Efron et al. (2004), and other authors; in
Section 2.1 we provide an intuitive explanation for this phenomenon.

of the story. The stagewise paths, on the left, appear to be jagged versions of their lasso
counterparts, on the right. Indeed, as the step size ε is made smaller, this jaggedness
becomes less noticeable, and eventually the two sets of paths appear exactly the same. This
is not a coincidence, and under some conditions (on the problem instance in consideration),
it is known that the stagewise path converges to the lasso path, as ε → 0. Interestingly,
when these conditions do not hold, stagewise estimates can deviate substantially from lasso
solutions, and yet in such situations the former estimates can still perform competitively
with the latter, say, in terms of test error (or really any other standard error metric). This
is an important point, and it supports the use of stagewise regression as a general tool for
regularized estimation.

1.1 Summary of Our Contributions

This paper departs from the lasso setting and considers the generic convex problem

x̂(t) ∈ argmin
x∈Rn

f(x) subject to g(x) ≤ t, (4)
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where f, g : Rn → R are convex functions, and f is differentiable. Motivated by forward
stagewise regression and its connection to the lasso, our main contribution is the follow-
ing general stagewise algorithm for producing an approximate solution path of (4), as the
regularization parameter t varies over [t0,∞).

Algorithm 2 (General stagewise procedure)

Fix ε > 0 and t0 ∈ R. Initialize x(0) = x̂(t0), a solution in (4) at t = t0. Repeat, for
k = 1, 2, 3, . . .,

x(k) = x(k−1) + ∆, (5)

where ∆ ∈ argmin
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε. (6)

The intuition behind the general stagewise algorithm can be seen right away: at each
iteration, we update the current iterate in a direction that minimizes the inner product
with the gradient of f (evaluated at the current iterate), but simultaneously restrict this
direction to be small under g. By applying these updates repeatedly, we implicitly adjust
the trade-off between minimizing f and g, and hence one can imagine that the kth iterate
x(k) approximately solves (4) with t = g(x(k)). In Figure 2, we show a few simple examples
of the general stagewise paths implemented for various different choices of loss functions f
and regularizing functions g.

In the next section, we develop further intuition and motivation for the general stage-
wise procedure, and we tie in forward stagewise regression as a special case. The rest of
this article is then dedicated to the implementation and analysis of stagewise algorithms:
Section 3 derives the specific form of the stagewise updates (5), (6) for various problem
setups, Section 4 conducts large-scale empirical evaluations of stagewise estimates, Section
5 presents some theory on suboptimality, and Section 6 concludes with a discussion.

Throughout, our arguments and examples are centered around three points, summarized
below.

1. Simple, fast estimation procedures. The general framework for stagewise estimation
in Algorithm 2 leads to simple and efficient stagewise procedures for group-structured
regularization problems (e.g., the group lasso, multitask learning), trace norm regular-
ization problems (e.g., matrix completion), quadratic regularization problem problems
(e.g., nonparametric smoothing), and (some) generalized lasso problems (e.g., image
denoising). For such problems, the proposed stagewise procedures are often competi-
tive with existing commonly-used algorithms in terms of efficiency, and are generally
much simpler.

2. Similar to actual solution paths, but more stable. In many examples, the computed
stagewise path is highly similar to the actual solution path of the corresponding convex
regularization problem in (4)—typically, this happens when the components of the
actual solution change “slowly” with the regularization parameter t. In many others,
even though it shares gross characteristics of the actual solution path, the stagewise
path is different—typically, this happens when the components of the actual solution
change “rapidly” with t, and the stagewise component paths are much more stable.
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Figure 2: Examples comparing the actual solution paths (left column) to the stagewise paths (right
column) across various problem contexts, using the prostate cancer data set. The first
row considers a group lasso model on the prostate data (where the groups were some-
what arbitrarily chosen based on the predictor types); the second row considers a matrix
completion task, on a partially observed submatrix of the full predictor matrix; the third
row considers a logistic regression model with ridge regularization (the outcome being
the indicator of log PSA > 1). In each case, the stagewise estimates were very easy to
compute; Sections 3.1, 3.3, and 3.4 discuss these problem settings in detail.
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3. Competitive statistical performance. Across essentially all cases, even those in which
its constructed path is not close to the actual solution path, the stagewise algorithm
performs favorably from a statistical point of view. That is, stagewise estimates are
comparable to solutions in (4) with respect to relevant error metrics, across various
problem settings. This suggests that stagewise estimates deserved to be studied on
their own, regardless of their proximity to solutions in (4).

The third point above, on the favorable statistical properties of stagewise estimates, is
based on empirical arguments, rather than theoretical ones. Statistical theory for stagewise
estimates is an important topic for future work.

2. Properties of the General Stagewise Framework

For motivation and background, we cover the connection between stagewise regression and
the lasso in more detail, and then rewrite the stagewise regression updates in a form that
naturally suggests the general stagewise proposal of this paper. Following this, we discuss
properties of the general stagewise framework, and related work.

2.1 Motivation: Stagewise Regression and the Lasso

The lasso estimator is a popular tool for sparse estimation in the regression setting. Dis-
played in (3), we assume for simplicity that the lasso solution β̂(t) in (3) is unique, which
holds under very weak conditions on X.2 Recall that the parameter t controls the level
of sparsity in the estimate β̂(t): when t = 0, we have β̂(0) = 0, and as t increases, select
components of β̂(t) become nonzero, corresponding to variables entering the lasso model
(nonzero components of β̂(t) can also become zero, corresponding to variables leaving the
model). The solution path β̂(t), t ∈ [0,∞) is continuous and piecewise linear as a function
of t, and for a large enough value of t, the path culminates in a least squares estimate of y
on X.

The right panel of Figure 1 shows an example of the lasso path, which, as we discussed
earlier, appears quite similar to the stagewise path on the left. This is explained by the
seminal work of Efron et al. (2004), who describe two algorithms (actually three, but the
third is unimportant for our purposes): one for explicitly constructing the lasso path β̂(t)
as a continuous, piecewise linear function of the regularization parameter t ∈ [0,∞), and
another for computing the limiting stagewise regression paths as ε→ 0. One of the (many)
consequences of their work is the following: if each component of the lasso solution path
β̂(t) is a monotone function of t, then these two algorithms coincide, and therefore so do
the stagewise and lasso paths (in the limit as ε → 0). Note that the lasso paths for the
data example in Figure 1 are indeed monotone, and hence the theory confirms the observed
convergence of stagewise and lasso estimates in this example.

The lasso has undergone intense study as a regularized regression estimator, and its
statistical properties (e.g., its generalization error, or its ability to detect a truly relevant
set of variables) are more or less well-understood at this point. Many of these properties cast

2. For example, it suffices to assume that X has columns in general position, see Tibshirani (2013). Note
that here we are only claiming uniqueness for all parameter values t < t∗, where t∗ is the smallest `1
norm of a least squares solution of y on X.

2548



General Stagewise Algorithms

the lasso in a favorable light. Therefore, the equivalence between the (limiting) stagewise
and lasso paths lends credibility to forward stagewise as a regularized regression procedure:
for a small step size ε, we know that the forward stagewise estimates will be close to
lasso estimates, at least when the individual coordinate paths are monotone. At a high
level, it is actually somewhat remarkable that such a simple algorithm, Algorithm 1, can
produce estimates that can stand alongside those defined by the (relatively) sophisticated
optimization problem in (3). There are now several interesting points to raise.

• The nonmonotone case. In practice, the components of the lasso path are rarely
monotone. How do the stagewise and lasso paths compare in such cases? A precise
theoretical answer is not known, but empirically, these paths can be quite different.
In particular, for problems in which the predictors X1, . . . Xp are correlated, the lasso
coordinate paths can be very wiggly (as variables can enter and leave the model
repeatedly), while the stagewise paths are often very stable; see, e.g., Hastie et al.
(2007). In support of these empirical findings, the latter authors derived a local
characterization of the lasso and forward stagewise paths: they show that at any
point along the path, the lasso estimate decreases the sum of squares loss function at
an optimal rate with respect to the increase in `1 norm, and the (limiting) forward
stagewise estimate decreases the loss function at an optimal rate with respect to the
increase in `1 arc length. Loosely speaking, since the `1 arc length accounts for the
entire history of the path up until the current point, the (limiting) stagewise algorithm
is less “willing” to produce wiggly estimates.

Despite these differences, stagewise estimates tend to perform competitively with lasso
estimates in terms of test error, and this is true even with highly correlated predictor
variables, when the stagewise and lasso paths are very different (such statements are
based on simulations, and not theory; see Hastie et al., 2007; Knudsen, 2013). This
is a critical point, as it suggests that stagewise should be considered as an effective
tool for regularized estimation, apart from any link to a convex problem. We return
to this idea throughout the paper.

• General convex loss functions. Fortunately, the stagewise method extends to sparse
modeling in other settings, beyond Gaussian regression. Let f : Rp → R be a dif-
ferentiable convex loss function, e.g., f(β) = 1

2‖y −Xβ‖22 for the regression setting.
Beginning again with β(0) = 0, the analogy of the stagewise steps in (1), (2) for the
present general setting are

β(k) = β(k−1) − ε · sign
(
∇if(β(k−1))

)
· ei, (7)

where i ∈ argmax
j=1,...p

|∇jf(β(k−1))|. (8)

That is, at each iteration we update β(k) in the direction opposite to the largest
component of the gradient (largest in absolute value). Note that this reduces to the
usual update rules (1), (2) when f(β) = 1

2‖y −Xβ‖22. Rosset et al. (2004) studied the
stagewise routine (7), (8), and its connection to the `1-constrained estimate

β̂(t) = argmin
β∈Rp

f(β) subject to ‖β‖1 ≤ t. (9)
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Similar to the result for lasso regression, these authors prove that if the solution β̂(t)
in (9) has monotone coordinate paths, then under mild conditions3 on f , the stagewise
paths given by (7), (8) converge to the path β̂(t) as ε→ 0. This covers, e.g., the cases of
logistic regression and Poisson regression losses, with predictor variables X in general
position. The same general message, as in the linear regression setting, applies here:
compared to the relatively complex optimization problem (9), the stagewise algorithm
(7), (8) is very simple. The most (or really, the only) advanced part of each iteration
is the computation of the gradient ∇f(β(k−1)); in the logistic or Poisson regression
settings, the components of ∇f(β(k−1)) are given by

∇jf(β(k−1)) = XT
j

(
y − µ(β(k−1))

)
, j = 1, . . . p,

where y ∈ Rn is the outcome and µ(β(k−1)) ∈ Rn has components

µi(β
(k−1)) =

{
1/[1 + exp(−(Xβ(k−1))i)] for logistic regression

exp((Xβ(k−1))i) for Poisson regression
, i = 1, . . . n.

Its precise connection to the `1-constrained optimization problem (9) for monotone
paths is encouraging, but even outside of this case, the simple and efficient stagewise
algorithm (7), (8) produces regularized estimates deserving of attention in their own
right.

• Forward-backward stagewise. Zhao and Yu (2007) examined a novel modification of
forward stagewise, under a general loss function f : at each iteration, their proposal
takes a backward step (i.e., moves a component of β(k) towards zero) if this would
decrease the loss function by a sufficient amount ξ; otherwise it takes a forward step
as usual. The authors prove that, as long as the parameter ξ used for the backward
steps scales as ξ = o(ε), the path from this forward-backward stagewise algorithm
converges to the solution path in (9) as ε → 0. The important distinction here
is that their result does not assume monotonicity of the coordinate paths in (9).
(It does, however, assume that the loss function f is strongly convex—in the linear
regression setting, f(β) = 1

2‖y −Xβ‖22, this is equivalent to assuming that X ∈ Rn×p
has linearly independent predictors, which requires n ≥ p).4 The forward-backward
stagewise algorithm hence provides another way to view the connection between (the
usual) forward stagewise steps (7), (8) and the `1-regularized optimization problem
(9): the forward stagewise path is an approximation to the solution path in (9) given
by skipping the requisite backward steps needed to correct for nonmonotonicities.

Clearly, there has been some fairly extensive work connecting the stagewise estimates
(1), (2) and the lasso estimate (3), or more generally, the stagewise estimates (7), (8) and

3. Essentially, Rosset et al. (2004) assume that conditions on f that imply a unique solution in (9), and
allow for a second order Taylor expansion of f . Such conditions are that f(β) = h(Xβ), with h twice
differentiable and strictly convex, and X having columns in general position.

4. It is also worth pointing out that the type of convergence considered by Zhao and Yu (2007) is stronger
than that considered by Efron et al. (2004) and Rosset et al. (2004). The former authors prove that,
under suitable conditions, the entire stagewise path converges globally to the lasso solution path; the
latter authors only prove a local type of convergence, that has to do with the limiting stagewise and
lasso directions at any fixed point along the path.
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the `1-constrained estimate (9). Still, however, this connection seems mysterious. Both
methods produce a regularization path, with a fully sparse model on one end, and a fully
dense model on the other—but beyond this basic degree of similarity, why should we expect
the stagewise path (7), (8) and the `1 regularization path (9) to be so closely related? The
work referenced above gives a mathematical treatment of this question, and we feel, does
not provide much intuition. In fact, there is a simple interpretation of the forward stagewise
algorithm that explains its connection to the lasso problem, seen next.

2.2 A New Perspective on Forward Stagewise Regression

We start by rewriting the steps (7), (8) for the stagewise algorithm, under a general loss f ,
as

β(k) = β(k−1) + ∆,

where ∆ = −ε · sign
(
∇if(β(k−1))

)
· ei,

and |∇if(β(k−1))| = ‖∇f(β(k−1))‖∞.

As ∇if(β(k−1)) is maximal in absolute value among all components of the gradient, the
quantity sign(∇if(β(k−1))) · ei is a subgradient of the `∞ norm evaluated at ∇f(β(k−1)):

∆ ∈ −ε ·
(
∂‖x‖∞

∣∣∣
x=∇f(β(k−1))

)
.

Using the duality between the `∞ and `1 norms,

∆ ∈ −ε ·
(

argmax
z∈Rp

〈∇f(β(k−1)), z〉 subject to ‖z‖1 ≤ 1
)
,

or equivalently,

∆ ∈ argmin
z∈Rp

〈∇f(β(k−1)), z〉 subject to ‖z‖1 ≤ ε.

(Above, as before, the element notation emphasizes that the maximizer or minimizer is not
necessarily unique.) Hence the forward stagewise steps (7), (8) satisfy

β(k) = β(k−1) + ∆, (10)

where ∆ ∈ argmin
z∈Rp

〈∇f(β(k−1)), z〉 subject to ‖z‖1 ≤ ε. (11)

Written in this form, the stagewise algorithm exhibits a natural connection to the `1-
regularized optimization problem (9). At each iteration, forward stagewise moves in a
direction that minimizes the inner product with the gradient of f , among all directions
constrained to have a small `1 norm; therefore, the sequence of stagewise estimates balance
(small) decreases in the loss function f with (small) increases in the `1 norm, just like the
solution path in (9), as the regularization parameter t increases. This intuitive perspec-
tive aside, the representation (10), (11) for the forward stagewise estimates is important
because it inspires an analogous approach for general convex regularization problems. This
was already presented in Algorithm 2, and next we discuss it further.
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2.3 Basic Properties of the General Stagewise Procedure

Recall the general minimization problem in (4), where we assume that the loss function f is
convex and differentiable, and the regularizer g is convex. It can now be seen that the steps
(5), (6) in the general stagewise procedure in Algorithm 2 are directly motivated by the
forward stagewise steps, as expressed in (10), (11). The explanation is similar to that given
above: as we repeat the steps of the algorithm, the iterates are constructed to decrease
the loss function f (by following its negative gradient) at the cost of a small increase in
the regularizer g. In this sense, the stagewise algorithm navigates the trade-off between
minimizing f and g, and produces an approximate regularization path for (4), i.e., the kth
iterate x(k) approximately solves problem (4) with t = g(x(k)).

From our work at the end of the last subsection, it is clear that forward stagewise regres-
sion (7), (8), or equivalently (10), (11), is a special case of the general stagewise procedure,
applied to the `1-regularized problem (9). Moreover, the general stagewise procedure can
be applied in many other settings, well beyond `1 regularization, as we show in the next
section. Before presenting these applications, we now make several basic remarks.

• Initialization and termination. In many cases, initializing the algorithm is easy: if
g(x) = 0 implies x = 0 (e.g., this is true when g is a norm), then we can start the
stagewise procedure at t0 = 0 and x(0) = 0. In terms of a stopping criterion, a general
strategy for (approximately) tracing a full solution path is to stop the algorithm
when g(x(k)) does not change very much between successive iterations. If instead the
algorithm has been terminated upon reaching some maximum number of iterations or
some maximum value of g(x(k)), and more iterations are desired, then the algorithm
can surely be restarted from the last reached iterate x(k).

• First-order justification. If g satisfies the triangle inequality (again, e.g., it would as
a norm), then the increase in the value of g between successive iterates is bounded by
ε:

g(x(k)) ≤ g(x(k−1)) + g(∆) ≤ g(x(k−1)) + ε.

Furthermore, we can give a basic (and heuristic) justification of the stagewise steps
(5), (6). Consider the minimization problem (4) at the parameter t = g(x(k−1)) + ε;
we can write this as

x̂(t) ∈ argmin
x∈Rn

f(x)− f(x(k−1)) subject to g(x)− g(x(k−1)) ≤ ε,

and then reparametrize as

x̂(t) = x(k−1) + ∆∗, (12)

∆∗ ∈ argmin
z∈Rn

f(x(k−1) +z)− f(x(k−1)) subject to g(x(k−1) +z)− g(x(k−1)) ≤ ε.

(13)

We now modify the problem (13) in two ways: first, we replace the objective function
in (13) with its first-order (linear) Taylor approximation around x(k−1),

〈∇f(x(k−1)), z〉 ≈ f(x(k−1) + z)− f(x(k−1)), (14)
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and second, we shrink the constraint set in (13) to

{z ∈ Rn : g(z) ≤ ε} ⊆ {z ∈ Rn : g(x(k−1) + z)− g(x(k−1)) ≤ ε},

since, as noted earlier, any element of the left-hand side above is an element of the
right-hand side by the triangle inequality. These two modifications define a different
update direction

∆ ∈ argmin
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε,

which is exactly the direction (6) in the general stagewise procedure. Hence the
stagewise algorithm chooses ∆ as above, rather than choosing the actual direction ∆∗

in (13), to perform an update step from x(k−1). This update results in a feasible point
x(k) = x(k−1) + ∆ for the problem (4) at t = g(k−1) + ε; of course, the point x(k) is not
necessarily optimal, but as ε gets smaller, the first-order Taylor approximation in (14)
becomes tighter, so one would imagine that the point x(k) becomes closer to optimal.

