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Abstract

It has become increasingly popular to obtain machine learning labels through commercial
crowdsourcing services. The crowdsourcing workers or annotators are paid for each label
they provide, but the task requester usually has only a limited amount of the budget. Since
the data instances have different levels of labeling difficulty and the workers have different
reliability for the labeling task, it is desirable to wisely allocate the budget among all the
instances and workers such that the overall labeling quality is maximized. In this paper,
we formulate the budget allocation problem as a Bayesian Markov decision process (MDP),
which simultaneously conducts learning and decision making. The optimal allocation pol-
icy can be obtained by using the dynamic programming (DP) recurrence. However, DP
quickly becomes computationally intractable when the size of the problem increases. To
solve this challenge, we propose a computationally efficient approximate policy which is
called optimistic knowledge gradient. Our method applies to both pull crowdsourcing mar-
ketplaces with homogeneous workers and push marketplaces with heterogeneous workers.
It can also incorporate the contextual information of instances when they are available.
The experiments on both simulated and real data show that our policy achieves a higher
labeling quality than other existing policies at the same budget level.

Keywords: crowdsourcing, budget allocation, Markov decision process, dynamic pro-
gramming, optimistic knowledge gradient

1. Introduction

In many real applications, data are usually collected without any innate label. For example,
a digital camera will not automatically tag a picture as a portrait or a landscape. A
traditional approach for data labeling is to hire a small group of experts to provide labels
for the entire set of data. However, for large-scale data, such an approach becomes inefficient
and very costly. Thanks to the advent of many online crowdsourcing services, e.g., Amazon

c©2015 Xi Chen and Qihang Lin and Dengyong Zhou.
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Mechanical Turk, a much more efficient way is to post unlabeled data to a crowdsourcing
marketplace, where a big crowd of low-paid workers can be hired instantaneously to perform
labeling tasks.

Despite its high efficiency and immediate availability, crowd labeling raises many new
challenges. Since labeling tasks are tedious and workers are usually non-experts, labels
generated by the crowd suffer from low quality. As a remedy, most crowdsourcing services
resort to labeling redundancy to reduce the labeling noise, which is achieved by collecting
multiple labels from different workers for each data instance. In particular, a crowd labeling
process can be described as a two phase procedure:

1. In the first phase, unlabeled data instances are assigned to a crowd of workers and
multiple raw labels are collected for each data instance.

2. In the second phase, for each data instance, one aggregates the collected raw labels
to infer its true label.

In principle, more raw labels will lead to a higher chance of recovering the true label.
However, each raw label comes with a cost: the requester has to pay workers pre-specified
monetary reward for each label they provide, usually, regardless of the label’s correctness.
For example, a worker typically earns 10 cents by categorizing a website as porn or not.
In practice, the requester has only a limited amount of budget which essentially restricts
the total number of raw labels that he/she can collect. This raises a challenging question
central in crowd labeling: What is the best way to allocate the budget among data instances
and workers so that the overall accuracy of aggregated labels is maximized ?

The most important factors that decide how to allocate the budget are the intrinsic char-
acteristics of data instances and workers: labeling difficulty/ambiguity for each data instance
and reliability/quality of each worker. In particular, an instance is less ambiguous if its label
can be decided based on the common knowledge and a vast majority of reliable workers will
provide the same label for it. In principle, we should avoid spending too much budget on
those easy instances since excessive raw labels will not bring much additional information.
In contrast, for an ambiguous instance which falls near the boundary of categories, even
those reliable workers will still disagree with each other and generate inconsistent labels.
For those ambiguous instances, we are facing a challenging decision problem on how much
budget that we should spend on them. On one hand, it is worth to collect more labels to
boost the accuracy of the aggregate label. On the other hand, since our goal is to maximize
the overall labeling accuracy, when the budget is limited, we should simply put those few
highly ambiguous instances aside to save budget for labeling less difficult instances. In
addition to the ambiguity of data instances, the other important factor is the reliability
of each worker and, undoubtedly, it is desirable to assign more instances to those reliable
workers. Despite their importance in deciding how to allocate the budget, both the data
ambiguity and workers’ reliability are unknown parameters at the beginning and need to
be updated based on the stream of collected raw labels in an online fashion. This further
suggests that the budget allocation policy should be dynamic and simultaneously conduct
parameter estimation and decision making.

To search for an optimal budget allocation policy, we model the data ambiguity and
workers’ reliability using two sets of random variables drawn from known prior distribu-
tions. Then, we formulate the problem into a finite-horizon Bayesian Markov Decision
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Process (MDP) (Puterman, 2005), whose state variables are the posterior distributions of
these variables, which are updated by each new label. Here, the Bayesian setting is nec-
essary. We will show that an optimal policy only exists in the Bayesian setting. Using
the MDP formulation, the optimal budget allocation policy for any finite budget level can
be readily obtained via the dynamic programming (DP). However, DP is computationally
intractable for large-scale problems since the size of the state space grows exponentially in
budget level. The existing widely-used approximate policies, such as approximate Gittins
index rule (Gittins, 1989) or knowledge gradient (KG) (Gupta and Miescke, 1996; Frazier
et al., 2008), either has a high computational cost or poor performance in our problem. In
this paper, we propose a new policy, called optimistic knowledge gradient (Opt-KG). In par-
ticular, the Opt-KG policy dynamically chooses the next instance-worker pair based on the
optimistic outcome of the marginal improvement on the accuracy, which is a function of state
variables. We further propose a more general Opt-KG policy using the conditional value-
at-risk measure (Rockafellar and Uryasev, 2002). The Opt-KG is computationally efficient,
achieves superior empirical performance and has some asymptotic theoretical guarantees.

To better present the main idea of our MDP formulation and the Opt-KG policy, we
start from the binary labeling task (i.e., providing the category, either positive or negative,
for each instance). We first consider the pull marketplace (e.g., Amazon Mechanical Turk
or Galaxy Zoo) , where the labeling requester can only post instances to the general worker
pool with either anonymous or transient workers, but cannot assign to an identified worker.
In a pull marketplace, workers are typically treated as homogeneous and one models the
entire worker pool instead of each individual worker. We further assume that workers are
fully reliable (or noiseless) such that the chance that they make an error only depend on
instances’ own ambiguity. At a first glance, such an assumption may seem oversimplified.
In fact, it turns out that the budget-optimal crowd labeling under such an assumption has
been highly non-trivial. We formulate this problem into a Bayesian MDP and propose the
computational efficient Opt-KG policy. We further prove that the Opt-KG policy in such a
setting is asymptotically consistent, that is, when the budget goes to infinity, the accuracy
converges to 100% almost surely.

Then, we extend the MDP formulation to deal with push marketplaces with heteroge-
neous workers. In a push marketplace (e.g., data annotation team in Microsoft Bing group),
once an instance is allocated to an identified worker, the worker is required to finish the
instance in a short period of time. Based on the previous model for fully reliable workers,
we further introduce another set of parameters to characterize workers’ reliability. Then
our decision process simultaneously selects the next instance to label and the next worker
for labeling the instance according to the optimistic knowledge gradient policy. In fact,
the proposed MDP framework is so flexible that we can further extend it to incorporate
contextual information of instances whenever they are available (e.g., as in web search and
advertising applications discussed in Li et al., 2010) and to handle multi-class labeling.

In summary, the main contribution of the paper consists of the three folds: (1) we
formulate the budget allocation in crowd labeling into a MDP and characterize the optimal
policy using DP; (2) computationally, we propose an efficient approximate policy, optimistic
knowledge gradient; (3) the proposed MDP framework can be used as a general framework
to address various budget allocation problems in crowdsourcing (e.g., rating and ranking
tasks).
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The rest of this paper is organized as follows. In Section 2, we first present the modeling
of budget allocation process for binary labeling tasks with fully reliable workers and motivate
our Bayesian modeling. In Section 3, we present the Bayesian MDP and the optimal policy
via DP. In Section 4, we propose a computationally efficient approximate policy, Opt-KG.
In Section 5, we extend our MDP to model heterogeneous workers with different reliability.
In Section 6, we present other important extensions, including incorporating contextual
information and multi-class labeling. In Section 7, we discuss the related works. In Section
8, we present numerical results on both simulated and real data sets, followed by conclusions
in Section 9.

2. Binary Labeling with Homogeneous Noiseless Workers

We first consider the budget allocation problem in a pull marketplace with homogeneous
noiseless workers for binary labeling tasks. We note that such a simplification is important
for investigating this problem, since the incorporation of workers’ reliability and extensions
to multiple categories become rather straightforward once this problem is correctly modeled
(see Section 5 and 6).

Suppose that there are K instances and each one is associated with a latent true label
Zi ∈ {−1, 1} for 1 ≤ i ≤ K. Our goal is to infer the set of positive instances, denoted by
H∗ = {i : Zi = 1}. Here, we assume that the homogeneous worker pool is fully reliable
or noiseless. We note that it does not mean that each worker knows the true label Zi.
Instead, it means that fully reliable workers will do their best to make judgments but their
labels may be still incorrect due to the instance’s ambiguity. Further, we model the labeling
difficulty/ambiguity of each instance by a latent soft-label θi, which can be interpreted as the
percentage of workers in the homogeneous noiseless crowd who will label the i-th instance
as positive. In other words, if we randomly choose a worker from a large crowd of fully
reliable workers, we will receive a positive label for the i-th instance with probability θi and
a negative label with probability 1 − θi. In general, we assume the crowd is large enough
so that the value of θi can be any value in [0, 1]. To see how θi characterizes the labeling
difficulty of the i-th instance, we consider a concrete example where a worker is asked to
label a person as adult (positive) or not (negative) based on the photo of that person. If
the person is more than 25 years old, most likely, the corresponding θi will be close to 1,
generating positive labels consistently. On the other hand, if the person is younger than
15, she may be labeled as negative by almost all the reliable workers since θi is close to 0.
In both of this cases, we regard the instance (person) easy to label since Zi can be inferred
with a high accuracy based on only a few raw labels. On the contrary, for a person is one
or two years below or above 18, the θi is near 0.5 and the numbers of positive and negative
labels become relatively comparable so that the corresponding labeling task is very difficult.
Given the definition of soft labels, we further make the following assumption:

Assumption 1 We assume that the soft-label θi is consistent with the true label in the
sense that Zi = 1 if and only if θi ≥ 0.5, i.e., the majority of the crowd are correct, and
hence H∗ = {i : θi ≥ 0.5}.

Given the total budget, denoted by T , we suppose that each label costs one unit of
budget. As discussed in the introduction, the crowd labeling has two phases. The first

4



Statistical Decision Making for Optimal Budget Allocation in Crowd Labeling

Instance 1st round label 2nd round label

Instance 1 (θ1) 1 1

Instance 2 (θ2) 1 −1

Instance 3 (θ3) 1

Table 1: Toy example with 3 instances and 5 collected labels. Instance 1 has two positive
labels, instance 2 has one positive and one negative label, and instance 3 has only
one positive label. The question is that, given only one more labeling chance,
which instance should be chosen to label?

phase is the budget allocation phase, which is a dynamic decision process with T stages.
In each stage 0 ≤ t ≤ T − 1, an instance it ∈ A = {1, . . . ,K} is selected based on the
historical labeling results. Once it is selected, it will be labeled by a random worker from
the homogeneous noiseless worker pool. According to the definition of θit , the label received,
denoted by yit ∈ {−1, 1}, will follow the Bernoulli distribution with the parameter θit :

Pr (yit = 1) = θit and Pr (yit = −1) = 1− θit . (1)

We note that, at this moment, all workers are assumed to be homogeneous and noiseless
so that yit only depends on θit but not on which worker provides the label. Therefore, it is
suffice for the decision maker (e.g., requester or crowdsourcing service) to select the instance
in each stage instead of an instance-worker pair.

The second phase is the label aggregation phase. When the budget is exhausted, the
decision maker needs to infer true labels {Zi}ni=1 by aggregating all the collected labels.
According to Assumption 1, it is equivalent to infer the set of positive instances whose
θi ≥ 0.5. Let HT be the estimated positive set. The final overall accuracy is measured by
|HT ∩H∗|+ |(HT )c ∩ (H∗)c|, the size of the mutual overlap between H∗ and HT .

Our goal is to determine the optimal allocation policy, (i0, . . . , iT−1), so that overall
accuracy is maximized. Here, a natural question to ask is whether the optimal allocation
policy exists and what assumptions do we need for the existence of the optimal policy.
To answer this question, we provide a concrete example, which motivates our Bayesian
modeling.

2.1 Why We Need a Bayesian Modeling

Let us check a toy example with 3 instances and 5 collected labels (see Table 1). We assume
that the workers are homogeneous noiseless and the label aggregation is performed by the
majority vote rule. Now if we only have the budget to get one more label, which instance
should be chosen to label? It is obvious that we should not put the remaining budget on
the first instance since we are relatively more confident on what its true label should be.
Thus, the problem becomes how to choose between the second and third instances. In what
follows, we shall show that there is no optimal policy under the frequentist setting. To be
more explicit, the optimal policy leads to the expected accuracy which is at least as good
as that of all other policies for any values of {θi}ni=1.
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Current Accuracy y = 1 y = −1 Expected Accuracy Improvement

θ1 > 0.5 1 1 1 1 0

θ1 < 0.5 0 0 0 0 0

θ2 > 0.5 0.5 1 0 θ2 θ2 − 0.5 > 0

θ2 < 0.5 0.5 0 1 1− θ2 0.5− θ2 > 0

θ3 > 0.5 1 1 0.5 θ3 + 0.5(1− θ3) 0.5(θ3 − 1) < 0

θ3 < 0.5 0 0 0.5 0.5(1− θ3) 0.5(1− θ3) > 0

Table 2: Expected improvements in accuracy for collecting an extra label, i.e., the expected
accuracy of obtaining one more label minus the current expected accuracy. The 3rd
and 4th columns contain the accuracies with the next label being 1 and −1. The
5th is the expected accuracy which is computed by taking θ times the 3rd column
plus (1− θ) times the 4th. The last column contains the expected improvements
which is computed by taking the difference between the 5th and 2nd columns.

Figure 1: Decision Boundary.

Let us compute the expected improvement in accuracy in terms of the frequentist risk
in Table 2. We assume that θi 6= 0.5 and if the number of 1 and −1 labels are the same
for an instance, the accuracy is 0.5 based on a random guess. From Table 2, we should not
label the first instance since the improvement is always 0. This coincides with our intuition.
When max(θ2−0.5, 0.5−θ2) > 0.5(1−θ3) or θ3 > 0.5, which corresponds to the blue region
in Figure 1, we should choose to label the second instance. Otherwise, we should ask the
label for the third one. Since the true value of θ2 and θ3 are unknown, a optimal policy
does not exist under the frequentist paradigm. Further, it will be difficult to estimate θ2

and θ3 accurately when the budget is very limited.

In contrast, in a Bayesian setting with prior distribution on each θi, the optimal policy
is defined as the policy which leads to the highest expected accuracy under the given prior
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instead of for any possible values of {θi}ni=1. Therefore, we can optimally determine the next
instance to label by taking another expectation over the distribution of θi. In this paper, we
adopt the Bayesian modeling to formulate the budget allocation problem in crowd labeling.

3. Bayesian MDP and Optimal Policy

In this section, we first introduce the Bayesian MDP for modeling the dynamic budget allo-
cation process and then provide the optimal allocation policy using dynamic programming.

3.1 Bayesian Modeling

We assume that each θi is drawn from a known Beta prior Beta(a0
i , b

0
i ). Beta is a rich

family of distributions in the sense that it exhibits a fairly wide variety of shapes on the
domain of θi, i.e., the unit interval [0, 1]. For presentation simplicity, instead of considering
a full Bayesian model with hyper-priors on a0

i and b0i , we fix a0
i and b0i at the beginning.

In practice, if the budget is sufficient, one can first label each instance equally many times
to pre-estimate {a0

i , b
0
i }Ki=1 before the dynamic labeling procedure is invoked. Otherwise,

when there is no prior knowledge, we can simply assume a0
i = b0i = 1 so that the prior is

a uniform distribution. According to our simulated experimental results in Section 8.1.2,
uniform prior works reasonably well unless the data is highly skewed in terms of class
distribution. Other commonly used uninformative priors such as Jeffreys prior or reference
prior (Beta(1/2, 1/2)) or Haldane prior (Beta(0, 0)) can also be adopted (see Robert, 2007
for more on uninformative priors). Choices of prior distributions are discussed in more
details in Section 4.2.

At each stage t with Beta(ati, b
t
i) as the current posterior distribution for θi, we make a de-

cision by choosing an instance it ∈ A = {1, . . . ,K} and acquire its label yit ∼ Bernoulli(θit).
Here A denotes the action set. By the fact that Beta is the conjugate prior of the Bernoulli,
the posterior of θit in the stage t+ 1 will be updated as:

Beta(at+1
it

, bt+1
it

) =

{
Beta(atit + 1, btit) if yit = 1;

Beta(atit , b
t
it

+ 1) if yit = −1.

We put {ati, bti}Ki=1 into a K × 2 matrix St, called a state matrix, and let Sti = (ati, b
t
i) be the

i-th row of St. The update of the state matrix can be written in a more compact form:

St+1 =

{
St + (eit ,0) if yit = 1;

St + (0, eit) if yit = −1,
(2)

where eit is a K × 1 vector with 1 at the it-th entry and 0 at all other entries. As we
can see, {St} is a Markovian process because St+1 is completely determined by the current
state St, the action it and the obtained label yit . It is easy to calculate the state transition
probability Pr(yit |St, it), which is the posterior probability that we are in the next state
St+1 if we choose it to be label in the current state St:

Pr(yit = 1|St, it) = E(θit |St) =
atit

atit + btit
and Pr(yit = −1|St, it) =

btit
atit + btit

. (3)
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Given this labeling process, the budget allocation policy is defined as a sequence of
decisions: π = (i0, . . . , iT−1). Here, we require decisions depend only upon the previous
information. To make this more formal, we define a filtration {Ft}Tt=0, where Ft is the
information collected until the stage t−1. More precisely, Ft is the the σ-algebra generated
by the sample path (i0, yi0 , . . . , it−1, yit−1). We require the action it is determined based on
the historical labeling results up to the stage t− 1, i.e., it is Ft-measurable.

3.2 Inference About True Labels

As described in Section 2, the budget allocation process has two phases: the dynamic budget
allocation phase and the label aggregation phase. Since the goal of the dynamic budget
allocation in the first phase is to maximize the accuracy of aggregated labels in the second
phase, we first present how to infer the true label via label aggregation in the second phase.

When the decision process terminates at the stage T , we need to determine a positive set
HT to maximize the conditional expected accuracy conditioning on FT , which corresponds
to minimizing the posterior risk:

HT = arg max
H⊂{1,...,K}

E

(
K∑
i=1

(
1(i ∈ H) · 1(i ∈ H∗) + 1(i 6∈ H) · 1(i 6∈ H∗)

)∣∣∣∣∣FT
)
, (4)

where 1(A) is the indicator function, which takes the value 1 if the event A is true and 0
otherwise. The term inside expectation in (4) is the binary labeling accuracy which can
also be written as |H ∩H∗|+ |Hc ∩ (H∗)c|.

We first observe that, for 0 ≤ t ≤ T , the conditional distribution θi|Ft is exactly the
posterior distribution Beta(ati, b

t
i), which depends on the historical sampling results only

through Sti = (ati, b
t
i). Hence, we define

I(a, b)
.
= Pr(θ ≥ 0.5|θ ∼ Beta(a, b)), (5)

P ti
.
= Pr(i ∈ H∗|Ft) = Pr(θi ≥ 0.5|Ft) = Pr(θi ≥ 0.5|Sti ) = I(ati, b

t
i). (6)

As shown in Xie and Frazier (2013), the optimal positive set HT can be determined by the
Bayes decision rule as follows.

Proposition 2 HT = {i : Pr(i ∈ H∗|FT ) ≥ 0.5} = {i : P Ti ≥ 0.5} solves (4).

The proof of Proposition 2 is given in the appendix for completeness.
With Proposition 2 in place, we plug the optimal positive set HT into the right hand

side of (4) and the conditional expected accuracy given FT can be simplified as:

E

(
K∑
i=1

(
1(i ∈ HT ) · 1(i ∈ H∗) + 1(i 6∈ HT ) · 1(i 6∈ H∗)

)∣∣∣∣∣FT
)

=
K∑
i=1

h(P Ti ), (7)

where h(x)
.
= max(x, 1 − x). We also note that P Ti provides not only the estimated label

for the i-th instance but also how confident the estimated label is correct. According to the
next corollary with the proof in the appendix, we show that the optimal HT is constructed
based on a refined majority vote rule which incorporates the prior information.
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Corollary 3 I(a, b) > 0.5 if and only if a > b and I(a, b) = 0.5 if and only if a = b.
Therefore, HT = {i : aTi ≥ bTi } solves (4).

By viewing a0
i and b0i as pseudo-counts of 1s and −1s at the initial stage, the parameters

aTi and bTi are the total counts of 1s and −1s. The estimated positive set HT = {i : aTi ≥ bTi }
consists of instances with more (or equal) counts of 1s than that of −1s. When a0

i = b0i ,
HT is constructed exactly according to the vanilla majority vote rule.

To find the optimal allocation policy which maximizes the expected accuracy, we need
to solve the following optimization problem:

V (S0)
.
= sup

π
Eπ
[
E

(
K∑
i=1

(
1(i ∈ HT ) · 1(i ∈ H∗) + 1(i 6∈ HT ) · 1(i 6∈ H∗)

)∣∣∣∣∣FT
)]

= sup
π

Eπ
(

K∑
i=1

h(P Ti )

)
, (8)

where Eπ represents the expectation taken over the sample paths (i0, yi0 , . . . , iT−1, yiT−1)
generated by a policy π. The second equality is due to Proposition 2 and V (S0) is called
value function at the initial state S0. The optimal policy π∗ is any policy π that attains
the supremum in (8).

3.3 Markov Decision Process

The optimization problem in (8) is essentially a Bayesian multi-armed bandit (MAB) prob-
lem, where each instance corresponds to an arm and the decision is which instance/arm
to be sampled next. However, it is different from the classical MAB problem (Auer et al.,
2002; Bubeck and Cesa-Bianchi, 2012), which assumes that each sample of an arm yields
independent and identically distributed (i.i.d.) reward according to some unknown distri-
bution associated with that arm. Given the total budget T , the goal is to determine a
sequential allocation policy so that the collected rewards can be maximized. We contrast
this problem with our problem: instead of collecting intermediate independent rewards on
the fly, our objective in (8) merely involves the final “reward”, i.e., overall labeling accuracy,
which is only available at the final stage when the budget runs out. Although there is no
intermediate reward in our problem, we can still decompose the final expected accuracy into
sum of stage-wise rewards using the technique from Xie and Frazier (2013), which further
leads to our MDP formulation. Since these stage-wise rewards are artificially created, they
are no longer i.i.d. for each instance. We also note that the problem in Xie and Frazier
(2013) is an infinite-horizon one which optimizes the stopping time while our problem is
finite-horizon since the decision process must be stopped at the stage T .

Proposition 4 Define the stage-wise expected reward as:

R(St, it) = E

(
K∑
i=1

h(P t+1
i )−

K∑
i=1

h(P ti )
∣∣St, it) = E

(
h(P t+1

it
)− h(P tit)|S

t, it
)
, (9)

then the value function (8) becomes:
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V (S0) = G0(S0) + sup
π

Eπ
(
T−1∑
t=0

R(St, it)

)
, (10)

where G0(S0) =
∑K

i=1 h(P 0
i ) and the optimal policy π∗ is any policy π that attains the

supremum.

The proof of Proposition 4 is presented in the appendix. In fact, the stage-wise reward
in (9) has a straightforward interpretation. According to (8), the term

∑K
i=1 h(P ti ) is the

expected accuracy at the t-th stage. The stage-wise reward R(St, it) takes the form of the
difference between the expected accuracy at the (t + 1)-stage and the t-th stage, i.e., the
expected gain in accuracy for collecting another label for the it-th instance. The second
equality in (9) holds simply because: only the it-th instance receives the new label and the
corresponding P tit changes while all other P ti remain the same. Since the expected reward
(9) only depends on Stit = (atit , b

t
it

), we write

R(St, it) = R
(
Stit
)

= R
(
atit , b

t
it

)
, (11)

and use them interchangeably. The function R(a, b) with two parameters a and b has an
analytical representation as follows. For any state (a, b) of a single instance, the reward of
getting a label 1 and a label −1 are:

R1(a, b) = h(I(a+ 1, b))− h(I(a, b)), (12)

R2(a, b) = h(I(a, b+ 1))− h(I(a, b)). (13)

The expected reward takes the following form:

R(a, b) = p1R1 + p2R2, (14)

where p1 = a
a+b and p2 = b

a+b are the transition probabilities in (3).

With Proposition 4, the maximization problem (8) is formulated as a T -stage Markov
Decision Process (MDP) as in (10), which is associated with a tuple:

{T, {St},A,Pr(yit |St, it), R(St, it)}.

Here, the state space at the stage t, St, is all possible states that can be reached at t. Once
we collect a label yit , one element in St (either atit or btit) will add one. Therefore, we have

St =

{
{ati, bti}Ki=1 : ati ≥ a0

i , b
t
i ≥ b0i ,

K∑
i=1

(ati − a0
i ) + (bti − b0i ) = t

}
. (15)

The action space is the set of instances that could be labeled next: A = {1, . . . ,K}. The
transition probability Pr(yit |St, it) is defined in (3) and the expected reward at each stage
R(St, it) is defined in (9).

Remark 5 We can also view Proposition 4 as a consequence of applying the reward shap-
ing technique (Ng et al., 1999) to the original problem (8). In fact, we can add an artificial
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Instance i ST−1
i p1 p2 R1(ST−1

i ) R2(ST−1
i ) R(ST−1, i) = R(ST−1

i )

1 (3,1) 3
4

1
4 0.0625 −0.1875 3

4 · (0.0625) + 1
4 · (−0.1875) = 0

2 (2,2) 1
2

1
2 0.1875 0.1875 1

2 · (0.1875) + 1
2 · (0.1875) = 0.1875

3 (2,1) 2
3

1
3 0.1250 −0.2500 2

3 · (0.1250) + 1
3 · (−0.2500) = 0

Table 3: Calculation of the expected reward for the toy example in Table 1 according to
(12), (13) and (14).

absorbing state, named Sobs, to the original state space (15) and assume that, when the bud-
get allocation process finishes, the state must transit one more time to reach Sobs regardless
of which action is taken. Hence, the original problem (8) becomes a MDP that generates a
zero transition reward until the state enters Sobs where the transition reward is

∑K
i=1 h(P Ti ).

Then, we define a potential-based shaping function (Ng et al., 1999) over this extended state
space as Φ(St) =

∑K
i=1 h(P ti ) for St ∈ St and Φ(Sobs) = 0. After this, (4) can be viewed

as a new MDP whose transition reward equals that of (8) plus the shaping-reward function
Φ(S′) − Φ(S) when the state transits from S to S′. According to Theorem 1 in Ng et al.
(1999), (4) and (8) have the same optimal policy. This provides an alternative justification
for Proposition 4.

3.4 Optimal Policy via DP

With the MDP in place, we can apply the dynamic programming (DP) algorithm (a.k.a.
backward induction) (Puterman, 2005) to compute the optimal policy:

1. Set VT−1(ST−1) = maxi∈{1,...,K}R(ST−1, i) for all possible states ST−1 ∈ ST−1. The

optimal decision i∗T−1(ST−1) is the decision i that achieves the maximum when the
state is ST−1.

2. Iterate for t = T − 2, . . . , 0, compute the Vt(S
t) for all possible St ∈ St using the

Bellman equation:

Vt(S
t)

= max
i

(
R(St, i) + Pr(yi = 1|St, i)Vt+1

(
St + (ei,0)

)
+ Pr(yi = −1|St, i)Vt+1

(
St + (0, ei)

))
,

and i∗t (S
t) is the i that achieves the maximum.

The optimal policy π∗ = (i∗0, . . . , i
∗
T ). For an illustration purpose, we use DP to calculate

the optimal instance to be labeled next in the toy example in Section 2.1 under the uniform
prior B(1, 1) for all θi. Since we assume that there is only one labeling chance remaining,
which corresponds to the last stage of DP, we should choose the instance i∗T−1(ST−1) =
arg maxi∈{1,...,K}R(ST−1, i). According to the calculation in Table 3, there is a unique
optimal instance for labeling, which is the second instance.

Although DP finds the optimal policy, its computation is intractable since the size of the
state space |St| grows exponentially in t according to (15). Therefore, we need to develop
a computationally efficient approximate policy, which is the goal of the next section.
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4. Approximate Policies

Since DP is computationally intractable, approximate policies are needed for large-scale
applications. The simplest policy is the uniform sampling (a.k.a, pure exploration), i.e., we
choose the next instance uniformly and independently at random: it ∼ Uniform(1, . . . ,K).
However, this policy does not explore any structure of the problem.

With the decomposed reward function, our problem is essentially a finite-horizon Bayesian
MAB problem. Gittins (1989) showed that Gittins index policy is optimal for infinite-
horizon MAB with the discounted reward. It has been applied to the infinite-horizon ver-
sion of problem (10) in Xie and Frazier (2013). Since our problem is finite-horizon, Gittins
index is no longer optimal while it can still provide us a good heuristic index rule. However,
the computational cost of Gittins index is very high: the state-of-art-method proposed by
Nino-Mora (2011) requires O(T 6) time and space complexity.

A computationally more attractive policy is the knowledge gradient (KG) (Gupta and
Miescke, 1996; Frazier et al., 2008). It is essentially a single-step look-ahead policy, which
greedily selects the next instance with the largest expected reward:

it = arg max
i∈{1,...,K}

(
R(ati, b

t
i)
.
=

ati
ati + bti

R1(ati, b
t
i) +

bti
ati + bti

R2(ati, b
t
i)

)
. (16)

As we can see, this policy corresponds to the last stage in DP and hence KG policy is
optimal if only one labeling chance is remaining.

When there is a tie, if we select the smallest index i, the policy is referred to deterministic
KG while if we randomly break the tie, the policy is referred to randomized KG. Although
KG has been successfully applied to many MDP problems (Powell, 2007), it will fail in our
problem as shown in the next proposition with the proof in the appendix.

Proposition 6 Assuming that a0
i and b0i are positive integers and letting E = {i : a0

i = b0i },
then the deterministic KG policy will acquire one label for each instance in E and then
consistently obtain the label for the first instance even if the budget T goes to infinity.

According to Proposition 6, the deterministic KG is not a consistent policy, where the
consistent policy refers to the policy that will provide correct labels for all instances (i.e.,
HT = H∗) almost surely when T goes to infinity. We note that randomized KG policy can
address this problem. However, from the proof of Proposition 6, randomized KG behaves
similarly to the uniform sampling policy in many cases and its empirical performance is
undesirable according to Section 8. In the next subsection, we will propose a new approx-
imate allocation policy based on KG which is a consistent policy with superior empirical
performance.

4.1 Optimistic Knowledge Gradient

The stage-wise reward can be viewed as a random variable with a two point distribution,
i.e., with the probability p1 = a

a+b of being R1(a, b) and the probability p2 = b
a+b of being

R2(a, b). The KG policy selects the instance with the largest expected reward. However, it
is not consistent.
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Algorithm 1 Optimistic Knowledge Gradient

Input: Parameters of prior distributions for instances {a0
i , b

0
i }Ki=1 and the budget T .

for t = 0, . . . , T − 1 do
Select the next instance it to label according to:

it = arg max
i∈{1,...,K}

(
R+(ati, b

t
i)
.
= max(R1(ati, b

t
i), R2(ati, b

t
i))
)
. (17)

Acquire the label yit ∈ {−1, 1}.
if yit = 1 then
at+1
it

= atit + 1, bt+1
it

= btit ; a
t+1
i = ati, b

t+1
i = bti for all i 6= it.

else
at+1
it

= atit , b
t+1
it

= btit + 1; at+1
i = ati, b

t+1
i = bti for all i 6= it.

end if
end for

Output: The positive set HT = {i : aTi ≥ bTi }.
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Figure 2: Illustration of R+(a, b).

In this section, we introduce a new index policy called “optimistic knowledge gradient”
(Opt-KG) policy. The Opt-KG policy assumes that decision makers are optimistic in the
sense that they select the next instance based on the optimistic outcome of the reward. As
a simplest version of the Opt-KG policy, for any state (ati, b

t
i), the optimistic outcome of the

reward R+(ati, b
t
i) is defined as maximum over the reward of obtaining the label 1, R1(ati, b

t
i),

and the reward of obtaining the label −1, R2(ati, b
t
i). Then the optimistic decision maker

selects the next instance i with the largest R+(ati, b
t
i) as in (17) in Algorithm 1. The overall

decision process using the Opt-KG policy is highlighted in Algorithm 1.
In the next theorem, we prove that Opt-KG policy is consistent.

Theorem 7 Assuming that a0
i and b0i are positive integers, the Opt-KG is a consistent

policy, i.e, as T goes to infinity, the accuracy will be 100% (i.e., HT = H∗) almost surely.
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Figure 3: Illustration of Conditional Value-at-Risk.

The key of proving the consistency is to show that when T goes to infinity, each instance
will be labeled infinitely many times. We prove this by showing that for any pair of positive
integers (a, b), R+(a, b) = max(R1(a, b), R2(a, b)) > 0 and R+(a, b) → 0 when a + b → ∞.
As an illustration, the values of R+(a, b) are plotted in Figure 2. Then, by strong law
of large number, we obtain the consistency of the Opt-KG as stated in Theorem 7. The
details are presented in the appendix. We have to note that asymptotic consistency is the
minimum guarantee for a good policy. However, it does not necessarily guarantee the good
empirical performance for the finite budget level. We will use experimental results to show
the superior performance of the proposed policy.

The proposed Opt-KG policy is a general framework for budget allocation in crowd
labeling. We can extend the allocation policy based on the maximum over the two possible
rewards (Algorithm 1) to a more general policy using the conditional value-at-risk (CVaR)
(Rockafellar and Uryasev, 2002). We note that here, instead of adopting the CVaR as a
risk measure, we apply it to the reward distribution. In particular, for a random variable
X with the support X (e.g., the random reward with the two point distribution), let α-
quantile function be denoted as Qα(X) = inf{x ∈ X : α ≤ FX(x)}, where FX(·) is the CDF
of X. The value-at-risk VaRα(X) is the smallest value such that the probability that X is
less than (or equal to) it is greater than (or equal to) 1 − α: VaRα(X) = Q1−α(X). The
conditional value-at-risk (CVaRα(X)) is defined as the expected reward exceeding (or equal
to) VaRα(X). An illustration of CVaR is shown in Figure 3.

For our problem, according to Rockafellar and Uryasev (2002), CVaRα(X) can be ex-
pressed as a simple linear program:

CVaRα(X) = max
{q1≥0,q2≥0}

q1R1 + q2R2,

s.t. q1 ≤
1

α
p1, q2 ≤

1

α
p2, q1 + q2 = 1.

As we can see, when α = 1, CVaRα(X) = p1R1 + p2R2, which is the expected reward;
when α→ 0, CVaRα(X) = max(R1, R2), which is used as the selection criterion in (17) in
Algorithm 1. In fact, a more general Opt-KG policy could be selecting the next instance
with the largest CVaRα(X) with a tuning parameter α ∈ [0, 1]. We can extend Theorem 7
to prove that the policy based on CVaRα(X) is consistent for any α < 1. According to our
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own experience, α → 0 usually has a better performance in our problem especially when
the budget is very limited. Therefore, for the sake of presentation simplicity, we introduce
the Opt-KG using max(R1, R2) (i.e., α→ 0 in CVaRα(X)) as the selection criterion.

Finally, we highlight that the Opt-KG policy is computationally very efficient. For K
instances with T units of the budget, the overall time and space complexity are O(KT ) and
O(K) respectively. It is much more efficient that the Gittins index policy which requires
O(T 6) time and space complexity.

4.2 Discussions

It is interesting to see the connection between the idea of making the decision based on
the optimistic outcome of the reward and the UCB (upper confidence bounds) policy (Auer
et al., 2002) for the classical multi-armed bandit problem as described in Section 3.3. In
particular, the UCB policy selects the next arm with the maximum upper confidence index,
which is defined as the current average reward plus the one-sided confidence interval. As
we can see, the upper confidence index can be viewed as an “optimistic” estimate of the
reward. However, we note that since we are in a Bayesian setting and our stage-wise rewards
are artificially created and thus not i.i.d. for each arm, the UCB policy (Auer et al., 2002)
cannot be directly applied to our problem.

In fact, our Opt-KG follows a more general principle of “optimism in the face uncer-
tainty” (Szita and Lőrincz, 2008). Essentially, the non-consistency of KG is due to its nature
of pure exploitation while a consistent policy should typically utilizes exploration. One of
the common techniques to handle the exploration-exploitation dilemma is to take an action
based on an optimistic estimation of the rewards (see Szita and Lőrincz, 2008; Even-Dar
and Mansour, 2001), which is the role R+(a, b) plays in Opt-KG.

For our problem, it is also straightforward to design the “pessimistic knowledge gradient”
policy which selects the next instance it based on the pessimistic outcome of the reward,
i.e., it = arg maxi

(
R−(ati, b

t
i)
.
= min(R1(ati, b

t
i), R2(ati, b

t
i))
)
. However, as shown in the next

proposition with the proof in the appendix, the pessimistic KG policy is inconsistent under
the uniform prior.

Proposition 8 When starting from the uniform prior (i.e., a0
i = b0i = 1) for all θi, the

pessimistic KG policy will acquire one label for each instance and then consistently acquire
the label for the first instance even if the budget T goes to infinity.

Finally, we discuss some other possible choices of prior distributions. For presentation
simplicity, we only consider the Beta prior for each θi with the fixed parameters a0

i and b0i .
In practice, more complicated priors can be easily incorporated into our framework. For
example, instead of using only one Beta prior, one can adopt a mixture of Beta distributions
as the prior and the posterior will also follow a mixture of Beta distributions, which allows
an easy inference about the posterior. As we show in the experiments (see Section 8.1.2),
the uniform prior does not work well when the data is highly skewed in terms of class
distribution. To address this problem, one possible choice is to adopt the prior p(θ) =
w1Beta(c, 1) + w2Beta(1, 1) + w3Beta(1, c) where w1, w2 and w3 are the weights and c is
a constant larger than 1 (e.g., c = 5). In such a prior, B(c, 1) corresponds to the data
with more positive labels while B(1, c) to the data with more negative labels. In addition
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to the mixture Beta prior, one can adopt the hierarchical Bayesian approach which puts
hyper-priors on the parameters in the Beta priors. The inference can be performed using
empirical Bayes approach (Gelman et al., 2013; Robert, 2007). In particular, one can
periodically re-calculate the MAP estimate of the hyper-parameters based on the available
data and update the model, but otherwise proceed with the given hyper-parameters. For
common choices of hyper-priors of Beta, please refer to Section 5.3 in Gelman et al. (2013).
These approaches can also be applied to model the workers’ reliability as we introduced in
the next Section. For example, one can use a mixture of Beta distributions as the prior
for the workers’ reliability, where Beta(c, 1) corresponds to reliable workers, Beta(1, 1) to
random workers and Beta(1, c) to malicious or poorly informed workers.

5. Incorporate Reliability of Heterogeneous Workers

In push crowdsourcing marketplaces, it is important to model workers’ reliability so that
the decision maker could assign more instances to reliable workers. Assuming that there
are M workers in a push marketplace, we can capture the reliability of the j-th worker by
introducing an extra parameter ρj ∈ [0, 1] as in (Dawid and Skene, 1979; Raykar et al.,
2010; Karger et al., 2013b), which is defined as the probability of getting the same label
as the one from a random fully reliable worker. Recall that the soft-label θi is the i-th
instance’s probability of being labeled as positive by a fully reliable worker and let zij be
the label provided by the j-th worker for the i-th instance. We model the distribution of
zij for given θi and ρj using the one-coin model (Dawid and Skene, 1979; Karger et al.,
2013b):

Pr(zij = 1|θi, ρj) = Pr(zij = 1|yi = 1, ρj) Pr(yi = 1|θi) + Pr(zij = 1|yi = −1, ρj) Pr(yi = −1|θi)
= ρjθi + (1− ρj)(1− θi); (18)

Pr(zij = −1|θi, ρj) = Pr(zij = −1|yi = −1, ρj) Pr(yi = −1|θi) + Pr(zij = −1|yi = 1, ρj) Pr(yi = 1|θi)
= ρj(1− θi) + (1− ρj)θi, (19)

where yi denotes the label provided a random fully reliable worker for the i-th instance.
We also note that it is straightforward to extend the current one-coin model to a more
complex two-coin model (Dawid and Skene, 1979; Raykar et al., 2010) by introducing a
pair of parameters (ρj1, ρj2) to model the j-th worker’s reliability. In particular, ρj1 and ρj2
are the probabilities of getting the positive and negative labels when a fully reliable worker
provides the same label.

Here we make the following implicit assumption:

Assumption 9 We assume that different workers make independent judgments and, for
each single worker, the labels provided by him/her to different instances are also independent.

As the parameter ρj increases from 0 to 1, the j-th worker’s reliability also increases in
the sense that Pr(zij = 1|θi, ρj) gets more and more close to θi, which is the probability
of getting a positive label from a random fully reliable worker. Different types of workers
can be easily characterized by ρj . When all ρj = 1, it recovers the previous model with
fully reliable workers since Pr(zij = 1|θi, ρj) = θi, i.e, each worker provides the label only
according to the underlying soft-label of the instance. When ρj = 0.5, we have Pr(zij =
1|θi, ρj) = Pr(zij = −1|θi, ρj) = 0.5, which indicates that the j-th worker is a spammer,
who randomly submits positive or negative labels. When ρj = 0, it indicates that the
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j-th worker is poorly informed or misunderstands the instruction such that he/she always
assigns wrong labels.

We assume that instances’ soft-label {θi}Ki=1 and workers’ reliability {ρj}Mj=1 are drawn

from known Beta prior distributions: θi ∼ Beta(a0
i , b

0
i ) and ρj ∼ Beta(c0

j , d
0
j ). At each

stage, we need to make the decision on both the next instance i to be labeled and the
next worker j to label the instance i (we omit t in i, j here for notational simplicity). In
other words, the action space A = {(i, j) : (i, j) ∈ {1, . . . ,K} × {1, . . . ,M}}. Once the
decision is made, the distribution of the outcome zij is given by (18) and (19). Given the
prior distributions and likelihood functions in (18) and (19), the Bayesian Markov Decision
process can be formally defined as in Section 3. Similar to the homogeneous worker setting,
the optimal inferred positive set HT takes the form of HT = {i : P Ti ≥ 0.5} as in Proposition
2 with P ti = Pr(i ∈ H∗|Ft) = Pr (θi ≥ 0.5|Ft). The value function V (S0) still takes the
form of (8), which can be further decomposed into the sum of stage-wise rewards in (9)
using Proposition 4. Unfortunately, in the heterogeneous worker setting, the posterior
distributions of θi and ρj are highly correlated with a sophisticated joint distribution, which
makes the computation of stage-wise rewards in (9) much more challenging. In particular,
given the prior θi ∼ Beta(a0

i , b
0
i ) and ρj ∼ Beta(c0

j , d
0
j ), the posterior distribution of θi and

ρj given the label zij = z ∈ {−1, 1} takes the following form:

p(θi, ρj |zij = z) =
Pr(zij = z|θi, ρj)Beta(a0

i , b
0
i )Beta(c0

j , d
0
j )

Pr(zij = z)
, (20)

where Pr(zij = z|θi, ρj) is the likelihood function defined in (18) and (19) and

Pr(zij = 1) = E(Pr(zij = 1|θi, ρj)) = E(θi)E(ρj) + (1− E(θi))(1− E(ρj))

=
a0
i

a0
i + b0i

c0
j

c0
j + d0

j

+
b0i

a0
i + b0i

d0
j

c0
j + d0

j

.

As we can see, the posterior distribution p(θi, ρj |zij = z) no longer takes the form of the
product of the distributions of θi and ρj and the marginal posterior of θi is no longer a
Beta distribution. As a result, P ti does not have a simple representation as in (5), which
makes the computation of the reward function much more difficult as the number of stages
increases. Therefore, to apply our Opt-KG policy to large-scale applications, we need to
use some approximate posterior inference techniques.

When applying Opt-KG, we need to perform 2·K ·M ·T inferences of the posterior distri-
bution in total. Each approximate inference should be computed very efficiently, hopefully
in a closed-form. For large-scale problems, most traditional approximate inference tech-
niques such as Markov Chain Monte Carlo (MCMC) or variational Bayesian methods (e.g.,
Beal, 2003; Paisley et al., 2012) may lead to higher computational cost since each inference
is an iterative procedure. To address the computational challenge, we apply the variational
approximation with the moment matching technique so that each inference of the approxi-
mate posterior can be computed in a closed-form. In fact, any highly efficient approximate
inference can be utilized to compute the reward function. Since the main focus of the paper
is on the MDP model and Opt-KG policy, we omit the discussion for other possible approx-
imate inference techniques. In particular, we first adopt the variational approximation by
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Algorithm 2 Optimistic Knowledge Gradient for Heterogeneous Workers

Input: Parameters of prior distributions for instances {a0
i , b

0
i }Ki=1 and for workers

{c0
j , d

0
j}Mj=1. The total budget T .

for t = 0, . . . , T − 1 do

1. Select the next instance it to label and the next worker jt to label it according to:

(it, jt) = arg max
(i,j)∈{1,...,K}×{1,...,M}

(
R+(ati, b

t
i, c

t
j , d

t
j)

.
= max(R1(ati, b

t
i, c

t
j , d

t
j), R2(ati, b

t
i, c

t
j , d

t
j))
)
.

(21)

2. Acquire the label zitjt ∈ {−1, 1} of the i-th instance from the j-th worker.
3. Update the posterior by setting:

at+1
it

= ãtit(zitjt) bt+1
it

= b̃tit(zitjt) ct+1
jt

= c̃tjt(zitjt) dt+1
jt

= d̃tjt(zitjt),

and all parameters for i 6= it and j 6= jt remain the same.
end for

Output: The positive set HT = {i : aTi ≥ bTi }.

assuming the conditional independence of θi and ρj :

p(θi, ρj |zij = z) ≈ p(θi|zij = z)p(ρj |zij = z).

We further approximate p(θi|zij = z) and p(ρj |zij = z) by two Beta distributions:

p(θi|zij = z) ≈ Beta(ãi(z), b̃i(z)), p(ρj |zij = z) ≈ Beta(c̃j(z), d̃j(z)),

where the parameters ãi(z), b̃i(z), c̃j(z), d̃j(z) are computed using moment matching with
the analytical form presented in the appendix. After this approximation, the new posterior
distributions of θi and ρj still have the same structure as their prior distribution, i.e., the
product of two Beta distributions, which allows a repeatable use of this approximation every
time when a new label is collected. Moreover, due to the Beta distribution approximation
of p(θi|zij = z), the reward function takes a similar form as in the previous setting. In
particular, assuming at a certain stage, θi has the posterior distribution Beta(ai, bi) and
ρj has the posterior distribution Beta(cj , dj). The reward of getting positive and negative
labels for the i-th instance from the j-th worker are presented in (22) and (23):

R1(ai, bi, cj , dj) = h(I(ãi(z = 1), b̃i(z = 1)))− h(I(ai, bi)), (22)

R2(ai, bi, cj , dj) = h(I(ãi(z = −1), b̃i(z = −1)))− h(I(ai, bi)). (23)

With the reward in place, we present Opt-KG for budget allocation in the heterogeneous
worker setting in Algorithm 2. We also note that due to the variational approximation of
the posterior, establishing the consistency results of Opt-KG becomes very challenging in
the heterogeneous worker setting.

6. Extensions

Our MDP formulation is a general framework to address many complex settings of dy-
namic budget allocation problems in crowd labeling. In this section, we briefly discuss two
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important extensions, where for both extensions, Opt-KG can be directly applied as an
approximate policy. We note that for the sake of presentation simplicity, we only present
these extensions in the noiseless homogeneous worker setting. Further extensions to the
heterogeneous setting are rather straightforward using the technique from Section 5.

6.1 Utilizing Contextual Information

When the contextual information is available for instances, we could easily extend our model
to incorporate such an important information. In particular, let the contextual information
for the i-th instance be represented by a p-dimensional feature vector xi ∈ Rp. We could
utilize the feature information by assuming a logistic model for θi:

θi
.
=

exp{〈w,xi〉}
1 + exp{〈w,xi〉}

,

where w is assumed to be drawn from a Gaussian prior N(µ0,Σ0). At the t-th stage with
the current state (µt,Σt), the decision maker determines the instance it and acquire its label
yit ∈ {−1, 1}. Then we update the posterior µt+1 and Σt+1 using the Laplace method as in
Bayesian logistic regression (Bishop, 2007). Variational methods can be applied to further
accelerate the posterior update (Jaakkola and Jordan, 2000). The details are provided in
the appendix.

6.2 Multi-Class Categorization

Our MDP formulation can also be extended to deal with multi-class categorization problems,
where each instance is a multiple choice question with several possible options (i.e., classes).
More formally, in a multi-class setting with C different classes, we assume that the i-th
instance is associated with a probability vector θi = (θi1, . . . θiC), where θic is the probability
that the i-th instance will be labeled as the class c by a random fully reliable worker and∑C

i=1 θic = 1. We assume that θi has a Dirichlet prior θi ∼ Dir(α0
i ) and the initial state

S0 is a K × C matrix with α0
i as its i-th row. At each stage t with the current state

St, we determine the next instance it to be labeled and collect its label yit ∈ {1, . . . , C},
which follows the categorical distribution: p(yit) =

∏C
c=1 θ

I(yit=c)
itc

. Since the Dirichlet is
the conjugate prior of the categorical distribution, the next state induced by the posterior
distribution is: St+1

it
= Stit + δyit and St+1

i = Sti for all i 6= it. Here δc is a row vector with
one at the c-th entry and zeros at all other entries. The transition probability is:

Pr(yit = c|St, it) = E(θitc|St) =
αtitc∑C
c=1 α

t
itc

.

We denote the true set of instances in class c by H∗c = {i : θic ≥ θic′ , ∀c′ 6= c}. By a
similar argument as in Proposition 2, at the final stage T , the estimated set of instances
belonging to class c is

HT
c = {i : P Tic ≥ P Tic′ ,∀c′ 6= c},

where P tic = Pr(i ∈ H∗c |Ft) = Pr(θic ≥ θic′ , ∀ c′ 6= c|St). We note that if the i-th
instance belongs to more than one HT

c , we only assign it to the one with the smallest
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index c so that {HT
c }Cc=1 forms a partition of {1, . . . ,K}. Let Pt

i = (P ti1, . . . , P
t
iC) and

h(Pt
i) = max1≤c≤C P

t
ic. The expected reward takes the form of:

R(St, it) = E
(
h(Pt+1

it
)− h(Pt

it)|S
t, it
)
.

With the reward function in place, we can formulate the problem into a MDP and use
DP to obtain the optimal policy and Opt-KG to compute an approximate policy. The
only computational challenge is how to calculate P tic efficiently so that the reward can be
evaluated. We present an efficient method in the appendix. We can further use Dirichlet
distribution to model workers reliability as in Liu and Wang (2012). Using multi-class
Bayesian logistic regression, we can also incorporate contextual information into the multi-
class setting in a straightforward manner.

7. Related Works

Categorical crowd labeling is one of the most popular tasks in crowdsourcing since it requires
less effort of the workers to provide categorical labels than other tasks such as language
translations. Most work in categorical crowd labeling are solving a static problem, i.e.,
inferring true labels and workers’ reliability based on a static labeled data set (Dawid and
Skene, 1979; Raykar et al., 2010; Liu and Wang, 2012; Welinder et al., 2010; Whitehill
et al., 2009; Zhou et al., 2012; Liu et al., 2012; Gao and Zhou, 2013). The first work that
incorporates diversity of worker reliability is by Dawid and Skene (1979), which uses EM
to perform the point estimation on both worker reliability and true class labels. Based on
that, Raykar et al. (2010) extended (Dawid and Skene, 1979) by introducing Beta prior
for workers’ reliability and features of instances in the binary setting; and Liu and Wang
(2012) further introduced Dirichlet prior for modeling workers’ reliability in the multi-class
setting. Our work utilizes the modeling techniques in these two static models as basic
building blocks but extends to dynamic budget allocation settings.

In recent years, there are several works that have been devoted into online learning or
budget allocation in crowdsourcing (Karger et al., 2013a,b; Bachrach et al., 2012; Ho et al.,
2013; Ertekin et al., 2012; Yan et al., 2011; Kamar et al., 2012; Ipeirotis et al., 2013). The
method proposed in Karger et al. (2013b) is based on the one-coin model. In particular, it
assigns instances to workers according to a random regular bipartite graph. Although the
error rate is proved to achieve the minimax rate, its analysis is asymptotic and method is
not optimal when the budget is limited. Karger et al. (2013a) further extended the work
by Karger et al. (2013b) to the multi-class setting. The new labeling uncertainty method in
Ipeirotis et al. (2013) is one of the state-of-the-art methods for repeated labeling. However,
it does not model each worker’s reliability and incorporate it into the allocation process.
Ho et al. (2013) proposed an online primal dual method for adaptive task assignment and
investigated the sample complexity to guarantee that the probability of making an error for
each instance is less that a threshold. However, it requires gold samples to estimate workers’
reliability. Kamar et al. (2012) used MDP to address a different decision problem in crowd
labeling, where the decision maker collects labels for each instance one after another and
only decides whether to hire an additional worker or not. Basically, it is an optimal stopping
problem since there is no pre-fixed amount of budget and one needs to balance the accuracy
v.s. the amount of budget. Since the accuracy and the amount of budget are in different
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metrics, such a balance could be very subjective. Furthermore, the MDP framework in
Kamar et al. (2012) cannot distinguish different workers. To the best of our knowledge,
there is no existing method that characterizes the optimal allocation policy for finite T . In
this work, with the MDP formulation and DP algorithm, we characterize the optimal policy
for budget allocation in crowd labeling under any budget level.

We also note that the budget allocation in crowd labeling is fundamentally different
from noisy active learning (Settles, 2009; Nowak, 2009). Active learning usually does not
model the variability of labeling difficulties among instances and assumes a single (noisy)
oracle; while in crowd labeling, we need to model both instances’ labeling difficulty and
different workers’ reliability. Secondly, active learning requires the feature information of
instances for the decision, which could be unavailable in crowd labeling. Finally, the goal
of the active learning is to label as few instances as possible to learn a good classifier. In
contrast, for budget allocation in crowd labeling, the goal is to infer the true labels for as
many instances as possible.

In fact, our MDP formulation is essentially a finite-horizon Bayesian multi-armed bandit
(MAB) problem. While the infinite-horizon Bayesian MAB has been well-studied and the
optimal policy can be computed via Gittins index (Gittins, 1989), for finite-horizon Bayesian
MAB, the Gittins index rule is only an approximate policy with high computational cost.
The proposed Opt-KG and a more general conditional value-at-risk based KG could be gen-
eral policies for Bayesian MAB. Recently, a Bayesian UCB policy was proposed to address
a different Bayesian MAB problem (Kaufmann et al., 2012). However, it is not clear how
to directly apply the policy to our problem since we are not updating the posterior of the
mean of rewards as in Kaufmann et al. (2012). We note that our problem is also related
to optimal stopping problem. The main difference is that the optimal stopping problem is
infinite-horizon while our problem is finite-horizon and the decision process must stop when
the budget is exhausted.

8. Experiments

In this section, we conduct empirical study to show some interesting properties of the
proposed Opt-KG policy and compare its performance to other methods. We observe
that several commonly used priors such as the uniform prior (Beta(1, 1)), Jeffery prior
(Beta(1/2, 1/2)) and Haldane prior (Beta(0, 0)) for instances’ soft-label {θi}Ki=1 lead to very
similar performance. Therefore, we adopt the uniform prior (Beta(1, 1)) unless otherwise

specified. In addition, for the ease of comparison, the accuracy is defined as |HT∩H∗|+|(HT )c∩(H∗)c|
K ,

which is normalized between [0, 1].

8.1 Simulation Study

In this section, we conduct simulated study. For each simulated experiment, we randomly
generate 20 different sets of data and report the averaged accuracy. The deviations for
different methods are similar and quite small and thus omitted for the purpose of better
visualization and space-saving.
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(c) T = 50K = 1050

Figure 4: Labeling counts for instances with different levels of ambiguity.
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Figure 5: Labeling counts for workers with different levels of reliability.

8.1.1 Study on Labeling Frequency

We first investigate that, in the homogeneous noiseless worker setting (i.e., workers are
fully reliable), how the total budget is allocated among instances with different levels of
ambiguity. In particular, we assume there are K = 21 instances with soft-labels θ =
(θ1, θ2, θ3, . . . , θK) = (0, 0.05, 0.1, . . . , 1). We vary the total budget T = 5K, 15K, 50K and
report the number of times that each instance is labeled on average over 20 independent
runs. The results are presented in Figure 4. It can be seen from Figure 4 that, more
ambiguous instances with θ close to 0.5 in general receive more labels than those simple
instances with θ close to 0 or 1. A more interesting observation is that when the budget
level is low (e.g., T = 5K in Figure 4(a)), the policy spends less budget on those very
ambiguous instances (e.g., θ = 0.45 or 0.5 ), but more budget on exploring less ambiguous
instances (e.g., θ = 0.35, 0.4 or 0.6). When the budget goes higher (e.g., T = 15K in Figure
4(b)), those very ambiguous instances receive more labels but the most ambiguous instance
(θ = 0.5) not necessarily receives the most labels. In fact, the instances with θ = 0.45 and
θ = 0.55 receive more labels than that of the most ambiguous instance. When the total
budget is sufficiently large (e.g., T = 50K in Figure 4(c)), the most ambiguous instance
receives the most labels since all the other instances have received enough labels to infer
their true labels.
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Figure 6: Density plot for different Beta distributions for generating each θi. Here, (a)
represents there are more easier instances; (b) more ambiguous instances; (c) &
(d) imbalanced class distributions with more positive instances.

Next, we investigate that, in the heterogeneous worker setting, how many instances each
worker is assigned. We simulate K = 21 instances’ soft-labels as before and further simu-
late workers’ reliability ρ = (ρ1, ρ2, . . . , ρM ) = (0.1, 0.15, . . . , 0.5, 0.505, 0.515, . . . , 0.995) for
M = 59 workers. Such a simulation ensures that there are more reliable workers, which is
in line with actual situation. We vary the total budget T = 5K, 15K, 50K and report the
number of instances that each worker is assigned on average over 20 independent runs in
Figure 5. As one can see, when the budget level goes up, there is clear trend that more
reliable workers receive more instances.

8.1.2 Prior for Instances

We investigate how robust Opt-KG is when using the uniform prior for each θi. We first
simulate K = 50 instances with each θi ∼ Beta(0.5, 0.5), θi ∼ Beta(2, 2), θi ∼ Beta(2, 1) or
θi ∼ Beta(4, 1). The density functions of these four different Beta distributions are plotted
in Figure 6. For each generating distribution of θi, we compare Opt-KG using the uniform
prior (Beta(1, 1)) (in red line) to Opt-KG with the true generating distribution as the prior
(in blue line). The comparison in accuracy with different levels of budget (T = 2K, . . . , 20K)
is shown in Figure 7. As we can see, the performance of Opt-KG using two different priors
are quite similar for most generating distributions except for θi ∼ Beta(4, 1) (i.e., the highly
imbalanced class distribution). When θi ∼ Beta(4, 1), the Opt-KG with uniform prior needs
at least T = 16K units of budget to match the performance of Opt-KG with true generating
distribution as the prior. This result indicates that for balanced class distributions, the
uniform prior is a good choice and robust to the underlying distribution of θi. For highly
imbalanced class distributions, if a uniform prior is adopted, one needs more budget to
recover from the inaccurate prior belief.

8.1.3 Prior on Workers

We investigate how sensitive the prior for the workers’ reliability ρj is. In particular, we sim-
ulate K = 50 instances with each θi ∼ Beta(1, 1) and M = 100 workers with ρj ∼ Beta(3, 1),
ρj ∼ Beta(8, 1) or ρj ∼ Beta(5, 2). We ensure that there are more reliable workers than
spammers or poorly informed workers, which is in line with the actual situation. We use the
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(b) θi ∼ Beta(2, 2)
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(c) θi ∼ Beta(2, 1)
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Figure 7: Comparison between Opt-KG using the uniform distribution and true generating
distribution as the prior.
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Figure 8: Density plot for different Beta distributions for generating ρj . The plot in (d) is
the one that we use as the prior.

prior Beta(4, 1), which indicates that we have the prior belief that most workers preform
reasonably well and the averaged accuracy is 4/5 = 80%. In Figure 8, we show different
density functions for generating ρj and the prior that we use (in Figure 8 (d)). For each
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(b) θi ∼ Beta(8, 1)
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(c) θi ∼ Beta(5, 2)

Figure 9: Comparison between Opt-KG using Beta(4, 1) and true generating distribution
prior as the prior.

generating distribution of θi, we compare the Opt-KG policy using the prior (Beta(4, 1))
(in red line) to the Opt-KG with the true generating distribution as the prior (in blue line).
The comparison in accuracy with different levels of budget (T = 2K, . . . , 20K) is shown in
Figure 9. From Figure 9, we observe that the performance of Opt-KG using two different
priors are quite similar in all different settings. Hence, we will use Beta(4, 1) as the prior
when the true prior of workers is unavailable.

8.1.4 Performance Comparison Under the Homogeneous Noiseless Worker
Setting

We compare the performance of Opt-KG under the homogeneous noiseless worker setting
to several other competitors, including

1. Uniform: Uniform sampling.

2. KG(Random): Randomized knowledge gradient (Frazier et al., 2008).

3. Gittins-Inf: A Gittins-indexed based policy proposed by Xie and Frazier (2013) for
solving an infinite-horizon Bayesian MAB problem where the reward is discounted by
δ. Although it solves a different problem, we apply it as a heuristic by choosing the
discount factor δ such that T = 1/(1− δ).

4. NLU: The “new labeling uncertainty” method proposed by Ipeirotis et al. (2013).

We note that we do not compare to the finite-horizon Gittins index rule (Nino-Mora, 2011)
since its computation is very expensive. On some small-scale problems, we observe that the
finite-horizon Gittins index rule (Nino-Mora, 2011) has the similar performance as Gittins-Inf
in Xie and Frazier (2013).

We simulate K = 50 instances with each θi ∼ Beta(1, 1), θi ∼ Beta(0.5, 0.5), θi ∼
Beta(2, 2), θi ∼ Beta(2, 1) or θi ∼ Beta(4, 1) (see Figure 6). For each of the five settings,
we vary the total budget T = 2K, 3K, . . . , 20K and report the mean of accuracy for 20
independently generated sets of {θi}Ki=1. For the last four settings, we report the comparison
among different methods when either using the uniform prior (“uni prior” for short) or the
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true generating distribution as the prior. From Figure 10, the proposed Opt-KG outperforms
all the other competitors in most settings regardless the choice of the prior. For θi ∼
Beta(0.5, 0.5), NLU matches the performance of Opt-KG; and for θi ∼ Beta(2, 2), Gittins-inf
matches the performance of Opt-KG. We also observe that the performance of randomized
KG only slightly improves that of uniform sampling.

8.1.5 Performance Comparison Under the Heterogeneous Worker Setting

We compare the proposed Opt-KG under the heterogeneous worker setting to several other
competitors:

1. Uniform: Uniform sampling.

2. KG(Random): Randomized knowledge gradient (Frazier et al., 2008).

3. KOS: The randomized budget allocation algorithm in Karger et al. (2013b).

We note that several competitors for the homogeneous worker setting (e.g., Gittins-inf and
NLU) cannot be directly applied to the heterogeneous worker setting since they fail to model
each worker’s reliability.

We simulate K = 50 instances with each θi ∼ Beta(1, 1) and M = 100 workers with
ρj ∼ Beta(4, 1), ρj ∼ Beta(3, 1), ρj ∼ Beta(8, 1) or ρj ∼ Beta(5, 2) (see Figure 8). For each
of the four settings, we vary the total budget T = 2K, 3K, . . . , 20K and report the mean
of accuracy for 20 independently generated sets of parameters. For the last three settings,
we report the comparison among different methods when either using Beta(4, 1) prior or
the true generating distribution for ρj as the prior. From Figure 11, the proposed Opt-KG
outperforms all the other competitors regardless the choice of the prior.

8.2 Real Data

We compare different policies on a standard real data set for recognizing textual entailment
(RTE) (Section 4.3 in Snow et al., 2008). There are 800 instances and each instance is a
sentence pair. Each sentence pair is presented to 10 different workers to acquire binary
choices of whether the second hypothesis sentence can be inferred from the first one. There
are in total 164 different workers. We first consider the homogeneous noiseless setting
without incorporating the diversity of workers and use the uniform prior (Beta(1, 1)) for
each θi. In such a setting, once we decide to label an instance, we randomly choose a
worker (who provides the label in the full data set) to acquire the label. Due to this
randomness, we run each policy 20 times and report the mean of the accuracy in Figure
12(a). As we can see, Opt-KG, Gittins-inf and NLU all perform quite well. We also note
that although Gittins-inf performs slightly better than our method on this data, it requires
solving a linear system with O(T 2) variables at each stage, which could be too expensive for
large-scale applications. While our Opt-KG policy has a time complexity linear in KT and
space complexity linear in K, which is much more efficient when a quick online decision is
required. In particular, we present the comparison between Opt-KG and Gittins-inf on the
averaged CPU time under different budget levels in Table 4. As one can see, Gittins-inf is
computationally more expensive than Opt-KG.
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(a) θi ∼ Beta(1, 1) (True Prior)
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(b) θi ∼ Beta(0.5, 0.5) (True Prior)
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(c) θi ∼ Beta(0.5, 0.5) (Uni Prior)
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(d) θi ∼ Beta(2, 2) (True Prior)
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(e) θi ∼ Beta(2, 2) (Uni Prior)
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(f) θi ∼ Beta(2, 1) (True Prior)

0 200 400 600 800 1000
0.75

0.8

0.85

0.9

0.95

Budget

A
cc

ur
ac

y

 

 

Uniform
KG (Random)
Gittins−Inf
NLU
Opt−KG

(g) θi ∼ Beta(2, 1) (Uni Prior)
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(h) θi ∼ Beta(4, 1) (True Prior)
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(i) θi ∼ Beta(4, 1) (Uni Prior)

Figure 10: Performance comparison under the homogeneous noiseless worker setting.

When the worker reliability is incorporated, we compare different policies in Figure
12(b). We put a Beta(4, 1) prior distribution for each ρj which indicates that we have the
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(a) ρj ∼ Beta(4, 1) (True Prior)
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(b) ρj ∼ Beta(3, 1) (True Prior)
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(c) ρj ∼ Beta(3, 1) (Beta(4, 1)
Prior)
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(d) ρj ∼ Beta(8, 1) (True Prior)
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(e) ρj ∼ Beta(8, 1) (Beta(4, 1) Prior)
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(f) ρj ∼ Beta(5, 2) (True Prior)
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(g) ρj ∼ Beta(5, 2) (Beta(4, 1) Prior)

Figure 11: Performance comparison under the heterogeneous worker setting.

Budget T 2K = 1, 600 4K = 3, 200 6K = 4, 800 10K = 8, 000

Opt-KG 1.09 2.19 3.29 5.48

Gittins-inf 25.87 35.70 45.59 130.68

Table 4: Comparison in CPU time (seconds)

prior belief that most workers perform reasonably well. Other priors in Figure 8 lead to
similar results and thus omitted here. As one can see, the accuracy of Opt-KG is much
higher than that of other policies when T is small. It achieves the highest accuracy of 92.05%
only using 40% of the total budget (i.e., on average, each instance is labeled 4 times). One
may also observe that when T > 4K = 3, 200, the performance of Opt-KG does not improve
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(a) RTE: Homogeneous Noiseless Worker
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(b) RTE: Heterogeneous Worker

Figure 12: Performance comparison on the real data set.

and in fact, slightly downgrades a little bit. This is mainly due to the restrictiveness of
the experimental setting. In particular, since the experiment is conducted on a fixed data
set with partially observed labels, the Opt-KG cannot freely choose instance-worker pairs
especially when the budget goes up (i.e., the action set is greatly restricted). According
to our experience, such a phenomenon will not happen on experiments when labels can be
obtained from any instance-worker pair. Comparing Figure 12(b) to 12(a), we also observe
that Opt-KG under the heterogeneous worker setting performs much better than Opt-KG
under the homogeneous worker setting, which indicates that it is beneficial to incorporate
workers’ reliability.

9. Conclusions and Future Work

In this paper, we propose to address the problem of budget allocation in crowd labeling.
We model the problem using the Bayesian Markov decision process and characterize the
optimal policy using the dynamic programming. We further propose a computationally
more attractive approximate policy: optimistic knowledge gradient. Our MDP formulation
is a general framework, which can be applied to binary or multi-class, contextual or non-
contextual crowd labeling problems in either pull or push crowdsourcing marketplaces.

There are several possible future directions for this work. First, it is of great interest
to show the consistency of Opt-KG in heterogeneous worker setting and further provide
the theoretical results on the performance of Opt-KG under finite budget. Second, in
this work, we assume that both instances and workers are equally priced. Although this
assumption is standard in many crowd labeling applications, a dynamic pricing strategy as
the allocation process proceeds will better motivate those more reliable workers to label more
challenge instances. A recent work in Wang et al. (2013) provides some quality-based pricing
algorithms for crowd workers and it will be interesting to incorporate their strategies into
our dynamic allocation framework. Third, we assume that the labels provided by the same
worker to different instances are independent. It is more interesting to consider that the
workers’ reliability will be improved during the labeling process when some useful feedback
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can be provided. Further, since the proposed Opt-KG is a fairly general approximate policy
for MDP, it is also interesting to apply it to other statistical decision problems.
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Appendix A. Proof of Results

In this section, we provide the proofs of the main results of our paper.

A.1 Proof of Proposition 2

The final positive set HT is chosen to maximize the expected accuracy conditioned on FT :

HT = arg max
H

E

(
K∑
i=1

(1(i ∈ H)1(i ∈ H∗) + 1(i 6∈ H)1(i 6∈ H∗))

∣∣∣∣∣FT
)
. (24)

According to the definition (6) of P Ti , we can re-write (24) using the linearity of the
expectation:

K∑
i=1

(1(i ∈ H) Pr(i ∈ H∗|FT ) + 1(i 6∈ H) Pr(i 6∈ H∗|FT ))

=

K∑
i=1

(
1(i ∈ H)P Ti + 1(i 6∈ H)(1− P Ti )

)
. (25)

To maximize (25) over H, it easy to see that we should set i ∈ H if and only if P Ti ≥ 0.5.
Therefore, we have the positive set

HT = {i : P Ti ≥ 0.5}.

A.2 Proof of Corollary 3

Recall that

I(a, b) = Pr(θ ≥ 0.5|θ ∼ Beta(a, b)) =
1

B(a, b)

∫ 1

0.5
ta−1(1− t)b−1dt, (26)

where B(a, b) is the beta function.
It is easy to see that I(a, b) > 0.5 ⇐⇒ I(a, b) > 1 − I(a, b). We re-write 1 − I(a, b) as

follows

1− I(a, b) =
1

B(a, b)

∫ 0.5

0
ta−1(1− t)b−1dt =

1

B(a, b)

∫ 1

0.5
tb−1(1− t)a−1dt,
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where the second equality is obtained by setting t := 1− t. Then we have:

I(a, b)− (1− I(a, b)) =
1

B(a, b)

∫ 1

0.5
(ta−1(1− t)b−1 − tb−1(1− t)a−1)dt

=
1

B(a, b)

∫ 1

0.5
ta−1(1− t)b−1

((
t

1− t

)a−b
− 1

)
dt.

Since t > 0.5, t
1−t > 1. When a > b,

(
t

1−t

)a−b
> 1 and hence I(a, b)− (1− I(a, b)) > 0, i.e,

I(a, b) > 0.5. When a = b,
(

t
1−t

)a−b
≡ 1 and I(a, b) = 0.5. When a < b,

(
t

1−t

)a−b
< 1 and

I(a, b) < 0.5.

A.3 Proof of Proposition 4

We use the proof technique in Xie and Frazier (2013) to prove Proposition 4. According to
(8), the value function takes the following form,

V (S0) = sup
π

Eπ
(

K∑
i=1

h(P Ti )

)
. (27)

To decompose the final accuracy
∑K

i=1 h(P Ti ) into the incremental reward at each stage,

we define G0 =
∑K

i=1 h(P 0
i ) and Gt+1 =

∑K
i=1 h(P t+1

i ) −
∑K

i=1 h(P ti ). Then,
∑K

i=1 h(P Ti )

can be decomposed as:
∑K

i=1 h(P Ti ) ≡ G0 +
∑T−1

t=0 Gt+1. The value function can now be
re-written as follows:

V (S0) = G0(S0) + sup
π

T−1∑
t=0

Eπ(Gt+1)

= G0(S0) + sup
π

T−1∑
t=0

Eπ (E(Gt+1|Ft))

= G0(S0) + sup
π

T−1∑
t=0

Eπ
(
E(Gt+1|St, it)

)
.

Here, the first inequality is true because G0 is determinant and independent of π; the
second inequality is due to the tower property of conditional expectation and the third one
holds because Gt+1, which is a function of P t+1

i and P ti , depends on Ft only through St

and it. We define incremental expected reward gained by labeling the it-th instance at the
state St as follows:

R(St, it) = E(Gt+1|St, it) = E

(
K∑
i=1

h(P t+1
i )−

K∑
i=1

h(P ti )|St, it

)
= E

(
h(P t+1

it
)− h(P tit)|S

t, it
)
. (28)
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The last equation is due to the fact that only P tit will be changed if the it-th instance is
labeled next. With the expected reward function in place, the value function in (8) can be
re-formulated as:

V (S0) = G0(s) + sup
π

Eπ
(
T−1∑
t=0

R(St, it)
∣∣∣S0

)
. (29)

A.4 Proof of Proposition 6

To prove the failure of deterministic KG, we first show a key property for the expected
reward function:

R(a, b) =
a

a+ b
(h(I(a+ 1, b))− h(I(a, b))) +

b

a+ b
(h(I(a, b+ 1))− h(I(a, b))) . (30)

Lemma 10 When a, b are positive integers, if a = b, R(a, b) = 0.52a

aB(a,a) and if a 6= b,

R(a, b) = 0.

To prove lemma 10, we first present several basic properties for B(a, b) and I(a, b), which
will be used in all the following theorems and proofs.

1. Properties for B(a, b):

B(a, b) = B(b, a), (31)

B(a+ 1, b) =
a

a+ b
B(a, b), (32)

B(a, b+ 1) =
b

a+ b
B(a, b). (33)

2. Properties for B(a, b):

I(a, b) = 1− I(b, a), (34)

I(a+ 1, b) = I(a, b) +
0.5a+b

aB(a, b)
, (35)

I(a, b+ 1) = I(a, b)− 0.5a+b

bB(a, b)
. (36)

The properties for I(a, b) are derived from the basic property of regularized incomplete
beta function. 1

Proof [Proof of Lemma 10]
When a = b, by Corollary 3, we have I(a+1, b) > 0.5, I(a, b) = 0.5 and I(a, b+1) < 0.5.

Therefore, the expected reward (30) takes the following form:

R(a, b) = 0.5(I(a+ 1, a)− I(a, a)) + 0.5((1− I(a, a+ 1))− I(a, a))

= I(a+ 1, a)− I(a, a) =
0.52a

aB(a, a)
.

1. http://dlmf.nist.gov/8.17
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When a > b, since a, b are integers, we have a ≥ b+1 and hence I(a+1, b) > 0.5, I(a, b) >
0.5, I(a, b+ 1) ≥ 0.5 according to Corollary 3. The expected reward (30) now becomes:

R(a, b) =
a

a+ b
I(a+ 1, b) +

b

a+ b
I(a, b+ 1)− I(a, b)

=
a

a+ b

1

B(a+ 1, b)

∫ 1

0.5
t · ta−1(1− t)b−1dt

+
b

a+ b

1

B(a, b+ 1)

∫ 1

0.5
ta−1(1− t)(1− t)b−1dt− I(a, b)

=
1

B(a, b)

∫ 1

0.5
(t+ (1− t)) · ta−1(1− t)b−1dt− I(a, b)

=I(a, b)− I(a, b) = 0.

Here we use (32) and (33) to show that a
a+b

1
B(a+1,b) = b

a+b
1

B(a,b+1) = 1
B(a,b) .

When a ≤ b− 1, we can prove R(a, b) = 0 in a similar way.

With Lemma 10 in place, the proof for Proposition 6 is straightforward. Recall that the
deterministic KG policy chooses the next instance according to

it = arg max
i

R(St, i) = arg max
i

R(ati, b
t
i),

and breaks the tie by selecting the one with the smallest index. Since R(a, b) > 0 if and only
if a = b, at the initial stage t = 0, R(a0

i , b
0
i ) > 0 for those instances i ∈ E = {i : a0

i = b0i }.
The policy will first select i0 ∈ E with the largest R(a0

i , b
0
i ). After obtaining the label yi0 ,

either a0
i0

or b0i0 will add one and hence a1
i0
6= b1i0 and R(a1

i0
, b1i0) = 0. The policy will

select another instance i1 ∈ E with the “current” largest expected reward and the expected
reward for i1 after obtaining the label yi1 will then become zero. As a consequence, the

KG policy will label each instance in E for the first |E| stages and R(a
|E|
i , b

|E|
i ) = 0 for all

i ∈ {1, . . . ,K}. Then the deterministic policy will break the tie selecting the first instance
to label. From now on, for any t ≥ |E|, if at1 6= bt1, then the expected reward R(at1, b

t
1) = 0.

Since the expected reward for other instances are all zero, the policy will still label the first
instance. On the other hand, if at1 = bt1, and the first instance is the only one with the
positive expected reward and the policy will label it. Thus Proposition 6 is proved.

Remark 11 For randomized KG, after getting one label for each instance in E for the first
|E| stages, the expected reward for each instance has become zero. Then randomized KG will
uniformly select one instance to label. At any stage t ≥ |E|, if there exists one instance i (at
most one instance) with ati = bti, the KG policy will provide the next label for i; otherwise,
it will randomly select an instance to label.

A.5 Proof of Theorem 7

To prove the consistency of the Opt-KG policy, we first show the exact values for R+
α (a, b) =

max(R1(a, b), R2(a, b)).
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1. When a ≥ b+ 1:

R1(a, b) = I(a+ 1, b)− I(a, b) =
0.5a+b

aB(a, b)
> 0;

R2(a, b) = I(a, b+ 1)− I(a, b) = − 0.5a+b

bB(a, b)
< 0.

Therefore,

R+(a, b) = R1(a, b) =
0.5a+b

aB(a, b)
> 0.

2. When a = b:

R1(a, b) = I(a+ 1, a)− I(a, a) =
0.52a

aB(a, a)
;

R2(a, b) = 1− I(a, a+ 1)− I(a, a) =
0.52a

aB(a, a)
.

Therefore, we have R1 = R2 and

R+(a, b) = R1(a, b) = R2(a, b) =
0.52a

aB(a, a)
> 0.

3. When b− 1 ≥ a:

R1(a, b) = I(a, b)− I(a+ 1, b) = − 0.5a+b

aB(a, b)
< 0;

R2(a, b) = I(a, b)− I(a, b+ 1) =
0.5a+b

bB(a, b)
> 0.

Therefore

R+(a, b) = R2(a, b) =
0.5a+b

bB(a, b)
> 0.

We note that the values of R+(a, b) for different a, b are plotted in Figure 2 in main text.

As we can see R+(a, b) > 0, for any positive integers (a, b), we first prove in the following
lemma that

lim
a+b→∞

R+(a, b) = 0. (37)

Lemma 12 Properties for R+(a, b):

1. R(a, b) is symmetric, i.e., R+(a, b) = R+(b, a).

2. lima→∞R
+(a, a) = 0.

3. For any fixed a ≥ 1, R+(a+ k, a− k) = R+(a− k, a+ k) is monotonically decreasing
in k for k = 0, . . . , a− 1.
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4. When a ≥ b, for any fixed b, R+(a, b) is monotonically decreasing in a. By the sym-
metry of R+(a, b), when b ≥ a, for any fixed a, R+(a, b) is monotonically decreasing
in b.

By the above four properties, we have lim(a+b)→∞R
+(a, b) = 0.

Proof [Proof of Lemma 12]
We first prove these four properties.

• Property 1: By the fact that B(a, b) = B(b, a), the symmetry of R+(a, b) is straight-
forward.

• Property 2: For a > 1, R+(a,a)
R+(a−1,a−1)

= 2a−1
2a < 1 and hence R+(a, a) is monotonically

decreasing in a. Moreover,

R+(a, a) = R+(1, 1)
a∏
i=2

2i− 1

2i
= R+(1, 1)

a∏
i=2

(1− 1

2i
) ≤ R+(1, 1)e−

∑a
i=2

1
2i .

Since lima→∞
∑a

i=2
1
2i =∞ and R+(a, a) ≥ 0, lima→∞R

+(a, a) = 0.

• Property 3: For any k ≥ 0,

R+(a+ (k + 1), a− (k + 1))

R+(a+ k, a− k)
=

(a+ k)B(a+ k, a− k)

(a+ k + 1)B(a+ (k + 1), a− (k + 1))

=
a− (k + 1)

a+ (k + 1)
< 1.

• Property 4: When a ≥ b, for any fixed b:

R+(a+ 1, b)

R+(a, b)
=

aB(a, b)

2(a+ 1)B(a+ 1, b)
=

a(a+ b)

2a(a+ 1)
< 1.

According to the third property, when a + b is an even number, we have R+(a, b) <
R+(a+b

2 , a+b
2 ). According to the fourth property, when a+b is an odd number and a ≥ b+1,

we have R+(a, b) < R+(a − 1, b) < R+(a+b−1
2 , a+b−1

2 ); while when a + b is an odd number

and a ≤ b− 1, we have R+(a, b) < R+(a, b− 1) < R+(a+b−1
2 , a+b−1

2 ). Therefore,

R+(a, b) < R+

(
ba+ b

2
c, ba+ b

2
c
)
.

According to the second property such that lima→∞R
+(a, a) = 0, we obtain (37).

Using Lemma 12, we first show that, in any sample path, the Opt-KG will label each
instance infinitely many times as T goes to infinity. Let ηi(T ) be a random variable rep-
resenting the number of times that the i-th instance has been labeled until the stage T
using Opt-KG. Given a sample path ω, let I(ω) = {i : limT→∞ ηi(T )(ω) < ∞} be the
set of instances that has been labeled only finite number of times as T goes to infinity in
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this sample path. We need to prove that I(ω) is an empty set for any ω. We prove it by
contradiction. Assuming that I(ω) is not empty, then after a certain stage T̂ , instances in
I(ω) will never be labeled. By Lemma 12, for any j ∈ Ic, limT→∞R

+(aTj (ω), bTj (ω)) = 0.

Therefore, there will exist T̄ > T̂ such that:

max
j∈Ic

R+(aT̄j (ω), bT̄j (ω)) < max
i∈I

R+(aT̂i (ω), bT̂i (ω)) = max
i∈I

R+(aT̄i (ω), bT̄i (ω)).

Then according to the Opt-KG policy, the next instance to be labeled must be in I(ω),
which leads to the contradiction. Therefore, I(ω) will be an empty set for any ω.

Let Y s
i be the random variable which takes the value 1 if the s-th label of the i-th instance

is 1 and the value −1 if the s-th label is 0. It is easy to see that E(Y s
i |θi) = Pr(Y s

i = 1|θi) =
θi. Hence, Y s

i , s = 1, 2, . . . are independent and identically distributed random variables.
By the fact that limT→∞ ηT (i) = ∞ in all sample paths and using the strong law of large
number, we conclude that, conditioning on θi, i = 1, . . . ,K, the conditional probability of

lim
T→∞

aTi − bTi
ηi(T )

= lim
T→∞

∑ηi(T )
s=1 Y s

i

ηi(T )
= E(Y s

i |θi) = 2θi − 1

for all i = 1, . . . ,K, is one. According to Proposition 2, we have HT = {i : aTi ≥ bTi } and
H∗ = {i : θi ≥ 0.5}. The accuracy is Acc(T ) = 1

K (|HT ∩H∗|+ |Hc
T ∩ (H∗)c|) . We have:

Pr( lim
T→∞

Acc(T ) = 1|{θi}Ki=1) = Pr

(
lim
T→∞

(|HT ∩H∗|+ |Hc
T ∩ (H∗)c|) = K|{θi}Ki=1

)
≥Pr

(
lim
T→∞

aTi − bTi
ηi(T )

= 2θi − 1, ∀i = 1, . . . ,K|{θi}Ki=1

)
= 1,

whenever θi 6= 0.5 for all i. The last inequality is due to the fact that, as long as θi is

not 0.5 in any i, any sample path that gives the event limT→∞
aTi −bTi
ηi(T ) = 2θi − 1, ∀i =

1, . . . ,K also gives the event limT→∞(aTi − bTi ) = sgn(2θi − 1)(+∞), which further implies
limT→∞(|HT ∩H∗|+ |Hc

T ∩ (H∗)c|) = K.
Finally, we have:

Pr

(
lim
T→∞

Acc(T ) = 1

)
= E{θi}Ki=1

[
Pr

(
lim
T→∞

Acc(T ) = 1|{θi}Ki=1

)]
= E{θi:θi 6=0.5}Ki=1

[
Pr

(
lim
T→∞

Acc(T ) = 1|{θi}Ki=1

)]
= E{θi:θi 6=0.5}Ki=1

[1] = 1,

where the second equality is because {θi : ∃i, θi = 0.5} is a zero measure set.

A.6 Proof of Proposition 8

Recall that our random reward is a two-point distribution with the probability p1 = a
a+b

of being R1(a, b) = h(I(a + 1, b)) − h(I(a, b)) and p2 = b
a+b of being R2(a, b) = h(I(a, b +

1))− h(I(a, b)). The pessimistic KG selects the next instance which maximizes R−(a, b) =
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min(R1(a, b), R2(a, b)). To show that the policy is inconsistent, we first compute the exact
values for R−(a, b) for positive integers (a, b).

Utilizing Corollary 3 and the basic properties of I(a, b) in (34), (35), (36), we have:

1. When a ≥ b+ 1:

R1(a, b) = I(a+ 1, b)− I(a, b) =
0.5a+b

aB(a, b)
> 0;

R2(a, b) = I(a, b+ 1)− I(a, b) = − 0.5a+b

bB(a, b)
< 0.

Therefore,

R−(a, b) = R2(a, b) = − 0.5a+b

bB(a, b)
< 0.

2. When a = b:

R1(a, b) = I(a+ 1, a)− I(a, a) =
0.52a

aB(a, a)
;

R2(a, b) = 1− I(a, a+ 1)− I(a, a) =
0.52a

aB(a, a)
.

Therefore, we have x1 = x2 and

R−(a, b) = R1(a, b) = R2(a, b) =
0.52a

aB(a, a)
> 0.

3. When b− 1 ≥ a:

R1(a, b) = I(a, b)− I(a+ 1, b) = − 0.5a+b

aB(a, b)
< 0;

R2(a, b) = I(a, b)− I(a, b+ 1) =
0.5a+b

bB(a, b)
> 0.

Therefore

R−(a, b) = R1(a, b) = − 0.5a+b

aB(a, b)
< 0.

We summarize the properties of R−(a, b) in the next Lemma.

Lemma 13 Properties for R−(a, b):

1. R−(a, b) > 0 if and only if a = b.

2. R−(a, b) is symmetric, i.e., R−(a, b) = R−(b, a)

3. When a = b + 1, then R−(a, b) = R−(b + 1, b) is monotonically increasing in b. By
the symmetry of R−(a, b), when b = a + 1, R−(a, b) = R−(a, a + 1) is monotonically
increasing in a.
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Figure 13: Illustration of R−(a, b).

4. When a ≥ b + 1, for any fixed b, R−(a, b) is monotonically increasing in a. By the
symmetry of R−(a, b), when b ≥ a + 1, for any fixed a, R−(a, b) is monotonically
increasing in b.

For better visualization, we plot values of R−(a, b) for different a, b in Figure 13. All the
properties in Lemma 13 can be seen clearly from Figure 13. The proof of these properties
are based on simple algebra and thus omitted here.

From Lemma 13, we can conclude that for any positive integers a, b with a+ b 6= 3:

R−(1, 2) = R−(2, 1) < R−(a, b). (38)

Recall that the pessimistic KG selects:

it = arg max
i∈{1,...,K}

R−(ati, b
t
i).

When starting from the uniform prior with a0
i = b0i = 1 for all i ∈ {1 . . . ,K}, the corre-

sponding R−(a0
i , b

0
i ) = R−(1, 1) > 0. After obtaining a label for any instance i, the Beta

parameters for θi will become either (2, 1) or (1, 2) with R−(1, 2) = R−(2, 1) < 0. There-
fore, for the first K stages, the pessimistic KG policy will acquire the label for each instance
once. For any instance i, we have either aKi = 2, bKi = 1 or aKi = 1, bKi = 2 at the stage K.
Then the pessimistic KG policy will select the first instance to label. According to (38),
for any t ≥ K, R−(at1, b

t
1) > R−(1, 2) = R−(2, 1). Therefore, the pessimistic KG policy will

consistently acquire the label for the first instance. Since the tie will only appear at the
stage K, the randomized pessimistic KG will also consistently select a single instance to
label after K stages.

Appendix B. Incorporate Reliability of Heterogeneous Workers

As we discussed in Section 5 in main text, we approximate the posterior so that at any
stage for all i, j, θi and ρj will follow Beta distributions. In particular, assuming at the
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current state θi ∼ Beta(ai, bi) and ρj ∼ Beta(cj , dj), the posterior distribution conditioned
on zij takes the following form:

p(θi, ρj |zij = 1) =
Pr(zij = 1|θi, ρj)Beta(ai, bi)Beta(cj , dj)

Pr(zij = 1)
,

p(θi, ρj |zij = −1) =
Pr(zij = −1|θi, ρj)Beta(ai, bi)Beta(cj , dj)

Pr(zij = −1)
,

where the likelihood Pr(zij = z|θi, ρj) for z = 1,−1 is defined in (18) and (19), i.e.,

Pr(zij = 1|θi, ρj) = θiρj + (1− θi)(1− ρj),
Pr(zij = −1|θi, ρj) = (1− θi)ρj + θi(1− ρj).

Also,

Pr(zij = 1) = E(Pr(zij = 1|θi, ρj)) = E(θi)E(ρj) + (1− E(θi))(1− E(ρj))

=
ai

ai + bi

cj
cj + dj

+
bi

ai + bi

dj
cj + dj

,

Pr(zij = −1) = E(Pr(zij = −1|θi, ρj)) = (1− E(θi))E(ρj) + E(θi)(1− E(ρj))

=
bi

ai + bi

cj
cj + dj

+
ai

ai + bi

dj
cj + dj

.

The posterior distributions p(θi, pj |zij = z) no longer takes the form of the product
of Beta distributions on θi and pj . Therefore, we use variational approximation by first
assuming the conditional independence of θi and ρj :

p(θi, ρj |zij = z) ≈ p(θi|zij = z)p(ρj |zij = z).

In fact, the exact form of marginal distributions can be calculated as follows:

p(θi|zij = 1) =
θiE(ρj) + (1− θi)(1− E(ρj))

Pr(zij = 1)
Beta(ai, bi),

p(ρj |zij = 1) =
E(θi)ρj + (1− E(θi))(1− ρj)

Pr(zij = 1)
Beta(cj , dj),

p(θi|zij = −1) =
(1− θi)E(ρj) + θi(1− E(ρj))

Pr(zij = −1)
Beta(ai, bi),

p(ρj |zij = −1) =
(1− E(θi))ρj + E(θi)(1− ρj)

Pr(zij = −1)
Beta(cj , dj).

To approximate the marginal distribution as Beta distribution, we use the moment matching
technique. In particular, we approximate p (θi|zij = z) ≈ Beta(ãi(z), b̃i(z)) such that

Ẽz(θi)
.
= Ep(θi|zij=z)(θi) =

ãi(z)

ãi(z) + b̃i(z)
, (39)

Ẽz(θ2
i )

.
= Ep(θi|zij=z)(θ

2
i ) =

ãi(z)(ãi(z) + 1)

(ãi(z) + b̃i(z))(ãi(z) + b̃i(z) + 1)
, (40)
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where ãi(z)

ãi(z)+b̃i(z)
and ãi(z)(ãi(z)+1)

(ãi(z)+b̃i(z))(ãi(z)+b̃i(z)+1)
are the first and second order moment of

Beta(ãi(z), b̃i(z)). To make (39) and (40) hold, we have:

ãi(z) = Ẽz(θi)
Ẽz(θi)− Ẽz(θ2

i )

Ẽz(θ2
i )−

(
Ẽz(θi)

)2 , (41)

b̃i(z) = (1− Ẽz(θi))
Ẽz(θi)− Ẽz(θ2

i )

Ẽz(θ2
i )−

(
Ẽz(θi)

)2 . (42)

Similarly, we approximate p (ρj |zij = z) ≈ Beta(c̃j(z), d̃j(z)), such that

Ẽz(ρj)
.
= Ep(ρj |zij=z)(ρj) =

c̃j(z)

c̃j(z) + d̃j(z)
, (43)

Ẽz(ρ2
j )

.
= Ep(ρj |zij=z)(ρ

2
j ) =

c̃j(z)(c̃j(z) + 1)

(c̃j(z) + d̃j(z))(c̃j(z) + d̃j(z) + 1)
, (44)

where
c̃j(z)

c̃j(z)+d̃j(z)
and

c̃j(z)(c̃j(z)+1)

(c̃j(z)+d̃j(z))(c̃j(z)+d̃j(z)+1)
are the first and second order moment of

Beta(c̃j(z), d̃j(z)). To make (39) and (40) hold, we have:

c̃j(z) = Ẽz(ρj)
Ẽz(ρj)− Ẽz(ρ2

j )

Ẽz(ρ2
j )−

(
Ẽz(ρj)

)2 , (45)

d̃j(z) = (1− Ẽz(ρj))
Ẽz(ρj)− Ẽz(ρ2

j )

Ẽz(ρ2
j )−

(
Ẽz(ρj)

)2 . (46)

Furthermore, we can compute the exact values for Ẽz(θi), Ẽz(θ2
i ), Ẽz(ρj) and Ẽz(ρ2

j ) as
follows.

Ẽ1(θi) =
E(θ2i )E(ρj) + (E(θi)− E(θ2i ))(1− E(ρj))

p(zij = 1)
=

ai((ai + 1)cj + bidj)

(ai + bi + 1)(aicj + bidj)
,

Ẽ1(θ2i ) =
E(θ3i )E(ρj) + (E(θ2i )− E(θ3i ))(1− E(ρj))

p(zij = 1)
=

ai(ai + 1)((ai + 2)cj + bidj)

(ai + bi + 1)(ai + bi + 2)(aicj + bidj)
,

Ẽ−1(θi) =
(E(θi)− E(θ2i ))E(ρj) + E(θ2i )(1− E(ρj))

p(zij = −1)
=

ai(bicj + (ai + 1)dj)

(ai + bi + 1)(bicj + aidj)
,

Ẽ−1(θ2i ) =
(E(θ2i )− E(θ3i ))E(ρj) + E(θ3i )(1− E(ρj))

p(zij = −1)
=

ai(ai + 1)(bicj + (ai + 2)dj)

(ai + bi + 1)(ai + bi + 2)(bicj + aidj)
,

Ẽ1(ρj) =
E(θi)E(ρ2j ) + (1− E(θi))(E(ρj)− E(ρ2j ))

p(zij = 1)
=

cj(ai(cj + 1) + bidj)

(cj + dj + 1)(aicj + bidj)
,

Ẽ1(ρ2j ) =
E(θi)E(ρ3j ) + (1− E(θi))(E(ρ2j )− E(ρ3j ))

p(zij = 1)
=

cj(cj + 1)(ai(cj + 2) + bidj)

(cj + dj + 1)(cj + dj + 2)(aicj + bidj)
,

Ẽ−1(ρj) =
(1− E(θi))E(ρ2j ) + E(θi)(E(ρj)− E(ρ2j ))

p(zij = −1)
=

cj(bi(cj + 1) + aidj)

(cj + dj + 1)(bicj + aidj)
,

Ẽ−1(ρ2j ) =
(1− E(θi))E(ρ3j ) + E(θi)(E(ρ2j )− E(ρ3j ))

p(zij = −1)
=

cj(cj + 1)(bi(cj + 2) + aidj)

(cj + dj + 1)(cj + dj + 2)(bicj + aidj)
.
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Assuming that at a certain stage, θi follows a Beta posterior Beta(ai, bi) and ρj follows
a Beta posterior Beta(cj , dj), the reward of getting positive and negative labels for the i-th
instance from the j-th worker are:

R1(ai, bi, cj , dj) = h(I(ãi(z = 1), b̃i(z = 1)))− h(I(ai, bi)), (47)

R2(ai, bi, cj , dj) = h(I(ãi(z = −1), b̃i(z = −1)))− h(I(ai, bi)), (48)

where ãi(z = ±1) and b̃i(z = ±1) are defined in (41) and (42), which further depend on
cj and dj through Ẽz(θi) and Ẽz(θ2

i ). With the reward in place, we can directly apply the
Opt-KG policy in the heterogeneous worker setting.

Appendix C. Extensions

In this section, we provide detailed Opt-KG algorithms for extensions in Section 6.

C.1 Utilizing Contextual Information

When each instance is associated with a p-dimensional feature vector xi ∈ Rp, we incorpo-
rate the feature information in our budget allocation problem by assuming:

θi = σ(〈w,xi〉)
.
=

1

1 + exp{−〈w,xi〉}
, (49)

where σ(x) = 1
1+exp{−x} is the sigmoid function and w is assumed to be drawn from a

Gaussian prior N(µ0,Σ0). At the t-th stage with the state St = (µt,Σt) and w ∼ (µt,Σt),
the decision maker chooses the it-th instance to be labeled and observes the label yit ∈
{−1, 1}. The posterior distribution p(w|yit , St) ∝ p(yit |w)p(w|St) has the following log-
likelihood:

ln p(w|yit , St) = ln p(yit |w) + ln p(w|St) + const

=1(yit = 1) lnσ(〈w,xit〉) + 1(yit = −1) ln (1− σ(〈w,xit〉))

− 1

2
(w − µt)

′Ωt(w − µt) + const,

where Ωt = (Σt)
−1 is the precision matrix. To approximate p(w|yit ,µt,Σt) by a Gaussian

distribution N(µt+1,Σt+1), we use the Laplace method (see Chapter 4.4 in Bishop, 2007).
In particular, the mean of the posterior Gaussian is the MAP (maximum a posteriori)
estimator of w:

µt+1 = arg max
w

ln p(w|yit , St), (50)

which can be computed by any numerical optimization method (e.g., Newton’s method).
The precision matrix takes the following form,

Ωt+1 = −∇2 ln p(w|yit , St)
∣∣
w=µt+1

= Ωt + σ(µ′t+1xit+1)(1− σ(µ′t+1xit+1))xit+1x
′
it+1

.

By Sherman-Morrison formula, the covariance matrix can be computed as,

Σt+1 = (Ωt+1)−1 = Σt −
σ(µ′t+1xit)(1− σ(µt+1xit))

1 + σ(µ′t+1xit)(1− σ(µ′t+1xit))x
′
it
Σtxit

Σtxit+1x
′
itΣt.
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We also calculate the transition probability of yit = 1 and yit = −1 using the technique
from Bayesian logistic regression (see Chapter 4.5 in Bishop, 2007):

Pr(yit = 1|St, it) =

∫
p(yit = 1|w)p(w|St)dw =

∫
σ(w′xi)p(w|St)dw ≈ σ(µiκ(s2

i )),

where κ(s2
i ) = (1 + πs2

i /8)−1/2 and µi = 〈µt,xi〉 and s2
i = x′iΣtxi.

To calculate the reward function, in addition to the transition probability, we also need
to compute:

P ti = Pr(θi ≥ 0.5|Ft)

= Pr

(
1

1 + exp{−w′txi}
≥ 0.5

∣∣∣wt ∼ N(µt,Σt)

)
= Pr(w′txi ≥ 0|wt ∼ N(µt,Σt))

=

∫ ∞
0

(∫
w
δ(c− 〈w,xi〉)N(w|µt,Σt)dw

)
dc,

where δ(·) is the Dirac delta function. Let

p(c) =

∫
w
δ(c− 〈w,xi〉)N(w|µt,Σt)dw.

Since the marginal of a Gaussian distribution is still a Gaussian, p(c) is a univariate-Gaussian
distribution with the mean and variance:

µi = E(c) = 〈E(w),xi〉 = 〈µt,xi〉,
s2
i = Var(c) = (xi)

′Cov(w,w)xi = (xi)
′Σtxi.

Therefore, we have:

P ti =

∫ ∞
0

p(c)dc = 1− Φ

(
−µi
si

)
, (51)

where Φ(·) is the CDF of the standard Gaussian distribution.

With P ti and transition probability in place, the expected reward in value function takes
the following form :

R(St, it) = E

(
K∑
i=1

h(P t+1
i )−

K∑
i=1

h(P ti )
∣∣∣St, it) . (52)

We note that since w will affect all P ti , the summation from 1 toK in (52) can not be omitted
and hence (52) cannot be written as E

(
h(P t+1

it
)− h(P tit)|S

t, it
)

in (28). In this problem,
KG or Opt-KG need to solve O(2TK) optimization problems to compute the mean of the
posterior as in (50), which could be computationally quite expensive. One possibility to
address this problem is to use the variational Bayesian logistic regression (Jaakkola and
Jordan, 2000), which could lead to a faster optimization procedure.
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C.2 Multi-Class Categorization

Given the model and notations introduced in Section 6.2, at the final stage T when all
budget is used up, we construct the set HT

c for each class c to maximize the conditional
expected classification accuracy:

{HT
c }Cc=1 = arg max

Hc⊆{1,...,C},Hc∩Hc̃=∅
E

(
K∑
i=1

C∑
c=1

I(i ∈ Hc)I(i ∈ H∗c )

∣∣∣∣∣FT
)

= arg max
Hc⊆{1,...,C},Hc∩Hc̃=∅

K∑
i=1

C∑
c=1

I(i ∈ Hc) Pr (i ∈ H∗c |FT ) . (53)

Here, H∗c = {i : θic ≥ θic′ , ∀c′ 6= c} is the true set of instances in the class c. The set HT
c

consists of instances that belong to class c. Therefore, {HT
c }Cc=1 should form a partition of

all instances {1, . . . ,K}. Let

P Tic = Pr(i ∈ H∗c |FT ) = Pr(θic ≥ θic̃, ∀ c̃ 6= c|FT ). (54)

To maximize the right hand side of (53), we have

HT
c = {i : P Tic ≥ P Tic̃ ,∀c̃ 6= c}. (55)

If there is i belongs to more than one HT
c , we only assign it to the one with the smallest index

c. The maximum conditional expected accuracy takes the form:
∑K

i=1

(
maxc∈{1...,C} P

T
ic

)
.

Then the value function can be defined as:

V (S0)
.
= sup

π
Eπ
(
E

(
K∑
i=1

C∑
c=1

I(i ∈ HT
c )I(i ∈ H∗c )

∣∣∣FT)) = sup
π

Eπ
(

K∑
i=1

h(PT
i )

)
,

where PT
i = (P Ti1 , . . . , P

T
iC) and h(PT

i )
.
= maxc∈{1...,C} P

T
ic . Following Proposition 4, let

P tic = Pr(i ∈ H∗c |Ft) and Pt
i = (P ti1, . . . , P

t
iC), we define incremental reward function at each

stage:

R(St, it) = E
(
h(Pt+1

it
)− h(Pt

it)|S
t, it
)
.

The value function can be re-written as:

V (S0) = G0(S0) + sup
π

Eπ
(
T−1∑
t=0

R(St, it)
∣∣∣S0

)
,

where G0(S0) =
∑K

i=1 h(P0
i ). Since the reward function only depends on Stit = αt

it
∈ RC+,

we can define the reward function in a more explicit way by defining:

R(α) =
C∑
c=1

αc∑C
c̃=1 αc̃

h(I(α + δc))− h(I(α)).
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Here δc be a row vector of length C with one at the c-th entry and zeros at all other entries;
and I(α) = (I1(α), . . . , IC(α)) where

Ic(α) = Pr(θc ≥ θc̃, ∀c̃ 6= c|θ ∼ Dir(α)). (56)

Therefore, we have R(St, it) = R(αt
it

).

To evaluate the reward R(α), the major bottleneck is how to compute Ic(α) efficiently.
Directly taking the C-dimensional integration on the region {θc ≥ θc̃, ∀c̃ 6= c} ∩∆C will be
computationally very expensive, where ∆C denotes the C-dimensional simplex. Therefore,
we propose a method to convert the computation of Ic(α) into a one-dimensional integration.
It is known that to generate θ ∼ Dir(α), it is equivalent to generate {Xc}Cc=1 with Xc ∼
Gamma(αc, 1) and let θc ≡ Xc∑C

c=1Xc
. Then θ = (θ1, . . . , θC) will follow Dir(α). Therefore,

we have:

Ic(α) = Pr(Xc ≥ Xc̃,∀c̃ 6= c|Xc ∼ Gamma(αc, 1)). (57)

It is easy to see that

Ic(α) =

∫
0≤x1≤xc

· · ·
∫
xc≥0
· · ·
∫

0≤xC≤xc

C∏
c=1

fGamma(xc;αc, 1)dx1 . . . dxC (58)

=

∫
xc≥0

fGamma(xc;αc, 1)
∏
c̃6=c

FGamma(xc;αc̃, 1)dxc,

where fGamma(x;αc, 1) is the density function of Gamma distribution with the parameter
(αc, 1) and FGamma(xc;αc̃, 1) is the CDF of Gamma distribution at xc with the parameter
(αc̃, 1). In many softwares, FGamma(xc;αc̃, 1) can be calculated very efficiently without an
explicit integration. Therefore, we can evaluate Ic(α) by performing only a one-dimensional
numerical integration as in (58). We could also use Monte-Carlo approximation to further
accelerate the computation in (58).
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István Szita and András Lőrincz. The many faces of optimism: a unifying approach. In
ICML, 2008.

J. Wang, P. G. Ipeirotis, and F. Provost. Quality-based pricing for crowdsourced workers.
Technical report, New York University, 2013.

P. Welinder, S. Branson, S. Belongie, and P. Perona. The multidimensional wisdom of
crowds. In NIPS, 2010.

J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. R. Movellan. Whose vote should count
more: Optimal integration of labels from labelers of unknown expertise. In NIPS, 2009.

J. Xie and P. I. Frazier. Sequential bayes-optimal policies for multiple comparisons with a
known standard. Operations Research, 61(5):1174–1189, 2013.

Y. Yan, R. Rosales, G. Fung, and J. Dy. Active learning from crowds. In ICML, 2011.

D. Zhou, S. Basu, Y. Mao, and J. Platt. Learning from the wisdom of crowds by minimax
conditional entropy. In NIPS, 2012.

46



Journal of Machine Learning Research 16 (2015) 47-75 Submitted 2/13; Revised 7/14; Published 1/15

Simultaneous Pursuit of Sparseness and Rank Structures for
Matrix Decomposition

Qi Yan yanxx195@umn.edu
School of Statistics
University of Minnesota
Minneapolis, MN 55414, USA

Jieping Ye jieping.ye@asu.edu
Computer Science and Engineering
Arizona State University
Tempe, AZ 85287 USA

Xiaotong Shen xshen@umn.edu

School of Statistics

University of Minnesota

Minneapolis, MN 55414, USA

Editor: Aapo Hyvarinen

Abstract

In multi-response regression, pursuit of two different types of structures is essential to battle
the curse of dimensionality. In this paper, we seek a sparsest decomposition representation
of a parameter matrix in terms of a sum of sparse and low rank matrices, among many
overcomplete decompositions. On this basis, we propose a constrained method subject
to two nonconvex constraints, respectively for sparseness and low- rank properties. Com-
putationally, obtaining an exact global optimizer is rather challenging. To overcome the
difficulty, we use an alternating directions method solving a low-rank subproblem and a
sparseness subproblem alternatively, where we derive an exact solution to the low-rank
subproblem, as well as an exact solution in a special case and an approximated solution
generally through a surrogate of the L0-constraint and difference convex programming, for
the sparse subproblem. Theoretically, we establish convergence rates of a global minimizer
in the Hellinger-distance, providing an insight into why pursuit of two different types of de-
composed structures is expected to deliver higher estimation accuracy than its counterparts
based on either sparseness alone or low-rank approximation alone. Numerical examples are
given to illustrate these aspects, in addition to an application to facial imagine recognition
and multiple time series analysis.

Keywords: blockwise decent, nonconvex minimization, matrix decomposition, structure
pursuit

1. Introduction

In multivariate analysis, data as well as parameters are usually expressed in terms of a
matrix form, as opposed to a vector representation in univariate analysis. This occurs fre-
quently in multi-class classification (Amit et al., 2007), matrix completion (Cai et al., 2010;
Jain et al., 2010), collaborative filtering (Srebro et al., 2005), computer vision (Wright,
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2009), among others. In situations as such, it essential to identify and employ certain
lower-dimensional structures to battle the curse of dimensionality due to an increase in
dimensionality from multivariate attributes. In this article, we explore rank and sparse-
ness structures through matrix decomposition simultaneously in estimating large matrices
through a novel notation of seeking a sparsest decomposition from a class of overcomplete
decompositions.

Statistically, different structures have dramatically different interpretations. A low rank
property of a matrix describes global information across different tasks, whereas sparseness
concerns local information of specific task. For instance, for face images, the global infor-
mation corresponds to the overall shape of a face, but the local information characterizes
specific facial expression such as laugh and cry. In linear time-invariant (LTI) system, a low
rank property corresponds to a low-order LTI system and a sparseness property captures an
LTI system with a sparse impulse response (Porat, 1997). In a high-dimensional situation,
betting on one type of structure may not be adequate to battle the curse of dimensionality.
In this article, we seek a sparsest decomposition for the purpose of dimension reduction,
from a class of overcomplete decompositions into simpler sparse and low-rank components.
Specifically, a matrix Θ is decomposed as Θ1 + Θ2, for a sparse Θ1 and low-rank Θ2

components, where Θ1and Θ2 are chosen from many such decompositions, with a small-
est effective degrees of freedom, leading to high accuracy of parameter estimation. Our
objective is to reconstruct the parameter matrix by identifying a sparsest decomposition
consisting of simpler components. Such a decomposition can be used to provide a simpler
and more efficient description of a complex system in terms of its simpler components. This
results in more efficient structure representations leading to higher accuracy of parameter
estimation in high-dimensional data analysis.

In this paper, we consider a multi-response linear regression problem in which a random
sample (ai, zi)

n
i=1 is observed with a k-dimensional response vector zi following

zi = aTi Θ + εi, Eεi = 0, Cov(εi) = σ2I; i = 1, . . . , n, (1)

where ai is a p-dimensional design vector, is independent of random error εi, and I is
the identity matrix. Model (1) reduces to the univariate case when k = 1, and becomes
a multivariate autoregressive model when ai = zi−1. Through matrix decomposition, we
decompose a p× k regression parameter matrix Θ into a sum of a sparse matrix Θ1 and a
low rank matrix Θ2 for structure exploration, that is, Θ = Θ1+Θ2. Model (1) is expressible
in a matrix form

Z = AΘ + e; (2)

whereZ = (z1, · · · , zn)T ∈ Rn×k,A = (a1, · · · , an)T is a n×pmatrix, and e = (ε1, · · ·, εn)T ∈
Rn×k are the data, design and error matrices. In (1), we estimate Θ based on n paired
observation vectors (ai, zi)

n
i=1, with prior knowledge that Θ1 is sparse in the number of its

nonzero entries, and rank r(Θ2) is low relative to min(n, k, p). Our goal is to recover the
parameter Θ by identifying Θ1 and Θ2.

In the literature, the simultaneous exploration of rank and sparseness structures through
matrix decomposition has received some attention, yet has not been well-studied. For robust
principal component analysis (RPCA) where A = In×p is the n× p identity matrix with its
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diagonals and off-diagonals being one and zero, Yuan & Yang (2013) and Chandrasekaran
et al. (2011) employed a linear combination of the L1 sparsity regularization and the nuclear-
norm regularization, and Zhou & Tao (2011) used a randomized projections based low
rank approximations and thresholding for sparsity pursuit. Moreover, Wright et al. (2013)
recovers the sparse and low-rank components by minimizing a linear combination of the
L1-norm for sparsity and the nuclear-norm for low rank pursuit, while Waters et al. (2011)
develops a greedy algorithm to pursue the sparse and low rank structures. For multiple
task learning, Chen et al. (2010) studies sparse and low rank structures separately through
convex regularization. In essence, most the existing literature focuses exclusively on a
unique matrix decomposition of Θ with A = In×p or A to be a set of random linear
measurements, and without noise or with small noise that is essentially ignorable. For
instance, Chandrasekaran et al. (2011) provided sufficient conditions for exact recovery of
a convex relaxation method without noise; Wright et al. (2013) proved that recovering a
target matrix is possible from a small set of randomly selected linear measurements when the
number of measurements is sufficiently large. Among these, Agarwal et al. (2012) considered
a general A and derived a theorem that bounds the Frobenius-norm error obtained through
regularized convex relaxation under a ”spikiness” condition that the max-norm of the low
rank component ‖Θ2‖max is less than α√

pk
for some fixed α > 0.

In this paper, we consider a general design matrix A and parameter matrices (Θ1,Θ2),
for regression analysis, where A represents features of observations which is deterministic,
and can be any matrix with n rows and p columns. Of particular interest is reconstruc-
tion of Θ in a high-dimensional situation in which (p, k) may exceed the sample size n.
Computationally, we use an alternating direction method separating low-rank pursuit from
sparsity pursuit alternatively, where an exact solution to the low-rank problem and that to
the sparsity pursuit problem when A = In×p or an approximated solution for a general A
is obtained. In either case, the final solution is shown to be stationary without and with
maximum block improvement (Chen et al., 2012) for A = In×p and a general A. Theo-
retically, we establish error bound for the proposed method in the Hellinger-distance for
reconstruction of Θ, based on which rates of convergence are obtained. Numerically, the
proposed method compares favorably against two strong competitors in simulations.

The paper is organized as follows. Section 2 develops a computational method through
the alternating directions method and a closed-form solution for a rank problem. Section
3 investigates statistical properties of the proposed method, followed by simulation studies
and a real data example in Section 4. Finally, technical proofs are contained in Section 5.

2. Proposed Method

In this section, we explore a structure decomposition of a parameter matrix in the form
Θ = Θ1 +Θ2 under model (1), then develops computational methods in two situations and
discuss their properties.

2.1 Structure Decomposition

Due to non-uniqueness of such a decomposition under model (1), we seek one decomposition,
among many overcomplete decompositions, that minimizes the effective degrees of freedom
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of Θ Efron (2004), defined as

Eff(Θ) = min
{Θ=Θ1+Θ2:‖Θ1‖0≤max(0,p+k−2r(Θ2)−2)}

‖Θ1‖0 + (p+ k − r(Θ2))r(Θ2),

where ‖ · ‖0 is the L0-norm of a matrix, or the number of nonzero entries of the matrix, and
r(·) denotes the rank of a matrix. In other words, we identify a decomposition minimizing
the effective degrees of freedom Eff(Θ), among all candidate decompositions. Lemma 1
below says that the minimal of Eff(Θ) is unique in (‖Θ1‖0, r(Θ2)) under the constraint
that ‖Θ1‖0 ≤ max(0, p+ k − 2r(Θ2)− 2) ≤ 2 max(p, k).

Lemma 1 The minimizer of Eff(Θ) is unique with respect to (‖Θ1‖0, r(Θ2)) if ‖Θ1‖0 ≤
max(0, p+ k − 2r(Θ2)− 2). Moreover,

Eff(Θ) ≤ min((p+ k − r(Θ))r(Θ), ‖Θ‖0)).

Model (1) is identifiable with respect to Θ but may not be so in (Θ1,Θ2) even when A
is of full rank, due to non-uniqueness of a decomposition Θ = Θ1 + Θ2.

2.2 Estimation

To pursue structures of low-rank and sparsity through matrix decomposition simultaneously,
we propose a constrained likelihood method subject to two nonconvex constraints:

min
Θ1,Θ2

‖AΘ1 +AΘ2 −Z‖2F , subject to ‖Θ1‖0 ≤ s1, r(Θ2) ≤ s2, (3)

where ‖ · ‖F is the Frobenius-norm defined as the L2-norm of all entries of a matrix, and
s1 and s2 are integer-valued tuning parameters with 0 ≤ s1 ≤ max(p, k) and 1 ≤ s2 ≤
min(n, k, p) based on the consideration that the rank function and the sparsity measure are
integer-valued.

When A = In×p, (3) is simplified as

min
Θ1,Θ2

‖Z −Θ1 −Θ2‖2F subject to ‖Θ1‖0 ≤ s1, r(Θ2) ≤ s2, (4)

where a special structure may be taken into account to solve this nonconvex minimization.

When A 6= In×p is any matrix of full rank, the two constraints in (3) are either defined
by the L0-function or the rank function, imposing computational challenges. To develop an
efficient algorithm to solve (3), we approximate the ‖Θ1‖0 =

∑
i,j I(|θij | 6= 0) by its com-

putational surrogate—the truncated L1-function
∑

θij∈Θ1

1
τ min(|θij |, τ) Shen et al. (2012)

as τ → 0+. This leads to a computational surrogate of (3):

min
Θ1,Θ2

f(Θ1,Θ2), subject to
1

τ

∑
i,j

min(|θij |, τ) ≤ s1, r(Θ2) ≤ s2, (5)

where f(Θ1,Θ2) = ‖A(Θ1 + Θ2)−Z‖2F and τ is a nonnegative tuning parameter.
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2.3 Method for Nonconvex Minimization

This section will develop computational strategies for (4) and (5) separately, based on block-
wise coordinate decent as well as maximum block improvement (MBI, Chen et al., 2012).
First, we separate the task of sparsity pursuit for Θ1 from that of rank minimization for
Θ2 , where Θ1 and Θ2 correspond to two blocks for decent. Second, we apply MBI to
assure that blockwise coordinate decent yields a stationary solution for nonconvex mini-
mization, which would be otherwise impossible. In addition, for (5), we develop a gradient
project method to permit fast computation of a constrained problem through the means of
unconstrained optimization.

The strategy of blockwise coordinate decent proceeds as follows. For (4) and (5), we
solve it in Θ2 given Θ1 and solve them in Θ1 given Θ2, alternatively. In each step of
alternating blocks, we proceed with the block giving the maximum block improvement.

2.3.1 Nonconvex minimization (4): a special case

For (4), when Θ2 is held fixed, (4) has a global minimizer can be obtained through compo-
nentwise thresholding defined by the L0-function as follows:

Θ̂1(Z,Θ2) =
(
I
{
|zij − θ(2)ij | > λ

}
· (zij − θ(2)ij )

)
p×k

, (6)

where θ
(2)
ij is the ijth entry of Θ2 and λ is any number between the s1th and (s1 + 1)th

largest entries of |Z −Θ2|.
When Θ1 is held fixed, a global minimizer of (4) is

Θ̂2(Z,Θ1) = UDs2V
T , (7)

where U and V are given by singular value decomposition (SVD) of Z−Θ1 = UDV T and
Ds2 is a diagonal matrix retaining the largest s2 singular values of Z −Θ1 and truncating
other singular values at zero.

Our algorithm for computing (4) is summarized.

Step 1.(Initialization) Supply a good initial estimate (Θ̂
(0)
1 , Θ̂

(0)
2 ) in (4). Specify

precision δ > 0.

Step 2.(Iteration) At iteration m, update Θ̂
(m)
2 in (7) with Θ1 = Θ̂

(m−1)
1 . Then

update Θ̂
(m)
1 in (6) with Θ2 = Θ̂

(m)
2 .

Step 3.(Stopping rule) Terminate if |f(Θ̂
(m)
1 , Θ̂

(m)
2 )−f(Θ̂

(m−1)
1 , Θ̂

(m−1)
2 )| ≤ δ, where

f(Θ1,Θ2) = ‖Θ1 + Θ2 −Z‖2F . Let m∗ be the index at termination. The estimate is then

(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 ).

2.3.2 Nonconvex minimization (5): A general case

The problem of solving for Θ2 in (5) given Θ1 reduces to that of constrained rank mini-
mization

min
Θ2

‖AΘ2 − (Z −AΘ1)‖2F subject to r(Θ2) ≤ s2, (8)
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provided that Θ1 satisfies the sparsity constraint in (5). Now write Θ2 ≡ CF , where C
and F are p × r and r × k matrices with r ≤ s2, consisting of a basis of the column space
and that of the row space of Θ2, respectively. Note that {Θ2 : r(Θ2) ≤ s2} = {Θ2 : Θ2 =
CF , r ≤ s2}. Then solving (8) is equivalent to that

min
C,F
‖A(CF )− (Z −AΘ1)‖2F , (9)

An application of an argument of (Xing et al., 2012) yields a global minimizer of (9),
which has an analytic form

Θ̂2(Θ1) = ĈF̂ , Ĉ = V D−1Uw, F̂ = DwV
T
w , (10)

where D is a r(A)× r(A) diagonal singular vector matrix based on SVD of A = UDV T ,
Dw is also a diagonal matrix of s2 leading singular values of W ≡ UT (Z −AΘ1) and Uw,
Vw are matrices consisting of the corresponding right and left singular vectors.

Note that computation involves only the first s2 largest singular values. Therefore, we
employ the randomized truncated SVD method (Halko et al., 2011), for efficient computa-
tion of a large problem. This amounts to a complexity of order O(pk log r), as compared to
O(min(pk2, p2k)) of a conventional SVD method (Golub & Van, 1996).

Solving for Θ1 in (5) given Θ2, on the other hand, becomes the problem of sparsity
pursuit. In particular, we solve, assuming that r(Θ2) ≤ s2,

min
Θ1

‖AΘ1 − (Z −AΘ2)‖2F , subject to
1

τ

∑
θij∈Θ1

min(|θij |, τ) ≤ s1, (11)

which is solved iteratively by a difference of convex (DC) programming, constructing a
convex set containing the original constrained set. The constraint in (5) is defined by
J(Θ1) = S1(Θ1) − S2(Θ1) with S1(Θ1) = 1

τ

∑
|θij | and S2(Θ1) = 1

τ

∑
max(|θij | − τ, 0)

are convex in Θ1. Then a sequence of upper approximations of J(Θ1) is constructed:

At iteration step m by J (m)(Θ1) =
∑

θij∈Θ1

(
|θij |
τ I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)
. This

yields a sequence of convex minimization subproblems with convex constraints: At iteration
step m, we solve

minΘ1 ‖AΘ1 − (Z −AΘ2)‖2F , subject to J (m)(Θ1) ≤ s1. (12)

For (12), we develop a gradient projection method. First, we generalize an l1-ball result of
(Liu & Ye, 2009) to (12).

Lemma 2 (Projection) For any set K ⊆ {1, 2, · · · , n},

x∗ = TK,z(v) = argmin
x∈Rn:

∑
i∈K |xi|≤z

1

2
‖x− v‖22,

where TK,z : Rn → Rn is a projection operator defined by

TK,z(v)i = sign(vi) max(|vi| − λ∗, 0)

where λ∗ = 0 if
∑

i∈K |vi| ≤ z or i /∈ K and λ∗ =

∑
i∈K\K0

|vi|−z
|K|−|K0| otherwise, and K0 = {j :∑

i∈K max(|vi| − |vj |, 0)− z > 0}.
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Before solving (12), we simply extend the fast iterative shrinkage-thresholding (FISTA)
algorithm (Beck & Teboulle, 2009) to solving (13).

Lemma 3 For any set K defined in Lemma 2, a global minimizer of

min
x∈Rn:

∑
i∈K |xi|≤z

1

2
‖Ax− b‖22 (13)

can be obtained by FISTA iteratively: At iteration step t:

x(t) = TK,z
(
y(t) − 1

2L
AT (Ay(t) − b)

)
,

ρt+1 =
1 +

√
1 + 4ρ2t
2

,

y(t+1) = x(t) +

(
ρt − 1

ρt+1

)
(x(t) − x(k−1)),

where L is the largest singular value of A.

Next we solve (12) using Lemma 3, which yields an analytic updating formula in a
matrix form.

Then a global minimizer of (12) is computed using an iterative scheme with respect to
t as follows:

v(1) = Θ̂
(m,0)
1 = Θ̂

(m−1)
1 , ρ1 = 1,

Θ̂
(m,t)
1 = TK(m),z(m)

(
v(t) − 1

2λmax(ATA)
AT [Av(t) − (Z −AΘ2)]

)
, (14)

ρt+1 =
1 +

√
1 + 4ρ2t
2

, v(t+1) = Θ̂
(m,t)
1 +

(
ρt − 1

ρt+1

)
(Θ̂

(m,t)
1 − Θ̂

(m,t−1)
1 ),

where K(m) = {(i, j) : |θ̂(m−1)ij | ≤ τ}, z(m) = τ(s1 −
∑

θij∈Θ1
I(|θ̂(m−1)ij | > τ)) and λmax(·)

denotes the largest eigenvalue of a matrix.
The algorithm is summarized as follows.

Algorithm 2:

Step 1.(Initialization) Supply a good initial estimate (Θ̂
(0)
1 , Θ̂

(0)
2 ) in (5). Specify

precision δ > 0.

Step 2.(Iteration) At iteration m, compute candidate Θ̂2 in (10) with Θ1 = Θ̂
(m−1)
1

and candidate θ̂ij ∈ Θ̂1 in (14) with AΘ2 = AΘ̂
(m−1)
2 .

Step 3.(Maximum block improvement) At each iteration m, determine which of the

two candidates (Θ̂1, Θ̂
(m−1)
2 ) and (Θ̂

(m−1)
1 , Θ̂2) for updating according to the amounts of im-

provement. That is, update (Θ̂
(m)
1 , Θ̂

(m)
2 ) = (Θ̂1, Θ̂

(m−1)
2 ) if f(Θ̂1, Θ̂

(m−1)
2 ) ≤ f(Θ̂

(m−1)
1 , Θ̂2);

update (Θ̂
(m)
1 , Θ̂

(m)
2 ) = (Θ̂

(m−1)
1 , Θ̂2) otherwise.

Step 4.(Stopping rule) Terminate if |f(Θ̂
(m)
1 , Θ̂

(m)
2 ) − f(Θ̂

(m−1)
1 , Θ̂

(m−1)
2 )| ≤ δ. De-

note by m∗ the index at termination. The final estimate is

Θ̂1 = Θ̂
(m∗)
1 , Θ̂2 = ĈF̂ ,

where Ĉ and F̂ are defined in (10) with Θ1 = Θ̂1.
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2.4 Computational Properties

This section discusses computational properties of Algorithms 1 and 2. For nonconvex
minimization, our methods may not guarantee a global minimizer for (3). However, the
following lemma says that our solution of Algorithms 1 and 2 yields a stationary point of
the cost function. Note that the scheme of maximum block improvement is essential for the
result of Lemma 5.

Lemma 4 The minimal cost function f(Θ̂
(m)
1 , Θ̂

(m)
2 ) in Algorithm 1 is strictly decreasing

in m before termination. Moreover, the solution is a stationary point of f(Θ1,Θ2) in that

θ
(∗)
ij = argminθij∈Θk;k=1,2 f((Θ∗

1,Θ
∗
2) \ θij), where (Θ1,Θ2) \ θij is the set of parameters of

(Θ1,Θ2) without one component θij in Θ1 or Θ2, and (Θ1,Θ2) satisfy the constraints in
(5).

Lemma 5 If A is of full rank, then Θ̂1 computed from Algorithm 2 satisfies the con-

straints in (12). Moreover, the minimal cost function f(Θ̂
(m)
1 , Θ̂

(m)
2 ) is strictly decreasing

in m before termination. Finally, if the solution (Θ̂1, Θ̂2) satisfies (5) and it is a stationary
point of f(Θ1,Θ2) in that

θ
(∗)
ij = argmin

θij∈Θk;k=1,2
f((Θ∗

1,Θ
∗
2) \ θij),

where (Θ1,Θ2) \ θij is the set of parameters of (Θ1,Θ2) without one component θij in Θ1

or Θ2, and (Θ1,Θ2) satisfy the constraints in (5).

With regard to the computational complexity of Algorithms 1 and 2, the method of
truncated SVD yields an approximated SVD with a complexity of O(pk log r + (p + k)r2)
operations (Halko et al., 2011). Sorting requires a complexity of O(pk log(pk)). For FISTA,
the convergence rate is O(1/t2) (Beck & Teboulle, 2009), where t is the number of iterations.
Overall, the computational complexity of Algorithm 1 is O(pk log(pk) + (p+ k)r2)I2, while
that of Algorithm 2 is O((pk log r + (p + k)r2 + I1/ε

2)I2, where ε denotes the precision
specified in Algorithm 2, and I1 and I2 is the number of DC iteration and blockwise iteration,
respectively. Based on our experience, I1 and I2 are about between 3 and 20.

3. Theory

This section drives a finite-sample probability error bound for reconstruction of the true Θ0

by Θ̂L0 , which is a global minimizer of (3) in that Θ̂L0 = Θ̂L0
1 + Θ̂L0

2 . Note that existence
of a global minimizer is assured by the fact that the cost function (3) is bounded blow by
zero. Moreover, we will provide an insight into simultaneous pursuit of the low rank and
sparsity structures through matrix decomposition by contrasting the proposed method with
(s1, s2) against low rank approximation alone with (s1 = 0, s2) and sparsity pursuit alone
with (s1, s2 = 0).

Let ‖Θ‖∞ = maxi
∑

j |θij | and ‖Θ‖max = maxij |θij | are the L∞-norm and max norm
respectively. Before proceeding, we define a parameter space Λ as {Θ = Θ1+Θ2 : ‖Θ1‖0 ≤
s1, ‖Θ1‖max ≤ l1,Θ2 = CF ,max(‖C‖∞, ‖F T ‖∞) ≤ l2}, where l1, l2 > 0 are constant, C
is a p × s2 matrix, F is a s2 × k matrix, F T is the transport of F and s2 > 0 is an upper
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bound of r(Θ2). Let g(Θ,Z) be the probability density of Z with respect to dominating
measure ν on Λ. Define the Hellinger distance between two densities as

h(Θ,Θ′) =
1

2

(∫
(g1/2(Θ,Z)− g1/2(Θ′,Z))2dν

)1/2

, (15)

which will be used to measure estimation accuracy.

The following technical assumptions are made.

Assumption A: (Norm-relation) For any Θ,Θ′ ∈ Λ and any δ > 0,∫
sup

‖Θ−Θ′‖max≤δ
(g1/2(Θ, y)− g1/2(Θ′, y))2dν(y) ≤M2δ2,

where M might depend on p, k, s1, s2 and l1, l2.

Assumption A specifies a norm relation between the metric ‖ ·‖max over parameters and
the Hellinger distance over the corresponding densities. This can be verified given a specific
form of g.

Theorem 1 gives a probability error bound for Θ̂L0 under probability P under the true
Θ0. Let (s01, s

0
2) be the degree of sparsity and rank, as defined in Eff(Θ0) in Lemma 1.

Theorem 6 Under Assumptions A, for any ε ≥ εn,p,k

P
(
h(Θ̂L0 ,Θ0) ≥ ε

)
≤ 5 exp(−c1nε2),

εn,p,k =
Cp,k√
n

√
log(

√
n

Cp,k
) with

Cp,k = c2

√
log(29Mc4(l32 + l1))

√
(p+ k)s02 + s01 + c2

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
. (16)

If log(r(Θ0)) ≤ ds02 for some d > 0, then it can be simplified:

Cp,k = c3
√

log(M)
√

(p+ k − s02)s02,

where c1 − c3 are positive constants and M is defined in Assumption A. Moreover, as
n, p, k →∞, h2(Θ̂L0 ,Θ0) = Op(ε

2
n,p,k), and Eh2(Θ̂L0 ,Θ0) = O(ε2n,p,k), where Op(·) and E

denote the stochastic order and the expectation under P .

Corollary 1 gives an order of εn,p,k in three extreme situations with M held fixed.

Corollary 1 Suppose M in Assumptions A is a constant independent of (p, k, s1, s2).

(i) When Θ0 is extremely sparse, that is, ‖Θ0‖0 ≤ p + k − 2, Cp,k in (16) is no worse

than O
(√
‖Θ0‖0 log((p+ k − r(Θ0))r(Θ0)/‖Θ0‖0)

)
.

(ii) When Θ0 is a low-rank matrix, Cp,k in (16) is no worse than O
(√

(p+ k − r(Θ0))r(Θ0)
)

.
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(iii) When Θ0 is dense, say ‖Θ0‖0 ≥ cpk for a constant 0 < c ≤ 1, and of full rank, Cp,k

in (16) is O
(

max
(√

(p+ k − s02)s02,
√
s01 log(pk

s01
)
))

.

Then CLp,k = O
(√

(p+ k − r(Θ0))r(Θ0)
)

.

Corollary 2 and Theorem 2 give a similar result under the Hellinger distance and the
Kullback-Leibler distance, respectively, assuming that εi follows a normal distribution.

Corollary 2 If εi in (1) follows N(0, σ2Ik×k), ‖A‖∞ is bounded, then the results in Corol-
lary 1 continue to hold.

Theorem 7 Under the same assumptions in Corollary 2, we have, for any ε ≥ εn,p,k,

P
(
K(Θ0, Θ̂L0) ≥ 4ε2

)
≤ 5 exp(−c1nε2).

where K(·, ·) is Kullback-Leibler distance under normality and εn,p,k and c2 remain to be

the same as in Theorem 1. As n, p, k →∞, K(Θ0, Θ̂L0) = Op(ε
2
n,p,k) and EK(Θ0, Θ̂L0

) =

O(ε2n,p,k).

Theorem 3 gives an error bound for ‖Θ̂L0 −Θ0‖2F under the normal assumption when
A = In×p.

Theorem 8 Assume that A = In×p with n = max(p, k). Under the same assumptions in

Corollary 2 with σ = O( 1√
max(p,k)

), as n, p, k → ∞, ‖Θ̂L0 − Θ0‖2F = Op(C
′
p,k log( 1

C′p,k
)),

where

C ′p,k =
log(max(p, k)) · [(p+ k)s02 + s01] + s01 log

(
e (p+k−r(Θ

0))r(Θ0)
s01

)
max(p2, k2)

4. Numerical Examples

This section examines operating characteristics of the proposed method through simulations,
and demonstrates its effectiveness on applications in image reconstruction and in time series
analysis. In the literature, it is known that the state-of-art methods are the low-rank
approximation method subject to rank restriction as well as its regularized version, which
outperforms the low-rank approximation method with the trace-norm (Xing et al., 2012;
She, 2013; Zhou & Tao, 2011). In Section 4.1, we contrast our proposed method with
pursuing low rank and sparsity structures through matrix decomposition simultaneously,
with the former low rank approximation method subject to rank restriction (low-rank alone),
as well as the method based on sparsity pursuit alone (sparsity alone). Here Algorithm 2 are
used. Most importantly, in Section 4.2, we compare the proposed method using Algorithm 1
with two strong competitors the method of Go Decomposition (GoDec, Zhou & Tao, 2011)
and the method augmented Lagrange multipliers (ALM, Lin et al., 2009) when A = In×p
in (2). In simulations, codes for ALM and GoDec are used at the authors’ website, and the
initial values for Algorithms 1 and 2 are set to be the zero-matrix
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4.1 Simulation I: Operating Characteristics

The simulated example is generated as follows. First, a n × p design matrix A is sampled
with each entry being iid N(0, 1). Second, the true Θ1 is a p× k matrix with all diagonals
one and two more non-zeros (2 and 2) being randomly chosen with equal probability, and
the true Θ2 is generated by multiplying a p× r matrix with a r× k matrix with each entry
following N(1, 1). Moreover, each entry of E is iid N(0, 0.25). Throughout the simulations,
Θ1 and Θ2 are held fixed with different values of (n, p, k).

The proposed method is trained with a training set, and the optimal tuning parameters,
minimizing the prediction mean squares error over an independent tuning set, are obtained
through a bisection search over integer values. Then a method’s performance is examined
over a test set. The training, tuning and testing data sizes are n, 4n and 2n.

For parameter estimation, we employ the mean squares error to evaluate performance

1

4n
‖A(Θ̂−Θ0)‖2F . (17)

For rank recovery, we calculate the absolute difference between an estimated rank r̂ and
the true rank r0, that is |r̂− r0|. For sparsity pursuit, we define the true positive (TP) as a
ratio of the true positive numbers of nonzero estimates over the number of nonzeros in the
true model, and the false positive (FP) as a ratio of the false positive numbers of nonzero
estimates over the number of zeros in the true model. Here “Low rank alone”, “Sparsity
alone” and “Ours” indicate the low rank method subject to rank restriction, the sparsity
pursuit method, and the proposed method

As indicated in Table 1, the proposed method performs favorably against its counterpart—
the low rank approximation method subject to rank restriction and sparsity pursuit alone,
across all situations with different values of n, p and k. Moreover, the proposed method
enables to identify two structures through matrix decomposition simultaneously. In partic-
ular, it recovers the true rank of the matrix with nearly zero |r̂− r0|-values as compared to
relatively large |r̂ − r0|-values, ranging from 6.7 to 29.6, for its low-rank counterpart. At
the same time, the proposed method has high true positives ranging from .92 to 1.00 and
low false positives between 0.00 and 0.01, as compared to true positives ranging 0.04 to .44
and false positives between 0.03 and 0.20 of its counterpart based on sparsity pursuit. This
suggests that pursuit of two types of structures is indeed advantageous than that of either
one structure individually. This is mainly because these two structures are complementary
to each other. As a result, higher parameter estimation accuracy, as measured by the MSE
values, can be realized. In fact, the amount of improvement is large, which ranges from
147% to 1185400%. To see how each method performs as (n, p) increases, we fix k = 5.

As suggested by Table 2, the proposed method yields more stable performance than
its two counterparts whose performance deteriorates rapidly, as the level of difficulty of a
problem escalates when p and k increase.

4.2 Simulation II: Comparison

To compare with ALM (Lin et al., 2009) and GoDec (Zhou & Tao, 2011) for RPCA, consider
the case of A = In×p in (2) and p = k as in these papers. GoDec minimizes

min
Θ1,Θ2

‖Z −Θ1 −Θ2‖2F subject to card(Θ1) ≤ s1, rank(Θ2) ≤ s2, (18)
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p = 20, k = 10
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.01 0.68 6.71 1.68 0.44 0.07 1367.03
(0.00) (0.00) (0.03) (0.15) (0.52) (0.28) (0.29) (0.01) (173.50)

p = 30, k = 20
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.00 1.54 15.69 7.79 0.12 0.14 4650.35
(0.00) (0.00) (0.00) (0.30) (2.41) (1.03) (0.21) (0.02) (511.55)

100 0.00 1.00 0.00 0.51 16.94 2.16 0.13 0.05 4399.38
(0.00) (0.00) (0.00) (0.08) (0.24) (0.18) (0.22) (0.01) (429.41)

p = 20, k = 30
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.00 1.06 16.66 5.06 0.43 0.06 4276.25
(0.00) (0.00) (0.00) (0.17) (0.76) (0.62) (0.28) (0.01) (508.06)

100 0.00 1.00 0.00 0.46 16.99 1.88 0.53 0.06 4087.58
(0.00) (0.00) (0.00) (0.05) (0.10) (0.16) (0.20) (0.01) (406.97)

p = 40, k = 30
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.00 4.08 1.88 19.39 0.09 0.20 12018.68
(0.00) (0.00) (0.00) (1.21) (0.59) (1.57) (0.20) (0.04) (1422.84)

p = 50, k = 20
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

100 0.00 1.00 0.00 0.95 16.86 5.05 0.04 0.03 11262.97
(0.00) (0.00) (0.00) (0.15) (0.35) (0.40) (0.14) (0.01) (1003.69)

p = 200, k = 100
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE

300 3.76 0.92 0.00 8.26 29.56 54.24 – – –
(1.24) (0.23) (0.00) (0.86) (7.84) (0.81) (–) (–) (–)

Table 1: Results of Simulation I. Algorithm 2 is used for computation.

where card(·) denotes the cardinality, and sj ≥ 0 are tuning parameters as in our case.
Similarly, ALM that focuses on the non-noisy situation minimizes

min
Θ1,Θ2

‖Θ2‖∗ + λ
∑

θij∈Θ1

|θij |, subject to Z = Θ1 + Θ2, (19)

where ‖ · ‖∗ is the nuclear-norm of a matrix.

Our simulation example remains the same as before except that the positions of nonzero
elements in Θ2 are randomly sampled with equal probability, in particular, .1p and .3p
nonzeros are randomly chosen without replacement. For tuning, grid search is employed for
GoDec in (18), with 1 ≤ s1 ≤ (p+ k) and 1 ≤ s2 ≤ min(p, k, 50); λ is fixed at 1√

p for (19).
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Ours Low-rank alone Sparsity alone
n p |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 20 0.00 1.00 0.002 0.58 2.00 0.84 0.433 0.08 570
(0.00) (0.00) (0.006) (0.14) (0.00) (0.18) (0.30) (0.02) (73)

50 30 0.00 0.57 0.01 1.29 1.97 1.98 0.18 0.08 3772.33
(0.00) (0.17) (0.01) (0.32) (0.17) (0.42) (0.27) (0.01) (542.38)

50 40 0.00 1.00 0.001 3.57 1.67 5.43 0.07 0.05 1998
(0.00) (0.00) (0.003) (1.58) (0.60) (1.73) (0.18) (0.01) (257)

50 50 0.82 0.36 0.01 487.43 0.82 12255 0.05 0.03 3797
(0.84) (0.38) (0.01) (1081.68) (0.81) (79570) (0.15) (0.01) (539)

100 20 0.00 1.00 0.01 0.23 2.00 0.32 0.53 0.08 541
(0.00) (0.00) (0.03) (0.05) (0.00) (0.05) (0.21) (0.02) (58)

100 30 0.00 0.71 0.01 0.36 2.00 0.54 0.19 0.03 1461
(0.00) (0.25) (0.01) (0.05) (0.00) (0.08) (0.21) (0.01) (147)

100 40 0.00 0.98 0.01 0.53 2.00 0.83 0.10 0.03 1929
(0.00) (0.10) (0.02) (0.08) (0.00) (0.11) (0.20) (0.01) (179)

Table 2: Results for Simulation I with fixed k = 5. Algorithm 2 is used for computation.

From Tables 3, it is evidenced that the proposed method outperforms ALM uniformly
in terms of the MSE while being comparable to GoDec, in all the situations with different
values of (p, k, σ). Moreover, it always recovers the true rank of the matrix perfectly with
|r̂− r0| = 0. Although ALM has comparable high TP values, its FP values are high as well
in that they are at least 0.6488. As a result, ALM never captures the true rank.

4.3 AR Face Database 20pt Markup

For face image reconstruction, we use a subset of AR Face Data for this experiment. The
original image is available at http://www-prima.inrialpes.fr/FGnet/data/05-ARFace/
markup_large.png, which is a colored one with size of 186 × 200 × 3. To enable detailed
testing, the image has been labeled with 20 facial features on the face. We convert the
image into black and white and reduce it to size 171× 180. The target image is displayed
in Figure 1.

Figure 1: The converted AR face image with markup points.

Twenty one markup points around eyes, nose, mouth and cheeks, which are used to test
face recognition or verification performance when the exact location of the face and features
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nonzeros p k σ Method |r̂ − r0| TP FP MSE

0.1p

50 30

0.1

Ours 0.0000 0.9940 0.0000 0.2366
(0.0000) (0.0343) (0.0002) (0.0251)

ALM 13.0300 1.000 0.6488 1.5057
(0.6735) (0.0000) (0.0082) (0.0576)

GoDec 0.0000 0.9940 0.0000 0.2363
(0.0000) (0.0342) (0.0001) (0.0245)

1

Ours 0.0000 0.0320 0.0000 2.5308
(0.0000) (0.0839) (0.0001) (0.2418)

ALM 13.3900 0.9280 0.6540 15.0569
(0.6651) (0.1223) (0.0080) (0.5758)

GoDec 0.0000 0.0300 0.0001 2.5537
(0.0000) (0.0823) (0.0003) (0.2523)

200 100

0.1

Ours 0.0000 0.9770 0.0000 0.2345
(0.0000) (0.0337) (0.0000) (0.0169)

ALM 54.3100 1.0000 0.7034 4.9984
(0.7745) (0.0000) (0.0022) (0.0510)

GoDec 0.0000 0.9755 0.0000 0.2330
(0.0000) (0.0344) (0.0000) (0.0160)

1

Ours 0.0000 0.0075 0.0000 2.4469
(0.0000) (0.0206) (0.0000) (0.1387)

ALM 54.2400 0.9456 0.7059 49.9838
(0.7264) (0.0456) (0.0023) (0.5095)

GoDec 0.0000 0.0085 0.0000 2.4476
(0.0000) (0.0236) (0.0000) (0.1395)

0.3p

50 30

0.1

Ours 0.0000 0.9933 0.0002 0.2507
(0.0000) (0.0201) (0.0003) (0.0277)

ALM 13.0000 1.0000 0.6472 1.5057
(0.6195) (0.0000) (0.0079) (0.0576)

GoDec 0.0000 0.9953 0.0001 0.2489
(0.0000) (0.0171) (0.0003) (0.0271)

1

Ours 0.0000 0.0373 0.0000 2.8870
(0.0000) (0.0624) (0.0001) (0.2410)

ALM 13.37 0.9407 0.6531 15.0569
(0.6301) (0.0621) (0.0080) (0.5758)

GoDec 0.0000 0.0327 0.0001 2.8983
(0.0000) (0.0653) (0.0002) (0.2504)

200 100

0.1

Ours 0.0000 0.9867 0.0001 0.2495
(0.0000) (0.0164) (0.0001) (0.0198)

ALM 54.3500 1.0000 0.7030 4.9984
(0.6571) (0.0000) (0.0023) (0.0510)

GoDec 0.0000 0.9882 0.0000 0.2479
(0.0000) (0.0152) (0.0001) (0.0191)

1

Ours 0.0000 0.0080 0.0000 2.8254
(0.0000) (0.0122) (0.0000) (0.1402)

ALM 54.2200 0.9467 0.7054 49.9838
(0.6289) (0.0297) (0.0022) (0.5095)

GoDec 0.0000 0.0075 0.0000 2.8237
(0.0000) (0.0135) (0.0000) (0.1409)

Table 3: Results for Simulation II . Algorithm 1 is used for computation.
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are known. To identify the locations, we extract sparse (Θ1) and low-rank (Θ2) structures
for the face images as described by the matrix decomposition into Θ1 and Θ2. For this
purpose, A in (3) is set to be the identity matrix of size 171× 171. Figures 2 and 3 display
two decomposed structures for the AR face images by the proposed method with different
sparse and rank constraint parameters in (3).

Figure 2: Extracted sparsity (first), low-rank (second) structures as well as the recon-
structed image by the proposed method for AR face images; where the tuning
parameters are set to s1 = 2500, s2 = 5.

Figure 3: Extracted sparsity (first), low-rank (second) structures as well as the recon-
structed image by the proposed method for AR face images; where the tuning
parameters are set to s1 = 2100, s2 = 10.

As indicated in Figures 2 and 3, the sparseness structure describes characteristics/detailed
marks of the face, whereas the low-rank structure displays the rough outlook of the human
face. This confirms our discussion regarding local and global features in the Introduction.
Visually, both the first panels in Figures 2 and 3 preserve at least 60% markup points,
especially the points around nose two sides of face and lip. In other words, the sparsity
structure captures most of markup points. Similarly, the second panels retain the overall
look of the face. Most interestingly, this decomposition tends to remove the glasses from
the human face.
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4.4 Greek Letters Image Reconstruction

Now consider a 26 × 31 black-white image of two Greek letters β and φ, where its noisy
version is obtained by adding noise N(0, 1) after dividing the original matrix values by 100.
The ratio of the maximum value of the image to the noise standard deviation is about 2.5.
The images are displayed in Figure 4.

Figure 4: Original image (left) versus its noisy version (right).

Our goal is reconstruction of the original image from its noise version, with a focus on
restoration of detailed structures of the letters. Towards this end, we apply the proposed
method and contrast with its counterpart based on sparse pursuit alone and low-rank ap-
proximations. Specifically, let A to be the identity matrix of size 31 × 31 and Θ be a
31×26 parameter matrix in (3). For each method, grid search is performed for tuning, with
s1 = (10, 20, 30, 50), 1 ≤ s2 ≤ min(p, k) = 26 and τ = (0.05, 0.1, 0.2). For each method, the
10-fold cross-validation is employed. The reconstructed images are displayed in Figure 5.

Figure 5: Reconstructed images based on sparsity alone (first), low-rank alone (second) and
our method (third). Algorithm 2 is used for computation.

Visually, the first two reconstructed images by the low-rank method and the sparsity
method give the rough shape of two letters, but the letters β and φ not distinguishable with
blurred segments in places, especially the right middle of β and the top of φ. By comparison,
the third reconstructed image by our method enables to reconstruct the complete shape of
these two letters, and yield the best quality of reconstruction.
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4.5 US Macroeconomic Time Series

This subsection examines multiple time series data described in (Stock & Watson, 2012).
The data measures 143 US macroeconomic variables quarterly over a time span from Febru-
ary 1, 1959 to November 1, 2008. These variables are categorized into 13 groups and are
summarized in Table 4.

Group Description Examples of series # series

1 GDP component GDP, consumption, investment 16

2 IP IP, capacity utilization 14

3 Employment Sectoral&total employment and hours 20

4 Unemployment rate Unemployment rate, total and by duration 7

5 Housing Housing starts, total and by region 6

6 Inventories NAPM inventories, new orders 6

7 Prices Price indexes, aggregate&disaggregate,
37

commodity prices

8 Wages Average hourly earning, unit labor cost 6

9 Interest rates Treasuries, corporate, term spreads, public-
13

private spreads

10 Money M1, M2, business loans, consumer credit 7

11 Exchange rates Average&selected trading partners 5

12 Stock prices Various stock price indexes 5

13 Consumer expectations Michigan consumer expectations 1

Table 4: Economic indicators collected for U.S. macroeconomic time series.

For data analysis, we consider time series starting from August 1, 1959 to November
1, 2008 due to incomplete initial observations. Our goal is one-step ahead forecasting, and
contrast the proposed method with low-rank alone and sparsity alone in terms of forecasting
accuracy. Using a multivariate autoregressive model, that is, yt = yTt−1Θ+εi, we place it in
the framework of (1), where yt is a vector that records the values of various macroeconomic
variables at time point t, and εi follows normal distribution. In the presence of multiplicity
and non-stationarity for economics data like this, we consider some transformations. For
instance, log growth rates for quantity variables are differenced, nominal interest rates are
differenced, as well as the logarithms of changes in rates of inflation for price series are
differenced. See (Stock & Watson, 2012) for processing the data set. For this data set,
p = k = 143 in (1) and the design matrix A is specified by the time series, which can
written as A = (yt0 ,yt0+1, . . . ,yt0+d−1)

T .
A one-step ahead K-fold cross validation (CV) criterion is used for tuning the time

series (Arlot & Celisse, 2010). In particular, for design matrix A, at each fold i, we use
observations i to n−K + i− 1 for training and the observation n−K + i for tuning, where
K is a pre-assigned integer and K − 1 indicates the number of folds. Note that the values
of p and k are close to the sample size n for this time series. We therefore choose K ≤ 20
to maintain adequate training samples.

For tuning, the CV is optimized over a set of grids for s1 = (10, 20, 50, 100, 200), 1 ≤
s2 ≤ min(p, k) and τ = (0.02, 0.05, 0.1, 0.2). The results for K = 11 are reported in Table 5.
The results for other K values are omitted due to similarity.

As suggested by Table 5, the proposed method outperforms its counterparts pursuing
sparseness and low-rank alone. The amount of improvement over the low rank method and
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Ours Low-rank alone Sparsity alone

K = 11 301.22 348.02 3111.89

Table 5: Prediction errors of U.S. macroeconomic data for K = 11. Here “Low rank alone”,
“Sparsity alone” and ”Ours” indicate our method for low rank pursuit only, for
sparsity pursuit only and for simultaneous pursuit of low rank and sparsity. Algo-
rithm 2 is used for computation.

the sparsity method is 15% and 933%, respectively. The Q-Q plots in Figure 6 indicate
that the model assumption is adequate although some departure from normality has been
detected. Overall, the proposed method performs reasonably well.
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Appendix

Proof of Lemma 1: Let df(s, r) = s+ (p+ k − r)r. By definition of the effective degrees
of freedom, we obtain that

Eff(Θ) ≤ min(df(0, r(Θ0)), df(‖Θ0‖0, 0)).

To prove uniqueness in terms of (s, r), suppose there exist (s̄, r̄) 6= (s̄′, r̄′) such that
df(s̄, r̄) = df(s̄′, r̄′) = mins,r df(s, r). Without loss of generality, assume r̄ = r̄′ − n0 < r̄′,
where n0 > 0 is a positive integer. If n0 ≤ min(p, k) − r̄ and r̄ < min(p, k), then
s̄+ (p+ k− r̄)r̄ = s̄′+ (p+ k− r̄′)r̄′ implies that s̄ = s̄′+n0(p+ k− 2r̄−n0) ≥ n0(p+ k−
2r̄ − n0) > p+ k − 2r̄ − 1, which contradicts with the assumption that s < p+ k − 2r − 1.
Otherwise, if r̄ = min(p, k), s̄ must be zero. This completes the proof. �

Proof of Lemma 2: Let xi = vi for i /∈ K. Then the problem reduces to the standard l1
ball problem.

argmin∑
i∈K |xi|≤z

1

2

∑
i∈K

(xi − vi)2.

The results follows by the proof of Theorem 1 of (Liu & Ye, 2009). �

Proof of Lemma 3: It suffices to derive the basic step of ISTA in (Amit et al., 2007) for
(13). Consider the following quadratic approximation of problem (13) at a given point y:

min
x∈Rn:

∑
i∈K |xi|≤z

QL(x,y) = ‖Ay − b‖22 + 〈x− y,AT (Ay − b)〉+
L

2
‖x− y‖22, (20)
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Figure 6: Q-Q plots for each-fold in U.S. macroeconomic time series data example, where
points on a straight line indicates non-departure from normality.
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where L is a Lipschitz constant of the function AT (Ax−b) with respect to x. Solving (20)
is equivalent to that of

min
x∈Rn:

∑
i∈K |xi|≤z

‖x−
(
y − 1

L
AT (Ay − b)

)
‖22.

By Lemma 2, the solution is TK,z
(
y − 1

LA
T (Ay − b)

)
. The basic step of ISTA thus can be

written as x(t) = TK,z
(
x(t−1)− 1

LA
T (Ax(t−1)− b)

)
. Then, Lemma 3 follows by taking L to

be λmax(ATA), where λmax(·) denotes the largest singular value. �

Proof of Lemma 4: By (6) and (7), for any integer m ≥ 1,

f(Θ̂
(m)
1 , Θ̂

(m)
2 ) ≥ f(Θ̂

(m)
1 , Θ̂

(m+1)
2 ) ≥ f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 ).

Meanwhile, it follows from (6) that

f(Θ̂
(m)
1 , Θ̂

(m)
2 ) = ‖Z − Θ̂

(m)
2 ‖

2
F − ‖Θ̂

(m)
1 ‖

2
F

≥ ‖Z − Θ̂
(m+1)
2 − Θ̂

(m)
1 ‖

2
F

≥ ‖Z − Θ̂
(m+1)
2 ‖2F − ‖Θ̂

(m)
1 ‖

2
F .

Therefore ‖Z − Θ̂
(m)
2 ‖2F is lower bounded and decreasing in m. Moreover, by the mono-

tone properties of f(Θ̂
(m)
1 , Θ̂

(m)
2 ), ‖Θ̂(m)

1 ‖2F converges as m → ∞. Then there exists a

subsequence {mk} such that (Θ̂
(mk)
1 , Θ̂

(mk)
2 )→ (Θ̂

(m∗)
1 , Θ̂

(m∗)
2 ).

Let Rij(Θ1,Θ2) ∈ argminθij∈Θ1 or θij∈Θ2
f((Θ1,Θ2) \ θij). Let the cost function for θij

to be fm(θij) = f((Θ̂
(m)
1 , Θ̂

(m)
2 ) \ θij), where other components of (Θ̂

(m)
1 , Θ̂

(m)
2 ) are held

fixed. Then

fmk(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ fmk(Rij(Θ̂

(mk)
1 , Θ̂

(mk)
2 ))

≥ min
(
f((Θ̂

(mk)
1 , Θ̂

(mk+1)
2 )), f((Θ̂

(mk)
1 , Θ̂

(mk)
2 ))

)
≥ f((Θ̂

(mk+1)
1 , Θ̂

(mk+1)
2 )).

As m → ∞ , by continuity of f(·), f(m∗)(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ f(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 )) , where

the equality holds by the definition of Rij . Hence, for each θij ∈ Θl; l = 1, 2, θ̂
(m∗)
ij =

Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 ) is the optimal componentwise solution. The results of Lemma 4 then

follow. �

Proof of Lemma 5: First we prove that Θ̂
(m)
1 satisfies

∑
θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)

)
≤ s1. (21)
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Toward this end, we rewrite the left side of (21) as

∑
θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)

+
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)−
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ)− I(|θ̂(m−1)ij | > τ)

)

=
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)
+ Im, (22)

where Im =
∑

θij∈Θ1

|θ̂(m)
ij |−τ
τ

(
I(|θ̂(m)

ij | ≤ τ)− I(|θ̂(m−1)ij | ≤ τ)
)

. Note that it follows from

the DC construction that

∑
θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)
≤ s1.

Thus, to establish (21), we only need to prove Im ≤ 0. Rewrite I as

Im =


0 if min(|θ̂(m)

ij |, |θ̂
(m−1)
ij |) > τ or max(|θ̂(m)

ij |, |θ̂
(m−1)
ij |) ≤ τ ,∑

θij∈Θ1
(
|θ̂(m)
ij |
τ − 1) if |θ̂(m)

ij | ≤ τ and |θ̂(m−1)ij | > τ,

−
∑

θij∈Θ1
(
|θ̂(m)
ij |
τ − 1) if |θ̂(m)

ij | > τ and |θ̂(m−1)ij | ≤ τ ,

implying that Im ≤ 0. Then, (21) follows.

For stationarity, note that it follows from (21) that

f(Θ̂
(m−1)
1 , Θ̂

(m−1)
2 ) ≥ f(Θ̂

(m−1)
1 , Θ̂2) ≥ f(Θ̂

(m)
1 , Θ̂

(m)
2 ),

where Θ̂2 is defined in Step 2 of Algorithm 2.

Suppose that termination index m∗ is infinite. Then we will prove that Θ̂
(m)
1 → Θ̂

(m∗)
1

as m → m∗ = ∞. When m∗ = ∞, Θ̂
(m)
1 must be updated infinitely because Θ̂

(m)
2 is

analytically solved. First consider, at step m, Θ1 is updated whereas Θ2 = Θ̂
(m)
2 . Denote

by Λ(Θ1,Θ2, λ
∗) the dual problem of (12), where λ∗ is the optimal Lagrange multiplier and

Θ2 = Θ̂m
2 . Then

f(Θ̂
(m)
1 , Θ̂

(m)
2 )− f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 ) = Λ(Θ̂

(m)
1 , Θ̂

(m)
2 , λ∗)− Λ(Θ̂

(m+1)
1 , Θ̂

(m)
2 , λ∗)

− λ∗
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)− s1

)

The equality holds because Θ̂
(m+1)
1 is the global minimizer of a convex problem (12), attain-

ing at constraint boundaries, i.e
∑

θij∈Θ1

(
|θ̂(m+1)
ij |
τ I(|θ̂(m)

ij | ≤ τ) + I(|θ̂(m)
ij | > τ)− s1

)
= 0.
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An application of the Taylor expansion to Λ(Θ1, Θ̂
(m)
2 , λ∗) at Θ1 = Θ̂

(m+1)
1 yields that

f(Θ̂
(m)
1 , Θ̂

(m)
2 )− f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 )

= 〈 ∂Λ

∂Θ1
(Θ̂

(m+1)
1 , Θ̂

(m)
2 , λ∗), Θ̂

(m)
1 − Θ̂

(m+1)
1 〉+

1

2
〈A(Θ̂

(m)
1 − Θ̂

(m+1)
1 ),A(Θ̂

(m)
1 − Θ̂

(m+1)
1 )〉

− λ∗
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)− s1

)
,

where 〈·, ·〉 denotes the inner product. The first term in the right side of the equality is

zero, because Θ̂
(m+1)
1 is the global minimizer and the third term is no less than zero by

(21). Thus,

f(Θ̂
(m)
1 , Θ̂

(m)
2 )− f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 ) ≥ 1

2
〈A(Θ̂

(m)
1 − Θ̂

(m+1)
1 ),A(Θ̂

(m)
1 − Θ̂

(m+1)
1 )〉

≥ λmin(ATA)

2
‖Θ̂(m)

1 − Θ̂
(m+1)
1 ‖2F , (23)

where λmin(·) is the smallest eigenvalue of a matrix. Therefore f(Θ̂
(m)
1 , Θ̂

(m)
2 ) is lower

bounded and decreasing in m, implying f(Θ̂
(m)
1 , Θ̂

(m)
2 ) converges to some limit f∗ as m→

∞. By (23), convergence of Θ̂
(m)
1 → Θ̂

(m∗)
1 is established. Next consider the case in which

Θ2 is only updated finitely, say before step m0, using the same notation with proof of
Lemma 4, then for any m > m0

fm(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ fm(Rij(Θ̂

(m)
1 , Θ̂

(m)
2 )) = f((Θ̂

(m+1)
1 , Θ̂

(m+1)
2 )).

The second equality holds because the MBI is employed. As m → m∗ , by continuity of

function f , f(m∗)(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ f(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 )) , where the equality holds by the

definition of Rij . Finally, we consider the case in which Θ2 is updated infinitely. Then there

is a subsequence {mk} such that Θ̂
(mk)
2 → Θ̂

(m∗)
2 . Similarly, fm∗(Rij(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 )) =

f(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )). Hence, for each θij ∈ Θl, l = 1, 2, θ̂

(m∗)
ij = Rij(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 ) is the

optimal componentwise solution. The results of Lemma 5 then follow. �

Let BS,r = {Θ = ΘS
1 + Θ2 : r(Θ2) = r} ∩ Λ, a sub-parameter space with known sparsity

structure S and rank r. Denote H(·,Λ) and HB(·,Λ) to be the L∞ entropy and bracketing
Hellinger metric entropy for set Λ, respectively. The next two technical lemmas concern the
size of the parameter space.

Lemma 9 Suppose that Assumptions A is met.

HB(t,BS,r) ≤ |S| log(2Ml1/t) + (p+ k)r log(2Ml32/t),

where l1, l2 are constant and M > 1 is defined in Assumption A.

Lemma 10 Suppose that Assumptions A is satisfied. If s1 = s01, s2 = s02, then

HB(t,Λ) ≤2(p+ k)s02 log(2Ml32ε/t) + s01 log((1 + 2Ml1)/t)

+ 2s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
.
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Proof of Lemmas 6 and 7: For Lemma 6, note that Λ = ∪|S|≤s01 ∪r≤s02 BS,r. It suffices
to calculate the entropy for each BS,r.

Let Λ2 = {(Θ1,Θ2) : Θ1,Θ2 satisfy conditions defined in Λ}. For Θ = Θ1 + Θ2 and
(Θ1,Θ2) ∈ Λ2, define Bδ(Θ1,Θ2) = {(Θ′1,Θ′2) ∈ Λ2 : ‖Θ1−Θ′1‖max + ‖Θ2−Θ′2‖max ≤ δ}
to be the neighborhood of (Θ1,Θ2). For any Θ′ = Θ′1 + Θ′2 with (Θ′1,Θ

′
2) ∈ Bδ(Θ1,Θ2),

by Assumption A, ∫
sup

Bδ(Θ1,Θ2)
(g1/2(Θ, y)− g1/2(Θ′, y))2dν(y) ≤M2δ2.

Combined the above with Lemma 2.1 of (Ossiander, 1987), we have

HB(t,BS,r) ≤ H(M−1t,BS,r). (24)

Since ‖Θ1‖max is bounded by l1, by constructing a 2t-net on BS,r through the outer product
of the t-nets on ΘS

1 and Θ2 defined in the parameter space Λ, we can show that

H(M−1t,BS,r) ≤ |S| log(2Ml1/t) +Hr(M
−1t) (25)

where |S| is the number of nonzeros in Θ1 and Hr(M
−1t) is the entropy for Θ2 with rank r.

Let C be a basis of column of Θ2, then there exists an k× r matrix F such that Θ2 = CF .
Hence

‖Θ2 −Θ′2‖max = ‖CF −C ′F ′‖max ≤ ‖C‖∞‖F − F ′‖max + ‖F T ‖∞‖C −C ′‖max.

where ‖Θp×k‖∞ = max1≤i≤p
∑k

i=1 |θij | is the L∞ matrix-norm and ‖Θ‖max = maxθij∈Θ |θij |
is the max norm. Note that ‖C‖∞ and ‖F T ‖∞ are bounded by l2. This yields

Hr(M
−1t) ≤ (p+ k)r log

2l32M

t
.

This, together with (24) and (25), implies Lemma 6.
For Lemma 7, note that

exp(HB(t,Λ)) ≤ exp(H(M−1t,Λ))

=

s02∑
r=0

s01∑
|S|=0

|S|∑
i=0

(
s01
i

)(
(p+ k − r(Θ0))r(Θ0)− s01

|S| − i

)
exp(H(M−1t,BS,r))

≤
(

(p+ k − r(Θ0))r(Θ0)

s01

) s01∑
|S|=0

(
s01
|S|

)
(2Ml1/t)

|S|

 s02∑
r=0

(2Ml32/t)
(p+k)r


≡
(

(p+ k − r(Θ0))r(Θ0)

s01

)
× I × II.

Note that
∑n

k=0

(
n
k

)
akbn−k = (a+b)n. Then I = (1+2Ml1

t )s
0
1 and II ≤ (s02+1)

(
2Ml32ε
t

)(p+k)s02
.

Thus,

HB(t,Λ) ≤ log

(
(p+ k − r(Θ0))r(Θ0)

s01

)
+ log(s02 + 1) + s01 log(1 +

2Ml1
t

) + (p+ k)s02 log(
2Ml32
t

)

≤ 2(p+ k)s02 log(2Ml32/t) + s01 log(
1 + 2Ml1

t
) + 2s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
,
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where e is the natural number and 0 < t < 1. The last inequality follows Theorem 2.6 of

(Stanica & Montgomery, 2001) that
(
b
a

)
≤ bb+1/2
√
2πaa+1/2(b−a)b−a+1/2 ≤ exp((a+ 1/2) log(b/a) +

a) ≤ exp(2a log(b/a) + a) for any integer 0 < a < b. This completes the proof. �

Proof of Theorem 1: We apply a large deviation inequality in Theorem 2 of (Wong &
Shen, 1995). To this end, we verify (1.2) there. By Lemma 7,∫ 21/2ε

ε2/28

(
HB(t/c4,Λ)

)1/2
dt ≤

∫ 21/2ε

ε2/28

√
2(p+ k)s02 log(2Ml32c4/t) + s01 log((1 + 2Ml1)c4/t)dt

+

∫ 21/2ε

ε2/28

√
2s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
dt ≡ I1 + I2,

for some constant c4 > 0, say c4 = 10. Then, for ε small,

I1 ≤
√

2ε
√

2(p+ k)s02 log(29Ml32c4/ε
2) + s01 log((1 + 2Ml1)28c4/ε2)

≤ 2ε
√

(p+ k)s02 + s01

√
log(29Mc4(l32 + l1)) + 2 log

1

ε

≤ 2
√

2ε
√

log(29Mc4(l32 + l1))
√

(p+ k)s02 + s01 ·
√

log
1

ε
.

Similarly,

I2 ≤ 2ε

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
.

Let εn,p,k =
Cp,k√
n

log(
Cp,k√
n

) where

Cp,k = 2
√

2c−15

√
log(29Mc4(l32 + l1))

√
(p+ k)s02 + s01 + 2c−15

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
.

Then, for any ε ≥ εn,p,k and c5 = 512
(2/3)5/12∫ 21/2ε

ε2/28

(
HB(t/c4,Λ)

)1/2
dt ≤ c−15

√
nε2.

By Theorem 2 of (Wong & Shen, 1995), P
(
h(Θ̂L0 ,Θ0) ≥ ε

)
≤ 5 exp(−c1nε2), which yields

Eh2(Θ̂L0 ,Θ0) = O(ε2n,p,k) by using the fact that h(Θ̂L0 ,Θ0) ≤ 1.

Consider a special situation when log(r(Θ0)) ≤ ds02 for some constant d > 0 that is
independent of p, k. Note that s01 < p+ k − s02 and p+ k − r(Θ0) ≤ p+ k − s02. Then

s01 log
(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
≤ (p+ k − s02) log

(
e

(p+ k − r(Θ0))r(Θ0)

p+ k − s02

)
≤ (p+ k − s02) log(er(Θ0)) ≤ 2d(p+ k − s02)s02.
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Thus, I1 + I2 is upper bounded by

2
√

2ε

(√
log(29Mc4(l32 + l1)) +

√
d

)√
(p+ k)s02 + s01 ·

√
log

1

ε
.

Let c3 = 2
√

2c−15

(√
log(29c4(l32 + l1)) +

√
d
)√

(p+ k)s02 + s01. The result then follows.

This completes the proof. �

Proof of Corollary 1: If Θ0 is sparse and ‖Θ0‖0 ≤ p + k − 2, then by the definition of
effective degrees of freedom s0 = s01 + (p+ k − s02)s02 ≤ ‖Θ0‖0. This implies that

Cp,k = O
(√
‖Θ0‖0

)
+O

(√
‖Θ0‖0 log

(
p+ k − r(Θ0))r(Θ0)/‖Θ0‖0

))
= O

(√
‖Θ0‖0 log

(
p+ k − r(Θ0))r(Θ0)/‖Θ0‖0

))
.

The second inequality is because of nondecreasingness of
√
x and

√
x log(a/x) in x for

x ≤ a/e.
If Θ0 is low-rank, we have

Cp,k = O

(√
(p+ k − r(Θ0))r(Θ0) +

√
s01 log

(
(p+ k − r(Θ0))r(Θ0)/s01

))
.

Note that s01 log
(
(p+ k − r(Θ0))r(Θ0)/s01

)
≤ log

(
(p+ k − r(Θ0))r(Θ0)/e

)
. The result

follows.

If Θ0 is dense and of full rank, then (p+ k− r(Θ0))r(Θ0) is of order O(pk). Hence Cp,k

can be written as O
(√

(p+ k − s02)s02 +
√
s01 log(pk

s01
)
)

. This completes the proof. �

Proof of Corollary 2: It suffices to show the Assumption A is met. Let f(µi,y) =
1

(
√
2πσ)k

exp
(
− 1

2σ2 (y − µi)T (y − µi)
)

for i = 1, 2. µ1 = aTΘ and µ2 = aTΘ′. Then

∫
sup

‖Θ−Θ′‖max≤δ
(f1/2(µ1,y)− f1/2(µ2,y))2dy

≤ 2− 2
1

(
√

2πσ)k

∫
inf

‖Θ−Θ′‖max≤δ
exp

(
−
‖y − µ1+µ2

2 ‖22 + ‖µ1 − µ2‖22/2
2σ2

)
dy

≤ 2− 2 inf
‖Θ−Θ′‖max≤δ

exp

(
−‖µ1 − µ2‖22

4σ2

)
≤ (‖a‖1)2‖Θ−Θ′‖2max

4σ2
≤ (‖a‖1)2δ2

4σ2
.

The second inequality follows from the invariance property of the normal distribution. Corollary 2
follows when ‖a‖1 is bounded. This completes the proof. �
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Proof of Theorem 2: After some calculations, we obtain that

h2(Θ,Θ0) = 2

(
1−

n∏
i=1

1

(
√

2πσ)k

∫
exp

[
− 1

4σ2
(‖yi − aTi Θ‖2 + ‖yi − aTi Θ0‖2)

]
dy

)

= 2

(
1−

n∏
i=1

exp
[
− 1

8σ2
‖aTi (Θ−Θ0)‖2

)

= 2

(
1− exp(− 1

8σ2
‖A(Θ−Θ0)‖2F )

)
,

K(Θ0,Θ) =
1

2σ2
‖A(Θ−Θ0)‖2F .

When ε < 1,

P (K(Θ0, Θ̂L0) ≥ 4ε2) = P

(
1

8σ2
‖A(Θ̂L0 −Θ0)‖2F ≥ ε2

)
≤ P

(
1

8σ2
‖A(Θ̂L0 −Θ0)‖2F ≥ − log(1− ε2

2
)

)
= P

(
2

(
1− exp(− 1

8σ2
‖A(Θ̂L0 −Θ0)‖2F )

)
≥ ε2

)
= P

(
h2(Θ̂L0 ,Θ0) ≥ ε2

)
.

For any ε ≥ εn,p,k, it follows from Theorem 1 and Corollary 2 that

EK(Θ0, Θ̂L0) ≤ EK(Θ0, Θ̂L0)I{K(Θ0, Θ̂L0) ≤ 4ε2}+ EK(Θ0, Θ̂L0)I{K(Θ0, Θ̂L0) > 4ε2}

≤ 4ε2 +
(
EK2(Θ0, Θ̂L0)

)1/2(
P (K2(Θ0, Θ̂L0) > 4ε2)

)1/2
.

By the triangle inequality, ‖AΘ0 −AΘ̂L0‖F − ‖ε‖F ≤ ‖AΘ0 + ε −AΘ̂L0‖F . Note that Θ̂L0 is a

global minimizer of (3). Then ‖AΘ0 + ε−AΘ̂L0‖F ≤ ‖ε‖F . Hence

K(Θ0, Θ̂L0) =
1

2σ2
‖A(Θ0 − Θ̂L0)‖2F ≤

2

σ2
‖ε‖2F .

Thus,

EK(Θ0, Θ̂L0) ≤ 4ε2 +
(
E

4

σ4
‖ε‖4F

)1/2
P
(
K2(Θ0, Θ̂L0) > 4ε2

)
≤ 4ε2 + 10 exp(−c1nε2 + log

√
3nk).

The results in Theorem 2 follow by letting ε = εn,p,k and using the fact that log k ≤ C2
p,k. This

completes the proof. �

Proof of Theorem 3: Without loss of generality, assume p ≥ k and n = p. When σ = O(1/
√
p),

by Theorem 2, we have

‖Θ̂L0 −Θ0‖2F = 2σ2K(Θ0, Θ̂L0) = OP (
ε2n,p,k
p

)

= OP

(
C2
p,k

p2
log(

√
p

Cp,k
)

)

= OP

(
C2
p,k

p2
log(

p2

C2
p,k

)

)
, (26)
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where

Cp,k = O

(√
log(p)

√
(p+ k)s02 + s01 +

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

))
. (27)

(27) comes from the proof of Corollary 2 with M in Assumption A being O(
√
p). Thus,

‖Θ̂L0 −Θ0‖2F = OP

(
C ′p,k log(

1

C ′p,k
)

)
with

C ′p,k =
log(p) · [(p+ k)s02 + s01] + s01 log

(
e (p+k−r(Θ

0))r(Θ0)
s01

)
p2

.

This completes the proof. �
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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In the standard paradigm for TDA, one starts with data that one encodes as a finite
set of points in Rn or more generally in some metric space. Then one applies some ge-
ometric construction to which one applies tools from algebraic topology. The end result
is a topological summary of the data. The standard topological descriptors are the bar-
code and the persistence diagram (Edelsbrunner et al., 2002; Zomorodian and Carlsson,
2005; Cohen-Steiner et al., 2007), which give a multiscale representation of the homology
(Hatcher, 2002) of the geometric construction. Roughly, homology in degree 0 describes
the connectedness of the data; homology in degree 1 detects holes or tunnels; homology
in degree 2 captures voids; and so on. Of particular interest are the homological features
that persist as the resolution changes. We will give precise definitions and an illustrative
example of this method, called persistent homology or topological persistence, in Section 2.

Now let us take a statistical view of this paradigm. We consider the data to be sampled
from some underlying abstract probability space. Composing the constructions above, we
consider our topological summary to be a random variable with values in some summary
space S. In detail, the probability space (Ω,F ,P) consists of a sample space Ω, a σ-algebra
F of events, and a probability measure P. Composing our constructions gives a function
X : (Ω,F ,P) → (S,A,P∗), where S is the summary space, which we assume has some
metric, A is the corresponding Borel σ-algebra, and P∗ is the probability measure on S
obtained by pushing forward P along X. We assume that X is measurable and thus X is
a random variable with values in S.

Here is a list of what we would like to be able to do with our topological summary. Let
X1, . . . , Xn be a sample of independent random variables with the same distribution as X.
We would like to have a good notion of the mean µ of X and the mean Xn of the sample;
know that Xn converges to µ; and be able to calculate Xn(ω), for ω ∈ Ω, efficiently. We
would like to have information the difference Xn−µ, and be able to calculate approximate
confidence intervals related to µ. Given two such samples for random variables X and
Y with values in our summary space, we would like to be able to test the hypothesis
that µX = µY . In order to answer these questions we also need an efficient algorithm for
calculating distances between elements of our summary space. In this article, we construct a
topological summary that we call the persistence landscape which meets these requirements.

Our basic idea is to convert the barcode into a function in a somewhat additive manner.
The are many possible variations of this construction that may result in more suitable
summary statistics for certain applications. Hopefully, the theory presented here will also
be helpful in those situations.

We remark that while the persistence landscape has a corresponding barcode and persis-
tence diagram, the mean persistence landscape does not. This is analogous to the situation
in which an integer-valued random variable having a Poisson distribution has a summary
statistic, the rate parameter, that is not an integer.

We also remark that the reader may restrict our Banach space results results to the
perhaps more familiar Hilbert space setting. However we will need this generality to prove
stability of the persistence landscape for, say, functions on the n-dimensional sphere where
n > 2.

There has been progress towards combining the persistence diagram and statistics (Mi-
leyko et al., 2011; Turner et al., 2014; Munch et al., 2013; Chazal et al., 2013; Fasy et al.,
2014). Blumberg et al. (2014) give a related statistical approach to TDA. Kovacev-Nikolic
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et al. (2014) use the persistence landscape defined here to study the maltose binding complex
and Chazal et al. (2014) apply the bootstrap to the persistence landscape. The persistence
landscape is related to the well group defined by Edelsbrunner et al. (2011).

In Section 2 we provide the necessary background and define the persistence landscape
and give some of its properties. In Section 3 we introduce the statistical theory of persistence
landscapes, which we apply to a few examples in Section 4. In Section 5 we prove that the
persistence landscape is stable and that it provides lower bounds for the previously defined
bottleneck and Wasserstein distances.

2. Topological Summaries

The two standard topological summaries of data are the barcode and the persistence diagram.
We will define a new closely-related summary, the persistence landscape, and then compare
it to these two previous summaries. All of these summaries are derived from the persistence
module, which we now define.

2.1 Persistence Modules

The main algebraic object of study in topological data analysis is the persistence module.
A persistence module M consists of a vector space Ma for all a ∈ R and linear maps
M(a ≤ b) : Ma → Mb for all a ≤ b such that M(a ≤ a) is the identity map and for all
a ≤ b ≤ c, M(b ≤ c) ◦M(a ≤ b) = M(a ≤ c).

There are many ways of constructing a persistence module. One example starts with a
set of points X = {x1, . . . , xn} in the plane M = R2 as shown in the top left of Figure 1.
To help understand this configuration, we “thicken” each point, by replacing each point,
x, with Bx(r) = {y ∈ M | d(x, y) ≤ r}, a disk of fixed radius, r, centered at x. The
resulting union, Xr =

⋃n
i=1Br(xi), is shown in Figure 1 for various values of r. For each

r, we can calculate H(Xr), the homology of the resulting union of disks. To be precise,
H(−) denotes Hk(−,F), the singular homology functor in degree k with coefficients in a
field F. So H(Xr) is a vector space that is the quotient of the k-cycles modulo those that
are boundaries. As r increases, the union of disks grows, and the resulting inclusions induce
maps between the corresponding homology groups. More precisely, if r ≤ s, the inclusion
ιsr : Xr ↪→ Xs induces a map H(ιsr) : H(Xr) → H(Xs). The images of these maps are the
persistent homology groups. The collection of vector spaces H(Xr) and linear maps H(ιsr)
is a persistence module. Note that this construction works for any set of points in Rn or
more generally in a metric space.

The union of balls Xr has a nice combinatorial description. The Čech complex, Čr(X),
of the set of balls {Bxi(r)} is the simplicial complex whose vertices are the points {xi} and
whose k-simplices correspond to k+1 balls with nonempty intersection (see Figure 1). This
is also called the nerve. It is a basic result that if the ambient space is Rn, Xr is homotopy
equivalent to its Čech complex (Borsuk, 1948). So to obtain the singular homology of the
union of balls, one can calculate the simplicial homology of the corresponding Čech complex.
The Čech complexes {Čr(X)} together with the inclusions Čr(X) ⊆ Čs(X) for r ≤ s form a
filtered simplicial complex. Applying simplicial homology we obtain a persistence module.
There exist efficient algorithms for calculating the persistent homology of filtered simplicial
complexes (Edelsbrunner et al., 2002; Milosavljević et al., 2011; Chen and Kerber, 2013).
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Figure 1: A growing union of balls and the 1-skeleton of the corresponding Čech complex.
As the radius grows, features—such as connected components and holes—appear
and disappear. Here, the complexes illustrate the births and deaths of three holes,
homology classes in degree one. The corresponding birth-death pairs are plotted
as part of the top left of Figure 2.

The Čech complex is often computationally expensive, so many variants have been used
in computational topology. A larger, but simpler complex called the Rips complex has as
vertices the points xi and has k-simplices corresponding to k + 1 balls with all pairwise
intersections nonempty. Other possibilities include the witness complexes of de Silva and
Carlsson (2004), graph induced complexes by Dey et al. (2013) and complexes built using
kernel density estimators and triangulations of the ambient space (Bubenik et al., 2010).
Some of these are used in the examples in Section 4.

Given any real-valued function f : S → R on a topological space S, we can define the
associated persistence module, M(f), where M(f)(a) = H(f−1((∞, a])) and M(f)(a ≤ b)
is induced by inclusion. Taking f to be the the minimum distance to a finite set of points,
X, we obtain the first example.

2.2 Persistence Landscapes

In this section we define a number of functions derived from a persistence module. Examples
of each of these are given in Figure 2.

Let M be a persistence module. For a ≤ b, the corresponding Betti number of M , is
given by the dimension of the image of the corresponding linear map. That is,

βa,b = dim(im(M(a ≤ b))). (1)

Lemma 1 If a ≤ b ≤ c ≤ d then βb,c ≥ βa,d.

Proof Since M(a ≤ d) = M(c ≤ d) ◦M(b ≤ c) ◦M(a ≤ b), this follows from (1).

Our simplest function, which we call the rank function is the function λ : R2 → R given
by

λ(b, d) =

{
βb,d if b ≤ d
0 otherwise.

80



Persistence Landscapes

Now let us change coordinates so that the resulting function is supported on the upper
half plane. Let

m =
b+ d

2
, and h =

d− b
2

. (2)

The rescaled rank function is the function λ : R2 → R given by

λ(m,h) =

{
βm−h,m+h if h ≥ 0

0 otherwise.

Much of our theory will apply to these simple functions. However, the following version,
which we will call the persistence landscape, will have some advantages.

First let us observe that for a fixed t ∈ R, βt−•,t+• is a decreasing function. That is,

Lemma 2 For 0 ≤ h1 ≤ h2,

βt−h1,t+h1 ≥ βt−h2,t+h2 .

Proof Since t− h2 ≤ t− h1 ≤ t+ h1 ≤ t+ h2, by Lemma 1, βt−h2,t+h2 ≤ βt−h1,t+h1 .

Definition 3 The persistence landscape is a function λ : N × R → R, where R denotes
the extended real numbers, [−∞,∞]. Alternatively, it may be thought of as a sequence of
functions λk : R→ R, where λk(t) = λ(k, t). Define

λk(t) = sup(m ≥ 0 | βt−m,t+m ≥ k).

The persistence landscape has the following properties.

Lemma 4 1. λk(t) ≥ 0,

2. λk(t) ≥ λk+1(t), and

3. λk is 1-Lipschitz.

The first two properties follow directly from the definition. We prove the third in the
appendix.

To help visualize the graph of λ : N×R→ R, we can extend it to a function λ : R2 → R
by setting

λ(x, t) =

{
λ(dxe, t), if x > 0,

0, if x ≤ 0.
(3)

We remark that the non-persistent Betti numbers, {dim(M(t))}, of a persistence module
M can be read off from the diagonal of the rank function, the m-axis of the rescaled rank
function, and from the support of the persistence landscape.
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Figure 2: Persistence landscapes for the homology in degree 1 of the example in Figure 1.
For the rank function (top left) and rescaled rank function (top right) the values
of the functions on the corresponding region are given. The top left graph also
contains the three points of the corresponding persistence diagram. Below the
top right graph is the corresponding barcode. We also have the corresponding
persistence landscape (bottom left) and its 3d-version (bottom right). Notice
that λ1 gives a measure of the dominant homological feature at each point of the
filtration.
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Figure 3: Means of persistence diagrams and persistence landscapes. Top left: the rescaled
persistence diagrams {(6, 6), (10, 6)} and {(8, 4), (8, 8)} have two (Fréchet) means:
{(7, 5), (9, 7)} and {(7, 7), (9, 5)}. In contrast their corresponding persistence
landscapes (top right and bottom left) have a unique mean (bottom right).

2.3 Barcodes and Persistence Diagrams

All of the information in a (tame) persistence module is completely contained in a multiset
of intervals called a barcode (Zomorodian and Carlsson, 2005; Crawley-Boevey, 2012; Chazal
et al., 2012). Mapping each interval to its endpoints we obtain the persistence diagram.

There exist maps in both directions between these topological summaries and our func-
tions. For an example of corresponding persistence diagrams, barcodes and persistence
landscapes, see Figure 2. Informally, the persistence diagram consists of the “upper-left
corners” in our rank function. In the other direction, λ(b, d) counts the number of points
in the persistence diagram in the upper left quadrant of (b, d). Informally, the barcode con-
sists of the “bases of the triangles” in the rescaled rank function, and the other direction is
obtained by “stacking isosceles triangles” whose bases are the intervals in the barcode. We
invite the reader to make the mappings precise. For example, given a persistence diagram
{(bi, di)}ni=1,

λk(t) = kth largest value of min(t− bi, di − t)+,

where c+ denotes max(c, 0). The fact that barcodes are a complete invariant of persistence
modules is central to these equivalences.

The geometry of the space of persistence diagrams makes it hard to work with. For
example, sets of persistence diagrams need not have a unique (Fréchet) mean (Mileyko
et al., 2011). In contrast, the space of persistence landscapes is very nice. So a set of
persistence landscapes has a unique mean (4). See Figure 3.

Compared to the persistence diagram, the barcode has extra information on whether or
not the endpoints of the intervals are included. This finer information is seen in the rank
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function and rescaled rank function, but not in the persistence landscape. However when
we pass to the corresponding Lp space in Section 2.4, this information disappears.

2.4 Norms for Persistence Landscapes

Recall that for a measure space (S,A, µ), and a function f : S → R defined µ-almost

everywhere, for 1 ≤ p < ∞, ‖f‖p =
[∫
|f |pdµ

] 1
p , and ‖f‖∞ = ess sup f = inf{a | µ{s ∈

S | f(s) > a} = 0}. For 1 ≤ p ≤ ∞, Lp(S) = {f : S → R | ‖f‖p < ∞} and define
Lp(S) = Lp(S)/ ∼, where f ∼ g if ‖f − g‖p = 0.

On R and R2 we will use the Lebesgue measure. On N× R, we use the product of the
counting measure on N and the Lebesgue measure on R. For 1 ≤ p <∞ and λ : N×R→ R,

‖λ‖pp =
∞∑
k=1

‖λk‖pp,

where λk(t) = λ(k, t). By Lemma 4(2), ‖λ‖∞ = ‖λ1‖∞. If we extend f to λ : R2 → R, as
in (3), we have ‖λ‖p = ‖λ‖p, for 1 ≤ p ≤ ∞.

If λ is any of our functions corresponding to a barcode that is a finite collection of finite
intervals, then λ ∈ Lp(S) for 1 ≤ p ≤ ∞, where S equals N× R or R2.

Let λbd and λmh denote the rank function and the rescaled rank function corresponding
to a persistence landscape λ, and let D be the corresponding persistence diagram. Let
pers2(D) denote the sum of the squares of the lengths of the intervals in the corresponding
barcode, and let pers∞(D) be the length of the longest interval.

Proposition 5 1. ‖λ‖1 = ‖λmh‖1 = 1
2‖λbd‖1 = 1

4 pers2(D), and

2. ‖λ‖∞ = ‖λ1‖∞ = 1
2 pers∞(D).

Proof

1. To see that ‖λ‖1 = ‖λmh‖ we remark that both are the volume of the same solid. The
change of coordinates implies that ‖λmh‖1 = 1

2‖λbd‖1. If D = {(bi, di)}, then each

point (bi, di) contributes h2
i to the volume ‖λmh‖1, where hi = di−bi

2 . So ‖λmh‖1 =∑
i h

2
i . Finally, pers2(D) =

∑
i(2hi)

2 = 4
∑

i h
2
i .

2. Lemma 4(2) implies that ‖λ‖∞ = ‖λ1‖∞. If D = {(bi, di)}, then ‖λ‖∞ = supi
di−bi

2 .

We remark that the quantities in 1 and 2 also equalW2(D, ∅)2 andW∞(D, ∅) respectively
(see Section 5 for the corresponding definitions).

3. Statistics with Landscapes

Now let us take a probabilistic viewpoint. First, we assume that our persistence landscapes
lie in Lp(S) for some 1 ≤ p < ∞, where S equals N × R or R2. In this case, Lp(S) is a
separable Banach space. When p = 2 we have a Hilbert space; however, we will not use this
structure. In some examples, the persistence landscapes will only be stable for some p > 2
(see Theorem 16).
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3.1 Landscapes as Banach Space Valued Random Variables

Let X be a random variable on some underlying probability space (Ω,F , P ), with corre-
sponding persistence landscape Λ, a Borel random variable with values in the separable
Banach space Lp(S). That is, for ω ∈ Ω, X(ω) is the data and Λ(ω) = λ(X(ω)) =: λ is the
corresponding topological summary statistic.

Now let X1, . . . , Xn be independent and identically distributed copies of X, and let
Λ1, . . . ,Λn be the corresponding persistence landscapes. Using the vector space structure
of Lp(S), the mean landscape Λ

n
is given by the pointwise mean. That is, Λ

n
(ω) = λ

n
,

where

λ
n
(k, t) =

1

n

n∑
i=1

λi(k, t). (4)

Let us interpret the mean landscape. If B1, . . . , Bn are the barcodes corresponding to the
persistence landscapes λ1, . . . , λn, then for k ∈ N and t ∈ R, λ

n
(k, t) is the average value

of the largest radius interval centered at t that is contained in k intervals in the barcodes
B1, . . . , Bn.

For those used to working with persistence diagrams, it is tempting to try to find
a persistence diagram whose persistence landscape is closest to a given mean landscape.
While this is an interesting mathematical question, we would like to suggest that the more
important practical issue is using the mean landscape to understand the data.

We would like to be able to say that the mean landscape converges to the expected
persistence landscape. To say this precisely we need some notions from probability in
Banach spaces.

3.2 Probability in Banach Spaces

Here we present some results from probability in Banach spaces. For a more detailed
exposition we refer the reader to Ledoux and Talagrand (2011).

Let B be a real separable Banach space with norm ‖·‖. Let (Ω,F , P ) be a probability
space, and let V : (Ω,F , P ) → B be a Borel random variable with values in B. The

composite ‖V ‖ : Ω
V−→ B ‖·‖−−→ R is a real-valued random variable. Let B∗ denote the

topological dual space of continuous linear real-valued functions on B. For f ∈ B∗, the

composite f(V ) : Ω
V−→ B f−→ R is a real-valued random variable.

For a real-valued random variable Y : (Ω,F , P ) → R, the mean or expected value, is
given by E(Y ) =

∫
Y dP =

∫
Ω Y (ω) dP (ω). We call an element E(V ) ∈ B the Pettis

integral of V if E(f(V )) = f(E(V )) for all f ∈ B∗.

Proposition 6 If E‖V ‖ <∞, then V has a Pettis integral and ‖E(V )‖ ≤ E‖V ‖.

Now let (Vn)n∈N be a sequence of independent copies of V . For each n ≥ 1, let Sn =
V1 + · · ·+Vn. For a sequence (Yn) of B-valued random variables, we say that (Yn) converges
almost surely to a B-valued random variable Y , if P (limn→∞ Yn = Y ) = 1.

Theorem 7 (Strong Law of Large Numbers) ( 1
nSn)→ E(V ) almost surely if and only

if E‖V ‖ <∞.
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For a sequence (Yn) of B-valued random variables, we say that (Yn) converges weakly
to a B-valued random variable Y , if limn→∞E(ϕ(Yn)) = E(ϕ(Y )) for all bounded contin-
uous functions ϕ : B → R. A random variable G with values in B is said to be Gaus-
sian if for each f ∈ B∗, f(G) is a real valued Gaussian random variable with mean zero.
The covariance structure of a B-valued random variable, V , is given by the expectations
E[(f(V ) − E(f(V )))(g(V ) − E(g(V )))], where f, g ∈ B∗. A Gaussian random variable is
determined by its covariance structure. From Hoffmann-Jørgensen and Pisier (1976) we
have the following.

Theorem 8 (Central Limit Theorem) Assume that B has type 2. (For example B =
Lp(S), with 2 ≤ p <∞.) If E(V ) = 0 and E(‖V ‖2) <∞ then 1√

n
Sn converges weakly to a

Gaussian random variable G(V ) with the same covariance structure as V .

3.3 Convergence of Persistence Landscapes

Now we will apply the results of the previous section to persistence landscapes.

Theorem 7 directly implies the following.

Theorem 9 (Strong Law of Large Numbers for persistence landscapes)
Λ
n → E(Λ) almost surely if and only if E‖Λ‖ <∞.

Theorem 10 (Central Limit Theorem for peristence landscapes) Assume p ≥ 2.
If E‖Λ‖ < ∞ and E(‖Λ‖2) < ∞ then

√
n[Λ

n − E(Λ)] converges weakly to a Gaussian
random variable with the same covariance structure as Λ.

Proof Apply Theorem 8 to V = λ(X)− E(λ(X)).

Next we apply a functional to the persistence landscapes to obtain a real-valued random
variable that satisfies the usual central limit theorem.

Corollary 11 Assume p ≥ 2, E‖Λ‖ < ∞ and E(‖Λ‖2) < ∞. For any f ∈ Lq(S) with
1
p + 1

q = 1, let

Y =

∫
S
fΛ = ‖fΛ‖1. (5)

Then √
n[Y n − E(Y )]

d−→ N(0,Var(Y )). (6)

where d denotes convergence in distribution and N(µ, σ2) is the normal distribution with
mean µ and variance σ2.

Proof Since V = Λ−E(Λ) satisfies the central limit theorem in Lp(S), for any g ∈ Lp(S)∗,
the real random variable g(V ) satisfies the central limit theorem in R with limiting Gaussian
law with mean 0 and variance E(g(V )2). If we take g(h) =

∫
S fh, where f ∈ Lq(S), with

1
p + 1

q = 1, then g(V ) = Y − E(Y ) and E(g(V )2) = Var(Y ).
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3.4 Confidence Intervals

The results of Section 3.3 allow us to obtain approximate confidence intervals for the ex-
pected values of functionals on persistence landscapes.

Assume that λ(X) satisfies the conditions of Corollary 11 and that Y is a corresponding
real random variable as defined in (5). By Corollary 11 and Slutsky’s theorem we may
use the normal distribution to obtain the approximate (1−α) confidence interval for E(Y )
using

Y n ± z∗
Sn√
n
,

where S2
n = 1

n−1

∑n
i=1(Yi − Y n)2, and z∗ is the upper α

2 critical value for the normal
distribution.

3.5 Statistical Inference using Landscapes I

Here we apply the results of Section 3.3 to hypothesis testing using persistence landscapes.

Let X1, . . . , Xn be an iid copies of the random variable X and let X ′1, . . . , X
′
n′ be an iid

copies of the random variable X ′. Assume that the corresponding persistence landscapes
Λ, Λ′ lie in Lp(S), where p ≥ 2. Let f ∈ Lq(S), where 1

p + 1
q = 1. Let Y and Y ′ be defined

as in (5). Let µ = E(Y ) and µ′ = E(Y ′). We will test the null hypothesis that µ = µ′.
First we recall that the sample mean Y = 1

n

∑n
i=1 Yi is an unbiased estimator of µ and the

sample variance s2
Y = 1

n−1

∑n
i=1(Yi − Y )2 is an unbiased estimator of Var(Y ) and similarly

for Y ′ and s2
Y ′ . By Corollary 11, Y and Y ′ are asymptotically normal.

We use the two-sample z-test. Let

z =
Y − Y ′√
S2
Y
n +

S2
Y ′
n′

,

where the denominator is the standard error for the difference. From this standard score a
p-value may be obtained from the normal distribution.

3.6 Choosing a Functional

To apply the above results, one needs to choose a functional, f ∈ Lq(S). This choice will
need to be made with an understanding of the data at hand. Here we present a couple of
options.

If each λ = Λ(ω) is supported by {1, . . . ,K} × [−B,B], take

f(k, t) =

{
1 if t ∈ [−B,B] and k ≤ K
0 otherwise.

(7)

Then ‖fΛ‖1 = ‖Λ‖1.

If the parameter values for which the persistence landscape is nonzero are bounded
by ±B, then we have a nice choice of functional for the persistence landscape that is
unavailable for the (rescaled) rank function. We can choose a functional that is sensitive of
the first K dominant homological features. That is, using f in (7), ‖fλ‖1 =

∑K
k=1‖Λk‖1.
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Under this weaker assumption we can also take fk(t) = 1
krχ[−B,B], where r > 1. Then

‖fΛ‖1 =
∑∞

k=1
1
kr ‖Λk(t)‖1.

The condition that λ is supported by N×[−B,B] can often be enforced by using reduced
homology or by applying extended persistence (Cohen-Steiner et al., 2009; Bubenik and
Scott, 2014) or by simply truncating the intervals in the corresponding barcode at some
fixed values. We remark that certain experimental data may have bounds on the number
of intervals. For example, in the protein data considered using the ideas presented here in
Kovacev-Nikolic et al. (2014), the simplicial complexes have a fixed number of vertices.

3.7 Statistical Inference using Landscapes II

The functionals suggested in Section 3.6 in the hypothesis test given in Section 3.5 may not
have enough power to discriminate between two groups with different persistence in some
examples.

To increase the power, one can apply a vector of functionals and then apply Hotelling’s
T 2 test. For example, consider Y = (

∫
(Λ1−Λ′1), . . . ,

∫
(ΛK−Λ′K)), where K � n1 +n2−2.

This alternative will not be sufficient if the persistence landscapes are translates of each
other, (see Figure 7). An additional approach is to compute the distance between the mean
landscapes of the two groups and obtain a p-value using a permutation test. This is done
in the Section 4.3. This test has been applied to persistence diagrams and barcodes (Chung
et al., 2009; Robinson and Turner, 2013).

4. Examples

The persistent homologies in this section were calculated using javaPlex (Tausz et al.,
2011) and Perseus by Nanda (2013). Another publicly available alternative is Dionysus
by Morozov (2012). In Section 4.2 we use Matlab code courtesy of Eliran Subag that
implements an algorithm from Wood and Chan (1994).

4.1 Linked Annuli

We start with a simple example to illustrate the techniques. Following Munch et al. (2013),
we sample 200 points from the uniform distribution on the union of two annuli. We then
calculate the corresponding persistence landscape in degree one using the Vietoris-Rips
complex. We repeat this 100 times and calculate the mean persistence landscape. See
Figure 4.

Note that in the degree one barcode of this example, it is very likely that there will be
one large interval, one smaller interval born at around the same time, and all other intervals
are smaller and die around the time the larger two intervals are born.

4.2 Gaussian Random Fields

The topology of Gaussian random fields is of interest in statistics. The Euler characteristic of
superlevel sets of a Gaussian random field may be calculated using the Gaussian Kinematic
Formula of Adler and Taylor (2007). The persistent homology of Gaussian random fields
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Figure 4: 200 points were sampled from a pair of linked annuli. Here we show the points
and a corresponding union of balls and 1-skeleton of the Čech complex. This was
repeated 100 times. Next we show two of the degree one persistence landscapes
and the mean degree one persistence landscape.
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Figure 5: Mean landscapes of Gaussian random fields. The graph of a Gaussian random
field on [0, 1]2 (top left) and its corresponding mean landscapes (middle row) in
degrees 0 and 1. The 0-isosurface of a Gaussian random field on [0, 1]3 (top right)
and the corresponding mean landscapes in degrees 0, 1 and 2 (bottom row).

has been considered by Adler et al. (2010) and its expected Euler characteristic has been
obtained by Bobrowski and Borman (2012).

Here we consider a stationary Gaussian random field on [0, 1]2 with autocovariance
function γ(x, y) = e−400(x2+y2). See Figure 5. We sample this field on a 100 by 100 grid,
and calculate the persistence landscape of the sublevel set. For homology in degree 0, we
truncate the infinite interval at the maximum value of the field. We calculate the mean
persistence landscapes in degrees 0 and 1 from 100 samples (see Figure 5, where we have
rescaled the filtration by a factor of 100).

In the Gaussian random field literature, it is more common to consider superlevel sets.
However, by symmetry, the expected persistence landscape in this case is the same except
for a change in the sign of the filtration.

We repeat this calculation for a similar Gaussian random field on [0, 1]3, this time using
reduced homology. See Figure 5. This time we sample on a 25× 25× 25 grid.
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4.3 Torus and Sphere

Here we combine persistence landscapes and statistical inference to discriminate between
iid samples of 1000 points from a torus and a sphere in R3 with the same surface area, using
the uniform surface area measure as described by Diaconis et al. (2012) (see Figure 6). To
be precise, we use the torus given by (r − 2)2 + z2 = 1 in cylindrical coordinates, and the
sphere given by r2 = 2π in spherical coordinates.

For these points, we construct a filtered simplicial complex as follows. First we trian-
gulate the underlying space using the Coxeter–Freudenthal–Kuhn triangulation, starting
with a cubical grid with sides of length 1

2 . Next we smooth our data using a triangular
kernel with bandwidth 0.9. We evaluate this kernel density estimator at the vertices of our
simplicial complex. Finally, we filter our simplicial complex as follows. For filtration level
−r, we include a simplex in our triangulation if and only if the kernel density estimator has
values greater than or equal to r at all of its vertices. Three stages in the filtration for one
of the samples are shown in (see Figure 6). We then calculate the persistence landscape of
this filtered simplicial complex for 100 samples and plot the mean landscapes (see Figure 6).
We observe that the large peaks correspond to the Betti numbers of the torus and sphere.

Since the support of the persistence landscapes is bounded, we can use the integral of
the landscapes to obtain a real valued random variable that satisfies (6). We use a two-
sample z-test to test the null hypothesis that these random variables have equal mean. For
the landscapes in dimensions 0 and 2 we cannot reject the null hypothesis. In dimension 1
we do reject the null hypothesis with a p-value of 3× 10−6.

We can also choose a functional that only integrates the persistence landscape λ(k, t) for
certain ranges of k. In dimension 1, with k = 1 or k = 2 there is a statistically significant
difference (p-values of 10−8 and 3× 10−6), but not for k > 2. In dimension 2, there is not
a significant difference for k = 1, but there is a significant difference for k > 1 (p-value
< 10−4).

Now we increase the difficulty by adding a fair amount of Gaussian noise to the point
samples (see Figure 7) and using only 10 samples for each surface. This time we calculate
the L2 distances between the mean landscapes. We use the permutation test with 10,000
repetitions to determine if this distance is statistically significant. There is a significant
difference in dimension 0, with a p value of 0.0111. This is surprising, since the mean
landscapes look very similar. However, on closer inspection, they are shifted slightly (see
Figure 7). Note that we are detecting a geometric difference, not a topological one. This
shows that this statistic is quite powerful. There is also a significant difference in dimensions
1 and 2, with p values of 0.0000 and 0.0000, respectively.

5. Landscape Distance and Stability

In this section we define the landscape distance and use it to show that the persistence
landscape is a stable summary statistic. We also show that the landscape distance gives
lower bounds for the bottleneck and Wasserstein distances. We defer the proofs of the
results of this section to the appendix.

Let M and M ′ be persistence modules as defined in Section 2.1 and let λ and λ′ be their
corresponding persistence landscapes as defined in Section 2.2. For 1 ≤ p ≤ ∞, define the
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Figure 6: We sample 1000 points for a torus and sphere, 100 times each, construct the
corresponding filtered simplicial complexes and calculate persistent homology. In
columns 1, 2 and 3, we have the mean persistence landscape in dimension 0, 1
and 2 of the torus in row 3 and the sphere in row 4.
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Figure 7: We again sample 1000 points sampled from a torus (top left) and sphere (top
middle), this time with Gaussian noise. We show the torus from the perspective
that makes it easiest to see the hole in the middle. We calculate persistent
homology from 10 samples. In columns 1, 2 and 3, we have the mean persistence
landscape in dimension 0, 1 and 2, respectively, with the torus in row 2 and the
sphere in row 3. The top right is a graph of the difference between the mean
landscapes in dimension 0.
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p-landscape distance between M and M ′ by

Λp(M,M ′) = ‖λ− λ′‖p.

Similarly, if λ and λ′ are the persistence landscapes corresponding to persistence diagrams
D and D′ (Section 2.3), then we define

Λp(D,D
′) = ‖λ− λ‖p.

Given a real valued function f : X → R on a topological space X, let M(f) denote be
the corresponding persistence module defined at the end of Section 2.1.

Theorem 12 (∞-Landscape Stability Theorem) Let f, g : X → R. Then

Λ∞(M(f),M(g)) ≤ ‖f − g‖∞.

Thus the persistence landscape is stable with respect to the supremum norm. We remark
that there are no assumptions on f and g, not even the q-tame condition of Chazal et al.
(2012).

Let D be a persistence diagram. For x = (b, d) ∈ D, let ` = d− b denote the persistence
of x. If D = {xj}, let Persk(D) =

∑
j `
k
j denote the degree-k total persistence of D.

Now let us consider a persistence diagram to be an equivalence class of multisets of pairs
(b, d) with b ≤ d, where D ∼ Dq{(t, t)} for any t ∈ R. That is, to any persistence diagram,
we can freely adjoin points on the diagonal. This is reasonable, since points on the diagonal
have zero persistence. Each persistence diagram has a unique representative D̂ without any
points on the diagonal. We set |D| = |D̂|. We also remark that Persk(D) is well defined.

By allowing ourselves to add as many points on the diagonal as necessary, there exists

bijections between any two persistence diagrams. Any bijection ϕ : D
∼=−→ D′ can be

represented by ϕ : xj 7→ x′j , where j ∈ J with |J | = |D| + |D′|. For a given ϕ, let
xj = (bj , dj), x

′
j = (b′j , d

′
j) and εj = ‖xj − x′j‖∞ = max(|bj − b′j |, |dj − d′j |).

The bottleneck distance (Cohen-Steiner et al., 2007) between persistence diagrams D
and D′ is given by

W∞(D,D′) = inf
ϕ:D

∼=−→D′
sup
j
εj ,

where the infimum is taken over all bijections from D to D′. It follows that for the empty
persistence diagram ∅, W∞(D, ∅) = 1

2 supj `j .
The ∞-landscape distance is bounded by the bottleneck distance.

Theorem 13 For persistence diagrams D and D′,

Λ∞(D,D′) ≤W∞(D,D′).

For p ≥ 1, the p-Wasserstein distance (Cohen-Steiner et al., 2010) between D and D′

is given by

Wp(D,D
′) = inf

ϕ:D
∼=−→D′

∑
j

εpj

 1
p

.
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We remark that the Wasserstein distance gives equal weighting to the εj while the land-
scape distance gives a stronger weighting to εj if xj has larger persistence. The landscape
distance is most closely related to a weighted version of the Wasserstein distance that we
now define. The persistence weighted p-Wasserstein distance between D and D′ is given by

W p(D,D
′) = inf

ϕ:D
∼=−→D′

∑
j

`jε
p
j

 1
p

.

Note that it is asymmetric.
For the remainder of the section we assume that D and D′ are finite. The following

result bounds the p-landscape distance. Recall that `j is the persistence of xj ∈ D and
when ϕ : xj 7→ x′j , εj = ‖xj − x′j‖∞

Theorem 14 If n = |D|+ |D| then

Λp(D,D
′)p ≤ min

ϕ:D
∼=−→D′

 n∑
j=1

`jε
p
j +

2

p+ 1

n∑
j=1

εp+1
j

 .
From this we can obtain a lower bound on the p-Wasserstein distance.

Corollary 15 Wp(D,D
′)p ≥ min

(
1, 1

2

[
W∞(D, ∅) + 1

p+1

]−1
Λp(D,D

′)p
)

.

For our final stability theorem, we use ideas from Cohen-Steiner et al. (2010). Let
f : X → R be a function on a topological space. We say that f is tame if for all but finitely
many a ∈ R, the associated persistence module M(f) is constant and finite dimensional
on some open interval containing a. For such an f , let D(f) denote the corresponding
persistence diagram. If X is a metric space we say that f is Lipschitz if there is some
constant c such that |f(x) − f(y)| ≤ c d(x, y) for all x, y ∈ X. We let Lip(f) denote
the infimum of all such c. We say that a metric space X implies bounded degree-k total
persistence if there is a constant CX,k such that Persk(D(f)) ≤ CX,k for all tame Lipschitz
functions f : X → R such that Lip(f) ≤ 1. For example, as observed by Cohen-Steiner
et al. (2010), if X is the n-dimensional sphere, then X = Sn has bounded k-persistence for
k = n+ δ for any δ > 0, but does not have bounded k-persistence for k < n.

Theorem 16 (p-Landscape stability theorem) Let X be a triangulable, compact met-
ric space that implies bounded degree-k total persistence for some real number k ≥ 1, and
let f and g be two tame Lipschitz functions. Then

Λp(D(f), D(g))p ≤ C‖f − g‖p−k∞ ,

for all p ≥ k, where C = CX,k‖f‖∞(Lip(f)k+Lip(g)k)+CX,k+1
1
p+1(Lip(f)k+1 +Lip(g)k+1).

Thus the persistence diagram is stable with respect to the p-landscape distance if p > k,
where X has bounded degree-k total persistence. This is the same condition as for the
stability of the p-Wasserstein distance in Cohen-Steiner et al. (2010). Equivalently, the
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persistence landscape is stable with respect to the p-norm if p > k, where X has bounded
degree-k total persistence.
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Appendix A. Proofs

Proof [Proof of Lemma 4(3)] We will prove that λk is 1-Lipschitz. That is, |λk(t)−λk(s)| ≤
|t− s|, for all s, t ∈ R.

Let s, t ∈ R. Without loss of generality, assume that λk(t) ≥ λk(s) ≥ 0. If λk(t) ≤ |t−s|,
then λk(t)− λk(s) ≤ λk(t) ≤ |t− s| and we are done. So assume that λk(t) > |t− s|.

Let 0 < h < λk(t) − |t − s|. Then t − λk(t) < s − h < s + h < t + λk(t). Thus, by
Lemma 1 and Definition 3, βs−h,s+h ≥ k. It follows that λk(s) ≥ λk(t) − |t − s|. Thus
λk(t)− λk(s) ≤ |t− s|.

Theorems 12 and 13 follow from the next result which is of independent interest. Follow-
ing Chazal et al. (2009), we say that two persistence modules M and M ′ are ε-interleaved
if for all a ∈ R there exist linear maps ϕa : Ma →M ′a+ε and ψ : M ′a →Ma+ε such that for
all a ∈ R, ψa+ε ◦ ϕa = M(a ≤ a + 2ε) and ϕa+ε ◦ ψa = M ′(a ≤ a + 2ε) and for all a ≤ b
M ′(a + ε ≤ b + ε) ◦ ϕa = ϕb ◦M(a ≤ b) and M(a + ε ≤ b + ε) ◦ ψa = ψb ◦M ′(a ≤ b). For
persistence modules M and M ′ define the interleaving distance between M and M ′ by

dI(M,M) = inf(ε | M and M ′ are ε-interleaved).

Theorem 17 Λ∞(M,M ′) ≤ dI(M,M ′).

Proof Assume that M and M ′ are ε-interleaved. Then for t ∈ R and m ≥ ε, the map
M(t −m ≤ t + m) factors through the map M ′(t −m + ε ≤ t + m − ε). So by Lemma 1,
βt−m+ε,t+m−ε(M ′) ≥ βt−m,t+m(M). Thus by Definition 3, λ′(k, t) ≥ λ(k, t)−ε for all k ≥ 1.
It follows that ‖λ− λ′‖∞ ≤ ε.

Proof [Proof of Theorem 12] Combining Theorem 17 with the stability theorem of Bubenik
and Scott (2014), we have Λ∞(M(f),M(g)) ≤ dI(M(f),M(g)) ≤ ‖f − g‖∞.

Proof [Proof of Theorem 13] For a persistence diagram D, consider the persistence mod-
ule given by the corresponding sum of interval modules (Chazal et al., 2012), M(D) =
⊕(a,b)∈D̂I(a, b). Combining Theorem 17 with Theorem 4.9 of Chazal et al. (2012) we have
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Λ∞(M(D),M(D′)) ≤ dI(M(D),M(D′)) ≤W∞(D,D′).

Proof [Proof of Theorem 14] Let ϕ : D
∼=−→ D′ with ϕ(xj) = x′j . Let λ = λ(D) and

λ′ = λ(D′). So Λp(D,D
′)p = ‖λ− λ′‖pp.

‖λ− λ′‖pp =

∫
|λ(k, t)− λ′(k, t)|p

=

n∑
k=1

∫
|λk(t)− λ′k(t)|p dt

=

∫ n∑
k=1

|λk(t)− λ′k(t)|p dt

Fix t. Let uj(t) = λ({xj})(1, t) and vj(t) = λ({x′j})(1, t). For each t, let u(1)(t) ≤ · · · ≤
u(n)(t) denote an ordering of u1(t), . . . , un(t) and define v(k)(t) for 1 ≤ k ≤ n similarly.
Then u(k)(t) = λk(t) and v(k)(t) = λ′k(t) (see Figure 2). We obtain the result from the
following where the two inequalities are proven in Lemmata 18 and 19.

‖λ− λ′‖pp =

∫ n∑
k=1

|u(k)(t)− v(k)(t)|p dt

≤
∫ n∑

k=1

|uk(t)− vk(t)|p dt

=
n∑
j=1

∫
|uj(t)− vj(t)|p dt

≤
n∑
j=1

`jε
p
j +

2

p+ 1

n∑
j=1

εp+1
j .

Lemma 18 Let u1, . . . , un ∈ R and v1, . . . , vn ∈ R. Order them u(1) ≤ · · · ≤ u(n) and
v(1) ≤ · · · ≤ v(n). Then

n∑
j=1

|u(j) − v(j)|p ≤
n∑
j=1

|uj − vj |p.

Proof Assume u1 < · · · < un, v1 < · · · < vn, and p ≥ 1. Let u and v denote (u1, . . . , un)
and (v1, . . . , vn). Let Σn denote the symmetric group on n letters and let fn : Σn → R be
given by fn(σ) =

∑n
j=1|uj − vσ(j)|p. We will prove by induction that if fn(σ) is minimal

then σ is the identity, which we denote by 1.
For n = 1 this is trivial. For n = 2 assume without loss of generality that u1 = 0, u2 = 1

and 0 ≤ v1 < v2. Let 1 and τ denote the elements of Σ2. Then f(1) = vp1 + |1 − v2|p and
f(τ) = vp2 + |1− v1|p. Notice that f(1) < f(τ) if and only if vp1 − |1− v1|p < vp2 − |1− v2|p.
The result follows from checking that g(x) = xp−|1−x|p is an increasing function for x ≥ 0.
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Now assume that the statement is true for some n ≥ 2. Assume that fn+1(σ∗) is minimal.
Fix 1 ≤ i ≤ n+1. Let u′ = (u1, . . . , ûi, . . . , un+1) and v′ = (v1, . . . , v̂σ∗(i), . . . , vn+1), where ·̂
denotes omission. Since fn+1(σ∗) is minimal for u and v, it follows that

∑n
j=1,j 6=i|uj−vσ∗(j)|

is minimal for u′ and v′. By the induction hypothesis, for 1 ≤ j < k ≤ n + 1 and j, k 6= i,
σ∗(j) < σ∗(k). Therefore σ∗ = 1. Thus, by induction, the statement is true for all n.

Hence
∑n

j=1|u(j)−v(j)|p ≤
∑n

j=1|uj−vj |p if u(1) < · · · < u(n) and v(1) < · · · < v(n). The
statement in the lemma follows by continuity.

Lemma 19 Let x = (b, d) and x′ = (b′, d′) where b ≤ d and b′ ≤ d′. Let ` = d− b and
ε = ‖x− x′‖∞. Then ‖λ({x})− λ({x′})‖pp ≤ `εp + 2

p+1ε
p+1.

Proof Let λ = λ({x}) and λ′ = λ({x′}). First λk = λ′k = 0 for k > 1; so ‖λ − λ′‖p =
‖λ1 − λ′1‖p. Second λ1(t) = (h− |t−m|)+, where h = d−b

2 , m = b+d
2 , and y+ = max(y, 0),

and similarly for λ′1 (see Figure 2).

Fix x and ε. As x′ moves along the square ‖x− x′‖∞ = ε, ‖λ1 − λ′1‖
p
p has a maximum

if x′ = (a− ε, b+ ε). In this case ‖λ1 − λ′1‖
p
p = 2

∫ h
0 ε

p dt+ 2
∫ ε

0 t
p dt = `εp + 2

p+1ε
p+1.

Proof [Proof of Corollary 15] Let ϕ : D
∼=−→ D′ be a minimizer for Wp(D,D

′), with cor-
responding {εj}. Assume that Wp(D,D

′) ≤ 1. Then Wp(D,D
′)p =

∑n
j=1 ε

p
j ≤ 1. So for

1 ≤ j ≤ n, εj ≤ 1. Combining this with Theorem 14, we have that

Λp(D,D
′)p ≤

n∑
j=1

(
`j +

2

p+ 1

)
εpj . (8)

Since W∞(D, ∅) = max 1
2`j , `j ≤ 2W∞(D, ∅). Hence

Λp(D,D
′)p ≤ 2

(
W∞(D, ∅) +

1

p+ 1

)
Wp(D,D

′)p. (9)

Therefore Wp(D,D
′)p ≥ 1 or Wp(D,D

′)p ≥ 1
2

[
W∞(D, ∅) + 1

p+1

]−1
Λp(D,D

′)p. The

statement of the corollary follows.

Theorem 16 follows from the following corollary to Theorem 14 which is of independent
interest.

Corollary 20 Let p ≥ k ≥ 1. Then

Λp(D,D
′)p ≤W∞(D,D′)p−k

[
W∞(D, ∅)(Persk(D) + Persk(D

′))+

1

p+ 1
(Persk+1(D) + Persk+1(D′))

]
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Proof Let ϕ be a minimizer for W∞(D,D′) with corresponding {εj}. If εj >
`j
2 +

`′j
2 then

modify ϕ to pair xj = (bj , dj) with x̄j = (
bj+dj

2 ,
bj+dj

2 ) and similarly for x′j . Note that

‖xj − x̄j‖∞ =
`j
2 and ‖x′j − x̄′j‖∞ =

`′j
2 , so ϕ is still a minimizer for W∞(D,D′).

Recall that for all j, `j ≤ 2W∞(D, ∅). Since ϕ is a minimizer for W∞(D,D′), for all j,
εj ≤W∞(D,D′). So applying our choice of ϕ to Theorem 14 we have,

Λp(D,D
′)p ≤W∞(D,D′)p−k

2W∞(D, ∅)
n∑
j=1

εkj +
2

p+ 1

n∑
j=1

εk+1
j

 .
Now εqj ≤

(
`j
2 +

`′j
2

)q
≤ 1

2

(
(`j)

q + (`′j)
q
)

for q ≥ 1, where the right hand side follows by

the convexity of α(x) = xq for q ≥ 1. Thus
∑n

j=1 ε
q
j ≤

1
2(Persq(D) + Persq(D

′)) for q ≥ 1.
The result follows.

Proof [Proof of Theorem 16] Theorem 16 follows from Corollary 20 by the following two ob-
servations. First, by the stability theorem of Cohen-Steiner et al. (2007), W∞(D(f), D(g)) ≤
‖f − g‖∞ and W∞(D(f), ∅) ≤ ‖f‖∞. Second, if Persq(D(f)) ≤ CX,q for all tame Lips-
chitz functions f : X → R with Lip(f) ≤ 1, then for general tame Lipschitz functions,
Persq(D(f)) ≤ CX,q Lip(f)q.

References

Robert J. Adler and Jonathan E. Taylor. Random Fields and Geometry. Springer Mono-
graphs in Mathematics. Springer, New York, 2007. ISBN 978-0-387-48112-8.

Robert J. Adler, Omer Bobrowski, Matthew S. Borman, Eliran Subag, and Shmuel Wein-
berger. Persistent homology for random fields and complexes. In Borrowing Strength:
Theory Powering Applications—a Festschrift for Lawrence D. Brown, volume 6 of Inst.
Math. Stat. Collect., pages 124–143. Inst. Math. Statist., Beachwood, OH, 2010.

Andrew J. Blumberg, Itamar Gal, Michael A. Mandell, and Matthew Pancia. Robust
statistics, hypothesis testing, and confidence intervals for persistent homology on metric
measure spaces. Found. Comput. Math., 14(4):745–789, 2014. ISSN 1615-3375. doi:
10.1007/s10208-014-9201-4. URL http://dx.doi.org/10.1007/s10208-014-9201-4.

Omer Bobrowski and Matthew Strom Borman. Euler integration of Gaussian random fields
and persistent homology. J. Topol. Anal., 4(1):49–70, 2012. ISSN 1793-5253.

Karol Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fund.
Math., 35:217–234, 1948. ISSN 0016-2736.

Peter Bubenik and Jonathan A. Scott. Categorification of persistent homology. Discrete
Comput. Geom., 51(3):600–627, 2014. ISSN 0179-5376.

99

http://dx.doi.org/10.1007/s10208-014-9201-4


Bubenik

Peter Bubenik, Gunnar Carlsson, Peter T. Kim, and Zhi-Ming Luo. Statistical topology
via Morse theory persistence and nonparametric estimation. In Algebraic Methods in
Statistics and Probability II, volume 516 of Contemp. Math., pages 75–92. Amer. Math.
Soc., Providence, RI, 2010.

Gunnar Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.
ISSN 0273-0979.

Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian. On the local
behavior of spaces of natural images. Int. J. Comput. Vision, 76(1):1–12, 2008. ISSN
0920-5691.

Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y.
Oudot. Proximity of persistence modules and their diagrams. In Proceedings of the 25th
Annual Symposium on Computational Geometry, SCG ’09, pages 237–246, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-501-7.

Frederic Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability
of persistence modules. arXiv:1207.3674 [math.AT], 2012.

Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Optimal rates of
convergence for persistence diagrams in topological data analysis. 2013. arXiv:1305.6239
[math.ST].

Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry
Wasserman. Stochastic convergence of persistence landscapes and silhouettes. Symposium
on Computational Geometry (SoCG), 2014.

Chao Chen and Michael Kerber. An output-sensitive algorithm for persistent homology.
Comput. Geom., 46(4):435–447, 2013. ISSN 0925-7721.

Moo K. Chung, Peter Bubenik, and Peter T. Kim. Persistence diagrams in cortical surface
data. In Information Processing in Medical Imaging (IPMI) 2009, volume 5636 of Lecture
Notes in Computer Science, pages 386–397, 2009.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence dia-
grams. Discrete Comput. Geom., 37(1):103–120, 2007. ISSN 0179-5376.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
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Abstract

Stochastic multiplicity automata (SMA) are weighted finite automata that generalize prob-
abilistic automata. They have been used in the context of probabilistic grammatical infer-
ence. Observable operator models (OOMs) are a generalization of hidden Markov models,
which in turn are models for discrete-valued stochastic processes and are used ubiquitously
in the context of speech recognition and bio-sequence modeling. Predictive state represen-
tations (PSRs) extend OOMs to stochastic input-output systems and are employed in the
context of agent modeling and planning.

We present SMA, OOMs, and PSRs under the common framework of sequential sys-
tems, which are an algebraic characterization of multiplicity automata, and examine the
precise relationships between them. Furthermore, we establish a unified approach to learn-
ing such models from data. Many of the learning algorithms that have been proposed can
be understood as variations of this basic learning scheme, and several turn out to be closely
related to each other, or even equivalent.

Keywords: multiplicity automata, hidden Markov models, observable operator models,
predictive state representations, spectral learning algorithms

1. Introduction

Multiplicity automata (MA) (Schützenberger, 1961) are weighted nondeterministic au-
tomata which generalize both finite and probabilistic automata. The discovery that MA
are efficiently learnable (Bergadano and Varricchio, 1994; Ohnishi et al., 1994) in the ex-
act learning model of Angluin (Angluin, 1987) sparked an interest in these, and several
versions have been studied. One such version is stochastic multiplicity automata (SMA),
which model rational stochastic languages and have been used in the context of proba-
bilistic grammatical inference (Denis et al., 2006; Bailly et al., 2009). Independent of this
line of research, hidden Markov models (HMMs) (see Rabiner, 1989) for discrete-valued
stochastic processes have been extensively studied and are now a standard tool in many
pattern recognition domains such as speech recognition, natural language processing and
bio-sequence modeling. Observable operator models (OOMs) are a generalization of HMMs
that was introduced by Jaeger (1998) following previous work on deciding the equivalence
of HMMs (Ito et al., 1992). Finally, predictive state representations (PSRs) are mod-

c©2015 Michael Thon and Herbert Jaeger.



Thon and Jaeger

els for stochastic input-output systems developed by Littman, Sutton, and Singh (2001)
and inspired by OOMs. PSRs generalize partially observable Markov decision processes
(POMDPs) (Kaelbling et al., 1998) and have been used in the context of agent modeling
and planning (James et al., 2004; James and Singh, 2005; Wolfe and Singh, 2006; Boots
et al., 2010). As it turns out, all of these models are instances of MA and thereby closely
related, though this is not widely perceived, due in part to the disjoint scientific communi-
ties.

All of SMA, OOMs and PSRs model some form of probability distribution. A central
task common to all cases is therefore to estimate a model from a given sample. This may
also be referred to as learning, system identification or model induction depending on the
context.

In this paper we present SMA, OOMs, and PSRs under a common framework and exam-
ine the precise relationships between them. Furthermore, we establish a unified approach to
learning such models from data. Many of the learning algorithms that have been proposed
can be understood as variations of this basic learning theme, and several turn out to be
closely related or even equivalent.

In Section 2 we cover the essential theory for sequential systems (SSs) — a term coined
by Carlyle and Paz (1971) for a purely algebraic characterization of MA. Though not new,
we present this theory in a way that can be readily turned into algorithms, and with
full proofs, because they give much insight and pave the way to the presented learning
approach. The first result concerns the relationship between SSs and the objects that they
describe, namely formal series f : Σ∗ → K for K = R or K = C (see Section 1.1 for
details). Any such function can be associated with a linear function space F , and has a SS
representation if and only if the space F is finite dimensional. In fact, a SS can be seen as
a representation of f w.r.t. some basis of F , and a change of basis will correspond to an
equivalence transformation of SSs, where equivalence of two SSs means that they represent
the same function. The remaining theory will be concerned with such transformations of
SSs. It is shown how to transform any SS to an equivalent minimal SS, how to decide
equivalence, how to normalize SSs and how to convert SSs into a so-called “interpretable”
form.

In Section 3 we mention the relationship between MA and the more general class
of weighted finite automata (WFA) and their extension to input-output systems called
weighted finite-state transducers (WFST). We then present SMA, OOMs and PSRs as
instances of SSs with specific additional constraints that model probabilistic languages,
stochastic processes and controlled processes, respectively, via the formal series f that they
describe. We only sketch the basic concepts and give pointers to relevant literature. The
main emphasis is on exploring the relations among the various model classes. We show that
SMA are related to OOMs in the same way that probabilistic finite automata are related to
HMMs, and show how to trivially convert any HMM into an OOM. OOMs and PSRs share
the notion of a “predictive state” for the modeled process, which can be either implicit (as
in the case of OOMs) or explicit (as for PSRs). Any PSR is essentially an input-output
(IO)-OOM, while any OOM can be converted to a PSR by making the state “interpretable”.
Finally, PSRs generalize POMDPs in the same way that OOMs generalize HMMs.

Section 4 on learning is the main technical contribution of this paper. We present a
learning framework that covers the cases of SMA, OOMs and PSRs in a unified way. The
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only difference for the model classes concerns the way that estimates are obtained from
the sample data. To turn the learning framework into a concrete algorithm, several design
choices need to be made. Depending on these, many algorithms that have been proposed
in the literature are recovered. This unified viewpoint has several advantages. First of all,
modifications and improvements made for a specific model class can be generalized to other
learning algorithms. Additionally, the general learning framework allows us to identify
the key points responsible for statistical efficiency and thereby indicates a clear path for
improvements. In this section, we present generalized and simplified versions of two key
OOM learning algorithms — error controlling (EC) and efficiency sharpening (ES) — and
show that these are in fact closely related to spectral learning algorithms.

1.1 Notation

Let Σ∗ be the set of words over a finite alphabet Σ, including the empty word ε. Symbols
from the alphabet Σ will be denoted by normal variables as in x, y ∈ Σ, while words will
be denoted by variables with a bar over them, e.g., x, y ∈ Σ∗. For x and y in Σ∗, let xy be
the concatenation of words, and |x| denote the length of the word x. Furthermore, let Σk

denote the subset of words of length k. Let {xi | i ∈ N} = Σ∗ be an enumeration of Σ∗ such
that x0 = ε. We will be interested in characterizing functions f : Σ∗ → K for K = R or
K = C, since these can be used to describe probabilistic languages, stochastic processes and
controlled processes (cf. Definitions 18, 20, and 28). These form a K-vector space which
we denote by K〈〈Σ〉〉. For a given function f : Σ∗ → K, we define the system matrix F as
the infinite matrix F = [f(xjyi)]i,j∈N. Note that this is the transpose of what is commonly
known as the Hankel matrix. Furthermore, for a given function f we define the functions
fx : Σ∗ → K by setting fx(y) := f(xy) for any sequences x, y ∈ Σ∗. Note that these
functions correspond to the columns of the system matrix F . Let F := span{fx |x ∈ Σ∗}
be the linear space spanned by these functions / the columns of F . Clearly, F ⊆ K〈〈Σ〉〉.
We define rank(f) := rank(F ) = rank(F).

A d-dimensional sequential system (SS) is a structureM = (σ, {τz}, ωε), which consists
of an initial state vector ωε ∈ Kd, a matrix τz ∈ Kd×d for each z ∈ Σ and an evaluation
function σ : Kd → K. For x = x1 · · ·xn ∈ Σ∗ let τx = τxn · · · τx1 , and let ωx = τxωε, which
we call a state of the SS M. Let τΣ =

∑
z∈Σ τz.

If the function σ is linear, we call the sequential system linear. In this paper, we will be
dealing only with the linear case, so σ will just be a row vector, i.e., σ> ∈ Kd.

For a given SS M, we define its (external) function to be

fM : Σ∗ → K, fM(x) = στxωε (1)

Finally, we define the rank of a SS M to be rank(M) := rank(fM).

2. Basic Properties of Sequential Systems

In this section we present the basic theory for sequential systems. This goes back to
Schützenberger (1961), to Carlyle and Paz (1971) who coined the term sequential systems,
and to Fliess (1974) but has been presented in various forms also for OOMs (Jaeger, 2000b)
and PSRs (Singh et al., 2004). Here, we present the theory in a concise, self-contained
fashion that can readily be turned into algorithms.
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We begin with a technical result that lies at the heart of the whole theory.

Proposition 1 Let f : Σ∗ → K be given. If rank(f) = d < ∞, then there exist linear
operators τ̃z : F → F for each z ∈ Σ and a linear functional σ̃ : F → K that satisfy
τ̃z(fx) = fxz and σ̃(fx) = f(x) for all x ∈ Σ∗. Furthermore, σ̃(τ̃x(fε)) = f(x) for all
x ∈ Σ∗, where τ̃x = τ̃xn ◦ · · · ◦ τ̃x1.

Proof Let J ⊂ N be an index set denoting a maximal set of linearly independent columns
of the matrix F . Then clearly, B = {fxj | j ∈ J} is a basis for F . Define linear operators τ̃z
and a linear functional σ̃ by their action on these basis elements:

• τ̃z(fxj ) := fxjz for all z ∈ Σ,

• σ̃(fxj ) := fxj (ε) = f(xj).

We will show that then τ̃z(fx) = fxz and σ̃(fx) = f(x) for all x ∈ Σ∗. For this, let x ∈ Σ∗.
Then fx =

∑
j∈J λjfxj for suitable coordinates λj , and fxz =

∑
j∈J λjfxjz, since for any

y ∈ Σ∗, we have fxz(y) = fx(zy) =
∑

j∈J λjfxj (zy) =
∑

j∈J λjfxjz(y). Therefore, τ̃z(fx) =
τ̃z(
∑

j∈J λjfxj ) =
∑

j∈J λjfxjz = fxz, and σ̃(fx) = σ̃(
∑

j∈J λjfxj ) =
∑

j∈J λjfxj (ε) =
fx(ε) = f(x).

Finally, σ̃(τ̃x(fε)) = σ̃(fx) = f(x) for all x ∈ Σ∗.

The above proposition establishes a crucial property that makes this theory appealing,
as it means that the functions f = fε, fx = τ̃x(f), the linear operators τ̃z and the linear
functional σ̃ have coordinate representations as vectors and matrices with respect to some
basis B for F . Note that this remains true even if rank(f) = ∞, but the coordinate rep-
resentations will then be infinite and of little practical use. The property f(x) = σ̃(τ̃x(fε))
(cf. Equation 1) means that the function f is fully described by the data (σ̃, {τ̃z}, fε). If
these are given in some coordinate representation, then we have a SS representation:

Proposition 2 Let f : Σ∗ → K be given. If rank(f) = d < ∞, then there exists a
d-dimensional SS M such that f = fM.

Proof Let B be a basis for F , and letM = (σ, {τz}, ωε) be the coordinate representations
of (σ̃, {τ̃z}, fε) with respect to B, where we are using the definitions for σ̃ and τ̃z from the
above Proposition 1. Then for any x ∈ Σ∗, we have f(x) = σ̃(τ̃x(fε)) = στxωε = fM(x).

Note that for the SSM constructed in Proposition 2 as a coordinate representation with
respect to some basis B of F , the states ωx = τxωε will be the coordinate representations
of the functions fx = τ̃x(f) with respect to the basis B. Also note that due to Equation (1)
we may evaluate f(x) using the SS M without knowledge of the basis B.

The above proposition suggests that two SS might describe the same function f if and
only if they are representations for f with respect to different bases for F . However, this is
only correct for so-called minimal SS, as will be detailed out in the following.

Definition 3 Two SSs M and M′ are equivalent, denoted by M∼=M′, if they define the
same function, i.e., if fM = fM′. It is clear that this notion is an equivalence relation on
the set of all SSs.
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We now introduce concepts needed to characterize the equivalence on SS. We give such
a characterization for minimal SS in Proposition 12. For this, we introduce the concept of
minimal SS, give a criteria for minimality in Corollary 8 and a procedure in Algorithm 2 to
construct an equivalent minimal SS.

Definition 4 For a given SS M we call the linear spaces W = span {τxωε |x ∈ Σ∗} the
state space and W̃ = span {(στx)> |x ∈ Σ∗} the co-state space of M.

Definition 5 We call a d-dimensional SS M trimmed if it has full state and co-state
spaces, i.e., if W = W̃ = Kd. We call a SS minimal if no equivalent model of lower
dimension exists.

It will turn out in Corollary 8 that a SS is minimal if and only if it is trimmed. But
first, we show how to construct bases for the state (and co-state) space of a given SS.

Proposition 6 The following procedure constructs a basis B for the state space W of a
given d-dimensional SS in time O(max{d, |Σ|}d3) (the construction of a basis B̃ for the
co-state space W̃ is analogous):

Algorithm 1: Compute a basis B for the state space W of a given SS

B ← {}, C ← {ωε}
while |C| > 0 do

ω ← some element of C, C ← C \ {ω}
if ω is linearly independent of B then
B ← B ∪ {ω}
C ← C ∪ {τzω | z ∈ Σ}

Proof At any time during the run of the algorithm, B is a set of linearly independent
vectors. Furthermore the set C of “candidate vectors” increases by |Σ| elements each time a
new vector is added to the set B, but decreases by one element each run through the main
loop. Therefore, the algorithm terminates after at most d|Σ| + 1 runs through the main
loop, since there are at most d linearly independent vectors that can be added to B. Next
we examine the runtime of the algorithm. Checking ω for linear independence from B can
be done by checking PBω = ω in time O(d2) if the orthogonal projection matrix PB onto
span(B) is known. This check is performed at most d|Σ|+ 1 times, yielding a complexity of
O(d3|Σ|). Clearly, the matrix PB must be updated every time a vector is added to B, which
is a O(d3) operation that needs to performed at most d times, giving a total complexity of
O(d4). Finally, every time a vector ω is added to B, the set C is increased by |Σ| vectors,
each of which requires time O(d2) to be computed from ω, for a total time complexity of
O(d3|Σ|). Adding these together gives the claimed time complexity.

Finally, we show that the returned set B is indeed a basis of the state-space W . Ob-
serve that for all ω ∈ B and for all z ∈ Σ, the vectors τzω have been added as “candidate
vectors” to the set C at some point during the run of the algorithm — namely when ω was
added to B. Each of these vectors is checked in turn and is at that point either linearly
dependent on B, or added to B. Therefore, these vectors τzω are all linearly dependent on
the final set B, i.e., τz(B) ⊆ span(B) for all z ∈ Σ. By linearity of τz this implies that also
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τz(span(B)) ⊆ span(B) for all z ∈ Σ. So span(B) contains ωε and is closed under the action
of τz for all z ∈ Σ, which implies that {τxωε |x ∈ Σ∗} ⊆ span(B). But B ⊂ {τxωε |x ∈ Σ∗}
by construction of B. Together, this implies span(B) = span({τxωε |x ∈ Σ∗}) = W .

The above is a polynomial time algorithm for which we have explicitly stated the runtime
complexity, since it is the workhorse for the operations of this section and dominates their
runtimes. Note further that the computed bases are by construction of the form B =
{τxjωε | j ∈ J} and B̃ = {(στxi)> | i ∈ I} for suitable index sets I, J and corresponding
words xi and xj of length at most d, where d is the dimension of the SS. Also, the above
procedure allows us to check whether a given SS is trimmed.

The following proposition is the core technical result needed to establish the connection
between a SS being trimmed, having full rank, and being minimal.

Proposition 7 For a d-dimensional SS M, let {τxjωε | j ∈ J} and {(στxi)> | i ∈ I} be

bases for W and W̃ respectively, and define F I,J = [fM(xjxi)](i,j)∈I×J , then rank(M) =

rank(F I,J) ≤ min{|I|, |J |} ≤ d. Furthermore, if |I| = d or |J | = d then rank(M) =
min{|I|, |J |}.

Proof Define Π = ((στxk)>)>k∈N and Φ = (τxkωε)k∈N, as well as ΠI = ((στxi)
>)>i∈I ∈ K |I|×d

and ΦJ = (τxjωε)j∈J ∈ Kd×|J |. The rows of ΠI are a basis for the row space of Π and the
columns of ΦJ are a basis for the column space of Φ. Now F = ΠΦ and F I,J = ΠIΦJ .
Therefore rank(M) := rank(F ) = rank(ΠΦ) = rank(ΠIΦ) = rank(ΠIΦJ) = rank(F I,J).
Moreover, rank(ΠI) = |I| and rank(ΦJ) = |J | imply that rank(ΠIΦJ) ≤ min{|I|, |J |} ≤ d
as well as rank(ΠIΦJ) = |J | if |I| = d and rank(ΠIΦJ) = |I| if |J | = d.

From this, we obtain the following result, which allows us to check a d-dimensional SS
for minimality by checking whether the SS is trimmed, i.e., by constructing bases for the
state and co-state space and checking if these have dimension d.

Corollary 8 Let M be a d-dimensional SS. The following are equivalent:

(i) M is trimmed

(ii) rank(M) = d

(iii) M is minimal

Proof If M has full rank, i.e., rank(M) = d, then M must be minimal, as any lower-
dimensional SS must have a lower rank and therefore cannot be equivalent. Conversely,
if M is minimal, then we must have rank(M) = d, since by Proposition 2 there exists a
rank(M)-dimensional equivalent SS. By Proposition 7 — and using the notation from the
proposition — we see that rank(M) = d⇔ |I| = |J | = d, i.e., if and only ifM is trimmed.

Next, we define the transformation of a SS by linear maps ρ and ρ′. Such transformations
will serve as the basic operation on SS for all conversion operations.
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Definition 9 For a d-dimensional SS M = (σ, {τz}, ωε) and any matrices ρ ∈ Kn×d and
ρ′ ∈ Kd×n, we define the n-dimensional SS ρMρ′ := (σρ′, {ρτzρ′}, ρωε).

If ρ is non-singular, and ρ′ = ρ−1, then this transformation will yield an equivalent
conjugated SS. If the SS is minimal, then this corresponds to a change of basis for the
underlying function space F .

Lemma 10 Let M = (σ, {τz}, ωε) be a d-dimensional SS, and ρ ∈ Rd×d be non-singular.
Then M∼= ρMρ−1. We will call ρMρ−1 a conjugate of M.

Proof ∀x ∈ Σ∗ : fρMρ−1(x) = (σρ−1)(ρτxnρ
−1) · · · (ρτx1ρ−1)(ρωε) = στxωε = fM(x).

We already know how to check for minimality. We now show how to convert a given SS
to an equivalent minimal SS using the introduced transformations on SSs.

Proposition 11 For a given SS M, the following procedure constructs an equivalent min-
imal SS M′′:

Algorithm 2: Minimization of a SS M
1 Construct a basis {τxjωε | j ∈ J} for the state space W of M

Set Φ = (τxjωε)j∈J .

Set M′ = Φ†MΦ, where Φ† denotes the Moore-Penrose pseudoinverse of Φ.

2 Construct a basis {(σ′τ ′xi)> | i ∈ I ′} for the co-state space W̃ ′ of M′.
Set Π′ = ((σ′τ ′xi)

>)>i∈I′.

Set M′′ = Π′M′Π′†.

Proof Note that by construction the columns of Φ and Π′> form bases for the spaces W
and W̃ ′ respectively. Therefore, Φ†Φ = id and ΦΦ†|W = id, as well as (Π′>)†Π′> = id and
Π′>(Π′>)†|W̃ ′ = id. We can simply check equivalence, i.e., that for any x ∈ Σ∗,

fM′′(x) = σ′′τ ′′xn · · · τ ′′x1ω′′ε
= σ′Π′†Π′τ ′xnΠ′† · · ·Π′τ ′x1Π′†Π′ω′ε

= ω′>ε Π′>(Π′>)†τ ′>x1 Π′> · · · (Π′>)†τ ′>xnΠ′>(Π′>)†σ′>

= σ′τ ′xn · · · τ ′x1ω′ε
= σΦΦ†τxnΦ · · ·Φ†τx1ΦΦ†ωε

= στxωε = fM(x).

Next, consider (τ ′xjω
′
ε)j∈J = (Φ†τxjωε)j∈J = Φ†Φ = id. This implies that M′ has full state

space W ′ and that {τ ′xjω′ε | j ∈ J} is a basis for W ′, since the dimension d′ of M′ is |J | by

construction. By Proposition 7, |J | = d′ implies rank(M′) = min(|I ′|, |J |) = |I ′|. By con-
struction |I ′| = d′′ where d′′ is the dimension of M′′. Furthermore, rank(M′) = rank(M′′)
since M′ ∼=M′′ so by Corollary 8 M′′ is minimal.

As we can convert any SS to an equivalent minimal SS using the above Algorithm 2,
it will be sufficient to characterize equivalence only for minimal SS. This is done by the
following result.
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Proposition 12 Let M = (σ, {τz}, ωε) and M′ = (σ′, {τ ′z}, ω′ε) be minimal d-dimensional
SS. The following are equivalent:

(i) M∼=M′

(ii) M′ = ρMρ−1 for some non-singular ρ ∈ Kd×d

(iii) ΠΦ = Π′Φ′, Πωε = Π′ω′ε, σΦ = σ′Φ′ and ∀z ∈ Σ : ΠτzΦ = Π′τ ′zΦ
′, where {τxjωε | j ∈

J} and {(στxi)> | i ∈ I} are bases for the state and co-state spaces W and W̃ of M
respectively, and Π = ((στxi)

>)>i∈I , Φ = (τxjωε)j∈J , Π′ = ((σ′τ ′xi)
>)>i∈I , and Φ′ =

(τ ′xjω
′
ε)j∈J .

Proof Lemma 10 establishes (ii)⇒ (i). For (i)⇒ (iii) note that fM = fM′ implies that
Πτz̄Φ = [f(xj z̄xi)]i,j∈I×J = Π′τ ′z̄Φ

′ for all z̄ ∈ Σ∗, as well as Πωε = (f(xi))
>
i∈I = Π′ω′ε and

σΦ = (f(xj))j∈J = σ′Φ′. Finally, to see (iii) ⇒ (ii), note that Π and Φ have full rank,
since M is minimal, so Π′ and Φ′ must also have full rank. Let ρ = Π′−1Π = Φ′Φ−1, then
ρ−1 = ΦΦ′−1. We can now easily check that M′ = ρMρ−1.

Note that this allows us to decide equivalence for any given SS M and M′ by first
converting them to equivalent minimal SS M̃ and M̃′ respectively using Algorithm 2, and
then checking for equivalence by criteria (iii) from the above Proposition 12. The required
bases for the state and co-state spaces of M̃ and M̃′ can be computed by Algorithm 1.

The following proposition shows that any SS can be transformed into an equivalent SS
where σ and ωε can be essentially any desired vectors. This implies that it is no restriction
to assume some fixed form for σ, as is sometimes done. For instance, in the case of OOMs
often σ = (1, . . . , 1) is used, while for MA often σ = (1, 0, . . . , 0) is assumed.

Proposition 13 Let M = (σ, {τz}, ωε) be a d-dimensional SS, and let σ′>, ω′ε ∈ Kd such
that σ′ω′ε = σωε. Then there exists a non-singular linear map ρ such that ρMρ−1 =
(σ′, {τ ′z}, ω′ε).

Proof Extend {σ>} to an orthogonal basis {σ>, v2, . . . , vd} of Kd, and {σ′>} to an or-
thogonal basis {σ′>, v′2, . . . , v′d} of Kd. We distinguish two cases:

If c := σωε = σ′ω′ε 6= 0, then ρ1 = (ωε, v2, . . . , vd)
−1 and ρ2 = (ω′ε, v

′
2, . . . , v

′
d) are non-

singular. Let ρ = ρ2ρ1. We can easily see that ρ2ρ1ωε = ρ2e1 = ω′ε and σρ−1 = σρ−1
1 ρ−1

2 =
c · e>1 ρ−1

2 = σ′, since σ′ρ2 = c · e>1 .

If σωε = σ′ω′ε = 0, then (perhaps after reordering vi and v′i) ρ1 = ( σ>

σσ>
, ωε, v3, . . . , vd)

−1

and ρ2 = ( σ′>

σ′σ′>
, ω′ε, v

′
3, . . . , v

′
d) are non-singular. Let ρ = ρ2ρ1. We can again check that

ρ2ρ1ωε = ρ2e2 = ω′ε and σρ−1 = σρ−1
1 ρ−1

2 = e1ρ
−1
2 = σ′, since σ′ρ2 = e1.

Finally, we introduce a special property called interpretability that a SS can have. This
concept has led to some confusion in the past — especially regarding the relationship be-
tween OOMs and PSRs. This is due to the fact that it has been defined differently for
OOMs, IO-OOMs and PSRs, as will be discussed later. Another source of confusion is that
interpretability has been regarded as a crucial property for learning, which is however only
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true for the the very early learning algorithms. Here we give a definition of interpretability
that works for all models, and we will defer the discussion of the different uses to the later
sections.

Definition 14 A d-dimensional SSM is said to be interpretable w.r.t. the sets Y1, . . . , Yd ⊂
Σ∗ if the states ωx take the form ωx = [fM(xY1), . . . , fM(xYd)]

> for all x ∈ Σ∗, where
fM(xY ) =

∑
y∈Y fM(xy).

The following proposition and algorithm show how to make a SS interpretable, i.e., how
to convert any given SS into an equivalent interpretable form.

Proposition 15 Let M = (σ, {τz}, ωε) be a d-dimensional minimal SS, and Y1, . . . , Yd ⊂
Σ∗. If ρ = [(στY1)>, . . . , (στYd)>]> is non-singular, where τY =

∑
y∈Y τy, then M′ :=

ρMρ−1 ∼=M and M′ is interpretable w.r.t. Y1, . . . , Yd.

Proof ∀x ∈ Σ∗ : ω′x = ρωx = [στY1τxωε, . . . , στYdτxωε]
> = [fM(xY1), . . . , fM(xYd)]

>.

Corollary 16 For a SS M, the following algorithm returns an equivalent interpretable SS.

Algorithm 3: Make a SS M of rank d interpretable

1 Minimize M, i.e., find an equivalent minimal SS M′ using Algorithm 2.

2 Construct a basis {(σ′τ ′xi)> | i ∈ I} of the co-state space W̃ ′ of M′ using Algorithm 1

Select sets Yk = {xik} where {i1, . . . , id} = I.

Set ρ = [(σ′τ ′Y1)>, . . . , (σ′τ ′Yd)>]>.

3 Return ρM′ρ−1.

Proof The above algorithm indeed returns an equivalent SS that is interpretable w.r.t. the
selected sets Yk, since M′ is minimal and therefore ρ is non-singular by construction.

3. Versions of Sequential Systems

In this section we first show that SS are an algebraic characterization of multiplicity au-
tomata (MA), and we mention the relationship to the more general class of weighted finite
automata (WFA) and its extension to weighted finite-state transducers (WFST). We then
define stochastic multiplicity automata (SMA), observable operator models (OOMs) and
predictive state representations (PSRs), which are known to generalize probabilistic finite
automata (PFA), hidden Markov models (HMMs) and partially observable Markov decision
processes (POMDPs), respectively. We show that these are all instances of SSs that are
used to model different kinds of objects. Furthermore, we examine the relations between
these models. An overview is given in Figure 1.
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stochastic multiplicity
automata (SMA)

predictive state
representations

(PSRs)
≡

input-output OOMs
(IO-OOMs)

observable operator
models (OOMs)

probabilistic finite
automata (PFA)

hidden Markov
models (HMMs)

partially observable
Markov decision

processes (POMDPs)

stochastic processes controlled processesprobabilistic languages

multiplicity automata (MA) ≡ (linear) sequential systems (SS)

Figure 1: SMA, OOMs and PSRs are versions of SSs that model probabilistic languages,
stochastic processes and controlled processes respectively, and strictly generalize
PFA, HMMs and POMDPs respectively.

3.1 Multiplicity Automata and Weighted Automata

The above definition of linear finite dimensional SS is an equivalent algebraic way of looking
at a type of automata that were introduced by Schützenberger (1961) and are most com-
monly known as multiplicity automata (Salomaa and Soittola, 1978; Berstel and Reutenauer,
1988). We will give a very brief introduction.

Definition 17 A K-multiplicity automaton (MA) is a structure 〈Σ, Q, ϕ, ι, τ〉, where Σ
is an alphabet, Q is a finite set of states, ϕ : Q × Σ × Q → K is the state transition
function, ι : Q → K is the initialization function, and τ : Q → K is the termination
function. The state transition function is extended to words by setting ∀x ∈ Σ∗, z ∈ Σ :
ϕ(q, xz, q′) =

∑
s∈Q ϕ(q, x, s)ϕ(s, z, q′), and ϕ(q, ε, q′) = 1 if q = q′ and 0 otherwise. A

multiplicity automaton M then defines a function

fM : Σ∗ → K, fM(x) =
∑
q,q′∈Q

ι(q)ϕ(q, x, q′)τ(q′).

The formal equivalence of MA to linear finite-dimensional SS is easily seen by rewriting
the definition of MA in terms of matrix multiplication: Set ωε = [ι(qi)]i, τz = [ϕ(qj , z, qi)]i,j ,
and σ = [τ(qj)]

>
j . Then we have τxz = [ϕ(qj , xz, qi)]i,j = [

∑
qk∈Q ϕ(qj , x, qk)ϕ(qk, z, qi)]i,j =

[ϕ(qk, z, qi)]i,k[ϕ(qj , x, qk)]k,j = τzτx and similarly fM(x) = στxωε. However, the above
definition of MA makes it apparent how MA are an extension of non-deterministic finite

112



Links Between MA, OOMs and PSRs

automata (NFA) to WFA that add weights to the initial and terminal states as well as the
state transitions. The weight of a path from an initial state to a termination state is then
given by the product of the corresponding weights (hence the name multiplicity automata),
while the value fM(x) is computed by summing the weights of all paths compatible with x.

At this point we should mention that MA as defined here are merely a special case of
WFA. The difference is that for MA we consider weights from a field K (here K = R or
K = C), while for WFA the weights are only required to come from an algebraic structure K
called a semiring. There exists a large body of theory for WFA that generalizes the theory
of SS that we have presented in Section 2, which can be found in the recent textbook by
Droste et al. (2009). Note that while MA and WFA are formally closely related, there is
a difference in the way they are viewed and used. For instance, WFA are often considered
over the semiring R+ with weights given the interpretation of transition probabilities, which
are then called probabilistic finite automata (PFA). Such PFA are graphical models, and
the states Q are latent states. For R-MA, however, the weights are allowed to be negative,
and the weights as well as the states Q become abstract notions. In other words, PFA
(and WFA in general) are typically used when the states and transition structure carry
some meaning, while MA are typically used as an abstract tool to characterize functions
f : Σ∗ → K. This difference in perspective is reflected in the relationship of PFA to SMA,
HMM to OOM and POMDP to PSR described in the remainder of this Section 3. Note
that PFA are a special case of MA, as R+ ⊂ R. In fact, there exist functions f : Σ∗ → R+

that can be described by a MA, but not by a PFA, i.e., MA are strictly more general than
PFA. This sequence of increasing generalization starting with finite automata (FA) can be
summarized as follows:

FA ⊂ NFA ⊂ PFA ⊂ MA ≡ SS ⊂ WFA.

Furthermore, there exists a natural extension of WFA to input-output systems that
are called weighted finite-state transducers (WFST). Here, the alphabet Σ is split as Σ =
ΣI ×ΣO, where ΣI is regarded as input alphabet and ΣO as output alphabet. The function
fM : Σ∗I × Σ∗O → K is then viewed as describing a relation between ΣI and ΣO. Again,
K is in general only required to be a semiring, but a typical choice is K = R+ with
the interpretation of state transition probabilities, yielding a latent variable model called
probabilistic finite-state transducers (PFST). WFST are a flexible class of models that have
been shown to unify several common approaches used in the the context of language and
speech processing; a survey is given by Mohri et al. (2002). Furthermore, IO-OOMs and
thereby PSRs (cf. Section 3.2 and Section 3.3) are in fact WFST with weights in K = R,
although they are not usually viewed this way, as WFST are typically seen as latent variable
models, while IO-OOMs and PSRs are not. However, since PFST are MA, as long as the
desired application merely requires the characterization of the function fM : Σ∗I×Σ∗O → R+,
the SS learning algorithms described in Section 4 can be applied to the case of WFST as
well, as has been done recently by Balle et al. (2011).

Note that in the context of MA one is usually interested in characterizing functions
f : Σ∗ → K, which are also called formal series in general and recognizable series if they
are computed by a MA. However, a MAM can also be used to recognize a language L ⊆ Σ∗

by setting LM = {x ∈ Σ∗ | fM(x) ⊆ J} for some subset J ⊆ K, e.g., J = {k ∈ K : k > κ}
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for some threshold parameter κ ≥ 0. The class of languages recognizable by MA is known
to be strictly more general than the class of regular languages (Cortes and Mohri, 2000).

MA have received a lot of attention in the context of learning theory following the
discovery of efficient learning algorithms (Bergadano and Varricchio, 1994; Ohnishi et al.,
1994) in an extended version of the exact learning model of Angluin (1987). This led to
further results on the learnability of several classes of DNF formulae (Bergadano et al.,
1996), the class of polynomials over finite fields, decision trees and others (Beimel et al.,
1996, 2000).

3.1.1 Stochastic Multiplicity Automata and Stochastic Languages

Additionally, MA have been applied in the context of probabilistic grammatical infer-
ence (Denis et al., 2006; Bailly et al., 2009), which is of particular interest to us because of
the close relationship of these approaches to OOMs and PSRs — as we shall see.

Definition 18 A function f : Σ∗ → R that satisfies 0 ≤ f ≤ 1 and f(Σ∗) =
∑

x∈Σ∗ f(x) =
1 is called a stochastic language, probabilistic language or just distribution over Σ∗. A dis-
tribution fM on Σ∗ that is defined by some MA M is called a rational stochastic language,
and a MA that defines such a distribution is called a stochastic MA (SMA).

Denis and Esposito (2008) give a comprehensive overview of rational stochastic languages
over various fields K, their relationships and relations to subclasses such as the important
class of probabilistic regular languages.

Definition 19 A probabilistic (finite) automaton (PFA) is a SMA with the following re-
strictions: (i) ι, τ, ϕ have values in [0, 1], and (ii) ι(Q) = 1 and ∀q ∈ Q : τ(q)+ϕ(q,Σ, Q) =
1, where ι(Q) =

∑
q∈Q ι(q) and ϕ(q,Σ, Q) =

∑
x∈Σ

∑
q′∈Q ϕ(q, x, q′). The stochastic lan-

guages that can be represented by PFA are called probabilistic regular languages.

PFA are closely related to hidden Markov models (HMMs), and the relationship has
been detailed out by Dupont et al. (2005). It is however less well known that SMA are
closely related to observable operator models — a class of models for stochastic processes
that generalize HMM in a similar way that SMA generalize PFA.

We point out two results that are relevant in the context of modeling probabilistic lan-
guages by MA. First of all, it is known that it is an NP-hard problem to compute the
maximum likelihood estimate of parameters of a PFA with known structure from a given
training set of words (Abe and Warmuth, 1992). In practice, algorithms based on expec-
tation maximization (EM) (Dempster et al., 1977) are used which compute locally optimal
models instead. In contrast to this, the algebraic theory for SSs allows for powerful learning
algorithms (see Section 4) that often outperform EM-trained PFA or HMMs (Rosencrantz
et al., 2004; Jaeger et al., 2006a). However, these learning algorithms may return MA
that are arbitrarily close to SMA but fail to represent stochastic languages. It is in fact
undecidable whether a MA represents a stochastic language (Denis and Esposito, 2004).

3.2 Observable Operator Models and Stochastic Processes

Observable operator models were introduced by Jaeger (1997) as a concise algebraic charac-
terization of stochastic processes (see also Jaeger, 1998, 2000b; Jaeger et al., 2006b). These

114



Links Between MA, OOMs and PSRs

models are closely related to other algebraic characterizations of stochastic processes (Heller,
1965; Ito, 1992; Upper, 1997) that were studied in the context of deciding the equivalence
for HMMs (Gilbert, 1959), which came to a successful conclusion by framing HMMs in the
more general class of linearly dependent processes by Ito et al. (1992).

Definition 20 A (discrete-valued) stochastic process is a function f : Σ∗ → [0, 1] that
satisfies (i) f(ε) = 1 and (ii) ∀x ∈ Σ∗ : f(x) =

∑
x∈Σ f(xx). Such a function f defines the

probabilities of initial observation sequences. An observable operator model (OOM) is a
linear SS M such that fM is a stochastic process. A stochastic process that can be modeled
by a finite dimensional OOM is called a linearly dependent process.

One of the interesting features of OOMs is their notion of “state” of a (stochastic)
process. The idea that goes back to Zadeh (1969) is that a system state is really nothing
more than the information that is required to predict the future. In the case of OOMs, the
states ωx not only carry enough information to predict the future, they are (in a certain
sense) just future predictions.

To see this, recall that the states ωx of a SS are coordinate representations of the
functions fx w.r.t. some unknown basis B of the function space F . In the case of OOMs,
these functions take on the meaning that fx(y) = P (xy), i.e., they give the probability of
observing the sequence x followed by y. These functions are therefore called future prediction
functions in the context of OOMs. The operators {τz} are then state update operators
that update a state ωx (corresponding to the future prediction function fx after an initial
observation of x) according to the new observation z to the new state ωxz (corresponding
to the future prediction function fxz after an initial observation of xz) — hence the name
“observable operators” (Jaeger, 1998).

For convenience, these functions fx, as well as the corresponding states ωx, are often
normalized to fx/f(x) and ωx/σωx respectively, since fx(y)/f(x) = στyωx/σωx = P (y|x),
the probability of observing y given that x has been observed. Therefore, an OOM started
in the normalized state ωx/σωx represents a stochastic process started after an initial ob-
servation of x. This corresponds to the notion of a residual automaton in the context of
SMA, which is obtained by starting a SMA in the (normalized) state ωx/

∑
z∈Σ∗ στzωx and

then represents a residual language (Denis and Esposito, 2004).

3.2.1 Relation to Hidden Markov Models

Any HMM can be trivially converted into an OOM. A hidden Markov model (HMM)
consists of an unobserved Markov process Xt that takes values in a finite set of states
Q = {s1, . . . , sn}, and is governed by a stochastic state transition matrix T = [P (Xt+1 =
sj |Xt = si)]i,j . At each time step an observation Yt from Σ is made according to the emis-
sion vector Ez = [P (Yt = z |Xt = si)]i. Finally, an initial state vector π = [P (X0 = si)]i is
needed to fully specify the distribution of the stochastic process Yt (Rabiner, 1989).

Proposition 21 (Jaeger, 2000b) A given HMM (T, {Ez}z∈Σ, π) with N states is equivalent
to the OOM (σ, {τz}, ωε) defined by σ = (1, . . . , 1), τz = T>diag(Ez) and ωε = π. The rank
of the OOM is less than or equal to N .
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Moreover, there are examples of OOMs of finite rank that cannot be modeled by any
HMM with a finite number of states. A prototypical example is the so-called “probability
clock” (Jaeger, 1998). It is an open question how to find a “close” HMM for a given OOM.
While OOMs can be seen as a generalization of HMMs, one should keep in mind that there
is a fundamental difference in the notion of the state of the process. The state vector
in the case of a HMM is a stochastic vector that expresses the belief about the underlying
hidden state, while for an OOM it is a coordinate representation of the corresponding future
prediction function. However, under certain conditions it is possible to recover HMM-like
hidden states from an OOM (Hsu et al., 2009; Anandkumar et al., 2012).

3.2.2 Relationship to Stochastic Multiplicity Automata

The main difference between OOMs and SMA is that OOMs model stochastic processes,
while SMA model distributions on words. However, we can use a stochastic process to
model a distribution on words if we introduce a termination symbol $.

Definition 22 An OOM M over the alphabet Σ$ = Σ ∪ {$} is terminating if fM(Σ∗$) :=∑
x∈Σ∗ στ$τxωε = 1.

Proposition 23 An OOM M = (σ, {τz}, ωε) over the alphabet Σ can be extended to a
terminating OOMM′ = (σ, {τ ′z}, ωε) over the alphabet Σ$ = Σ∪{$} by setting τ ′z = (1−p)τz
and τ ′$ = pτΣ for some fixed termination probability p ∈ (0, 1), where τΣ =

∑
z∈Σ τz.

Proof We first show that M′ describes a stochastic process. Clearly, fM′ ≥ 0 and
fM′(ε) = σωε = 1. To show property (ii), take any x ∈ Σ∗$ and note that by linearity
τ ′xωε =

∑
k λkτxkωε for suitable λk ∈ R and sequences xk ∈ Σ∗ (this is obtained by re-

placing all occurrences of τ ′$ by p
∑

z∈Σ τz). Then
∑

z∈Σ$
fM′(xz) = σ(

∑
z∈Σ$

τ ′z)τ
′
xωε =

στΣτ
′
xωε =

∑
k λkστΣτxkωε =

∑
k λkστxkωε = στ ′xωε = fM′(x). Furthermore, fM′(Σ

∗$) =∑
x∈Σ∗ στ

′
$τ
′
xωε =

∑∞
l=0

∑
x∈Σl σpτΣ(1− p)lτxωε =

∑∞
l=0 p(1− p)l = 1.

Definition 24 A terminating OOM M over the alphabet Σ ∪ {$} and a SMA A over the
alphabet Σ are related, if fM(x$) = fA(x) for all x ∈ Σ∗.

Lemma 25 If A = (σ, {τz}, ωε) is a minimal d-dimensional SMA, then τΣ∗ =
∑∞

k=0 τ
k
Σ

exists and is equal to (Id − τΣ)−1, where τΣ =
∑

z∈Σ τz.

Proof We will show that the spectral radius1 ρ(τΣ) satisfies ρ(τΣ) < 1, which implies
the lemma. Assume ρ(τΣ) ≥ 1, i.e., there exists some λ ∈ C, |λ| ≥ 1 and v ∈ Cd
such that τΣv = λv. As A is minimal, we may find sequences xj , xi ∈ Σ∗ such that
Π = ((στxi)

>)>i∈I and Φ = (τxjωε)j∈J with |I| = |J | = d are non-singular using Algo-
rithm 1. Then v = Φa for some a ∈ Cd, and ΠτkΣΦa = λkΠΦa for any k ∈ N. Now the
SMA property fA(Σ∗) =

∑∞
k=0 στ

k
Σωε = 1 implies that ΠτkΣΦ → 0 as k → ∞, while the

right hand side λkΠΦa does not (note ΠΦa 6= 0), which is a contradiction.

1. For A ∈ Cn×n with eigenvalues λ1, . . . , λk, the spectral radius is defined as ρ(A) := max
i

|λi|.
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Proposition 26 Let A = (σ, {τz}, ωε) be a minimal d-dimensional SMA. Then M =
(σ′, {τ ′z}, ω′ε) is a related (d + 1)-dimensional terminating OOM over the alphabet Σ$ =
Σ ∪ {$}, if

• σ′ = [σ
∑∞

k=0 τ
k
Σ, 1] = [σ(Id − τΣ)−1, 1],

• τ ′z =
[
τz 0
0 0

]
, τ ′$ = [ 0 0

σ 1 ], and

• ω′ε = [ ωε
0 ].

Proof We can simply check that for all z ∈ Σ∗$

fM(z) = σ′τ ′zω
′
ε =


σ(
∑∞

k=0 τ
k
Σ)τzωε if z ∈ Σ∗,

στxωε if z = x$ . . . $ for some x ∈ Σ∗,

0 otherwise.

This implies fM ≥ 0, fM(x$) = fA(x) for all x ∈ Σ∗ (M and A are related), as well as
fM(Σ∗$) = fA(Σ∗) = 1 (M is terminating if it is an OOM). Furthermore, σ′ω′ε = fA(Σ∗) =
1 and σ′τ ′Σ$

= [σ
∑∞

k=0 τ
k
ΣτΣ + σ, 1] = σ′, which imply property (i) and (ii) for a stochastic

process respectively.

Proposition 27 Conversely, let M = (σ, {τz}, ωε) be a d-dimensional terminating OOM
over the alphabet Σ ∪ {$}. Then A = (στ$, {τz}, ωε) is a related d-dimensional SMA over
the alphabet Σ.

Proof Clearly, fA(x) = fM(x$) ≥ 0 for all x ∈ Σ∗ and fA(Σ∗) = fM(Σ∗$) = 1.

3.2.3 Historical Remarks

Note that our definition of OOMs given in Definition 20 differs slightly from the definition
typically found in the literature.

First of all, the property (ii) for a stochastic process means that an OOM must satisfy
στΣωx = σωx for all x ∈ Σ∗, which implies (ii)’ στ = σ if the OOM is minimal, but not in
general. The property (ii)’ is however often stated as part of the definition for OOMs. Our
above Definition 20 is therefore slightly more relaxed than the standard definition in the
case of non-minimal models, but this has no practical consequences.

Furthermore, for purely historical reasons, OOMs are sometimes required to satisfy
σ = (1, . . . , 1), which is mainly an issue of normalization (cf. Proposition 13). However,
this in turn has led to a more restrictive definition of interpretability for OOMs, since due
to property (i) of stochastic processes, an OOM that satisfies σ = (1, . . . , 1) can only be
interpretable with respect to sets Yk, if 1 = σωε = (1, . . . , 1) · [fM(Yi)]

>
i =

∑
k

∑
y∈Yk P (y).

This is typically assured by requiring the sets Yk to partition Σl for some l. One can relax
this restriction on the sets Yk for the definition of interpretability — as we have done in
Definition 14 — if one is willing to drop the normalization requirement σ = (1, . . . , 1) as
well.
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Nevertheless, even though the normalization requirement σ = (1, . . . , 1) is superfluous,
several of the OOM learning algorithms have been designed to yield OOMs normalized
such that σ = (1, . . . , 1) — oftentimes unnecessarily complicating the algorithms — and
some proofs have made use of this normalization as well. Later in Section 4 we present
simplified and generalized versions of the EC and ES learning algorithms by removing this
normalization restriction from the algorithms and proofs.

3.3 Predictive State Representations and Controlled Processes

Following the development of OOMs for stochastic processes, extensions to the case of
controlled processes — stochastic processes that depend on an external input at each time
step — were proposed by Jaeger (1998) as input-output OOMs, by Littman et al. (2001) as
predictive state representations and as a further variant as transformed PSRs by Rosencrantz
et al. (2004). All approaches are (in the linear case) equivalent and can be easily understood
in the framework of linear SSs.

Definition 28 A (discrete-valued) controlled (stochastic) process with input from ΣI and
output in ΣO is a function p : Σ∗ → [0, 1] that satisfies (i) p(ε) = 1 and (ii) ∀x ∈ Σ∗, a ∈ ΣI :
p(x) =

∑
o∈ΣO

p(xao), where Σ = (ΣI×ΣO) and ao = (a, o). We define p(y|x) = p(xy)/p(x)
for p(x) 6= 0 and zero otherwise. An input-output OOM (IO-OOM) is just a SS that models
a controlled process.

Note that the values of p are not probabilities. One may interpret p(a1o1 . . . anon) as
P (o1 . . . on|a1 . . . an), i.e., as the conditional probability of observing the outputs o1 . . . on
given the inputs a1 . . . an. However, one must take care, as the sequence of inputs may
depend on the observed outputs as well. This is explained in more detail in Section 4.1.

Definition 29 Let p be a controlled process with predictive states ω̇h defined as ω̇h =
[p(q1|h), . . . , p(qd|h)]> ∈ Rd for h ∈ Σ∗ and some fixed set of sequences qi ∈ Σ∗. If ω̇h is a
sufficient statistic for any history h ∈ Σ∗, i.e., for every x ∈ Σ∗ there is a function mx :
Rd → [0, 1] such that p(x|h) = mx(ω̇h) for all h ∈ Σ∗, then the sequences {q1, . . . , qd} are
called core tests, which together with the initial state ω̇ε and projection functions mx form
a d-dimensional predictive state representation (PSR) for p. If the projection functions are
linear functionals (i.e., just row vectors in Rd), then the PSR is called linear.

Note that PSRs share the notion of “state” with OOMs in that the state consists of the
information required to predict the future, but PSRs additionally require the entries of the
state vectors ω̇h to be “predictions” p(qi|h) for the core tests qi. Such states are therefore
called predictive states.

We will only consider linear PSRs for controlled processes here, and show that these are
essentially SS for controlled processes (i.e., IO-OOMs) that are additionally interpretable
with respect to singleton sets (core tests). Note that there has been some confusion about
the precise relationship between PSRs and IO-OOMs, which we address in Sections 3.3.2
and 3.3.3 below.
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Proposition 30 Let a d-dimensional linear PSR consisting of core tests qi, projection func-
tions mx and an initial state ω̇ε for a controlled process p be given. Then an equivalent SS
M = (σ, {τz}, ωε) is obtained by setting

ωε = ω̇ε, τz = [(mzq1)>, . . . , (mzqd)>]> and σ =
∑
o∈ΣO

mao for any a ∈ ΣI .

Furthermore, M will be interpretable w.r.t. the sets {qi}.

Proof First note that σω̇x =
∑

o∈ΣO
maoω̇x =

∑
o∈ΣO

p(ao|x) = 1 for all x ∈ Σ∗ such that
p(x) 6= 0 because p is a controlled process. Next, we prove that (*) ωx = p(x)ω̇x and (**)
fM(x) = p(x) by induction on the length l of x:

• For l = 0 we have ωε = p(ε)ω̇ε and fM(ε) = σωε = σω̇ε = 1 = p(ε).

• Assume (*) and (**) are true for all x ∈ Σl. Let xz ∈ Σl+1. Then (*) ωxz =
τzωx = τzω̇xp(x) = [p(zqi|x)]>i p(x) = [p(qi|xz)]>i p(z|x)p(x) = ω̇xzp(xz) and (**)
fM(xz) = σωxz = σω̇xzp(xz) = p(xz).

Note that property (*) says that ωx = p(x)ω̇x = [p(xq1), . . . , p(xqd)]
> for all x, i.e., thatM

is interpretable w.r.t. the sets {qi}.

Proposition 31 Conversely, letM = (σ, {τz}, ωε) be a SS for a controlled process p. Then
an equivalent PSR is obtained by making the SS interpretable with respect to singleton sets
{yi} for appropriate sequences yi ∈ Σ∗ (e.g., using Algorithm 3). We can then use these as
core tests for the PSR, and set mx = στx for all x ∈ Σ∗.

Proof We assume that the SS has been made interpretable w.r.t. the sequences y1, . . . , yd.
Then the normalized states ω̇h = ωh/σωh have the form ω̇h = [p(y1|h), . . . , p(yd|h)]>. Fur-
thermore, for all h ∈ Σ∗ : mxω̇h = στxω̇h = στxτhωε/στhωε = p(x|h), as desired.

Corollary 32 A linear PSR can be specified by the parameters ({mao}, {Mao}, ω>ε ) for
ao ∈ ΣI × ΣO, where Mao = τ>ao and mao = (στao)

>, and defines a controlled process via

p(a1o1 · · · anon) = ω>ε Ma1o1 · · ·Man−1on−1manon .

This is the usual way of specifying a PSR.

Note that transformed PSRs (TPSRs) are just PSRs that model controlled processes in
the form of Corollary 32 without any further requirements (i.e., without the requirement
that the states need to be interpretable). These are readily converted to SSs by setting
σ = (

∑
o∈ΣO

mao)
> for any a ∈ ΣI and using the equations from the Corollary 32 otherwise.

Note that this may not give equivalent models if the PSR does not model a controlled
process.
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3.3.1 Relation to Partially Observable Markov Decision Processes

Finally, we note how to convert POMDPs into SSs (which can then be further converted
to PSRs by making the SS interpretable, as described above). A POMDP with d states
Q = {s1, . . . , sd} for a controlled process with input alphabet ΣI and output alphabet ΣO

consists of an initial belief state b ∈ Rd whose i-th element is the probability of the model
starting in state si, a state transition matrix Ta ∈ Rd×d for each action a ∈ A such that the
i, j-th entry of Ta is the probability of transitioning to state si from state sj if action a is
taken, and a vector Oao ∈ Rd for each action-observation pair ao ∈ (ΣI × ΣO) whose i-th
entry is the probability of observing o after arriving in state si by taking action a (Kaelbling
et al., 1998).

Setting O′ao = diag (Oao) we can summarize the belief-state update procedure for the
POMDP concisely by stating that a POMDP models a controlled stochastic process p via
the equation

p(a1o1 · · · anon) = (1, . . . , 1)(O′anonTan) · · · (O′a1o1Ta1)b.

Clearly, setting σ = (1, . . . , 1), τao = O′aoTa and ωε = b yields an equivalent SS.

3.3.2 IO-OOMs, Interpretable IO-OOMs, PSRs and TPSRs

We have shown above that IO-OOMs, PSRs and TPSRs are equivalent models in the sense
that they model the same class of controlled processes and that they can be readily converted
into one another. Furthermore, TPSRs are essentially IO-OOMs (except that the evaluation
functional σ is replaced by the set {mao} of evaluation functionals), while PSRs are TPSRs
(and therefore essentially IO-OOMs) with predictive states, which corresponds to IO-OOMs
being interpretable w.r.t. singleton sets (core tests). This is summarized in Table 1.

SSs for controlled
processes with. . .

single evaluation functional
σ

set of evaluation functionals
{mao}

abstract,
uninterpretable states

IO-OOMs TPSRs

predictive states
IO-OOMs that are
interpretable w.r.t.

singleton sets
PSRs

Table 1: The differences between IO-OOMs, PSRs and TPSRs

Note that we have written “IO-OOMs that are interpretable w.r.t. singleton sets” in-
stead of simply “interpretable IO-OOMs” for a reason. This is because interpretability was
originally defined for IO-OOMs in a more restrictive way (cf. Section 3.3.3). It has been
shown that not every IO-OOM has an equivalent “interpretable IO-OOM” (in the original
sense) (Singh et al., 2004), i.e., that “interpretable IO-OOMs” are less general than IO-
OOMs and PSRs. At the same time it was believed that some notion of interpretability
would be crucial for the learnability of such models, which is however not the case, as we
shall see in Section 4. Together, this has led to the false impression that PSRs are more
general than IO-OOMs.
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As the original notion of interpretability for IO-OOMs has turned out to be overly
restrictive, we propose to employ the notion of interpretability that we have introduced
here for SSs as the “correct” notion for IO-OOMs, and consider the original notion as
deprecated.

3.3.3 Historical Remarks

The same remarks that we have made above in Section 3.2.3 for OOMs also apply to IO-
OOMs. Namely, IO-OOMs were originally required to satisfy (ii)’: ∀a ∈ ΣI : σ

∑
o∈ΣO

τao =
σ instead of the the property (ii) for a controlled process. This is equivalent for minimal
models, but slightly more restrictive in general. However, as every SS can be minimized,
this has no practical consequences.

Furthermore, IO-OOMs were originally typically required to satisfy σ = (1, . . . , 1), which
is again merely a matter of normalization. However, an IO-OOM that satisfies σ = (1, . . . , 1)
can only be interpretable with respect to the sets Yk, if 1 = σωε = (1, . . . , 1) · [fM(Yi)]

>
i =∑

k

∑
y∈Yk p(y). It turns out that this can be assured by requiring the sets Yk to partition

Σl
O×{a1}× · · ·×{al} for some l and a fixed sequence a1 . . . al of inputs called a characteri-

zation frame. This restriction on the choice of sets Yk therefore became part of the original
definition of interpretability for IO-OOMs.

Unfortunately, unlike the case for OOMs, the resulting original notion of interpretability
for IO-OOMs has turned out to be a severe limitation (Singh et al., 2004).

However, one may use the more general notion of interpretability given in Definition 14
for IO-OOMs instead, if one is willing to drop the (unnecessary) normalization requirement
σ = (1, . . . 1).

3.4 Extensions

In this section we have presented SMAs, OOMs and PSRs as versions of linear sequen-
tial systems — or more generally weighted finite automata — that model probabilistic
languages, stochastic processes and controlled processes respectively, as is summarized in
Figure 1. For completeness, we wish to briefly mention some extensions of these basic model
types that have been studied, but which are beyond the scope of this paper.

First of all, various non-linear SSs exists. For instance, several versions of quantum
finite automata have been studied (Kondacs and Watrous, 1997; Moore and Crutchfield,
2000). One form are SSs (σ, {τx}, ωε ∈ CP d) where the operators τx are unitary and
σ(τxωε) = ||πτxωε||2 for some projection π and the Fubini-Study metric || · || (Moore and
Crutchfield, 2000). A similar type of OOMs exist which are called norm-OOMs. These are
SSs (σ, {τx}, ωε ∈ Rd) such that

∑
x∈Σ τ

>
x τx = I and σ(τxωε) = ||τxωε||2. Such norm-OOMs

describe stochastic processes and can always be converted into an equivalent OOM (Zhao
and Jaeger, 2010). Recently, quadratic weighted automata have been proposed by Bailly
(2011), where a SS M is learnt for

√
f and a product SS M ⊗M is constructed that

satisfies fM⊗M = f2
M ≈ f . All of these approaches avoid the “negative probabilities

problem”, where the estimated model fM may violate the requirement fM ≥ 0. Non-linear
versions of PSRs have also been investigated, which have been shown to in some cases yield
representations for deterministic dynamical systems that are exponentially smaller than a
minimal OOM representation (Rudary and Singh, 2003).
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Furthermore, OOMs and PSRs are models for discrete-valued stochastic (controlled)
processes. Many real-world processes of interest are, however, continuous-valued. A con-
tinuous version of OOMs exists that extends semi-continuous HMMs (Jaeger, 2000a), and
WFST have been similarly extended to allow for continuous inputs (Recasens and Quattoni,
2013). Multivariate continuous inputs and outputs are handled using features of observa-
tions by reduced-rank HMMs (Siddiqi et al., 2010). So called predictive linear Gaussian
models (PLGs), which are based on PSRs, closely resemble linear dynamical system mod-
els (Rudary et al., 2005; Wingate and Singh, 2006a,b; Rudary and Singh, 2006, 2008) and
are further generalized by exponential family PSRs (Wingate and Singh, 2008b,a). A gen-
eralization of OOMs using Hilbert space embeddings was introduced by Song et al. (2010).
This has been further refined and extended to include features and can now be employed
— among other things — for controlled processes and to planning in reinforcement learning
tasks (Boots and Gordon, 2010; Boots et al., 2010, 2013).

4. Learning

In this section we present a general approach to learning SSs from data. We show how
several of the learning algorithms that have been proposed for SMA, OOMs and PSRs can
be understood in this framework, and that in fact many of the proposed learning algorithms
are closely related.

We begin by establishing a result that lies at the heart of the learning algorithms, which
was formulated by Kretzschmar (2001) for the case of OOMs. Assuming a function fM can
be described by some minimal SSM, it allows us to reconstruct an equivalent SSM′ from
data given in the form of finitely many function values of fM — as long as these are given
exactly and we know the rank d of the underlying model M. We will therefore refer to the
Equations (2) as the learning equations.

Proposition 33 For a minimal d-dimensional SS M = (σ, {τz}, ωε), let {τxjωε | j ∈ J}
and {(στ>xi)> | i ∈ I} be finite sets that span the state space W and the co-state space W̃

respectively. Define F I,J = [fM(xjxi)](i,j)∈I×J and F I,Jz = [fM(xjzxi)](i,j)∈I×J . Further-

more, define F I,0 = [fM(xi)]i∈I and F 0,J = [fM(xj)]
>
j∈J . Let C ∈ Rd×|I| and Q ∈ R|J |×d

be rank d matrices such that CF I,JQ is invertible. Then the SS M′ = (σ′, {τ ′z}, ω′ε) defined
as follows is equivalent to M:

σ′ = F 0,JQ(CF I,JQ)−1,

τ ′z = CF I,Jz Q(CF I,JQ)−1,

ω′ε = CF I,0.

(2)

Furthermore, CF I,J = (ω′xj )j∈J and CF I,Jz = (ω′xjz)j∈J , where ω′x = τ ′xω
′
ε are states of the

SS M′.

Proof Let Π = ((στxi)
>)>i∈I , Φ = (τxjωε)j∈J . Then F I,J = ΠΦ, F I,Jz = ΠτzΦ, F I,0 = Πωε

and F 0,J = σΦ. We can then simply calculate τ ′z = CΠτzΦQ(CΠΦQ)−1 = CΠτz(CΠ)−1,
as well as ω′ε = CΠωε and σ′ = σΦQ(CΠΦQ)−1 = σ(CΠ)−1. That is, we have shown that
M′ = ρMρ−1 for the non-singular transformation ρ = CΠ. Furthermore, CF I,J = CΠΦ =

122



Links Between MA, OOMs and PSRs

ρΦ = (ρτxjωε)j∈J = (τ ′xjω
′
ε)j∈J , and analogously for CF I,Jz .

The matrices C and Q that appear in the learning Equations (2) are indeed arbitrary
(provided that CF I,JQ has the correct dimension d and full rank), as long as the function
values fM(x) are given exactly. However, if one only has access to estimates f̂(x), then
the selection of C and Q plays a crucial role in obtaining good model estimates, as will be
further discussed in Section 4.4.

Furthermore, note that we generally do not know a priori which sets of words to consider
such that {τxjωε | j ∈ J} and {(στ>xi)> | i ∈ I} span the state and co-state spaces W and W̃
of M. Proposition 6 guarantees that it suffices to consider all words of length at most d,
but the rank d of M is generally unknown as well. Selecting appropriate sets of words xi
and xj and an appropriate model dimension d are therefore crucial and non-trivial steps in
learning models from data.

We can turn the above Proposition 33 into a generic learning procedure for SSs:

Algorithm 4: General procedure for learning a SS from data

1 Obtain estimates f̂(x) of the function values f(x) for words x ∈ Σ∗.

2 Choose finite sets {xj | j ∈ J}, {xi | i ∈ I} ⊂ Σ∗, which we call sets of indicative and

characteristic words respectively. Then assemble the estimates f̂(x) into estimates of
the matrices F̂ I,J , F̂ I,Jz , F̂ I,0 and F̂ 0,J .

3 Find a reasonable target dimension d for the model to be learnt.

4 Choose C ∈ Rd×|I| and Q ∈ R|J |×d called the characterizer and indicator, such that

CF̂ I,JQ is invertible.

5 Apply the learning Equations (2) to obtain a model estimate M̂.

At this point we should clarify what is meant here by learning a model from data. For
general MA the goal is often to reconstruct an automaton from as few membership queries
— obtaining the value f(x) for some x ∈ Σ∗ — and equivalence queries — proposing a
function h and receiving a counterexample x such that h(x) 6= f(x) if h 6= f — as possible.
This is an extended version of the exact learning model of Angluin (1987). However, in the
case of SMA, OOMs and PSRs, the external function represents a distribution. Therefore,
in these cases it is usual to assume that we observe samples from this distribution and wish
to estimate model parameters from the given samples such that the estimated model best
describes the underlying distribution — “best” in a sense that depends on the context and
the approach taken by a specific learning algorithm.

We should also mention one common problem when learning SMAs, OOMs and PSRs
from data. Namely, even if the function fM in question can be described by a SMA, OOM
or PSR modelM, the learnt model M̂ will only be an approximation toM and will describe
a function fM̂ that may not satisfy the properties of a probabilistic language, stochastic

process or controlled process, respectively, i.e., the learnt model M̂ may not be a SMA,
OOM or PSR. What typically happens is that the learnt model M̂ will predict “negative
probabilities” for certain sequences x. Moreover, it is an undecidable problem whether a
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given SS M̂ satisfies fM̂ ≥ 0, and therefore, whether it is a SMA — a result that carries over
to OOMs and PSRs as well (Wiewiora, 2008). In practice, there are three basic ways to deal
with this “negative probabilities problem”: First of all, one can resort to alternative models
as described in Section 3.4 that preclude the problem by design. For the particular case
of quadratic weighted automata the learning procedure presented here still applies (Bailly,
2011), but in general one will need alternative learning algorithms. Secondly, one may
attempt to learn a restricted class of SS such as PFA, HMMs or POMDPs by enforcing
additional constraints on the parameters of the SS. This can be achieved either by adding a
set of convex constraints to a generalized version of the spectral learning method presented
in Section 4.4.2 (Balle et al., 2012), or by an additional conversion step (Anandkumar et al.,
2012), which however may fail. Finally, one may work with such an “invalid” SS model by
employing a simple and effective heuristic as described by Jaeger et al. (2006b, Appendix
J) to normalize all model predictions to fall into the desired range.

Finally, we will briefly remark on the runtime characteristics of the above learning
procedure. Steps 1 and 2 can be accomplished in time O(N), where N is the size of
the training data, for most strategies mentioned in Section 4.2 by employing a suffix tree
or similar representation of the training data. For a given target dimension d, Step 4,
when solved via the EC (Section 4.4.3) or spectral algorithms (Section 4.4.3), requires the
O(d|I||J |) computation of a d-truncated singular value decomposition (SVD) of F̂ I,J , while
the ES algorithm (Section 4.4.4) requires O(d2lmax{|I|, |J |}) operations to compute C,
where l is the (generally very small) average length of characteristic and indicative words,
and O(d|I||J |) operations to compute Q — per iteration (but one typically uses a constant
number of iterations), which therefore amounts to a run-time of O(d|I||J |) as well. Solving
the learning Equations (2) for Step 5 essentially requires the computation of the operators
τ̂z, which costs O(d|I||J ||Σ|) operations. So for a known target dimension d, the above
learning procedure typically requires O(N + d|I||J ||Σ|) operations. Step 3 can be solved
by computing a dmax-truncated SVD of F̂ I,J for some upper bound dmax < min{|I|, |J |}
on the target dimension, which incurs a runtime costs of O(dmax|I||J |), or by using cross-
validation, which requires repeatedly performing, for various choices of d, Steps 4 and 5
as well as evaluations on test data of size T , which we assume to be constant, incurring a
runtime cost of O(d log(d)|I||J ||Σ|), where d is the finally selected model dimension.

In the following, we will discuss the steps of the learning procedure in more detail.

4.1 Obtaining Estimates f̂(x)

This step clearly depends on the context we are dealing with. Recall that in the context
of SMA, the functions we are considering are distributions on words, while in the context
of OOMs and PSRs they represent stochastic processes and controlled processes respec-
tively. The following Remarks 34 to 36 summarize how to obtain these estimates in the
different scenarios of probabilistic languages, stochastic processes and controlled processes,
respectively.

Remark 34 Let f : Σ∗ → [0, 1] be a distribution on Σ∗, and let S = (s1, s2, . . . , sN ) be

a collection of N samples from f . Then f̂(x) = #(x)
N , where #(x) denotes the number of

occurrences of x in the sample S, is a consistent estimator for f(x).
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In the case of stochastic processes, one typically observes few (or even just one) long
initial realization of the process. In this case it is still possible to obtain the desired estimates
if the stochastic process is stationary and ergodic2 by invoking the ergodic theorem and
using time-averages as estimates. The same idea is commonly used in the case of controlled
processes as well and called suffix-history method in the PSR community.

Remark 35 Let f : Σ∗ → [0, 1] be a stationary and ergodic stochastic process, and let
s̄ = s1s2 . . . sN be a finite initial realization of length N from this process. Then

f̂(x) =
#(x)

N − |x|+ 1
,

where #(x) denotes the number of occurrences of x in the sequence s̄ is a consistent esti-
mator for f(x).

In the case of controlled processes the situation is more complicated. It is important
to have a good understanding of the meaning of the value f(x) when f is a controlled
process and x = a1o1 . . . anon ∈ (ΣI ×ΣO)n is some input-output sequence. Intuitively, this
is the probability of the system output o1 . . . on conditioned on the system input a1 . . . an.
This is sometimes written as f(a1o1 . . . anon) = P (o1 . . . on | a1 . . . an) even though this

notation is misleading, as it suggests that P (o1 . . . on | a1 . . . an) = P (a1o1...anon)
P (a1ΣO...anΣO) , which is

false (Bowling et al., 2006). To clarify this, consider the stochastic process that is specified
by the controlled process f together with some system input specification. This stochastic
process is governed by probabilities of the form

P (a1o1 . . . anon) =

n∏
k=1

P (ok | a1o1 . . . ak) ·
n∏
k=1

P (ak | a1o1 . . . ak−1ok−1).

The second factor in the equation models the system input and is sometimes called the
input policy π, while the first factor models the system output and is just the controlled
process f . Therefore, for x = a1o1 . . . anon,

f(x) = P (o1 . . . on | a1 . . . an) =
n∏
k=1

P (ok | a1o1 . . . ak) =
P (x)

π(x)
. (3)

Note that for the special case of a blind input policy π — one that does not depend on
the observed output, i.e., that satisfies P (ak | a1o1 . . . ak−1ok−1) = P (ak | a1 . . . ak−1) for all
x — we in fact do have π(x) = P (a1ΣO . . . anΣO).

From the above Equation (3), the following estimates are derived (Bowling et al., 2006):

Remark 36 Let f : Σ∗ → [0, 1] be a controlled process, and let s̄ = a1o1 . . . aNoN be a finite
initial sample from f according to some input policy π, such that the resulting stochastic
process is stationary and ergodic. Then

f̂(x) =
n∏
k=1

#(a1o1 . . . akok)

#(a1o1 . . . ak)

2. A stationary ergodic process is a stochastic process where the statistical properties do not change with
time (stationarity) and where these can be estimated as time-averages from a single long sample (ergod-
icity). For details, see for example the textbook by Gray (1988)

125



Thon and Jaeger

is a consistent estimator for f(x). If the input policy π is known, then

f̂(x) =
#(x)

N − |x|+ 1
· 1

π(x)

is also a consistent estimator which may be used instead. Again, #(x) denotes the number
of occurrences of x in the sequence s̄.

None of the above estimates exploits the rich structure of the matrix F . If required,
some of the convex constraints that the matrix F must satisfy can be ensured by applying
an additional normalization step to the estimated matrix F̂ , as done by McCracken and
Bowling (2006). These convex constraints — including a convex relaxation of the rank
constraint — may also be used to infer missing values if some entries f̂(x) cannot be
obtained directly, which becomes relevant in the context of learning more general (e.g.,
non-stochastic) weighted automata (Balle and Mohri, 2012), or to infer sequence alignment
when learning WFST from unaligned input-output sequences (Bailly et al., 2013).

4.2 Choosing Indicative and Characteristic Words

Choosing indicative and characteristic words {xj | j ∈ J}, {xi | i ∈ I} ⊂ Σ∗ is equivalent
to selecting which columns J and rows I of the system matrix F to estimate. Clearly,
it is only possible to obtain a correct estimate for f if I and J are selected such that
rank(F ) = d = rank(F I,J). It is however unclear how to satisfy this if the true rank is
unknown or even impossible if rank(F ) = ∞ — as may often be the case for real-world
examples. Determining an appropriate rank for the model will be discussed in the following
section.

One approach is, however, to attempt to select minimal sets of indicative and charac-
teristic words such that rank(F ) = rank(F I,J). Such minimal sets are called sets of core
histories and core tests in the context of PSRs, and their selection is called the discovery
problem. This problem is easily solved by Algorithm 1 once a (minimal) SS model for f is
known. For the case where only function values of f are available, an iterative procedure has
been proposed (James and Singh, 2004) that, starting with the empty words, adds in each
iteration all length-one extensions of previously found core histories and tests, but retains
only a minimal set needed to span F̂ I,J . Since any noisy matrix is typically non-singular,
some notion of numerical linear independence is used to decide which words to retain in
each step. It is important to note that there exist simple examples of finite rank where this
iterative procedure fails to deliver sets of core histories and tests (James and Singh, 2004),
i.e., it does not in general solve the discovery problem. A similar algorithm called DEES
has been proposed in the context of learning SMA (Denis et al., 2006). The algorithms for
learning MA in the exact learning framework also work by finding a minimal set of indica-
tive and characteristic words, but there it is assumed that the function f may be queried
exactly, and furthermore equivalence queries are employed to find additional core tests and
histories (Ohnishi et al., 1994; Bergadano and Varricchio, 1994; Beimel et al., 2000).

It is important to note that there is no requirement to find minimal or even small sets of
indicative and characteristic words, i.e., one does not need to solve the discovery problem
when learning SS models from data (and once a SS model has been learnt, the problem is
easily solved by Algorithm 1). In fact, using small such sets means that less of the available
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training data will enter the model estimation, i.e., the available data will be under-exploited.
It is therefore desirable to use (much) larger sets of indicative and characteristic words than
strictly needed.

An approach which is in some sense complementary is to use all sequences of a given
length l. By Proposition 6 one can ensure rank(F I,J) = d by choosing l ≥ d. However,
this is highly impractical, since the size of F̂ I,J grows exponentially with l. Also, many of
the estimates in F̂ I,J will be based on very few — if any — occurrences in the available
training data. Nevertheless, choosing a length l � d and utilizing as indicative as well as
characteristic words all words of length l that occur at least once in the training data often
gives good results (Zhao et al., 2009a).

A further approach is to select as indicative and characteristic words all those that
actually occur in the data and therefore allow data-based estimates (Bailly et al., 2009).
However, it is reasonable to disallow indicative (resp. characteristic) words that are suffixes
(resp. prefixes) of some other indicative (resp. characteristic) word if they always occur
at the same positions in the training data, as these would just lead to identical columns
(resp. rows) in the estimated matrices that are based on the same parts of the training
data (Jaeger et al., 2006b). Moreover, one may select only the words that occur most
frequently in the data (Balle et al., 2014). These approaches yield a choice of indicative and
characteristic words that is matched to the available training data and can be computed
in time O(N) where N is the size of the training data by using a suffix tree or similar
representation of the training data.

Finally, it is also possible to group words into sets of words (as is also done in Defini-
tion 14) that we call events, and to use indicative and characteristic events in place of words.
This corresponds to adding the respective columns and rows in the matrices F̂ I,J , F̂ I,Jz , etc.
and can be formally accomplished by a special selection of the indicator and character-
izer matrices Q and C. Finding good indicative and characteristic events was the strategy
adopted by early OOM learning algorithms (Jaeger, 2000b). A further generalization of
this idea of considering events in place of words is proposed by Wingate et al. (2007). Using
such events may carry an additional advantage if the estimation of f̂(Y ) from the available
data can be performed more efficiently or accurately than computing f̂(Y ) =

∑
x∈Y f̂(x).

4.3 Determining the Model Rank

We should note that the goal of this step may be stated in two different ways. First of all, we
may be interested in estimating the true rank of the external function f and use this as the
model rank. On the other hand, we may rather be interested in choosing any model rank
that allows for a good approximation of the external function f from the available data.
These goals are related, as one can only hope to estimate an exact model if the model rank
is at least rank(f). However, they are not the same, and it depends on the context which
approach is most appropriate. For instance, if it is known that the external function f must
have a small finite rank, which may even carry some meaning, it may be desirable (and
well-defined) to estimate this true rank from the data. On the other hand, when dealing
with real-world systems of possibly infinite rank, and faced with generally limited training
data, it may not even make sense to speak of the correct model rank. In such cases one will
typically use the second approach, which is really an instance of the bias-variance dilemma.
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4.3.1 Estimating the True Rank

For suitably chosen indicative and characteristic words, one can expect to have rank(f) =
rank(F I,J). However, since one only has access to an estimate F̂ I,J of this matrix, a
typical approach is to determine what is known as the numerical rank (or effective rank or
pseudorank). We give a brief description following Hansen (1998).

The numerical ε-rank rε of a matrix A may be defined as the smallest rank of any matrix
that can be obtained from A by a small perturbation E of size at most ε:

rε(A) = min
||E||≤ε

rank(A+ E).

In terms of the singular values σ1 ≥ · · · ≥ σK of A this means that rε satisfies σrε >
ε ≥ σrε+1 if the size of the perturbation E is measured by the spectral norm || · ||2, or
alternatively that rε is the smallest k such that

∑K
i=k+1 σ

2
i ≤ ε2 if the Frobenius norm || · ||F

is used instead. Both criteria can be used to determine rε.

Assuming that A is only an estimate of an underlying matrix Ã, it makes sense to
choose ε to be of the same order as the expected size of the error, i.e., ε ≈ E[||A− Ã||]. The
numerical rank of A is then rε(A) for some reasonable choice of ε. Note that the notion of
numerical rank makes sense if the errors on matrix entries of A are of comparable magnitudes
and can be reasonably quantified, and if there is a significant gap between σrε and σrε+1.
Otherwise, the numerical rank is somewhat arbitrary. It is furthermore important to note
that the numerical rank measures how many dimensions can be significantly distinguished
from noise. It is therefore only a lower bound for the true rank of the underlying matrix.

The main difficulty in determining the numerical rank of the matrix F̂ I,J therefore lies
in finding a suitable ε. This may be approached by obtaining estimates for or bounds on the
variances of the individual matrix entries (Jaeger, 1998; James and Singh, 2004), which may,
however, differ widely across F̂ I,J . These approaches will therefore lead to very conservative
estimates of the rank. Still, these estimates will be consistent, i.e., will converge to the true
rank in the limit of infinite training data.

Independent of such error estimates it may be reasonable to assume that there will be a
relative “gap” between σd+1 and σd in the singular value spectrum of F̂ I,J around the true
rank d = rank(F I,J). A recently proposed method searches for such a gap starting from
σrε , where the numerical rank rε of F̂ I,J is used as a lower bound for the true rank (Bailly
et al., 2009).

4.3.2 Finding a Suitable Model Rank

Intuitively speaking, the model rank should be chosen sufficiently large to be able to repre-
sent the complexity of the data, but not too large, as otherwise overfitting results.

One standard approach is to use cross-validation. For this, one needs to split the avail-
able data into training and test data. One then estimates models of various ranks from the
training data and evaluates these on the test data, for instance by calculating the log likeli-
hood of the test data under the models. Finally, one chooses the model rank that gives the
best performance. Care must be taken when estimating models for controlled or stochastic
processes from one long training sequence s̄, as this sequence cannot be partitioned arbi-
trarily into training and test sets, and the distribution over future observations given a
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history of observations at some time t may differ from the initial distribution. Additionally,
performing cross-validation is computationally intense.

In comparison, the above methods based on calculating the numerical rank of F̂ I,J are
elegant algebraic approaches to the problem. Recall that the numerical rank will reflect the
number of dimensions present in the training data that can be distinguished from noise. It
is therefore reasonable to postulate that the numerical rank of F̂ I,J might be a well-suited
choice for the model dimension.

Interestingly, though, there is some evidence that at least the EC and spectral learning
procedures described in the following section do not seem to suffer much from overfit-
ting (Zhao et al., 2009a). In practical applications it may therefore be viable to simply
pre-select a high model dimension.

Deeper insight into this crucial part of the learning procedure is unfortunately lacking.
Further research into this question is therefore needed.

4.4 Selecting the Characterizer and Indicator

The effect of the characterizer C and indicatorQ is to reduce the available data in F̂ I,J , F̂ I,Jz ,
F̂ I,0 and F̂ 0,J to a d-dimensional representation, where d is the chosen target dimension for
the model to be learnt.

Assuming that d = rank(F ) = rank(CF I,JQ), the matrices CF I,JQ,CF I,Jz Q,CF I,0,
and F 0,JQ together contain the same information as F and are sufficient to reconstruct a
SS model for f via the learning Equations (2). The requirement that CF I,JQ must have
full rank d therefore ensures that no information is lost.

In fact — provided that CF I,JQ has full rank d — really any choice of characterizer and
indicator may be used and will lead to a consistent model estimation, i.e., a correct model
will be obtained in the limit of infinite training data. Hamilton et al. (2013) show that for
certain dynamical systems a random choice of characterizer C does indeed work well.

However, in general the choice of characterizer C and indicator Q is central to achieving
statistical efficiency, i.e., making efficient use of the available training data. This step lies
at the heart of the learning procedure, and in fact much research — even if not explicitly
stated — can be seen as optimizing this step of the learning algorithm.

4.4.1 By Selection / Grouping of Rows and Columns of F̂

It is important to note that the choice of indicative and characteristic words discussed in
Section 4.2 can be viewed equivalently as a special choice of characterizer and indicator. To
see this, assume one could estimate the entire matrix F̂ from data. Then any selection of
rows I and columns J from F̂ can be achieved by characterizer and indicator matrices C,Q
of the form C = C ′CI and Q = QJQ′, where CI and QI are appropriate binary matrices
with a single one entry in the corresponding columns or rows, and zeros otherwise, such
that CI F̂QJ = F̂ I,J . This can easily be extended to account for groupings of words into
events by allowing several one entries per column / row of CI , QJ respectively.

One advantage of this point of view is that this immediately justifies grouping of words
into events, as suggested in Section 4.2. But more importantly, this highlights that choosing
indicative and characteristic words as described in Section 4.2 is in fact a restricted approach
to the more general problem of finding appropriate characterizer and indicator matrices. We
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argue that a good choice of characterizer and indicator is the key to achieving high statistical
efficiency of the learning procedure and that therefore the (pre-)selection of indicative and
characteristic words should be guided by trying to retain as much information from the
available training data as possible. In other words, the (pre-)selection of indicative and
characteristic words in Section 4.2 is primarily a practical necessity that should rather be
seen as discarding rows and columns from F̂ that carry only little or no information.

4.4.2 Spectral Methods

Recall that the j-th columns of the matrices F and Fz correspond to the functions fxj
and fxjz, and that the operator τz of any minimal model M for f — regarded as a linear
operator τ̃z on the space F — satisfies τ̃z(fxj ) = fxjz (cf. Proposition 1). The matrix τz
is just a representation of this operator with respect to some basis of F . We can therefore
regard the columns of F and Fz as argument-value pairs for the operator τ̃z, from which
we can recover τ̃z. To obtain a matrix representation τz, we need to fix some basis for the
column space F , which corresponds to mapping the columns of F and Fz to Rd — this is
accomplished by the characterizer C.

We are only given estimates F̂ I,J and F̂ I,Jz . The idea of the spectral methods is to
find an estimate of the column space F̂ by projecting the columns of F̂ I,J and F̂ I,Jz to a
best rank d representation (best in the least squares sense). This is accomplished by the
d-truncated SVD. We then estimate the matrices τ̂z via least squares linear regression from
the so obtained argument-value pairs. Note that the column space F is already spanned by
the columns of F I,J — if I and J are chosen appropriately — and we may therefore base
the estimate of the principal subspace F̂ on the estimate F̂ I,J only. Formally, this means:

Algorithm 5: Spectral method for computing characterizer C and indicator Q

1 Compute UdSdV
>
d , the d-truncated SVD of F̂ I,J .

2 Set C = U>d and Q = (CF̂ I,J)† = VdS
†
d.

Note that UdSdV
>
d indeed gives the best rank d approximation to F̂ I,J with respect

the Frobenius norm by the Eckart-Young theorem (Eckart and Young, 1936). However, the
matrix F I,J

M̂
reconstructed via the so learnt model M̂ — which will clearly have rank at

most d — will in general not be a best rank d approximation to F̂ I,J . This is due to the
fact that constructing F I,J

M̂
from the model M̂ enforces additional structure. Interestingly,

we have observed that the reconstructed matrix F I,J
M̂

is often a better approximation to the

true matrix F I,J than either of F̂ I,J and its best rank d approximation.

This spectral approach is often referred to as principal component analysis (PCA).
However, PCA typically involves mean-centering the data first. PCA projects the data
onto a d-dimensional affine subspace that contains the data mean, while here we know that
the data F̂ I,J lie approximately on a true subspace (even though they do not have zero
mean). Mean-centering the data is therefore inappropriate in this context — nevertheless,
it it sometimes done anyway (Bailly et al., 2009). To avoid confusion, we refer to learning
algorithms based on this idea simply as spectral learning algorithms (Rosencrantz et al.,
2004; Hsu et al., 2009; Bailly et al., 2009; Siddiqi et al., 2010; Boots and Gordon, 2010;
Bailly, 2011; Balle et al., 2011, 2014). Furthermore, an online version of this spectral
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learning algorithm has been developed by Boots and Gordon (2011), whereas a modification
that combines the subspace estimation step (determining the characterizer C) and linear
regression step (solving the learning Equations 2) into a single optimization problem is given
by Balle et al. (2012).

Clearly, these methods are motivated by trying to find a model M̂ of rank d such that
its external function fM̂ best approximates the estimated external function f̂ . To make
this precise, one needs to define a distance measure on functions in R〈〈Σ〉〉. In the case of
stochastic languages the functions all lie in the Hilbert space l2(Σ∗) and the metric of this
function space may be used. For stochastic processes, a natural choice may be the cross-
entropy. This will be related to finding a maximum-likelihood estimate of model parameters
from data. So far, none of these questions has been resolved. However, sample complexity
results that fall into the probably approximately correct (PAC) learning framework (Valiant,
1984) are available for several spectral learning algorithms (Hsu et al., 2009; Bailly et al.,
2009; Siddiqi et al., 2010; Bailly, 2011). These give bounds on the number or size N of
samples that are required to obtain a model estimateM that is approximately correct (i.e.,
such that |fM − f | < ε for a given ε and a specified distance measure) with probability at
least 1 − δ for a given δ. Typically, the required size N is shown to be polynomial in the
PAC parameters 1/ε and 1/δ, as well as other parameters that depend on f such as the
alphabet size |Σ| and the rank of f .

Finally, we mention a shortcoming of the spectral methods as they are commonly used.
They implicitly assume that the variances of the estimates f̂(xjxi) are all of the same order.
This, however, is clearly not the case, which suggests that replacing the SVD computation by
a weighted low-rank matrix approximation (Markovsky and Huffel, 2007a) and the linear
regression of the learning Equations (2) by weighted total least squares (Markovsky and
Huffel, 2007b) may give better results, as long as weights that reflect the precision of the
estimates f̂(x) can be estimated reliably from the available data. In fact, if the variances
Var(f̂(xjxi)) can be estimated and — even approximately — factored as Var(f̂(xjxi)) =
vjwi > 0, then this leads to a simple row and column weighted spectral learning method:

Algorithm 6: Row and column weighted spectral learning

1 Let DI = [diag(wi)i∈I ]
− 1

2 and DJ = [diag(vj)j∈J ]−
1
2 be suitable row and column

weight matrices

2 Let F̃ I,J = DI F̂
I,JDJ and F̃ I,Jz = DI F̂

I,J
z DJ

3 Let ŨdS̃dṼ
>
d be the d-truncated SVD of F̃ I,J

4 Let C = Ũ>d DI and Q = DJ(CF̃ I,JDJ)† = DJ ṼdS̃
†
d.

We mention this particular row and column weighted approach here, as it is simple,
effective, and we will show that it is closely related to the ES approach described in Sec-
tion 4.4.4.

4.4.3 The EC Algorithm

The error controlling (EC) approach selects characterizer and indicator matrices C and Q
that minimize an error bound for the relative approximation error of the estimated model
parameters (Zhao et al., 2009a). This algorithm was originally formulated for OOMs only,
and made use of the normalization σ = (1, . . . , 1) that is often used in the context of OOMs.
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This in turn imposed additional restrictions on the admissible selections of indicative and
characteristic words. Here, we present a more general and yet simplified EC approach that
eliminates these restrictions and applies to learning SMA, OOMs, IO-OOMs and PSRs
alike.

To formalize this, first assume we have fixed C and Q, and derived estimated operators
τ̂z and correct operators τz from the estimates F̂ I,J , F̂ I,Jz and the correct matrices F I,J ,
F I,Jz respectively using the learning Equations (2). Note that these depend on the choice
of C and Q. To write things more concisely, denote the matrix obtained by stacking the
τz operators by τ∗ = [τz1 ; . . . ; τzl ] (using MATLAB notation), where Σ = {z1, . . . , zl}, and

τ̂∗ = [τ̂z1 ; . . . ; τ̂zl ]. Similarly, construct the matrices F I,J∗ and F̂ I,J∗ by stacking the F I,Jz and

F̂ I,Jz respectively.

Proposition 37 For a given choice of C and Q, and using the above definitions, the esti-
mate τ̂∗ has a relative approximation error

‖τ∗ − τ̂∗‖F
‖τ∗‖F

≤ κ
(
‖F I,J − F̂ I,J‖F +

√
l

ρ(τΣ)
‖F I,J∗ − F̂ I,J∗ ‖F

)
,

where ρ(τΣ) is the spectral radius of the matrix τΣ, which is independent of the choice of C
and Q, and κ = ‖C‖F ‖Q(CF̂ I,JQ)−1‖F .

This is a slightly improved and more general version of the central Proposition 3 pre-
sented in (Zhao et al., 2009a). For completeness, the proof is given in the appendix.

The EC algorithm then selects C,Q in such a way that the quantity κ is minimized,
which is equivalent to the optimization problem

(C,Q) = argmin
(C,Q)

{‖C‖F ‖Q‖F : CF̂ I,JQ = Id}, (4)

since every (C,Q) that minimizes κ gives a solution (C,Q′) to Equation (4) by substituting
Q′ = Q(CF̂ I,JQ)−1 and noting (CF̂ I,JQ′) = Id. This optimization problem can be solved
efficiently by the following iterative procedure (Zhao et al., 2009a):

Algorithm 7: The C, Q optimization resulting from the EC approach

initialize C ∈ Rd×|I| randomly
repeat

Q = (CF̂ I,J)†, C = (F̂ I,JQ)†

until convergence of ‖C‖F ‖Q‖F
Although not previously realized, this turns out to be related to a well-known EM-based

algorithm for principal component analysis for which it is known that the rows of C (upon
convergence) will span the space of the first d principle components of F̂ I,J (Roweis, 1998).
We can use this relationship to gain the following insight.

Proposition 38 Assuming the model rank d is chosen such that the singular values σi
of F̂ I,J satisfy σd > σd+1, the EC algorithm as presented here and the spectral method
presented in the previous section will lead to equivalent models.
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Proof Note that the condition σd > σd+1 merely says that rank(F̂ I,J) ≥ d and that the
d-dimensional principal subspace of F̂ I,J is unique. Let C and Q = (CF̂ I,J)† be the char-
acterizer and indicator obtained by the spectral method, and let C ′ and Q′ = (C ′F̂ I,J)† be
the result of the above iterative procedure after convergence. Then the rows of C and C ′

will each span the same d-dimensional space (Roweis, 1998). This means that C = ρC ′ for
some non-singular ρ ∈ Rd×d, and therefore Q = (ρC ′F̂ I,J)† = (C ′F̂ I,J)†ρ−1 = Q′ρ−1. By
Proposition 12 the learning Equations (2) will result in equivalent models.