• Dual update form. If g is a norm, then the update direction defined in (6) can be
expressed more succinctly in terms of the dual norm g∗(x) = maxg(z)≤1 x

T z. We
write

∆ ∈ −ε ·
(

argmax
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ 1
)

= −ε · ∂g∗
(
∇f(x(k−1))

)
, (15)

i.e., the direction ∆ is −ε times a subgradient of the dual norm g∗ evaluated at
∇f(x(k−1)). This is a useful observation, since many norms admit a known dual norm
with known subgradients; we will see examples of this in the coming section.

• Invariance around ∇f . The level of difficulty associated with computing the update
direction, i.e., in solving problem (6), depends entirely on g and not on f at all
(assuming that ∇f can be readily computed). We can think of ∆ as an operator on
Rn:

∆(x) ∈ argmin
z∈Rn

〈x, z〉 subject to g(z) ≤ ε. (16)

This operator ∆(·) is often called the linear minimization oracle associated with the
function g, in the optimization literature. At each input x, it returns a minimizer of
the problem in (16). Provided that ∆(·) can be expressed in closed-form—which is
fortuitously the case for many common statistical optimization problems, as we will
see in the sections that follow—the stagewise update step (5) simply evaluates this
operator at ∇f(x(k−1)), and adds the result to x(k−1):

x(k) = x(k−1) + ∆
(
∇f(x(k−1))

)
.

An analogy can be drawn here to the proximal operator in proximal gradient descent,
used for minimizing the composite function f+g, where f is smooth but g is (possibly)
nonsmooth. The proximal operator is defined entirely in terms of g, and as long as
it can be expressed analytically, the generalized gradient update for x(k) simply uses
the output of this operator at ∇f(x(k−1)).
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• Unbounded stagewise steps. Suppose that g is a seminorm, i.e., it satisfies g(ax) =
|a|g(x) for a ∈ R, and g(x+ y) ≤ g(x) + g(y), but g can have a nontrivial null space,
Ng = {x ∈ Rn : g(x) = 0}. In this case, the stagewise update step in (5) can be
unbounded; in particular, if

〈∇f(x(k)), z〉 6= 0 for some z ∈ Ng, (17)

then we can drive 〈∇f(x(k)), z〉 → −∞ along a sequence with g(z) = 0, and so the
stagewise update step would be clearly undefined. Fortunately, a simple modification
of the general stagewise algorithm can account for this problem. Since we are assuming
that g is a seminorm, the set Ng is a linear subspace. To initialize the general stagewise
algorithm at say t0 = 0, therefore, we solve the linearly constrained optimization
problem

x(0) ∈ argmin
x∈Ng

f(x).

In subsequent stagewise steps, we then restrict the updates to lie in the subspace
orthogonal to Ng. That is, to be explicit, we replace (5) (6) in Algorithm 2 with

x(k) = x(k−1) + ∆, (18)

where ∆ ∈ argmin
z∈N⊥g

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε, (19)

where N⊥g denotes the orthocomplement of Ng. We will see this modification, e.g.,
put to use for the quadratic regularizer g(β) = βTQβ, where Q is positive semidefinite
and singular.

Some readers may wonder why we are working with the constrained problem (4), and
not

x̂(λ) ∈ argmin
x∈Rn

f(x) + λg(x), (20)

where λ ≥ 0 is now the regularization parameter, and is called the Lagrange multiplier
associated with g. It is probably more common in the current statistics and machine
learning literature for optimization problems to be expressed in the Lagrange form (20),
rather than the constrained form (4). The solution paths of (4) and (20) (given by varying
t and λ in their respective problems) are not necessarily equal for general convex functions
f and g; however, they are equal under very mild assumptions5, which hold for all of the
examples visited in this paper. Therefore, there is not an important difference in terms
of studying (4) versus (20). We choose to focus on (4) as we feel that the intuition for
stagewise algorithms is easier to see with this formulation.

2.4 Related Work

There is a lot of work related to the proposal of this paper. Readers familiar with opti-
mization will likely identify the general stagewise procedure, in Algorithm 2, as a particular

5. For example, it is enough to assume that g ≥ 0, and that for all parameters t, λ ≥ 0, the solution sets of
(4), (20) are nonempty.
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type of (normalized) steepest descent. Steepest descent is an iterative algorithm for mini-
mizing a smooth convex function f , in which we update the current iterate in a direction
that minimizes the inner product with the gradient of f (evaluated at the current iterate),
among all vectors constrained to have norm ‖ · ‖ bounded by 1 (e.g., see Boyd and Van-
denberghe, 2004); the step size for the update can be chosen in any one of the usual ways
for descent methods. Note that gradient descent is simply a special case of steepest descent
with ‖ · ‖ = ‖ · ‖2 (modulo normalizing factors). Meanwhile, the general stagewise algo-
rithm is just steepest descent with ‖ · ‖ = g(·), and a constant step size ε. It is important
to point out that our interest in the general stagewise procedure is different from typical
interest in steepest descent. In the classic usage of steepest descent, we seek to minimize
a differentiable convex function f ; our choice of norm ‖ · ‖ affects the speed with which we
can find such a minimizer, but under weak conditions, any choice of norm will eventually
bring us to a minimizer nonetheless. In the general stagewise algorithm, we are not really
interested in the final minimizer itself, but rather, the path traversed in order to get to
this minimizer. The stagewise path is composed of iterates that have interesting statistical
properties, given by gradually balancing f and g; choosing different functions g will lead
to generically different paths. Focusing on the path, instead of its endpoint, may seem
strange to a researcher in optimization, but it is quite natural for researchers in statistics
and machine learning.

Another method related to our general stagewise proposal is the Frank-Wolfe algorithm
(Frank and Wolfe, 1956), used to minimize a differentiable convex function f over a convex
set C. Similar to (projected) gradient descent, which iteratively minimizes local quadratic
approximations of f over C, the Frank-Wolfe algorithm iteratively minimizes local linear
approximations of f over C. In a recent paper, Jaggi (2013) shed light on Frank-Wolfe as
an efficient, scalable algorithm for modern machine learning problems. For a single value
of the regularization parameter t, the Frank-Wolfe algorithm can be used to solve problem
(4), taking as the constraint set C = {x : g(x) ≤ t}; the Frank-Wolfe steps here look very
similar to the general stagewise steps (5), (6), but an important distinction is that the
iterates from Frank-Wolfe result in a single estimate, rather than each iterate constituting
its own estimate along the regularization path, as in the general stagewise procedure. This
connection deserves more discussion, see Online Appendix A.1. Other well-known methods
based on local linearization are cutting-plane methods (Kelley, 1960) and bundle methods
(Hiriart-Urruty and Lemarechal, 1993). Teo et al. (2007) present a general bundle method
for regularized risk minimization that is particularly relevant to our proposal (see also Teo
et al., 2010); this is similar to the Frank-Wolfe approach in that it solves the problem (4)
at a fixed value of the parameter t (one difference is that its local linearization steps are
based on the entire history of previous iterates, instead of just the single last iterate). For
brevity, we do not conduct a detailed comparison between their bundle method and our
general stagewise procedure, though we believe it would be interesting to do so.

Yet another class of methods that are highly relevant to our proposal are boosting proce-
dures. Boosting algorithms are iterative in form, and we typically think of them as tracing
out a sequence of estimates, just like our general stagewise algorithm (and unlike the it-
erative algorithms described above, e.g., steepest descent and Frank-Wolfe, which we tend
to think of as culminating in a single estimate). The literature on boosting is vast; see,
e.g., Hastie et al. (2009) or Buhlmann and Yu (2010) for a nice review. Among boosting
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methods, gradient boosting (Friedman, 2001) most closely parallels forward stagewise fit-
ting. Consider a setup in which our weak learners are the individual predictor variables
X1, . . . Xp, and the loss function is L(Xβ) = f(β). The gradient boosting updates, using a
shrinkage factor ε, are most commonly expressed in terms of the fitted values, as in

Xβ(k) = Xβ(k−1) + ε · αiXi, (21)

where αi ∈ argmin
α∈R

L(Xβ(k−1) + αXi), (22)

and i ∈ argmin
j=1,...p

(
min
α∈R
‖ − ∇L(Xβ(k−1))− αXj‖22

)
. (23)

The step (23) selects the weak learnerXi that best matches the negative gradient, −∇L(Xβ(k−1)),
in a least squares sense; the step (22) chooses the coefficient αi of Xi via line search. If we
assume that the variables have been scaled to have unit norm, ‖Xj‖2 = 1 for j = 1, . . . p,
then it is easy to see that (23) is equivalent to

i ∈ argmax
j=1,...p

|XT
j ∇L(Xβ(k−1))| = argmax

j=1,...p
|∇jf(β(k−1))|,

which is exactly the same selection criterion used by forward stagewise under the loss
function f , as expressed in (8). Therefore, at a given iteration, gradient boosting and
forward stagewise choose the next variable i in the same manner, and only differ in their
choice of the coefficient of Xi in the constructed additive model. The gradient boosting
update in (21) adds ε ·αiXi to the current model, where αi is chosen by line search in (22);
meanwhile, the forward stagewise update in (7) can be expressed as

Xβ(k) = Xβ(k−1) + ε · siXi, (24)

where si = −sign(∇if(β(k−1)), a simple choice of coefficient compared to αi. Because αi
is chosen by minimizing the loss function along the direction defined by Xi (anchored at
Xβ(k−1)), gradient boosting is even more greedy than forward stagewise, but practically
there is not a big difference between the two, especially when ε is small. In fact, the
distinction between (21) and (24) is slight enough that several authors refer to forward
stagewise as a boosting procedure, e.g., Rosset et al. (2004), Zhao and Yu (2007), and
Buhlmann and Yu (2010) refer to forward stagewise as ε-boosting.

The tie between boosting and forward stagewise suggests that we might be able to
look at our general stagewise proposal through the lens of boosting, as well. Above we
compared boosting and forward stagewise for the problem of sparse estimation; in this
problem, deciding on the universe of weak learners for gradient boosting is more or less
straightforward, as we can use the variables X1, . . . Xp themselves (or, e.g., smooth marginal
transformations of these variables for sparse nonparametric estimation). This works because
each iteration of gradient boosting adds a single weak learner to the fitted model, so the
model is sparse in the early stages of the algorithm, and becomes increasingly dense as
the algorithm proceeds. However, for more complex problems (beyond sparse estimation),
specifying a universe of weak learners is not as straightforward. Consider, e.g., matrix
completion or image denoising—what kind of weak learners would be appropriate here? At
a broad level, our general stagewise procedure offers a prescription for a class of weak learners
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based on the regularizer g, through the definition of ∆ in (6). Such weak learners seem
intuitively reasonable in various problem settings: they end up being groups of variables
for group-structured estimation problems (see Section 3.1), rank 1 matrices for matrix
completion (Section 3.3), and pixel contrasts for image denoising (Section 3.5). This may
lead to an interesting perspective on gradient boosting with an arbitrary regularization
scheme, though we do not explore it further.

Finally, the form of the update ∆ in (6) sets our work apart from other general path
tracing procedures. Zhao and Yu (2007) and Friedman (2008) propose approximate path
following methods for optimization problems whose regularizers extend beyond the `1 norm,
but their algorithms only update one component of the estimate at a time (which corre-
sponds to using individual variables as weak learners, in the boosting perspective); on the
other hand, our general stagewise procedure specifically adapts its updates to the regu-
larizer of concern g. We note that, in certain special cases (i.e., for certain regularizers
g), our proposed algorithm bears similarities to existing algorithms in the literature: for
ridge regularization, our proposal is similar to gradient-directed path following, as studied
in Friedman and Popescu (2004) and Ramsay (2005), and for `1/`2 multitask learning, our
stagewise algorithm is similar to the block-wise path following method of Obozinski et al.
(2010).

3. Applications of the General Stagewise Framework

In each subsection below, we walk through the application of the stagewise framework to a
particular type of regularizer.

3.1 Group-structured Regularization

We begin by considering the group-structured regularization problem

β̂(t) ∈ argmin
β∈Rp

f(β) subject to

G∑
j=1

wj‖βIj‖2 ≤ t, (25)

where the index set {1, . . . p} has been partitioned into G groups I1, . . . IG, βIj ∈ Rpj
denotes the components of β ∈ Rp for the jth group, and w1, . . . wG ≥ 0 are fixed weights.
The loss f is kept as a generic differentiable convex function—this is because, as explained in
Section 2.3, the stagewise updates are invariant around ∇f , in terms of their computational
form.

Note that the group lasso problem (Bakin, 1999; Yuan and Lin, 2006) is a special case
of (25). In the typical group lasso regression setup, we observe an outcome y ∈ Rn and
predictors X ∈ Rn×p, and the predictor variables admit some natural grouping I1, . . . IG.
To perform group-wise variable selection, one can use the group lasso estimator, defined as
in (25) with

f(β) =
1

2

∥∥∥y − G∑
j=1

XIjβIj

∥∥∥2

2
and wj =

√
pj , j = 1, . . . G,
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where XIj ∈ Rn×pj is the predictor matrix for group j, and pj = |Ij | is the size of the group
j. The same idea clearly applies outside of the linear regression setting (e.g., see Meier
et al., 2008 for a study of the group lasso regularization in logistic regression).

A related yet distinct problem is that of multitask learning. In this setting we consider
not one but multiple learning problems, or tasks, and we want to select a common set of
variables that are important across all tasks. A popular estimator for this purpose is based
on `1/`2 regularization (Argyriou et al., 2006; Obozinski et al., 2010), and also fits into
the framework (25): the loss function f becomes the sum of the losses across the tasks,
and the groups I1, . . . IG collect the coefficients corresponding to the same variables across
tasks. For example, in multitask linear regression, we write y(i) ∈ Rn for the outcome,
X(i) ∈ Rn×m for the predictors, and β(i) the coefficients for the ith task, i = 1, . . . r. We
form a global coefficient vector β = (β(1), . . . β(m)) ∈ Rp, where p = m · r, and form groups
I1, . . . Im, where Ij collects the coefficients of predictor variable j across the tasks. The
`1/`2 regularized multitask learning estimator is then defined as in (25) with

f(β) =
1

2

r∑
i=1

‖y(i) −X(i)β(i)‖22 and wj = 1, j = 1, . . .m,

where the default is to set all of the weights to 1, in the lack of any prior information about
variable importance (note that the groups I1, . . . Im are all the same size here).

The general stagewise algorithm, Algorithm 2, does not make any distinction between
cases such as the group lasso and multitask learning problems; it only requires f to be a
convex and smooth function. To initialize the algorithm for the group regularized problem
(25), we can take t0 = 0 and β(0) = 0. The next lemma shows how to calculate the
appropriate update direction ∆ in (6).

Lemma 1 For g(β) =
∑G

j=1wj‖βIj‖2, the general stagewise procedure in Algorithm 2 re-
peats the updates β(k) = β(k−1) + ∆, where ∆ can be computed as follows: first find i such
that

‖(∇f)Ii‖2
wi

= max
j=1,...G

‖(∇f)Ij‖2
wj

, (26)

where we abbreviate ∇f = ∇f(β(k−1)), then let

∆Ij = 0 for all j 6= i, (27)

∆Ii =
−ε · (∇f)Ii
wi‖(∇f)Ii‖2

. (28)

We omit the proof; it follows straight from the KKT conditions for (6), with g as
defined in the lemma. Computation of ∆ in (26), (27), (28) is very cheap, and requires
O(p) operations. To rephrase: at the kth iteration, we simply find the group i such that
the corresponding block of the gradient ∇f(β(k−1)) has the largest `2 norm (after scaling
appropriately by the weights). We then move the coefficients for group i in a direction
opposite to this gradient value; for all other groups, we leave their coefficients untouched
(note that, if a group has not been visited by past update steps, then this means leaving
its coefficients identically equal to zero). The outputs of the stagewise algorithm therefore
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match our intuition about the role of the constraint in (25)—for some select groups, all
coefficients are set to nonzero values, and for other groups, all coefficients are set to zero.
That the actual solution in (25) satisfies this intuitive property can be verified by examining
its own KKT conditions.

Looking back at Figure 2, the first row compares the exact solution and stagewise paths
for a group lasso regression problem. The stagewise path was computed using 300 steps
with ε = 0.01, and shows strong similarities to the exact group lasso path. In other problem
instances, say, when the predictors across different groups are highly correlated, the group
lasso coefficient paths can behave wildly with t, and yet the stagewise paths can appear
much less wild and more stable. Later, in Section 4, we consider larger examples and give
more thorough empirical comparisons.

3.2 Group-structured Regularization with Arbitrary Norms

Several authors have considered group-based regularization using the `∞ norm in place of
the usual `2 norm (e.g., see Turlach et al., 2005 for such an approach in multitask learning).
To accommodate this and other general group-structured regularization approaches, we
consider the problem

β̂(t) ∈ argmin
β∈Rp

f(β) subject to

G∑
j=1

wjhj(βIj ) ≤ t, (29)

where each hj is an arbitrary norm. Let h∗j denote the dual norm of hj ; e.g., if hj(x) = ‖x‖qj ,
then h∗j (x) = ‖x‖rj , where 1/qj + 1/rj = 1. Similar to the result in Lemma 1, the stagewise
updates for problem (29) take a simple group-based form.

Lemma 2 For g(β) =
∑G

j=1wjhj(βIj ), the general stagewise procedure in Algorithm 2 re-
peats the updates β(k) = β(k−1) + ∆, where ∆ can be computed as follows: first find i such
that

h∗i
(
(∇f)Ii

)
wi

= max
j=1,...G

h∗j
(
(∇f)Ij

)
wj

,

where we abbreviate ∇f = ∇f(β(k−1)), then let

∆Ij = 0 for all j 6= i,

∆Ii ∈ −
ε

wi
· ∂h∗i

(
(∇f)Ii

)
.