In fact, the above optimization problem can also be solved non-iteratively by a d-
truncated SVD. This is a new result for which we give the full proof in the appendix:

Proposition 39 Let UdSdV
>
d ≈ F̂ I,J be the d-truncated SVD of F̂ I,J . Then C∗ = S

− 1
2

d U>d

and Q∗ = (C∗F̂ I,J)† = VdS
− 1

2
d are a solution to the optimization problem in Equation (4)

— provided a solution exists at all, i.e., rank(F̂ I,J) ≥ d.

Clearly, this solution (C∗, Q∗) will again yield an equivalent model. Finally, we note that
other versions of bounds on the relative approximation error than given in Proposition 37
may be considered instead, which can lead to choices of C and Q that give non-equivalent
models. The performance of these seems to be comparable, though (Zhao et al., 2009b).

4.4.4 Efficiency Sharpening

The ES algorithm has previously been worked out only for the case of stationary stochastic
processes and “traditional” OOMs where σ = (1, . . . , 1). Here we give an account of the ES
principle that is more general than in the original work, and we establish connections to
the spectral algorithms. The basic ES principle as we present it here may also be applied
to learning SMA, IO-OOMs and PSRs from data. However, the concrete ES algorithm
presented in Algorithm 8 makes use of several variance approximations and resulting sim-
plifications that are only valid for the estimators from Remark 35 for the case of stationary
stochastic processes.

The idea of the efficiency sharpening (ES) (Jaeger et al., 2006b) learning algorithm
is to view the learning Equations (2) as a model estimator parameterized by C (and Q),
and to select C such that the resulting estimator has minimum variance while still being
consistent. Furthermore, this optimal choice of C is derived from knowledge of a modelM
for f , or in practice from a previous estimate thereof. To make this approach tractable,
some simplifying assumptions are made.

First, a simplified version of the learning Equations (2) is used, where the indicator is
taken to be Q = (CF I,J)†. This leads to operator estimates

τ̂z = CF̂ I,Jz (CF̂ I,J)†.

Jaeger et al. (2006b) now argue that due to the (pseudo)inversion, the variance of τ̂z
is dominated by the variance of the factor CF̂ I,J . The variance of a matrix is here taken
w.r.t. the Frobenius norm. The ES algorithm therefore strives to find an admissible C
such that the variance of CF̂ I,J is minimized — assuming knowledge of a model M for
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f . A characterizer C is admissible if CF I,JQ is invertible. This is solved by the following
proposition, which we state here in a more general form than in the original work (Jaeger
et al., 2006b):

Proposition 40 Let M = (σ, {τz}, ωε) be a d-dimensional minimal SS for a function f :
Σ∗ → R, and assume that f̂(x) are unbiased and uncorrelated estimators for all x ∈ Σ∗.
Define

C∗ = Π>D2
I , where Π> = ((στxi)

>)i∈I , and D2
I = [diag(

∑
j∈J

Var[f̂(xjxi)])i∈I ]
†.

Then Var[CF̂ I,J ] is minimized by the characterizer C∗ + 0 among all characterizers of the
form C∗ +G that satisfy GΠ = 0.

The proof is given in the appendix, however, some explanatory remarks are in order.
First of all, the assumptions that the estimates f̂(x) are unbiased and uncorrelated are
reasonable, yet not strictly correct, meaning that the characterizer C∗ will only approximate
the theoretically optimal characterizer.

Next, we need a technical lemma to understand why it suffices to consider only charac-
terizers of the form (C∗ +G) for some G satisfying GΠ = 0:

Lemma 41 If C∗ has full row rank, then any admissible characterizer C can be written as
ρ(C∗ +G) for some non-singular ρ ∈ Rd×d and G such that GΠ = 0.

Proof Let C be some admissible characterizer. Then CΠ ∈ Rd×d must be invertible. Also,
C∗Π = (DIΠ)>(DIΠ) will be invertible if C∗ has full row rank. Choosing ρ = (CΠ)(C∗Π)−1

and G = ρ−1(C − ρC∗) we can easily verify that C = ρ(C∗ +G) and GΠ = 0.

Note that the characterizers C∗ + G and ρ(C∗ + G) will lead to equivalent models via
the learning Equations (2). Therefore, if the characterizer C∗ is best among the class of
characterizers C∗ +G where GΠ = 0 then it is also the overall best choice.

Furthermore, the condition that C∗ must have full row rank can be assured by (i)
choosing indicative and characteristic sequences and the modeling dimension d accordingly,
so that d = rank(M) = rank(F I,J) = rank(Π) and (ii) assuming that the variance of the
estimators f̂(x) is non-zero, ensuring that DI is invertible — which will typically be the
case in practice.

Finally, to compute C∗ via Proposition 40, we need to know the variances of the esti-
mators f̂(x) occurring in DI . Instead, we will replace DI by an approximation that can
be computed directly from the model M. The approximation we present here is only valid
for the case of stationary stochastic processes, but may be modified to cover the case of
probabilistic languages as well.

Consider the estimators f̂(x) as in Remarks 34 and 35. It is reasonable to assume that
the counts #(x) follow a binomial distribution, i.e., #(x) ∼ bN,p, where N is the length

of the training sequence s̄ and p = f(x). This gives Var[f̂(x)] = f(x)(1 − f(x))/N , which
we may further approximate by f(x)/N , as in practice the values of f(x) will typically be
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small for most sequences x. Also, the division by N is superfluous, as it cancels via the
learning Equations (2). Using the approximation Var[f̂(x)] ≈ f(x), one can approximate

D2
I ≈ D̃2

I := [diag(
∑
j∈J

f(xjxi))i∈I ]
† = [diag(ΠτxJωε)]

†,

where τxJ =
∑

j∈J τxj . The approximation

C∗ ≈ Cr := Π>D̃2
I

is the characterizer that is actually used in the ES algorithm.
In the case of a stationary stochastic process and a choice of indicative words that

partition Σl or Σ≤l for some l one will have τxJωε = ωε, and therefore D̃2
I = [diag(Πωε)]

†.
In this case, the columns ci = (στxi)

>/στxiωε of Cr can be seen as the normalized states
ωrxir/ω

>
ε ω

r
xir

for the reversed words xi
r under the reversed model M> = (ω>ε , {τ>z }, σ>),

where ωrxir = τ>(xi)1 · · · τ
>
(xi)k

σ>. This is essentially the original version given by Jaeger et al.

(2006b), and the reason why this characterizer was called the reverse characterizer. This
make-up of Cr from states of the reversed process is also instrumental for the practical
algorithms given by Jaeger et al. (2006b).

Additionally, the ES algorithm further exploits the interpretation of columns of CF I,J

and CF I,Jz as model states ωxj and ωxjz as given in Proposition 33. These columns give
argument-value pairs from which the operators τz can be deduced — as we have seen before.
However, it is argued that in the face of estimates F̂ I,J and F̂ I,Jz the j-th columns should
be weighted by (

∑
i∈I f̂(xjxi))

− 1
2 prior to performing linear regression to better reflect the

weight of evidence that each column estimate is based on.
In practice a true model M is unknown. Therefore, the ES algorithm employs the

following iterative procedure (again, our treatment here is more general than the original
account by Jaeger et al. (2006b)):

Algorithm 8: The ES algorithm (for the case of stochastic processes)

1 Select some initial model estimate M̂ (e.g., via the learning Equations 2 using a
random choice of C and Q).
repeat

2 Using the current model estimate M̂, compute C = Π̂>D2
I ,

where Π̂> = ((σ̂τ̂xi)
>)i∈I and D2

I = [diag(Π̂
∑

j∈J τ̂xj ω̂ε)i∈I ]
†.

3 Let Q = DJ(CF̂ I,JDJ)†, where DJ = [diag(
∑

i∈I f̂(xjxi))j∈J ]†
1
2 .

4 Obtain a new model estimate M̂ via the learning Equations (2).
until some fixed number of iterations, or some performance criteria of the estimated
models stops increasing.

Note that this procedure constructs a sequence of estimators along with a sequence of
model estimates. The rationale of such ES algorithms is that the sequence of estimators
increases in statistical efficiency, hence the name efficiency sharpening algorithms. The
ES iterations come with no convergence guarantees. Nevertheless, this procedure has been
found in practice to converge in very few iterations (3 – 5 typically suffice), and the results
are of a similar quality as obtained by spectral algorithms (comparisons in Zhao et al.,
2009a,b).
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The ES algorithm is closely related to the row and column weighted spectral algorithm
presented in Section 4.4.2. Precisely:

Proposition 42 Assume F I,J of rank d is determined by some underlying minimal model
M = (ω>ε , {τ>z }, σ>) of rank d and let Π> = ((στxi)

>)i∈I , DI = [diag(
∑

j∈J f(xjxi))i∈I ]
† 1
2

and DJ = [diag(
∑

i∈I f(xjxi))j∈J ]†
1
2 . Let Cr = Π>D2

I be the reverse characterizer, and let

C ′ = Ũ>d DI be the characterizer obtained by the weighted spectral method, where ŨdS̃dṼ
>
d is

the d-truncated SVD of DIF
I,JDJ . Then Cr = ρC ′ for some non-singular transformation

ρ.

Proof First, ŨdS̃dṼ
>
d = DIF

I,JDJ , since F I,J is assumed to have rank d. Now observe
that ŨdS̃dṼ

>
d = DIF

I,JDJ = DIΠΦDJ , where Φ = (τxjωε)j∈J , and therefore the columns

of DIF
I,J , Ũd and DIΠ all span im(DIF

I,J). So C ′ = Ũ>d DI and Cr = (DIΠ)>DI = Π>D2
I

have the same row space, and we can therefore find such a transformation ρ.

This means that the reverse characterizer Cr also gives a representation of the principal
subspace of the weighted matrix DIF

I,J . The main difference to the weighted spectral
method described in Section 4.4.2 is that Cr is derived algebraically from an underlying
model estimate, while the weighted spectral method estimates the principle subspace from
the weighted data matrix D̂I F̂

I,J with weights D̂I that also need to be determined from
the data, e.g., D̂I = [diag(

∑
j∈J f̂(xjxi))i∈I ]

† 1
2 .

5. Conclusion

We have shown that OOMs, PSRs and SMA are closely related instances of MA, and we
have presented a unified learning framework for estimating such models from data that
subsumes many of the existing learning algorithms. In presenting the learning framework,
we have isolated the key design choices that need to be made to obtain a concrete learning
algorithm. For each design choice we have surveyed the approaches that have been taken
in the past and have tried to give some guidance.

We briefly summarize the choices that need to be made to obtain a concrete learning
algorithm. First of all, estimates of the system matrices F̂ I,J and F̂ I,Jz must be obtained
from the available training data. Individual entries may be estimated by the formulas given
in Section 4.1. However, it is of much greater importance to decide which entries need to
be estimated, that is, which rows I and columns J should be selected. This is discussed
in Section 4.2. While many of the existing algorithms attempt to choose as few rows and
columns to estimate as possible, we argue that this leads to poor statistical efficiency, and
that the selection should ideally be matched to the available training data. Next, one
must select a suitable model dimension d. This may be achieved by an algebraic criterion,
as described in Section 4.3.1, or by cross-validation. It is also possible to treat this as a
learning parameter that can be hand-tuned by the modeler. We note that it is generally
neither necessary nor advisable to set the target dimension to the correct rank of the
underlying system, as the optimal choice depends on the available training data. Finally,
the estimated system matrices F̂ I,J and F̂ I,Jz need to be “compressed” to d× d matrices by
suitable characterizer and indicator matrices C and Q. A good selection of C and Q is vital
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to obtaining high statistical efficiency, and this is treated in detail in Section 4.4. We show
that several of the proposed approaches to selecting C and Q can be seen as variations of
a spectral learning algorithm presented in Section 4.4.2.

We conclude with a remark on implementing such a learning algorithm in practice.
Clearly, the main limiting factor is the size of the matrices F̂ I,J and F̂ I,Jz , as these may
become very large. However, it is possible to obtain an efficient sparse representation of
these matrices by employing a suffix tree representation of the training data (Zhao et al.,
2009b,a; Jaeger et al., 2006b). Furthermore, if one uses the method described in Section 4.4.4
one can avoid evaluating these matrices explicitly and instead calculate CF̂ I,J and CF̂ I,Jz
directly (Jaeger et al., 2006b).
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Appendix

Proof [of Proposition 37](adapted from Zhao et al., 2009a) Let C∗ = diag(C, . . . , C) (l
copies of C). Using the introduced notation the learning Equations (2) can be written
concisely to obtain:

τ∗ =
(
C∗F̂

I,J
∗ Q+ C∗(F

I,J
∗ − F̂ I,J∗ )Q

)(
CF̂ I,JQ+ C(F I,J − F̂ I,J)Q

)−1

=
(
C∗F̂

I,J
∗ Q+ C∗(F

I,J
∗ − F̂ I,J∗ )Q

)
(CF̂ I,JQ)−1

(
Id + C(F I,J − F̂ I,J)Q(CF̂ I,JQ)−1

)−1

=
(
τ̂∗ +

(
C∗(F

I,J
∗ − F̂ I,J∗ )Q

)
(CF̂ I,JQ)−1

)(
Id + C(F I,J − F̂ I,J)Q(CF̂ I,JQ)−1

)−1
,

which implies τ∗ + τ∗C(F I,J − F̂ I,J)Q(CF̂ I,JQ)−1 = τ̂∗ + (C∗(F
I,J
∗ − F̂ I,J∗ )Q)(CF̂ I,JQ)−1.

By rearranging, taking Frobenius norms and using the triangle inequality and submulti-
plicativity, we obtain

‖τ∗ − τ̂∗‖F ≤ ‖C‖F ‖Q(CF̂ I,JQ)−1‖F
(
‖τ∗‖F ‖F I,J − F̂ I,J‖F +

‖C∗‖F
‖C‖F

‖F I,J∗ − F̂ I,J∗ ‖F
)
.

Now ‖C∗‖F
‖C‖F =

√
l, and ‖τ∗‖2F =

∑
z∈Σ ‖τz‖2F ≥ ‖τΣ‖2F ≥ ρ(τΣ)2, where τΣ =

∑
z∈Σ τz, and

the result follows.

Note that in the original paper the inequality ‖τ∗‖F ≥ 1√
l

was used instead, which depended

on the columns of τ∗ summing to 1. This was in turn insured by adding additional restric-
tions on the choice of characteristic words and characterizer C. These are now no longer
needed.

Lemma 43 Let D = diag(d1, . . . , dn) and S = diag(s1, . . . , sn) satisfying d1 ≥ · · · ≥ dn ≥ 0
and 0 ≤ s1 ≤ · · · ≤ sn, and let U be an orthogonal n × n matrix, i.e., U>U = UU> = I .
Then ‖DUS‖F ≥ ‖DS‖F .
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Proof ‖DUS‖2F =
∑n

i,j=1(diuijsj)
2. Furthermore, U>U = UU> = In implies that (∗)∑n

i=1 u
2
i,j = 1 for all j and

∑n
j=1 u

2
i,j = 1 for all i. We will show the slightly stronger claim

that ‖DUS‖2F ≥ ‖DS‖2F for any matrix U satisfying (∗), which allows us to assume w.l.o.g.
that ui,j ≥ 0 for all entries in U , since only the squared entries u2

i,j appear in the expressions

for ‖DUS‖2F and (∗). So from now on we assume that U merely satisfies (∗) and that all
entries in U are non-negative.

First note that if U is lower triangular, then (∗) implies that U = In:
∑n

i=1 u
2
i,n = 1

implies that u2
n,n = 1 and u2

i,n = 0 for i < n. Then
∑n

j=1 u
2
n,j = 1 implies that u2

n,j = 0 for

j < n, since u2
n,n = 1. That is, U =

[
Un−1 0

0 1

]
, and the condition (∗) must therefore hold for

Un−1 as well. By induction on n, U = In. In this case ‖DUS‖2F = ‖DS‖2F .
So assume U is not lower triangular. Consider a row-wise ordering of matrix positions,

i.e., define ord(i, j) = (i− 1)n+ j, and let (i′, j′) = argmin
(i,j)

{ord(i, j) : j > i, ui,j 6= 0}, i.e., i′

is the first row of U to contain a non-zero element above the diagonal, and j′ is the column
index of the first such entry within the i′-th row. We call ord(i′, j′) the order of U , and say
that a lower triangular matrix has infinite order.

Now consider the i′-th column of U . By the choice of i′ we must have
∑i′−1

i=1 u
2
i,i′ = 0, and

therefore
∑n

i=i′+1 u
2
i,i′ = 1−u2

i′,i′ =
∑n

j=1 u
2
i′,j−u2

i′,i′ ≥ u2
i′,j′ . We can therefore find a vector

v such that vi = 0 for i < i′, vi′ = −u2
i′,j′ , and 0 ≤ vi ≤ u2

i,i′ as well as
∑n

i=i′+1 vi = u2
i′,j′

for i = i′ + 1, . . . , n. Let U2 = [u2
i,j ]i,j=1...n be the matrix of element-wise squares of entries

in U , and let Ũ2 be obtained by subtracting the vector v from the i′-th column of U2 and
adding v to the j′-th column of U2. Let Ũ be the matrix of element-wise square roots of
entries in Ũ2.

We can easily check that all entries in Ũ2 are non-negative, so that this is well-defined.
Also Ũ satisfies (∗), since

∑n
i=1 vi = 0 by construction, and adding such a vector to one

column of Ũ2 and subtracting from another does not change the row and column sums.
Furthermore,

‖DUS‖2F − ‖DŨS‖2F =
n∑
i=1

(
d2
i vis

2
i′ − d2

i vis
2
j′
)

= d2
i′vi′(s

2
i′ − s2

j′) +
n∑

i=i′+1

d2
i vi(s

2
i′ − s2

j′)

= (s2
i′ − s2

j′)

(
d2
i′vi′ +

n∑
i=i′+1

d2
i vi

)
.

Now s2
i′ − s2

j′ ≤ 0 since j′ > i′, and
∑n

i=i′+1 d
2
i vi ≤ d2

i′
∑n

i=i′+1 vi = d2
i′u

2
i′,j′ , while d2

i′vi′ =

−d2
i′u

2
i′,j′ , so (d2

i′vi′+
∑n

i=i′+1 d
2
i vi) ≤ 0. This shows that ‖DUS‖2F ≥ ‖DŨS‖2F . And finally,

the order of Ũ is larger than the order of U , as we have eliminated the non-zero element of
lowest order above the diagonal in U , and in turn have introduced only non-zero elements
above the diagonal of higher order (in rows below the i′-th), or none at all.

By iterating this construction we arrive at a lower triangular matrix U∗ with non-
negative entries that satisfies (∗) and ‖DUS‖2F ≥ ‖DU∗S‖2F = ‖DS‖2F .
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Proof [Proof of Proposition 39] Assume r = rank(F̂ I,J) ≥ d and let USV > = F̂ I,J be

the full SVD of F̂ I,J . We can simply verify that indeed (C∗F̂ I,J)† = (S
− 1

2
d U>d USV

>)† =

(S
− 1

2
d V >d )† = VdS

− 1
2

d , which implies that C∗F̂ I,JQ∗ = C∗F̂ I,J(C∗F̂ I,J)† = Id, as required.

Furthermore, ‖C∗‖F ‖Q∗‖F = ‖S−
1
2

d ‖2F =
∑d

i=1 σ
−1
i , where the σi are the singular values

of F̂ I,J , which are also the diagonal elements of S. We will show that this is indeed the
minimum of ‖C‖F ‖Q‖F subject to CF̂ I,JQ = Id.

Using the substitution C = C ′U> and Q = V Q′, we can see that minimizing ‖C‖F ‖Q‖F
subject to CF̂ I,JQ = Id is equivalent to minimizing ‖C ′‖F ‖Q′‖F subject to C ′SQ′ = Id and
that this will have the same minimal value. Let C ′r, Q

′
r and Sr be truncated versions of C ′,

Q′ and S that consist of the first r columns, rows or rows and columns, respectively. Then
minimizing ‖C ′r‖F ‖Q′r‖F subject to C ′rSrQ

′
r = Id is equivalent and has the same minimal

value, because C ′SQ′ = C ′rSrQ
′
r (since σi = 0 for i > r) and the additional columns in C ′

and rows in Q′ are best set to zero.

Assume now that C ′r and Q′r = (C ′rSr)
† minimize ‖C ′r‖F ‖Q′r‖F subject to C ′rSrQ

′
r = Id.

We can select Q′r = (C ′rSr)
†, as this minimizes ‖C ′r‖F ‖Q′r‖F subject to C ′rSrQ

′
r = Id for a

given C ′r. It remains to show that ‖C ′r‖F ‖Q′r‖F ≥ ‖C∗‖F ‖Q∗‖F =
∑d

i=1 σ
−1
i .

Let LDR> = C ′rSr be the SVD of C ′rSr. Then C ′r = LDR>S−1
r , and Q′r = (C ′rSr)

† =
RD†L>. Let d1, . . . , dd be the diagonal elements of D and let Dr be the r × r matrix
obtained by extending D with zero rows. Then

‖C ′r‖2F = ‖LDR>S−1
r ‖2F = ‖DrR

>S−1
r ‖2F

Lemma 43
≥ ‖DrS

−1
r ‖2F =

d∑
i=1

d2
iσ
−2
i ,

‖Q′r‖2F = ‖RD†L>‖2F = ‖D†‖2F =
d∑
i=1

d−2
i .

Multiplying these expressions and substituting d2
i = a2

iσi, we obtain

‖C ′r‖2F ‖Q′r‖2F =

(
d∑
i=1

a2
iσ
−1
i

)(
d∑
i=1

a−2
i σ−1

i

)

=

d∑
i=1

σ−2
i +

d∑
i,j=1
i<j

(
a2
i

a2
j

+
a2
j

a2
i

)
σ−1
i σ−1

j

=

d∑
i=1

σ−2
i +

d∑
i,j=1
i<j

((
ai
aj
− aj
ai

)2

+ 2

)
σ−1
i σ−1

j

≥
(

d∑
i=1

σ−1
i

)2

,

since this expression is clearly minimal when ai = 1 for all i. So we can conclude that
‖C ′r‖F ‖Q′r‖F ≥

∑d
i=1 σ

−1
i . Therefore, C∗ and Q∗ are in fact a minimal solution to the

optimization problem (4).
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Proof [of Proposition 40] First, we calculate:

Var[CF̂ I,J ]
(∗)
= E

[
||CF̂ I,J − CF I,J ||2F

]
=
∑
j∈J

d∑
k=1

E

(∑
i∈I

ckif̂(xjxi)−
∑
i∈I

ckif(xjxi)

)2


(∗)
=
∑
j∈J

d∑
k=1

Var

[∑
i∈I

ckif̂(xjxi)

]

(∗∗)
=
∑
j∈J

d∑
k=1

∑
i∈I

c2
kiVar[f̂(xjxi)]

=
∑
i∈I
‖(C)i‖2F

∑
j∈J

Var[f̂(xjxi)] =
∑
i∈I

vi‖(C)i‖2F ,

where (C)i is the i-th column of C, and vi =
∑

j∈J Var[f̂(xjxi)]. Note that we have used
unbiasedness in (∗) and uncorrelatedness in (∗∗).

Our goal is now to minimize J(G) = Var[(C∗+G)F̂ I,J ] =
∑

i∈I vi||(C∗+G)i||2F subject
to the constraints hk,l(G) = [GΠ]k,l = 0 for k, l = 1 . . . d. Note that if vi = 0 for some i, then
the i-th column of G does not influence the value of J(G), and we may w.l.o.g. fix (G)i = 0
and replace the equality constraints by h̃k,l(G) = [GDD†Π]k,l = 0, where D = diag[(vi)i∈I ].
This is a convex quadratic programming problem, therefore G = 0 will be a solution if and
only if it satisfies the KKT conditions

∂J

∂G
(G) +

d∑
k,l=1

λk,l
∂hk,l
∂G

(G) = 0, and

∀k, l = 1 . . . d : h̃k,l(G) = 0,

for some Lagrange multipliers λk,l ∈ R. Clearly, the latter condition h̃k,l(G) = 0 is sat-

isfied for all k, l by G = 0. We can calculate
∑d

k,l=1 λk,l
∂h̃k,l
∂G (G) = λΠ>D†D, where

λ ∈ Rd×d, [λ]k,l = λk,l, as well as ∂J
∂G(G) = 2(C∗ + G)D = 2(Π>D2

I + G)D. The first
condition is then satisfied by G = 0 with λ = −2I, since Π>D2

ID = Π>D†D by definition
of DI .
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Abstract
samoa (Scalable Advanced Massive Online Analysis) is a platform for mining big
data streams. It provides a collection of distributed streaming algorithms for the most
common data mining and machine learning tasks such as classification, clustering, and
regression, as well as programming abstractions to develop new algorithms. It features a
pluggable architecture that allows it to run on several distributed stream processing engines
such as Storm, S4, and Samza. samoa is written in Java, is open source, and is available
at http://samoa-project.net under the Apache Software License version 2.0.
Keywords: data streams, distributed systems, classification, clustering, regression, tool-
box, machine learning

1. Introduction

Big data is “data whose characteristics forces us to look beyond the traditional methods
that are prevalent at the time” (Jacobs, 2009). Currently, there are two main ways to
deal with big data: streaming algorithms and distributed computing (e.g., MapReduce).
samoa aims at satisfying the future needs for big data stream mining by combining the two
approaches in a single platform under an open source umbrella.

Data mining and machine learning are well established techniques among web companies
and startups. Spam detection, personalization, and recommendation are just a few of the
applications made possible by mining the huge quantity of data available nowadays.

The usual pipeline for mining and modeling data (what “data scientists” do) involves
taking a sample from production data, cleaning and preprocessing it to make it amenable to
modeling, training a model for the task at hand, and finally deploying it to production. The
final output of this process is a pipeline that needs to run (and be maintained) periodically
in order to keep the model up to date.

In order to cope with web-scale data sets, data scientists have resorted to parallel and
distributed computing. MapReduce (Dean and Ghemawat, 2004) is currently the de-facto
standard programming paradigm in this area, mostly thanks to the popularity of Hadoop,1
an open source implementation of MapReduce started at Yahoo. Hadoop and its ecosys-
tem (e.g., Mahout2) have proven to be an extremely successful platform to support the
aforementioned process at web scale.

1. See http://hadoop.apache.org
2. See http://mahout.apache.org
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Figure 1: Taxonomy of data mining tools.

However, nowadays most data is generated in the form of a stream. Batch data is just a
snapshot of streaming data obtained in an interval of time. Researchers have conceptualized
and abstracted this setting in the streaming model. In this model data arrives at high
speed, one instance at a time, and algorithms must process it in one pass under very strict
constraints of space and time. Streaming algorithms make use of probabilistic guarantees
to give fast approximated answers.

On the one hand, MapReduce is not suited to express streaming algorithms. On the
other hand, traditional sequential online algorithms are limited by the memory and band-
width of a single machine. Distributed stream processing engines (DSPEs) are a new emer-
gent family of MapReduce-inspired technologies that address this issue. These engines allow
to express parallel computation on streams, and combine the scalability of distributed pro-
cessing with the efficiency of streaming algorithms. Examples of these engines include
Storm,3 S4,4 and Samza.5

Alas, currently there is no common solution for mining big data streams, that is, for
executing data mining and machine learning algorithms on a distributed stream processing
engine. The goal of samoa is to fill this gap, as exemplified by Figure 1.

2. Description

samoa (Scalable Advanced Massive Online Analysis) is a platform for mining big
data streams (De Francisci Morales, 2013). For a simple analogy, think of samoa as Mahout
for streaming. As most of the rest of the big data ecosystem, it is written in Java.

samoa is both a framework and a library. As a framework, it allows algorithm developers
to abstract from the underlying execution engine, and therefore reuse their code on different
engines. It features a pluggable architecture that allows it to run on several distributed
stream processing engines such as Storm, S4, and Samza. This capability is achieved by

3. See http://storm.apache.org
4. See http://incubator.apache.org/s4
5. See http://samza.incubator.apache.org
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designing a minimal API that captures the essence of modern DSPEs. This API also allows
to easily write new bindings to port samoa to new execution engines. samoa takes care of
hiding the differences of the underlying DSPEs in terms of API and deployment.

As a library, samoa contains implementations of state-of-the-art algorithms for dis-
tributed machine learning on streams. For classification, samoa provides the Vertical Ho-
effding Tree (VHT), a distributed version of a streaming decision tree (Domingos and Hul-
ten, 2000). For clustering, it includes an algorithm based on CluStream (Aggarwal et al.,
2003). For regression, a decision rule learner (Thu Vu et al., 2014). The library also includes
meta-algorithms such as bagging and boosting.

The platform is intended to be useful in both research and real world deployments.

3. Architecture

An algorithm in samoa is represented by a directed graph of nodes that communicate via
messages along streams which connect pairs of nodes. Borrowing the terminology from
Storm, this graph is called a Topology. Each node in a Topology is a Processor that sends
messages through a Stream. A Processor is a container for the code implementing the
algorithm. A Stream can have a single source but several destinations (akin to a pub-sub
system). A Topology is built by using a TopologyBuilder, which connects the various pieces
of user code to the platform code and performs the necessary bookkeeping in the background.
The following is a code snippet to build a topology that joins two data streams in samoa.

TopologyBuilder builder = new TopologyBuilder ();
Processor sourceOne = new SourceProcessor ();
builder . addProcessor ( sourceOne );
Stream streamOne = builder . createStream ( sourceOne );

Processor sourceTwo = new SourceProcessor ();
builder . addProcessor ( sourceTwo );
Stream streamTwo = builder . createStream ( sourceTwo );

Processor join = new JoinProcessor ();
builder . addProcessor (join). connectInputShuffle ( streamOne )

. connectInputKey ( streamTwo );

4. Machine Learning Algorithms

The Vertical Hoeffding Tree (VHT) is a distributed extension of the VFDT (Domingos and
Hulten, 2000). The VHT uses vertical parallelism to split the workload across several ma-
chines. Vertical parallelism leverages the parallelism across attributes in the same example,
rather than across different examples in the stream. In practice, each training example is
routed through the tree model to a leaf. There, the example is split into its constituting
attributes, and each attribute is sent to a different Processor instance that keeps track of
sufficient statistics. This architecture has two main advantages over one based on horizontal
parallelism. First, attribute counters are not replicated across several machines, thus reduc-
ing the memory footprint. Second, the computation of the fitness of an attribute for a split
decision (via, e.g., entropy or information gain) can be performed in parallel. The drawback
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is that in order to get good performance, there must be sufficient inherent parallelism in
the data. That is, the VHT works best for sparse data (e.g, bag-of-words models).

samoa includes a distributed version of CluStream, an algorithm for clustering evolving
data streams. CluStream keeps a small summary of the data received so far by computing
micro-clusters online. These micro-clusters are further refined to create macro-clusters by
a micro-batch process, which is triggered periodically. The period can be configured via a
command line parameter (e.g., every 10 000 examples).

samoa also includes adaptive implementations of ensemble methods such as bagging and
boosting. These methods include state-of-the-art change detectors such as as ADWIN (Bifet
and Gavaldà, 2007), DDM (Gama et al., 2004), EDDM (Baena-García et al., 2006), and
Page-Hinckley (Gama et al., 2014). These meta-algorithms are most useful in conjunction
with external single-machine classifiers which can be plugged in samoa. For instance,
connectors for moa (Bifet et al., 2010) are provided by the samoa-moa package.6

The following listing shows how to download, build and run samoa.

# download and build SAMOA
git clone git@github .com:yahoo/samoa.git
cd samoa
mvn package

# download the Forest Cover Type data set
wget "http :// downloads . sourceforge .net/ project /moa - datastream / Datasets /

Classification / covtypeNorm .arff.zip"
unzip " covtypeNorm .arff.zip"

# run SAMOA in local mode
bin/samoa local target /SAMOA -Local -0.2.0 - SNAPSHOT .jar " PrequentialEvaluation

-l classifiers . ensemble . Bagging -s ( ArffFileStream -f covtypeNorm .arff)
-f 100000 "

5. Conclusions

samoa is a platform for mining big data streams. It supports the most common machine
learning tasks such as classification, clustering, and regression. It also provides an API for
algorithm developers that simplifies implementing distributed streaming algorithms.

samoa can be found at http://www.samoa-project.net/. The website includes a wiki,
an API reference, and a developer’s manual. Several examples of how the software can be
used are available. The code is hosted on GitHub. samoa contains a test suite that is run
on each commit on the GitHub repository via a continuous integration server.7 Finally,
samoa is released as open source software under the Apache Software License version 2.0.

We are grateful to all the people who contributed to samoa,8 without whom the project
could not have existed. We also thank Yahoo Labs Barcelona and its Web Mining group
for the great support during the development of the project.

6. See https://github.com/samoa-moa/samoa-moa
7. See https://travis-ci.org/yahoo/samoa
8. See http://samoa-project.net/contributors.html
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Abstract

We consider the problem of sequential prediction and provide tools to study the minimax
value of the associated game. Classical statistical learning theory provides several useful
complexity measures to study learning with i.i.d. data. Our proposed sequential complex-
ities can be seen as extensions of these measures to the sequential setting. The developed
theory is shown to yield precise learning guarantees for the problem of sequential predic-
tion. In particular, we show necessary and sufficient conditions for online learnability in
the setting of supervised learning. Several examples show the utility of our framework: we
can establish learnability without having to exhibit an explicit online learning algorithm.

Keywords: online learning, sequential complexities, regret minimization

1. Introduction

This paper is concerned with sequential prediction problems where no probabilistic assump-
tions are made regarding the data generating mechanism. Our viewpoint is expressed well
by the following quotation from Cover and Shenhar (1977):

“We are interested in sequential prediction procedures that exploit any ap-
parent order in the sequence. We do not assume the existence of any underlying
distributions, but assume that the sequence is an outcome of a game against a
malevolent intelligent nature.”

We will, in fact, take the game theoretic viewpoint seriously. All our investigations will
proceed by analyzing the minimax value of a repeated game between a player or learner
and a “malevolent intelligent nature”, or the adversary.

Even though we have the setting of prediction problems in mind, it will be useful to
develop the theory in a somewhat abstract setting. Towards this end, fix the sets F and

©2015 Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari.
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Z, as well as a loss function ` ∶ F × Z → R, and consider the following T -round repeated
two-player game, which we term the online learning or sequential prediction model. On
round t ∈ {1, . . . , T}, the learner chooses ft ∈ F , the adversary picks zt ∈ Z, and the learner
suffers loss `(ft, zt). At the end of T rounds we define regret

R(f1∶T , z1∶T ) ≜
T

∑
t=1

`(ft, zt) − inf
f∈F

T

∑
t=1

`(f, zt)

as the difference between the cumulative loss of the player and the cumulative loss of the
best fixed decision. For the given pair (F ,Z), the problem is said to be online learnable
if there exists an algorithm for the learner such that regret grows sublinearly in the time
horizon T , no matter what strategy the adversary employs.

The origin of the online learning (or sequential prediction) model can be traced back to
the work of Robbins (1950) on compound statistical decision problems. Some of the earliest
sequential prediction algorithms were proposed by Blackwell (1956a,b) and Hannan (1957).
Blackwell’s method was based on his celebrated approachability theorem whereas Hannan’s
was based on minimizing a randomly perturbed sum of previous losses. Hannan’s ideas
were to later resurface in the influential Follow-the-Perturbed-Leader family (Kalai and
Vempala, 2005) of online learning algorithms. The seminal ideas in the work of Robbins,
Blackwell and Hannan led to further developments in many different fields. Cover (1967),
Davisson (1973), Ziv and Lempel (1977), Rissanen (1984), Feder et al. (1992), and others laid
the foundation of universal coding, compression and prediction in the Information Theory
literature. Within Computer Science, Littlestone and Warmuth (1994), Cesa-Bianchi et al.
(1997), Vovk (1998), and others studied the online learning model and the prediction with
expert advice framework. The connections between regret minimization and convergence
to equilibria was studied in Economics by Foster and Vohra (1997), Hart and Mas-Colell
(2000) and others.

We have no doubt left out many interesting works above. But even our partial list will
convince the reader that research in online learning and sequential prediction has benefited
from contributions by researchers from a variety of fields including Computer Science, Eco-
nomics, Information Theory, and Statistics. For an excellent synthesis and presentation of
results from these different fields we refer the reader to the book by Cesa-Bianchi and Lugosi
(2006). Many of the ideas in the field are constructive, resulting in beautiful algorithms,
or algorithmic techniques, associated with names such as Follow-the-Regularized-Leader,
Follow-the-Perturbed-Leader, Weighted Majority, Hedge, and Online Gradient Descent.
However, analyzing specific algorithms has obvious disadvantages. The algorithm may not
be “optimal” for the task at hand. Even if it is optimal, one cannot prove that fact unless
one develops tools for analyzing the inherent complexity of the online learning problem.

Our goal is precisely to provide such tools. We will begin by defining the minimax value
of the game underlying the abstract online learning model. Then we will develop tools for
controlling the minimax value resulting in a theory that parallels statistical learning theory.
In particular, we develop analogues of combinatorial dimensions, covering numbers, and
Rademacher complexities. We will also provide results relating these complexities.

Note that our approach is non-constructive: controlling the sequential complexities
mentioned above will only guarantee the existence of a good online learning algorithm but
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will not explicitly create one. However, it turns out that that the minimax point of view
can indeed lead to constructive algorithms as shown by Rakhlin et al. (2012).

2. Minimax Value and Online Learnability

To proceed further in our analysis of the minimax value of the repeated game between the
learner and the adversary, we need to make a few technical assumptions. We assume that
F is a subset of a separable metric space. Let Q be the set of probability measures on F
and assume that Q is weakly compact. In order to allow randomized prediction, we allow
the learner to choose a distribution qt ∈ Q on every round. The minimax value of the game
is then defined as

VT (F ,Z) ≜ inf
q1∈Q

sup
z1∈Z

E
f1∼q1

⋯ inf
qT ∈Q

sup
zT ∈Z

E
fT ∼qT

[
T

∑
t=1

`(ft, zt) − inf
f∈F

T

∑
t=1

`(f, zt)] . (1)

Henceforth, the notation Ef∼q stands for the expectation operator integrating out the ran-
dom variable f with distribution q. We consider here the adaptive adversary who gets to
choose each zt based on the history of moves f1∶t−1 and z1∶t−1.

The first key step in the study of the value of the game is to appeal to the minimax
theorem and exchange the pairs of infima and suprema in (1). This dual formulation is
easier to analyze because the choice of the player comes after the choice of the mixed
strategy of the adversary. We remark that the minimax theorem holds under a very general
assumption of weak compactness ofQ and lower semi-continuity of the loss function.1 Under
these conditions, we can appeal to Theorem 1 stated below, which is adapted for our needs
from the work of Abernethy et al. (2009).

Theorem 1 Let F and Z be the sets of moves for the two players, satisfying the necessary
conditions for the minimax theorem to hold. Denote by Q and P the sets of probability
measures (mixed strategies) on F and Z, respectively. Then

VT (F ,Z) = sup
p1

E
z1∼p1

⋯ sup
pT

E
zT ∼pT

[
T

∑
t=1

inf
ft∈F

E
zt∼pt

[`(ft, zt)] − inf
f∈F

T

∑
t=1

`(f, zt)] , (2)

where suprema over pt range over all distributions in P.

The question of learnability in the online learning model is now reduced to the study of
VT (F ,Z), taking (2) as the starting point.

Definition 2 A class F is said to be online learnable with respect to the given Z and ` if

lim sup
T→∞

VT (F ,Z)
T

≤ 0 .

Note that our notion of learnability is related to, but distinct from, Hannan consistency
(Hannan, 1957; Cesa-Bianchi and Lugosi, 2006). The latter notion requires the iterated
game to go on for an infinite number of rounds and is formulated in terms of almost sure

1. We refer to Appendix A for a precise statement of the minimax theorem, as well as sufficient conditions.
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convergence. In contrast, we consider a distinct game for each T and look at expected regret.
Nevertheless, it is possible to obtain Hannan consistency using the techniques developed in
this paper by considering a slightly different game (Rakhlin et al., 2011).

We also remark that the statements in this paper extend to the case when the learner
is allowed to make decisions in a larger set G, while the best-in-hindsight term in the regret
definition is computed with respect to F ⊆ G. Such a setting—interesting especially with
regard to computational concerns—is termed improper learning. For example, prediction
with side information (or, the supervised learning problem) is one such case, where we
choose Y ⊂ R, Z = X × Y, F ⊆ YX = G and `(f, (x, y)) = ∣f(x) − y∣. This setting will be
studied later in the paper. Note that in the proper learning scenario, VT (F ,Z) ≥ 0 (e.g.,
since all zt’s can be chosen to be the same), and thus the “lim sup” in Definition 2 can be
simply replaced with the limit being equal to zero.

This paper is aimed at understanding the value of the game VT (F ,Z) for various func-
tion classes F . Since our focus is on the complexity of F , we shall often write VT (F) keeping
the dependence on Z (and `) implicit. As we show, the sequential complexity notions—
that were shown by Rakhlin et al. (2014) to characterize uniform martingale Laws of Large
Numbers—also give us a handle on the value VT (F). In the next section, we briefly define
these sequential complexity notions and mention some of the key relations between them.
A more detailed account of the relationships between sequential complexity measures along
with complete proofs can be found in (Rakhlin et al., 2014).

3. Sequential Complexities

Unlike the well-studied statistical learning scenario with i.i.d. data, the online learning
problem possesses a certain sequential dependence. Such dependence cannot be captured
by classical notions of complexity that are based on a batch of data given as a tuple of T
examples. A basic unit that does capture temporal dependence is a binary tree. Surprisingly,
for the sequential prediction problems considered in this paper, one need not look further
than binary trees to capture the relevant complexity.

A Z-valued tree z of depth T is a complete rooted binary tree with nodes labeled by
elements of Z. Such a tree z is identified with the sequence (z1, . . . ,zT ) of labeling functions
zi ∶ {±1}i−1 → Z which provide the labels for each node. Therefore, z1 ∈ Z is the label for
the root of the tree, while zi for i > 1 is the label of the node obtained by following the
path of length i−1 from the root, with +1 indicating ‘right’ and −1 indicating ‘left’. A path
of length T is given by the sequence ε = (ε1, . . . , εT ) ∈ {±1}T . For brevity, we shall often
write zt(ε), where ε = (ε1, . . . , εT ), but it is understood that zt depends only on the prefix
(ε1, . . . , εt−1).

Now, let ε1, . . . , εT be independent Rademacher random variables. Given a Z-valued tree
z of depth T , we define the sequential Rademacher complexity of a function class G ⊆ RZ
on a Z-valued tree z as

RT (G,z) ≜ E [sup
g∈G

1

T

T

∑
t=1

εtg(zt(ε))] ,

and we denote by RT (G) = supzRT (G,z) its supremum over all Z-valued trees of depth T .
The importance of the introduced notion stems from the following result (Rakhlin et al.,
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2014, Theorem 2): for any distribution over a sequence (Z1, . . . , ZT ), we have

E [sup
g∈G

1

T

T

∑
t=1

(E [g(Zt)∣Zt−1] − g(Zt))] ≤ 2RT (G) , (3)

where Zt−1 = (Z1, . . . , Zt−1). In other words, the martingale version of the uniform devi-
ations of means from expectations is controlled by the worst-case sequential Rademacher
complexity. A matching lower bound also holds for the supremum over distributions on
sequences in ZT . It then follows that a uniform martingale Law of Large Numbers holds
for G if and only if RT (G) → 0. For i.i.d. random variables, a similar statement can be
made in terms of the classical Rademacher complexity, and so one might hope that many
other complexity notions from empirical process theory have martingale (or we may say,
sequential) analogues. Luckily, this is indeed the case (Rakhlin et al., 2014). As we show
in this paper, these generalizations of the classical notions also give a handle on (as well
as necessary and sufficient conditions for) online learnability, thus painting a picture that
completely parallels statistical learning theory. But before we present our main results, let
us recall some key definitions and results in (Rakhlin et al., 2014).

In providing further upper bounds on sequential Rademacher complexity, the following
definitions of an “effective size” of a function class generalize the classical notions of a
covering number. A set V of R-valued trees of depth T is a (sequential) α-cover (with
respect to `p norm) of G ⊆ RZ on a tree z of depth T if

∀g ∈ G, ∀ε ∈ {±1}T , ∃v ∈ V s.t. ( 1

T

T

∑
t=1

∣vt(ε) − g(zt(ε))∣p)
1/p

≤ α.

The (sequential) covering number of a function class G on a given tree z is defined as

Np(α,G,z) ≜ min{∣V ∣ ∶ V is an α-cover w.r.t. `p norm of G on z} .

It is straightforward to check that Np(α,G,z) ≤ Nq(α,G,z) whenever 1 ≤ p ≤ q ≤∞.
Further define Np(α,G, T ) = supzNp(α,G,z), the maximal `p covering number of G over

depth T trees. For a class G of binary-valued functions, we also define a so-called 0-cover
(or, cover at scale 0), denoted by N (0,G,z), as equal to any Np(0,G,z). The definition of
a 0-cover can be seen as the correct analogue of the size of a projection of G onto a tuple of
points in the i.i.d. case. The size of this projection in the i.i.d. case was the starting point
of the work of Vapnik and Chervonenkis.

When G ⊆ [−1,1]Z is a finite class of bounded functions, one can show (Rakhlin et al.,
2014, Lemma 1) that

RT (G,z) ≤
√

2 log ∣G∣
T

, (4)

a bound that should (correctly) remind the reader of the Exponential Weights regret bound.
With the definition of an α-cover with respect to `1 norm, one can easily extend (4) beyond
the finite case. Immediately from the definition of `1 covering number, it follows that for
any G ⊆ [−1,1]Z , for any α > 0,

RT (G,z) ≤ α +
√

2 logN1(α,G,z)
T

(5)
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(Rakhlin et al., 2014, Eq. 9). A tighter control is obtained by integrating the covering
numbers at different scales. To this end, consider the following analogue of the Dudley
entropy integral bound. For p ≥ 1, the integrated complexity of a function class G ⊆ [−1,1]Z
on a Z-valued tree of depth T is defined as

Dp
T (G,z) ≜ inf

α≥0
{4α + 12√

T
∫

1

α

√
log Np(δ,G,z) dδ} (6)

and Dp
T (G) = supzD

p
T (G,z), with D2

T (G,z) denoted simply by DT (G,z). We have previously
shown (Rakhlin et al., 2014, Theorem 3) that, for any function class G ⊆ [−1,1]Z and any
Z-valued tree z of depth T ,

RT (G,z) ≤DT (G,z). (7)

We next turn to the description of sequential combinatorial parameters. A Z-valued
tree z of depth d is shattered by a function class G ⊆ {±1}Z if for all ε ∈ {±1}d, there exists
g ∈ G such that g(zt(ε)) = εt for all t ∈ [d]. The Littlestone dimension Ldim(G,Z) is the
largest positive integer d such that G shatters a Z-valued tree of depth d (Littlestone, 1988;
Ben-David et al., 2009). The scale-sensitive version of Littlestone dimension is defined as
follows. A Z-valued tree z of depth d is α-shattered by a function class G ⊆ RZ if there
exists an R-valued tree s of depth d such that

∀ε ∈ {±1}d, ∃g ∈ G s.t. ∀t ∈ [d], εt(g(zt(ε)) − st(ε)) ≥ α/2.

The tree s will be called a witness to shattering. The (sequential) fat-shattering dimension
fatα(G,Z) at scale α is the largest d such that G α-shatters a Z-valued tree of depth d.

The notions introduced above can be viewed as sequential generalizations of the VC
dimension and the fat-shattering dimension where tuples of points get replaced by complete
binary trees. In fact, one recovers the classical notions if the tree z in the above definitions is
restricted to have the same values within a level (hence, no temporal dependence). Crucially,
the sequential combinatorial analogues provide control for the growth of sequential covering
numbers, justifying the definitions.

First, let G ⊆ {0, . . . , k}Z be a class of functions with fat2(G) = d. Then, it can be shown
(Rakhlin et al., 2014, Theorem 4) that for any T ≥ 1,

N∞(1/2,G, T ) ≤
d

∑
i=0

(T
i
)ki ≤ (ekT )d .

For the second result (Rakhlin et al., 2014, Corollary 1), suppose G is a class of [−1,1]-valued
functions on Z. Then, for any α > 0, and any T ≥ 1,

N∞(α,G, T ) ≤ (2eT

α
)

fatα(G)
. (8)

Finally, we recall a bound on the size of the 0-cover in terms of the fat1 combinatorial
parameter (Rakhlin et al., 2014, Theorem 5). For a class G ⊆ {0, . . . , k}Z with fat1(G) = d,
we have

N (0,G, T ) ≤
d

∑
i=0

(T
i
)ki ≤ (ekT )d . (9)
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In particular, for k = 1 (that is, binary classification) we have fat1(G) = Ldim(G). The
inequality (9) is therefore a sequential analogue of the celebrated Vapnik-Chervonenkis-
Sauer-Shelah lemma.

4. Structural Properties

For the examples developed in this paper, it will be crucial to exploit a number of useful
properties that RT (G) satisfies. These properties allow one to establish online learnability
for complex function classes even if no explicit learning algorithms are available.

We first state some properties that are easily proved but are nevertheless very useful.

Lemma 3 Let F ,G ⊆ RZ and let conv(G) denote the convex hull of G. Let z be any Z-
valued tree of depth T . Then the following properties hold.

1. If F ⊆ G, then RT (F ,z) ≤RT (G,z).

2. RT (conv(G),z) =RT (G,z)

3. RT (cG,z) = ∣c∣RT (G,z) for all c ∈ R.

4. For any h ∶ Z → R, RT (G + h,z) =RT (G,z) where G + h = {g + h ∶ g ∈ G}.

These properties match those of the classical Rademacher complexity (Bartlett and Mendel-
son, 2003) and can be proved in essentially the same way (we therefore skip the straight-
forward proofs).

The next property is a key tool for many of the applications: it allows us to bound the
sequential Rademacher complexity for the Cartesian product of function classes composed
with a Lipschitz mapping in terms of complexities of the individual classes.

Lemma 4 Let G = G1 × . . . × Gk where each Gj ⊆ [−1,1]Z . Further, let φ ∶ Rk × Z → R be
such that φ(⋅, z) is L-Lipschitz with respect to ∥ ⋅ ∥∞ for all z ∈ Z, and let

φ ○ G = {z ↦ φ((g1(z), . . . , gk(z)), z) ∶ gj ∈ Gj} .

Then we have
RT (φ ○ G) ≤ 8L (1 + 4

√
2 log3/2(eT 2))∑kj=1 RT (Gj)

as long as RT (Gj) ≥ 1/T for each j.

Let us explicitly state the more familiar contraction property, an immediate corollary
of the above result.

Corollary 5 Fix a class G ⊆ [−1,1]Z with RT (G) ≥ 1/T and a function φ ∶ R × Z → R.
Assume φ(⋅, z) is L-Lipschitz for all z ∈ Z. Then

RT (φ ○ G) ≤ 8L (1 + 4
√

2 log3/2(eT 2)) ⋅RT (G),

where φ ○ G = {z ↦ φ(g(z), z) ∶ g ∈ G}.

We state another useful corollary of Lemma 4.
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Corollary 6 For a fixed binary function b ∶ {±1}k → {±1} and classes G1, . . . ,Gk of {±1}-
valued functions,

RT (b(G1, . . . ,Gk)) ≤ O (log3/2(T ))∑kj=1 RT (Gj).

Note that, in the classical case, the Lipschitz contraction property holds without any
extra poly-logarithmic factors in T (Ledoux and Talagrand, 1991). It is an open question
whether the poly-logarithmic factors can be removed in the results above. It is worth
pointing out ahead of time that Theorem 8 below—in the setting of supervised learning with
convex Lipschitz loss—does allow us to avoid the extraneous factor that would otherwise
appear from a combination of Theorem 7 and Corollary 5.

5. Main Results

We now relate the value of the game to the worst case expected value of the supremum
of an empirical process. However, unlike empirical processes that involve i.i.d. sums, our
process involves a sum of martingale differences. In view of (3), the expected supremum
can be further upper-bounded by the sequential Rademacher complexity.

Theorem 7 The minimax value is bounded as

1

T
VT (F) ≤ sup

P
E sup
g∈`(F)

[ 1

T

T

∑
t=1

(E[g(Zt)∣Z1, . . . , Zt−1] − g(Zt))] ≤ 2RT (`(F)),

where `(F) = {`(f, ⋅) ∶ f ∈ F} and the supremum is taken over all distributions P over
(Z1, . . . , ZT ).

We can now employ the tools developed earlier in the paper to upper bound the value of
the game. Interestingly, any non-trivial upper bound guarantees existence of a prediction
strategy that has sublinear regret irrespective of the sequence of the moves of the adversary.
This complexity-based approach of establishing learnability should be contrasted with the
purely algorithm-based approaches found in the literature.

5.1 Supervised Learning

In this subsection we study the supervised learning problem mentioned earlier in the paper.
In this improper learning scenario, the learner at time t picks a function ft ∶ X → R and the
adversary provides the input target pair zt = (xt, yt) ∈ X × Y where Y ⊂ R. In particular,
the binary classification problem corresponds to the case Y = {±1}. Let F ⊆ YX and let us
fix the absolute value loss function `(ŷ, y) = ∣ŷ − y∣. While we focus on the absolute loss, it
is easy to see that all the results hold (with modified rates) for any loss `(ŷ, y) such that
for all ŷ and y, φ(`(ŷ, y)) ≤ ∣ŷ − y∣ ≤ Φ(`(ŷ, y)) where Φ and φ are monotonically increasing
functions. For instance, the squared loss (ŷ − y)2 is a classic example.

We now observe that the value of the improper supervised learning game can be equiv-
alently written as

VS
T (F) = sup

x1
inf
q1∈Q̃

sup
y1

E
ŷ1∼q1

⋯ sup
xT

inf
qT ∈Q̃

sup
yT

E
ŷT ∼qT

[
T

∑
t=1

`(ŷt, yt) − inf
f∈F

T

∑
t=1

`(f(xt), yt)] , (10)
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where Q̃ denotes the set of probability distributions over Y and ŷt has distribution qt. This
equivalence is easy to verify: we may view the choice ft ∶ X → Y as pre-specifying predictions
ft(x) for all the possible x ∈ X , while alternatively we can simply make the choice ŷt ∈ Y
having observed the particular move xt ∈ X . The advantage of rewriting the game in the
form (10) is that the minimax theorem only needs to be applied to the pair ŷt and yt, given
the fixed choice xt. The minimax theorem then holds even if weak compactness cannot be
shown for the set of distributions on the original space of functions of the type X → Y.

An examination of the proof of Theorem 7 reveals that the value (10) is upper bounded
in exactly the same way, and the side information simply appears as an additional tree x
in sequential Rademacher complexity, giving us:

1

T
VS
T (F) ≤ 2 sup

x,y
E [sup

f∈F

1

T

T

∑
t=1

εt`(f(xt(ε)),yt(ε))] . (11)

However, for the supervised learning setting, we can strengthen Theorem 7. The following
theorem allows us to remove any convex Lipschitz loss (including the absolute loss) before
passing to the sequential Rademacher complexity.

Theorem 8 Let Y = [−1,1] and suppose, for any y ∈ Y, `(⋅, y) is convex and L-Lipschitz.
Then the minimax value of a supervised learning problem is upper bounded as

1

T
VST (F) ≤ 2LRT (F).

We remark that the contraction property for sequential Rademacher complexity, stated in
Section 4, yields an extraneous logarithmic factor when applied to (11); here, we achieve
the desired bound by removing the Lipschitz function directly during the symmetrization
step.

Armed with the theorem, we now prove the following result.

Proposition 9 Consider the supervised learning problem with a function class F ⊆ [−1,1]X
and absolute loss `(ŷ, y) = ∣ŷ − y∣. Then, for any T ≥ 1, we have

1

4
√

2
sup
α

⎧⎪⎪⎨⎪⎪⎩
α

√
min{fatα, T}

T

⎫⎪⎪⎬⎪⎪⎭
≤RT (F) ≤ 1

T
VST (F) ≤ 2RT (F) ≤ 2DT (F)

≤ 2 inf
α

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T
∫

1

α

√
fatβ log (2eT

β
) dβ

⎫⎪⎪⎬⎪⎪⎭
, (12)

where fatα = fatα(F).

The proposition above implies that finiteness of the fat-shattering dimension at all scales
is necessary and sufficient for online learnability of the supervised learning problem. Fur-
ther, all the complexity notions introduced so far are within a poly-logarithmic factor from
each other whenever the problem is learnable. These results are summarized in the next
theorem:

Theorem 10 For any function class F ⊆ [−1,1]X , the following statements are equivalent
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1. Function class F is online learnable in the supervised setting with absolute loss.

2. Sequential Rademacher complexity satisfies limT→∞RT (F) = 0.

3. For any α > 0, the scale-sensitive dimension fatα(F) is finite.

Moreover, if the function class is online learnable, then the value of the supervised game
VST (F), the sequential Rademacher complexity RT (F), and the integrated complexity DT (F)
are within a multiplicative factor of O(log3/2 T ) of each other.

Remark 11 Additionally, the three statements of Theorem 10 are equivalent to F satisfy-
ing a martingale version of the uniform Law of Large Numbers. This property is termed
Sequential Uniform Convergence by Rakhlin et al. (2014), and we refer to their paper for
more details.

For binary classification, we write VBinary
T for VS

T . This case has been investigated
thoroughly by Ben-David et al. (2009) and indeed served as a key motivation for this paper.
As a consequence of Proposition 9 and (9), we have a tight control on the value of the game
for the binary classification problem. Note that the absolute loss in the binary classification
setting is simply the 0-1 loss `(ŷ, y) = 1{ŷ ≠ y}, where 1{U} is 1 if U is true and 0 otherwise.

Corollary 12 For the binary classification problem with function class F and the 0-1 loss,
we have

K1

√
T min{Ldim(F), T} ≤ VBinary

T (F) ≤K2

√
T Ldim(F) logT

for some universal constants K1,K2 > 0.

Both the upper and the lower bound in the above result were originally derived in Ben-
David et al. (2009). Notably, we achieved the same bounds non-constructively through
purely combinatorial and covering number arguments.

It is natural to ask whether being able to learn in the online model is different from
learning in the i.i.d. model (in the distribution-free supervised setting). The standard
example that exhibits a gap between the two frameworks (e.g., Littlestone, 1988; Ben-David
et al., 2009) is binary classification using the class of step functions

F = {fθ(x) = 1{x ≤ θ} ∶ θ ∈ [0,1]}

on [0,1]. This class has VC dimension 1, but is not learnable in the online setting. Indeed,
it is possible to verify that the Littlestone dimension is infinite. Interestingly, the closely-
related class of “ramp” functions with slope L > 0

FL = {fθ(x) = 1{x ≤ θ} + (1 −L(x − θ))1{θ < x ≤ θ + 1/L} ∶ θ ∈ [0,1]}

is learnable (say for supervised learning using absolute loss) in the online setting (and hence
also in the i.i.d. case). Furthermore, the larger class of all bounded L-Lipschitz functions
on a bounded interval is also online learnable (see Eq. 14 and proof of Proposition 18).
Once again, we are able to make these statements from purely complexity-based considera-
tions, without exhibiting an algorithm. Further examples where we can demonstrate online
learnability are explored in Section 6.
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5.2 Online Convex Optimization

Over the past decade, Online Convex Optimization (OCO) has emerged as a unified on-
line learning framework (Zinkevich, 2003; Shalev-Shwartz, 2011). Various methods, such
as Exponential Weights, can be viewed as instances of online mirror descent, solving the
associated OCO problem. Much research effort has been devoted to understanding this
abstract and simplified setting. It is tempting to say that any problem of online learning,
as defined in the Introduction, can be viewed as OCO (in fact, online linear optimization)
over the set of probability distributions; however, one should also recognize that by lineariz-
ing the problem, any interesting structure is lost and one instead suffers from the possibly
unnecessary dependence on the number of functions in the class F . Nevertheless, OCO
is a central part of the recent literature, and we will study this scenario using techniques
developed in this paper.

The standard setting of online convex optimization is as follows. The set of moves of
the learner F is a bounded closed convex subset of a Banach space (B, ∥ ⋅ ∥) with ∥f∥ ≤ D
for all f ∈ F (the reader can think of Rd equipped with an `p norm for simplicity). Let ∥ ⋅ ∥⋆
be the dual norm. The adversary’s set Z consists of convex G-Lipschitz (with respect to
∥ ⋅ ∥⋆) functions over F :

Z = Zcvx = {g ∶ F → R ∶ g convex and G-Lipschitz w.r.t. ∥ ⋅ ∥⋆} .

Let the loss function be `(f, g) = g(f), the evaluation of the adversarially chosen function
at f . For the particular case of online linear optimization, we instead take

Z = Zlin = {f ↦ ⟨f, z⟩ ∶ ∥z∥⋆ ≤ G}

with Z now a subset of the dual space. It is well-known (e.g., Abernethy et al., 2008) that
the online convex optimization problem (without further assumptions on the functions in
Zcvx) is as hard as the corresponding linear optimization problem with Zlin if one considers
deterministic algorithms. The same trivially extends to randomized methods:

Lemma 13 Suppose F ,Zcvx,Zlin be defined as above. Then we have

VT (F ,Zcvx) = VT (F ,Zlin) .

We will now show how to use the above result to derive minimax regret guarantees for
OCO. The reader may wonder why we do not directly try to bound the value VT (F ,Zcvx)
by RT (F ,Zcvx). In fact, this proof strategy cannot give a non-trivial bound if F is a subset
of a high-dimensional (or infinite-dimensional) space (Shalev-Shwartz et al., 2009, Sec. 4.1).
Instead, we use the lemma above to bound the value of the game where adversary plays
convex functions with that of the game where adversary plays linear functions.

A function Ψ ∶ F → R is (σ, q)-uniformly convex (for q ∈ [2,∞)) on F with respect to a
norm ∥ ⋅ ∥ if, for all θ ∈ [0,1] and f1, f2 ∈ F ,

Ψ(θf1 + (1 − θ)f2) ≤ θΨ(f1) + (1 − θ)Ψ(f2) −
σ θ (1 − θ)

q
∥f1 − f2∥q .

A (σ,2)-uniformly convex function will be called σ-strongly convex.
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We will give examples shortly but we first state a proposition that is useful to bound
the sequential Rademacher complexity of linear function classes. The crucial duality fact
exploited in its proof is that Ψ is (σ, q)-uniformly convex with respect to ∥ ⋅ ∥ if and only if
Ψ⋆ is (1/σ, p)-uniformly smooth with respect to ∥ ⋅ ∥⋆ where 1/p + 1/q = 1.

Proposition 14 (Rakhlin et al., 2014) Let F be a subset of some Banach space B with
norm ∥ ⋅ ∥ and let Z be a subset of the dual space B⋆ equipped with norm ∥ ⋅ ∥⋆. Suppose that
Ψ ∶ F → R is (σ, q)-uniformly convex with respect to ∥ ⋅ ∥ and 0 ≤ Ψ(f) ≤ Ψmax for all f ∈ F .
Then we have

RT (F) ≤ Cp∥Z∥⋆ (
Ψp−1

max

σ T p−1
)

1/p

,

where ∥Z∥⋆ = supz∈Z ∥z∥⋆, p is such that 1/p + 1/q = 1, and Cp = (p/(p − 1))
p−1
p .

Using the above Proposition in conjunction with Lemma 13 and Theorem 7, we can
immediately conclude that

VT (F ,Zcvx) ≤ 2T RT (F) ≤ 2G

√
2 Ψmax T

σ

for any non-negative function Ψ ∶ F → R that is σ-strongly convex w.r.t. ∥ ⋅ ∥. Note that,
typically, Ψmax will depend on D. For example, in the particular case when ∥ ⋅∥ = ∥ ⋅∥⋆ = ∥ ⋅∥2,
we can take Ψ(u) = 1

2∥u∥
2
2 and the above bound becomes 2GD

√
T and recovers the guarantee

for the online gradient descent algorithm. In general, for ∥ ⋅ ∥ = ∥ ⋅ ∥p and ∥ ⋅ ∥⋆ = ∥ ⋅ ∥q, we

can use Ψ(u) = 1
2∥u∥

2
p to get a bound of 2GD

√
T /(p − 1) since Ψ is (p − 1)-strongly convex

w.r.t. ∥ ⋅ ∥p. These O(
√
T ) regret rates are not new but we re-derive them to illustrate the

usefulness of the tools we developed.

6. Further Examples

Now we present some further applications of the tools we have developed in this paper for
some specific learning problems. To begin, we show how to bound the sequential Rade-
macher complexity of functions computed by neural networks. Then, we derive margin
based regret bounds in a fairly general setting. The classical analogues of these margin
bounds have played a big role in the modern theory of supervised learning where they help
explain the success of linear classifiers in high dimensional spaces (e.g., Schapire et al., 1997;
Koltchinskii and Panchenko, 2002). We then study the complexity of classes formed by de-
cision trees, analyze the setting of transductive learning, and consider an online version of
the Isotron problem. Finally, we make a connection to the seminal work of Cesa-Bianchi
and Lugosi (1999) by re-deriving their bound on the minimax regret in a static experts
game in terms of the classical Rademacher averages.

6.1 Neural Networks

We provide below a bound on the sequential Rademacher complexity for classic multi-layer
neural networks thus showing they are learnable in the online setting. The model of neural
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networks we consider below and the bounds we provide are analogous to the ones considered
in the i.i.d. setting by Bartlett and Mendelson (2003).

Consider a k-layer 1-norm neural network, defined by a base function class F1 and,
recursively, for each 2 ≤ i ≤ k,

Fi =
⎧⎪⎪⎨⎪⎪⎩
x↦∑

j

wijσ (fj(x)) ∣ ∀j fj ∈ Fi−1, ∥wi∥1 ≤ Bi
⎫⎪⎪⎬⎪⎪⎭
,

where σ is a Lipschitz transfer function, such as the sigmoid function.

Proposition 15 Suppose σ ∶ R→ [−1,1] is L-Lipschitz with σ(0) = 0. Then it holds that

RT (Fk) ≤ (
k

∏
i=2

16Bi)Lk−1 (1 + 4
√

2 log3/2(eT 2))
k
RT (F1).

In particular, for the case of

F1 = {x↦ ∑j w1
jxj ∣ ∥w∥1 ≤ B1}

and X ⊂ Rd we have the bound

RT (Fk) ≤ (
k

∏
i=1

16Bi)Lk−1 (1 + 4
√

2 log3/2(eT 2))
k
X∞

√
2 log d

T

where X∞ is such that ∀x ∈ X , ∥x∥∞ ≤X∞.

Our result is a non-constructive guarantee, and, to the best of our knowledge, no algorithms
for learning neural networks within the online learning model exist. It is not clear if the
above bounds could be obtained via computationally efficient methods.

6.2 Margin Based Regret

In the classical statistical setting, margin bounds provide guarantees on the expected zero-
one loss of a classifier based on the empirical margin zero-one error. These results form the
basis of the theory of large margin classifiers (see Schapire et al., 1997; Koltchinskii and
Panchenko, 2002). Recently, in the online setting, bounds of a similar flavor have been shown
through the concept of margin via the Littlestone dimension (Ben-David et al., 2009). We
show that our machinery can easily lead to margin bounds for binary classification problems
for general function classes F based on their sequential Rademacher complexity. We use
ideas from (Koltchinskii and Panchenko, 2002) to do this.

Proposition 16 For any function class F ⊂ [−1,1]X , there exists a randomized prediction
strategy given by τ such that for any sequence z1, . . . , zT where each zt = (xt, yt) ∈ X × {±1},

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷtyt < 0}]

≤ inf
γ>0

{ inf
f∈F

T

∑
t=1

1{f(xt)yt < 2γ} + 16

γ
(1 + 4

√
2 log3/2(eT 2))TRT (F) + 2

√
T (1 + log log (1

γ
))} .
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To interpret the above bound, suppose that the sequence of yt’s is predicted with a margin 2γ
by some function f ∈ F . The upper bound guarantees that there exists a strategy (that does
not need to know the value of γ) with cumulative loss given by the sequential Rademacher
complexity of F divided by the margin, up to poly-logarithmic factors. Crucially, the bound
does not directly depend on the dimensionality of the input space X .

6.3 Decision Trees

We consider here the binary classification problem where the learner competes with a set
of decision trees of depth no more than d. The function class F for this problem is defined
as follows. Each f ∈ F is defined by choosing a rooted binary tree of depth no more than
d and associating to each node a binary valued decision function from a set H ⊆ {±1}X . A
binary value for a given x can be obtained by traversing the tree from the root according
to the value of the decision function at each node and then reading off the label of the
leaf. Importantly, x “reaches” only one leaf of the tree. Alternatively, for any leaf l, the
membership of x is given by the conjunction

∏
i

1{hl,i(x) = 1}

where hl,i is either the decision function at node i along the path to the leaf l, or its negation.
To complete the definition of f , we choose weights wl > 0, ∑lwl = 1, along with the value
σl ∈ {±1} of the function on each leaf l. The resulting function f can be written as

f(x) =∑
l

wlσl∏
i

1{hl,i(x) = 1}

where the sum runs over all the leaves of the tree.

The following proposition is the online analogue of a result about decision tree learning
that Bartlett and Mendelson (2003) proved in the i.i.d. setting.

Proposition 17 Denote by F the class of decision trees of depth at most d with decision
functions in H. There exists a randomized strategy τ for the learner such that for any
sequence of instances z1, . . . , zT , with zt = (xt, yt) ∈ X × {±1},

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷt ≠ yt}] ≤ inf
f∈F

T

∑
t=1

1{f(xt) ≠ yt}

+O (∑
l

min (C(l), d log3(T ) T R(H)) +
√
T log(N)) ,

where C(l) denotes the number of instances that reach the leaf l and are correctly classified
in the decision tree f that minimizes ∑Tt=1 1{ytf(xt) ≤ 0}, with N > 2 being the number of
leaves in this tree.

It is not clear whether computationally feasible online methods exist for learning decision
trees, and this represents an interesting avenue of further research.
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6.4 Transductive Learning

Let F be a class of functions from X to R. Let

N̂∞(α,F) = min{∣G∣ ∶ G ⊆ RX s.t. ∀f ∈ F ∃g ∈ G satisfying ∥f − g∥∞ ≤ α} (13)

be the `∞ covering number at scale α, where the cover is pointwise on all of X . It is easy
to verify that

∀T, N∞(α,F , T ) ≤ N̂∞(α,F) . (14)

Indeed, let G be a minimal cover of F at scale α. We claim that for any X -valued tree of
depth T , the set V = {vg = g ○x ∶ g ∈ G} of R-valued trees is an `∞ cover of F on x. Fix any
ε ∈ {±1}T and f ∈ F , and let g ∈ G be such that ∥f − g∥∞ ≤ α. Clearly ∣vgt (ε)− f(xt(ε))∣ ≤ α
for any 1 ≤ t ≤ T , concluding the proof.

This simple observation can be applied in several situations. First, consider the problem
of transductive learning, where the set X = {x1, . . . , xn} is a finite set. To ensure online
learnability, it is sufficient to consider an assumption on the dependence of N̂∞(α,F) on α.
An obvious example of such a class is a VC-type class with N̂∞(α,F) ≤ (c/α)d for some c
which can depend on n. Assume that F ⊂ [−1,1]X . Substituting this bound on the covering
number into (6) and choosing α = 0, we observe that the value of the supervised game is
upper bounded by 2DT (F) ≤ 48

√
dT log c by Proposition 9. It is easy to see that if n is

fixed and the problem is learnable in the batch (i.e., i.i.d.) setting, then the problem is
learnable in the online transductive model.

In the transductive setting considered by Kakade and Kalai (2006), it is assumed that
n ≤ T and F consists of binary-valued functions. If F is a class with VC dimension d, the
Sauer-Shelah lemma ensures that the `∞ cover is smaller than (en/d)d ≤ (eT /d)d. Using
the previous argument with c = eT , we obtain a bound of 4

√
dT log(eT ) for the value of

the game, matching the bound of Kakade and Kalai (2006) up to a constant factor.

6.5 Isotron

Kalai and Sastry (2009) introduced a method called Isotron for learning Single Index Models
(SIM). These models generalize linear and logistic regression, generalized linear models, and
classification by linear threshold functions. For brevity, we only describe the Idealized SIM
problem considered by the authors. In its “batch” version, we assume that the data are
revealed at once as a set {(xt, yt)}Tt=1 ∈ Rd×R where yt = u(⟨w,xt⟩) for some unknown w ∈ Rd
of bounded norm and an unknown non-decreasing u ∶ R → R with a bounded Lipschitz
constant. Given this data, the goal is to iteratively find the function u and the direction
w, making as few mistakes as possible. The error is measured as 1

T ∑
T
t=1(fi(xt) − yt)2,

where fi(x) = ui(⟨wi, x⟩) is the iterative approximation found by the algorithm on the ith
round. The elegant computationally efficient method presented by Kalai and Sastry (2009)
is motivated by Perceptron, and a natural open question posed by the authors is whether
there is an online variant of Isotron. Before even attempting a quest for such an algorithm,
we can ask a more basic question: is the (Idealized) SIM problem even learnable in the
online framework? After all, most online methods deal with convex functions, but u is only
assumed to be Lipschitz and non-decreasing. We answer the question easily with the tools
we have developed.
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We are interested in online learnability of

H = {f(x, y) = (y − u(⟨w,x⟩))2 ∣ u ∶ [−1,1]→ [−1,1] 1-Lipschitz , ∥w∥2 ≤ 1} (15)

in the supervised setting, over X = B2 (the unit Euclidean ball in Rd) and Y = [−1,1]. In
particular, we prove the result for Lipschitz, but not necessarily non-decreasing functions.
It is evident that H is a composition with three levels: the squared loss, the Lipschitz non-
decreasing function, and the linear function. The proof of the following proposition shows
that the covering number of the class does not increase much under these compositions.

Proposition 18 The class H defined in (15) is online learnable in the (improper) super-
vised learning setting. Moreover, the minimax regret is

O(
√
T log3/2(T )).

Once again, it is not clear whether a computationally efficient method attaining the
above guarantee exists.

6.6 Prediction of Individual Sequences with Static Experts

We also consider the problem of prediction of individual sequences, which has been studied
both in information theory and in learning theory. In particular, in the case of binary
prediction, Cesa-Bianchi and Lugosi (1999) proved upper bounds on the minimax value in
terms of the (classical) Rademacher complexity and the (classical) Dudley integral. One of
the assumptions made by Cesa-Bianchi and Lugosi (1999) is that experts are static. That is,
their prediction only depends on the current round, not on the past information. Formally,
we define static experts as vectors f̄ = (f1, . . . , fT ) ∈ [0,1]T , and let F denote a class of
such experts. Let Y = {0,1}, putting us in the scenario of binary classification with no side
information. Then regret on a particular sequence y1, . . . , yT can be written as

T

∑
t=1

`t(f̄t, yt) − inf
f̄∈F
∑
t=1

`t(f̄ , yt),

where f̄t is the expert chosen by the learning algorithm at time t. Observe that the proof
of Theorem 7 does not require the loss to be time independent. In the case of absolute loss,
the Rademacher complexity appearing on the right hand side in Theorem 7 becomes

sup
y

Eε
⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εt`t(f̄ ,yt(ε))
⎤⎥⎥⎥⎥⎦
= sup

y
Eε

⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εt∣ft − yt(ε)∣
⎤⎥⎥⎥⎥⎦
.

where the supremum is over all Y-valued trees of depth T . Noting that for f ∈ [0,1], y ∈
{0,1}, ∣f − y∣ can be written as (1 − 2y)f + y, the above equals

sup
y

Eε
⎡⎢⎢⎢⎢⎣

⎛
⎝

sup
f̄∈F

T

∑
t=1

εt(1 − 2yt(ε))ft
⎞
⎠
+

T

∑
t=1

εtyt(ε)
⎤⎥⎥⎥⎥⎦
= sup

y
Eε

⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εt(1 − 2yt(ε))ft
⎤⎥⎥⎥⎥⎦
.
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It can be easily verified that the joint distribution of {εt(1 − 2yt(ε))}Tt=1 is still i.i.d. Rade-
macher and hence the value of the game is upper bounded by

2Eε
⎡⎢⎢⎢⎢⎣
sup
f̄∈F

T

∑
t=1

εtft

⎤⎥⎥⎥⎥⎦
,

recovering the upper bound of Theorem 3 in (Cesa-Bianchi and Lugosi, 1999). We note that
for this particular scenario, the factor of 2 (that appears because of symmetrization) is not
needed. This factor is the price we pay for deducing the result from the general statement
of Theorem 7.

7. Discussion

The tools provided in this paper allow us to establish existence of regret minimization
algorithms by working directly with the minimax value. The non-constructive nature of
our results is due to the application of the minimax theorem: the dual strategy does not
give a handle on the primal strategy. Furthermore, by passing to upper bounds on the
dual formulation (2) of the value of the game, we remove the dependence on the dual
strategy altogether. After the original paper (Rakhlin et al., 2010) appeared, the algorithmic
approach has been developed by Rakhlin et al. (2012) who showed that the prediction for
round t can be obtained by appealing to the minimax theorem for rounds t + 1 to T , yet
keeping the minimax expression for round t as is. The notion of a relaxation (in the spirit of
approximate dynamic programming) then allowed the authors to develop a general recipe
for deriving computationally feasible prediction methods. The techniques of the present
paper form the basis for the algorithmic developments of Rakhlin et al. (2012). We refer
the reader to (Rakhlin and Sridharan, 2014; Rakhlin et al., 2012) for details.
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Appendix A. A Minimax Theorem

The minimax theorem is one of this paper’s main workhorses. For completeness, we state
a general version of this theorem — the von Neumann-Fan minimax theorem — due to
Borwein (2014) (see also Borwein and Zhuang, 1986).

Theorem 19 (Borwein, 2014) Let A and B be Banach spaces. Let A ⊂ A be nonempty,
weakly compact, and convex, and let B ⊂ B be nonempty and convex. Let g ∶ A × B → R be
concave with respect to b ∈ B and convex and lower-semicontinuous with respect to a ∈ A,
and weakly continuous in a when restricted to A. Then

sup
b∈B

inf
a∈A

g(a, b) = inf
a∈A

sup
b∈B

g(a, b). (16)
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In the proof of Theorem 1, the minimax theorem is invoked to assure that

inf
qt∈Q

sup
pt∈P

E [`(ft, zt) + ξ(zt)] = sup
pt∈P

inf
qt∈Q

E [`(ft, zt) + ξ(zt)] , (17)

where ξ(zt) is a rather complicated function that includes the repeated infima and suprema
from steps t + 1 to T of regret expression that includes the variable zt (but not ft). The
expectation in (17) is with respect to ft ∼ qt and zt ∼ pt. To apply (16), we take g to be
the bilinear form in qt and pt, with A = Q and B = P. Equipped with the total variation
distance, Q and P can be seen as subsets of a Banach space of measures on F and Z,
respectively. In terms of conditions, it is enough to check weak compactness of Q and
assume continuity of the loss function (lower semi-continuity can be used as well).

Weak compactness of the set of probability measures on a complete separable metric
space is equivalent to uniform tightness by the fundamental result of Prohorov (see, e.g.,
Bogachev 2007, Theorem 8.6.2., and van der Vaart and Wellner 1996). If F itself is compact,
then the set ∆(F) of probability measures on F is tight, and hence (under the continuity
of the loss) the minimax theorem holds. If F is not compact, tightness can be established
under the following general condition. According to Example 8.6.5 (ii) in Bogachev (2007),
a family ∆(F) of Borel probability measures on a separable reflexive Banach space E is
uniformly tight (under the weak topology) precisely when there exists a function V ∶ E →
[0,∞) continuous in the norm topology such that

lim
∥f∥→∞

V (f) =∞ and sup
q∈∆(F)

Ef∼qV (f) <∞.

As an example, if F is a subset of a ball in E, it is enough to take V (f) = ∥f∥.
Finally, we remark that in the supervised learning case by considering the improper

learning scenario we allow xt to be observed before the choice ŷt is made. Therefore, we do
not need to invoke the minimax theorem on the space of functions F , but rather (see the
proof of Theorem 8) for two real-valued decisions in a bounded interval. This makes the
application of the minimax theorem straightforward.

Appendix B. Proofs

Proof [of Theorem 1] For brevity, denote ψ(z1∶T ) = inff∈F ∑Tt=1 `(f, zt). The first step in
the proof is to appeal to the minimax theorem for every couple of inf and sup:

VT (F) = inf
q1

sup
p1

Ef1∼q1
z1∼p1

. . . inf
qT

sup
pT

EfT ∼qT
zT ∼pT

{
T

∑
t=1

`(ft, zt) − ψ(z1∶T )}

= sup
p1

inf
q1

Ef1∼q1
z1∼p1

. . . sup
pT

inf
qT

EfT ∼qT
zT ∼pT

{
T

∑
t=1

`(ft, zt) − ψ(z1∶T )}

= sup
p1

inf
f1

Ez1∼p1 . . . sup
pT

inf
fT

EzT ∼pT {
T

∑
t=1

`(ft, zt) − ψ(z1∶T )} ,

where qt and pt range over Q and P, the sets of distributions on F and Z, respectively.
From now on, it will be understood that zt has distribution pt. By moving the expectation
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with respect to zT and then the infimum with respect to fT inside the expression, we arrive
at

sup
p1

inf
f1

E
z1
. . . sup

pT−1
inf
fT−1

E
zT−1

sup
pT

{
T−1

∑
t=1

`(ft, zt) + [inf
fT

E
zT

`(fT , zT )] − E
zT

ψ(z1∶T )}

= sup
p1

inf
f1

E
z1
. . . sup

pT−1
inf
fT−1

E
zT−1

sup
pT

E
zT

{
T−1

∑
t=1

`(ft, zt) + [inf
fT

E
zT

`(fT , zT )] − ψ(z1∶T )} . (18)

Let us now repeat the procedure for step T − 1. The above expression is equal to

sup
p1

inf
f1

E
z1
. . . sup

pT−1
inf
fT−1

E
zT−1

{
T−1

∑
t=1

`(ft, zt) + sup
pT

E
zT

[inf
fT

E
zT

`(fT , zT ) − ψ(z1∶T )]}

which, in turn, is equal to

sup
p1

inf
f1

E
z1
. . . sup

pT−1
{
T−2

∑
t=1

`(ft, zt) + [ inf
fT−1

E
zT−1

`(fT−1, zT−1)]

+ E
zT−1

sup
pT

E
zT

[inf
fT

E
zT

`(fT , zT ) − ψ(z1∶T )]}

= sup
p1

inf
f1

E
z1
. . . sup

pT−1
E
zT−1

sup
pT

E
zT

{
T−2

∑
t=1

`(ft, zt) + [ inf
fT−1

E
zT−1

`(fT−1, zT−1)]

+ [inf
fT

E
zT

`(fT , zT )] − ψ(z1∶T )} .

Continuing in this fashion for T − 2 and all the way down to t = 1 proves the theorem.

Proof [of Lemma 4] Without loss of generality assume that the Lipschitz constant L = 1,
as the general case follows by scaling φ. Fix a Z-valued tree z of depth T . We first claim
that

log N2(β,φ ○ G,z) ≤
k

∑
j=1

log N∞(β,Gj ,z) .

Suppose V1, . . . , Vk are minimal β-covers with respect to `∞ for G1, . . . ,Gk on the tree z.
Consider the set

V φ = {vφ ∶ v ∈ V1 × . . . × Vk},

where vφ is the tree such that vφt (ε) = φ(vt(ε),zt(ε)). Then, for any g = (g1, . . . , gk) ∈ G
and any ε ∈ {±1}T , with representatives (v1, . . . ,vk) ∈ V1 × . . . × Vk, we have,

¿
ÁÁÀ 1

T

T

∑
t=1

(φ(g(zt(ε)),zt(ε)) − vφt (ε))
2
≤ max
t∈[T ]

∣φ(g(zt(ε)),zt(ε)) − vφt (ε)∣

= max
t∈[T ]

∣φ(g(zt(ε)),zt(ε)) − φ(vt(ε),zt(ε))∣ ≤ max
j∈[k]

max
t∈[T ]

∣gj(zt(ε))) − vjt (ε)∣ ≤ β.
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Thus we see that V φ is an β-cover with respect to `∞ for φ ○ G on z. Hence

log N2(β,φ ○ G,z) ≤ log(∣V φ∣) =
k

∑
j=1

log(∣Vj ∣) =
k

∑
j=1

log N∞(β,Gj ,z). (19)

For any g ∈ G and z ∈ Z, the value φ(g(z), z) is contained in the interval [−1 + φ(0, z),+1 +
φ(0, z)] by the Lipschitz property. Consider the R-valued tree φ(0, ⋅) ○ z. We now center
by this tree and consider the set of trees

{φ(g(⋅), ⋅) ○ z − φ(0, ⋅) ○ z ∶ g ∈ G}.

The centering does not change the size of the cover calculated in (19), but allows us to
invoke (7) since the function values are now in [−1,1]:

RT (φ ○ G,z) ≤ inf
α

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4α + 12√

T
∫

1

α

¿
ÁÁÁÀ

k

∑
j=1

log N∞(β,Gj ,z) dβ
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ inf
α

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T

k

∑
j=1
∫

1

α

√
log N∞(β,Gj ,z) dβ

⎫⎪⎪⎬⎪⎪⎭
. (20)

We substitute the upper bound on covering numbers in (8) for each Gj and arrive at an
upper bound of

inf
α

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T

k

∑
j=1
∫

1

α

√
fatβ(Gj) log(2eT /β)dβ

⎫⎪⎪⎬⎪⎪⎭
. (21)

Lemma 2 of Rakhlin et al. (2014) implies that for any β > 2RT (Gj),

fatβ(Gj) ≤
32T RT (Gj)2

β2
.

Let j∗ = argmax
j

RT (Gj). Substituting this together with the value of α = 2RT (Gj∗) into

(21) yields an upper bound

8 RT (Gj∗) + 48
√

2
k

∑
j=1

RT (Gj)∫
1

2RT (Gj∗)

1

β

√
log(2eT /β)dβ.

Using the fact that for any b > 1 and α ∈ (0,1)

∫
1

α

1

β

√
log(b/β)dβ = ∫

b/α

b

1

x

√
logxdx = 2

3
log3/2(x)∣

b/α

b
≤ 2

3
log3/2(b/α) (22)

we obtain a further upper bound of

8 RT (Gj∗) + 32
√

2
k

∑
j=1

RT (Gj) log3/2 ( eT

RT (Gj∗)
) .
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Replacing the first term by 8∑jRT (Gj), we conclude that

RT (φ ○ G,z) ≤ 8 (1 + 4
√

2 log3/2(eT 2))
k

∑
j=1

RT (Gj)

as long as RT (Gj) ≥ 1/T for each j. The statement is concluded by observing that z was
chosen arbitrarily.

Proof [of Corollary 6] We first extend the binary function b to a function b̄ to any x ∈ Rk
as follows :

b̄(x) = { (1 − ∥x − a∥∞)b(a) if ∥x − a∥∞ < 1 for some a ∈ {±1}k
0 otherwise

First note that b̄ is well-defined since all points in the k-cube are separated by L∞ distance
2. Further note that b̄ is 1-Lipschitz w.r.t. the L∞ norm and so applying Lemma 4 we
conclude the statement of the corollary.

Proof [of Theorem 7] Let Et−1[⋅] = E[⋅∣Z1, . . . , Zt−1] denote the conditional expectation.
Using Theorem 1 we have,

VT (F) = sup
p1

E
Z1∼p1

. . . sup
pT

E
ZT ∼pT

[
T

∑
t=1

inf
ft∈F

Et−1`(ft, ⋅) − inf
f∈F

T

∑
t=1

`(f,Zt)]

= sup
p1

E
Z1∼p1

. . . sup
pT

E
ZT ∼pT

[sup
f∈F

{
T

∑
t=1

inf
ft∈F

Et−1`(ft, ⋅) −
T

∑
t=1

`(f,Zt)}]

≤ sup
p1

E
Z1∼p1

. . . sup
pT

E
ZT ∼pT

[sup
f∈F

{
T

∑
t=1

Et−1`(f, ⋅) −
T

∑
t=1

`(f,Zt)}] . (23)

The upper bound is obtained by replacing each infimum by a particular choice f . This step
also holds if the choice ft of the learner comes from a larger set G, as long as F ⊆ G. The
proof is concluded by appealing to (3).

Proof [of Theorem 8]
Let Q̃ denote the set of distributions on Y = [−1,1]. By convexity,

T

∑
t=1

`(ŷt, yt) − inf
f∈F

T

∑
t=1

`(f(xt), yt) ≤ sup
f∈F

T

∑
t=1

`′(ŷt, yt) (ŷt − f(xt)) ,

where `′(ŷt, yt) is a subgradient of the function y ↦ `(⋅, yt) at ŷt. Then the minimax value
(10) can be upper bounded as

VST (F) ≤ sup
x1

inf
q1∈Q̃

sup
y1

E
ŷ1∼q1

. . . sup
xT

inf
qT ∈Q̃

sup
yT

EŷT ∼qT [sup
f∈F

T

∑
t=1

`′(ŷt, yt) (ŷt − f(xt))] .
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By the Lipschitz property of `, we can replace each subgradient `′(ŷt, yt) with a number
st ∈ [−L,L] to obtain the upper bound

sup
x1

inf
q1∈Q̃

sup
y1

E
ŷ1∼q1

sup
s1∈[−L,L]

. . . sup
xT

inf
qT ∈Q̃

sup
yT

E
ŷT ∼qT

sup
sT ∈[−L,L]

{sup
f∈F

T

∑
t=1

st (ŷt − f(xt))} .

Since yt’s no longer appear in the optimization objective, we can simply write the above as

sup
x1

inf
q1∈Q̃

E
ŷ1∼q1

sup
s1∈[−L,L]

. . . sup
xT

inf
qT ∈Q̃

E
ŷT ∼qT

sup
sT ∈[−L,L]

{sup
f∈F

T

∑
t=1

st (ŷt − f(xt))}

= sup
x1

inf
ŷ1∈[−1,1]

sup
s1∈[−L,L]

. . . sup
xT

inf
ŷT ∈[−1,1]

sup
sT ∈[−L,L]

{sup
f∈F

T

∑
t=1

st (ŷt − f(xt))} ,

where the equality follows because infima are obtained at point distributions. By the same
reasoning, we now pass to distributions over st’s:

sup
x1

inf
ŷ1∈[−1,1]

sup
p1

E
s1∼p1

. . . sup
xT

inf
ŷT ∈[−1,1]

sup
pT

EsT ∼pT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)] . (24)

From now on, it will be understood that the supremum over pt ranges over all distributions
supported on [−L,L], for any t, and st has distribution pt. Now note that

EsT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

st ⋅ f(xt)]

is concave (linear) in pT and is convex in ŷT and hence by the minimax theorem,

inf
ŷT ∈[−1,1]

sup
pT

EsT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)] = sup
pT

inf
ŷT ∈[−1,1]

EsT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)]

=
T−1

∑
t=1

st ⋅ ŷt + sup
pT

EsT
⎡⎢⎢⎢⎣

inf
ŷT ∈[−1,1]

EsT [sT ] ⋅ ŷT − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦
,

where the last step is similar to the one in the proof of Theorem 1, specifically (18). Similarly
note that the term

EsT−1
⎡⎢⎢⎢⎣

T−1

∑
t=1

st ⋅ ŷt + sup
pT ,xT

EsT
⎡⎢⎢⎢⎣

inf
ŷT ∈[−1,1]

EsT [sT ] ⋅ ŷT − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎦
is concave (linear) in pT−1 and is convex in ŷT−1 and hence again by the minimax theorem,

inf
ŷT−1∈[−1,1]

sup
pT−1

E
sT−1

⎡⎢⎢⎢⎢⎣

T−1

∑
t=1

st ⋅ ŷt + sup
pT ,xT

E
sT

⎡⎢⎢⎢⎣
inf

ŷT ∈[−1,1]
EsT [sT ] ⋅ ŷT − inf

f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

= sup
pT−1

inf
ŷT−1∈[−1,1]

E
sT−1

⎡⎢⎢⎢⎢⎣

T−1

∑
t=1

st ⋅ ŷt + sup
pT ,xT

EsT
⎡⎢⎢⎢⎣

inf
ŷT ∈[−1,1]

EsT [sT ] ⋅ ŷT − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

=
T−2

∑
t=1

st ⋅ ŷt + sup
pT−1

E
sT−1

sup
pT ,xT

EsT
⎡⎢⎢⎢⎣

T

∑
t=T−1

inf
ŷt∈[−1,1]

Est [st] ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦
.
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Proceeding in similar fashion and using this in (24) we conclude that,

VST (F) ≤ sup
x1

inf
ŷ1∈[−1,1]

sup
p1

E
s1∼p1

. . . sup
xT

inf
ŷT ∈[−1,1]

sup
pT

EsT ∼pT [
T

∑
t=1

st ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)]

= sup
x1

sup
p1

E
s1∼p1

. . . sup
xT

sup
pT

E
sT ∼pT

⎡⎢⎢⎢⎣

T

∑
t=1

inf
ŷt∈[−1,1]

Est∼pt [st] ⋅ ŷt − inf
f∈F

T

∑
t=1

stf(xt)
⎤⎥⎥⎥⎦

≤ sup
x1

sup
p1

E
s1∼p1

. . . sup
xT

sup
pT

EsT ∼pT [sup
f∈F

T

∑
t=1

(Est∼pt [st] − st) f(xt)] ,

where we replaced each ŷt with a potentially suboptimal choice f(xt). Passing the expec-
tation past the suprema we obtain an upper bound

sup
x1

sup
p1

E
s1,s′1∼p1

. . . sup
xT

sup
pT

EsT ,s′T ∼pT [sup
f∈F

T

∑
t=1

(s′t − st) f(xt)] (25)

= sup
x1

sup
p1

E
s1,s′1∼p1

E
ε1
. . . sup

xT

sup
pT

E
sT ,s

′
T ∼pT

EεT [sup
f∈F

T

∑
t=1

εt (s′t − st) f(xt)]

≤ sup
x1

sup
s1∈[−2L,2L]

E
ε1
. . . sup

xT

sup
sT ∈[−2L,2L]

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)]

= sup
x1

sup
s1∈{−2L,2L}

E
ε1
. . . sup

xT

sup
sT ∈{−2L,2L}

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)] (26)

= 2L sup
x1

sup
s1∈{−1,1}

E
ε1
. . . sup

xT

sup
sT ∈{−1,1}

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)] , (27)

where the last inequality is because, for every t ∈ [T ], we have convexity in st and so
supremum is achieved at either −2L or 2L. Notice that after using convexity to go to
gradients, the proof technique above basically mimics the proofs of Theorems 1 and 7 to get
to a symmetrized term as we did in those theorems. Now consider any arbitrary function
ψ ∶ {±1}↦ R, we have that

sup
s∈{±1}

Eε [ψ(s ⋅ ε)] = sup
s∈{±1}

1

2
(ψ(+s) + ψ(−s)) = 1

2
(ψ(+1) + ψ(−1)) = Eε [ψ(ε)] .

Since in (27), for each t, st and εt appear together as εt ⋅ st using the above equation
repeatedly, we conclude that

VST (F) ≤ 2L sup
x1

sup
s1∈{−1,1}

Eε1 . . . sup
xT

sup
sT ∈{−1,1}

EεT [sup
f∈F

T

∑
t=1

εtstf(xt)]

= 2L sup
x1

Eε1 . . . sup
xT

EεT [sup
f∈F

T

∑
t=1

εtf(xt)] . (28)

We now claim that the above supremum can be written in terms of an X -valued tree. Briefly,
the solution for x1 in (28) is attained (for simplicity, assume the supremum is attained) at
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an optimal value x∗1 . The optimal value x∗2 can be calculated for ε1 = 1 and ε1 = −1. Arguing
in this manner leads to a tree x. We conclude

VST (F) ≤ 2L sup
x

Eε1∶T [sup
f∈F

T

∑
t=1

εtf(xt(ε))] = 2LT RT (F).

Proof [of Proposition 9] For the upper bound, we start by using Theorem 8 for absolute
loss, which has a Lipschitz constant of 1, to bound the value of the game by sequential
Rademacher complexity,

1

T
VS
T (F) ≤ 2RT (F) .

We combine the above inequality with (7) and (8) to obtain the upper bound.

Observe that a lower bound on the value can be obtained by choosing any particular
joint distribution on sequences (x1, y1), . . . , (xt, yt) in (2):

VS
T (F) ≥ E [

T

∑
t=1

inf
ft∈F

E(xt,yt) [∣yt − ft(xt)∣ ∣ (x, y)1∶t−1] − inf
f∈F

T

∑
t=1

∣yt − f(xt)∣] .

To this end, choose any X -valued tree x of depth T . Let y1, . . . , yT be i.i.d. Rademacher
random variables and define xt = x(y1∶t−1) deterministically (that is, the conditional dis-
tribution of xt is a point distribution on x(y1∶t−1)). It is easy to see that this distribution
makes the choice ft irrelevant, yielding

VS
T (F) ≥ E [

T

∑
t=1

1 − inf
f∈F

T

∑
t=1

∣yt − f(xt)∣] = Ey1,...,yT sup
f∈F

T

∑
t=1

ytf(xt).

Since this holds for any tree x, we obtain the desired lower bound VS
T (F) ≥ RT (F). The

final lower bound on RT (F) (in terms of the fat-shattering dimensions) is proved by Rakhlin
et al. (2014, Lemma 2).

Proof [of Theorem 10] The equivalence of 1 and 2 follows directly from Proposition 9.
First, suppose that fatα is infinite for some α > 0. Then, the lower bound says that VS

T (F) ≥
αT /(4

√
2) and hence lim supT→∞ VS

T (F)/T ≥ α/(4
√

2). Thus, the class F is not online
learnable in the supervised setting. Now, assume that fatα is finite for all α. Fix an ε > 0
and choose α = ε/16. Using the upper bound, we have

VS
T (F) ≤ 8Tα + 24

√
T ∫

1

α

√
fatβ log (2eT

β
) dβ

≤ 8Tα + 24
√
T (1 − α)

√
fatα log (2eT

α
)

≤ εT /2 + εT /2
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for T large enough. Thus, lim supT→∞ VS
T (F)/T ≤ ε. Since ε > 0 was arbitrary, this proves

that F is online learnable in the supervised setting.

The statement that VS
T (F), RT (F), and DT (F) are within a multiplicative factor of

O(log3/2 T ) of each other whenever the problem is online learnable follows immediately
from Eq. (10) in (Rakhlin et al., 2014) and Proposition 9.

Proof [of Lemma 13] Consider the game (F ,Zcvx) and fix a randomized strategy π of
the player. Then, the expected regret of a randomized strategy π against any adversary
playing g1, . . . , gT can be lower-bounded via Jensen’s inequality as

T

∑
t=1

Eut∼πt(g1∶t−1) [gt(ut)] − inf
u∈F

T

∑
t=1

gt(u) ≥
T

∑
t=1

gt (Eut∼πt(g1∶t−1) [ut]) − inf
u∈F

T

∑
t=1

gt(u),

which is simply regret of a deterministic strategy obtained from π by playing Eut∼πt(g1∶t−1) [ut]
on round t. Thus, to any randomized strategy corresponds a deterministic one that is no
worse. On the other hand, the set of randomized strategies contains the set of determinis-
tic ones. Hence, VT (F ,Zcvx) = Vdet

T (F ,Zcvx) where Vdet
T is defined as the minimax regret

obtainable only using deterministic player strategies. Now, we appeal to Theorem 14 of
Abernethy et al. (2008) that says Vdet

T (F ,Zcvx) = Vdet
T (F ,Zlin). Note that Abernethy et al.

(2008) deal with convex sets in finite dimensional spaces only. However, their proof relies
on fundamental properties of convex functions that are true in any general vector space
(such as the fact that the first order Taylor expansion of a convex function globally lower
bounds the convex function). Since Zlin also consists of convex (in fact, linear) functions,
the above argument again gives Vdet

T (F ,Zlin) = VT (F ,Zlin). This finishes the proof of the
lemma.

Proof [of Proposition 15] We shall prove that for any i ∈ {2, . . . , k},

RT (Fi) ≤ 16LBi (1 + 4
√

2 log3/2(eT 2))RT (Fi−1).

To see this note that for any x, RT (Fi,x) is equal to

Eε

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sup
wi∶∥wi∥1≤Bi
∀j fj∈Fi−1

T

∑
t=1

εt
⎛
⎝∑j

wijσ (fj(xt(ε)))
⎞
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≤ Eε

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sup
wi∶∥wi∥1≤Bi
∀j fj∈Fi−1

∥wi∥1 max
j

∣
T

∑
t=1

εtσ (fj(xt(ε)))∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

by Hölder’s inequality. Then RT (Fi) is upper bounded as

sup
x

Eε [Bi sup
f∈Fi−1

max{
T

∑
t=1

εtσ (f(xt(ε))) ,−
T

∑
t=1

εtσ (f(xt(ε)))}]

≤ sup
x

Eε [Bimax{ sup
f∈Fi−1

T

∑
t=1

εtσ (f(xt(ε))) , sup
f∈Fi−1

T

∑
t=1

−εtσ (f(xt(ε)))}] .
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Since 0 ∈ Fi together with the assumption of σ(0) = 0, both terms are non-negative, and
thus the maximum above can be upper bounded by the sum

sup
x

Eε [Bi sup
f∈Fi−1

T

∑
t=1

εtσ (f(xt(ε)))] + sup
x

Eε [Bi sup
f∈Fi−1

T

∑
t=1

−εtσ (f(xt(ε)))] .

We now claim that the two terms are equal. Indeed, let x∗ be the tree achieving the
supremum in the first term (a modified analysis can be carried out if the supremum is not
achieved). Then the mirror tree x defined via xt(ε) = x∗t (−ε) yields the same value for the
second term. Since the argument can be carried out in the reverse direction, the two terms
are equal, and the upper bound of

2Bi sup
x

Eε [ sup
f∈Fi−1

T

∑
t=1

εtσ (f(xt(ε)))]

follows. In view of contraction in Corollary 5, we obtain a further upper bound of

16BiL (1 + 4
√

2 log3/2(eT 2))RT (Fi−1). (29)

To finish the proof we note that for the base case of i = 1, RT (F1) is equal to

sup
x

Eε
⎡⎢⎢⎢⎢⎣

sup
w∈Rd∶∥w∥1≤B1

T

∑
t=1

εtw
⊺xt(ε)

⎤⎥⎥⎥⎥⎦
which is upper bounded by

sup
x

Eε
⎡⎢⎢⎢⎢⎣

sup
w∈Rd∶∥w∥1≤B1

∥w∥1 ∥
T

∑
t=1

εtxt(ε)∥
∞

⎤⎥⎥⎥⎥⎦
≤ B1 sup

x
Eε [max

i∈[d]
{
T

∑
t=1

εtxt(ε)[i]}] .

Note that the instances x ∈ X are vectors in Rd and so for a given instance tree x, for any
i ∈ [d], x[i] given by only taking the ith co-ordinate is a valid real valued tree. By (4),

T ⋅RT (F1) ≤ B1 sup
x

Eε [max
i∈[d]

{
T

∑
t=1

εtxt(ε)[i]}] ≤ B1

√
2TX2

∞ log d.

Using the above and (29) repeatedly we conclude the proof.

Proof [of Proposition 16] Fix a γ > 0 and use loss

`(ŷ, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ŷy ≤ 0
1 − ŷy/γ 0 < ŷy < γ
0 ŷy ≥ γ

Since this loss is 1/γ-Lipschitz, we can use (11) and the Rademacher contraction Corollary 5
to show that for each γ > 0 there exists a randomized strategy τγ such that for any data
sequence

T

∑
t=1

Eŷt∼τγt (z1∶t−1) [`(ŷt, yt)] ≤ inf
f∈F

T

∑
t=1

`(f(xt), yt) + γ−1ρTTRT (F),

180



Online Learning via Sequential Complexities

where ρT = 16 (1 + 4
√

2 log3/2(eT 2)) throughout the proof. Further, observe that the loss

function is lower bounded by the zero-one loss 1{ŷy < 0} and is upper bounded by the
margin zero-one loss 1{ŷy < γ}. Hence,

T

∑
t=1

Eŷt∼τγt (z1∶t−1) [1{ŷtyt < 0}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) < γ} + γ−1ρTTRT (F). (30)

The above bound holds for randomized each strategy given by τγ , for any given γ. Now
we discretize the set of γ’s as γi = 1/2i and use the output of the randomized strategies
τγ1 , τγ2 , . . ., that attain the regret bounds given in (30), as experts. We then run a countable
experts algorithm (Algorithm 1) with initial weight for expert i as pi = 6

π2i2
. Such an

algorithm achieves O(
√
T log(1/pi)) regret w.r.t. expert i. In view of Proposition 20, for

this randomized strategy τ , for any i,

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷtyt < 0}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) < γi} + γ−1
i ρTTRT (F) +

√
T (1 + 2 log( iπ√

6
)) .

For any γ > 0, let iγ ∈ 0,1, . . . , be such that 2−(iγ+1) < γ ≤ 2−iγ . Then above right-hand side
is upper bounded by

inf
f∈F

T

∑
t=1

1{ytf(xt) < 2γ} + γ−1ρTTRT (F) +
√
T (1 + 2 log( iγπ√

6
)) .

The proof is concluded using the inequality iγ ≤ log(1/γ) and upper bounding constants.

Proof [of Proposition 17] Fix some L > 0. The loss

φL(α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if α ≤ 0
1 −Lα if 0 < α ≤ 1/L

0 otherwise

is L-Lipschitz and so by Theorem 7 and Corollary 5 we have that for every L > 0, there exists
a randomized strategy τL for the player, such that for any sequence z1 = (x1, y1), . . . , zT =
(xT , yT ),

T

∑
t=1

Eŷt∼τLt (z1∶t−1) [φL(ytŷt)] ≤ inf
f∈F

T

∑
t=1

φL(ytf(xt)) +LρTTRT (F), (31)

where ρT = 16 (1 + 4
√

2 log3/2(eT 2)) throughout this proof. Since φL dominates the step

function, the left hand side of (31) also upper-bounds the expected indicator loss

T

∑
t=1

Eŷt∼τLt (z1∶t−1) [1{ŷt ≠ yt}] .

For any f ∈ F , we can relate the φL-loss to the indicator loss by

T

∑
t=1

φL(ytf(xt)) =
T

∑
t=1

1{ytf(xt) ≤ 0} +∑
l

C(l)φL(wl).
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Let us now use the above decomposition in (31). Crucially, the sign of f(x) does not depend
on wl, but only on the label σl of the unique leaf l reached by x. Thus, the infimum in (31)
can be split into two infima:

inf
f∈F

T

∑
t=1

φL(ytf(xt)) = inf
f∈F

T

∑
t=1

1{ytf(xt) ≤ 0} + inf
wl
∑
l

C(l)φL(wl),

where it is understood that the C(l) term on the right hand side is computed using the
function f minimizing the first sum on the right hand side. We can further write

∑
l

C(l)φL(wl) ≤∑
l

C(l)max(0,1 −Lwl) =∑
l

max (0, (1 −Lwl)C(l)) .

So far, we have derived a regret bound for a given L. Let us now remove the requirement
to know L a priori by running the experts Algorithm 1 with τ1, τ2, . . . as a countable set of
experts corresponding to the values L ∈ N. The prior on expert L is taken to be pL = 6

π2L
−2

so that ∑pL = 1. For the randomized strategy τ obtained in this manner, from Proposition
20, for any sequence of instances and any L ∈ N,

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷ ≠ yt}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) ≤ 0} + inf
f∈F
∑
l

max (0, (1 −Lwl)C(l))

+LρTTRT (F) +
√
T + 2

√
T log(Lπ/

√
6).

Now we pick L = ∣{l ∶ C(l) > ρTTRT (F)}∣ ≤ N and upper bound the second infimum by
choosing wl = 0 if C(l) ≤ ρTTRT (F) and wl = 1/L otherwise:

inf
wl
∑
l

max (0, (1 −Lwl)C(l)) +LρTTRT (F) ≤∑
l

C(l)1{C(l) ≤ ρTTRT (F)}

+ ρTTRT (F)∑
l

1{C(l) > ρTTRT (F)}

which can be written succinctly as

∑
l

min{C(l), ρTTRT (F)}.

We conclude that

T

∑
t=1

Eŷt∼τt(z1∶t−1) [1{ŷt ≠ yt}] ≤ inf
f∈F

T

∑
t=1

1{ytf(xt) ≤ 0}

+∑
l

min(C(l), ρTTRT (F)) +
√
T (1 + 2 log(Nπ/

√
6)) .

Finally, we apply Corollary 6 and Lemma 3(2) to bound RT (F) ≤ dO(log3/2 T ) RT (H) and
thus conclude the proof.

Proof [of Proposition 18] First, by the classical result of Kolmogorov and Tikhomirov
(1959), the class G of all bounded Lipschitz functions on a bounded interval has small metric
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entropy: log N̂∞(α,G) = Θ(1/α). For the particular class of non-decreasing 1-Lipschitz
functions, it is trivial to verify that the entropy is in fact bounded by 2/α. Considering all
1-Lipschitz functions increases this to c0/α for some universal constant c0.

Next, consider the class F = {⟨w,x⟩ ∣ ∥w∥2 ≤ 1} over the Euclidean ball. By Proposi-
tion 14, RT (F) ≤ 1/

√
T . Using the lower bound of Proposition 9, fatα ≤ 32/α2 whenever

α > 4
√

2/
√
T . This implies that N∞(α,F , T ) ≤ (2eT /α)32/α2

whenever α > 4
√

2/
√
T . Note

that this bound does not depend on the ambient dimension of X .
Next, we show that a composition of G with any “small” class F ⊂ [−1,1]X also has

a small cover. To this end, suppose N∞(α,F , T ) is the covering number for F . Fix a
particular tree x and let V = {v1, . . . ,vN} be an `∞ cover of F on x at scale α. Analogously,
let W = {g1, . . . , gM} be an `∞ cover of G with M = N̂∞(α,G). Consider the class G ○F =
{g○f ∶ g ∈ G, f ∈ F}. The claim is that {g(v) ∶ v ∈ V, g ∈W} provides an `∞ cover for G○F on
x. Fix any f ∈ F , g ∈ G and ε ∈ {±1}T . Let v ∈ V be such that maxt∈[T ] ∣f(xt(ε))−vt(ε)∣ ≤ α,
and let g′ ∈ W be such that ∥g − g′∥∞ ≤ α. Then, using the fact that functions in G are
1-Lipschitz, for any t ∈ [T ],

∣g(f(xt(ε))) − g′(vt(ε))∣ ≤ ∣g(f(xt(ε))) − g′(f(xt(ε))∣ + ∣g′(f(xt(ε)) − g′(vt(ε))∣ ≤ 2α .

Hence, N∞(2α,G ○F , T ) ≤ N̂∞(α,G) ×N∞(α,F , T ).
Finally, we put all the pieces together. By Theorem 8, the minimax value is bounded

by 8T times the sequential Rademacher complexity of the class G ○ F = {u(⟨w,x⟩) ∣ u ∶
[−1,1]→ [−1,1] is 1-Lipschitz , ∥w∥2 ≤ 1} since the squared loss is 4-Lipschitz on the space
of possible values. The latter complexity is then bounded by

TDT (G ○F) ≤ 32
√
T + 12∫

1

8/
√
T

√
T log N (δ,G ○F , T ) dδ

≤ 32
√
T + 12

√
T ∫

1

8/
√
T

√
4c0

δ
+ 128

δ2
log(2eT )dδ .

We therefore conclude that the value of the game for the supervised learning problem is
bounded by O(

√
T log3/2(T )).

Appendix C. Exponentially Weighted Average (EWA) Algorithm on
Countable Experts

We consider here a version of the exponentially weighted experts algorithm for a countable
(possibly infinite) number of experts and provide a bound on the expected regret of the
randomized algorithm. The proof of the result closely follows the finite case (e.g., Cesa-
Bianchi and Lugosi, 2006, Theorem 2.2). This result is well known and we include it here
for completeness, as it is needed in the proofs of Proposition 16 and Proposition 17.

Suppose we are provided with countable experts E1,E2, . . ., where each expert can
herself be thought of as a randomized/deterministic player strategy which, given history,
produces an element of F at round t. Here we also assume that F ⊆ [0,1]X . Denote by
f it the function output by expert i at round t given the history. The EWA algorithm we
consider needs access to the countable set of experts and also needs an initial weighting on
each expert p1, p2, . . . such that ∑i pi = 1.
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Algorithm 1 EWA (E1,E2, . . ., p1, p2, . . .)

Initialize each w1
i ← pi

for t = 1 to T do
Pick randomly an expert i with probability wti
Play ft = f ti
Receive xt

Update for each i, wt+1
i = wtie

−ηfti (xt)

∑iwtie
−ηft

i
(xt)

end for

Proposition 20 The exponentially weighted average forecaster (Algorithm 1) with η =
T−1/2 enjoys the regret bound

T

∑
t=1

E [ft(xt)] ≤
T

∑
t=1

f ti (xt) +
√
T

8
+
√
T log (1/pi)

for any i ∈ N.
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Abstract

A low-rank transformation learning framework for subspace clustering and classification is
proposed here. Many high-dimensional data, such as face images and motion sequences,
approximately lie in a union of low-dimensional subspaces. The corresponding subspace
clustering problem has been extensively studied in the literature to partition such high-
dimensional data into clusters corresponding to their underlying low-dimensional subspaces.
Low-dimensional intrinsic structures are often violated for real-world observations, as they
can be corrupted by errors or deviate from ideal models. We propose to address this by
learning a linear transformation on subspaces using nuclear norm as the modeling and opti-
mization criteria. The learned linear transformation restores a low-rank structure for data
from the same subspace, and, at the same time, forces a maximally separated structure
for data from different subspaces. In this way, we reduce variations within the subspaces,
and increase separation between the subspaces for a more robust subspace clustering. This
proposed learned robust subspace clustering framework significantly enhances the perfor-
mance of existing subspace clustering methods. Basic theoretical results presented here
help to further support the underlying framework. To exploit the low-rank structures of
the transformed subspaces, we further introduce a fast subspace clustering technique, which
efficiently combines robust PCA with sparse modeling. When class labels are present at the
training stage, we show this low-rank transformation framework also significantly enhances
classification performance. Extensive experiments using public data sets are presented,
showing that the proposed approach significantly outperforms state-of-the-art methods for
subspace clustering and classification. The learned low cost transform is also applicable to
other classification frameworks.

Keywords: subspace clustering, classification, low-rank transformation, nuclear norm,
feature learning

1. Introduction

High-dimensional data often have a small intrinsic dimension. For example, in the area
of computer vision, face images of a subject (Basri and Jacobs, 2003; Wright et al., 2009),
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handwritten images of a digit (Hastie and Simard, 1998), and trajectories of a moving object
(Tomasi and Kanade, 1992) can all be well-approximated by a low-dimensional subspace
of the high-dimensional ambient space. Thus, multiple class data often lie in a union of
low-dimensional subspaces. The ubiquitous subspace clustering problem is to partition
high-dimensional data into clusters corresponding to their underlying subspaces.

Standard clustering methods such as k-means in general are not applicable to subspace
clustering. Various methods have been recently suggested for subspace clustering, such as
Sparse Subspace Clustering (SSC) (Elhamifar and Vidal, 2013), and its extensions (Liu
et al., 2010; Soltanolkotabi and Candes, 2012; Soltanolkotabi et al., 2013; Wang and Xu,
2013), Local Subspace Affinity (LSA) (Yan and Pollefeys, 2006), Local Best-fit Flats (LBF)
(Zhang et al., 2012), Generalized Principal Component Analysis (Vidal et al., 2003), Ag-
glomerative Lossy Compression (Ma et al., 2007), Locally Linear Manifold Clustering (Goh
and Vidal, 2007), and Spectral Curvature Clustering (Chen and Lerman, 2009). A recent
survey on subspace clustering can be found in Vidal (2011).

Low-dimensional intrinsic structures, which enable subspace clustering, are often vio-
lated for real-world data. For example, under the assumption of Lambertian reflectance,
Basri and Jacobs (2003) show that face images of a subject obtained under a wide variety of
lighting conditions can be accurately approximated with a 9-dimensional linear subspace.
However, real-world face images are often captured under pose variations; in addition, faces
are not perfectly Lambertian, and exhibit cast shadows and specularities (Candès et al.,
2011). Therefore, it is critical for subspace clustering to handle corrupted underlying struc-
tures of realistic data, and as such, deviations from ideal subspaces.

When data from the same low-dimensional subspace are arranged as columns of a single
matrix, the matrix should be approximately low-rank. Thus, a promising way to handle
corrupted data for subspace clustering is to restore such low-rank structure. Recent efforts
have been invested in seeking transformations such that the transformed data can be de-
composed as the sum of a low-rank matrix component and a sparse error one (Peng et al.,
2010; Shen and Wu, 2012; Zhang et al., 2011). Peng et al. (2010) and Zhang et al. (2011) are
proposed for image alignment, Kuybeda et al. (2013) for the extension to multiple-classes
with applications in cryo-tomograhy, and Shen and Wu (2012) is discussed in the context of
salient object detection. All these methods build on recent theoretical and computational
advances in rank minimization.

In this paper, we propose to improve subspace clustering and classification by learning a
linear transformation on subspaces using matrix rank, via its nuclear norm convex surrogate,
as the optimization criteria. The learned linear transformation recovers a low-rank structure
for data from the same subspace, and, at the same time, forces a maximally separated
structure for data from different subspaces (actually high nuclear norm, which as discussed
later, improves the separation between the subspaces). In this way, we reduce variations
within the subspaces, and increase separations between the subspaces for more accurate
subspace clustering and classification.

For example, as shown in Figure 1, after faces are detected and aligned, e.g., using Zhu
and Ramanan (2012), our approach learns linear transformations for face images to restore
for the same subject a low-dimensional structure. By comparing the last row to the first
row in Figure 1, we can easily notice that faces from the same subject across different poses
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are more visually similar in the new transformed space, enabling better face clustering and
classification across pose.

This paper makes the following main contributions:

• Subspace low-rank transformation (LRT) is introduced and analyzed in the context
of subspace clustering and classification;
• A Learned Robust Subspace Clustering framework (LRSC) is proposed to enhance

existing subspace clustering methods;
• A discriminative low-rank (nuclear norm) transformation approach is proposed to

reduce the variation within the classes and increase separations between the classes
for improved classification;
• We propose a specific fast subspace clustering technique, called Robust Sparse Sub-

space Clustering (R-SSC), by exploiting low-rank structures of the learned trans-
formed subspaces;
• We discuss online learning of subspace low-rank transformation for big data;
• We demonstrate through extensive experiments that the proposed approach signifi-

cantly outperforms state-of-the-art methods for subspace clustering and classification.

The proposed approach can be considered as a way of learning data features, with such
features learned in order to reduce within-class rank (nuclear norm), increase between class
separation, and encourage robust subspace clustering. As such, the framework and criteria
introduced here can be incorporated into other data classification and clustering problems.

In Section 2, we formulate and analyze the low-rank transformation learning problem.
In Sections 3 and 4, we discuss the low-rank transformation for subspace clustering and
classification respectively. Experimental evaluations are given in Section 5 on public data
sets commonly used for subspace clustering evaluation. Finally, Section 6 concludes the
paper.

2. Learning Low-rank Transformations (LRT)

Let {Sc}Cc=1 be C m-dimensional subspaces of Rd (not all subspaces are necessarily of the
same dimension, this is only assumed here to simplify notation). A data set is denoted as
Y = {yi}Ni=1 ⊆ Rd, with each data point yi in one of the C subspaces and arranged as
a column of Y. Yc denotes the set of points in the c-th subspace Sc, points arranged as
columns of the matrix Yc.

As data points in Yc lie in a low-dimensional subspace, the matrix Yc is expected to be
low-rank, and such low-rank structure is critical for accurate subspace clustering. However,
as discussed above, this low-rank structure is often violated for real data.

Our proposed approach is to learn a global linear transformation on subspaces. Such
linear transformation restores a low-rank structure for data from the same subspace, and,
at the same time, encourages a maximally separated structure for data from different sub-
spaces. In this way, we reduce the variation within the subspaces and introduce separations
between the subspaces for more robust subspace clustering or classification.
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Original face images  

Detected and aligned faces 

Cropped and flipped faces 

Low-rank transformed faces 

Figure 1: Learned low-rank transformation on faces across pose. In the second row, the
input faces are first detected and aligned, e.g., using the method in Zhu and
Ramanan (2012). Pose models defined in Zhu and Ramanan (2012) enable an
optional crop-and-flip step to retain the more informative side of a face in the
third row. Our proposed approach learns linear transformations for face images
to restore for the same subject a low-dimensional structure as shown in the last
row. By comparing the last row to the first row, we can easily notice that faces
from the same subject across different poses are more visually similar in the new
transformed space, enabling better face clustering or recognition across pose (note
that the goal is clustering/recognition and not reconstruction).

2.1 Preliminary Pedagogical Formulation using Rank

We first assume the data cluster labels are known beforehand, and this assumption is
removed when discussing the full clustering approach in Section 3. We adopt matrix rank
as the key learning criterion (presented here first for pedagogical reasons, to be later replaced
by the nuclear norm), and compute one global linear transformation on all subspaces as

arg
T

min
C∑
c=1

rank(TYc)− rank(TY), s.t.||T||2 = 1, (1)

where T ∈ Rd×d is one global linear transformation on all data points (we will later discuss
then T’s dimension is less than d), ||·||2 denotes the matrix induced 2-norm, and γ is a
positive constant. Intuitively, minimizing the first representation term

∑C
c=1 rank(TYc)

encourages a consistent representation for the transformed data from the same subspace;
and minimizing the second discrimination term −rank(TY) encourages a diverse repre-
sentation for transformed data from different subspaces (we will later formally discuss that
the convex surrogate nuclear norm actually has this desired effect). The normalization
condition ||T||2 = 1 prevents the trivial solution T = 0.
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We now explain that the pedagogical formulation in (1) using rank is however not opti-
mal to simultaneously reduce the variation within the same class subspaces and introduce
separations between the different class subspaces, motivating the use of the nuclear norm
not only for optimization reasons but for modeling ones as well. Let A and B be matri-
ces of the same dimensions (standing for two classes Y1 and Y2 respectively), and [A,B]
(standing for Y) be the concatenation of A and B, we have (Marsaglia and Styan, 1972)

rank([A,B]) ≤ rank(A) + rank(B), (2)

with equality if and only if A and B are disjoint, i.e., they intersect only at the origin (often
the analysis of subspace clustering algorithms considers disjoint spaces, e.g., Elhamifar and
Vidal (2013)).

It is easy to show that (2) can be extended for the concatenation of multiple matrices,

rank([Y1,Y2,Y3, · · · ,YC ]) ≤ rank(Y1) + rank([Y2,Y3, · · · ,YC ]) (3)

≤ rank(Y1) + rank(Y2) + rank([Y3, · · · ,YC ])

. . .

≤
C∑
c=1

rank(Yc),

with equality if matrices are independent. Thus, for (1), we have

C∑
c=1

rank(TYc)− rank(TY) ≥ 0, (4)

and the objective function (1) reaches the minimum 0 if matrices are independent after
applying the learned transformation T. However, independence does not infer maximal
separation, an important goal for robust clustering and classification. For example, two
lines intersecting only at the origin are independent regardless of the angle in between, and
they are maximally separated only when the angle becomes π

2 . With this intuition in mind,
we now proceed to describe our proposed formulation based on the nuclear norm.

2.2 Problem Formulation using Nuclear Norm

Let ||A||∗ denote the nuclear norm of the matrix A, i.e., the sum of the singular values of
A. The nuclear norm ||A||∗ is the convex envelop of rank(A) over the unit ball of matrices
Fazel (2002). As the nuclear norm can be optimized efficiently, it is often adopted as the
best convex approximation of the rank function in the literature on rank optimization, e.g.,
Candès et al. (2011) and Recht et al. (2010).

One factor that fundamentally affects the performance of subspace clustering and clas-
sification algorithms is the distance between subspaces. An important notion to quantify
the distance (separation) between two subspaces Si and Sj is the smallest principal angle
θij (Miao and Ben-Israel, 1992; Elhamifar and Vidal, 2013), which is defined as

θij = min
u∈Si,v∈Sj

arccos
u′v

||u||2||v||2
, (5)
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(a) θAB = π
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= 1.57.
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(b) T =

[
1.00 0

0 1.00

]
;

θAB = 1.57.
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(c) θAB = π
4

= 0.79,
|A|∗ = 1, |B|∗ = 1,
|[A,B]|∗ = 1.41
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(d) T =
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;

θAB = 1.57,
|A|∗ = 1, |B|∗ = 1,
|[A,B]|∗ = 1.95
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(e)

[
θAB = 0.79, θAC = 0.79, θBC = 1.05
εA = 0.0141, εB = 0.0131, εC = 0.0148

]
,

|A|∗ = 4.06, |B|∗ = 4.08, |C|∗ = 4.16.
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(f) T =

 0.39 −0.16 −0.16
−0.13 0.90 0.11
−0.23 0.11 0.57

;[
θAB = 1.51, θAC = 1.49, θBC = 1.57
εA = 0.0091, εB = 0.0085, εC = 0.0114

]
,

|A|∗ = 1.93, |B|∗ = 2.37, |C|∗ = 1.20.

Figure 2: The learned transformation T using (6) with the nuclear norm as the key criterion.
Three subspaces in R3 are denoted as A(red), B(blue), C(green). We denote the
angle between subspaces A and B as θAB (and analogous for the other pairs
of subspaces). Using (6), we transform A, B, C in (a),(c),(e) to (b),(d),(f)
respectively (in the first row the subspace C is empty, being this basically a
two dimensional example). Data points in (e) are associated with random noises
∼ N (0, 0.01). We denote the root mean square deviation of points in A from the
true subspace as εA (and analogous for the other subspaces). We observe that the
learned transformation T maximizes the distance between every pair of subspaces
towards π

2 , and reduces the deviation of points from the true subspace when
noise is present, note how the individual subspaces nuclear norm is significantly
reduced. Note that, in (c) and (d), we have the same rank values rank(A) =
1, rank(B) = 1, rank([A,B]) = 2, but different nuclear norm values, manifesting
the improved between-subspaces separation.
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Note that θij ∈ [0, π2 ]. We replace the rank function in (1) with the nuclear norm,

arg
T

min
C∑
c=1

||TYc||∗ − ||TY||∗, s.t.||T||2 = 1. (6)

The normalization condition ||T||2 = 1 prevents the trivial solution T = 0. However,
understanding the effects of adopting a different normalization norm here is interesting and
is the subject of future research.

It is important to note that (6) is not simply a relaxation of (1). Not only the replacement
of the rank by the nuclear norm is critical for optimization considerations in reducing the
variation within same class subspaces, but as we show next, the learned transformation
T using the objective function (6) also maximizes the separation between different class
subspaces (a missing property in (1)), leading to improved clustering and classification
performance.

We start by presenting some basic norm relationships for matrices and their correspond-
ing concatenations.

Theorem 1 Let A and B be matrices of the same row dimensions, and [A,B] be the
concatenation of A and B, we have

||[A,B]||∗ ≤ ||A||∗ + ||B||∗.

Proof: See Appendix A. �

Theorem 2 Let A and B be matrices of the same row dimensions, and [A,B] be the
concatenation of A and B, we have

||[A,B]||∗ = ||A||∗ + ||B||∗.

when the column spaces of A and B are orthogonal.

Proof: See Appendix B. �
It is easy to see that theorems 1 and 2 can be extended for the concatenation of multiple

matrices. Thus, for (6), we have,

C∑
c=1

||TYc||∗ − ||TY||∗ ≥ 0. (7)

Based on (7) and Theorem 2, the proposed objective function (6) reaches the minimum
0 if the column spaces of every pair of matrices are orthogonal after applying the learned
transformation T; or equivalently, (6) reaches the minimum 0 when the separation between
every pair of subspaces is maximized after transformation, i.e., the smallest principal angle
between subspaces equals π

2 . Note that such improved separation is not obtained if the rank
is used in the second term in (6), thereby further justifying the use of the nuclear norm
instead.
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We have then, both intuitively and theoretically, justified the selection of the criteria
(6) for learning the transform T. We now illustrate the properties of the learned transfor-
mation T using synthetic examples in Figure 2 (real examples are presented in Section 5).
Here we adopt a projected subgradient method described in Appendix C (though other
modern nuclear norm optimization techniques could be considered, including recent real-
time formulations Sprechmann et al. (2012)) to search for the transformation matrix T
that minimizes (6). As shown in Figure 2, the learned transformation T via (6) maximizes
the separation between every pair of subspaces towards π

2 , and reduces the deviation of
the data points to the true subspace when noise is present. Note that, comparing Fig-
ure 2c to Figure2d, the learned transformation using (6) maximizes the angle between
subspaces, and the nuclear norm changes from |[A,B]|∗ = 1.41 to |[A,B]|∗ = 1.95 to make
|A|∗ + |B|∗ − |[A,B]|∗ ≈ 0; However, in both cases, where subspaces are independent,
rank([A,B]) = 2, and rank(A) + rank(B)− rank([A,B]) = 0.

2.3 Comparisons with other Transformations

For independent subspaces, a transformation that renders them pairwise orthogonal can
be obtained in a closed-form as follows: we take a basis Uc for the column space of Yc

for each subspace, form a matrix U = [U1, ...,UC ], and then obtain the orthogonalizing
transformation as T = (U′U)−1U′. To further elaborate the properties of our learned
transformation, using synthetic examples, we compare with the closed-form orthogonalizing
transformation in Figure 3 and with linear discriminant analysis (LDA) in Figure 4.

Two intersecting planes are shown in Figure 3a. Though subspaces here are neither
independent nor disjoint, the closed-form orthogonalizing transformation still significantly
increases the angle between the two planes towards π

2 in Figure 3b (note that the angle for
the common line here is always 0). Note also that the closed-form orthogonalizing transfor-
mation is of size r×d, where r is the sum of the dimension of each subspace, and we plot just
the first 3 dimensions for visualization. Comparing to the orthogonalizing transformation,
our leaned transformation in Figure 3c introduces similar subspace separation, but enables
significantly reduced within subspace variations, indicated by the decreased nuclear norm
values (close to 1). The same set of experiments with different samples per subspace are
shown in the second row of Figure 3. Our formulation in (6) not only maximizes the separa-
tions between the different classes subspaces, but also simultaneously reduces the variations
within the same class subspaces.

Our learned transformation shares a similar methodology with LDA, i.e., minimizing
intra-class variation and maximizing inter-class separation. Two classes Y+ and Y− are
shown in Figure 4a, each class consisting of two lines. Our learned transformation in
Figure 4c shows smaller intra-class variation than LDA in Figure 4b by merging two lines
in each class, and simultaneously maximizes the angle between two classes towards π

2 (such
two-class clustering and classification is critical for example for trees-based techniques Qiu
and Sapiro (2014)). Note that we usually use LDA to reduce the data dimension to the
number of classes minus 1; however, to better emphasize the distinction, we learn a (d −
1) × d sized transformation matrix using both methods. The closed-form orthogonalizing
transformation discussed above also gives higher intra-class variations as |Y+|∗ = 1.45 and
|Y+|∗ = 1.68. Figure 4d shows an example of two non-linearly separable classes, i.e., two
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(c) T =

 0.14 0.03 0.33
−0.01 0.14 −0.16
0.29 −0.16 0.86

;

θAB = 1.55,
|A|∗ = 1.06, |B|∗ = 1.06.
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(d) 75 samples per plane,
θAB = 0.31,
|A|∗ = 1.92, |B|∗ = 1.81.
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(e) T =
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;

θAB = 1.04,
|A|∗ = 1.75, |B|∗ = 1.71.
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(f) T =

 0.06 −0.12 0.30
−0.01 0.13 −0.15
0.33 −0.12 0.86

;

θAB = 1.55,
|A|∗ = 1.08, |B|∗ = 1.07.

Figure 3: Comparisons with the closed-form orthogonalizing transformation. Two inter-
secting planes are shown in (a), and each plane contains 200 points. The closed-
form orthogonalizing transformation significantly increase the angle between the
two planes towards π

2 in (b). Our leaned transformation in (c) introduces similar
subspace separation, but simultaneously enables significantly reduced within sub-
space variation, indicated by the smaller nuclear norm values (close to 1). The
same set of experiments with 75 points per subspace are shown in the second
row.
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(d) Two classes {A(blue),B(red)},
θAB = 0.31,
|A|∗ = 1.91, |B|∗ = 1.88.
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(e) T =

[
−0.54 2.60 −9.51
0.56 −3.21 −1.02

]
;

θAB = 0,
|A|∗ = 1.52, |B|∗ = 1.69.
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(f) T =

[
0.49 −0.11 1.27
−0.09 0.29 −0.59

]
;

θAB = 1.57,
|A|∗ = 1.08, |B|∗ = 1.03.

Figure 4: Comparisons with the linear discriminant analysis (LDA). Two classes Y+ and
Y− are shown in (a), each class consisting of two lines. We notice that our
learned transformation (c) shows smaller intra-class variation than LDA in (b) by
merging two lines in each class, and simultaneously maximizes the angle between
two classes towards π

2 (such two-class clustering and classification is critical for
example for trees-based techniques Qiu and Sapiro (2014)). (d) shows an example
of two non-linearly separable classes, i.e., two intersecting planes, which cannot
be improved by LDA in (e). However, our learned transformation in (f) prepares
data to be separable using subspace clustering.
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intersecting planes, which cannot be improved by LDA, as shown in Figure 4e. However,
our learned transformation in Figure 4f prepares the data to be separable using subspace
clustering. As shown in Qiu and Sapiro (2014), the property demonstrated above makes
our learned transformation a better learner than LDA in a binary classification tree.

Lastly, we generated an interesting disjoint case: we consider three lines A, B and C
on the same plane that intersect at the origin; the angles between them are θAB = 0.08,
θBC = 0.08, and θAC = 0.17. As the closed-form orthogonalizing approach is valid for
independent subspaces, it fails by producing θAB = 0.005, θBC = 0.005, θBC = 0.01. Our
framework is not limited to that, even if additional theoretical foundations are yet to come.
After our learned transformation, we have θAB = 1.20, θBC = 1.20, and θAC = 0.75. We
can make two immediate observations: First, all angles are significantly increased within the
valid range of [0, π2 ]. Second, θAB+θBC+θAC = π (we made the same two observations while
repeating the experiments with different subspace angles). Though at this point we have
no clean interpretation about how those angles are balanced when pair-wise orthogonality
is not possible, we strongly believe that some theories are behind the above persistent
observations and we are currently exploring this.

2.4 Discussions about Other Matrix Norms

We now discuss the advantages of replacing the rank function in (1) with the nuclear norm
over other (popular) matrix norms, e.g., the induced 2-norm and the Frobenius norm.

Proposition 3 Let A and B be matrices of the same row dimensions, and [A,B] be the
concatenation of A and B, we have

||[A,B]||2 ≤ ||A||2 + ||B||2,

with equality if at least one of the two matrices is zero.

Proposition 4 Let A and B be matrices of the same row dimensions, and [A,B] be the
concatenation of A and B, we have

||[A,B]||F ≤ ||A||F + ||B||F ,

with equality if and only if at least one of the two matrices is zero.

We choose the nuclear norm in (6) for two major advantages that are not so favorable
in other (popular) matrix norms:

• The nuclear norm is the best convex approximation of the rank function Fazel (2002),
which helps to reduce the variation within the subspaces (first term in (6));
• The objective function (6) is optimized when the distance between every pair of sub-

spaces is maximized after transformation, which helps to introduce separations be-
tween the subspaces.

Note that (1), which is based on the rank, reaches the minimum when subspaces are
independent but not necessarily maximally distant. Propositions 3 and 4 show that the
property of the nuclear norm in Theorem 1 holds for the induced 2-norm and the Frobenius
norm. However, if we replace the rank function in (1) with the induced 2-norm norm or the
Frobenius norm, the objective function is minimized at the trivial solution T = 0, which is
prevented by the normalization condition ||T||2 = 1.
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Figure 5: A synthetic example illustrating the kernelized transformation learning. (a) is
transformed to (b) with an RBF kernel applied, and to (c) without kernel.

2.5 Online Learning Low-rank Transformations

When data Y is big, we use an online algorithm to learn the low-rank transformation T:

• We first randomly partition the data set Y into B mini-batches;
• Using mini-batch subgradient descent, a variant of stochastic subgradient descent, the

subgradient in Appendix C is approximated by a sum of subgradients obtained from
each mini-batch of samples,

T(t+1) = T(t) − ν
B∑
b=1

∆Tb, (8)

where ∆Tb is obtained using only data points in the b-th mini-batch;
• Starting with the first mini-batch, we learn the subspace transformation Tb using data

only in the b-th mini-batch, with Tb−1 as warm restart.

2.6 Subspace Transformation with Compression

Given data Y ⊆ Rd, so far, we considered a square linear transformation T of size d ×
d. If we devise a “fat” linear transformation T of size r × d, where (r < d), we enable
dimension reduction along with transformation. This connects the proposed framework
with the literature on compressed sensing, though the goal here is to learn a “sensing”
matrix T for subspace classification and not for reconstruction Carson et al. (2012). The
nuclear-norm minimization provides a new metric for such compressed sensing design (or
compressed feature learning) paradigm. Results with this reduced dimensionality will be
presented in Section 5.

2.7 Kernelized Transformation

The linear transformation suggested above shows effective when data approximately lie in
linear subspaces. To improve the ability in handling more generic data, we can further map
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data points into an inner product space prior to learning the transformation. Given a data
point y, we create a nonlinear map K(y) = (κ(y,y1); ...;κ(y,yn)) by computing the inner
product between y and a fixed set of n points {y1, ...,yn} randomly drawn from the training
set. The inner products are computed via the kernel function, κ(y,yi) = ϕ(y)′ϕ(yi), which
has to satisfy the Mercer conditions; note that no explicit representation for ϕ is required.
Examples of kernel functions include polynomial kernels κ(y,yi) = (y′yi + p)q (with p and

q being constants), and radial basis function (RBF) kernels κ(y,yi) = exp(− ||y−yi||
2
2

2σ2 ) with
variance σ2. Given a set of data points Y, the set of mapped data is denoted as K(Y) ⊆ Rn.
We now learn an n× n kernelized transformation T minimizing

min
T

C∑
c=1

||TK(Yc)||∗ − ||TK(Y)||∗, s.t. ||T||2 = 1. (9)

Figure 5 shows a synthetic example illustrating the kernelized transformation learning,
where a 256-dimensional RBF kernel is applied.

3. Subspace Clustering using Low-rank Transformations

We now move from classification, where we learned the transform from training labeled
data, to clustering, where no training data is available. In particular, we address the sub-
space clustering problem, meaning to partition the data set Y into C clusters corresponding
to their underlying subspaces. We first present a general procedure to enhance the perfor-
mance of existing subspace clustering methods in the literature. Then we further propose a
specific fast subspace clustering technique to fully exploit the low-rank structure of (learned)
transformed subspaces.

3.1 A Learned Robust Subspace Clustering (LRSC) Framework

In clustering tasks, the data labeling is of course not known beforehand in practice. The
proposed algorithm, Algorithm 1, iterates between two stages: In the first assignment stage,
we obtain clusters using any subspace clustering methods, e.g., SSC (Elhamifar and Vidal,
2013), LSA (Yan and Pollefeys, 2006), LBF (Zhang et al., 2012). In particular, in this paper
we often use the new improved technique introduced in Section 3.2. In the second update
stage, based on the current clustering result, we compute the optimal subspace transfor-
mation that minimizes (6). The algorithm is repeated until the clustering assignments stop
changing.

The LRSC algorithm is a general procedure to enhance the performance of any subspace
clustering methods, and part of the beauty of the proposed model is that it can be applied
to any such algorithm, and even beyond (Qiu and Sapiro, 2014). We don’t enforce an overall
objective function at the present form for such versatility purpose.

To study convergence, one way is to adopt the subspace clustering method for the
LRSC assignment step by optimizing the same LRSC update criterion (6): given the cluster
assignment and the transformation T at the current LRSC iteration, we take a point yi out
of its current cluster (keep the rest assignments no change) and place it into a cluster Yc

that minimize
∑C

c=1 ||TYc||∗. We iteratively perform this for all points, and then update
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T using current T as warm restart. In this way, we decrease (or keep) the overall objective
function (6) after each LRSC iteration.

However, the above approach is computational expensive and only allow one specific
subspace clustering method. Thus, in the present implementation, an overall objective
function of the type that the LRSC algorithm optimizes can take a form such as

arg
T,{Sc}Cc=1

min
C∑
c=1

∑
yi∈Sc

||Tyi − PTYcTyi||22 + λ[
C∑
c=1

||TYc||∗ − ||TY||∗], s.t.||T||2 = 1,

(10)

where Yc denotes the set of points yi in the c-th subspace Sc, and PTYc denotes the projec-
tion onto TYc. The LRSC iterative algorithm optimize (10) through alternative minimiza-
tion (with a similar form as the popular k-means, but with a different data model and with
the learned transform). While formally studying its convergence is the subject of future re-
search, the experimental validation presented already demonstrates excellent performance,
with LRSC just one of the possible applications of the proposed learned transform.

In all our experiments, we observe significant clustering error reduction in the first few
LRSC iterations, and the proposed LRSC iterations enable significantly cleaner subspaces
for all subspace clustering benchmark data in the literature. The intuition behinds the
observed empirical convergence is that the update step in each LRSC iteration decreases
the second term in (10) to a small value close to 0 as discussed in Section 2; at the same
time, the updated transformation tends to reduce the intra-subspace variation, which further
reduces the first cluster deviation term in (10) even with assignments derived from various
subspace clustering methods.

Input: A set of data points Y = {yi}Ni=1 ⊆ Rd in a union of C subspaces.
Output: A partition of Y into C disjoint clusters {Yc}Cc=1 based on underlying subspaces.
begin

1. Initial a transformation matrix T as the identity matrix ;

repeat
Assignment stage:
2. Assign points in TY to clusters with any subspace clustering methods, e.g., the proposed
R-SSC;

Update stage:
3. Obtain transformation T by minimizing (6) based on the current clustering result ;

until assignment convergence;

4. Return the current clustering result {Yc}Cc=1 ;

end

Algorithm 1: Learning a robust subspace clustering (LRSC) framework.

3.2 Robust Sparse Subspace Clustering (R-SSC)

Though Algorithm 1 can adopt any subspace clustering methods, to fully exploit the low-
rank structure of the learned transformed subspaces, we further propose the following spe-
cific technique for the clustering step in the LRSC framework, called Robust Sparse Sub-
space Clustering (R-SSC):
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1. For the transformed subspaces, we first recover their low-rank representation L by
performing a low-rank decomposition (11), e.g., using RPCA (Candès et al., 2011),1

arg
L,S

min ||L||∗ + β||S||1 s.t. TY = L + S. (11)

2. Each transformed point Tyi is then sparsely decomposed over L,

arg
xi

min ‖Tyi − Lxi‖22 s.t. ‖xi‖0 ≤ K, (12)

where K is a predefined sparsity value (K > d). As explained in Elhamifar and Vidal
(2013), a data point in a linear or affine subspace of dimension d can be written as
a linear or affine combination of d or d+ 1 points in the same subspace. Thus, if we
represent a point as a linear or affine combination of all other points, a sparse linear
or affine combination can be obtained by choosing d or d+ 1 nonzero coefficients.

3. As the optimization process for (12) is computationally demanding, we further simplify
(12) using Local Linear Embedding (Roweis and Saul, 2000; Wang et al., 2010). Each
transformed point Tyi is represented using its K Nearest Neighbors (NN) in L, which
are denoted as Li,

arg
xi

min ‖Tyi − Lixi‖22 s.t. 1′xi = 1. (13)

Let L̄i = Li − 1TyTi . xi can then be efficiently obtained in closed form (Saul and
Roweis, 2000),

xi = L̄iL̄
T
i \ 1,

where x = A \B solves the system of linear equations Ax = B, and then we rescale
xi so that 1′xi = 1 . As suggested in Roweis and Saul (2000), if the correlation matrix
L̄iL̄

T
i is nearly singular, it can be conditioned by adding a small multiple of the identity

matrix. From experiments, we observe this simplification step dramatically reduces
the running time, without sacrificing the accuracy.

4. Given the sparse representation xi of each transformed data point Tyi, we denote the
sparse representation matrix as X = [x1 . . .xN ]. It is noted that xi is written as an
N -sized vector with no more than K << N non-zero values (N being the total number
of data points). The pairwise affinity matrix is now defined as W = |X|+ |XT |, and
the subspace clustering is obtained using spectral clustering (Luxburg, 2007).

Based on experimental results presented in Section 5, the proposed R-SSC outperforms
state-of-the-art subspace clustering techniques, in both accuracy and running time, e.g.,
about 500 times faster than the original SSC using the implementation provided in Elhamifar
and Vidal (2013). Performance is further enhanced when R-SCC is used as an internal step
of LRSC in Algorithm 1.

1. Note that while the learned transform T encourages low-rank in each sub-space, outliers might still exist.
Moreover, during the iterations in Algorithm 1, the intermediate learned T is not yet the desired one.
This justifies the incorporation of this further low-rank decomposition.
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4. Classification using Single or Multiple Low-rank Transformations

In Section 2, learning one global transformation over all classes has been discussed, and then
incorporated into a clustering framework in Section 3. The availability of data labels for
training enables us to consider instead learning individual class-based linear transformation.
The problem of class-based linear transformation learning can be formulated as

arg
{Tc}Cc=1

min

C∑
c=1

[||TcYc||∗ − λ||TcY¬c||∗], (14)

where Tc ∈ Rd×d denotes the transformation for the c-th class, Y¬c = Y \Yc denotes all
data except the c-th class, and λ is a positive balance parameter.

When a global transformation matrix T is learned, we can perform classification in the
transformed space by simply considering the transformed data TY as the new features. For
example, when a Nearest Neighbor (NN) classifier is used, a testing sample y uses Ty as
the feature and searches for nearest neighbors among TY.

To fully exploit the low-rank structure of the transformed data, we propose to perform
classification through the following procedure:

• For the c-th class, we first recover its low-rank representation Lc by performing low-
rank decomposition (15), e.g., using RPCA (Candès et al., 2011):2

arg
Lc,Sc

min ||Lc||∗ + β||Sc||1 s.t. TYc = Lc + Sc. (15)

• Each testing image y will then be assigned to the low-rank subspace Lc that gives the
minimal reconstruction error through sparse decomposition, e.g., using OMP (Pati
et al., Nov. 1993):

arg
x

min ‖Ty − Lix‖22 s.t. ‖x‖0 ≤ T, (16)

where T is a predefined sparsity value.

When class-based transformations {Tc}Cc=1 are learned, we perform recognition in a similar
way. However, now we apply all the learned transforms Tc to each testing data point and
then pick the best one using the same criterion of minimal reconstruction error through
sparse decomposition (16).

5. Experimental Evaluation

This section first presents experimental evaluations on subspace clustering using three public
data sets (standard benchmarks): the MNIST handwritten digit data set, the Extended
YaleB face data set (Georghiades et al., 2001) and the Hopkins 155 database of motion
segmentation. The MNIST data set consists of 8-bit gray scale handwritten digit images
of “0” through “9” and 7000 examples for each class. The Extended YaleB face data set

2. Note that this is done only once and can be considered part of the training stage. As before, this further
low-rank decomposition helps to handle outliers not addressed by the learned transform.
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contains 38 subjects with near frontal pose under 64 lighting conditions. All the images are
resized to 16 × 16. The classical Hopkins 155 database of motion segmentation, which is
available at http://www.vision.jhu.edu/data/hopkins155, contains 155 video sequences
along with extracted feature trajectories, where 120 of the videos have two motions and 35
of the videos have three motions.

Subspace clustering methods compared are SSC (Elhamifar and Vidal, 2013), LSA (Yan
and Pollefeys, 2006), and LBF (Zhang et al., 2012). Based on the studies in Elhamifar and
Vidal (2013), Vidal (2011) and Zhang et al. (2012), these three methods exhibit state-of-the-
art subspace clustering performance. We adopt the LSA and SSC implementations provided
in Elhamifar and Vidal (2013) from http://www.vision.jhu.edu/code/, and the LBF im-
plementation provided in Zhang et al. (2012) from http://www.ima.umn.edu/~zhang620/

lbf/. We adopt similar setups as described in Zhang et al. (2012) for experiments on
subspace clustering.

This section then presents experimental evaluations on classification using two public
face data sets: the CMU PIE data set (Sim et al., 2003) and the Extended YaleB data set.
The PIE data set consists of 68 subjects imaged simultaneously under 13 different poses
and 21 lighting conditions. All the face images are resized to 20 × 20. We adopt a NN
classifier unless otherwise specified.

5.1 Subspace Clustering with Illustrative Examples

For illustration purposes, we conduct the first set of experiments on a subset of the MNIST
data set. We adopt a similar setup as described in Zhang et al. (2012), using the same sets
of 2 or 3 digits, and randomly choose 200 images for each digit. We set the sparsity value
K = 6 for R-SSC, and perform 100 iterations for the subgradient updates while learning the
transformation on subspaces. The subgradient update step was ν = 0.02 (see Appendix C
for details on the projected subgradient optimization algorithm).

Unless otherwise stated, we do not perform dimension reduction, such as PCA or ran-
dom projections, to preprocess the data, thereby further saving computations (please note
that the learned transform can itself reduce dimensions if so desired, see Section 5.8). In
the literature, e.g., Elhamifar and Vidal (2013), Vidal (2011) and Zhang et al. (2012), pro-
jection to a very low dimension is usually performed to enhance the clustering performance.
However, it is often not obvious how to determine the correct projection dimension for real
data, and many subspace clustering methods show sensitive to the choice of the projection
dimension. This dimension reduction step is not needed in the framework proposed here.

Figure 6 shows the misclassification rate (e) and running time (t) on clustering sub-
spaces of two digits. The misclassification rate is the ratio of misclassified points to the
total number of points, i.e., the ratio of points that were assigned to the wrong cluster. For
visualization purposes, the data are plotted with the dimension reduced to 2 using Laplacian
Eigenmaps Belkin and Niyogi (2003). Different clusters are represented by different colors
and the ground truth is plotted using the true cluster labels. The proposed R-SSC outper-
forms state-of-the-art methods, both in terms of clustering accuracy and running time. The
clustering error of R-SSC is further reduced using the proposed LRSC framework in Algo-
rithm 1 through the learned low-rank subspace transformation. The clustering converges
after about 3 LRSC iterations. The learned transformation not only recovers a low-rank
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Figure 6: Misclassification rate (e) and running time (t) on clustering 2 digits. Methods
compared are SSC Elhamifar and Vidal (2013), LSA Yan and Pollefeys (2006),
and LBF Zhang et al. (2012). For visualization, the data are plotted with the
dimension reduced to 2 using Laplacian Eigenmaps Belkin and Niyogi (2003).
Different clusters are represented by different colors and the ground truth is plot-
ted with the true cluster labels. iter indicates the number of LRSC iterations in
Algorithm 1. The proposed R-SSC outperforms state-of-the-art methods in terms
of both clustering accuracy and running time, e.g., about 500 times faster than
SSC. The clustering performance of R-SSC is further improved using the proposed
LRSC framework. Note how the data is clearly clustered in clean subspaces in
the transformed domain (best viewed zooming on screen).
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(b) Digits {2, 4, 8}.

Figure 7: Misclassification rate (e) on clustering 3 digits. Methods compared are LSA
Yan and Pollefeys (2006) and LBF Zhang et al. (2012). LBF is adopted in the
proposed LRSC framework and denoted as R-LBF. After convergence, R-LBF
significantly outperforms state-of-the-art methods.
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Subsets [0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7] [0:8]

C 2 3 4 5 6 7 8 9

LSA 0.47 47.57 36.73 30.90 40.46 48.13 39.87 44.03
LBF 0.47 23.62 29.19 51.37 48.99 53.01 39.87 38.79
LRSC 0 3.88 3.89 5.31 14.04 13.79 14.50 16.05

Table 1: Misclassification rate (e%) on clustering different numbers of digits in the MNIST
data set, [0 : c] denotes the subset of c+ 1 digits from digit 0 to c. We randomly
pick 100 samples per digit. For all cases, the proposed LRSC method significantly
outperforms state-of-the-art methods.

structure for data from the same subspace, but also increases the separations between the
subspaces for more accurate clustering.

Figure 7 shows misclassification rate (e) on clustering subspaces of three digits. Here we
adopt LBF in our LRSC framework, denoted as Robust LBF (R-LBF), to illustrate that the
performance of existing subspace clustering methods can be enhanced using the proposed
LRSC algorithm. After convergence, R-LBF, which uses the proposed learned subspace
transformation, significantly outperforms state-of-the-art methods.

Table 1 shows the misclassification rate on clustering different number of digits, [0 : c]
denotes the subset of c+ 1 digits from digit 0 to c. We randomly pick 100 samples per digit
to compare the performance when a fewer number of data points per class are present. For
all cases, the proposed LRSC method significantly outperforms state-of-the-art methods.

5.1.1 Online vs. Batch Learning

In this set of experiments, we use digits {1, 2} from the MNIST data set. We select
1000 images for each digit, and randomly partition them into 5 mini-batches. We first
perform one iteration of LRSC in Algorithm 1 over all selected data with and without
the norm constraint. As shown in Figure 8a, we both observe empirical convergence for
subspace transformation learning via (6) using the projected subgradient method presented
in Appendix C.

Starting with the first mini-batch, we then perform one iteration of LRSC over one mini-
batch a time, with the subspace transformation learned from the previous mini-batch as
warm restart. We adopt here 100 iterations for the subgradient descent updates. As shown
in Figure 8b, we observe similar empirical convergence for online transformation learning.
To converge to the same objective function value, it takes 131.76 sec. for online learning
and 700.27 sec. for batch learning.

5.2 Application to Face Clustering

In the Extended YaleB data set, each of the 38 subjects is imaged under 64 lighting condi-
tions, shown in Figure 9a. Under the assumption of Lambertian reflectance, face images
of each subject under different lighting conditions can be accurately approximated with a
9-dimensional linear subspace (Basri and Jacobs, 2003). We conduct the face clustering
experiments on the first 9 subjects shown in Figure 9b. We set the sparsity value K = 10
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Figure 8: Convergence of the objective function (6) using online and batch learning for sub-
space transformation. We always observe empirical convergence for both online
and batch learning. In (a), we learn with and without the norm constraint re-
spectively. More discussions on convergence can be found in Appendix C. In (b),
to converge to the same objective function value, it takes 131.76 sec. for online
learning and 700.27 sec. for batch learning.

(a) Example illumination conditions.

1 2 3 4 5 6 7 8 9 

(b) Example subjects.

Figure 9: The extended YaleB face data set.
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(e) R-SSC, e = 67.37%,
t = 1.83 sec.

Figure 10: Misclassification rate (e) and running time (t) on clustering 9 subjects using
different subspace clustering methods. The proposed R-SSC outperforms state-
of-the-art methods both in accuracy and running time. This is further improved
using the learned transform, LRSC reduces the error to 4.94%, see Figure 11.
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Figure 11: Misclassification rate (e) on clustering 9 subjects using the proposed LRSC
framework. We adopt the proposed R-SSC technique for the clustering step.
With the proposed LRSC framework, the clustering error of R-SSC is further
reduced significantly, e.g., from 67.37% to 4.94% for the 9-subject case. Note
how the classes are clustered in clean subspaces in the transformed domain.
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Figure 12: The smallest and mean principal angles between pairs of 9 subject subspaces
and the nuclear norms of 9 subject subspaces before and after transformation.
Note that each entry in (a) and (b) denotes the smallest principal angle, and
each entry in (c) and (d) denotes the average cosine over all principal angles. We
observe that the learned subspace transformation increases the angles between
subspaces and also reduces the nuclear norms of subspaces. Overall, the average
smallest principal angles between subspaces increased from 0.09 to 0.26, and the
average subspace nuclear norm decreased from 21.43 to 8.53.
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Subsets [1:10] [1:15] [1:20] [1:25] [1:30] [1:38]

C 10 15 20 25 30 38

LSA 78.25 82.11 84.92 82.98 82.32 84.79
LBF 78.88 74.92 77.14 78.09 78.73 79.53
LRSC 5.39 4.76 9.36 8.44 8.14 11.02

Table 2: Misclassification rate (e%) on clustering different number of subjects in the Ex-
tended YaleB face data set, [1 : c] denotes the first c subjects in the data set. For
all cases, the proposed LRSC method significantly outperforms state-of-the-art
methods.

Methods Misclassification (%)

orthogonalizing 61.36
LDA 9.77
Proposed 5.47

Table 3: Misclassification rate (e%) on clustering 38 subjects in the Extended YaleB data set
using supervised transformation learning. The proposed transformation learning
outperforms both the closed-form orthogonalizing transformation and LDA on
clustering the transformed data.

for R-SSC, and perform 100 iterations for the subgradient descent updates while learning
the transformation.

Figure 10 shows error rate (e) and running time (t) on clustering subspaces of 9 subjects
using different subspace clustering methods. The proposed R-SSC techniques outperforms
state-of-the-art methods both in accuracy and running time. As shown in Figure 11, using
the proposed LRSC algorithm (that is, learning the transform), the misclassification errors
of R-SSC are further reduced significantly, for example, from 67.37% to 4.94% for the 9
subjects. Figure 11n shows the convergence of the T updating step in the first few LRSC
iterations. The dramatic performance improvement can be explained in Figure 12. We
observe, as expected from the theory presented before, that the learned subspace transfor-
mation increases the distance (the smallest principal angle) between subspaces and, at the
same time, reduces the nuclear norms of subspaces. More results on clustering subspaces of
2 and 3 subjects are shown in Figure 13.