Again we omit the proof; it follows from the KKT conditions for (6). Indeed, Lemma
2 covers Lemma 1 as a special case, recalling that the `2 norm is self-dual. Also, recalling
that the `∞ and `1 norms are dual, Lemma 2 says that the stagewise algorithm for g(β) =∑G

j=1wj‖βIj‖∞ first finds i such that

‖(∇f)Ii‖1
wi

= max
j=1,...G

‖(∇f)Ij‖1
wj

,
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and then defines the update direction ∆ by

∆Ij = 0 for all j 6= i,

∆` = − ε

wi
·
{

0 for ` ∈ Ii, (∇f)` = 0

sign
(
(∇f)`

)
for ` ∈ Ii, (∇f)` 6= 0.

More broadly, Lemma 2 provides a general prescription for deriving the stagewise updates
for regularizers that are block-wise sums of norms, as long as we can compute subgradients
of the dual norms. For example, the norms in consideration could be a mix of `p norms,
matrix norms, etc.

3.3 Trace Norm Regularization

Consider a class of optimization problems over matrices,

B̂(t) ∈ argmin
B∈Rm×n

f(B) subject to ‖B‖∗ ≤ t, (30)

where ‖B‖∗ denotes the trace norm (also called the nuclear norm) of a matrixB, i.e., the sum
of its singular values. Perhaps the most well-known example of trace norm regularization
comes from the problem of matrix completion (e.g., see Candes and Recht, 2009; Candes and
Tao, 2010; Mazumder et al., 2010). Here the setup is that we only partially observe entries
of a matrix Y ∈ Rm×n—say, we observe all entries (i, j) ∈ Ω—and we seek to estimate the
missing entries. A natural estimator for this purpose (studied by, e.g., Mazumder et al.,
2010) is defined as in (30) with

f(B) =
1

2

∑
(i,j)∈Ω

(Yij −Bij)2.

The trace norm also appears in interesting examples beyond matrix completion. For exam-
ple, Chen and Ye (2014) consider regularization with the trace norm in multiple nonpara-
metric regression, and Harchaoui et al. (2012) consider it in large-scale image classification.

The general stagewise algorithm applied to the trace norm regularization problem (30)
can be initialized with t0 = 0 and B(0) = 0, and the update direction in (6) is now simple
and efficient.

Lemma 3 For g(B) = ‖B‖∗, the general stagewise procedure in Algorithm 2 repeats the
updates β(k) = β(k−1) + ∆, where

∆ = −ε · uvT , (31)

with u, v being leading left and right singular vectors, respectively, of ∇f(B(k−1)).

The proof relies on the fact that the dual of the trace norm g(B) = ‖B‖∗ is the spectral
norm g∗(B) = ‖B‖2, and then invokes the representation (15) for stagewise estimates. For
the stagewise update direction (31), we need to compute the leading left and right singular
vectors u, v of the m× n matrix ∇f(B(k−1))—these are the left and right singular vectors
corresponding to the top singular value of ∇f(B(k−1)). Assuming that ∇f(B(k−1)) has
a distinct largest singular value, this can be done, e.g., using the power method: letting
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A = ∇f(B(k−1)), we first run the power method on the m ×m matrix AAT , or the n × n
matrix ATA, depending on whichever is smaller. This gives us either u or v; to recover
the other, we then simply use matrix multiplication: v = ATu/‖ATu‖2 or u = Av/‖Av‖2.
The power method is especially efficient if A = ∇f(B(k−1)) is sparse (each iteration being
faster), or has a large spectral gap (fewer iterations required until convergence). Of course,
alternatives to the power method can be used for computing the leading singular vectors
of ∇f(B(k−1)), such as methods based on inverse iterations, Rayleigh quotients, or QR
iterations; see, e.g., Golub and Van Loan (1996).

In the second row of Figure 2, the exact and stagewise paths for are shown matrix
completion problem, where the stagewise paths were computed using 500 steps with ε =
0.05. While the two sets of paths appear fairly similar, we note that it is harder to judge
the degree of similarity between the two in the matrix completion context. Here, the
coordinate paths correspond to entries in the estimated matrix B̂, and their roles are not as
clear as they are in, say, in a regression setting, where the coordinate paths correspond to
the coefficients of individual variables. In other words, it is difficult to interpret the slight
differences between the exact and stagewise paths in the second row of Figure 2, which
present themselves as the trace norm grows large. Therefore, to get a sense for the effect of
these differences, we might compare the mean squared error curves generated by the exact
and stagewise estimates. This is done in depth in Section 4.

3.4 Quadratic Regularization

Consider problems of the form

β̂(t) ∈ argmin
β∈Rp

f(β) subject to βTQβ ≤ t, (32)

where Q � 0, a positive semidefinite matrix. The quadratic regularizer in (32) encompasses
several common statistical tasks. When Q = I, the regularization term βTβ = ‖β‖22 is well-
known as ridge (Hoerl and Kennard, 1970), or Tikhonov regularization (Tikhonov, 1943).
This regularizer shrinks the components of the solution β̂ towards zero. In a (generalized)
linear model setting with many predictor variables, such shrinkage helps control the variance
of the estimated coefficients. Beyond this simple ridge case, roughness regularization in
nonparametric regression often fits into the form (32), with Q not just the identity. For
example, smoothing splines (Wahba, 1990; Green and Silverman, 1994) and P-splines (Eilers
and Marx, 1996) can both be expressed as in (32). To see this, suppose that y1, . . . yn ∈ R
are observed across input points x1, . . . xn ∈ R, and let b1, . . . bp denote the B-spline basis
(of, say, cubic order) with knots at locations z1, . . . zp ∈ R. Smoothing splines use the inputs
as knots, z1 = x1, . . . zp = xn (so that p = n); P-splines typically employ a (much) smaller
number of knots across the range of x1, . . . xn ∈ R. Both estimators solve problem (32),
with a loss function f(β) = 1

2‖y −Bβ‖22, and B ∈ Rn×p having entries Bij = bj(xi), but
the two use a different definition for Q: its entries are given by Qij =

∫
b′′i (x)b′′j (x) dx in the

case of smoothing splines, while Q = DTD in the case of P-splines, where D is the discrete
difference operator of a given (fixed) integral order. Both estimators can be extended to the
logistic or Poisson regression settings, just by setting f to be the logistic or Poisson loss,
with natural parameter η = Bβ (Green and Silverman, 1994; Eilers and Marx, 1996).
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When Q is positive definite, the general stagewise algorithm, applied to (32), can be
initialized with t0 = 0 and β(0) = 0. The update direction ∆ in (6) is described by the
following lemma.

Lemma 4 For g(β) = βTQβ, with Q a positive definite matrix, the general stagewise
procedure in Algorithm 2 repeats the updates β(k) = β(k−1) + ∆, where

∆ = −√ε · Q−1∇f√
(∇f)TQ−1∇f

, (33)

and ∇f is an abbreviation for ∇f(β(k−1)).

The proof follows by checking the KKT conditions for (6). When Q = I, the update
step (33) of the general stagewise procedure for quadratic regularization is computationally
trivial, reducing to

∆ = −√ε · ∇f‖∇f‖2
.

This yields fast, simple updates for ridge regularized estimators. For a general matrix Q,
computing the update direction in (33) boils down to solving the linear equation

Qv = ∇f(β(k−1)) (34)

in v. This is expensive for an arbitrary, dense Q; a single solve of the linear system (34)
generally requires O(p3) operations. Of course, since the systems across all iterations involve
the same linear operator Q, we could initially compute a Cholesky decomposition of Q
(or a related factorization), requiring O(p3) operations, and then use this factorization to
solve (34) at each iteration, requiring only O(p2) operations. While certainly more efficient
than the naive strategy of separately solving each instance of (34), this is still not entirely
desirable for large problems.

On the other hand, for several cases in which Q is structured or sparse, the linear system
(34) can be solved efficiently. For example, if Q is banded with bandwidth d, then we can
solve (34) in O(pd2) operations (actually, an initial Cholesky decomposition takes O(pd2)
operations, and each successive solve with this decomposition then takes O(pd) operations).

Importantly, the matrix Q is banded in both the smoothing spline and P-spline regu-
larization cases: for smoothing splines, Q is banded because the B-spline basis functions
have local support; for P-splines, Q is banded because the discrete difference operator is.
However, some care must be taken in applying the stagewise updates in these cases, as
Q is singular, i.e., positive semidefinite but not strictly positive definite. The stagewise
algorithm needs to be modified, albeit only slightly, to deal with this issue—this modifica-
tion was discussed in (18), (19) in Section 2.3, and here we summarize the implications for
problem (32). First we compute the initial iterate to lie in null(Q), the null space of Q,

β(0) ∈ argmin
β∈null(Q)

f(β). (35)

For, e.g., P-splines with Q = DTD, and D the discrete difference operator of order k, the
space null(Q) is k-dimensional and contains (the evaluations of) all polynomial functions
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of order k − 1. The stagewise algorithm is then initialized at such a point β(0) in (35),
and t0 = 0. For future iterations, note that when ∇f(β(k)) has a nontrivial projection onto
null(Q), the stagewise update in (6) is undefined, since 〈∇f(β(k)), z〉 can be made arbitrarily
small along a direction z such that zTQz = 0. Therefore, we must further constrain the
stagewise update to lie in the orthocomplement null(Q)⊥ = row(Q), the row space of Q, as
in

∆ ∈ argmin
z∈row(Q)

〈∇f(β(k−1)), z〉 subject to zTQz ≤ ε.

It is not hard to check that, instead of (33), the update now becomes

∆ = −√ε · Q+∇f√
(∇f)TQ+∇f

, (36)

with Q+ denoting the (Moore-Penrose) generalized inverse of Q.
From a computational perspective, the stagewise update in (36) for the rank deficient

case does not represent more much work than that in (33) for the full rank case. With
P-splines, e.g., we have Q = DTD where D ∈ R(n−k)×n is a banded matrix of full row rank.
A short calculation shows that in this case

(DTD)+ = DT (DDT )−2D,

i.e., applying Q+ is computationally equivalent to two banded linear system solves and
two banded matrix multiplications. Hence one stagewise update for P-spline regularization
problems takes O(p) operations (the bandwidth of D is a constant, d = k + 1), excluding
computation of the gradient.

The third row of Figure 2 shows an example of logistic regression with ridge regular-
ization, and displays the grossly similar exact solution and stagewise paths. Notably, the
stagewise path here was constructed using only 15 steps, with an effective step size

√
ε = 0.1.

This is a surprisingly small number of steps, especially compared to the numbers needed by
stagewise in the examples (both small and large) from other regularization settings covered
in this paper. As far as we can tell, this rough scaling appears to hold for ridge regular-
ization problems in general—for such problems, the stagewise algorithm can be run with
relatively large step sizes for small numbers of steps, and it will still produce statistically
appealing paths. Unfortunately, this trend does not persist uniformly across all quadratic
regularization problems; it seems that the ridge case (Q = I) is really a special one.

For a second example, we consider P-spline regularization, using both continuous and
binomial outcomes. The left panel of Figure 3 displays an array of stagewise estimates,
computed under P-spline regularization and a Gaussian regression loss. We generated n =
100 noisy observations y1, . . . y100 from an underlying sinusoidal curve, sampled at input
locations x1, . . . x100 drawn uniformly over [0, 1]. The P-splines were defined using 30 equally
spaced knots across [0, 1], and the stagewise algorithm was run for 300 steps with

√
ε =

0.005. The figure shows the spline approximations delivered by the stagewise estimates
(from every 15th step along the path, for visibility) and the true sinusoidal curve overlayed as
a thick dotted black line. We note that in this particular setting, the stagewise algorithm is
not so interesting computationally, because each update step solves a banded linear system,
and yet the exact solution can itself be computed at the same cost, at any regularization
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parameter value. The example is instead meant to portray that the stagewise algorithm
can produce smooth and visually reasonable estimates of the underlying curve.

The right panel of Figure 3 displays an analogous example using n = 100 binary ob-
servations, y1, . . . y100, generated according to the probabilities p∗i = 1/(1 + e−µ(xi)), i =
1, . . . 100, where the inputs x1, . . . x100 were sampled uniformly from [0, 1], and µ is a smooth
function. The probability curve p∗(x) = 1/(1 + e−µ(x)) is drawn as a thick dotted black line.
We ran the stagewise algorithm under a logistic loss, with

√
ε = 0.005, and for 300 steps;

the figure plots the probability curves associated with the stagewise estimates (from ev-
ery 15th step along the path, for visibility). Again, we can see that the fitted curves are
smooth and visually reasonable. Computationally, the difficulty of the stagewise algorithm
in this logistic setting is essentially the same as that in the previous Gaussian setting; all
that changes is the computation of the gradient, which is an easy task. The exact solution,
however, is more difficult to compute in this setting than the previous, and requires the use
of iterative algorithm like Newton’s method. This kind of computational invariance around
the loss function, recall, is an advantage of the stagewise framework.
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Figure 3: Snapshots of the stagewise path for P-spline regularization problems, with continuous
data in the left panel, and binary data in the right panel. In both examples, we use
n = 100 points, and the true data generating curve is displayed as a thick dotted black
line. The colored curves show the stagewise estimates over the first 300 path steps
(plotted are every 15th estimate, for visibility).

3.5 Generalized Lasso Regularization

In this last application, we study generalized `1 regularization problems,

β̂(t) ∈ argmin
β∈Rp

f(β) subject to ‖Dβ‖1 ≤ t, (37)
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where D is a given matrix (it need not be square). The regularization term above is also
called generalized lasso regularization, since it includes lasso regularization as a special case,
with D = I, but also covers a number of other regularization forms (Tibshirani and Taylor,
2011). For example, fused lasso regularization is encompassed by (37), with D chosen to
be the edge incidence matrix of some graph G, having nodes V = {1, . . . p} and edges E =
{e1, . . . em}. In the special case of the chain graph, wherein E = {{1, 2}, {2, 3}, . . . {p−1, p}},
we have

D =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 ,
so that ‖Dβ‖1 =

∑p−1
j=1 |βj − βj+1|. This regularization term encourages the ordered com-

ponents of β to be piecewise constant, and problem (37) with this particular choice of D
is usually called the 1-dimensional fused lasso in the statistics literature (Tibshirani et al.,
2005), or 1-dimensional total variation denoising in signal processing (Rudin et al., 1992).
In general, the edge incidence matrix D ∈ Rm×p has rows corresponding to edges in E, and
its `th row is

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0) ∈ Rp,

provided that the `th edge is e` = {i, j}. Hence ‖Dβ‖1 =
∑
{i,j}∈E |βi − βj |, a regularization

term that encourages the components of β to be piecewise constant with respect to the
structure defined by the graph G. Higher degrees of smoothness can be regularized in this
framework as well, using trend filtering methods; see Kim et al. (2009) or Tibshirani (2014)
for the 1-dimensional case, and Wang et al. (2015) for the more general case over arbitrary
graphs.

Unfortunately the stagewise update in (6), under the regularizer g(β) = ‖Dβ‖1, is not
computationally tractable. Computing this update is the same as solving a linear program,
absent of any special structure in the presence of a generic matrix D. But we can make
progress by studying the generalized lasso from the perspective of convex duality. Our
jumping point for the dual is actually the Lagrange form of problem (37), namely

β̂(λ) ∈ argmin
β∈Rp

f(β) + λ‖Dβ‖1, (38)

with λ ≥ 0 now being the regularization parameter. The switch from (37) to (38) is justi-
fied because the two parametrizations admit identical solution paths. Following standard
arguments in convex analysis, the dual problem of (38) can be written as

û(λ) ∈ argmin
u∈Rm

f∗(−DTu) subject to ‖u‖∞ ≤ λ, (39)

with f∗ denoting the convex conjugate of f . The primal and dual solutions satisfy the
relationship

∇f(β̂(λ)) +DT û(λ) = 0. (40)

The general strategy is now to apply the stagewise algorithm to the dual problem (39)
to produce an approximate dual solution path, and then convert this into an approximate
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primal solution path via (40). The stagewise procedure for (39) can be initialized with
λ0 = 0 and u(0) = 0, and the form of the updates is described next. We assume that the
conjugate function f∗ is differentiable, which holds if f is strictly convex.

Lemma 5 Applied to the problem (39), the general stagewise procedure in Algorithm 2
repeats the updates u(k) = u(k−1) + ∆, where

∆i = −ε ·


1

[
D∇f∗(−DTu(k−1))

]
i
< 0

−1
[
D∇f∗(−DTu(k−1))

]
i
> 0

0
[
D∇f∗(−DTu(k−1))

]
i

= 0

for i = 1, . . .m. (41)

The proof follows from the duality of the `∞ and `1 norms, and the alternative repre-
sentation in (15) for stagewise updates. Computation of ∆ in (41), aside from evaluating
the gradient ∇f∗, reduces to two matrix multiplications: one by D and one by DT . In
many cases (e.g., fused lasso and trend filtering problems), the matrix D is sparse, which
makes this update step very cheap. To reiterate the dual strategy: we compute the dual
estimates u(k), k = 1, 2, 3, . . . using the stagewise updates outlined above, and we compute
primal estimates β(k), k = 1, 2, 3, . . . by solving for β(k) in the stationarity condition

∇f(β(k)) +DTu(k) = 0, (42)

for each k. The kth dual iterate u(k) is viewed as an approximate solution in (39) at λ =
‖u(k)‖∞, and the kth primal iterate β(k) an approximate solution in (37) at t = ‖Dβ(k)‖1.

As pointed out by a referee of this paper, there is a key relationship between f and its
conjugate f∗ that simplifies the update direction in (41) considerably. At step k, observe
that

∇f∗(−DTu(k−1)) = ∇f∗(∇f(β(k−1))) = β(k−1).

The first equality comes from the primal-dual relationship (40) at step k − 1, and the
second is due to the fact that x = ∇f∗(z) ⇐⇒ z = ∇f(x). As a result, the dual update
u(k) = u(k−1) + ∆ with ∆ as in (41) can be written more succinctly as

u(k) = u(k−1) − ε · sign(Dβ(k−1)), (43)

where sign(·) is to be interpreted componentwise (with the convention sign(0) = 0). There-
fore, one can think of the dual stagewise strategy as alternating between computing a dual
estimate u(k) as in (43), and computing a primal estimate β(k) by solving (42).