Table 2 shows misclassification rate (e) on clustering subspaces of different number of
subjects, [1 : c] denotes the first c subjects in the extended YaleB data set. For all cases,
the proposed LRSC method significantly outperforms state-of-the-art methods. Note that
without the low-rank decomposition step in (11), we obtain a misclassification rate 18.38%
for clustering all 38 subjects in the Extended YaleB data set, which is slightly lower than
the 11.02% reported in Table 2. Thus, pushing the subspaces apart through our learned
transformation plays a major role here; and the robustness in the low-rank decomposition
enhances the performance even further.
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Figure 13: Misclassification rate (e) and running time (t) on clustering 2 and 3 subjects.
The proposed R-SSC outperforms state-of-the-art methods both in accuracy and
running time. With the proposed LRSC framework, the clustering error of R-
SSC is further reduced significantly. Note how the classes are clustered in clean
subspaces in the transformed domain (best viewed zooming on screen).
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Check Traffic Articulated All

Mean Median Mean Median Mean Median Mean Median

2-motion

LSA 2.57 0.27 5.43 1.48 4.10 1.22 3.45 0.59
LBF 1.59 0 0.20 0 0.80 0 1.16 0
SSC 1.12 0 0.02 0 0.62 0 0.82 0
LRSC 1.19 0 0.23 0 0.88 0 0.92 0

3-motion

LSA 5.80 1.77 25.07 23.79 7.25 7.25 9.73 2.33
LBF 4.57 0.94 0.38 0 2.66 2.66 3.63 0.64
SSC 2.97 0.27 0.58 0 1.42 0 2.45 0.2
LRSC 1.59 0 0.32 0 1.60 1.60 1.34 0

Table 4: Misclassification rate (e%) on two motions and three motions segmentation in the
Hopkins 155 data set. As shown in Vidal (2011); Zhang et al. (2012), the SSC
method significantly outperforms all previous state-of-the-art methods on this data
set. The proposed LRSC shows comparable results to SSC for two motions and
outperforms SSC for three motions. Note that our method is orders of magnitude
faster than SSC.

In Figure 3 and Figure 4, using synthetic examples, we previously compared our learned
transformation with the closed-form orthogonalizing transformation and LDA. In Table 3,
we further compare three transformations using real data. We perform supervised trans-
formation learning on all 38 subjects in the Extended YaleB data set using three different
transformation learning algorithms, and then perform subspace clustering on the trans-
formed data. The proposed transformation learning significantly outperforms the other two
methods.

5.3 Application to Motion Segmentation

The Hopkins 155 data set consists of three types of videos: checker, traffic and articulated,
and 120 of the videos have two motions and 35 of the videos have three motions. The
main task is to segment a video sequence of multiple rigidly moving objects into multiple
spatiotemporal regions that correspond to different motions in the scene. This motion
data set contains much cleaner subspace data than the digits and faces data evaluated
above. To enable a fair comparison, we project the data into a lower dimensional subspace
using PCA as explained in Vidal (2011); Zhang et al. (2012). Results on other comparing
methods are taken from Vidal (2011). As shown in Vidal (2011); Zhang et al. (2012), the
SSC method significantly outperforms all previous state-of-the-art methods on this data set.
From Table 4, we can see that our method shows comparable results to SSC for two motions
and outperforms SSC for three motions. Note that our method is orders of magnitude faster
than SSC as discussed earlier.
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Method Accuracy (%)

D-KSVD Zhang and Li (2010) 94.10
LC-KSVD Jiang et al. (2011) 96.70
SRC Wright et al. (2009) 97.20

Original+NN 91.77
Class LRT+NN 97.86
Class LRT+OMP 92.43
Global LRT+NN 99.10
Global LRT+OMP 99.51

Table 5: Recognition accuracies (%) under illumination variations for the Extended YaleB
data set. The recognition accuracy is increased from 91.77% to 99.10% by simply
applying the learned low-rank transformation (LRT) matrix to the original face
images.

5.4 Application to Face Recognition across Illumination

For the Extended YaleB data set, we adopt a similar setup as described in Jiang et al.
(2011); Zhang and Li (2010). We split the data set into two halves by randomly selecting
32 lighting conditions for training, and the other half for testing. We learn a global low-rank
transformation matrix from the training data.

We report recognition accuracies in Table 5. We make the following observations. First,
the recognition accuracy is increased from 91.77% to 99.10% by simply applying the learned
transformation matrix to the original face images. Second, the best accuracy is obtained
by first recovering the low-rank subspace for each subject, e.g., the third row in Figure 14a.
Then, each transformed testing face, e.g., the second row in Figure 14b, is sparsely decom-
posed over the low-rank subspace of each subject through OMP, and classified to the subject
with the minimal reconstruction error. A sparsity value 10 is used here for OMP. As shown
in Figure 14c, the low-rank representation for each subject shows reduced variations caused
by illumination. Third, the global transformation performs better here than class-based
transformations, which can be due to the fact that illumination in this data set varies in
a globally coordinated way across subjects. Last but not least, our method outperforms
state-of-the-art sparse representation based face recognition methods.

5.5 Application to Face Recognition across Pose

We adopt the similar setup as described in Castillo and Jacobs (2009) to enable the com-
parison. In this experiment, we classify 68 subjects in three poses, frontal (c27), side (c05),
and profile (c22), under lighting condition 12. We use the remaining poses as the training
data.

For this example, we learn a class-based low-rank transformation matrix per subject
from the training data. It is noted that the goal is to learn a transformation matrix to help
in the classification, which may not necessarily correspond to the real geometric transform.
Table 6 shows the face recognition accuracies under pose variations for the CMU PIE
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Shared T YaleB train 

Original face images  

Low-rank transformed faces 

Low-rank components 

Sparse errors 

(a) Low-rank decomposition of globally transformed training samples

Shared T YaleB Test 

Low-rank  
transformation 

(b) Globally transformed testing samples

Shared T YaleB Test 

(c) Mean low-rank components for subjects in the training data

Figure 14: Face recognition across illumination using global low-rank transformation.

Method Frontal Side Profile
(c27) (c05) (c22)

SMD Castillo and Jacobs (2009) 83 82 57

Original+NN 39.85 37.65 17.06
Original(crop+flip)+NN 44.12 45.88 22.94
Class LRT+NN 98.97 96.91 67.65
Class LRT+OMP 100 100 67.65
Global LRT+NN 97.06 95.58 50
Global LRT+OMP 100 98.53 57.35

Table 6: Recognition accuracies (%) under pose variations for the CMU PIE data set.

data set (we applied the crop-and-flip step discussed in Figure 1.). We make the following
observations. First, the recognition accuracy is dramatically increased after applying the
learned transformations. Second, the best accuracy is obtained by recovering the low-rank
subspace for each subject, e.g., the third row in Figure 15a and Figure 15b. Then, each
transformed testing face, e.g., Figure 15c and Figure 15d, is sparsely decomposed over the
low-rank subspace of each subject through OMP, and classified to the subject with the
minimal reconstruction error, Section 4. Third, the class-based transformation performs
better than the global transformation in this case. The choice between these two settings
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Subject 1 Class T (dadl-10) 20x20 

 

Original face images  

Low-rank transformed faces 

Low-rank components 

Sparse errors 

(a) Low-rank decomposition of class-based trans-
formed training samples for subject3

Subject 2 Class T (dadl-10) 20x20 

 

Original face images  

Low-rank transformed faces 

Low-rank components 

Sparse errors 

(b) Low-rank decomposition of class-based trans-
formed training samples for subject1

Subject 1 Class T (dadl-10) 20x20 

 

Low-rank  
transformation 

 Profile           Side       Frontal 

(c) class-based transformed testing samples for
subject3

Subject 2 Class T (dadl-10) 20x20 

 

Low-rank  
transformation 

 Profile           Side       Frontal 

(d) class-based transformed testing samples
for subject1

Figure 15: Face recognition across pose using class-based low-rank transformation. Note,
for example in (c) and (d), how the learned transform reduces the pose-
variability.
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Figure 16: Face recognition accuracy under combined pose and illumination variations on
the CMU PIE data set. The proposed methods are denoted as G-LRT in color
red and C-LRT in color blue. The proposed methods significantly outperform
the comparing methods, especially for extreme poses c02 and c14.

is data dependent. Last but not least, our method outperforms SMD, which the best
of our knowledge, reported the best recognition performance in such experimental setup.
However, SMD is an unsupervised method, and the proposed method requires training, still
illustrating how a simple learned transform (note that applying it to the data at testing
time if virtually free of cost), can significantly improve performance.
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Subject 2 Share T (eccv) 20x20 

 

Low-rank  
transformation 

 c02  c05  c29  c14 

(a) Globally transformed testing samples for subject1

Subject 2 Share T (eccv) 20x20 

 

Low-rank  
transformation 

 c02  c05  c29  c14 

(b) Globally transformed testing samples for subject2

Figure 17: Face recognition under combined pose and illumination variations using global
low-rank transformation.

5.6 Application to Face Recognition across Illumination and Pose

To enable the comparison with Qiu et al. (Oct. 2012), we adopt their setup for face recog-
nition under combined pose and illumination variations for the CMU PIE data set. We
use 68 subjects in 5 poses, c22, c37, c27, c11 and c34, under 21 illumination conditions for
training; and classify 68 subjects in 4 poses, c02, c05, c29 and c14, under 21 illumination
conditions.

Three face recognition methods are adopted for comparisons: Eigenfaces Turk and Pent-
land (1991), SRC Wright et al. (2009), and DADL Qiu et al. (Oct. 2012). SRC and DADL
are both state-of-the-art sparse representation methods for face recognition, and DADL
adapts sparse dictionaries to the actual visual domains. As shown in Figure 16, the pro-
posed methods, both the global LRT (G-LRT) and class-based LRT (C-LRT), significantly
outperform the comparing methods, especially for extreme poses c02 and c14. Some testing
examples using a global transformation are shown in Figure 17. We notice that the trans-
formed faces for each subject exhibit reduced variations caused by pose and illumination.

5.7 Transformation Forest

In order to further illustrate the power of the framework here proposed, we briefly describe
its use in combination with random forests, as discussed in detail in Qiu and Sapiro (2014).
In this work we introduced a transformation-based learner model for random forest, further
stressing how the proposed transformation learning can be combined with other successful
classification techniques beyond subspace techniques. The weak learner at each split node
plays a crucial role in a classification tree. We optimized the splitting by learning a two-class
transformation T at each split node, and observed significantly performance improvements
in various real-world applications, such as scene classification and 3D pose estimation (Fig-
ure 18). In particular, we experimentally demonstrated how learning such transform at
each node reduces by 1-2 orders of magnitude the number of trees in the random forest.

5.8 Discussion on the Size of the Transformation Matrix T

In the experiments presented above, we learned a square linear transformation. For example,
if images are resized to 16× 16, the learned subspace transformation T is of size 256× 256.
If we learn a transformation of size r × 256 with r < 256, we enable dimension reduction
while performing subspace transformation (feature learning). Through experiments, we
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(a) Depth. (b) Ground truth. (c) Prediction.

Figure 18: Body parts prediction from a depth image using transformation forests (Qiu and
Sapiro, 2014). With the learned transform we classify 20 regions (19 body parts
and one background) with 55.5% correct for a single tree (only about 40% with
standard trees), and achieve already 73.12% with just 30 trees (hundreds are
normally used with standard trees).

notice that the peak clustering accuracy is usually obtained when r is smaller than the
dimension of the ambient space. For example, in Figure 13, through exhaustive search for
the optimal r, we observe the misclassification rate reduced from 2.38% to 0% for subjects
{2, 3} at r = 96, and from 4.23% to 0% for subjects {4, 5, 6} at r = 40. As discussed
before, this provides a framework to sense for clustering and classification, connecting the
work presented here with the extensive literature on compressed sensing, and in particular
for sensing design, e.g., Carson et al. (2012). We plan to study in detail the optimal size of
the learned transformation matrix for subspace clustering and classification, including its
potential connection with the number of subspaces in the data, and further investigate such
connections with compressive sensing.

6. Conclusion

We introduced a subspace low-rank transformation approach for subspace clustering and
classification. Using nuclear norm as the optimization criteria, we learn a subspace transfor-
mation that reduces variations within the subspaces, and increases separations between the
subspaces. We demonstrated that the proposed approach significantly outperforms state-
of-the-art methods for subspace clustering and classification, and provided some theoretical
support to these experimental results.

Numerous venues of research are opened by the framework introduced here. At the theo-
retical level, extending the analysis to the noisy case is needed. Furthermore, understanding
the virtues of the global vs the class-dependent transform is both important and interesting,
as it is the study of the framework in its compressed dimensionality form. Beyond this,
considering the proposed approach as a feature extraction technique, its combination with
other successful clustering and classification techniques is the subject of current research.
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Appendix A. Proof of Theorem 1

Proof:

||A||∗ + ||B||∗ = ||[A 0]||∗ + ||[0 B]||∗ ≥ ||[A 0] + [0 B]||∗ = ||[A,B]||∗

�

Appendix B. Proof of Theorem 2

Proof: We perform the singular value decomposition of A and B as

A = [UA1UA2]

[
ΣA 0
0 0

]
[VA1VA2]′, B = [UB1UB2]

[
ΣB 0
0 0

]
[VB1VB2]′,

where the diagonal entries of ΣA and ΣB contain non-zero singular values. We have

AA′ = [UA1UA2]

[
ΣA

2 0
0 0

]
[UA1UA2]′, BB′ = [UB1UB2]

[
ΣB

2 0
0 0

]
[UB1UB2]′.

The column spaces of A and B are considered to be orthogonal, i.e., UA1
′UB1 = 0. The

above can be written as

AA′ = [UA1UB1]

[
ΣA

2 0
0 0

]
[UA1UB1]′, BB′ = [UA1UB1]

[
0 0
0 ΣB

2

]
[UA1UB1]′.

Then, we have

[A,B][A,B]′ = AA′ + BB′ = [UA1UB1]

[
ΣA

2 0
0 ΣB

2

]
[UA1UB1]′.

The nuclear norm ||A||∗ is the sum of the square root of the singular values of AA′. Thus,
||[A,B]||∗ = ||A||∗ + ||B||∗. �

Appendix C. The Concave-Convex Procedure

We use a simple projected subgradient method to search for the transformation matrix
T that minimizes (6). Before describing it, we should note that the problem is non-
differentiable and non-convex, and it deserves in its own right a proper study of efficient
optimization techniques, which is of course not the focus of this paper. The development
of more advanced optimization techniques will further improve the performance of the pro-
posed framework. We selected a simple subgradient-based approach since the goal of this
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paper is to present the framework, and already this simple optimization leads to very fast
convergence and excellent performance as detailed in Section 5, with significant improve-
ments in performance when compared to prior state-of-the-art.

The objective function (6) is a D.C. (difference of convex functions) program, and the
concave-convex procedure (CCCP) is a majorization-minimization algorithm often adopted
to solve D.C. programs as a sequence of convex programs (Yuille and Rangarajan, 2003;
Sriperumbudur and Lanckriet, 2012; Dinh and An, 1997). CCCP is used in many ma-
chine learning algorithms such as transductive SVMs (Collobert et al., 2006), sparse PCA
(Sriperumbudur et al., 2007), and SVM feature selection (Neumann et al., 2005).

Initialize T(0) with the identity matrix ;
repeat

T(t+1) =arg
T

minJvex(T) + ∂Jcav(T(t))T (17)

=arg
T

min

C∑
c=1

||TYc||∗ − trace(∂||T(t)Y||∗Y′T′).

until convergence or stopping criteria;

Algorithm 2: The Concave-Convex Procedure (CCCP).

Input: An m× n matrix A, a small threshold value δ
Output: A subgradient of the nuclear norm ∂||A||∗.
begin

1. Perform singular value decomposition:
A = UΣV ;

2. s← the number of singular values smaller than δ ,
3. Partition U and V as
U = [U(1),U(2)], V = [V(1),V(2)] ;

where U(1) and V(1) have (n− s) columns.

4. Generate a random matrix B of the size (m− n+ s)× s,
B← B

||B|| ;

5. ∂||A||∗ ← U(1)V(1)′ + U(2)BV(2)′ ;

6. Return ∂||A||∗ ;

end

Algorithm 3: An approach to evaluate a subgradient of matrix nuclear norm.

Our D.C. cost function J (T) can be rewritten as the sum of a convex part Jvex(T) and
a concave part Jcav(T), i.e.,

J (T) =Jvex(T) + Jcav(T)

=[
C∑
c=1

||TYc||∗] + [−||TY||∗].

In each iteration of the CCCP procedure, Algorithm 2, we approximate the concave part
using its subgradient ∂Jcav, and minimize the resulting convex sub-problem. Note that the
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first term in (17) is the convex term in (6), and the added second term is a linear term
on T using a subgradient of the concave term in (6) evaluated at the current iteration.
∂||·||∗ is a subgradient of the nuclear norm ||·||∗, which can be evaluated using the simple
approach shown in Algorithm 3 (Watson, 1992). Formal convergence analysis of CCCP for
differentiable cases can be found in Yuille and Rangarajan (2003) and Sriperumbudur and
Lanckriet (2012). Though the objective function (6) is non-differentiable, we still observe
empirical convergence in all experiments, see Figure8 and Figure11n.

We provide here more details about Algorithm 2. During each CCCP iteration, we
solve the convex sub-objective (17) using the subgradient method, i.e., using a constant
step size ν (ν > 0), we iteratively take a step in the negative direction of subgradient, and
the subgradient is evaluated as

C∑
c=1

∂||TYc||∗Y′c − ∂||T(t)Y||∗Y′. (18)

Using a constant step size, the subgradient method is guaranteed to converge to within
some range of the optimal value for a convex problem (convergence to the optimal value is
guaranteed by using a diminishing step size with an infinite travel condition) (Boyd et al.,
2003). Therefore, given T(t+1) as the minimizer found for the convex sub-problem (17)
using the subgradient method, we have for (17),

C∑
c=1

||T(t+1)Yc||∗ − trace(∂||T(t)Y||∗Y′T(t+1)′) (19)

≤
C∑
c=1

||T(t)Yc||∗ − trace(∂||T(t)Y||∗Y′T(t)′),

and from the concavity of the second term in (6), we have

−||T(t+1)Y||∗ ≤ −||T(t)Y||∗ − trace(∂||T(t)Y||∗Y′(T(t+1) −T(t))′). (20)

By summing (19) and (20), we obtain

C∑
c=1

||T(t+1)Yc||∗ − ||T(t+1)Y||∗ ≤
C∑
c=1

||T(t)Yc||∗ − ||T(t)Y||∗. (21)

Thus, the objective (6) is non-increasing after each CCCP iteration, and is bounded from
below by 0 (shown in Section 2) for our non-differentiable case. For efficiency considerations,
while solving the convex sub-objective function (17), we perform only one iteration of the
subgradient method to obtain a simplified method, and still observe empirical convergence
in all experiments, as shown in Figure8 and Figure11n.

The norm constraint ||T||2 = 1 is adopted in our formulation to prevent the trivial
solution T = 0. By initializing T(0) with the identity matrix, we observed no trivial solution
convergence in all experiments, such as the normalization free case in Figure8.

As shown in Douglas et al. (2000), the norm constraint ||T||2 = 1 can be incorporated to
a gradient-based algorithm using various alternatives, e.g., Lagrange multipliers, coefficient
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normalization, and gradients in the tangent space. We implement the coefficient normal-

ization method, i.e., after obtaining T(t+1) from (17), we normalize T(t+1) via T(t+1)

||T(t+1)|| . In

other words, we normalize the length of T(t+1) without changing its direction. As discussed
in Douglas et al. (2000), the problem of minimizing a cost function subject to a norm con-
straint forms the basis for many important tasks, and gradient-based algorithms are often
used along with the norm constraint. Though it is expected that a norm constraint does not
change the convergence behavior of a gradient algorithm (Douglas et al., 2000; Fuhrmann
and Liu, 1984), Figure8, to the best of our knowledge, a formal analysis of these issues is
still missing.
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Abstract

This paper proposes a novel multi-layered gesture recognition method with Kinect. We
explore the essential linguistic characters of gestures: the components concurrent character
and the sequential organization character, in a multi-layered framework, which extracts
features from both the segmented semantic units and the whole gesture sequence and then
sequentially classifies the motion, location and shape components. In the first layer, an
improved principle motion is applied to model the motion component. In the second layer,
a particle-based descriptor and a weighted dynamic time warping are proposed for the loca-
tion component classification. In the last layer, the spatial path warping is further proposed
to classify the shape component represented by unclosed shape context. The proposed
method can obtain relatively high performance for one-shot learning gesture recognition on
the ChaLearn Gesture Dataset comprising more than 50, 000 gesture sequences recorded
with Kinect.

Keywords: gesture recognition, Kinect, linguistic characters, multi-layered classification,
principle motion, dynamic time warping

1. Introduction

Gestures, an unsaid body language, play very important roles in daily communication.
They are considered as the most natural means of communication between humans and
computers (Mitra and Acharya, 2007). For the purpose of improving humans’ interaction
with computers, considerable work has been undertaken on gesture recognition, which has
wide applications including sign language recognition (Vogler and Metaxas, 1999; Cooper
et al., 2012), socially assistive robotics (Baklouti et al., 2008), directional indication through
pointing (Nickel and Stiefelhagen, 2007) and so on (Wachs et al., 2011).

Based on the devices used to capture gestures, gesture recognition can be roughly cate-
gorized into two groups: wearable sensor-based methods and optical camera-based methods.
The representative device in the first group is the data glove (Fang et al., 2004), which is
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capable of exactly capturing the motion parameters of the user’s hands and therefore can
achieve high recognition performance. However, these devices affect the naturalness of the
user interaction. In addition, they are also expensive, which restricts their practical applica-
tions (Cooper et al., 2011). Different from the wearable devices, the second group of devices
are optical cameras, which record a set of images overtime to capture gesture movements
in a distance. The gesture recognition methods based on these devices recognize gestures
by analyzing visual information extracted from the captured images. That is why they are
also called vision-based methods. Although optical cameras are easy to use and also inex-
pensive, the quality of the captured images is sensitive to lighting conditions and cluttered
backgrounds, thus it is very difficult to detect and track the hands robustly, which largely
affects the gesture recognition performance.

Recently, the Kinect developed by Microsoft was widely used in both industry and
research communities (Shotton et al., 2011). It can capture both RGB and depth images
of gestures. With depth information, it is not difficult to detect and track the user’s body
robustly even in noisy and cluttered backgrounds. Due to the appealing performance and
also reasonable cost, it has been widely used in several vision tasks such as face tracking (Cai
et al., 2010), hand tracking (Oikonomidis et al., 2011), human action recognition (Wang
et al., 2012) and gesture recognition (Doliotis et al., 2011; Ren et al., 2013). For example,
one of the earliest methods for gesture recognition using Kinect is proposed in Doliotis
et al. (2011), which first detects the hands using scene depth information and then employs
Dynamic Time Warping for recognizing gestures. Ren et al. (2013) extracts the static finger
shape features from depth images and measures the dissimilarity between shape features
for classification. Although, Kinect facilitates us to detect and track the hands, exact
segmentation of finger shapes is still very challenging since the fingers are very small and
form many complex articulations.

Although postures and gestures are frequently considered as being identical, there are
significant differences (Corradini, 2002). A posture is a static pose, such as making a palm
posture and holding it in a certain position, while a gesture is a dynamic process consisting of
a sequence of the changing postures over a short duration. Compared to postures, gestures
contain much richer motion information, which is important for distinguishing different ges-
tures especially those ambiguous ones. The main challenge of gesture recognition lies in the
understanding of the unique characters of gestures. Exploring and utilizing these characters
in gesture recognition are crucial for achieving desired performance. Two crucial linguistic
models of gestures are the phonological model drawn from the component concurrent char-
acter (Stokoe, 1960) and the movement-hold model drawn from the sequential organization
character (Liddell and Johnson, 1989). The component concurrent character indicates that
complementary components, namely motion, location and shape components, simultane-
ously characterize a unique gesture. Therefore, an ideal gesture recognition method should
have the ability of capturing, representing and recognizing these simultaneous components.
On the other hand, the movement phases, i.e., the transition phases, are defined as periods
during which some components, such as the shape component, are in transition; while the
holding phases are defined as periods during which all components are static. The sequen-
tial organization character characterizes a gesture as a sequential arrangement of movement
phases and holding phases. Both the movement phases and the holding phases are defined
as semantic units. Instead of taking the entire gesture sequence as input, the movement-
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hold model inspires us to segment a gesture sequence into sequential semantic units and
then extract specific features from them. For example, for the frames in a holding phase,
shape information is more discriminative for classifying different gestures.

It should be noted that the component concurrent character and the sequential orga-
nization character demonstrate the essences of gestures from spatial and temporal aspects,
respectively. The former indicates which kinds of features should be extracted. The later
implies that utilizing the cycle of movement and hold phases in a gesture sequence can
accurately represent and model the gesture. Considering these two complementary charac-
ters together provides us a way to improve gesture recognition. Therefore, we developed a
multi-layered classification framework for gesture recognition. The architecture of the pro-
posed framework is shown in Figure 1, which contains three layers: the motion component
classifier, the location component classifier, and the shape component classifier. Each of the
three layers analyzes its corresponding component. The output of one layer limits the pos-
sible classification in the next layer and these classifiers complement each other for the final
gesture classification. Such a multi-layered architecture assures achieving high recognition
performance while being computationally inexpensive.

Motion Component Classifier

Gesture Recognition Results

Gesture Depth and RGB Data Recorded by Kinect

Inter-gesture Segmentation

Location Component Classifier

Shape Component Classifier

Figure 1: Multi-layered gesture recognition architecture.

The main contributions of this paper are summarized as follows:

• The phonological model (Stokoe, 1960) of gestures inspires us to propose a novel
multi-layered gesture recognition framework, which sequentially classifies the motion,
location and shape components and therefore achieves higher recognition accuracy
while having low computational complexity.
• Inspired by the linguistic sequential organization of gestures (Liddell and Johnson,

1989), the matching process between two gesture sequences is divided into two steps:
their semantic units are matched first, and then the frames inside the semantic units
are further registered. A novel particle-based descriptor and a weighted dynamic time
warping are proposed to classify the location component.
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• The spatial path warping is proposed to classify the shape component represented by
unclosed shape context, which is improved from the original shape context but the
computation complexity is reduced from O(n3) to O(n2).

Our proposed method participated the one-shot learning ChaLearn gesture challenge and
was top ranked (Guyon et al., 2013). The ChaLearn Gesture Dataset (CGD 2011) (Guyon
et al., 2014) is designed for one-shot learning and comprises more than 50, 000 gesture
sequences recorded with Kinect. The remainder of the paper is organized as follows. Re-
lated work is reviewed in Section 2. The detailed descriptions of the proposed method are
presented in Section 3. Extensive experimental results are reported in Section 4. Section 5
concludes the paper.

2. Related Work

Vision based gesture recognition methods encompasses two main categories: three dimen-
sional (3D) model based methods and appearance based methods. The former computes
a geometrical representation using the joint angles of a 3D articulated structure recovered
from a gesture sequence, which provides a rich description that permits a wide range of ges-
tures. However, computing a 3D model has high computational complexity (Oikonomidis
et al., 2011). In contrast, appearance based methods extract appearance features from
a gesture sequence and then construct a classifier to recognize different gestures, which
have been widely used in vision based gesture recognition (Dardas, 2012). The proposed
multi-layered gesture recognition falls into the appearance based methods.

2.1 Feature Extraction and Classification

The well known features used for gesture recognition are color (Awad et al., 2006; Maraqa
and Abu-Zaiter, 2008), shapes (Ramamoorthy et al., 2003; Ong and Bowden, 2004) and
motion (Cutler and Turk, 1998; Mahbub et al., 2013). In early work, color information is
widely used to segment the hands of a user. To simplify the color based segmentation, the
user is required to wear single or differently colored gloves (Kadir et al., 2004; Zhang et al.,
2004). The skin color models are also used (Stergiopoulou and Papamarkos, 2009; Maung,
2009) where a typical restriction is wearing of long sleeved clothes. When it is difficult to
exploit color information to segment the hands from an image (Wan et al., 2012b), motion
information extracted from two consecutive frames is used for gesture recognition. Agrawal
and Chaudhuri (2003) explores the correspondences between patches in adjacent frames and
uses 2D motion histogram to model the motion information. Shao and Ji (2009) computes
optical flow from each frame and then uses different combinations of the magnitude and
direction of optical flow to compute a motion histogram. Zahedi et al. (2005) combines
skin color features and different first- and second-order derivative features to recognize sign
language. Wong et al. (2007) uses PCA on motion gradient images of a sequence to obtain
features for a Bayesian classifier. To extract motion features, Cooper et al. (2011) extends
Haar-like features from spatial domain to spatio-temporal domain and proposes volumetric
Haar-like features.

The features introduced above are usually extracted from RGB images captured by a
traditional optical camera. Due to the nature of optical sensing, the quality of the captured
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images is sensitive to lighting conditions and cluttered backgrounds, thus the extracted
features from RGB images are not robust. In contrast, depth information from a calibrated
camera pair (Rauschert et al., 2002) or direct depth sensors such as LiDAR (Light Detec-
tion and Ranging) is more robust to noises and illumination changes. More importantly,
depth information is useful for discovering the distance between the hands and body or-
thogonal to the image plane, which is an important cue for distinguishing some ambiguous
gestures. Because the direct depth sensors are expensive, inexpensive depth cameras, e.g.,
Microsoft’s Kinect, have been recently used in gesture recognition (Ershaed et al., 2011;
Wu et al., 2012b). Although the skeleton information offered by Kinect is more effective in
the expression of human actions than pure depth data, there are some cases that skeleton
cannot be extracted correctly, such as interaction between human body and other objects.
Actually, in the CHALERAN gesture challenge (Guyon et al., 2013), the skeleton informa-
tion is not allowed to use. To extract more robust features from Kinect depth images for
gesture recognition, Ren et al. (2013) proposes the part based finger shape features, which
do not depend on the accurate segmentation of the hands. Wan et al. (2013, 2014b) extend
SIFT to spatio-temporal domain and propose 3D EMoSIFT and 3D SMoSIFT to extract
features from RGB and depth images, which are invariant to scale and rotation, and have
more compact and richer visual representations. Wan et al. (2014a) proposes a discrimina-
tive dictionary learning method on 3D EMoSIFT features based on mutual information and
then uses sparse reconstruction for classification. Based on 3D Histogram of Flow (3DHOF)
and Global Histogram of Oriented Gradient (GHOG), Fanello et al. (2013) applies adaptive
sparse coding to capture high-level feature patterns. Wu et al. (2012a) utilizes both RGB
and depth information from Kinect and an extended-MHI representation is adopted as the
motion descriptors.

The performance of a gesture recognition method is not only related to the used fea-
tures but also to the adopted classifiers. Many classifiers can be used for gesture recognition,
e.g., Dynamic Time Warping (DTW) (Reyes et al., 2011; Lichtenauer et al., 2008; Sabinas
et al., 2013), linear SVMs (Fanello et al., 2013), neuro-fuzzy inference system networks (Al-
Jarrah and Halawani, 2001), hyper rectangular composite NNs (Su, 2000), and 3D Hopfield
NN (Huang and Huang, 1998). Due to the ability of modeling temporal signals, Hidden
Markov Model (HMM) is possibly the most well known classifier for gesture recognition.
Bauer (Bauer and Kraiss, 2002) proposes a 2D motion model and performs gesture recog-
nition with HMM. Vogler (2003) presents a parallel HMM algorithm to model gestures,
which can recognize continuous gestures. Fang et al. (2004) proposes a self-organizing fea-
ture maps/hidden Markov model (SOFM/HMM) for gesture recognition in which SOFM
is used as an implicit feature extractor for continuous HMM. Recently, Wan et al. (2012a)
proposes ScHMM to deal with the gesture recognition where sparse coding is adopted to
find succinct representations and Lagrange dual is applied to obtain a codebook.

2.2 One-shot Learning Gesture Recognition and Gesture Characters

Although a large number of work has been done, gesture recognition is still very challenging
and has been attracting increasing interests. One motivation is to overcome the well-known
overfitting problem when training samples are insufficient. The other one is to further
improve gesture recognition by developing novel features and classifiers.
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In the case of training samples being insufficient, most of classification methods are very
likely to overfit. Therefore, developing gesture recognition methods that use only a small
training data set is necessary. An extreme example is the one-shot learning that uses only
one training sample per class for training. The proposed work in this paper is also for one-
shot learning. In the literature, several previous work has been focused on one-shot learning.
In Lui (2012a), gesture sequences are viewed as third-order tensors and decomposed to three
Stiefel Manifolds and a natural metric is inherited from the factor manifolds. A geometric
framework for least square regression is further presented and applied to gesture recognition.
Mahbub et al. (2013) proposes a space-time descriptor and applies Motion History Imaging
(MHI) techniques to track the motion flow in consecutive frames. The Euclidean distance
based classifiers is used for gesture recognition. Seo and Milanfar (2011) presents a novel
action recognition method based on space-time locally adaptive regression kernels and the
matrix cosine similarity measure. Malgireddy et al. (2012) presents an end-to-end temporal
Bayesian framework for activity classification. A probabilistic dynamic signature is created
for each activity class and activity recognition becomes a problem of finding the most
likely distribution to generate the test video. Escalante et al. (2013) introduces principal
motion components for one-shot learning gesture recognition. 2D maps of motion energy
are obtained per each pair of consecutive frames in a video. Motion maps associated to a
video are further processed to obtain a PCA model, which is used for gesture recognition
with a reconstruction-error approach. More one-shot learning gesture recognition methods
are summarized by Guyon et al. (2013).

The intrinsic difference between gesture recognition and other recognition problems is
that gesture communication is highly complex and owns its unique characters. Therefore, it
is crucial to develop specified features and classifiers for gesture recognition by exploring the
unique characters of gestures as explained in Section 1. There are some efforts toward this
direction and some work has modeled the component concurrent or sequential organization
and achieved significant progress. To capture meaningful linguistic components of gestures,
Vogler and Metaxas (1999) proposes PaHMMs which models the movement and shape of
user’s hands in independent channels and then put them together at the recognition stage.
Chen and Koskela (2013) uses multiple Extreme Learning Machines (ELMs) (Huang et al.,
2012) as classifiers for simultaneous components. The outputs from the multiple ELMs
are then fused and aggregated to provide the final classification results. Chen and Koskela
(2013) proposes a novel representation of human gestures and actions based on component
concurrent character. They learn the parameters of a statistical distribution that describes
the location, shape, and motion flow. Inspired by the sequential organization character of
gestures, Wang et al. (2002) uses the segmented subsequences instead of the whole gesture
sequence as the basic units that convey the specific semantic expression for the gesture and
encode the gesture based on these units. It is successfully applied in large vocabulary sign
gestures recognition.

To our best knowledge, there is no work in the literature modeling both the component
concurrent character and the sequential organization character in gesture recognition, espe-
cially for one-shot learning gesture recognition. It should be noted that these two characters
demonstrate the essences of gestures from spatial and temporal aspects, respectively. There-
fore, the proposed method that exploits both these characters in a multi-layered framework
is desirable to improve gesture recognition.
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Test Avg. Acc. (%) Identification Strategy Description

1 75.0 None Memorizing all the training gestures, and identifying test gesture by recollection
2 90.3 Motion Drawing lines to record motion direction of each training gesture
3 83.5 Shape Drawing sketches to describe the hand shape of each training gesture
4 87.6 Location Drawing sketches to describe the location of each training gesture
5 95.3 Motion & Shape Strategy 2 and 3
6 100.0 Motion & Location & Shape Strategy 2, 3 and 4

Table 1: Observations on CGD 2011.

3. Multi-layered Gesture Recognition

The proposed multi-layered classification framework for one-shot learning gesture recogni-
tion contains three layers as shown in Figure 1. In the first layer, an improved principle
motion is applied to model the motion component. In the second layer, a particle based
descriptor is proposed to extract dynamic gesture information and then a weighted dynamic
time warping is proposed for the location component classification. In the last layer, we
extract unclosed shape contour from the key frame of a gesture sequence. Spatial path
warping is further proposed to recognize the shape component. Once the motion com-
ponent classification at the first layer is accomplished, the original gesture candidates are
divided into possible gesture candidates and impossible gesture candidates. The possible
gesture candidates are then fed to the second layer which performs the location compo-
nent classification. Compared with the original gesture candidates, classifying the possible
gesture candidates is expected to reduce the computational complexity of the second layer
distinctly. The possible gesture candidates are further reduced by the second layer. In the
reduced possible gesture candidates, if the first two best matched candidates are difficult
to be discriminated, i.e., the absolute difference of their matching scores is lower than a
predefined threshold, then the reduced gesture candidates are forwarded to the third layer;
otherwise the best matched gesture is output as the final recognition result.

In the remaining of this section, the illuminating cues are first observed in Section 3.1.
Inter-gesture segmentation is then introduced in Section 3.2. The motion, location and
shape component classifiers in each layer are finally introduced in Section 3.3, Section 3.4
and Section 3.5, respectively.

3.1 Gesture Meaning Expressions and Illuminating Cues

Although from the point of view of gesture linguistics, the basic components and how
gestures convey meaning are given (Stokoe, 1960), there is no reference to the importance
and complementarity of the components in gesture communication. This section wants
to draw some illuminating cues from observations. For this purpose, 10 undergraduate
volunteers are invited to take part in the observations.

Five batches of data are randomly selected from the development data of CGD 2011. The
pre-defined identification strategies are shown in Table 1. In each test, all the volunteers are
asked to follow these identification strategies. For example, in Test 2, they are required to
only use the motion cue and draw simple lines to record the motion direction of each gesture
in the training set. Then the test gestures are shown to the volunteers to be identified using
these drawn lines. The results are briefly summarized in Table 1.

From the observations above, the following illuminating cues can be drawn:

233



Jiang, Zhang, Wu, Gao and Zhao

• During gesture recognition, gesture components in the order of importance are motion,
location and shape.
• Understanding a gesture requires the observation of all these gesture components.

None of these components can convey the complete gesture meanings independently.
These gesture components complement each other.

3.2 Inter-gesture Segmentation Based on Movement Quantity

The inter-gesture segmentation is used to segment a multi-gesture sequence into several ges-
ture sequences.1 To perform the inter-gesture segmentation, we first measure the quantity
of movement for each frame in a multi-gesture sequence and then threshold the quantity
of movement to get candidate boundaries. Then, a sliding window is adopted to refine the
candidate boundaries to produce the final boundaries of the segmented gesture sequences
in a multi-gesture sequence.

3.2.1 Quantity of Movement

In a multi-gesture sequence, each frame has the relevant movement with respect to its
adjacent frame and the first frame. These movements and their statistical information are
useful for inter-gesture segmentation. For a multi-gesture depth sequence I, the Quantity
of Movement (QOM) for frame t is defined as a two-dimensional vector

QOM(I, t) = [QOMLocal(I, t), QOMGlobal(I, t)] ,

where QOMLocal(I, t) and QOMGlobal(I, t) measure the relative movement of frame t re-
spective to its adjacent frame and the first frame, respectively. They can be computed
as

QOMLocal(I, t) =
∑
m,n

σ(It(m,n), It−1(m,n)) ,

QOMGlobal(I, t) =
∑
m,n

σ(It(m,n), I1(m,n)) ,

where (m,n) is the pixel location and the indicator function σ(x, y) is defined as

σ(x, y) =

{
1 if |x− y| ≥ ThresholdQOM

0 otherwise
,

where ThresholdQOM is a predefined threshold, which is set to 60 empirically in this paper.

3.2.2 Inter-gesture Segmentation

We assume that there is a home pose between a gesture and another one in a multi-gesture
sequence. The inter-gesture segmentation is facilitated by the statistical characteristics of
QOMGlobal of the beginning and ending phases of the gesture sequences in the training

1. In this paper, we use the term “gesture sequence” to mean an image sequence that contains only one
complete gesture and “multi-gesture sequence” to mean an image sequence which may contain one or
multiple gesture sequences.
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data. One advantage of using QOMGlobal is that it does not need to segment the user from
the background.

Firstly the average frame number L of all gestures in the training set is obtained. The
mean and standard deviation of QOMGlobal of the first and last dL/8e frames of each gesture
sequence are computed. After that, a threshold Thresholdinter is obtained as the sum of
the mean and the doubled standard deviation. For a test multi-gesture sequence T which
has ts frames, the inter-gesture boundary candidate set is defined as

Bca
inter = {i|QOMGlobal(T, i) ≤ Thresholdinter, i ∈ {1, · · · , ts}} .

The boundary candidates are further refined through a sliding window of size dL/2e,
defined as {j + 1, j + 2, · · · , j + dL/2e} where j starts from 0 to ts − dL/2e. In each sliding
window, only the candidate with the minimal QOMGlobal is retained and other candidates
are eliminated from Bca

inter. After the sliding window stops, the inter-gesture boundaries
are obtained, which are exemplified as the blue dots in Figure 2. The segmented gesture
sequences will be used for motion, location, and shape component analysis and classification.
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Figure 2: An example of illustrating the inter-gesture segmentation results.

3.3 Motion Component Analysis and Classification

Owing to the relatively high importance of the motion component, it is analyzed and clas-
sified in the first layer. The principal motion (Escalante and Guyon, 2012) is improved by
using the overlapping block partitioning to reduce the errors of motion pattern mismatch-
ings. Furthermore, our improved principal motion uses both the RGB and depth images.
The gesture candidates outputted by the first layer is then fed to the second layer.

3.3.1 Principal Motion

Escalante and Guyon (2012) uses a set of histograms of motion energy information to
represent a gesture sequence and implements a reconstruction based gesture recognition
method based on principal components analysis (PCA). For a gesture sequence, motion
energy images are calculated by subtracting consecutive frames. Thus, the gesture sequence
with N frames is associated to N − 1 motion energy images. Next, a grid of equally spaced
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blocks is defined over each motion energy image as shown in Figure 3(c). For each motion
energy image, the average motion energy in each of the patches of the grid is computed by
averaging values of pixels within each patch. Then a 2D motion map for each motion energy
image is obtained and each element of the map accounts for the average motion energy of
the block centered on the corresponding 2D location. The 2D map is then vectorized into
an Nb-dimensional vector. Hence, an N frame gesture sequence is associated to a matrix Y
of dimensions (N −1)×Nb. All gestures in the reference set with size V can be represented
with matrices Yv, v ∈ {1, · · · , V } and PCA is applied to each Yv. Then the eigenvectors
corresponding to the top c eigenvalues form a set Wv, v = {1, · · · , V }.

In the recognition stage, each test gesture is processed as like training gestures and
represented by a matrix S. Then, S is projected back to each of the V spaces induced
by Wv, v ∈ {1, · · · , V }. The V reconstructions of S are denoted by R1, · · · , RV . The
reconstruction error of each Rv is computed by

ε(v) =
1

n

n∑
i=1

√√√√ m∑
j=1

(Rv(i, j)− S(i, j))2 ,

where n and m are the number of rows and columns of S. Finally, the test gesture is
recognized as the gesture with label obtained by arg minv ε(v).

3.3.2 Improved Principle Motion

Gestures with large movements are usually performed with significant deformation as shown
in Figure 3. In Escalante and Guyon (2012), motion information is represented by a his-
togram whose bins are related to spatial positions. Each bin is analyzed independently and
the space interdependency among the neighboring bins is not further considered. The inter-
dependency can be explored to improve the robustness of representing the gesture motion
component, especially for the gestures with larger movement. To this end, an overlapping
neighborhood partition is proposed. For example, if the size of bins is 20 × 20, the over-
lapping neighborhood contains 3 × 3 equally spaced neighboring bins in a 60 × 60 square
region. The averaged motion energy in the square region is taken as the current bin’s value
as shown in Figure 3.

The improved principle motion is applied to both the RGB and depth data. The RGB
images are transformed into gray images before computing their motion energy images. For
each reference gesture, the final V reconstruction errors are obtained by multiplying the
reconstruction errors of the depth data and the gray data. These V reconstruction errors
are further clustered by K-means to get two centers. The gesture labels associated to those
reconstruction errors belonging to the center with smaller value are treated as the possible
gesture candidates. The remaining gesture labels are treated as the impossible gesture
candidates. Then the possible candidates are fed to the second layer.

We compare the performance of our improved principal motion model with the original
principal motion model (Escalante and Guyon, 2012) on the first 20 development batches
of CGD 2011. Using the provided code (Guyon et al., 2014; Escalante and Guyon, 2012) as
baseline, the average Levenshtein distances (Levenshtein, 1966) are 44.92% and 38.66% for
the principal motion and the improved principal motion, respectively.
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(a) (b) (c) (d)

Figure 3: An example of a gesture with large movements. (a) and (b): two frames from
a gesture. (c): the motion energy image of (a). The grid of equally spaced
bins adopted by the Principle Motion (Escalante and Guyon, 2012). (d): the
motion energy image of (b). The overlapped grid used by our method where the
overlapping neighborhood includes all 3× 3 equally spaced neighbor bins.

3.4 Location Component Analysis and Classification

Gesture location component refers to the positions of the arms and hands relative to the
body. In the second layer, the sequential organization character of gestures is utilized
in the gesture sequence alignment. According to the movement-hold model, each gesture
sequence is segmented into semantic units, which convey the specific semantic meanings
of the gesture. Accordingly, when aligning a reference gesture and a test gesture, the
semantic units are aligned first, then the frames in each semantic unit are registered. A
particle-based representation for the gesture location component is proposed to describe
the location component of the aligned frames and a Weighted Dynamic Time Warping
(WDTW) is proposed for the location component classification.

3.4.1 Intra-gesture Segmentation and Alignment

To measure the distance between location components of a reference gesture sequence R =
{R1, R2 · · · , RLR

} and a test gesture sequence T = {T1, T2 · · · , TLT
}, an alignment Γ =

{(ik, jk)|k = 1, · · · ,K, ik ∈ {1, · · · , LR}, jk ∈ {1, · · · , LT }} can be determined by the best
path in the Dynamic Time Warping (DTW) grid and K is the path length. Then the
dissimilarity between two gesture sequences can be obtained as the sum of the distances
between the aligned frames.

The above alignment does not consider the sequential organization character of gestures.
The movement-hold model proposed by Liddell and Johnson (1989) reveals sequential or-
ganization of gestures, which should be explored in the analysis and classification of gesture
location component. QOMLocal(I, t), described in Section 3.2.1, measures the movement
between two consecutive frames. A large QOMLocal(I, t) indicates that the t-th frame is
in a movement phase, while a small QOMLocal(I, t) indicates that the frame is in a hold
phase. Among all the frames in a hold phase, the one with the minimal QOMLocal(I, t)
is the most representative frame and is marked as an anchor frame. Considering the se-
quential organization character of gestures, the following requirement should be satisfied to
compute Γ: each anchor frame in a test sequence must be aligned with one anchor frame in
the reference sequence.
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Representing T
00100000010...

Figure 4: Intra-gesture segmentation and the alignment between test and reference se-
quences.

As shown in Figure 4, the alignment between the test and reference sequences has two
stages. In the first stage, DTW is applied to align the reference and test sequences. Each
anchor frame is represented by “1” and the remaining frames are represented by “0”. Then
the associated best path Γ̂ = {(îk, ĵk)|k = 1, · · · , K̂} in the DTW grid can be obtained. For
each (îk, ĵk), if both îk and ĵk are anchor frames, then îk and ĵk are the boundaries of the
semantic units. According to the boundaries, the alignment between semantic units of the
reference and test sequences is obtained. In the second stage, as shown in Figure 4, each
frame in a semantic unit is represented by [QOMLocal, QOMGlobal] and DTW is applied
to align the semantic unit pairs separately. Then the final alignment Γ is obtained by
concatenating the alignments of the semantic unit pairs.

3.4.2 Location Component Segmentation and its Particle Representation

After the frames of the test and reference sequences are aligned, the next problem is how
to represent the location information in a frame. Dynamic regions in each frame contain
the most meaningful location information, which are illustrated in Figure 5(i).

A simple thresholding-based foreground-background segmentation method is used to
segment the user in a frame. The output of the segmentation is a mask frame that indicates
which pixels are occupied by the user as shown in Figure 5(b). The mask frame is then
denoised by a median filter to get a denoised frame as shown in Figure 5(c). The denoised
frame is first binarized and then dilated with a flat disk-shaped structuring element with
radius 10 as shown in Figure 5(d). The swing frame as shown in Figure 5(h) is obtained by
subtracting the binarized denoised frame from the dilated frame. The swing region (those
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Figure 5: Dynamic region segmentation.

white pixels in the swing frame) covers the slight swing of user’s trunk and can be used to
eliminate the influence of body swing. From frame t, define set Ξ as

{(m,n)|F1(m,n)− Ft(m,n) ≥ ThresholdQOM} ,

where F1 and Ft are the user masks of the first frame and frame t, respectively.
ThresholdQOM is the same as in Section 3.2.1. For each connected region in Ξ, only if
the number of pixels in this region exceeds Np and the proportion overlapped with swing
region is less than r, it is regarded as a dynamic region. Here Np = 500 is a threshold
used to remove the meaningless connected regions in the difference frame as shown in Fig-
ure 5(g). If a connected region has less than Np pixels, we think this region should not be
a good dynamic region for extracting location features, e.g., the small bright region on the
right hand of the user in Figure 5(g). This parameter can be set intuitively. The parameter
r = 50% is also a threshold used to complement with Np to remove the meaningless con-
nected regions in the difference frame. After using Np to remove some connected regions,
there may be a retained connected region which has more than Np pixels but it may still
not be a meaningful dynamic region for extracting position features if the connected region
is caused by the body swing. Obviously we can exploit the swing region to remove such
a region. To do this, we first compute the overlap rate between this region and the swing
region. If the overlap rate is larger than r, it is reasonable to think this region is mainly
produced by the body swing. Therefore, it should be further removed. As like Np, this
parameter is also very intuitive to set and is not very sensitive to the performance.

To represent the dynamic region of frame t, a particle-based description is proposed to
reduce the matching complexity. The dynamic region of frame t can be represented by a
3D distribution: Pt(x, y, z) where x and y are coordinates of a pixel and z = It(x, y) is the
depth value of the pixel. In the form of non-parametric representation, Pt(x, y, z) can be

represented by a set of N̂ particles, PLocation(It) = {(xn, yn, zn)|N̂n=1}. We use K-means to

cluster all pixels inside the dynamic region into N̂ clusters. Note that for a pixel, both its
spatial coordinates and depth value are used. Then the centers of clusters are used as the
representative particles. In this paper, 20 representative particles are used for each frame,
as shown in Figure 6.
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(a) (b) (c) (d)

Figure 6: Four examples of particle representation of the location component (the black
dots are the particles projected onto X-Y plane).

3.4.3 Location component Classification

Assume the location component of two aligned frames can be represented as two particle
sets, P = {P1, P2 · · ·PN̂

} and Q = {Q1, Q2 · · ·QN̂
}. The matching cost between particle Pi

and Qj , denoted by C(Pi, Qj), is computed as their Euclidean distance. The distance of
the location component between these two aligned gesture frames is defined by the minimal
distance between P and Q. Computing the minimal distance between two particle sets is
indeed to find an assignment Π to minimize the cost summation of all particle pairs

Π = arg min
Π

N̂∑
i=1

C(Pi, QΠ(i)) . (1)

This is a special case of the weighted bipartite graph matching and can be solved by the
Edmonds method (Edmonds, 1965). Edmonds method which finds an optimal assignment
for a given cost matrix is an improved Hungarian method (Kuhn, 1955) with time complexity
O(n3) where n is the number of particles. Finally, the distance of the location component
between two aligned gesture frames is obtained

dis(P,Q) =
N̂∑
i=1

C(Pi, QΠ(i)) .

The distance between the reference sequence R and the test sequence T can be computed
as the sum of all distance between the location components of the aligned frames in Γ

DISLocation(R, T |Γ) =
K∑
k=1

dis(PLocation(Rik), PLocation(Tjk)) . (2)

This measurement implicitly gives all the frames the same weights. However, in many cases
gestures are distinguished by only a few frames. Therefore, rather than directly computing
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Equation 2, we propose the Weighted DTW (WDTW) to compute the distance of location
component between R and T as

WDISLocation(R, T |Γ) =

K∑
k=1

WR
ik
× dis(PLocation(Rik), PLocation(Tjk)) ,

where WR = {WR
ik
|ik ∈ {1, · · · , LR}} is the weight vector. Different from the method

of evaluating the phase difference between the test and reference sequences (Jeong et al.,
2011) and the method of assigning different weights to features (Reyes et al., 2011), we
assign different weights to the frames of the reference gesture sequence. For each reference
gesture sequence, firstly we use the regular DTW to calculate and record the alignment
Γ between the current reference gesture sequence and all the other reference gesture se-
quences. Secondly for each frame in the current reference gesture sequence, we accumulate
its corresponding distances with the matched frames in the best path in the DTW. Then,
the current frame is weighted by the average distance between itself and all the correspond-
ing frames in the best path. The detailed procedure of computing the weight vector are
summarized in Algorithm 1.

Reference 
Sequence R          

Test 
Sequence T          

Alignment 
between R and T

Particle Representation of 
Location Component of R

Particle Representation of 
Location Component of T

Bipartite Graph Matching

Location Component Distance of 
Reference Sequence and Test Sequence

Weight Vector
           WR

Figure 7: Weighted Dynamic Time Warping framework.

In the second layer, we first use K-means to cluster the input possible gesture candidates
into two cluster centers according to the matching scores between the test gesture sequence
and the possible gesture candidates. The candidates in the cluster with smaller matching
score are discarded. In the remaining candidates, if the first two best matched candidates
are difficult to be distinguished, i.e., the absolute difference of their normalized location
component distances is lower than a predefined threshold ε, then these candidates are
forwarded to the third layer; otherwise the best matched candidate is output as the final
recognition result. Two factors influence the choice of the parameter ε. The first one is
the number of the gesture candidates and the other one is the type of gestures. When the
number of the gesture candidates is large or most of the gesture candidates are the shape
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Algorithm 1 Computing weight vector WR for a reference R

Input: all the O reference gesture depth sequences: I1, I2, · · · , IO
Output: weight vector for R, WR = {WR

m |m ∈ {1, · · · , LR}}
1: for each m ∈ [1, LR] do
2: WR

m = 0
3: NR

m = 0
4: end for
5: for each n ∈ [1, O] do
6: Compute the alignment Γ = {(ik, jk)} between R and In

7: for each m ∈ [1, LR] do
8: WR

m = WR
m +

∑
(ik=m,jk)∈Γ dis(PLocation(Rik), PLocation(Injk))

9: NR
m = NR

m +
∑

(ik,jk)∈Γ δ(ik = m)
10: if n = O then
11: WR

m = WR
m�NR

m

12: end if
13: end for
14: end for

dominant gestures, a high threshold is preferred. In our experiments, we empirically set its
value with 0.05 by observing the matching scores between the test sample and each gesture
candidates.

3.5 Shape Component Analysis and Classification

The shape in a hold phase is more discriminative than the one in a movement phase. The key
frame in a gesture sequence is defined as the frame which has the minimization QOMLocal.
Shape component classifier classifies the shape features extracted from the key frame of
a gesture sequence using the proposed Spatial Path Warping (SPW), which first extracts
unclosed shape context (USC) features and then calculates the distance between the USCs
of the key frames in the reference and the test gesture sequences. The test gesture sequence
is classified as the gesture whose reference sequence has the smallest distance with the test
gesture sequence.

3.5.1 Unclosed Shape Segmentation

The dynamic regions of a frame have been obtained in Section 3.4.2. In a key frame, the
largest dynamic region D is used for shape segmentation. Although shapes are complex
and do not have robust texture and structured appearance, in most cases shapes can be
distinguished by their contours. The contour points of D are extracted by the Canny
algorithm. The obtained contour point set is denoted by C1 as shown in Figure 8(a). K-
means is adopted to cluster the points in D into two clusters based on the image coordinates
and depth of each point. If a user faces to the camera, the cluster with smaller average
depth contains most of information for identifying the shape component. Canny algorithm
is used again to extract contour points of the cluster with smaller average depth. The
obtained closed contour point set is denoted by C2 as shown in Figure 8(b). Furthermore,
an unclosed contour point set can be obtained by C3 = C2

⋂
C1 as shown in Figure 8(c),

which will be used to reduce the computational complexity of matching shapes.
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(a) (b) (c) (d)

Figure 8: Unclosed shape segmentation and context representation. (a) is an example of
point set C1, (b) is an example of point set C2 and (c) is an example of obtained
point set C3; (d) is the log-polar space used to decide the ranges of K bins.

3.5.2 Shape Representation and Classification

The contour of a shape consists of a 2-D point set P = {p1, p2, · · · , pN}. Their relative posi-
tions are important for the shape recognition. From the statistical point of view, Belongie
et al. (2002) develops a strong shape contour descriptor, namely Shape Context (SC). For
each point pi in the contour, a histogram hpi is obtained as the shape context of the point
whose k-th bin is calculated by

hpi(k) = ]{(pj − pi) ∈ bin(k)|pj ∈ P, i 6= j, k ∈ {1, · · · ,K}} ,

where bin(k) defines the quantification range of the k-th bin. The log-polar space for bins
is illustrated in Figure 8(d).

Assume P andQ are the point sets for the shape contours of two key frames, the matching
cost Φ(pi, qj) between two points pi ∈ P and qj ∈ Q is defined as

Φ(pi, qj) =
1

2

K∑
k=1

[hpi(k)− hqj (k)]2

hpi(k) + hqj (k)
.

Given the set of matching costs between all pairs of points pi ∈ P and qj ∈ Q, computing
the minimal distance between P and Q is to find a permutation Ψ to minimize the following
sum

Ψ = arg min
Ψ

∑
i

Φ(pi, qΨ(i)) ,

which can also be solved by the Edmonds algorithm as like solving Equation 1.
An unclosed contour contains valuable spatial information. Thus, a Spatial Path Warp-

ing algorithm (SPW) is proposed to compute the minimal distance between two unclosed
contours. Compared with the Edmonds algorithm, the time complexity of the proposed
SPW is reduced from O(n3) to O(n2) where n is the size of the point set of an unclosed
shape contour. As shown in Figure 8(c), the points on an unclosed contour can be repre-
sented as a clockwise contour point sequence. SPW is used to obtain the optimal match
between two given unclosed contour point sequences. For two unclosed contour point se-
quences {p′1, · · · , p′n}, {q′1, · · · , q′m}, a dynamic window is set to constrain the points that
one point can match, which makes the matching more robust to local shape variation. We
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set the window size w with max(Ls, abs(n − m)). In most cases, the window size is the
absolute difference between the lengths of the two point sequences. In extreme cases, if two
sequences have very close lengths, i.e., their absolute difference is less then Ls, we set the
the window size with Ls. The details of proposed SPW are summarized in Algorithm 2.

Algorithm 2 Computing distance between two unclosed contour point sequences

Input: two unclosed contour point sequences {p′1, · · · , p′n}, {q′1, · · · , q′m}
Output: distance between these two point sequences SPW [n,m].
1: Set w = max(Ls, abs(n−m))
2: for each i ∈ [0, n] do
3: for each j ∈ [0,m] do
4: SPW [i, j] =∞
5: end for
6: end for
7: SPW [0, 0] = 0
8: for each i ∈ [1, n] do
9: for each j ∈ [max(1, i− w),min(m, i+ w)] do

10: SPW [i, j]=Φ(p′i, q
′
j) + min(SPW [i− 1, j], SPW [i, j − 1], SPW [i− 1, j − 1])

11: end for
12: end for

4. Experiments

In this section, extensive experiment results are presented to evaluate the proposed multi-
layered gesture recognition method. All the experiments are performed in Matlab 7.12.0 on
a Dell PC with Duo CPU E8400. The ChaLearn Gesture Dataset (CGD 2011) (Guyon et al.,
2014) is used in all experiments, which is designed for one-shot learning. The CGD 2011
consists of 50,000 gestures (grouped in 500 batches, each batch including 47 sequences and
each sequence containing 1 to 5 gestures drawn from one of 30 small gesture vocabularies
of 8 to 15 gestures), with frame size 240× 320, 10 frames/second, recorded by 20 different
users.

The parameters used in the proposed method are listed in Table 2. Noted that the
parameters c and Nb are set with the default values used in the sample code of the principal
model.2 The threshold for foreground and background segmentation is adaptively set to
the maximal depth minus 100 for each batch data. For example, the maximal depth of the
devel01 batch is 1964. Then the threshold for this batch is 1864. The number 100 is in
fact a small bias from the maximal depth, which is empirically set in our experiments. We
observed that slightly changing this number does not significantly affect the segmentation.
Considering the tradeoff between the time complexity and recognition accuracy, in our
experiments, we empirically set N̂ to 20, which achieves the desired recognition performance.

In our experiments, Levenshtein distance is used to evaluate the gesture recognition
performance, which is also used in the CHALERAN gesture challenge. It is the minimum
number of edit operations (substitution, insertion, or deletion) that have to be performed
from one sequence to another (or vice versa). It is also known as “edit distance”.

2. The code is available at http://gesture.chalearn.org/data/sample-code
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Parameter and Description Applied to Value
From Prior

or Not
Sensitive to

Performance
Training Data
Used or Not

Np: Minimal number of pixels in a connected region D 500 Y N Y
r: Maximal overlap rate between a connected region and the swing region D 50% N N N
ε: Threshold for the difference between the first two largest matches D, E 0.05 Y N Y

Ls: Minimal length of the sliding window E 5 N N N
ThresholdQOM A, D, E 60 Y Y N
Thresholdinter A adaptive N Y Y

c: number of eigenvalues for each gesture C 10 Y N N
Nb: number of bins for each motion energy image C 192 Y N N

N̂ : number of particles D 20 Y N N
Threshold for foreground and background segmentation D, E Max depth - 100 Y N Y

A: Inter-gesture segmentation; B: intra-gesture segmentation; C: Motion component analysis and classification
D: Location component analysis and classification; E: Shape component analysis and classification; Training data: CGD 2011

Table 2: The parameters used in the proposed multi-layered gesture recognition and their
descriptions.

4.1 Performance of Our Method with Different Layers

We evaluate the performance of the proposed method with different layers on the develop-
ment (devel01 ∼ devel480) batches of CGD 2011 and Table 3 reports the results. If only
the first layer is used for classification, the average Levenhstein distance is 37.53% with
running time 0.54 seconds per gesture. If only the second layer is used for recognition, the
average Levenhstein distance is 29.32% with running time 6.03 seconds per gesture. If only
the third layer is used, the average Levenhstein distance is 39.12% with the running time
6.64 seconds per gesture. If the first two layers are used, the average Levenhstein distance is
24.36% with running time 2.79 seconds per gesture. If all three layers are used, the average
normalized Levenhstein distance is 19.45% with running time 3.75 seconds per gesture.

methods
First layer

for recognition
Second layer

for recognition
Third layer

for recognition
First two layers
for recognition

Three layers
for recognition

TeLev (%) 37.53 29.32 39.12 24.36 19.45
Recognition time
per gesture (s)

0.54 6.03 6.64 2.79 3.75

Table 3: Performance of using the first layer, the second layer, the third layer, first two
layers and three layers on ChaLearn gesture data set (devel01 ∼ devel480).

From these comparison results, we can see that the proposed method achieves high
recognition accuracy while having low computational complexity. The first layer can identify
the gesture candidates at the speed of 80 fps (frames per second). The second layer has
relatively high computational complexity. If we only use the second layer for classification,
the average computing time is roughly 11 times of the first layer. Despite with relatively
high computational cost, the second layer has stronger classification ability. Compared
with using only the second layer, the computational complexity of using the first two layers
in the proposed method is distinctly reduced and can achieve 16 fps. The reason is that
although the second layer is relatively complex, the gesture candidates forwarded to it are
significantly reduced by the first layer. When all three layers are used, the proposed method
still achieve about 12 fps, which is faster than the video recording speed (10 fps) of CGD
2011.
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4.2 Comparison with Recent Representative Methods

We compare the proposed method with other recent representative methods on the first
20 development data batches. Table 4 reports the performance of the proposed method on
each batch and also the average performance on all 20 batches. The average performance
of the proposed method and the compared methods are shown in Table 5.

Batch
Second layer for recognition First two layers for recognition Three layers for recognition

TeLev (%)
Recognize time
per gesture (s)

TeLev (%)
Recognize time
per gesture (s)

TeLev (%)
Recognize time
per gesture (s)

1 7.24 6.78 0.11 3.40 1.11 3.59
2 41.21 11.38 44.21 7.10 34.35 10.00
3 62.98 8.86 69.20 2.99 39.95 5.61
4 4.51 5.98 3.93 2.10 6.93 2.30
5 11.68 10.96 2.62 3.05 4.77 3.31
6 44.64 5.59 39.94 2.69 23.51 3.42
7 12.44 3.59 8.51 1.70 8.51 1.79
8 5.56 4.94 0.00 2.14 5.71 2.94
9 10.56 5.10 6.44 2.50 6.44 3.01
10 44.21 5.88 29.13 3.24 16.52 3.95
11 42.75 6.46 36.36 3.98 28.93 6.31
12 8.56 5.16 1.06 2.00 7.06 2.34
13 16.24 3.68 12.93 1.20 12.93 1.99
14 44.69 2.50 40.13 0.90 27.98 2.35
15 15.78 4.61 4.21 1.09 6.21 2.19
16 36.54 8.35 36.27 4.21 23.41 6.94
17 36.25 9.10 29.55 5.10 26.32 5.39
18 62.4 1.99 69.21 0.81 53.55 1.60
19 54.31 5.07 51.32 2.84 47.61 3.02
20 17.74 2.58 10.61 1.40 10.61 2.01

Average 29.02 5.93 24.79 2.73 19.62 3.69

Table 4: Recognition performance of using the second layer, first two layers and three layers
on first 20 development batches of CGD 2011 (TeLev is the average Levenshtein
distance).

Methods
Extend-MHI

Wu et al. (2012a)
Manifold LSR
Lui (2012a)

Sparse Coding
Fanello et al. (2013)

Temporal Bayesian
Malgireddy et al. (2012)

Motion History
Mahbub et al. (2013)

CSMMI+3D EMoSIFT
Wan et al. (2014a)

Proposed

TeLev (%) 26.00 28.73 25.11 24.09 31.25 18.76 19.62
TeLen # 6.24 5.02 # 18.01 # 5.91

Table 5: Performance comparison on the 20 development data batches (TeLen is the average
error made on the number of gestures).

For the comparison on each batch, the proposed method is compared with a manifold
and nonlinear regression based method (Manifold LSR) (Lui, 2012b), an extended motion-
history-image and correlation coefficient based method (Extended-MHI) (Wu et al., 2012a),
and a motion silhouettes based method (Motion History) (Mahbub et al., 2013). The
comparison results are shown in Figure 9.

In batches 13, 14, 17, 18, 19, the proposed method does not achieve the best performance.
However, the proposed method achieves the best performance in the remaining 15 batches.
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Figure 9: Performance comparison on the 20 development batches in CGD 2011.

In batches 3, 10 and 11, most of gestures consist of static shapes, which can be efficiently
identified by the shape classifier in the third layer. Batches 1, 4, 7 and 8 consist of motion
dominated gestures, which can be classified by the motion and location component classifiers
in the first and second layers. In batches 18 and 19, the proposed method has relatively
poor performance. As in batch 18, most of gestures have small motion, similar locations,
and non-stationary hand shapes. These gestures may be difficult to be identified by the
proposed method. In batch 19, the gestures have similar locations and hands coalescence,
which is difficult to be identified by the second layer and the third layer classifiers in our
method. Overall, the proposed method significantly outperforms other recent competitive
methods.

The proposed method is further compared with DTW, continuous HMM (CHMM), semi-
continuous HMM (SCHMM) and SOFM/HMM (Fang et al., 2004) on the development
(devel01 ∼ devel480) batches of CGD 2011. All compared methods use one of three feature
descriptors including dynamic region grid representation (DP), dynamic region particle
representation (DG) and Dynamic Aligned Shape Descriptor (DS) (Fornés et al., 2010).

• Dynamic region grid representation. For the dynamic region of the current frame
obtained in Section 3.4.2, a grid of equally spaced cells is defined and the default size
of grid is 12 × 16. For each cell, the average value of depth in the square region is
taken as the value of current bin. So a 12×16 matrix is generated, which is vectorized
into the feature vector of the current frame.
• Dynamic region particle representation. The particles for the current frame

obtained in Section 3.4.2 cannot directly be used as an input feature vector and
they have to be reorganized. The 20 particles {(xn, yn, zn)|20

n=1} are sorted according
to ‖(xn, yn)‖2 and then the sorted particles are concatenated in order to get a 60-
dimensional feature vector to represent the current frame.
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• Dynamic region D-Shape descriptor (Fornés et al., 2010). Firstly, the location
of some concentric circles is defined, and for each one, the locations of the equidistant
voting points are computed. Secondly, these voting points will receive votes from the
pixels of the shape of the dynamic region, depending on their distance to each voting
point. By locating isotropic equidistant points, the inner and external part of the
shape could be described using the same number of voting points. In our experiment,
we used 11 circles for the D-Shape descriptor. Once we have the voting points, the
descriptor vector is computed.

Here, each type of HMM is a 3-state left-to-right model allowing possible skips. For
CHMM and SCHMM, the covariance matrix is a diagonal matrix with all diagonal elements
being 0.2. The comparison results are reported in Table 6.

Method
Number of Mixtures

for each state
TeLev (%)

Recognition time
per gesture (s)

DP DG DS DP DG DS

DTW # 38.23 41.19 33.16 2.67 2.51 2.60
CHMM 5 31.41 33.29 31.13 6.91 6.83 6.89
SCHMM 30 31.01 32.92 29.35 6.82 6.75 6.79

SOFM/HMM 5 28.27 30.31 27.20 6.77 6.71 6.74

DP: dynamic region particle representation; DG: dynamic region grid representation
DS: dynamic region D-Shape descriptor

Table 6: Performance of different sequence matching methods on 480 development batches
of CGD 2011.

Compared with these methods, the proposed method achieves the best performance.
Noted that in all compared methods, SOFM/HMM classifier with the DS descriptor achieves
the second best performance. As explained in Section 1, sequentially modeling motion, po-
sition and shape components is very important for improving the performance of gesture
recognition. Except the proposed method, other compared methods do not utilize these
components. On the other hand, statistical models like CHMM, SCHMM and SOFM/HMM
need more training samples to estimate model parameters, which also affect their perfor-
mance in the one-shot learning gesture recognition.

5. Conclusion

The challenges of gesture recognition lie in the understanding of the unique characters
and cues of gestures. This paper proposed a novel multi-layered gesture recognition with
Kinect, which is linguistically and perceptually inspired by the phonological model and
the movement-hold model. Together with the illuminating cues drawn from observations,
the component concurrent character and the sequential organization character of gestures
are all utilized in the proposed method. In the first layer, an improved principle motion
is applied to model the gesture motion component. In the second layer, a particle based
descriptor is proposed to extract dynamic gesture information and then a weighted dynamic
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time warping is proposed to classify the location component. In the last layer, the spatial
path warping is further proposed to classify the shape component represented by unclosed
shape context, which is improved from the original shape context but needs lower matching
time. The proposed method can obtain relatively high performance for one-shot learning
gesture recognition. Our work indicates that the performance of gesture recognition can be
significantly improved by exploring and utilizing the unique characters of gestures, which
will inspire other researcher in this field to develop learning methods for gesture recognition
along this direction.
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Abstract

We present a new framework for multimodal gesture recognition that is based on a multiple
hypotheses rescoring fusion scheme. We specifically deal with a demanding Kinect-based
multimodal data set, introduced in a recent gesture recognition challenge (ChaLearn 2013),
where multiple subjects freely perform multimodal gestures. We employ multiple modali-
ties, that is, visual cues, such as skeleton data, color and depth images, as well as audio,
and we extract feature descriptors of the hands’ movement, handshape, and audio spectral
properties. Using a common hidden Markov model framework we build single-stream ges-
ture models based on which we can generate multiple single stream-based hypotheses for
an unknown gesture sequence. By multimodally rescoring these hypotheses via constrained
decoding and a weighted combination scheme, we end up with a multimodally-selected best
hypothesis. This is further refined by means of parallel fusion of the monomodal gesture
models applied at a segmental level. In this setup, accurate gesture modeling is proven to be
critical and is facilitated by an activity detection system that is also presented. The overall
approach achieves 93.3% gesture recognition accuracy in the ChaLearn Kinect-based mul-
timodal data set, significantly outperforming all recently published approaches on the same
challenging multimodal gesture recognition task, providing a relative error rate reduction
of at least 47.6%.

Keywords: multimodal gesture recognition, HMMs, speech recognition, multimodal
fusion, activity detection

1. Introduction

Human communication and interaction takes advantage of multiple sensory inputs in an
impressive way. Despite receiving a significant flow of multimodal signals, especially in
the audio and visual modalities, our cross-modal integration ability enables us to effectively
perceive the world around us. Examples span a great deal of cases. Cross-modal illusions are
indicative of lower perceptual multimodal interaction and plasticity (Shimojo and Shams,
2001): for instance, when watching a video, a sound is perceived as coming from the speakers
lips (the ventriloquism effect) while, in addition, speech perception may be affected by
whether the lips are visible or not (the McGurk effect).
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At a higher level, multimodal integration is also regarded important for language pro-
duction and this is how the notion of multimodal gestures can be introduced. Several
authors, as McNeill (1992), support the position that hand gestures hold a major role,
and together with speech they are considered to have a deep relationship and to form an
integrated system (Bernardis and Gentilucci, 2006) by interacting at multiple linguistic
levels. This integration has been recently explored in terms of communication by means
of language comprehension (Kelly et al., 2010). For instance, speakers pronounce words
while executing hand gestures that may have redundant or complementary nature, and
even blind speakers gesture while talking to blind listeners (Iverson and Goldin-Meadow,
1998). From a developmental point of view, see references in the work of Bernardis and
Gentilucci (2006), hand movements occur in parallel during babbling of 6-8 month children,
whereas word comprehension at the age of 8-10 months goes together with deictic gestures.
All the above suffice to provide indicative evidence from various perspectives that hand
gestures and speech seem to be interwoven.

In the area of human-computer interaction gesture has been gaining increasing atten-
tion (Turk, 2014). This is attributed both to recent technological advances, such as the
wide spread of depth sensors, and to groundbreaking research since the famous “put that
there” (Bolt, 1980). The natural feeling of gesture interaction can be significantly enhanced
by the availability of multiple modalities. Static and dynamic gestures, the form of the
hand, as well as speech, all together compose an appealing set of modalities that offers
significant advantages (Oviatt and Cohen, 2000).

In this context, we focus on the effective detection and recognition of multimodally
expressed gestures as performed freely by multiple users. Multimodal gesture recognition
(MGR) poses numerous challenging research issues, such as detection of meaningful infor-
mation in audio and visual signals, extraction of appropriate features, building of effective
classifiers, and multimodal combination of multiple information sources (Jaimes and Sebe,
2007). The demanding data set (Escalera et al., 2013b) used in our work has been recently
acquired for the needs of the multimodal gesture recognition challenge (Escalera et al.,
2013a). It comprises multimodal cultural-anthropological gestures of everyday life, in spon-
taneous realizations of both spoken and hand-gesture articulations by multiple subjects,
intermixed with other random and irrelevant hand, body movements and spoken phrases.

A successful multimodal gesture recognition system is expected to exploit both speech
and computer vision technologies. Speech technologies and automatic speech recogni-
tion (Rabiner and Juang, 1993) have a long history of advancements and can be considered
mature when compared to the research challenges found in corresponding computer vision
tasks. The latter range from low-level tasks that deal with visual descriptor representa-
tions (Li and Allinson, 2008), to more difficult ones, such as recognition of action (Laptev
et al., 2008), of facial expressions, handshapes and gestures, and reach higher-level tasks
such as sign language recognition (Agris et al., 2008). However, recently the incorporation
of depth enabled sensors has assisted to partially overcome the burden of detection and
tracking, opening the way for addressing more challenging problems. The study of multiple
modalities’ fusion is one such case, that is linked with subjects discussed above.

Despite the progress seen in either unimodal cases such as the fusion of multiple speech
cues for speech recognition (e.g., Bourlard and Dupont, 1997) or the multimodal case of
audio-visual speech (Potamianos et al., 2004; Glotin et al., 2001; Papandreou et al., 2009),
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the integration of dissimilar cues in MGR poses several challenges; even when several cues
are excluded such as facial ones, or the eye gaze. This is due to the complexity of the task
that involves several intra-modality diverse cues, as the 3D hands’ shape and pose. These
require different representations and may occur both sequentially and in parallel, and at
different time scales and/or rates. Most of the existing gesture-based systems have certain
limitations, for instance, either by only allowing a reduced set of symbolic commands based
on simple hand postures or 3D pointing (Jaimes and Sebe, 2007), or by considering single-
handed cases in controlled tasks. Such restrictions are indicative of the task’s difficulty
despite already existing work (Sharma et al., 2003) even before the appearance of depth
sensors (Weimer and Ganapathy, 1989).

The fusion of multiple information sources can be either early, late or intermediate, that
is, either at the data/feature level, or at the stage of decisions after applying independent
unimodal models, or in-between; for further details refer to relative reviews (Jaimes and
Sebe, 2007; Maragos et al., 2008). In the case of MGR late fusion is a typical choice
since involved modalities may demonstrate synchronization in several ways (Habets et al.,
2011) and possibly at higher linguistic levels. This is in contrast, for instance, to the
case of combining lip movements with speech in audio-visual speech where early or state-
synchronous fusion can be applied, with synchronization at the phoneme-level.

In this paper, we present a multimodal gesture recognition system that exploits the color,
depth and audio signals captured by a Kinect sensor. The system first extracts features for
the handshape configuration, the movement of the hands and the speech signal. Based on
the extracted features and statistically trained models, single modality-based hypotheses are
then generated for an unknown gesture sequence. The underlying single-modality modeling
scheme is based on gesture-level hidden Markov models (HMMs), as described in Section 3.1.
These are accurately initialized by means of a model-based activity detection system for
each modality, presented in Section 3.3. The generated hypotheses are re-evaluated using
a statistical multimodal multiple hypotheses fusion scheme, presented in Section 3.2. The
proposed scheme builds on previous work on N-best rescoring: N-best sentence hypotheses
scoring was introduced for the integration of speech and natural language by Chow and
Schwartz (1989) and has also been employed for the integration of different recognition
systems based on the same modality, e.g., by Ostendorf et al. (1991), or for audio-visual
speech recognition by Glotin et al. (2001). Given the best multimodally-selected hypothesis,
and the implied gesture temporal boundaries in all information streams, a final segmental
parallel fusion step is applied based on parallel HMMs (Vogler and Metaxas, 2001). We
show in Section 5 that the proposed overall MGR framework outperforms the approaches
that participated in the recent demanding multimodal challenge (Escalera et al., 2013a), as
published in the proceedings of the workshop, by reaching an accuracy of 93.3 and leading
to a relative error rate (as Levenshtein distance) reduction of 47% over the first-ranked
team.

2. Related Work

Despite earlier work in multimodal gesture recognition, it is considered an open field, re-
lated to speech recognition, computer vision, gesture recognition and human-computer in-
teraction. As discussed in Section 1 it is a multilevel problem posing challenges on audio
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and visual processing, on multimodal stream modeling and fusion. Next, we first consider
works related to the recent advances on multimodal recognition, including indicative works
evaluated in the same ChaLearn challenge and recognition task by sharing the exact train-
ing/testing protocol and data set. Then, we review issues related to basic components and
tasks, such as visual detection and tracking, visual representations, temporal segmentation,
statistical modeling and fusion.

There are several excellent reviews on multimodal interaction either from the computer
vision or human-computer interaction aspect (Jaimes and Sebe, 2007; Turk, 2014). Since
earlier pioneering works (Bolt, 1980; Poddar et al., 1998) there has been an explosion of
works in the area; this is also due to the introduction of everyday usage depth sensors (e.g.,
Ren et al., 2011). Such works span a variety of applications such as the recent case of gestures
and accompanying speech integration for a problem in geometry (Miki et al., 2014), the in-
tegration of nonverbal auditory features with gestures for agreement recognition (Bousmalis
et al., 2011), or within the aspect of social signal analysis (Ponce-López et al., 2013); Song
et al. (2013) propose a probabilistic extension of first-order logic, integrating multimodal
speech/visual data for recognizing complex events such as everyday kitchen activities.

The ChaLearn task is an indicative case of the effort recently placed in the field: Pub-
lished approaches ranked in the first places of this gesture challenge, employ multimodal
signals including audio, color, depth and skeletal information; for learning and recogni-
tion one finds approaches ranging from hidden Markov models (HMMs)/Gaussian mixture
models (GMMs) to boosting, random forests, neural networks and support vector machines
among others. Next, we refer to indicative approaches from therein, (Escalera et al., 2013b).
In Section 5 we refer to specific details for the top-ranked approaches that we compare with.
Wu et al. (2013), the first-ranked team, are driven by the audio modality based on end-point
detection, to detect the multimodal gestures; then they combine classifiers by calculating
normalized confidence scores. Bayer and Thierry (2013) are also driven by the audio based
on a hand-tuned detection algorithm, then they estimate class probabilities per gesture
segment and compute their weighted average. Nandakumar et al. (2013) are driven by both
audio HMM segmentation, and skeletal points. They discard segments not detected in both
modalities while employing a temporal overlap coefficient to merge overlapping modalities’
segments. Finally, they recognize the gesture with the highest combined score. Chen and
Koskela (2013) employ the extreme learning machine, a class of single-hidden layer feed-
forward neural network and apply both early and late fusion. In a late stage, they use the
geometric mean to fuse the classification outputs. Finally, Neverova et al. (2013) propose
a multiple-scale learning approach that is applied on both temporal and spatial dimension
while employing a recurrent neural network. Our contribution in the specific area of mul-
timodal gestures recognition concerns the employment of a late fusion scheme based on
multiple hypothesis rescoring. The proposed system, also employing multimodal activity
detectors, all in a HMM statistical framework, demonstrates improved performance over
the rest of the approaches that took part in the specific ChaLearn task.

From the visual processing aspect the first issue to be faced is hand detection and
tracking. Regardless of the boost offered after the introduction of depth sensors there
are unhandled cases as in the case of low quality video or resolution, in complex scene
backgrounds with multiple users, and varying illumination conditions. Features employed
are related to skin color, edge information, shape and motion for hand detection (Argyros
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and Lourakis, 2004; Yang et al., 2002), and learning algorithms such as boosting (Ong
and Bowden, 2004). Tracking is based on blobs (Starner et al., 1998; Tanibata et al.,
2002; Argyros and Lourakis, 2004), hand appearance (Huang and Jeng, 2001), or hand
boundaries (Chen et al., 2003; Cui and Weng, 2000), whereas modeling techniques include
Kalman filtering (Binh et al., 2005), the condensation method (Isard and Blake, 1998), or
full upper body pose tracking (Shotton et al., 2013). Others directly employ global image
features (Bobick and Davis, 2001). Finally, Alon et al. (2009) employ a unified framework
that performs spatial segmentation simultaneously with higher level tasks. In this work,
similarly to other authors, see works presented by Escalera et al. (2013b), we take advantage
of the Kinect-provided skeleton tracking.

Visual feature extraction aims at the representation of the movement, the position and
the shape of the hands. Representative measurements include the center-of-gravity of the
hand blob (Bauer and Kraiss, 2001), motion features (Yang et al., 2002), as well as features
related with the hand’s shape, such as shape moments (Starner et al., 1998) or sizes and
distances within the hand (Vogler and Metaxas, 2001). The contour of the hand is also
used for invariant features, such as Fourier descriptors (Conseil et al., 2007). handshape
representations are extracted via principal component analysis (e.g., Du and Piater, 2010),
or with variants of active shape and appearance models (Roussos et al., 2013). Other ap-
proaches (e.g. Dalal and Triggs, 2005) employ general purpose features as the Histogram
of Oriented Gradients (HOG) (Buehler et al., 2009), or the scale invariant feature trans-
form (Lowe, 1999). Li and Allinson (2008) present a review on local features. In this work,
we employ the 3D points of the articulators as extracted from the depth-based skeleton
tracking and the HOG descriptors for the handshape cue.

Temporal detection or segmentation of meaningful information concerns another impor-
tant aspect of our approach. Often the segmentation problem is seen in terms of gesture
spotting, that is, for the detection of the meaningful gestures, as adapted from the case of
speech (Wilcox and Bush, 1992) where all non-interesting patterns are modeled by a sin-
gle filler model. Specifically, Lee and Kim (1999) employ in similar way an ergodic model
termed as threshold model to set adaptive likelihood thresholds. Segmentation may be also
seen in combination with recognition as by Alon et al. (2009) or Li and Allinson (2007); in
the latter, start and end points of gestures are determined by zero crossing of likelihoods’
difference between gesture/non-gestures. There has also been substantial related work in
sign language tasks: Han et al. (2009) explicitly perform segmentation based on motion dis-
continuities, Kong and Ranganath (2010) segment trajectories via rule-based segmentation,
whereas others apply systematic segmentation as part of the modeling of sub-sign compo-
nents (sub-units) (Bauer and Kraiss, 2001); the latter can be enhanced by an unsupervised
segmentation component (Theodorakis et al., 2014) or by employing linguistic-phonetic in-
formation (Pitsikalis et al., 2011), leading to multiple subunit types. In our case, regardless
of the availability of ground truth temporal gesture annotations we employ independent
monomodal model-based activity detectors that share a common HMM framework. These
function independently of the ground truth annotations, and are next exploited at the
statistical modeling stage.

Multimodal gesture recognition concerns multiple dynamically varying streams, requir-
ing the handling of multiple variable time-duration diverse cues. Such requirements are
met by approaches such as hidden Markov models that have been found to efficiently model
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temporal information. The corresponding framework further provides efficient algorithms,
such as BaumWelch and Viterbi (Rabiner and Juang, 1993), for evaluation, learning, and
decoding. For instance, Nam and Wohn (1996) apply HMMs in gesture recognition, Lee and
Kim (1999) in gesture spotting, whereas parametric HMMs (Wilson and Bobick, 1999) are
employed for gestures with systematic variation. At the same time parallel HMMs (Vogler
and Metaxas, 2001) accommodate multiple cues simultaneously. Extensions include condi-
tional random fields (CRFs) or generalizations (Wang et al., 2006), while non-parametric
methods are also present in MGR tasks (Celebi et al., 2013; Hernández-Vela et al., 2013).
In this paper we build word-level HMMs, which fit our overall statistical framework, both
for audio and visual modalities, while also employing parallel HMMs for late fusion.

3. Proposed Methodology

To better explain the proposed multimodal gesture recognition framework let us first de-
scribe a use case. Multimodal gestures are commonly used in various settings and cul-
tures (Morris et al., 1979; Kendon, 2004). Examples include the “OK” gesture expressed
by creating a circle using the thumb and forefinger and holding the other fingers straight
and at the same time uttering “Okay” or “Perfect”. Similarly, the gesture “Come here”
involves the generation of the so-called beckoning sign which in Northern America is made
by sticking out and moving repeatedly the index finger from the clenched palm, facing the
gesturer, and uttering a phrase such as “Come here” or “Here”. We specifically address
automatic detection and recognition of a set of such spontaneously generated multimodal
gestures even when these are intermixed with other irrelevant actions, which could be ver-
bal, nonverbal or both. The gesturer may, for example, be walking in-between the gestures
or talking to somebody else.

In this context, we focus only on gestures that are always multimodal, that is, they are
not expressed only verbally or non-verbally, without implying however strictly synchronous
realizations in all modalities or making any related assumptions apart from expecting con-
secutive multimodal gestures to be sufficiently well separated in time, namely a few mil-
liseconds apart in all information streams. Further, no linguistic assumptions are made
regarding the sequence of gestures, namely any gesture can follow any other.

Let Vg = {gi}, i = 1, . . . , |Vg| be the vocabulary of multimodal gestures gi that are to
be detected and recognized in a recording and let S = {Oi}, i = 1, . . . , |S| be the set of
information streams that are concurrently observed for that purpose. In our experiments,
the latter set comprises three streams, namely audio spectral features, the gesturer’s skeleton
and handshape features. Based on these observations the proposed system will generate a
hypothesis for the sequence of gesture appearances in a specific recording/session, like the
following:

h = [bm, g1, sil, g5, . . . , bm, sil, g3].

The symbol sil essentially corresponds to inactivity in all modalities while bm represents any
other activity, mono- or multimodal, that does not constitute any of the target multimodal
gestures. This recognized sequence is generated by exploiting single stream-based gesture
models via the proposed fusion algorithm that is summarized in Figure 1 and described in
detail in Section 3.2. For the sake of clarity, the single stream modeling framework is first
presented in Section 3.1. Performance of the overall algorithm is found to depend on how
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Figure 1: Overview of the proposed multimodal fusion scheme for gesture recognition based
on multiple hypotheses rescoring. Single-stream models are first used to generate
possible hypotheses for the observed gesture sequence. The hypotheses are then
rescored by all streams and the best one is selected. Finally, the observed sequence
is segmented at the temporal boundaries suggested by the selected hypothesis and
parallel fusion is applied to classify the resulting segments. Details are given in
Section 3.2.

accurately the single stream models represent each gesture. This representation accuracy
can be significantly improved by the application of the multimodal activity detection scheme
described in Section 3.3.

3.1 Speech, Skeleton and Handshape Modeling

The underlying single-stream modeling scheme is based on Hidden Markov Models (HMMs)
and builds on the keyword-filler paradigm that was originally introduced for speech (Wilpon
et al., 1990; Rose and Paul, 1990) in applications like spoken document indexing and re-
trieval (Foote, 1999) or speech surveillance (Rose, 1992). The problem of recognizing a
limited number of gestures in an observed sequence comprising other heterogeneous events
as well, is seen as a keyword detection problem. The gestures to be recognized are the key-
words and all the rest is ignored. Then, for every information stream, each gesture gi ∈ Vg,
or, in practice, its projection on that stream, is modeled by an HMM and there are two
separate filler HMMs to represent either silence/inactivity (sil) or all other possible events
(bm) appearing in that stream.
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All these models are basically left-to-right HMMs with Gaussian mixture models (GMMs)
representing the state-dependent observation probability distributions. They are initialized
by an iterative procedure which sets the model parameters to the mean and covariance
of the features in state-corresponding segments of the training instances and refines the
segment boundaries via the Viterbi algorithm (Young et al., 2002). Training is performed
using the Baum-Welch algorithm (Rabiner and Juang, 1993), and mixture components are
incrementally refined.

While this is the general training procedure followed, two alternative approaches are in-
vestigated, regarding the exact definition and the supervised training process of all involved
models. These are described in the following. We experiment with both approaches and
we show that increased modeling accuracy at the single-stream level leads to better results
overall.

3.1.1 Training Without Employing Activity Detection

In this case, single-stream models are initialized and trained based on coarse, multimodal
temporal annotations of the gestures. These annotations are common for all streams and
given that there is no absolute synchronization across modalities they may also include
inactivity or other irrelevant events in the beginning or end of the target gestural expression.
In this way the gesture models already include, by default, inactivity segments. As a
consequence we do not train any separate inactivity (sil) model. At the same time, the
background model (bm) is trained on all training instances of all the gestures, capturing
in this way only generic gesture properties that are expected to characterize a non-target
gesture. The advantage of this approach is that it may inherently capture cross-modal
synchronicity relationships. For example, the waving hand motion may start before speech
in the waving gesture and so there is probably some silence (or other events) to be expected
before the utterance of a multimodal gesture (e.g. “Bye bye”) which is modeled implicitly.

3.1.2 Training With Activity Detection

On the other hand, training of single-stream models can be performed completely indepen-
dently using stream-specific temporal boundaries of the target expressions. In this direction,
we applied an activity detection scheme, described in detail in Section 3.3. Based on that,
it is possible to obtain tighter stream-specific boundaries for each gesture. Gesture models
are now trained using these tighter boundaries, the sil model is trained on segments of inac-
tivity (different for each modality) and the bm model is trained on segments of activity but
outside the target areas. In this case, single-stream gesture models can be more accurate
but any possible evidence regarding synchronicity across modalities is lost.

3.2 Multimodal Fusion of Speech, Skeleton and Handshape

Using the single-stream gesture models (see Section 3.1) and a gesture-loop grammar as
shown in Figure 2(a) we initially generate a list of N-best possible hypotheses for the
unknown gesture sequence for each stream. Specifically, the Viterbi algorithm (Rabiner
and Juang, 1993) is used to directly estimate the best stream-based possible hypothesis ĥm
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Algorithm 1 Multimodal Scoring and Resorting of Hypotheses

% N-best list rescoring
for all hypotheses do

% Create a constrained grammar
keep the sequence of gestures fixed
allow insertion/deletion of sil and bm occurrences between gestures
for all modalities do

by applying the constrained grammar and Viterbi decoding:
1) find the best state sequence given the observations
2) save corresponding score and temporal boundaries

% Late fusion to rescore hypotheses
final hypothesis score is a weighted sum of modality-based scores

the best hypothesis of the 1st-pass is the one with the maximum score

for the unknown gesture sequence as follows:

ĥm = arg max
hm∈G

logP (Om|hm, λm), m = 1, . . . , |S|

where Om is the observation1 sequence for modalitym, λm is the corresponding set of models
and G is the set of alternative hypotheses allowed by the gesture loop grammar. Instead
of keeping just the best scoring sequence we apply essentially a variation of the Viterbi
algorithm, namely the lattice N-best algorithm (Shwartz and Austin, 1991), that apart
from storing just the single best gesture at each node it also records additional best-scoring
gestures together with their scores. Based on these records, a list of N-best hypotheses for
the entire recording and for each modality can finally be estimated.

The N-best lists are generated independently for each stream and the final superset of
the multimodally generated hypotheses may contain multiple instances of the same gesture
sequence. By removing possible duplicates we end up with L hypotheses forming the set
H = {h1, . . . ,hL}; hi is a gesture sequence (possibly including sil and bm occurrences as
well). Our goal is to sort this set and identify the most likely hypothesis this time exploiting
all modalities together.

3.2.1 Multimodal Scoring and Resorting of Hypotheses

In this direction, and as summarized in Algorithm 1, we estimate a combined score for each
possible gesture sequence as a weighted sum of modality-based scores

vi =
∑
m∈S

wmv
s
m,i, i = 1 . . . L, (1)

where the weights wm are determined experimentally in a left-out validation set of multi-
modal recordings. The validation set is distinct from the final evaluation (test) set; more

1. For the case of video data an observation corresponds to a single image frame; for the case of audio
modality it corresponds to a 25 msec window.
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Figure 2: Finite-state-automaton (FSA) representations of finite state grammars: (a) an
example gesture-loop grammar with 3 gestures plus inactivity and background
labels. The “eps” transition represents an ε transition of the FSA, (b) an example
hypothesis, (c) a hypothesis-dependent grammar allowing varying sil and bm
occurrences between gestures.

Algorithm 2 Segmental Parallel Fusion

% Parallel scoring
for all modalities do segment observations based on given temporal boundaries

for all resulting segments do
estimate a score for each gesture given the segment observations
temporally align modality segments
for all aligned segments do

estimate weighted sum of modality-based scores for all gestures
select the best-scoring gesture (sil and bm included)

details on the selection of weights are provided in Section 5. The modality-based scores
vsm,i are standardized versions2 of vm,i which are estimated by means of Viterbi decoding
as follows:

vm,i = max
h∈Ghi

logP (Om|h, λm), i = 1, . . . , L, m = 1, . . . , |S| (2)

where Om is the observation sequence for modality m and λm is the corresponding set
of models. This actually solves a constrained recognition problem in which acceptable
gesture sequences need to follow a specific hypothesis-dependent finite state grammar Ghi

.
It is required that the search space of possible state sequences only includes sequences

2. That is, transformed to have zero mean and a standard deviation of one.
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corresponding to the hypothesis hi plus possible variations by keeping the appearances
of target gestures unaltered and only allow sil and bm labels to be inserted, deleted and
substituted with each other. An example of a hypothesis and the corresponding grammar
is shown in Figure 2(b,c). In this way, the scoring scheme accounts for inactivity or non-
targeted activity that is not necessarily multimodal, e.g., the gesturer is standing still but
speaking or is walking silently. This is shown to lead to additional improvements when
compared to a simple forced-alignment based approach.

It should be mentioned that hypothesis scoring via (2) can be skipped for the modalities
based on which the particular hypothesis was originally generated. These scores are already
available from the initial N-best list estimation described earlier.

The best hypothesis at this stage is the one with the maximum combined score as
estimated by (1). Together with the corresponding temporal boundaries of the included
gesture occurrences, which can be different for the involved modalities, this hypothesized
gesture sequence is passed on to the segmental parallel scoring stage. At this last stage,
only local refinements are allowed by exploiting possible benefits of a segmental classification
process.

3.2.2 Segmental Parallel Fusion

The segmental parallel fusion algorithm is summarized in Algorithm 2. Herein we exploit
the modality-specific time boundaries for the most likely gesture sequence determined in
the previous step, to reduce the recognition problem into a segmental classification one.
First, we segment the audio, skeleton and handshape observation streams employing these
boundaries. Given that in-between gestures, i.e., for sil or bm parts, there may not be one-
to-one correspondence between segments of different observation streams these segments
are first aligned with each other across modalities by performing an optimal symbolic string
match using dynamic programming. Then, for every aligned segment t and each information
stream m we compute the log probability

LLt
m,j = max

q∈Q
logP (Ot

m,q|λm,j), j = 1, . . . , |Vg|+ 2,

where λm,j are the parameters of the model for the gesture gj in the extended vocabulary
Vg ∪{sil, bm} and the stream m ∈ S; q is a possible state (∈ Q) sequence. These segmental
scores are linearly combined across modalities to get a multimodal gestural score (left hand
side) for each segment

LLt
j =

∑
m∈S

w′mLL
t
m,j , (3)

where w′m, is the stream-weight for modality m set to optimize recognition performance
in a validation data set.3 Finally, the gesture with the highest score is the recognized
one for each segment t. This final stage is expected to give additional improvements and
correct false alarms by seeking loosely overlapping multimodal evidence in support of each
hypothesized gesture.

3. The w′m are different from the weights in (1). Their selection is similarly based on a separate validation
set that is distinct from the final evaluation set; more details on the selection of weights are provided in
Section 5.
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Figure 3: Activity detection example for both audio and visual modalities for one utterance.
First row: The velocity of the hands (V ), their distance with respect to the rest
position (Dr) and the resulting initial estimation of gesture non-activity segments
(tna). Second row: The estimated gesture activity depicted on the actual video
images. Third row: The speech signal accompanied with the initial VAD, the
VAD+HMM and the gesture-level temporal boundaries included in the gesture
data set (ground truth).

3.3 Multimodal Activity Detection

To achieve activity detection for each one of visual and audio modalities, we follow a com-
mon model-based framework. This is based on two complementary models of “activity”
and “non-activity”. In practice, these models, have different interpretations for the dif-
ferent modalities. This is first due to the nature of each modality, and second due to
challenging data acquisition conditions. For the case of speech, the non-activity model may
correspond to noisy conditions, e.g., keyboard typing or fan noise. For the case of the vi-
sual modality, the non-activity model refers to the rest cases in-between the articulation of
gestures. However, these rests are not strictly defined, since the subject may not always
perform a full rest and/or the hands may not stop moving. All cases of activity, in both the
audio and the skeleton streams, such as out-of-vocabulary multimodal gestures and other
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spontaneous gestures are thought to be represented by the activity model. Each modality’s
activity detector is initialized by a modality-specific front-end, as described in the following.

For the case of speech, activity and non-activity models are initialized on activity and
non-activity segments correspondingly. These are determined by taking advantage for ini-
tialization of a Voice Activity Detection (VAD) method recently proposed by Tan et al.
(2010). This method is based on likelihood ratio tests (LRTs) and by treating the LRT’s
for the voice/unvoiced frames differently it gives improved results than conventional LRT-
based and standard VADs. The activity and non-activity HMM models are further trained
using an iterative procedure employing the Baum-Welch algorithm, better known as em-
bedded re-estimation (Young et al., 2002). The final boundaries of the speech activity and
non-activity segments are determined by application of the Viterbi algorithm.

For the visual modality, the goal is to detect activity concerning the dynamic gesture
movements versus the rest cases. For this purpose, we first initialize our non-activity models
on rest position segments which are determined on a recording basis. For these segments
skeleton movement is characterized by low velocity and the skeleton is close to the rest po-
sition xr. To identify non-active segments, we need to estimate a) the skeleton rest position
b) the hands velocity, and c) the distance of the skeleton to that position. Hands’ velocity
is computed as V (x) = ‖ẋ‖ where x(t) is the 3D hands’ centroid coordinate vector and t is
time. The rest position is estimated as the median skeleton position of all the segments for
which hands’ velocity V is below a certain threshold VTr = 0.2 · V̄ , where V̄ is the average
velocity of all segments. The distance of the skeleton to the rest position is determined as
Dr(x) = ‖x − xr‖. Initial non-activity segments tna are the ones for which the following
two criteria hold, namely tna = {t : Dr(x) < DTrand V (x) < VTr}. Taking as input these
tna segments we train a non-activity HMM model while an activity model is trained on all
remaining segments using the skeleton feature vector as described in Section 5.1.1. Further,
similar to the case of speech we re-train the HMM models using embedded re-estimation.
The final boundaries of the visual activity and non-activity segments are determined by
application of the Viterbi algorithm.

In Figure 3, we illustrate an example of the activity detection for both audio and visual
modalities for one utterance. In the first row, we depict the velocity of the hands (V ),
their distance with respect to the rest position (Dr) and the initial estimation of gesture
non-activity (tna) segments. We observe that in tna segments both V and Dr are lower
than the predefined thresholds (VTr = 0.6, DTr = 0.006)4 and correspond to non-activity.
In the second row, we illustrate the actual video frames images. These are marked with
the tracking of both hands and accompanied with the final model-based gesture activity
detection. In the bottom, we show the speech signal, with the initial VAD boundaries, the
refined, HMM-based ones (VAD+HMM) and the gesture-level boundaries included in the
data set (ground truth). As observed the refined detection (VAD+HMM) is tighter and
more precise compared to the initial VAD and the data set annotations.

To sum up, after applying the activity detectors for both audio and visual modalities
we merge the corresponding outputs with the gesture-level data set annotations in order
to obtain refined stream-specific boundaries that align to the actual activities. In this way,

4. These parameters are set after experimentation in a single video of the validation set, that was annotated
in terms of activity.
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(a) RGB (b) Depth (c) Mask (d) Skeleton

Figure 4: Sample cues of the multimodal gesture challenge 2013 data set.

we compensate for the fact that the data set annotations may contain non-activity at the
start/end of each gesture.

4. Multimodal Gestures’ Data set

For our experiments we employ the ChaLearn multimodal gesture challenge data set, intro-
duced by Escalera et al. (2013b). Other similar data sets are described by Ruffieux et al.
(2013, 2014). This data set focuses on multiple instance, user independent learning of ges-
tures from multi-modal data. It provides via Kinect RGB and depth images of face and
body, user masks, skeleton information, joint orientation as well as concurrently recorded
audio including the speech utterance accompanying/describing the gesture (see Figure 4).
The vocabulary contains 20 Italian cultural-anthropological gestures. The data set contains
three separate sets, namely for development, validation and final evaluation, including 39
users and 13858 gesture-word instances in total. All instances have been manually tran-
scribed and loosely end-pointed. The corresponding temporal boundaries are also provided;
these temporal boundaries are employed during the training phase of our system.

There are several issues that render multimodal gesture recognition in this data set
quite challenging as described by Escalera et al. (2013b), such as the recording of continu-
ous sequences, the presence of distracter gestures, the relatively large number of categories,
the length of the gesture sequences, and the variety of users. Further, there is no single
way to perform the included cultural gestures, e.g., “vieni qui” is performed with repeated
movements of the hand towards the user, with a variable number of repetitions (see Fig-
ure 5). Similarly, single-handed gestures may be performed with either the left or right
hand. Finally, variations in background, lighting and resolution, occluded body parts and
spoken dialects have also been introduced.

5. Experiments

We first provide information on the multimodal statistical modeling that includes feature
extraction and training. Then, we discuss the involved fusion parameters, the evaluation
procedure, and finally, present results and comparisons.
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(a) (b) (c) (d)

Figure 5: (a,b) Arm position variation (low, high) for gesture ‘vieni qui’; (c,d) Left and
right handed instances of ‘vattene’.

5.1 Parameters, Evaluation, Structure

Herein, we describe first the employed feature representations, and training parameters
for each modality, such as number of states and mixture components: as discussed in Sec-
tion 3.1 we statistically train separate gesture HMMs per each information stream: skeleton,
handshape and audio. Next, we describe the stream weight selection procedure, note the
best stream weights, and present indicative results of the procedure. After presenting the
evaluation metrics, we finally describe the overall rational of the experimental structure.

5.1.1 Multimodal Features, HMM and Fusion Parameters

The features employed for the skeleton cue include: the hands’ and elbows’ 3D position, the
hands 3D velocity, the 3D direction of the hands’ movement, and the 3D distance of hands’
centroids. For the handshape’s representation we employ the HOG feature descriptors.
These are extracted on both hands’ segmented images for both RGB and depth cues. We
segment the hands by performing a threshold-based depth segmentation employing the
hand’s tracking information. For the audio modality we intend to efficiently capture the
spectral properties of speech signals by estimating the Mel Frequency Cepstral Coefficients
(MFCCs). Our front end generates 39 acoustic features every 10 msec. Each feature vector
comprises 13 MFCCs along with their first and second derivatives. All the above feature
descriptors are well known in the related literature. The specific selections should not affect
the conclusions as related to the main fusion contributions, since these build on the level
of the likelihoods. Such an example would be the employment of other descriptors as for
instance in the case of visual (e.g., Li and Allinson, 2008) or speech related features (e.g.,
Hermansky, 1990).

For all modalities, we train separate gesture, sil and bm models as described in Sec-
tion 3.1. These models are trained either using the data set annotations or based on the
input provided by the activity detectors. The number of states, Gaussian components per
state, stream weights and the word insertion penalty in all modalities are determined ex-
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perimentally based on the recognition performance on the validation set.5 For skeleton, we
train left-right HMMs with 12 states and 2 Gaussians per state. For handshape, the models
correspondingly have 8 states and 3 Gaussians per state while speech gesture models have
22 states and 10 Gaussians per state.

The training time is on average 1 minute per skeleton and handshape model and 90
minutes per audio model. The decoding time is on average 4xRT (RT refers to real-time).6

A significant part of the decoding time is due to the generation of the N-best lists of
hypotheses. In our experiments N is chosen to be equal to 200. We further observed that
the audio-based hypotheses were always ranked higher than those from the other single-
stream models. This motivated us to include only these hypotheses in the set we considered
for rescoring.

5.1.2 Stream Weight Configuration

Herein, we describe the experimental procedure for the selection of the stream weights
wm, w

′
m,m ∈ S of (1) and (3), for the components of multimodal hypothesis rescoring

(MHS) and segmental parallel fusion (SPF). The final weight value selection is based on
the optimization of recognition performance in the validation data set which is completely
distinct from the final evaluation (test) data set.

Specifically, the wm’s are first selected from a set of alternative combinations to op-
timize gesture accuracy at the output of the MHS component. The SPF weights w′m’s
are subsequently set to optimize the performance of the overall framework. The best
weight combination for the multimodal hypothesis rescoring component is found to be
w∗SK,HS,AU = [63.6, 9.1, 27.3], where SK, HS and AU correspond to skeleton, handshape

and audio respectively.7 This leads to the best possible accuracy of MHS in the validation
set, namely 95.84%. Correspondingly, the best combination of weights for the segmental
fusion component is [0.6, 0.6, 98.8]. Overall, the best achieved gesture recognition accuracy
is 96.76% in the validation set.

In Figures 6(a), (b) and (c) we show the recognition accuracy of the MHS component
for the various combinations of the wm’s. For visualization purposes we show accuracy
when the weights vary in pairs and the remaining weight is set to its optimal value. For
example, Figure 6(a) shows recognition accuracy for various combinations of handshape
and audio weights when the skeleton weight is equal to 63.6. Overall, we should comment
that the skeleton’s contribution appears to be the most significant in the rescoring phase.
This is of course a first interpretation, since the list of original hypotheses is already audio-
based only, and the audio contribution cannot be directly inferred. As a consequence these
results should be seen under this viewpoint. In any case, given that audio-based recognition
leads to 94.1% recognition accuracy (in the validation set) it appears that both skeleton

5. Parameter ranges in the experiments for each modality are as follows. Audio: States 10-28, Gaussians:
2-32; Skeleton/handshape: States 7-15, Gaussians: 2-10.

6. For the measurements we employed an AMD Opteron(tm) Processor 6386 at 2.80GHz with 32GB RAM.
7. The weights take values in [0, 1] while their sum across the modalities adds to one; these values are then

scaled by 100 for the sake of numerical presentation. For the w stream weights we sampled the [0, 1]
with 12 samples for each modality, resulting to 1728 combinations. For the w′ case, we sampled the [0, 1]
space by employing 5, 5 and 21 samples for the gesture, handshape and speech modalities respectively,
resulting on 525 combinations.
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Figure 6: Gesture recognition accuracy of the Multiple hypothesis rescoring component
for various weight-pair combinations. From left to right, the handshape-audio,
skeleton-audio, skeleton-handshape weight pairs are varied. The remaining weight
is set to its optimal value, namely 63.6 for skeleton, 9.1 for handshape and 27.3
for audio.

and handshape contribute in properly reranking the hypotheses and improve performance
(which is again confirmed by the results in the test set presented in the following sections).

5.1.3 Evaluation

The presented evaluation metrics include the Levenshtein distance (LD)8 which is employed
in the ChaLearn publications (Escalera et al., 2013b) and the gesture recognition accuracy.
The Levenshtein distance LD(R, T ), also known as “edit distance’, is the minimum number
of edit operations that one has to perform to go from symbol sequence R to T , or vice versa;
edit operations include substitutions (S), insertions (I), or deletions (D). The overall score
is the sum of the Levenshtein distances for all instances compared to the corresponding
ground truth instances, divided by the total number of gestures. At the same time we
report the standard word recognition accuracy Acc = 1− LD = N−S−D−I

N , where N is the
total number of instances of words.

Finally, we emphasize that all reported results have been generated by strictly following
the original ChaLearn challenge protocol which means that they are directly comparable
with the results reported by the challenge organizers and other participating teams (Escalera
et al., 2013b; Wu et al., 2013; Bayer and Thierry, 2013).

5.1.4 Structure of Experiments

For the evaluation of the proposed approach we examine the following experimental aspects:

1. First, we present results on the performance of the single modality results; for these
the only parameter that we switch on/off is the activity detection, which can be
applied on each separate modality; see Section 5.2 and Table 1.

2. Second, we examine the performance in the multimodal cases. This main axis of
experiments has as its main reference Table 2 and concerns several aspects, as follows:

(a) Focus on the basic components of the proposed approach.

8. Note that the Levenshtein distance takes values in [0, 1] and is equivalent to the word error rate.
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AD
Single Modalities
Aud. Skel. HS

7 78.4 47.6 13.3

X 87.2 49.1 20.2

Table 1: Single modalities recognition accuracy %, including Audio (Aud.), Skeleton (Skel.),
and Handshape (HS). AD refers to activity detection.

(b) Focus on two stream modality combinations; this serves for both the analysis of
our approach, but also provides a more focused comparison with other methods
that employ the specific pairs of modalities.

(c) Finally, we provide several fusion based variation experiments, as competitive
approaches.

3. Third, we show an indicative example from the actual data, together with its decoding
results after applying the proposed approach, compared to the application of a couple
of subcomponents.

4. Fourth, we specifically focus on comparisons within the gesture challenge competition.
From the list of 17 teams/methods that submitted their results (54 teams participated
in total) we review the top-ranked ones, and list their results for comparison. More-
over, we describe the components that each of the top-ranked participants employ,
providing also focused comparisons to both our complete approach, and specific cases
that match the employed modalities of the other methods. Some cases of our com-
petitive variations can be seen as resembling cases of the other teams’ approaches.

5.2 Recognition Results: Single Modalities

In Table 1 we show the recognition results for each independent modality with and without
the employment of activity detection (AD). Note that AD is employed for model training,
as described in Sections 3.1, 3.3, for each modality. In both cases the audio appears to be
the dominant modality in terms of recognition performance. For all modalities, the model-
based integration of the activity detectors during training appears to be crucial: they lead
to refined temporal boundaries that better align to the actual single-stream activity. In this
way we compensate for the fact that the data set annotations may contain non-activity at
the start/end of a gesture. By tightening these boundaries we achieve to model in more
detail gesture articulation leading to more robustly trained HMMs. This is also projected
on the recognition experiments: In all modalities the recognition performance increases, by
8.8%, 1.5% and 6.9% in absolute for the audio, the skeleton and the handshape streams
respectively.
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Method/
Modality Segm. Method

Classifier/
Fusion

Acc.
LD

Exp. Code Modeling (%)
O

th
er

s O1: 1st Rank∗ SK, AU AU:time-domain HMM, DTW Late:w-sum 87.24 0.1280

O2: 2nd Rank† SK, AU AU:energy RF, KNN Late:posteriors 84.61 0.1540

O3: 3rd Rank‡ SK, AU AU:detection RF, Boosting Late:w-average 82.90 0.1710

2
S
tr

ea
m

s s2-A1 SK,AU HMM AD, HMM Late:SPF 87.9 0.1210
s2-B1 SK,AU - AD,HMM,GRAM Late:MHS 92.8 0.0720

s2-A2 HS,AU HMM AD, HMM Late:SPF 87.7 0.1230
s2-B2 HS,AU - AD,HMM,GRAM Late:MHS 87.5 0.1250

3
S
tr

ea
m

s

C1 SK,AU,HS HMM AD, HMM Late:SPF 88.5 0.1150
D1 SK,AU,HS - HMM Late:MHS 85.80 0.1420
D2 SK,AU,HS - AD,HMM Late:MHS 91.92 0.0808
D3 SK,AU,HS - AD,HMM,GRAM Late:MHS 93.06 0.0694
E1 SK,AU,HS HMM HMM Late:MHS+SPF 87.10 0.1290
E2 SK,AU,HS HMM AD,HMM Late:MHS+SPF 92.28 0.0772
E3 SK,AU,HS HMM AD,HMM,GRAM Late:MHS+SPF 93.33 0.0670

∗(Wu et al., 2013); † (Escalera et al., 2013b); ‡ (Bayer and Thierry, 2013).

Table 2: Comparisons to first-ranked teams in the multimodal challenge recognition Cha-
Learn 2013, and to several variations of our approach.

5.3 Recognition Results: Multimodal Fusion

For the evaluation of the proposed fusion scheme we focus on several of its basic components.
For these we refer to the experiments with codes D1-3,9 and E1-3 as shown in Table 2. These
experiments correspond to the employment of all three modalities, while altering a single
component each time, wherever this makes sense.

5.3.1 Main Components and Comparisons

First comes the MHS component (see D1-3), which rescores the multimodal hypotheses
list employing all three information streams and linearly combining their scores. Com-
paring with Table 1 the MHS component results in improved performance compared to
the monomodal cases, by leading to 38% relative Levenshtein distance reduction (LDR)10

on average. This improvement is statistically significant, when employing the McNemar’s
test (Gillick and Cox, 1989), with p < 0.001.11

Further, the employment of the activity detectors for each modality during training
also affects the recognition performance after employing the MHS component, leading to a
relative LDR of 38% which is statistically significant (p < 0.001); compare D1-D2, E1-E2.

For the N-best multimodal hypothesis rescoring we can either enforce each modality
to rescore the exact hypothesis (forced alignment), or allow certain degrees of freedom by

9. The D1-3 notation refers to the D1, D2 and D3 cases.
10. All relative percentages, unless stated otherwise, refer to relative LD reduction (LDR). LDR is equivalent

to the known relative word error rate reduction.
11. Statistical significance tests are computed on the raw recognition values and not on the relative improve-

ment scores.
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REF DACCORDO OOV OOV OK OOV OOV OOV SONOSTUFO

AUDIO DACCORDO BM PREDERE OK BM FAME BM SONOSTUFO

nAD-nGRAM DACCORDO BM BM OK BM BM OK SONOSTUFO

DACCORDO BM BM BM BM BM BM SONOSTUFO

AD-GRAM DACCORDO BM BM OK BM BM BM SONOSTUFO

AD-nGRAM

Figure 7: A gesture sequence decoding example. The audio signal is plotted in the top row
the and visual modalities (second row) are illustrated via a sequence of images for
a gesture sequence. Ground truth transcriptions are denoted by “REF”. Decoding
results are given for the single-audio modality (AUDIO) and the proposed fusion
scheme employing or not the activity detection (AD) or the grammar (GRAM).
In nAD-nGRAM we do not employ neither AD nor GRAM during rescoring, in
AD-nGRAM we only employ AD but not GRAM and in AD-GRAM both AD
and GRAM are employed. Errors are highlighted as: deletions, in blue color,
and insertions in green. A background model (bm) models the out-of-vocabulary
(OOV) gestures.

employing a specific grammar (GRAM) which allows insertions or deletions of either bm or
sil models: By use of the aforementioned grammar during rescoring (see D2-D3, E2-E3)
we get an additional 14% of relative Levenshtein distance reduction, which is statistically
significant (p < 0.001). This is due to the fact that the specific grammar accounts for
activity or non-activity that does not necessarily occur simultaneously across all different
modalities.

In addition, by employing the SPF component (E1-3) we further refine the gesture se-
quence hypothesis by fusing the single-stream models at the segmental level. By comparing
corresponding pairs: D1-E1, D2-E2 and D3-E3, we observe that the application of the SPF
component increases the recognition performance only slightly; this increase was not found
to be statistically significant. The best recognition performance, that is, 93.33%, is obtained
after employing the SPF component on top of MHS, together with AD and GRAM (see
E3).

On the side, we additionally provide results that account for pairs of modalities; see
s2-B1 (AU+SK) and s2-B2 (AU+HS), and for the case of the MHS component. These two
stream pair results, are comparable with the corresponding 3-stream case of D1 (plus D2-3
for additional components). The rest of the results and pairs are discussed in Section 5.4,
where comparisons with other approaches are presented.
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5.3.2 Example from the Results

A decoding example is shown in Figure 7. Herein we illustrate both audio and visual modal-
ities for a word sequence accompanied with the ground truth gesture-level transcriptions
(row:“REF”). In addition we show the decoding output employing the single-audio modality
(AUDIO) and the proposed fusion scheme employing or not two of its basic components:
activity detection (AD) and the above mentioned grammar (GRAM). In the row denoted
by nAD-nGRAM we do not employ either AD or GRAM during rescoring, in the row AD-
nGRAM we only employ AD but not GRAM and in AD-GRAM both AD and grammar
are used. As we observe there are several cases where the subject articulates an out-of-
vocabulary (OOV) gesture. This indicates the difficulty of the task as these cases should
be ignored. By focusing on the recognized word sequence that employs the single-audio
modality we notice two insertions (‘PREDERE’ and ‘FAME’). When employing either the
nAD-nGRAM or AD-nGRAM the above word insertions are corrected as the visual modal-
ity is integrated and helps identifying that these segments correspond to OOV gestures.
Finally, both nAD-nGRAM and AD-nGRAM lead to errors which our final proposed ap-
proach manages to deal with: nAD-nGRAM causes insertion of “OK”, AD-nGRAM of a
word deletion “BM”. On the contrary, the proposed approach recognizes the whole sentence
correctly.

5.4 Comparisons

Next, we first briefly describe the main components of the top-ranked approaches in Cha-
Learn. This description aims at allowing for focused and fair comparisons between 1) the
first-ranked approaches, and 2) variations of our approach.

5.4.1 ChaLearn First-Ranked Approaches

The first-ranked team (IV AMM) (Wu et al., 2013; Escalera et al., 2013b) uses a feature
vector based on audio and skeletal information. A simple time-domain end-point detection
algorithm based on joint coordinates is applied to segment continuous data sequences into
candidate gesture intervals. A HMM is trained with 39-dimension MFCC features and
generates confidence scores for each gesture category. A Dynamic Time Warping based
skeletal feature classifier is applied to provide complementary information. The confidence
scores generated by the two classifiers are firstly normalized and then combined to produce a
weighted sum for late fusion. A single threshold approach is employed to classify meaningful
gesture intervals from meaningless intervals caused by false detection of speech intervals.

The second-ranked team (WWEIGHT) (Escalera et al., 2013b) combines audio and
skeletal information, using both joint spatial distribution and joint orientation. They first
search for regions of time with high audio-energy to define time windows that potentially
contained a gesture. Feature vectors are defined using a log-spaced audio spectrogram
and the joint positions and orientations above the hips. At each time sample the method
subtracts the average 3D position of the left and right shoulders from each 3D joint position.
Data is down-sampled onto a 5Hz grid. There were 1593 features total (9 time samples x 177
features per time sample). Since some of the detected windows contain distracter gestures,
an extra 21st label is introduced, defining the “not in the dictionary” gesture category. For
the training of the models they employed an ensemble of randomized decision trees, referred
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Rank Approach Lev. Dist. Acc.% LDR

- Our 0.0667 93.33 -
1 iva.mm (Wu et al., 2013) 0.12756 87.244 +47.6
2 wweight 0.15387 84.613 +56.6
3 E.T. (Bayer and Thierry, 2013) 0.17105 82.895 +60.9
4 MmM 0.17215 82.785 +61.2
5 pptk 0.17325 82.675 +61.4

Table 3: Our approach in comparison with the first 5 places of the Challenge. We include
recognition accuracy (Acc.) %, Levenshtein distance (Lev. Dist., see also text) and
relative Levenshtein distance reduction (LDR) (equivalent to the known relative
error reduction) compared to the proposed approach (Our).

to as random forests (RF), (Escalera et al., 2013b), and a k-nearest neighbor (KNN) model.
The posteriors from these models are averaged with equal weight. Finally, a heuristic is used
(12 gestures maximum, no repeats) to convert posteriors to a prediction for the sequence
of gestures.

The third-ranked team (ET) (Bayer and Thierry, 2013; Escalera et al., 2013b) combine
the output decisions of two approaches. The features considered are based on the skeleton
information and the audio signal. First, they look for gesture intervals (unsupervised)
using the audio and extract features from these intervals (MFCC). Using these features,
they train a random forest (RF) and a gradient boosting classifier. The second approach
uses simple statistics (median, var, min, max) on the first 40 frames for each gesture to
build the training samples. The prediction phase uses a sliding window. The authors late
fuse the two models by creating a weighted average of the outputs.

5.4.2 Comparisons With Other Approaches and Variations

Herein we compare the recognition results of our proposed multimodal recognition and
multiple hypotheses fusion framework with other approaches (Escalera et al., 2013b) which
have been evaluated in the exact recognition task.12

First, let us briefly present an overview of the results (Table 3): Among the numerous
groups and approaches that participated we list the first four ones as well as the one we
submitted during the challenge, that is “pptk”. As shown in Table 3 the proposed approach
leads to superior performance with relative LD reduction of at least 47.6%. We note that
our updated approach compared to the one submitted during the challenge leads to an
improvement of 61.4%, measured in terms of relative LD reduction (LDR). Compared to
the approach we submitted during the challenge, the currently proposed scheme: 1) employs
activity detection to train single-stream models, 2) applies the SPF on top of the MHS step,
3) introduces the grammar-constrained decoding during hypothesis rescoring and further

12. In all results presented we follow the same blind testing rules that hold in the challenge, in which we
have participated (pptk team). In Table 3 we include for common reference the Levenshtein distance
(LD) which was also used in the challenge results (Escalera et al., 2013b).
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4) incorporates both validation and training data for the final estimation of the model
parameters.

Now let us zoom into the details of the comparisons by viewing once again Table 2. In
the first three rows, with side label “Others” (O1-3), we summarize the main components
of each of the top-ranked approaches. These employ only the two modalities (SK+AU).
The experiments with pairs of modalities s2-A1, s2-B1 can be directly compared with O1-3,
since they all take advantage of the SK+AU modalities. Their differential concerns 1) the
segmentation component, which is explicit for the O1-3; note that the segmentation of
s2-A1 is implicit, as a by-product of the HMM recognition. 2) The modeling and recogni-
tion/classification component. 3) The fusion component. At the same time, s2-A1/s2-B1
refer to the employment of the proposed components, that is, either SPF or MHS. Specif-
ically, s2-A1 and s2-B1 leads to at least 5% and 43.5% relative LD reduction respectively.
Of course our complete system (see rest of variations) leads to even higher improvements.

Other comparisons to our proposed approach and variations are provided after compar-
ing with the SPF-only case, by taking out the contribution of the rescoring component. In
the case of all modalities, 3 stream case, (see C1) this is compared to the corresponding
matching experiment E2; this (E2) only adds the MHS resulting to an improvement of
32.9% LDR. The GRAM component offers an improvement of 42% LDR (C1 vs. E3). Re-
duced versions compared to C1, with two-stream combinations can be found by comparing
C1 with s2-A1 or s2-A2.

6. Conclusions

We have presented a complete framework for multimodal gesture recognition based on multi-
ple hypotheses fusion, with application in automatic recognition of multimodal gestures. In
this we exploit multiple cues in the visual and audio modalities, namely movement, hands’
shape and speech. After employing state-of-the-art feature representations, each modality is
treated under a common statistical HMM framework: this includes model-based multimodal
activity detection, HMM training of gesture-words, and information fusion. Fusion is per-
formed by generating multiple unimodal hypotheses, which after constrained rescoring and
weighted combination result in the multimodally best hypothesis. Then, segmental parallel
fusion across all modalities refines the final result. On the way, we employ gesture/speech
background (bm) and silence (sil) models, which are initialized during the activity detec-
tion stage. This procedure allows us to train our HMMs more accurately by getting tighter
temporal segmentation boundaries.

The recognition task we dealt with contains parallel gestures and spoken words, articu-
lated freely, containing multiple sources of multimodal variability, and with on purpose false
alarms. The overall framework is evaluated in a demanding multimodal data set (Escalera
et al., 2013b) achieving 93.3% word accuracy. The results are compared with several ap-
proaches that participated in the related challenge (Escalera et al., 2013a), under the same
blind testing conditions, leading to at least 47.6% relative Levenshtein distance reduction
(equivalent to relative word error rate reduction) compared to the first-ranked team (Wu
et al., 2013).

The power of the proposed fusion scheme stems from both its uniform across modalities
probabilistic nature and its late character together with the multiple passes of monomodal
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decoding, fusion of the hypotheses, and then parallel fusion. Apart from the experimen-
tal evidence, these features render it appealing for extensions and exploitation in multiple
directions: First, the method itself can be advanced by generalizing the approach towards
an iterative fusion scheme, that gives feedback back to the training/refinement stage of
the statistical models. Moreover in the current generative framework, we ignore statistical
dependencies across cues/modalities. These could further be examined. Second, it can be
advanced by incorporating in the computational modeling specific gesture theories, e.g.,
from linguistics, for the gesture per se or in its multimodal version; taxonomies of gestures,
e.g., that describe deictic, motor, iconic and metaphoric cases. Such varieties of cases can
be systematically studied with respect to their role. This could be achieved via automatic
processing of multitudes of existing data sets, which elaborate more complex speech-gesture
issues, leading to valuable analysis results. Then, apart from the linguistic role of gesture,
its relation to other aspects, such as, psychological, behavioral socio-cultural, or commu-
nicative, to name but a few, could further be exploited. To conclude, given the potential of
the proposed approach, the acute interdisciplinary interest in multimodal gesture calls for
further exploration and advancements.
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Abstract

We describe an asynchronous parallel stochastic coordinate descent algorithm for mini-
mizing smooth unconstrained or separably constrained functions. The method achieves a
linear convergence rate on functions that satisfy an essential strong convexity property and
a sublinear rate (1/K) on general convex functions. Near-linear speedup on a multicore
system can be expected if the number of processors is O(n1/2) in unconstrained optimiza-
tion and O(n1/4) in the separable-constrained case, where n is the number of variables. We
describe results from implementation on 40-core processors.

Keywords: asynchronous parallel optimization, stochastic coordinate descent

1. Introduction

Consider the convex optimization problem

min
x∈Ω

f(x), (1)

where Ω ⊂ Rn is a closed convex set and f is a smooth convex mapping from an open neigh-
borhood of Ω to R. We consider two particular cases of Ω in this paper: the unconstrained
case Ω = Rn, and the separable case

Ω = Ω1 × Ω2 × . . .× Ωn, (2)

where each Ωi, i = 1, 2, . . . , n is a closed subinterval of the real line.
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Formulations of the type (1,2) arise in many data analysis and machine learning prob-
lems, for example, support vector machines (linear or nonlinear dual formulation) (Cortes
and Vapnik, 1995), LASSO (after decomposing x into positive and negative parts) (Tib-
shirani, 1996), and logistic regression. Algorithms based on gradient and approximate or
partial gradient information have proved effective in these settings. We mention in partic-
ular gradient projection and its accelerated variants (Nesterov, 2004), accelerated proximal
gradient methods for regularized objectives (Beck and Teboulle, 2009), and stochastic gra-
dient methods (Nemirovski et al., 2009; Shamir and Zhang, 2013). These methods are
inherently serial, in that each iteration depends on the result of the previous iteration. Re-
cently, parallel multicore versions of stochastic gradient and stochastic coordinate descent
have been described for problems involving large data sets; see for example Niu et al. (2011);
Richtárik and Takáč (2012b); Avron et al. (2014).

This paper proposes an asynchronous stochastic coordinate descent (AsySCD) algo-
rithm for convex optimization. Each step of AsySCD chooses an index i ∈ {1, 2, . . . , n} and
subtracts a short, constant, positive multiple of the ith partial gradient ∇if(x) := ∂f/∂xi
from the ith component of x. When separable constraints (2) are present, the update is
“clipped” to maintain feasibility with respect to Ωi. Updates take place in parallel across
the cores of a multicore system, without any attempt to synchronize computation between
cores. We assume that there is a bound τ on the age of the updates, that is, no more than
τ updates to x occur between the time at which a processor reads x (and uses it to evaluate
one element of the gradient) and the time at which this processor makes its update to a
single element of x. (A similar model of parallel asynchronous computation was used in
Hogwild! (Niu et al., 2011).) Our implementation, described in Section 6, is a little more
complex than this simple model would suggest, as it is tailored to the architecture of the
Intel Xeon machine that we use for experiments.

We show that linear convergence can be attained if an “essential strong convexity”
property (3) holds, while sublinear convergence at a “1/K” rate can be proved for general
convex functions. Our analysis also defines a sufficient condition for near-linear speedup
in the number of cores used. This condition relates the value of delay parameter τ (which
relates to the number of cores / threads used in the computation) to the problem dimension
n. A parameter that quantifies the cross-coordinate interactions in ∇f also appears in
this relationship. When the Hessian of f is nearly diagonal, the minimization problem can
almost be separated along the coordinate axes, so higher degrees of parallelism are possible.

We review related work in Section 2. Section 3 specifies the proposed algorithm. Con-
vergence results for unconstrained and constrained cases are described in Sections 4 and 5,
respectively, with proofs given in the appendix. Computational experience is reported in
Section 6. We discuss several variants of AsySCD in Section 7. Some conclusions are given
in Section 8.

1.1 Notation and Assumption

We use the following notation.

• ei ∈ Rn denotes the ith natural basis vector (0, . . . , 0, 1, 0, . . . , 0)T with the ‘”1” in the
ith position.

• ‖ · ‖ denotes the Euclidean norm ‖ · ‖2.
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• S ⊂ Ω denotes the set on which f attains its optimal value, which is denoted by f∗.

• PS(·) and PΩ(·) denote Euclidean projection onto S and Ω, respectively.

• We use xi for the ith element of x, and ∇if(x) for the ith element of the gradient
vector ∇f(x).

• We define the following essential strong convexity condition for a convex function f
with respect to the optimal set S, with parameter l > 0:

f(x)− f(y) ≥ 〈∇f(y), x− y〉+ l

2
‖x− y‖2 for all x, y ∈ Ω with PS(x) = PS(y). (3)

This condition is significantly weaker than the usual strong convexity condition, which
requires the inequality to hold for all x, y ∈ Ω. In particular, it allows for non-singleton
solution sets S, provided that f increases at a uniformly quadratic rate with distance
from S. (This property is noted for convex quadratic f in which the Hessian is
rank deficient.) Other examples of essentially strongly convex functions that are not
strongly convex include:

– f(Ax) with arbitrary linear transformation A, where f(·) is strongly convex;

– f(x) = max(aTx− b, 0)2, for a 6= 0.

• Define Lres as the restricted Lipschitz constant for ∇f , where the “restriction” is to
the coordinate directions: We have

‖∇f(x)−∇f(x+tei)‖ ≤ Lres|t|, for all i = 1, 2, . . . , n and t ∈ R, with x, x+ tei ∈ Ω.

• Define Li as the coordinate Lipschitz constant for ∇f in the ith coordinate direction:
We have

f(x+ tei)− f(x) ≤ 〈∇if(x), t〉+
Li
2
t2, for i ∈ {1, 2, . . . , n}, and x, x+ tei ∈ Ω,

or equivalently
|∇if(x)−∇if(x+ tei)| ≤ Li|t|.

• Lmax := maxi=1,2,...,n Li.

Note that Lres ≥ Lmax.
We use {xj}j=0,1,2,... to denote the sequence of iterates generated by the algorithm from

starting point x0. Throughout the paper, we make the following assumption.

Assumption 1

• The optimal solution set S of (1) is nonempty.

• The radius of the iterate set {xj}j=0,1,2,... defined by

R := sup
j=0,1,2,...

‖xj − PS(xj)‖

is bounded, that is, R < +∞.
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1.2 Lipschitz Constants

The nonstandard Lipschitz constants Lres, Lmax, and Li, i = 1, 2, . . . , n defined above are
crucial in the analysis of our method. Besides bounding the nonlinearity of f along various
directions, these quantities capture the interactions between the various components in the
gradient ∇f , as quantified in the off-diagonal terms of the Hessian ∇2f(x) — although the
stated conditions do not require this matrix to exist.

We have noted already that Lres/Lmax ≥ 1. Let us consider upper bounds on this ratio
under certain conditions. When f is twice continuously differentiable, we have

Li = sup
x∈Ω

max
i=1,2,...,n

[∇2f(x)]ii.

Since ∇2f(x) � 0 for x ∈ Ω, we have that

|[∇2f(x)]ij | ≤
√
LiLj ≤ Lmax, ∀ i, j = 1, 2, . . . , n.

Thus Lres, which is a bound on the largest column norm for ∇2f(x) over all x ∈ Ω, is
bounded by

√
nLmax, so that

Lres

Lmax
≤
√
n.

If the Hessian is structurally sparse, having at most p nonzeros per row/column, the same
argument leads to Lres/Lmax ≤

√
p.

If f(x) is a convex quadratic with Hessian Q, we have

Lmax = max
i

Qii, Lres = max
i
‖Q·i‖2,

where Q·i denotes the ith column of Q. If Q is diagonally dominant, we have for any column
i that

‖Q·i‖2 ≤ Qii + ‖[Qji]j 6=i‖2 ≤ Qii +
∑
j 6=i
|Qji| ≤ 2Qii,

which, by taking the maximum of both sides, implies that Lres/Lmax ≤ 2 in this case.
Finally, consider the objective f(x) = 1

2‖Ax − b‖2 and assume that A ∈ Rm×n is a
random matrix whose entries are i.i.d from N (0, 1). The diagonals of the Hessian are AT·iA·i
(where A·i is the ith column of A), which have expected value m, so we can expect Lmax

to be not less than m. Recalling that Lres is the maximum column norm of ATA, we have

E(‖ATA·i‖) ≤ E(|AT·iA·i|) + E(‖[AT·jA·i]j 6=i‖)

= m+ E
√∑

j 6=i
|AT·jA·i|2

≤ m+

√∑
j 6=i

E|AT·jA·i|2

= m+
√

(n− 1)m,

where the second inequality uses Jensen’s inequality and the final equality uses

E(|AT·jA·i|2) = E(AT·jE(A·iA
T
·i )A·j) = E(AT·jIA·j) = E(AT·jA·j) = m.

We can thus estimate the upper bound on Lres/Lmax roughly by 1 +
√
n/m for this case.
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2. Related Work

This section reviews some related work on coordinate relaxation and stochastic gradient
algorithms.

Among cyclic coordinate descent algorithms, Tseng (2001) proved the convergence of
a block coordinate descent method for nondifferentiable functions with certain conditions.
Local and global linear convergence were established under additional assumptions, by Luo
and Tseng (1992) and Wang and Lin (2014), respectively. Global linear (sublinear) conver-
gence rate for strongly (weakly) convex optimization was proved by Beck and Tetruashvili
(2013). Block-coordinate approaches based on proximal-linear subproblems are described
by Tseng and Yun (2009, 2010). Wright (2012) uses acceleration on reduced spaces (cor-
responding to the optimal manifold) to improve the local convergence properties of this
approach.

Stochastic coordinate descent is almost identical to cyclic coordinate descent except
selecting coordinates in a random manner. Nesterov (2012) studied the convergence rate for
a stochastic block coordinate descent method for unconstrained and separably constrained
convex smooth optimization, proving linear convergence for the strongly convex case and a
sublinear 1/K rate for the convex case. Extensions to minimization of composite functions
are described by Richtárik and Takáč (2012a) and Lu and Xiao (2013).

Synchronous parallel methods distribute the workload and data among multiple proces-
sors, and coordinate the computation among processors. Ferris and Mangasarian (1994)
proposed to distribute variables among multiple processors and optimize concurrently over
each subset. The synchronization step searches the affine hull formed by the current iterate
and the points found by each processor. Similar ideas appeared in (Mangasarian, 1995), with
a different synchronization step. Goldfarb and Ma (2012) considered a multiple splitting
algorithm for functions of the form f(x) =

∑N
k=1 fk(x) in which N models are optimized

separately and concurrently, then combined in an synchronization step. The alternating
direction method-of-multiplier (ADMM) framework (Boyd et al., 2011) can also be imple-
mented in parallel. This approach dissects the problem into multiple subproblems (possibly
after replication of primal variables) and optimizes concurrently, then synchronizes to up-
date multiplier estimates. Duchi et al. (2012) described a subgradient dual-averaging algo-
rithm for partially separable objectives, with subgradient evaluations distributed between
cores and combined in ways that reflect the structure of the objective. Parallel stochastic
gradient approaches have received broad attention; see Agarwal and Duchi (2011) for an
approach that allows delays between evaluation and update, and Cotter et al. (2011) for
a minibatch stochastic gradient approach with Nesterov acceleration. Shalev-Shwartz and
Zhang (2013) proposed an accelerated stochastic dual coordinate ascent method.

Among synchronous parallel methods for (block) coordinate descent, Richtárik and Takáč
(2012b) described a method of this type for convex composite optimization problems. All
processors update randomly selected coordinates or blocks, concurrently and synchronously,
at each iteration. Speedup depends on the sparsity of the data matrix that defines the loss
functions. Several variants that select blocks greedily are considered by Scherrer et al.
(2012) and Peng et al. (2013). Yang (2013) studied the parallel stochastic dual coordinate
ascent method and emphasized the balance between computation and communication.
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We turn now to asynchronous parallel methods. Bertsekas and Tsitsiklis (1989) intro-
duced an asynchronous parallel implementation for general fixed point problems x = q(x)
over a separable convex closed feasible region. (The optimization problem (1) can be formu-
lated in this way by defining q(x) := PΩ[(I−α∇f)(x)] for some fixed α > 0.) Their analysis
allows inconsistent reads for x, that is, the coordinates of the read x have different “ages.”
Linear convergence is established if all ages are bounded and ∇2f(x) satisfies a diagonal
dominance condition guaranteeing that the iteration x = q(x) is a maximum-norm contrac-
tion mapping for sufficient small α. However, this condition is strong — stronger, in fact,
than the strong convexity condition. For convex quadratic optimization f(x) = 1

2x
TAx+bx,

the contraction condition requires diagonal dominance of the Hessian: Aii >
∑

i 6=j |Aij | for
all i = 1, 2, . . . , n. By comparison, AsySCD guarantees linear convergence rate under the
essential strong convexity condition (3), though we do not allow inconsistent read. (We
require the vector x used for each evaluation of ∇if(x) to have existed at a certain point
in time.)

Hogwild! (Niu et al., 2011) is a lock-free, asynchronous parallel implementation of
a stochastic-gradient method, targeted to a multicore computational model similar to the
one considered here. Its analysis assumes consistent reading of x, and it is implemented
without locking or coordination between processors. Under certain conditions, convergence
of Hogwild! approximately matches the sublinear 1/K rate of its serial counterpart, which
is the constant-steplength stochastic gradient method analyzed in Nemirovski et al. (2009).

We also note recent work by Avron et al. (2014), who proposed an asynchronous linear
solver to solve Ax = b where A is a symmetric positive definite matrix, proving a linear
convergence rate. Both inconsistent- and consistent-read cases are analyzed in this paper,
with the convergence result for inconsistent read being slightly weaker.

3. Algorithm

In AsySCD, multiple processors have access to a shared data structure for the vector x, and
each processor is able to compute a randomly chosen element of the gradient vector ∇f(x).
Each processor repeatedly runs the following coordinate descent process (the steplength
parameter γ is discussed further in the next section):

R: Choose an index i ∈ {1, 2, . . . , n} at random, read x, and evaluate ∇if(x);

U: Update component i of the shared x by taking a step of length γ/Lmax in the direction
−∇if(x).

Since these processors are being run concurrently and without synchronization, x may
change between the time at which it is read (in step R) and the time at which it is updated
(step U). We capture the system-wide behavior of AsySCD in Algorithm 1. There is a
global counter j for the total number of updates; xj denotes the state of x after j updates.
The index i(j) ∈ {1, 2, . . . , n} denotes the component updated at step j. k(j) denotes the
x-iterate at which the update applied at iteration j was calculated. Obviously, we have
k(j) ≤ j, but we assume that the delay between the time of evaluation and updating is
bounded uniformly by a positive integer τ , that is, j − k(j) ≤ τ for all j. The value of τ
captures the essential parallelism in the method, as it indicates the number of processors
that are involved in the computation.
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Algorithm 1 Asynchronous Stochastic Coordinate Descent Algorithm xK+1 =
AsySCD(x0, γ,K)

Require: x0 ∈ Ω, γ, and K
Ensure: xK+1

1: Initialize j ← 0;
2: while j ≤ K do
3: Choose i(j) from {1, . . . , n} with equal probability;

4: xj+1 ← PΩ

(
xj − γ

Lmax
ei(j)∇i(j)f(xk(j))

)
;

5: j ← j + 1;
6: end while

The projection operation PΩ onto the feasible set is not needed in the case of uncon-
strained optimization. For separable constraints (2), it requires a simple clipping operation
on the i(j) component of x.

We note several differences with earlier asynchronous approaches. Unlike the asyn-
chronous scheme in Bertsekas and Tsitsiklis (1989, Section 6.1), the latest value of x is
updated at each step, not an earlier iterate. Although our model of computation is similar
to Hogwild! (Niu et al., 2011), the algorithm differs in that each iteration of AsySCD
evaluates a single component of the gradient exactly, while Hogwild! computes only
a (usually crude) estimate of the full gradient. Our analysis of AsySCD below is com-
prehensively different from that of Niu et al. (2011), and we obtain stronger convergence
results.

4. Unconstrained Smooth Convex Case

This section presents results about convergence of AsySCD in the unconstrained case
Ω = Rn. The theorem encompasses both the linear rate for essentially strongly convex
f and the sublinear rate for general convex f . The result depends strongly on the delay
parameter τ . (Proofs of results in this section appear in Appendix A.) In Algorithm 1, the
indices i(j), j = 0, 1, 2, . . . are random variables. We denote the expectation over all random
variables as E, the conditional expectation in term of i(j) given i(0), i(1), · · · , i(j − 1) as
Ei(j).

A crucial issue in AsySCD is the choice of steplength parameter γ. This choice involves
a tradeoff: We would like γ to be long enough that significant progress is made at each step,
but not so long that the gradient information computed at step k(j) is stale and irrelevant
by the time the update is applied at step j. We enforce this tradeoff by means of a bound
on the ratio of expected squared norms on ∇f at successive iterates; specifically,

ρ−1 ≤ E‖∇f(xj+1)‖2

E‖∇f(xj)‖2
≤ ρ, (4)

where ρ > 1 is a user defined parameter. The analysis becomes a delicate balancing act in
the choice of ρ and steplength γ between aggression and excessive conservatism. We find,
however, that these values can be chosen to ensure steady convergence for the asynchronous
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method at a linear rate, with rate constants that are almost consistent with vanilla short-
step full-gradient descent.

Theorem 1 Suppose that Ω = Rn in (1) and that Assumption 1 is satisfied. For any ρ > 1,
define the quantity ψ as follows:

ψ := 1 +
2τρτLres√
nLmax

. (5)

Suppose that the steplength parameter γ > 0 satisfies the following three upper bounds:

γ ≤ 1

ψ
, (6a)

γ ≤ (ρ− 1)
√
nLmax

2ρτ+1Lres
, (6b)

γ ≤ (ρ− 1)
√
nLmax

Lresρτ (2 + Lres√
nLmax

)
. (6c)

Then we have that for any j ≥ 0 that

ρ−1E(‖∇f(xj)‖2) ≤ E(‖∇f(xj+1)‖2) ≤ ρE(‖∇f(xj)‖2). (7)

Moreover, if the essentially strong convexity property (3) holds with l > 0, we have

E(f(xj)− f∗) ≤
(

1− 2lγ

nLmax

(
1− ψ

2
γ

))j
(f(x0)− f∗), (8)

while for general smooth convex functions f , we have

E(f(xj)− f∗) ≤
1

(f(x0)− f∗)−1 + jγ(1− ψ
2 γ)/(nLmaxR2)

. (9)

This theorem demonstrates linear convergence (8) for AsySCD in the unconstrained es-
sentially strongly convex case. This result is better than that obtained for Hogwild! (Niu
et al., 2011), which guarantees only sublinear convergence under the stronger assumption
of strict convexity.

The following corollary proposes an interesting particular choice of the parameters for
which the convergence expressions become more comprehensible. The result requires a
condition on the delay bound τ in terms of n and the ratio Lmax/Lres.

Corollary 2 Suppose that Assumption 1 holds, and that

τ + 1 ≤
√
nLmax

2eLres
. (10)

Then if we choose

ρ = 1 +
2eLres√
nLmax

, (11)
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define ψ by (5), and set γ = 1/ψ, we have for the essentially strongly convex case (3) with
l > 0 that

E(f(xj)− f∗) ≤
(

1− l

2nLmax

)j
(f(x0)− f∗), (12)

while for the case of general convex f , we have

E(f(xj)− f∗) ≤
1

(f(x0)− f∗)−1 + j/(4nLmaxR2)
. (13)

We note that the linear rate (12) is broadly consistent with the linear rate for the
classical steepest descent method applied to strongly convex functions, which has a rate
constant of (1−2l/L), where L is the standard Lipschitz constant for ∇f . If we assume (not
unreasonably) that n steps of stochastic coordinate descent cost roughly the same as one step
of steepest descent, and note from (12) that n steps of stochastic coordinate descent would
achieve a reduction factor of about (1 − l/(2Lmax)), a standard argument would suggest
that stochastic coordinate descent would require about 4Lmax/L times more computation.
(Note that Lmax/L ∈ [1/n, 1].) The stochastic approach may gain an advantage from the
parallel implementation, however. Steepest descent requires synchronization and careful
division of gradient evaluations, whereas the stochastic approach can be implemented in an
asynchronous fashion.

For the general convex case, (13) defines a sublinear rate, whose relationship with the
rate of the steepest descent for general convex optimization is similar to the previous para-
graph.

As noted in Section 1, the parameter τ is closely related to the number of cores that
can be involved in the computation, without degrading the convergence performance of the
algorithm. In other words, if the number of cores is small enough such that (10) holds, the
convergence expressions (12), (13) do not depend on the number of cores, implying that
linear speedup can be expected. A small value for the ratio Lres/Lmax (not much greater
than 1) implies a greater degree of potential parallelism. As we note at the end of Section 1,
this ratio tends to be small in some important applications — a situation that would allow
O(
√
n) cores to be used with near-linear speedup.

We conclude this section with a high-probability estimate for convergence of the sequence
of function values.

Theorem 3 Suppose that the assumptions of Corollary 2 hold, including the definitions of
ρ and ψ. Then for any ε ∈ (0, f(x0)− f∗) and η ∈ (0, 1), we have that

P (f(xj)− f∗ ≤ ε) ≥ 1− η, (14)

provided that either of the following sufficient conditions hold for the index j. In the essen-
tially strongly convex case (3) with l > 0, it suffices to have

j ≥ 2nLmax

l

∣∣∣∣log
f(x0)− f∗

εη

∣∣∣∣ , (15)

while in the general convex case, a sufficient condition is

j ≥ 4nLmaxR
2

(
1

εη
− 1

f(x0)− f∗

)
. (16)
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5. Constrained Smooth Convex Case

This section considers the case of separable constraints (2). We show results about conver-
gence rates and high-probability complexity estimates, analogous to those of the previous
section. Proofs appear in Appendix B.

As in the unconstrained case, the steplength γ should be chosen to ensure steady progress
while ensuring that update information does not become too stale. Because constraints are
present, the ratio (4) is no longer appropriate. We use instead a ratio of squares of expected
differences in successive primal iterates:

E‖xj−1 − x̄j‖2

E‖xj − x̄j+1‖2
, (17)

where x̄j+1 is the hypothesized full update obtained by applying the single-component
update to every component of xj , that is,

x̄j+1 := arg min
x∈Ω
〈∇f(xk(j)), x− xj〉+

Lmax

2γ
‖x− xj‖2.

In the unconstrained case Ω = Rn, the ratio (17) reduces to

E‖∇f(xk(j−1))‖2

E‖∇f(xk(j))‖2
,

which is evidently related to (4), but not identical.
We have the following result concerning convergence of the expected error to zero.

Theorem 4 Suppose that Ω has the form (2), that Assumption 1 is satisfied, and that
n ≥ 5. Let ρ be a constant with ρ > (1− 2/

√
n)
−1

, and define the quantity ψ as follows:

ψ := 1 +
Lresτρ

τ

√
nLmax

(
2 +

Lmax√
nLres

+
2τ

n

)
. (18)

Suppose that the steplength parameter γ > 0 satisfies the following two upper bounds:

γ ≤ 1

ψ
, γ ≤

(
1− 1

ρ
− 2√

n

) √
nLmax

4Lresτρτ
. (19)

Then we have
E‖xj−1 − x̄j‖2 ≤ ρE‖xj − x̄j+1‖2, j = 1, 2, . . . . (20)

If the essential strong convexity property (3) holds with l > 0, we have for j = 1, 2, . . . that

E‖xj − PS(xj)‖2 +
2γ

Lmax
(Ef(xj)− f∗) (21)

≤
(

1− l

n(l + γ−1Lmax)

)j (
R2 +

2γ

Lmax
(f(x0)− f∗)

)
.

For general smooth convex function f , we have

Ef(xj)− f∗ ≤
n(R2Lmax + 2γ(f(x0)− f∗))

2γ(n+ j)
. (22)
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Similarly to the unconstrained case, the following corollary proposes an interesting par-
ticular choice for the parameters for which the convergence expressions become more com-
prehensible. The result requires a condition on the delay bound τ in terms of n and the
ratio Lmax/Lres.

Corollary 5 Suppose that Assumption 1 holds, that τ ≥ 1 and n ≥ 5, and that

τ(τ + 1) ≤
√
nLmax

4eLres
. (23)

If we choose

ρ = 1 +
4eτLres√
nLmax

, (24)

then the steplength γ = 1/2 will satisfy the bounds (19). In addition, for the essentially
strongly convex case (3) with l > 0, we have for j = 1, 2, . . . that

E(f(xj)− f∗) ≤
(

1− l

n(l + 2Lmax)

)j
(LmaxR

2 + f(x0)− f∗), (25)

while for the case of general convex f , we have

E(f(xj)− f∗) ≤
n(LmaxR

2 + f(x0)− f∗)
j + n

. (26)

Similarly to Section 4, and provided τ satisfies (23), the convergence rate is not affected
appreciably by the delay bound τ , and near-linear speedup can be expected for multicore
implementations when (23) holds. This condition is more restrictive than (10) in the uncon-
strained case, but still holds in many problems for interesting values of τ . When Lres/Lmax

is bounded independently of dimension, the maximal number of cores allowed is of the the
order of n1/4, which is smaller than the O(n1/2) value obtained for the unconstrained case.

We conclude this section with another high-probability bound, whose proof tracks that
of Theorem 3.

Theorem 6 Suppose that the conditions of Corollary 5 hold, including the definitions of ρ
and ψ. Then for ε > 0 and η ∈ (0, 1), we have that

P (f(xj)− f∗ ≤ ε) ≥ 1− η,

provided that one of the following conditions holds: In the essentially strongly convex case (3)
with l > 0, we require

j ≥ n(l + 2Lmax)

l

∣∣∣∣log
LmaxR

2 + f(x0)− f∗

εη

∣∣∣∣ ,
while in the general convex case, it suffices that

j ≥ n(LmaxR
2 + f(x0)− f∗)
εη

− n.
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6. Experiments

We illustrate the behavior of two variants of the stochastic coordinate descent approach
on test problems constructed from several data sets. Our interests are in the efficiency of
multicore implementations (by comparison with a single-threaded implementation) and in
performance relative to alternative solvers for the same problems.

All our test problems have the form (1), with either Ω = Rn or Ω separable as in (2).
The objective f is quadratic, that is,

f(x) =
1

2
xTQx+ cTx,

with Q symmetric positive definite.
Our implementation of AsySCD is called DIMM-WITTED (or DW for short). It runs

on various numbers of threads, from 1 to 40, each thread assigned to a single core in our 40-
core Intel Xeon architecture. Cores on the Xeon architecture are arranged into four sockets
— ten cores per socket, with each socket having its own memory. Non-uniform memory ac-
cess (NUMA) means that memory accesses to local memory (on the same socket as the core)
are less expensive than accesses to memory on another socket. In our DW implementation,
we assign each socket an equal-sized “slice” of Q, a row submatrix. The components of x
are partitioned between cores, each core being responsible for updating its own partition of
x (though it can read the components of x from other cores). The components of x assigned
to the cores correspond to the rows of Q assigned to that core’s socket. Computation is
grouped into “epochs,” where an epoch is defined to be the period of computation during
which each component of x is updated exactly once. We use the parameter p to denote
the number of epochs that are executed between reordering (shuffling) of the coordinates
of x. We investigate both shuffling after every epoch (p = 1) and after every tenth epoch
(p = 10). Access to x is lock-free, and updates are performed asynchronously. This update
scheme does not implement exactly the “sampling with replacement” scheme analyzed in
previous sections, but can be viewed as a high performance, practical adaptation of the
AsySCD method.

To do each coordinate descent update, a thread must read the latest value of x. Most
components are already in the cache for that core, so that it only needs to fetch those
components recently changed. When a thread writes to xi, the hardware ensures that this
xi is simultaneously removed from other cores, signaling that they must fetch the updated
version before proceeding with their respective computations.

Although DW is not a precise implementation of AsySCD, it largely achieves the
consistent-read condition that is assumed by the analysis. Inconsistent read happens on
a core only if the following three conditions are satisfied simultaneously:

• A core does not finish reading recently changed coordinates of x (note that it needs
to read no more than τ coordinates);

• Among these recently changed coordinates, modifications take place both to coordi-
nates that have been read and that are still to be read by this core;

• Modification of the already-read coordinates happens earlier than the modification of
the still-unread coordinates.
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Inconsistent read will occur only if at least two coordinates of x are modified twice during
a stretch of approximately τ updates to x (that is, iterations of Algorithm 1). For the
DW implementation, inconsistent read would require repeated updating of a particular
component in a stretch of approximately τ iterations that straddles two epochs. This event
would be rare, for typical values of n and τ . Of course, one can avoid the inconsistent read
issue altogether by changing the shuffling rule slightly, enforcing the requirement that no
coordinate can be modified twice in a span of τ iterations. From the practical perspective,
this change does not improve performance, and detracts from the simplicity of the approach.
From the theoretical perspective, however, the analysis for the inconsistent-read model
would be interesting and meaningful, and we plan to study this topic in future work.

The first test problem QP is an unconstrained, regularized least squares problem con-
structed with synthetic data. It has the form

min
x∈Rn

f(x) :=
1

2
‖Ax− b‖2 +

α

2
‖x‖2. (27)

All elements of A ∈ Rm×n, the true model x̃ ∈ Rn, and the observation noise vector δ ∈ Rm
are generated in i.i.d. fashion from the Gaussian distribution N (0, 1), following which each
column in A is scaled to have a Euclidean norm of 1. The observation b ∈ Rm is constructed
from Ax̃+ δ‖Ax̃‖/(5m). We choose m = 6000, n = 20000, and α = 0.5. We therefore have
Lmax = 1 + α = 1.5 and

Lres

Lmax
≈

1 +
√
n/m+ α

1 + α
≈ 2.2.

This problem is diagonally dominant, and the condition (10) is satisfied when delay param-
eter τ is less than about 95. In Algorithm 1, we set the steplength parameter γ to 1, and we
choose initial iterate to be x0 = 0. We measure convergence of the residual norm ‖∇f(x)‖.