We note that, since the stagewise algorithm is being run through the dual, the estimates
β(k), k = 1, 2, 3, . . . for generalized lasso problems differ from those in the other stagewise
implementations encountered thus far, in that β(k), k = 1, 2, 3, . . . correspond to approxi-
mate solutions at increasing levels of regularization, as k increases. That is, the stagewise
algorithm for problem (37) begins at the unregularized end of the path and iterates towards
the fully regularized end, which is opposite to its usual direction.

A special case worth noting is that of Gaussian signal approximator problems, where the
loss is f(β) = 1

2‖y − β‖22. For such problems, the primal-dual relationship in (42) reduces
to

β(k) = y −DTu(k),
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for each k. This means that the initialization u(0) = 0 and λ0 = 0 in the dual is the same
as β(0) = y and t0 = ‖Dy‖1 in the primal. Furthermore, it means that the dual updates in
(43) lead to primal updates that can be expressed directly as

β(k) = β(k−1) − ε ·DT sign(Dβ(k−1)). (44)

From the pure primal perspective, therefore, the stagewise algorithm begins with the trivial
unregularized estimate β(0) = y, and to fit subsequent estimates in (44), it iteratively shrinks
along directions opposite to the active rows of D. That is, if D`β

(k−1) > 0 (where D` is
the `th row of D), then the algorithm adds DT

` to β(k−1) in forming β(k), which shrinks
D`β

(k) towards zero, as D`D
T
` > 0 (recall that D` is a row vector). The case D`β

(k−1) < 0
is similar. If D`β

(k−1) = 0, then no shrinkage is applied along D`.

This story can be made more concrete for fused lasso problems, where D is the edge inci-
dence matrix of a graph: here the update in (44) evaluates the differences across neighboring
components of β(k−1), and for any nonzero difference, it shrinks the associated components
towards each other to build β(k). The level of shrinkage is uniform across all active differ-
ences, as any two neighboring components move a constant amount ε towards each other.6

This is a simple and natural iterative procedure for fitting piecewise constant estimates over
graphs. For small examples using 1d and 2d grid graphs, see Online Appendix A.3.

4. Large-scale Examples and Practical Considerations

We compare the proposed general stagewise procedure to various alternatives, with respect
to both computational and statistical performance, across the three of the four major reg-
ularization settings seen so far. The fourth setting is moved to Online Appendix A.4 for
reasons of space. The current section specifically investigates large examples, at least rela-
tive to the small examples presented in Sections 1–3. Of course, one can surely find room
to criticize our comparisons, e.g., with respect to a different tuning of the algorithm that
computes exact solutions, a coarser grid of regularization parameter values over which it
computes solutions, a different choice of algorithm completely, etc. We have tried to con-
duct fair comparisons in each problem setting, but we recognize that perfectly fair and
exhaustive comparisons are near impossible. The message that we hope to convey is not
that the stagewise algorithm is computationally superior to other algorithms in the prob-
lems we consider, but rather, that the stagewise algorithm is computationally competitive
with the others, yet it is very simple, and capable of producing estimates of high statistical
quality.

4.1 Group Lasso Regression

Overview. We examine two simulated high-dimensional group lasso regression problems.
To compute group lasso solution paths, we used the SGL R package, available on the CRAN
repository. This package implements a block coordinate descent algorithm for solving the
group lasso problem, where each block update itself applies accelerated proximal gradient

6. This is assuming that D is the edge incidence matrix of an unweighted graph; with edge weights, the
rows of D scale accordingly, and so the effective amounts of shrinkage in the stagewise algorithm scale
accordingly too.
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descent (Simon et al., 2013). This idea is not complicated, but an efficient implementation
of this algorithm requires care and attention to detail, such as backtracking line search
for the proximal gradient step sizes. The stagewise algorithm, on the other hand, is very
simple—in C++, the implementation is only about 50 lines of code. Refer to Section 3.1
for a description of the stagewise update steps. The algorithmics of the SGL package are
also written in C++.

Examples and Comparisons. In both problem setups, we used n = 200 observations,
p = 4000 predictors, and G = 100 equal-sized groups (of size 40). The true coefficient vector
β∗ ∈ R4000 was defined to be group sparse, supported on only 4 groups, and the nonzero
components were drawn independently from N(0, 1). We generated observations y ∈ R200

by adding independent N(0, τ2) noise to Xβ∗, where the predictor matrix X ∈ R200×4000

and noise level τ were chosen under two different setups. In the first, the entries of X
were drawn independently from N(0, 1), so that the predictors were uncorrelated (in the
population); we also let τ = 6. In the second, each row of X was drawn independently from
a N(0,Σ) distribution, where Σ had a block correlation structure. The covariance matrix Σ
was defined so that each predictor variable had unit (population) variance, but (population)
correlation ρ = 0.85 with 99 other predictors, each from a different group. Further, in this
second setup, we used an elevated noise level τ = 10.

Figure 4 shows a comparison of the group lasso and stagewise paths, from both com-
putational and statistical perspectives. We fit group lasso solutions over 100 regularization
parameter values (the SGL package started at the regularized end, and used warm starts).
We also ran the stagewise algorithm in two modes: for 250 steps with ε = 1, and for 25
steps with ε = 10. The top row of Figure 4 asserts that, in both the uncorrelated and corre-
lated problem setups, the mean squared errors of the stagewise fits Xβ(k) to the underlying
mean Xβ∗ are quite competitive with those of the exact fits Xβ̂(t). In both plots, the red
and black error curves, corresponding to the stagewise fits with ε = 1 and the exact fits,
respectively, lie directly on top of each other. It took less than 1 second to compute these
stagewise fits, in either problem setup; meanwhile, it took about 10 times this long to com-
pute the group lasso fits in the uncorrelated setup, and 100 times this long in the correlated
setup. The stagewise algorithm with ε = 10 took less than 0.1 seconds to compute a total of
25 estimates, and offers a slightly degraded but still surprisingly competitive mean squared
error curve, in both the correlated and uncorrelated problem setups. Exact timings can be
found in the middle row of Figure 4. The error curves and timings were all averaged over
10 draws of observations y from the uncorrelated or correlated simulation models (for fixed
X,β∗); the timings were made on a desktop personal computer.

Though the exact and stagewise component paths typically appear quite similar in the
uncorrelated problem setup, the same is not true for the correlated setup. The bottom row
of Figure 4 displays an example of the two sets of component paths for one simulated draw of
observations, under the correlated predictor model. The component paths of the group lasso
solution, on the left, vary wildly with the regularization parameter; the stagewise paths, on
the right, are much more stable. It is interesting to see that such different estimates can
yield similar mean squared errors (as, recall, shown in the top row of Figure 4) but this is
the nature of using correlated predictors in a regression problem.
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Figure 4: Statistical and computational comparisons between group lasso solutions and correspond-
ing estimates produced by the stagewise approach, when n = 200, p = 4000. The top
row shows that stagewise estimates can achieve competitive mean squared errors to that
of group lasso solutions, as computed by coordinate descent, under two different setups
for the predictors in group lasso regression: uncorrelated and block correlated. (The
curves were averaged over 10 simulations, with standard deviations denoted by dotted
lines.) The middle table reports runtimes in seconds (averaged over 10 simulations, with
standard deviations in parentheses) for the various algorithms considered, and shows
that the stagewise algorithm represents a computationally attractive alternative to the
SGL coordinate descent approach and the Frank-Wolfe algorithm. Lastly, the bottom
row contrasts the group lasso and stagewise component paths, for one draw from the
correlated predictors setup.
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Frank-Wolfe. We include a comparison to the Frank-Wolfe algorithm for computing group
lasso solutions, across the same 100 regularization parameter values considered by the co-
ordinate descent method. Recall that the updates from Frank-Wolfe share the same com-
putational underpinnings as the stagewise ones, but are combined in a different manner;
refer to Online Appendix A.1 for details. We implemented the Frank-Wolfe method for
group lasso regression in C++, which starts at the largest regularization parameter value,
and uses warm starts along the parameter sequence. The middle row of Figure 4 reports
the Frank-Wolfe timings, averaged over 10 draws from the uncorrelated and correlated
simulation models. We considered two schemes for termination of the algorithm, at each
regularization parameter value t: the first terminates when

‖y −Xβ̃(t)‖22 ≤ 1.01 · ‖y −Xβ̂(t)‖22, (45)

where β̃(t) is the Frank-Wolfe iterate at t, and β̂(t) is the computed coordinate descent
solution at t; the second terminates when

‖Xβ∗ −Xβ̃(t)‖22 ≤ 1.01 ·max
{
‖Xβ∗ −Xβ̂(t)‖22, ‖Xβ∗ −Xβ(kt)‖22

}
, (46)

where β(kt) is the imputed stagewise estimate at the parameter value t (computed by linear
interpolation of the appropriate neighboring stagewise estimates). In other words, the first
rule (45) stops when the Frank-Wolfe iterate is within 1% of the criterion value achieved
by the coordinate descent solution, and the second rule (46) stops when the Frank-Wolfe
iterate is within 1% of the mean squared error of either of the coordinate descent or stagewise
fits. Using the first rule, the Frank-Wolfe algorithm took about 68 seconds to compute 100
solutions in the uncorrelated problem setup, and 93 seconds in the correlated problem
setup. In terms of the total iteration count, this meant 18,627 Frank-Wolfe iterations in
the uncorrelated case, and 25,579 in the correlated case; these numbers are meaningful,
because, recall, one Frank-Wolfe iteration is (essentially) computationally equivalent to one
stagewise iteration. We can see that Frank-Wolfe struggles here to compute solutions that
match the accuracy of coordinate descent solutions, especially for large values of t—in fact,
when we changed the factor of 1.01 to 1 in the stopping rule (45), the Frank-Wolfe algorithm
converged far, far more slowly. (For this part, the coordinate descent solutions themselves
were only computed to moderate accuracy; we used the default convergence threshold in the
SGL package.) The results are more optimistic under the second stopping rule. Under this
rule, the Frank-Wolfe algorithm ran in just over 1 second (274 iterations) in the uncorrelated
setup, and about 13 seconds (3592 iterations) in the correlated setup. But this stopping rule
represents an idealistic situation for Frank-Wolfe, and moreover, it cannot be realistically
applied in practice, since it relies on the underlying mean Xβ∗.

4.2 Matrix Completion

Overview. We consider two matrix completion examples, one simulated and one using
real data. To compute solutions of the matrix completion problem, under trace norm
regularization, we used the softImpute R package from CRAN, which implements proximal
gradient descent (Mazumder et al., 2010). The proximal operator here requires a truncated
singular value decomposition (SVD) of a matrix the same dimensions as the input (partially
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observed) matrix Y . SVD calculations are generally very expensive, but for this problem
a partial SVD can be efficiently computed with clever schemes based on bidiagonalization
or alternating least squares. The softImpute package uses the latter scheme to compute
a truncated SVD, and though this does provide a substantial improvement over the naive
method of computing a full SVD, it is still far from cheap. The partial SVD computation via
alternating least squares scales roughly quadratically with the rank of the sought solution,
and this must be repeated for every iteration taken by the algorithm until convergence.

In comparison, the stagewise steps for the matrix completion problem require only the
top left and right singular vectors of a matrix the same size as the input Y . Refer back
to Section 3.3 for an explanation. To emphasize the differences between the two methods:
the proximal gradient descent algorithm of softImpute, at each regularization parameter
value t of interest, must iteratively compute a partial SVD until converging on the desired
solution; the stagewise algorithm computes a single pair of left and right singular vectors,
to form one estimate at one parameter value t, and then moves on to the next value of t.
For the following examples, we used a simple R implementation of the stagewise algorithm;
the computational core of the softImpute package is also written in R.

Examples and Comparisons. In the first example, we simulated an underlying low-
rank matrix B∗ ∈ R500×500, of rank 50, by letting B∗ = UUT , where U ∈ R500×50 had
independent N(0, 1) entries. We then added N(0, 20) noise, and discarded 40% of the
entries, to form the input matrix Y ∈ R500×500 (so that Y was 60% observed). We ran
softImpute at 100 regularization parameter values (starting at the regularized end, and
using warm starts), and we ran two different versions of the stagewise algorithm: one with
ε = 50, for 500 steps, and one with ε = 250, for 100 steps. The left plot in Figure 5 shows
the mean squared error curves of the resulting estimates, averaged over 10 draws of the
input matrix Y from the above prescription (with B∗ fixed). We can see that the stagewise
estimates, with ε = 50, trace out an essentially identical mean squared error curve to that
from the exact solutions. We can also see that, curiously, the larger step size ε = 250 leads to
suboptimal performance in stagewise estimation, as measured by mean squared error. This
is unlike the previous group lasso setting, in which a larger step size still yielded basically
the same performance (albeit slightly noisier mean squared error curves).

The proximal gradient descent method implemented by softImpute in this simulated
example took an average of 206 iterations to compute 100 solutions across 100 values of
the regularization parameter (averaged over the 10 repetitions of the observation matrix
Y ). This means an average of just 2.06 iterations per solution—quite rapid convergence
behavior for a first-order method like proximal gradient descent. (Note: we used the default
convergence threshold for softImpute, which is only moderately small.) The stagewise al-
gorithms, using step sizes ε = 50 and ε = 250, ran for 500 and 100 iterations, respectively.
As explained, the two types of iterations here are different in nature. Each iteration of prox-
imal gradient descent computes a truncated SVD, which is of roughly quadratic complexity
in the rank of current solution, and therefore becomes more expensive as we progress down
the regularization path; each stagewise iteration computes a single pair of left and right
singular vectors, which has the same cost throughout the path, independent of the rank of
the current estimate. The bottom row of Figure 5 is a table containing the running times of
these two methods (averaged over 10 draws of Y , and recorded on a desktop computer). We
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Algorithm timings

Method Simulated data MovieLens data
Exact: proximal gradient, 100 solutions 60.20 (1.45) 334.67

Stagewise: ε = 50, 500 estimates 92.92 (2.42) 107.66
Stagewise: ε = 250, 100 estimates 18.26 (0.98) 21.22

Frank-Wolfe: within 1% of criterion value 989.77 (19.88) -
Frank-Wolfe: within 1% of mean squared error 154.06 (10.76) -

Figure 5: Comparisons between exact and stagewise estimates for matrix completion problems.
The top left plot shows mean squared error curves for a simulated example of a 40%
observed, 500× 500 input matrix, and the right shows the same for the MovieLens data,
where the input is 6% observed and 943 × 1682. (The error curves in the left plot
were averaged over 10 repetitions, and standard deviations are drawn as dotted lines.)
The stagewise estimates with ε = 50 are competitive in both cases. The bottom table
gives the runtimes of softImpute proximal gradient descent, stagewise, and the Frank-
Wolfe algorithm. (Timings for the simulated case were averaged over 10 repetitions, with
standard deviations in parentheses; Frank-Wolfe was not run on the MovieLens example.)

see that proximal gradient descent spent an average of about 60 seconds to compute 100 so-
lutions, i.e., 0.6 seconds per solution. The stagewise algorithm with ε = 50 took an average
of about 93 seconds for 500 steps, and the algorithm with ε = 250 an average of 18 seconds
for 100 steps, with both translate into about 0.18 seconds per estimate. The speedy time of
0.6 seconds per estimate of softImpute is explained by two factors: fast iterations (using
the impressive, custom alternating least squares routine developed by the package authors
to compute partial SVDs), and few iterations needed per solution (recall, only an average
of 2.06 per solution in this example). The 0.18 seconds per stagewise iteration reflects the
runtime of computing leading left and right singular vectors with R’s standard svd function,
as our implementation somewhat naively does (it does not take advantage of sparsity in any
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way). This naive stagewise implementation works just fine for moderate matrix sizes, as
in the current example. But for larger matrix sizes (and higher levels of missingness), we
see significant improvements when we use a more specialized routine for computing the top
singular vectors. We also see a bigger separation in the costs per estimate with stagewise
and proximal gradient descent. This is discussed next.

The second example is based on the MovieLens data set (collected by the GroupLens
Research Project at the University of Minnesota, see http://grouplens.org/datasets/

movielens/). We examined a subset of the full data set, with 100,000 ratings from m = 943
users on n = 1682 movies (hence the input matrix Y ∈ R943×1682 was approximately 6%
observed). We used an 80%/20% split of these ratings for training and testing, respectively;
i.e., we computed matrix completion estimates using the first 80% of the ratings, and eval-
uated test errors on the held out 20% of the ratings. For the estimates, we ran softImpute

over 100 values of the regularization parameter (starting at the regularized end, using warm
starts), and stagewise with ε = 50 for 500 steps, as well as with ε = 250 for 100 steps. The
right plot of Figure 5 shows the test error curves from each of these methods. The stage-
wise estimates computed with ε = 50 and the exact solutions perform quite similarly, with
the exact solutions having a slight advantage as the trace norm exceeds about 2500. The
stagewise error curve when ε = 250 begins by dropping off strongly just like the other two
curves, but then it flattens out too early, while the other two continue descending. (We note
that, for step sizes larger than ε = 250, the test error curve stops decreasing even earlier,
and for step sizes smaller than ε = 50, the error curve reaches a slightly lower minimum,
in line with that of the exact solution. This type of behavior is reminiscent of boosting
algorithms.)

In terms of computation, the proximal gradient descent algorithm used a total of 1220
iterations to compute 100 solutions in the MovieLens example, or an average of 122 it-
erations per solution. This is much more than the 2.06 seconds per iteration as in the
previous simulated example, and it explains the longer total runtime of about 335 seconds,
i.e., the longer total time of 33.5 seconds per solution. The stagewise algorithms ran, by
construction, for 500 and 100 steps and took about 108 and 21 seconds, respectively, i.e.,
an average of 0.21 seconds per estimate. To compute the leading left and right singular
vectors in each stagewise step here, we used the rARPACK R package from CRAN, which
accommodates sparse matrices. This was highly beneficial because the gradient ∇f(B(k−1))
at each stagewise step was very sparse (about 6% entries of its were nonzero, since Y was
about 6% observed).