Our second problem QPc is a bound-constrained version of (27):

min
x∈Rn+

f(x) :=
1

2
(x− x̃)T (ATA+ αI)(x− x̃). (28)

The methodology for generating A and x̃ and for choosing the values of m, n, γ, and x0 is
the same as for (27). We measure convergence via the residual ‖x−PΩ(x−∇f(x))‖, where
Ω is the nonnegative orthant Rn+. At the solution of (28), about half the components of x
are at their lower bound of 0.

Our third and fourth problems are quadratic penalty functions for linear programming
relaxations of vertex cover problems on large graphs. The vertex cover problem for an
undirected graph with edge set E and vertex set V can be written as a binary linear
program:

min
y∈{0,1}|V |

∑
v∈V

yv subject to yu + yv ≥ 0, ∀ (u, v) ∈ E.

By relaxing each binary constraint to the interval [0, 1], introducing slack variables for the
cover inequalities, we obtain a problem of the form

min
yv∈[0,1], suv∈[0,1]

∑
v∈V

yv subject to yu + yv − suv = 0, ∀ (u, v) ∈ E.
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Liu, Wright, Ré, Bittorf, and Sridhar

This has the form
min

x∈[0,1]n
cTx subject to Ax = b,

for n = |V | + |E|. The test problem (29) is a regularized quadratic penalty reformulation
of this linear program for some penalty parameter β:

min
x∈[0,1]n

cTx+
β

2
‖Ax− b‖2 +

1

2β
‖x‖2, (29)

with β = 5. Two test data sets Amazon and DBLP have dimensions n = 561050 and n =
520891, respectively.

We tracked the behavior of the residual as a function of the number of epochs, when
executed on different numbers of cores. Figure 1 shows convergence behavior for each of our
four test problems on various numbers of cores with two different shuffling periods: p = 1
and p = 10. We note the following points.

• The total amount of computation to achieve any level of precision appears to be
almost independent of the number of cores, at least up to 40 cores. In this respect,
the performance of the algorithm does not change appreciably as the number of cores
is increased. Thus, any deviation from linear speedup is due not to degradation of
convergence speed in the algorithm but rather to systems issues in the implementation.

• When we reshuffle after every epoch (p = 1), convergence is slightly faster in synthetic
unconstrained QP but slightly slower in Amazon and DBLP than when we do occasional
reshuffling (p = 10). Overall, the convergence rates with different shuffling periods
are comparable in the sense of epochs. However, when the dimension of the variable
is large, the shuffling operation becomes expensive, so we would recommend using a
large value for p for large-dimensional problems.

Results for speedup on multicore implementations are shown in Figures 2 and 3 for DW
with p = 10. Speedup is defined as follows:

runtime a single core using DW

runtime on P cores
.

Near-linear speedup can be observed for the two QP problems with synthetic data. For
Problems 3 and 4, speedup is at most 12-14; there are few gains when the number of cores
exceeds about 12. We believe that the degradation is due mostly to memory contention.
Although these problems have high dimension, the matrix Q is very sparse (in contrast to
the dense Q for the synthetic data set). Thus, the ratio of computation to data movement
/ memory access is much lower for these problems, making memory contention effects more
significant.

Figures 2 and 3 also show results of a global-locking strategy for the parallel stochastic
coordinate descent method, in which the vector x is locked by a core whenever it performs
a read or update. The performance curve for this strategy hugs the horizontal axis; it is
not competitive.

Wall clock times required for the four test problems on 1 and 40 cores, to reduce residuals
below 10−5 are shown in Table 1. (Similar speedups are noted when we use a convergence
tolerance looser than 10−5.)
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Figure 1: Residuals vs epoch number for the four test problems. Results are reported for
variants in which indices are reshuffled after every epoch (p = 1) and after every
tenth epoch (p = 10).
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Figure 2: Test problems 1 and 2: Speedup of multicore implementations of DW on up to
40 cores of an Intel Xeon architecture. Ideal (linear) speedup curve is shown for
reference, along with poor speedups obtained for a global-locking strategy.
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Figure 3: Test problems 3 and 4: Speedup of multicore implementations of DW on up to
40 cores of an Intel Xeon architecture. Ideal (linear) speedup curve is shown for
reference, along with poor speedups obtained for a global-locking strategy.

Problem 1 core 40 cores

QP 98.4 3.03
QPc 59.7 1.82
Amazon 17.1 1.25
DBLP 11.5 .91

Table 1: Runtimes (seconds) for the four test problems on 1 and 40 cores.

All problems reported on above are essentially strongly convex. Similar speedup prop-
erties can be obtained in the weakly convex case as well. We show speedups for the QPc

problem with α = 0. Table 2 demonstrates similar speedup to the essentially strongly
convex case shown in Figure 2.

Turning now to comparisons between AsySCD and alternative algorithms, we start
by considering the basic gradient descent method. We implement gradient descent in a
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#cores Time(sec) Speedup

1 55.9 1
10 5.19 10.8
20 2.77 20.2
30 2.06 27.2
40 1.81 30.9

Table 2: Runtimes (seconds) and speedup for multicore implementations of DW on different
number of cores for the weakly convex QPc problem (with α = 0) to achieve a
residual below 0.06.

#cores Time(sec) Speedup
SynGD / AsySCD SynGD / AsySCD

1 121. / 27.1 0.22 / 1.00
10 11.4 / 2.57 2.38 / 10.5
20 6.00 / 1.36 4.51 / 19.9
30 4.44 / 1.01 6.10 / 26.8
40 3.91 / 0.88 6.93 / 30.8

Table 3: Efficiency comparison between SynGD and AsySCD for the QP problem. The
running time and speedup are based on the residual achieving a tolerance of 10−5.

Dataset # of # of Train time(sec)
Samples Features LIBSVM AsySCD

adult 32561 123 16.15 1.39
news 19996 1355191 214.48 7.22
rcv 20242 47236 40.33 16.06

reuters 8293 18930 1.63 0.81
w8a 49749 300 33.62 5.86

Table 4: Efficiency comparison between LIBSVM and AsySCD for kernel SVM using 40
cores using homogeneous kernels (K(xi, xj) = (xTi xj)

2). The running time and
speedup are calculated based on the “residual” 10−3. Here, to make both algo-
rithms comparable, the “residual” is defined by ‖x− PΩ(x−∇f(x))‖∞.

parallel, synchronous fashion, distributing the gradient computation load on multiple cores
and updates the variable x in parallel at each step. The resulting implementation is called
SynGD. Table 3 reports running time and speedup of both AsySCD over SynGD, showing
a clear advantage for AsySCD.

Next we compare AsySCD to LIBSVM (Chang and Lin, 2011) a popular parallel solver
for kernel support vector machines (SVM). Both algorithms are run on 40 cores to solve the
dual formulation of kernel SVM, without an intercept term. All data sets used in 4 except
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reuters were obtained from the LIBSVM data set repository.1 The data set reuters is a sparse
binary text classification data set constructed as a one-versus-all version of Reuters-2159.2

Our comparisons, shown in Table 4, indicate that AsySCD outperforms LIBSVM on these
test sets.

7. Extension

The AsySCD algorithm can be extended by partitioning the coordinates into blocks, and
modifying Algorithm 1 to work with these blocks rather than with single coordinates. If
Li, Lmax, and Lres are defined in the block sense, as follows:

‖∇f(x)−∇f(x+ Eit)‖ ≤ Lres‖t‖ ∀x, i, t ∈ R|i|,

‖∇if(x)−∇if(x+ Eit)‖ ≤ Li‖t‖ ∀x, i, t ∈ R|i|,
Lmax = max

i
Li,

where Ei is the projection from the ith block to Rn and |i| denotes the number of components
in block i, our analysis can be extended appropriately.

To make the AsySCD algorithm more efficient, one can redefine the steplength in
Algorithm 1 to be γ

Li(j)
rather than γ

Lmax
. Our analysis can be applied to this variant by

doing a change of variables to x̃, with xi = Li
Lmax

x̃i and defining Li, Lres, and Lmax in terms
of x̃.

8. Conclusion

This paper proposes an asynchronous parallel stochastic coordinate descent algorithm for
minimizing convex objectives, in the unconstrained and separable-constrained cases. Sub-
linear convergence (at rate 1/K) is proved for general convex functions, with stronger linear
convergence results for functions that satisfy an essential strong convexity property. Our
analysis indicates the extent to which parallel implementations can be expected to yield
near-linear speedup, in terms of a parameter that quantifies the cross-coordinate inter-
actions in the gradient ∇f and a parameter τ that bounds the delay in updating. Our
computational experience confirms the theory.
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Appendix A. Proofs for Unconstrained Case

This section contains convergence proofs for AsySCD in the unconstrained case.

1. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2. http://www.daviddlewis.com/resources/testcollections/reuters21578/
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We start with a technical result, then move to the proofs of the three main results of
Section 4.

Lemma 7 For any x, we have

‖x− PS(x)‖2‖∇f(x)‖2 ≥ (f(x)− f∗)2.

If the essential strong convexity property (3) holds, we have

‖∇f(x)‖2 ≥ 2l(f(x)− f∗).

Proof The first inequality is proved as follows:

f(x)− f∗ ≤ 〈∇f(x), x− PS(x)〉 ≤ ‖∇f(x)‖‖PS(x)− x‖.

For the second bound, we have from the definition (3), setting y ← x and x← PS(x), that

f∗ − f(x) ≥ 〈∇f(x),PS(x)− x〉+
l

2
‖x− PS(x)‖2

=
l

2
‖PS(x)− x+

1

l
∇f(x)‖2 − 1

2l
‖∇f(x)‖2 ≥ − 1

2l
‖∇f(x)‖2,

as required.

Proof (Theorem 1) We prove each of the two inequalities in (7) by induction. We start
with the left-hand inequality. For all values of j, we have

E
(
‖∇f(xj)‖2 − ‖∇f(xj+1)‖2

)
= E〈∇f(xj) +∇f(xj+1),∇f(xj)−∇f(xj+1)〉
= E〈2∇f(xj) +∇f(xj+1)−∇f(xj),∇f(xj)−∇f(xj+1)〉
≤ 2E〈∇f(xj),∇f(xj)−∇f(xj+1)〉
≤ 2E(‖∇f(xj)‖‖∇f(xj)−∇f(xj+1)‖)
≤ 2LresE(‖∇f(xj)‖‖xj − xj+1‖)

≤ 2Lresγ

Lmax
E(‖∇f(xj)‖‖∇i(j)f(xk(j))‖)

≤ Lresγ

Lmax
E(n−1/2‖∇f(xj)‖2 + n1/2‖∇i(j)f(xk(j))‖2)

=
Lresγ

Lmax
E(n−1/2‖∇f(xj)‖2 + n1/2Ei(j)(‖∇i(j)f(xk(j))‖2))

=
Lresγ

Lmax
E(n−1/2‖∇f(xj)‖2 + n−1/2‖∇f(xk(j))‖2)

≤ Lresγ√
nLmax

E
(
‖∇f(xj)‖2 + ‖∇f(xk(j))‖2

)
. (30)

We can use this bound to show that the left-hand inequality in (7) holds for j = 0. By
setting j = 0 in (30) and noting that k(0) = 0, we obtain

E
(
‖∇f(x0)‖2 − ‖∇f(x1)‖2

)
≤ Lresγ√

nLmax
2E(‖∇f(x0)‖2). (31)
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From (6b), we have
2Lresγ√
nLmax

≤ ρ− 1

ρτ
≤ ρ− 1

ρ
= 1− ρ−1,

where the second inequality follows from ρ > 1. By substituting into (31), we obtain
ρ−1E(‖∇f(x0)‖2) ≤ E(‖∇f(x1)‖2), establishing the result for j = 1. For the inductive
step, we use (30) again, assuming that the left-hand inequality in (7) holds up to stage j,
and thus that

E(‖∇f(xk(j))‖2) ≤ ρτE(‖∇f(xj)‖2),

provided that 0 ≤ j − k(j) ≤ τ , as assumed. By substituting into the right-hand side of
(30) again, and using ρ > 1, we obtain

E
(
‖∇f(xj)‖2 − ‖∇f(xj+1)‖2

)
≤ 2Lresγρ

τ

√
nLmax

E
(
‖∇f(xj)‖2

)
.

By substituting (6b) we conclude that the left-hand inequality in (7) holds for all j.
We now work on the right-hand inequality in (7). For all j, we have the following:

E
(
‖∇f(xj+1)‖2 − ‖∇f(xj)‖2

)
= E〈∇f(xj) +∇f(xj+1),∇f(xj+1)−∇f(xj)〉
≤ E(‖∇f(xj) +∇f(xj+1)‖‖∇f(xj)−∇f(xj+1)‖)
≤ LresE(‖∇f(xj) +∇f(xj+1)‖‖xj − xj+1‖)
≤ LresE((2‖∇f(xj)‖+ ‖∇f(xj+1)−∇f(xj)‖)‖xj − xj+1‖)
≤ LresE(2‖∇f(xj)‖‖xj − xj+1‖+ Lres‖xj − xj+1‖2)

≤ LresE
(

2γ

Lmax
‖∇f(xj)‖‖∇i(j)f(xk(j))‖+

Lresγ
2

L2
max

‖∇i(j)f(xk(j))‖2
)

≤ LresE
(

γ

Lmax
(n−1/2‖∇f(xj)‖2 + n1/2‖∇i(j)f(xk(j))‖2 +

Lresγ
2

L2
max

‖∇i(j)f(xk(j))‖2
)

= LresE
(

γ

Lmax
(n−1/2‖∇f(xj)‖2 + n1/2Ei(j)(‖∇i(j)f(xk(j))‖2))+

Lresγ
2

L2
max

Ei(j)(‖∇i(j)f(xk(j))‖2)

)
= LresE

(
γ

Lmax
(n−1/2‖∇f(xj)‖2 + n−1/2‖∇f(xk(j))‖2) +

Lresγ
2

nL2
max

‖∇f(xk(j))‖2
)

=
γLres√
nLmax

E
(
‖∇f(xj)‖2 + ‖∇f(xk(j))‖2

)
+
γ2L2

res

nL2
max

E(‖∇f(xk(j))‖2)

≤ γLres√
nLmax

E(‖∇f(xj)‖2) +

(
γLres√
nLmax

+
γL2

res

nL2
max

)
E(‖∇f(xk(j))‖2), (32)

where the last inequality is from the observation γ ≤ 1. By setting j = 0 in this bound,
and noting that k(0) = 0, we obtain

E
(
‖∇f(x1)‖2 − ‖∇f(x0)‖2

)
≤
(

2γLres√
nLmax

+
γL2

res

nL2
max

)
E(‖∇f(x0)‖2). (33)
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By using (6c), we have

2γLres√
nLmax

+
γL2

res

nL2
max

=
Lresγ√
nLmax

(
2 +

Lres√
nLmax

)
≤ ρ− 1

ρτ
< ρ− 1,

where the last inequality follows from ρ > 1. By substituting into (33), we obtain E(‖∇f(x1)‖2) ≤
ρE(‖∇f(x0)‖2), so the right-hand bound in (7) is established for j = 0. For the inductive
step, we use (32) again, assuming that the right-hand inequality in (7) holds up to stage j,
and thus that

E(‖∇f(xj)‖2) ≤ ρτE(‖∇f(xk(j))‖2),

provided that 0 ≤ j − k(j) ≤ τ , as assumed. From (32) and the left-hand inequality in (7),
we have by substituting this bound that

E
(
‖∇f(xj+1)‖2 − ‖∇f(xj)‖2

)
≤
(

2γLresρ
τ

√
nLmax

+
γL2

resρ
τ

nL2
max

)
E(‖∇f(xj)‖2). (34)

It follows immediately from (6c) that the term in parentheses in (34) is bounded above by
ρ− 1. By substituting this bound into (34), we obtain E(‖∇f(xj+1)‖2) ≤ ρE(‖∇f(xj)‖2),
as required.

At this point, we have shown that both inequalities in (7) are satisfied for all j.

Next we prove (8) and (9). Take the expectation of f(xj+1) in terms of i(j):

Ei(j)f(xj+1) = Ei(j)f
(
xj −

γ

Lmax
ei(j)∇i(j)f(xk(j))

)
=

1

n

n∑
i=1

f

(
xj −

γ

Lmax
ei∇if(xk(j))

)

≤ 1

n

n∑
i=1

f(xj)−
γ

Lmax
〈∇f(xj), ei∇if(xk(j))〉+

Li
2L2

max

γ2‖∇if(xk(j))‖2

≤ f(xj)−
γ

nLmax
〈∇f(xj),∇f(xk(j))〉+

γ2

2nLmax
‖∇f(xk(j))‖2

= f(xj) +
γ

nLmax
〈∇f(xk(j))−∇f(xj),∇f(xk(j))〉︸ ︷︷ ︸

T1

−
(

γ

nLmax
− γ2

2nLmax

)
‖∇f(xk(j))‖2. (35)
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The second term T1 is caused by delay. If there is no the delay issue, T1 should be 0
because of ∇f(xj) = ∇f(xk(j)). We estimate the upper bound of ‖∇f(xk(j))−∇f(xj)‖:

‖∇f(xk(j))−∇f(xj)‖ ≤
j−1∑

d=k(j)

‖∇f(xd+1)−∇f(xd)‖

≤ Lres

j−1∑
d=k(j)

‖xd+1 − xd‖

=
Lresγ

Lmax

j−1∑
d=k(j)

∥∥∇i(d)f(xk(d))
∥∥ . (36)

Then E(|T1|) can be bounded by

E(|T1|) ≤ E(‖∇f(xk(j))−∇f(xj)‖‖∇f(xk(j))‖)

≤ Lresγ

Lmax
E

 j−1∑
d=k(j)

‖∇i(d)f(xk(d))‖‖∇f(xk(j))‖


≤ Lresγ

2Lmax
E

 j−1∑
d=k(j)

n1/2‖∇i(d)f(xk(d))‖2 + n−1/2‖∇f(xk(j))‖2


=
Lresγ

2Lmax
E

 j−1∑
d=k(j)

n1/2Ei(d)(‖∇i(d)f(xk(d))‖2) + n−1/2‖∇f(xk(j))‖2


=
Lresγ

2Lmax
E

 j−1∑
d=k(j)

n−1/2‖∇f(xk(d))‖2 + n−1/2‖∇f(xk(j))‖2


=
Lresγ

2
√
nLmax

j−1∑
d=k(j)

E(‖∇f(xk(d))‖2 + ‖∇f(xk(j))‖2)

≤ τρτLresγ√
nLmax

E(‖∇f(xk(j))‖2) (37)

where the second line uses (36), and the final inequality uses the fact for d between k(j)
and j − 1, k(d) lies in the range k(j)− τ and j − 1, so we have |k(d)− k(j)| ≤ τ for all d.

Taking expectation on both sides of (35) in terms of all random variables, together with
(37), we obtain

E(f(xj+1)− f∗)

≤ E(f(xj)− f∗) +
γ

nLmax
E(|T1|)−

(
γ

nLmax
− γ2

2nLmax

)
E(‖∇f(xk(j))‖2)

≤ E(f(xj)− f∗)−
(

γ

nLmax
− τρτLresγ

2

n3/2L2
max

− γ2

2nLmax

)
E(‖∇f(xk(j))‖2)

= E(f(xj)− f∗)−
γ

nLmax

(
1− ψ

2
γ

)
E(‖∇f(xk(j))‖2),
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which (because of (6a)) implies that E(f(xj) − f∗) is monotonically decreasing. From
Lemma 7 and the assumption ‖xj − PS(xj)‖ ≤ R for all j, we have

‖∇f(xk(j))‖2 ≥ max

{
2l(f(xk(j))− f∗),

(f(xk(j))− f∗)2

‖xk(j) − PS(xk(j))‖2

}

≥ max

{
2l(f(xk(j))− f∗),

(f(xk(j))− f∗)2

R2

}
,

which implies

E(‖∇f(xk(j))‖2) ≥max

{
2lE(f(xk(j) − f∗),

E(f(xk(j) − f∗)2

R2

}

≥max

{
2lE(f(xj)− f∗),

E(f(xj)− f∗)2

R2

}
.

From the first upper bound ‖∇f(xk(j))‖2 ≥ 2lE(f(xj)− f∗), we have

E(f(xj+1)− f∗) ≤ E(f(xj)− f∗)−
γ

nLmax

(
1− ψ

2
γ

)
E(‖∇f(xk(j))‖2)

≤
(

1− 2lγ

nLmax

(
1− ψ

2
γ

))
E(f(xj)− f∗),

form which the linear convergence claim (8) follows by an obvious induction. From the

other bound ‖∇f(xk(j))‖2 ≥
(f(xk(j))−f∗)2

R2 , we have

E(f(xj+1)− f∗) ≤ E(f(xj)− f∗)−
γ

nLmax

(
1− ψ

2
γ

)
E(‖∇f(xk(j))‖2)

≤ E(f(xj)− f∗)−
γ

nLmaxR2

(
1− ψ

2
γ

)
E((f(xj)− f∗)2)

≤ E(f(xj)− f∗)−
γ

nLmaxR2

(
1− ψ

2
γ

)
(E(f(xj)− f∗))2,

where the third line uses the Jensen’s inequality E(v2) ≥ (E(v))2. Defining

C :=
γ

nLmaxR2

(
1− ψ

2
γ

)
,

we have

E(f(xj+1)− f∗) ≤ E(f(xj)− f∗)− C(E(f(xj)− f∗))2

⇒ 1

E(f(xj)− f∗)
≤ 1

E(f(xj+1)− f∗)
− C E(f(xj)− f∗)

E(f(xj+1)− f∗)

⇒ 1

E(f(xj+1)− f∗)
− 1

E(f(xj)− f∗)
≥ C E(f(xj)− f∗)

E(f(xj+1)− f∗)
≥ C

⇒ 1

E(f(xj+1)− f∗)
≥ 1

f(x0)− f∗
+ C(j + 1)

⇒ E(f(xj+1)− f∗) ≤ 1

(f(x0)− f∗)−1 + C(j + 1)
,
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which completes the proof of the sublinear rate (9).

Proof (Corollary 2) Note first that for ρ defined by (11), we have

ρτ ≤ ρτ+1 =

(1 +
2eLres√
nLmax

)√nLmax
2eLres


2eLres(τ+1)√

nLmax

≤ e
2eLres(τ+1)√

nLmax ≤ e,

and thus from the definition of ψ (5) that

ψ = 1 +
2τρτLres√
nLmax

≤ 1 +
2τeLres√
nLmax

≤ 2. (38)

We show now that the steplength parameter choice γ = 1/ψ satisfies all the bounds in
(6), by showing that the second and third bounds are implied by the first. For the second
bound (6b), we have

(ρ− 1)
√
nLmax

2ρτ+1Lres
≥ (ρ− 1)

√
nLmax

2eLres
≥ 1 ≥ 1

ψ
,

where the second inequality follows from (11). For the third bound (6c), we have

(ρ− 1)
√
nLmax

Lresρτ (2 + Lres√
nLmax

)
=

2eLres

Lresρτ (2 + Lres√
nLmax

)
≥ 2eLres

Lrese(2 + Lres√
nLmax

)
=

2

2 + Lres√
nLmax

≥ 1

ψ
.

We can thus set γ = 1/ψ, and by substituting this choice into (8) and using (38), we obtain
(12). We obtain (13) by making the same substitution into (9).

Proof (Theorem 3) From Markov’s inequality, we have

P(f(xj)− f∗ ≥ ε) ≤ ε−1E(f(xj)− f∗)

≤ ε−1

(
1− l

2nLmax

)j
(f(x0)− f∗)

≤ ε−1(1− c)(1/c)
∣∣∣log

f(x0)−f
∗

ηε

∣∣∣
(f(x0)− f∗) with c = l/(2nLmax)

≤ ε−1(f(x0)− f∗)e−
∣∣∣log

f(x0)−f
∗

ηε

∣∣∣
= ηe

log
(f(x0)−f

∗)
ηε e

−
∣∣∣log

f(x0)−f
∗

ηε

∣∣∣
≤ η,

where the second inequality applies (12), the third inequality uses the definition of j (15),
and the second last inequality uses the inequality (1− c)1/c ≤ e−1 ∀ c ∈ (0, 1), which proves
the essentially strongly convex case. Similarly, the general convex case is proven by

P(f(xj)− f∗ ≥ ε) ≤ ε−1E(f(xj)− f∗) ≤
f(x0)− f∗

ε
(

1 + j f(x0)−f∗
4nLmaxR2

) ≤ η,
where the second inequality uses (13) and the last inequality uses the definition of j (16).
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Appendix B. Proofs for Constrained Case

We start by introducing notation and proving several preliminary results. Define

(∆j)i(j) := (xj − xj+1)i(j), (39)

and formulate the update in Step 4 of Algorithm 1 in the following way:

xj+1 = arg min
x∈Ω
〈∇i(j)f(xk(j)), (x− xj)i(j)〉+

Lmax

2γ
‖x− xj‖2.

(Note that (xj+1)i = (xj)i for i 6= i(j).) From the optimality condition for this formulation,
we have 〈

(x− xj+1)i(j),∇i(j)f(xk(j))−
Lmax

γ
(∆j)i(j)

〉
≥ 0, for all x ∈ Ω.

This implies in particular that for all x ∈ Ω, we have〈
(PS(x)− xj+1)i(j),∇i(j)f(xk(j))

〉
≥ Lmax

γ

〈
(PS(x)− xj+1)i(j), (∆j)i(j)

〉
. (40)

From the definition of Lmax, and using the notation (39), we have

f(xj+1) ≤ f(xj) + 〈∇i(j)f(xj),−(∆j)i(j)〉+
Lmax

2
‖(∆j)i(j)‖2,

which indicates that

〈∇i(j)f(xj), (∆j)i(j)〉 ≤ f(xj)− f(xj+1) +
Lmax

2
‖(∆j)i(j)‖2. (41)

From optimality conditions for this definition, we have〈
x− x̄j+1,∇f(xk(j)) +

Lmax

γ
(x̄j+1 − xj)

〉
≥ 0 ∀x ∈ Ω. (42)

We now define ∆j := xj − x̄j+1, and note that this definition is consistent with (∆)i(j)
defined in (39). It can be seen that

Ei(j)(‖xj+1 − xj‖2) =
1

n
‖x̄j+1 − xj‖2.

We now proceed to prove the main results of Section 5.
Proof (Theorem 4) We prove (20) by induction. First, note that for any vectors a and b,
we have

‖a‖2 − ‖b‖2 = 2‖a‖2 − (‖a‖2 + ‖b‖2) ≤ 2‖a‖2 − 2〈a, b〉 ≤ 2〈a, a− b〉 ≤ 2‖a‖‖a− b‖,

Thus for all j, we have

‖xj−1 − x̄j‖2 − ‖xj − x̄j+1‖2 ≤ 2‖xj−1 − x̄j‖‖xj − x̄j+1 − xj−1 + x̄j‖. (43)
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The second factor in the r.h.s. of (43) is bounded as follows:

‖xj − x̄j+1 − xj−1 + x̄j‖

=

∥∥∥∥xj − PΩ(xj −
γ

Lmax
∇f(xk(j)))− (xj−1 − PΩ(xj−1 −

γ

Lmax
∇f(xk(j−1))))

∥∥∥∥
≤
∥∥∥∥xj − γ

Lmax
∇f(xk(j))− PΩ(xj −

γ

Lmax
∇f(xk(j)))− (xj−1 −

γ

Lmax
∇f(xk(j−1))

−PΩ(xj−1 −
γ

Lmax
∇f(xk(j−1))))

∥∥∥∥+
γ

Lmax

∥∥∇f(xk(j−1))−∇f(xk(j))
∥∥

≤
∥∥∥∥xj − γ

Lmax
∇f(xk(j))− xj−1 +

γ

Lmax
∇f(xk(j−1))

∥∥∥∥
+

γ

Lmax

∥∥∇f(xk(j−1))−∇f(xk(j))
∥∥

≤ ‖xj − xj−1‖+ 2
γ

Lmax

∥∥∇f(xk(j))−∇f(xk(j−1))
∥∥

≤ ‖xj − xj−1‖+ 2
γ

Lmax

max{k(j−1),k(j)}−1∑
d=min{k(j−1),k(j)}

‖∇f(xd)−∇f(xd+1)‖

≤ ‖xj − xj−1‖+ 2
γLres

Lmax

max{k(j−1),k(j)}−1∑
d=min{k(j−1),k(j)}

‖xd − xd+1‖, (44)

where the first inequality follows by adding and subtracting a term, and the second inequal-
ity uses the nonexpansive property of projection:

‖(z − PΩ(z))− (y − PΩ(y))‖ ≤ ‖z − y‖.

One can see that j − 1 − τ ≤ k(j − 1) ≤ j − 1 and j − τ ≤ k(j) ≤ j, which implies that
j − 1− τ ≤ d ≤ j − 1 for each index d in the summation in (44). It also follows that

max{k(j − 1), k(j)} − 1−min{k(j − 1), k(j)} ≤ τ. (45)

We set j = 1, and note that k(0) = 0 and k(1) ≤ 1. Thus, in this case, we have that
the lower and upper limits of the summation in (44) are 0 and 0, respectively. Thus, this
summation is vacuous, and we have

‖x1 − x̄2 + x0 − x̄1‖ ≤
(

1 + 2
γLres

Lmax

)
‖x1 − x0‖,

By substituting this bound in (43) and setting j = 1, we obtain

E(‖x0 − x̄1‖2)− E(‖x1 − x̄2‖2) ≤
(

2 + 4
γLres

Lmax

)
E(‖x1 − x0‖‖x̄1 − x0‖). (46)
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For any j, we have

E(‖xj − xj−1‖‖x̄j − xj−1‖) ≤
1

2
E(n1/2‖xj − xj−1‖2 + n−1/2‖x̄j − xj−1‖2)

=
1

2
E(n1/2Ei(j−1)(‖xj − xj−1‖2) + n−1/2‖x̄j − xj−1‖2)

=
1

2
E(n−1/2‖x̄j − xj−1‖2 + n−1/2‖x̄j − xj−1‖2)

= n−1/2E‖x̄j − xj−1‖2. (47)

Returning to (46), we have

E(‖x0 − x̄1‖2)− E(‖x1 − x̄2‖2) ≤ 2n−1/2E‖x̄1 − x0‖2

which implies that

E(‖x0 − x̄1‖2) ≤
(

1− 2√
n
− 4γLres√

nLmax

)−1

E(‖x1 − x̄2‖2) ≤ ρE(‖x1 − x̄2‖2).

To see the last inequality above, we only need to verify that

γ ≤
(

1− ρ−1 − 2√
n

) √
nLmax

4Lres
.

This proves that (20) holds for j = 1.

To take the inductive step, we assume that show that (20) holds up to index j − 1. We
have for j − 1− τ ≤ d ≤ j − 2 that

E(‖xd − xd+1‖‖x̄j − xj−1‖) ≤
1

2
E(n1/2‖xd − xd+1‖2 + n−1/2‖x̄j − xj−1‖2)

=
1

2
E(n1/2Ei(d)(‖xd − xd+1‖2) + n−1/2‖x̄j − xj−1‖2)

=
1

2
E(n−1/2‖xd − x̄d+1‖2 + n−1/2‖x̄j − xj−1‖2)

≤ 1

2
E(n−1/2ρτ‖xj−1 − x̄j‖2 + n−1/2‖x̄j − xj−1‖2)

≤ ρτ

n1/2
E(‖x̄j − xj−1‖2), (48)
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where the second inequality uses the inductive hypothesis. By substituting (44) into (43)
and taking expectation on both sides of (43), we obtain

E(‖xj−1 − x̄j‖2)− E(‖xj − x̄j+1‖2)

≤ 2E(‖x̄j − xj−1‖‖x̄j − x̄j+1 + xj − xj−1‖)

≤ 2E

‖x̄j − xj−1‖

‖xj − xj−1‖+ 2
γLres

Lmax

max{k(j−1),k(j)}−1∑
d=min{k(j−1),k(j)}

‖xd − xd+1‖


= 2E(‖x̄j − xj−1‖‖xj − xj−1‖)+

4
γLres

Lmax

max{k(j−1),k(j)}−1∑
d=min{k(j−1),k(j)}

E(‖x̄j − xj−1‖‖xd − xd+1‖)

≤ n−1/2

(
2 +

4γLresτρ
τ

Lmax

)
E(‖xj−1 − x̄j‖2),

where the last line uses (45), (47), and (48). It follows that

E(‖xj−1 − x̄j‖2) ≤
(

1− n−1/2

(
2 +

4γLresτρ
τ

Lmax

))−1

E(‖xj − x̄j+1‖2) ≤ ρE(‖xj − x̄j+1‖2).

To see the last inequality, one only needs to verify that

ρ−1 ≤ 1− 1√
n

(
2 +

4γLresτρ
τ

Lmax

)
⇔ γ ≤

(
1− ρ−1 − 2√

n

) √
nLmax

4Lresτρτ
,

and the last inequality is true because of the upper bound of γ in (19). It proves (20).

Next we will show the expectation of objective is monotonically decreasing. We have
using the definition (39) that

Ei(j)(f(xj+1)) = n−1
n∑
i=1

f(xj + (∆j)i)

≤ n−1
n∑
i=1

[
f(xj) + 〈∇if(xj), (x̄j+1 − xj)i〉+

Lmax

2
‖(xj+1 − xj)i‖2

]
= f(xj) + n−1

(
〈∇f(xj), x̄j+1 − xj〉+

Lmax

2
‖x̄j+1 − xj‖2

)
= f(xj) +

1

n

(
〈∇f(xk(j)), x̄j+1 − xj〉+

Lmax

2
‖x̄j+1 − xj‖2

)
+

1

n
〈∇f(xj)−∇f(xk(j)), x̄j+1 − xj〉

≤ f(xj) +
1

n

(
Lmax

2
‖x̄j+1 − xj‖2 −

Lmax

γ
‖x̄j+1 − xj‖2

)
+

1

n
〈∇f(xj)−∇f(xk(j)), x̄j+1 − xj〉

= f(xj)−
(

1

γ
− 1

2

)
Lmax

n
‖x̄j+1 − xj‖2 +

1

n
〈∇f(xj)−∇f(xk(j)), x̄j+1 − xj〉, (49)
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where the second inequality uses (42). Consider the expectation of the last term on the
right-hand side of this expression. We have

E〈∇f(xj)−∇f(xk(j)), x̄j+1 − xj〉
≤ E‖∇f(xj)−∇f(xk(j))‖‖x̄j+1 − xj‖

≤ E
j−1∑

d=k(j)

‖∇f(xd)−∇f(xd+1)‖‖x̄j+1 − xj‖

≤ LresE
j−1∑

d=k(j)

‖xd − xd+1‖‖x̄j+1 − xj‖

≤ Lres

2
E

j−1∑
d=k(j)

(n1/2‖xd − xd+1‖2 + n−1/2‖x̄j+1 − xj‖2)

=
Lres

2
E

j−1∑
d=k(j)

(n1/2Ei(d)(‖xd − xd+1‖2) + n−1/2‖x̄j+1 − xj‖2)

=
Lres

2
E

j−1∑
d=k(j)

(n−1/2‖xd − x̄d+1‖2 + n−1/2‖x̄j+1 − xj‖2)

≤ Lres

2n1/2
E

j−1∑
d=k(j)

(1 + ρτ )‖x̄j+1 − xj‖2

≤ Lresτρ
τ

n1/2
E‖x̄j+1 − xj‖2, (50)

where the fifth inequality uses (20). By taking expectation on both sides of (49) and
substituting (50), we have

E(f(xj+1)) ≤ E(f(xj))−
1

n

((
1

γ
− 1

2

)
Lmax −

Lresτρ
τ

n1/2

)
E‖x̄j+1 − xj‖2.

To see
(

1
γ −

1
2

)
Lmax − Lresτρτ

n1/2 ≥ 0, we only need to verify

γ ≤
(

1

2
+
Lresτρ

τ

√
nLmax

)−1

which is implied by the first upper bound of γ (19). Therefore, we have proved the mono-
tonicity E(f(xj+1)) ≤ E(f(xj)).
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Next we prove the sublinear convergence rate for the constrained smooth convex case
in (22). We have

‖xj+1 − PS(xj+1)‖2 ≤ ‖xj+1 − PS(xj)‖2

= ‖xj − (∆j)i(j)ei(j) − PS(xj)‖2

= ‖xj − PS(xj)‖2 + |(∆j)i(j)|2 − 2(xj − PS(xj))i(j)(∆j)i(j)

= ‖xj − PS(xj)‖2 − |(∆j)i(j)|2 − 2
(
(xj − PS(xj))i(j) − (∆j)i(j)

)
(∆j)i(j)

= ‖xj − PS(xj)‖2 − ‖(∆j)i(j)‖2 + 2(PS(xj)− xj+1)i(j)(∆j)i(j)

≤ ‖xj − PS(xj)‖2 − |(∆j)i(j)|2 +
2γ

Lmax
(PS(xj)− xj+1)i(j)∇i(j)f(xk(j))

= ‖xj − PS(xj)‖2 − |(∆j)i(j)|2 +
2γ

Lmax
(PS(xj)− xj)i(j)∇i(j)f(xk(j))+

2γ

Lmax

(
(∆j)i(j)∇i(j)f(xj) + (∆j)i(j)

(
∇i(j)f(xk(j))−∇i(j)f(xj)

))
≤ ‖xj − PS(xj)‖2 − |(∆j)i(j)|2 +

2γ

Lmax
(PS(xj)− xj)i(j)∇i(j)f(xk(j))+

2γ

Lmax

(
f(xj)− f(xj+1) +

Lmax

2
|(∆j)i(j)|2

+ (∆j)i(j)
(
∇i(j)f(xk(j))−∇i(j)f(xj)

))
= ‖xj − PS(xj)‖2 − (1− γ)|(∆j)i(j)|2 +

2γ

Lmax
(PS(xj)− xj)i(j)∇i(j)f(xk(j))︸ ︷︷ ︸

T1

+

2γ

Lmax
(f(xj)− f(xj+1)) +

2γ

Lmax
(∆j)i(j)

(
∇i(j)f(xk(j))−∇i(j)f(xj)

)︸ ︷︷ ︸
T2

, (51)
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where the second inequality uses (40) and the third inequality uses (41). We now seek upper
bounds on the quantities T1 and T2 in the expectation sense. For T1, we have

E(T1) = n−1E〈PS(xj)− xj ,∇f(xk(j))〉

= n−1E〈PS(xj)− xk(j),∇f(xk(j))〉+ n−1E
j−1∑

d=k(j)

〈xd − xd+1,∇f(xk(j))〉

= n−1E〈PS(xj)− xk(j),∇f(xk(j))〉

+ n−1E
j−1∑

d=k(j)

〈xd − xd+1,∇f(xd)〉+ 〈xd − xd+1,∇f(xk(j))−∇f(xd)〉

≤ n−1E(f∗ − f(xk(j))) + n−1E
j−1∑

d=k(j)

(
f(xd)− f(xd+1) +

Lmax

2
‖xd − xd+1‖2

)

+ n−1E
j−1∑

d=k(j)

〈xd − xd+1,∇f(xk(j))−∇f(xd)〉

= n−1E(f∗ − f(xj)) +
Lmax

2n
E

j−1∑
d=k(j)

‖xd − xd+1‖2

+ n−1E
j−1∑

d=k(j)

〈xd − xd+1,∇f(xk(j))−∇f(xd)〉

= n−1E(f∗ − f(xj)) +
Lmax

2n2
E

j−1∑
d=k(j)

‖xd − x̄d+1‖2

+ n−1E
j−1∑

d=k(j)

〈xd − xd+1,∇f(xk(j))−∇f(xd)〉

≤ n−1E(f∗ − f(xj)) +
Lmaxτρ

τ

2n2
E‖xj − x̄j+1‖2

+ n−1
j−1∑

d=k(j)

E〈xd − xd+1,∇f(xk(j))−∇f(xd)〉︸ ︷︷ ︸
T3

,
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Liu, Wright, Ré, Bittorf, and Sridhar

where the last inequality uses (20). The upper bound of E(T3) is estimated by

E(T3) = E〈xd − xd+1,∇f(xk(j))−∇f(xd)〉
= E(Ei(d)〈xd − xd+1,∇f(xk(j))−∇f(xd)〉)
= n−1E〈xd − x̄d+1,∇f(xk(j))−∇f(xd)〉
≤ n−1E‖xd − x̄d+1‖‖∇f(xk(j))−∇f(xd)‖

≤ n−1E(‖xd − x̄d+1‖
d−1∑
t=k(j)

‖∇f(xt)−∇f(xt+1)‖)

≤ Lres

n

d−1∑
t=k(j)

E(‖xd − x̄d+1‖‖xt − xt+1‖)

≤ Lres

2n

d−1∑
t=k(j)

E(n−1/2‖xd − x̄d+1‖2 + n1/2‖xt − xt+1‖2)

≤ Lres

2n

d−1∑
t=k(j)

E(n−1/2‖xd − x̄d+1‖2 + n−1/2‖xt − x̄t+1‖2)

≤ Lresρ
τ

n3/2

d−1∑
t=k(j)

E(‖xj − x̄j+1‖2)

≤ Lresτρ
τ

n3/2
E(‖xj − x̄j+1‖2).

where the second last inequality uses (20). Therefore, E(T1) can be bounded by

E(T1) = E〈(PS(xj)− xj)i(j),∇i(j)f(xk(j))〉

≤ 1

n
E(f∗ − f(xj)) +

Lmaxτρ
τ

2n2
E‖xj − x̄j+1‖2 +

j−1∑
d=k(j)

Lresτρ
τ

n5/2
E(‖xj − x̄j+1‖2)

=
1

n

(
f∗ − Ef(xj) +

(
Lmaxτρ

τ

2n
+
Lresτ

2ρτ

n3/2

)
E(‖xj − x̄j+1‖2)

)
. (52)
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For T2, we have

E(T2) = E(∆j)i(j)
(
∇i(j)f(xk(j))−∇i(j)f(xj)

)
= n−1E〈∆j ,∇f(xk(j))−∇f(xj)〉
≤ n−1E(‖∆j‖‖∇f(xk(j))−∇f(xj)‖)

≤ n−1E

 j−1∑
d=k(j)

‖∆j‖‖∇f(xd)−∇f(xd+1)‖


≤ Lres

n
E

 j−1∑
d=k(j)

‖∆j‖‖xd − xd+1‖


=
Lres

2n
E

 j−1∑
d=k(j)

n−1/2‖∆j‖2 + n1/2‖xd − xd+1‖2


=
Lres

2n
E

 j−1∑
d=k(j)

n−1/2‖xj − x̄j+1‖2 + n1/2Ei(d)‖xd − xd+1‖2


=
Lres

2n
E

 j−1∑
d=k(j)

n−1/2‖xj − x̄j+1‖2 + n−1/2‖xd − x̄d+1‖2


=
Lres

2n3/2

 j−1∑
d=k(j)

E‖xj − x̄j+1‖2 + E‖xd − x̄d+1‖2


≤ Lres(1 + ρτ )

2n3/2

j−1∑
d=k(j)

E‖xj − x̄j+1‖2

≤ Lresτρ
τ

n3/2
E‖xj − x̄j+1‖2, (53)

where the second last inequality uses (20).
By taking the expectation on both sides of (51), using Ei(j)(|(∆j)i(j)|2) = n−1‖xj −

x̄j+1‖2, and substituting the upper bounds from (52) and (53), we obtain

E‖xj+1 − PS(xj+1)‖2 ≤ E‖xj − PS(xj)‖2

− 1

n

(
1− γ − 2γLresτρ

τ

Lmaxn1/2
− γτρτ

n
− 2γLresτ

2ρτ

Lmaxn3/2

)
E‖xj − x̄j+1‖2

+
2γ

Lmaxn
(f∗ − Ef(xj)) +

2γ

Lmax
(Ef(xj)− Ef(xj+1))

≤ E‖xj − PS(xj)‖2 +
2γ

Lmaxn
(f∗ − Ef(xj)) +

2γ

Lmax
(Ef(xj)− Ef(xj+1)). (54)

In the second inequality, we were able to drop the term involving E‖xj − x̄j+1‖2 by using
the fact that

1− γ − 2γLresτρ
τ

Lmaxn1/2
− γτρτ

n
− 2γLresτ

2ρτ

Lmaxn3/2
= 1− γψ ≥ 0,
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which follows from the definition (18) of ψ and from the first upper bound on γ in (19). It
follows that

E‖xj+1 − PS(xj+1)‖2 +
2γ

Lmax
(Ef(xj+1)− f∗)

≤ E‖xj − PS(xj)‖2 +
2γ

Lmax
(Ef(xj)− f∗)−

2γ

Lmaxn
(Ef(xj)− f∗) (55)

≤ ‖x0 − PS(x0)‖2 +
2γ

Lmax
(f(x0)− f∗)− 2γ

Lmaxn

j∑
t=0

(Ef(xt)− f∗)

≤ R2 +
2γ

Lmax
(f(x0)− f∗)− 2γ(j + 1)

Lmaxn
(Ef(xj+1)− f∗),

where the second inequality follows by applying induction to the inequality

Sj+1 ≤ Sj −
2γ

Lmaxn
E(f(xj)− f∗),

where

Sj := E(‖xj − PS(xj)‖2) +
2γ

Lmax
E(f(xj)− PS(xj)),

and the last line uses the monotonicity of Ef(xj) (proved above) and the assumed bound
‖x0 − PS(x0)‖ ≤ R. It implies that

E‖xj+1 − PS(xj+1)‖2 +
2γ

Lmax
(Ef(xj+1)− f∗) +

2γ(j + 1)

Lmaxn
(Ef(xj+1)− f∗)

≤ R2 +
2γ

Lmax
(f(x0)− f∗)

⇒ 2γ(n+ j + 1)

Lmaxn
(Ef(xj+1)− f∗) ≤ R2 +

2γ

Lmax
(f(x0)− f∗)

⇒ Ef(xj+1)− f∗ ≤ n(R2Lmax + 2γ(f(x0)− f∗))
2γ(n+ j + 1)

.

This completes the proof of the sublinear convergence rate (22).
Finally, we prove the linear convergence rate (21) for the essentially strongly convex

case. All bounds proven above hold, and we make use the following additional property:

f(xj)− f∗ ≥ 〈∇f(PS(xj)), xj − PS(xj)〉+
l

2
‖xj − PS(xj)‖2 ≥

l

2
‖xj − PS(xj)‖2,

due to feasibility of xj and 〈∇f(PS(xj)), xj − PS(xj)〉 ≥ 0. By using this result together
with some elementary manipulation, we obtain

f(xj)− f∗ =

(
1− Lmax

lγ + Lmax

)
(f(xj)− f∗) +

Lmax

lγ + Lmax
(f(xj)− f∗)

≥
(

1− Lmax

lγ + Lmax

)
(f(xj)− f∗) +

Lmaxl

2(lγ + Lmax)
‖xj − PS(xj)‖2

=
Lmaxl

2(lγ + Lmax)

(
‖xj − PS(xj)‖2 +

2γ

Lmax
(f(xj)− f∗)

)
. (56)

318



AsySCD

Recalling (55), we have

E‖xj+1 − PS(xj+1)‖2 +
2γ

Lmax
(Ef(xj+1)− f∗)

≤ E‖xj − PS(xj)‖2 +
2γ

Lmax
(Ef(xj)− f∗)−

2γ

Lmaxn
(Ef(xj)− f∗). (57)

By taking the expectation of both sides in (56) and substituting in the last term of (57),
we obtain

E‖xj+1 − PS(xj+1)‖2 +
2γ

Lmax
(Ef(xj+1)− f∗)

≤ E‖xj − PS(xj)‖2 +
2γ

Lmax
(Ef(xj)− f∗)

− 2γ

Lmaxn

(
Lmaxl

2(lγ + Lmax)

(
E‖xj − PS(xj)‖2 +

2γ

Lmax
(Ef(xj)− f∗)

))
=

(
1− l

n(l + γ−1Lmax)

)(
E‖xj − PS(xj)‖2 +

2γ

Lmax
(Ef(xj)− f∗)

)
≤
(

1− l

n(l + γ−1Lmax)

)j+1(
‖x0 − PS(x0)‖2 +

2γ

Lmax
(f(x0)− f∗)

)
,

which yields (21).

Proof (Corollary 5) To apply Theorem 4, we first show ρ >
(

1− 2√
n

)−1
. Using the bound

(23), together with Lres/Lmax ≥ 1, we obtain(
1− 2√

n

)(
1 +

4eτLres√
nLmax

)
=

(
1 +

4eτLres√
nLmax

)
−
(

1 +
4eτLres√
nLmax

)
2√
n

≥
(

1 +
4eτ√
n

)
−
(

1 +
1

τ + 1

)
2√
n

= 1 +

(
2eτ − 1− 1

τ + 1

)
2√
n
> 1,

where the last inequality uses τ ≥ 1. Note that for ρ defined by (24), and using (23), we
have

ρτ ≤ ρτ+1 =

(1 +
4eτLres√
nLmax

)√nLmax
4eτLres


4eτLres(τ+1)√

nLmax

≤ e
4eτLres(τ+1)√

nLmax ≤ e.

Thus from the definition of ψ (18), we have that

ψ = 1 +
Lresτρ

τ

√
nLmax

(
2 +

Lmax√
nLres

+
2τ

n

)
≤ 1 +

Lresτρ
τ

4eLresτ(τ + 1)

(
2 +

1√
n

+
2τ

n

)
≤ 1 +

1

4(τ + 1)

(
2 +

1√
n

+
2τ

n

)
≤ 1 +

(
1

4
+

1

16
+

1

10

)
≤ 2. (58)

(The second last inequality uses n ≥ 5 and τ ≥ 1.) Thus, the steplength parameter choice
γ = 1/2 satisfies the first bound in (19). To show that the second bound in (19) holds also,
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we have (
1− 1

ρ
− 2√

n

) √
nLmax

4Lresτρτ
=

(
ρ− 1

ρ
− 2√

n

) √
nLmax

4Lresτρτ

=
4eτLres

4Lresτρτ+1
− Lmax

2Lresτρτ
≥ 1− 1

2
=

1

2
.

We can thus set γ = 1/2, and by substituting this choice into (21), we obtain (25). We
obtain (26) by making the same substitution into (22).
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Abstract

In this work we address the Eν–SVM model proposed by Pérez–Cruz et al. as an extension
of the traditional ν support vector classification model (ν–SVM). Through an enhancement
of the range of admissible values for the regularization parameter ν, the Eν–SVM has been
shown to be able to produce a wider variety of decision functions, giving rise to a better
adaptability to the data. However, while a clear and intuitive geometric interpretation
can be given for the ν–SVM model as a nearest–point problem in reduced convex hulls
(RCH–NPP), no previous work has been made in developing such intuition for the Eν–
SVM model. In this paper we show how Eν–SVM can be reformulated as a geometrical
problem that generalizes RCH–NPP, providing new insights into this model. Under this
novel point of view, we propose the RapMinos algorithm, able to solve Eν–SVM more
efficiently than the current methods. Furthermore, we show how RapMinos is able to
address the Eν–SVM model for any choice of regularization norm `p≥1 seamlessly, which
further extends the SVM model flexibility beyond the usual Eν–SVM models.

Keywords: SVM, Eν–SVM, nearest point problem, reduced convex hulls, classification

1. Introduction

Let us address the classification problem of learning a decision function f from X ⊆ Rn
to {±1} based on m training samples (Xi, yi), with i ∈ M = {1, ...,m}. We assume that
the training samples are i.i.d., following the unknown probability distribution P (X, y) on
X × {±1}.

Building on the well–known support vector machine (SVM) model developed in Cortes
and Vapnik (1995), a variation of it, termed ν–SVM, was proposed in Schölkopf et al. (2000)
as
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min
W,b,ρ,ξ

1

2
‖W‖22 − νρ+

1

m

∑
i∈M

ξi (1)

s.t.


yi (W ·Xi + b) ≥ ρ− ξi, i ∈M,

ξi ≥ 0, i ∈M,

ρ ≥ 0.

In this formulation the value of ν is made to lie in [0, 1], but actually there is a value
νmin > 0 such that if ν ∈ [0, νmin], then we obtain the trivial solution W = b = ρ = ξ = 0.
To tackle this, Pérez-Cruz et al. (2003) proposed generalizing (1) by allowing the margin ρ
to be negative and enforcing the norm of W to be unitary:

min
W,b,ρ,ξ

−νρ+
1

m

∑
i∈M

ξi (2)

s.t.


yi (W ·Xi + b) ≥ ρ− ξi, i ∈M,

ξi ≥ 0, i ∈M,

‖W‖22 = 1.

With this modification, a non–trivial solution can be obtained even for ν ∈ [0, νmin]. This
modified formulation was called extended–ν-SVM (Eν-SVM), and has been shown to be able
to generate a richer family of decision functions, thus producing better classification results
in some settings. In addition to this, Takeda and Sugiyama (2008) arrived independently to
the same model by minimizing the conditional value–at–risk (CVaR) risk measure, which is
often used in finance. Letting the cost function be f(W, b,Xi, yi) = −yi(W ·Xi + b)/‖W‖,
the CVaR risk measure is defined as the mean of the (1−ν)–tail distribution of f for i ∈M
(Rockafellar and Uryasev, 2002).

One of the advantages of the ν–SVM formulation (1) comes from its multiple connec-
tions to other well–known mathematical optimization problems, some of them allowing for
intuitive geometric interpretations. A schematic of such connections is presented in Figure
1. Connections 1 and 2 were introduced in the pioneer work of Bennett and Bredensteiner
(2000), showing how the SVM could be interpreted geometrically. Alternatively, and fol-
lowing the equivalence of the SVM and ν–SVM models (connection 3, shown in Schölkopf
et al., 2000), Crisp and Burges (2000) arrived to the same geometrical problem (connec-
tions 4 and 5). Such problem, known in the literature as reduced convex hull nearest–point
problem (RCH–NPP), consists of finding the closest points in the reduced convex hulls of
the points belonging to the positive and negative classes. This can be formulated as

min
λ+,λ−

1

2

∥∥∥∥∥∥
∑
i∈M+

λiXi −
∑
i∈M−

λiXi

∥∥∥∥∥∥
2

2

(3)

s.t.

{∑
i∈M+

λi =
∑

i∈M− λi = 1,

0 ≤ λi ≤ η, i ∈M,
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Equivalence Duality Generalization

1 2

3

4

5

6

7

8

9

10

Figure 1: Relationships between the SVM, ν–SVM and other mathematical optimization
problems. Connections and problems in gray were previously known, while con-
nections and models in black are introduced in this paper.

where we denote M± = {i : yi = ±1}, and η is the reduction coefficient of the reduced
convex hulls. A specific value of ν in (1) corresponds to a specific value of η in (3). Broadly
speaking, the bigger ν is, the smaller η is, and the more the hulls shrink towards their
barycenters.

Using the same notation, the intermediate RCH–Margin formulation in Figure 1 has the
following form:

min
W,α,β,ξ

1

2
‖W‖22 + β − α+ η

∑
i∈M

ξi (4)

s.t.


W ·Xi ≥ α− ξi, i ∈M+,

W ·Xi ≤ β + ξi, i ∈M−,
ξi ≥ 0, i ∈M.

At the light of these relationships and the fact that Eν–SVM is essentially a general-
ization of ν–SVM (connection 6, Pérez-Cruz et al., 2003), it seems natural to assume that
similar connections and geometric interpretations should exist for Eν–SVM. Nevertheless,
no work has been previously done along this line. Therefore, in this paper we exploit these
known ν–SVM connections to develop a novel geometric interpretation for the Eν–SVM
model. We will show how similar connections can be proved for Eν–SVM, and how this
provides a better insight into the mathematical problem posed by this generalized model,
allowing us to develop a new algorithm for Eν–SVM training.

On top of this, we demonstrate how the Eν–SVM formulation allows to extend the
SVM models through the use of general `p≥1–norm regularizations, instead of the usual `2–
norm regularization. Previously, SVM models with other particular values of p have been
proposed, such as `1–SVM by Zhu et al. (2003) or `∞–SVM in Bennett and Bredensteiner
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(2000), acknowledging the usefulness of different `p–norms to enforce different degrees of
sparsity in the model coefficients. Some work has also been done in approximating the NP–
hard non–convex non–continuous `0–norm within SVM models, by methods such as iterative
reweighing of `1–SVM models (Shi et al., 2011) or through expectation maximization in a
Bayesian approach (Huang et al., 2009), and also in the context of least–squares support
vector machines (López et al., 2011b). In spite of this, to date no efficient implementation
seems to have been offered for the general `p≥1–SVM. Similarly, no methods have been
proposed either to solve an equivalent `p≥1 version of the ERCH–NPP.

The contributions of this work on these matters are the following:

• We show how the Eν–SVM problem (2) is equivalent to an extended version of the
reduced convex hull margin (RCH–Margin) problem (connections 7 and 8 in Figure
1).

• We introduce the extended reduced convex hulls nearest–point problem (ERCH–
NPP), which is both a dual form of the Eν–SVM (connection 9) and a generalization
of RCH–NPP (connection 10).

• For the case when the reduced convex hulls do not intersect, we show how ERCH–NPP
can be reduced to the RCH–NPP problem.

• For the intersecting case we analyse how the problem becomes non–convex, and pro-
pose the RapMinos algorithm, which uses the acquired geometric insight to find a
local minimum of ERCH–NPP faster than the currently available Eν–SVM solvers.

• All derivations are performed for the general `p≥1 regularization, thus boosting the
Eν–SVM model capability even further, and also providing means to solve RCH–NPP
for such range of norms.

• A publicly available implementation of RapMinos is provided.

The rest of the paper is organized as follows: Section 2 describes the recasting of (2)
as a geometrical problem. Section 3 shows that this geometrical problem is in fact a gen-
eralization of the standard RCH–NPP problem (3), able to find non–trivial solutions even
in the case where the convex hulls intersect. In Section 4 we analyse the structure of the
optimization problem posed by the ERCH–NPP problem. Based on this, Section 5 develops
the RapMinos algorithm and shows its theoretical properties, while in Section 6 we present
experimental results on its practical performance. Finally, Section 7 discusses briefly the
results obtained and related future work.

2. Geometry in Eν-SVM

In this section we will introduce the geometric ideas behind Eν–SVM (2) by proving con-
nections 7 and 9 in Figure 1, thus arriving to the ERCH–NPP problem. We also generalize
its formulation not only to cover the `2–norm W regularization, but an arbitrary `p–norm
with p ≥ 1.

To begin with, let us define the ERCH–Margin (extended reduced–convex–hull margin)
problem and its connections with Eν–SVM.
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Proposition 1 The ERCH–Margin (extended reduced–convex–hull margin) problem, de-
fined as

min
W :‖W‖p=1

min
α,β,ξ

β − α+ η
∑
i∈M

ξi (5)

s.t.


W ·Xi ≥ α− ξi, i ∈M+,

W ·Xi ≤ β + ξi, i ∈M−,
ξi ≥ 0, i ∈M.

is equivalent to the Eν–SVM problem (connection 7 in Figure 1).

Proof Take (2) and multiply its objective function by 2/ν 1. Let us also consider the
`p–norm, and separate the constraint ‖W‖p = 1 from the problem, obtaining:

min
W :‖W‖p=1

min
b,ρ,ξ

−2ρ+
2

νm

∑
i∈M

ξi (6)

s.t.

{
yi (W ·Xi + b) ≥ ρ− ξi, i ∈M,

ξi ≥ 0, i ∈M.

Denoting now η = 2/(νm), α = ρ − b and β = −ρ − b, direct substitution makes the
above problem become the ERCH–Margin problem.

The geometry behind this formulation is summarized in Figure 2. There we have a
feasible estimate (W,α, β, ξ) which gives two parallel hyperplanes: W ·X = α and W ·X = β.
We are seeking to optimize two conflicting goals: on the one hand we want to maximize
the signed distance between both hyperplanes, given by α − β, and on the other hand we
want the hyperplane W · X = α to leave as many positive points as possible to its left.
The same is applicable to the hyperplane W ·X = β, which should leave as many negative
points as possible to its right. In the configuration illustrated, preference has been given to
correct classification, so that the hyperplanes “cross”, and β > α. Thus, the signed distance
between the hyperplanes is negative in this case.

In the general case, the trade–off between these two conflicting goals is regulated by the
penalty factor η = 2/(νm). The slack variables ξi allow for errors when the hyperplanes do
not leave the points to their proper side. The penalty factor keeps the errors at bay, so finally
we reach a compromise between separation of the hyperplanes and correct classification.

We now move one step further and define the ERCH–NPP problem and its connection
with ERCH–Margin.

Proposition 2 The ERCH–NPP (extended reduced–convex–hull nearest–point problem) prob-
lem, defined as

1. Note that this precludes the use of ν = 0, but in practice such a value is not interesting, since (2) would
only minimize the errors, which tends to overfitting.
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Figure 2: Illustration of the ERCH–Margin problem. The extreme positive (negative)
points are printed in red (blue). The current estimate gives two parallel hy-
perplanes W · X = α and W · X = β that try to separate the two classes as
well as possible, while keeping far from each other. Errors are quantified by slack
variables ξi, with two examples highlighted.

min
W :‖W‖p=1

max
X+∈U+,X−∈U−

W ·X− −W ·X+. (7)

with reduced convex hulls

U± =

∑
i∈M±

λiXi :
∑
i∈M±

λi = 1, 0 ≤ λi ≤ η

 ,

is the dual problem of ERCH–Margin (connection 9 in Figure 1).

Proof The Lagrangian for the inner minimization problem in ERCH–Margin (5) reads

L = β − α+ η
∑
i∈M

ξi −
∑
i∈M+

λi (W ·Xi − α+ ξi)

+
∑
i∈M−

λi (W ·Xi − β − ξi)−
∑
i∈M

µiξi, (8)

where we introduced the Lagrange multipliers λi ≥ 0, µi ≥ 0, i ∈ M , associated to the
inequality constraints of (5). Differentiating with respect to the variables being minimized
and equating to zero gives
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∂L
∂α

= −1 +
∑
i∈M+

λi = 0 ⇒
∑
i∈M+

λi = 1,

∂L
∂β

= 1−
∑
i∈M−

λi = 0 ⇒
∑
i∈M−

λi = 1,

∂L
∂ξi

= η − λi − µi = 0 ⇒ 0 ≤ λi ≤ η, i ∈M.

Substituting all the above in the Lagrangian (8) yields the partial dual formulation of
(5):

min
W :‖W‖p=1

max
λ

∑
i∈M−

λiW ·Xi −
∑
i∈M+

λiW ·Xi (9)

s.t.


∑

i∈M+

λi =
∑

i∈M−
λi = 1,

0 ≤ λi ≤ η, i ∈M.

Now, considering the constraints of (9) and problem (3), we are confined to the reduced
convex hulls whose reduction coefficient is in this case η = 2/(νm). If we have 2/(νm) ≥ 1,
we just work in the standard convex–hulls of both subsamples. By making use of the
reduced convex hulls U± and defining X± =

∑
i∈M± λiXi, problem (9) can be written more

succinctly as

min
W :‖W‖p=1

max
X+∈U+,X−∈U−

W ·X− −W ·X+,

which is ERCH–NPP.

Once we know we are working with reduced convex hulls, further geometrical intuition
can be given on what we are doing. Recall that the quantity (W · X0 + b)/‖W‖p gives
the signed distance from a specific point X0 to the hyperplane W · X + b = 0, in terms
of the `p–norm. Note that in this case we always have unitary W vectors. Since we only
care about the orientation of the solution hyperplane (W, b) and not about its magnitude,
problem (7) can be rewritten as

max
W,b

min
X+∈U+,X−∈U−

W ·X++b
‖W‖p −

W ·X−+b
‖W‖p , (10)

so that we can regard that Eν-SVM finds a solution that maximizes the margin, where by
“margin” we mean the smallest signed distance between the two reduced convex hulls.

There are two cases depending on the value of the reduction coefficient 2/(νm):
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• If the coefficient is small enough, the reduced convex hulls will not intersect, so there
exists some hyperplane W producing a perfect separation between them. Therefore,
(W ∗ ·X∗+ + b∗)/‖W ∗‖p > 0 and (W ∗ ·X∗− + b∗)/‖W ∗‖p < 0 must hold at optimality.

• If it is large enough, they will intersect, so there is no W producing perfect separation.
Therefore, it is (W ∗ ·X∗+ + b∗)/‖W ∗‖p < 0 and (W ∗ ·X∗− + b∗)/‖W ∗‖p > 0 that hold
at optimality.

Figure 3: Case where the reduced convex hulls do not intersect (µ = 1/2). The color
convention is the same as in Figure 2, whereas the extreme points of the positive
(negative) reduced hulls are printed in green (purple). The optimal solution is
given byW ∗, b∗, X∗+ andX∗−. Observe thatX∗+ (X∗−) lies in the positive (negative)
side of the hyperplane.

In the following section we will see how in the first case the problem can be reduced
to the standard RCH–NPP problem, while the second case cannot be captured by such
problem. This will lead to the conclusion that ERCH–NPP is a generalization of RCH–NPP
(connection 10 in Figure 1), and that ERCH–Margin is a generalization of RCH–Margin
(connection 8).

3. Relationship with RCH–NPP

Here we will see that ERCH–NPP (9) is in fact a generalization of RCH–NPP (3). Using
the notation of the previous section, (3) can be expressed as

min
X+∈U+,X−∈U−

1

2
‖X+ −X−‖qq ≡ min

X+∈U+,X−∈U−
‖X+ −X−‖q , (11)

where the reduction coefficient in U± is η = 2/(νm), and we again allow the use of a general
`q–norm with q ≥ 1 to measure the distance between the hulls 2.

2. While we acknowledge the interest in q < 1 norms in the field of Machine Learning, the use of such
norms introduces an additional level of non–convexity into the problem, and thus is out of the scope of
this paper.
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Figure 4: Case where the reduced convex hulls intersect (µ = 3/4), with the same color
and solution convention than in Figure 3. Observe that X∗+ (X∗−) lies now in the
negative (positive) side of the hyperplane.

If the reduction parameter η = 2/(νm) is not small enough, the classes might overlap
as in Figure 4, and (11) thus generates the trivial solution X∗+ = X∗−, so that W ∗ = 0. The
same happens with ν–SVMs, where ν must be large enough to obtain meaningful solutions.
What we intend to show next is that, exactly as Eν–SVM extended ν–SVM to allow for all
the range of possible values of ν (that is, ν ∈ (0, νmax], with νmax = 2 min{|M+|, |M−|}/m),
ERCH also extends RCH to allow for all the possible values for η.

To this aim, first we show the following lemma, whose is based on the fact that if the
hulls do not intersect, any solution with ‖W‖p < 1 is actually worse than the one obtained
by trivially rescaling W so that ‖W‖p = 1. That is to say, relaxing the constraint in such a
way does not modify the solution of the optimization, since the optimum is guaranteed to
remain at the same place.

Lemma 3 If the reduced convex hulls do not intersect, we can replace the constraint ‖W‖p =
1 in (5) with ‖W‖p ≤ 1.

Proof As was discussed above, if the reduced convex hulls do not intersect, a hyperplane
W ∗ and a bias b∗ exist such that W ∗ ·X+ +b∗ > 0 ∀ X+ ∈ U+, W ∗ ·X−+b∗ < 0 ∀ X− ∈ U−.
Therefore, at the optimum of (7) and (9) the value of the inner maximum must be negative.

Since the inner problem of (9) is the dual of the inner problem of (5) and both problems
are convex (linear, in fact), by strong duality the value of their objective functions is equal
at the optimum (Rockafellar, 1970; Luenberger and Ye, 2008). Hence, the inner minimum
of (5) must be negative as well. Therefore, for any optimal solution (W ∗, α∗, β∗, ξ∗) we get
the optimal objective value

P∗ = β∗ − α∗ + η
∑
i∈M

ξ∗i < 0.
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To see that we can replace the constraint ‖W‖p = 1 with ‖W‖p ≤ 1, let us suppose an
optimal solution (W ∗, α∗, β∗, ξ∗) such that ‖W ∗‖p < 1. We can then build another solution
(W ′, α′, β′, ξ′), withW ′ = W ∗/‖W ∗‖p, α′ = α∗/‖W ∗‖p, β′ = β∗/‖W ∗‖p and ξ′ = ξ∗/‖W ∗‖p.

This solution is obviously feasible, because the constraints of (5) hold. Moreover,
‖W ′‖p = 1 and the objective value is now

P ′ = β′ − α′ + η
∑
i∈M

ξ′i =
P∗

‖W ∗‖p
< P∗,

where the last inequality holds because P∗ < 0 and ‖W ∗‖p < 1. We are minimizing in (9),
so this new solution (W ′, α′, β′, ξ′) is actually better than (W ∗, α∗, β∗, ξ∗), which contra-
dicts the supposed optimality of the latter. Therefore, we can safely replace ‖W‖p = 1 with
‖W‖p ≤ 1.

The following definition and remark will also be used:

Definition 4 The convex conjugate f̂ : X̂ → R ∪ +∞ of a functional f : X → R ∪ +∞
is f̂(x̂) = supx∈X {x̂ · x− f(x)} = − infx∈X {f(x)− x̂ · x}, where X̂ denotes the dual space
to X and the dot product operation (dual pairing) is a function X̂ ×X → R (Rockafellar,
1970).

Remark 5 If f(x) = cg(x), with c > 0 a scalar, then f̂(x̂) = cĝ(x̂/c).

Theorem 6 The ERCH equivalent formulations (5)–(10) give a solution for the RCH for-
mulation (11) when the reduced convex hulls do not intersect, provided that 1/p+ 1/q = 1.

Proof By Lemma 3, we can now write problem (5) as a single minimization problem of
the form

min
W,α,β,ξ

β − α+ η
∑
i∈M

ξi (12)

s.t.


W ·Xi ≥ α− ξi, i ∈M+,

W ·Xi ≤ β + ξi, i ∈M−,
ξi ≥ 0, i ∈M,

‖W‖p ≤ 1,

whose Lagrangian is

L = β − α+ η
∑
i∈M

ξi −
∑
i∈M+

λi (W ·Xi − α+ ξi)

+
∑
i∈M−

λi (W ·Xi − β − ξi)−
∑
i∈M

µiξi

+δ (‖W‖p − 1) .
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However, since the `p–norm is not necessarily differentiable, we cannot proceed now as in
Section 2. To derive the dual problem, we must take into account that it consists of finding
the maximum, with respect to the Lagrange multipliers, of the infimum of the Lagrangian,
where this infimum is with respect to the primal variables (Boyd and Vandenberghe, 2004).
In our case the primal variables are W , α, β and ξ, whereas the Lagrange multipliers are
λi, µi and δ. Thus, the dual of (12) translates to

max
λ≥0,µ≥0,δ≥0

inf
W,α,β,ξ

{L} , (13)

where L is the expression above. Splitting the infimum among the different variables, we
want to find

infW

{∑
i∈M− λiW ·Xi −

∑
i∈M+

λiW ·Xi + δ‖W‖p
}

+

infα

{
−α+ α

∑
i∈M+

λi

}
+ infβ

{
β − β

∑
i∈M− λi

}
+∑

i∈M infξi {ηξi − λiξi − µiξi} − δ.

For α, β and ξ we can find the infima just by differentiating and equating to 0:

∂L
∂α

=
∑
i∈M+

λi − 1 = 0 ⇒
∑
i∈M+

λi = 1,

∂L
∂β

= 1−
∑
i∈M−

λi = 0 ⇒
∑
i∈M−

λi = 1,

∂L
∂ξi

= η − λi − µi = 0 ⇒ 0 ≤ λi ≤ η, i ∈M.

As for W , we can write the infimum as inf
{
−
∑

i∈M λiyiW ·Xi + δ‖W‖p
}

. This ex-
pression follows the form of the convex conjugate as presented in Definition 4, where we can
identify the functional f(W ) = δ‖W‖p and the dual variable Ŵ =

∑
i∈M λiyiXi. Moreover,

assuming for the moment that δ > 0 and using Remark 5, we have g(W ) = ‖W‖p.
Since the convex conjugate of the `p–norm is given by

ĝ(Ŵ ) =

{
0 if ‖Ŵ‖q ≤ 1,

+∞ otherwise,

where 1/p+ 1/q = 1 (see Boyd and Vandenberghe, 2004), we get in our case that the term
inf
{
−
∑

i∈M λiyiW ·Xi + δ‖W‖p
}

equals

−f̂
(
Ŵ
)

= −δĝ

(
Ŵ

δ

)
=

0 if
∥∥∥Ŵδ ∥∥∥q ≤ 1,

−∞ otherwise,
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which can be rewritten as

−δĝ

(
1

δ

∑
i∈M

λiyiXi

)
=

0 if

∥∥∥∥ ∑
i∈M

λiyiXi

∥∥∥∥
q

≤ δ,

−∞ otherwise.

The optimum will be located in the region where the convex conjugate is finite, so (13)
is equivalent to

max
λ,δ

−δ (14)

s.t.


∑

i∈M+
λi =

∑
i∈M− λi = 1,

0 ≤ λi ≤ η, i ∈M,∥∥∑
i∈M λiyiXi

∥∥
q
≤ δ.

On the other hand, when δ = 0 the infimum on W is just inf
{
−
∑

i∈M λiyiW ·Xi

}
.

Differentiating with respect to W we obtain that X+ = X−, so that W = 0. Consequently,∥∥∑
i∈M λiyiXi

∥∥
q

= 0 = δ, which satisfies (14).

Observe that the non–negativity constraints of the Lagrange multipliers in (13) are
subsumed in the constraints above. This can be further rewritten, removing δ, as

min
λ

∥∥∥∥∥∑
i∈M

λiyiXi

∥∥∥∥∥
q

s.t.

{∑
i∈M+

λi =
∑

i∈M− λi = 1

0 ≤ λi ≤ η, i ∈M,

that is, problem (11).

Therefore, when the hulls do not intersect, ERCH–NPP results in the standard RCH–
NPP problem. It is worth noting that Bennett and Bredensteiner (2000) already described
how RCH–NPP relates to RCH–Margin (which is a particular case of our ERCH–Margin
formulation 5 for non–intersecting hulls), for the `1, `2 and `∞–norms. Nevertheless, their
proof was omitted due to space constraints. We cover general p and q, which include all
these as particular cases.

Addressing now the non–intersecting case, we introduce another lemma, analogous to
Lemma 3.

Lemma 7 If the reduced convex hulls intersect, we can replace the constraint ‖W‖p = 1 in
(5) with ‖W‖p ≥ 1.
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Proof Just follow a similar argument to the one presented for Lemma 3. By the nature of
problem (7), and since there is overlap, we obtain W ∗ ·X∗+ + b∗ < 0 and W ∗ ·X∗− + b∗ > 0
for any optimal W ∗, X∗+, X

∗
− (see Figure 4).

Therefore, at the optimum of (7) and (9) the value of the inner maximum must be
positive. Supposing that ‖W ∗‖p > 1 allows us to build an alternative feasible solution
(W ∗/‖W ∗‖p, α∗/‖W ∗‖p, β∗/‖W ∗‖p, ξ∗/‖W ∗‖p), whose norm is unitary and whose primal
value is less than that of our hypothetical optimal solution, contradicting thus this optimal-
ity.

The problem can be then rewritten as

min
W

min
α,β,ξ

β − α+ η
∑
i∈M

ξi

s.t.


W ·Xi ≥ α− ξi, i ∈M+,

W ·Xi ≤ β + ξi, i ∈M−,
ξi ≥ 0, i ∈M,

‖W‖p ≥ 1.

In contrast to the derivation in Theorem 6, obtaining the dual of this problem is counter-
productive. Since the constraint ‖W‖p ≥ 1 is non–convex, a non–zero dual gap is bound to
appear. Therefore, solving the dual problem would only provide an approximate solution
to the ERCH. Instead of following such a derivation, we take the ERCH–NPP formulation
in 7 and plug in the modified constraint on W , obtaining

min
‖W‖p≥1

max
X+∈U+,X−∈U−

W ·X− −W ·X+.

The immediate advantage of this formulation of the ERCH is that, whatever the data
points X, a trivial solution W = 0 is never obtained. In comparison, the RCH–NPP model
always produces the trivial solution whenever the reduced hulls intersect. Joining this and
the facts above, it is immediate that ERCH–NPP can be regarded as a generalization of
RCH–NPP.

Theorem 8 ERCH–NPP is a generalization of RCH–NPP (connection 10 in Figure 1).

Proof Given the data points for which to solve ERCH–NPP, the reduced convex hulls
formed by such points might or might not intersect. If they do not intersect, by Theorem
6 the solution of the ERCH–NPP problem is exactly the solution of RCH–NPP. If they do
intersect, then RCH–NPP fails to find a non–trivial solution, while ERCH–NPP does not,
by Lemma 7. Therefore, ERCH–NPP covers all feasible cases for RCH–NPP plus a new
set, hence being a generalization of RCH–NPP.

Note that ERCH–Margin in (5) is nothing but RCH–Margin in (4), with the additional
requirement ‖W‖p = 1. Regarding the above two possible cases, we have seen that if the
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reduced convex hulls do not intersect we can substitute this constraint with ‖W‖p ≤ 1,
so that we obtain the solution of RCH–NPP and, by strong duality, that of RCH–Margin.
When they do intersect, RCH–NPP and RCH–Margin give a trivial 0 solution, whereas
ERCH–NPP and ERCH–Margin do not, since we can use the constraint now that ‖W‖p ≥ 1.
Thus, it can be stated as follows:

Corollary 9 ERCH–Margin is a generalization of RCH–Margin (connection 8 in Figure
1).

4. Structure of the ERCH–NPP

The actual problem of solving ERCH–NPP

min
W :‖W‖p=1

max
X+∈U+,X−∈U−

W ·X− −W ·X+,

is non–trivial, the main reason being that the constraint ‖W‖p = 1 imposes a non–convex
feasible set. This might lead to local minima among other issues, which in turn make the
optimization process difficult.

As described in the previous section, if the reduced convex hulls for the given data
points do not intersect, then the problem above can be reduced to the standard RCH–NPP.
Therefore, in such case the optimization can be performed by just employing one of the
available solvers for RCH–NPP, such as the RCH–SK and RCH–MDM methods proposed
respectively in Mavroforakis and Theodoridis (2006) and López et al. (2011a).

Of course, such methods cannot be applied in the intersecting hulls case, which is actually
the one of most interest, since it cannot be addressed by the RCH–NPP model. It is therefore
necessary to develop an optimization algorithm suitable for the general ERCH–NPP case; to
do so we will first analyze the structure of the optimization problem posed by ERCH–NPP.

It is clear that we can recast the problem to solve as the minimization of a function

min
‖W‖p=1

f(W ), (15)

where

f(W ) = max
X+∈U+,X−∈U−

{W ·X− −W ·X+} , (16)

= max
X−∈U−

{W ·X−} − min
X+∈U+

{W ·X+} .

This can be further rewritten in the following form

f(W ) = max
X∈M

W ·X, (17)

where M is the Minkowski polygon of the data, which is obtained through the Minkowski
difference M = U− 	 U+ defined as the set

X 	 Y ≡ {z|z = x− y, x ∈ X, y ∈ Y } .
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The Minkowski polygon has been used historically in the context of RCH–NPP to design
efficient solvers (Mavroforakis et al., 2007; Keerthi et al., 2000). The properties of the
Minkowski difference guarantee that the difference of two convex sets is also a convex set
(Ericson, 2005), and so in our problemM fancies this property. In this paper we will exploit
both representations (16) and (17) to take advantage of the structure of the problem.

Interestingly, the maximum and minimum in Equation (16) can be obtained efficiently
from the observations in the work of Mavroforakis and Theodoridis (2006) about the extreme
points of reduced convex hulls. As they show, any extreme point in a reduced convex hull
can be expressed in the form

XE =

b1/ηc∑
i=1

ηXi + (1− b1/ηcη)Xd1/ηe,

that is, the convex combination of d1/ηe points, where b1/ηc of them are given a weight
of η and an additional one the remaining weight 1 − b1/ηcη (if it is non–zero). Using this
property, they note that the extreme points with minimum margin for a given W can be
found as

arg min
X∈U

{W ·X} =

b1/ηc∑
i=1

ηXinc
i + (1− b1/ηcη)Xinc

d1/ηe,

where the Xinc
i are the original points Xi sorted increasingly by their margin values

W ·Xinc
1 ≤ W ·Xinc

2 ≤ . . . ≤ W ·Xinc
N .

These observations can also be applied here to find the value of f(W ), as

arg max
X−∈U−

{W ·X−} =

b1/ηc∑
i=1

ηXdec
i− + (1− b1/ηcη)Xdec

d1/ηe−
, (18)

arg min
X+∈U+

{W ·X+} =

b1/ηc∑
i=1

ηXinc
i+ + (1− b1/ηcη)Xinc

d1/ηe+
, (19)

where the Xdec
− are the points from the negative class sorted by margin decreasingly, and

the Xinc
+ are the points from the positive class sorted by margin increasingly:

W ·Xdec
1− ≥ W ·Xdec

2− ≥ . . . ≥ W ·Xdec
m− ,

W ·Xinc
1+ ≤ W ·Xinc

2+ ≤ . . . ≤ W ·Xinc
m+
.

The computation of f(W ), hence, can be easily done by just performing these sortings,
which only require O(m log(m)) operations. This ability to find the value of f(W ) for a fixed
W is the key for computing the gradient of f(W ). Supposing Z+ = arg minX+∈U+ {W ·X+}
and Z− = arg maxX−∈U− {W ·X−} and that both Z+ and Z− are singletons (no other
choices of X± attain the minimum/maximum values), the gradient is clearly ∇f(W ) =
∂
∂W (W · Z− −W · Z+) = Z− − Z+.
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It might happen, however, that Z+ or Z− (or both) is a set of points instead of a
singleton. If that is the case, which takes place in practice quite often, a set of gradients
are possible, constituting the subdifferential

∂f

∂W
=

∂

∂W

(
max
X−∈U−

{W ·X−} − min
X+∈U+

{W ·X+}
)
,

=
∂

∂W
max
X−∈U−

{W ·X−} −
∂

∂W
min

X+∈U+
{W ·X+} ,

=
∂

∂W
max
X−∈U−

{W ·X−}+
∂

∂W
max
X+∈U+

{−W ·X+} .

Invoking the property that the subdifferential of the maximum of a set of convex func-
tions (linear, in this case) at a given point is the convex hull of the subdifferentials of the
functions attaining such maximum at that point (Boyd and Vandenberghe, 2007) 3, we
obtain that

∂f

∂W
= conv

{
X

∣∣∣∣X ·W = max
X−∈U−

W ·X−
}

− conv

{
X

∣∣∣∣X ·W = min
X+∈U+

W ·X+

}
, (20)

where conv stands for standard convex hull.

A more intuitive way to understand this subdifferential is to note that the orderings
Xdec
− and Xinc

+ need not be unique, since it might well happen that, for instance, W ·Xdec
i−

=

W ·Xdec
(i+1)−

, and so the relative position of these two elements in the ordering is arbitrary. For

these multiple orderings the assignment of weights to obtain Z− = arg maxX−∈U− {W ·X−}
can produce a set of different Z− vectors, thus explaining the non–singleton subdifferential.
Note however that not every reordering produces a different subgradient, since as shown in
equations (18-19) the b1/ηc first Xi± vectors in the orderings receive all the same weight η,
while all the vectors from the d1/ηe+ 1 have no weight in the combination. In particular,
swaps in the ordering of two vectors W · Xi± = W · X(i+1)± with equal weight in such
combination produce no change in the resulting subgradient. Therefore, only equalities
involving the Xd1/ηe± vector can produce different subgradients. These observations will

become useful when discussing the stepsize selection of our proposed algorithm (Section
5.4).

With the subdifferential at hand, one could easily design a subgradient projection (SP)
method (Bertsekas, 1995) to solve problem (15). For clarity of the explanations to follow,
an outline of this method for the minimization of a general function f(x) constrained to
some set X is presented as Algorithm 1. As detailed in the pseudocode, the algorithm
basically alternates update steps and projection steps. In the former, the current estimate
of the solution is updated by following the negative of some subgradient belonging to the
subdifferential, while in the latter the updated solution is moved back to the feasible region

3. This property can be inferred from the observations in Clarke (1990, p. 10–11).
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Algorithm 1 Subgradient Projection (SP) method for minx∈X f(x)

Initialization: chose x0 ∈ X, t = 0.
while stopping criterion not met do

Compute a subgradient gt of f(xt).
Select an updating stepsize st.
Update step: zt+1 = xt − stgt.
Projection step: xt+1 = P

[
zt+1

]
X

t← t+ 1.
end while
return xt.

through an Euclidean projection. This method, though fairly simple, is bound to perform
poorly, since it uses little information about the problem at hand. Furthermore, due to the
non–convex nature of the problem it is not easy to give any guarantees on convergence.

In spite of SP presenting these drawbacks, we show here how building on top of it and
introducing adaptations for this particular problem, it is able to find a solution for ERCH–
NPP efficiently. We enhance the SP algorithm by modifying its four basic operations:
the computation of the updating direction, the updating stepsize selection, the projection
operator, and the initialization procedure.

To guide such modifications, we first introduce the following theorem, which forms the
base of our algorithm:

Theorem 10 The optimum of ERCH-NPP when the reduced hulls intersect is located at a
non–differentiable point.

The details of the proof for this theorem are not relevant for the discussion to follow,
so it is relegated to the Appendix. Its importance rather stems from the fact that we can
guide the optimization procedure to look just for non–differentiable points in the search
space, and still be able to reach the optimum.

5. The RapMinos Algorithm

We describe now the distinctive elements of our proposed solver for ERCH-NPP: the RA-
dially Projected MInimum NOrm Subgradient ( RapMinos ) algorithm.

5.1 Updating Direction

The first thing to adapt is the direction used for the update. Using the negative of an
arbitrary subgradient, as in SP, can result in non–decreasing updating directions (Bertsekas,
1995), which in turn can make hard to provide any guarantees on convergence. Therefore,
we introduce a modification that guarantees descent in the objective function in every
iteration, and also allows to perform optimality checks easily. To do so, we need to resort
to the concept of minimum–norm subgradient (MNS) from the literature of non–smooth
optimization (Clarke, 1990):
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Definition 11 Consider a non–smooth function f(x), and its subdifferential set ∂f(x) at
a point x. The minimum–norm subgradient g∗(x) is then

g∗(x) = arg min
g∈∂f(x)

||g||,

for some proper norm || · ||.

In an unconstrained problem, the direction given by d = −g∗(x) is guaranteed to be a
descent direction. When constraints are introduced, however, such a guarantee is harder to
obtain. We nevertheless are able to meet it through the following theorem:

Theorem 12 (Descent directions for ERCH) Consider the Lagrangian of problem (15)

L(W,λ) = f(W ) + λ(||W ||p − 1),

with λ ∈ R the Lagrange coefficient. Now consider the subdifferential set of the Lagrangian,

Γ(W ) = ∂f(W ) + λ∂||W ||p,

and suppose that the current W is feasible, so that ||W ||p = 1. Then the element with
minimum norm in Γ(W ),

γ∗(W ) = arg min
γ∈Γ(W )

||γ|| , (21)

meets ||γ∗(W )|| = 0 if W is a local minimum of the problem. Else, the direction d = −γ∗(W )
is guaranteed to be a descent direction.

Once again, the proof of the theorem is relegated to the Appendix to avoid technical
clutter in the discussion. The theorem itself provides a powerful tool to obtain both descent
directions and a reliable check for optimality, as we will see. But of course, a procedure must
be devised to find the appointed MNS of the Lagrangian in (21). A helpful observation for
doing so is the fact that the optimal value of the Lagrange coefficient λ can be determined
in closed form. Consider (21), and observe that the diversity in the set Γ(W ) is given by the
possible elements of the subdifferentials ∂f(W ) and ∂||W ||p, and the Lagrange coefficient λ.
To simplify notation, let us define g ∈ ∂f(W ), n ∈ ∂||W ||p elements of the subdifferentials.
By considering the problem just in terms of λ we can write

min
λ
||g + λn||22,

= min
λ
||g||22 + λ2||n||22 + 2λg · n.

Note that even if the MNS is defined for any proper norm, we have employed the `2–
norm here to ease the calculations. Computing now the derivative and solving for λ we
obtain
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∂

∂λ
= 2λ||n||22 + 2g · n = 0,

λ∗ = − g · n
n · n

= −P [g]n ,

which is precisely the negative of the coefficient for the Euclidean projection of g on n,
P [g]n. With this in mind and assuming that the subdifferential ∂||W ||p is a singleton n 4,
problem (21) is simplified down to

min
g

||g − P [g]n · n||
2
2 , (22)

s.t. g ∈ ∂f(W ),

and the resulting updating direction d would be d = −(g∗−P [g∗]n ·n) with g∗ the minimizer
of the problem. Before discussing how this minimizer is found, first we show how the
computation of the vector n = ∂||W ||p is performed.

Since we have assumed that ||W ||p = 1, we can safely temporarily replace the constraint
by ||W ||pp = 1, which eases the calculations. The derivative is then

∂||W ||pp
∂W

=
∂

∂W

∑
i

|Wi|p .

It is easier to develop this derivative by considering each entry of the gradient vector
separately,

[
∂||W ||pp
∂W

]
k

=
∂

∂Wk

∑
i

|Wi|p , (23)

= p |Wk|p−1 ∂

∂Wk
|Wk|,

= p |Wk|p−1 sign(Wk),

where the subgradient ∂
∂W |Wi| is the sign function

sign(x) =


1 if x > 0,
−1 if x < 0,
0 if x = 0.

A few technicalities have been omitted in this derivation: we refer to the Appendix for the
details.

Now that we have a way to compute n, we show how to find the minimizer g∗ of problem
(22). This is easy to do upon realizing that it can be rewritten as a modified standard RCH-
NPP. To do so, first observe that

4. This is not met for the particular cases of norms p = 1 and p = ∞, as they present non–differentiable
points. However, taking this assumption produces no harm in practice. Refer to the Appendix for further
discussion on this issue.
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g − P [g]n · n = g − g · n
n · n

n,

= g − nnT

n · n
g,

=

(
I − nnT

n · n

)
g,

= N g,

where I is the identity matrix and N = I − nnT

n·n transformation matrix. The problem then
becomes

min
g

||N g||22 , (24)

s.t. g ∈ ∂f(W ).

To realize the underlying connections with RCH–NPP, we shall rewrite explicitly the
constraint g ∈ ∂f(W ). To do so, remember that g can be expressed as the difference of
two extreme points (see Eq. 20) and these in turn as a convex combination of the data in
each class (Eqs. 18 and 19). Therefore we have that g =

∑
i∈M− µiXi −

∑
i∈M+

µiXi for
some combination weights µi, which should be set according to the margin orderings (as
explained in Eqs. 18-19). To be more precise, let us define the index sets

S+ =
{
i
∣∣∣ i ∈M+ , W ·Xi = W ·Xinc

d1/ηe+

}
,

S− =
{
i
∣∣∣ i ∈M− , W ·Xi = W ·Xdec

d1/ηe−

}
,

Q+ =
{
i
∣∣∣ i ∈M+ , W ·Xi < W ·Xinc

d1/ηe+

}
,

Q− =
{
i
∣∣∣ i ∈M− , W ·Xi > W ·Xdec

d1/ηe−

}
.

These sets can be explained as follows. At a differentiable point W the orderings Xinc
+

and Xdec
− are unique, and so S± is a singleton containing just the index corresponding to

X
inc/dec
d1/ηe± , which is the only pattern with weight (1−b1/ηc η), while the sets Q± contain the

indices of all patterns with weight η. At a non–differentiable point, however, the sets S±
contain the indices of those patterns that can be swapped in the ordering while keeping the
same objective value in (7), since they have equal margin. While the patterns indexed byQ±
still maintain a fixed weight η, the weights of the patterns indexed by S± can be rearranged
to obtain different subgradients. We are able to represent implicitly the whole subdifferential
with S± and Q±. Indeed, we can define the constant C =

∑
i∈Q− ηXi −

∑
i∈Q+

ηXi, which
only contains fixed terms, and rewrite our direction problem (24) as
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arg min
µ

∥∥∥∥∥∥N
C +

∑
i∈S−

µiXi −
∑
i∈S+

µiXi

∥∥∥∥∥∥
2

2

,

s.t.


∑

i∈S− µi +
∑

i∈Q− η = 1,∑
i∈S+

µi +
∑

i∈Q+
η = 1,

0 ≤ µi ≤ η, ∀ i ∈ S±.

Note that the constraints are nothing but the RCH–NPP constraints (problem 3), though
taking into account that the points in the Q± sets have fixed weight η. Using this fact and
defining X̃ = NX, C̃ = NC we get the simplified problem

arg min
µi,i∈S±

∥∥∥∥∥∥C̃ +
∑
i∈S−

µiX̃i −
∑
i∈S+

µiX̃i

∥∥∥∥∥∥
2

2

, (25)

s.t.


∑

i∈S− µi + |Q−|η = 1,∑
i∈S+

µi + |Q+|η = 1,

0 ≤ µi ≤ η, ∀ i ∈ S±,

where only the µ weights of the non–fixed points in S± need to be optimized over. This
problem is solved trivially by introducing some small modifications into an RCH–NPP
solver; more details on this are given in the implementation section (6.1). The relevant fact
here is that we can obtain a descent direction in our ERCH algorithm by solving problem
(25), and this can be done efficiently by invoking an RCH solver.

5.2 Geometric Intuition of Updating Direction

Even though involved arguments from non–smooth optimization have been used to obtain
the updating direction, it turns out that an easy geometric intuition can be given for it.
But before introducing it, some definitions from geometry are needed:

Definition 13 Supporting hyperplane: given a set X ∈ Rn, a hyperplane hX supports X if
X is entirely contained in one of the two closed half–spaces determined by hX(x) and hX
contains at least one point from X.

Definition 14 Supporting hyperplane at a point: given a closed set X ∈ Rn and a point x
in the boundary of X, a hyperplane hX(x) supports X at x if it is supports X and contains
x. If the set X is convex, hX(x) is guaranteed to exist (Boyd and Vandenberghe, 2004).

We further introduce the definition of supporting projection as

Definition 15 Supporting projection: given a closed convex set X ∈ Rn, a point x ∈ X at
a boundary of X and a vector v originating at x, we define the supporting projection of v on
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Figure 5: Depiction of the geometric concepts of supporting hyperplane at a point and of
supporting projection. The hyperplane hX(x) supports the set X at the point
x. The supporting projection of v is then obtained by projecting v onto hX(x),
which is equivalent to removing from v its projection on the normal vector nX(x).

X, sprojX(x, v) as the Euclidean projection of v on the supporting hyperplane at x, hX(x).
That is to say

sproj
X

(x, v) = P [v]hX(x) = v − P [v]nX(x) nX(x),

= v − v · nX(x)

nX(x) · nX(x)
nX(x), (26)

for nX(x) the normal vector defining hX(x). This is equivalent to removing from v its
projection on the normal vector nX(x).

An illustrating example on these concepts is given in Figure 5.
Using these, we can see that our updating direction takes the form

d = −(g∗ − P [g∗]n n) = − sproj
||W ||p=1

(W, g∗), (27)

since the normal vector n||W ||p=1(W ) is nothing but the derivative ∂||W ||p = n. That is to
say, our proposed direction follows the negative of the supporting projection of g∗, with g∗

the subgradient that produces the smallest such projection.

5.3 Projection Operator

Now that the updating direction is well defined, we move on to defining a suitable projection
operator, which is required to meet our assumption above about W being feasible at every
iteration (||W ||p = 1). Instead of using Euclidean projection, as is the rule in SP, we instead
employ radial projection on the `p unit–ball (Figueiredo and Karlovitz, 1967), which is
defined as

Rp [x] =

{
x if ||x||p ≤ 1,

x/||x||p if ||x||p > 1.
(28)

One major advantage of using this operator instead of Euclidean projections is its sim-
plicity and generality for any norm p. Furthermore we have the following property:
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Figure 6: Example of an updating step within the RapMinos algorithm. The point W t is
updated by a displacement along the supporting hyperplane h = h||W ||p=1(W t)
following direction dt, and then mapped back to the feasible region by means of
a radial projection.

Lemma 16 The radial projection Rp [x] never increases the `p norm of x, i.e., ||Rp [x] ||p ≤
||x||p.

Proof This is immediate from the definition, since for ||x||p ≤ 1 the projection leaves
x unchanged, and for ||x||p ≥ 1, Rp [x] = x/||x||p, and so ||Rp [x] ||p = ||x/||x||p||p =
||x||p/||x||p = 1 ≤ ||x||p.

It must be noted that applying this projection operator to the ERCH–NPP problem
could, in principle, lead to infeasible W values, since for ||W ||p < 1 the projection leaves
W unchanged, i.e., Rp [W ] = W . This violates the constraint ||W ||p = 1, producing an
infeasible W at the end of the iteration. Fortunately, it is easy to show that this situation
cannot happen during our algorithm.

Lemma 17 For a given W t vector with ||W t||p = 1 and any stepsize st ∈ R, the update
W t+1 = Rp

[
W t + stdt

]
with dt as defined in (27) meets ||W t+1||p = 1.

Proof The proof follows from the fact that the displaced point W t + stdt is guaranteed to
lie in the supporting hyperplane h||W ||p=1(W t), given the nature of the updating direction
dt and the fact that the ||W t||p = 1, i.e., W t lies in the border of the convex set ||W t||p ≤ 1
(see Figure 6). Because of the properties of a supporting hyperplane, every point in h is
guaranteed to be outside or in the border of the set ||W t||p ≤ 1, and so ||W t + stdt||p ≥ 1.
Therefore, using the definition of radial projection, ||W t+1||p = ||Rp

[
W t + stdt

]
||p = 1.

Thus, we are guaranteed to remain in the feasible set throughout the whole algorithm
as long as ||W 0||p = 1, which is easy to meet.
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5.4 Stepsize Selection

Standard subgradient projection methods generally employ a constant or diminishing step-
size rule. Here, however, we can take advantage of Theorem 10 to select a more informed
stepsize. Since the optimum of the ERCH is guaranteed to lie at a non–differentiable point,
once an updating direction has been selected it makes sense to consider just those stepsizes
that land on one of such points.

Recall from the beginning of the section that a non–differentiable point (that is, one
where a non–singleton subdifferential arises) can be characterized through the orderings
W · Xdec

i−
and W · Xinc

i+
as those values of W for which these orderings are not unique,

i.e., some elements might be swapped without violating the ordering. In particular, only
situations where equalities with the vectors W · Xd1/ηe± arise can produce non–singleton
subdifferentials. Therefore, we can identify non–differentiable points along the updating
direction as those values of the stepsize st for which W t+stdt produces one of such equalities,
that is to say

(W t + stdt) ·Xd1/ηe± = (W t + stdt) ·Xi± ,

for some other Xi± vector in the ordering. Since several of such points can appear along
the direction dt, our approach here is to move on to the nearest of them. That is, we select
the minimum stepsize (different from 0) that lands on a non–differentiable point. This
approach is sensible because by moving further away we could step into a different smooth
region where our current estimate of the subgradient (and thus d) is no longer valid. This
results in the stepsize rule

st = min
i±∈C+

⋃
C−

{
Xd1/ηe± ·W

t −Xi± ·W t

Xi± · dt −Xd1/ηe± · d
t

}
, (29)

which is obtained from solving the equality above for st, and taking the minimum over all
of the possible equalities. The sets C+, C− arise from the fact that not all data points need
to be checked. These sets are defined as

C+ =

{
i ∈M+ :

Xi · dt > Xd1/ηe+ · d
t, i < d1/ηe+,

Xi · dt < Xd1/ηe+ · d
t, i > d1/ηe+.

}
,

C− =

{
i ∈M− :

Xi · dt < Xd1/ηe− · d
t, i < d1/ηe−,

Xi · dt > Xd1/ηe− · d
t, i > d1/ηe−.

}
.

The choice of these sets becomes clear by realizing that any point not in this set produces
a negative or undefined st value, which is useless in our method since we are interested in
advancing by following the updating direction.

We state now the following proposition, whose proof is immediate by construction of
the stepsize, as presented above:

Proposition 18 RapMinos explores a non–differentiable point at each iteration.
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Algorithm 2 RapMinos method for ERCH-NPP

Inputs: data (X, y), norm p ∈ [1,∞], stopping tolerance ε.
Initialization: chose W 0 = Wηmin

, t = 0, stop =∞.
while stop > ε do

Find Lagrangian MNS γ∗t solving problem (25).
Find stepsize st using (29).
Update step: V t+1 = W t − stγ∗t .
Radial projection step: W t+1 = Rp[V

t+1] (Eq. 28).
Stopping criterion: stop = ||γ∗t ||∞.
t← t+ 1.

end while
return W t.

5.5 Initialization

While any feasible W s.t. ||W ||p = 1 is a valid starting point, the choice of such point will
determine the local minima the algorithm ends up in. As we discuss later in the experi-
mental section, falling in a bad local minimum can result in poor classification accuracy.
Therefore, it is relevant to start the optimization at a sensible W point. To do so, we
propose the following heuristic. Let us consider the minimum possible value for η, which
is ηmin = 1/min {M+,M−}. At this value each class hull gets reduced to a unique point,
its barycenter, where every pattern is assigned the same weight in the convex combination.
For such η, the ERCH–NPP is trivially solved by computing W as the difference between
both barycenters, Wηmin . While such W will not be the solution for other values of η, intu-
itively we see that it will be already positioned in the general direction of the desired Wη.
Although we cannot give any theoretical guarantees on such choice being a good starting
point, we will see in the experimental section 6.5 how it performs well in practice.

5.6 Full Algorithm and Convergence Analysis

After joining the improvements presented in the previous subsections, the main steps of
the full RapMinos method are presented in Algorithm 2. We show now how the iteration of
such steps guarantees convergence to a local minimum of the problem. The main argument
of the proof is that the RapMinos algorithm visits a region of the function at each step,
but always improving the value of the objective function. Since the number of such regions
is finite, the algorithm must stop at some point, having found a local minimum. The details
of the proof are presented in what follows.

First we will require the following lemma:

Lemma 19 Consider the update W t+1 = Rp[W
t + stdt] with dt defined as in (27) and

st defined as in (29). This update never worsens the value of the objective function,
i.e., f(W t+1) ≤ f(W t). Furthermore, if W t+1 = W t then W t is a local minimum, else
f(W t+1) < f(W t).

Proof

Theorem 12 already shows that at a local minimum the update direction selected by
RapMinos is null. If not at a local minimum, the updating direction is guaranteed to be
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(a) (b) (c)

Figure 7: Depiction of possible scenarios arising during a RapMinos update. (a) Start
in a smooth region, stop at a non–differentiable intersection between smooth
regions. (b) Start at an intersection between regions, traverse a smooth region
until another intersection is found. (c) Start at an intersection between regions,
move along a boundary until intersection with a new smooth region is found.

a descent direction. Therefore f(W t + δdt) ≤ f(W t) for some small δ > 0. Consider now
the structure of the objective and subgradient functions, as shown in Eqs. 16 and 20. Note
that f(W ) is piece–wise linear, the subgradient set being a unique gradient in the interior
of the linear regions, while being non–singleton in the intersections of such regions. With
this in mind, the following three cases regarding the status of W t are possible, which are
also depicted in Figure 7:

• W t is a differentiable point. Then W t lies in a linear region, where the subgradient set
is a unique constant gradient. Because of this, the Minimum Norm Subgradient of the
Lagrangian is also constant throughout the whole region, and dt remains a descent
direction until a non–differentiable point marking the frontier to another region is
reached (Figure 7a).

• W t is a non–differentiable point, which means W t is in the intersection of two or more
linear regions, and W t + δdt for some infinitesimal δ > 0 steps in the interior of one
linear region. Since the gradient in this region is included in the subgradient of W t

(see Eq. 20) and f(W t + δds) < f(W t) is guaranteed, then moving further along this
region must keep the same rate of improvement (since the region is linear), until a
non–differentiable point marking the frontier to another region is reached (Figure 7b).

• W t is a non–differentiable point and W t + δdt follows an intersection of regions (e.g.,
follows an edge of the problem’s surface). Then the MNS of the Lagrangian is not
changed and dt remains a descent direction until an intersection with a new linear
region is found. This case is observed when selecting the stepsize in Eq. 29 (Figure
7c).

Whatever the case, improvement in the objective is guaranteed until the next non-
differentiable point is reached. Therefore f(W t + stdt) < f(W t).

Including now the radial projection, we have that
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f(W t+1) = f(Rp[W
t + stdt]) = f

(
W t + stdt

||W t + stdt||p

)
,

=
f(W t + stdt)

||W t + stdt||p
< f(W t + stdt),

< f(W t),

since ||W t + stdt||p > 1 (see proof for Lemma 17) and f(cW ) = cf(W ) for c constant.

With this tool we are ready to prove convergence of RapMinos :

Theorem 20 The RapMinos algorithm finds a local minimum in a finite number of steps.

Proof By Proposition 18, RapMinos explores a vertex or edge of f(W ) at each itera-
tion. As f(W ) is piece–wise linear, the number of such regions is finite, so at some point
the method could step again into a previously visited point. However, this is not possible,
since because of Lemma 19, each iteration must either stop at a local minimum or strictly
improve the objective value, thus avoiding to return to a previous point. Therefore, Rap-
Minos converges to a local minimum in a finite number of steps.

6. Experimental Results

We present now experimental results supporting our proposed ERCH model and the corre-
sponding RapMinos algorithm, as well as details on implementation.

6.1 Implementation

The RapMinos algorithm was implemented in Matlab, and is publicly available for down-
load 5. The code includes an adapted RCH–NPP algorithm (Clipped–MDM, see López
et al., 2011a, 2008) to solve the MNS problem (Eq. 25). The adaptation involves modify-
ing the algorithm to accept the sets of points Q±, which must always retain a coefficient
µi = η and thus are not optimized over, but nevertheless should be taken into account when
computing the objective value. This can be done easily by adapting the initialization and
extreme points computation at the end of the algorithm: for further details please refer to
the code itself.

A point of technical difficulty in the implementation is the bookkeeping of the index sets
Q±, S±. While these could be recomputed from scratch each time they are needed, it is far
more efficient to update them throughout the iterations. To do so, at the initialization of
RapMinos these sets are built using the initial vector W 0. After that, during the algorithm
iterations, these sets are updated at two situations:

• When computing the stepsize using (29), the pattern (or patterns) that produce the
min are added to their respective S± set. This is done because, by definition of the

5. Project web page: https://bitbucket.org/albarji/rapminos . Source code and packages available.

349

https://bitbucket.org/albarji/rapminos


Barbero, Takeda and López

stepsize rule, the margin of this pattern after the update equals that of W · Xd1/ηe,
and this is what defines the S±. This pattern is also removed from the set Q± in the
case it was part of it.

• After each MNS computation the values of the weights µi for the patterns in the sets
S± are checked. If any of them turns out to be 0, it is removed from S±, since such
pattern has no longer an influence in the subgradient. If it happens to be valued η,
then the pattern is transferred to the corresponding Q± set.

Because of numerical errors amounting during the algorithm iterations, such checks are
always done with a certain tolerance value. Also, for the same reason, it could happen
that an update of the algorithm worsens the value of the objective function, even if this is
theoretically impossible thanks to Lemma 19. To address this, our implementation stops
whenever a worsening is detected.

Regarding the quality of the solution obtained, it should be noted that the RapMinos al-
gorithm solves the intersecting ERCH–NPP case, and most of its assumptions are based on
this fact. To avoid convergence problems if the problem is actually non–intersecting, our
implementation first invokes a standard RCH–NPP solver. If the solution W obtained has
norm close to zero, the problem might be intersecting. To check whether there is a real
intersection we solve the following linear program

min
λ,η

η, (30)

s.t.


∑

i∈M+
λiXi =

∑
i∈M− λiXi,∑

i∈M+
λi = 1,

∑
i∈M− λi = 1,

0 ≤ λi ≤ η, ∀ i.

which finds the minimum value of η for which the reduced convex hulls intersect. If the
user–selected value of η is larger than the one found here, then the hulls intersect, and we
continue with the execution of RapMinos . Otherwise, a solution is obtained by solving
the equivalent `p RCH–NPP (Eq. 11) through a generalized RCH–NPP solver; details on
this solver are outlined in the Appendix.

6.2 Augmented Model Capacity: Synthetic Data Sets

We first show how the augmented ν range extension of the Eν–SVM model, and thus
ERCH–NPP, can improve the classification accuracy of the SVM. As shown in Section 3,
the ERCH–NPP model is able to generate non–trivial solutions for those cases where the
reduced hulls of the data intersect, on top of all the solutions attainable by the standard
RCH–NPP model for non–intersecting hulls. We hypothesize that this capability ought to
be specially useful in classification problems where the convex hulls of positive and negative
classes have a significant intersecting area, as RCH–NPP would only be able to find useful
solutions for a small range of η values. A similar hypothesis was previously proven for other
margin based methods when replacing the regularization constraint ‖W‖p ≤ 1 by ‖W‖p = 1
or replacing the reduced convex hulls U± by different class shapes (for example, ellipsoids),
as shown in Takeda et al. (2013).
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To test this, we generated a series of artificial data sets with increasingly larger inter-
secting areas. We defined conditional probabilities for label +1 and label -1, denoted by
p(X| + 1) and p(X| − 1), as multivariate normal distributions. The mean vector and the
variance–covariance matrix of p(X| + 1) were defined by the null vector (0, . . . , 0)> ∈ Rn
and the identity matrix In ∈ Rn×n, respectively (i.e., standard normal distribution). For
the other conditional probability, p(X|−1), we randomly generated the variance-covariance
matrix having eigenvalues 0.12, . . . , 1.52, wherein the square roots of the eigenvalues were
numbers placed at even intervals from 0.1 to 1.5. The mean vector of p(X|−1) was defined
by r√

n
(1, . . . , 1)> ∈ Rn, with r a distance parameter between classes. The larger the r, the

smaller the intersecting area between classes. The training sample size and test sample size
were set to m = 2×103 and m̃ = 104, respectively, while the number of features was chosen
as n = 10.
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Figure 8: Performance of the Eν–SVM model for a classification problem with different
degrees of distance between class centers. For each distance choice, accuracy
of the trained classifier is shown for a range of ν values. The green dashed lines
represent the ν threshold below which the reduced hulls intersect, hence producing
a non–convex problem.

Figure 8 shows the obtained accuracy levels with RapMinos for the range ν ∈ [0.1, 0.9]
and a selection of class distances. The threshold for which the reduced–convex–hulls inter-
sect is also shown, below which the problem becomes non–convex and only the ERCH–NPP
model can find meaningful solutions. As expected, when the distance between class means
is large, this threshold becomes smaller, as a smaller ν implies a larger η, i.e., a smaller re-
duction on the convex hulls is required for them to become separable. For those cases where
the distance between classes is small, the intersecting range of ν shows an improvement on
accuracy over the non–intersecting range, thus backing up the fact that the augmented
range of ERCH–NPP (and so Eν–SVM) can lead to more accurate models.

6.3 Augmented Model Capacity: Real–World Data Sets

We now test the benefits provided by the augmented model capacity on real–world data
sets, obtained from the benchmark repository at Rätsch (2000), but instead of making use
of the default 100 training–test partitions provided there we generated our own random
splits of each data set as done in Takeda and Sugiyama (2009). In particular, we took 4/5
of the data set as training data and the remaining 1/5 as testing data. For each data set
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we identified the νlimit value for which the class hulls start intersecting, and solved ERCH–
NPP for two ranges of ν values of 100 points each, one above νlimit (convex range), and the
other below it (non–convex range). To solve the ERCH–NPP in the non–convex range we
resorted to the presented RapMinos method, while for the convex range we applied the
standard ν–SVM solver provided in LIBSVM (Chang and Lin, 2001).
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Figure 9: Performance of the Eν–SVM model for a set of real–world data sets. The square
markers denote the best performing ν choice.

Figure 9 shows the accuracy levels obtained with RapMinos for the full range of ν
values. While for a number of the data sets the augmented ν range does not provide
noticeable benefits, for titanic, breastcancer, ringnorm and specially banana higher levels of
accuracy are attainable.

Table 1 presents top accuracy values in the whole ν range for the standard ν–SVM and
the augmented Eν–SVM model tuned with different `p–norm choices. The results seem to
confirm our hypothesis stating that the ability to select an arbitrary `p regularization in
the model leads to an increase in the model capacity: in 8 out of 13 data sets we find that
the model is able to obtain higher accuracy values than both the ν–SVM and `2 Eν–SVM
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Figure 9: (continued) Performance of the Eν–SVM model for a set of real–world data sets.
The square markers denote the best performing ν choice.

models. For illustration purposes we also include the accuracy curves for a sample of the
data sets in Figure 10.

6.4 Runtime Experiments

To show the advantage in terms of efficiency and stability of the proposed RapMinos al-
gorithm we present here a comparison against a reference Eν–SVM method. Recall the
Eν–SVM problem is dual to the ERCH–NPP discussed here (see Proposition 2), so in prin-
ciple similar solutions should be obtained through both approaches, although it should be
noted that the existence of local minima in both models can lead to different results. The
method of choice for the Eν–SVM problem is the one presented in Takeda and Sugiyama
(2008) 6, which finds a solution by approximating the non–linear Eν–SVM problem by a
series of linear optimization problems; such linear problems, in turn, are solved by invoking
an interior–point method.

We worked again with the data sets from the benchmark repository at Rätsch (2000),
but since we wanted to test the algorithms in the intersecting range of data, instead of
selecting ν as the value maximizing validation accuracy we fixed it at a value slightly below
the separable limit νmin. Table 2 shows training times for the reference Eν–SVM and the
RapMinos algorithms, together with the accuracy levels obtained in the test splits. A
basic subgradient projection method solving ERCH–NPP (see Algorithm 1) is also included
in the table to check whether the theoretical improvements provided by RapMinos have
noticeable effects in practice.

6. This method turns out to be a subtle modification of the original Eν–SVM method by Pérez-Cruz et al.
(2003).
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Data set ν–SVM ERCH–RapMinos

`2 `2 `1 `1.5 `3 `∞

thyroid 88.4% 88.4% 86.0% 88.4% 95.3% 90.7%
heart 92.6% 92.6% 90.7% 94.4% 92.6% 92.6%
titanic 76.1% 76.8% 76.1% 76.8% 76.8% 77.2%

breastcancer 83.6% 85.5% 81.8% 83.6% 83.6% 83.6%
diabetes 78.4% 78.4% 78.4% 79.1% 78.4% 78.4%

flare 72.2% 72.2% 72.2% 72.2% 72.2% 70.3%
german 76.0% 76.0% 76.5% 76.0% 76.0% 77.0%
banana 53.2% 64.6% 64.2% 64.5% 61.1% 64.6%
image 84.0% 84.0% 71.2% 81.8% 79.4% 78.4%

ringnorm 77.6% 77.9% 77.8% 77.7% 78.0% 78.0%
splice 86.3% 86.3% 86.0% 86.3% 85.8% 85.8%

twonorm 97.9% 97.9% 97.9% 97.9% 97.8% 98.0%
waveform 89.1% 89.1% 89.2% 89.3% 89.3% 89.1%

Table 1: Test accuracies for ν–SVM and the ERCH model trained with RapMinos , for different
values of the `p–norm. Numbers in bold in the RapMinos `2 mark when the ERCH model
performs better than the standard ν–SVM. Also marked in bold are those cases where a
non–standard `p norm produces further improvement.

The first thing to observe is that the Eν–SVM algorithm used failed to produce a solution
for some of the data sets. These failures stem from instability issues of the interior–point
solver, which at some situations was unable to find a suitable interior point. Opposite to
this, RapMinos always found a solution. Not only that, but also did so in considerably less
time and with a higher degree of accuracy in the solution. This last fact can be explained
by realizing that while the Eν–SVM approach finds a solution by using a series of linear
approximations to the non–convex Eν–SVM problem, RapMinos instead addresses the
non–convex ERCH–NPP problem directly. As a whole, RapMinos is able to find better–
quality solutions consistently at a lower computational cost.

Regarding the improvements of RapMinos over a basic subgradient projection method,
Table 2 shows how RapMinos was able to find a solution much faster for most of the
data sets. Some notable exceptions are breastcancer, diabetes and flare, where the simple
subgradient method finds a good solution quite fast. Table 3 reveals additional insight into
this: the solutions found by RapMinos tend to produce better objective values. Which is
to say, subgradient projection might return a solution faster in some settings, but performs
a worse optimization job. It is thus clear that RapMinos is a better solver for the ERCH–
NPP problem than a basic subgradient projection method, as we hypothesized when we
proposed the method.
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Figure 10: Performance of the Eν–SVM model for a set of real–world data sets and different
values of the `p–norm.
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Data set Eν–SVM solver Subgrad. Proj. RapMinos

Accuracy Time Accuracy Time Accuracy Time

thyroid 80.8% 1.46 86.3% 20.29 86.3% 0.15
heart 82.6% 1.72 73.9% 21.46 73.9% 0.37
titanic 76.5% 1.80 77.82% 29.84 72.9% 0.30

breastcancer 78.7% 1.05 76.6% 0.23 72.3% 0.35
diabetes 73.5% 3.21 75.1% 0.10 74.7% 0.47

flare – – 63.0% 0.01 63.3% 0.20
german 66.56% 2.98 77.3% 1.48 77.3% 1.33
banana – – 60.5% 44.96 60.5% 0.53
image – – 82.1% 35.89 75% 1.15

ringnorm 77.1% 26.85 77.1% 81.95 77.1% 7.24
splice 51.9% 33.27 83.7% 46.42 84.2% 9.76

twonorm 97.7% 24.05 97.2% 61.33 97.2% 11.02
waveform 78.8% 14.85 86.9% 54.21 86.9% 7.94

Table 2: Execution times (in seconds) and accuracy in the test set for the reference Eν–SVM solver,
the proposed RapMinos algorithm and a simple subgradient projection method. Entries
marked with – stand for executions where the Eν–SVM solver failed to produce a solution
at all.

6.5 Quality of Local Minima

Since in the intersecting case of ERCH–NPP the optimization problem becomes non–convex
(see Section 4), RapMinos only finds a local minimum of the problem. Such local minimum
might or might not have an objective value similar to the overall global minimum of the
problem, and so it might be the case that RapMinos finds a “bad local minimum” where
a poor solution is obtained. This kind of problem is quite similar to the issues appearing
in multilayer neural network training (Duda et al., 2001), where the non–linearity of the
model allows to find only locally optimal solutions. Although several approaches have been
proposed to address this issue, the most effective ones involve heuristics for model weights
initialization that, while not guaranteeing global optimality, provide some practical means
to avoid bad local minima.

In section 5.5 we proposed a heuristic to select the starting point for RapMinos . We
will show now that such initialization strategy proves to be helpful in avoiding local minima.
For doing so, for each data set in section 6.3 we ran the RapMinos algorithm using the
presented approach, and compared the value of the objective function (Equation 7) against
200 runs with random starting points. We fixed p = 2 and chose ν as the one giving the
highest validation performance, and for those data sets where ν was in the separable range,
we chose a ν value slightly below the one for which hulls start intersecting. This way all
tests were run for the intersecting case.

Figure 11a presents box plots on the distribution of such objective value for all data
sets, comparing also against the value obtained with the proposed initialization. Being
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Figure 11: Distribution of a) objective values (lower is better) and b) accuracies (higher is
better), obtained by RapMinos for several data sets. The box plots represent
the distribution of objective values and accuracies for the runs with random ini-
tialization, and the square markers the value obtained when using the proposed
initialization heuristic. Objective values are normalized to present the best min-
imum found at the bottom line, while the worst one is shown at the top along
with a multiplier representing how far away it is from the best value (worst =
multiplier · best). A multiplier value of 1 is shown when the best and worst
values are equal down to the fourth significant digit.
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Data set RapMinos Subgrad. Proj.

thyroid 0.179 0.233
heart 0.589 0.586
titanic -0.808 2.283

breastcancer 1.194 1.411
diabetes 0.679 0.748

flare 5e-09 -0.001
german -9e-07 0.053
banana 1.072 1.109
image -4e-06 0.011

ringnorm 0.080 0.099
splice 1.305 1.287

twonorm 0.755 0.755
waveform 1.783 1.759

Table 3: Objective values after optimization in RapMinos and a simple subgradient projection
method. Lower is better.

a heuristic procedure, our proposal does not guarantee good local minima in all cases,
though nevertheless finds solutions closer to the overall best minimum more frequently than
employing a random initialization. Figure 11b presents analogous results when measuring
accuracy on the test set, where again a random initialization performs worse than our
proposed heuristic initialization.

7. Conclusions and Further Work

In this work we have given a geometrical interpretation of the Eν–SVM formulation, estab-
lishing connections from this model to other well–known models in the SVM family. Not
surprisingly, while Eν–SVM generalizes ν–SVM to cover the case where ν is too small, this
new interpretation generalizes the usual geometric viewpoint of ν–SVM finding the nearest
points of two non–intersecting reduced convex hulls (RCH–NPP). Specifically, it also allows
these reduced–convex–hulls to intersect, that is, it also covers the case where the reduction
η coefficient is too large.

We have also proposed the RapMinos method and shown how it is able to solve the
ERCH–NPP problem efficiently and for any choice of `p≥1–norm. This not only allows to
build Eν–SVM models faster than with previously available methods, but also provides even
more modeling capabilities to the SVM through the flexibility to work with these different
norms.

From the light of the experiments, it would seem that the Eν–SVM model can improve
classification accuracy for those problems where there is a significant intersection between
class hulls. The added `p–norm flexibility has also proven to be useful to increase classifi-
cation accuracy in a number of data sets, extending further the applicability of the model.
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A number of interesting extensions to this work, which would require further research
efforts, are possible. While the RapMinos method finds a solution efficiently and we
provide some empirical evidence on it being a reasonably good local minimum, the method
is still far from finding global minima. Even though finding global minimizers for non–
convex problems is a daunting challenge, a globalization strategy based on concavity cuts
has already been developed for the Eν–SVM model (Takeda and Sugiyama, 2008). Whether
this approach is also applicable to the dual ERCH–NPP problem is an open issue. Finally,
in this paper we have only addressed linear models. Extending the methods here to address
kernelized models is also an open problem.
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Appendix A. Proof for Theorem 10 (Optimum at Non–Differentiable
Points)

Consider the Minkowski polygon representation of the ERCH-NPP (Eq. 17). If the con-
straint ||W ||p = 1 is ignored, the problem would become

min
W

max
X∈M

W ·X.

This problem clearly involves the minimization of a piece–wise linear function, where
the pieces are determined by the inner maximization maxX∈M W ·X. Consider now one
of such pieces, which we shall denote S. For every W ∈ S the inner maximization problem
selects the same solution XS , and so the minimization in this piece can be written as

min
W∈S

W ·XS .

Since this is a linear problem, the optimum necessarily lies at a boundary point of S,
that is, at the frontier with another linear region of the global problem, this frontier being a
non–differentiable region. However, when taking the constraint back into account we have

min
W∈S,||W ||p=1

W ·XS .

which is no longer a linear problem, since the norm constraint on W defines a non–convex
feasible set. Hence, the minimum in this linear region need not lie at an extreme. Never-
theless, we show in what follows that this property is still met regardless of this constraint.

Let us denote SF as the feasible region within S, that is, SF ≡ {W |W ∈ S, ||W ||p = 1}.
This region is a surface which is a subset of the `p unit–ball. To show that the minimum
in this region always lies at an extreme point we will assume that, on the contrary, the
optimum is in a non–extreme point WI . We will then see that there always exists another
point in a neighborhood of WI presenting a better or equal value of the objective function.
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Consider the supporting hyperplane of SF at WI , hSF
(WI) (see Definition 13). This

hyperplane can always be defined for any interior point of SF as the hyperplane tangent
to SF at WI . This hyperplane leaves all of SF at one side. Consider also a ball B(WI)
of small radius r > 0, centered on WI , which shall be understood as a neighborhood of
WI . Let us define Bh(WI) as the intersection of this ball and the supporting hyperplane,
Bh(WI) ≡ B(WI)

⋂
hSF

(WI). This set does define a convex set, since it is the intersection of
a hyperplane and a sphere. Because of that, the objective function W ·XS for W ∈ Bh(WI)
always has a minimizer at an extreme of the set. More precisely, ∃ v∗ ∈ Bh(WI), v

∗ 6= WI so
that v∗ ·XS ≤WI ·XS . Thus, there exists a small displacement along a support hyperplane
from a non–extreme point WI that cannot worsen the value of the objective function. But of
course, v∗ might not be a feasible point, since by the properties of the supporting hyperplane
all the points v ∈ Bh(WI) have ||v||p ≥ 1.

(a)

(b)

(c) Visual example of the concepts introduced for the proof of Theorem 10. a shows the feasible
region within a linear region of the problem (SF ), the supporting hyperplane at an interior point
of this region (hSF

(WI)), the ball defining the neighborhood (B(WI)) and its intersection with
the supporting hyperplane (Bh(WI)). b shows how this intersection can be projected back to the
feasible region SF , and how an extreme of it is able to obtain a better value of the objective function
(represented through its level sets as gray lines).

The next step is showing that projection of v∗ back to the feasible region SF still
guarantees that the projected point cannot be worse than the initial WI in terms of the
value of the objective function. First, it must be realized that the radial projection Rp [v] for
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any v ∈ Bh(WI) always results in feasible points inside SF . This is immediate by realizing
that the radial projection just rescales the norm of its vector argument, and so

arg min
X∈M

Rp [v] ·X = arg min
X∈M

v ·X
||v||p

≡ arg min
X∈M

v ·X,

i.e., the solution of the internal problem does not change, and so the projected v remains
in the same linear region S. Using then the properties of the radial projection, ||Rp [v] ||p =
1, and so Rp [v] ∈ SF .

Now note that since we also have that ∀ v ∈ Bh(WI), ||v||p ≥ 1, then the radially
projected points can be defined as Rp [v] = v

||v||p = c(v) v, for some scalar c(v) ∈ (0, 1].

Also, since W ·XS ≥ 0, ∀ W ∈ SF (because of the intersecting hulls, see Lemma 7), we can
establish the following chain of relationships

min
v∈Bh(WI)

Rp [v] ·XS = min
v∈Bh(WI)

c(v) v ·XS

≤ min
v∈Bh(WI)

v ·XS

≤ WI ·XS .

Therefore, any non–extreme point WI ∈ SF has always a feasible neighbor which
presents an equal or better value of the objective function, and so WI cannot be opti-
mal (or at least there exists another point with an equally optimal value). Extending this
argument to every non–extreme point in SF , we can conclude that there exists an extreme
point WE such that WE · XS ≤ W · XS , ∀ W ∈ SF . Consequently, a minimizer of the
global problem always lies at the intersection between two linear regions, that is to say, at
a non–differentiable point. �

Appendix B. Proof for Theorem 12 (Descent Directions for ERCH)

To prove this theorem we need to resort to some tools from the field of non–convex non–
smooth analysis, most of them contained in Clarke (1990). Nevertheless, for completeness
of the paper we will briefly introduce such required tools here.

Consider a general constrained optimization problem in the form

min
x∈X

f(x),

s.t. gi(x) ≤ 0, i = 1, . . . , n,

where any equality constraint in the form h(x) = 0 can also be taken into account by
producing two inequality constraints h(x) ≤ 0, h(x) ≥ 0.

We introduce now the concept of relative subdifferential as

Definition 21 Relative subdifferential: given the set S ⊆ X, the S–relative subdifferential
of f at x, ∂|Sf(x) is defined as

∂|Sf(x) = {ξ |ξi → ξ, ξi ∈ ∂f(yi), yi ∈ S, yi → x} ,
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that is to say, it is the set of subgradients appearing when approaching x from a succession
of points yi tending to x. In the event that x /∈ S, ∂|Sf(x) = ∅.

Consider now the augmented objective function

F (x) = max {f(x)− f(x∗), g1(x), . . . , gn(x)} ,

where f(x∗) is the optimal value of the original objective function. Observe that at the
optimum of the original problem, F (x∗) = 0, since all constraints are met (gi(x) ≤ 0) and
the first term takes the value 0. Let us define the set

Γ(x) = conv
{
∂f(x), ∂|G1(x)f(x), . . . , ∂|Gn(x)f(x)

}
,

where Gi(x) is the set of points for which the constraint gi(x) is not feasible (gi(x) > 0).
Γ(x) can be interpreted as a kind of subdifferential of the Lagrangian. We then have two
results associated with this set (Clarke, 1990, Theorem 6.2.2. and Proposition 6.2.4.):

• If x is a local minimum of the problem, then 0 ∈ Γ(x).

• Else, let γ be the element of Γ(x) with minimum norm. Then d = −γ is a descent
direction in F (x).

In other words, if we are not already at the optimum, performing a small step in the direction
of d reduces the value of the augmented function F (x). Note that, given the form of F (x),
this guarantees that either the objective function f(x) or the violation in some constraint
is reduced.

Let us apply now these tools to the ERCH problem minW f(W ) s.t. ||W ||p = 1. The
augmented function F (W ) comes easily as

F (W ) = max {f(W )− f(W ∗), ||W ||p − 1, 1− ||W ||p} ,

where the equality constraint has been rewritten as two inequalities. Now, taking into
account the fact that in our algorithm we guarantee ||W ||p = 1 at every iteration, the max
in F (W ) is always attained for the first term when not at the optimum. Also because of
this we have that ∂|G1 ||W ||p = ∂|(||W ||p>1)||W ||p = ∂||W ||p, and similarly for ∂|G2 ||W ||p.
That is to say, the relative subdifferential coincides with the standard one. Therefore, the
set Γ(W ) results to be

Γ(W ) = conv {∂f(W ), ∂||W ||p,−∂||W ||p} .

We can rewrite this set in a more convenient form as

Γ(W ) = µ1∂f(W ) + µ2∂||W ||p − µ3∂||W ||p,
= µ1∂f(W ) + (µ2 − µ3)∂||W ||p,

where the convex coefficients meet the usual constraints
∑

i µi = 1, 0 ≤ µi ≤ 1. It should be
realized now that the gradient of the norm ∂||W ||p is the 0 vector only at the origin W = 0,
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which is an infeasible point. Therefore, at the optimal W ∗ it will be necessary to combine
this gradient with ∂f(W ) to produce the 0 vector bound to appear at a local minimum in
Γ(W ), and so the coefficient must be non–zero, µ1 > 0. We can then divide the expression
by µ1

7, obtaining

Γ(W ) ≡ ∂f(W ) +
µ2 − µ3

µ1
∂||W ||p,

= ∂f(W ) + λ∂||W ||p,

for λ = µ2−µ3
µ1
∈ R. It is realized now that the expression obtained for Γ(W ) is actually the

standard subdifferential of the Lagrangian.

Invoking now the properties of the set Γ(x) stated above, it is immediate that at local
minimum arg minW ||Γ(W )|| = 0. Descent in the original function f(x) is also obtained by
realizing that the direction d = − arg minW ||Γ(W )|| guarantees descent in F (W ), and so
at a point W ′ = W + sd, with s > 0 sufficiently small,

f(W ′)− f(W∗) < max
{
f(W ′)− f(W ∗), ||W ′||p − 1,

1− ||W ′||p
}
,

= F (W ′) < F (W ),

= max {f(W )− f(W ∗), ||W ||p − 1,

1− ||W ||p} ,
= f(W )− f(W ∗),

since at W the constraints are met. Therefore f(W ′) < f(W ), and so d is also a descent
direction for f(W ), concluding the proof. �

Appendix C. Computation of the Derivative of the Constraint

Depending on the actual value of the norm parameter p ≥ 1, the norm function ||W ||pp
might produce a singleton or a set of subgradients. For even p the norm function is smooth
an thus produces a singleton subgradient in the form

[
∂||W ||pp
∂W

]
k

=
∂

∂Wk

∑
i

(Wi)
p ,

= p (Wk)
p−1 .

However, for an odd or non–integer value of p the absolute value function cannot be
disposed of, and the set of subgradients produced takes the form

7. Even though this transformation changes the scaling of the points in the set Γ(W ), note that the argument
remains legit, since we are only interested in extracting a direction vector from Γ(x), and therefore scaling
is not relevant.
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[
∂||W ||pp
∂W

]
k

=
∂

∂Wk

∑
i

|Wi|p ,

= p |Wk|p−1 ∂

∂Wk
|Wk|,

= p |Wk|p−1 µk,

where the coefficients µk take the values

µk =


1 if Wk > 0,
−1 if Wk < 0,

[−1, 1] if Wk = 0.

That is to say, for values of W with entries at 0 several possible subgradients appear.
Nevertheless, since if Wk = 0 then |Wk|p = 0 (except for p = 1, see below), the particular
choice of µk is irrelevant, and we end up at[

∂||W ||pp
∂W

]
k

= p |Wk|p−1 sign(Wk).

as shown in Eq. (23).

The cases p = 1 and p = ∞, which are of special relevance for their known spar-
sity/uniformity inducing properties, require some further attention. First, for p = 1 we
have [

∂||W ||1
∂W

]
k

=
∂

∂Wk

∑
i

|Wi| = µk,

and a similar situation to that of the general p arises, though this time the particular
choice of µk does produce different subgradients. This is not surprising, since the `1–norm
is non–smooth. To address this issue, in this paper we take the simplest of the available
subgradients, taking µk = 0 whenever Wk = 0, resulting in[

∂||W ||1
∂W

]
k

= sign(Wk).

It must be noted, however, that by making this simplification we might be failing to identify
the correct updating directions in our algorithm when standing on a W point where the
norm is not differentiable. This, however, poses no problems to our method in practice,
but for very specifically tailored cases unlikely to arise in practice. Even in those cases the
solution of the ERCH with norm `1 can be safely approximated by a norm choice like `1.001,
which is smooth.

Now for p =∞ the derivative is, in principle, not separable, since we have

∂||W ||∞
∂W

=
∂

∂W
max {|Wi|} .

Nevertheless we can rewrite this as
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∂||W ||∞
∂W

=
∂

∂W
max {W1,−W1, . . .Wn,−Wn} ,

and invoke again the property that the subdifferential of the maximum of a set of convex
functions (linear, in this case) at a given point is the convex hull of the subdifferentials of
the functions attaining such maximum at that point (Boyd and Vandenberghe, 2007). With
this, we obtain that

[
∂||W ||∞
∂W

]
k

=


0 if |Wk| < maxj {|Wj |} ,
τi if Wk = maxj {|Wj |} ,
−τi if −Wk = maxj {|Wj |} ,

with τi the convex hull coefficients, i.e.,∑
i∈I

τi = 1, I ≡
{
i : |Wi| = max

j
{|Wj |}

}
.

Now, since the scale of ∂||W ||∞
∂W is not relevant (only its orientation) and by picking only the

most convenient subgradient we arrive at[
∂||W ||∞
∂W

]
k

=

{
0 if |Wk| < maxj {|Wj |} ,

sign(Wi) if |Wk| = maxj {|Wj |} .
The same comments than those for norm `1 apply here; if needed, the `∞ norm can be
approximated by a large norm such as `100.

Appendix D. General `p≥1 RCH-NPP Solver

The generalized `p≥1 RCH-NPP problem takes the form

min
X+∈U+,X−∈U−

‖X+ −X−‖p , (31)

for p ≥ 1 and sets U± defined as in Proposition 2. Such problem is an instance of a common
family of problems arising in machine learning in the form

min
x
f(x) + r(x),

for f convex and differentiable, r convex and lower semicontinuous, but not necessarily
differentiable. Such problems are addressed efficiently by making use of a proximal method
(see Combettes and Pesquet 2009 for a thorough review), as long as two basic ingredients
are provided: a subroutine to compute the gradient of f and an efficient method to solve
the proximity operator of r, an optimization subproblem taking the form

proxr(y) ≡ min
x

1

2
||x− y||22 + r(x).

Problem 31 can be written in minx f(x) + r(x) form by defining

x =

[
X+

X−

]
,

f(x) = ‖X+ −X−‖p ,
r(x) = ιU+(X+) + ιU−(X−),
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where ιC(x) is an indicator function valued 0 if x ∈ C, +∞ else. Using the results of the
previous appendix the gradient of f can be shown to take the form

∇f(x) =

 (
|X+−X−|
||X+−X−||q

)q−1
sign(X+ −X−)

−
(
|X+−X−|
||X+−X−||q

)q−1
sign(X+ −X−)

 ,
while the proximity operator of r is

proxr(y) ≡ min
x

1

2
||x− y||22 + ιU+(X+) + ιU−(X−),

=

{
min
X+

1

2
||X+ − Y+||22 + ιU+(X+)

}
+

{
min
X−

1

2
||X− − Y−||22 + ιU−(X−)

}
,

=

{
min

X+∈U+

1

2
||X+ − Y+||22

}
+

{
min

X−∈U−

1

2
||X− − Y−||22

}
,

where y has also been decomposed in two parts Y+ and Y−. It is evident now that the
proximity operator can be computed by solving two independent subproblems, which turn
out to be instances of the classic RCH–NPP where one of the hulls is a singleton Y±. Such
problem is solved through trivial modifications of a standard RCH–NPP solver.

In our RapMinos implementation we make use of the FISTA proximal algorithm (Beck
and Teboulle, 2009), which by the inclusion of the aforementioned gradient and proximity
subroutines results in an effective `p≥1 RCH-NPP solver.

It is also worth pointing out that for the extreme `1 and `∞ cases problem (31) becomes
non–differentiable, preventing the use of the presented approach. Still, a solution is easily
attainable by realizing that in these two cases the minimization of the norm function can
be rewritten as a set of linear constraints, as

min
x
||x||1 = min

x

∑
i

max {xi,−xi} = min
x,z

∑
i

zi s.t. zi ≥ xi,−xi ∀ i,

min
x
||x||∞ = min

x
max {|x1|, . . . , |xd|} = min

x,z
z s.t. z ≥ xi,−xi ∀ i.

Hence, the whole problem is rewritten as a Linear Program, which we solve by making use
of Matlab’s internal LP solver routine linprog.

Appendix E. Bias Computation in ERCH–NPP

When no reduction of the hulls is applied in RCH–NPP the usual procedure to compute
the bias is to take it in such a way that the classification hyperplane lies at the middle of
the extreme points in the convex–hulls (b = −1

2W · (X+ + X−) for the optimal solution
X+ and X− of Eq. 7). However, such bias value is not necessarily equivalent to the one
obtained when solving ν–SVM, as already pointed out by Crisp and Burges (2000). The
same situation holds for Eν–SVM, and so we show here how to compute the correct value
of b.
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The KKT complementary slackness conditions of the inner minimization problem in
ERCH–Margin (Eq. 5) are the following

λi(W ·Xi − α+ ξi) = 0 ∀ i ∈M+,

λi(W ·Xi − β − ξi) = 0 ∀ i ∈M−,
ξiµi = 0 ∀ i,

from which, together with the relationships obtained from the derivatives of the Lagrangian
(Eq. 8) the following statements can be derived

• If i ∈M+, λi > 0 −→ W ·Xi − α+ ξi = 0.

• If i ∈M−, λi > 0 −→ W ·Xi − β − ξi = 0.

• If λi < η −→ µi > 0 −→ ξi = 0.

Joining these three facts we can compute α by finding an i ∈ M+ s.t. 0 < λi < η, as for
this case W ·Xi − α = 0, and similarly for β, obtaining

α = W ·Xi for some i ∈M+, 0 < λi < η,

β = W ·Xi for some i ∈M−, 0 < λi < η.

Once α and β are known the bias can be computed through the definitions of these two
terms (see the proof for Proposition 1), as

b = −1

2
(α+ β). (32)

Therefore, for any given W in ERCH–Margin or ERCH–NPP its corresponding bias can be
computed with the obtained formula. A similar derivation was already proposed in Chang
and Lin (2001) for the ν–SVM, though the connection with RCH–Margin was not made.

It should be noted, however, that the presented bias computation requires the sets
i ∈ M+, 0 < λi < η and i ∈ M−, 0 < λi < η to be non–empty. If one of them turns out to
be empty, which is a not so uncommon situation in practice, the bias cannot be computed
in closed form. In such cases lower and upper bounds on b can be derived from the KKT
conditions, as done in Chang and Lin (2001). We follow such procedure to obtain bounds
on b and pick some value in the admissible range. Another possible solution would be to
determine the bias as the one maximizing classification accuracy over the training set, that
is

b∗ = arg max
b

∑
i∈M

sign {yi(Xi ·W + b)} .

Such problem is solvable in log–linear time by sorting all the Xi ·W values and counting the
number of correct labellings for each possible b between all couples of consecutive Xi ·W
values. Even though this procedure seems to be more solid than selecting b from some
loose bounds, it is actually prone to overfitting. Only in settings where the training data
presents low noise have we found this procedure to produce better test accuracies, and thus
we recommend resorting instead to the bounds provided by the KKT conditions.
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Abstract

We propose a variable metric framework for minimizing the sum of a self-concordant func-
tion and a possibly non-smooth convex function, endowed with an easily computable proxi-
mal operator. We theoretically establish the convergence of our framework without relying
on the usual Lipschitz gradient assumption on the smooth part. An important highlight of
our work is a new set of analytic step-size selection and correction procedures based on the
structure of the problem. We describe concrete algorithmic instances of our framework for
several interesting applications and demonstrate them numerically on both synthetic and
real data.

Keywords: proximal-gradient/Newton method, composite minimization, self-concordance,
sparse convex optimization, graph learning

1. Introduction

The literature on the formulation, analysis, and applications of composite convex minimiza-
tion is ever expanding due to its broad applications in machine learning, signal processing,
and statistics. By composite minimization, we refer to the following optimization problem:

F ∗ := min
x∈Rn

{F (x) | F (x) := f(x) + g(x)} , (1)

where f and g are both closed and convex, and n is the problem dimension. In the canonical
setting of the composite minimization problem (1), the functions f and g are assumed to be
smooth and non-smooth, respectively (Nesterov, 2007). Such composite objectives naturally
arise, for instance, in maximum a posteriori model estimation, where we regularize a model
likelihood function as measured by a data-driven smooth term f with a non-smooth model
prior g, which carries some notion of model complexity (e.g., sparsity, low-rankness, etc.).

In theory, many convex problem instances of the form (1) have a well-understood struc-
ture, and hence high accuracy solutions can be efficiently obtained with polynomial time
methods, such as interior point methods (IPM) after transforming them into conic quadratic
programming or semidefinite programming formulations (Ben-Tal and Nemirovski, 2001;
Grant et al., 2006; Nesterov and Nemirovski, 1994). In practice, however, the curse-of-
dimensionality renders these methods impractical for large-scale problems. Moreover, the
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FL

Fµ

F2F2,⌫

F : smooth Class Property
x,y ∈ dom(f), v ∈ Rn, 0 ≤ µ ≤ L < +∞

FL ‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖

Fµ µ
2
‖x− y‖2 + f(x) +∇f(x)T (y − x) ≤ f(y)

F2 |ϕ′′′(t)| ≤ 2ϕ′′(t)3/2: ϕ(t) = f(x + tv), t ∈ R

F2,ν F2 and supv∈Rn

{
2∇f(x)Tv − ‖v‖2x

}
≤ ν

Figure 1: Common structural assumptions on the smooth function f .

presence of a non-smooth term g prevents direct applications of scalable smooth optimiza-
tion techniques, such as sequential linear or quadratic programming.

Fortunately, we can provably trade-off accuracy with computation by further exploiting
the individual structures of f and g. Existing methods invariably rely on two structural
assumptions that particularly stand out among many others. First, we often assume that
f has Lipschitz continuous gradient (i.e., f ∈ FL: cf., Figure 1). Second, we assume
that the proximal operator of g (proxH

g (y) := arg min
x∈Rn

{
g(x) + (1/2)‖x− y‖2H

}
) is, in a

user-defined sense, easy to compute for some H � 0 (e.g., H is diagonal); i.e., we can
computationally afford to apply the proximal operator in an iterative fashion. In this
case, g is said to be “tractably proximal”. On the basis of these structures, we can design
algorithms featuring a full spectrum of (nearly) dimension-independent, global convergence
rates with well-understood analytical complexity (see Table 1).

Order Method example Main oracle Analytical complexity

1-st [Accelerated]a-[proximal]-gradientb ∇f,proxLIng [O(ε−1/2)] O(ε−1)

1+-th Proximal-quasi-Newtonc Hk,∇f, proxHk
g O(log ε−1) or faster

2-nd Proximal-Newtond ∇2f,∇f,prox∇
2f

g O(log log ε−1)[local]

See (Beck and Teboulle, 2009a)a,b,(Becker and Fadili, 2012)c,(Lee et al., 2012)d,(Nesterov, 2004, 2007)a,b.

Table 1: Taxonomy of [accelerated] [proximal]-gradient methods when f ∈ FL or proximal-
[quasi]-Newton methods when f ∈ FL ∩ Fµ to reach an ε-solution (e.g., F (xk) −
F ∗ ≤ ε).

Unfortunately, existing algorithms have become inseparable with the Lipschitz gradient
assumption on f and are still being applied to solve (1) in applications where this assump-
tion does not hold. For instance, when proxH

g (y) is not easy to compute, it is still possible
to establish convergence—albeit slower—with smoothing, splitting or primal-dual decom-
position techniques (Chambolle and Pock, 2011; Eckstein and Bertsekas, 1992; Nesterov,
2005a,b; Tran-Dinh et al., 2013c). However, when f /∈ FL, the composite problems of the
form (1) are not within the full theoretical grasp. In particular, there is no known global
convergence rate. One kludge to handle f /∈ FL is to use sequential quadratic approxima-
tion of f to reduce the subproblems to the Lipschitz gradient case. For local convergence of
these methods, we need strong regularity assumptions on f (i.e., µI � ∇2f(x) � LI) near
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the optimal solution. Attempts at global convergence require a globalization strategy such
as line search procedures (cf., Section 1.2). However, neither the strong regularity nor the
line search assumptions can be certified a priori.

To this end, we address the following question in this paper: “Is it possible to ef-
ficiently solve non-trivial instances of (1) for non-global Lipschitz continuous gradient f
with rigorous global convergence guarantees?” The answer is positive (at least for a broad
class of functions): We can still cover a full spectrum of global convergence rates with
well-characterizable computation and accuracy trade-offs (akin to Table 1 for f ∈ FL)
for self-concordant f (in particular, self-concordant barriers) (Nemirovskii and Todd, 2008;
Nesterov and Nemirovski, 1994):

Definition 1 (Self-concordant (barrier) functions) A convex function f : Rn → R is
said to be self-concordant (i.e., f ∈ FM ) with parameter M ≥ 0, if |ϕ′′′(t)| ≤ Mϕ′′(t)3/2,
where ϕ(t) := f(x + tv) for all t ∈ R, x ∈ dom(f) and v ∈ Rn such that x + tv ∈ dom(f).
When M = 2, the function f is said to be a standard self-concordant, i.e., f ∈ F2.1 A
standard self-concordant function f ∈ F2 is a ν-self-concordant barrier of a given convex
set Ω with parameter ν > 0, i.e., f ∈ F2,ν , when ϕ also satisfies |ϕ′(t)| ≤ √νϕ′′(t)1/2 and
f(x)→ +∞ as x→ ∂Ω, the boundary of Ω.

While there are other definitions of self-concordant functions and self-concordant barriers
(Boyd and Vandenberghe, 2004; Nemirovskii and Todd, 2008; Nesterov and Nemirovski,
1994; Nesterov, 2004), we use Definition 1 in the sequel, unless otherwise stated.

1.1 Why is the Assumption f ∈ F2 Interesting for Composite Minimization?

The assumption f ∈ F2 in (1) is quite natural for two reasons. First, several important ap-
plications directly feature a self-concordant f , which does not have global Lipschitz continu-
ous gradient. Second, self-concordant composite problems can enable approximate solutions
of general constrained convex problems where the constraint set is endowed with a ν-self-
concordant barrier function.2 Both settings clearly benefit from scalable algorithms. Hence,
we now highlight three examples below, based on compositions with the log-functions. Keep
in mind that this list of examples is not meant to be exhaustive.

Log-determinant: The matrix variable function f(Θ) := − log det Θ is self-concordant
with dom(f) := {Θ ∈ Sp | Θ � 0}, where Sp is the set of p × p symmetric matrices. As
a stylized application, consider learning a Gaussian Markov random field (GMRF) of p
nodes/variables from a data set D := {φ1,φ2, . . . ,φm}, where φj ∈ D is a p-dimensional

random vector with Gaussian distributionN (µ,Σ). Let Θ := Σ−1 be the inverse covariance
(or the precision) matrix for the model. To satisfy the conditional dependencies with respect
to the GMRF, Θ must have zero in (Θ)ij corresponding to the absence of an edge between
node i and node j; cf., (Dempster, 1972).

1. We use this constant for convenience in the derivations since if f ∈ FM , then (M2/4)f ∈ F2.
2. Let us consider a constrained convex minimization x∗C := arg minx∈C g(x), where the feasible convex

set C is endowed with a ν-self-concordant barrier ΨC(x). If we let f(x) := ε
ν

ΨC(x), then the solution
x∗ of the composite minimization problem (1) well-approximates x∗C as g(x∗) ≤ g(x∗C) + (∇f(x∗) +
∂g(x∗))T (x∗−x∗C) + ε. The middle term can be controlled by accuracy at which we solve the composite
minimization problem (Nesterov, 2007, 2011).
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We can learn GMRFs with theoretical guarantees from as few as O(d2 log p) data sam-
ples, where d is the graph node degree, via `1-norm regularization formulation (see Raviku-
mar et al. 2011):

Θ∗ := arg min
Θ�0

{
− log det(Θ) + tr(Σ̂Θ)︸ ︷︷ ︸

=:f(Θ)

+ ρ‖vec(Θ)‖1︸ ︷︷ ︸
=:g(Θ)

}
, (2)

where ρ > 0 parameter balances a Gaussian model likelihood and the sparsity of the so-
lution, Σ̂ is the empirical covariance estimate, and vec is the vectorization operator. The
formulation also applies for learning models beyond GMRFs, such as the Ising model, since
f(Θ) acts also as a Bregman distance (Banerjee et al., 2008).

Numerical solution methods for solving problem (2) have been extensively studied, e.g.
in (Banerjee et al., 2008; Hsieh et al., 2011; Lee et al., 2012; Lu, 2010; Olsen et al., 2012;
Rolfs et al., 2012; Scheinberg and Rish, 2009; Scheinberg et al., 2010; Yuan, 2012). However,
none so far exploits f ∈ F2,ν and feature global convergence guarantees: cf., Sect. 1.2.

Log-barrier for linear inequalities: The function f(x) := − log(aTx − b) is a self-
concordant barrier with dom(f) :=

{
x ∈ Rn | aTx > b

}
. As a stylized application, consider

the low-light imaging problem in signal processing (Harmany et al., 2012), where the imag-
ing data is collected by counting photons hitting a detector over the time. In this setting,
we wish to accurately reconstruct an image in low-light, which leads to noisy measurements
due to low photon count levels. We can express our observation model using the Poisson
distribution as

P(y|A(x)) =
m∏
i=1

(aTi x)yi

yi!
e−aTi x,

where x is the true image, A is a linear operator that projects the scene onto the set of
observations, ai is the i-th row of A, and y ∈ Zm+ is a vector of observed photon counts.

Via the log-likelihood formulation, we stumble upon a composite minimization problem:

x∗ := arg min
x∈Rn

{ m∑
i=1

aTi x−
m∑
i=1

yi log(aTi x)︸ ︷︷ ︸
=:f(x)

+g(x)
}
, (3)

where f(x) is self-concordant (but not standard). In the above formulation, the typical
image priors g(x) include the `1-norm for sparsity in a known basis, total variation semi-
norm of the image, and the positivity of the image pixels. While the formulation (3) seems
specific to imaging, it is also common in sparse regression with unknown noise variance
(Städler et al., 2012), heteroscedastic LASSO (Dalalyan et al., 2013), barrier approximations
of, e.g., the Dantzig selector (Candes and Tao, 2007) and quantum tomography (Banaszek
et al., 1999) as well.

The current state of the art solver is called SPIRAL-TAP (Harmany et al., 2012), which
biases the logarithmic term (i.e., log(aTi x + ε)→ log(aTi x), where ε� 1) and then applies
non-monotone composite gradient descent algorithms for FL with a Barzilai-Borwein step-
size as well as other line-search strategies.

Logarithm of concave quadratic functions: The function f(x) := − log
(
σ2−‖Ax−y‖22

)
is self-concordant with dom(f) :=

{
x ∈ Rn | ‖Ax− y‖22 < σ2

}
. As a stylized application,
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we consider the basis pursuit denoising (BPDN) formulation (van den Berg and Friedlander,
2008) as

x∗ := arg min
x∈Rn

{
g(x) | ‖Ax− y‖22 ≤ σ2

}
. (4)

The BPDN criteria is commonly used in magnetic resonance imaging (MRI) where A is a
subsampled Fourier operator, y is the MRI scan data, and σ2 is a known machine noise level
(i.e., obtained during a pre-scan). In (4), g is an image prior, e.g., similar to the Poisson
imaging problem. Approximate solutions to (4) can be obtained via a barrier formulation

x∗t := arg min
x∈Rn

{
−t log

(
σ2 − ‖Ax− y‖22

)
︸ ︷︷ ︸

=:f(x)

+ g(x)
}
, (5)

where t > 0 is a penalty parameter which controls the quality of the approximation. The
BPDN formulation is quite generic and has several other applications in statistical regres-
sion, geophysics, and signal processing.

Several different approaches solve the BPDN problem (4), some of which require pro-
jections onto the constraint set, including Douglas-Rachford splitting, proximal methods,
and the SPGL1 method (van den Berg and Friedlander, 2008; Combettes and Wajs, 2005).

1.2 Related Work

Our attempt is to briefly describe the work that revolves around (1) with the main as-
sumptions of f ∈ FL and the proximal operator of g being computationally tractable.
In fact, Douglas-Rachford splitting methods can obtain numerical solutions to (1) when
the self-concordant functions are endowed with tractable proximal maps. However, it is
computationally easier to calculate the gradient of f ∈ F2 than their proximal maps.

One of the main approaches in this setting is based on operator splitting. By presenting
the optimality condition of problem (1) as an inclusion of two monotone operators, one
can apply splitting techniques, such as forward-backward or Douglas-Rachford methods, to
solve the resulting monotone inclusion (Briceno-Arias and Combettes, 2011; Facchinei and
Pang, 2003; Goldstein and Osher, 2009). In our context, several variants of this approach
have been studied. For example, projected gradient or proximal-gradient methods and fast
proximal-gradient methods have been considered, see, e.g., (Beck and Teboulle, 2009a; Mine
and Fukushima, 1981; Nesterov, 2007). In all these methods, the main assumption required
to prove the convergence is the global Lipschitz continuity of the gradient of the smooth
function f . Unfortunately, when f /∈ FL but f ∈ F2, these theoretical results on the global
convergence and the global convergence rates are no longer applicable.

Other mainstream approaches for (1) include augmented Lagrangian and alternating
techniques: cf., (Boyd et al., 2011; Goldfarb and Ma, 2012). These methods have empiri-
cally proven to be quite powerful in specific applications. The main disadvantage of these
methods is the manual tuning of the penalty parameter in the augmented Lagrangian func-
tion, which is not yet well-understood for general problems. Consequently, the analysis of
global convergence as well as the convergence rate is an issue since the performance of the
algorithms strongly depends on the choice of this penalty parameter in practice. Moreover,
as indicated in a recent work (Goldstein et al., 2012), alternating direction methods of mul-
tipliers as well as alternating linearization methods can be viewed as splitting methods in
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the convex optimization context. Hence, it is unclear if this line of work is likely to lead to
any rigorous guarantees when f ∈ F2.

An emerging direction for solving composite minimization problems (1) is based on the
proximal-Newton method. The origins of this method can be traced back to the work of
(Bonnans, 1994), which relies on the concept of strong regularity introduced by (Robinson,
1980) for generalized equations. In the convex case, this method has been studied by
several authors such as (Becker and Fadili, 2012; Lee et al., 2012; Schmidt et al., 2011).
So far, methods along this line are applied to solve a generic problem of the form (1) even
when f ∈ F2. The convergence analysis of these methods is encouraged by standard Newton
methods and requires the strong regularity of the Hessian of f near the optimal solution (i.e.,
µI � ∇2f(x) � LI). This assumption used in (Lee et al., 2012) is stronger than assuming
∇2f(x∗) to be positive definite at the solution x∗ as in our approach below. Moreover, the
global convergence can only be proved by applying a certain globalization strategy such as
line-search (Lee et al., 2012) or trust-region. Unfortunately, none of these assumptions can
be verified before the algorithm execution for the intended applications. By exploiting the
self-concordance concept, we can show the global convergence of proximal-Newton methods
without any globalization strategy (e.g., line search or trust-region approach).

1.3 Our Contributions

Interior point methods are always an option while solving the self-concordant composite
problems (1) numerically by means of disciplined convex programming (Grant et al., 2006;
Löfberg, 2004). More concretely, in the IPM setting, we set up an equivalent problem to
(1) that typically avoids the non-smooth term g(x) in the objective by lifting the problem
dimensions with slack variables and introducing additional constraints. The new constraints
may then be embedded into the objective through a barrier function. We then solve a
sequence of smooth problems (e.g., with Newton methods) and “path-follow”3 to obtain
an accurate solution (Nemirovskii and Todd, 2008; Nesterov, 2004). In this loop, many
of the underlying structures within the original problem, such as sparsity, can be lost due
to pre-conditioning or Newton direction scaling (e.g., Nesterov-Todd scaling, Nesterov and
Todd 1997). The efficiency and the memory bottlenecks of the overall scheme then heavily
depends on the workhorse algorithm that solves the smooth problems.