Frank-Wolfe. We now compare the Frank-Wolfe algorithm for computing matrix comple-
tion solutions, over the same 100 regularization parameter values used by softImpute. Each
Frank-Wolfe iteration computes a single pair of left and right top singular vectors, just like
stagewise iterations; see Online Appendix A.1 for a general description of the Frank-Wolfe
method (or Jaggi and Sulovsky, 2010 for a study of Frank-Wolfe for trace norm regular-
ization problems in particular). We implemented the Frank-Wolfe algorithm for matrix
completion in R, which starts at the regularized end of the path, and uses warm starts at
each regularization parameter value. The timings for the Frank-Wolfe method, run on the
simulated example, are given in the table in Figure 5 (we did not run it on the MovieLens
example). As before, in the group lasso setting, we considered two different stopping rules
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for Frank-Wolfe, applied at each regularization parameter value t: the first stops when the
achieved criterion value is within 1% of that achieved by the proximal gradient descent
approach in softImpute, and the second stops when the achieved mean squared error is
within 1% of either that of softImpute or stagewise. In either case, we cap the maximum
number of iterations at 100, at each parameter value t.

Under the first stopping rule, the Frank-Wolfe algorithm required an average of 5847
iterations to compute 100 solutions (averaged over 10 draws of the input matrix Y ); further-
more, this total was calculated under the limit of 100 maximum iterations per solution, and
the algorithm met this limit at each one of the largest 50 regularization parameter values
t. Recall that each one of these Frank-Wolfe iterations is computationally equivalent to a
stagewise iteration. Accordingly, 500 steps of the stagewise algorithm, with ε = 50, ran in
about an order of magnitude less time—93 seconds versus 990 seconds. The message is that
the Frank-Wolfe algorithm experiences serious difficulty in producing solutions at a level of
accuracy close to that of proximal gradient descent, especially for lower levels of regular-
ization. Using the second stopping rule, Frank-Wolfe ran much faster, and computed 100
solutions in about 997 iterations, or 154 seconds. However, there are two important points
to stress. First, this rule is not generally available in practice, as it depends on performance
measured with respect to the true matrix B∗. Second, the termination behavior under this
rule is actually somewhat misleading, because once the mean squared error curve begins to
rise (in the left plot of Figure 5, after about t = 7000 in trace norm), the second rule will
always cause Frank-Wolfe with warm starts to trivially terminate in 1 iteration. Indeed,
in the simulated data example, the Frank-Wolfe algorithm using this rule took about 22
iterations per solution before t = 7000, and trivially 1 iteration per solution after this point.

4.3 Image Denoising

Overview. We study the image denoising problem, cast as a generalized lasso problem with
Gaussian signal approximator loss, and 2d fused lasso or 2d total variation regularization
(meaning that the underlying graph is a 2d grid). To compute exact solutions of this
problem, we applied a direct (noniterative) algorithm of Chambolle and Darbon (2009), that
reduces this problem to sequence of maximum flow problems. The “parametric” maximum
flow approach taken by these authors is both very elegant and highly specialized. To the
best of our knowledge, their algorithm is one of the fastest existing algorithms for 2d fused
lasso problems (more generally, fused lasso problems over graphs). For the simulations in
this section we relied on a fast C++ implementation provided by the authors (see http:

//www.cmap.polytechnique.fr/~antonin/software/), which totals close to 1000 lines of
code. The stagewise algorithm is almost trivially simple in comparison, as our own C++
implementation requires only about 50 lines of code. For the 2d fused lasso regularizer,
the stagewise update steps reduce to sparse matrix multiplications; refer to Section 3.5 for
details.

Examples and Comparisons. We inspect two image denoising examples. For the first,
we constructed a 300×200 image to have piecewise constant levels, and added independent
N(0, 1) noise to the level of each pixel. Both this true underlying image and its noisy version
are displayed in Figure 6. We then ran the parametric max flow approach of Chambolle and
Darbon (2009), to compute exact 2d fused lasso solutions, at 100 values of the regularization
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parameter. (This algorithm is direct and does not take warm starts, so each instance was
solved separately.) We also ran the stagewise method in two modes: for 6000 steps with
ε = 0.0005, and for 500 steps with ε = 0.005. The mean squared error curves for each
method are shown in the top left corner of Figure 6, and timings are given in the bottom
table. (All results here have been averaged over 10 draws of the noisy image, and the timings
were recorded on a desktop computer.) We can see that the stagewise estimates, both with
ε = 0.0005 and ε = 0.005, perform comparably to the exact solutions in terms of mean
squared error, though the estimates under the smaller step size fare slightly better towards
the more regularized end of the path. The 6000 stagewise estimates using ε = 0.0005 took
about 15 seconds to compute, and the 500 stagewise estimates using ε = 0.005 took roughly
1.5 seconds. The max flow approach required an average of about 110 seconds to compute
100 solutions, with the majority of computation time spent on solutions at higher levels of
regularization (which, here, correspond to lower mean squared errors). Finally, the estimate
from each method that minimized mean squared error is also plotted in Figure 6; all look
very similar and do a visually reasonable job of recovering the underlying image. That
the stagewise approach can deliver such high-quality denoised images with simple, cheap
iterations is both fortuitous and surprising.

The second example considers the stagewise algorithm for a larger-scale image denoising
task, based on a real 640×480 image, of Lake Pukaki in front of Mount Cook, New Zealand.
We worked with each color channel—red, green, blue—separately, and the pixel values were
scaled to lie between 0 and 1. For each of these three images, we added independent
N(0, 0.5) noise to the pixel values, and ran the stagewise algorithm with ε = 0.005 for 650
steps. We chose this number of steps because the achieved mean squared error (averaged
over the three color channels) roughly began to rise after this point. We then recombined the
three denoised images—on the red, green, blue color channels—to form a single image. See
Figure 7. Visually, the reconstructed image is remarkably close to the original one, especially
considering the input noisy image on which it is computed. The stagewise algorithm took a
total of around 21 seconds to produce this result; recall, though, that in this time it actually
produced 650× 3 = 1950 fused lasso estimates (650 steps in three different image denoising
tasks, one for each color).

4.4 Choice of Step Size

We discuss a main practical issue when running the stagewise algorithm: choice of the step
size ε. Of course, when ε is too small, the algorithm is less efficient, and when ε is too
large, the stagewise estimates can fail to span the full regularization path (or a sizeable
portion of it). Our heuristic suggestion therefore is to start with a large step size ε, and
plot the progress of the achieved loss f(x(k)) and regularizer g(x(k)) function values across
steps k = 1, 2, 3, . . . of the algorithm. With a proper choice of ε, note that we should see
f(x(k)) monotone decreasing with k, as well as g(x(k)) monotone increasing with k (this
is true of f(x̂(t)) and g(x̂(t)) as we increase the regularization parameter t, in the exact
solution computation). If ε is too large, then it seems to be the tendency in practice that
the achieved values f(x(k)) and g(x(k)), k = 1, 2, 3, . . . stop their monotone progress at some
point, and alternate back and forth. Figure 8 illustrates this behavior. Once encountered,
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Algorithm timings

Method Runtime
Exact: maximum flow, 100 solutions 109.04 (6.21)
Stagewise: ε = 0.0025, 6000 estimates 15.11 (0.18)

Stagewise: ε = 0.25, 500 estimates 1.26 (0.02)

Figure 6: Comparisons between exact 2d fused lasso solutions and stagewise estimates on a syn-
thetic image denoising example. The true underlying 300× 200 image is displayed in the
middle of the top row. (A color scale is applied for visualization purposes, see the left
end of the bottom row.) Over 10 noisy perturbations of this underlying image, with one
such example shown in the right plot of the top row, we compare averaged mean squared
errors of the exact solutions and stagewise estimates, in the left plot of the top row.
Average timings for these methods are given in the bottom table. (Standard deviations
are denoted by dotted lines in the error plots, and are in parentheses in the table.) The
stagewise estimates have competitive mean squared errors and are fast to compute. The
bottom row of plots shows the optimal image (i.e., that minimizing mean squared error)
from each method, based on the single noisy image in the top right.



Original image:

Noisy version:

Stagewise, ε = 0.001,
650 steps:

(computed in
21.34 seconds)

Figure 7: A more realistic image denoising example using stagewise. We began with a 640 × 480
photograph of Lake Pukaki and Mount Cook, in New Zealand, shown at the top. Working
with each color channel separately, we added noise to form the middle noisy image, and
ran the stagewise algorithm to eventually yield the bottom image, a nice reconstruction.
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an appropriate response would be decrease ε (say, halve it), and continue the stagewise
algorithm from the last step before this alternating pattern surfaced.
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Figure 8: An example displaying a common tendency of stagewise estimates under a choice of step
size ε that is too large. We used the group lasso regression data setup from Figure 4
(uncorrelated case). Both the achieved loss f(x(k)) (left plot) and regularizer g(x(k))
(right plot) function values should be monotonic across steps k = 1, 2, 3, . . .. We see that
for the larger step size ε = 50 (in red), progress halts and an alternating pattern begins,
with both sequences; for the smaller step size ε = 5 (in black), progress continues all the
way until the end of the path.

The heuristic guideline above attempts to produce the largest step size ε that still
produces an expansive regularization path of stagewise estimates. This ignores the subtlety
that a larger choice ε may offer suboptimal statistical performance, even if the corresponding
estimates span the full path. This was seen in some examples of Section 4 (e.g., matrix
completion, in Figure 5), but not in others (e.g., group lasso regression, in Figure 4). The
issue of tuning ε for optimal statistical performance is more complex and problem dependent.
Although it is clearly important, we do not study this task in the current paper. We mention
the (somewhat obvious) point that strategies like cross-validation (if applicable, in the given
problem setting) could be helpful here.

5. Suboptimality Bounds for Stagewise Estimates

This section focuses on theoretical suboptimality guarantees for the general stagewise algo-
rithm, and proposes a new shrunken variant of the stagewise method.
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5.1 General Stagewise Suboptimality

We present a suboptimality bound for estimates produced by the general stagewise algo-
rithm, restricting our attention to a norm regularizer g. The following result makes use
of the dual norm g∗ of g which, recall, is defined as g∗(x) = maxg(z)≤1 x

T z. Its proof is
based on recursively tracking a duality gap for the general problem (4), and is deferred until
Online Appendix A.5.

Theorem 1 Consider the general problem (4), assuming that f is differentiable and convex,
and g is a norm. Assume also that ∇f is Lipschitz with respect to the pair g∗, g with constant
L, i.e.,

g∗
(
∇f(x)−∇f(y)

)
≤ L · g(x− y), all x, y.

Fix a regularization parameter value t of interest, and consider running the general stagewise
algorithm, Algorithm 2, from x(0) = x̂(t0), a solution in (4) at a parameter value t0 ≤ t.
Suppose that we run the algorithm for k steps, with step size ε, such that tk = t0 + kε = t.
The resulting stagewise estimate x(k) satisfies

f(x(k))− f(x̂(t)) ≤ L(t2 − t20) + L(t− t0)ε.

Therefore, if we consider the limiting stagewise estimate at the parameter value t, denoted
by x̃(t), as the step size ε→ 0, then such an estimate satisfies

f(x̃(t))− f(x̂(t)) ≤ L(t2 − t20).

Remark 1. In the theorem, the kth stagewise estimate x(k) is taken to be an approximate
solution at the static regularization parameter value tk = t0 + kε, not at the dynamic value
tk = g(x(k)), as we have been considering so far. It is easy to see that with the static
choice tk = t0 + kε, we have g(x(k)) ≤ tk, so that x(k) is still feasible at the parameter
tk. Furthermore, this choice simplifies the analysis, and would also simplify running the
algorithm in practice (when g is expensive to compute, e.g., in the trace norm setting).

Remark 2. The assumptions that f is differentiable and that its gradient ∇f is Lipschitz
continuous are fairly standard in the analysis of optimization algorithms; usually the Lips-
chitz assumption is made with respect to a prespecified pair of primal and dual norms, but
here instead we rely on the pair naturally suggested by the problem (4), namely, g, g∗. For
example, in the least squares setting, f(β) = 1

2‖y −Xβ‖22, with an arbitrary norm g as the
regularizer, the Lipschitz constant of ∇f is

L = max
u6=0

g∗(XTXu)

g(u)
,

which we might write as L = ‖XTX‖g,g∗ in the spirit of matrix norms.

Remark 3. The theorem can be extended to the case when g is a seminorm regularizer. As
written, the Lipschitz constant L would be infinite if g has a nontrivial null space Ng that
overlaps with ∇f , as made precise in (17). However, we could g∗ redefine as

g∗(x) = max
z∈N⊥g , g(z)≤1

xT z,

and one can then check that, under the same conditions, the proof of Theorem 1 goes
through just as before, but now the bounds apply to the modified stagewise estimates in
(18), (19).
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5.2 Shrunken Stagewise Framework

For reasons that will become apparent, we introduce a shrunken version of the stagewise
estimates.

Algorithm 3 (Shrunken stagewise procedure)

Fix ε > 0, α ∈ (0, 1), t0 ∈ R. Set x(0) = x̂(t0), a solution in (4) at t = t0. Repeat, for
k = 1, 2, 3, . . .,

x(k) = αx(k−1) + ∆, (47)

where ∆ ∈ argmin
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε. (48)

The only difference between Algorithm 3 and the existing stagewise proposal in Al-
gorithm 2 is that the update step in (47) shrinks the current iterate x(k−1) by a constant
amount α < 1, before adding the direction ∆. Note that in the case of unbounded stagewise
updates, we would replace (48) by the subspace constrained version (19), as explained in
Section 2.3.

Before we give examples or theory, we motivate the study of the shrunken stagewise
algorithm from a conceptual point of view. It helps to think about lasso regression in
particular, with f(β) = 1

2‖y −Xβ‖22 and g(β) = ‖β‖1. Recall that in this case, the general
stagewise procedure reduces to classical forward stagewise regression, in Algorithm 1. A
step k, forward stagewise updates the component i of the estimate β(k−1) such that the
variable Xi has the largest absolute inner product with the residual y −Xβ(k−1); further,
it moves β

(k−1)
i in a direction given by the sign of this inner product. It is intuitively clear

why such a procedure generally yields monotone component paths: if Xi has a large positive
inner product with the residual, and we add a small amount ε to the ith coefficient, then in
the next step, Xi will still have a large positive inner product with the residual. This inner
product will have been slightly decremented due to the change in ith coefficient, but we
will continue to increment the ith coefficient by ε (decrement the ith inner product) until
another variable attains a comparable inner product with the residual. In other words,
the ith component path computed by forward stagewise will increase monotonically, and
eventually flatten out.

So how does nonmonoticity occur in stagewise paths? Keeping with the above thought
experiment, in order for the ith coefficient path to decrease at some point, the variable Xi

must achieve a negative inner product with the residual, and this must be largest in mag-
nitude compared to the inner products from all other variables. Given that Xi had a large
positive inner product with the residual in previous iterations, this seems highly unlikely,
especially in a high-dimensional setting with many variables in total. But we know from
many examples that the components of the exact lasso solution path can exhibit many non-
monotonicities, even very early on in the regularization path, and even in high-dimensional
settings. To recover the exact path with a stagewise-like algorithm, therefore, some change
needs to be made to counteract the momentum gathered over successive updates. Zhao and
Yu (2007) do just this, as discussed in the introduction, by adding an explicit backward
step to the stagewise routine in which coefficients are driven towards zero as long as this
decreases the loss by a significant amount.
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An arguably simpler way to achieve a roughly similar effect is to shrink all coefficients
towards zero at each step. This is what is done by the shrunken stagewise method, in
Algorithm 3, via the parameter α < 1. In shrunken stagewise for lasso regression, the
importance of each variable wanes over steps of the algorithm. Thus, in the absence of
attention from the stagewise update mechanism, a coefficient path slides towards zero,
instead of leveling off; for a coefficient path to depart from zero, or even remain at a
constant level, it must regain the attention of the update mechanism by repeatedly achieving
the maximal absolute inner product. This actually represents a fairly different philosophy
from the pure stagewise approach (with α = 1) and the two can be crudely contrasted as
follows: pure stagewise keeps coefficients at constant levels, unless there is good reason to
move them away from zero; shrunken stagewise drives coefficients to zero, unless there is
good reason to keep them on their current trajectories.

We give a small example of shrunken stagewise applied to lasso regression, with n = 20
observations and p = 10 variables. The rows of the predictor matrix X ∈ R20×10 were
drawn independently from a Gaussian distribution with mean zero, and a covariance matrix
having unit diagonals and constant off-diagonals ρ = 0.8. The underlying coefficient vector
β∗ ∈ R10 had dense support, with all entries drawn fromN(0, 1), and the observations y were
formed by adding independent N(0, 1) noise to Xβ∗. Figure 9 shows the exact lasso solution
path on the left panel, the stagewise path in the middle panel, and the shrunkage stagewise
path on the right. We can see that, at various points, components of the exact lasso path
become nonmonotone, and as expected, the corresponding the stagewise component paths
ignore this trend and level out. The shrunken stagewise component paths pick up on the
nonmonotonicities and actually mimick the exact ones quite closely. We note that the
stagewise and shrunken stagewise algorithms were not run here for efficiency, but were run
at fine resolution to reveal their limiting behaviors; both used a small step size ε = 0.0001,
and the latter used a shrinkage factor α = ε/10. The two required 100,000 and 500,000
steps, respectively.

To be upfront, we remark that the shrunken stagewise method is not a computationally
efficient approach, and we do not advocate its use in practice. The stagewise algorithm in
the above example could have been run, e.g., with ε = 0.01 and for 100 steps, and this would
have yielded a sequence of estimates with effectively the same pattern. But to capture the
nonmonotonicities present in the exact solution path, larger step sizes do not suffice for
shrunken stagewise, and the algorithm needs to be run with ε = 0.0001 and for 500,000
steps—this is clearly not desirable for such a small example with n = 20 and p = 10,
and it does not bode well for scalability. We will see in what follows that the shrunken
stagewise estimates provide a bridge between pure stagewise estimates and exact solutions
in the general convex regularization problem (4). Hence we view the shrunken stagewise
estimates as interesting and worthwhile because they provides this connection.

The main reason we choose to study the shrinkage strategy in Algorithm 3, as opposed to,
say, backward steps, is that the shrinkage approach applies outside of the lasso regularization
setting; as far as we can tell, there is no natural analog of backwards steps beyond the
sparse setting. In fact, in the general problem setup, the shrinkage factor α in Algorithm 3
somewhat roughly mirrors what is done by Frank-Wolfe (this is really a different strategy,
but still, it is one that computes exact solutions; compare equations (48) and (2) from
Online Appendix A.1). A general interpretation of the shrinkage operation in (48) is that
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Figure 9: Exact, stagewise, and shrunken stagewise paths for a small lasso regression problem
with n = 20 observations, and p = 10 correlated predictors. When components of the
lasso solution path become nonmonotone (e.g., top black path, and bottom red path),
the corresponding stagewise ones are more stable and remain at a constant level, but
shrunken stagewise matches the nonmonotonicities.

it lessens the dependence of the stagewise estimates on the computed history, i.e., decreases
the stability of the computed stagewise component paths, and implicitly allows for more
weight to be placed on the local update directions. Empirical examples with, e.g., group
lasso regression or matrix completion confirm that shrunken stagewise estimates can be
tuned to track the exact solution path even when the pure stagewise path deviates from it.
We do not examine these cases here but instead turn to theoretical development.

5.3 Shrunken Stagewise Suboptimality

As in Section 5.1, we assume that g is a norm, and write g∗ for its dual norm. We also
consider the kth shrunken stagewise estimate x(k) as an approximate solution in the gen-
eral problem (4) at a static value of the regularization parameter, defined recursively as
tk = αtk−1 + ε. A straightforward inductive argument shows that g(x(k)) ≤ tk, i.e., the
estimate x(k) is feasible for the problem (4) at t = tk. Under this setup, the same limiting
suboptimality bound as in Theorem 1 can be established for the shrunken stagewise esti-
mates. For the sake of space, we do not present this result. Instead we show that, under
additional conditions, the shrunken stagewise estimates overcome the stability inherent to
stagewise, and achieve the idealized behavior suggested by Figure 9, i.e., they converge to
exact solutions along the path. See Online Appendix A.6 for the proof.

Theorem 2 Consider the general problem (4). Assume, as in Theorem 1, that the loss
function f is differentiable and convex, the regularizer g is a norm, and ∇f is Lipschitz
with respect to g∗, g, having Lipschitz constant L. Fix a parameter value t, and consider
running the shrunken stagewise algorithm, Algorithm 3, from x(0) = x̂(t0), a solution in (4)
at a parameter value t0 ≤ t. Consider the limiting estimate x̃(t) at the parameter value t,
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as both ε→ 0 and α→ 1. Suppose that

1− α
ε
→ 0 and

1− α
ε2
→∞.

Let k = k(ε, α) denote the number of steps taken by the shrunken stagewise algorithm to
reach the parameter value tk = t; note that k → ∞ as ε → 0, α → 1. Define the effec-
tive Lagrange parameters λi = g∗(∇f(x(i))), i = 1, . . . k, and assume that these parameters
exhibit a weak type of decay:

λi/ti ≥ CL, i = 1, . . . r − 1,

λr/tr ≤
(C + 1)θ2 − 2

2
L,

(49)

for some r < k, with r/k → θ ∈ (0, 1), and some constant C. Then the limiting shrunken
stagewise estimate x̃(t) at the parameter value t, as ε→ 0 and α→ 1, satisfies

f(x̃(t)) = f(x̂(t)),

i.e., x̃(t) is a solution in (4) at the parameter value t.

Remark 1. The result above can be extended to the case when g is a seminorm. We simply
need to redefine g∗ and the updates in order to accommodate the possibly nontrivial null
space Ng of g, as discussed in the third remark following Theorem 1.

Remark 2. The assumption in (49) of Theorem 2 stands out as technical assumption that
is hard to interpret. This condition is used in the proof to control a term in the duality gap
expansion that involves differences of g∗(∇f(x(i))) across successive iterations i, i+ 1. The
theorem refers to such a quantity, λi = g∗(∇f(x(i))), as the “effective Lagrange parameter”
at x(i). To explain this, consider the stationarity condition for the problem (4),

∇f(x) + λv = 0,

where v ∈ ∂g(x) = argmaxg∗(z)≤1 x
T z. This implies that ∇f(x) = −λv, or g∗(∇f(x)) =

λg∗(v) = λ, which gives an expression for the Lagrange parameter associated with a solution
of the constrained problem (4). As x(i) is not a solution, but an approximate one, we call
λi = g∗(∇f(x(i))) its effective Lagrange parameter.

The condition (49) says that until some number of steps r along the path, the ratio of
effective Lagrange parameters λi to bound parameters ti must not be too small, and then
at step r it must not be too large. This is a formulation of a type of weak decay of λi/ti,
i = 1, 2, 3, . . .. It is not intuitively clear to us when (i.e., in what kinds of problems) we
should expect this condition to be satisfied. We can, however, inspect it empirically. For
the example lasso problem in Figure 9 (where, recall, the shrunken stagewise path appears
to approach the exact solution path), we plot the ratio λi/ti, i = 1, 2, 3, . . . in Figure 10.
This ratio displays a sharp decay across steps of the algorithm, and so, at least empirically,
the assumption (49) seems reasonable. We suspect that in general, the two hard bounds
in (49) can be replaced by a more natural decay condition, and furthermore, there are
characterizable problem classes with sharp decays of the Lagrange to bound parameter
ratios. These are topics for future work.
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Figure 10: A plot of λk/tk = ‖XT (y −Xβ(k))‖∞/tk across steps k of the shrunken stagewise al-
gorithm, for the lasso data set of Figure 9. This decay roughly verifies the condition
(49) of Theorem 2, needed to ensure the convergence of shrunken stagewise estimates
to exact solutions.

6. Discussion

We presented a framework for computing incremental stagewise paths in a general regular-
ized estimation setting, defined by minimizing a differentiable convex loss function subject
to a convex constraint. The stagewise estimates are explicitly and efficiently computable for
a wide variety of problems, and they provide an approximate solution path for the under-
lying convex problem of interest, but exhibit generally more stability as the regularization
parameter changes. In some situations this approximation (i.e., the discrepancy between
stagewise estimates and solutions) appears empirically to be quite tight, and in others it
does not. All in all, however, we have found that the stagewise estimates essentially al-
ways offer competitive statistical performance (as measured, e.g., by test error) with that
of exact solutions. This suggests that they should be a point of study, even apart from
their ability to approximate solution paths of convex problems, and a rigorous (theoretical)
characterization of the statistical properties of stagewise estimates is an important direction
to pursue in the future. There are many other potential topics for future work, as alluded
to throughout the paper. It is our hope that other researchers will take an interest too, and
that this paper marks the beginning of a deeper understanding of stagewise capabilities.
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Abstract

When learning a directed acyclic graph (DAG) model via observational data, one gener-
ally cannot identify the underlying DAG, but can potentially obtain a Markov equivalence
class. The size (the number of DAGs) of a Markov equivalence class is crucial to infer
causal effects or to learn the exact causal DAG via further interventions. Given a set of
Markov equivalence classes, the distribution of their sizes is a key consideration in devel-
oping learning methods. However, counting the size of an equivalence class with many
vertices is usually computationally infeasible, and the existing literature reports the size
distributions only for equivalence classes with ten or fewer vertices.

In this paper, we develop a method to compute the size of a Markov equivalence class.
We first show that there are five types of Markov equivalence classes whose sizes can be
formulated as five functions of the number of vertices respectively. Then we introduce a new
concept of a rooted sub-class. The graph representations of rooted subclasses of a Markov
equivalence class are used to partition this class recursively until the sizes of all rooted sub-
classes can be computed via the five functions. The proposed size counting is efficient for
Markov equivalence classes of sparse DAGs with hundreds of vertices. Finally, we explore
the size and edge distributions of Markov equivalence classes and find experimentally that,
in general, (1) most Markov equivalence classes are half completed and their average sizes
are small, and (2) the sizes of sparse classes grow approximately exponentially with the
numbers of vertices.

Keywords: directed acyclic graphs, Markov equivalence class, size distribution, causality

1. Introduction

Graphical models based on directed acyclic graphs (DAGs) are commonly used to derive
the dependent or causal relationships in many fields such as sociology, epidemiology, and
biology (Finegold and Drton, 2011; Friedman, 2004; Heckerman et al., 1999; Jansen et al.,
2003; Maathuis et al., 2009). A DAG can be used to represent causal relationships of
variables, where the directed edges connect the causes and their direct effects. In general,
observational data is not sufficient to distinguish the underlying DAG from its statistically
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equivalent DAGs; however, it is possible to learn the Markov equivalence class that contains
these equivalent DAGs (Pearl, 2000; Spirtes et al., 2001). This has led to many works that
try to learn a Markov equivalence class or to learn causality based on a given Markov
equivalence class from observational or experimental data (Castelo and Perlman, 2004;
Chickering, 2002; He and Geng, 2008; Maathuis et al., 2009; Perlman, 2001).

The size of a Markov equivalence class is the number of DAGs in the class. This size
has been used in papers to design causal learning approaches or to evaluate the “complex-
ity” of a Markov equivalence class in causal learning. For example, He and Geng (2008)
proposes several criteria, all of which are defined on the sizes of Markov equivalence classes,
to minimize the number of interventions; this minimization makes helpful but expensive
interventions more efficient. Based on observational data, Maathuis et al. (2009) introduces
a method to estimate the average causal effects of the covariates on the response by consid-
ering the DAGs in the equivalence class; the size of the class determines the complexity of
the estimation. Chickering (2002) shows that causal structure search in the space of Markov
equivalence class models could be substantially more efficient than that in the space of DAG
models if most sizes of Markov equivalence classes are large.

The size of a small Markov equivalence class is usually counted via traversal methods
that list all DAGs in the Markov equivalence class (Gillispie and Perlman, 2002). However,
if the class is large, it may be infeasible to list all DAGs. For example, as we will show later
in our experiments, the size of a Markov equivalence class with 50 vertices and 250 edges
could be greater than 1024. To our knowledge, there are no efficient methods to compute
the size of a large Markov equivalence class; approximate proxies, such as the number of
vertices and the number of spanning trees related to the class, have been used instead of the
exact size in the literature (Chickering, 2002; He and Geng, 2008; Meganck et al., 2006).

Computing the size of a Markov equivalence class is the focus of this article. We first
discuss Markov equivalence classes whose sizes can be calculated just through the numbers
of vertices and edges. Five explicit formulas are given to obtain the sizes for five types of
Markov equivalence classes respectively. Then, we introduce rooted sub-classes of a Markov
equivalence class and discuss the graphical representations of these sub-classes. Finally,
for a general Markov equivalence class, we introduce a counting method by recursively
partitioning the Markov equivalence class into smaller rooted sub-classes until all rooted
sub-classes can be counted with the five explicit formulas.

Next, we also report new results about the size and edge distributions of Markov equiv-
alence classes for sparse graphs with hundreds of vertices. By using the proposed size
counting method in this paper and an MCMC sampling method recently developed by He
et al. (2013a,b), we experimentally explore the size distributions of Markov equivalence
classes with large numbers of vertices and different levels of edge sparsity. In the literature,
the size distributions are studied in detail just for Markov equivalence classes with up to 10
vertices by traversal methods (Gillispie and Perlman, 2002).

The rest of the paper is arranged as follows. In Section 2, we provide a brief review of
the concept of a Markov equivalence class. In Section 3, we propose efficient algorithms to
calculate the size of a Markov equivalence class. In Section 4, we study the sizes of Markov
equivalence classes experimentally. We conclude in Section 5 and finally present all proofs
in the Appendix.
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2. Markov Equivalence Class

A graph G consists of a vertex set V and an edge set E. A graph is directed (undirected) if
all of its edges are directed (undirected). A sequence of edges that connect distinct vertices
in V , say {v1, · · · , vk}, is called a path from v1 to vk if either vi → vi+1 or vi − vi+1 is in E
for i = 1, · · · , k − 1. A path is partially directed if at least one edge in the path is directed.
A path is directed (undirected) if all edges are directed (undirected). A cycle is a path from
a vertex to itself.

A directed acyclic graph (DAG) D is a directed graph without any directed cycle. Let
V be the vertex set of D and τ be a subset of V . The induced subgraph Dτ of D over τ ,
is defined to be the graph whose vertex set is τ and whose edge set contains all of those
edges of D with two end points in τ . A v-structure is a three-vertex induced subgraph of
D like v1 → v2 ← v3. A graph is called a chain graph if it contains no partially directed
cycles. The isolated undirected subgraphs of the chain graph after removing all directed
edges are the chain components of the chain graph. A chord of a cycle is an edge that joins
two nonadjacent vertices in the cycle. An undirected graph is chordal if every cycle with
four or more vertices has a chord.

A graphical model is a probabilistic model for which a DAG denotes the conditional
independencies between random variables. A Markov equivalence class is a set of DAGs
that encode the same set of conditional independencies. Let the skeleton of an arbitrary
graph G be the undirected graph with the same vertices and edges as G, regardless of their
directions. Verma and Pearl (1990) proves that two DAGs are Markov equivalent if and
only if they have the same skeleton and the same v-structures. Moreover, Andersson et al.
(1997) shows that a Markov equivalence class can be represented uniquely by an essential
graph.

Definition 1 (Essential graph) The essential graph of a DAG D, denoted as C, is a
graph that has the same skeleton as D, and an edge is directed in C if and only if it has the
same orientation in every equivalent DAG of D.

It can be seen that the essential graph C of a DAG D has the same skeleton as D and
keeps the v-structures of D. Andersson et al. (1997) also introduces some properties of an
essential graph.

Lemma 2 (Andersson et al. (1997)) Let C be an essential graph of D. Then C is a
chain graph, and each chain component Cτ of C is an undirected and connected chordal
graph, where τ is the vertex set of the chain component Cτ .

Let SizeMEC(C) denote the size of the Markov equivalence class represented by C (size
of C for short). Clearly, SizeMEC(C) = 1 if C is a DAG; otherwise C may contain more than
one chain component, denoted by Cτ1 , · · · , Cτk . From Lemma 2, each chain component is an
undirected and connected chordal graph (UCCG for short); and any UCCG is an essential
graph that represents a Markov equivalence class (Andersson et al., 1997). We can calculate
the size of C by counting the DAGs in Markov equivalence classes represented by its chain
components using the following equation (Gillispie and Perlman, 2002; He and Geng, 2008):

SizeMEC(C) =
k∏
i=1

SizeMEC(Cτi). (1)
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To count the size of Markov equivalence class represented by a UCCG, we can generate
all equivalent DAGs in the class. However, when the number of vertices in the UCCG is
large, the number of DAGs in the corresponding Markov equivalence class may be huge,
and the traversal method proves to be infeasible to count the size. This paper tries to solve
this counting problem for Markov equivalence classes of DAGs with hundred of vertices.

3. The Size of Markov Equivalence Class

In order to obtain the size of a Markov equivalence class, it is sufficient to compute the
size of Markov equivalence classes represented by undirected and connected chordal graph
(UCCGs) according to Lemma 2 and Equation (1). In Section 3.1, we discuss Markov equiv-
alence classes represented by UCCGs whose sizes are functions of the number of vertices.
Then in Section 3.2.1, we provide a method to partition a Markov equivalence class into
smaller subclasses. Using these methods, finally in Section 3.2.2, we propose a recursive
approach to calculate the size of a general Markov equivalence class.

3.1 Size of Markov Equivalence Class Determined by the Number of Vertices

Let Up,n be an undirected and connected chordal graph (UCCG) with p vertices and n
edges. Clearly, the inequality p− 1 ≤ n ≤ p(p− 1)/2 holds for any UCCG Up,n. When Up,n
is a tree, n = p− 1 and when Up,n is a completed graph, n = p(p− 1)/2. Given p and n, in
some special cases, the size of a UCCG Up,n is completely determined by p. For example,
it is well known that a Markov equivalence class represented by a completed UCCG with p
vertices contains p! DAGs. Besides the Markov equivalence classes represented by completed
UCCGs, there are five types of UCCGs whose sizes are also functions of p. We present them
as follows.

Theorem 3 Let Up,n be a UCCG with p vertices and n edges. In the following five cases,
the size of the Markov equivalence class represented by Up,n is determined by p.

1. If n = p− 1, we have SizeMEC(Up,n) = p.

2. If n = p, we have SizeMEC(Up,n) = 2p.

3. If n = p(p− 1)/2− 2, we have SizeMEC(Up,n) = (p2 − p− 4)(p− 3)!.

4. If n = p(p− 1)/2− 1, we have SizeMEC(Up,n) = 2(p− 1)!− (p− 2)!.

5. If n = p(p− 1)/2, we have SizeMEC(Up,n) = p!.

For the UCCGs other than the above five cases, it seems that the sizes of the correspond-
ing Markov equivalence classes cannot be completely determined by the numbers of vertices
and edges; the sizes of these Markov equivalence classes may depend on the exact essential
graphs. Below, we display several classes of this kind for n = p + 1 or n = p(p − 1)/2 − 3
in Example 1.

Example 1. Figure 1 displays four UCCGs. Both U5,6 and U ′5,6 have 6 edges, and
both U5,7 and U ′5,7 have 7 edges. We have that SizeMEC(U5,6) = 13, SizeMEC(U ′5,6) = 12,
SizeMEC(U5,7) = 14 and SizeMEC(U ′5,7) = 30. Clearly, in these cases, the sizes of Markov
equivalence classes are not completely determined by the numbers of vertices and edges.
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Figure 1: Examples that UCCGs with the same number of edges have different sizes.

3.2 Size of a General Markov Equivalence Class

In this section, we introduce a general method to count the size of a Markov equivalence
class. We have shown in Theorem 3 that there are five types of Markov equivalence classes
whose sizes can be calculated with five formulas respectively. For one any other Markov
equivalence class, we will show in this section that it can be partitioned recursively into
smaller subclasses until the sizes of all subclasses can be calculated with the five formulas
above. We first introduce the partition method and the graph representation of each sub-
class in Section 3.2.1. Then provide a size counting algorithm for one arbitrary Markov
equivalence class in Section 3.2.2. The proofs of all results in this section can be found in
the Appendix.

3.2.1 Methods to Partition a Markov Equivalence Class

Let U be a UCCG, τ be the vertex set of U and let D be a DAG in the equivalence class
represented by U . A vertex v is a root of D if all directed edges adjacent to v are out of v,
and D is v-rooted if v is a root of D. To count DAGs in the class represented by U , below,
we show that all DAGs can be divided into different groups according to the roots of the
DAGs and then we calculate the numbers of the DAGs in these groups separately. Each
group is called as a rooted sub-class defined as follows.