In stark contrast, we introduce an algorithmic framework that directly handles the
composite minimization problem (1) without increasing the original problem dimensions.
For problems of larger dimensions, this is the main argument in favor of our approach.
Instead of solving a sequence of smooth problems, we solve a sequence of non-smooth
proximal problems with a variable metric (i.e., our workhorse). Fortunately, these proximal
problems feature the composite form (1) with a Lipschitz gradient (and oft-times strongly
convex) smooth term. Hence, we leverage the tremendous amount of research (cf., Table 1)
done over the last decades. Surprisingly, we can even retain the original problem structures
that lead to computational ease in many cases (e.g., see Section 4.1).

Our specific contributions can be summarized as follows:

1. We develop a variable metric framework for minimizing the sum f + g of a self-
concordant function f and a convex, possibly nonsmooth function g. Our approach

3. It is also referred to as a homotopy method.
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relies on the solution of a convex subproblem obtained by linearizing and regularizing
the first term f . To achieve monotonic descent, we develop a new set of analytic
step-size selection and correction procedures based on the structure of the problem.

2. We establish both the global and the local convergence of different variable metric
strategies. We first derive an expected result: when the variable metric is the Hes-
sian ∇2f(xk) of f at iteration k, the resulting algorithm locally exhibits quadratic
convergence rate within an explicit region. We then show that variable metrics sat-
isfying the Dennis-Moré-type condition (Dennis and Moré, 1974) exhibit superlinear
convergence.

3. We pay particular attention to diagonal variable metrics as many of the proximal
subproblems can be solved exactly (i.e., in closed form). We derive conditions on
when these variants achieve locally linear convergence.

4. We apply our algorithms to the aforementioned real-world and synthetic problems
to highlight the strengths and the weaknesses of our scheme. For instance, in the
graph learning problem (2), our framework can avoid matrix inversions as well as
Cholesky decompositions in learning graphs. In Poisson intensity reconstruction (3),
up to around 80× acceleration is possible over the state-of-the-art solver.

We highlight three key practical contributions to numerical optimization. First, in the
proximal-Newton method, our analytical step-size procedures allow us to do away with any
globalization strategy (e.g., line-search). This has a significant practical impact when the
evaluation of the functions is expensive. We show how to combine the analytical step-size
selection with the standard backtracking or forward line-search procedures to enhance the
global convergence of our method. Our analytical quadratic convergence characterization
helps us adaptively switch from damped step-size to a full step-size. Second, in the proximal-
gradient method setting, we establish a step-size selection and correction mechanism. The
step-size selection procedure can be considered as a predictor, where existing step-size rules
that leverage local information can be used. The step-size corrector then adapts the local
information of the function to achieve the best theoretical decrease in the objective function.
While our procedure does not require any function evaluations, we can further enhance
convergence whenever we are allowed function evaluations. Finally, our framework, as we
demonstrate in (Tran-Dinh et al., 2014a), accommodates a path-following strategy, which
enable us to approximately solve constrained non-smooth convex minimization problems
with rigorous guarantees.

Paper outline. In Section 2, we first recall some fundamental concepts of convex op-
timization and self-concordant functions used in this paper. Section 3 presents our al-
gorithmic framework using three different instances with convergence results, complexity
estimates and modifications. Section 4 deals with three concrete instances of our algorith-
mic framework. Section 5 provides numerical experiments to illustrate the impact of the
proposed methods. Section 6 concludes the paper.
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2. Preliminaries

Notation: We reserve lower-case and bold lower-case letters for scalar and vector represen-
tation, respectively. Upper-case bold letters denote matrices. We denote Sp+ (reps., Sp++)
for the set of symmetric positive definite (reps., positive semidefinite) matrices of size p×p.
For a proper, lower semicontinuous convex function f from Rn to R∪ {+∞}, we denote its
domain by dom(f), i.e., dom(f) := {x ∈ Rn | f(x) < +∞} (see, e.g., Rockafellar 1970).

Weighted norm and local norm: Given a matrix H ∈ Sn++, we define the weighted

norm ‖x‖H :=
√

xTHx, ∀x ∈ Rn; its dual norm is defined as ‖x‖∗H := max‖y‖H≤1 yTx =√
xTH−1x. If H is only positive semidefinite (i.e., H ∈ Sn+), then ‖x‖H reduces to a

semi-norm. Let f ∈ F2 and x ∈ dom(f) so that ∇2f(x) is positive definite. For a given
vector v ∈ Rn, the local norm around x ∈ dom(f) with respect to f is defined as ‖v‖x :=(
vT∇2f(x)v

)1/2
, while the corresponding dual norm is given by ‖v‖∗x =

(
vT∇2f(x)−1v

)1/2
.

Subdifferential and subgradient: Given a proper, lower semicontinuous convex function,
we define the subdifferential of g at x ∈ dom(g) as

∂g(x) :=
{
v ∈ Rn | g(y)− g(x) ≥ vT (y − x), ∀y ∈ dom(g)

}
.

If ∂g(x) 6= ∅ then each element in ∂g(x) is called a subgradient of g at x. In particular, if g is
differentiable, we use ∇g(x) to denote its derivative at x ∈ dom(g), and ∂g(x) ≡ {∇f(x)}.

Proximity operator: A basic tool to handle the nonsmoothness of a convex function g
is its proximity operator (or proximal operator) proxH

g , whose definition is given in Section
1. For notational convenience in our derivations, we alter this definition in the sequel as
follows: Let g be a proper lower semicontinuous and convex in Rn and H ∈ Sn+. We define

P gH(u) := arg min
x∈Rn

{
g(x) + (1/2)xTHx− uTx

}
, ∀u ∈ Rn, (6)

as the proximity operator for the nonsmooth g, which has the following properties Hiriart-
Urruty and Lemaréchal (2001).

Lemma 2 Assume that H ∈ Sn++. Then, the operator P gH in (6) is single-valued and
satisfies the following property:

(P gH(u)− P gH(v))T (u− v) ≥
∥∥P gH(u)− P gH(v)

∥∥2

H
, (7)

for all u,v ∈ Rn. Consequently, P gH is a nonexpansive mapping, i.e.,∥∥P gH(u)− P gH(v)
∥∥

H
≤ ‖u− v‖∗H . (8)

Proof This lemma is already known in the literature, see, e.g., (Rockafellar, 1976). For
the sake of completeness, we give a short proof here. The single-valuedness of P gH is ob-
vious due to the strong convexity of the objective function in (6). Let ξu := P gH(u) and
ξv := P gH(v). By the definition of P gH, we have u−Hξu ∈ ∂g(ξu) and v −Hξu ∈ ∂g(ξv).

Since g is convex, we have (u−Hξu − (v −Hξv))T(ξu − ξv) ≥ 0. This inequality leads to
(u − v)T (ξu − ξv) ≥ (ξu − ξv)TH(ξu − ξv) = ‖ξu − ξv‖2H which is indeed (7). Via the
generalized Cauchy-Schwarz inequality, (7) leads to (8).
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Key self-concordant bounds: Based on (Nesterov, 2004, Theorems 4.1.7 and 4.1.8), for
a given standard self-concordant function f , we recall the following inequalities

ω(‖y − x‖x) +∇f(x)T (y − x) + f(x) ≤ f(y), (9)

f(y) ≤ f(x) +∇f(x)T (y − x) + ω∗(‖y − x‖x), (10)

where ω : R → R+ is defined as ω(t) := t − ln(1 + t) and ω∗ : [0, 1] → R+ is defined
as ω∗(t) := −t − ln(1 − t). These functions are both nonnegative, strictly convex and
increasing. Hence, (9) holds for all x,y ∈ dom(f), and (10) holds for all x,y ∈ dom(f)
such that ‖y − x‖x < 1. In contrast to the “global” inequalities for the function classes
FL and Fµ (cf., Figure 1), the self-concordant inequalities are based on “local” quantities.
Moreover, these bounds are no longer quadratic which prevents naive applications of the
methods from FL,µ.

Remark 3 The proof of (9)-(10) is based on the condition ∇2f(x) � 0 for all x ∈ dom(f),
see (Nesterov, 2004). In this paper, we work with the function f defined by f(x) := ϕ(Ax+
b), where ϕ is a standard self-concordant function such that ∇2ϕ(u) � 0 for all u ∈
dom(ϕ). Therefore, we have ∇2f(x) = AT∇2ϕ(Ax + b)A, which is possibly singular
without further conditions on matrix A. Consequently, the local norm ‖ · ‖x defined via
∇2f(x) reduces to a semi-norm. However, the inequalities (9)-(10) still hold w.r.t.this semi-
norm. Indeed, since ϕ is standard self-concordant with ∇2ϕ(u) � 0 for all u ∈ dom(ϕ), we
have ϕ(û) ≥ ϕ(u) +∇ϕ(u)T (û−u) +ω

(
‖û−u‖u

)
. By substituting u = Ax + b ∈ dom(ϕ)

and û = Ax̂ + b ∈ dom(ϕ), (x, x̂ ∈ dom(f)) into this inequality we obtain f(x̂) ≥ f(x) +
∇f(x)T (x̂−x) +ω(‖x̂−x‖x), which is indeed (9). The inequality (10) is proved similarly.

3. Composite Self-Concordant Optimization

In this section, we propose a variable metric optimization framework that rigorously trades
off computation and accuracy of solutions without transforming (1) into a higher dimension
smooth convex optimization problem. We assume theoretically that the proximal subprob-
lems can be solved exactly. However, our theory can be analyze for the inexact case, when
we solve these problems up to a sufficiently high accuracy (typically, it is at least higher than
(e.g., 0.1ε) the desired accuracy ε of (1) at the few last iterations), see, e.g., (Tran-Dinh
et al., 2013b, 2014a). In our theoretical characterizations, we only rely on the following
assumption:

Assumption A.1 The function f is convex and standard self-concordant (see Definition
1). The function g : Rn → R ∪ {+∞} is proper, closed and convex.

Under Assumption A.1, we have dom(F ) = dom(f) ∩ dom(g).
Unique solvability of (1) and its optimality condition: First, we show that problem (1)

is uniquely solvable. The proof of this lemma can be done similarly as (Nesterov, 2004,
Theorem 4.1.11) and is provided in Appendix A.1.

Lemma 4 Suppose that the functions f and g of problem (1) satisfy Assumption A.1. If
λ(x) := ‖∇f(x) + v‖∗x < 1, for some x ∈ dom(F ) and v ∈ ∂g(x) such that ∇2f(x) � 0,
then the solution x∗ of (1) exists and is unique.
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Since this problem is convex, the following optimality condition is necessary and sufficient:

0 ∈ ∇f(x∗) + ∂g(x∗). (11)

The solution x∗ is called strongly regular if∇2f(x∗) � 0. In this case,∞ > σ∗max ≥ σ∗min > 0,
where σ∗min and σ∗max are the smallest and the largest eigenvalue of ∇2f(x∗), respectively.

Fixed-point characterization: Let H ∈ Sn+. We define SH(x) := Hx − ∇f(x). Then,
from (11), we have

SH(x∗) ≡ Hx∗ −∇f(x∗) ∈ Hx∗ + ∂g(x∗).

By using the definition of P gH(·) in (6), one can easily derive the fixed-point expression:

x∗ = P gH (SH(x∗)) , (12)

that is, x∗ is the fixed-point of the mapping RgH(·), where RgH(·) := P gH(SH(·)). The
formula in (12) suggests that we can generate an iterative sequence based on the fixed-
point principle, i.e., xk+1 := RgH(xk) starting from x0 ∈ dom(F ) for k ≥ 0. Theoretically,
under certain assumptions, one can ensure that the mapping RgH is contractive and the
sequence generated by this scheme is convergent.

We note that if g ≡ 0 and H ∈ Sn++, then P gH defined by (6) reduces to P gH(·) =
H−1(·). Consequently, the fixed-point formula (12) becomes x∗ = x∗ −H−1∇f(x∗), which
is equivalent to ∇f(x∗) = 0.

Our variable metric framework: Given a point xk ∈ dom(F ) and a symmetric positive
semidefinite matrix Hk, we consider the function

Q(x; xk,Hk) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THk(x− xk), (13)

for x ∈ dom(F ). The function Q(·; xk,Hk) is—seemingly—a quadratic approximation of f
around xk. Now, we study the following scheme to generate a sequence

{
xk
}
k≥0

:

xk+1 := xk + αkd
k, (14)

where αk ∈ (0, 1] is a step size and dk is a search direction.
Let sk be a solution of the following problem:

sk ∈ S(xk,Hk) := arg min
x∈dom(F )

{
Q(x; xk,Hk) + g(x)

}
= P gHk

(
Hkx

k −∇f(xk)
)
. (15)

Since we do not assume that Hk to be positive definite, the solution sk may not exist. We
require the following assumption:

Assumption A.2 The subproblem (15) has at least one solution sk, i.e., S(xk,Hk) 6= ∅.

In particular, if Hk ∈ Sn++, then the solution sk of (15) exists and is unique, i.e., S(xk,Hk) ={
sk
}
6= ∅. Up to now, we have not required the uniqueness of sk. This assumption will be

specified later in the next sections. Throughout this paper, we assume that both Assump-
tions A.1 and A.2 are satisfied without referring to them specifically.
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Now, given sk, the direction dk is computed as

dk := sk − xk. (16)

If we define Gk := Hkd
k, then Gk is called the gradient mapping of (1) (Nesterov, 2004),

which behaves similarly as gradient vectors in non-composite minimization. Since problem
(15) is solvable due to Assumption A.2, we can write its optimality condition as

0 ∈ ∇f(xk) + Hk(s
k − xk) + ∂g(sk). (17)

It is easy to see that if dk = 0, i.e., sk ≡ xk, then (17) reduces to 0 ∈ ∇f(xk) + ∂g(xk),
which is exactly (11). Hence, xk is a solution of (1).

In the variable metric framework, depending on the choice of Hk, the iteration scheme
(14) leads to different methods for solving (1). For instance:

1. If Hk := ∇2f(xk), then the method (14) is a proximal-Newton method.

2. If Hk is a symmetric positive definite matrix approximation of ∇2f(xk), then the
method (14) is a proximal-quasi Newton method.

3. If Hk := LkI, where Lk is, say, an approximation for the local Lipschitz constant of f
and I is the identity matrix, then the method (14) is a proximal-gradient method.

Many of these above methods have been studied for (1) when f ∈ FL: cf., (Beck and
Teboulle, 2009a; Becker and Fadili, 2012; Chouzenoux et al., 2013; Lee et al., 2012). Note
however that, since the self-concordant part f of F is not (necessarily) globally Lipschitz
continuously differentiable, these approaches are generally not applicable in theory.

Given the search direction dk defined by (16), we define the following proximal-Newton
decrement4 λk and the weighted [semi-]norm βk

λk := ‖dk‖xk =
(

(dk)T∇2f(xk)dk
)1/2

and βk := ‖dk‖Hk
. (18)

In the sequel, we study three different instances of the variable metric strategy in detail.
Since we do not assume ∇2f(xk) � 0, λk = 0 may not imply dk = 0.

Remark 5 If g ≡ 0 and ∇2f(xk) ∈ Sn++, then dk = −∇2f(xk)−1∇f(xk) is the standard
Newton direction. In this case, λk defined by (18) reduces to λk ≡ ‖∇f(xk)‖∗

xk
, the Newton

decrement defined in (Nesterov, 2004, Chapter 4). Moreover, we have λk ≡ λ(xk), as
defined in Lemma 4.

3.1 A Proximal-Newton Method

If we choose Hk := ∇2f(xk), then the method described in (14) is called the proximal
Newton algorithm. For notational ease, we redefine skn := sk and dkn := dk, where the
subscript n is used to distinguish proximal Newton related quantities from the other variable

4. This notion is borrowed from standard the Newton decrement defined in (Nesterov, 2004, Chapter 4).
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metric strategies. Moreover, we use the shorthand notation P gx̄ := P g∇2f(x̄)
, whenever x̄ ∈

dom(f). Using (15) and (16), skn and dkn are given by

skn := P g
xk

(
∇2f(xk)xk −∇f(xk)

)
, dkn := skn − xk. (19)

Then, the proximal-Newton method generates a sequence
{
xk
}
k≥0

starting from x0 ∈
dom(F ) according to

xk+1 := xk + αkd
k
n, (20)

where αk ∈ (0, 1] is a step size. If αk < 1, then the iteration (20) is called the damped
proximal-Newton iteration. If αk = 1, then it is called the full-step proximal-Newton itera-
tion.

Global convergence: We first show that with an appropriate choice of the step-size
αk ∈ (0, 1], the iterative sequence

{
xk
}
k≥0

generated by the damped-step proximal Newton

scheme (20) is a decreasing sequence; i.e., F (xk+1) ≤ F (xk)−ω(σ) whenever λk ≥ σ, where
σ > 0 is fixed. The following theorem provides an explicit formula for the step size αk
whose proof can be found in Appendix A.2.

Theorem 6 If αk := (1 + λk)
−1 ∈ (0, 1], then the scheme in (20) generates xk+1 satisfies

F (xk+1) ≤ F (xk)− ω(λk). (21)

Moreover, the step αk is optimal. The number of iterations to reach the point xk such that

λk < σ for some σ ∈ (0, 1) is kmax :=
⌊
F (x0)−F (x∗)

ω(σ)

⌋
+ 1.

Local quadratic convergence rate: For any x ∈ dom(f) such that ∇2f(x) � 0, we define
the Dikin ellipsoid W0(x, r) as W0(x, r) :=

{
y ∈ dom(f) : ‖y − x‖x < r

}
, see (Nesterov,

2004). We now establish the local quadratic convergence of the scheme (20). A complete
proof of this theorem can be found in Appendix A.3.

Theorem 7 Suppose that x∗ is the unique solution of (1) and is strongly regular. Suppose
further that ∇2f(x) � 0 for all x ∈ W0(x∗, 1). Let

{
xk
}
k≥0

be a sequence generated by the

proximal Newton scheme (20) with αk ∈ (0, 1]. Then:

a) If αkλk < 1− 1√
2
, then it holds that

λk+1 ≤
(

1− αk + (2α2
k − αk)λk

1− 4αkλk + 2α2
kλ

2
k

)
λk. (22)

b) If the sequence
{
xk
}
k≥0

is generated by the damped proximal-Newton scheme (20),

starting from x0 such that λ0 ≤ σ̄ :=
√

5 − 2 ≈ 0.236068 and αk := (1 + λk)
−1, then

{λk}k locally converges to 0+ at a quadratic rate.

c) Alternatively, if the sequence
{
xk
}
k≥0

is generated by the full-step proximal-Newton

scheme (20) starting from x0 such that λ0 ≤ σ̄ := 0.25(5 −
√

17) ≈ 0.219224 and
αk = 1, then {λk}k locally converges to 0+ at a quadratic rate.
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Consequently, the sequence
{
xk
}
k≥0

also locally converges to x∗ at a quadratic rate in both

cases b) and c), i.e.,
{
‖xk − x∗‖x∗

}
k≥0

locally converges to 0+ at a quadratic rate.

A two-phase algorithm for solving (1): Now, by the virtue of the above analysis, we can
propose a two-phase proximal-Newton algorithm for solving (1). Initially, we perform the
damped-step proximal-Newton iterations until we reach the quadratic convergence region
(Phase 1). Then, we perform full-step proximal-Newton iterations, until we reach the desired
accuracy (Phase 2). The pseudocode of the algorithm is presented in Algorithm 1.

Algorithm 1 (Proximal-Newton algorithm)

Inputs: x0 ∈ dom(F ), tolerance ε > 0.

Initialization: Select a constant σ ∈ (0, (5−
√

17)
4 ], e.g., σ := 0.2.

for k = 0 to Kmax do
1. Compute the proximal-Newton search direction dkn as in (19).
2. Compute λk :=

∥∥dkn∥∥xk
.

3. if λk > σ then xk+1 := xk + αkd
k
n, where αk := (1 + λk)

−1.
4. elseif λk > ε then xk+1 := xk + dkn.
5. else terminate.

end for

The radius σ of the quadratic convergence region in Algorithm 1 can be fixed at any
value in (0, σ̄], e.g., at its upper bound σ̄. An upper bound Kmax of the iterations can also
be specified, if necessary. The computational bottleneck in Algorithm 1 is typically incurred
Step 1 in Phase 1 and Phase 2, where we need to solve the subproblem (15) to obtain a
search direction dkn. When problem (15) is strongly convex, i.e., ∇2f(xk) ∈ Sn++, one can
apply first order methods to efficiently solve this problem with a linear convergence rate
(see, e.g., Beck and Teboulle 2009a; Nesterov 2004, 2007) and make use of a warm-start
strategy by employing the information of the previous iterations.

Remark 8 From Remark 3 we see that if ∇f(xk) � 0, then λk = 0 may not imply dk = 0.
Therefore, we can add an auxiliary stopping criterion βk := ‖dk‖2 ≤ ε to Algorithm 1 so
that we can avoid the termination of Algorithm 1 at a non-optimal point xk.

Iteration-complexity analysis.The choice of σ in Algorithm 1 can trade-off the number
of iterations between the damped-step and full-step iterations. If we fix σ = 0.2, then the
complexity of the full-step Newton phase becomes O

(
ln ln

(
0.28
ε

))
. The following theorem

summarizes the complexity of the proposed algorithm.

Theorem 9 The maximum number of iterations required in Algorithm 1 does not exceed

Kmax :=
⌊
F (x0)−F (x∗)

0.017

⌋
+
⌊
1.5
(
ln ln

(
0.28
ε

))⌋
+ 2 provided that σ = 0.2 to obtain λk ≤ ε.

Consequently, ‖xk − x∗‖x∗ ≤ 2ε, where x∗ is the unique solution of (1).

Proof Let σ = 0.2. From the estimate (22) of Theorem 7 and αk−1 = 1 we have λk ≤
(1 − 4λk−1 + 2λ2

k−1)−1λ2
k−1 for k ≥ 1. Since λ0 ≤ σ, by induction, we can easily show
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that λk ≤ (1 − 4σ + 2σ2)−1λ2
k−1 ≤ cλ2

k−1, where c := 3.57. This implies λk ≤ c2k−1λ2k
0 ≤

c2k−1σ2k . The stopping criterion λk ≤ ε in Algorithm 1 is ensured if (cσ)2k ≤ cε. Since

cσ ≈ 0.71 < 1, the last condition leads to k ≥ (ln 2)−1 ln
(
− ln(cσ)
− ln(cε)

)
. By using c = 3.57,

σ = 0.2 and the fact that ln(2)−1 < 1.5, we can show that the last requirement is fulfilled if
k ≥

⌊
1.5
(
ln ln

(
0.28
ε

))⌋
+ 1. Now, combining the last conclusion and Theorem 6 with noting

that ω(σ) > 0.017 we obtain Kmax as in Theorem 9.

Finally, we prove ‖xk−x∗‖x∗ ≤ 2ε. Indeed, we have rk := ‖xk−x∗‖x∗ ≤ ‖x
k+1−xk‖

xk

1−‖xk−x∗‖x∗
+

‖xk+1 − xk‖x∗ = λk
1−rk + rk+1, whenever rk < 1. Next, using (84) with αk = 1, we have

rk+1 ≤ (3−rk)r2k
1−4rk+2r2k

. Combining these inequalities, we obtain
(1−rk)(1−7rk+3r2k)rk

1−4rk+2r2k
≤ λk ≤ ε.

Since the function s(r) := (1−r)(1−7r+3r2)r
1−4r+2r2

attains a maximum at r∗ ≈ 0.08763 and it

is increasing on [0, r∗]. Moreover,
(1−rk)(1−7rk+3r2k)

1−4rk+2r2k
≥ 0.5 for rk ∈ [0, r∗], which leas to

0.5rk ≤ (1−rk)(1−7rk+3r2k)rk
1−4rk+2r2k

≤ ε. Hence, rk ≤ 2ε provided that rk ≤ r0 ≤ r∗ ≈ 0.08763.

Remark 10 When g ≡ 0, we can modify the proof of estimate (22) to obtain a tighter

bound λk+1 ≤ λ2k
(1−λk)2

. This estimate is exactly (Nesterov, 2004), which implies that the

radius of the quadratic convergence region is σ̄ := (3−
√

5)/2.

A modification of the proximal-Newton method: In Algorithm 1, if we remove Step 4 and
replace analytic step-size selection calculation in Step 3 with a backtracking line-search, then
we reach the proximal Newton method of (Lee et al., 2012). Hence, this approach in practice
might lead to reduced overall computation since our step-size αk is selected optimally with
respect to the worst case problem structures as opposed to the particular instance of the
problem. Since the backtracking approach always starts with the full-step, we also do not
need to know whether we are within the quadratic convergence region. Moreover, the cost
of evaluating the objective at the full-step in certain applications may not be significantly
worse than the cost of calculating αk or may be dominated by the cost of calculating the
Newton direction.

In stark contrast to backtracking, our new theory behooves us to propose a new forward
line-search procedure as illustrated by Figure 2. The idea is quite simple: we start with the

0 1
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Figure 2: Illustration of step-size selection procedures.

“optimal” step-size αk and increase it towards full-step with a stopping condition based on
the objective evaluations. Interestingly, when we analytically calculate the step, we also have
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access to the side information on whether or not we are within the quadratic convergence
region, and hence, we can automatically switch to Step 4 in Algorithm 1. Alternatively,
calculation of the analytic step-size can enhance backtracking since the knowledge of αk
reduces the backtracking range from (0, 1] to (αk, 1] with the side-information as to when
to automatically take the full-step without function evaluation.

3.2 A Proximal Quasi-Newton Scheme

Even if the function f is self-concordant, the numerical evaluation of ∇2f(x) can be expen-
sive in many applications (e.g., f(x) :=

∑p
j=1 fj(Ajx), with p� n). Hence, it is interesting

to study proximal quasi-Newton method for solving (1). Our interest in the quasi-Newton
methods in this paper is for completeness; we do not provide any algorithmic details or
implementations on our quasi-Newton variant.

To this end, we need a symmetric positive definite matrix Hk that approximates∇2f(xk)
at the iteration k. As a result, our main assumption here is that matrix Hk+1 at the next
iteration k + 1 satisfies the secant equation:

Hk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (23)

For instance, it is well-known that the sequence of matrices {Hk}k≥0 updated by the fol-
lowing BFGS formula satisfies the secant equation (23) (Nocedal and Wright, 2006):

Hk+1 := Hk +
1

(yk)T zk
yk(yk)T − 1

(zk)THkzk
Hkz

k(Hkz
k)T , (24)

where zk := xk+1−xk and yk := ∇f(xk+1)−∇f(xk). Other methods for updating matrix
Hk can be found in (Nocedal and Wright, 2006), which are not listed here.

In this subsection, we only analyze the full-step proximal quasi-Newton scheme based
on the BFGS updates. The global convergence characterization of the BFGS quasi-Newton
method can be obtained using our analysis in the next subsection. To this end, we have the
following update equation, where the subscript q is used to distinguish the quasi-Newton
method:

xk+1 := xk + dkq . (25)

Here we use dkq to stand for the proximal quasi-Newton search direction.

Under certain assumptions, one can prove that the sequence
{
xk
}
k≥0

generated by (25)

converges to x∗ the unique solution of (1). One of the common assumptions used in quasi-
Newton methods is the Dennis-Moré condition, see (Dennis and Moré, 1974). Adopting the
Dennis-Moré criterion, we impose the following condition in our context:

lim
k→∞

∥∥[Hk −∇2f(x∗)
]

(xk+1 − xk)
∥∥∗

x∗

‖xk+1 − xk‖x∗
= 0. (26)

The Dennis-Moré condition becomes standard in smooth optimization. Examples can be
found, e.g., in (Byrd and Nocedal, 1989; Nocedal and Wright, 2006). Now, we establish the
superlinear convergence of the sequence

{
xk
}
k≥0

generated by (25) as follows.
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Theorem 11 Assume that x∗ is the unique solution of (1) and is strongly regular. Let
matrix Hk maintains the secant equation (23) and let

{
xk
}
k≥0

be a sequence generated by

scheme (25). Then the following statements hold:

(a) Suppose, in addition, that the sequence of matrices {Hk}k≥0 satisfies the Dennis-Moré

condition (26) for sufficiently large k. Then the sequence
{
xk
}
k≥0

converges to the

solution x∗ of (1) at a superlinear rate provided that
∥∥x0 − x∗

∥∥
x∗
< 1.

(b) Suppose that a matrix H0 � 0 is chosen. Then (yk)T zk > 0 for all k ≥ 0 and hence
the sequence {Hk}k≥0 generated by (24) is symmetric positive definite and satisfies the

secant equation (23). Moreover, if the sequence
{
xk
}
k≥0

generated by (25) satisfies∑∞
k=0

∥∥xk − x∗
∥∥

x∗
< +∞, then this sequence converges to x∗ at a superlinear rate.

The proof of this theorem can be found in Appendix A.3. We note that if the sequence{
xk
}
k≥0

locally converges to x∗ at a linear rate w.r.t. the local norm at x∗, i.e.
∥∥xk+1 − x∗

∥∥
x∗
≤

κ
∥∥xk − x∗

∥∥
x∗

for some κ ∈ (0, 1) and k ≥ 0, then the condition
∑∞

k=0

∥∥xk − x∗
∥∥

x∗
< +∞

automatically holds. From (26) we also observe that the matrix Hk is required to well
approximate ∇2f(x∗) along the direction dkq , which is not in the whole space.

3.3 A Proximal-Gradient Method

If we choose matrix Hk := Dk, where Dk is a positive diagonal matrix, then the iterative
scheme (14) is called the proximal-gradient scheme. In this case, we can write (14) as

xk+1 := xk + αkd
k
g = (1− αk)xk + αks

k
g , (27)

where αk ∈ (0, 1] is an appropriate step size, dkg is the proximal-gradient search direction

and skg ≡ sk as in (15).

The following lemma shows how we can choose the step size αk corresponding to Dk

such that we obtain a descent direction in the proximal-gradient scheme (27). The proof of
this lemma can be found in Appendix A.2.

Lemma 12 Let
{
xk
}
k≥0

be a sequence generated by (27). Suppose that the matrix Dk � 0

is chosen such that the step size αk satisfies αk :=
β2
k

λk(λk+β2
k)
∈ (0, 1] (see below), where

βk := ‖dkg‖Dk
and λk := ‖dkg‖xk . Then

{
xk
}
k≥0
⊂ dom(F ) and the following estimate

holds

F (xk+1) ≤ F (xk)− ω
(
β2
k/λk

)
, (28)

where ω(τ) := τ − ln(1 + τ) ≥ 0.

From Lemma 12, we observe that αk ≤ 1 if
λ2k
β2
k

+ λk ≥ 1. It is obvious that if λk ≥ 1

then the last condition is automatically satisfied. We only consider the case λk < 1. In fact,

since λk ≥ 0, we relax actually the condition
λ2k
β2
k

+ λk ≥ 1 to a simpler condition λk ≥ βk.
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Algorithm 2 (Proximal-gradient method)

Inputs: x0 ∈ dom(F ), tolerance ε > 0.

for k = 0 to kmax do
1. Choose an appropriate Dk � 0 based on (30).
2. Compute dkg := PgDk

(
Dkx

k −∇f(xk)
)
− xk due to (15).

3. Compute βk := ‖dkg‖Dk
and λk := ‖dkg‖xk .

4. If ek := ‖dkg‖2 ≤ ε then terminate.

5. Update xk+1 := xk + αkd
k
g , where αk :=

β2
k

λk(λk+β2
k)
∈ (0, 1].

end for

We now study the case Dk := LkI, where Lk ≥ L > 0 is a positive constant and I is the
identity matrix with dimensions apparent from the context. Hence, β2

k = Lk‖dkg‖22 and

λ2
k

β2
k

=
(dkg)

T∇2f(xk)dkg
Lk‖dkg‖22

.

However, since

σmin(∇2f(xk)) ≤ σk :=
(dkg)

T∇2f(xk)dkg
‖dkg‖22

≤ σmax(∇2f(xk)), (29)

the condition λk ≥ βk is equivalent to

Lk ≤ σk, (30)

where σkmin := σmin(∇2f(xk)) and σkmax := σmax(∇2f(xk)) are the smallest and largest
eigenvalue of∇2f(xk), respectively. Under the assumption that dom(f) contains no straight-
line, then we have the Hessian ∇2f(xk) � 0 by (Nesterov, 2004, Theorem 4.1.3), which
implies that σkmin > 0. Therefore, in the worst-case, we can choose Lk := σkmin. However,
this lower bound may be too conservative. In practice, we can apply a bisection procedure
to meet the condition (30). It is not difficult to prove via contradiction that the number of
bisection steps is upper bounded by a constant.

We note that if g is separable, i.e., g(x) :=
∑n

i=1 gi(xi) (e.g., g(x) := ρ ‖x‖1), then we
can compute skDk

in (15) in a component-wise fashion as

(skLk)i := Pgi
τki

(
xki − τki (∇f(xk))i

)
, i = 1, . . . , n, (31)

where τki := 1/(Dk)ii and Pgiτi (·) is the proximity operator of gi function, with parameter
τi. The computation of λk only requires one matrix-vector multiplication and one vector
inner-product; but it can be reduced by exploiting concrete structure of the smooth part f .

Based on Lemma 12, we describe the proximal-gradient scheme (27) in Algorithm 2.
The main computation cost of Algorithm 2 is incurred at Step 2 and in calculating λk. If
g is separable, then the computation of Step 2 can be done in a closed form. One main
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step of Algorithm 2 is Step 2, which depends on the cost of prox-operator PgDk
. In practice,

Dk is determined by a bisection procedure whenever λk < 1, which requires additional
computational cost. If we choose Dk := LkI, then in order to fulfill (30), we can perform a
back-tracking line search procedure on Lk. This line search procedure does not require the
evaluations of the objective function. We modify Steps 1-3 of Algorithm 2 as

1. Initialize Lk := L0
k > 0, e.g., by a Barzilai-Borwein step.

2. Compute dkg := PgLkIk
(
Lkx

k −∇f(xk)
)
− xk due to (15).

3a. Compute βk := ‖dkg‖LkI and λk := ‖dkg‖xk .

3b. If λ2
k/β

2
k + λk < 1, then set Lk := Lk/2 and go back to Step 2.

We note that computing λk at Step 3 does not need to form the full Hessian ∇2f(xk), it
only requires a directional derivative, which is relatively cheap in applications (Nocedal and
Wright, 2006, Chapter 7).

Global and local convergence. The global and local convergence of Algorithm 2 is stated
in the following theorems, whose proof can be found in Appendix A.2.

Theorem 13 Assume that there exists L > 0 such that Dk � LI for k ≥ 0, and the solution
x∗ of (1) is unique. Let the sublevel set

LF (F (x0)) :=
{
x ∈ dom(F ) | F (x) ≤ F (x0)

}
be bounded. Then, the sequence

{
xk
}
k≥0

, generated by Algorithm 2, converges to the unique

solution x∗ of (1).

Theorem 14 Assume that x∗ is the unique solution of (1) and is strongly regular. Let{
xk
}
k≥0

be the sequence generated by Algorithm 2. Then, for k sufficiently large, if∥∥[Dk −∇2f(x∗)]dkg
∥∥∗

x∗

‖dkg‖x∗
<

1

2
, (32)

then
{
xk
}
k≥0

locally converges to x∗ at a linear rate. In particular, if Dk := LkI and

γ∗ := max
{∣∣∣1− Lk

σ∗min

∣∣∣ , ∣∣∣1− Lk
σ∗max

∣∣∣} < 1
2 , then the condition (32) holds.

We note that x∗ is unknown; thus, evaluating γ∗ a priori is infeasible in reality. In
implementation, one can choose an appropriate value Lk ≥ L > 0 and then adaptively
update Lk based on the knowledge of the eigenvalues of∇2f(xk) near to the solution x∗. The
condition (32) can be expressed as (dkg)

T [L2
k∇2f(x∗)−1 +∇2f(x∗)−2LkI]dkg ≤ (1/4)‖dkg‖2x∗ ,

which leads to

(3/4)‖dkg‖2x∗ + L2[‖dkg‖∗x∗ ]2 < 2Lk‖dkg‖22. (33)

We note that to find Lk such that (33) holds, we require ‖dkg‖∗x∗‖dkg‖x∗ <
√

4
3‖dkg‖22. If

the last condition in Theorem 14 is satisfied then the condition (33) also holds. While the
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last condition in Theorem 14 seems too imposing, we claim that, for most f and g, we
only require (33) to be satisfied (see also the empirical evidence in Subsection 5.2.1). The
condition (32) (or (33)) can be referred to as a restricted approximation gap between Dk

and the true Hessian ∇2f(x∗) along the direction dkg for k sufficiently large. For instance,

when g is based on the `1-norm/the nuclear norm, the search direction dkg have at most
twice the sparsity/rank of x∗ near the convergence region.

Remark 15 From the scheme (27) we observe that the step size αk < 1 may not preserve
some of the desiderata on xk+1 due to the closed form solution of the prox-operator PgDk

.
For instance, when g is based on the `1-norm, αk < 1, might increase the sparsity level of
the solution as opposed to monotonically increasing it. However, in practice, the numerical
values of αk are often 1 near the convergence, which maintain properties, such as sparsity,
low-rankedness, etc.

Global convergence rate: In proximal gradient methods, proving global convergence rate
guarantees requires a global constant to be known a priori—such as the Lipschitz constant.
However such an assumption does not apply for the class of just self-concordant functions
that we consider in this paper. We only characterize the following property in an ergodic
sense. Let

{
xk
}
k≥0

be the sequence generated by (2). We define

x̄k := S−1
k

k∑
j=0

αjx
j , where Sk :=

k∑
j=0

αj > 0. (34)

Then we can show that F (x̄k)−F ∗ ≤ L̄k
2Sk

∥∥x0 − x∗
∥∥2

2
, where L̄k := max

0≤j≤k
Lj . If αj ≥ α > 0

for 0 ≤ j ≤ k, then Sk ≥ α(k + 1), which leads to F (x̄k) − F ∗ ≤ L̄k
2(k+1)α

∥∥x0 − x∗
∥∥2

2
. The

proof of this statement can be found in (Tran-Dinh et al., 2014b), which we omit here.
A modification of the proximal-gradient method: If the point skg generated by (15) belongs

to dom(F ), then F (skg) < +∞. Similarly to the definition of xk+1 in (27), we can define a
new trial point:

x̂k := (1− αk)xk + αks
k
g . (35)

If F (skg) ≤ F (xk), then, by the convexity of F , it is easy to show that:

F (x̂k) = F
(
(1− αk)xk + αks

k
g

)
≤ (1− αk)F (xk) + αkF (skg)

F (skg)≤F (xk)

≤ F (xk).

In this case, based on the function values F (skg), F (x̂k) and F (xk) we can eventually choose

the next iteration xk+1 as follows:

xk+1 :=

{
skg if sk ∈ dom(F ) and F (skg) < F (x̂k) (Case 1),

x̂k otherwise (Case 2).
(36)

The idea of this greedy modification is illustrated in Figure 3. We note that here we need
to check skg ∈ dom(F ) such that F (skg) < F (xk) and additional function evaluations F (skg)

and F (x̂k). However, careful implementations can recycle quantities that enable us to
evaluate the objective at skg and at xk+1 with very little overhead over the calculation of αk
(see Section 4). By using (36), we can specify a modified proximal gradient algorithm for
solving (1), whose details we omit here since it is quite similar to Algorithm 2.
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Figure 3: Illustration of the modified proximal-gradient method

4. Concrete Instances of our Optimization Framework

We illustrate three instances of our framework for some of the applications described in
Section 1. For concreteness, we describe only the first and second order methods. Quasi-
Newton methods based on (L-)BFGS updates or other adaptive variable metrics can be
similarly derived in a straightforward fashion.

4.1 Graphical Model Selection

We customize our optimization framework to solve the graph selection problem (2). For
notational convenience, we maintain a matrix variable Θ instead of vectorizing it. We
observe that f(Θ) := − log(det(Θ)) + tr(Σ̂Θ) is a standard self-concordant function, while
g(Θ) := ρ ‖vec(Θ)‖1 is convex and nonsmooth. The gradient and the Hessian of f can be

computed explicitly as ∇f(Θ) := Σ̂−Θ−1 and ∇2f(Θ) := Θ−1⊗Θ−1, respectively. Next,
we formulate our proposed framework to construct two algorithmic variants for (2).

4.1.1 Dual Proximal-Newton Algorithm

We consider a second order algorithm via a dual solution approach for (15). This approach
is first introduced in our earlier work (Tran-Dinh et al., 2013a), which did not consider the
new modifications we propose in Section 3.1.

We begin by deriving the following dual formulation of the convex subproblem (15). Let
pk := ∇f(xk), the convex subproblem (15) can then be written equivalently as

min
x∈Rn

{
(1/2)xTHkx + (pk −Hkx

k)Tx + g(x)
}
. (37)

By using the min-max principle, we can write (37) as

max
u∈Rn

min
x∈Rn

{
(1/2)xTHkx + (pk −Hkx

k)Tx + uTx− g∗(u)
}
, (38)

where g∗ is the Fenchel conjugate function of g, i.e., g∗(u) := sup
x

{
uTx− g(x)

}
. Solving

the inner minimization in (38) we obtain

min
u∈Rn

{
(1/2)uTH−1

k u + p̃Tk u + g∗(u)
}
, (39)
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where p̃k := H−1
k pk−xk. Note that the objective function ϕ(u) := g∗(u)+(1/2)uTH−1

k u+
p̃Tk u of (39) is strongly convex, one can apply the fast projected gradient methods with a
linear convergence rate for solving this problem, see (Nesterov, 2007; Beck and Teboulle,
2009a).

In order to recover the solution of the primal subproblem (15), we note that the solution
of the parametric minimization problem in (38) is given by x∗(u) := xk−H−1

k (pk +u). Let
u∗

xk
be the optimal solution of (39). We can recover the primal proximal-Newton search

direction dk defined in (16) as

dkn = −∇2f(xk)−1
(
∇f(xk) + u∗xk

)
. (40)

To compute the quantity λk defined by (18) in Algorithm 1, we use (40) such that:

λk = ‖dkn‖xk = ‖∇f(xk) + u∗xk‖∗xk . (41)

Note that computing λk by (41) requires the inverse of the Hessian matrix ∇2f(xk).
Surprisingly, this dual approach allows us to avoid matrix inversion as well as Cholesky

decomposition in computing the gradient ∇f(Θi) and the Hessian ∇2f(Θi) of f in graph
selection. An alternative is of course to solve (15) in its primal form. Though, in such case,
we need to compute Θ−1

i at each iteration i (say, via Cholesky decompositions).
The dual subproblem (39) becomes as

U∗ = arg min
‖vec(U)‖∞≤1

{
(1/2)tr((ΘiU)2) + tr(Q̃U)

}
, (42)

for the graph selection, where Q̃ := ρ−1[ΘiΣ̂Θi−2Θi]. Given the dual solution U∗ of (42),
the primal proximal-Newton search direction (i.e. the solution of (15)) is computed as

∆i := −
(
(ΘiΣ̂− I)Θi + ρΘiU

∗Θi

)
. (43)

The quantity λi defined in (41) can be computed as follows, where Wi := Θi(Σ̂ + ρU∗):

λi :=
(
p− 2 · tr (Wi) + tr

(
W2

i

))1/2
. (44)

Algorithm 3 summarizes the description above. Overall, this proximal-Newton (PN) al-
gorithm does not require any matrix inversions or Cholesky decompositions. It only needs
matrix-vector and matrix-matrix calculations, which might be attractive for different com-
putational platforms (such as GPUs or simple parallel implementations). Note however that
as we work through the dual problem, the primal solution can be dense even if majority of
the entries are rather small (e.g., smaller than 10−6).5

We now explain the underlying costs of each step in Algorithm 3, which is useful when
we consider different strategies for the selection of the step size αk. The computation of Q̃
and ∆i require basic matrix multiplications. For the computation of λi, we require two trace
operations: tr(Wi) in O(p) time-complexity and tr(W2

i ) in O(p2) complexity. We note here

5. In our MATLAB implementation below, we have not exploited the fact that the primal solutions are
sparse. The overall efficiency can be improved via thresholding tricks, both in terms of time-complexity
(e.g., less number of iterations) and matrix estimation quality.
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Algorithm 3 (Dual PN for graph selection (DPNGS))

Input: Matrix Σ̂ � 0 and a given tolerance ε > 0. Set σ := 0.25(5−
√

17).
Initialization: Find a starting point Θ0 � 0.
for i = 0 to imax do

1. Set Q̃ := ρ−1
(
ΘiΣ̂Θi − 2Θi

)
.

2. Compute U∗ in (42).
3. Compute λi by (44), where Wi :=Θi(Σ̂+ρU∗).
4. If λi ≤ ε terminate.
5. Compute ∆i := −

(
(ΘiΣ̂− I)Θi + ρΘiU

∗Θi

)
.

6. If λi > σ, then set αi := (1 + λi)
−1. Otherwise, set αi = 1.

7. Update Θi+1 := Θi + αi∆i.
end for

that, while Wi is a dense matrix, the trace operation in the latter case requires only the
computation of the diagonal elements of W2

i . Given Θi, αi and ∆i, the calculation of Θi+1

has O(p2) complexity. In contrast, evaluation of the objective can be achieved through
Cholesky decompositions, which has O(p3) time complexity.

To compute (42), we can use the fast proximal-gradient method (FPGM) (Nesterov,
2007; Beck and Teboulle, 2009a) with step size 1/L where L is the Lipschitz constant of the
gradient of the objective function in (42). It is easy to observe that L := γ2

max(Θi) where
γmax(Θi) is the largest eigenvalue of Θi. For sparse Θi, we can approximately compute
γmax(Θi) is O(p2) by using iterative power methods (typically, 10 iterations suffice). The
projection onto ‖vec(U)‖∞ ≤ 1 clips the elements by unity in O(p2) time. Since FPGM
requires a constant number of iterations kmax (independent of p) to achieve an εin solution
accuracy, the time-complexity for the solution in (42) is O(kmaxM), where M is the cost of
matrix multiplication. We have also implemented block coordinate descent and active set
methods which scale O(p2) in practice when the solution is quite sparse.

Overall, the major operation with general proximal maps in the algorithm is typically
the matrix-matrix multiplications of the form ΘiUΘi, where Θi and U are symmetric
positive definite. This operation can naturally be computed (e.g., in a GPU) in a parallel or
distributed manner. For more details of such computations we refer the reader to (Bertsekas
and Tsitsiklis, 1989). It is important to note that without Cholesky decompositions used
in objective evaluations, the basic DPNGS approach theoretically scales with the cost of
matrix-matrix multiplications.

4.1.2 Proximal-Gradient Algorithm

Since g(Θ) := ρ ‖vec(Θ)‖1 and ∇f(Θi) = vec(Σ̂−Θ−1
i ), the subproblem (15) becomes:

∆i+1 := Tτiρ
(
Θi − τi(Σ̂−Θ−1

i )
)
−Θi, (45)

where Tτ : Rp×p → Rp×p is the component-wise matrix thresholding operator which is
defined as Tτ (Θ) := max {0, |Θ| − τ}. We also note that the computation of ∆i+1 requires a
matrix inversion Θ−1

i . Since Θi is positive definite, one can apply Cholesky decompositions
to compute Θ−1

i in O(p3) operations. To compute the quantity λi, we have λi := ‖∆i‖Θi
=
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∥∥Θ−1
i ∆i

∥∥
2
. We also choose Li := 0.5‖∇2f(Θi)‖2 = 0.5‖Θ−1

i ‖22. The above are summarized
in Algorithm 4.

Algorithm 4 (Proximal-gradient method for graph selection (ProxGrad1))

Initialization: Choose a starting point Θ0 � 0 .
for i = 0 to imax do

1. Compute Θ−1
i via Cholesky decomposition.

2. Choose Li satisfying (30) and set τi := L−1
i .

3. Compute the search direction ∆i as (45).
4. Compute βi := Li‖vec(∆i)‖2 and λi := ‖Θ−1

i ∆i‖2.

5. Determine the step size αi := βi
λi(λi+βi)

.
6. Update Θi+1 := Θi + αi∆i.

end for

The per iteration complexity is dominated by matrix-matrix multiplications and Cholesky
decompositions for matrix inversion calculations. In particular, Step 1 requires a Cholesky
decomposition with O(p3) time-complexity. Step 2 requires to compute `2-norm of a sym-
metric positive matrix, which can be done by a power-method in O(p2) time-complexity.
The complexity of Steps 3, 4 and 6 requires O(p2) operations. Step 2 may require additional
bisection steps as mentioned in Algorithm 2 whenever λk < 1.

4.2 Poisson Intensity Reconstruction

We now describe a variant of Algorithm 2; a similar instance based on Algorithm 1 can be
easily devised and we omit the details here. First, we can easily check that the function
f̃(x) :=

∑m
i=1

(
aTi x− yi log(aTi x)

)
in (3) is convex and self-concordant with parameter

Mf̃ := 2 ·max
{

1√
yi
| yi > 0, i = 1, . . . ,m

}
, see (Nesterov, 2004, Theorem 4.1.1). We define

the functions f and g as

f(x) :=
M2
f̃

4
f̃(x), g(x) :=

M2
f̃

4

(
ρφ(x) + δ{u | u≥0}(x)

)
, (46)

where f and g satisfy Assumption 1 and δC is the indicator function of C. Thus, the problem
in (3) can be equivalently transformed into (1). Here, the gradient and the Hessian of f
satisfy:

∇f(x) =
M2
f̃

4

m∑
i=1

(
1− yi

aTi x

)
ai and ∇2f(x) =

M2
f̃

4

m∑
i=1

yi

(aTi x)2
aia

T
i , (47)

respectively. For a given vector d ∈ Rn, the local norm ‖d‖x can then be written as

‖d‖x :=
(
dT∇2f(x)d

)1/2
=
Mf̃

2

(
m∑
i=1

yi(a
T
i d)2

(aTi x)2

)1/2

. (48)

Computing this quantity requires one matrix-vector multiplication and O(m) operations.
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For the Poisson model, the subproblem (15) is expressed as follows:

min
x≥0

{
(1/2)‖x−wk‖22 + ρkφ(x)

}
, (49)

where wk := xk − L−1
k ∇f(xk) and ρk :=

ρM2
f̃

4Lk
. As a penalty function φ in the Poisson

intensity reconstruction, we use the Total Variation norm (TV-norm), defined as φ(x) :=
‖Dx‖1 (isotropic) or φ(x) := ‖Dx‖1,2 (anti-isotropic), where D is a forward linear operator
(Chambolle and Pock, 2011; Beck and Teboulle, 2009b). For both TV-norm regularizers,
the method proposed in (Beck and Teboulle, 2009b) can solve (49) efficiently.

The above discussion leads to Algorithm 5. We note that the constant Lk at Step 2 of
this algorithm can be estimated based on different rules. In our implementation below, we

initialize Lk at a Barzilai-Borwein step size, i.e., Lk := (∇f(xk)−∇f(xk−1))T (xk−xk−1)
‖xk−xk−1‖22

and may

perform a few backtracking iterations on Lk to ensure the condition (30) whenever λk < 1.

Algorithm 5 (ProxGrad for Poisson intensity reconstruction (ProxGrad2))

Inputs: x0 ≥ 0, ε > 0 and ρ > 0.

Compute Mf̃ := 2 max
{

1√
yi
| yi > 0, i = 1, . . . ,m

}
.

for k = 0 to kmax do
1. Evaluate the gradient of f as (47).
2. Compute an appropriate value Lk > 0 that satisfies (30).
3. Compute ρk := 0.25ρM2

f̃
L−1
k and wk := xk − L−1

k ∇f(xk).

4. Compute skg by solving (49) and then compute dkg := skg − xk.

5. Compute βk := Lk‖dkg‖22 and λk := ‖dkg‖xk as (48).

6. If ek := L−1
k

√
βk ≤ ε then terminate.

7. Determine the step size αk := βk
λk(λk+βk) .

8. Update xk+1 := xk + αkd
k
g .

end for

Note that we can modify Step 8 in Algorithm 5 by using the update scheme (36) to
obtain a new variant of this algorithm. We omit the details here.

4.3 Heteroscedastic LASSO

We focus on a convex formulation of the unconstrained LASSO problem with unknown
variance studied in (Städler et al., 2012) as

(β∗, σ∗) := arg min
β∈Rp,σ∈R++

{
− log(σ) + (1/(2n)) ‖Xβ − σy‖22 + ρ ‖β‖1

}
. (50)

However, our algorithm can be applied to solve the multiple unknown variance case consid-
ered in (Dalalyan et al., 2013).

By letting x := (βT , σ)T ∈ Rp+1, f(x) := − log(σ) + (1/(2n)) ‖Xβ − σy‖22. Then, it is
easy to see that the function f is standard self-concordant. Hence, we can apply Algorithm 2
to solve this problem. To highlight the salient differences in the code, we note the following:
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• Define z := Xβ − σy, then the gradient vector of function f can be computed as

∇f(x) :=
(
n−1zTX,−σ−1 − n−1yT z

)T
.

This computation requires two matrix-vector multiplications and one inner product.

• The quantity λk can be explicitly computed as

λk :=
((
σ−2
k + n−1yTy

)
(dkσ)2 + n−1zTk zk − 2n−1dkσy

T zk

)1/2
,

where zk := Xdkβ and dkg := ((dkβ)T ,dkσ)T is the search direction. This quantity
requires one matrix-vector multiplication and two inner products. Moreover, this
matrix-vector product can be reused to compute the gradient for the next iteration.

The final algorithm is very similar to Algorithm 5 and hence we omit the details.

5. Numerical Experiments

In this section, we illustrate our optimization framework via numerical experiments on the
variants discussed in Section 4. We only focus on proximal gradient and Newton variants
and encourage the interested reader to try out the quasi-Newton variants for their own
applications. All the tests are performed in MATLAB 2011b running on a PC Intel Xeon
X5690 at 3.47GHz per core with 94Gb RAM.6

5.1 Proximal-Newton Method in Action

By using the graph selection problem, we first show that the modifications on the proximal-
Newton method provides advantages in practical convergence as compared to state-of-the-
art strategies and provides a safeguard for line-search procedures in optimization routines.
We then highlight the impact of different subsolvers for (37) in the practical convergence of
the algorithms.

5.1.1 Comparison of Different Step-Size Selection Procedures

We apply four different step-size selection procedures in our proximal-Newton framework to
solve problem (2). Specifically, we test the algorithm based on the following configuration:

(i) We implement Algorithm 3 in MATLAB using FISTA (Beck and Teboulle, 2009a)
to solve the dual subproblem with the following stopping criterion: ‖Θi+1 −Θi‖F ≤
10−8 ×max {‖Θi+1‖F , 1}.

(ii) We consider four different globalization procedures, whose details can be found in
Section 3.1: a) NoLS which uses the analytic step size α∗k = (1+λk)

−1, b) BtkLS which
is an instance of the proximal-Newton framework of (Lee et al., 2012) and uses the
standard backtracking line-search based on Armijo’s rule, c) E-BtkLS which is based
on the standard backtracking line-search enhanced by the lower bound α∗k and, d)

6. We also provide MATLAB implementations of the examples in this section as a software package
(SCOPT) at http://lions.epfl.ch/software.
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FwLS as the forward line-search by starting from α∗k and increasing the step size until
either αk = 1, infeasibility or the objective value does not improve.

(iii) We test our implementation on four problem cases: The first problem is a synthetic ex-
amples of size p = 10, where the data is generated as in (Kyrillidis and Cevher, 2013).
We run this test for 10 times and report computational primitives in average. Three re-
maining problems are based on real data from http://ima.umn.edu/~maxxa007/send_SICS/,
where the regularization parameters are chosen as the standard values (cf., Tran-Dinh
et al. (2013a); Lee et al. (2012); Hsieh et al. (2011)). We terminate the proximal-
Newton scheme if λk ≤ 10−6.

The numerical results are summarized in Table 2. Here, #iter denotes the (average)
number of iterations, #chol represents the (average) number of Cholesky decompositions
and #Mm is the (average) number of matrix-matrix multiplications.

Synthetic (ρ = 0.01) Arabidopsis (ρ = 0.5) Leukemia (ρ = 0.1) Hereditary (ρ = 0.1)

LS Scheme #iter #chol #Mm #iter #chol #Mm #iter #chol #Mm #iter #chol #Mm

NoLS 25.4 - 3400 18 - 1810 44 - 9842 72 - 20960
BtkLS 25.5 37.0 2436 11 25 718 15 50 1282 19 63 2006
E-BtkLS 25.5 36.2 2436 11 24 718 15 49 1282 15 51 1282
FwLS 18.1 26.2 1632 10 17 612 12 34 844 14 44 1126

Table 2: Metadata for the line search strategy comparison

We can see that our new step-size selection procedure FwLS shows superior empirical
performance as compared to the rest: The standard approach NoLS usually starts with
pessimistic step-sizes which are designed for worst-case problem structures. Therefore,
we find it advantageous to continue with a forward line-search procedure. Whenever it
reaches the quadratic convergence, no Cholesky decompositions are required. This makes a
difference, compared to standard backtracking line-search BtkLS where we need to evaluate
the objective value at every iteration. While there is no free lunch, the cost of computing
λk is O(p2) in FwLS, which turns out to be quite cheap in this application. The E-BtkLS

combines both backtrack line-search and our analytic step-size α∗k := (1 + λk)
−1, which

outperforms BtkLS as the regularization parameter becomes smaller. Finally, we note that
the NoLS variant needs more iterations but it does not require any Cholesky decompositions,
which might be advantageous in homogeneous computational platforms.

5.1.2 Impact of Different Solvers for the Subproblems

As mentioned in the introduction, an important step in our second order algorithmic frame-
work is the solution of the subproblem (15). If the variable matrix Hk is not diagonal, com-
puting skHk

corresponds to solving a convex subproblem. For a given regularization term
g, we can exploit different existing approaches to tackle this problem. We illustrate that
the overall framework to be quite robust against the solution accuracy of the individual
subsolver.

In this test, we consider the broad used `1-norm function as the regularizer. Hence, (15)
collapses to an unconstrained LASSO problem; cf. (Wright et al., 2009). To this end, we
implement the proximal-Newton algorithm to solve the graph learning problem (2) where
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Estrogen (p = 692) Arabidopsis (p = 834) Leukemia (p = 1255) Hereditary(p = 1869)

Sub-solvers #iter #chol time[s] #iter #chol time[s] #iter #chol time[s] #iter #chol time[s]

ρ = 0.5

#nnz = 0.022p2 #nnz = 0.030p2 #nnz = 0.022p2 #nnz = 0.020p2

pFISTA 9 29 13.10 10 35 24.76 9 31 286.57 17 80 1608.66
pFISTA[gpu] 9 29 10.70 10 35 16.81 9 31 231.97 17 80 1265.97
dFISTA 8 16 4.66 10 17 10.92 14 22 50.19 14 27 147.86
dFISTA[gpu] 8 16 4.16 10 17 7.89 14 22 43.53 14 27 120.16
FastAS 7 24 28.69 8 27 96.93 9 31 532.11 11 40 1682.28
BCDC 8 25 90.35 9 28 227.27 9 31 549.80 12 47 3452.82
MatQUIC 11 29 21.61 10 35 50.67 10 35 119.06 14 44 891.29
ProxGrad1 175 175 8.82 226 226 17.78 230 230 44.06 660 660 350.52

ρ = 0.1

#nnz = 0.072p2 (∼ 6%) #nnz = 0.074p2 #nnz = 0.065p2 #nnz = 0.063p2

pFISTA 34 101 357.25 57 148 1056.90 143 242 7490.27 - - -
pFISTA[gpu] 34 101 300.90 57 148 730.07 143 242 6083.06 - - -
dFISTA 14 32 12.51 12 35 15.53 12 34 38.73 14 44 150.03
dFISTA[gpu] 14 32 11.18 12 35 11.18 12 34 33.45 14 44 121.37
FastAS - - - - - - - - - - - -
BCDC 13 48 1839.17 15 50 4806.62 - - - - - -
MatQUIC 30 88 573.87 36 95 1255.13 36 95 4260.97 - - -
ProxGrad1 4345 4345 224.95 6640 6640 532.77 9225 9225 1797.49 - - -

Table 3: Metadata for the subsolver efficiency comparison

g(x) := ρ ‖x‖1. To show the impact of the subsolver in (2), we implement the following
methods, which are all available in our software package SCOPT:

(i) pFISTA and dFISTA: in these cases, we use the FISTA algorithm (Beck and Teboulle,
2009a) for solving the primal (37) and the dual subproblem (39). Moreover, to speedup
the computations, we further run these methods on the GPU [NVIDIA Quadro 4000].

(ii) FastAS: this method corresponds to the exact implementation of the fast active-set
method proposed in (Kim and Park, 2010) for solving the primal-dual (37).

(iii) BCDC: here, we consider the block-coordinate descent method implemented in (Hsieh
et al., 2011) for solving the primal subproblem (37).

We also compare the above variants of the proximal-Newton approach with (i) the proximal-
gradient method (Algorithm 4) denoted by ProxGrad1 and (ii) a precise MATLAB imple-
mentation of QUIC (MatQUIC), as described in (Hsieh et al., 2011). For the proximal-Newton
and MatQUIC approaches, we terminate the execution if the maximum number of iterations
exceeds 200 or the total execution time exceeds the 5 hours. The maximum number of
iterations in ProxGrad1 is set to 104.

The results are reported in Table 3. Overall, we observe that dFISTA shows superior
performance across the board in terms of computational time and the total number of
Cholesky decompositions required. Here, #nnz represents the number of nonzero entries
in the final solution. The notation “−” indicates that the algorithms exceed either the
maximum number of iterations or the time limit (5 hours).

397



Tran-Dinh, Kyrillidis, and Cevher

If the parameter ρ is relatively large (i.e., the solution is expected to be quite sparse),
FastAS, BCDC and MatQUIC perform well and converge in a reasonable time. This is expected
since all three approaches vastly rely on the sparsity of the solution: the sparser the solution
is, the faster their computations are performed, as restricted on the active set of variables.
However, when ρ is small, the performance of these methods significantly degrade due to
the increased number of active (non-zero) entries.

Aside from the above, ProxGrad1 performs well in terms of computational time, as com-
pared to the rest of the methods. Unfortunately, the number of Cholesky decompositions
in this method can become as many as the number of iterations, which indicates a com-
putational bottleneck in high-dimensional problem cases. Moreover, when ρ is small, this
method also slows down and requires more iterations to converge.

On the other hand, we also note that pFISTA is rather sensitive to the accuracy of the
subsolver within the quadratic convergence region. In fact, while pFISTA reaches medium
scale accuracies in a manner similar to dFISTA, it spends most of its iterations trying to
achieve the higher accuracy values.

5.2 Proximal-Gradient Algorithm in Action

In this subsection, we illustrate the performance of proximal gradient algorithm in practice
on various problems with different regularizers.

5.2.1 Linear Convergence

To show the linear convergence of ProxGrad1 (Algorithm 2) in practice, we consider the
following numerical test. Our experiment is based on the Lymph and Estrogen problems
downloaded from http://ima.umn.edu/~maxxa007/send_SICS/. For both problem cases,
we use different values for ρ as ρ = [0.1 : 0.05 : 0.6] in MATLAB notation. For each
configuration, we measure the quantity:

ckres :=

∥∥(Dk −∇2f(x∗))dkg
∥∥∗

x∗

‖dkg‖x∗
, (51)

for few last iterations. This quantity can be referred to as the restricted approximation
gap of Dk to ∇2f(x∗) along the proximal-gradient direction dkg . We first run the proximal-
Newton method up to 10−16 accuracy to obtain the solution x∗ and then run the proximal-
gradient algorithm up to 10−8 accuracy to compute ckres and the norm ‖xk − x∗‖x∗ . From
the proof of Theorem 14, we can show that if ckres < 0.5 for sufficiently large k, then the
sequence

{
xk
}
k≥0

locally converges to x∗ at a linear rate. We note that this condition is
much weaker than the last condition given in Theorem 14 but more difficult to interpret.
Note that the requirement in Theorem 14 leads to a restriction on the condition number
of ∇2f(x∗) to be less than 3. We perform this test on two problem instances with 11
different values of the regularization parameter and then compute the median of ckres for
each problem. Figure 4 shows the median of the restricted approximation gap ckres and the
real condition number of ∇2f(x∗), respectively.

As expected, we observe that the real condition number of ∇2f(x∗) increases as the
regularization parameter decreases. Moreover, the last condition given in Theorem 14 does
not hold in this example. However, if we look at the restricted condition number computed
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Figure 4: For each test case: (Left) Restricted approximation gap ckres (Right) The actual
condition number of ∇2f(x∗).

by (51), we can observe that for ρ & 0.3, this value is strictly smaller than 0.5. In this case,
the local linear convergence is actually observed in practice.

While ckres < 0.5 is only a sufficient condition and can possibly be improved, we find
it to be a good indicator of the convergence behavior. Figure 5 shows the last 100 iter-
ations of our gradient method for the Lymph problem with ρ = 0.15 and ρ = 0.55. The
number of iterations needed to achieve the final solution in these cases is 1525 and 140,
respectively. In the former case, the calculated restricted condition number is above 0.5
and the final convergence rate suffers. For instance, the contraction factor κ in the esti-
mate

∥∥xk+1 − x∗
∥∥

x∗
≤ κ

∥∥xk − x∗
∥∥

x∗
is close to 1 when ρ = 0.15, while it is smaller when

ρ = 0.55. We can observe from Figure 5 (left) that the error ‖xk − x∗‖x∗ drops rapidly
at the last few iterations due to the affect of the bisection procedure, where we check the
condition (30) for λk < 1.
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Figure 5: Linear convergence of ProxGrad1 for Lymph: Left: ρ = 0.15 and Right: ρ = 0.55.

5.2.2 TV`1-regularizer

In this experiment, we consider the Poisson intensity reconstruction problem, where the
regularizer g, the TV`1-norm which is called the anisotropic-TV; as an example, cf. (Beck
and Teboulle, 2009b). Hence, we implement Algorithm 5 (ProxGrad2) to solve (3), improve
it using the greedy step-size modification as described in Section 3.3 (ProxGrad2g), and
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compare its performance with the state-of-the-art Sparse Poisson Intensity Reconstruction
Algorithms (SPIRAL-TAP) toolbox (Harmany et al., 2012).

As a termination criterion, we have ‖dkg‖2 ≤ 10−5 max
{

1, ‖xk‖2
}

or when the ob-
jective value does not significantly change after 5 successive iterations, i.e., for each k,∣∣f(xk+j)− f(xk)

∣∣ ≤ 10−8 max
{

1,
∣∣f(xk)

∣∣} for j = 1, . . . , 5.
We first illustrate the convergence behavior of the three algorithms under comparison.

We consider two image test cases: house and cameraman, and we set the regularization
parameter of the TV`1-norm to ρ = 2.5 × 10−5. Figure 9 illustrate the convergence of the
algorithms both in iteration count and the timing.
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Figure 6: Convergence of three algorithms for house (top) and cameraman (bottom). Left:
in iteration scale Right: in time log-scale.

Overall, ProxGrad2g exhibits the best convergence behavior in terms of iterations and
time. Due to the inaccurate solutions of the subproblem (49), the methods might exhibit
oscillations. Since SPIRAL-TAP employs a Barzilai-Borwein step-size and performs a line-
search procedure up to very small step-size, the objective value is not sufficiently decreased;
as a result of this, we observe more oscillations in the objective value.

In stark contrast, ProxGrad2 and ProxGrad2g use the Barzilai-Borwein step-size as an
initial-guess for computing a search direction and then use the step-size correction procedure
to ensure that the objective function decreases a certain amount at each iteration. This
strategy turns out to be more effective since milder oscillations in the objective values are
observed in practice (which are due to the inaccuracy of the TV-proximal operator).

Finally, we test the performance of ProxGrad2, ProxGrad2g and SPIRAL-TAP on 4 dif-
ferent image cases: barbara, cameraman, house and lena. We set ρ to two different
values: ρ ∈ {10−5, 2.5 · 10−5}. These values are chosen in order to obtain the best visual
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Orginal image Poisson noise image Reconstructed image [ProxGrad2] Reconstructed image [SPRIAL−TAP]

Figure 7: The reconstructed images for barbara (ρ = 2.5× 10−5)

reconstructions (e.g., see Figure 7) and are previously used in (Harmany et al., 2012). The
summary results reported in Table 4. Here, AC denotes the multiplicative factor in time ac-
celeration of ProxGrad2 as compared to SPIRAL-TAP, and ∆F is the difference between the
corresponding obtained objective values between ProxGrad2 and SPIRAL-TAP (a positive
∆F means that SPIRAL-TAP obtains a higher objective value at termination).

ProxGrad2g / ProxGrad2 / SPIRAL-TAP

Image ρ× 10−5 #iteration CPU time [s] AC Fkmin ∆F

house 1.0 116 256 500 27.45 56.95 1658.00 60 29 -10718352.93 0.31 0.70
(256× 256) 2.5 92 244 500 18.18 50.26 1431.94 79 28 -10711758.80 3.20 3.32

barbara 1.0 200 324 500 46.92 77.77 1204.36 26 15 -7388497.47 0.05 0.30
(256× 256) 2.5 164 268 500 36.45 67.98 1620.95 44 24 -7377424.50 1.90 2.02

cameraman 1.0 396 516 500 99.56 117.75 389.79 4 3 -9186631.65 0.19 0.07
(256× 256) 2.5 256 368 500 59.75 85.25 1460.62 24 17 -9175307.33 2.29 2.31

lena 1.0 152 220 500 27.43 41.31 1212.69 44 29 -5797053.79 0.10 0.10
(204× 204) 2.5 304 184 500 59.20 36.77 1132.04 19 31 -5789554.53 1.52 1.25

Table 4: The results and performance of three algorithms

From Table 4 we observe that ProxGrad2 and ProxGrad2g are superior to SPIRAL-TAP,
both in terms of CPU time and the final objective value in majority of problems. As the
table shows, ProxGrad2g can be 4 to 79 times faster than SPIRAL-TAP. Moreover, it reports
a better objective values in all cases.

5.2.3 A Comparison to Standard Gradient Methods Based on FL Assumption

In this subsection, we use the LASSO problem (50) with unknown variance as a simple test
case to illustrate the improvements over the “standard” methods. Note that the standard
Lipschitz gradient assumption no longer holds in this example due to the log-term log(σ).
For this comparison, we dub our algorithm as ProxGrad3(g) and compare it against a state-
of-the-art TFOCS software package (Becker et al., 2011). The input data is synthetically
generated based on the linear model y = Xβ∗ + s, where β is the true sparse parameter
vector; X is a Gaussian n × p matrix and s ∼ N (0, σ2), where σ = 0.01. In TFOCS, we
configure the Nesterov’s accelerated algorithm with two proximal operations (TFOCS-N07)
and adaptive restart as well as the standard gradient method (TFOCS-GRA). Both options
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use a backtracking step-size selection procedure due to the presence of the logarithmic term
in the objective.

As we can see in Figure 9 and Table 5 that ProxGrad3g performs the best and manages
to converge to a high accuracy solution at a linear rate in both examples. Interestingly, we
find the per iteration complexity of ProxGrad3g is similar to ProxGrad3 and TFOCS-GRA.
In terms of per iteration cost, TFOCS-N07 is the most expensive one as it uses dual prox
operations and adaptive restart, and requires more backtracking operations. Hence, while
it takes less iterations as compared to the TFOCS-GRA, it performs worse in terms of
timing. For illustration purposes, we ran the algorithms to high accuracy. However, if a
typical stopping criteria such as 10−6 is used, our algorithm ProxGrad3g obtains ×3 to ×8
speed-ups over the standard gradient algorithm with backtracking enhancements.
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Figure 8: Convergence plots of algorithms under comparison for n = 3000 and p = 10000.
From left to right, ρ = 10−3, 2

3 · 10−4, 5 · 10−4.
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Figure 9: Convergence plots of algorithms under comparison for n = 15000 and p = 50000.
From left to right, ρ = 2 · 10−4, 4

3 · 10−4, 10−4.

6. Conclusions

We propose a variable metric method for minimizing convex functions that are compositions
of proximity functions with self-concordant smooth functions. Our framework does not
rely on the usual Lipschitz gradient assumption on the smooth part for its convergence
theory. A highlight of this work is the new set of analytic step-size selection and correction
procedures, which are best matched to the underlying problem structures. Our empirical
results illustrate that the new theory leads to significant improvements in the practical
performance of the algorithmic instances when tested on a variety of different applications.

In this work, we present a convergence proof for composite minimization problems under
the assumption of exact algorithmic calculations at each step of the methods. As future
research direction, an interesting problem to pursue is the extension of this analysis to
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Problem ProxGrad3 / ProxGrad3g / TFOCS-N07 / TFOCS-GRA

(3000, 10000) #iteration CPU time [s] ‖β‖0 ‖β̂‖0 Overlap (%)

ρ = 10−3 36 24 79 88 1.0096 0.7862 3.2759 1.7648

360

166 44.72

ρ = 2
3
· 10−4 54 54 94 119 1.2974 1.2918 3.6499 2.4002 378 92.22

ρ = 5 · 10−4 78 78 97 166 1.7420 1.7513 3.7794 3.3416 412 100

(15000, 50000) #iteration CPU time [s] ‖β‖0 ‖β̂‖0 Overlap (%)

ρ = 2 · 10−4 36 30 99 110 21.7937 19.3241 82.3298 46.0475

1800

845 44.98

ρ = 4
3
· 10−4 60 54 108 136 31.7884 29.1194 89.4279 57.9088 1886 87.91

ρ = 10−4 90 90 113 166 44.2692 44.0611 95.3060 70.0946 2201 100

Table 5: Metadata on the Lasso problem with unknown variance

include inexact calculations and study how these errors propagate into the convergence and
convergence rate guarantees (Kyrillidis et al., 2014). We hope this paper triggers future
efforts along this direction.
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Appendix A. Technical proofs

In this appendix, we provide the detailed proofs of the theoretical results in the main text.
It consists of global convergence and local convergence rate of our algorithms and other
technical proofs.

A.1 Proof of Lemma 4

Since g is convex, we have g(y) ≥ g(x) + vT (y − x) for all v ∈ ∂g(x). By adding this
inequality to (9) and noting that F (x) := f(x) + g(x), we obtain

F (y) ≥ F (x) + (∇f(x) + v)T (y − x) + ω(‖y − x‖x)
(52)

≥ F (x)− λ(x) ‖y − x‖x + ω(‖y − x‖x).

Here, the last inequality is due to the generalized Cauchy-Schwartz inequality and λ(x) :=
‖∇f(x) + v‖∗x. Let LF (F (x)) := {y ∈ dom(F ) | F (y) ≤ F (x)} be a sublevel set of F .
Then, for any y ∈ LF (F (x)), we have F (y) ≤ F (x) which leads to

λ(x) ‖y − x‖x ≥ ω(‖y − x‖x),

due to (52). Let s(t) := ω(t)
t = 1− ln(1+t)

t . The last inequality leads to s(‖y − x‖x) ≤ λ(x).
Since the equation ln(1 + t) = (1− λ(x)) has unique solution t∗ > 0 if λ(x) < 1. Moreover,
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the function s is strictly increasing and s(t) < 1 for t ≥ 0, which leads to 0 ≤ t ≤ t∗. Since
s(‖y − x‖x) ≤ λ(x), we have ‖y − x‖x ≤ t∗. Thus, LF (F (x)) is bounded. Hence, x∗ exists
due to the well-known Weierstrass theorem.

The uniqueness of x∗ follows from the strict increase of ω(·). Indeed, for any x ∈ dom(F ),
by the convexity of g we have g(x)− g(x∗) ≥ vT∗ (x− x∗), where v∗ ∈ ∂g(x∗). By the self-
concordant property of f , we also have f(x)− f(x∗) ≥ ∇f(x∗)T (x− x∗) + ω(‖x− x∗‖x∗).
Adding these inequalities and using the optimality condition (11), i.e., 0 = v∗ + ∇f(x∗),
we have F (x) − F (x∗) ≥ ω(‖x − x∗‖x∗). Now, let x̂∗ 6= x∗ is also an optimal solution of
(1). We have 0 = F (x̂∗)−F (x∗) ≥ ω(‖x−x∗‖x∗) > 0, which leads to a contradiction. This
implies that x∗ ≡ x̂∗. �

A.2 Proofs of Global Convergence: Theorem 6, Lemma 12 and Theorem 13

In this subsection, we provide the proofs of Theorem 6, Lemma 12 and Theorem 13 in a
unified fashion. We first provide a key result quantifying the improvement of the objective
as a function of the step-size αk.

Maximum decrease of the objective function: Let βk := ‖dk‖Hk , λk := ‖dk‖xk and:

xk+1 := xk + αkd
k = (1− αk)xk + αks

k,

where αk :=
β2
k

λk(λk+β2
k)
∈ (0, 1]. We will prove below that the following holds at each

iteration of the algorithms:

F (xk+1) ≤ F (xk)− ω
(
β2
k

λk

)
. (53)

Moreover, the choice of αk is optimal (in the analytical worst-case sense).
Proof Indeed, since g is convex and αk ∈ (0, 1], we have g(xk+1) = g

(
(1− αk)xk + αks

k
)
≤

(1− αk)g(xk) + αkg(sk), which leads to

g(xk+1)− g(xk) ≤ αk(g(sk)− g(xk)). (54)

For xk+1 ∈ dom(F ) so that ‖xk+1−xk‖xk < 1, the bound (10) holds. Combining (54) with
the self-concordant property (10) of f , we obtain

F (xk+1) ≤ F (xk) +∇f(xk)T (xk+1 − xk) + ω∗
(
‖xk+1 − xk‖xk

)
+ αk

(
g(sk)− g(xk)

)
(55)

(16)

≤ F (xk) + αk∇f(xk)Tdk + ω∗
(
αk‖dk‖xk

)
+ αk

(
g(sk)− g(xk)

)
.

Since sk is the unique solution of (15), by using the optimality condition (17), we get

−∇f(xk)−Hk(s
k − xk) ∈ ∂g(sk)⇒

(56)
−∇f(xk)T (sk − xk)− ‖sk − xk‖2Hk

∈ (sk − xk)T∂g(sk).

Combining (56) with g(xk)− g(sk) ≥ vT (xk − sk), v ∈ ∂(sk), due to the convexity of g(·),
we have

g(sk)− g(xk) ≤ −∇f(xk)T (sk − xk)− ‖sk − xk‖2Hk
. (57)
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Using (57) in (55) together with the definitions of βk and λk, we obtain

F (xk+1)
(16)

≤ F (xk)− αkβ2
k + ω∗ (αkλk) . (58)

Let us consider the function ϕ(α) := αβ2
k − ω∗(αλk). By the definition of ω∗(·), we can

easily show that ϕ(α) attains the maximum at:

αk :=
β2
k

λk(λk + β2
k)
, (59)

provided that αk ∈ (0, 1]. We note that the choice of αk as (59) preserves the condition
‖xk+1 − xk‖xk < 1. Moreover, ϕ(αk) = ω(β2

k/λk), which proves (53).

Proof of Theorem 6: Since Hk := ∇2f(xk), we observe βk := ‖dk‖Hk
≡ ‖dk‖xk =: λk,

where dk ≡ dkn. In this case, the step size αk in (59) becomes αk = 1
1+λk

which is in (0, 1).
Moreover, (53) reduces to:

F (xk+1) ≤ F (xk)− ω(λk),

which is indeed (21).

Finally, we assume that, for a given σ ∈ (0, 1), we have λk ≥ σ for 0 ≤ k ≤ kmax − 1.
Since ω strictly increases, it follows from (21) by induction that:

F (x∗) ≤ F (xk) ≤ F (x0)−
k−1∑
j=0

ω(λj) ≤ F (x0)− kω(σ).

This estimate shows that the number of iterations to reach λk < σ is at most kmax =⌊
F (x0)−F (x∗)

ω(σ)

⌋
+ 1. �

Proof of Lemma 12: Proof of Lemma 12 immediately follows from (53) by taking Hk ≡
Dk and dk ≡ dkg . �

Proof of Theorem 13: We consider the sequence
{
F (xk)

}
k≥0

. By Lemma 12, this

sequence is nonincreasing. Moreover, F (x0) ≥ F (xk) ≥ F (x∗) for all k ≥ 0. As a result,
the sequence

{
F (xk)

}
k≥0

converges to a finite value F ∗. By Lemma 12, we can derive

∞∑
j=0

ω

(
‖djg‖2Dj

‖djg‖xj

)
≤ F (x0)− F ∗ < +∞.

Since the function ω(τ) = τ − ln(1 + τ) ≥ τ2

4 for τ ∈ (0, 1] is increasing, this implies that

limj→∞ ‖djg‖22/‖djg‖xj = 0 due to the fact that Dk � LI � 0. Since LF (F (x0)) is bounded,
by applying Zangwill’s convergence theorem in (Zangwill, 1969), we can show that every
limit point x∗ of the sequence

{
xk
}
k≥0

is the stationary point of (11). Since x∗ is unique,

the whole sequence
{
xk
}
k≥0

converges to x∗. �
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A.3 Proofs of Local Convergence: Theorem 7, Theorem 11 and Theorem 14

We first provide a fixed-point representation of the optimality conditions and prove some
key estimates used in the sequel.

Optimality conditions as fixed-point formulations: Let f be a given standard self-
concordant function, g be a given proper, lower semicontinuous and convex function, and
Hk be a given symmetric positive definite matrix. Besides the two key inequalities (9) and
(10), we also need the following inequality (Nesterov and Nemirovski, 1994; Nesterov, 2004,
Theorem 4.1.6) in the proofs below:

(1− ‖y − x‖x)2∇2f(x) � ∇2f(y) � (1− ‖y − x‖x)−2∇2f(x), (60)

for any x,y ∈ dom(f) such that ‖y − x‖x < 1.
Let x∗ be the unique solution of (1) and x∗ be strongly regular, i.e., ∇2f(x∗) � 0.

Then the Dikin ellipsoid W (x∗, 1) := {x ∈ Rn | ‖x− x∗‖x∗ < 1} also belongs to dom(f).
Moreover, ∇2f(x) � 0 for all x ∈W (x∗, 1) due to (Nesterov, 2004, Theorem 4.1.5). Hence,
the strong regularity assumption is sufficient to ensure that ∇2f is positive definite in the
neighborhood W (x∗, 1).

For a fixed x̄ ∈ dom(F ), where F := f + g, we redefined the following operators, based
on the fixed-point characterization and (15):

P gx̄(z) := P g∇2f(x̄)
(z), Sx̄(z) := ∇2f(x̄)z−∇f(z), (61)

and
ex̄(Hk, z) :=

(
∇2f(x̄)−Hk

)
(z− xk). (62)

Here, P gx̄ and Sx̄ can be considered as a generalized proximal operator of g and the gradient
step of f , respectively. While ex̄(Hk, ·) measures the error between ∇2f(x̄) and Hk along
the direction z− xk.

Next, given sk is the unique solution of (15), we characterize the optimality condition
of the original problem (1) and the subproblem (15) based on the P gx̄ , Sx̄ and ex̄(Hk, ·)
operators. From (17), we have

Sx̄(xk) + ex̄(Hk, s
k) ∈ ∇2f(x̄)sk + ∂g(sk).

By the definition of P gx̄ in (61), the above expression leads to

sk = P gx̄
(
Sx̄(xk) + ex̄(Hk, s

k)
)
. (63)

By replacing x̄ with x∗, i.e., the unique solution of (1), into (63) we obtain

sk = P gx∗
(
Sx∗(x

k) + ex∗(Hk, s
k)
)
. (64)

Moreover, if we replace Hk by ∇2f(x∗) (which is assumed to be positive definite) in the
fixed-point expression (12), we finally have

x∗ = P gx∗ (Sx∗(x
∗)) . (65)

Formulas (63) to (65) represent the fixed-point formulation of the optimality conditions.
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Key estimates: Let rk := ‖xk − x∗‖x∗ and λk be defined by (18). For any αk ∈ (0, 1],
we prove the following estimates:

‖sk+1
n − skn‖xk ≤

α2
kλ

2
k

1− αkλk
+

2αkλk − α2
kλ

2
k

(1− αkλk)2
‖dk+1‖xk , (66)

‖sk − x∗‖x∗ ≤
r2
k

1− rk
+ ‖(Hk −∇2f(x∗))dk‖∗x∗ , (67)

provided that αkλk < 1, rk < 1 and the first estimate (66) requires Hk = ∇2f(xk).
Proof First, by using the nonexpansiveness of P g

xk
in Lemma 2, it follows from (63) that:

‖sk+1 − sk‖xk =
∥∥∥P gxk(Sxk(xk+1) + exk(Hk+1, s

k+1))− P g
xk

(Sxk(xk) + exk(Hk, s
k))
∥∥∥

xk

(8)

≤
∥∥∥Sxk(xk+1) + exk(Hk, s

k)− Sx∗(x
∗)
∥∥∥∗

xk

≤
∥∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥∥∗
xk (68)

+
∥∥∥exk(Hk+1, s

k+1)− exk(Hk, s
k)
∥∥∥∗

xk

(i)
=
∥∥∥∫ 1

0

(
∇2f(xk + τ(xk+1 − xk))−∇2f(xk)

)
(xk+1 − xk)dτ

∥∥∥∗
xk

+
∥∥∥exk(Hk+1, s

k+1)− exk(Hk, s
k)
∥∥∥∗

xk
,

where (i) is due to the mean-value theorem, respectively.
Second, we estimate the first term in (68). For this purpose, we define

Σk :=
∫ 1

0

(
∇2f(xk + τ(xk+1 − xk))−∇2f(xk)

)
dτ,

Mk := ∇2f(xk)−1/2Σk∇2f(xk)−1/2.
(69)

Based on the proof of (Nesterov, 2004, Theorem 4.1.14), we can show that:

‖Mk‖2 ≤
‖xk+1 − xk‖xk

1− ‖xk+1 − xk‖xk
.

Using this estimate, the definition (69) and noting that xk+1 = xk + αkd
k, we obtain

‖Σk(x
k+1 − xk)‖∗xk =

[
(xk+1 − xk)TΣk∇2f(xk)−1Σk(x

k+1 − xk)
]1/2

=
[
(xk+1 − xk)T∇2f(xk)1/2MT

kMk∇2f(xk)1/2(xk+1 − xk)
]1/2

= ‖Mk∇2f(xk)1/2(xk+1 − xk)‖2
(i)

≤ ‖Mk‖2
[
(xk+1 − xk)T∇2f(xk)(xk+1 − xk)

]1/2
(70)

= ‖Mk‖2‖xk+1 − xk‖xk

≤
‖xk+1 − xk‖2

xk

1− ‖xk+1 − xk‖xk

=
α2
k‖dk‖2xk

1− αk‖dk‖xk
,
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where (i) is due to the Cauchy-Schwartz inequality.
Third, we consider the second term in (68) for Hk ≡ ∇2f(xk). By the definition of ex̄,

it is obvious that exk(∇2f(xk), sk) = 0. Hence, we have

T2 :=
∥∥exk(∇2f(xk+1), sk+1)− exk(∇2f(xk), sk)

∥∥∗
xk

=
∥∥exk(∇2f(xk+1), sk+1)

∥∥∗
xk

(71)

=
∥∥∥(∇2f(xk+1)−∇2f(xk)

)
dk+1

∥∥∥∗
xk
.

We now define the following quantity, whose spectral norm we bound below

Nk := ∇2f(xk)−1/2
(
∇2f(xk+1)−∇2f(xk)

)
∇2f(xk)−1/2. (72)

By applying (60) with x = xk and y = xk+1, we can bound the spectral norm of Nk as
follows:

‖Nk‖2 ≤ max
{

1−
(
1− ‖xk+1 − xk‖xk

)2
,
(
1− ‖xk+1 − xk‖xk

)−2 − 1
}

(73)

=
2‖xk+1 − xk‖xk − ‖xk+1 − xk‖2

xk

(1− ‖xk+1 − xk‖xk)2
.

Therefore, from (71) we can obtain the following estimate:

(T2)2 = exk(∇2f(xk+1), sk+1)T∇2f(xk)−1exk(∇2f(xk+1), sk+1)

= (dk+1)T ∇2f(xk)1/2 N2
k ∇2f(xk)1/2 dk+1 (74)

≤ ‖Nk‖22 ‖dk+1‖2xk .
By substituting (73) into (74) and noting that αkd

k = xk+1 − xk, we obtain

T2 ≤
2αk

∥∥dk∥∥
xk
− α2

k

∥∥dk∥∥2

xk

(1− αk ‖dk‖xk)2
‖dk+1‖xk . (75)

Now, by substituting (70) and (75) into (68) and noting that Hk ≡ ∇2f(xk), sk ≡ skn,
dk ≡ dkn and λk ≡

∥∥dkn∥∥xk
, we obtain

∥∥sk+1
n − skn

∥∥
xk
≤

α2
k

∥∥dkn∥∥2

xk

1− αk ‖dkn‖xk
+

2αk
∥∥dkn∥∥xk

− α2
k

∥∥dkn∥∥2

xk

(1− αk ‖dkn‖xk)2
‖dk+1

n ‖xk .

which is indeed (66).
Similarly to the proof of (68) and (70), we have

‖sk − x∗‖x∗
(65)
=
∥∥P gx∗(Sx∗(x

k) + ex∗(Hk, s
k))− P gx∗(Sx∗(x

∗))
∥∥

x∗

(8)

≤
∥∥Sx∗(x

k) + ex∗(Hk, s
k)− Sx∗(x

∗)
∥∥∗

x∗

≤
∥∥∥∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)

∥∥∥∗
x∗

+ ‖ex∗(Hk, s
k)‖∗x∗ (76)

=

∥∥∥∥∫ 1

0

(
∇2f(x∗ + τ(xk − x∗))−∇2f(x∗)

)
(xk − x∗)dτ

∥∥∥∥∗
x∗

+ ‖ex∗(Hk, s
k)‖∗x∗

(70)

≤ ‖xk − x∗‖2x∗
1− ‖xk − x∗‖x∗

+
∥∥ (Hk −∇2f(x∗)

)
dk
∥∥∗

x∗
,
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which is indeed (67) since rk = ‖xk − x∗‖x∗ .

Proof of Theorem 7: Since xk = skn − dkn due to (20), we have xk+1 = xk + αkd
k
n =

skn − (1− αk)dkn, which leads to

dk+1
n = sk+1

n − xk+1 = sk+1
n − skn + (1− αk)dkn.

By applying the triangle inequality to the above expression, we have

‖dk+1
n ‖xk = ‖sk+1

n − skn + (1− αk)dkn‖xk ≤ ‖sk+1
n − skn‖xk + (1− αk)‖dkn‖xk . (77)

Substituting (66) into (77) we obtain

‖dk+1
n ‖xk ≤

α2
kλ

2
k

1− αkλk
+

2αkλk − α2
kλ

2
k

(1− αkλk)2
‖dk+1‖xk + (1− αk)λk.

Rearranging this inequality we get

‖dk+1
n ‖xk ≤

(
(1− αkλk)

(
1− αk + (2α2

k − αk)λk
)

1− 4αkλk + 2α2
kλ

2
k

)
λk, (78)

provided that 1 − 4αkλk + 2α2
kλ

2
k > 0. Now, by applying (60) with x = xk and y = xk+1,

one can show that

‖dk+1
n ‖xk+1 ≤ ‖dk+1

n ‖xk
1− αk‖dkn‖xk

. (79)

We note that 1− 4αkλk + 2α2
kλ

2
k > 0 if αkλk < 1− 1/

√
2. By combining (78) and (79) we

obtain

‖dk+1
n ‖xk+1 ≤

(
1− αk + (2α2

k − αk)λk
1− 4αkλk + 2α2

kλ
2
k

)
λk,

which is (22).
Next, we consider the sequence

{
xk
}
k≥0

generated by damped step proximal Newton

method (20) with the step size αk = (1 + λk)
−1. It is clear that (22) is transformed into:

λk+1 ≤
2λk

1− 2λk − λ2
k

λk. (80)

Assuming λk ≤ σ̄ :=
√

5− 2, we can easily deduce that 2λk
1−2λk−λ2k

≤ 1 and thus, λk+1 ≤ λk.
By induction, if λ0 ≤ σ̄ then, λk+1 ≤ λk for all k ≥ 0. Moreover, we have λk+1 ≤

2
1−2σ̄−σ̄2λ

2
k, which shows that the sequence {λk}k≥0 converges to zero at a quadratic rate,

which completes the proof of part b).

Now, since αk = 1, the estimate (22) reduces to λk+1 ≤ λ2k
1−4λk+2λ2k

. By the same

argument as in the proof of part b), we can show that the sequence {λk}k≥0 converges to
zero at a quadratic rate.
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Finally, we prove the last statement in Theorem 7. By substituting Hk := ∇2f(xk) into
(66), we obtain

‖sk − x∗‖x∗ ≤
r2
k

1− rk
+ ‖(∇2f(xk)−∇2f(x∗))dk‖∗x∗ . (81)

Let T3 := ‖(∇2f(xk)−∇2f(x∗))dk‖∗x∗ . Similarly to the proof of (75), we can show that:

T3 ≤
[

2‖xk − x∗‖x∗ − ‖xk − x∗‖2x∗
(1− ‖xk − x∗‖x∗)2

]
‖dk‖x∗ ≤ αk

(2− rk)rk
(1− rk)2

(rk+1 + rk). (82)

Here the second inequality follows from the fact that ‖dk‖x∗ = αk‖xk+1−xk‖x∗ ≤ αk[‖xk+1−
x∗‖x∗ + ‖xk −x∗‖x∗ ] = αk(rk+1 + rk). We also have rk+1 = ‖xk+1−x∗‖x∗ = ‖(1−αk)xk +
αks

k − x∗‖x∗ ≤ (1− αk)rk + αk‖sk − x∗‖x∗ . Using these inequalities, (82) and (81) we get

rk+1 ≤ (1− αk)rk + αk
r2
k

1− rk
+ α2

k

(2− rk)rk
(1− rk)2

(rk+1 + rk). (83)

Rearranging this inequality to obtain

rk+1 ≤
(

1− αk + (2α2
k + 3αk − 2)rk + (1− αk − α2

k)r
2
k

1− 2(1 + α2
k)rk + (1 + α2

k)r
2
k

)
rk. (84)

We consider two cases:

Case 1: αk = 1: We have rk+1 ≤ 3−rk
1−4rk+2r2k

r2
k. Hence, if rk < 1−1/

√
2 then 1−4rk+2r2

k > 0.

Moreover, rk+1 ≤ rk if 3rk − r2
k < 1 − 4rk + 2r2

k, which is satisfied if rk < (7 −
√

37)/6 ≈
0.152873. Now, if we assume that r0 ≤ σ ∈ (0, (7 −

√
37)/6), then, by induction, we have

rk+1 ≤ 3−σ
1−4σ+2σ2 r

2
k. This shows that {rk}k≥0 locally converges to 0+ at a quadratic rate.

Since rk :=
∥∥xk − x∗

∥∥
x∗

, we can conclude that xk → x∗ at a quadratic rate as k →∞.

Case 2: αk = (1 + λk)
−1: Since λk =

∥∥xk+1 − xk
∥∥

xk
≤ ‖x

k+1−x∗‖
x∗+‖xk−x∗‖

x∗

1−‖xk−x∗‖
x∗

=
rk+1+rk

1−rk .

We have 1 − αk ≤ rk+1+rk
(1+λk)(1−rk) ≤

rk+1+rk
1−rk . Substituting this into (83) and using the fact

that αk ≤ 1, we have

rk+1 ≤
(rk+1 + rk)rk

1− rk
+

r2
k

1− rk
+

(2− rk)rk
(1− rk)2

(rk+1 + rk).

Rearranging this inequality, we finally get

rk+1 ≤
4− 3rk

1− 5rk + 3r2
k

r2
k. (85)

Since 1− 5rk + 3r2
k > 0 if rk < (5−

√
13)/6, we can see from (85) that rk < (9−

√
57)/12 ≈

0.120847 then rk+1 ≤ rk. By induction, if we choose r0 ≤ σ̄ ∈ (0, (9−
√

57)/12) then rk+1 ≤
4−3σ̄

1−5σ̄+3σ̄2 r
2
k, which shows that {rk}k≥0 converges to 0+ at a quadratic rate. Consequently,

the sequence
{
xk
}
k≥0

locally converges to x∗ at a quadratic rate. �
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Proof of Theorem 11: We first prove the statement (a). Since xk+1 ≡ skq due to (25),
from (67) we have

rk+1 ≤
r2
k

1− rk
+
∥∥ (Hk −∇2f(x∗)

)
(xk+1 − xk)

∥∥∗
x∗
. (86)

Now, by using the condition (26), we can easily show that the sequence
{
xk
}
k≥0

converges

super-linearly to x∗ provided that
∥∥x0 − x∗

∥∥
x∗
≤ ρ0 < 1.

Next, we prove the statement (b). It is well-known (see, e.g., Nocedal and Wright
(2006)) that if matrix Hk is positive definite and (yk)T (zk) > 0 then the matrix Hk+1

updated by (24) is also positive definite. Indeed, we have (yk)T (zk) =
∫ 1

0 (zk)T∇2f(xk +
tzk)zkdt. Therefore, under the condition

∥∥zk∥∥
xk

< 1, we can show that (yk)T (zk) ≥
(zk)T∇2f(xk)zk =

∥∥zk∥∥2

xk
> 0. By multiplying (24) by zk we can easily see that Hk+1

satisfies the secant equation (23).

Finally, we estimate
∥∥yk −∇2f(x∗)zk

∥∥∗
x∗

as follows:

‖yk −∇2f(x∗)zk‖∗x∗ ≤
rk + rk+1

(1− rk)(1− rk+1)
‖zk‖x∗ . (87)

Now, by assumption that
∑∞

k=0 rk < +∞, we obtain from (87) that
∑∞

k=0 εk < +∞, where

εk :=
rk+rk+1

(1−rk)(1−rk+1) . By applying (Byrd and Nocedal, 1989, Theorem 3.2.), we can show

that the Dennis-Moré condition (26) is satisfied. This implies that the sequence
{
xk
}
k≥0

generated by scheme (25) converges super-linearly to x∗. �
Proof of Theorem 14: For

∥∥xk − x∗
∥∥

x∗
< 1, from (67), we have

‖skg − x∗‖x∗ ≤
‖xk − x∗‖2x∗

1− ‖xk − x∗‖x∗
+
∥∥ (Dk −∇2f(x∗)

)
dk
∥∥∗

x∗
. (88)

Now, using the condition
∥∥(Dk −∇2f(x∗)

)
dk
∥∥∗

x∗
≤ (1/2)‖dkg‖x∗ , (88) implies:

‖skg − x∗‖x∗ ≤
‖xk − x∗‖2x∗

1− ‖xk − x∗‖x∗
+ γ‖dkg‖x∗

≤ ‖xk − x∗‖2x∗
1− ‖xk − x∗‖x∗

+ γ‖skg − x∗‖x∗ + γ‖xk − x∗‖x∗ ,

where γ ∈ (0, 1/2). Rearranging this inequality, we obtain

‖skg − x∗‖x∗ ≤
1

1− γ

(
γ +

‖xk − x∗‖x∗
1− ‖xk − x∗‖x∗

)
‖xk − x∗‖x∗ . (89)

Now, since xk+1 = xk + αkd
k
g = (1− αk)xk + αks

k
g , we can further estimate from (89) as

‖xk+1 − x∗‖x∗ ≤ (1− αk)‖xk − x∗‖x∗ + αk‖skg − x∗‖x∗
(90)

≤
[
1− αk +

αk
1− γ

(
γ +

‖xk − x∗‖x∗
1− ‖xk − x∗‖x∗

)]
‖xk − x∗‖x∗ .
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Let us define ψ̃k := (1 − αk) + αk
1−γ

(
γ +

‖xk−x∗‖
x∗

1−‖xk−x∗‖
x∗

)
. Then, for γ < 1/2, ψ̃k < 1 if∥∥xk − x∗

∥∥
x∗

< 1−2γ
2(1−γ) . Therefore, by induction, if we choose

∥∥x0 − x∗
∥∥

x∗
< 1−2γ

2(1−γ) , then∥∥xk − x∗
∥∥

x∗
< 1−2γ

2(1−γ) for all k ≥ 0. Moreover,
∥∥xk+1 − x∗

∥∥
x∗
≤ ψ̃k

∥∥xk − x∗
∥∥

x∗
for k ≥ 0

and ψ̃k ∈ [0, 1). This implies that
{∥∥xk − x∗

∥∥
x∗

}
k≥0

linearly converges to zero with the

factor ψ̃k.

Finally, we assume that Dk := LkI, the quantity in (72) satisfies

N∗ := ∇2f(x∗)−1/2
(
∇2f(x∗)−Hk

)
∇2f(x∗)−1/2 = I− Lk∇2f(x∗)−1.

Then, we can easily observe that:

‖N∗‖2 =
∥∥I− Lk∇2f(x∗)−1

∥∥
2
≤ max

{∣∣∣1− Lk
σ∗min

∣∣∣, ∣∣∣1− Lk
σ∗max

∣∣∣} := γ∗, (91)

where σ∗min (respectively, σ∗max) is the smallest (respectively, largest) eigenvalue of ∇2f(x∗).
Using the estimate (91), we can derive

∥∥ (Dk −∇2f(x∗)
)
dkg
∥∥∗

x∗

(91)

≤ ‖N∗‖2‖sk − xk‖x∗ ≤ γ∗‖dkg‖x∗ ,

which proves the last conclusion of Theorem 14. �
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Abstract

The problem of estimating high-dimensional network models arises naturally in the analysis
of many biological and socio-economic systems. In this work, we aim to learn a network
structure from temporal panel data, employing the framework of Granger causal models
under the assumptions of sparsity of its edges and inherent grouping structure among its
nodes. To that end, we introduce a group lasso regression regularization framework, and
also examine a thresholded variant to address the issue of group misspecification. Further,
the norm consistency and variable selection consistency of the estimates are established, the
latter under the novel concept of direction consistency. The performance of the proposed
methodology is assessed through an extensive set of simulation studies and comparisons
with existing techniques. The study is illustrated on two motivating examples coming from
functional genomics and financial econometrics.

Keywords: Granger causality, high dimensional networks, panel vector autoregression
model, group lasso, thresholding

1. Introduction

We consider the problem of learning a directed network of interactions among a number of
entities from time course data. A natural framework to analyze this problem uses the no-
tion of Granger causality (Granger, 1969). Originally proposed by C.W. Granger this notion
provides a statistical framework for determining whether a time series X is useful in fore-
casting another one Y , through a series of statistical tests. It has found wide applicability
in economics, including testing relationships between money and income (Sims, 1972), gov-
ernment spending and taxes on economic output (Blanchard and Perotti, 2002), stock price
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and volume (Hiemstra and Jones, 1994), etc. More recently the Granger causal framework
has found diverse applications in biological sciences including functional genomics, systems
biology and neurosciences to understand the structure of gene regulation, protein-protein
interactions and brain circuitry, respectively.

It should be noted that the concept of Granger causality is based on associations be-
tween time series, and only under very stringent conditions, true causal relationships can
be inferred (Pearl, 2000). Nonetheless, this framework provides a powerful tool for under-
standing the interactions among random variables based on time course data.

Network Granger causality (NGC) extends the notion of Granger causality among two
variables to a wider class of p variables. Such extensions involving multiple time series are
handled through the analysis of vector autoregressive processes (VAR) (Lütkepohl, 2005).
Specifically, for p stationary time series Xt

1, . . . , X
t
p, with Xt = (Xt

1, . . . , X
t
p)
′, one considers

the class of models

Xt = A1Xt−1 + . . .+AdXt−d + εt, (1)

where A1, A2, . . . , Ad are p × p real-valued matrices, d is the unknown order of the VAR
model and the innovation process satisfies εt ∼ N(0, σ2I). In this model, the time series
{Xt

j} is said to be Granger causal for the time series {Xt
i} if Ahi,j 6= 0 for some h = 1, . . . , d.

Equivalently we can say that there exists an edge Xt−h
j → Xt

i in the underlying network

model comprising of (d + 1) × p nodes (see Figure 1). We call A1, . . . , Ad the adjacency
matrices from lags 1, . . . , d. Note that the entries Ahij of the adjacency matrices are not

binary indicators of presence/absence of edges between two nodes Xt
i and Xt−h

j . Rather,
they represent the direction and strength of influence from one node to the other.

TT-1T-2T-3

Group 1

Group 2

VAR(2) model with two non-overlapping groups
T = 4, d=2, p=6, G=2

T-2T-3 T-1T-2T-3 TT-1T-2T-3

Figure 1: An example of a Network Granger causal model with two non-overlapping groups
observed over T = 4 time points
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The temporal structure induces a natural partial order among the nodes of this network,
which in turn simplifies significantly the corresponding estimation problem (Shojaie and
Michailidis, 2010a) of a directed acyclic graph. Nevertheless, one still has to deal with
estimating a high-dimensional network (e.g., hundreds of genes) from a limited number of
samples.

The traditional asymptotic framework of estimating VAR models requires observing a
long, stationary realization {X1, . . . , XT , T → ∞ , p, d fixed} of the p-dimensional time
series. This is not appropriate in many biological applications for the following reasons.
First, long stationary time series are rarely observed in these contexts. Second, the number
of time series (p) being large compared to T , the task of consistent order (d) selection using
standard criteria (e.g., AIC or BIC) becomes challenging. Similar issues arise in many
econometric applications where empirical evidence suggests lack of stationarity over a long
time horizon, although the multivariate time series exhibits locally stable distributional
properties.

A more suitable framework comes from the study of panel data, where one observes
several replicates of the time series, with possibly short T , across a panel of n subjects. In
biological applications replicates are obtained from test subjects. In the analysis of macroe-
conomic variables, households or firms typically serve as replicates. After removing panel
specific fixed effects one treats the replicates as independent samples, performs regression
analysis under the assumption of common slope structure and studies the asymptotic prop-
erties under the regime n → ∞. Recent works of Cao and Sun (2011) and Binder et al.
(2005) analyze theoretical properties of short panel VARs in the low-dimensional setting
(n→∞, T, p fixed).

The focus of this work is on estimating a high-dimensional NGC model in the panel
data context (p, n large, T small to moderate). This work is motivated by two application
domains, functional genomics and financial econometrics. In the first application (presented
in Section 6) one is interested in reconstructing a gene regulatory network structure from
time course data, a canonical problem in functional genomics (Michailidis, 2012). The
second motivating example examines the composition of balance sheets of the n = 50
largest US banks by size, over T = 9 quarterly periods, which provides insight into their
risk profile.

The nature of high-dimensionality in these two examples comes from both estimation of
p2 coefficients for each of the adjacency matrices A1, . . . , Ad, but also from the fact that the
order of the time series d is often unknown. Thus, in practice, one must either “guess” the
order of the time series (often times, it is assumed that the data is generated from a VAR(1)
model, which can result in significant loss of information), or include all of the past time
points, resulting in significant increase in the number of variables in cases where d � T .
Thus, efficient estimation of the order of the time series becomes crucial.

Latent variable based dimension reduction techniques like principal component analysis
or factor models are not very useful in this context since our goal is to reconstruct a network
among the observed variables. To achieve dimension reduction we impose a group sparsity
assumption on the structure of the adjacency matrices A1, . . . , Ad. In many applications,
structural grouping information about the variables exists. For example, genes can be
naturally grouped according to their function or chromosomal location, stocks according to
their industry sectors, assets/liabilities according to their class, etc. This information can
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be incorporated to the Granger causality framework through a group lasso penalty. If the
group specification is correct it enables estimation of denser networks with limited sample
sizes (Bach, 2008; Huang and Zhang, 2010; Lounici et al., 2011). However, the group lasso
penalty can achieve model selection consistency only at a group level. In other words, if
the groups are misspecified, this procedure can not perform within group variable selection
(Huang et al., 2009), an important feature in many applications.

Over the past few years, several authors have adopted the framework of network Granger
causality to analyze multivariate temporal data. For example, Fujita et al. (2007) and
Lozano et al. (2009) employed NGC models coupled with penalized `1 regression methods
to learn gene regulatory mechanisms from time course microarray data. Specifically, Lozano
et al. (2009) proposed to group all the past observations, using a variant of group lasso
penalty, in order to construct a relatively simple Granger network model. This penalty
takes into account the average effect of the covariates over different time lags and connects
Granger causality to this average effect being significant. However, it suffers from significant
loss of information and makes the consistent estimation of the signs of the edges difficult
(due to averaging). Shojaie and Michailidis (2010b) proposed a truncating lasso approach
by introducing a truncation factor in the penalty term, which strongly penalizes the edges
from a particular time lag, if it corresponds to a highly sparse adjacency matrix.

Despite recent use of NGC in applications involving high dimensional data, theoretical
properties of the resulting estimators have not been fully investigated. For example, Lozano
et al. (2009) and Shojaie and Michailidis (2010b) discuss asymptotic properties of the re-
sulting estimators, but neither addresses in depth norm consistency properties, nor do they
examine under what vector autoregressive structures the obtained results hold.

In this paper, we develop a general framework that accommodates different variants of
group lasso penalties for NGC models. It allows for the simultaneous estimation of the order
of the times series and the Granger causal effects; further, it allows for variable selection
even when the groups are misspecified. In summary, the key contributions of this work
are: (i) investigate in depth sufficient conditions that explicitly take into consideration the
structure of the VAR(d) model to establish norm consistency, (ii) introduce the novel notion
of direction consistency, which generalizes the concept of sign consistency and provides
insight into the properties of group lasso estimates within a group, and (iii) use the latter
notion to introduce an easy to compute thresholded variant of group lasso, that performs
within group variable selection in addition to group sparsity pattern selection even when
the group structure is misspecified.

All the obtained results are non-asymptotic in nature, and hence help provide insight
into the properties of the estimates under different asymptotic regimes arising from varying
growth rates of T, p, n, group sizes and the number of groups.

2. Model and Framework

Notation. Consider a VAR model

Xt︸︷︷︸
p×1

= A1︸︷︷︸
p×p

Xt−1 + . . .+AdXt−d + εt, εt ∼ N(0p×1, σ
2Ip×p), (2)
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observed over T time points t = 1, . . . , T , across n panels. The index set of the variables
Np = {1, 2, . . . , p} can be partitioned into G non-overlapping groups Gg, i.e., Np = ∪Gg=1Gg
and Gg ∩ Gg′ = φ if g 6= g′. Also kg = |Gg| denotes the size of the gth group with kmax =
max

1≤g≤G
kg. In general, we use λmin and λmax to denote the minimum and maximum of a

finite collection of numbers λ1, . . . , λm.

For any matrix A, we denote the ith row by Ai:, j
th column by A:j and the collection of

rows (columns) corresponding to the gth group by A[g]: (A:[g]). The transpose of a matrix A
is denoted by A′ and its Frobenius norm by ||A||F . For a symmetric/Hermitian matrix Σ,
its maximum and minimum eigenvalues are denoted by Λmin(Σ) and Λmax(Σ), respectively.
The symbol A1:h is used to denote the concatenated matrix

[
A1 : · · · : Ah

]
, for any h > 0.

For any matrix or vector D, ‖D‖0 denotes the number of non-zero coordinates in D. For
notational convenience, we reserve the symbol ‖.‖ to denote the `2 norm of a vector and/or
the spectral norm of a matrix. For a pre-defined set of non-overlapping groups G1, . . . ,GG
on {1, . . . , p}, the mixed norms of vectors v ∈ Rp are defined as ‖v‖2,1 =

∑G
g=1 ‖v[g]‖ and

‖v‖2,∞ = max1≤g≤G ‖v[g]‖. Also for any vector β, we use βj to denote its jth coordinate

and β[g] to denote the coordinates corresponding to the gth group. We also use supp(v) to
denote the support of v, i.e., supp(v) = {j ∈ {1, . . . , p}|vj 6= 0}.

Network Granger causal (NGC) estimates with group sparsity. Consider n
replicates from the NGC model (2), and denote the n× p observation matrix at time t by
X t. In econometric applications the data on p economic variables across n panels (firms,
households etc.) can be observed over T time points. For time course microarray data
one typically observes the expression levels of p genes across n subjects over T time points.
After removing the panel specific fixed effects one assumes the common slope structure and
independence across the panels. The data are high-dimensional if either T or p is large
compared to n. In such a scenario, we assume the existence of an underlying group sparse
structure, i.e., for every i = 1, . . . , p, the support of the ith row of A1:T−1 =

[
A1 : · · · : AT−1

]
in the model (2) can be covered by a small number of groups si, where si � (T −1)G. Note
that the groups can be misspecified in the sense that the coordinates of a group covering
the support need not be all non-zero. Hence, for a properly specified group structure we
shall expect si � ‖A1:T

i: ‖0. On the contrary, with many misspecified groups, si can be of
the same order, or even larger than ‖A1:T

i: ‖0.

Learning the network of Granger causal effects {(i, j) ∈ {1, . . . , p} : Atij 6= 0 for some t}
is equivalent to recovering the correct sparsity pattern in A1:(T−1) and consistently estimat-
ing the non-zero effects Atij . In the high-dimensional regression problems this is achieved by
simultaneous regularization and selection operators like lasso and group lasso. The group
Granger causal estimates of the adjacency matrices A1, . . . , AT−1 are obtained by solving
the following optimization problem

Â1:T−1 = argmin
A1,··· ,AT−1

1

2n

∥∥∥∥∥X T −
T−1∑
t=1

X T−t
(
At
)′∥∥∥∥∥

2

F

+ λ

T−1∑
t=1

p∑
i=1

G∑
g=1

wti,g‖Ati:[g]‖, (3)

where X t is the n × p observation matrix at time t, constructed by stacking n replicates
from the model (2), wt is a p × G matrix of suitably chosen weights and λ is a common
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regularization parameter. The optimization problem can be separated into the following p
penalized regression problems:

Â1:T−1
i: = argmin

θ1,··· ,θT−1∈Rp

1

2n
‖X T:i −

T−1∑
t=1

X T−tθt‖2 + λ
T−1∑
t=1

G∑
g=1

wti,g‖θt[g]‖, i = 1, · · · , p. (4)

The order d of the VAR model is estimated as d̂ = max
1≤t≤T−1

{t : Ât 6= 0}.

Different choices of weights wti:g lead to different variants of NGC estimates. The regular

NGC estimates correspond to the choices wti,g = 1 or
√
kg, while for adaptive group NGC

estimates the weights are chosen as wti,g =
∥∥∥Âti:[g]∥∥∥−1

, where Ât are obtained from a regular

NGC estimation. For Âti:[g] = 0, the weight wti,g is infinite, which is interpreted as
discarding the variables in group g from the optimization problem.

Thresholded NGC estimates are calculated by a two-stage procedure. The first stage
involves a regular NGC estimation procedure. The second stage uses a bi-level thresholding
strategy on the estimates Ât. First, the estimated groups with `2 norm less than a threshold
(δgrp = cλ, c > 0) are set to zero. The second level of thresholding (within group) is applied
if the a priori available grouping information is not entirely reliable. Âtijwithin an estimated

group Âti:[g] is thresholded to zero if
∣∣∣Âtij∣∣∣ / ∥∥∥Âti:[g]∥∥∥ is less than a threshold δmisspec ∈ (0, 1).

So, for every t = 1, . . . , T − 1, if j ∈ Gg, the thresholded NGC estimates are

Ãtij = ÂtijI
{∣∣∣Âtij∣∣∣ ≥ δmisspec ∥∥∥Âti:[g]∥∥∥} I {∥∥∥Âti:[g]∥∥∥ ≥ δgrp} .

The tuning parameters λgrp and δmisspec are chosen via cross-validation. The rationale
behind this thresholding strategy is discussed in Section 4.

3. Estimation Consistency of NGC estimates

In this section we establish the norm consistency of regular group NGC estimates. The
regular NGC estimates in (3) are obtained by solving p separate group lasso programs
with a common design matrix Xn×p(T−1) = [X 1 : · · · : X T−1]. This design matrix has
p̄ = (T −1)p columns which can be partitioned into Ḡ = (T −1)G groups {G1, . . . ,GḠ}. We
denote the sample Gram matrix by C = X ′X/n. For the ith optimization problem, these
Ḡ = (T − 1)G groups are penalized by λ(t−1)G+g := λwti,g, 1 ≤ t ≤ T − 1, 1 ≤ g ≤ G, with
the choice of weights wti,g described in Section 2. Following Lounici et al. (2011) one can
establish a non-asymptotic upper bound on the `2 estimation error of the NGC estimates
Ât under certain restricted eigenvalue (RE) assumptions. These assumptions are common
in the literature of high-dimensional regression (Lounici et al., 2011; Bickel et al., 2009;
van de Geer and Bühlmann, 2009) and are known to be sufficient to guarantee consistent
estimation of the regression coefficients even when the design matrix is singular. Of main
interest, however, is to investigate the validity of these assumptions in the context of NGC
models. This issue is addressed in Proposition 3.2.
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For L > 0, we say that a Restricted Eigenvalue (RE) assumption RE(s, L) is satisfied
if there exists a positive number φRE = φRE(s) > 0 such that

min
J⊂NḠ, |J |≤s
∆∈Rp̄\{0}

 ‖X∆‖√
n‖∆[J ]‖

:
∑
g∈Jc

λg‖∆[g]‖ ≤ L
∑
g∈J

λg‖∆[g]‖

 ≥ φRE . (5)

The following proposition provides a non-asymptotic upper bound on the `2-estimation
error of the group NGC estimates under RE assumptions. The proof follows along the lines
of Lounici et al. (2011) and is delegated to Appendix C.

Proposition 3.1 Consider a regular NGC estimation problem (4) with smax = max1≤i≤p si
and s =

∑p
i=1 si. Suppose λ in (3) is chosen large enough so that for some α > 0,

λg ≥
2σ√
n

√∥∥C[g][g]

∥∥(√kg +
π√
2

√
α log Ḡ

)
for every g ∈ NḠ, (6)

Also assume that the common design matrix X = [X 1 : · · · : X T−1] in the p regression
problems (4) satisfy RE(2smax, 3). Then, with probability at least 1− 2pḠ1−α,∥∥∥Â1:T−1 −A1:T−1

∥∥∥
F
≤ 4

√
10

φ2
RE(2smax)

λ2
max

λmin

√
s. (7)

Remark. Consider a high-dimensional asymptotic regime where Ḡ � nB for some
B > 0, kmax/kmin = O(1), s = O(na1) and kmax = O(na2) with 0 < a1, a2 < a1 + a2 < 1 so
that the total number of non-zero effects is o(n). If {‖C[g][g]‖, g ∈ NḠ} are bounded above
(often accomplished by standardizing the data) and φ2

RE(2smax) is bounded away from zero
(see Proposition 3.2 for more details), then the NGC estimates are norm consistent for any
choice of α > 2 + a2/B.

Note that group lasso achieves faster convergence rate (in terms of estimation and pre-
diction error) than lasso if the groups are appropriately specified. For example, if all the
groups are of equal size k and λg = λ for all g, then group lasso can achieve an `2 estimation

error of order O
(√

s(
√
k +

√
log Ḡ)/

√
n
)

. In contrast, lasso’s error is known to be of the

order O
(√
‖A1:d‖0 log p̄/n

)
, which establishes that group lasso has a lower error bound if

s� ‖A1:d‖0. On the other hand, lasso will have a lower error bound if s � ‖A1:d‖0, i.e., if
the groups are highly misspecified.

Validity of RE assumption in Group NGC problems. In view of Theorem 3.1,
it is important to understand how stringent the RE condition is in the context of NGC
problems. It is also important to find a lower bound on the RE coefficient φRE , as it affects
the convergence rate of the NGC estimates. For the panel-VAR setting, we can rigorously
establish that the RE condition holds with overwhelming probability, as long as n, p grow
at the same rate required for `2-consistency.

The following proposition achieves this objective in two steps. Note that each row of the
design matrix X (common across the p regressions) is independently distributed as N(0,Σ)
where Σ is the variance-covariance matrix of the (T − 1)p-dimensional random variable
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(
(X1)′, . . . , (XT−1)′

)′
. First, we exploit the spectral representation of the stationary VAR

process to provide a lower bound on the minimum eigenvalue of Σ. In the next step, we
establish a suitable deviation bound on X−Σ to prove that X satisfies RE condition with
high probability for sufficiently large n.

Proposition 3.2 (a) Suppose the VAR(d) model of (2) is stable, stationary. Let Σ be the
variance-covariance matrix of the (T−1)p-dimensional random variable

(
(X1)′, . . . , (XT−1)′

)′
.

Then the minimum eigenvalue of Σ satisfies

Λmin(Σ) ≥ σ2

[
max

θ∈[−π,π]
‖A(e−iθ)‖

]−2

≥ σ2

[
1 +

d∑
t=1

‖At‖

]−2

≥ σ2

[
1 +

1

2
(vin + vout)

]−2

,

where A(z) := I − A1z − A2z2 − . . . − Adzd is the reverse characteristic polynomial of the
VAR(d) process, and vin, vout are the maximum incoming and outgoing effects at a node,
cumulated across different lags

vin =

d∑
t=1

max
1≤i≤p

p∑
j=1

|Atij |, vout =

d∑
t=1

max
1≤j≤p

p∑
i=1

|Atij |.

(b) In addition, suppose the replicates from different panels are i.i.d. Then, for any s > 0,
there exist universal positive constants ci such that if the sample size n satisfies

n >
Λ2

max(Σ)

Λ2
min(Σ)

(2 + Lλmax/λmin)4 c0s(kmax + c1 log(eḠ/2s)),

then X satisfies RE(s, L) with φ2
RE ≥ Λmin(Σ)/2 with probability at least 1− c2 exp(−c3 n).

Remark. Proposition 3.2 has two interesting consequences. First, it provides a lower
bound on the RE constant φRE which is independent of T . So if the high dimensionality
in the Granger causal network arises only from the time domain and not the cross-section
(T → ∞, p, G fixed), the stationarity of the VAR process guarantees that the rate of
convergence depends only on the true order (d), and not T . Second, this result shows that
the NGC estimates are consistent even if the node capacities vin and vout grow with n, p
at an appropriate rate.

4. Variable Selection Consistency of NGC estimates

In view of (4), to study the variable selection properties of NGC estimates it suffices to
analyze the variable selection properties of p generic group lasso estimates with a common
design matrix.

The problem of group sparsity selection has been thoroughly investigated in the litera-
ture (Wei and Huang, 2010; Lounici et al., 2011). The issue of selection and sign consistency
within a group, however, is still unclear. Since group lasso does not impose sparsity within
a group, all the group members are selected together (Huang et al., 2009) and it is not
clear which ones are recovered with correct signs. This also leads to inconsistent variable
selection if a group is misspecified, i.e., not all the members within a group have non-zero

424



NGC with Inherent Grouping

effect. Several alternate penalized regression procedures have been proposed to overcome
this shortcoming (Breheny and Huang, 2009; Huang et al., 2009). The main idea behind
these procedures is to combine `2 and `1 norms in the penalty to encourage sparsity at
both group and variable level. These estimators involve nonconvex optimization problems
and are computationally expensive. Also their theoretical properties in a high dimensional
regime are not well studied.

We take a different approach to deal with the issue of group misspecification. Although
the group lasso penalty does not perform exact variable selection within groups, it performs
regularization and shrinks the individual coefficients. We utilize this regularization to detect
misspecification within a group. To this end, we formulate a generalized notion of sign
consistency, henceforth referred as “direction consistency”, that provides insight into the
properties of group lasso estimates within a single group. Subsequently, these properties
are used to develop a simple, easy to compute, thresholded variant of group lasso which, in
addition to group selection, achieves variable selection and sign consistency within groups.

We consider a generic group lasso regression problem of the linear model y = Xβ0 + ε
with p variables partitioned into G non-overlapping groups {G1, . . . ,GG} of size kg, g =
1, . . . , G. Without loss of generality, we assume β0

[g] 6= 0 for g ∈ S = {1, 2, . . . , s} and

β0
[g] = 0 for all g /∈ S and consider the following group lasso estimate of β0:

β̂ = argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

G∑
g=1

λg‖β[g]‖, (8)

β0︸︷︷︸
p×1

= [β0
[1], . . . , β

0
[s]︸ ︷︷ ︸

k1+...+ks=q

,0, . . . ,0︸ ︷︷ ︸
p−q

] = [β0
(1) : β0

(2)], (9)

X︸︷︷︸
n×p

= [X(1)︸︷︷︸
n×q

: X(2)︸︷︷︸
n×(p−q)

], C =
1

n
X′X =

[
C11 C12

C21 C22

]
. (10)

Direction Consistency. For an m-dimensional vector τ ∈ Rm\{0} define its direc-
tion vector D(τ) = τ/‖τ‖ , D(0) = 0. In the context of a generic group lasso regression
(10), for a group g ∈ S of size kg, D(β0

[g]) indicates the direction of influence of β0
[g] at a

group level in the sense that it reflects the relative importance of the influential members
within the group. Note that for kg = 1 the function D(·) simplifies to the usual sgn(·)
function.

Definition. An estimate β̂ of a generic group lasso problem (8) is direction consis-
tent at a rate δn, if there exists a sequence of positive real numbers δn → 0 such that

P
(
‖D(β̂[g])−D(β0

[g])‖ < δn, ∀g ∈ S, β̂[g] = 0, ∀g /∈ S
)
→ 1 as n, p→∞. (11)

Now suppose β̂ is a direction consistent estimator. Consider the set S̃ng := {j ∈ Gg :

|β0
j | / ‖β0

[g]‖ > δn}. S̃ng can be viewed as a collection of influential group members within
a group Gg, which are “detectable” with a sample of size n. Then, it readily follows from
the definition that

P(sgn(β̂j) = sgn(βj), ∀j ∈ S̃ng , ∀g ∈ {1, . . . , s})→ 1 as n, p→∞. (12)
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The latter observation connects the precision of group lasso estimates to the accuracy of
a priori available grouping information. In particular, if the pre-specified grouping structure
is correct, i.e., all the members within a group have non-zero effects, then for a sufficiently
large sample size we have S̃ng = Gg for all g ∈ S. Hence, if the group lasso estimate is
direction consistent, it will correctly estimate the sign of all the variables in the support.
On the other hand, in case of a misspecified a priori grouping structure (numerous zero
coordinates in βg for g ∈ S), group lasso will correctly estimate only the signs of the
influential group members. This argument on zero vs. non-zero effects can be generalized
to strong vs. weak effects, as well.

Example. We demonstrate the property of direction consistency using a small exam-
ple. Consider a linear model with 8 predictors

y = 0.5x1 − 3x2 + 3x3 + x4 − 2x5 + 3x8 + e, e ∼ N(0, 1).

The coefficient vector β0 is partitioned into four groups of size 2, viz., (0.5,−3), (3, 1), (−2, 0)
and (0, 3). The last two groups are misspecified. We generated n = 25 samples from this
model and ran group lasso regression with the above group structure. Figure 2 shows the
true coefficient vectors (solid) and their estimates (dashed) from five iterations of the above
exercise. Note that even though the `2 errors between β0

[g] and β̂[g] vary largely across the

four groups, the distance between their projections on the unit circle,
∥∥∥D(β0

[g])−D(β̂[g])
∥∥∥,

are comparatively stable across groups. In fact, Theorem 4.1 shows that under certain ir-
representable conditions (IC) on the design matrix, it is possible to find a uniform (over all
g ∈ S) upper bound δn on the `2 gap of these direction vectors. This motivates a natural
thresholding strategy to correct for the misspecification in groups (cf. Proposition 4.2).
Even though a group β0

[g] is misspecified (i.e., lies on a coordinate axis), direction consis-

tency ensures, with high probability, that the corresponding coordinate in D(β̂[g]) will be
smaller than a threshold δn which is common across all groups in the support.

Group Irrepresentable Conditions (IC). Next, we define the IC required for di-
rection consistency of group lasso estimates. Irrepresentable conditions are common in the
literature of high-dimensional regression problems (Zhao and Yu, 2006; van de Geer and
Bühlmann, 2009) and are shown to be sufficient (and essentially necessary) for selection
consistency of the lasso estimates. Further these conditions are known to be satisfied with
high probability, if the population analogue of the Gram matrix belongs to the Toeplitz fam-
ily (Zhao and Yu, 2006; Wainwright, 2009). In NGC estimation the population analogue of
the Gram matrix Σ = V ar(X1:(T−1)) is block Toeplitz, so the irrepresentable assumptions
are natural candidates for studying selection consistency of the estimates. Consider the
notations of (8) and (10). Define K = diag (λ1Ik1 , λ2Ik2 , . . . , λsIks).

Uniform Irrepresentable Condition (IC) is satisfied if there exists 0 < η < 1 such
that for all τ ∈ Rq with ‖τ‖2,∞ = max

1≤g≤s
‖τ[g]‖2 ≤ 1,

1

λg

∥∥∥∥[C21(C11)−1Kτ
]

[g]

∥∥∥∥ < 1− η, ∀g /∈ S = {1, . . . , s}. (13)

Note that the definition reverts to the usual IC for lasso when all groups correspond are
singletons.
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β[4] = (0, 3)  

β[1] = (0.5, -3)  

β[2] = (3, 1)  

β[3] = (-2, 0)  D(β[1]) – D( β[1]) 

Figure 2: Example demonstrating direction consistency

The IC is more stringent than the RE condition and is rarely met if the underlying model
is not sparse. It can be shown that a slightly weaker version of this condition is necessary
for direction consistency. We refer the readers to Appendix D for further discussion on the
different irrepresentable assumptions and their properties. Numerical evidence suggests that
the group IC tends to be less stringent than the IC required for the selection consistency of
lasso. We illustrate this using three small simulated examples.
Simulation 1. We constructed group sparse NGC models with T = 5, p = 21, G = 7, kg = 3
and different levels of network densities, where the network edges were selected at random
and scaled so that ‖A1‖ = 0.1. For each of these models, we generated 100 samples of size
n = 150 and calculated the proportions of times the two types of irrepresentable conditions
were met. The results are displayed in Figure 3a.
Simulation 2. We selected a VAR(1) model from the above class and generated samples
of size n = 20, 50, . . . , 250. Figure 3b displays the proportions of times (based on 100
simulations) the two ICs were met.
Simulation 3. We generated n = 200 samples from the VAR(1) model of example 2
for T = 2, 3, 4, 5, 10, . . . , 40. Figure 3c displays the proportions of times (based on 100
simulations) the two ICs were met.
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Figure 3: Comparison of lasso and group irrepresentable conditions in the context of group
sparse NGC models. (a) group ICs tend to be met for dense networks where lasso
IC fails to meet. (b) For the same network group IC is met with smaller sample
size than required by lasso. (c) For longer time series group IC is satisfied more
often than lasso IC.

Selection consistency for generic group lasso estimates. For simplicity, we dis-
cuss the selection consistency properties of a generic group lasso regression problem with a
common tuning parameter across groups, i.e., λg = λ for every g ∈ NG. Similar results can
be obtained for more general choices of the tuning parameters.

Theorem 4.1 Assume that the group uniform IC holds with 1− η for some η > 0. Then,
for any choice of α > 0,

λ ≥ max
g/∈S

1

η

σ√
n

√∥∥∥(C22)[g][g]

∥∥∥(√kg +
π√
2

√
α log G

)
and

δn ≥ max
g∈S

1∥∥∥β0
[g]

∥∥∥
(
λ
√
s
∥∥(C11)−1

∥∥+
σ√
n

√∥∥∥(C11)−1
[g][g]

∥∥∥(√kg +
π√
2

√
α log G

))
,

with probability greater than 1− 4G1−α, there exists a solution β̂ satisfying

1. β̂[g] = 0 for all g /∈ S,

2.
∥∥∥β̂[g] − β0

[g]

∥∥∥ < δn

∥∥∥β0
[g]

∥∥∥, and hence
∥∥∥D(β̂[g])−D(β0

[g])
∥∥∥ < 2δn , for all g ∈ S. If

δn < 1, then β̂[g] 6= 0 for all g ∈ S.

Remark. The tuning parameter λ can be chosen of the same order as required for `2
consistency to achieve selection consistency within groups in the sense of (12). Further,
with the above choice of λ, δn can be chosen of the order of O(

√
s(
√
kmax +

√
log G)/

√
n).

Thus, group lasso correctly identifies the group sparsity pattern and is direction consistent
if
√
s(
√
kmax +

√
log G)/

√
n→ 0, the same scaling required for `2 consistency.
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Thresholding in Group NGC estimators. As described in Section 2, regular group
NGC estimates can be thresholded both at the group and coordinate levels. The first level of
thresholding is motivated by the fact that lasso can select too many false positives [cf. van de
Geer et al. (2011), Zhou (2010) and the references therein]. The second level of thresholding
employs the direction consistency of regular group NGC estimates to perform within group
variable selection with high probability. The following proposition demonstrates the benefit
of these two types of thresholding. The second result is an immediate corollary of Theorem
4.1. Proof of the first result (thresholding at group level) requires some additional notations
and is delegated to Appendix E.

Theorem 4.2 Consider a generic group lasso regression problem (8) with common tuning
parameter λg = λ.

(i) Assume the RE(s, 3) condition of (5) holds with a constant φRE and define β̂thgrp[g] =

β̂[g]1‖β̂[g]‖>4λ. If Ŝ = {g ∈ NG : β̂thgrp[g] 6= 0}, then |Ŝ\S| ≤ s
φ2
RE/12

, with probability at least

1− 2G1−α.
(ii) Assume that uniform IC holds with 1 − η for some η > 0. Choose λ and δn as in
Theorem 4.1 and define

β̂thgrpj = β̂j1{|β̂j |/‖β̂[g]‖ > 2 δn} for all j ∈ Gg.

Then sgn(β0
j ) = sgn(β̂thgrpj ) ∀ j ∈ Np with probability at least 1− 4G1−α, if min

j∈supp(β0)
|β0
j | >

2δn ‖β0
[g]‖ for all j ∈ Gg, i.e., if the effect of every non-zero member in a group is “visible”

relative to the total effect from the group.

5. Performance Evaluation

We evaluate the performances of regular, adaptive and thresholded variants of the group
NGC estimators through an extensive simulation study, and compare the results to those
obtained from lasso estimates. The R package grpreg (Breheny and Huang, 2009) was used
to obtain the group lasso estimates. The settings considered are:
(a) Balanced groups of equal size: i.i.d samples of size n = 60, 110, 160 are generated from
lag-2 (d = 2) VAR models on T = 5 time points, comprising of p = 60, 120, 200 nodes
partitioned into groups of equal size in the range 3-5.
(b) Unbalanced groups: We retain the same setting as before, however the corresponding
node set is partitioned into one larger group of size 10 and many groups of size 5.
(c) Misspecified balanced groups: i.i.d samples of size n = 60, 110, 160 are generated from lag-
2 (d = 2) VAR models on T = 10 time points, comprising of p = 60, 120 nodes partitioned
into groups of size 6. Further, for each group there is a 30% misspecification rate, namely
that for every parent group of a downstream node, 30% of the group members do not exert
any effect on it.

Using a 19 : 1 sample-splitting, the tuning parameter λ is chosen from an interval of
the form [C1λe, C2λe], C1, C2 > 0, where λe =

√
2 log p/n for lasso and

√
2 log G/n for

group lasso. The thresholding parameters are selected as δgrp = 0.7λσ at the group level
and δmisspec = n−0.2 within groups. These parameters are chosen by conducting a 20-fold
cross-validation on independent tuning data sets of same sizes, using intervals of the form
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Figure 4: Estimated adjacency matrices of a misspecified NGC model with p = 60, T =
10, n = 60: (a) True, (b) Lasso, (c) Group Lasso, (d) Thresholded Group Lasso.
The grayscale represents the proportion of times an edge was detected in 100
simulations.

[C3λ,C4λ] for δgrp and {n−δ, δ ∈ [0, 1]} for δmisspec. Finally, within group thresholding is
applied only when the group structure is misspecified.

The following performance metrics were used for comparison purposes: (i) Precision =
TP/(TP + FP ) , (ii) Recall = TP/(TP + FN) and (iii) Matthew’s Correlation coefficient
(MCC) defined as

(TP × TN)− (FP × FN)

((TP + FP )× (TP + FN)× (TN + FP )× (TN + FN))1/2
,

where TP , TN , FP and FN correspond to true positives, true negatives, false positives and
false negatives in the estimated network, respectively. The average and standard deviations
(over 100 replicates) of the performance metrics are presented for each setup.

The results for the balanced settings are given in Table 1. The Recall for p = 60 shows
that even for a network with 60× (5− 1) = 240 nodes and |E| = 351 true edges, the group
NGC estimators recover about 71% of the true edges with a sample size as low as n = 60,
while lasso based NGC estimates recover only 31% of the true edges. The three group NGC
estimates have comparable performances in all the cases. However thresholded lasso shows
slightly higher precision than the other group NGC variants for smaller sample sizes (e.g.,
n = 60, p = 200). The results for p = 60, n = 110 also display that lower precision of
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p = 60, |E| = 351 p = 120, |E| = 1404 p = 200, |E| = 3900
Group Size=3 Group Size=3 Group Size=5

n 160 110 60 160 110 60 160 110 60
P Lasso 80(2) 75(2) 66(4) 69(1) 62(2) 52(2) 52(1) 47(1) 38(1)

Grp 95(2) 91(4) 83(7) 91(3) 80(5) 68(7) 78(4) 72(3) 59(6)
Thgrp 96(1) 92(3) 86(6) 93(3) 83(5) 70(7) 82(4) 76(3) 64(6)
Agrp 96(2) 92(4) 83(7) 92(3) 82(5) 69(7) 81(3) 74(3) 60(6)

R Lasso 71(2) 54(2) 31(2) 54(1) 40(1) 22(1) 38(1) 28(1) 15(1)
Grp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(1) 70(2) 41(4)
Thgrp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(2) 69(2) 41(3)
Agrp 99(1) 93(3) 71(7) 91(2) 81(2) 47(8) 84(1) 69(2) 40(4)

MCC Lasso 75(2) 63(2) 45(3) 60(1) 49(1) 33(1) 43(1) 35(1) 23(1)
Grp 97(1) 92(3) 76(5) 91(1) 80(2) 56(2) 81(2) 70(2) 48(2)
Thgrp 98(1) 93(2) 78(5) 92(1) 81(2) 57(3) 83(2) 72(2) 50(3)
Agrp 97(1) 92(3) 76(5) 91(1) 81(2) 56(3) 82(2) 71(2) 48(2)

ERR Lasso 10.5 11.3 13.9 16.63 17.37 16.69 19.79 20 18.52
LAG Grp 3.19 6.95 12.76 4.86 10.77 12.65 4.21 5.27 7.8

Thgrp 2.83 5.87 10.01 3.98 9.03 11.19 3.06 3.91 5.68
Agrp 3.13 6.89 12.59 4.63 10.37 12.34 3.58 4.87 7.59

Table 1: Performance of different regularization methods in estimating graphical Granger
causality with balanced group sizes and no misspecification; d = 2, T = 5,
SNR = 1.8. Precision (P ), Recall (R), MCC are given in percentages (numbers in
parentheses give standard deviations). ERR LAG gives the error associated with
incorrect estimation of VAR order.

lasso is caused partially by its inability to estimate the order of the VAR model correctly,
as measured by ERR LAG=Number of falsely connected edges from lags beyond the true
order of the VAR model divided by the number of edges in the network (|E|). This finding
is nicely illustrated in Figure 4 and Table 1. The group penalty encourages edges from the
nodes of the same group to be picked up together. Since the nodes of the same group are
also from the same time lag, the group variants have substantially lower ERR LAG. For
example, average ERR LAG of lasso for p = 200, n = 160 is 19.79% while the average ERR
LAGs for the group lasso variants are in the range 3.06%− 4.21%.

The results for the unbalanced networks are given in Table 2. As in the balanced group
setup, in almost all the simulation settings the group NGC variants outperform the lasso
estimates with respect to all three performance metrics. However the performances of the
different variants of group NGC are comparable and tend to have higher standard deviations
than the lasso estimates. Also the average ERR LAGs for the group NGC variants are
substantially lower than the average ERR LAG for lasso demonstrating the advantage of
group penalty. Although the conclusions regarding the comparisons of lasso and group NGC
estimates remain unchanged it is evident that the performances of all the estimators are
affected by the presence of one large group, skewing the uniform nature of the network. For
example the MCC measures of group NGC estimates in a balanced network with p = 60
and |E| = 351 vary around 97 − 98% which lowers to 89% − 90% when the groups are
unbalanced.

The results for misspecified groups are given in Table 3. Note that for higher sample
size n, the MCC of lasso and regular group lasso are comparable. However, the thresholded
version of group lasso achieves significantly higher MCC than the rest. This demonstrates
the advantage of using the directional consistency of group lasso estimators to perform
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p = 60, |E| = 450 p = 120, |E| = 1575 p = 200, |E| = 4150
Groups=1× 10, 11× 5 Groups=1× 10, 23× 5 Groups=1× 10, 39× 5

n 160 110 60 160 110 60 160 110 60
P Lasso 72(2) 69(3) 62(2) 51(1) 48(1) 41(1) 61(1) 53(1) 42(2)

Grp 84(4) 79(6) 76(9) 55(5) 47(5) 40(6) 86(3) 77(5) 66(7)
Thgrp 86(4) 82(7) 78(11) 60(6) 50(7) 40(5) 88(2) 79(6) 69(6)
Agrp 85(3) 81(5) 77(9) 59(5) 51(5) 42(6) 88(2) 78(5) 67(6)

R Lasso 45(2) 35(2) 22(2) 43(1) 34(1) 22(1) 23(1) 15(0) 7(0)
Grp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)
Thgrp 95(2) 88(4) 62(8) 89(3) 77(4) 50(5) 73(3) 50(6) 21(5)
Agrp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)

MCC Lasso 56(2) 48(2) 35(2) 46(1) 39(1) 29(1) 36(1) 28(1) 17(1)
Grp 89(3) 82(4) 67(5) 68(3) 58(3) 42(3) 79(1) 61(3) 37(3)
Thgrp 90(3) 84(4) 68(6) 72(4) 61(4) 43(2) 80(1) 62(3) 37(3)
Agrp 89(3) 83(4) 67(6) 71(3) 60(3) 43(3) 79(1) 61(3) 37(3)

ERR Lasso 10.59 10.74 11.76 18.3 18.72 18.76 11.54 10.93 9.29
LAG Grp 7.04 9.85 13.04 12.53 14.71 13.06 4.8 6.41 6.85

Thgrp 6.58 8.98 11.1 9.6 11.9 10.9 4.06 5.65 5.7
Agrp 6.74 9.19 12.96 10.81 12.78 11.79 4.55 6.2 6.81

Table 2: Performance of different regularization methods in estimating graphical Granger
causality with unbalanced group sizes and no misspecification; d = 2, T = 5,
SNR = 1.8. Precision (P ), Recall (R), MCC are given in percentages (numbers in
parentheses give standard deviations). ERR LAG gives the error associated with
incorrect estimation of VAR order.

p = 60, |E| = 246 p = 120, |E| = 968
Group Size=6 Group Size=6

n 160 110 60 160 110 60
P Lasso 88(2) 85(3) 77(5) 59(1) 55(1) 49(2)

Grp 65(2) 66(2) 66(3) 43(3) 44(4) 38(4)
Thgrp 87(3) 88(3) 85(3) 56(6) 56(6) 51(7)
Agrp 65(2) 66(2) 66(3) 45(2) 45(4) 39(4)

R Lasso 80(3) 63(3) 37(2) 66(1) 54(1) 35(1)
Grp 100(0) 98(2) 82(6) 87(2) 78(3) 59(4)
Thgrp 100(0) 98(2) 79(6) 86(2) 79(3) 57(4)
Agrp 100(0) 98(2) 82(6) 86(2) 78(3) 58(3)

MCC Lasso 84(2) 73(2) 53(3) 62(1) 54(1) 41(1)
Grp 81(1) 80(2) 74(4) 61(2) 58(3) 47(2)
Thgrp 93(2) 93(2) 82(4) 69(4) 66(4) 53(3)
Agrp 81(1) 80(2) 74(4) 62(2) 59(2) 47(2)

ERR Lasso 12.63 17.05 22.41 45.09 49.68 53.4
LAG Grp 9.43 8.78 15.12 18.22 18.43 29.26

Thgrp 6.45 5.34 8.02 11.81 12.84 15.57
Agrp 9.11 8.78 14.96 16.32 16.9 27.69

Table 3: Performance of different regularization methods in estimating graphical Granger
causality with misspecified groups (30% misspecification); d = 2, T = 10,
SNR = 2. Precision (P ), Recall (R), MCC are given in percentages (numbers
in parentheses give standard deviations). ERR LAG gives the error associated
with incorrect estimation of VAR order.
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Lasso Grp Agrp Thgrp

mean 0.649 0.456 0.457 0.456
stdev 0.340 0.252 0.251 0.252

Table 4: Mean and standard deviation of MSE for different NGC estimates

within group variable selection. We would like to mention here that a careful choice of the
thresholding parameters δgrp and δmisspec via cross-validation improves the performance of
thresholded group lasso; however, we do not pursue these methods here as they require grid
search over many tuning parameters or an efficient estimator of the degree of freedom of
group lasso.

In summary, the results clearly show that all variants of group lasso NGC outperform the
lasso-based ones, whenever the grouping structure of the variables is known and correctly
specified. Further, their performance depends on the composition of group sizes. On the
other hand, if the a priori known group structure is moderately misspecified lasso estimates
produce comparable results to regular and adaptive group NGC ones, while thresholded
group estimates outperform all other methods, as expected.

6. Application

Example: T-cell activation. Estimation of gene regulatory networks from expression
data is a fundamental problem in functional genomics (Friedman, 2004). Time course data
coupled with NGC models are informationally rich enough for the task at hand. The data for
this application come from Rangel et al. (2004), where expression patterns of genes involved
in T-cell activation were studied with the goal of discovering regulatory mechanisms that
govern them in response to external stimuli. Activated T-cells are involved in regulation
of effector cells (e.g., B-cells) and play a central role in mediating immune response. The
available data comprising of n = 44 samples of p = 58 genes, measure the cells response at
10 time points, t = 0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after their stimulation with a T-cell
receptor independent activation mechanism. We concentrate on data from the first 5 time
points, that correspond to early response mechanisms in the cells.

Genes are often grouped based on their function and activity patterns into biological
pathways. Thus, the knowledge of gene functions and their membership in biological path-
ways can be used as inherent grouping structures in the proposed group lasso estimates of
NGC. Towards this, we used available biological knowledge to define groups of genes based
on their biological function. Reliable information for biological functions were found from
the literature for 38 genes, which were retained for further analysis. These 38 genes were
grouped into 13 groups with the number of genes in different groups ranging from 1 to 5.

Figure 5 shows the estimated networks based on lasso and thresholded group lasso
estimates, where for ease of representation the nodes of the network correspond to groups
of genes. In this case, estimates from variants of group NGC estimator were all similar,
and included a number of known regulatory mechanisms in T-cell activation, not present in
the regular lasso estimate. For instance, Waterman et al. (1990) suggest that TCF plays a
significant role in activation of T-cells, which may describe the dominant role of this group
of genes in the activation mechanism. On the other hand, Kim et al. (2005) suggest that
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Figure 5: Estimated Gene Regulatory Networks of T-cell activation. Width of edges rep-
resent the number of effects between two groups, and the network represents the
aggregated regulatory network over 3 time points.

activated T-cells exhibit high levels of osteoclast-associated receptor activity which may
attribute the large number of associations between member of osteoclast differentiation and
other groups. Finally, the estimated networks based on variants of group lasso estimator
also offer improved estimation accuracy in terms of mean squared error (MSE) despite
having having comparable complexities to their regular lasso counterpart (Table 4), which
further confirms the findings of other numerical studies in that paper.

Example: Banking balance sheets application. In this application, we examine
the structure of the balance sheets in terms of assets and liabilities of the n = 50 largest
(in terms of total balance sheet size) US banking corporations. The data cover 9 quarters
(September 2009-September 2011) and were directly obtained from the Federal Deposit In-
surance Corporation (FDIC) database (available at www.fdic.gov). The p = 21 variables
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Figure 6: Estimated Networks of banking balance sheet variables using (a) lasso and (b)
group lasso. The networks represent the aggregated network over 5 time points.

correspond to different assets (US and foreign government debt securities, equities, loans
(commercial, mortgages), leases, etc.) and liabilities (domestic and foreign deposits from
households and businesses, deposits from the Federal Reserve Board, deposits of other fi-
nancial institutions, non-interest bearing liabilities, etc.) We have organized them into four
categories: two for the assets (loans and securities) and two for the liabilities (Balances
Due and Deposits, based on a $250K reporting FDIC threshold). Amongst the 50 banks
examined, one discerns large integrated ones with significant retail, commercial and invest-
ment activities (e.g., Citibank, JP Morgan, Bank of America, Wells Fargo), banks primarily
focused on investment business (e.g., Goldman Sachs, Morgan Stanley, American Express,
E-Trade, Charles Schwab), regional banks (e.g., Banco Popular de Puerto Rico, Comerica
Bank, Bank of the West).
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Quarter Lasso Grp Agrp Thgrp

Dec 2010 1.59 (0.29) 0.36 (0.05) 0.36 (0.05) 0.37 (0.05)
Mar 2011 1.46 (0.30) 0.47 (0.23) 0.47 (0.23) 0.46 (0.22)
Jun 2011 1.33 (0.26) 0.36 (0.11) 0.36 (0.11) 0.35 (0.11)
Sep 2011 1.72 (0.32) 0.50 (0.18) 0.50 (0.18) 0.47 (0.16)

Table 5: Mean and standard deviation (in parentheses) of PMSE (MSE in case of Dec 2010)
for prediction of banking balance sheet variables.

The raw data are reported in thousands of dollars. The few missing values were imputed
using a nearest neighbor imputation method with k = 5, by clustering them according to
their total assets in the most recent quarter in the data collection period (September 2011)
and subsequently every missing observation for a particular bank was imputed by the median
observation on its five nearest neighbors. The data were log-transformed to reduce non-
stationarity issues. The data set was restructured as a panel with p = 21 variables and
n = 50 replicates observed over T = 9 time points. Every column of replicates was scaled
to have unit variance.

We applied the proposed variants of NGC estimates on the first T = 6 time points (Sep
2009 - Dec 2010) of the above panel data set. The parameters λ and δgrp were chosen
using a 19 : 1 sample-splitting method and the misspecification threshold δmisspec was set
to zero as the grouping structure was reliable. We calculated the MSE of the fitted model
in predicting the outcomes in the four quarters (December 2010 - September 2011). The
Predicted MSE (MSE for Dec 2010) are listed in Table 5. The estimated network structures
are shown in Figure 6.

It can be seen that the lasso estimates recover a very simple temporal structure amongst
the variables; namely, that past values (in this case lag-1) influence present ones. Given the
structure of the balance sheet of large banks, this is an anticipated result, since it can not
be radically altered over a short time period due to business relationships and past com-
mitments to customers of the bank. However, the (adaptive) group lasso estimates reveal a
richer and more nuanced structure. Examining the fitted values of the adjacency matrices
At, we notice that the dominant effects remain those discovered by the lasso estimates.
However, fairly strong effects are also estimated within each group, but also between the
groups of the assets (loans and securities) on the balance sheet. This suggests rebalancing
of the balance sheet for risk management purposes between relatively low risk securities
and potentially more risky loans. Given the period covered by the data (post financial
crisis starting in September 2009) when credit risk management became of paramount im-
portance, the analysis picks up interesting patterns. On the other hand, significant fewer
associations are discovered between the liabilities side of the balance sheet. Finally, there
exist relationships between deposits and securities such as US Treasuries and other domestic
ones (primarily municipal bonds); the latter indicates that an effort on behalf of the banks
to manage the credit risk of their balance sheets, namely allocating to low risk assets as
opposed to more risky loans.

It is also worth noting that the group lasso model exhibits superior predictive perfor-
mance over the lasso estimates, even 4 quarters into the future. Finally, in this case the
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thresholded estimates did not provide any additional benefits over the regular and adaptive
variants, given that the specification of the groups was based on accounting principles and
hence correctly structured.

7. Discussion

In this paper, the problem of estimating Network Granger Causal (NGC) models with in-
herent grouping structure is studied when replicates are available. Norm, and both group
level and within group variable selection consistency are established under fairly mild as-
sumptions on the structure of the underlying time series. To achieve the second objective
the novel concept of direction consistency is introduced.

The type of NGC models discussed in this study have wide applicability in different
areas, including genomics and economics. However, in many contexts the availability of
replicates at each time point is not feasible (e.g., in rate of returns for stocks or other
macroeconomic variables), while grouping structure is still present (e.g., grouping of stocks
according to industry sector). Hence, it is of interest to study the behavior of group lasso
estimates in such a setting and address the technical challenges emanating from such a pure
time series (dependent) data structure.
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Appendix A. Auxiliary Lemmas

Lemma A.1 (Characterization of the Group lasso estimate) A vector β̂ ∈ Rp is a
solution to the convex optimization problem

argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

G∑
g=1

λg‖β[g]‖ (14)

if and only if β̂ satisfies, for some τ ∈ Rp with max1≤g≤G
∥∥τ[g]

∥∥ ≤ 1, 1
n

[
X ′(Y −Xβ̂)

]
[g]

=

λg τ[g] ∀g. Further, τ[g] = D
(
β̂[g]

)
whenever β̂[g] 6= 0.

Proof Follows directly from the KKT conditions for the optimization problem (14).

Lemma A.2 (Concentration bound for multivariate Gaussian) Let Zk×1 ∼ N(0,Σ).
Then, for any t > 0, the following inequalities hold:

P (|‖Z‖ − E‖Z‖| > t) ≤ 2 exp

(
− 2t2

π2‖Σ‖

)
, E ‖Z‖ ≤

√
k
√
‖Σ‖.
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Proof The first inequality can be found in Ledoux and Talagrand (1991) (equation (3.2).
To establish the second inequality note that,

E‖Z‖ ≤
√
E‖Z‖2 =

√
E [tr (ZZ ′)] =

√
tr (Σ) ≤

√
k
√
‖Σ‖.

Lemma A.3 Let β, β̂ ∈ Rm\{0}. Let û = β̂ − β and r = D(β̂) −D(β). Then ‖r‖ < 2δ
whenever ‖û‖ < δ ‖β‖.

Proof It follows from ‖û‖ < δ ‖β‖ that

(1− δ)‖β‖ < ‖β‖ − ‖û‖ ≤ ‖β̂‖ ≤ ‖û‖+ ‖β‖ < (1 + δ)‖β‖ ,

which implies that
∣∣∣‖β‖ − ‖β̂‖∣∣∣ < δ‖β‖. Now,

‖β̂‖ ‖β‖‖r‖ =
∥∥∥ β̂‖β‖+ (û− β̂)‖β̂‖

∥∥∥ ≤ ∥∥∥β̂ (‖β‖ − ‖β̂‖)+ ‖β̂‖ û
∥∥∥ < ‖β̂‖ ‖β‖(δ + δ),

since
∣∣∣‖β‖ − ‖β̂‖∣∣∣ < δ‖β‖ and ‖û‖ < δ ‖β‖.

Lemma A.4 Let G1, . . . ,GG be any partition of {1, . . . , p} into G non-overlapping groups
and λ1, . . . , λG be positive real numbers. Define the cone sets C(J, L) = {v ∈ Rp :

∑
g/∈J λg‖v[g]‖

≤ L
∑

g∈J λg‖v[g]‖} for any subset of groups J ⊆ NG. Also define the set of group s-sparse
vectors D(s) := {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NG, |J | ≤ s}. Then⋃

J⊆NG,|J |≤s

C(J, L) ∩ Sp−1 ⊆ (2 + L′)cl{conv{D(s)}}, (15)

where L′ = Lλmax/λmin, Sp−1 = {v ∈ Rp : ‖v‖ = 1} is the ball of unit norm vectors in Rp
and cl{.}, conv{.} respectively denote the closure and convex hull of a set.

Proof Note that for any J ⊆ NG, |J | ≤ s, and v ∈ C(J, L) ∩ Sp−1, we have∑
g/∈J

‖v[g]‖ ≤ L
λmax

λmin

∑
g∈J
‖v[g]‖,

which implies

‖v‖2,1 ≤ (L′ + 1)
∑
g∈J
‖v[g]‖ ≤ (L′ + 1)

√
s‖v[J ]‖ ≤ (L′ + 1)

√
s.

Hence the union of the cone sets on the left hand side of (15) is a subset of A := {v ∈ Rp :
‖v‖ ≤ 1, ‖v‖2,1 ≤ (L′ + 1)

√
s}.
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We will show that the set A is a subset of B := (2 + L′)cl{conv{D(s)}}, the closed
convex hull on the right hand side of (15). Since both sets A and B are closed convex, it is
enough to show that the support function of A is dominated by the support function of B.

The support function of A is given by φA(z) = supθ∈A〈θ, z〉. For any z ∈ Rp, let
S ⊆ {1, . . . , G} be a subset of top s groups in terms of the `2 norm of z[g]. Thus, ‖z[Sc]‖2,∞ ≤
‖z[g]‖ for all g ∈ S. This implies ‖z[Sc]‖2,∞ ≤ (1/s)‖z[S]‖2,1 ≤ (1/

√
s)‖z[S]‖. So, we have

φA(z) = sup
θ∈A
〈θ, z〉 ≤ sup

‖θ[S]‖≤1
〈θ[S], z[S]〉+ sup

‖θ[Sc]‖2,1≤
√
s(L′+1)

〈θ[Sc], z[Sc]〉 (16)

≤ ‖z[S]‖+ (L′ + 1)
√
s‖z[Sc]‖2,∞ ≤ (L′ + 2)‖z[S]‖. (17)

On the other hand, support function of B := (L′ + 2)cl{conv{D(s)}} is given by

φB(z) = sup
θ∈B
〈θ, z〉 = (L′ + 2) max

|U |=s, U⊆NG

sup
‖θ[U ]‖≤1

〈θ[U ], z[U ]〉 = (L′ + 2)‖z[S]‖.