Definition 4 (a rooted sub-class) Let U be a UCCG over τ and v ∈ τ . We define the
v-rooted sub-class of U as the set of all v-rooted DAGs in the Markov equivalence class
represented by U .

The following theorem provides a partition of a Markov equivalence class represented
by a UCCG and the proof can be found in Appendix.

Theorem 5 (a rooted partition) Let U be a UCCG over τ = {v1, · · · , vp}. For any
i ∈ {1, · · · , p}, the vi-rooted sub-class is not empty and this set of p sub-classes forms a
disjoint partition of the set of all DAGs represented by U .

Below we describe an efficient graph representation of v-rooted sub-class. One reason
to this graph representation is that for any v ∈ τ , the number of DAGs in the v-rooted
sub-class might be extremely huge and it is computationally infeasible to list all v-rooted
DAGs in this sub-class. Using all DAGs in which v is a root, we construct a rooted essential
graph in Definition 6.

Definition 6 (rooted essential graph) Let U be a UCCG. The v-rooted essential graph
of U , denoted by U (v), is a graph that has the same skeleton as U , and an edge is directed
in U (v) if and only if it has the same orientation in every v-rooted DAG of U .
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From Definition 6, a rooted essential graph has more directed edges than the essential
graph U since the root introduces some directed edges. Algorithm 3 in Appendix shows
how to generate the v-rooted essential graph of a UCCG U . We display the properties of a
rooted essential graph in Theorem 7 and the proof can be found in Appendix.

Theorem 7 Let U be a UCCG and U (v) be a v-rooted essential graph of U defined in
Definition 6. The following three properties hold for U (v):

1. U (v) is a chain graph,

2. every chain component U (v)
τ ′ of U (v) is chordal, and

3. the configuration v1 → v2 − v3 does not occur as an induced subgraph of U (v).

Moreover, there is a one-to-one correspondence between v-rooted sub-classes and v-rooted
essential graphs, so U (v) can be used to represent uniquely the v-rooted sub-class of U .

From Theorem 7, we see that the number of DAGs in a v-rooted essential graph U (v)

can be calculated by Equation (1) which holds for any essential graph. To use Equation
(1), we have to generate all chain components of U (v). Below we introduce an algorithm
called ChainCom(U , v) in Algorithm 1 to generate U (v) and all of its chain components.

Algorithm 1: ChainCom(U , v)

Input: U , a UCCG; v, a vertex of U .
Output: v−rooted essential graph of U and all of its chain components.

1 Set A = {v}, B = τ \ v, G = U and O = ∅
2 while B is not empty do
3 Set T = {w : w in B and adjacent to A} ;
4 Orient all edges between A and T as c→ t in G, where c ∈ A, t ∈ T ;
5 repeat
6 for each edge y − z in the vertex-induced subgraph GT do
7 if x→ y − z in G and x and z are not adjacent in G then
8 Orient y − z to y → z in G

9 until no more undirected edges in the vertex-induced subgraph GT can be
oriented ;

10 Set A = T and B = B \ T ;
11 Append all isolated undirected graphs in GT to O;

12 return G and O

We show that Algorithm 1 can generate rooted essential graph and the chain components
of this essential graph correctly in the following theorem.

Theorem 8 Let U be a UCCG and let v be a vertex in U . Let O and G be the outputs of
Algorithm 1 given U and v. Then G is the v-rooted essential graph G = U (v) of U and O is
the set of all chain components of U (v).
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The following example displays rooted essential graphs of a UCCG and illustrates how
to implement Algorithm 1 to construct a rooted essential graph and how to generate all
DAGS in the corresponding rooted sub-classes.

Example 2. Figure 2 displays an undirected chordal graph U and its rooted essential
graphs. There are five rooted essential graphs {U (vi)}i=1,···,5. We need to construct only
U (v1), U (v2) and U (v3) since U (v4) and U (v5) are symmetrical to U (v1) and U (v3) respectively.
Clearly, they satisfy the conditions shown in Theorem 7. Given U in Figure 2, U (v1) is
constructed according to Algorithm 1 as follows: (1) set T = {v2, v3} in which vertices are
adjacent to v1, orient v1 − v2, v1 − v3 to v1 → v2, v1 → v3 respectively; (2) set T = {v4, v5}
in which vertices are adjacent to {v2, v3}, orient v2 − v4, v2 − v5, v3 − v5 to v2 → v4, v2 →
v5, v3 → v5 respectively; (3) orient v5 − v4 to v5 → v4 because v3 → v5 − v4 occurs but
v3 and v4 are not adjacent. By orientating the undirected edges of the chain components
of a rooted essential graph with the constraint that no new v-structures and directed cycle
occur, we can generate all DAGS in the corresponding sub-class (He and Geng, 2008; Meek,
1995; Verma, 1992). For example, consider U (v1) in Figure 2, we get two v1-rooted DAGs
by orienting v2 − v3 to v2 → v3 or v2 ← v3.qq q
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Figure 2: An undirected chordal graph U and its rooted essential graphs: U (v1), U (v2), and
U (v3).

Now we can partition a Markov equivalence class represented by a UCCG into disjoint
sub-classes, each of which can be represented by a rooted essential graph. In the next
section, we will show how to recursively implement these partitions until the sizes of the
subclasses or their essential graphs can be calculated with the five formulas in Theorem 3.

3.2.2 Calculating the Size of a Markov Equivalence Class

Let U be an undirected and connected chordal graph (UCCG) over τ . For any v ∈ τ ,
SizeMEC(U (v)) denotes the number of DAGs in v-rooted sub-class of U . According to
Theorem 5, the size of U can be calculated via the following corollary.

Corollary 9 Let U be a UCCG over τ = {vi}i=1,···,p. We have SizeMEC(U (vi)) > 1 for
i = 1, · · · , p and

SizeMEC(U) =

p∑
i=1

SizeMEC(U (vi)). (2)

This corollary shows that the size of Markov equivalence class represented by U can be
calculated via the sizes of smaller sub-classes represented by {U (vi)}i=1,···,p. The following
example illustrates how to calculate the size of U in Figure 2.
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Example 3. Consider again the undirected chordal graph U in Figure 2, SizeMEC(U)
can be calculated as

∑5
i=1 SizeMEC(U (vi)) according to Corollary 9. The sizes of the five

subclasses represented by U (v1), · · · ,U (v5) are 2, 4, 3, 2, 3 respectively. Therefore, we can get
that SizeMEC(U) = 2 + 4 + 3 + 2 + 3 = 14.

According to Theorem 7, for any i ∈ {1, · · · , p}, the vi-rooted essential graph U (vi)

is a chain graph. If U (vi) is not directed, each of their isolated undirected subgraphs is a
UCCG. Recall that we can calculate the size of a Markov equivalence class through its chain
components using Equation (1), similarly, we can calculate the size of vi-rooted sub-class
of U with its isolated UCCGs as follows.

Corollary 10 Let U (vi) be a vi-rooted equivalent sub-class of U defined in Definition 6 and

{U (vi)
τj }j=1,···,l be the isolated undirected chordal sub-graphs of U (vi) over the vertex set τj for

j = 1, · · · , l. We have

SizeMEC(U (vi)) =
l∏

j=1

SizeMEC(U (vi)
τj ). (3)

Since {U (vi)
τj }j=1,···,l are UCCGs according to Theorem 7, SizeMEC(U (vi)

τj ) can be calcu-
lated again via Equation (2) in Corollary 9 recursively. In this iterative approach, Equation
(2) and Equation (3) are used alternately to calculate the sizes of equivalence classes rep-
resented by an undirected essential graph and a rooted essential graph.

Now in Algorithm 2 we present an enumeration to give SizeMEC (U). Corollary 11
shows that the enumeration returns the size correctly. For any essential graph C, we can
calculate the size of Markov equivalence class represented by C according to Equation (1)
and Algorithm 2.

Algorithm 2: SizeMEC (U)

Input: U : a UCCG.
Output: the size of Markov equivalence classes represented by U

1 Let p and n be the numbers of vertices and edges in U ;
2 switch n do
3 case p− 1 return p;
4 case p return 2p;
5 case p(p− 1)/2− 2 return (p2 − p− 4)(p− 3)!;
6 case p(p− 1)/2− 1 return 2(p− 1)!− (p− 2)!;
7 case p(p− 1)/2 return p!;

8 for j ← 1 to p do
9 {U1, · · · ,Ulj} ← ChainCom(U , vj);

10 sj ←
∏lj
i=1 SizeMEC (Ui)

11 return
∑p

i=1 si

Corollary 11 Let U be a UCCG and SizeMEC(·) be the function defined in Algorithm 2.
The function SizeMEC(U) returns the size of Markov equivalence class represented by U .
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The complexity of calculating SizeMEC(U) via Algorithm 2 depends on the number of
times this recursive function is called. Our experiments in the next section show that when
the number of vertices in U is small, or when the number is large but U is sparse, our
proposed approach is efficient. However, when U is large and dense, the proposed approach
may be computational infeasible since calculating SizeMEC(U) via Algorithm 2 may require
a very deep recursion. In the worst case, the time complexity of Algorithm 2 might be O(p!).
For example, it might be extremely time-consuming to count SizeMEC(U) via Algorithm 2
when U is a UCCG with large p vertices and p(p− 1)/2− 3 edges. Fortunately, according
to the experimental results in He et al. (2013a), the undirected and connected chordal sub-
graphs in sparse essential graphs with hundreds of vertices are mostly small. This implies
that our approach may be valuable for size counting in most situations of causal learning
based on sparse graphical models.

In the next section, we demonstrate our approach experimentally and explore the size
and edge distributions of Markov equivalence classes in sparse graphical models.

4. Experimental Results

We conduct experiments to evaluate the proposed size counting algorithms in Section 4.1,
and then to study sizes of Markov equivalence classes in Section 4.2. The main contributions
of these experiments are as follows.

1. Our proposed approach can calculate the size of classes represented by a UCCG with
a few vertices (p < 15) in seconds on a laptop of 2.7GHz and 8G RAM. When the
number of vertices is large, our approach is also efficient for the graphs with a sparsity
constraint.

2. For the essential graphs with a sparsity constraint, the sizes of the corresponding
Markov equivalence classes are nearly exponential in p. This explains the result in
Chickering (2002) that causal structure search in the space of Markov equivalence
class models could be substantially more efficient than the search in the space of DAG
models for learning sparse graphical models.

3. In the set of all Markov equivalence classes of DAGs with p vertices, most graphs
are half-completed (nearly p2/4 edges exist) and the Markov equivalent classes repre-
sented by these graphs have small average sizes. This is the reason why all Markov
equivalence classes have small average sizes (approximately 3.7 reported by Gillispie
and Perlman (2002)) even though sparse Markov equivalence classes are huge.

4.1 Calculating the Size of Classes Represented by UCCGs

In this section, we experimentally study the time complexity of our proposed counting
algorithms for the UCCGs with a small p or with a large p but also with a sparsity
constraint. All experiments are run on a laptop with Intel 2.7GHz and 8G RAM. Note
that the chain components are mostly small from sparse Markov equivalence classes with
hundreds of vertices (He et al., 2013a). The experimental results show that the proposed
method is efficient to count the sizes of sparse Markov equivalence classes with hundreds of
vertices.
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Let Un∗p be the set of Markov equivalence classes with p vertices and n edges. The
graphs in Un∗p are sparse if n is a small multiple of p. We generate random choral graphs
in Un∗p as follows. First, we construct a tree by connecting two vertices (one is sampled
from the connected vertices and the other from the isolated vertices) sequentially until all
p vertices are connected. Then we randomly insert an edge such that the resulting graph is
chordal, repeatedly until the number of edges reaches n. Repeating this procedure N times,
we obtain N samples from Ui∗p for each i ∈ [p− 1, n].

We first consider the undirected chordal graphs with 5 to 13 vertices. Our experiments
on Un∗p for any n < p(p−1)/2−3 show that it is most time-consuming to calculate the size of
UCCGs when n = p(p−1)/2−3. Based on the samples from Un∗p where n = p(p−1)/2−3,
we report in Table 1 the the maximum, the minimum and the average of the sizes of
Markov equivalence classes and the time to count them. We see that the size is increasing
exponentially in p and the proposed size-counting algorithm is computationally efficient for
undirected chordal graphs with a few vertices.

p 5 6 7 8 9 10 11 12 13

Size
Min 14 60 312 1920 1.36e4 1.11e5 1.00e6 1.02e7 1.12e8

Mean 22 104 658 4508 3.27e4 2.90e5 2.96e6 2.92e7 3.57e8
Max 30 144 828 5616 4.39e4 3.89e5 3.84e6 4.19e7 4.99e8

Time
(sec.)

Min 0 0 1.0e-3 5.0e-3 2.8e-2 1.7e-1 1.3 10.6 95
Mean 1.3e-4 4.3e-4 1.5e-3 6.8e-3 3.6e-2 2.2e-1 1.6 13.6 140
Max 1.0e-3 1.0e-3 4.0e-3 1.3e-2 9.6e-2 6.4e-1 5.1 53.5 476

Table 1: The size of Markov equivalence class and the time to calculate it via Algorithm 2
based on 105 samples from Un∗p , where p ranges from 5 to 13 and n = p(p−1)/2−3
(the worst case for classes with p vertices).

We also study the sets Un∗p that contain UCCGs with tens of vertices. The number of
vertices p is set to 15, 20, · · · , 100 and the edge constraint m is set to rp where r is the ratio
of m to p. For each p, we consider four ratios: 2, 3, 4 and 5. The undirected chordal graphs
in Urp∗p are sparse since r ≤ 5. Based on 105 samples, we report the average size and time in
Table 2. We can see that when r ≤ 4, the algorithm just takes a few seconds even when the
sizes are very huge; when the chordal graphs become denser (r > 4), the algorithm takes
more time.

Here we have to point out that the choral graphs generated in this experiment might
not be uniformly distributed in the space of chordal graphs and that the averages in Table
1 and Table 2 are not accurate estimations of expectations of sizes and time.

4.2 Size and Edge Distributions of Markov Equivalence Classes

In this section, we focus on the size and edge distributions of Markov equivalence classes of
directed acyclic graphs. First, we generate a Markov chain on Markov equivalence classes
of interest and simultaneously obtain the stationary distribution of the chain according to
the methods in He et al. (2013a,b). Then, based on the stationary distribution of the chain,
we reweigh the samples from the chain and further use them to calculate the distribution
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r p 15 20 30 40 50 60 70 80 90 100
2

Size

7363 6.98e4 4.74e6 6.94e8 1.9e10 1.2e12 1.2e14 1.5e15 1.8e17 2.6e19
3 3.0e5 3.3e6 1.1e10 7.1e12 4.4e15 8.6e18 1.3e21 6.1e23 1.4e27 9.1e27
4 2.7e6 5.4e8 6.7e12 2.8e16 3.5e19 5.9e22 5.8e25 1.3e29 1.3e38 1.5e34
5 4.9e7 6.7e9 8.3e14 5.4e18 1.1e24 2.8e26 2.3e30 4.8e33 5.6e40 3.8e40
2

Time
(sec.)

3.2e-3 5.7e-3 1.2e-2 2.3e-2 0.028 0.037 0.059 0.074 0.090 0.15
3 1.7e-2 3.8e-2 8.8e-2 0.15 0.17 0.27 0.42 0.53 0.75 0.86
4 0.19 0.43 0.72 1.37 1.51 2.16 3.35 3.64 6.14 9.03
5 2.89 7.07 7.91 17.49 50.43 82.99 90.37 95.54 127.25 213

Table 2: The average size of Markov equivalence classes and average counting time via
Algorithm 2 are reported based on 105 samples from Upr∗p , where p ranges from
15 to 100.

of Markov equivalence classes of interest. In Section 4.2.1, we study the size and edge
distributions of Markov equivalence classes with tens of vertices, and in Section 4.2.2, we
provide the size distributions of Markov equivalence classes with hundred of vertices under
sparsity constraints.

4.2.1 Size and Edge Distribution of Markov Equivalence Classes

In this section, we discuss the distributions of Markov equivalence classes on their sizes
and number of edges. We use “size distribution” for the distribution on sizes of Markov
equivalence classes, and “edge distribution” for the distribution on the number of edges.
First, we consider the number of edges of Markov equivalence classes with p vertices for
10 ≤ p < 20. Then, we focus on the size and edge distribution of Markov equivalence
classes with 20 vertices. Finally, we explore the size distributions of Markov equivalence
classes with different numbers of edges to show how size distributions change with increasing
numbers of edges.

The numbers of edges in the Markov equivalence classes with p vertices range from 0 to
p(p− 1)/2. Based on a Markov chain with length of 106 for each p, we display in Table 3 the
modes and 99% intervals of edge distributions of Markov equivalence classes with p vertices
for 10 ≤ p < 20. The mode is the number that appears with the maximum probability,
99% interval is the shortest interval that covers more than 99% of Markov equivalence
classes. The ratios that measure the fraction of 99% interval to p(p− 1)/2 + 1 are also
given. For example, consider the edge distribution of Markov equivalence classes with 10
vertices; we see that 99% of Markov equivalence classes have between 17 and 32 edges. The
ratio is 16/46 ≈ 0.348, where the number 16 is the length of the 99% interval [17, 32] and
46 is the length of the edge distribution’s support [0, 45]. From the 99% intervals and the
corresponding ratios, we see that the numbers of edges of Markov equivalence classes are
sharply distributed around p2/4, and these distributions become sharper with increasing of
p. This result is reasonable since the number of skeletons of essential graphs with k edges
is
(p(p−1)/2

k

)
, and the k-combination reaches maximum around k = p2/4.

In Figure 3, we display the proportions of Markov equivalence classes with 20 vertices
according to their sizes and the number of edges. Two scaled marginal distributions in the
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p mode 99% interval ratio p mode 99% interval ratio

10 25 [17,32] 0.348 15 56 [44,68] 0.236
11 30 [22,39] 0.321 16 64 [51,77] 0.223
12 36 [26,45] 0.299 17 73 [59,87] 0.216
13 42 [32,53] 0.278 18 81 [66,96] 0.201
14 49 [38,60] 0.25 19 91 [75,106] 0.180

Table 3: The edge distributions of Markov equivalence classes with p vertices for 10 ≤ p <
20. The mode is the number that appears with the maximum probability, the 99%
interval covers more than 99% of Markov equivalence classes, ratio is the fraction
of the length of the 99% interval to the length of the support of edge distribution.

planes are also shown. The black dashed line is the size distribution and the black solid
line is the edge distribution of Markov equivalence classes. According to the marginal size
distribution, we see that most of the Markov equivalence classes with 20 vertices have small
sizes. For example, 26.89% of Markov equivalence classes are of size one; the proportion
of Markov equivalence classes with size ≤ 10 is greater than 95%. We also see that the
marginal edge distribution of Markov equivalences is concentrated around 100(= 202/4).
The proportion of Markov equivalence classes with 20 vertices and 100 edges is nearly 6%.

To study how the size distribution changes with the number of edges, we consider Markov
equivalence classes with 100 vertices and n edges for different n.

Figure 4 displays the size distribution of Markov equivalence classes with 100 vertices
and n edges for n = 10, 50, 100, 200, 400, 600, 1000, 1500, 2000 and 2500, respectively. We
see that the sizes of Markov equivalence classes are very small when the number of edges
is close to p2/4 = 2500. For example, when n ∈ (1000, 2500), the median of the sizes is no
more than 4. These results shed light on why the Markov equivalence classes have a small
average size (approximately 3.7 reported by Gillispie and Perlman (2002)).

4.2.2 Size Distributions of Markov Equivalence Classes with Sparsity
Constraints

We study Markov equivalence classes with p vertices and n vertices. The number of vertices
p is set to 100, 200, 500 or 1000 and the maximum number of edges n is set to rp where r
is the ratio of n to p. For each p, we consider four ratios: 1.2, 1.5, 3 and 5. The essential
graphs with p vertices and rp edges are sparse since r ≤ 5. In each simulation, given p and
r, a Markov chain with length of 106 Markov equivalence classes is generated.

There are sixteen distributions, each of which is calculated with 106 essential graphs. We
plot the four distributions for r = 1.2 in the main window, and the other 12 distributions for
r = 1.5, 3, 5 in three sub-windows, respectively. In each distribution, the 95% quantiles and
99% quantiles are marked with diamonds and circles, respectively. We see that the sizes of
equivalence classes are extremely large. The medians of size distributions are connected by
a dashed line in Figure 5. It seems that there is a linear relationship between the logarithm
of size and the number of vertices p. In other words, the size grows exponentially with p.
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Figure 3: The surface displays the distribution of the Markov equivalence classes with 20
vertices. Two rescaled marginal distributions are shown in the planes. The black
dashed line is the size distribution and the black solid line is the edge distribution
of Markov equivalence classes.

These results suggest that, to learn directed graphical models, a searching among Markov
equivalence classes might be more efficient than that among DAGs since the number of
Markov equivalence classes is much less than the number of DAGs when the graphs of
interest are sparse.

5. Conclusions and Discussions

In this paper, we propose a method to calculate the sizes of Markov equivalence classes. A
rooted sub-class of a Markov equivalence class is introduced and the graph representation
of this sub-class, called rooted essential graph, is proposed. We can partition a Markov
equivalence class into smaller rooted sub-classes recursively until the sizes of all sub-classes
can be obtained via five closed-form formulas. Then we explore the size and edge distribu-
tions of Markov equivalence classes. We study experimentally how size distribution changes
with the number of edges and report the size distributions of Markov equivalence classes
with hundreds of vertices under sparsity constraints. We find that the essential graphs
with around p2/4 edges dominate in the set of all essential graphs with p vertices and the
corresponding Markov equivalence classes have small sizes. This results in a small aver-
age size of all Markov equivalence classes with p vertices. For the sparse essential graphs
with p vertices, we find that the sizes of the corresponding Markov equivalence classes are
super-exponential in p.
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Figure 4: The size distributions of Markov equivalence classes with p vertices and n edges,
where n = 10, 50, 100, 200, 400, 600, 1000, 1500, 2000 and 2500, respectively.
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Figure 5: Size distributions of Markov equivalence classes with p vertices and at most rp
edges. The lines in the boxes and the two circles above the boxes indicate the
medians, the 95th, and the 99th percentiles respectively.

To calculate the sizes of Markov equivalence classes, we provide five closed-form formulas
for UCCGs with p vertices and n = p− 1, p, p(p− 1)/2− 2, p(p− 1)/2− 1, and p(p− 1)/2
edges respectively. As shown in Example 1, for other cases, say n = p(p − 1)/2 − 3, the
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size of a Markov equivalence class is no longer determined by the number of vertices p;
it depends on the structure of the corresponding UCCG and our proposed method might
be inefficient when p is large. For these cases, it is of interest to develop more efficient
algorithm, or formulas, to calculate the size of a general Markov equivalence class in the
future work.

Moreover, we use python to implement algorithms and experiments in this paper and
the python package can be found at pypi.python.org/pypi/MarkovEquClasses.
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Appendix A. Proofs of Results

In this section, we provide the proofs of the main results of our paper. We place the proof
of Theorem 3 in the end of Appendix because this proof will use the results in Algorithm 1
and Corollary 9.

Proof of Theorem 5:

We first show that τi-rooted sub-class is not empty. For any vertex τi ∈ τ , we just
need to construct a DAG D in which no v-structures occurs and all edges adjacent to v
are oriented out of v. The maximum cardinality search algorithm introduced by Tarjan
and Yannakakis (1984) can be used to construct D. Let p be the number of vertices in U ,
the algorithm labels the vertices from p to 1 in decreasing order. We first label τi with
p. As the next vertex to label, select an unlabeled vertex adjacent to the largest number
of previously labeled vertices. We can obtain a directed acyclic graph D by orienting the
undirected edges of U from higher number to lower number. Tarjan and Yannakakis (1984)
show that no v-structures occur in D if U is chordal. Hence in D, there is no v-structure
and all edges adjacent to v are oriented out of v. We have that D is a τi-rooted equivalent
DAG of U , thus τi-rooted sub-class is not empty.

To prove that the p sub-classes, τi-rooted sub-classes for i = 1, · · · , p, form a disjoint
partition of Markov equivalence class represented by U , we just need to show that every
equivalent DAG of U is in only one of p sub-classes.

For any equivalent DAG of U , denoted by D, since D is a directed acyclic graph, there
exists an order of its vertices such that all edges are oriented from the preceding vertices to
their succeeding ones. Denoted by τi the first vertex of this order, we have that all edges
adjacent to τi are oriented out of τi. Clearly, D is in the τi-rooted sub-class.
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Below, we show that D is not in any other rooted sub-class. Suppose that D is also
in another τj-rooted sub-class (i 6= j). Clearly, τi and τj are not adjacent. Since U is
connected, we can find a shortest path L = {τi − τk − · · · − τl − τj} from τi to τj with
more than one edge. The DAG D is in both τi-rooted and τj-rooted sub-classes, so we have
that vi → vk and vj → vl are in D. Considering all vertices in L, there must be a head
to head like · → · ← · in D, and the two heads are not adjacent in D since L is shortest
path. Consequently, a v-structure appears in D. This is a contradiction because U is an
undirected chordal graph and D must be a DAG without v-structures. �

Proof of Theorem 7:

Consider the proof of Theorem 6 in He and Geng (2008), we set the intervention variable
to be v. If v is a root, Theorem 7 becomes a special case of Theorem 6 in He and Geng
(2008). �

Proof of Corollary 9:

Theorem 5 shows that for any i ∈ {1, 2, · · · , p}, the τi-rooted sub-class of U is not empty
and these p sub-classes form a disjoint partition of Markov equivalence class represented by
U . This implies Corollary 9 directly. �

Proof of Corollary 10:

Since {U (vi)
τj }j=1,···,l are l isolated undirected chordal sub-graphs of U (vi), the orientations

of the undirected edges in a component is irrelevant to the other undirected components.
This results in Equation (3) follow directly. �

Proof of Theorem 8:

We first introduce the following Algorithm 3 that can construct a rooted essential graph.

Algorithm 3: Find the v-rooted essential graph of U
Input: U : an undirected and connected chordal graph; v: a vertex of U .
Output: the v-rooted essential graph of U

1 Set H = U ;
2 for each edge · − v in U do
3 Orient · − v to · ← v in H.

4 repeat
5 for each edge y − z in H do

Rule 1: if there exists · → y − z in H, and · and z are not adjacent then
Orient y − z to y → z in H

Rule 2: if there exists y → · → z in H then
Orient y − z to y → z in H

6 until no more undirected edges in H can be oriented ;
7 return H

A similar version of Algorithm 3 is used in He and Geng (2008) to construct an essential
graph given some directed edges. From the proof of Theorem 6 in He and Geng (2008),
we have that the output of Algorithm 3, H, is the v-rooted essential graph of U , that is,
H = U (v). Moreover, according to Theorem 7, we have that a v-rooted essential graph is a
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chain graph and its isolated undirected subgraphs are chain components. From Algorithm
1, we know that O contains all isolated undirected subgraphs of G.

To prove that the output G of Algorithm 1 is the v-rooted essential graph U (v) of U and
O is the set of all chain components of U (v), we just need to show that G = H given the
same U and v.

By comparing Algorithm 1 to Algorithm 3, we find that in Algorithm 1, Rule 1 that is
shown in Algorithm 3 is used repeatedly, and in the output G of Algorithm 1, undirected
edges can no longer be oriented by the Rule 1. If we further apply Rule 2 in Algorithm 3
to orient undirected edges in G until no undirected edges satisfy the condition in Rule 2.
Denote the output as G′. Clearly, the output G′ is the same as H obtained from Algorithm
3, that is, G′ = H. Therefore, to show G = H, we just need to show G = H ′, that is, the
condition in Rule 2 does not hold for any undirected edge in G.

In Algorithm 1, we generate a set T in each loop of ”while” and the sequence is denoted
by {T1, · · · , Tn}. Setting T0 = {v}, we have five facts as following

Fact 1 All undirected edges in G occur in the subgraphs over Ti for i = 1, · · · , n.

Fact 2 All edges in G between Ti and Ti+1 are oriented from Ti to Ti+1 for i = 0, · · · , n−1.

Fact 3 There is no edge between Ti and Tj if |i− j| > 1.

Fact 4 There are no v-structures in G.

Fact 5 there is no directed cycle (all edges are directed) in G.

Suppose there exist three vertices x, y and z such that both y → x→ z and y− z occur
in G. Then a contradiction is implied.

Since y − z occurs in G, from Fact 1, there exists a set, denoted as Ti containing both
y and z. Moreover, y → x→ z occurs in G, from Fact 2 and Fact 3, we have that x ∈ Ti.

Next we show that x, y and z have the same parents in Ti−1. First, y and z have the
same parents in Ti−1; otherwise y − z will be oriented to a directed edge. Denote by P1

the same parents of y and z in Ti−1 and by P2 the parents of x in Ti−1. Second, for any
u ∈ P1, if u is not a parent of x, then z−x in U will be oriented to z → x in G according to
Algorithm 1. We have that u is also a parent of x and consequently, P1 ⊆ P2. Third, For
any u ∈ P2, u must be a parent of y according to Fact 4.

We have that P2 ⊆ P1, and finally P2 = P1. We get that neither y → x nor x → z is
oriented by any directed edge u→ y or u→ x with u ∈ Ti−1 since P2 = P1.

Let u1 ∈ Ti and u1 → y be the directed edge that orients y − x in U to y → x in G.
Clearly, u1 → y occurs in G, and u1 and x are not adjacent. Since y − z is not directed in
G, u1 − z must occur in U . Moreover, x → z occurs in G and u1 and x are not adjacent,
we have that u1 − z will be oriented to u1 ← z in G. Clearly, there occurs a directed cycle
u1 → y → x→ z → u1 in G. This is a contradiction according to Fact 5. We have that the
condition of Rule 2 does not hold for any undirected edge in G, and consequently, G = H
holds.

�
Proof of Corollary 11:
According to Corollary 9, Corollary 10, and Theorem 8, the output is the size of Markov

equivalence class represented by U . �
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Proof of Theorem 3:

Proof of (1):

For a UCCG Up,n, if n = p − 1, then the graph Up,n is a tree. For any vertex in Up,n,

we have that U (v)
p,n is a DAG according to Algorithm 1. Thus SizeMEC(U (v)

p,n) = 1. Then,
according to Corollary 9, SizeMEC(Up,n) = p.

Proof of (2):

For a UCCG Up,n, if n = p, then the graph Up,n has one more edge than tree. Be-
cause Up,n is chordal, a triangle occurs in Up,n. For any vertex v in Up,n, we have that

SizeMEC(U (v)
p,n) = 2. Consequently, we have that SizeMEC(U) = 2p according to Corollary

9.

Proof of (3):

Let v1, · · · , vp be the p vertices of Up,n. There are only two pairs of vertices that are
nonadjacent since p(p− 1)/2− 2 edges appear in Up,n. We first prove that these two pairs
have a common vertex. Suppose vi− vj and vk− vl do not occur in Up,n and vi, vj , vk, vl are
distinct vertices. Consider the subgraph induced by vi, vj , vk, vl of Up,n. Clearly, the cycle
vi − vk − vj − vl − vi occurs in the induced graph and Up,n is not a chordal graph. We have
that the missing two edges in Up,n are like v1 − v2 − v3.

According to Corollary 9, we have that

SizeMEC(Up,n) =

p∑
i=1

SizeMEC(U (vi)
p,n ).

We first consider U (v1)
p,n . All edges adjacent to v2 in U (v1)

p,n are oriented to directed edges
whose arrow is v2 according to Algorithm 1 since v2 is a neighbor of all neighbors of v1, and

v1, v2 are not adjacent in U (v1)
p,n . Removing v2 from U (v1)

p,n , we have that the induced graph
over v1, v3, · · · , vp is a completed graph. This implies that the induced graph over v3, · · · , vp
is an undirected completed graph with p−2 vertices. Therefore, we have SizeMEC(U (v1)

p,n ) =
(p− 2)!.

Similarly, we can get that SizeMEC(U (v3)
p,n ) = (p − 2)! since v1 and v3 are symmetric in

Up,n.

Consider U (v2)
p,n , according to Algorithm 1, for any vertex vj other than v1 and v3, we

have that v2 → vj , vj → v1 and vj → v3 occur in U (v2)
p,n , and all other edges in U (v2)

p,n are

undirected. Therefore, there are two isolated chain components in U (v2)
p,n , one contains the

edge x1 − x3 and the other is the subgraph induced by v4, · · · , vp. We have the size of first
chain component is 2 and the second is (p − 3)! since it is a completed graph with p − 3

vertices. According to Corollary 10, SizeMEC(U (v2)
p,n ) = 2(p− 3)!.

We now consider U (v4)
p,n . According to Algorithm 1, to construct U (v4)

p,n , we first orient
the undirected edges adjacent to v4 in Up,n to directed edges out of v4. Since v4 is adjacent
to all other vertices in Up,n, there are no subgraphs like v4 → vi − vj with v4 and vj

nonadjacent. This results in the chain component of U (v4)
p,n being a graph with p− 1 vertices

and (p− 1)(p− 2)/2− 2 edges (only v1− v2− v3 missing). We have that SizeMEC(U (v4)
p,n ) =

SizeMEC (Up−1,(p−1)(p−2)/2−2).
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Similarly, we can get that SizeMEC(U (vi)) = SizeMEC (Up−1,(p−1)(p−2)/2−2) for any i ≥ 4
since exchanging the labels of these vertices will not change U .

Therefore, we have proved the following formula

SizeMEC (Up,n) = (p− 3)SizeMEC (Up−1,(p−1)(p−2)/2−2) + 2(p− 2)! + 2(p− 3)!,

Finally, we show that

SizeMEC (Up,n) = (p2 − p− 4)(p− 3)!

satisfies the formula and initial condition. First, we have SizeMEC (U4,4) = (16−8)∗1 = 8.
Suppose SizeMEC (Up,n) = (p2 − p− 4)(p− 3)! holds for p = j − 1,

SizeMEC (Uj,j(j−1)/2−2)
= (j − 3)SizeMEC (Uj−1,(j−1)(j−2)/2−2) + 2(j − 2)! + 2(j − 3)!

= (j − 3){[(j − 1)2 − (j − 1)− 4][(j − 1)− 3]!}+ 2(j − 2)! + 2(j − 3)!
= [(j − 1)2 − (j − 1)− 4 + 2(j − 2) + 2](j − 3)!
= (j2 − j − 4)!(j − 3)!

As a result, SizeMEC (Up,p(p−1)/2−2) = (p2 − p− 4)(p− 3)! holds for p = j.
Proof of (4):
From the condition, only one pair of vertices, denoted by v and u, is not adjacent in Up,n.

Consider a v-rooted equivalence sub-class, all undirected edges adjacent to u are oriented
to directed edges with arrows pointing to u, and all other edges can be orientated as a

completed undirected graph. We have that SizeMEC(U (v)
p,n) = (p − 2)!. Similarly, we have

that SizeMEC(U (u)
p,n ) = (p − 2)!. For any vertex w other than v and u, consider any DAG

in the w-rooted equivalent sub-class, all edges adjacent to w are oriented away from w, and
all other edges form a new chain component with p − 1 vertices and (p − 1)(p − 2)/2 − 1
edges. Consider SizeMEC(Up,p(p−1)/2−1) as a function of p, denoted by f(p). When p = 3,
we have f(3) = 3. Hence we have following formula:

f(p) = (p− 2)f(p− 1) + 2((p− 2)!).

Now, we show that
f(p) = 2(p− 1)!− (p− 2)!

satisfies the formula and initial condition. First, we have f(3) = 2 ∗ 2 − 1 = 3. Suppose
f(p) = 2(p− 1)!− (p− 2)! holds for p = j − 1,

f(j) = (j − 2)f(j − 1) + 2(j − 2)!
= (j − 2)(2(j − 2)!− (j − 3)!) + 2(j − 2)!
= 2(j − 2)(j − 2)!− (j − 2)! + 2(j − 2)!
= (j − 2)!(2j − 3)
= 2(j − 1)!− (j − 2)!

As a result, f(p) = 2(p− 1)!− (p− 2)! holds for p = j.
Proof of (5):
If U is an undirected and connected graph with p vertices, and p(p − 1)/2 edges, then

the graph is a complete graph. There are p! DAGs in the Markov equivalence class. �
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