This concludes the proof.

Lemma A.5 Consider a matrix Xn×p with rows independently distributed as N(0,Σ),
Λmin(Σ) > 0. Let G1, . . . ,GG be any partition of {1, . . . , p} into G non-overlapping groups
of size k1, . . . , kg, respectively. Let C = X ′X/n denote the sample Gram matrix and D(s)
denote the set of group s-sparse vectors defined in Lemma A.4. Then, for any integer s ≥ 1
and any η > 0, we have

P

[
sup

v∈cl{conv{D(s)}}
|v′(C − Σ)v| > 6η‖Σ‖

]
≤ c0 exp

[
−nmin{η, η2}+ c1s(kmax + c2 log (eG/2s))

]
(18)

for some universal positive constants ci.

Proof We consider a fixed vector v ∈ Rp with ‖v‖ ≤ 1, the support of which can be covered
by a set J of at most s groups, i.e., supp(v) ⊆ GJ , J ⊆ NG, |J | ≤ s. Define Y = Xv. Then
each coordinate of Y is independently distributed as N(0, σ2

y), where σ2
y = v′Σv ≤ ‖Σ‖.

Then, for any η > 0, Hanson-Wright inequality of Rudelson and Vershynin (2013)
ensures

P
[∣∣v′(C − Σ)v

∣∣ > η‖Σ‖
]
≤ P

[
1

n

∣∣Y ′Y − EY ′Y
∣∣ > ησ2

y

]
≤ 2 exp

[
−cnmin{η, η2}

]
.

Next, we extend this deviation bound on all vectors v in the sparse set

D(2s) = {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NG, |J | ≤ 2s} . (19)

For a given J ⊆ NG, |J | = 2s, we define DJ = {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ} and note
that D(2s) = ∪|J |=2sDJ . For an ε > 0 to be specified later, we construct an ε-net A of DJ .
Since

∑
g∈J kg ≤ 2s kmax, it is possible to construct such a net A with cardinality at most

(1 + 2/ε)2s kmax (Vershynin, 2009).
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We want a tail inequality for M := supv∈DJ
|v′∆v|, where ∆ = C − Σ. Since A is an

ε-cover of DJ , for any v ∈ DJ , there exists v0 ∈ A such that w = v − v0 satisfies ‖w‖ ≤ ε.
Then

|v′∆v| = |(w + v0)′∆(w + v0)| ≤ |w′∆w|+ |v′0∆v0|+ 2|v′0∆w|.

Taking supremum over all v ∈ DJ , and noting that w/ε ∈ DJ , we obtain

M ≤ ε2M + max
v0∈A

|v′0∆v0|+ sup
u,v∈DJ

2ε|u′∆v|. (20)

To upper bound the third term, note that (u+ v)/2 ∈ DJ , and

2|u′∆v| ≤ |(u+ v)′∆(u+ v)|+ |u′∆u|+ |v′∆v|.

Hence
sup

u,v∈DJ

2ε|u′∆v| ≤ 4εM + εM + εM = 6εM.

From equation (20), we now have

M ≤ (1− 6ε− ε2)−1 max
v0∈A

|v′0∆v0|.

Choosing ε > 0 small enough so that (1− 6ε− ε2) > 1/2, we obtain

P

[
sup
v∈DJ

|v′∆v| > 2η‖Σ‖

]
≤ P

[
max
v0∈A

|v′0∆v0| > η‖Σ‖
]

≤ 2 (1 + 2/ε)2s kmax exp[−cnmin{η, η2}].

Taking supremum over

(
G
2s

)
≤ (eG/2s)2s choices of J , we get

P

[
sup

v∈D(2s)
|v′∆v| > 2η‖Σ‖

]
≤ 2 exp

[
−cnmin{η, η2}+ 2s log

(
eG

2s

)
+ 2s kmax log

(
1 +

2

ε

)]
.

In order to extend this deviation inequality to cl{conv{D(s)}}, we note that any v in the
convex hull of D(s) can be expressed as v =

∑m
i=1 αivi, where v1, . . . , vm are in D(s) and

0 ≤ αi ≤ 1,
∑
αi = 1. Then

|v′∆v| ≤
m∑
i=1

m∑
j=1

αiαj |v′i∆vj |.

Also, for every i, j, (vi + vj)/2 ∈ D(2s), and

|v′i∆vj | ≤
1

2

[
|(vi + vj)

′∆(vi + vj)|+ |v′i∆vi|+ |v′j∆vj |
]
.

Hence

sup
v∈conv{D(s)}

|v′∆v| ≤
m∑
i=1

m∑
j=1

αiαj
1

2
[4 + 1 + 1] sup

v∈D(2s)
|v′∆v|.
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Together with the continuity of quadratic forms, this implies

sup
v∈cl{conv{D(s)}}

|v′∆v| ≤ 3 sup
v∈D(2s)

|v′∆v|.

The result then readily follows from the above deviation inequality.

Appendix B. Proof of Main Results

Proof [Proof of Proposition 3.2] (a) Note that Σ is a p(T − 1) × p(T − 1) block Toeplitz
matrix with (i, j)th block (Σij)1≤i,j≤(T−1) := Γ(i− j), where Γ(`)p×p is the autocovariance

function of lag ` for the zero-mean VAR(d) process (2), defined as Γ(`) = E[Xt(Xt−`)′].
We consider the cross spectral density of the VAR(d) process (2)

f(θ) =
1

2π

∞∑
`=−∞

Γ(`)e−i`θ, θ ∈ [−π, π]. (21)

From standard results of spectral theory we know that Γ(`) =
∫ π
−π e

i`θ f(θ) dθ, for every `.
We want to find a lower bound on the minimum eigenvalue of Σ, i.e., inf‖x‖=1 x

′Σx.
Consider an arbitrary p(T − 1)-variate unit norm vector x, formed by stacking the p-tuples
x1, . . . , xT−1.

For every θ ∈ [−π, π], define G(θ) =
∑T−1

t=1 xt e−itθ and note that∫ π

−π
G∗(θ)G(θ) dθ =

T−1∑
t=1

T−1∑
τ=1

(xt)′(xτ )

∫ π

−π
ei(t−τ)θ dθ

=
T−1∑
t=1

T−1∑
τ=1

(xt)′(xτ ) (2π 1{t=τ}) = 2π
T−1∑
t=1

(xt)′(xt) = 2π ‖x‖2 = 2π.

Also let µ(θ) be the minimum eigenvalue of the Hermitian matrix f(θ). Following Parter
(1961) we have the result

x′Σx =

T−1∑
t=1

T−1∑
τ=1

(xt)′Γ(t− τ)xτ =

T−1∑
t=1

T−1∑
τ=1

(xt)′
(∫ π

−π
ei(t−τ)θf(θ)dθ

)
xτ

=

∫ π

−π

(
T−1∑
t=1

(xt)′eitθ

)
f(θ)

(
T−1∑
τ=1

xτe−iτθ

)
dθ =

∫ π

−π
G∗(θ) f(θ)G(θ) dθ

≥
∫ π

−π
µ(θ) (G∗(θ)G(θ)) dθ ≥

(
min

θ∈(−π,π)
µ(θ)

) ∫ π

−π
G∗(θ)G(θ) dθ = 2π min

θ∈(−π,π)
µ(θ).

So Λmin(Σ) ≥ 2π min
θ∈(−π,π)

µ(θ). Since A(z) = I − A1z − A2z2 − . . . − Adzd is the (matrix-

valued) characteristic polynomial of the VAR(d) model (2), we have the following represen-
tation of the spectral density (see Priestley, 1981, eqn 9.4.23):

f(θ) =
1

2π
σ2(A(e−iθ))−1(A∗(e−iθ))−1.
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Thus, 2πµ(θ) = 2πΛmin(f(θ)) = 2π/Λmax(f(θ)−1) ≥ σ2/
∥∥A(e−iθ)

∥∥2
. But

∥∥A(e−iθ)
∥∥ ≤

1 +
∑d

t=1

∥∥At∥∥ for every θ ∈ [−π, π]. The result then follows at once from the standard
matrix norm inequality (see e.g., Golub and Van Loan, 1996, Cor 2.3.2)

‖At‖2 ≤
√
‖At‖1‖At‖∞ ≤

‖At‖1 + ‖At‖∞
2

t = 1, . . . , d,

where

‖At‖1 = max
1≤i≤p

p∑
j=1

|Atij |, ‖At‖∞ = max
1≤j≤p

p∑
i=1

|Atij |.

(b) The first part of the proposition ensures that Λmin(Σ) ≥ σ2
[
1 + 1

2(vin + vout)
]−2

. If
the replicates available from different panels are i.i.d, each row of the design matrix is
independently and identically distributed according to a N(0,Σ) distribution.

To show that RE(s, L) of (5) holds with high probability for sufficiently large n, it is
enough to show that

min
v ∈ C(J, L)\{0}
J ⊂ NḠ, |J | ≤ s

1

n

‖Xv‖2

‖v‖2
≥ φ2

RE (22)

holds with high probability, where the cone sets C(J, L) are defined as

C(J, L) := {v ∈ Rp̄ :
∑
g/∈J

λg‖v[g]‖ ≤ L
∑
g∈J

λg‖v[g]‖} (23)

for all J ⊂ NḠ with |J | ≤ s. Denote the ball of unit norm vectors in Rp̄ by Sp̄−1. By scale
invariance of ‖Xv‖2/n‖v‖2, it is enough to show that with high probability

min
v ∈ Sp̄−1 ∩ C(J, L)
J ⊂ NḠ, |J | ≤ s

v′Cv ≥ φ2
RE , (24)

where C = X′X/n is the sample Gram matrix.
By part (a), we already know that v′Σv ≥ Λmin(Σ) > 0 for all v ∈ Sp̄−1. So we only

need to show that |v′ (C − Σ) v| ≤ Λmin(Σ)/2 with high probability, uniformly on the set⋃
J⊆NḠ,|J |≤s

C(J, L) ∩ Sp̄−1. (25)

The proof relies on two key parts. In the first part, we use an extremal representation to
show that the above union of the cone sets sits within the closed convex hull of a suitably
defined set of group s-sparse vectors. In particular, it follows from Lemma A.4 that⋃

J⊆NḠ, |J |≤s

C(J, L) ∩ Sp̄−1 ⊆ (L′ + 2)cl{conv{D(s)}}, (26)

where D(s) = {v ∈ Rp̄ : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NḠ, |J | ≤ s}, L′ =
Lλmax/λmin and cl{.}, conv{.} respectively denote the closure and convex hull of a set.
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The next part of the proof is an upper bound on the tail probability of v′(C − Σ)v,
uniformly over all v ∈ cl{conv{D(s)}}, presented in Lemma A.5. In particular, setting
η = Λmin(Σ)/12‖Σ‖(2 + L′)2 in the above lemma yields

P

[
sup

v∈(2+L′)cl{conv{D(s)}}
|v′(C − Σ)v| > Λmin(Σ)/2

]
≤ c0 exp[−c1 n] (27)

for the proposed choice of n. Together with the lower bound on Λmin(Σ) established in part
(a), this concludes the proof.

Proof [Proof of Theorem 4.1] Consider any solution β̂R ∈ Rq of the restricted regression

argmin
β∈Rq

1

2n

∥∥Y −X(1)β
∥∥2

2
+ λ

s∑
g=1

∥∥β[g]

∥∥
2

(28)

and set β̂ =
[
β̂′R : 01×(p−q)

]′
. We show that such an augmented vector β̂ satisfies the

statements of Theorem 4.1 with high probability.
Let û = β̂(1)− β0

(1) = β̂R − β0
(1). In view of lemmas A.1 and A.3, it suffices to show that

the following events happen with probability at least 1− 4G1−α:∥∥û[g]

∥∥ < δn

∥∥∥β0
[g]

∥∥∥ , for all g ∈ S, (29)

1

n

∥∥∥[X ′ (ε−X(1)û
)]

[g]

∥∥∥ ≤ λ, for all g /∈ S. (30)

Note that, in view of Lemma A.1, û = (C11)−1
(

1√
n
Z(1) − λτ

)
for some τ ∈ Rq with∥∥τ[g]

∥∥ ≤ 1 for all g ∈ S, and Z = 1√
n
X ′ε =

[
Z ′(1) : Z ′(2)

]′
. Thus, for any g ∈ S,

P
(∥∥û[g]

∥∥ > δn

∥∥∥β0
[g]

∥∥∥) ≤ P

(∥∥∥∥∥
[
(C11)−1

(
1√
n
Z(1) − λτ

)]
[g]

∥∥∥∥∥ > δn

∥∥∥β0
[g]

∥∥∥)

≤ P
(∥∥∥∥[(C11)−1 Z(1)

]
[g]

∥∥∥∥ > √n [δn ∥∥∥β0
[g]

∥∥∥− λ ∥∥∥∥[(C11)−1 τ
]

[g]

∥∥∥∥]) .
Note that V = (C11)−1 Z(1) ∼ N(0, σ2 (C11)−1). So V[g] ∼ N(0, σ2C

[g][g]
11 ), where Σ[g][g] :=

(Σ−1)[g][g]. Also, by the second statement of lemma A.2 we have E
∥∥V[g]

∥∥ ≤ σ√kg√∥∥∥C [g][g]
11

∥∥∥.

Therefore P
(∥∥û[g]

∥∥ > δn

∥∥∥β0
[g]

∥∥∥) is bounded above by

P

(∣∣∥∥V[g]

∥∥− E
∥∥V[g]

∥∥∣∣ > √n [δn ∥∥∥β0
[g]

∥∥∥− λ∥∥∥(C11)−1
∥∥∥√s]− σ√kg ∥∥∥C [g][g]

11

∥∥∥)

≤ 2 exp

[
− 2

π2σ2‖C [g][g]
11 ‖

(√
nδn‖β0

[g]‖ −
√
nλ‖C−1

11 ‖
√
s− σ

√
kg‖C [g][g]

11 ‖
)2
]
.
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For the proposed choice of δn, this expression is bounded above by 2G−α.
Next, for any g /∈ S, we get

P
(

1

n

∥∥∥[X ′ (ε−X(1)û
)]

[g]

∥∥∥ > λ

)
≤ P

(∥∥∥[Z(2) − C21C
−1
11 Z(1)

]
[g]

∥∥∥ > √nλ(1−
∥∥∥[C21C

−1
11 τ

]
[g]

∥∥∥)) .
Defining W = Z(2)−C21C

−1
11 Z(1) ∼ N(0, σ2(C22−C21C

−1
11 C12)), the uniform irrepresentable

condition implies that the above probability is bounded above by P
(∥∥W[g]

∥∥ > √nλη).
It can then be seen that W[g] ∼ N(0, σ2C̄[g][g]), where C̄ = C22 − C21C

−1
11 C12 denotes

the Schur complement of C22. As before, lemma A.2 establishes that

P
(∥∥W[g]

∥∥ > √nλη) ≤ P
(∣∣∥∥W[g]

∥∥− E
∥∥W[g]

∥∥∣∣ > √nλη − σ√kg‖C̄[g][g]‖
)

≤ 2 exp

[
− 2

π2‖σ2C̄[g][g]‖

(√
nλη − σ

√
kg‖C̄[g][g]‖

)2
]
,

and the last probability is bounded above by 2G−α for the proposed choice of λ.
The results in the proposition follow by considering the union bound on the two sets of the
probability statements made across all g ∈ NG.

Appendix C. Proof of results on `2-consistency

We first note that each of the p optimization problems in (4) is essentially a generic group
lasso regression on n independent samples from a linear model Y = Xβ0 + ε, ε ∼ N(0, σ2):

β̂ = argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

Ḡ∑
g=1

λg‖β[g]‖, (31)

where Yn×1 = X Ti , Xn×p̄ = [X 1 : · · · : X T−1], β0
p̄×1 = vec(A

1:(T−1)
i: ), {1, . . . , p̄} = ∪Ḡg=1Gg,

p̄ = (T −1)p, Ḡ = (T −1)G and λg = λwti,g. In Proposition C.1, we first establish the upper
bounds on estimation error in the context of a generic group lasso penalized regression
problem. The results for regular group NGC then readily follows by applying the above
Proposition on the p separate regressions.

Recall the Restricted Eigenvalue assumption required for the derivation of `2 estimation
and prediction error. Following van de Geer and Bühlmann (2009), we introduce a slightly
weaker notion called Group Compatibility (GC). For a constant L > 0 we say that GC(S,
L) condition holds, if there exists a constant
φcompatible = φcompatible(S,L) > 0 such that

min
∆∈Rp\{0}


(∑

g∈S λ
2
g

)1/2
‖X∆‖

√
n
∑
g∈S

λg‖∆[g]‖
:
∑
g/∈S

λg‖∆[g]‖ ≤ L
∑
g∈S

λg‖∆[g]‖

 ≥ φcompatible. (32)
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The fact that GC(S, L) holds whenever RE(s, L) is satisfied (and φRE ≤ φcompatible) follows
at once from Cauchy Schwarz inequality. We shall derive upper bounds on the prediction
and `2,1 estimation error of group lasso estimates involving the compatibility constant. This
notion will also be used later to connect the irrepresentable conditions to the consistency
results of group lasso estimators.

Proposition C.1 Suppose the GC condition (32) holds with L = 3. Choose α > 0 and
denote λmin = min1≤g≤G λg. If

λg ≥
2σ√
n

√∥∥C[g][g]

∥∥(√kg +
π√
2

√
α log G

)
for every g ∈ NG, then, the following statements hold with probability at least 1− 2G1−α,

1

n

∥∥∥X (β̂ − β0
)∥∥∥2
≤ 16

φ2
compatible

s∑
g=1

λ2
g, (33)

‖β̂ − β0‖2,1 ≤
16

φ2
compatible

∑s
g=1 λ

2
g

λmin
. (34)

If, in addition, RE(2s, 3) holds, then, with the same probability we get

‖β̂ − β0‖ ≤ 4
√

10

φ2
RE(2s)

∑s
g=1 λ

2
g

λmin
√
s
. (35)

Proof [Proof of Proposition (C.1)] Since β̂ is a solution of the optimization problem (31),
for all β ∈ Rp, we have

1

n
‖Y −Xβ̂‖2 + 2

G∑
g=1

λg‖β̂[g]‖ ≤
1

n
‖Y −Xβ‖2 + 2

G∑
g=1

λg‖β[g]‖.

Plugging in Y = Xβ0 + ε, and simplifying the resulting equation, we get

1

n
‖X(β̂ − β0)‖2 ≤ 1

n
‖X(β − β0)‖2 +

2

n

G∑
g=1

∥∥(X ′ε)[g]

∥∥∥∥∥(β̂ − β)[g]

∥∥∥
+2

G∑
g=1

λg

(
‖β[g]‖ − ‖β̂[g]‖

)
.

Fix g ∈ NG and consider the event Ag =
{
ε ∈ Rn : 2

n

∥∥∥(X ′ε)[g]

∥∥∥ ≤ λg}. Note that Z =
1√
n
X ′ε ∼ N(0, σ2C). So Z[g] ∼ N(0, σ2C[g][g]). Then,

P
(
Acg
)

= P
(∥∥Z[g]

∥∥ > 1

2
λg
√
n

)
≤ P

(∣∣Z[g] − E
∥∥Z[g]

∥∥∣∣ > λg
√
n

2
− σ

√
kg

√∥∥C[g][g]

∥∥) ,
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where the last inequality follows from the second statement of Lemma A.2. Now, let xg =
λg
√
n

2 − σ
√
kg

√∥∥C[g][g]

∥∥. Then, for xg > 0, if

2 exp

(
−

2x2
g

π2σ2
∥∥C[g][g]

∥∥
)
≤ 2G−α ,

we get

P
(
Acg
)
≤ 2G−α.

But this happens if,
√

2xg ≥
√
α log Gπσ

√∥∥C[g][g]

∥∥,
which is ensured by the proposed choice of λg.

Next, define A := ∩Gg=1Ag. Then, P (A) ≥ 1− 2G1−α, and on the event A, we have, for
all β ∈ Rp,

1

n
‖X(β̂ − β0)‖2 +

G∑
g=1

λg

∥∥∥β̂[g] − β[g]

∥∥∥ ≤ 1

n
‖X(β − β0)‖2

+2
G∑
g=1

λg

(∥∥∥β̂[g] − β[g]

∥∥∥+
∥∥β[g]

∥∥− ∥∥∥β̂[g]

∥∥∥) .
Note that

(∥∥∥β̂[g] − β[g]

∥∥∥+
∥∥β[g]

∥∥− ∥∥∥β̂[g]

∥∥∥) vanishes if g /∈ S and is bounded above by

min{2
∥∥β[g]

∥∥ , 2(∥∥∥β[g] − β̂[g]

∥∥∥)} if g ∈ S.

This leads to the following sparsity oracle inequality, for all β ∈ Rp,

1

n
‖X(β̂ − β0)‖2 +

G∑
g=1

λg

∥∥∥β̂[g] − β[g]

∥∥∥ ≤ 1

n
‖X(β − β0)‖2

+4
∑
g∈S

λg min
{∥∥β[g]

∥∥ , ∥∥∥β[g] − β̂[g]

∥∥∥} . (36)

The sparsity oracle inequality (36) with β = β0, and ∆ := β̂ − β0 leads to the following
two useful bounds on the prediction and `2,1-estimation errors:

1

n
‖X∆‖2 ≤ 4

∑
g∈S

λg
∥∥∆[g]

∥∥ , (37)

∑
g/∈S

λg
∥∥∆[g]

∥∥ ≤ 3
∑
g∈S

λg
∥∥∆[g]

∥∥ . (38)

Now, assume the group compatibility condition 32 holds. Then,

1

n
‖X∆‖2 ≤ 4

∑
g∈S

λg
∥∥∆[g]

∥∥ ≤√∑
g∈S

λ2
g

‖X∆‖√
n

4

φcompatible
, (39)

446



NGC with Inherent Grouping

which implies the first inequality of proposition C.1. The second inequality follows from

λmin

∥∥∥β̂ − β∥∥∥
2,1
≤

G∑
g=1

λg
∥∥∆[g]

∥∥ ≤ 4
∑
g∈S

λg
∥∥∆[g]

∥∥
≤ 4

√∑
g∈S

λ2
g

‖X∆‖√
n

1

φcompatible
≤ 16

φ2
compatible

∑
g∈S

λ2
g ,

where the last step uses (39).
The proof of the last inequality of proposition C.1, i.e., the upper bound on `2 estimation

error under RE(2s), is the same as in Theorem 3.1 in Lounici et al. (2011) and is omitted.

Proof [Proof of Proposition 3.1] Applying the `2-estimation error of (35) on the ith group
lasso regression problem of regular group NGC, we have

‖Â1:T−1
i: −A1:T−1

i: ‖ ≤ 4
√

10

φ2
RE(2si)

∑si
g=1 λ

2
g

λmin
√
si
≤ 4

√
10

φ2
RE(2smax)

λmax

λmin

√
si

with probability at least 1− 2Ḡ1−α. Combining the bounds for all i = 1, . . . , p and noting
that s =

∑p
i=1 si, we have the required result.

Appendix D. Irrepresentable assumptions and consistency

In this section, we discuss two results involving the compatibility and irrepresentable con-
ditions for group lasso. We first show that a stronger version of the uniform irrepresentable
assumption implies the group compatibility (32), and hence, consistency in `2,1 norm. Next
we argue that a weaker version of the irrepresentable assumption is indeed necessary for
the direction consistency of the group lasso estimates. These results generalize analogous
properties of lasso (van de Geer and Bühlmann, 2009; Zhao and Yu, 2006) to the group
penalization framework. The proofs are given under a special choice of tuning parameter
λg = λ

√
kg. Similar results can be derived for the general choice of λg, although their

presentation is more involved.

Proposition D.1 Assume uniform irrepresentable condition (13) holds with η ∈ (0, 1), and
Λmin(C11) > 0. Then group compatibility(S, L) (32) condition holds whenever L < 1

1−η .

Proof First note that with the above choice of λg the Group Compatibility (S,L) condition
simplifies to

φcompatible := min
∆∈Rp\{0}


√
q‖X∆‖

√
n
∑
g∈S

√
kg‖∆[g]‖

:
∑
g/∈S

√
kg‖∆[g]‖ ≤ L

∑
g∈S

√
kg‖∆[g]‖

 > 0.

(40)
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Also, the uniform irrepresentable condition guarantees that there exists 0 < η < 1 such
that ∀τ ∈ Rq with ‖τ‖2,∞ = max

1≤g≤s
‖τ[g]‖2 ≤ 1, we have,

1√
kg

∥∥∥∥[C21 (C11)−1K0τ
]

[g]

∥∥∥∥
2

< 1− η ∀g /∈ S.

HereK0 = K/λ is a q×q block diagonal matrix with diagonal blocks
√
k1 Ik1×k1 , . . . ,

√
ks Iks×ks .

Define

∆0 := argmin
∆∈Rp

 1

2n
‖X∆‖22 :

∑
g∈S

√
kg‖∆[g]‖2 = 1,

∑
g/∈S

√
kg‖∆[g]‖2 ≤ L

 . (41)

Note that 1
n‖X∆0‖22 = φ2

compatible/q, and introduce two Lagrange multipliers λ and λ′ cor-
responding to the equality and inequality constraints for solving the optimization problem

in (41). Also, partition ∆0 =
[
∆0

(1) : ∆0
(2)

]
and X =

[
X(1) : X(2)

]
into signal and nonsignal

parts as in (10). The first q linear equations of the KKT conditions imply that there exists
τ0 ∈ Rq such that

C11∆0
(1) + C12∆0

(2) = λK0τ0 (42)

and, for every g ∈ S,

τ0
[g] = D(∆0

[g]) if ∆0
[g] 6= 0,

‖τ0
[g]‖2 ≤ 1 if ∆0

[g] = 0.

It readily follows that (τ0)
T
K0∆0

(1) =
∑
g∈S

√
kg‖∆0

[g]‖2 = 1.

Multiplying both sides of (42) by (∆0
(1))

T we get(
∆0

(1)

)T
C11∆0

(1) +
(

∆0
(1)

)T
C12∆0

(2) = λ. (43)

Also, (42) implies
∆0

(1) + (C11)−1C12∆0
(2) = λ (C11)−1K0τ0. (44)

Multiplying both sides of the equation by
(
K0τ0

)T
=
(
τ0
)T
K0 we obtain

1 = −
(
τ0
)T
K0 (C11)−1C12∆0

(2) + λ
(
K0τ0

)T
(C11)−1 (K0τ0

)
. (45)

Note that the absolute value of the first term,∣∣∣∣∣∣
∑
g/∈S

(
∆0

[g]

)T [
C21(C11)−1K0τ0

]
[g]

∣∣∣∣∣∣ , (46)

is bounded above by

(1− η)

∑
g/∈S

√
kg‖∆0

[g]‖2

 ≤ (1− η)L (47)
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by virtue of the uniform irrepresentable condition and the Cauchy-Schwartz inequality.
Assuming the minimum eigenvalue of C11, i.e., Λmin (C11), is positive and considering
‖K0τ0‖2 ≤

√
q, the second term is at most λ q/Λmin (C11). So (45) implies

1 ≤ (1− η)L+
λq

Λmin (C11)
. (48)

In particular, λ ≥ Λmin (C11) (1− (1− η)L) /q is positive whenever L < 1/(1− η).
Next, multiply both sides of (44) by (∆0

(2))
TC21 to get(

∆0
(2)

)T
C21∆0

(1) +
(

∆0
(2)

)T
C21 (C11)−1C(12)∆

0
(2) = λ

(
∆0

(2)

)T
C21 (C11)−1K0τ0. (49)

Using the upper bound in (47), the right hand side is at least −λ(1− η)L.
Also a simple consequence of the block inversion formula of the non-negative definite matrix
C guarantees that the matrix C22 − C21 (C11)−1C12 is non-negative definite. Hence,(

∆0
(2)

)T [
C22 − C21 (C11)−1C12

]
∆0

(2) ≥ 0

and
(

∆0
(2)

)T
C22∆0

(2) ≥
(

∆0
(2)

)T
C21 (C11)−1C12∆0

(2).

Putting all the pieces together we get

φ2
compatible/q =

1

n
‖X∆0‖22

= ∆0
(1)

T
C11∆0

(1) + 2∆0
(2)

T
C21∆0

(1) + ∆0
(2)

T
C22∆0

(2)

= λ+ ∆0
(2)

T
C21∆0

(1) + ∆0
(2)

T
C22∆0

(2) , by (43)

≥ λ− λ(1− η)L , by (49)

= λ(1− (1− η)L).

Plugging in the lower bound for λ we obtain the result; namely,

φ2
compatible = Λmin(C11) (1− (1− η)L)2 > 0

for any L < 1
1−η .

In this section we investigate the necessity of irrepresentable assumptions for direction
consistency of group lasso estimates. To this end we first introduce the notion of weak
irrepresentability.

For a q-dimensional vector τ define the stacked direction vector

D̃(τ)︸ ︷︷ ︸
q×1

= [D(τ[1])
′︸ ︷︷ ︸

k1×1

, . . . , D(τ[s])
′︸ ︷︷ ︸

ks×1

]′.

Weak Irrepresentable Condition is satisfied if

1

λg

∥∥∥∥[C21(C11)−1KD̃(β0
(1))
]

[g]

∥∥∥∥ ≤ 1, ∀g /∈ S = {1, . . . , s}. (50)
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We argue the necessity of weak irrepresentable condition for group sparsity selection and
direction consistency under two regularity conditions on the design matrix, as n, p→∞:
(A1) The minimum eigenvalue of the signal part of the Gram matrix, viz. Λmin(C11), is
bounded away from zero.
(A2) The matrices C21 and C22 are bounded above in spectral norm.

As in the last proposition, we set λg = λ
√
kg and K0 = K/λ. Suppose that the weak

irrepresentable condition does not hold, i.e., for some g /∈ S and ξ > 0, we have,

1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β0
(1))
]

[g]

∥∥∥∥ > 1 + ξ

for infinitely many n. Also suppose that there exists a sequence of positive reals δn → 0
such that the event

En := {‖D(β̂[g])−D(β[g])‖2 < δn, ∀g ∈ S, and β̂[g] = 0∀ g /∈ S}

satisfies P(En)→ 1 as p, n→∞.
Note that for large enough n so that δn < ming ‖D(β[g])‖, we have β̂[g] 6= 0, ∀ g ∈ S on

the event En.
Then, as in the proof of Theorem 4.1, we have, on the event En,

û = (C11)−1

[
1√
n
Z(1) − λK0D̃(β̂(1))

]
(51)

and
1

n

∥∥∥[X(2)
T (ε−X(1)û)

]
[g]

∥∥∥ ≤ λ√kg, ∀g /∈ S. (52)

Substituting the value of û from (51) in (52), we have, on the event En,

1√
n

∥∥∥∥[Z(2) − C21(C11)−1Z(1) + λ
√
nC21(C11)−1K0D̃(β̂(1))

]
[g]

∥∥∥∥ ≤ λ√kg,
which implies that∥∥∥∥[Z(2) − C21 (C11)−1 Z(1)

]
[g]

∥∥∥∥
≥ λ
√
n
√
kg

[
1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β̂(1))
]

[g]

∥∥∥∥− 1

]
. (53)

Now note that for large enough n, if ‖C21‖ is bounded above, direction consistency guar-
antees that the expression on the right is larger than

1

2
λ
√
n
√
kg

[
1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β(1))
]

[g]

∥∥∥∥− 1

]
,

which in turn is larger than 1
2 λ
√
n
√
kg ξ, in view of the weak irrepresentable condition.

This contradicts P(En)→ 1, since the left-hand side of (53) corresponds to the norm of a
centered Gaussian random variable with bounded variance structure

[
C22 − C21C

−1
11 C12

]
[g][g]

while λ
√
n
√
kg diverges with

√
log G.
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Appendix E. Thresholding Group Lasso Estimates.

Proof [Proof of Theorem 4.2] We use the notations developed in the proof of Proposi-
tion C.1. First note that, (ii) follows directly from Theorem 4.1. For (i), since the falsely
selected groups are present after the initial thresholding, we get ‖β̂[g]‖ > 4λ for every
such group. Next, we obtain an upper bound for the number of such groups. Specifically,
denoting ∆ = β̂ − β0, we get

∣∣∣Ŝ\S∣∣∣ ≤ ‖β̂Sc‖2,1
4λ

=

∑
g/∈S ‖∆[g]‖

4λ
. (54)

Next, note that from the sparsity oracle inequality (37), the following holds on the event
A, ∑

g/∈S

‖∆[g]‖ ≤ 3
∑
g∈S
‖∆[g]‖.

It readily follows that

4
∑
g/∈S

‖∆[g]‖ ≤ 3‖∆‖2,1 ≤
48

φ2
sλ,

where the last inequality follows from the `2,1-error bound of (34). Using this inequality
together with (54) gives the result.
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Abstract

This paper investigates graph clustering under the planted partition model in the presence
of small clusters. Traditional results dictate that for an algorithm to provably correctly
recover the underlying clusters, all clusters must be sufficiently large—in particular, the
cluster sizes need to be Ω̃(

√
n), where n is the number of nodes of the graph. We show

that this is not really a restriction: by a refined analysis of a convex-optimization-based
recovery approach, we prove that small clusters, under certain mild assumptions, do not
hinder recovery of large ones. Based on this result, we further devise an iterative algorithm
to provably recover almost all clusters via a “peeling strategy”: we recover large clusters
first, leading to a reduced problem, and repeat this procedure. These results are extended
to the partial observation setting, in which only a (chosen) part of the graph is observed.
The peeling strategy gives rise to an active learning algorithm, in which edges adjacent
to smaller clusters are queried more often after large clusters are learned (and removed).
We expect that the idea of iterative peeling—that is, sequentially identifying a subset of
the clusters and reducing the problem to a smaller one—is useful more broadly beyond the
specific implementations (based on convex optimization) used in this paper.

Keywords: graph clustering, community detection, active clustering, convex optimiza-
tion, planted partition model, stochastic block model

1. Introduction

This paper considers the following classic graph clustering problem: given an undirected
unweighted graph, partition the nodes into disjoint clusters so that the density of edges
within each cluster is higher than those across clusters. Graph clustering arises naturally in
many applications across science and engineering; prominent examples include community

∗. This work extends and improves a preliminary conference version Ailon et al. (2013).
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detection in social networks (Mishra et al., 2007; Zhao et al., 2011), submarket identification
in E-commerce and sponsored search (Yahoo!-Inc, 2009), and co-authorship analysis in
document database (Ester et al., 1995), among others. From a purely binary classification
theoretical point of view, the edges of the graph are (noisy) labels of “similarity” or “affinity”
between pairs of objects, and the concept class consists of clusterings of the objects (encoded
graphically by identifying clusters with cliques).

Many theoretical results in graph clustering consider the Planted Partition Model (Con-
don and Karp, 2001), in which the edges are generated randomly based on an unknown
set of underlying clusters; see Section 1.1 for more details. While numerous different meth-
ods have been proposed, their performance guarantees under the planted partition model
generally have the following form: under certain conditions of the density of edges (within
clusters and across clusters), the method succeeds to recover the correct clusters exactly if
all clusters are larger than a threshold size, typically Ω̃(

√
n);1 see e.g., McSherry (2001);

Bollobás and Scott (2004); Ames and Vavasis (2011); Chen et al. (2012); Chaudhuri et al.
(2012); Anandkumar et al. (2014).

In this paper, we aim to relax this cluster size constraint of graph clustering under the
planted partition model. Identifying extremely small clusters is inherently hard as they are
easily confused with “fake” clusters generated by noisy edges,2 and is not the focus of this
paper. Instead, in this paper we investigate a question that has not been addressed before:
Can we still recover large clusters in the presence of small clusters? Intuitively, this should
be doable. To illustrate, consider an extreme example where the given graph G consists of
two subgraphs G1 and G2 with disjoint node sets. Suppose G1, if presented alone, can be
correctly clustered using some existing methods, G2 is a very small clique, and there are
relatively few edges connecting G1 and G2. The graph G certainly violates the minimum
cluster size requirement of previous results, but why should G2 spoil our ability to correctly
cluster G1?

Our main result confirms this intuition. We show that the cluster size barrier arising in
previous work is not really a restriction, but rather an artifact of the attempt to solve the
problem in a single shot and recover large and small clusters simultaneously. Using a more
careful analysis, we prove that a mixed trace-norm and `1-norm based convex formulation
can recover clusters of size Ω̃(

√
n) even in the presence of smaller clusters. That is, small

clusters do not interfere with recovery of the large clusters.

The main implication of this result is that one can apply an iterative “peeling” strategy
to recover smaller and smaller clusters. The intuition is simple: suppose the number of
clusters is limited, then either all clusters are large, or the sizes of the clusters vary signif-
icantly. The first case is obviously easy. But the second is also tractable, for a different
reason: using the aforementioned convex formulation, the larger clusters can be correctly
identified; if we remove all nodes from these larger clusters, the remaining subgraph contains
significantly fewer nodes than the original graph, which leads to a much lower threshold on
the size of the cluster for correct recovery, making it possible for correctly identify some

1. The notations Ω̃(·) and Õ(·) ignore logarithmic factors.
2. Indeed, even in a more lenient setup where one clique (i.e., a perfect cluster) of size K is embedded in an

Erdos-Renyi graph of n nodes and 0.5 probability of forming an edge, the best known polynomial-time
method requires K = Ω(

√
n) in order to recover the hidden clique, and it has been a long standing open

problem to relax this requirement.
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smaller clusters. By repeating this procedure, indeed, we can recover the cluster structure
for almost all nodes with no lower bound on the minimal cluster size. Below we summarize
our main contributions and techniques:

1. We provide a refined analysis (Theorem 2) of the mixed trace-norm and `1-norm
convex relaxation approach for exact cluster recovery proposed in Chen et al. (2014a,
2012), focusing on the case where small clusters exist. We show that in the planted
partition setting, if each cluster is either large (more precisely, of size at least σ ≈

√
n)

or small (of size at most σ/C for some global constant C > 1), then with high
probability, this convex relaxation approach correctly identifies all large clusters while
“ignoring” the small ones. In fact, it is possible to arbitrarily increase the tuning
parameter σ in quest of an interval (σ/C, σ) that is disjoint from the set of cluster
sizes. The analysis is done by identifying a certain feasible solution to the convex
program and proving its almost sure optimality. This solution easily identifies the
large clusters. Previous analysis is performed only in the case where all clusters are
of size greater than

√
n.

2. We provide a converse (Theorem 5) of the result just described. More precisely, we
show that if for some value of the tuning parameter σ, an optimal solution to the
convex relaxation program is an exact representation of a collection of large clusters
(a partial clustering), then these clusters are actual ground truth clusters, even if the
particular interval corresponding to σ isn’t really free of cluster sizes. This allows
the practitioner to be certain that the optimal solution is useful. Moreover, this
has important algorithmic implications for an iterative recovery procedure which we
describe below.

3. The last two points imply that if some interval of the form (σ/C, σ) is free of cluster
sizes, then an exhaustive search of this interval will constructively find large clusters,
though not necessarily for that particular interval (Theorem 6). Removing the re-
covered large clusters leads to a reduced problem with a smaller graph. Repeating
this procedure gives rise to an iterative algorithm (Algorithm 2), using a “peeling
strategy”, to recover smaller and smaller clusters that are otherwise impossible to re-
cover. Using this iterative algorithm, we prove that as long as the number of clusters
is bounded by O(log n), regardless of the cluster sizes, we can correctly recover the
cluster structure for an overwhelming fraction of nodes (Theorem 7). To the best of
our knowledge, this is the first result of provably correct graph clustering assuming
only an upper bound on the number of clusters, but otherwise no assumption on the
cluster sizes.

4. We extend the result to the partial observation setting, where only a fraction of
similarity labels (i.e., edge/no edge) are queried. As expected, large clusters can be
identified using small observation rates, and a higher rate is needed to find smaller
clusters. Hence, the observation rate serves as the tuning parameter. This gives rise
to an active learning algorithm (Algorithm 4) based on adaptively increasing the rate
of sampling in order to hit an interval free of cluster sizes, and spending more queries
on smaller subgraphs after we identify large clusters and peel them off. Performance
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guarantees are given for this algorithm (Corollary 8–Theorem 11). This active learning
scheme requires significantly fewer samples than uniform sampling .

Beside these technical contributions, this paper suggests a new strategy that is poten-
tially useful for general low-rank matrix recovery and other high-dimensional statistical
problems, where the data are typically assumed to have certain low-dimensional structures.
Many methods have been developed to exploit this a priori structural information so that
consistent estimation is possible even when the dimensionality of the problem is larger than
the number of samples. Our result shows that one may combine these methods with a
“peeling strategy” to further push the envelope of learning structured data: by iteratively
recovering the easier structural components and reducing the problem complexity, it may be
possible to learn complicated structures that are otherwise difficult to recover using existing
one-shot approaches.

1.1 Related Work

The literature of graph clustering is too vast for a detailed survey here; we concentrate on
the most related work, and in particular those provide provable guarantees on exact cluster
recovery.

1.1.1 Planted Partition Model

Also known as the stochastic block model (Holland et al., 1983; Condon and Karp, 2001),
this classical model assumes that n nodes are partitioned into subsets, referred to as the
“true clusters”, and a graph is randomly generated as follows: for each pair of nodes, de-
pending on whether or not they belong to the same subset, an edge connecting them is
generated with a probability p or q respectively. The goal is to correctly recover the clus-
ters given the random graph. The planted partition model has a large body of literature.
Earlier work focused on the setting where the minimal cluster size is Θ(n) (Boppana, 1987;
Condon and Karp, 2001; Carson and Impagliazzo, 2001; Bollobás and Scott, 2004). Sub-
sequently, a number of methods have been proposed methods to handle sublinear cluster
sizes, including randomized algorithms (Shamir and Tsur, 2007), spectral clustering (Mc-
Sherry, 2001; Chaudhuri et al., 2012; Rohe et al., 2011; Kumar and Kannan, 2010), convex
optimization based approaches (Jalali et al., 2011; Chen et al., 2014a, 2012; Ames and
Vavasis, 2011; Oymak and Hassibi, 2011) and tensor decomposition methods (Anandkumar
et al., 2014). See Chen et al. (2014b) for a survey of existing theoretical guarantees for
the planted partition model. While the methodology differs, all the work above requires,
sometimes implicitly, a constraint on the minimum size of the true clusters; in particular,
the size must be Ω(

√
n). Our analysis is carried under the planted partition model, and our

approach requires no constraint on the cluster sizes. We also mention the work of Zhao et al.
(2011) for community detection in social networks, which works under a type of planted
partition model. Like ours, their algorithm extracts clusters in an iterative manner and
is also amenable to outliers. However, their theoretical guarantees are only shown to hold
when n→∞ and the cluster sizes grow linearly with n.
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1.1.2 Low-rank and Sparse Matrix Decomposition via Trace Norm

Motivated by robustifying principal component analysis (PCA), several authors (Chan-
drasekaran et al., 2011; Candès et al., 2011) show that it is possible to recover a low-rank
matrix from sparse errors of arbitrary magnitude, where the key ingredient is using the trace
norm (also known as the nuclear norm) as a convex surrogate of the rank. Similar results
are obtained when the low rank matrix is corrupted by other types of noise (Xu et al., 2012).
Of particular relevance to this paper is the work by Jalali et al. (2011), Oymak and Hassibi
(2011) and Chen et al. (2012, 2014a), where they apply this approach to graph clustering,
and specifically to the planted partition model. These works require the Ω̃(

√
n) bound on

the minimal cluster size. Our approach uses the trace norm relaxation, combined with a
more refined analysis and an iterative/active peeling strategy.

1.1.3 Active Learning/Active Clustering

Another line of work that motivates this paper is the study of active learning (a setting in
which labeled instances are chosen by the learner, rather than by nature), and in particular
active learning algorithms for clustering. The most related work is Ailon et al. (2014), who
investigated active learning for the correlation clustering problem (Bansal et al., 2004),
where the goal is to find a set of clusters whose Hamming distance from the graph is
minimized. Ailon et al. (2014) obtain a (1 + ε)-approximate solution with respect to the
optimum, while (actively) querying no more than O(n poly(log n, k, ε−1)) edges, where k
is the number of clusters. Their result imposed no restriction on cluster sizes and hence
inspired this work, but differs in at least two major ways. First, Ailon et al. (2014) did
not consider exact cluster recovery as we do. Second, their guarantees fall in the Empirical
Risk Minimization (ERM) framework, with no running time guarantees. Our work uses a
convex relaxation algorithm, and is hence computationally efficient. The problem of active
learning has also been investigated in other setups including clustering based on distance
matrix (Voevodski et al., 2012; Shamir and Tishby, 2011), hierarchical clustering (Eriksson
et al., 2011; Krishnamurthy et al., 2012) and low-rank matrix/tensor recovery (Krishna-
murthy and Singh, 2013). These setups differ significantly from ours..

Remark 1 (A note on a preliminary version of this paper) The authors published
a weaker version of the results in this paper in a preliminary conference paper (Ailon et al.,
2013). An exact comparison is stated after each theorem in the text.

2. Notation and Setup

In this paper the following notations are used. We use X(i, j) to denote the (i, j)-the
entry of a matrix X. For a matrix X ∈ Rn×n and a subset S ⊆ [n] of size m, the matrix
X[S] ∈ Rm×m is the principal minor of X corresponding to the set of indexes S. For a
matrix M , s(M) denotes the support of M , namely, the set of index pairs (i, j) such that
M(i, j) 6= 0. For any subset Φ of [n]× [n], PΦM is the matrix that satisfies

(PΦM)(i, j) =

{
M(i, j), (i, j) ∈ Φ

0, otherwise.
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We now describe the problem setup. Throughout the paper, V denotes a ground set
of elements, which we identify with the set [n] = {1, . . . , n}. We assume a ground truth
clustering of V given by a pairwise disjoint covering V1, . . . , Vk, where k is the number of
clusters. We say i ∼ j if i, j ∈ Va for some a ∈ [k], otherwise i 6∼ j. We let na := |Va| be
the size of the a-th cluster for each a ∈ [k]. For each i ∈ [n], 〈i〉 is index of the cluster that
contains i, the unique index satisfying i ∈ V〈i〉.

The ground truth clustering matrix, denoted as K∗, is defined as the n × n matrix so
that K∗(i, j) = 1 if i ∼ j, otherwise 0. This is a block diagonal matrix, each block consisting
of 1’s only, and its rank is k. The input is a symmetric n × n matrix A, which is a noisy
version of K∗. It is generated according to the planted partition model with parameters p
and q as follows.

We think of A as the adjacency matrix of an undirected random graph, where
the edge (i, j) is in the graph for i > j with probability pij if i ∼ j, otherwise
with probability qij , independent of other choices, where we only assume the
edge probabilities satisfy (min pij) =: p > q := (max qij).

We use the convention that the diagonal entries of A are all 1. The matrix B∗ := A−K∗
can be viewed as the noise matrix. Given A, the task is to find the ground truth clusters.

We remark that the setup above is more flexible than the standard planted partition
model: we allow the clusters to have different sizes, and the edges probabilities (pij and qij)
need not be uniform across node pairs (i, j). One consequence is that the node degrees may
not be uniform or correlated with the sizes of the associated clusters. Non-uniformity makes
some simple heuristics, such as degree counting and single linkage clustering, vulnerable.
For example, we cannot distinguish between large and small clusters simply by looking at
the node degrees, since nodes in a small cluster may also have high expected degrees. The
single linkage clustering approach also fails in the presence of non-uniformity. We illustrate
this with an example. Suppose there are

√
n clusters of equal size, p = 1 and q = 0.1. We

use the number of common neighbors as the distance function in single linkage clustering.
If all qij are equal to q, then it is easy to see that single linkage clustering will succeed, since
with high probability node pairs in the same cluster will have more common neighbors than
those in different clusters. Yet, this is not true for non-uniform qij ’s. Consider three nodes
1, 2 and 3, where nodes 1 and 2 are in the same cluster, and node 3 belongs to a different
cluster. Suppose for all i > 3, q1i = 0, q2i = q3i = 0.1. The expected number of common
neighbors between nodes 1 and 2 is

√
n, whereas the expected number of common neighbors

between nodes 2 and 3 is 0.2
√
n+ 0.01(n− 2

√
n), which is larger than

√
n for large n and

hence single linkage clustering fails. In contrast, the proposed convex-optimization based
method can handle such non-uniform settings, as we show in what follows.

3. Main Results

We remind the reader that the trace norm of a matrix is the sum of its singular values, and
the (entry-wise) `1 norm of a matrix M is ‖M‖1 :=

∑
i,j |M(i, j)|. Consider the following

convex program, combining the trace norm of a matrix variable K with the `1 norm of
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another matrix variable B using two parameters c1, c2 that will be determined later:

(CP) min
K,B∈Rn×n

‖K‖∗ + c1

∥∥Ps(A)B
∥∥

1
+ c2

∥∥Ps(A)cB
∥∥

1

s.t. K +B = A,

0 ≤ Kij ≤ 1, ∀(i, j).

Here the trace norm term in the objective promotes low-rank solutions and thus encourages
the matrix K to have the zero-one block-diagonal structure of a clustering matrix. The
matrix Ps(A)B = Ps(A)(A −K) is non-zero only on the pairs (i, j) between which there is
an edge in the graph (Aij = 1) but the candidate solution has Kij = 0, and thus Ps(A)B
corresponds to the “cross-cluster disagreements” between A and K. Similarly, the matrix
Ps(A)cB corresponds to the “in-cluster disagreements”. Hence, the last two terms in the
objective is the weighted sum of these two types of disagreements. The formulation (CP) can
therefore be considered as a convex relaxation of the so-called weighted correlation clustering
approach (Bansal et al., 2004), whose objective is to find a clustering that minimizes the
weighted disagreements. See Oymak and Hassibi (2011); Mathieu and Schudy (2010); Chen
et al. (2014a) for related formulations.

Important to subsequent development is the following new theoretical guarantee for the
formulation (CP). We show that (CP) identifies the large clusters whose sizes are above a
threshold (chosen by the user) even when small clusters are present. The proof is given in
Section 5.1.

Theorem 2 There exist universal constants b3 > 1 > b4 > 0 such that the following is
true. For any (user-specified) parameters κ ≥ 1 and t ∈ [1

4p+ 3
4q,

3
4p+ 1

4q], define

`] := b3
κ
√
p(1− q)n
p− q

max

{
1,

√
p(1− q) log4 n

κ(p− q)
√
n

}
, `[ := b4

κ
√
p(1− q)n
p− q

, (1)

and set

c1 :=
1

100κ
√
n

√
1− t
t

, c2 :=
1

100κ
√
n

√
t

1− t
. (2)

If (i) n ≥ `] and n ≥ 700, and (ii) for each a ∈ [k], either na ≥ `] or na ≤ `[, then with
probability at least 1 − n−3, the optimal solution to (CP) with c1, c2 given above is unique
and equal to (K̂, B̂) = (P]K∗, A− K̂), where for a matrix M , P]M is the matrix defined by

(P]M)(i, j) =

{
M(i, j), max{n〈i〉, n〈j〉} ≥ `]
0, otherwise.

The theorem improves on a weaker version in Ailon et al. 2013, where the ratio `]/`[ was
larger by a factor of log2 n than here. The theorem says that the solution to (CP) identifies
clusters of size larger than `] = Ω(κ

√
n) and ignores other clusters smaller than `[. Setting

κ = 1 we recover the usual
√
n scaling in previous theoretical results. The main novelty

here is the treatment of small clusters, whereas in previous work only large clusters were
allowed, and there was no guarantee for recovery when small clusters are present.
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Black represents 1, white represents 0. Here
σmin(K) is the side length of the smallest
black square.

Figure 1: Illustration of a partial clustering matrix K.

Note that by the theorem’s premise, K̂ is the matrix obtained from K∗ after zeroing out
blocks corresponding to clusters of size at most `[. Also note that under the assumption

p− q ≥
√
p(1− q) log4 n/

√
n , (3)

we get the following simpler expression for `] in the theorem, replacing its definition in (1):

`] = b3
κ
√
p(1− q)n
p− q

. (4)

In this case, `] and `[ differ by only a multiplicative absolute constant b3/b4. We will make
the assumption (3) in what follows for simplicity, although it is not generally necessary.

Remark 3 The requirement of having a multiplicative constant gap b3/b4 between the sizes
`] and `[ of the large and small clusters, is not an artifact of our analysis; cf. the discussion
at the end of Section 4.

For the convenience of subsequent discussion, we use the following definition.

Definition 4 (Partial Clustering Matrix) An n × n matrix K is said to be a partial
clustering matrix if there exists a collection of pairwise disjoint sets U1, . . . , Ur ⊆ V (called
the induced clusters) such that K(i, j) = 1 if and only if i, j ∈ Ua for some a ∈ [r], otherwise
0. If K is a partial clustering matrix then σmin(K) is defined as mina∈[r] |Ua|.

The definition is depicted in Figure 1. The key message in Theorem 2 is that by choosing κ
properly such that no cluster size falls in the interval (`[, `]), the unique optimal solution

(K̂, B̂) to the convex program (CP) is such that K̂ is a partial clustering corresponding to
large ground truth clusters.

But how can we choose a proper κ? Moreover, given that we chose a κ (say, by exhaustive
search), how can we certify that it was indeed chosen properly? In order to develop an
algorithm, we would need a type of converse of Theorem 2: There exists an event with high
probability (in the random process generating the input graph), such that conditioned on
this event, for all values of κ, if an optimal solution to the corresponding (CP) is a partial
clustering matrix with the structure illustrated in Figure 1, then the blocks of K̂ correspond
to ground truth clusters.

Theorem 5 There exist absolute constants C1, C2 > 0 such that with probability at least
1 − n−3, the following holds. For all κ ≥ 1 and t ∈ [3

4q + 1
4p,

1
4q + 3

4p], if (K,B) is
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an optimal solution to (CP) with c1, c2 as defined in Theorem 2, and additionally K is a
partial clustering corresponding to U1, . . . , Ur ⊆ V , with

σmin(K) ≥ max

{
C1k log n

(p− q)2
,
C2κ

√
p(1− q)n log n

p− q

}
, (5)

then U1, . . . , Ur are actual ground truth clusters, namely, there exists an injection φ : [r] 7→
[k] such that Ua = Vφ(a) for all a ∈ [r].

Algorithm 1 RecoverBigFullObs(V,A, p, q)

require: ground set V , graph A ∈ RV×V , probabilities p, q
n← |V |
t← 1

4p+ 3
4q (or anything in [1

4p+ 3
4q,

3
4p+ 1

4q])

`] ← n, g ← b3
b4

// (If have prior bound k0 on the number of clusters, take `] ← n/k0)

while `] ≥ max

{
C1k logn
(p−q)2 ,

C2

√
p(1−q)n logn

p−q

}
do

solve for κ using (1), set c1, c2 as in (2)
(K,B)← optimal solution to (CP) with c1, c2

if K is a partial clustering matrix with σmin(K) ≥ `] then
return induced clusters {U1, . . . , Ur} of K

end if
`] ← `]/g

end while
return ∅

The proof is given in Section 5.2. The combination of Theorems 2 and 5 implies the
following, which we state in rough terms for simplicity. Let g := b3/b4. Assume that
we iteratively solve (CP) for κ taking values in some decreasing geometric progression of
common ratio g (starting at roughly κ =

√
n), and halt if the optimal solution is a partial

clustering with clusters of size at least `] = `](κ) (see Algorithm 1). Then these clusters are
(extremely likely to be) ground truth clusters. Moreover, if for some κ in the sequence, (i)
the interval (`[ = `[(κ), `] = `](κ)) intersects no cluster size, and (ii) there is at least one
cluster at least of size `], then such a halt will (be extremely likely to) occur.

The next question is, when are (i) and (ii) guaranteed? If the number of clusters k is a
priori bounded by some k0, then there is at least one cluster of size at least n/k0 (alluding
to (ii)), and by the pigeonhole principle, any set of k0 + 1 pairwise disjoint intervals of the
form (α, gα) contains at least one interval that intersects no clusters size (alluding to (i)).
For simplicity, we make an exact quantification of this principle for the case in which p, q
are assumed to be fixed and independent of n.3 As the following theorem shows, it turns
out that in this regime, k0 can be assumed to be asymptotically logarithmic in n to ensure
recovery of at least one cluster.4 In what follows, notation such as C(p, q), C3(p, q) denotes
positive functions that depend on p, q only.

3. In fact, we need only fix (p− q), but we wish to keep this exposition simple.
4. In comparison, Ailon et al. (2014) require k0 to be constant for their guarantees, as do the Correlation

Clustering PTAS in Giotis and Guruswami (2006).
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Algorithm 2 RecoverFullObs(V,A, p, q)

require: ground set V , matrix A ∈ RV×V , probabilities p, q
{U1, . . . , Ur} ← RecoverBigFullObs(V,A, p, q)
V ′ ← [n] \ (U1 ∪ · · · ∪ Ur)
if r = 0 then

return ∅
else

return RecoverFullObs(V ′, A[V ′], p, q) ∪ {U1, . . . , Ur}
end if

Theorem 6 There exist C3(p, q), C4(p, q), C5 > 0 such that the following holds. Assume
that n > C4(p, q), and that we are guaranteed that k ≤ k0, where k0 = C3(p, q) log n. Then
with probability at least 1 − 2n−3, Algorithm 1 will recover at least one cluster in at most
C5k0 iterations.

The theorem improves on a counterpart in the preliminary paper (Ailon et al., 2013), where
k0 was smaller by a factor of log log n than here.
Proof Consider the set of intervals(

n/(gk0), n/k0

)
,
(
n/(g2k0), n/(gk0)

)
, . . . ,

(
n/(gk0+1k0), n/(gk0k0)

)
.

By the pigeonhole principle, one of these intervals must not intersect the set of cluster
sizes. Assume this interval is (n/(gi0+1k0), n/(gi0k0)), for some 0 ≤ i0 ≤ k0. By setting
C3(p, q) small enough so that n/k0 is at least Ω(

√
n log n), and C4(p, q) large enough so that

n/gk0+1k0 is at least Ω(
√
n log n), one easily checks that both the requirements of Theo-

rems 2 and 5 are fulfilled.

Theorem 6 ensures that by trying at most a logarithmic number of values of κ, we
can recover at least one large cluster, assuming the number of clusters is logarithmic in n.
After recovering and removing such a cluster, we are left with an input of size n′ < n,
together with an updated upper bound k′0 < k0 on the number of clusters. As long as k′0
is logarithmic in n′, we can continue identifying another large cluster (with respect to the
smaller problem) using the same procedure. Clearly, as long as the input size is of size
at most exp{C3(p, q)k0}, we can iteratively continue this process. The following has been
proved:

Theorem 7 Assume an upper bound k0 on the number k of clusters, and also that n, k0

satisfy the requirements of Theorem 6. Then with probability at least 1− 2n−2, Algorithm 2
recovers clusters covering all but at most max {exp{C3(p, q)k0}, C4(p, q)} elements, without
any restriction on the minimal cluster size.

The theorem improves on a counterpart in the preliminary paper (Ailon et al., 2013). The
consequence is, for example, that if k0 ≤ 1

2C3(p,q) log n, then the algorithm recovers with

high probability clusters covering all but at most O(n1/2) elements, without any restriction
on the minimal cluster size.
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3.1 Partial Observations and Active Sampling

We now consider the case where the input matrix A is not given to us in entirety, but rather
that we have oracle access to A(i, j) for (i, j) of our choice. Unobserved values are formally
marked as A(i, j) = ∗.

Consider a more particular setting in which the edge probabilities are p′ and q′, and the
probability of sampling an observation is ρ. More precisely: For i ∼ j we have A(i, j) = 1
with probability ρp′, 0 with probability ρ(1−p′) and ∗ with remaining probability, indepen-
dently of other pairs. For i 6∼ j we have A(i, j) = 1 with probability ρq′, 0 with probability
ρ(1 − q′) and ∗ with remaining probability, independently of other pairs. Clearly, by pre-
tending that the values ∗ in A are 0, we emulate the full observation case of the planted
partition model with parameters p = ρp′, q = ρq′.

Of particular interest is the case in which p′, q′ are held fixed and ρ tends to zero as n
grows. In this regime, by varying ρ and fixing κ = 1, Theorem 2 implies the following:

Corollary 8 There exist constants b3(p′, q′) > b4(p′, q′) > 0 and b5(p′, q′) > 0 such that the
following is true. For any sampling probability parameter 0 < ρ ≤ 1, define

`] = b3(p′, q′)

√
n
√
ρ

max

{
1,

log4 n
√
ρn

}
, `[ = b4(p′, q′)

√
n
√
ρ
. (6)

If for each a ∈ [k], either na ≥ `] or na ≤ `[, then, with probability at least 1 − n−3, the
program (CP) (after setting ∗ in A to 0) with

c1 = c1(p′, q′) =
1

100
√
n

√
1− b5(p′, q′)ρ

b5(p′, q′)ρ

c2 = c2(p′, q′) =
1

100
√
n

√
b5(p′, q′)

1− b5(p′, q′)ρ
,

has a unique optimal solution equal to (K̂, B̂) = (P]K∗, A − K̂), where P] is as defined in
Theorem 2.

Note that we have slightly abused notation by reusing previously defined global constants
(e.g., b1) with global functions of p′, q′ (e.g., b1(p′, q′)). Notice now that the sampling
probability ρ can be used as a tuning parameter for controlling the sizes of the clusters we
try to recover, instead of κ. In what follows, we will always assume the following bound on
the observation rate:

ρ ≥ log8 n

n
, (7)

so that the definition of `] in (6) can be replaced by the simpler:

`] = b3(p′, q′)

√
n
√
ρ
. (8)

This assumption is made for simplicity of the exposition, and a more elaborate (though
tedious) derivation can be done without it.

We now present an analogue of the converse result in Theorem 5 for the partial obser-
vation setting. Our main focus is to understand the asymptotics as ρ→ 0.
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Theorem 9 There exist constants C1(p′, q′), C2(p′, q′) > 0 such that the following holds
with probability at least 1 − n−3. For all observation rate parameters ρ ≤ 1, if (K,B) is
an optimal solution to (CP) with c1, c2 as defined in Corollary 8, and additionally K is a
partial clustering corresponding to U1, . . . , Ur ⊆ V , and also

σmin(K) ≥ max

{
C1(p′, q′)k log n

ρ
,
C2(p′, q′)

√
n log n

√
ρ

}
, (9)

then U1, . . . , Ur are actual ground truth clusters, namely, there exists an injection φ : [r] 7→
[k] such that Ua = Vφ(a) for each a ∈ [r].

The proof is similar to that of Theorem 5. The necessary changes are outlined in
Section 5.3. Using the same reasoning as before, we derive the following:

Theorem 10 Let g = (b3(p′, q′)/b4(p′, q′))2 (with b3(p′, q′), b4(p′, q′) defined in Corollary 8).
There exist constants C3(p′, q′) and C4(p′, q′) such that the following holds. Assume n ≥
C3(p′, q′) and the number of clusters k is bounded by some known number k0 ≤ C4(p′, q′) log n.

Let ρ0 =
b3(p′,q′)2k20 logn

n . Then there exists ρ in the set {ρ0, ρ0g, . . . , ρ0g
k0} for which, if A

is obtained with sampling rate ρ (zeroing ∗’s), then with probability at least 1 − 2n−3, any
optimal solution (K,B) to (CP) with c1(p′, q′), c2(p′, q′) from Corollary 8 satisfies that K is
a partial clustering with the property in (9).

Note that the upper bound on k0 ensures that ρgk0 is a probability. The theorem improves
on a counterpart in the preliminary paper (Ailon et al., 2013), where k0 was smaller by a
factor of log log n compared to here. The theorem is proven, again, using a simple pigeonhole
principle, noting that one of the intervals (`[(ρ), `](ρ)) must be disjoint from the set of cluster
sizes, and there is at least one cluster of size at least n/k0. The value of ρ0 is chosen so
that n/k0 is larger than the RHS of (9). This theorem motivates the iterative procedure
in Algorithm 3: we start with a low sampling rate ρ, which is then increased geometrically
until the program (CP) returns a partial clustering.

Theorem 10 together with Corollary 8 and Theorem 9 ensures the following. On one
end of the spectrum, if k0 is a constant (and n is large enough), then with high probability
Algorithm 3 recovers at least one large cluster (of size at least n/k0) after querying no more
than

O

(
nk2

0(log n)

(
b3(p′, q′)

b4(p′, q′)

)2k0
)

(10)

values of A(i, j). On the other end of the spectrum, if k0 ≤ δ log n and n is large enough
(exponential in 1/δ), then Algorithm 3 recovers at least one large cluster after querying no
more than n1+O(δ) values of A(i, j). Iteratively recovering and removing large clusters leads
to Algorithm 4 with the following guarantees.

Theorem 11 Assume an upper bound k0 on the number of clusters k. As long as n is
larger than some function of k0, p

′, q′, Algorithm 4 will recover, with probability at least
1 − n−2, at least one cluster of size at least n/k0, regardless of the size of other (small)
clusters. Moreover, if k0 is a constant, then clusters covering all but a constant number
of elements will be recovered with probability at least 1 − 2n−2, and the total number of
observation queries is given by (10), hence almost linear.
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Algorithm 3 RecoverBigPartialObs(V, k0) (Assume p′, q′ known, fixed)

require: ground set V , oracle access to A ∈ RV×V , upper bound k0 on number of clusters

n← |V |
ρ0 ←

b3(p′,q′)2k20 logn
n

g ← b3(p′, q′)2/b4(p′, q′)2

for s ∈ {0, . . . , k0} do
ρ← ρ0g

s

obtain matrix A ∈ {0, 1, ∗}V×V by sampling oracle at rate ρ, then zero ∗ values in A
// (can reuse observations from previous iterations)
c1(p′, q′), c2(p′, q′)← as in Corollary 8
(K,B)← an optimal solution to (CP)
if K is a partial clustering matrix satisfying (9) then

return induced clusters {U1, . . . , Ur}
end if

end for
return ∅

Algorithm 4 RecoverPartialObs(V, k0) (Assume p′, q′ known, fixed)

require: ground set V , oracle access to A ∈ RV×V , upper bound k0 on number of clusters

{U1, . . . , Ur} ← RecoverBigPartialObs(V, k0)
V ′ ← [n] \ (U1 ∪ · · · ∪ Ur)
if r = 0 then

return ∅
else

return RecoverFullObs(V ′, k0 − r) ∪ {U1, . . . , Ur}
end if

The theorem improves on a counterpart in the preliminary paper (Ailon et al., 2013), where
the recovery covers all but a super-constant (in n) number of elements. Unlike previous
convex relaxation based approaches for this problem, which require all cluster sizes to be
of size at least roughly

√
n to succeed, there is no constraint on the cluster sizes for our

algorithm.

Also note that our algorithm is an active learning one, because more observations fall
in smaller clusters which survive deeper in the recursion of Algorithm 4. This feature can
lead to a significant saving in the number of queries. When small clusters of size Θ̃(

√
n) are

present, previous one-shot algorithms for graph clustering with partial observations (e.g.,
Jalali et al., 2011; Oymak and Hassibi, 2011; Chen et al., 2014a) only guarantee recovery
using O(n2) queries, which is much larger than the almost linear requirement Õ(n) of our
active algorithm.
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4. Experiments

We test our main Algorithms 2 and 4 (with subroutines Algorithms 1 and 3) on synthetic
data. In all experiment reports below, we use a variant of the Alternating Direction Method
of Multipliers (ADMM) to solve the semidefinite program (CP); see Lin et al. (2011); Chen
et al. (2012). The main cost of ADMM is the computation of the Singular Value Decom-
position (SVD) of an n× n matrix in each round. Note that one can take advantage of the
sparsity of the observations to speed up the SVD (cf. Lin et al. 2011). As is discussed in
previous work, and also observed empirically by us, ADMM converges linearly, so the num-
ber of SVD needed is usually small. See the references above for further discussion of the
optimization issues. The overall computation time also depends on the number of recursive
calls in Algorithm 2 and 4, as well as the number of iterations used in Algorithm 1 and 3
in search for suitable values for κ and ρ (using a multiplicative update rule). These two
numbers are at most O(max(k, log n)) (k is the number of clusters) under the conditions of
the theorems, and in our experiments they are both quite small.

In the experiments we consider simplified versions of the algorithms: we did not make
an effort to compute the constants `]/`[ defining the algorithms, creating a difficulty in
exact implementation. Instead, for Algorithm 1, we start with κ = 1 and increase κ by
a multiplicative factor of 1.1 in each iteration until a partial clustering matrix is found.
Similarly, in Algorithm 3, the sampling rate ρ has an initial value of 0 and is increased by
an additive factor of 0.025. Still, it is obvious that our experiments support our theoretical
findings. A more practical “user’s guide” for this method with actual constants is subject
to future work.

Whenever we say that “clusters {Vi1 , Vi2 , . . . } were recovered”, we mean that a corre-
sponding instantiation of (CP) resulted in an optimal solution (K,B) for which K was a
partial clustering matrix induced by {Vi1 , Vi2 , . . . }.

4.1 Experiment 1 (Full Observation)

Consider n = 1100 nodes partitioned into 4 clusters V1, . . . , V4, of sizes 800, 200, 80, 20,
respectively. The graph is generated according to the planted partition model with p = 0.5
and q = 0.2, and we assume the full observation setting. We apply the simplified version
of Algorithm 2 described previously, which terminates in 4 iterations using 44 seconds.
The recovered clusters at each iteration are detailed in Table 1. The table also shows the
values of κ adaptively chosen by the algorithm at each iteration (which happens to equal 1
throughout). We note that the first iteration of the algorithm is similar to existing convex
optimization based approaches to graph clustering (Jalali et al., 2011; Oymak and Hassibi,
2011; Chen et al., 2012); the experiment shows that these approaches by itself fail to recover
all the clusters in one shot, thus necessitating the iterative procedure proposed in this paper.

4.2 Experiment 2 (Partial Observation, Fixed Sample Rate)

We have n = 1100 with clusters V1, . . . , V4 of sizes 800, 200, 50, 50. The observed graph
is generated with p′ = 0.7, q′ = 0.1, and observation rate ρ = 0.3. We repeatedly solve
(CP) with c1, c2 given in Corollary 8. At each iteration, we see that at least one large
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Iteration κ # nodes left Clusters recovered
1 1 1100 V1
2 1 300 V2
3 1 100 V3
4 1 20 V4

Table 1: Results for experiment 1: n = 1100, {|Va|} = {800, 200, 80, 20}, p = 0.5, q = 0.2,
fixed ρ = 1.

Iteration κ # nodes left Clusters recovered
1 1 1100 V1
2 1 300 V2
3 1 100 V3, V4

Table 2: Results for experiment 2: n = 1100, {|Va|} = {800, 200, 50, 50}, p′ = 0.7, q′ = 0.1,
fixed ρ = 0.3.

cluster (compared to the input size at that iteration) is recovered exactly and removed.
The experiment terminates in 3 iterations using 18 seconds. Results are shown in Table 2.

4.3 Experiment 3 (Partial Observation, Adaptive Sampling Rate)

We use the simplified version of Algorithm 4 described previously. We have n = 1100
with clusters V1, . . . , V4 of sizes 800, 200, 50, 50. The graph is generated with p′ = 0.8 and
q′ = 0.2, and then adaptively sampled by the algorithm. The algorithm terminates in 3
iterations using 148 seconds. Table 3 shows the recovery result and the sampling rates used
in each iteration. From the table we can see that the expected total number of observed
entries used by the algorithm is

11002 · 0.125 + 3002 · 0.25 + 1002 · 0.55 = 179250,

which is 14.8% of all possible node pairs (the actual number of observations is very close to
this expected value). In comparison, we perform another experiment using a non-adaptive
sampling rate, for which we need ρ = 97.5% in order to recover all the clusters in one shot.
Therefore, our adaptive algorithm achieves a significant saving in the number of queries.

4.4 Experiment 3A

We repeat the above experiment with a larger instance: n = 4500 with clusters V1, . . . , V6

of sizes 3200, 800, 200, 200, 50, 50, and p′ = 0.8, q′ = 0.2. The algorithm terminates in 182
seconds, with results shown in Table 4. Note that we recover the smallest clusters, whose
sizes are below

√
n. The expected total number of observations used by the algorithm is

3388000, which is 16.7% of all possible node pairs. Using a non-adaptive sampling rate
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Iteration ρ # nodes left Clusters recovered
1 0.125 1100 V1
2 0.25 300 V2
3 0.55 100 V3, V4

Table 3: Results for experiment 3: n = 1100, {|Va|} = {800, 200, 50, 50}, p′ = 0.8, q′ = 0.2.

Iteration ρ # nodes left Clusters recovered
1 0.15 4500 V1
2 0.175 1300 V2
3 0.2 500 V3, V4
4 0.475 100 V5, V6

Table 4: Results for experiment 3A: n = 4500, {|Va|} = {3200, 800, 200, 200, 50, 50}, p′ =
0.8, q′ = 0.2.

ρ = 35.0% only recovers the 4 largest clusters, and we are unable to recover all 6 clusters
in one shot even with ρ = 1 .

4.5 Experiment 4 (Mid-Size Clusters)

Our current theoretical results do not say anything about the mid-size clusters—those with
sizes between `[ and `]. It is interesting to investigate the behavior of (CP) in the presence
of mid-size clusters. We generate an instance with n = 750 nodes partitioned into four
clusters of sizes {500, 150, 70, 30}, edge probabilities p = 0.8, q = 0.2 and a sampling rate
ρ = 0.12. We then solve (CP) with a fixed κ = 1. The low-rank part K of the solution
is shown in Figure 2. The large cluster of size 500 is completely recovered in K, while the
two small clusters of sizes 70 and 30 are entirely ignored. The medium cluster of size 150,
however, exhibits a pattern we find difficult to characterize. This shows that the constant
gap between `] and `[ in our theorems is a real phenomenon and not an artifact of our proof
techniques. Nevertheless, the mid-size cluster appears clean, and might allow recovery using
a simple combinatorial procedure. If this is true in general, it might not be necessary to
search for a gap free of cluster sizes. In particular, perhaps for any κ, (CP) identifies all large
clusters above `] after a simple mid-size cleanup procedure, and ignores all other clusters.
Understanding this phenomenon and its algorithmic implications is of much interest.

5. Proofs

We use the following notation and conventions throughout the proofs. With high probability
or w.h.p. means with probability at least 1 − n−6. The expressions a ∨ b and a ∧ b mean
max{a, b} and min{a, b}, respectively. For a real n × n matrix M , we use the unadorned
norm ‖M‖ to denote its spectral norm. The notation ‖M‖F refers to the Frobenius norm,
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Figure 2: The solution to (CP) with mid-size clusters.

‖M‖1 is
∑

i,j |M(i, j)|, and ‖M‖∞ is maxij |M(i, j)|. We shall use the standard inner
product 〈X,Y 〉 :=

∑n
i,j=1X(i, j)Y (i, j).

We will also study operators on the space of matrices, and denote them using a calli-
graphic font, e.g., P. The norm ‖P‖ of an operator is defined as

‖P‖ := sup
M∈Rn×n:‖M‖F =1

‖PM‖F .

For a fixed real n× n matrix M , we define the matrix linear subspace T (M) as follows:

T (M) := {YM +MX : X,Y ∈ Rn×n} .

In words, this subspace is the set of matrices spanned by matrices each row of which is in
the row space of M , and matrices each column of which is in the column space of M . We
let T (M)⊥ denote the orthogonal subspace to T (M) with respect to 〈·, ·〉, which is given by

T (M)⊥ := {X ∈ Rn×n : 〈X,Y 〉 = 0, ∀Y ∈ T (M)} .

It is a well known fact that the projection PT (X) onto T (X) w.r.t. 〈·, ·〉 is given by

PT (X)M := PC(X)M + PR(X)M − PC(X)PR(X)M ,

where PC(X) is projection (of each column of a matrix) onto the column space of X, and

PR(X) is projection onto the row space of X. The projection onto T (M)⊥ is PT (X)⊥M =
M − PT (X)M .

Finally, we recall that s(M) is the support of M , Ps(M)X is the matrix obtained from
X by setting its entries outside s(M) to zero, and Ps(M)cX := X − Ps(M)X.

5.1 Proof of Theorem 2

The proof builds on the analysis in Chen et al. (2012). We need some additional notation:

1. We let V[ ⊆ V denote the set of of elements i such that n〈i〉 ≤ `[. (We remind the
reader that n〈i〉 = |V〈i〉|.)

2. We remind the reader that the projection P] is defined as follows:

(P]M)(i, j) =

{
M(i, j), max{n〈i〉, n〈j〉} ≥ `]
0, otherwise.
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3. The projection P[ is defined as follows:

(P[M)(i, j) =

{
M(i, j), max{n〈i〉, n〈j〉} ≤ `[
0, otherwise.

In words, P[ projects onto the set of matrices supported on V[× V[. Note that by the
theorem assumption, P] +P[ = Id (equivalently, P] projects onto the set of matrices
supported on (V × V ) \ (V[ × V[)).

4. We use UΣU> to denote the rank-k′ Singular Value Decomposition (SVD) of the
symmetric matrix K̂, where k′ = rank(K̂) and equals the number of clusters with size
at least `].

5. Define the set

D :=
{

∆ ∈ Rn×n|∆ij ≤ 0,∀i ∼ j, (i, j) /∈ V[ × V[; 0 ≤ ∆ij , ∀i 6∼ j, (i, j) /∈ V[ × V[
}
,

which strictly contains all feasible deviation from K̂.

6. For simplicity we write T := T (K̂).

We will make use of the following facts:

1. Id = Ps(B̂) + Ps(B̂)c = Ps(A) + Ps(A)c .

2. P],P[,Ps(B̂),Ps(B̂)c ,Ps(A), and Ps(A)c commute with each other.

5.1.1 Approximate Dual Certificate Condition

We begin by giving a deterministic sufficient condition for (K̂, B̂) to be the unique optimal
solution to the program (CP).

Proposition 12 (K̂, B̂) is the unique optimal solution to (CP) if there exists a matrix
Q ∈ Rn×n and a number 0 < ε < 1 satisfying:

1. ‖Q‖ < 1;

2. ‖PT (Q)‖∞ ≤
ε
2 min {c1, c2};

3. ∀∆ ∈ D:

(a)
〈
UU> +Q,Ps(A)Ps(B̂)P]∆

〉
= (1 + ε)c1

∥∥∥Ps(A)Ps(B̂)P]∆
∥∥∥

1
,

(b)
〈
UU> +Q,Ps(A)cPs(B̂)P]∆

〉
= (1 + ε)c2

∥∥∥Ps(A)cPs(B̂)P]∆
∥∥∥

1
;

4. ∀∆ ∈ D:

(a)
〈
UU> +Q,Ps(A)Ps(B̂)cP]∆

〉
≥ −(1− ε)c1

∥∥∥Ps(A)Ps(B̂)cP]∆
∥∥∥

1
,

(b)
〈
UU> +Q,Ps(A)cPs(B̂)cP]∆

〉
≥ −(1− ε)c2

∥∥∥Ps(A)cPs(B̂)cP]∆
∥∥∥

1
;
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5. Ps(B̂)P[(UU
> +Q) = c1P[B̂;

6.
∥∥∥Ps(B̂)cP[(UU

> +Q)
∥∥∥
∞
≤ c2.

Proof Consider any feasible solution (K̂ + ∆, B̂ − ∆) to (CP); we know ∆ ∈ D due to
the inequality constraints in (CP). We will show that this solution will have strictly higher
objective value than (K̂, B̂) if ∆ 6= 0.

For this ∆, let G∆ be a matrix in T⊥ ∩Range(P[) satisfying ‖G∆‖ = 1 and 〈G∆,∆〉 =
‖PT⊥P[∆‖∗; such a matrix always exists because RangeP[ ⊆ T⊥. Suppose ‖Q‖ = b.
Clearly, PT⊥Q + (1 − b)G∆ ∈ T⊥ and, due to Property 1 in the proposition, we have
b < 1 and ‖PT⊥Q + (1 − b)G∆‖ ≤ ‖Q‖ + (1 − b) ‖G∆‖ = b + (1 − b) = 1. Therefore,
UU>+PT⊥Q+ (1− b)G∆ is a subgradient of f(K) = ‖K‖∗ at K = K̂. On the other hand,

define the matrix F∆ = −Ps(B̂)csgn(∆). We have F∆ ∈ s(B̂)c and ‖F∆‖∞ ≤ 1. Therefore,

Ps(A)(B̂ + F∆) is a subgradient of g1(B) =
∥∥Ps(A)B

∥∥
1

at B = B̂, and Ps(A)c(B̂ + F∆)

is a subgradient of g2(B) =
∥∥Ps(A)cB

∥∥
1

at B = B̂. Using these three subgradients, the
difference in the objective value can be bounded as follows:

d(∆)

,
∥∥∥K̂ + ∆

∥∥∥
∗

+ c1

∥∥∥Ps(A)(B̂ −∆)
∥∥∥

1
+ c2

∥∥∥Ps(A)c(B̂ −∆)
∥∥∥

1
−
∥∥∥K̂∥∥∥

∗
− c1

∥∥∥Ps(A)B̂
∥∥∥

1

− c2

∥∥∥Ps(A)cB̂
∥∥∥

1

≥
〈
UU> + PT⊥Q+ (1− b)G∆,∆

〉
+ c1

〈
Ps(A)(B̂ + F∆),−∆

〉
+ c2

〈
Ps(A)c(B̂ + F∆),−∆

〉
=(1− b) ‖PT⊥P[∆‖∗ +

〈
UU> + PT⊥Q,∆

〉
+ c1

〈
Ps(A)B̂,−∆

〉
+ c2

〈
Ps(A)cB̂,−∆

〉
+ c1

〈
Ps(A)F∆,−∆

〉
+ c2

〈
Ps(A)cF∆,−∆

〉
=(1− b) ‖PT⊥P[∆‖∗ +

〈
UU> + PT⊥Q,∆

〉
+ c1

〈
P[Ps(A)B̂,−∆

〉
+ c2

〈
P[Ps(A)cB̂,−∆

〉
+ c1

〈
P]Ps(A)B̂,−∆

〉
+ c2

〈
P]Ps(A)cB̂,−∆

〉
+ c1

〈
Ps(A)F∆,−∆

〉
+ c2

〈
Ps(A)cF∆,−∆

〉
.

The last six terms of the last RHS satisfy:

1. c1

〈
P[Ps(A)B̂,−∆

〉
+ c2

〈
P[Ps(A)cB̂,−∆

〉
= c1

〈
P[B̂,−∆

〉
, because P[B̂ ∈ s(A).

2.
〈
P]Ps(A)B̂,−∆

〉
≥ −

∥∥∥P]Ps(A)Ps(B̂)∆
∥∥∥

1
and

〈
P]Ps(A)cB̂,∆

〉
≥ −

∥∥∥P]Ps(A)cPs(B̂)∆
∥∥∥

1
,

because B̂ ∈ s(B̂) and
∥∥∥B̂∥∥∥

∞
≤ 1.

3.
〈
Ps(A)F∆,−∆

〉
=
∥∥∥Ps(A)Ps(B̂)c∆

∥∥∥
1

and
〈
Ps(A)cF∆,−∆

〉
=
∥∥∥Ps(A)cPs(B̂)c∆

∥∥∥
1
, due to

the definition of F .

It follows that

d(∆) ≥(1− b) ‖PT⊥P[∆‖∗ +
〈
UU> + PT⊥Q,∆

〉
+ c1

〈
P[B̂,−∆

〉
− c1

∥∥∥P]Ps(A)Ps(B̂)∆
∥∥∥

1

− c2

∥∥∥P]Ps(A)cPs(B̂)∆
∥∥∥

1
+ c1

∥∥∥Ps(A)Psc(B̂)∆
∥∥∥

1
+ c2

∥∥Ps(A)cPsc∆
∥∥

1
. (11)
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Consider the second term in the last RHS, which equals〈
UU> + PT⊥Q,∆

〉
=
〈
UU> +Q,P]∆

〉
+
〈
UU> +Q,P[∆

〉
− 〈PTQ,∆〉 .

We bound these three terms separately. For the first term, we have〈
UU> +Q,P]∆

〉
=
〈
UU> +Q,

(
Ps(A)Ps(B̂)P] + Ps(A)cPs(B̂)P] + Ps(A)Ps(B̂)cP] + Ps(A)cPscP]

)
∆
〉

≥(1 + ε)c1

∥∥∥Ps(A)Ps(B̂)P]∆
∥∥∥

1
+ (1 + ε)c2

∥∥∥Ps(A)cPs(B̂)P]∆
∥∥∥

1
− (1− ε)c1

∥∥∥Ps(A)Ps(B̂)cP]∆
∥∥∥

1

− (1− ε)c2

∥∥∥Ps(A)cPs(B̂)cP]∆
∥∥∥

1
. (Using Properties 3 and 4.)

For the second term, we have〈
UU> +Q,P[∆

〉
=
〈
Ps(B̂)P[(UU

> +Q),∆
〉

+
〈
Ps(B̂)cP[(UU

> +Q),∆
〉

≥c1

〈
P[B̂,∆

〉
− c2

∥∥∥Ps(B̂)cP[∆
∥∥∥

1
(using Properties 5 and 6)

=c1

〈
P[B̂,∆

〉
− c2

∥∥∥Ps(A)cPs(B̂)cP[∆
∥∥∥

1
. (Because Ps(A)cPs(B̂)cP[ = Ps(B̂)cP[.)

Finally, for the third term, Due to the block diagonal structure of the elements of T , we
have PT = P]PT and therefore

〈−PTQ,∆〉 = −〈PTQ,P]∆〉 ≥ −‖PTQ‖∞ ‖P]∆‖1 ≥ −
ε

2
min {c1, c2} ‖P]∆‖1 .

Combining the above three bounds with Eq. (11), we obtain

d(∆)

≥(1−b) ‖PT⊥P[∆‖∗+εc1

∥∥∥P]Ps(A)Ps(B̂)∆
∥∥∥

1
+εc2

∥∥∥P]Ps(A)cPs(B̂)∆
∥∥∥

1
+εc1

∥∥∥Ps(A)Ps(B̂)cP]∆
∥∥∥

1

+ εc2

∥∥∥Ps(A)cPs(B̂)cP]∆
∥∥∥

1
+ c1

∥∥∥Ps(A)Ps(B̂)cP[∆
∥∥∥

1
− ε

2
min {c1, c2} ‖P]∆‖1

=(1− b) ‖PT⊥P[∆‖∗ + εc1

∥∥P]Ps(A)∆
∥∥

1
+ εc2

∥∥P]Ps(A)c∆
∥∥

1
− ε

2
min {c1, c2} ‖P]∆‖1

(note that Ps(A)Ps(B̂)cP[∆=0)

≥(1− b) ‖P[∆‖∗ +
ε

2
min {c1, c2} ‖P]∆‖1 ,

which is strictly greater than zero for ∆ 6= 0.

5.1.2 Constructing Q

To prove the theorem, it suffices to show that with probability at least 1 − n−3, there
exists a matrix Q with the properties required by Proposition 12. We do this by explicitly
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constructing Q. Suppose we take

ε :=
100√
t(1− t)

max

{
κ
√
n

`]
,

√
log4 n

`]

}
,

and use the weights c1 and c2 given in Theorem 2. We specify P]Q and P[Q separately.
The matrix P]Q is given by P]Q = P]Q1 + P]Q2 + P]Q3, where for (i, j) /∈ V[ × V[,

P]Q1(i, j) =


− 1
n〈i〉

, i ∼ j, (i, j) ∈ s(B̂)

1
n〈i〉
· 1−pij

pij
, i ∼ j, (i, j) ∈ s(B̂)c

0, i 6∼ j

P]Q2(i, j) =


−(1 + ε)c2, i ∼ j, (i, j) ∈ s(B̂)

(1 + ε)c2
1−pij
pij

, i ∼ j, (i, j) ∈ s(B̂)c

0, i 6∼ j

P]Q3(i, j) =


(1 + ε)c1, i 6∼ j, (i, j) ∈ s(B̂)

−(1 + ε)c1
qij

1−qij , i 6∼ j, (i, j) ∈ s(B̂)c

0, i ∼ j.

Note that these matrices have zero-mean entries. (Recall that s(B̂) = s(A− K̂) is a random
set since the graph A is random.)
P[Q is given as follows. For (i, j) ∈ V[ × V[,

P[Q(i, j) =


c1, i ∼ j, (i, j) ∈ s(A)

−c2, i ∼ j, (i, j) ∈ s(A)c

c1, i 6∼ j, (i, j) ∈ s(A)

c2W (i, j), i 6∼ j, (i, j) ∈ s(A)c,

where W is a symmetric matrix whose upper-triangle entries are independent and obey

W (i, j) =

{
+1, with probability t−q

2t(1−q) ,

−1, with remaining probability.

Note that we introduced additional randomness in W .

5.1.3 Validating Q

Under the choice of t in Theorem 2, we have 1
4p ≤ t ≤ p and 1

4(1 − q) ≤ 1 − t ≤ 1 − q.
Also under the assumption (1) in the theorem and since p− q ≤ p(1− q), `] ≤ n, we have

p(1− q) ≥ b23κ
2n

`2]
∨ b3 log4 n

`]
≥ b3 log4 n

n . Using these inequalities, it is easy to check that ε < 1
2

provided that the constant b3 is sufficiently large. We will make use of these facts frequently
in the proof.

We now verify that the Q constructed above satisfy the six properties in Proposition 12
with probability at least 1− n−3.

475



Ailon, Chen and Xu

Property 1:
Suppose the matrix Q∼ is obtained from Q by setting all Q(i, j) with i 6∼ j to zero,

and Q6∼ = Q − Q∼. Note that ‖Q‖ ≤ ‖P]Q∼‖ + ‖P]Q6∼‖ + ‖P[Q∼‖ + ‖P[Q6∼‖. Below we
show that with high probability, the first term is upper-bounded by 7

32 and the other threes
terms are upper-bounded by 1

4 , which establishes that ‖Q‖ ≤ 31
32 .

(a) P[Q∼ is a block diagonal matrix support on V[×V[, where the size of each block is at
most `[. Note that P[Q∼ = E[P[Q∼]+ (P[Q∼ − E[P[Q∼]). Here E[P[Q∼] is a deterministic
matrix with all non-zero entries equal to 1

100κ
√
n

p−t√
t(1−t)

. We thus have

‖E[P[Q∼]‖ ≤ `[
1

100κ
√
n

p− t√
t(1− t)

≤ 1

32
,

where the last inequality holds under the definition of `[ in Theorem 2. On the other
hand, the matrix P[Q∼ − E[P[Q∼] is a random matrix whose entries are independent,
bounded almost surely by B := max{c1, c2} and have zero mean with variance bounded by

1
1002κ2n

· p(1−p)t(1−t) . If `[ ≤ n2/3, we apply part 1 of Lemma 17 to obtain

‖P[Q∼− E[P[Q∼]‖ ≤ 10 max

{
1

100κ
√
n

√
p(1− p)
t(1− t)

`[ log n, (c1 ∨ c2) log n

}

≤ max

{
1

10κ

√
p(1− p)
t(1− t)

log n

n1/3
,

1

10κ
√
n

(√
1− t
t
∨
√

t

1− t

)
log n

}
≤ 3

16
,

where the last inequality follows from t(1− t) ≥ p(1−q)
16 & log4 n

n . If `[ ≥ n2/3 ≥ 76, then the

variance of the entries is bounded by σ2 := 1
1002κ2nt(1−t)

(
p(1− p) ∨ t2 log4 n

`[
∨ (1−t)2 log4 n

`[

)
,

and σ & B log2 n√
`[

. Hence we can apply part 2 of Lemma 17 to get

‖P[Q∼ − E[P[Q∼]‖ ≤ 10σ
√
`[ ≤

3

16
,w.h.p.,

where in the last inequality we use n ≥ `[ and t(1 − t) ≥ 1
16p(1 − q) & log4 n

n . We conclude
that ‖P[Q∼‖ ≤ ‖E[P[Q∼]‖+ ‖P[Q∼ − E[P[Q∼]‖ ≤ 1

32 + 3
16 = 7

32 w.h.p.
(b) P[Q6∼ is a random matrix supported on V[×V[, whose entries are independent, zero

mean, bounded almost surely by B′ := max{c1, c2}, and have variance 1
1002κ2n

· t
2+q−2tq
(1−t)t . If

`[ ≤ n2/3, we apply part 1 of Lemma 17 to obtain

‖P[Q6∼‖ ≤ 10 max

{
1

100κ
√
n

√
t2 + q − 2tq

t(1− t)
`[ log n, (c1 ∨ c2) log n

}

≤ max

{
1

10κ

√
t2 + q − 2tq

t(1− t)
log n

n1/3
,

1

10κ
√
n

(√
1− t
t
∨
√

t

1− t

)
log n

}
≤ 1

4
,

where the last inequality follows from t(1−t) ≥ p(1−q)
16 & log4 n

n . If `[ ≥ n2/3 ≥ 76, one verifies

that the variance of the entries is bounded by (σ′)2 := 1
1002κ2n

·
(
t2+q−2tq

(1−t)t ∨
t log4 n
(1−t)`[

∨ (1−t) log4 n
t`[

)
,
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and σ′ & B′ log2 n√
`[

. Hence we can apply part 2 of Lemma 17 to obtain

‖P[Q6∼‖ ≤ 10σ′
√
`[ ≤

1

4
,w.h.p.,

where in the last inequality we use n ≥ `[ and t(1− t) ≥ 1
16p(1− q) &

log4 n
n .

(c) Note that P]Q∼ = P]Q1 + P]Q2. By construction these two matrices are both
block-diagonal, have independent zero-mean entries which are bounded almost surely by
B∼,1 := 1

`]p
and B∼,2 := 2c2

p respectively, and and have variance bounded by σ2
∼1

:= 1
p`2]

and

σ2
∼2

:= 4(1−t)
p c2

2 respectively. One verifies that σ∼,i &
B∼,i log2 n√

n
for i = 1, 2. We can then

apply part 2 of Lemma 17 to obtain ‖P]Q∼‖ ≤ 10(σ∼,1 + σ∼,2)
√
n ≤ 1

4 w.h.p.

(d) Note that P]Q 6∼ = P]Q3 is a random matrix with independent zero-mean entries
which are bounded almost surely by B6∼ := 2c1

1−q and have variance bounded by σ2
6∼ :=

4t
1−q c

2
1. One verifies that σ6∼ ≥

B6∼ log2 n√
n

. We can then apply part 2 of Lemma 17 to obtain

‖P]Q6∼‖ ≤ 4σ 6∼
√
n ≤ 1

4 w.h.p.

Property 2:

Due to the structure of T , we have

‖PTQ‖∞ = ‖PTP]Q‖∞ =
∥∥∥UU>(P]Q) + (P]Q)UU> + UU>(P]Q)UU>

∥∥∥
∞

≤ 3
∥∥∥UU>P]Q∥∥∥

∞
≤ 3

3∑
m=1

∥∥∥UU>P]Qm∥∥∥
∞
.

Now observe that (UU>P]Qm)(i, j) =
∑

l∈V〈i〉
1
n〈i〉
P]Qm(l, j) is the sum of independent

zero-mean random variables with bounded magnitude and variance. Using the Bernstein
inequality in Lemma 19, we obtain that for each (i, j) and with probability at least 1−n−8,

∣∣∣(UU>P]Q1)(i, j)
∣∣∣ ≤ 10

n〈i〉`]

(√
1− p
p
·
√
n〈i〉 log n+

log n

p

)
≤ 1

24κ

√
log2 n

n`]
, w.h.p.,

where in the last inequality we use p & κ2n
`2]

. For i ∈ V[, clearly (UU>P]Q1)(i, j) = 0.

By union bound we conclude that
∥∥UU>P]Q1

∥∥
∞ ≤

1
24κ

√
log2 n
n`]

w.h.p. We can bound∥∥UU>P]Q2

∥∥
∞ and

∥∥UU>P]Q3

∥∥
∞ in a similar fashion: for each (i, j) and with probability

at least 1− n−8:

∣∣∣(UU>P]Q2)(i, j)
∣∣∣ ≤ 10

(1 + ε)c2

n〈i〉

(√
1− p
p
·
√
n〈i〉 log n+

log n

p

)

≤ 15

100κ

√
t

(1− t)n
·

(√
(1− p) log n

p`]
+

log n

`]p

)
≤ 1

6κ

√
log2 n

n`]
,
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where the last inequality follows from p(1− t) & logn
`]

, and

∣∣∣(UU>P]Q3)(i, j)
∣∣∣ ≤ 10

(1 + ε)c1

n〈i〉

(√
q

1− q
·
√
n〈i〉 log n+

log n

1− q

)

≤ 15

100κ

√
1− t
tn
·

(√
q log n

(1− q)`]
+

log n

`](1− q)

)
≤ 1

6κ

√
log2 n

n`]
,

where the last inequality follows from t(1 − q) & logn
`]

. On the other hand, under the

definition of c1, c2 and ε, we have

c1ε ≥
1

100κ

√
1− t
tn
· 100

√
log4 n

t(1− t)`]
=

1

κt
·

√
log4 n

n`]
≥ 3

κ

√
log2 n

n`]
,

and similarly

c2ε ≥
1

100κ

√
t

(1− t)n
· 100

√
log4 n

t(1− t)`]
≥ 3

κ

√
log2 n

n`]
.

It follows that ‖PTQ‖∞ ≤ 3·
(

1
24 + 1

6 + 1
6

)
· ε3(c1∧c2) ≤ ε

2(c1∧c2) w.h.p., proving Property 2).

Properties 3(a) and 3(b):

For 3(a), by construction of Q we have〈
UU> +Q,Ps(A)Ps(B̂)P]∆

〉
=
〈
Ps(A)Ps(B̂)P]Q3,Ps(A)Ps(B̂)P]∆

〉
= (1 + ε)c1 ·

∑
(i,j)∈s(B̂)∩s(A)

P]∆(i, j)

= (1 + ε)c1

∥∥∥Ps(A)Ps(B̂)P]∆
∥∥∥

1
,

where the last equality follows from ∆ ∈ D. Similarly, since

Ps(A)cPs(B̂)P]Q1 = Ps(A)cPs(B̂)P](−UU
>),

we have 〈
UU> +Q,Ps(A)cPs(B̂)P]∆

〉
=
〈
Ps(A)cPs(B̂)P]Q2,Ps(A)cPs(B̂)P]∆

〉
= −(1 + ε)c2 ·

∑
(i,j)∈s(B̂)∩s(A)c

P]∆(i, j)

= (1 + ε)c2

∥∥∥Ps(A)cPs(B̂)P]∆
∥∥∥

1
,

where the last equality again follows from ∆ ∈ D; this proves Property 3(b).

Properties 4(a) and 4(b):
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For 4(a), we have〈
UU> +Q,Ps(A)Ps(B̂)cP]∆

〉
=
〈
Ps(A)Ps(B̂)cP]

(
UU> + P]Q1 + P]Q2

)
,Ps(A)Ps(B̂)cP]∆

〉
=

∑
(i,j)∈s(B̂)c∩s(A)

(
1

n〈i〉
+

1

n〈i〉

1− pij
pij

+ (1 + ε)c2
1− pij
pij

)
P]∆(i, j)

≥−
(

1

p`]
+ (1 + ε)c2

1− p
p

)∥∥∥Ps(A)Ps(B̂)cP]∆
∥∥∥

1
, (12)

where the last inequality follows from ∆ ∈ D, pij ≥ p and n〈i〉 ≥ `],∀i ∈ V]. Consider the
two terms in the parenthesis in (12). For the first term, we have

1

p`]
=

100κ

`]

√
n

t(1− t)
·

√
t(1− t)

1002κ2p2n
≤ 100κ

`]

√
n

t(1− t)
· 1

100κ

√
1− t
tn
≤ εc1.

For the second term in (12), we have the following:

p− t ≥ p− q
4
≥1

4
max

{
κ
√
b3p(1− q)n

`]
,

√
b3p(1− q) log4 n

`]

}

=

√
b3
4
· p(1− t) ·

√
t(1− q)√
p(1− t)

·max

{
κ
√
n

`]
√
t(1− t)

,

√
log4 n

t(1− t)`]

}

≥8p(1− t) · 100 max

{
κ
√
n

`]
√
t(1− t)

,

√
log4 n

t(1− t)`]

}
= 8p(1− t)ε.

A little algebra shows that this implies (1 + ε)
√

t
1−t

1−p
p ≤ (1 − ε)

√
1−t
t , or equivalently

(1 + ε)c2
1−p
p ≤ (1− 2ε)c1. Substituting back to (12), we conclude that

〈
UU> +Q,Ps(A)Ps(B̂)cP]∆

〉
≥ − (εc1 + (1− 2ε)c1)

∥∥∥Ps(A)Ps(B̂)cP]∆
∥∥∥

1
,

proving Property 4(a).

For 4(b), we have〈
UU> +Q,Ps(A)cPs(B̂)cP]∆

〉
=
〈
Ps(A)cPs(B̂)cP]Q3,Ps(A)cPs(B̂)cP]∆

〉
=

∑
(i,j)∈s(A)c∩s(B̂)c

−(1 + ε)
c1qij

1− qij
P]∆(i, j)

≥ −(1 + ε)
c1q

1− q

∥∥∥Ps(A)cPs(B̂)cP]∆
∥∥∥

1
, (13)
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where the last inequality follows from qij ≤ q. Consider the factor before the norm in (13).
Similarly as before, we have

t− q ≥ p− q
4
≥ 1

4
max

{
κ
√
b3p(1− q)n

`]
,

√
b3p(1− q) log4 n

`]

}

≥ 2t(1− q) · 100 max

{
κ
√
n

`]
√
t(1− t)

,

√
log4 n

t(1− t)`]

}
= 2t(1− q)ε.

A little algebra shows that this implies (1 + ε)
√

1−t
t

q
1−q ≤ (1 − ε)

√
t

1−t , or equivalently

(1 + ε)c1
q

1−q ≤ (1− ε)c2. Substituting back to (13), we conclude that〈
UU> +Q,Ps(A)cPs(B̂)cP]∆

〉
≥ −(1− ε)c2

∥∥∥Ps(A)cPs(B̂)cP]∆
∥∥∥

1
,

proving Property 4(b).
Properties 5 and 6:
Note that P[UU> = 0 and Ps(B̂)P[ = Ps(A)P[. These two properties hold by construc-

tion of Q.
We note that Properties (3)-(6) hold deterministically.
Combining the above results and applying the union bound, we conclude that with

probability at least 1 − n−3, there exists a matrix Q (which is the one constructed and
verified above) that satisfies the properties in Proposition 12, where the probability is with
respect to the randomness in the graph A and the matrix W . Since W is independent of
A, integrating out the randomness in W proves the theorem.

5.2 Proof of Theorem 5

To ease notation, throughout the proof, C denotes a general universal positive constant
that can take different values at different locations. We let Ω := s(B∗) denote the noise
locations.

Fix κ ≥ 1 and t in the allowed range, let (K,B) be an optimal solution to (CP), and
assume K is a partial clustering induced by U1, . . . , Ur for some integer r, and also assume
σmin(K) = mini∈[r] |Ui| satisfies (5). Let M = σmin(K). We need a few helpful facts. Note
that from the definition of t, c1, c2,

q +
1

4
(p− q) ≤ c2

c1 + c2
= t ≤ p− 1

4
(p− q) . (14)

We say that a pair of sets Y ⊆ V,Z ⊆ V is cluster separated if there is no pair (y, z) ∈
Y × Z satisfying y ∼ z.

Assumption 13 For all pairs of cluster-separated sets Y,Z of size at least m := C logn
(p−q)2

each,

|d̂Y,Z − q| <
1

4
(p− q) , (15)

where d̂Y,Z := |(Y×Z)∩Ω|
|Y |·|Z| .
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This is proven by a Hoeffding tail bound and a union bound to hold with probability at
least 1 − n−4. To see why, fix the sizes mY ,mZ of |Y |, |Z|, assume mY ≤ mZ w.l.o.g. For
each such choice, there are at most exp{C(mY +mZ) log n} ≤ exp{2CmZ log n} possibilities
for the choice of sets Y, Z. For each such choice, the probability that (15) does not hold is

exp{−CmYmZ(p− q)2} (16)

using Hoeffding inequality. Hence, as long as mY ≥ m as defined above, using union bound
(over all possibilities of mY ,mZ and of Y,Z) we obtain (15) uniformly. If we also assume
that

M ≥ 3m , (17)

the implication of Assumption 13 is that it cannot be the case that some Ui contains a
subset U ′i of size in the range [m, |Ui| −m] such that U ′i = Vg ∩ Ui for some g. Otherwise,
if such a set existed, then we would find a strictly better solution to (CP), call it (K ′, B′),
which is defined so that K ′ is obtained from K by splitting the block corresponding to Ui
into two blocks, one corresponding to U ′i and the other to Ui \U ′i . The difference ∆ between
the cost of (K,B) and (K ′, B′) is (renaming Y := U ′i and Z := U \ U ′i)

∆ = c1|(Y × Z) ∩ Ω| − c2|(Y × Z) ∩ Ωc| = (c1 + c2)d̂Y,Z |Y | |Z| − c2|Y | |Z| .

But the sign of ∆ is exactly the sign of d̂Y,Z − c2
c1+c2

which is strictly negative by (15) and
(14). (We also used the fact that the trace norm part of the utility function is equal for
both solutions: ‖K ′‖∗ = ‖K‖∗).

The conclusion is that for each i, the sets (Ui ∩ V1), . . . , (Ui ∩ Vk) must all be of size at
most m, except maybe for at most one set of size at least |Ui| −m. But note that by the
theorem’s assumption,

M > km = (kC log n)/(p− q)2 , (18)

so we conclude that not all the sets (Ui ∩V1), . . . , (Ui ∩Vk) can be of size at most m. Hence
exactly one of these sets must have size at least |Ui| −m. From this we conclude that there
is a function φ : [r] 7→ [k] such that for all i ∈ [r],

|Ui ∩ Vφ(i)| ≥ |Ui| −m .

We now claim that this function is an injection. We will need the following assumption:

Assumption 14 For any 4 pairwise disjoint subsets (Y, Y ′, Z, Z ′) such that (Y ∪ Y ′) ⊆ Vi
for some i, (Z ∪ Z ′) ⊆ [n] \ Vi, max{|Z|, |Z ′|} ≤ m, min{|Y |, |Y ′|} ≥M −m:

|Y | · |Y ′| d̂Y,Y ′ − |Y | · |Z| d̂Y,Z − |Y ′| · |Z ′| d̂Y ′,Z′ >
c2

c1 + c2
(|Y | · |Y ′| − |Y | · |Z| − |Y ′| · |Z ′|) (19)

The assumption holds with probability at least 1 − n−4 by using Hoeffding inequality,
union bounding over all possible sets Y, Y ′, Z, Z ′ as above. Indeed, notice that for fixed
mY ,mY ′ ,mZ ,mZ′ (with, say, mY ≥ mY ′), and for each tuple Y, Y ′, Z, Z ′ such that |Y | =
mY , |Y ′| = mY ′ , |Z| = mZ , |Z ′| = mZ′ , the probability that (19) is violated is at most

exp{−C(p− q)2(mYmY ′ +mYmZ +mY ′mZ′)} . (20)
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Using (17), this is at most

exp{−C(p− q)2(mYmY ′)} . (21)

Now notice that the number of possibilities to choose such a 4 tuple of sets is bounded
above by exp{CmY log n}. Assuming

M ≥ C log n

(p− q)2
, (22)

and applying a union bound over all possible combinations Y, Y ′, Z, Z ′ of sizesmY ,mY ′ ,mZ ,mZ′

respectively, of which there are at most exp{CmY log n}, we conclude that (19) is violated
for some combination with probability at most

exp{−C(p− q)2mYmY ′/2} (23)

which is at most exp{−C log n} if

M ≥ C log n

(p− q)2
. (24)

Apply a union bound now over the possible combinations of the tuple (mY ,mY ′ ,mZ ,mZ′),
of which there are at most exp{C log n} to conclude that (19) holds uniformly for all pos-
sibilities of Y, Y ′, Z, Z ′ with probability at least 1− n−4.

Now assume by contradiction that φ is not an injection, so φ(i) = φ(i′) =: j for some
distinct i, i′ ∈ [r]. Set Y = Ui ∩ Vj , Y ′ = Ui′ ∩ Vj , Z = Ui \ Y,Z ′ = Ui′ \ Y ′. Note that
max{|Z|, |Z ′|} ≤ m and min{|Y |, |Y ′|} ≥M −m by the derivations to this point. Consider
the solution (K ′, B′) where K ′ is obtained from K by replacing the two blocks corresponding
to Ui, Ui′ with four blocks: Y, Y ′, Z, Z ′. Inequality (19) guarantees that the cost of (K ′, B′)
is strictly lower than that of (K,B), contradicting optimality of the latter. (Note that we
used the fact that the corresponding contributions ‖K‖∗ and ‖K ′‖∗ to the trace-norm part
of the utility function are equal.)

We can now also conclude that r ≤ k. Fix i ∈ [r]. We show that not too many elements
of Vφ(i) can be contained in V \ {U1 ∪ · · · ∪ Ur}. We need the following assumption.

Assumption 15 For all pairwise disjoint sets Y,X,Z ⊆ V such that |Y | ≥M −m, |X| ≥
m, (Y ∪X) ⊆ Vj for some j ∈ [k], |Z| ≤ m, Z ∩ Vj = ∅:

|X| · |Y |d̂X,Y +

(
|X|
2

)
d̂x,x − |Y | · |Z|d̂Y,Z >

c2

c1 + c2
(|X| · |Y |+

(
|X|
2

)
− |Y | · |Z|) +

|X|
c1 + c2

. (25)

The assumption holds with probability at least 1 − n−4. To see why, first notice that
|X|/(c1 + c2) ≤ 1

8(p − q)|X| · |Y | by (5), as long as C2 is large enough. This implies that
the RHS of (25) is upper bounded by(

p− 1

8
(p− q)

)
|X| · |Y |+ c2

c1 + c

((
|X|
2

)
− |Y | · |Z|

)
(26)
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Proving that the LHS of (25) (denoted f(X,Y, Z)) is larger than (26) (denoted g(X,Y, Z))
uniformly w.h.p. can now be easily done as follows. By fixing mY = |Y |,mX = |X|, the
number of combinations for Y,X,Z is at most exp{C(mY + mX) log n} for some global
C > 0. On the other hand, the probability that f(X,Y, Z) ≤ g(X,Y, Z) for any such option
is at most

exp{−C(p− q)2mYmX} . (27)

Hence, by union bounding, the probability that some tuple Y,X,Z of sizes mY ,mX ,mZ

respectively satisfies f(X,Y, Z) ≤ g(X,Y, Z) is at most

exp{−C(p− q)2mY /2} , (28)

which is at most exp{−C log n} assuming

M ≥ C(log n)/(p− q)2 . (29)

Another union bound over the possible choices of mY ,mX ,mZ proves that (25) holds uni-
formly with probability at least 1− n−4.

Now assume, by way of contradiction, that for some i ∈ [r], the set X := Vφ(i) ∩ ([n] \
{U1 ∪ · · · ∪ Ur}) is of size greater than m. Set Y := Vφ(i) ∩ Ui and Z = Ui \ Vφ(i). Define
the solution (K ′, B′) where K ′ is obtained from K by replacing the block corresponding to
Ui = Y ∪ Z in K with two blocks: Y ∪X and Z. Assumption 15 tells us that the cost of
(K ′, B′) is strictly lower than that of (K,B). Note that the expression |X|

c1+c2
in the RHS of

(25) accounts for the trace norm difference ‖K ′‖∗ − ‖K‖∗ = |X|.
We are prepared to perform the final “cleanup” step. At this point we know that for

each i ∈ [r], the set Ti = Ui ∩ Vφ(i) satisfies

ti := |Ti| ≥ max{|Ui| −m, |Vφ(i)| − rm} . (30)

(To see why ti ≥ |Vφ(i)| − rm, note that at most m elements of Vφ(i) may be contained in
Ui′ for i′ 6= i, and another at most m elements in V \ (U1 ∪ · · · ∪Ur).) We are now going to
conclude from this that Ui = Vφ(i) for all i. To that end, let (K ′, B′) be the feasible solution
to (CP) defined so that K ′ is a partial clustering induced by Vφ(1), . . . , Vφ(r). We would like
to argue that if K 6= K ′ then the cost of (K ′, B′) is strictly smaller than that of (K,B).
Fix the value of the collection

Y := ((r, φ(1), . . . , φ(r),(
mij := |Vφ(i) ∩ Uj |)

)
i,j∈[r],i 6=j ,(

m′i := |Vφ(i) ∩ (V \ (U1 ∪ · · · ∪ Ur))|
)
i∈[r]

).

Let β(Y) denote the number of i 6= j such that mij > 0 plus the number of i ∈ [r] such
that m′i > 0. We can assume β(Y) > 0, otherwise Ui = Vφ(i) for all i ∈ [r]. The number of
possibilities for K giving rise to Y is exp{C(

∑
i 6=jmij+

∑
imi) log n}. Fix such a possibility,

and let

Dij = Vφ(i) ∩ Uj , D′i = Vφ(i) ∩ (V \ (U1 ∪ · · · ∪ Ur)) .
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The difference δ(K,K ′) between the (CP) costs of solutions K and K ′ is given by the
following expression:

δ =c1

∑
i

∑
j 6=i
|(Dij × Ui) ∩ Ω|+ c1

∑
i

∑
j1<j2
j1,j2 6=i

|(Dij1 ×Dij2) ∩ Ω|

+ c1

∑
i

|((Vφ(i) \D′i)×D′i) ∩ Ω|+ c2

∑
i

∑
j 6=i
|(Dij × Uj) ∩ Ωc|

− c2

∑
i

∑
j 6=i
|(Dij × Ui) ∩ Ωc| − c2

∑
i

∑
j1<j2
j1,j2 6=i

|(Dij1 ×Dij2) ∩ Ωc|

− c2

∑
i

|((Vφ(i) \D′i)×D′i) ∩ Ωc| − c1

∑
i

∑
j 6=i
|(Dij × Uj) ∩ Ω| −

∑
m′i ,

where the expression
∑
m′i comes from the trace norm contribution. If the quantity δ(K,K ′)

is non-positive, then at least one of the following must be true:

(i)
∑

i

∑
j 6=i |(Dij × Ui) ∩ Ω|+

∑
i

∑
j1<j2
j1,j2 6=i

|(Dij1 ×Dij2) ∩ Ω|

< c2
c1+c2

∑
i

∑
j 6=i |(Dij × Ui)|+ c2

c1+c2

∑
i

∑
j1<j2
j1,j2 6=i

|(Dij1 ×Dij2)|

(ii)
∑

i |((Vφ(i) \D′i)×D′i) ∩ Ω| < c1
c1+c2

∑
i |((Vφ(i) \D′i)×D′i)|+ 1

c1+c2

∑
im
′
i.

(iii)
∑

i

∑
j 6=i |(Dij × Uj) ∩ Ω| > c2

c1+c2

∑
i

∑
j 6=i |(Dij × Uj)|.

Inequality (i) occurs with probability at most

exp

−C(p− q)2
∑
i

M
∑
j 6=i

mij

 (31)

using Hoeffding bound; we also used (30). Inequality (ii) occurs with probability at most

exp

{
−C(p− q)2

∑
i

Mm′i

}
(32)

using Hoeffding inequalities. (We also used the fact that the rightmost expression of (ii),
1

c1+c2

∑
im
′
i, is bounded above by 1

4(p − q)
∑

i |((Vφ(i) \ D′i) × D′i)| due to the theorem
assumptions.) Inequality (iii) occurs occurs with probability at most (31), using Hoeffding
bounds again.

Now notice that the number of choices of K ′ giving rise to our fixed Y and β(Y) is, by a
gross estimation, at most exp{(

∑
j 6=imij +

∑
im
′
i) log n}. The assumptions of the theorem

ensure that, using a union bound over all such possibilities K, and then over all options
for β(Y) and Y, with probability at least 1 − n−4 the difference δ(K,K ′) is positive. This
means that the (CP) cost of K ′ is simultaneously strictly lower than that of K for all K we
have enumerated over.

Taking the theorem’s C1, C2 large enough to satisfy the requirements above concludes
the proof.
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5.3 Proof of Theorem 9

The proof of Theorem 5 in the previous section made repeated use of Hoeffding tail inequal-
ities, for uniformly bounding the size of the intersection of the noise support Ω with various
submatrices (with high probability). This is tight for p, q which are bounded away from 0
and 1. However, if p = ρp′, q = ρq′, the noise probabilities p′, q′ are fixed and ρ tends to 0,
a sharper bound is obtained using Bernstein tail bound (Lemma 18 in see Appendix A.2).
Using Bernstein inequality instead of Hoeffding inequality, gives the required result. To see
how this is done, the counterpart of Assumption 13 above is as follows:

Assumption 16 For all pairs of cluster-separated sets Y,Z of size at least m := C logn
ρ

each,

|d̂Y,Z − q| <
1

4
(ρp′ − ρq′) , (33)

where d̂Y,Z := |(Y×Z)∩Ω|
|Y |·|Z| .

Note: In this section, C (and hence also m) depends on p′, q′ only, which are assumed fixed.
Defining henceforth m as in Assumption 9, Assumption 14 holds with probability at least
1−n−4. This can be seen by replacing the Hoeffding bound in (20) with a Chernoff bound:

exp{−C(p′, q′)ρ(mYmY ′ +mYmZ +mY ′mZ′)} . (34)

The rest of the proof is obtained by a similar step by step technical alteration of the
proof in Section 5.2.

6. Discussion

An immediate future research is to better understand the “mid-size crisis”. Our current
results say nothing about clusters that are neither large nor small, falling in the interval
(`[, `]). Our numerical experiments confirm that the mid-size phenomenon is real: they

are neither completely recovered nor entirely ignored by the optimal K̂. The part of K̂
restricted to these clusters does not seem to have an obvious pattern. Proving whether we
can still efficiently recover large clusters in the presence of mid-size clusters is an interesting
open problem.

Our study was mainly theoretical, focusing on the planted partition model. As such,
our experiments focused on confirming the theoretical findings with data generated exactly
according to the distribution we could provide provable guarantees for. It would be inter-
esting to apply the presented methodology to real applications, particularly large data sets
merged from web application and social networks.

Another interesting direction is extending the “peeling strategy” to other settings. Our
algorithms use the convex program (CP) as a subroutine, taking advantage of the fact that
the recovery of large clusters via (CP) is not hindered by the presence of small clusters,
and that (CP) has a tunable parameter that controls the sizes of the clusters that are
considered large. It is possible that other clustering routines also have these properties and
thus can be used as a subroutine in our iterative and active algorithms. More generally,
our problem concerns the inference of an unknown structure, and our high-level strategy
is to sequentially infer and remove the “easy” (or low-resolution) part of the problem and
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zoom into the “hard” (or high-resolution) part. It is interesting to explore this strategy in
a broader context, and to understand for what problems and under what conditions this
strategy may work.
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Appendix A. Technical Lemmas

In this section we state several lemmas needed in the proofs of our main results.

A.1 The Spectral Norm of Random Matrices

Lemma 17 Suppose A ∈ RN×N is a symmetric matrix, where Aij, 1 ≤ i ≤ j ≤ m are
independent random variables, each of which has mean 0 and variance at most σ2 and is
bounded in absolute value by B a.s.

1. If n ≥ N , then with probability at least 1− n−6, the first singular value A satisfies

λ1(A) ≤ 10 max
{
σ
√
N log n,B log n

}
.

2. If further n ≥ N ≥ 76, N ≥ n2/3 and σ ≥ c1
B log2 n√

N
for some absolute constant c1 > 0,

then with probability at least 1− n−6, we have

λ1(A) ≤ 10σ
√
N.

Proof We first prove part 1 of the lemma. Let ei be the i-th standard basis in RN . Define
Zij = Aijeie

>
j + Ajieje

>
i for 1 ≤ i < j ≤ N , and Zii = Aiieie

>
i for i ∈ [N ]. Then the Zij ’s

are zero-mean random matrices independent of each other, and A =
∑

1≤i≤j≤N Zij . We
have ‖Zij‖ ≤ B almost surely. We also have∥∥∥∥∥∥

∑
1≤i≤j≤N

E(ZijZ
>
ij )

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

1≤i≤N
E(A2

ii)eie
>
i +

∑
1≤i≤N

eie
>
i

∑
j:j 6=i

E(A2
ij)

∥∥∥∥∥∥ ≤ Nσ2.

Similarly, we have ‖
∑

1≤i≤j≤N E(Z>ijZij)‖ ≤ Nσ2. Applying the Matrix Bernstein Inequal-

ity (Theorem 1.6 in Tropp 2012) with t = 10 max
{
σ
√
N log n,B log n

}
yields the desired

bound.
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We turn to part 2 of the lemma. Let A′ be an independent copy of A, and define

Ā :=

[
0 A
A′ 0

]
.

Note that Ā is an 2N × 2N random matrix with i.i.d. entries. If σ ≥ c1
B log2 n√

N
for some

sufficiently large absolute constant c1 > 0, then by Theorem 3.1 in Achlioptas and Mcsherry
(2007) we know that with probability at least 1−n−6, λ1(Ā) ≤ 10σ

√
N . The lemma follows

from noting that λ1(A) ≤ λ1(Ā).

A.2 Standard Bernstein Inequality for the Sum of Independent Variables

Lemma 18 ( Bernstein inequality) Let Y1, . . . , YN be independent random variables, each
of which has variance bounded by σ2 and is bounded in absolute value by B a.s.. Then we
have that

Pr

[∣∣∣∣∣
N∑
i=1

Yi − E

[
N∑
i=1

Yi

]∣∣∣∣∣ > t

]
≤ 2 exp

{
t2/2

Nσ2 +Bt/3

}
.

The following lemma is an immediate consequence of Lemma 18.

Lemma 19 Let Y1, . . . , YN be independent random variables, each of which has variance
bounded by σ2 and is bounded in absolute value by B a.s. Then we have∣∣∣∣∣

N∑
i=1

Yi − E

[
N∑
i=1

Yi

]∣∣∣∣∣ ≤ 10
(
σ
√
N log n+B log n

)
with probability at least 1− 2n−8.
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Abstract

JCLEC-Classification is a usable and extensible open source library for genetic program-
ming classification algorithms. It houses implementations of rule-based methods for clas-
sification based on genetic programming, supporting multiple model representations and
providing to users the tools to implement any classifier easily. The software is written in
Java and it is available from http://jclec.sourceforge.net/classification under the
GPL license.

Keywords: classification, evolutionary algorithms, genetic programming, JCLEC

1. Introduction

In the last decade, the increasing interest in storing information has led to its automatic
processing, discovering knowledge that is potentially useful. Data mining involves the use
of data analysis tools to discover this knowledge previously unknown, valid patterns, and
close relationships in databases. One of the most used data mining tasks is classification,
which learns from a set of training examples to produce predictions about future examples.

The classification models are being applied to enormous databases in areas such as
bioinformatics, marketing, banks or web mining. Existing classification libraries provide
algorithms following many different methodologies. However, it is difficult to find a library
that contains GP (genetic programming) algorithms, an important evolutionary computa-
tion paradigm. The conceptual difficulty of GP makes it difficult to implement algorithms
following this paradigm despite its algorithms perform well as it is proved by many re-
searchers (Espejo et al., 2010).

GP is an efficient and flexible heuristic technique that uses complex representations
such as trees. This technique provides comprehensible models, which are useful in different
application domains. For instance, it is applied to supervised learning tasks like regression,
classification and unsupervised learning tasks like clustering and association. In classifica-
tion tasks, the application of GP is an important issue since it may offer results that are
comprehensible to humans. Additionally, it offers interesting advantages such as flexibility,
and the possibility of using different kinds of representations, e.g., decision trees, rule-based
systems, discriminant functions, etc. An extension of GP is grammar-guided genetic pro-
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gramming (G3P), which makes the knowledge extracted more expressive and flexible by
means of a context-free grammar (McKay et al., 2010).

This paper presents an open source software for researchers and end-users to develop
classification algorithms based on GP and G3P models. It is an intuitive and usable tool
which extends the JCLEC evolutionary computation library (Ventura et al., 2007). The
software presented includes some GP and G3P proposals described in literature, and pro-
vides the necessary classes and methods to develop any kind of evolutionary algorithms for
solving classification problems easily.

This paper is organized as follows. Firstly, Section 2 provides a description of the
module, its structure and the way to use it. Finally, the documentation and the requirements
of this module are outlined in Section 3.

2. Description of the Module

The classification module is presented in this section, describing the library structure and
its main characteristics.

2.1 Structure of the Module

The net.sf.jclec.problem.classification.base package roots the hierarchical structure of the
classification module, and provides the abstract classes with the properties and methods
that any classification algorithm must contain, e.g., ClassificationAlgorithm, Classification-
Reporter, Rule and RuleBase. A new algorithm included in the module should inherit from
these classes regardless the classification model. In this context, we focus on rule-based
classifiers which comprise one or more classification rules, each of them being a knowledge
representation model consisting of an antecedent and a consequent. The antecedent of each
classification rule is made up of a series of conditions to be met by an instance to consider
that it belongs to the class specified by the consequent.

Based on whether an algorithm uses a GP or G3P encoding, JCLEC-Classification
makes a differentiation between expression-tree and syntax-tree respectively. In such a way,
each GP classification individual is represented by means of the ExprTreeRuleIndividual
class, which represents an individual, comprising all the features required to do it: the
genotype, the phenotype and the fitness function value. The nodes and functions in GP
trees are defined by the ExprTreeSpecies class. Similarly to GP individuals, the Syntax-
TreeRuleIndividual class specifies all the features required to represent a G3P individual,
while the SyntaxTreeSpecies allows us to define the terminal and nonterminal symbols of the
grammar used to generate individuals. Furthermore, the module allows to encode multiple
syntax and expression trees for Pittsburgh style encodings or multi expression programming
by means of the MultiExprTree and MultiSyntaxTree classes.

In order to represent the phenotype of a rule-base individual, crisp and fuzzy rules are
generated by using the CrispRule and FuzzyRule classes, respectively. These classes provide
the antecedent of the rule in an expression-tree shape and the consequent assigned to this
antecedent. In addition, methods to classify a whole data set or a particular instance are
provided in these classes. These methods compute whether the antecedent of a rule satisfies
an instance, returning the consequent of the rule, otherwise the instance is not covered by
the antecedent and therefore no predictions can be made. Besides those packages that repre-
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sent the main characteristics of any individual, the net.sf.jclec.problem.classification.listener
package to make reports for the train and test classification processes is provided. This
package contains the RuleBaseReporter class with methods to make reports specifying the
classifier features such as the rule base, the number of rules, the average number of condi-
tions, the percentage of correct predictions, the percentage of correct predictions per class,
the geometric mean, the kappa rate and the confusion matrix.

Finally, it is noteworthy that several utility classes, which make it easy to load data from
KEEL1 and ARFF2 formatted files, are provided by a dataset package. Three different
attribute types may be represented by this package, integer, continuous and categorical,
and a number of characteristics from the data set are given, comprising type of attributes,
number of classes, number of instances, etc.

The module houses three G3P classification algorithms (De Falco et al., 2001; Bojarczuk
et al., 2004; Tan et al., 2002), which can guide developers to write new algorithms.

2.2 Usage of the Module

Including new classification algorithms in this module is very simple. We focus on the algo-
rithm described by Bojarczuk et al. (2004). This algorithm, which is provided in the module
(see the net.sf.jclec.problem.classification.algorithm.bojarczuk package), is constructed with
only three additional classes. One of them, the BojarczukAlgorithm class is inherited from
the ClassificationAlgorithm class and provides the own features of this algorithm.

Another class required to be implemented is the evaluator, which computes the fitness of
the individuals. This class, named BojarczukEvaluator in this algorithm, inherits from the
JCLEC core AbstractParallelEvaluator class or from the AbstractEvaluator class, depending
on whether the individuals are evaluated in a sequential or parallel way.

Finally, a class to define the grammar to be followed in the individual generation stage
is implemented. This class, named BojarczukSyntaxTreeSpecies in this example, inherits
from the class SyntaxTreeSpecies since G3P individuals are defined in this algorithm.

Only defining these three classes, the complete classification algorithm is represented.
Due to the core of this module is JCLEC, before an algorithm is ready to run, it is necessary
to carry out a set-up process by using a configuration file as shown in Figure 1. This
configuration file and the steps required to execute the algorithm are described in the
JCLEC website. In this file we specify those parameters required such as the algorithm
to be run, the parent selector, the genetic operators, the evaluator, etc. All the required
parameters are provided by JCLEC, existing a numerous variety of them as it is described
in the JCLEC specification (Ventura et al., 2007).

3. Documentation and Requirements

The JCLEC-Classification online documentation3 describes the software packages, presents
a user oriented usage example, as well as developer information to include new algorithms,
API reference and running tests. JCLEC requires Java 1.7, Apache commons logging 1.1,

1. KEEL website at http://www.keel.es
2. ARFF format description at http://www.cs.waikato.ac.nz/ml/weka/arff.html
3. JCLEC documentation at http://jclec.sourceforge.net/data/JCLEC-classification.pdf
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<experiment>
<proce s s algorithm−type= ‘ ‘ net . s f . j c l e c . problem . c l a s s i f i c a t i o n . bojarczuk . BojarczukAlgorithm ’ ’>

<rand−gen−f a c t o ry seed = ‘ ‘123456789 ’ ’ type= ‘ ‘ net . s f . j c l e c . u t i l . random . RanecuFactory ’ ’ />
<populat ion−s i z e>100</ populat ion−s i z e>
<max−of−gene ra t i on s>100</max−of−gene ra t i on s>
<max−der iv−s i z e>20</max−der iv−s i z e>
<datase t type= ‘ ‘ net . s f . j c l e c . problem . u t i l . datase t . Arf fDataSet ’ ’>

<t ra in−data>data/ i r i s / i r i s −10−1t ra . a r f f</ tra in−data>
<t e s t−data>data/ i r i s / i r i s −10−1 t s t . a r f f</ te s t−data>

<a t t r ibu te−c l a s s−name>Class</ a t t r ibu te−c l a s s−name>
</ datase t>
<recombination−prob>0 .8</ recombination−prob>
<copy−prob>0 .01</copy−prob>
< l i s t e n e r type= ‘ ‘ net . s f . j c l e c . problem . c l a s s i f i c a t i o n . l i s t e n e r . RuleBaseReporter ’ ’>

<report−dir−name>r epo r t s / r epo r tF r e i t a s</ report−dir−name>
<g loba l−report−name>summaryFreitas</ g loba l−report−name>
<report−f requency>10</ report−f requency>

</ l i s t e n e r>
</ proce s s>

</ experiment>

Figure 1: Sample configuration file

Apache commons collections 3.2, Apache commons configuration 1.5, Apache commons lang
2.4, and JUnit 3.8 (for running tests).

Acknowledgments

This research was supported by the Spanish Ministry of Science and Technology project
TIN-2011-22408, the Ministry of Education FPU grants AP2010-0041 and AP2010-0042,
and FEDER funds.

References

C. C. Bojarczuk, H. S. Lopes, A. A. Freitas, and E. L. Michalkiewicz. A constrained-syntax
genetic programming system for discovering classification rules: application to medical
data sets. Artificial Intelligence in Medicine, 30(1):27–48, 2004.

I. De Falco, A. Della Cioppa, and E. Tarantino. Discovering interesting classification rules
with genetic programming. Applied Soft Computing, 1(4):257–269, 2001.

P. G. Espejo, S. Ventura, and F. Herrera. A survey on the application of genetic program-
ming to classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
40(2):121–144, 2010.

R. McKay, N. Hoai, P. Whigham, Y. Shan, and M. O’Neill. Grammar-based genetic pro-
gramming: a survey. Genetic Programming and Evolvable Machines, 11:365–396, 2010.

K. C. Tan, A. Tay, T. H. Lee, and C. M. Heng. Mining multiple comprehensible classification
rules using genetic programming. In Proceedings of the Evolutionary Computation on
2002. CEC ’02, volume 2, pages 1302–1307, 2002.

S. Ventura, C. Romero, A. Zafra, J.A. Delgado, and C. Hervás. JCLEC: a Java framework
for evolutionary computation. Soft Computing, 12:381–392, 2007.

494



Journal of Machine Learning Research 16 (2015) 495-545 Submitted 9/12; Revised 1/14; Published 3/15

AD3: Alternating Directions Dual Decomposition
for MAP Inference in Graphical Models∗
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Av. Rovisco Pais 1, 1049–001 Lisboa, Portugal

Pedro M. Q. Aguiar aguiar@isr.ist.utl.pt
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Abstract

We present AD3, a new algorithm for approximate maximum a posteriori (MAP) inference
on factor graphs, based on the alternating directions method of multipliers. Like other dual
decomposition algorithms, AD3 has a modular architecture, where local subproblems are
solved independently, and their solutions are gathered to compute a global update. The
key characteristic of AD3 is that each local subproblem has a quadratic regularizer, leading
to faster convergence, both theoretically and in practice. We provide closed-form solutions
for these AD3 subproblems for binary pairwise factors and factors imposing first-order
logic constraints. For arbitrary factors (large or combinatorial), we introduce an active set
method which requires only an oracle for computing a local MAP configuration, making
AD3 applicable to a wide range of problems. Experiments on synthetic and real-world
problems show that AD3 compares favorably with the state-of-the-art.

Keywords: MAP inference, graphical models, dual decomposition, alternating directions
method of multipliers.

1. Introduction

Graphical models enable compact representations of probability distributions, being widely
used in natural language processing (NLP), computer vision, signal processing, and com-
putational biology (Pearl, 1988; Lauritzen, 1996; Koller and Friedman, 2009). When using

∗. An earlier version of this work appeared in Martins et al. (2011a).
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these models, a central problem is that of inferring the most probable (a.k.a. maximum
a posteriori – MAP) configuration. Unfortunately, exact MAP inference is an intractable
problem for many graphical models of interest in applications, such as those involving non-
local features and/or structural constraints. This fact has motivated a significant research
effort on approximate techniques.

A class of methods that proved effective for approximate inference is based on linear pro-
gramming relaxations of the MAP problem (LP-MAP; Schlesinger 1976). Several message-
passing and dual decomposition algorithms have been proposed to address the resulting
LP problems, taking advantage of the underlying graph structure (Wainwright et al., 2005;
Kolmogorov, 2006; Werner, 2007; Komodakis et al., 2007; Globerson and Jaakkola, 2008;
Jojic et al., 2010). All these algorithms have a similar consensus-based architecture: they
repeatedly perform certain “local” operations in the graph (as outlined in Table 1), until
some form of local agreement is achieved. The simplest example is the projected subgradient
dual decomposition (PSDD) algorithm of Komodakis et al. (2007), which has recently en-
joyed great success in NLP applications (see Rush and Collins 2012 and references therein).
The major drawback of PSDD is that it is too slow to achieve consensus in large problems,
requiring O(1/ε2) iterations for an ε-accurate solution. While block coordinate descent
schemes are usually faster to make progress (Globerson and Jaakkola, 2008), they may get
stuck in suboptimal solutions, due to the non-smoothness of the dual objective function.
Smoothing-based approaches (Jojic et al., 2010; Hazan and Shashua, 2010) do not have
these drawbacks, but in turn they typically involve adjusting a “temperature” parameter
for trading off the desired precision level and the speed of convergence, and may suffer from
numerical instabilities in the near-zero temperature regime.

In this paper, we present a new LP-MAP algorithm called AD3 (alternating directions
dual decomposition), which allies the modularity of dual decomposition with the effective-
ness of augmented Lagrangian optimization, via the alternating directions method of mul-
tipliers (Glowinski and Marroco, 1975; Gabay and Mercier, 1976). AD3 has an iteration
bound of O(1/ε), an order of magnitude better than the PSDD algorithm. Like PSDD, AD3

alternates between a broadcast operation, where subproblems are assigned to local work-
ers, and a gather operation, where the local solutions are assembled by a controller, which
produces an estimate of the global solution. The key difference is that AD3 regularizes
their local subproblems toward these global estimate, which has the effect of speeding up
consensus. In many cases of interest, there are closed-form solutions or efficient procedures
for solving the AD3 local subproblems (which are quadratic). For factors lacking such a
solution, we introduce an active set method which requires only a local MAP decoder (the
same requirement as in PSDD). This paves the way for using AD3 with dense or structured
factors.

Our main contributions are:

• We derive AD3 and establish its convergence properties, blending classical and newer
results about ADMM (Eckstein and Bertsekas, 1992; Boyd et al., 2011; Wang and
Banerjee, 2012). We show that the algorithm has the same form as the PSDD method
of Komodakis et al. (2007), with the local MAP subproblems replaced by quadratic
programs. We also show that AD3 can be wrapped into a branch-and-bound procedure
to retrieve the exact MAP.
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Algorithm Local Operation

TRW-S (Wainwright et al., 2005; Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Norm-Product BP (Hazan and Shashua, 2010) marginals
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP

Table 1: Several LP-MAP inference algorithms and the kind of the local operations they
need to perform at the factors to pass messages and compute beliefs. Some of these
operations are the same as the classic loopy BP algorithm, which needs marginals
(sum-product variant) or max-marginals (max-product variant). In Section 6, we
will see that the quadratic problems (QP) required by AD3 can be solved as a
sequence of local MAP problems.

• We show that these AD3 subproblems can be solved exactly and efficiently in many
cases of interest, including Ising models and a wide range of hard factors representing
arbitrary constraints in first-order logic. Up to a logarithmic term, the asymptotic cost
in these cases is the same as that of passing messages or doing local MAP inference.

• For factors lacking a closed-form solution of the AD3 subproblems, we introduce a new
active set method. All is required is a black box that returns local MAP configurations
for each factor (the same requirement of the PSDD algorithm). This paves the way for
using AD3 with large dense or structured factors, based on off-the-shelf combinatorial
algorithms (e.g., Viterbi or Chu-Liu-Edmonds).

AD3 was originally introduced by Martins et al. (2010, 2011a) (then called DD-ADMM).
In addition to a considerably more detailed presentation, this paper contains contributions
that substantially extend that preliminary work in several directions: the O(1/ε) rate of
convergence, the active set method for general factors, and the branch-and-bound procedure
for exact MAP inference. It also reports a wider set of experiments and the release of open-
source code (available at http://www.ark.cs.cmu.edu/AD3), which may be useful to other
researchers in the field.

This paper is organized as follows. We start by providing background material: MAP
inference in graphical models and its LP-MAP relaxation (Section 2); the PSDD algorithm
of Komodakis et al. (2007) (Section 3). In Section 4, we derive AD3 and analyze its conver-
gence. The AD3 local subproblems are addressed in Section 5, where closed-form solutions
are derived for Ising models and several structural constraint factors. In Section 6, we intro-
duce an active set method to solve the AD3 subproblems for arbitrary factors. Experiments
with synthetic models, as well as in protein design and dependency parsing (Section 7)
testify for the success of our approach. Finally, a discussion of related work in presented in
Section 8, and Section 9 concludes the paper.
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2. Background

We start by providing some background on inference in graphical models.

2.1 Factor Graphs

Let Y1, . . . , YM be random variables describing a structured output, with each Yi taking
values in a finite set Yi. We follow the common assumption in structured prediction that
some of these variables have strong statistical dependencies. In this article, we use factor
graphs (Tanner, 1981; Kschischang et al., 2001), a convenient way of representing such
dependencies that captures directly the factorization assumptions in a model.

Definition 1 (Factor graph) A factor graph is a bipartite graph G := (V, F,E), com-
prised of:

• a set of variable nodes V := {1, . . . ,M}, corresponding to the variables Y1, . . . , YM ;

• a set of factor nodes F (disjoint from V );

• a set of edges E ⊆ V × F linking variable nodes to factor nodes.

For notational convenience, we use Latin letters (i, j, ...) and Greek letters (α, β, ...) to refer
to variable and factor nodes, respectively. We denote by ∂(·) the neighborhood set of its
node argument, whose cardinality is called the degree of the node. Formally, ∂(i) := {α ∈
F | (i, α) ∈ E}, for variable nodes, and ∂(α) := {i ∈ V | (i, α) ∈ E} for factor nodes. We
use the short notation Yα to refer to tuples of random variables, which take values on the
product set Yα :=

∏
i∈∂(α) Yi.

We say that the joint probability distribution of Y1, . . . , YM factors according to the
factor graph G = (V, F,E) if it can be written as

P(Y1 = y1, . . . , YM = yM ) ∝ exp

(∑
i∈V

θi(yi) +
∑
α∈F

θα(yα)

)
, (1)

where θi(·) and θα(·) are called, respectively, the unary and higher-order log-potential
functions.1 To accommodate hard constraints, we allow these functions to take values in
R̄ := R ∪ {−∞}, but we require them to be proper (i.e., they cannot take the value −∞ in
their whole domain). Figure 1 shows examples of factor graphs with hard constraint factors
(to be studied in detail in Section 5.2).

2.2 MAP Inference

Given a probability distribution specified as in (1), we are interested in finding an assignment
with maximal probability (the so-called MAP assignment/configuration):

ŷ1, . . . , ŷM ∈ arg max
y1,...,yM

∑
i∈V

θi(yi) +
∑
α∈F

θα(yα). (2)

1. Some authors omit the unary log-potentials, which do not increase generality since they can be absorbed
into the higher-order ones. We explicitly state them here since they are frequently used in practice, and
their presence highlights a certain symmetry between potentials and marginal variables that will appear
in the sequel.
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Figure 1: Constrained factor graphs, with soft factors shown as green squares above the
variable nodes (circles) and hard constraint factors as black squares below the
variable nodes. Left: a global factor that constrains the set of admissible outputs
to a given codebook. Right: examples of declarative constraints; one of them is a
factor connecting existing variables to an extra variable, allows scores depending
on a logical functions of the former.

In fact, this problem is not specific to probabilistic models: other models, e.g., trained
to maximize margin, also lead to maximizations of the form above. Unfortunately, for a
general factor graph G, this combinatorial problem is NP-hard (Koller and Friedman, 2009),
so one must resort to approximations. In this paper, we address a class of approximations
based on linear programming relaxations, described formally in the next section.

Throughout the paper, we will make the following assumption:

Assumption 2 The MAP problem (2) is feasible, i.e., there is at least one assignment
y1, . . . , yM such that

∑
i∈V θi(yi) +

∑
α∈F θα(yα) > −∞.

Note that Assumption 2 is substantially weaker than other assumptions made in the lit-
erature on graphical models, which sometimes require the solution of to be unique, or the
log-potentials to be all finite. We will see in Section 4 that this is all we need for AD3 to
be globally convergent.

2.3 LP-MAP Inference

Schlesinger’s linear relaxation (Schlesinger, 1976; Werner, 2007) is the building block for
many popular approximate MAP inference algorithms. Let us start by representing the log-
potential functions in vector notation, θi := (θi(yi))yi∈Yi ∈ R̄|Yi| and θα := (θα(yα))yα∈Yα ∈
R̄|Yα|. We introduce “local” probability distributions over the variables and factors, repre-
sented as vectors of the same size:

pi ∈ ∆|Yi|, ∀i ∈ V and qα ∈ ∆|Yα|, ∀α ∈ F,

where ∆K := {u ∈ RK | u ≥ 0, 1>u = 1} denotes the K-dimensional probability sim-
plex. We stack these distributions into vectors p and q, with dimensions P :=

∑
i∈V |Yi|

and Q :=
∑

α∈F |Yα|, respectively. If these local probability distributions are “valid”
marginal probabilities (i.e., marginals realizable by some global probability distribution
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P(Y1, . . . , YM )), then a necessary (but not sufficient) condition is that they are locally con-
sistent. In other words, they must satisfy the following calibration equations:∑

yα∼yi

qα(yα) = pi(yi), ∀yi ∈ Yi, ∀(i, α) ∈ E, (3)

where the notation ∼ means that the summation is over all configurations yα whose ith
element equals yi. Equation (3) can be written in vector notation as Miαqα = pi, ∀(i, α) ∈
E, where we define consistency matrices

Miα(yi,yα) =

{
1, if yα ∼ yi
0, otherwise.

The set of locally consistent distributions forms the local polytope:

L(G) =

{
(p, q) ∈ RP+Q

∣∣∣∣∣ qα ∈ ∆|Yα|, ∀α ∈ F
Miαqα = pi, ∀(i, α) ∈ E

}
. (4)

We consider the following linear program (the LP-MAP inference problem):

LP-MAP: maximize
∑
α∈F

θα
>qα +

∑
i∈V

θi
>pi

with respect to (p, q) ∈ L(G).
(5)

If the solution (p∗, q∗) of problem (5) happens to be integral, then each p∗i and q∗α will be
at corners of the simplex, i.e., they will be indicator vectors of local configurations y∗i and
y∗α, in which case the output (y∗i )i∈V is guaranteed to be a solution of the MAP decoding
problem (2). Under certain conditions—for example, when the factor graph G does not
have cycles—problem (5) is guaranteed to have integral solutions. In general, however,
the LP-MAP decoding problem (5) is a relaxation of (2). Geometrically, L(G) is an outer
approximation of the marginal polytope, defined as the set of valid marginals (Wainwright
and Jordan, 2008). This is illustrated in Figure 2.

2.4 LP-MAP Inference Algorithms

While any off-the-shelf LP solver can be used for solving problem (5), specialized algorithms
have been designed to exploit the graph structure, achieving superior performance on several
benchmarks (Yanover et al., 2006). Some of these algorithms are listed in Table 1. Most of
these specialized algorithms belong to two classes: block (dual) coordinate descent, which
take the form of message-passing algorithms, and projected subgradient algorithms, based
on dual decomposition.

Block coordinate descent methods address the dual of (5) by alternately optimizing
over blocks of coordinates. Examples are max-sum diffusion (Kovalevsky and Koval, 1975;
Werner, 2007); max-product sequential tree-reweighted belief propagation (TRW-S, Wain-
wright et al. 2005; Kolmogorov 2006); and the max-product linear programming algorithm
(MPLP; Globerson and Jaakkola 2008). These algorithms work by passing local messages
(that require computing max-marginals) between factors and variables. Under certain con-
ditions (more stringent than Assumption 2), one may obtain optimality certificates when
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Figure 2: Marginal polytope (in green) and its outer approximation, the local polytope (in
blue). Each element of the marginal polytope corresponds to a joint distribution
of Y1, . . . , YM , and each vertex corresponds to a configuration y ∈ Y, having
coordinates in {0, 1}. The local polytope may have additional fractional vertices,
with coordinates in [0, 1].

the relaxation is tight. A disadvantage of coordinate descent algorithms is that they may
get stuck at suboptimal solutions (Bertsekas et al. 1999, Section 6.3.4), since the dual ob-
jective is non-smooth (cf. equation (8) below). An alternative is to optimize the dual with
the projected subgradient method, which is globally convergent (Komodakis et al., 2007),
and requires computing local MAP configurations as its subproblems. Finally, smoothing-
based approaches, such as the accelerated dual decomposition method of Jojic et al. (2010)
and the norm-product algorithm of Hazan and Shashua (2010), smooth the dual objective
with an en tropic regularization term, leading to subproblems that involve computing local
marginals.

In Section 8, we discuss advantages and disadvantages of these and other LP-MAP
inference methods with respect to AD3.

3. Dual Decomposition with the Projected Subgradient Algorithm

We now describe the projected subgradient dual decomposition (PSDD) algorithm proposed
by Komodakis et al. (2007). As we will see in Section 4, there is a strong affinity between
PSDD and the main focus of this paper, AD3.

Let us first reparameterize (5) to express it as a consensus problem. For each edge
(i, α) ∈ E, we define a potential function θiα := (θiα(yi))yi∈Yi that satisfies

∑
α∈∂(i) θiα =

θi; a trivial choice is θiα = |∂(i)|−1θi, which spreads the unary potentials evenly across the
factors. Since we have a equality constraint pi = Miαqα, problem (5) is equivalent to the
following primal formulation:

LP-MAP-P: maximize
∑
α∈F

θα +
∑
i∈∂(α)

M>
iαθiα

>qα
with respect to p ∈ RP , qα ∈ ∆|Yα|,∀α ∈ F,

subject to Miαqα = pi, ∀(i, α) ∈ E.

(6)

Note that, although the p-variables do not appear in the objective of (6), they play
a fundamental role through the constraints in the last line, which are necessary to ensure
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that the marginals encoded in the q-variables are consistent on their overlaps. Indeed, it is
this set of constraints that complicate the optimization problem, which would otherwise be
separable into independent subproblems, one per factor. Introducing Lagrange multipliers
λiα := (λiα(yi))yi∈Yi for each of these equality constraints leads to the Lagrangian function

L(q,p,λ) =
∑
α∈F

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα − ∑
(i,α)∈E

λiα
>pi, (7)

the maximization of which w.r.t. q and p will yield the (Lagrangian) dual objective. Since
the p-variables are unconstrained, we have

max
q,p

L(q,p,λ) =

{
g(λ) if λ ∈ Λ,
+∞ otherwise,

and we arrive at the following dual formulation:

LP-MAP-D: minimize g(λ) :=
∑
α∈F

gα(λ)

with respect to λ ∈ Λ,
(8)

where Λ :=
{
λ |

∑
α∈∂(i) λiα = 0, ∀i ∈ V

}
is a linear subspace, and each gα(λ) is the

solution of a local subproblem:

gα(λ) := max
qα∈∆|Yα|

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα
= max

yα∈Yα

θα(yα) +
∑
i∈∂(α)

(θiα(yi) + λiα(yi))

 ; (9)

the last equality is justified by the fact that maximizing a linear objective over the prob-
ability simplex gives the largest component of the score vector. Note that the local sub-
problem (9) can be solved by a ComputeMAP procedure, which receives unary potentials
ξiα(yi) := θiα(yi)+λiα(yi) and factor potentials θα(yα) (eventually structured) and returns
the MAP ŷα.

Problem (8) is often referred to as the master or controller, and each local subproblem
(9) as a slave or worker. The master problem (8) can be solved with a projected subgradient
algorithm.2 By Danskin’s rule (Bertsekas et al., 1999, p. 717), a subgradient of gα is readily
given by

∂gα(λ)

∂λiα
= Miαq̂α, ∀(i, α) ∈ E;

and the projection onto Λ amounts to a centering operation. Putting these pieces together
yields Algorithm 1. At each iteration, the algorithm broadcasts the current Lagrange mul-
tipliers to all the factors. Each factor adjusts its internal unary log-potentials (line 6) and

2. A slightly different formulation is presented by Sontag et al. (2011) which yields a subgradient algorithm
with no projection.
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Algorithm 1 PSDD Algorithm (Komodakis et al., 2007)

1: input: graph G, parameters θ, maximum number of iterations T , step sizes (ηt)
T
t=1

2: for each (i, α) ∈ E, choose θiα such that
∑

α∈∂(i) θiα = θi
3: initialize λ = 0
4: for t = 1 to T do
5: for each factor α ∈ F do
6: set unary log-potentials ξiα := θiα + λiα, for i ∈ ∂(α)
7: set q̂α := ComputeMap(θα +

∑
i∈∂(α) M>

iαξiα)
8: set q̂iα := Miαq̂α, for i ∈ ∂(α)
9: end for

10: compute average pi := |∂(i)|−1
∑

α∈∂(i) q̂iα for each i ∈ V
11: update λiα := λiα − ηt (q̂iα − pi) for each (i, α) ∈ E
12: end for
13: output: dual variable λ and upper bound g(λ)

invokes the ComputeMap procedure (line 7).3 The solutions achieved by each factor are
then gathered and averaged (line 10), and the Lagrange multipliers are updated with step
size ηt (line 11). The two following propositions establish the convergence properties of
Algorithm 1.

Proposition 3 (Convergence rate) If the non-negative step size sequence (ηt)t∈N is di-
minishing and nonsummable (lim ηt = 0 and

∑∞
t=1 ηt = ∞), then Algorithm 1 converges

to the solution λ∗ of LP-MAP-D (8). Furthermore, after T = O(1/ε2) iterations, we have
g(λ(T ))− g(λ∗) ≤ ε.

Proof: This is a property of projected subgradient algorithms (see, e.g., Bertsekas et al.
1999).

Proposition 4 (Certificate of optimality) If, at some iteration of Algorithm 1, all the
local subproblems are in agreement (i.e., if q̂iα = pi after line 10, for all i ∈ V ), then: (i) λ
is a solution of LP-MAP-D (8); (ii) p is binary-valued and a solution of both LP-MAP-P
and MAP.

Proof: If all local subproblems are in agreement, then a vacuous update will occur in
line 11, and no further changes will occur. Since the algorithm is guaranteed to converge,
the current λ is optimal. Also, if all local subproblems are in agreement, the averaging in
line 10 necessarily yields a binary vector p. Since any binary solution of LP-MAP is also a
solution of MAP, the result follows.

Propositions 3–4 imply that, if the LP-MAP relaxation is tight, then Algorithm 1 will
eventually yield the exact MAP configuration along with a certificate of optimality. Ac-
cording to Proposition 3, even if the relaxation is not tight, Algorithm 1 still converges to

3. Note that, if the factor log-potentials θα have special structure (e.g., if the factor is itself combinatorial,
such as a sequence or a tree model), then this structure is preserved since only the internal unary
log-potentials are changed. Therefore, if evaluating ComputeMap(θα) is tractable, so is evaluating
ComputeMap(θα +

∑
i∈∂(α) M

>
iαξiα).
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a solution of LP-MAP. Unfortunately, in large graphs with many overlapping factors, it
has been observed that convergence can be quite slow in practice (Martins et al., 2011b).
This is not surprising, given that it attempts to reach a consensus among all overlapping
components; the larger this number, the harder it is to achieve consensus. We describe in
the next section another LP-MAP decoder (AD3) with a faster convergence rate.

4. Alternating Directions Dual Decomposition (AD3)

AD3 avoids some of the weaknesses of PSDD by replacing the subgradient method with the
alternating directions method of multipliers (ADMM). Before going into a formal derivation,
let us go back to the PSDD algorithm to pinpoint the crux of its weaknesses. It resides in
two aspects:

1. The dual objective function g(λ) is non-smooth, this being why “subgradients” are
used instead of “gradients.” It is well-known that non-smooth optimization lacks some
of the good properties of its smooth counterpart. Namely, there is no guarantee of
monotonic improvement in the objective (see Bertsekas et al. 1999, p. 611). Ensuring
convergence requires using a diminishing step size sequence, which leads to slow con-
vergence rates. In fact, as stated in Proposition 3, O(1/ε2) iterations are required to
guarantee ε-accuracy.

2. A close look at Algorithm 1 reveals that the consensus is promoted solely by the
Lagrange multipliers (line 6). These can be regarded as “price adjustments” that are
made at each iteration and lead to a reallocation of resources. However, no “memory”
exists about past allocations or adjustments, so the workers never know how far they
are from consensus. One may suspect that a smarter use of these quantities may
accelerate convergence.

The first of these aspects has been addressed by the accelerated dual decomposition method
of Jojic et al. (2010), which improves the iteration bound to O(1/ε); we discuss that work
further in Section 8. We will see that AD3 also yields a O(1/ε) iteration bound with some
additional advantages. The second aspect is addressed by AD3 by broadcasting the current
global solution in addition to the Lagrange multipliers, allowing the workers to regularize
their subproblems toward that solution.

4.1 Augmented Lagrangians and the Alternating Directions Method of
Multipliers

Let us start with a brief overview of augmented Lagrangian methods. Consider the following
general convex optimization problem with equality constraints:

maximize f1(q) + f2(p)
with respect to q ∈ Q,p ∈ P

subject to Aq + Bp = c,
(10)

where Q ⊆ RP and P ⊆ RQ are convex sets and f1 : Q → R̄ and f2 : P → R̄ are concave
functions. Note that the LP-MAP problem stated in (6) has this form. For any η ≥ 0,
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consider the problem

maximize f1(q) + f2(p)− η
2‖Aq + Bp− c‖2

with respect to q ∈ Q,p ∈ P

subject to Aq + Bp = c,
(11)

which differs from (10) in the extra term penalizing violations of the equality constraints;
since this term vanishes at feasibility, the two problems have the same solution. The La-
grangian of (11),

Lη(q,p,λ) = f1(q) + f2(p) + λ>(Aq + Bp− c)− η

2
‖Aq + Bp− c‖2,

is called the η-augmented Lagrangian of (10). The so-called augmented Lagrangian methods
(Bertsekas et al., 1999, Section 4.2) address problem (10) by seeking a saddle point of Lηt ,
for some sequence (ηt)t∈N. The earliest instance is the method of multipliers (Hestenes,
1969; Powell, 1969), which alternates between a joint update of q and p through

(qt+1,pt+1) := arg max
q,p
{Lηt(q,p,λt) | q ∈ Q,p ∈ P} (12)

and a gradient update of the Lagrange multiplier,

λt+1 := λt − ηt(Aqt+1 + Bpt+1 − c).

Under some conditions, this method is convergent, and even superlinear, if the sequence
(ηt)t∈N is increasing (Bertsekas et al. 1999, Section 4.2). A shortcoming of this method is
that problem (12) may be difficult, since the penalty term of the augmented Lagrangian
couples the variables p and q. The alternating directions method of multipliers (ADMM)
avoids this shortcoming, by replacing the joint optimization (12) by a single block Gauss-
Seidel-type step:

qt+1 := arg max
q∈Q

Lηt(q,p
t,λt) = arg max

q∈Q
f1(q) + (A>λt)

>
q − ηt

2
‖Aq + Bpt − c‖2, (13)

pt+1 := arg max
p∈P

Lηt(q
t+1,p,λt) = arg max

p∈P
f2(p)+(B>λt)

>
p− ηt

2
‖Aqt+1 +Bp−c‖2. (14)

In general, problems (13)–(14) are simpler than the joint maximization in (12). ADMM was
proposed by Glowinski and Marroco (1975) and Gabay and Mercier (1976) and is related to
other optimization methods, such as Douglas-Rachford splitting (Eckstein and Bertsekas,
1992) and proximal point methods (see Boyd et al. 2011 for an historical overview).

4.2 Derivation of AD3

Our LP-MAP-P problem (6) can be cast into the form (10) by proceeding as follows:

• let Q in (10) be the Cartesian product of simplices, Q :=
∏
α∈F ∆|Yα|, and P := RP ;

• let f1(q) :=
∑

α∈F

(
θα +

∑
i∈∂(α) M>

iαθiα

)>
qα and f2 :≡ 0;
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• let A in (10) be a R × Q block-diagonal matrix, where R =
∑

(i,α)∈E |Yi|, with one
block per factor, which is a vertical concatenation of the matrices {Miα}i∈∂(α);

• let −B be a R × P matrix of grid-structured blocks, where the block in the (i, α)th
row and the ith column is a negative identity matrix of size |Yi|, and all the other
blocks are zero;

• let c := 0.

The η-augmented Lagrangian associated with (6) is

Lη(q,p,λ) =
∑
α∈F

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα− ∑
(i,α)∈E

λiα
>pi−

η

2

∑
(i,α)∈E

‖Miαqα−pi‖2.

This is the standard Lagrangian (7) plus the Euclidean penalty term. The ADMM updates
are

Broadcast: q(t) := arg max
q∈Q

Lηt(q,p
(t−1),λ(t−1)), (15)

Gather: p(t) := arg max
p∈RP

Lηt(q
(t),p,λ(t−1)), (16)

Multiplier update: λ
(t)
iα := λ

(t−1)
iα − ηt

(
Miαq

(t)
α − p

(t)
i

)
, ∀(i, α) ∈ E. (17)

We next analyze the broadcast and gather steps, and prove a proposition about the multi-
plier update.

4.2.1 Broadcast Step

The maximization (15) can be carried out in parallel at the factors, as in PSDD. The only
difference is that, instead of a local MAP computation, each worker now needs to solve a
quadratic program of the form:

max
qα∈∆|Yα|

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα − η

2

∑
i∈∂(α)

‖Miαqα − pi‖2. (18)

This differs from the linear subproblem (9) of PSDD by the inclusion of an Euclidean penalty
term, which penalizes deviations from the global consensus. In Sections 5 and 6, we will
give procedures to solve these local subproblems.
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4.2.2 Gather Step

The solution of problem (16) has a closed form. Indeed, this problem is separable into
independent optimizations, one for each i ∈ V ; defining qiα := Miαqα,

p
(t)
i := arg min

pi∈R|Yi|

∑
α∈∂(i)

(
pi −

(
qiα − η−1

t λiα
))2

= |∂(i)|−1
∑
α∈∂(i)

(
qiα − η−1

t λiα
)

=
1

|∂(i)|
∑
α∈∂(i)

qiα.

The equality in the last line is due to the following proposition:

Proposition 5 The sequence λ(1),λ(2), . . . produced by the updates (15)–(17) is dual fea-
sible, i.e., we have λ(t) ∈ Λ for every t, with Λ as in (8).

Proof: We have:

∑
α∈∂(i)

λ
(t)
iα =

∑
α∈∂(i)

λ
(t−1)
iα − ηt

 ∑
α∈∂(i)

q
(t)
iα − |∂(i)|p(t)

i


=
∑
α∈∂(i)

λ
(t−1)
iα − ηt

 ∑
α∈∂(i)

q
(t)
iα −

∑
α∈∂(i)

(
q

(t)
iα − η

−1
t λ

(t−1)
iα

) = 0.

Assembling all these pieces together leads to AD3 (Algorithm 2), where we use a fixed
step size η. Notice that AD3 retains the modular structure of PSDD (Algorithm 1). The key
difference is that AD3 also broadcasts the current global solution to the workers, allowing
them to regularize their subproblems toward that solution, thus speeding up the consensus.
This is embodied in the procedure SolveQP (line 7), which replaces ComputeMAP of
Algorithm 1.

4.3 Convergence Analysis

Before proving the convergence of AD3, we start with a basic result.

Proposition 6 (Existence of a Saddle Point) Under Assumption 2, we have the fol-
lowing properties (regardless of the choice of log-potentials):

1. LP-MAP-P (6) is primal-feasible;

2. LP-MAP-D (8) is dual-feasible;

3. The Lagrangian function L(q,p,λ) has a saddle point (q∗,p∗,λ∗) ∈ Q×P×Λ, where
(q∗,p∗) is a solution of LP-MAP-P and λ∗ is a solution of LP-MAP-D.

507



Martins, Figueiredo, Aguiar, Smith, and Xing

Algorithm 2 Alternating Directions Dual Decomposition (AD3)

1: input: graph G, parameters θ, penalty constant η
2: initialize p uniformly (i.e., pi(yi) = 1/|Yi|, ∀i ∈ V, yi ∈ Yi)
3: initialize λ = 0
4: repeat
5: for each factor α ∈ F do
6: set unary log-potentials ξiα := θiα + λiα, for i ∈ ∂(α)

7: set q̂α := SolveQP
(
θα +

∑
i∈∂(α) M>

iαξiα, (pi)i∈∂(α)

)
8: set q̂iα := Miαq̂α, for i ∈ ∂(α)
9: end for

10: compute average pi := |∂(i)|−1
∑

α∈∂(i) q̂iα for each i ∈ V
11: update λiα := λiα − η (q̂iα − pi) for each (i, α) ∈ E
12: until convergence
13: output: primal variables p and q, dual variable λ, upper bound g(λ)

Proof: Property 1 follows directly from Assumption 2 and the fact that LP-MAP is a
relaxation of MAP. To prove properties 2–3, define first the set of structural constraints Q̄ :=∏
α∈F Q̄α, where Q̄α := {qα ∈ ∆|Yα| | qα(yα) = 0, ∀yα s.t. θα(yα) = −∞} are truncated

probability simplices (hence convex). Since all log-potential functions are proper (due to
Assumption 2), we have that each Q̄α is non-empty, and therefore Q̄ has non-empty relative
interior. As a consequence, the refined Slater’s condition (Boyd and Vandenberghe, 2004,
§5.2.3) holds; let (q∗, p∗) ∈ Q̄× P be a primal feasible solution of LP-MAP-P, which exists
by virtue of property 1. Then, the KKT optimality conditions imply the existence of a
λ∗ such that (q∗,p∗,λ∗) is a saddle point of the Lagrangian function L, i.e., L(q,p,λ∗) ≤
L(q∗,p∗,λ∗) ≤ L(q∗,p∗,λ) holds for all q,p,λ. Naturally, we must have λ∗ ∈ Λ, otherwise
L(., .,λ∗) would be unbounded with respect to p.

We are now ready to show the convergence of AD3, which follows directly from the
general convergence properties of ADMM. Remarkably, unlike in PSDD, convergence is
ensured with a fixed step size, therefore no annealing is required.

Proposition 7 (Convergence of AD3) Let (q(t),p(t),λ(t))t be the sequence of iterates
produced by Algorithm 2 with a fixed ηt = η. Then the following holds:

1. primal feasibility of LP-MAP-P (6) is achieved in the limit, i.e.,

‖Miαq
(t)
α − p

(t)
i ‖ → 0, ∀(i, α) ∈ E;

2. the primal objective sequence
(∑

i∈V θi
>p

(t)
i +

∑
α∈F θα

>q
(t)
α

)
t∈N

converges to the so-

lution of LP-MAP-P (6);

3. the dual sequence (λ(t))t∈N converges to a solution of the dual LP-MAP-D (8); more-
over, this sequence is dual feasible, i.e., it is contained in Λ. Thus, g(λ(t)) in (8)
approaches the optimum from above.
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Proof: See Boyd et al. (2011, Appendix A) for a simple proof of the convergence of
ADMM in the form (10), from which 1, 2, and the first part of 3 follow immediately. The
two assumptions stated in Boyd et al. (2011, p.16) are met: denoting by ιQ the indicator
function of the set Q, which evaluates to zero in Q and to −∞ outside Q, we have that
functions f1 + ιQ and f2 are closed proper convex (since the log-potential functions are
proper and f1 is closed proper convex), and the unaugmented Lagrangian has a saddle
point (see property 3 in Proposition 6). Finally, the last part of statement 3 follows from
Proposition 5.

The next proposition, proved in Appendix A, states the O(1/ε) iteration bound of AD3,
which is better than the O(1/ε2) bound of PSDD.

Proposition 8 (Convergence rate of AD3) Assume the conditions of Proposition 7.
Let λ∗ be a solution of the dual problem (8), λ̄T := 1

T

∑T
t=1 λ

(t) be the “averaged” La-
grange multipliers after T iterations of AD3, and g(λ̄T ) the corresponding estimate of the
dual objective (an upper bound). Then, g(λ̄T )− g(λ∗) ≤ ε after T ≤ C/ε iterations, where
C is a constant satisfying

C ≤ 5η

2

∑
i∈V
|∂(i)| × (1− |Yi|−1) +

5

2η
‖λ∗‖2

≤ 5η

2
|E|+ 5

2η
‖λ∗‖2. (19)

As expected, the bound (19) increases with the number of overlapping variables, quan-
tified by the number of edges |E|, and the magnitude of the optimal dual vector λ∗. Note
that if there is a good estimate of ‖λ∗‖, then (19) can be used to choose a step size η that
minimizes the bound—the optimal step size is η = ‖λ∗‖ × |E|−1/2, which would lead to
T ≤ 5ε−1|E|1/2‖λ∗‖. In fact, although Proposition 7 guarantees convergence for any choice
of η, we observed in practice that this parameter has a strong impact on the behavior of
the algorithm. In our experiments, we dynamically adjust η in earlier iterations using the
heuristic described in Boyd et al. (2011, Section 3.4.1), and freeze it afterwards, not to
compromise convergence.

4.4 Stopping Conditions and Implementation Details

We next establish stopping conditions for AD3 and discuss some implementation details
that can provide significant speed-ups.

4.4.1 Primal and Dual Residuals

Since the AD3 iterates are dual feasible, it is also possible to check the conditions in Propo-
sition 4 to obtain optimality certificates, as in PSDD. Moreover, even when the LP-MAP
relaxation is not tight, AD3 can provide stopping conditions by keeping track of primal and
dual residuals, as described in Boyd et al. (2011, §3.3), based on which it is possible to
obtain certificates, not only for the primal solution (if the relaxation is tight), but also to
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terminate when a near optimal relaxed primal solution has been found.4 This is an impor-
tant advantage over PSDD, which is unable to provide similar stopping conditions, and is
usually stopped rather arbitrarily after a given number of iterations.

The primal residual r
(t)
P is the amount by which the agreement constraints are violated,

r
(t)
P =

∑
(i,α)∈E ‖Miαq

(t)
α − p(t)

i ‖2∑
(i,α)∈E |Yi|

∈ [0, 1],

where the constant in the denominator ensures that r
(t)
P ∈ [0, 1]. The dual residual r

(t)
D ,

r
(t)
D =

∑
(i,α)∈E ‖p

(t)
i − p

(t−1)
i ‖2∑

(i,α)∈E |Yi|
∈ [0, 1],

is the amount by which a dual optimality condition is violated (see Boyd et al. 2011, §3.3
for details). We adopt as stopping criterion that these two residuals fall below a threshold,
e.g., 10−6.

4.4.2 Approximate Solutions of the Local Subproblems

The next proposition states that convergence may still hold if the local subproblems are
only solved approximately. The importance of this result will be clear in Section 6, where we
describe a general iterative algorithm for solving the local quadratic subproblems. Essen-
tially, Proposition 9 allows these subproblems to be solved numerically up to some accuracy
without compromising global convergence, as long as the accuracy of the solutions improves
sufficiently fast over AD3 iterations.

Proposition 9 (Eckstein and Bertsekas, 1992) Let ηt = η, and for each iteration t,

let q̂(t) contain the exact solutions of (18), and q̃(t) those produced by an approximate
algorithm. Then Proposition 7 still holds, provided that the sequence of errors is summable,
i.e.,

∑∞
t=1 ‖q̂

(t) − q̃(t)‖ <∞.

4.4.3 Runtime and Caching Strategies

In practice, considerable speed-ups can be achieved by caching the subproblems, a strategy
which has also been proposed for the PSDD algorithm by Koo et al. (2010). After a few

iterations, many variables pi reach a consensus (i.e., p
(t)
i = q

(t+1)
iα , ∀α ∈ ∂(i)) and enter

an idle state: they are left unchanged by the p-update (line 10), and so do the Lagrange

variables λ
(t+1)
iα (line 11). If at iteration t all variables in a subproblem at factor α are

idle, then q
(t+1)
α = q

(t)
α , hence the corresponding subproblem does not need to be solved.

Typically, many variables and subproblems enter this idle state after the first few rounds.
We will show the practical benefits of caching in the experimental section (Section 7.4,
Figure 9).

4. This is particularly useful if inference is embedded in learning, where it is more important to obtain a
fractional solution of the relaxed primal than an approximate integer one (Kulesza and Pereira, 2007;
Martins et al., 2009).
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4.5 Exact Inference with Branch-and-Bound

Recall that AD3, as just described, solves the LP-MAP relaxation of the actual problem.
In some problems, this relaxation is tight (in which case a certificate of optimality will be
obtained), but this is not always the case. When a fractional solution is obtained, it is
desirable to have a strategy to recover the exact MAP solution.

Two observations are noteworthy. First, as we saw in Section 2.3, the optimal value
of the relaxed problem LP-MAP provides an upper bound to the original problem MAP.
In particular, any feasible dual point provides an upper bound to the original problem’s
optimal value. Second, during execution of the AD3 algorithm, we always keep track of a
sequence of feasible dual points (as guaranteed by Proposition 7, item 3. Therefore, each
iteration constructs tighter and tighter upper bounds. In recent work (Das et al., 2012),
we proposed a branch-and-bound search procedure that finds the exact solution of the ILP.
The procedure works recursively as follows:

1. Initialize L = −∞ (our best value so far).

2. Run Algorithm 2. If the solution p∗ is integer, return p∗ and set L to the objective
value. If along the execution we obtain an upper bound less than L, then Algorithm 2
can be safely stopped and return “infeasible”—this is the bound part. Otherwise (if
p∗ is fractional) go to step 3.

3. Find the “most fractional” component of p∗ (call it p∗j (.)) and branch: for every
yj ∈ Yj , create a branch where pj(yj) = 1 and pj(y

′
j) = 0 for y′j 6= yj , and go

to step 2, eventually obtaining an integer solution p∗|yj or infeasibility. Return the
p∗ ∈ {p∗|yj}yj∈Yj that yields the largest objective value.

Although this procedure has worst-case exponential runtime, in many problems for which
the relaxations are near-exact it is found empirically very effective. We will see one example
in Section 7.3.

5. Local Subproblems in AD3

This section shows how to solve the AD3 local subproblems (18) exactly and efficiently,
in several cases, including Ising models and logic constraint factors. These results will be
complemented in Section 6, where a new procedure to handle arbitrary factors widens the
applicability of AD3. By subtracting a constant, re-scaling, and flipping signs, problem (18)
can be written more compactly as

minimize
1

2
‖Mqα − a‖2 − b>qα (20)

with respect to qα ∈ R|Yα|

subject to 1>qα = 1, qα ≥ 0,

where a := (ai)i∈∂(α), with ai := pi + η−1(θiα + λiα); b := η−1θα; and M := (Miα)i∈∂(α)

denotes a matrix with
∑

i |Yi| rows and |Yα| columns.
We show that problem (20) has a closed-form solution or can be solved exactly and

efficiently, in several cases; e.g., for Ising models, for factor graphs imposing first-order logic
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(FOL) constraints, and for Potts models (after binarization). In these cases, AD3 and the
PSDD algorithm have (asymptotically) the same computational cost per iteration, up to a
logarithmic factor.

5.1 Ising Models

Ising models are factor graphs containing only binary pairwise factors. A binary pairwise
factor (say, α) is one connecting two binary variables (say, Y1 and Y2); thus Y1 = Y2 = {0, 1}
and Yα = {00, 01, 10, 11}. Given that q1α, q2α ∈ ∆2, we can write q1α = (1 − z1, z1),
q2α = (1− z2, z2). Furthermore, since qα ∈ ∆4 and marginalization requires that qα(1, 1) +
qα(1, 0) = z1 and qα(0, 1) + qα(1, 1) = z2, we can also write qα = (1 − z1 − z2 + z12, z1 −
z12, z2 − z12, z12). Using this parameterization, problem (20) reduces to:

minimize
1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12

with respect to z1, z2, z12 ∈ [0, 1]3

subject to z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1, (21)

where

c1 =
a1α(1) + 1− a1α(0)− bα(0, 0) + bα(1, 0)

2

c2 =
a2α(1) + 1− a2α(0)− bα(0, 0) + bα(0, 1)

2

c12 =
bα(0, 0)− bα(1, 0)− bα(0, 1) + bα(1, 1)

2
.

The next proposition (proved in Appendix B.1) establishes a closed form solution for this
problem, which immediately translates into a procedure for SolveQP for binary pairwise
factors.

Proposition 10 Let [x]U := min{max{x, 0}, 1} denote projection (clipping) onto the unit
interval U := [0, 1]. The solution (z∗1 , z

∗
2 , z
∗
12) of problem (21) is the following. If c12 ≥ 0,

(z∗1 , z
∗
2) =


([c1]U, [c2 + c12]U), if c1 > c2 + c12

([c1 + c12]U, [c2]U), if c2 > c1 + c12

([(c1 + c2 + c12)/2]U, [(c1 + c2 + c12)/2]U), otherwise,

z∗12 = min{z∗1 , z∗2}; (22)

otherwise ,

(z∗1 , z
∗
2) =


([c1 + c12]U, [c2 + c12]U), if c1 + c2 + 2c12 > 1
([c1]U, [c2]U), if c1 + c2 < 1
([(c1 + 1− c2)/2]U, [(c2 + 1− c1)/2]U), otherwise,

z∗12 = max{0, z∗1 + z∗2 − 1}. (23)
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5.2 Factor Graphs with First-Order Logic Constraints

Hard constraint factors allow specifying “forbidden” configurations, and have been used
in error-correcting decoders (Richardson and Urbanke, 2008), bipartite graph matching
(Duchi et al., 2007), computer vision (Nowozin and Lampert, 2009), and natural language
processing (Smith and Eisner, 2008). In many applications, declarative constraints are useful
for injecting domain knowledge, and first-order logic (FOL) provides a natural language to
express such constraints. This is particularly useful in learning from scarce annotated data
(Roth and Yih, 2004; Punyakanok et al., 2005; Richardson and Domingos, 2006; Chang
et al., 2008; Poon and Domingos, 2009).

In this section, we consider hard constraint factors linked to binary variables, with
log-potential functions of the form

θα(yα) =

{
0, if yα ∈ Sα
−∞, otherwise,

where Sα ⊆ {0, 1}|∂(α)| is an acceptance set. These factors can be used for imposing FOL
constraints, as we describe next. We define the marginal polytope Zα of a hard constraint
factor α as the convex hull of its acceptance set,

Zα = conv Sα. (24)

As shown in Appendix B.2, the AD3 subproblem (20) associated with a hard constraint
factor is equivalent to that of computing an Euclidean projection onto its marginal polytope:

minimize ‖z − z0‖2

with respect to z ∈ Zα, (25)

where z0i := (ai(1)+1−ai(0))/2, for i ∈ ∂(α). We now show how to compute this projection
for several hard constraint factors that are building blocks for writing FOL constraints. Each
of these factors performs a logical function, and hence we represent them graphically as logic
gates (Figure 3).

5.2.1 One-Hot XOR (Uniqueness Quantification)

The “one-hot XOR” factor linked to K ≥ 1 binary variables is defined through the following
potential function:

θXOR(y1, . . . , yK) :=

{
0 if ∃!k ∈ {1, . . . ,K} s.t. yk = 1
−∞ otherwise,

where ∃! denotes “there is one and only one.” The name “one-hot XOR” stems from the
following fact: for K = 2, exp(θXOR(.)) is the logic eXclusive-OR function; the prefix “one-
hot” expresses that this generalization to K > 2 only accepts configurations with precisely
one “active” input (not to be mistaken with other XOR generalizations commonly used for
parity checks). The XOR factor can be used for binarizing a categorical variable, and to
express a statement in FOL of the form ∃!x : R(x).
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XOR OR OR-OUT

Figure 3: Logic factors and their marginal polytopes; the AD3 subproblems (25) are projec-
tions onto these polytopes. Left: the one-hot XOR factor (its marginal polytope
is the probability simplex). Middle: the OR factor. Right: the OR-with-output
factor.

From (24), the marginal polytope associated with the one-hot XOR factor is

ZXOR = conv
{
y ∈ {0, 1}K | ∃!k ∈ {1, . . . ,K} s.t. yk = 1

}
= ∆K

as illustrated in Figure 3. Therefore, the AD3 subproblem for the XOR factor consists in
projecting onto the probability simplex, a problem well studied in the literature (Brucker,
1984; Michelot, 1986; Duchi et al., 2008). In Appendix B.3, we describe a simple O(K logK)
algorithm. Note that there are O(K) algorithms for this problem which are slightly more
involved.

5.2.2 OR (Existential Quantification)

This factor represents a disjunction of K ≥ 1 binary variables,

θOR(y1, . . . , yK) :=

{
0 if ∃k ∈ {1, . . . ,K} s.t. yk = 1
−∞ otherwise,

The OR factor can be used to represent a statement in FOL of the form ∃x : R(x).

From Proposition 16, the marginal polytope associated with the OR factor is:

ZOR = conv
{
y ∈ {0, 1}K | ∃k ∈ {1, . . . ,K} s.t. yk = 1

}
=

{
z ∈ [0, 1]K

∣∣∣∣ K∑
k=1

zk ≥ 1

}
;

geometrically, it is a “truncated” hypercube, as depicted in Figure 3. We derive aO(K logK)
algorithm for projecting onto ZOR, using a sifting technique and a sort operation (see Ap-
pendix B.4).
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5.2.3 Logical Variable Assignments: OR-With-Output

The two factors above define a constraint on a group of existing variables. Alternatively, we
may want to define a new variable (say, yK+1) which is the result of an operation involving
other variables (say, y1, . . . , yK). Among other things, this will allow dealing with “soft
constraints,” i.e., constraints that can be violated but whose violation will decrease the
score by some penalty. An example is the OR-with-output factor:

θOR−out(y1, . . . , yK , yK+1) :=

{
1 if yK+1 = y1 ∨ · · · ∨ yK
0 otherwise.

This factor constrains the variable yK+1 to indicate the existence of one or more active
variables among y1, . . . , yK . It can be used to express the following statement in FOL:
T (x) := ∃z : R(x, z).

The marginal polytope associated with the OR-with-output factor (also depicted in
Figure 3):

ZOR−out = conv

{
y ∈ {0, 1}K+1

∣∣∣∣ yK+1 = y1 ∨ · · · ∨ yK
}

=

{
z ∈ [0, 1]K+1

∣∣∣∣ K∑
k=1

zk ≥ zK+1, zk ≤ zK+1,∀k ∈ {1, . . . ,K}

}
.

Although projecting onto ZOR−out is slightly more complicated than the previous cases, in
Appendix B.5, we propose (and prove correctness of) an O(K logK) algorithm for this task.

5.2.4 Negations, De Morgan’s Laws, and AND-With-Output

The three factors just presented can be extended to accommodate negated inputs, thus
adding flexibility. Solving the corresponding AD3 subproblems can be easily done by reusing
the methods that solve the original problems. For example, it is straightforward to handle
negated conjunctions (NAND),

θNAND(y1, . . . , yK) :=

{
−∞ if yk = 1, ∀k ∈ {1, . . . ,K}
0 otherwise,

= θOR(¬y1, . . . ,¬yK),

as well as implications (IMPLY),

θIMPLY(y1, . . . , yK , yK+1) :=

{
0 if (y1 ∧ · · · ∧ yK)⇒ yK+1

−∞ otherwise

= θOR(¬y1, . . . ,¬yK , yK+1).

In fact, from De Morgan’s laws, ¬ (Q1(x) ∧ · · · ∧QK(x)) is equivalent to ¬Q1(x) ∨ · · · ∨
¬QK(x), and (Q1(x) ∧ · · · ∧QK(x)) ⇒ R(x) is equivalent to (¬Q1(x) ∨ · · · ∨ ¬QK(x)) ∨
R(x). Another example is the AND-with-output factor,

θAND−out(y1, . . . , yK , yK+1) :=

{
0 if yK+1 = y1 ∧ · · · ∧ yK
−∞ otherwise

= θOR−out(¬y1, . . . ,¬yK ,¬yK+1),
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which can be used to impose FOL statements of the form T (x) := ∀z : R(x, z).

Let α be a binary constraint factor with marginal polytope Zα, and β a factor obtained
from α by negating the kth variable. For notational convenience, let symk : [0, 1]K → [0, 1]K

be defined as (symk(z))k = 1 − zk and (symk(z))i = zi, for i 6= k. Then, the marginal
polytope Zβ is a symmetric transformation of Zα,

Zβ =
{
z ∈ [0, 1]K

∣∣ symk(z) ∈ Zα

}
,

and, if projZα denotes the projection operator onto Zα,

projZβ (z) = symk

(
projZα(symk(z))

)
.

Naturally, projZβ can be computed as efficiently as projZα and, by induction, this procedure
can be generalized to an arbitrary number of negated variables.

5.3 Potts Models and Graph Binarization

Although general factors lack closed-form solutions of the corresponding AD3 subproblem
(20), it is possible to binarize the graph, i.e., to convert it into an equivalent one that only
contains binary variables and XOR factors. The procedure is as follows:

• For each variable node i ∈ V , define binary variables Ui,yi ∈ {0, 1}, for each state
yi ∈ Yi; link these variables to a XOR factor, imposing

∑
yi∈Yi pi(yi) = 1.

• For each factor α ∈ F , define binary variables Uα,yα ∈ {0, 1} for every yα ∈ Yα. For
each edge (i, α) ∈ E and each yi ∈ Yi, link variables {Uα,yα | yα ∼ yi} and ¬Ui,yi to
a XOR factor; this imposes the constraint pi(yi) =

∑
yα∼yi qα(yα).

The resulting binary graph is one for which we already presented the machinery needed for
solving efficiently the corresponding AD3 subproblems. As an example, for Potts models
(graphs with only pairwise factors and variables that have more than two states), the
computational cost per AD3 iteration on the binarized graph is asymptotically the same as
that of the PSDD and other message-passing algorithms; for details, see Martins (2012).

6. An Active Set Method For Solving the AD3 Subproblems

In this section, we complement the results of Section 5 with a general active-set procedure
for solving the AD3 subproblems for arbitrary factors, the only requirement being a black-
box MAP solver—the same as the PSDD algorithm. This makes AD3 applicable to a wide
range of problems. In particular, it makes possible to handle structured factors, by invoking
specialized MAP decoders (functions ComputeMAP in Algorithm 1). In practice, as we
will see in Section 7, the active set method we next present largely outperforms the graph
binarization strategy outlined in Section 5.3.

Our active set method is based on Nocedal and Wright (1999, Section 16.4); it is an
iterative algorithm that addresses the AD3 subproblems (20) by solving a sequence of linear
problems. The next crucial proposition (proved in Appendix C) states that the problem
(20) always admits a sparse solution.
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Proposition 11 Problem (20) admits a solution q∗α ∈ R|Yα| with at most
∑

i∈∂(α) |Yi| −
|∂(α)|+ 1 non-zero components.

The fact that the solution lies in a low dimensional subspace makes active set methods
appealing, since they only keep track of an active set of variables, that is, the non-zero
components of qα. Proposition 11 tells us that such an algorithm only needs to maintain at
most O(

∑
i |Yi|) elements in the active set—note the additive, rather than multiplicative,

dependency on the number of values of the variables. Our active set method seeks to identify

the low-dimensional support of the solution q∗α, by generating sparse iterates q
(1)
α , q

(2)
α , . . .,

while it maintains a working set W ⊆ Yα with the inequality constraints of (20) that are
inactive along the way (i.e., those yα for which qα(yα) > 0 holds strictly). Each iteration
adds or removes elements from the working set while it monotonically decreases the objective
of (20).5

Lagrangian and KKT conditions. Let τ and µ be dual variables associated with the
equality and inequality constraints of (20), respectively. The Lagrangian function is

L(qα, τ,µ) =
1

2
‖Mqα − a‖2 − b>qα − τ(1− 1>qα)− µ>qα.

This gives rise to the following Karush-Kuhn-Tucker (KKT) conditions:

M>(a−Mqα) + b = τ1− µ (∇qαL = 0) (26)

1>qα = 1, qα ≥ 0, µ ≥ 0 (Primal/dual feasibility) (27)

µ>qα = 0 (Complementary slackness). (28)

The method works at follows. At each iteration s, it first checks if the current iterate q
(s)
α

is a subspace minimizer, i.e., if it optimizes the objective of (20) in the sparse subspace
defined by the working set W , {qα ∈ ∆|Yα| | qα(yα) = 0,∀yα /∈ W}. This check can be
made by first solving a relaxation where the inequality constraints are ignored. Since in this
subspace the components of qα not in W will be zeros, one can simply delete those entries
from qα and b and the corresponding columns in M; we use a horizontal bar to denote
these truncated R|W |-vectors. The problem can be written as:

minimize
1

2
‖M̄q̄α − a‖2 − b̄

>
q̄α

with respect to q̄α ∈ R|W |

subject to 1>q̄α = 1. (29)

The solution of this equality-constrained QP can be found by solving a system of KKT
equations:6 [

M̄>M̄ 1
1> 0

] [
q̄α
τ

]
=

[
M̄>a+ b̄

1

]
. (30)

5. Our description differs from Nocedal and Wright (1999) in which their working set contains active
constraints rather than the inactive ones. In our case, most constraints are active for the optimal q∗α,
therefore it is appealing to store the ones that are not.

6. Note that this is a low-dimensional problem, since we are working in a sparse working set. By caching the
inverse of the matrix in the left-hand side, this system can be solved in time O(|W |2) at each iteration.
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The solution of (30) will give (q̂α, τ̂), where q̂α ∈ R|Yα| is padded back with zeros. If

it happens that q̂α = q
(s)
α , then this means that the current iterate q

(s)
α is a subspace

minimizer; otherwise a new iterate q
(s+1)
α will be computed. We next discuss these two

events.

• Case 1: q
(s)
α is a subspace minimizer. If this happens, then it may be the case that

q
(s)
α is the optimal solution of (20). By looking at the KKT conditions (26)–(28), we

have that this will happen iff M>(a −Mq
(s)
α ) + b ≤ τ (s)1. Define w := a −Mqα.

The condition above is equivalent to

max
yα∈Yα

b(yα) +
∑
i∈∂(α)

wi(yi)

 ≤ τ (s).

It turns out that this maximization is precisely a local MAP inference problem, given
a vector of unary potentials w and factor potentials b. Thus, the maximizer ŷα
can be computed via the ComputeMAP procedure, which we assume available. If
b(ŷα) +

∑
i∈∂(α)wi(ŷi) ≤ τ (s), then the KKT conditions are satisfied and we are done.

Otherwise, ŷα indicates the most violated condition; we will add it to the active set
W , and proceed.

• Case 2: q
(s)
α is not a subspace minimizer. If this happens, then we compute a new

iterate q
(s+1)
α by keeping searching in the same subspace. We have already solved a

relaxation in (29). If we have q̂α(yα) ≥ 0 for all yα ∈W , then the relaxation is tight,

so we just set q
(s+1)
α := q̂α and proceed. Otherwise, we move as much as possible in

the direction of q̂α while keeping feasibility, by defining q
(s+1)
α := (1−β)q

(s)
α +βq̂α—as

described in Nocedal and Wright (1999), the value of β ∈ [0, 1] can be computed in
closed form:

β = min

{
1, min
yα∈W : q

(s)
α (yα)>q̂α(yα)

q
(s)
α (yα)

q
(s)
α (yα)− q̂α(yα)

}
. (31)

If β < 1, this update will have the effect of making one of the constraints active,

by zeroing out q
(s+1)
α (yα) for the minimizing yα above. This so-called “blocking

constraint” is thus be removed from the working set W .

Algorithm 3 describes the complete procedure. The active set W is initialized arbitrarily:
a strategy that works well in practice is, in the first AD3 iteration, initialize W := {ŷα},
where ŷα is the MAP configuration given log-potentials a and b; and in subsequent AD3

iterations, warm-start W with the support of the solution obtained in the previous iteration.
Each iteration of Algorithm 3 improves the objective of (20), and, with a suitable

strategy to prevent cycles and stalling, the algorithm is guaranteed to stop after a finite

Note also that adding a new configuration yα to the active set, corresponds to inserting a new column
in M̄, thus the matrix inversion requires updating M̄>M̄. From the definition of M and simple algebra,
the (yα,y

′
α) entry in M>M is simply the number of common values between the configurations yα and

y′α. Hence, when a new configuration yα is added to the active set W , that configuration needs to be
compared with all the others already in W .
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Algorithm 3 Active Set Algorithm for Solving a General AD3 Subproblem

1: input: Parameters a, b,M, starting point q
(0)
α

2: initialize W (0) as the support of q
(0)
α

3: for s = 0, 1, 2, . . . do
4: solve the KKT system and obtain q̂α and τ̂ (30)

5: if q̂α = q
(s)
α then

6: compute w := a−Mq̂α
7: obtain the tighter constraint ŷα via eŷα = ComputeMAP(b+ M>w)
8: if b(ŷα) +

∑
i∈∂(α)wi(ŷi) ≤ τ̂ then

9: return solution q̂α
10: else
11: add the most violated constraint to the active set: W (s+1) := W (s) ∪ {ŷα}
12: end if
13: else
14: compute the interpolation constant β as in (31)

15: set q
(s+1)
α := (1− β)q

(s)
α + βq̂α

16: if if β < 1 then
17: pick the blocking constraint ŷα in (31)
18: remove ŷα from the active set: W (s+1) := W (s) \ {ŷα}
19: end if
20: end if
21: end for
22: output: q̂α

number of steps (Nocedal and Wright, 1999, Theorem 16.5). In practice, since it is run as a
subroutine of AD3, Algorithm 3 does not need to be run to optimality, which is convenient
in early iterations of AD3 (this is supported by Proposition 9). The ability to warm-start
with the solution from the previous round is very useful in practice: we have observed that,
thanks to this warm-starting strategy, very few inner iterations are typically necessary for
the correct active set to be identified. We will see some empirical evidence in Section 7.4.

7. Experiments

In this section, we provide an empirical comparison between AD3 (Algorithm 2) and four
other algorithms: generalized MPLP (Globerson and Jaakkola, 2008); norm-product BP
(Hazan and Shashua, 2010);7 the PSDD algorithm of Komodakis et al. (2007) (Algorithm 1)
and its accelerated version introduced by Jojic et al. (2010). All these algorithms address the
LP-MAP problem; the first are message-passing methods performing block coordinate de-
scent in the dual, whereas the last two are based on dual decomposition. The norm-product
BP and accelerated dual decomposition algorithms introduce a temperature parameter to
smooth their dual objectives. All the baselines have the same algorithmic complexity per

7. For norm-product BP, we adapted the code provided by the authors, using the “trivial” counting numbers
cα = 1, ciα = 0, and ci = 0, ∀(i, α) ∈ E, which leads to a concave entropy approximation.
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iteration, which is asymptotically the same as that of the AD3 applied to a binarized graph,
but different from that of AD3 with the active set method.

We compare the performance of the algorithms above in several data sets, including
synthetic Ising and Potts models, protein design problems, and two problems in natural
language processing: frame-semantic parsing and non-projective dependency parsing. The
graphical models associated with these problems are quite diverse, containing pairwise bi-
nary factors (AD3 subproblems solved as described in Section 5.1), first-order logic factors
(addressed using the tools of Section 5.2), dense factors, and structured factors (tackled
with the active set method of Section 6).

7.1 Synthetic Ising and Potts Models

We start by comparing AD3 with their competitors on synthetic Ising and Potts models.

7.1.1 Ising Models

Figure 4 reports experiments with random Ising models, with single-node log-potentials
chosen as θi(1) − θi(0) ∼ U[−1, 1] and random edge couplings in U[−ρ, ρ], where ρ ∈
{0.1, 0.2, 0.5, 1.0}. Decompositions are edge-based for all methods. For MPLP and norm-
product BP, primal feasible solutions (ŷi)i∈V are obtained by decoding the single node
messages (Globerson and Jaakkola, 2008); for the dual decomposition methods, ŷi =
argmaxyi pi(yi).

We observe that PSDD is the slowest algorithm, taking a long time to find a “good”
primal feasible solution, arguably due to the large number of components. The accelerated
dual decomposition method (Jojic et al., 2010) is also not competitive in this setting, as it
takes many iterations to reach a near-optimal region. MPLP, norm-product, and AD3 all
perform very similarly regarding convergence to the dual objective, with a slight advantage
of the latter two. Regarding their ability to find a “good” feasible primal solution, AD3

and norm-product BP seem to outperform their competitors. In a batch of 100 experiments
using a coupling ρ = 0.5, AD3 found a best dual than MPLP in 18 runs and it lost 11
times (the remaining 71 runs were ties); it won over norm-product BP 73 times and never
lost. In terms of primal solutions, AD3 won over MPLP in 47 runs and it lost 12 times (41
ties); and it won over norm-product in 49 runs and it lost 33 times (in all cases, relative
differences lower than 1× 10−6 were considered as ties).

7.1.2 Potts Models

The effectiveness of AD3 in the non-binary case is assessed using random Potts models,
with single-node log-potentials chosen as θi(yi) ∼ U[−1, 1] and pairwise log-potentials as
θij(yi, yj) ∼ U[−10, 10] if yi = yj and 0 otherwise. All the baselines use the same edge
decomposition as before, since they handle multi-valued variables; for AD3, we tried two
variants: one where the graph is binarized (see Section 5.3); and one which works in the
original graph through the active set method, as described in Section 6.

As shown in Figure 5, MPLP and norm-product BP decrease the objective very rapidly
in the beginning and then slow down considerably; the accelerated dual decomposition
algorithm, although slower in early iterations, eventually surpasses them. Both variants of
AD3 converge as fast as the accelerated dual decomposition algorithm in later iterations,
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Figure 4: Evolution of the dual objective and the best primal feasible one in the experiments
with 30×30 random Ising models, generated as described in the main text. For the
subgradient method, the step sizes are ηt = η0/k(t), where k(t) is the number of
times the dual decreased up to the tth iteration, and η0 was chosen with hindsight
in {0.001, 0.01, 0.1, 10} to yield the best dual objective. For accelerated dual
decomposition, the most favorable parameter ε∈{0.1, 1, 10, 100} was chosen. For
norm-product BP, the temperature was set as τ = 0.001, and the dual objective
is computed with zero temperature (which led to better upper bounds). AD3

uses η=0.1 for all runs.

and are almost as fast as MPLP and norm-product in early iterations, getting the best of
both worlds. Comparing the two variants of AD3, we observe that the active set variant
clearly outperforms the binarization variant. Notice that since AD3 with the active set
method involves more computation per iteration, we plot the objective values with respect
to the normalized number of oracle calls (which matches the number of iterations for the
other methods).

7.2 Protein Design

We compare AD3 with the MPLP implementation8 of Sontag et al. (2008) in the benchmark
protein design problems9 of Yanover et al. (2006). In these problems, the input is a three-
dimensional shape, and the goal is to find the most stable sequence of amino acids in
that shape. The problems can be represented as pairwise factor graphs, whose variables
correspond to the identity of amino acids and rotamer configurations, thus having hundreds
of possible states. Figure 6 plots the evolution of the dual objective over runtime, for two of
the largest problem instances, i.e., those with 3167 (1fbo) and 1163 (1kw4) factors. These
plots are representative of the typical performance obtained in other instances. In both
cases, MPLP steeply decreases the objective at early iterations, but then reaches a plateau

8. Available at http://cs.nyu.edu/~dsontag/code; that code includes a “tightening” procedure for re-
trieving the exact MAP, which we don’t use, since we are interested in the LP-MAP relaxation (which
is what AD3 addresses).

9. Available at http://www.jmlr.org/papers/volume7/yanover06a/.
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Figure 5: Evolution of the dual objective in the experiments with random 20 × 20 Potts
models with 8-valued nodes, generated as described in the main text. For PSDD
and the accelerated dual decomposition algorithm, we chose η0 and ε as before.
For AD3, we set η = 1.0 in both settings (active set and binarization). In the
active set method, no caching was used and the plotted number of iterations is
corrected to make it comparable with the remaining algorithms, since each outer
iteration of AD3 requires several calls to a MAP oracle (we plot the normalized
number of oracle calls instead). Yet, due to warm-starting, the average number
of inner iterations is only 1.04, making the active set method extremely efficient.
For all methods, the markers represent every 100 iterations.

with no further significant improvement. AD3 rapidly surpasses MPLP in obtaining a better
dual objective. Finally, observe that although earlier iterations of AD3 take longer than
those of MPLP, this cost is amortized in later iterations, by warm-starting the active set
method.
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Figure 6: Protein design experiments (see main text for details). In AD3, η is adjusted as
proposed by Boyd et al. (2011, §3.4.1), initialized at η = 1.0 and the subproblems
are solved by the proposed active set method. Although the plots are with respect
to runtime, they also indicate iteration counts.
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Figure 7: Experiments in five frame-semantic parsing problems (Das, 2012, Section 5.5).
The projected subgradient uses ηt = η0/t, with η0 = 1.0 (found to be the best
choice for all examples). In AD3, η is adjusted as proposed by Boyd et al. (2011),
initialized at η = 1.0.

7.3 Frame-Semantic Parsing

We now report experiments on a natural language processing task involving logic con-
straints: frame-semantic parsing, using the FrameNet lexicon (Fillmore, 1976). The goal
is to predict the set of arguments and roles for a predicate word in a sentence, while re-
specting several constraints about the frames that can be evoked. The resulting graphical
models are binary constrained factor graphs with FOL constraints (see Das et al. 2012 for
details about this task). Figure 7 shows the results of AD3, MPLP, and PSDD on the five
most difficult problems (which have between 321 and 884 variables, and between 32 and 59
factors), the ones in which the LP relaxation is not tight. Unlike MPLP and PSDD, which
did not converge after 1000 iterations, AD3 achieves convergence in a few hundreds of iter-
ations for all but one example. Since these examples have a fractional LP-MAP solution,
we applied the branch-and-bound procedure described in Section 4.5 to obtain the exact
MAP for these examples. The whole data set contains 4,462 instances, which were parsed
by this exact variant of the AD3 algorithm in only 4.78 seconds, against 43.12 seconds of
CPLEX, a state-of-the-art commercial ILP solver.

7.4 Dependency Parsing

The final set of experiments assesses the ability of AD3 to handle problems with structured
factors. The task is dependency parsing (illustrated in the left part of Figure 8), an impor-
tant problem in natural language processing (Eisner, 1996; McDonald et al., 2005), to which
dual decomposition has been recently applied (Koo et al., 2010). We use an English data
set derived from the Penn Treebank (PTB)(Marcus et al., 1993), converted to dependen-
cies by applying the head rules of Yamada and Matsumoto (2003); we follow the common
procedure of training in sections §02–21 (39,832 sentences), using §22 as validation data
(1,700 sentences), and testing on §23 (2,416 sentences). We ran a part-of-speech tagger on
the validation and test splits, and devised a linear model using various features depend-
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 * We learned a lesson in 1987 about volatility

Figure 8: Left: example of a sentence (input) and its dependency parse tree (output to
be predicted); this is a directed spanning tree where each arc (h,m) represent a
syntactic relationships between a head word h and the a modifier word m. Right:
the parts used in our models. Arcs are the basic parts: any dependency tree can
be “read out” from its arcs. Consecutive siblings and grandparent parts introduce
horizontal and vertical Markovization. We break the horizontal Markovianity
via all siblings parts (which look at arbitrary pairs of siblings, not necessarily
consecutive). Inspired by transition-based parsers, we also adopt head bigram
parts, which look at the heads attached to consecutive words.

ing on words, part-of-speech tags, and arc direction and length. Our features decompose
over the parts illustrated in the right part of Figure 8. We consider two different models
in our experiments: a second order model with scores for arcs, consecutive siblings, and
grandparents; a full model, which also has scores for arbitrary siblings and head bigrams.

If only scores for arcs were used, the problem of obtaining a parse tree with maximal
score could be solved efficiently with a maximum directed spanning tree algorithm (Chu and
Liu, 1965; Edmonds, 1967; McDonald et al., 2005); the addition of any of the other scores
makes the problem NP-hard (McDonald and Satta, 2007). A factor graph representing the
second order model, proposed by Smith and Eisner (2008) and Koo et al. (2010), contains
binary variables representing the candidate arcs, a hard-constraint factor imposing the tree
constraint, and head automata factors modeling the sequences of consecutive siblings and
grandparents. The full model has additional binary pairwise factors for each possible pair
of siblings (significantly increasing the number of factors), and a sequential factor modeling
the sequence of heads.10 We compare the PSDD and AD3 algorithms for this task, using the
decompositions above, which are the same for both methods. These decompositions select
the largest factors for which efficient MAP oracles exist, based on the Chu-Liu-Edmonds
algorithm and on dynamic programming. The active set method enables AD3 to depend
only on these MAP oracles.

Figure 9 illustrates the remarkable speed-ups that the caching and warm-starting pro-
cedures bring to both the AD3 and PSDD algorithms. A similar conclusion was obtained
by Koo et al. (2010) for PSDD and by Martins et al. (2011b) for AD3 in a different factor
graph. Figure 10 shows average runtimes for both algorithms, as a function of the sentence
length, and plots the percentage of instances for which the exact solution was obtained,

10. In previous work (Martins et al., 2011b), we implemented a similar model with a more complex fac-
tor graph based on a multi-commodity flow formulation, requiring only the FOL factors described in
Section 5.2. In the current paper, we consider a smaller graph with structured factors, which leads to sig-
nificantly faster runtimes. More involved models, including third-order features, were recently considered
in Martins et al. (2013).
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Figure 9: Number of calls to ComputeMAP for AD3 and PSDD, as a function of the
number of iterations. The number of calls is normalized by dividing by the
number of factors: in PSDD, this number would equal the number of iterations if
there was no caching (black line); each iteration of AD3 runs 10 iterations of the
active set method, thus without caching or warm-starting the normalized number
of calls would be ten times the number of AD3 iterations. Yet, it is clear that both
algorithms make significantly fewer calls. Remarkably, after just a few iterations,
the number of calls made by the AD3 and PSDD algorithms are comparable,
which means that the number of active set iterations is quickly amortized during
the execution of AD3.

along with a certificate of optimality. For the second-order model, AD3 was able to solve
all the instances to optimality, and in 98.2% of the cases, the LP-MAP was exact. For the
full model, AD3 solved 99.8% of the instances to optimality, being exact in 96.5% of the
cases. For the second order model, we obtained in the test set (PTB §23) a parsing speed
of 1200 tokens per second and an unlabeled attachment score of 92.48% (fraction of correct
dependency attachments excluding punctuation). For the full model, we obtained a speed
of 900 tokens per second and a score of 92.62%. All speeds were measured in a desktop
PC with Intel Core i7 CPU 3.4 GHz and 8GB RAM. The parser is publicly available as an
open-source project at http://www.ark.cs.cmu.edu/TurboParser.

8. Discussion and Related Work

We next discuss some of the strengths and weaknesses of AD3 over other recently proposed
LP-MAP inference algorithms. As mentioned in the beginning of Section 4, one of the main
sources of difficulty is the non-smoothness of the dual objective function (8). This affects
both block coordinate descent methods (such as MPLP), which can get stuck at suboptimal
stationary points, and the PSDD algorithm, which is tied to the slow O(1/ε2) convergence
of subgradient methods.

Several “smoothing methods” have been proposed in the literature to obviate these
drawbacks. Johnson et al. (2007) added an entropic regularization term to the dual objective
(8), opening the door for gradient methods; and Jojic et al. (2010) applied an accelerated
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Figure 10: Left: average runtime in PTB §22, as a function of sentence length. Right: per-
centage of instances, as a function of the normalized number of ComputeMAP
calls (see the caption of Figure 9), for which the exact solution was obtained
along with a certificate of optimality. The maximum number of iterations is
2000 for both methods.

gradient method to the smoothed problem (Nesterov, 1983), yielding a O(1/ε) iteration
bound (the same asymptotic bound as AD3, as established in Proposition 15). This method
has been recently improved by Savchynskyy et al. (2011), through adaptive smoothing and
a dynamic estimation of the Lipschitz constant. In a related line of research, Hazan and
Shashua (2010) proposed a class of norm-product message-passing algorithms that can be
used for both marginal and MAP inference. Norm-product BP implements a primal-dual
ascent scheme for optimizing a fractional entropy approximation, constructed as a linear
combination of variable and factor entropic terms. For a proper choice of counting numbers,
the resulting objective function is convex and smooth, and the amount of smoothness can
be controlled by a temperature parameter τ . With τ = 0, norm-product is similar to
MPLP and can get stuck at a suboptimal solution; but with a positive τ , the norm-product
algorithm is globally convergent to a solution which is O(τ)-close to the LP-MAP optimal
value.

Compared with AD3, the smoothing-based methods mentioned above have the advan-
tage that their local subproblems can typically be transformed into marginal inference
problems, which in many cases can be solved with brute-force counting or dynamic pro-
gramming. However, they also have important drawbacks. First, their precision depends
critically on the temperature parameter; e.g., the O(1/ε) iteration bound of Jojic et al.
(2010) requires setting the temperature to O(ε), which scales the potentials by O(1/ε) and
may lead to numerical instabilities. Second, the solution of the local subproblems are al-
ways dense; although some marginal values may be low, they are never exactly zero. This
contrasts with the projected subgradient and the AD3 algorithms, for which the solutions
of the local subproblems are spanned by one or a small number of MAP configurations. As
shown in the experimental section (Figure 9), caching these configurations across iterations
may lead to great speedups.

While smoothing-based methods that use quadratic regularizers (as opposed to entropic
ones) have also been proposed—most notably the proximal point method of Ravikumar et al.
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(2010)—these methods also have disadvantages over AD3. The proximal point method of
Ravikumar et al. (2010) for pairwise MRFs is a double-loop algorithm, where a penalty term
with varying magnitude is added to the primal objective, and a globally smooth problem is
solved iteratively in the inner loop, using cyclic Bregman projections. Applied to a general
factor graph and using a quadratic penalty, the problems solved in the inner loop resemble
the AD3 subproblems, with an important difference: there is an extra Euclidean penalty

of the form ‖qα − q
(t)
α ‖2. While this term makes the subproblems strongly convex, it also

destroys the sparsity property mentioned in Proposition 11, which results in substantially
more messages needing to be passed around (in particular, messages with size |Yα|, which
can be prohibitive for factors with large degree). A different strategy has been proposed
by Pletscher and Wulff (2012), who combined the LP-MAP relaxation described here with
a non-convex QP relaxation, which unlike other smoothing methods increases the effect of
the penalty term through the progression of the algorithm.

Finally, it should be noted that other strategies have been recently proposed to over-
come the weaknesses of coordinate descent algorithms and PSDD, which are not based on
smoothing the dual objective. The fact that the PSDD algorithm has “no memory” across
iterations (pointed out in the beginning of Section 4) has been addressed by Kappes et al.
(2012) in their bundle method, which remembers past updates, at the cost of extra memory
storage and more involved local subproblems. The fact that coordinate descent methods
can get stuck in suboptimal solutions has been addressed by Schwing et al. (2012), who
proposed a ε-descent strategy as a way to move away from corners, mixing coordinate and
steepest descent steps; the latter, however, require solving QPs as an intermediate step.

During the preparation of this paper, and following our earlier work (Martins et al.,
2010, 2011a), AD3 has been successfully applied to several NLP problems (Martins et al.,
2011b, 2013; Das et al., 2012; Almeida and Martins, 2013), and a few related methods
have appeared. Meshi and Globerson (2011) also applied ADMM to MAP inference in
graphical models, although addressing the dual problem (the one underlying the MPLP
algorithm) rather than the primal. Yedidia et al. (2011) proposed the “divide-and-concur”
algorithm for LDPC (low-density parity check) decoding, which shares aspects of AD3,
and can be seen as an instance of non-convex ADMM. Barman et al. (2011) proposed
an algorithm analogous to AD3 for the same LDPC decoding problem; their subproblems
correspond to projections onto the parity polytope, for which they have derived an efficient
algorithm. More recently, Fu et al. (2013) proposed a Bethe-ADMM procedure resembling
AD3, but with an inexact variant of ADMM that makes the subproblems become marginal
computations. Recent work also addressed budget and knapsack constraints, important
for dealing with cardinality-based potentials and to promote diversity (Tarlow et al., 2010;
Almeida and Martins, 2013).

9. Conclusions

We introduced AD3, a new LP-MAP inference algorithm based on the alternating directions
method of multipliers (ADMM) (Glowinski and Marroco, 1975; Gabay and Mercier, 1976).

AD3 enjoys the modularity of dual decomposition methods, but achieves faster consen-
sus, by penalizing, for each subproblem, deviations from the current global solution. Using
recent results, we showed that AD3 converges to an ε-accurate solution with an iteration

527



Martins, Figueiredo, Aguiar, Smith, and Xing

bound of O(1/ε). AD3 can handle factor graphs with hard constraints in first-order logic,
using efficient procedures for projecting onto the marginal polytopes of the correspond-
ing factors. This opens the door for using AD3 in problems with declarative constraints
(Roth and Yih, 2004; Richardson and Domingos, 2006). A closed-form solution of the AD3

subproblem was also derived for pairwise binary factors.
We introduced a new active set method for solving the AD3 subproblems for arbitrary

factors. This method requires only a local MAP oracle, as the PSDD algorithm. The active
set method is particularly suitable for these problems, since it can take advantage of warm
starting and it deals well with sparse solutions—which are guaranteed by Proposition 11.
We also show how AD3 can be wrapped in a branch-and-bound procedure to retrieve the
exact MAP.

Experiments with synthetic and real-world data sets have shown that AD3 is able to
solve the LP-MAP problem more efficiently than other methods for a variety of problems,
including MAP inference in Ising and Potts models, protein design, frame-semantic parsing,
and dependency parsing.

Our contributions open several directions for future research. One possible extension is
to replace the Euclidean penalty of ADMM by a general Mahalanobis distance. The conver-
gence proofs can be trivially extended to Mahalanobis distances, since they correspond to
an affine transformation of the subspace defined by the equality constraints of (11). Simple
operations, such as scaling these constraints, do not affect the algorithms that are used to
solve the subproblems, thus AD3 can be generalized by including scaling parameters.

Since the AD3 subproblems can be solved in parallel, significant speed-ups may be
obtained in multi-core architectures or using GPU programming. This has been shown to
be very useful for large-scale message-passing inference in graphical models (Felzenszwalb
and Huttenlocher, 2006; Low et al., 2010; Schwing et al., 2011).

The branch-and-bound algorithm for obtaining the exact MAP deserves further exper-
imental study, as similar approaches have been proven useful in MAP inference problems
(Sun et al., 2012). An advantage of AD3 is its ability to quickly produce sharp upper
bounds. For many problems, there are effective rounding procedures that can also produce
lower bounds, which can be exploited for guiding the search. There are also alternatives to
branch-and-bound, such as tightening procedures (Sontag et al., 2008; Batra et al., 2011),
which progressively add larger factors to decrease the duality gap. The variant of AD3 with
the active set method can be used to handle these larger factors.
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Appendix A. Proof of Convergence Rate of AD3

In this appendix, we show the O(1/ε) convergence bound of the ADMM algorithm. We
use a recent result established by Wang and Banerjee (2012) regarding convergence in a
variational setting, from which we derive the convergence of ADMM in the dual objective.
We then consider the special case of AD3, interpreting the constants in the bound in terms
of properties of the graphical model.

We start with the following proposition, which states the variational inequality associ-
ated with the Lagrangian saddle point problem associated with (10),

min
λ∈Λ

max
q∈Q,p∈P

L(q,p,λ), (32)

where L(q,p,λ) := f1(q) + f2(p) + λ>(Aq + Bp− c) is the standard Lagrangian, and
Λ := {λ | maxq∈Q,p∈P L(q,p,λ) <∞}.

Proposition 12 (Variational inequality) Let W := Q × P × Λ. Given w = (q,p,λ) ∈
W, define h(w) := f1(q) + f2(p) and F (w) := (A>λ,B>λ,−(Aq + Bp − c)). Then,
w∗ := (q∗,p∗,λ∗) ∈W is a primal-dual solution of (32) if and only if:

∀w ∈W, h(w)− h(w∗) + (w −w∗)>F (w∗) ≤ 0. (33)

Proof: Assume w∗ is a primal-dual solution of (32). Then, the saddle point conditions
imply L(q,p,λ∗) ≤ L(q∗,p∗,λ∗) ≤ L(q∗,p∗,λ) for every w := (q,p,λ) ∈W. Hence:

0 ≥ L(q,p,λ∗)− L(q∗,p∗,λ)

= f1(q) + f2(p) + λ∗>(Aq + Bp− c)− f1(q∗)− f2(p∗)− λ>(Aq∗ + Bp∗ − c)
= h(w)− h(w∗) + (w −w∗)>F (w∗).

Conversely, letw∗ satisfy (33). Takingw = (q∗,p∗,λ), we obtain L(q∗,p∗,λ∗) ≤ L(q∗,p∗,λ).
Taking w = (q,p,λ∗), we obtain L(q,p,λ∗) ≤ L(q∗,p∗,λ∗). Hence (q∗,p∗,λ∗) is a saddle
point, and therefore a primal-dual solution.

The next result, due to Wang and Banerjee (2012) and related to previous work by
He and Yuan (2011), concerns the convergence rate of ADMM in terms of the variational
inequality stated above.

Proposition 13 (Variational convergence rate) Assume the conditions in Proposition 7.
Let w̄T = 1

T

∑T
t=1w

t, where wt := (qt,pt,λt) are the ADMM iterates with λ0 = 0. Then,
after T iterations:

∀w ∈W, h(w)− h(w̄T ) + (w − w̄T )>F (w̄T ) ≤ C/T, (34)

where C = η
2‖Aq + Bp0 − c‖2 + 1

2η‖λ‖
2 is independent of T .
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Proof: From the variational inequality associated with the q-update (13) we have for every
q ∈ Q11

0 ≥ ∇qLη(qt+1,pt,λt)
>

(q − qt+1)

= ∇f1(qt+1)
>

(q − qt+1) + (q − qt+1)
>

A>(λt − η(Aqt+1 + Bpt − c))

≥(i) f1(q)− f1(qt+1) + (q − qt+1)
>

A>(λt − η(Aqt+1 + Bpt − c))

=(ii) f1(q)− f1(qt+1) + (q − qt+1)
>

A>λt+1 − η(A(q − qt+1))
>

B(pt − pt+1), (35)

where in (i) we have used the concavity of f1, and in (ii) we used (13) for the λ-updates.
Similarly, the variational inequality associated with the p-updates (14) yields, for every
p ∈ P:

0 ≥ ∇pLη(qt+1,pt+1,λt)
>

(p− pt+1)

= ∇f2(pt+1)
>

(p− pt+1) + (p− pt+1)
>

B>(λt − η(Aqt+1 + Bpt+1 − c))

≥(i) f2(p)− f2(pt+1) + (p− pt+1)
>

B>λt+1, (36)

where in (i) we have used the concavity of f2. Summing (35) and (36), and noting again
that λt+1 = λt − η(Aqt+1 + Bpt+1 − c), we obtain, for every w ∈W,

h(wt+1)− h(w) + (wt+1 −w)
>
F (wt+1)

≥ −ηA(q − qt+1)
>

B(pt − pt+1)− η−1(λ− λt+1)
>

(λt+1 − λt). (37)

We next rewrite the two terms in the right hand side:

ηA(q − qt+1)
>

B(pt − pt+1) =
η

2

(
‖Aq + Bpt − c‖2 − ‖Aq + Bpt+1 − c‖2

+ ‖Aqt+1 + Bpt+1 − c‖2 − ‖Aqt+1 + Bpt − c‖2
)

;

η−1(λ− λt+1)
>

(λt+1 − λt) =
1

2η

(
‖λ− λt‖2 − ‖λ− λt+1‖2 − ‖λt − λt+1‖2

)
.

Summing (37) over t and noting that η−1‖λt − λt+1‖2 = η‖Aqt+1 + Bpt+1 − c‖2:

T−1∑
t=0

(
h(wt+1)− h(w) + (wt+1 −w)

>
F (wt+1)

)
≥ −η

2

(
‖Aq + Bp0 − c‖2 − ‖Aq + BpT − c‖2 −

T−1∑
t=0

‖Aqt+1 + Bpt − c‖2
)

− 1

2η

(
‖λ− λ0‖2 − ‖λ− λT ‖2

)
≥ −η

2
‖Aq + Bp0 − c‖2 − 1

2η
‖λ‖2. (38)

11. Given a problem maxx∈X f(x), where f is concave and differentiable and X is convex, a point x∗ ∈ X is
a maximizer iff it satisfies the variational inequality ∇f(x∗)>(x− x∗) ≤ 0 for all x ∈ X (Facchinei and
Pang, 2003).
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From the concavity of h, we have that h(w̄T ) ≥ 1
T

∑T−1
t=0 h(wt+1). Note also that, for every

w̃, the function w 7→ (w − w̃)>F (w) is affine:

(w − w̃)>F (w) = (q − q̃)>A>λ+ (p− p̃)>B>λ− (λ− λ̃)
>

(Aq + Bp− c)

= −(Aq̃ + Bp̃− c)>λ+ λ̃
>

(Aq + Bp− c)
= F (w̃)>w − c>λ̃.

As a consequence, 1
T

∑T−1
t=0

(
h(wt+1) + (wt+1 −w)

>
F (wt+1)

)
≤ h(w̄T )+(w̄T −w)>F (w̄T ),

and from (38), we have that h(w)− h(w̄T ) + (w − w̄T )>F (w̄T ) ≤ C/T , with C as in (34).
Note also that, since Λ is convex, we must have λ̄T ∈ Λ.

Next, we use the bound in Proposition 13 to derive a convergence rate for the dual
problem.

Proposition 14 (Dual convergence rate) Assume the conditions stated in Proposition 13,
with w̄T defined analogously. Let g : Λ → R be the dual objective function, g(λ) :=
maxq∈Q,p∈P L(q,p,λ), and let λ∗ ∈ arg minλ∈Λ g(λ) be a dual solution. Then, after T
iterations, ADMM achieves an O( 1

T )-accurate solution λ̄T :

g(λ∗) ≤ g(λ̄T ) ≤ g(λ∗) +
C

T
,

where the constant C is given by

C =
5η

2

(
max
q∈Q
‖Aq + Bp0 − c‖2

)
+

5

2η
‖λ∗‖2. (39)

Proof: By applying Proposition 13 to w = (q̄T , p̄T ,λ) we obtain for arbitrary λ ∈ Λ:

−(λ− λ̄T )
>

(Aq̄T + Bp̄T − c) ≤ O(1/T ). (40)

By applying Proposition 13 to w = (q,p, λ̄T ) we obtain for arbitrary q ∈ Q and p ∈ P:

f1(q̄T ) + f2(p̄T ) + (Aq̄T + Bp̄T − c)
>λ̄T

≥ f1(q) + f2(p) + (Aq + Bp− c)>λ̄T −O(1/T ).

In particular, let g(λ̄T ) = maxq∈Q,p∈P L(q,p, λ̄T ) = L(q̂T , p̂T , λ̄T ) be the value of the dual
objective at λ̄T , where (q̂T , p̂T ) are the corresponding maximizers. We then have:

f1(q̄T ) + f2(p̄T ) + (Aq̄T + Bp̄T − c)
>λ̄T ≥ g(λ̄T )−O(1/T ). (41)

Finally we have (letting w∗ = (q∗,p∗,λ∗) be the optimal primal-dual solution):

g(λ∗) = max
q∈Q,p∈P

f1(q) + f2(p) + λ∗>(Aq + Bp− c)

≥ f1(q̄T ) + f2(p̄T ) + λ∗>(Aq̄T + Bp̄T − c)
≥(i) f1(q̄T ) + f2(p̄T ) + λ̄

>
T (Aq̄T + Bp̄T − c)−O(1/T )

≥(ii) g(λ̄T )−O(1/T ),
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where in (i) we used (40) and in (ii) we used (41). By definition of λ∗, we also have
g(λ̄T ) ≥ g(λ∗). Since we applied Proposition 13 twice, the constant inside the O-notation
becomes

C =
η

2

(
‖Aq̄T + Bp0 − c‖2 + ‖Aq̂T + Bp0 − c‖2

)
+

1

2η

(
‖λ∗‖2 + ‖λ̄T ‖2

)
. (42)

Even though C depends on q̄T , q̂T , and λ̄T , it is easy to obtain an upper bound on C
when Q is a bounded set, using the fact that the sequence (λt)t∈N is bounded by a constant,
which implies that the average λ̄T is also bounded. Indeed, from Boyd et al. (2011, p.107),
we have that

V t := η−1‖λ∗ − λt‖2 + η‖B(p∗ − pt)‖2

is a Lyapunov function, i.e., 0 ≤ V t+1 ≤ V t for every t ∈ N. This implies that V t ≤ V 0 =
η−1‖λ∗‖2 + η‖B(p∗ − p0)‖2; since V t ≥ η−1‖λ∗ − λt‖2, we can replace above and write:

0 ≥ ‖λ∗ − λt‖2 − ‖λ∗‖2 − η2‖B(p∗ − p0)‖2 = ‖λt‖2 − 2λ∗>λt − η2‖B(p∗ − p0)‖2

≥ ‖λt‖2 − 2‖λ∗‖‖λt‖ − η2‖B(p∗ − p0)‖2,

where in the last line we invoked the Cauchy-Schwarz inequality. Solving the quadratic
equation, we obtain ‖λt‖ ≤ ‖λ∗‖+

√
‖λ∗‖2 + η2‖B(p0 − p∗)‖2, which in turn implies

‖λt‖2 ≤ 2‖λ∗‖2 + η2‖B(p0 − p∗)‖2 + 2‖λ∗‖
√
‖λ∗‖2 + η2‖B(p0 − p∗)‖2

≤ 2‖λ∗‖2 + η2‖B(p0 − p∗)‖2 + 2(‖λ∗‖2 + η2‖B(p0 − p∗)‖2)

= 4‖λ∗‖2 + 3η2‖Aq∗ + Bp0 − c‖2, (43)

the last line following from Aq∗ + Bp∗ = c. Replacing (43) in (42) yields the result.

Finally, we will see how the bounds above apply to the AD3 algorithm.

Proposition 15 (Dual convergence rate of AD3) After T iterations of AD3, we achieve
an O( 1

T )-accurate solution λ̄T :=
∑T−1

t=0 λ
(t):

g(λ∗) ≤ g(λ̄T ) ≤ g(λ∗) +
C

T
,

where C = 5η
2

∑
i |∂(i)|(1− |Yi|−1) + 5

2η‖λ
∗‖2 is a constant independent of T .

Proof: With the uniform initialization of the p-variables in AD3, the first term of (39) is
maximized by a choice of qα-variables that puts all mass in a single configuration. That is:

max
qiα
‖qiα − |Yi|−11‖2 =

(
(1− |Yi|−1)2 + (|Yi| − 1)|Yi|−2

)
= 1− |Yi|−1.

This leads to the desired bound.
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Appendix B. Derivation of Solutions for AD3 Subproblems

B.1 Binary Pairwise Factors

In this section, we prove Proposition 10. Let us first assume that c12 ≥ 0. In this case, the
constraints z12 ≥ z1 + z2 − 1 and z12 ≥ 0 in (21) are always inactive and the problem can
be simplified to:

minimize
1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12

with respect to z1, z2, z12

subject to z12 ≤ z1, z12 ≤ z2, z1 ∈ [0, 1], z2 ∈ [0, 1]. (44)

If c12 = 0, the problem becomes separable, and a solution is

z∗1 = [c1]U, z∗2 = [c2]U, z∗12 = min{z∗1 , z∗2},

which complies with (22). We next analyze the case where c12 > 0. The Lagrangian of (44)
is:

L(z,µ,λ,ν) =
1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12 + µ1(z12 − z1) + µ2(z12 − z2)

−λ1z1 − λ2z2 + ν1(z1 − 1) + ν2(z2 − 1).

At optimality, the following Karush-Kuhn-Tucker (KKT) conditions need to be satisfied:

∇z1L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ z∗1 = c1 + µ∗1 + λ∗1 − ν∗1 (45)

∇z2L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ z∗2 = c2 + µ∗2 + λ∗2 − ν∗2 (46)

∇z12L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ c12 = µ∗1 + µ∗2 (47)

λ∗1z
∗
1 = 0, λ∗2z

∗
2 = 0 (48)

µ∗1(z∗12 − z∗1) = 0, µ∗2(z∗12 − z∗2) = 0 (49)

ν∗1(z∗1 − 1) = 0, ν∗2(z∗2 − 1) = 0 (50)

µ∗,λ∗,ν∗ ≥ 0 (51)

z∗12 ≤ z∗1 , z∗12 ≤ z∗2 , z∗1 ∈ [0, 1], z∗2 ∈ [0, 1] (52)

We are going to consider three cases separately:

1. z∗1 > z∗2 From the primal feasibility conditions (52), this implies z∗1 > 0, z∗2 < 1,

and z∗12 < z∗1 . Complementary slackness (48,49,50) implies in turn λ∗1 = 0, ν∗2 = 0,
and µ∗1 = 0. From (47) we have µ∗2 = c12. Since we are assuming c12 > 0, we then
have µ∗2 > 0, and complementary slackness (49) implies z∗12 = z∗2 . Plugging this into
(45)–(46) we obtain

z∗1 = c1 − ν∗1 ≤ c1, z∗2 = c2 + λ∗2 + c12 ≥ c2 + c12.

Now we have the following:

• Either z∗1 = 1 or z∗1 < 1. In the latter case, ν∗1 = 0 due to (50), hence z∗1 = c1.
Since in any case we must have z∗1 ≤ c1, we conclude that z∗1 = min{c1, 1}.
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• Either z∗2 = 0 or z∗2 > 0. In the latter case, λ∗2 = 0 due to (48), hence z∗2 = c2+c12.
Since in any case we must have z∗2 ≥ λ2, we conclude that z∗2 = max{0, c2 + c12}.

In sum:
z∗1 = min{c1, 1}, z∗12 = z∗2 = max{0, c2 + c12},

and our assumption z∗1 > z∗2 can only be valid if c1 > c2 + c12.

2. z∗1 < z∗2 By symmetry, we have

z∗2 = min{c2, 1}, z∗12 = z∗1 = max{0, c1 + c12},

and our assumption z∗1 < z∗2 can only be valid if c2 > c1 + c12.

3. z∗1 = z∗2 In this case, it is easy to verify that we must have z∗12 = z∗1 = z∗2 , and we

can rewrite our optimization problem in terms of one variable only (call it z). The
problem becomes that of minimizing 1

2(z − c1)2 + 1
2(z − c2)2 − c12z, which equals a

constant plus (z − c1+c2+c12
2 )2, subject to z ∈ U , [0, 1]. Hence:

z∗12 = z∗1 = z∗2 = [(c1 + c2 + c12)/2]U .

Putting all the pieces together, we obtain the solution displayed in (22).
It remains to address the case where c12 < 0. By redefining c′1 = c1 + c12, c′2 = 1 − c2,

c′12 = −c12, z′2 = 1 − z2, and z′12 = z1 − z12, we can reduce (21) to the form in (44).
Substituting back in (22), we obtain the solution displayed in (23).

B.2 Marginal Polytope of Hard Constraint Factors

The following proposition establishes that the marginal polytope of a hard constraint factor
is the convex hull of its acceptance set.

Proposition 16 Let α be a binary hard constraint factor with degree K, and consider the
set of all possible distributions P(Y α) which satisfy P(Y α = yα) = 0 for every yα /∈ Sα.
Then, the set of possible marginals realizable for some distribution in that set is given by

Zα :=

{
(q1α(1), . . . , qKα(1))

∣∣∣∣ qiα = Miαqα, for some qα ∈ ∆|Yα| s.t. qα(yα) = 0, ∀yα /∈ Sα

}
= conv Sα.

Proof: From the fact that we are constraining qα(yα) = 0,∀yα /∈ Sα, it follows:

Zα =

z ≥ 0

∣∣∣∣∣ ∃qα ≥ 0 s.t. ∀i ∈ ∂(α), zi =
∑
yα∈Sα
yi=1

qα(yα) = 1−
∑
yα∈Sα
yi=0

qα(yα)


=

z ≥ 0

∣∣∣∣∣ ∃qα ≥ 0,
∑
yα∈Sα

qα(yα) = 1 s.t. z =
∑
yα∈Sα

qα(yα)yα


= conv Sα.
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Algorithm 4 Projection onto simplex (Duchi et al., 2008)

Input: z0

Sort z0 into y0: y1 ≥ . . . ≥ yK
Find ρ = max

{
j ∈ [K] | y0j − 1

j

(
(
∑j

r=1 y0r)− 1
)
> 0
}

Define τ = 1
ρ (
∑ρ

r=1 y0r − 1)
Output: z defined as zi = max{z0i − τ, 0}.

For hard constraint factors, the AD3 subproblems take the following form (cf. (20)):

minimize
1

2

∑
i∈∂(α)

‖qiα − ai‖2 with respect to qα ∈ ∆|Yα|, qiα ∈ R|Yi|, ∀i ∈ ∂(α)

subject to qiα = Miαqα, qα(yα) = 0, ∀yα 6= Sα.

From Proposition 16, and making use of a reduced parametrization, noting that ‖qiα −
ai‖2 = (qiα(1) − ai(1))2 + (1 − qiα(1) − ai(0))2, which equals a constant plus 2(qiα(1) −
(ai(1) + 1− ai(0))/2)2, we have that this problem is equivalent to:

minimize
1

2
‖z − z0‖2 with respect to z ∈ Zα,

where z0i := (ai(1) + 1− ai(0))/2, for each i ∈ ∂(α).

B.3 XOR Factor

For the XOR factor, the quadratic problem in (20) reduces to that of projecting onto the
simplex. That problem is well-known in the optimization community (see, e.g., Brucker
1984; Michelot 1986); by writing the KKT conditions, it is simple to show that the solution
z∗ is a soft-thresholding of z0, and therefore the problem can be reduced to that of finding
the right threshold. Algorithm 4 provides an efficient procedure; it requires a sort operation,
which renders its cost O(K logK). A proof of correctness appears in Duchi et al. (2008).12

B.4 OR Factor

The following procedure can be used for computing a projection onto ZOR:

1. Set z̃ as the projection of z0 onto the unit cube. This can be done by clipping each co-
ordinate to the unit interval U = [0, 1], i.e., by setting z̃i = [z0i]U = min{1,max{0, z0i}}.
If
∑K

i=1 z̃i ≥ 1, then return z̃. Else go to step 2.

2. Return the projection of z0 onto the simplex (use Algorithm 4).

The correctness of this procedure is justified by the following lemma:

Lemma 17 (Sifting Lemma.) Consider a problem of the form

P : min
x∈X

f(x) subject to g(x) ≤ 0, (53)

12. This cost can be reduced to O(K) using linear-time selection algorithms (Pardalos and Kovoor, 1990).
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where X is nonempty convex subset of RD and f : X → R and g : X → R are convex
functions. Suppose that the problem (53) is feasible and bounded below, and let A be the set of
solutions of the relaxed problem minx∈X f(x), i.e. A = {x ∈ X | f(x) ≤ f(x′), ∀x′ ∈ X}.
Then:

1. if for some x̃ ∈ A we have g(x̃) ≤ 0, then x̃ is also a solution of the original problem
P ;

2. otherwise (if for all x̃ ∈ A we have g(x̃) > 0), then the inequality constraint is
necessarily active in P , i.e., problem P is equivalent to minx∈X f(x) subject to g(x) =
0.

Proof: Let f∗ be the optimal value of P . The first statement is obvious: since x̃ is a
solution of a relaxed problem we have f(x̃) ≤ f∗; hence if x̃ is feasible this becomes an
equality. For the second statement, assume that ∃x ∈ X subject to g(x) < 0 (otherwise, the
statement holds trivially). The nonlinear Farkas’ lemma (Bertsekas et al., 2003, Prop. 3.5.4,
p. 204) implies that there exists some λ∗ ≥ 0 subject to f(x) − f∗ + λ∗g(x) ≥ 0 holds for
all x ∈ X. In particular, this also holds for an optimal x∗ (i.e., such that f∗ = f(x∗)),
which implies that λ∗g(x∗) ≥ 0. However, since λ∗ ≥ 0 and g(x∗) ≤ 0 (since x∗ has to be
feasible), we also have λ∗g(x∗) ≤ 0, i.e., λ∗g(x∗) = 0. Now suppose that λ∗ = 0. Then we
have f(x) − f∗ ≥ 0, ∀x ∈ X, which implies that x∗ ∈ A and contradicts the assumption
that g(x̃) > 0, ∀x̃ ∈ A. Hence we must have g(x∗) = 0.

Let us see how the Sifting Lemma applies to the problem of projecting onto ZOR. If
the relaxed problem in the first step does not return a feasible point then, from the Sifting
Lemma, the constraint

∑K
i=1 zi ≥ 1 has to be active, i.e., we must have

∑K
i=1 zi = 1. This,

in turn, implies that z ≤ 1, hence the problem becomes equivalent to the XOR case. In
sum, the worst-case runtime is O(K logK), although it is O(K) if the first step succeeds.

B.5 OR-with-output Factor

Solving the AD3 subproblem for the OR-with-output factor is slightly more complicated
than in the previous cases; however, we next see that it can also be addressed in O(K logK)
time with a sort operation. The polytope ZOR−out can be expressed as the intersection of
the following three sets:13

UK+1 := [0, 1]K+1

A1 := {z ∈ RK+1 | zk ≤ zK+1,∀k = 1, . . . ,K}

A2 :=
{
z ∈ [0, 1]K+1

∣∣ ∑K
k=1 zk ≥ zK+1

}
.

We further define A0 := [0, 1]K+1∩A1, and we denote by projZ(z) the Euclidean projection
of a point z onto a convex set Z. From Lemma 17, we have that the following procedure is
correct:

13. Actually, the set UK+1 is redundant, since we have A2 ⊆ UK+1 and therefore ZOR−out = A1 ∩ A2.
However it is computationally advantageous to consider this redundancy, as we shall see.
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1. Set z̃ := projUK+1(z0). If z̃ ∈ A1 ∩ A2, then we are done: just return z̃. Else, if
z̃ ∈ A1 but z̃ /∈ A2, discard z̃ and go to step 3. Otherwise, discard z̃ and go to step
2.

2. Set z̃ := projA0
(z0) (we will describe later how to compute this projection). If z̃ ∈ A2,

return z̃. Otherwise, discard z̃ and go to step 3.

3. Set z̃ := projĀ2
(z0), where Ā2 := {z ∈ [0, 1]K+1 |

∑K
k=1 zk = zK+1} (this set is

precisely the marginal polytope of a XOR factor with the last output negated, hence
the projection corresponds to the local subproblem for that factor, for which we can
employ Algorithm 4).

Note that the first step above can be omitted; however, it avoids performing step 2 (which
requires a sort) unless it is really necessary. To completely specify the algorithm, we only
need to explain how to compute the projection onto A0 (step 2). The next proposition
states that this can be done by first projecting onto A1, and then projecting the result onto
[0, 1]K+1.

We first start with a lemma establishing a sufficient condition for the composition of
two individual projections be equivalent to projecting onto the intersection (which is not
true in general).14

Lemma 18 Let X ⊆ RD and Y ⊆ RD be convex sets, and suppose z∗ = projY (z0 + z∗ −
z′) holds for any z0 ∈ RD, where z′ = projY (z0), and z∗ = projX(z′). Then, we have
projX∩Y = projX ◦ projY .

Proof: Assume z∗ = projY (z0 +z∗−z′). Then, we have (z0 + z∗ − z′ − z∗)>(z − z∗) ≤ 0
for all z ∈ Y ; in particular, (z0 − z′)>(z − z∗) ≤ 0 for all z ∈ X ∩ Y . On the other
hand, the definition of z∗ implies (z′ − z∗)>(z − z∗) ≤ 0 for all z ∈ X, and in particular
for z ∈ X ∩ Y . Summing these two inequalities, we obtain (z0 − z∗)>(z − z∗) ≤ 0 for all
z ∈ X ∩ Y , that is, z∗ = projX∩Y (z0).

Proposition 19 It holds projA0
= projUK+1 ◦ projA1

. Furthermore, a projection onto A1

can be computed in O(K logK) time using Algorithm 5.

Proof: We first prove the second part. Note that a projection onto A1 can be written as
the following problem:

minimize
1

2
‖z − z0‖2 subject to zk ≤ zK+1, ∀k = 1, . . . ,K, (54)

14. This is equivalent to Dykstra’s projection algorithm (Boyle and Dykstra, 1986) converging in one itera-
tion.

537



Martins, Figueiredo, Aguiar, Smith, and Xing

and we have successively:

min
zk≤zK+1, ∀k

1

2
‖z − z0‖2 = min

zK+1

1

2
(zK+1 − z0,K+1)2 +

K∑
k=1

min
zk≤zK+1

1

2
(zk − z0k)

2

= min
zK+1

1

2
(zK+1 − z0,K+1)2 +

K∑
k=1

1

2
(min{zK+1, z0k} − z0k)

2

= min
zK+1

1

2
(zK+1 − z0,K+1)2 +

1

2

∑
k∈I(zK+1)

(zK+1 − z0k)
2.

where I(zK+1) , {k ∈ [K] : z0k ≥ zK+1}. Assuming that the set I(zK+1) is given, the
previous is a sum-of-squares problem whose solution is

z∗K+1 =
z0,K+1 +

∑
k∈I(zK+1) z0k

1 + |I(zK+1)|
.

The set I(zK+1) can be determined by inspection after sorting z01, . . . , z0K . The procedure
is shown in Algorithm 5.

To prove the first part, we invoke Lemma 18. It suffices to show that z∗ = projA1
(z0 +

z∗ − z′) holds for any z0 ∈ RD, where z′ = projA1
(z0), and z∗ = projUK+1(z′). Looking at

Algorithm 5, we see that:

z′k =

{
τ, if k = K + 1 or z0k ≥ τ
z0k, otherwise,

z∗k = [z′k]U =

{
[τ ]U, if k = K + 1 or z0k ≥ τ
[z0k]U , otherwise.

z0k + z∗k − z′k =

{
[τ ]U − τ + z0k, if k = K + 1 or z0k ≥ τ
[z0k]U , otherwise.

Now two things should be noted about Algorithm 5:

• If a constant is added to all entries in z0, the set I(zK+1) remains the same, and τ
and z are affected by the same constant;

• Let z̃0 be such that z̃0k = z0k if k = K + 1 or z0k ≥ τ , and z̃0k ≤ τ otherwise. Let
z̃ be the projected point when such z̃0 is given as input. Then I(z̃K+1) = I(zK+1),
τ̃ = τ , z̃k = zk if k = K + 1 or z0k ≥ τ , and z̃k = z̃0k otherwise.

The two facts above allow to relate the projection of z0 + z∗ − z′ with that of z0. Using
[τ ]U−τ as the constant, and noting that, for k 6= K+1 and z0k < τ , we have [z0k]U−[τ ]U+τ ≥
τ if z0k < τ , the two facts imply that:

projA1
(z0 + z∗ − z′) =

{
z′k + [τ ]U − τ = [τ ]U, if k = K + 1 or z0k ≥ τ
[z0k]U , otherwise;

hence z∗ = projA1
(z0 + z∗ − z′), which concludes the proof.
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Algorithm 5 Projection onto A1

Input: z0

Sort z01, . . . , z0K into y1 ≥ . . . ≥ yK
Find ρ = min

{
j ∈ [K + 1] | 1

j

(
z0,K+1 +

∑j−1
r=1 yr

)
> yj

}
Define τ = 1

ρ

(
z0,K+1 +

∑ρ−1
r=1 yr

)
Output: z defined as zK+1 = τ and zi = min{z0i, τ}, i = 1, . . . ,K.

Appendix C. Proof of Proposition 11

We first show that the rank of the matrix M is at most
∑

i∈∂(α) |Yi| − ∂(α) + 1. For each
i ∈ ∂(α), let us consider the |Yi| rows of M. By definition of M, the set of entries on these
rows which have the value 1 form a partition of Yα, hence, summing these rows yields the
all-ones row vector, and this happens for each i ∈ ∂(α). Hence we have at least ∂(α)−1 rows
that are linearly dependent. This shows that the rank of M is at most

∑
i∈∂(α) |Yi|−∂(α)+1.

Let us now rewrite (20) as

minimize
1

2
‖u− a‖2 + g(u) with respect to u ∈ R

∑
i |Yi|, (55)

where g(u) is the solution value of the following linear problem:

minimize − b>qα with respect to qα ∈ R|Yα| (56)

subject to


Mqα = u
1>qα = 1
qα ≥ 0.

From the simplex constraints (last two lines), we have that problem (56) is bounded
below (i.e., g(u) > −∞). Furthermore, problem (56) is feasible (i.e., g(u) < +∞) iff
u ∈

∏
i∈∂(α) ∆|Yi|, which in turn implies 1>qα = 1. Hence we can add these constraints to

the problem in (55), discard the constraint 1>qα = 1 in (56), and assume that the resulting
problem (which we reproduce below) is feasible and bounded below:

minimize − b>qα with respect to qα ∈ R|Yα|

subject to Mqα = u, qα ≥ 0. (57)

Problem (57) is a linear program in standard form. Since it is feasible and bounded, it
admits a solution at a vertex of the constraint set (Rockafellar, 1970). We have that a
feasible point q̂α is a vertex if and only if the columns of M indexed by {yα | q̂α(yα) 6= 0}
are linearly independent. We cannot have more than

∑
i∈∂(α) |Yi|−∂(α)+1 of these columns,

since this is the rank of M. It follows that (57) (and hence (20)) has a solution q∗α with at
most

∑
i∈∂(α) |Yi| − ∂(α) + 1 nonzeros.
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Abstract

In this article, we introduce CURRENNT, an open-source parallel implementation of deep
recurrent neural networks (RNNs) supporting graphics processing units (GPUs) through
NVIDIA’s Computed Unified Device Architecture (CUDA). CURRENNT supports uni- and
bidirectional RNNs with Long Short-Term Memory (LSTM) memory cells which overcome
the vanishing gradient problem. To our knowledge, CURRENNT is the first publicly
available parallel implementation of deep LSTM-RNNs. Benchmarks are given on a noisy
speech recognition task from the 2013 2nd CHiME Speech Separation and Recognition
Challenge, where LSTM-RNNs have been shown to deliver best performance. In the result,
double digit speedups in bidirectional LSTM training are achieved with respect to a reference
single-threaded CPU implementation. CURRENNT is available under the GNU General
Public License from http://sourceforge.net/p/currennt.

Keywords: parallel computing, deep neural networks, recurrent neural networks, Long
Short-Term Memory

1. Introduction

Recurrent neural networks (RNNs) are known as powerful sequence learners. In particular,
the Long Short-Term Memory (LSTM) architecture has been proven to provide excellent
modeling of language (Sundermeyer et al., 2012), music (Eck and Schmidhuber, 2002), speech
(Graves et al., 2013), and facial expressions (Wöllmer et al., 2012). LSTM units overcome the
vanishing gradient problem of traditional RNNs by the introduction of a memory cell which
can be controlled by input, output and reset operations (Gers et al., 2000). In particular,
recent research demonstrates that deep LSTM-RNNs exhibit superior performance in speech
recognition in comparison to state-of-the-art deep feed forward networks (Graves et al.,
2013). However, in contrast to the widespread usage of the latter (Hinton et al., 2012),
RNNs are still not adopted by the research community at large. One of the major barriers
is the lack of high-performance implementations for training RNNs; at the same time, such
implementations are non-trivial due to the limited parallelism caused by time dependencies.
To the best of our knowledge, there is no publicly available software dedicated to parallel
LSTM-RNN training. Thus, we introduce our CUda RecurREnt Neural Network Toolkit
(CURRENNT) which exploits a mini-batch learning scheme performing parallel weight

∗. B. Schuller is also with the Department of Computing, Imperial College London, UK.
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Figure 1: CURRENNT’s C++ classes for deep feedforward and LSTM-RNN modeling.

updates from multiple sequences. CURRENNT implements learning from big data sets that
do not fit into memory by means of a random access data format. GPUs are supported
through NVIDIA’s Computed Unified Device Architecture (CUDA). The RNN structure
implemented in CURRENNT is based on LSTM units and in addition, feedforward network
training is supported. Besides simple regression, CURRENNT also includes logistic and
softmax output layers for training of binary and multi-way classification.

To briefly refer some related studies and freely available implementations: A ‘reference’
CPU implementation of LSTM-RNNs as used by Graves (2008) is available as open-source
C++ code (Graves, 2013). A Python library for many machine learning algorithms including
LSTM-RNN has been introduced by Schaul et al. (2010); however, it does not directly
support parallel processing. Multi-core training of (standard) RNNs has been investigated
by Cernanský (2009), but the source code is not available. Pascanu et al. have recently
released a Python implementation (‘GroundHog’) of various RNN types described in their
study (Pascanu et al., 2014), exploiting GPU-accelerated training through Theano; yet, it
does not provide LSTM-RNNs, and at the moment there is no user-friendly interface.

2. Design

CURRENNT provides a C++ class library for deep LSTM-RNN modeling (cf. Figure 1) and
a command line application for network training and evaluation. The network architecture
can be specified by the user in JavaScript Object Notation (JSON), and trained parameters
are saved in the same format, allowing, e.g., for deep learning with pre-training. For efficiency
reasons, features for training and evaluation are given in binary format, adhering to the
NetCDF standard, but network outputs can also be saved in CSV format to facilitate
post-processing. All C++ code is designed to be platform independent and has been tested
on Windows and various Linux distributions. The required CUDA compute capability is 1.3
(2008), allowing usage on virtually all of the consumer grade NVIDIA GPUs deployed in
today’s desktop PCs. The behavior of the gradient descent training algorithm is controlled
by various switches of the command line application, allowing, e.g., for on-line or batch
learning and fine-tuning of the training algorithm such as adding Gaussian noise to the input
activations and randomly shuffling training data in on-line learning to improve generalization
(Graves et al., 2013). The interested reader is referred to the documentation for more details.
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3. Implementation

Deep LSTM-RNNs with N layers are implemented as follows. An input sequence xt is
mapped to the output sequence yt, t = 1, . . . , T through the iteration (forward pass):

h
(0)
t := xt,

h
(n)
t := L(n)t

(
h
(n−1)
t ,h

(n)
t−1

)
,

yt := S
(
W(N),(N+1)h

(N)
t + b(N+1)

)
.

In the above and the ongoing, W denotes weight matrices and b stands for bias vectors

(with superscripts denoting layer indices). h
(n)
t denotes the hidden feature representation

of time frame t in the level n units, n = 1, . . . , N . The 0-th layer is the input layer and
the N + 1-th layer the output layer. S is the (vector valued) output layer function, e.g.,

a softmax function for multi-way classification (cf. Figure 1). L(n)t denotes the composite
LSTM activation function which is used instead of the common simple sigmoid-shaped
functions. The crucial point is to augment each unit with a state variable ct, resulting in an
automaton-like structure. The hidden layer activations correspond to the state variables

(‘memory cells’) scaled by the activations of the ‘output gates’ o
(n)
t ,

h
(n)
t = o

(n)
t ⊗ tanh(c

(n)
t ),

c
(n)
t = f

(n)
t ⊗ c

(n)
t−1 + i

(n)
t ⊗ tanh

(
W(n−1),(n)h

(n−1)
t + W(n),(n)h

(n)
t−1 + b(n)

c

)
, (1)

where ⊗ denotes element-wise multiplication and tanh is also applied element-wise. Thus,

the state is scaled by a ‘forget’ gate (Gers et al., 2000) with dynamic activation f
(n)
t instead

of a recurrent connection with static weight. i
(n)
t is the activation of the input gate that

regulates the ‘influx’ from the feedforward and recurrent connections. The activations of the

input, output and forget gates are calculated in a similar fashion as c
(n)
t (Graves et al., 2013).

From the dependencies between layers (n− 1 n) and time steps (t− 1 t) in the above,
it is obvious that parallel computation of feedforward activations cannot be performed across
layers; further, parallel computation of recurrent activations is not possible across time steps.
Thus, to increase the degree of parallelization, we consider data fractions (cf. Figure 1) of
size P out of S sequences in parallel, each having exactly T time steps (creating ‘dummy’
time steps for shorter sequences which are neglected in the error calculation). For instance,
we consider a state matrix C(n) for the n-th layer,

C(n) = [c
(n)
1,p · · · c

(n)
1,p+P−1 · · · c

(n)
T,p · · · c

(n)
T,p+P−1], (2)

where c
(n)
t,p is the state for sequence p in layer n at time t. To realize the update equation

(1) we can now compute the feedforward part for all time steps and P sequences in parallel
simply by pre-multiplication with W(n−1),(n). For the recurrent part, we can update C(n)

from ‘left to right’ using W(n),(n). Input, output and forget gate activations are calculated
in an analogous fashion. In this process, the matrix structure (2) ensures memory locality of
the data corresponding to one time step (matrices are stored in column-major order). For
bidirectional layers the above matrix structure is replicated at each layer; in the ‘backward’
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RNNLIB (Graves, 2013) CURRENNT
Parallel sequences (P ) 1 1 10 50 200

Validation set error (10 ep.) 0.138 0.138 0.135 0.137 0.144
Validation set error (50 ep.) 0.120 0.119 0.116 0.118 0.119
Training time / epoch [s] 7 420 3 805 580 392 334
Speedup (1.0) 2.0 12.8 18.9 22.2

Table 1: Performance (error / speedup) on CHiME 2013 noisy speech recognition task.

part, the recurrent parts are updated from ‘right to left’, and activations are collected in a
single vector before passing them to the subsequent layer (Graves et al., 2013).

During network training, the backward pass for the hidden layers is realized similarly, by
splitting the matrix of weight changes into a part propagated to the preceding layer and a
recurrent part propagated to the previous time step, resulting in a parallel implementation
of the backpropagation through time (BPTT) algorithm. The weight changes are applied
for all sequences (batch learning) or for each data fraction. Thus, if 1 < P < S we perform
mini-batch learning. In this case, only P sequences have to be kept in memory at once,
allowing for learning from large data sets.

4. Benchmark

We conclude with a benchmark on a word recognition task with convolutive non-stationary
noise from the 2013 2nd CHiME Challenge’s track 1 (Vincent et al., 2013), where bidirectional
LSTM decoding has been shown to deliver best performance (Geiger et al., 2013). We
consider frame-wise word error rate as well as computation speedup in training with respect
to the open source C++ reference implementation by Graves (2013) running in a single
CPU thread on an Intel Core2Quad PC with 4 GB of RAM. The GPU is an NVIDIA
GTX 560 with 2 GB of RAM. We compare results for different values of P while fixing the
other training parameters. The corresponding NetCDF, network configuration, and training
parameter files are distributed with CURRENNT. Results (Figure 1) show that the error
rate after 50 epochs is not heavily influenced by the batch size for parallel processing, while
speedups of up to 22.2 can be achieved.

5. Conclusions

CURRENNT, our GPU implementation of deep LSTM-RNN for labeling sequential data,
has been shown to deliver double digit training speedups at equal accuracy in a noisy speech
recognition task. Future work will be concentrated on discriminative training objectives and
cost functions for transcription tasks (Graves, 2008).
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Abstract

This paper describes an R package named flare, which implements a family of new high
dimensional regression methods (LAD Lasso, SQRT Lasso, `q Lasso, and Dantzig selector)
and their extensions to sparse precision matrix estimation (TIGER and CLIME). These
methods exploit different nonsmooth loss functions to gain modeling flexibility, estimation
robustness, and tuning insensitiveness. The developed solver is based on the alternating
direction method of multipliers (ADMM). The package flare is coded in double precision
C, and called from R by a user-friendly interface. The memory usage is optimized by using
the sparse matrix output. The experiments show that flare is efficient and can scale up
to large problems.

Keywords: sparse linear regression, sparse precision matrix estimation, alternating di-
rection method of multipliers, robustness, tuning insensitiveness

1. Introduction

As a popular sparse linear regression method for high dimensional data analysis, Lasso has
been extensively studied by machine learning scientists (Tibshirani, 1996). It adopts the
`1-regularized least square formulation to select and estimate nonzero parameters simul-
taneously. Software packages such as glmnet and huge have been developed to efficiently

∗. The package vignette is an extended version of this paper, which contains more technical details.
†. Xingguo Li and Tuo Zhao contributed equally to this work.
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solve large problems (Friedman et al., 2010; Zhao et al., 2012, 2014). Lasso further yields
a wide range of research interests, and motivates many variants by exploiting nonsmooth
loss functions to gain modeling flexibility, estimation robustness, and tuning insensitive-
ness (See more details in the package vignette, Zhao and Liu (2014); Liu et al. (2014a)).
These nonsmooth loss functions pose a great challenge to computation. To the best of our
knowledge, no efficient solver has been developed so far for these Lasso variants.

In this report, we describe a newly developed R package named flare (Family of Lasso
Regression). The flare package implements a family of linear regression methods including:
(1) LAD Lasso, which is robust to heavy tail random noise and outliers (Wang, 2013); (2)
SQRT Lasso, which is tuning insensitive (the optimal regularization parameter selection
does not depend on any unknown parameter, Belloni et al. (2011)); (3) `q Lasso, which
shares the advantage of LAD Lasso and SQRT Lasso; (4) Dantzig selector, which can
tolerate missing values in the design matrix and response vector (Candes and Tao, 2007).
By adopting the column by column regression scheme, we further extend these regression
methods to sparse precision matrix estimation, including: (5) TIGER, which is tuning
insensitive (Liu and Wang, 2012); (6) CLIME, which can tolerate missing values in the
data matrix (Cai et al., 2011). The developed solver is based on the alternating direction
method of multipliers (ADMM), which is further accelerated by a multistage screening
approach (Boyd et al., 2011; Liu et al., 2014b). The global convergence result of ADMM
has been established in He and Yuan (2015, 2012). The numerical simulations show that
the flare package is efficient and can scale up to large problems.

2. Algorithm

We are interested in solving convex programs in the following generic form

β̂ = argmin
β, α

Lλ(α) + ‖β‖1 subject to r −Aβ = α. (1)

where λ > 0 is the regularization parameter. The possible choices of Lλ(α), A, and r for
different regression methods are listed in Table 1. Note that LAD Lasso and SQRT Lasso
are special examples of `q Lasso for q = 1 and q = 2 respectively.
All methods in Table 1 can be efficiently solved by the iterative scheme as follows

αt+1 = argmin
α

1

2

∥∥ut + r −Aβt −α
∥∥2
2

+
1

ρ
Lλ(α), (2)

βt+1 = argmin
β

1

2

∥∥ut −αt+1 + r −Aβ
∥∥2
2

+
1

ρ
‖β‖1, (3)

ut+1 = ut + (r −αt+1 −Aβt+1), (4)

where u is the rescaled Lagrange multiplier (Boyd et al., 2011), and ρ > 0 is the penalty
parameter. For LAD Lasso, SQRT Lasso, or Dantzig selector, (2) has a closed form solution
via the winsorization, soft thresholding, and group soft thresholding operators respectively.
For Lq Lasso with 1 < q < 2, (2) can be solved by the bisection-based root finding algorithm.
(3) is a Lasso problem, which can be (approximately) solved by linearization or coordinate
descent. Besides the pathwise optimization scheme and the active set trick, we also adopt
the multistage screening approach to speedup the computation. In particular, we first
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select k nested subsets of coordinates A1 ⊆ A2 ⊆ ... ⊆ Ak = Rd by the marginal correlation
between the covariates and responses. Then the algorithm iterates over these nested subsets
of coordinates to obtain the solution. The multistage screening approach can greatly boost
the empirical performance, especially for Dantzig selector.

Method Loss function A r Existing solver

Lq Lasso Lλ(α) =
1

q
√
nλ
‖α‖q X y L.P. or S.O.C.P.

Dantzig selector Lλ(α) =

{
∞ if ‖α‖∞ > λ
0 otherwise

1
nXTX 1

nXTy L.P.

Table 1: All regression methods provided in the flare package. X ∈ Rn×d denotes the de-
sign matrix, and y ∈ Rn denotes the response vector. “L.P.” denotes the general
linear programming solver, and “S.O.C.P” denotes the second-order cone program-
ming solver.

3. Examples

We illustrate the user interface by analyzing the eye disease data set in flare.

> # Load the data set

> library(flare); data(eyedata)

> # SQRT Lasso

> out1 = slim(x,y,method="lq",nlambda=40,lambda.min.value=sqrt(log(200)/120))

> # Dantzig Selector

> out2 = slim(x,y,method="dantzig",nlambda=40,lambda.min.ratio=0.35)

The program automatically generates a sequence of 40 regularization parameters and es-
timates the corresponding solution paths of SQRT Lasso and the Dantzig selector. For
the Dantzig selector, the optimal regularization parameter is usually selected based on
some model selection procedures, such as cross validation. Note that Belloni et al. (2011)
has shown that the theoretically consistent regularization parameter of SQRT Lasso is
C
√

log d/n, where C is some constant. Thus we manually choose its minimum regulariza-
tion parameter to be

√
log(d)/n =

√
log(200)/120. The minimum regularization parameter

yields 19 nonzero coefficients out of 200.

4. Numerical Simulation

All experiments below are carried out on a PC with Intel Core i5 3.3GHz processor, and
the convergence threshold of flare is chosen to be 10−5. Timings (in seconds) are averaged
over 100 replications using 20 regularization parameters, and the range of regularization
parameters is chosen so that each method produces approximately the same number of
nonzero estimates.

We first evaluate the timing performance of flare for sparse linear regression. We set
n = 100 and vary d from 375 to 3000 as is shown in Table 2. We independently generate
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each row of the design matrix from a d-dimensional normal distribution N(0,Σ), where
Σjk = 0.5|j−k|. Then we generate the response vector using yi = 3Xi1 + 2Xi2 + 1.5Xi4 + εi,
where εi is independently generated from N(0, 1). From Table 2, we see that all methods
achieve good timing performance. Dantzig selector and `q Lasso are slower than the others
due to more difficult computational formulations.

We then evaluate the timing performance of flare for sparse precision matrix estima-
tion. We set n = 100 and vary d from 100 to 400 as is shown in Table 2. We independently
generate the data from a d-dimensional normal distribution N(0,Σ), where Σjk = 0.5|j−k|.
The corresponding precision matrix Ω = Σ−1 has Ωjj = 1.3333, Ωjk = −0.6667 for all
j, k = 1, ..., d and |j − k| = 1, and all other entries are 0. From Table 2, we see that both
TIGER and CLIME achieve good timing performance, and CLIME is slower than TIGER
due to a more difficult computational formulation.

Sparse Linear Regression

Method d = 375 d = 750 d = 1500 d = 3000

LAD Lasso 1.1713(0.2915) 1.1046(0.3640) 1.8103(0.2919) 3.1378(0.7753)
SQRT Lasso 0.4888(0.0264) 0.7330(0.1234) 0.9485(0.2167) 1.2761(0.1510)
`1.5 Lasso 12.995(0.5535) 14.071(0.5966) 14.382(0.7390) 16.936(0.5696)
Dantzig selector 0.3245(0.1871) 1.5360(1.8566) 4.4669(5.9929) 17.034(23.202)

Sparse Precision Matrix Estimation

Method d = 100 d = 200 d = 300 d=400

TIGER 1.0637(0.0361) 4.6251(0.0807) 7.1860(0.0795) 11.085(0.1715)
CLIME 2.5761(0.3807) 20.137(3.2258) 42.882(18.188) 112.50(11.561)

Table 2: Average timing performance (in seconds) with standard errors in the parentheses
on sparse linear regression and sparse precision matrix estimation.

5. Discussion and Conclusions

Though the glmnet package cannot handle nonsmooth loss functions, it is much faster than
flare for solving Lasso,1 and the glmnet package can also be applied to solve `1 regularized
generalized linear model estimation problems, which flare cannot. Overall speaking, the
flare package serves as an efficient complement to the glmnet package for high dimensional
data analysis. We will continue to maintain and support this package.
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Abstract

We provide novel theoretical results regarding local optima of regularized M -estimators,
allowing for nonconvexity in both loss and penalty functions. Under restricted strong
convexity on the loss and suitable regularity conditions on the penalty, we prove that any
stationary point of the composite objective function will lie within statistical precision of
the underlying parameter vector. Our theory covers many nonconvex objective functions
of interest, including the corrected Lasso for errors-in-variables linear models; regression
for generalized linear models with nonconvex penalties such as SCAD, MCP, and capped-
`1; and high-dimensional graphical model estimation. We quantify statistical accuracy by
providing bounds on the `1-, `2-, and prediction error between stationary points and the
population-level optimum. We also propose a simple modification of composite gradient
descent that may be used to obtain a near-global optimum within statistical precision εstat
in log(1/εstat) steps, which is the fastest possible rate of any first-order method. We provide
simulation studies illustrating the sharpness of our theoretical results.

Keywords: high-dimensional statistics, M -estimation, model selection, nonconvex opti-
mization, nonconvex regularization

1. Introduction

Although recent years have brought about a flurry of work on optimization of convex func-
tions, optimizing nonconvex functions is in general computationally intractable (Nesterov
and Nemirovskii, 1987; Vavasis, 1995). Nonconvex functions may possess local optima that
are not global optima, and iterative methods such as gradient or coordinate descent may
terminate undesirably in local optima. Unfortunately, standard statistical results for non-
convex M -estimators often only provide guarantees for global optima. This leads to a
significant gap between theory and practice, since computing global optima—or even near-
global optima—in an efficient manner may be extremely difficult in practice. Nonetheless,
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empirical studies have shown that local optima of various nonconvex M -estimators arising
in statistical problems appear to be well-behaved (e.g., Breheny and Huang, 2011). This
type of observation is the starting point of our work.

A key insight is that nonconvex functions occurring in statistics are not constructed
adversarially, so that “good behavior” might be expected in practice. Our recent work (Loh
and Wainwright, 2012) confirmed this intuition for one specific case: a modified version of
the Lasso applicable to errors-in-variables regression. Although the Hessian of the modi-
fied objective has many negative eigenvalues in the high-dimensional setting, the objective
function resembles a strongly convex function when restricted to a cone set that includes
the stationary points of the objective. This allows us to establish bounds on the statistical
and optimization error.

Our current paper is framed in a more general setting, and we focus on various M -
estimators coupled with (nonconvex) regularizers of interest. On the statistical side, we
establish bounds on the distance between any local optimum of the empirical objective and
the unique minimizer of the population risk. Although the nonconvex functions may possess
multiple local optima (as demonstrated in simulations), our theoretical results show that
all local optima are essentially as good as a global optima from a statistical perspective.
The results presented here subsume our previous work (Loh and Wainwright, 2012), and
our present proof techniques are much more direct.

Our theory also sheds new light on a recent line of work involving the nonconvex SCAD
and MCP regularizers (Fan and Li, 2001; Breheny and Huang, 2011; Zhang, 2010; Zhang
and Zhang, 2012). Various methods previously proposed for nonconvex optimization in-
clude local quadratic approximation (LQA) (Fan and Li, 2001), minorization-maximization
(MM) (Hunter and Li, 2005), local linear approximation (LLA) (Zou and Li, 2008), and
coordinate descent (Breheny and Huang, 2011; Mazumder et al., 2011). However, these
methods may terminate in local optima, which were not previously known to be well-
behaved. In a recent paper, Zhang and Zhang (2012) provided statistical guarantees for
global optima of least-squares linear regression with nonconvex penalties and showed that
gradient descent starting from a Lasso solution would terminate in specific local minima.
Fan et al. (2014) also showed that if the LLA algorithm is initialized at a Lasso optimum
satisfying certain properties, the two-stage procedure produces an oracle solution for var-
ious nonconvex penalties. Finally, Chen and Gu (2014) showed that specific local optima
of nonconvex regularized least-squares problems are stable, so optimization algorithms ini-
tialized sufficiently close by will converge to the same optima. See the survey paper (Zhang
and Zhang, 2012) for a more complete overview of related work.

In contrast, our paper is the first to establish appropriate regularity conditions under
which all stationary points (including both local and global optima) lie within a small ball
of the population-level minimum. Thus, standard first-order methods such as projected
and composite gradient descent (Nesterov, 2007) will converge to stationary points that lie
within statistical error of the truth, eliminating the need for specially designed optimization
algorithms that converge to specific local optima. Our work provides an important contribu-
tion to the growing literature on the tradeoff between statistical accuracy and optimization
efficiency in high-dimensional problems, establishing that certain types of nonconvex M -
estimators arising in statistical problems possess stationary points that both enjoy strong
statistical guarantees and may be located efficiently. For a higher-level description of con-
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temporary problems involving statistical and optimization tradeoffs, see Wainwright (2014)
and the references cited therein.

Figure 1 provides an illustration of the type of behavior explained by the theory in this
paper. Panel (a) shows the behavior of composite gradient descent for a form of logistic
regression with the nonconvex SCAD (Fan and Li, 2001) as a regularizer: the red curve
shows the statistical error, namely the `2-norm of the difference between a stationary point
and the underlying true regression vector, and the blue curve shows the optimization error,
meaning the difference between the iterates and a given global optimum. As shown by the
blue curves, this problem possesses multiple local optima, since the algorithm converges to
different final points depending on the initialization. However, as shown by the red curves,
the statistical error of each local optimum is very low, so they are all essentially comparable
from a statistical point of view. Panel (b) exhibits the same behavior for a problem in which
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Figure 1: Plots of the optimization error (blue curves) and statistical error (red curves) for
a modified form of composite gradient descent, applicable to problems that may
involve nonconvex cost functions and regularizers. (a) Plots for logistic regression
with the nonconvex SCAD regularizer. (b) Plots for a corrected form of least
squares (a nonconvex quadratic program) with the nonconvex MCP regularizer.

both the cost function (a corrected form of least-squares suitable for missing data, described
in Loh and Wainwright, 2013a) and the regularizer (the MCP function, described in Zhang,
2010) are nonconvex. Nonetheless, as guaranteed by our theory, we still see the same
qualitative behavior of the statistical and optimization error. Moreover, our theory also
predicts the geometric convergence rates that are apparent in these plots. More precisely,
under the same sufficient conditions for statistical consistency, we show that a modified
form of composite gradient descent only requires log(1/εstat) steps to achieve a solution that
is accurate up to the statistical precision εstat, which is the rate expected for strongly convex
functions. Furthermore, our techniques are more generally applicable than the methods
proposed by previous authors and are not restricted to least-squares or even convex loss
functions.
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While our paper was under review after its initial arXiv posting (Loh and Wainwright,
2013b), we became aware of an independent line of related work by Wang et al. (2014).
Our contributions are substantially different, in that we provide sufficient conditions guar-
anteeing statistical consistency for all local optima, whereas their work is only concerned
with establishing good behavior of successive iterates along a certain path-following algo-
rithm. In addition, our techniques are applicable even to regularizers that do not satisfy
smoothness constraints on the entire positive axis (such as capped-`1). Finally, we provide
rigorous proofs showing the applicability of our sufficient condition on the loss function to a
broad class of generalized linear models, whereas the applicability of their sparse eigenvalue
condition to such objectives was not established.

The remainder of the paper is organized as follows. In Section 2, we set up basic notation
and provide background on nonconvex regularizers and loss functions of interest. In Section
3, we provide our main theoretical results, including bounds on `1-, `2-, and prediction error,
and also state corollaries for special cases. Section 4 contains a modification of composite
gradient descent that may be used to obtain near-global optima and includes theoretical
results establishing the linear convergence of our optimization algorithm. Section 5 supplies
the results of various simulations. Proofs are contained in the Appendix. We note that a
preliminary form of the results given here, without any proofs or algorithmic details, was
presented at the NIPS conference (Loh and Wainwright, 2013c).

Notation: For functions f(n) and g(n), we write f(n) - g(n) to mean that f(n) ≤ cg(n)
for some universal constant c ∈ (0,∞), and similarly, f(n) % g(n) when f(n) ≥ c′g(n)
for some universal constant c′ ∈ (0,∞). We write f(n) � g(n) when f(n) - g(n) and
f(n) % g(n) hold simultaneously. For a vector v ∈ Rp and a subset S ⊆ {1, . . . , p}, we write
vS ∈ RS to denote the vector v restricted to S. For a matrix M , we write |||M |||2 and |||M |||F
to denote the spectral and Frobenius norms, respectively, and write |||M |||max := maxi,j |mij |
to denote the elementwise `∞-norm of M . For a function h : Rp → R, we write ∇h to denote
a gradient or subgradient, if it exists. Finally, for q, r > 0, let Bq(r) denote the `q-ball of
radius r centered around 0. We use the term “with high probability” (w.h.p.) to refer to
events that occur with probability tending to 1 as n, p, k →∞. This is a loose requirement,
but we will always take care to write out the expression for the probability explicitly (up
to constant factors) in the formal statements of our theorems and corollaries below.

2. Problem Formulation

In this section, we develop some general theory for regularized M -estimators. We begin by
establishing our notation and basic assumptions, before turning to the class of nonconvex
regularizers and nonconvex loss functions to be covered in this paper.

2.1 Background

Given a collection of n samples Zn1 = {Z1, . . . , Zn}, drawn from a marginal distribution
P over a space Z, consider a loss function Ln : Rp × (Z)n → R. The value Ln(β;Zn1 )
serves as a measure of the “fit” between a parameter vector β ∈ Rp and the observed data.
This empirical loss function should be viewed as a surrogate to the population risk function
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L : Rp → R, given by

L(β) := EZ
[
Ln(β;Zn1 )

]
.

Our goal is to estimate the parameter vector β∗ := arg min
β∈Rp

L(β) that minimizes the popu-

lation risk, assumed to be unique.

To this end, we consider a regularized M -estimator of the form

β̂ ∈ arg min
g(β)≤R, β∈Ω

{Ln(β;Zn1 ) + ρλ(β)} , (1)

where ρλ : Rp → R is a regularizer, depending on a tuning parameter λ > 0, which
serves to enforce a certain type of structure on the solution. Here, R > 0 is another
tuning parameter that much be chosen carefully to make β∗ a feasible point. In all cases,
we consider regularizers that are separable across coordinates, and with a slight abuse of
notation, we write

ρλ(β) =

p∑
j=1

ρλ(βj).

Our theory allows for possible nonconvexity in both the loss function Ln and the regu-
larizer ρλ. Due to this potential nonconvexity, our M -estimator also includes a side con-
straint g : Rp → R+, which we require to be a convex function satisfying the lower bound
g(β) ≥ ‖β‖1 for all β ∈ Rp. Consequently, any feasible point for the optimization prob-
lem (1) satisfies the constraint ‖β‖1 ≤ R, and as long as the empirical loss and regularizer
are continuous, the Weierstrass extreme value theorem guarantees that a global minimum
β̂ exists. Finally, our theory also allows for an additional side constraint of the form β ∈ Ω,
where Ω is some convex set containing β∗. For the graphical Lasso considered in Section 3.4,
we take Ω = S+ to be the set of positive semidefinite matrices; in settings where such an
additional condition is extraneous, we simply set Ω = Rp.

2.2 Nonconvex Regularizers

We now state and discuss conditions on the regularizer, defined in terms of a univariate
function ρλ : R→ R.

Assumption 1

(i) The function ρλ satisfies ρλ(0) = 0 and is symmetric around zero (i.e., ρλ(t) = ρλ(−t)
for all t ∈ R).

(ii) On the nonnegative real line, the function ρλ is nondecreasing.

(iii) For t > 0, the function t 7→ ρλ(t)
t is nonincreasing in t.

(iv) The function ρλ is differentiable for all t 6= 0 and subdifferentiable at t = 0, with
limt→0+ ρ

′
λ(t) = λL.

(v) There exists µ > 0 such that ρλ,µ(t) := ρλ(t) + µ
2 t

2 is convex.
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It is instructive to compare the conditions of Assumption 1 to similar conditions previ-
ously proposed in literature. Conditions (i)–(iii) are the same as those proposed in Zhang
and Zhang (2012), except we omit the extraneous condition of subadditivity (cf. Lemma
1 of Chen and Gu, 2014). Such conditions are relatively mild and are satisfied for a wide
variety of regularizers. Condition (iv) restricts the class of penalties by excluding regular-
izers such as the bridge (`q-) penalty, which has infinite derivative at 0; and the capped-`1
penalty, which has points of non-differentiability on the positive real line. However, one
may check that if ρλ has an unbounded derivative at zero, then β̃ = 0 is always a local
optimum of the composite objective (1), so there is no hope for ‖β̃−β∗‖2 to be vanishingly
small. Condition (v), known as weak convexity (Vial, 1982), also appears in Chen and Gu
(2014) and is a type of curvature constraint that controls the level of nonconvexity of ρλ.
Although this condition is satisfied by many regularizers of interest, it is again not satisfied
by capped-`1 for any µ > 0. For details on how our arguments may be modified to handle
the more tricky capped-`1 penalty, see Appendix F.

Nonetheless, many regularizers that are commonly used in practice satisfy all the condi-
tions in Assumption 1. It is easy to see that the standard `1-norm ρλ(β) = λ‖β‖1 satisfies
these conditions. More exotic functions have been studied in a line of past work on non-
convex regularization, and we provide a few examples here:

SCAD penalty: This penalty, due to Fan and Li (2001), takes the form

ρλ(t) :=


λ|t|, for |t| ≤ λ,

−(t2 − 2aλ|t|+ λ2)/(2(a− 1)), for λ < |t| ≤ aλ,

(a+ 1)λ2/2, for |t| > aλ,

(2)

where a > 2 is a fixed parameter. As verified in Lemma 6 of Appendix A.2, the SCAD
penalty satisfies the conditions of Assumption 1 with L = 1 and µ = 1

a−1 .

MCP regularizer: This penalty, due to Zhang (2010), takes the form

ρλ(t) := sign(t)λ ·
∫ |t|

0

(
1− z

λb

)
+
dz, (3)

where b > 0 is a fixed parameter. As verified in Lemma 7 in Appendix A.2, the MCP
regularizer satisfies the conditions of Assumption 1 with L = 1 and µ = 1

b .

2.3 Nonconvex Loss Functions and Restricted Strong Convexity

Throughout this paper, we require the loss function Ln to be differentiable, but we do not
require it to be convex. Instead, we impose a weaker condition known as restricted strong
convexity (RSC). Such conditions have been discussed in previous literature (Negahban
et al., 2012; Agarwal et al., 2012), and involve a lower bound on the remainder in the
first-order Taylor expansion of Ln. In particular, our main statistical result is based on the
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following RSC condition:

〈∇Ln(β∗ + ∆)−∇Ln(β∗), ∆〉 ≥


α1‖∆‖22 − τ1

log p

n
‖∆‖21, ∀‖∆‖2 ≤ 1, (4a)

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1, ∀‖∆‖2 ≥ 1, (4b)

where the αj ’s are strictly positive constants and the τj ’s are nonnegative constants.
To understand this condition, note that if Ln were actually strongly convex, then both

these RSC inequalities would hold with α1 = α2 > 0 and τ1 = τ2 = 0. However, in the
high-dimensional setting (p � n), the empirical loss Ln will not in general be strongly
convex or even convex, but the RSC condition may still hold with strictly positive (αj , τj).
In fact, if Ln is convex (but not strongly convex), the left-hand expression in (4) is always

nonnegative, so (4a) and (4b) hold trivially for ‖∆‖1‖∆‖2 ≥
√

α1n
τ1 log p and ‖∆‖1

‖∆‖2 ≥
α2
τ2

√
n

log p ,

respectively. Hence, the RSC inequalities only enforce a type of strong convexity condition

over a cone of the form
{
‖∆‖1
‖∆‖2 ≤ c

√
n

log p

}
.

It is important to note that the class of functions satisfying RSC conditions of this type
is much larger than the class of convex functions; for instance, our own past work (Loh
and Wainwright, 2012) exhibits a large family of nonconvex quadratic functions that satisfy
the condition (see Section 3.2 below for further discussion). Furthermore, note that we
have stated two separate RSC inequalities (4) for different ranges of ‖∆‖2, unlike in past
work (Negahban et al., 2012; Agarwal et al., 2012; Loh and Wainwright, 2012). As illustrated
in the corollaries of Sections 3.3 and 3.4 below, an equality of the first type (4a) will only
hold locally over ∆ when we have more complicated types of loss functions that are only
quadratic around a neighborhood of the origin. As proved in Appendix B.1, however, (4b)
is implied by (4a) in cases when Ln is convex, which sustains our theoretical conclusions
even under the weaker RSC conditions (4). Further note that by the inequality

Ln(β∗ + ∆)− Ln(β∗) ≤ 〈∇Ln(β∗ + ∆), ∆〉,

which holds whenever Ln is convex, the RSC condition appearing in past work (e.g., Agarwal
et al., 2012) implies that (4a) holds, so (4b) also holds by Lemma 8 in Appendix B.1. In cases
where Ln is quadratic but not necessarily convex (cf. Section 3.2), our RSC condition (4) is
again no stronger than the conditions appearing in past work, since those RSC conditions
enforce (4a) globally over ∆ ∈ Rp, which by Lemma 9 in Appendix B.1 implies that (4b)
holds, as well. To allow for more general situations where Ln may be non-quadratic and/or
nonconvex, we prefer to use the RSC formulation (4) in this paper.

Finally, we clarify that whereas Negahban et al. (2012) define an RSC condition with
respect to a fixed subset S ⊆ {1, . . . , p}, we follow the setup of Agarwal et al. (2012)
and Loh and Wainwright (2012) and essentially require an RSC condition of the type defined
in Negahban et al. (2012) to hold uniformly over all subsets S of size k. Although the
results on statistical consistency may be established under the weaker RSC assumption
with S := supp(β∗), a uniform RSC condition is preferred because the true support set
is not known a priori. The uniform RSC condition may be shown to hold w.h.p. in the
sub-Gaussian settings we consider here (cf. Sections 3.2—3.4 below); in fact, the proofs
contained in Negahban et al. (2012) establish a uniform RSC condition, as well.
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3. Statistical Guarantees and Consequences

With this setup, we now turn to the statements and proofs of our main statistical guarantees,
as well as some consequences for various statistical models. Our theory applies to any
vector β̃ ∈ Rp that satisfies the first-order necessary conditions to be a local minimum of
the program (1):

〈∇Ln(β̃) +∇ρλ(β̃), β − β̃〉 ≥ 0, for all feasible β ∈ Rp. (5)

When β̃ lies in the interior of the constraint set, this condition reduces to the usual zero-
subgradient condition:

∇Ln(β̃) +∇ρλ(β̃) = 0.

Such vectors β̃ satisfying the condition (5) are also known as stationary points (Bertsekas,
1999); note that the set of stationary points also includes interior local maxima. Hence,
although some of the discussion below is stated in terms of “local minima,” the results hold
for interior local maxima, as well.

3.1 Main Statistical Results

Our main theorems are deterministic in nature and specify conditions on the regularizer, loss
function, and parameters that guarantee that any local optimum β̃ lies close to the target
vector β∗ = arg min

β∈Rp
L(β). Corresponding probabilistic results will be derived in subsequent

sections, where we establish that for appropriate choices of parameters (λ,R), the required
conditions hold with high probability. Applying the theorems to particular models requires
bounding the random quantity ‖∇Ln(β∗)‖∞ and verifying the RSC conditions (4). We
begin with a theorem that provides guarantees on the error β̃ − β∗ as measured in the `1-
and `2-norms:

Theorem 1 Suppose the regularizer ρλ satisfies Assumption 1, the empirical loss Ln sat-
isfies the RSC conditions (4) with 3

4µ < α1, and β∗ is feasible for the objective. Consider
any choice of λ such that

4

L
·max

{
‖∇Ln(β∗)‖∞, α2

√
log p

n

}
≤ λ ≤ α2

6RL
, (6)

and suppose n ≥ 16R2 max(τ21 ,τ
2
2 )

α2
2

log p. Then any vector β̃ satisfying the first-order necessary

conditions (5) satisfies the error bounds

‖β̃ − β∗‖2 ≤
6λL
√
k

4α1 − 3µ
, and ‖β̃ − β∗‖1 ≤

24λLk

4α1 − 3µ
, (7)

where k = ‖β∗‖0.

From the bound (7), note that the squared `2-error grows proportionally with k, the
number of nonzeros in the target parameter, and with λ2. As will be clarified in the

following sections, choosing λ proportional to
√

log p
n and R proportional to 1

λ will satisfy
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the requirements of Theorem 1 w.h.p. for many statistical models, in which case we have a
squared-`2 error that scales as k log p

n , as expected.
Our next theorem provides a bound on a measure of the prediction error, as defined by

the quantity

D
(
β̃;β∗) := 〈∇Ln(β̃)−∇Ln(β∗), β̃ − β∗〉. (8)

When the empirical loss Ln is a convex function, this measure is always nonnegative, and
in various special cases, it has a form that is readily interpretable. For instance, in the case
of the least-squares objective function Ln(β) = 1

2n‖y −Xβ‖22, we have

D
(
β̃;β∗) =

1

n
‖X(β̃ − β∗)‖22 =

1

n

n∑
i=1

(
〈xi, β̃ − β∗〉

)2
,

corresponding to the usual measure of (fixed design) prediction error for a linear regression
problem (cf. Corollary 1 below). More generally, when the loss function is the negative log
likelihood for a generalized linear model with cumulant function ψ, the error measure (8)
is equivalent to the symmetrized Bregman divergence defined by ψ. (See Section 3.3 for
further details.)

Theorem 2 Under the same conditions as Theorem 1, the error measure (8) is bounded
as

〈∇Ln(β̃)−∇Ln(β∗), β̃ − β∗〉 ≤ λ2L2k

(
9

4α1 − 3µ
+

27µ

(4α1 − 3µ)2

)
. (9)

This result shows that the prediction error (8) behaves similarly to the squared Euclidean
norm between β̃ and β∗.

Remark on (α1, µ): It is worthwhile to discuss the quantity 4α1 − 3µ appearing in
the denominator of the bounds in Theorems 1 and 2. Recall that α1 measures the level of
curvature of the loss function Ln, while µ measures the level of nonconvexity of the penalty
ρλ. Intuitively, the two quantities should play opposing roles in our result: larger values of
µ correspond to more severe nonconvexity of the penalty, resulting in worse behavior of the
overall objective (1), whereas larger values of α1 correspond to more (restricted) curvature
of the loss, leading to better behavior. However, while the condition 3

4µ < α1 is needed
for the proof technique employed in Theorem 1, it does not seem to be strictly necessary
in order to guarantee good behavior of local optima. As a careful examination of the proof
reveals, the condition may be replaced by the alternate condition cµ < α1, for any constant
c > 1

2 . However, note that the capped-`1 penalty may be viewed as a limiting version of
SCAD when a→ 1, or equivalently, µ→∞. Viewed in this light, Theorem 4, to be stated
and proved in Appendix F, reveals that a condition of the form cµ < α1 is not necessary, at
least in general, for good behavior of local optima. Moreover, Section 5 contains empirical
studies using linear regression and the SCAD penalty showing that local optima may be
well-behaved when α1 < 3

4µ. Nonetheless, our simulations (see Figure 5) also convey a
cautionary message: In extreme cases, where α1 is significantly smaller than µ, the good
behavior of local optima (and the optimization algorithms used to find them) appear to
degenerate.
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Finally, we note that Negahban et al. (2012) have shown that for convex M -estimators,
the arguments used to analyze `1-regularizers may be generalized to other types of “decom-
posable” regularizers, such as norms for group sparsity or the nuclear norm for low-rank
matrices. In our present setting, where we allow for nonconvexity in the loss and regularizer,
our theorems have straightforward and analogous generalizations.

We return to the proofs of Theorems 1 and 2 in Section 3.5. First, we develop various
consequences of these theorems for various nonconvex loss functions and regularizers of
interest. The main technical challenge is to establish that the RSC conditions (4) hold with
high probability for appropriate choices of positive constants {(αj , τj)}2j=1.

3.2 Corrected Linear Regression

We begin by considering the case of high-dimensional linear regression with systematically
corrupted observations. Recall that in the framework of ordinary linear regression, we have
the linear model

yi = 〈β∗, xi〉︸ ︷︷ ︸∑p
j=1 β

∗
j xij

+ εi, for i = 1, . . . , n, (10)

where β∗ ∈ Rp is the unknown parameter vector and {(xi, yi)}ni=1 are observations. Follow-
ing a line of past work (e.g., Rosenbaum and Tsybakov, 2010; Loh and Wainwright, 2012),
assume we instead observe pairs {(zi, yi)}ni=1, where the zi’s are systematically corrupted
versions of the corresponding xi’s. Some examples of corruption mechanisms include the
following:

(a) Additive noise: We observe zi = xi+wi, where wi ∈ Rp is a random vector independent
of xi, say zero-mean with known covariance matrix Σw.

(b) Missing data: For some fraction ϑ ∈ [0, 1), we observe a random vector zi ∈ Rp such
that for each component j, we independently observe zij = xij with probability 1−ϑ,
and zij = ∗ with probability ϑ.

We use the population and empirical loss functions

L(β) =
1

2
βTΣxβ − β∗TΣxβ, and Ln(β) =

1

2
βT Γ̂β − γ̂Tβ, (11)

where (Γ̂, γ̂) are estimators for (Σx,Σxβ
∗) that depend only on {(zi, yi)}ni=1. It is easy to

see that β∗ = arg minβ L(β). From the formulation (1), the corrected linear regression
estimator is given by

β̂ ∈ arg min
g(β)≤R

{
1

2
βT Γ̂β − γ̂Tβ + ρλ(β)

}
. (12)

We now state a concrete corollary in the case of additive noise (model (a) above). In
this case, as discussed in Loh and Wainwright (2012), an appropriate choice of the pair
(Γ̂, γ̂) is given by

Γ̂ =
ZTZ

n
− Σw, and γ̂ =

ZT y

n
. (13)

568



Local Optima of Nonconvex M-estimators

Here, we assume the noise covariance Σw is known or may be estimated from replicates of the
data. Such an assumption also appears in canonical errors-in-variables literature (Carroll
et al., 1995), but it is an open question how to devise a corrected estimator when an estimate
of Σw is not readily available. If we assume a sub-Gaussian model on the covariates and
errors (i.e., xi, wi, and εi are sub-Gaussian with parameters σ2

x, σ2
w, and σ2

ε , respectively),
the contribution of the error covariances may be summarized in the error term

ϕ = (σx + σw)
(
σε + σw‖β∗‖2

)
, (14)

which appears as a prefactor in the deviation bounds and estimation/prediction error
bounds for the subsequent estimators (cf. Lemma 2 in Loh and Wainwright, 2012). We
make this dependence explicit in the statement of the corollary for high-dimensional errors-
in-variables regression below. Note in particular that ϕ scales up with both σε and σw.
Hence, even when σε = 0, corresponding to no additive error, we will have ϕ 6= 0 due to
errors in the covariates; whereas when σw = 0, corresponding to cleanly observed covariates,
we will still have ϕ 6= 0 due to the additional additive error introduced by the εi’s, agreeing
with canonical results for the Lasso (Bickel et al., 2009).

In the high-dimensional setting (p� n), the matrix Γ̂ in (13) is always negative definite:

the matrix ZTZ
n has rank at most n, and the positive definite matrix Σw is then subtracted to

obtain Γ̂. Consequently, the empirical loss function Ln previously defined (11) is nonconvex.
Other choices of Γ̂ are applicable to missing data (model (b)), and also lead to nonconvex
programs (see Loh and Wainwright, 2012 for further details).

Corollary 1 Suppose we have i.i.d. observations {(zi, yi)}ni=1 from a corrupted linear model
with additive noise, where the covariates and error terms are sub-Gaussian. Let ϕ be defined
as in (14) with respect to the sub-Gaussian parameters. Suppose (λ,R) are chosen such that
β∗ is feasible and

cϕ

√
log p

n
≤ λ ≤ c′

R
.

Also suppose 3
4µ < 1

2λmin(Σx). Then given a sample size n ≥ C max{R2, k} log p, any

stationary point β̃ of the nonconvex program (12) satisfies the estimation error bounds

‖β̃ − β∗‖2 ≤
c0λ
√
k

2λmin(Σx)− 3µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

2λmin(Σx)− 3µ
,

and the prediction error bound

ν̃T Γ̂ν̃ ≤ λ2k

(
c̃0

2λmin(Σx)− 3µ
+

c̃0
′µ

(2λmin(Σx)− 3µ)2

)
,

with probability at least 1− c1 exp(−c2 log p), where ‖β∗‖0 = k.

When ρλ(β) = λ‖β‖1 and g(β) = ‖β‖1, taking λ � ϕ
√

log p
n and R = b0

√
k for some con-

stant b0 ≥ ‖β∗‖2 yields the required scaling n % k log p. Hence, the bounds of Corollary 1
agree with bounds previously established in Theorem 1 of Loh and Wainwright (2012). Note,
however, that those results are stated only for a global minimum β̂ of the program (12),
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whereas Corollary 1 is a much stronger result holding for any stationary point β̃. Theorem
2 of our earlier paper (Loh and Wainwright, 2012) provides a rather indirect (algorithmic)
route for establishing similar bounds on ‖β̃ − β∗‖1 and ‖β̃ − β∗‖2, since the proposed pro-
jected gradient descent algorithm may become stuck at a stationary point. In contrast, our
argument here is much more direct and does not rely on an algorithmic proof. Furthermore,
our result is applicable to a more general class of (possibly nonconvex) penalties beyond
the usual `1-norm.

Corollary 1 also has important consequences in the case where pairs {(xi, yi)}ni=1 from
the linear model (10) are observed cleanly without corruption and ρλ is a nonconvex penalty.
In that case, the empirical loss Ln previously defined (11) is equivalent to the least-squares
loss, modulo a constant factor. Much existing work, including that of Fan and Li (2001)
and Zhang and Zhang (2012), first establishes statistical consistency results concerning
global minima of the program (12), then provides specialized algorithms such as a local linear
approximation (LLA) for obtaining specific local optima that are provably close to the global
optima. However, our results show that any optimization algorithm guaranteed to converge
to a stationary point of the program suffices. See Section 4 for a more detailed discussion of
optimization procedures and fast convergence guarantees for obtaining stationary points. In
the fully-observed case, we also have Γ̂ = XTX

n , so the prediction error bound in Corollary 1

agrees with the familiar scaling 1
n‖X(β̃ − β∗)‖22 - k log p

n appearing in `1-theory.

Furthermore, our theory provides a theoretical motivation for why the usual choice of
a = 3.7 for linear regression with the SCAD penalty (Fan and Li, 2001) is reasonable.
Indeed, as discussed in Section 2.2, we have

µ =
1

a− 1
≈ 0.37

in that case. Since xi ∼ N(0, I) in the SCAD simulations, we have 3
4µ <

1
2λmin(Σx) for the

choice a = 3.7. For further comments regarding the parameter a in the SCAD penalty, see
the discussion concerning Figure 3 in Section 5.

3.3 Generalized Linear Models

Moving beyond linear regression, we now consider the case where observations are drawn
from a generalized linear model (GLM). Recall that a GLM is characterized by the condi-
tional distribution

P(yi | xi, β, σ) = exp

{
yi〈β, xi〉 − ψ(xTi β)

c(σ)

}
,

where σ > 0 is a scale parameter and ψ is the cumulant function, By standard properties of
exponential families (McCullagh and Nelder, 1989; Lehmann and Casella, 1998), we have

ψ′(xTi β) = E[yi | xi, β, σ].

In our analysis, we assume that there exists αu > 0 such that ψ′′(t) ≤ αu, for all t ∈ R.
Note that this boundedness assumption holds in various settings, including linear regression,
logistic regression, and multinomial regression, but does not hold for Poisson regression.
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The bound will be necessary to establish both statistical consistency results in the present
section and fast global convergence guarantees for our optimization algorithms in Section 4.

The population loss corresponding to the negative log likelihood is then given by

L(β) = −E[logP(xi, yi)] = −E[logP(xi)]−
1

c(σ)
· E[yi〈β, xi〉 − ψ(xTi β)],

giving rise to the population-level and empirical gradients

∇L(β) =
1

c(σ)
· E[(ψ′(xTi β)− yi)xi], and

∇Ln(β) =
1

c(σ)
· 1

n

n∑
i=1

(
ψ′(xTi β)− yi

)
xi.

Since we are optimizing over β, we will rescale the loss functions and assume c(σ) = 1. We
may check that if β∗ is the true parameter of the GLM, then ∇L(β∗) = 0; furthermore,

∇2Ln(β) =
1

n

n∑
i=1

ψ′′(xTi β)xix
T
i � 0,

so Ln is convex.
We will assume that β∗ is sparse and optimize the penalized maximum likelihood pro-

gram

β̂ ∈ arg min
g(β)≤R

{
1

n

n∑
i=1

(
ψ(xTi β)− yixTi β

)
+ ρλ(β)

}
. (15)

We then have the following corollary, proved in Appendix B.3:

Corollary 2 Suppose we have i.i.d. observations {(xi, yi)}ni=1 from a GLM, where the xi’s
are sub-Gaussian. Suppose (λ,R) are chosen such that β∗ is feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then given a sample size n ≥ CR2 log p, any stationary point β̃ of the nonconvex pro-
gram (15) satisfies

‖β̃ − β∗‖2 ≤
c0λ
√
k

4α1 − 3µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

4α1 − 3µ
,

with probability at least 1 − c1 exp(−c2 log p), where ‖β∗‖0 = k. Here, α1 is a constant
depending on ‖β∗‖2, ψ, λmin(Σx), and the sub-Gaussian parameter of the xi’s, and we
assume µ < 2α1.

Although Ln is convex in this case, the overall program may not be convex if the
regularizer ρλ is nonconvex, giving rise to multiple local optima. For instance, see the
simulations of Figure 4 in Section 5 for a demonstration of such local optima. In past work,
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Breheny and Huang (2011) studied logistic regression with SCAD and MCP regularizers,
but did not provide any theoretical results on the quality of the local optima. In this context,
Corollary 2 shows that their coordinate descent algorithms are guaranteed to converge to a
stationary point β̃ within close proximity of the true parameter β∗.

In the statement of Corollary 2, we choose not to write out the form of α1 explicitly
as in Corollary 1, since it is rather complicated. As explained in the proof of Corollary 2
in Appendix B.3, the precise form of α1 may be traced back to Proposition 2 of Negahban
et al. (2012).

3.4 Graphical Lasso

Finally, we specialize our results to the case of the graphical Lasso. Given p-dimensional
observations {xi}ni=1, the goal is to estimate the structure of the underlying (sparse) graphi-
cal model. Recall that the population and empirical losses for the graphical Lasso are given
by

L(Θ) = trace(ΣΘ)− log det(Θ), and Ln(Θ) = trace(Σ̂Θ)− log det(Θ),

where Σ̂ is an empirical estimate for the covariance matrix Σ = Cov(xi). The objective
function for the graphical Lasso is then given by

Θ̂ ∈ arg min
g(Θ)≤R, Θ�0

trace(Σ̂Θ)− log det(Θ) +

p∑
j,k=1

ρλ(Θjk)

 , (16)

where we apply the (possibly nonconvex) penalty function ρλ to all entries of Θ, and define
Ω :=

{
Θ ∈ Rp×p | Θ = ΘT , Θ � 0

}
.

A host of statistical and algorithmic results have been established for the graphical Lasso
in the case of Gaussian observations with an `1-penalty (Banerjee et al., 2008; Friedman
et al., 2008; Rothman et al., 2008; Yuan and Lin, 2007), and more recently, for discrete-
valued observations, as well (Loh and Wainwright, 2013a). In addition, a version of the
graphical Lasso incorporating a nonconvex SCAD penalty has been proposed (Fan et al.,
2009). Our results subsume previous Frobenius error bounds for the graphical Lasso and
again imply that even in the presence of a nonconvex regularizer, all stationary points of
the nonconvex program (16) remain close to the true inverse covariance matrix Θ∗.

As suggested by Loh and Wainwright (2013a), the graphical Lasso easily accommodates
systematically corrupted observations, with the only modification being the form of the
sample covariance matrix Σ̂. Just as in Corollary 1, the magnitude and form of corruption
would occur as a prefactor in the deviation condition captured in (17) below; for instance, in

the case of Σ̂ = ZTZ
n −Σw, corresponding to additive noise in the xi’s, the bound (17) would

involve a prefactor of σ2
z rather than σ2

x, where σ2
z and σ2

x are the sub-Gaussian parameters
of zi and xi, respectively.

Further note that the program (16) is always useful for obtaining a consistent estimate
of a sparse inverse covariance matrix, regardless of whether the xi’s are drawn from a
distribution for which Θ∗ is relevant in estimating the edges of the underlying graph. Note
that other variants of the graphical Lasso exist in which only off-diagonal entries of Θ
are penalized, and similar results for statistical consistency hold in that case. Here, we
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assume that all entries are penalized equally in order to simplify our arguments. The same
framework is considered by Fan et al. (2009).

We have the following result, proved in Appendix B.4. The statement of the corollary is
purely deterministic, but in cases of interest (say, sub-Gaussian observations), the deviation
condition (17) holds with probability at least 1 − c1 exp(−c2 log p), translating into the
Frobenius norm bound (18) holding with the same probability.

Corollary 3 Suppose we have an estimate Σ̂ of the covariance matrix Σ based on (possibly
corrupted) observations {xi}ni=1, such that∣∣∣∣∣∣∣∣∣Σ̂− Σ

∣∣∣∣∣∣∣∣∣
max
≤ c0

√
log p

n
. (17)

Also suppose Θ∗ has at most s nonzero entries. Suppose (λ,R) are chosen such that Θ∗ is
feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Suppose 3
4µ < (|||Θ∗|||2 + 1)−2. Then with a sample size n > Cs log p, for a sufficiently large

constant C > 0, any stationary point Θ̃ of the nonconvex program (16) satisfies∣∣∣∣∣∣∣∣∣Θ̃−Θ∗
∣∣∣∣∣∣∣∣∣
F
≤ c′0λ

√
s

4 (|||Θ∗|||2 + 1)−2 − 3µ
. (18)

When ρ is simply the `1-penalty, the bound (18) from Corollary 3 matches the minimax
rates for Frobenius norm estimation of an s-sparse inverse covariance matrix (Rothman
et al., 2008; Ravikumar et al., 2011).

3.5 Proof of Theorems 1 and 2

We now turn to the proofs of our two main theorems.

Proof of Theorem 1: Introducing the shorthand ν̃ := β̃ − β∗, we begin by proving
that ‖ν̃‖2 ≤ 1. If not, then (4b) gives the lower bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≥ α2‖ν̃‖2 − τ2

√
log p

n
‖ν̃‖1. (19)

Since β∗ is feasible, we may take β = β∗ in (5), and combining with (19) yields

〈−∇ρλ(β̃)−∇Ln(β∗), ν̃〉 ≥ α2‖ν̃‖2 − τ2

√
log p

n
‖ν̃‖1. (20)

By Hölder’s inequality, followed by the triangle inequality, we also have

〈−∇ρλ(β̃)−∇Ln(β∗), ν̃〉 ≤
{
‖∇ρλ(β̃)‖∞ + ‖∇Ln(β∗)‖∞

}
‖ν̃‖1

(i)

≤
{
λL+

λL

2

}
‖ν̃‖1,
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where inequality (i) follows since ‖∇Ln(β∗)‖∞ ≤ λL
2 by the bound (6), and ‖∇ρλ(β̃)‖∞ ≤ λL

by Lemma 4 in Appendix A.1. Combining this upper bound with (20) and rearranging then
yields

‖ν̃‖2 ≤
‖ν̃‖1
α2

(
3λL

2
+ τ2

√
log p

n

)
≤ 2R

α2

(
3λL

2
+ τ2

√
log p

n

)
.

By our choice of λ from (6) and the assumed lower bound on the sample size n, the right
hand side is at most 1, so ‖ν̃‖2 ≤ 1, as claimed.

Consequently, we may apply (4a), yielding the lower bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≥ α1‖ν̃‖22 − τ1
log p

n
‖ν̃‖21. (21)

Since the function ρλ,µ(β) := ρλ(β) + µ
2‖β‖22 is convex by assumption, we have

ρλ,µ(β∗)− ρλ,µ(β̃) ≥ 〈∇ρλ,µ(β̃), β∗ − β̃〉 = 〈∇ρλ(β̃) + µβ̃, β∗ − β̃〉,

implying that

〈∇ρλ(β̃), β∗ − β̃〉 ≤ ρλ(β∗)− ρλ(β̃) +
µ

2
‖β̃ − β∗‖22. (22)

Combining (21) with (5) and (22), we obtain

α1‖ν̃‖22 − τ1
log p

n
‖ν̃‖21 ≤ −〈∇Ln(β∗), ν̃〉+ ρλ(β∗)− ρλ(β̃) +

µ

2
‖β̃ − β∗‖22.

Rearranging and using Hölder’s inequality, we then have(
α1 −

µ

2

)
‖ν̃‖22 ≤ ρλ(β∗)− ρλ(β̃) + ‖∇Ln(β∗)‖∞ · ‖ν̃‖1 + τ1

log p

n
‖ν̃‖21

≤ ρλ(β∗)− ρλ(β̃) +

(
‖∇Ln(β∗)‖∞ + 4Rτ1

log p

n

)
‖ν̃‖1. (23)

Note that by our assumptions, we have

‖∇Ln(β∗)‖∞ + 4Rτ1
log p

n
≤ λL

4
+ α2

√
log p

n
≤ λL

2
.

Combining this with (23) and (53) in Lemma 4 in Appendix A.1, as well as the subadditivity
of ρλ, we then have(

α1 −
µ

2

)
‖ν̃‖22 ≤ ρλ(β∗)− ρλ(β̃) +

λL

2
·
(
ρλ(ν̃)

λL
+

µ

2λL
‖ν̃‖22

)
≤ ρλ(β∗)− ρλ(β̃) +

ρλ(β∗) + ρλ(β̃)

2
+
µ

4
‖ν̃‖22,
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implying that

0 ≤
(
α1 −

3µ

4

)
‖ν̃‖22 ≤

3

2
ρλ(β∗)− 1

2
ρλ(β̃). (24)

In particular, we have 3ρλ(β∗)− ρλ(β̃) ≥ 0, so we may apply Lemma 5 in Appendix A.1 to
conclude that

3ρλ(β∗)− ρλ(β̃) ≤ 3λL‖ν̃A‖1 − λL‖ν̃Ac‖1, (25)

where A denotes the index set of the k largest elements of β̃−β∗ in magnitude. In particular,
we have the cone condition

‖ν̃Ac‖1 ≤ 3‖ν̃A‖1. (26)

Substituting (25) into (24), we then have(
2α1 −

3µ

2

)
‖ν̃‖22 ≤ 3λL‖ν̃A‖1 − λL‖ν̃Ac‖1 ≤ 3λL‖ν̃A‖1 ≤ 3λL

√
k‖ν̃‖2, (27)

from which we conclude that

‖ν̃‖2 ≤
6λL
√
k

4α1 − 3µ
,

as wanted. The `1-bound follows from the `2-bound and the observation that

‖ν̃‖1 ≤ ‖ν̃A‖1 + ‖ν̃Ac‖1 ≤ 4‖ν̃A‖1 ≤ 4
√
k‖ν̃‖2,

using the cone inequality (26).

Proof of Theorem 2: In order to establish (9), note that combining the first-order
condition (5) with the upper bound (22), we have

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≤ 〈−∇ρλ(β̃)−∇Ln(β∗), ν̃〉
≤ ρλ(β∗)− ρλ(β̃) +

µ

2
‖ν̃‖22 + ‖∇Ln(β∗)‖∞ · ‖ν̃‖1. (28)

Furthermore, as noted earlier, Lemma 4 in Appendix A.1 implies that

‖∇Ln(β∗)‖∞ · ‖ν̃‖1 ≤
λL

2
·
(
ρλ(β∗) + ρλ(β̃)

λL
+

µ

2λL
‖ν̃‖22

)
≤ ρλ(β∗) + ρλ(β̃)

2
+
µ

4
‖ν̃‖22.

Substituting this into (28) then gives

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≤ 3

2
ρλ(β∗)− 1

2
ρλ(β̃) +

3µ

4
‖ν̃‖22

≤ 3λL

2
‖ν̃A‖1 −

λL

2
‖ν̃Ac‖1 +

3µ

4
‖ν̃‖22

≤ 3λL
√
k

2
‖ν̃‖2 +

3µ

4
‖ν̃‖22,

so substituting in the `2-bound (7) yields the desired result.
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4. Optimization Algorithms

We now describe how a version of composite gradient descent (Nesterov, 2007) may be
applied to efficiently optimize the nonconvex program (1), and show that it enjoys a linear
rate of convergence under suitable conditions. In this section, we focus exclusively on a
version of the optimization problem with the side function

gλ,µ(β) :=
1

λ

{
ρλ(β) +

µ

2
‖β‖22

}
. (29)

Note that this choice of gλ,µ is convex by Assumption 1. We may then write the program (1)
as

β̂ ∈ arg min
gλ,µ(β)≤R, β∈Ω

{(
Ln(β)− µ

2
‖β‖22

)
︸ ︷︷ ︸

L̄n

+λgλ,µ(β)
}
. (30)

In this way, the objective function decomposes nicely into a sum of a differentiable but
nonconvex function and a possibly nonsmooth but convex penalty. Applied to the represen-
tation (30) of the objective function, the composite gradient descent procedure of Nesterov
(2007) produces a sequence of iterates {βt}∞t=0 via the updates

βt+1 ∈ arg min
gλ,µ(β)≤R, β∈Ω

{
1

2

∥∥∥∥β − (βt − ∇Ln(βt)

η

)∥∥∥∥2

2

+
λ

η
gλ,µ(β)

}
, (31)

where 1
η is the step size. As discussed in Section 4.2, these updates may be computed in a

relatively straightforward manner.

4.1 Fast Global Convergence

The main result of this section is to establish that the algorithm defined by the iterates (31)
converges very quickly to a δ-neighborhood of any global optimum, for all tolerances δ that
are of the same order (or larger) than the statistical error.

We begin by setting up the notation and assumptions underlying our result. The Taylor
error around the vector β2 in the direction β1 − β2 is given by

T (β1, β2) := Ln(β1)− Ln(β2)− 〈∇Ln(β2), β1 − β2〉. (32)

We analogously define the Taylor error T for the modified loss function Ln, and note that

T (β1, β2) = T (β1, β2)− µ

2
‖β1 − β2‖22. (33)

For all vectors β2 ∈ B2(3) ∩ B1(R), we require the following form of restricted strong
convexity:

T (β1, β2) ≥


α1‖β1 − β2‖22 − τ1

log p

n
‖β1 − β2‖21, ∀‖β1 − β2‖2 ≤ 3, (34a)

α2‖β1 − β2‖2 − τ2

√
log p

n
‖β1 − β2‖1, ∀‖β1 − β2‖2 ≥ 3. (34b)
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The conditions (34) are similar but not identical to the earlier RSC conditions (4). The
main difference is that we now require the Taylor difference to be bounded below uniformly
over β2 ∈ B2(3) ∩ B1(R), as opposed to for a fixed β2 = β∗. In addition, we assume an
analogous upper bound on the Taylor series error:

T (β1, β2) ≤ α3‖β1 − β2‖22 + τ3
log p

n
‖β1 − β2‖21, for all β1, β2 ∈ Ω, (35)

a condition referred to as restricted smoothness in past work (Agarwal et al., 2012). Through-
out this section, we assume 2αi > µ for all i, where µ is the coefficient ensuring the
convexity of the function gλ,µ from (29). Furthermore, we define α = min{α1, α2} and
τ = max{τ1, τ2, τ3}.

The following theorem applies to any population loss function L for which the population
minimizer β∗ is k-sparse and ‖β∗‖2 ≤ 1. Similar results could be derived for general ‖β∗‖2,
with the radius of the RSC condition (34a) replaced by 3‖β∗‖2 and Lemma 2 in Section 4.3
adjusted appropriately, but we only include the analysis for ‖β∗‖2 ≤ 1 in order to simplify
our exposition. We also assume the scaling n > Ck log p, for a constant C depending on the
αi’s and τi’s. Note that this scaling is reasonable, since no estimator of a k-sparse vector
in p dimensions can have low `2-error unless the condition holds (see Raskutti et al., 2011
for minimax rates). We show that the composite gradient updates (31) exhibit a type of
globally geometric convergence in terms of the quantity

κ :=
1− 2α−µ

8η + ϕ(n, p, k)

1− ϕ(n, p, k)
, where ϕ(n, p, k) :=

cτk log p
n

2α− µ . (36)

Under the stated scaling on the sample size, we are guaranteed that κ ∈ (0, 1), so it is a
contraction factor. Roughly speaking, we show that the squared optimization error will fall

below δ2 within T � log(1/δ2)
log(1/κ) iterations. More precisely, our theorem guarantees δ-accuracy

for all iterations larger than

T ∗(δ) :=
2 log

(
φ(β0)−φ(β̂)

δ2

)
log(1/κ)

+

(
1 +

log 2

log(1/κ)

)
log log

(
λRL

δ2

)
, (37)

where φ(β) := Ln(β) + ρλ(β) denotes the composite objective function. As clarified in the
theorem statement, the squared tolerance δ2 is not allowed to be arbitrarily small, which
would contradict the fact that the composite gradient method may converge to a stationary
point. However, our theory allows δ2 to be of the same order as the squared statistical
error ε2stat = ‖β̂−β∗‖22, the distance between a fixed global optimum and the target param-
eter β∗. From a statistical perspective, there is no point in optimizing beyond this tolerance.

With this setup, we now turn to a precise statement of our main optimization-theoretic
result. As with Theorems 1 and 2, the statement of Theorem 3 is entirely deterministic.

Theorem 3 Suppose the empirical loss Ln satisfies the RSC/RSM conditions (34) and (35),
and suppose the regularizer ρλ satisfies Assumption 1. Suppose β̂ is any global minimum of
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the program (30), with regularization parameters chosen such that

8

L
·max

{
‖∇Ln(β∗)‖∞, c′τ

√
log p

n

}
≤ λ ≤ c′′ α

RL
.

Suppose µ < 2α. Then for any step size parameter η ≥ max{2α3 − µ, µ} and tolerance

δ2 ≥ cε2stat
1−κ ·

k log p
n , we have

‖βt − β̂‖22 ≤
4

2α− µ

(
δ2 +

δ4

τ
+ cτ

k log p

n
ε2stat

)
, ∀t ≥ T ∗(δ). (38)

Remark: Note that for the optimal choice of tolerance parameter δ � k log p
n εstat, the

error bound appearing in (38) takes the form
cε2stat
2α−µ ·

k log p
n , meaning that successive iterates

of the composite gradient descent algorithm are guaranteed to converge to a region within
statistical accuracy of the true global optimum β̂. Concretely, if the sample size satisfies
n % Ck log p and the regularization parameters are chosen appropriately, Theorem 1 guar-

antees that εstat = O
(√

k log p
n

)
with high probability. Combined with Theorem 3, we then

conclude that

max
{
‖βt − β̂‖2, ‖βt − β∗‖2

}
= O

(√
k log p

n

)
,

for all iterations t ≥ T (εstat).

As would be expected, the (restricted) curvature α of the loss function and nonconvexity
parameter µ of the penalty function enter into the bound via the denominator 2α − µ.
Indeed, the bound is tighter when the loss function possesses more curvature or the penalty
function is closer to being convex, agreeing with intuition. Similar to our discussion in the
remark following Theorem 2, the requirement µ < 2α is certainly necessary for our proof
technique, but it is possible that composite gradient descent still produces good results
when this condition is violated. See Section 5 for simulations in scenarios involving mild
and severe violations of this condition.

Finally, note that the parameter η must be sufficiently large (or equivalently, the step
size must be sufficiently small) in order for the composite gradient descent algorithm to be
well-behaved. See Nesterov (2007) for a discussion of how the step size may be chosen via
an iterative search when the problem parameters are unknown.

In the case of corrected linear regression (Corollary 1), Lemma 13 of Loh and Wainwright
(2012) establishes the RSC/RSM conditions for various statistical models. The following
proposition shows that the conditions (34) and (35) hold in GLMs when the xi’s are drawn
i.i.d. from a zero-mean sub-Gaussian distribution with parameter σ2

x and covariance matrix
Σ = cov(xi). As usual, we assume a sample size n ≥ c k log p, for a sufficiently large constant
c > 0. Recall the definition of the Taylor error T (β1, β2) from (32).

Proposition 1 [RSC/RSM conditions for generalized linear models] There exists a con-
stant α` > 0, depending only on the GLM and the parameters (σ2

x,Σ), such that for all
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vectors β2 ∈ B2(3) ∩ B1(R), we have

T (β1, β2) ≥


α`
2
‖∆‖22 −

c2σ2
x

2α`

log p

n
‖∆‖21, for all ‖β1 − β2‖2 ≤ 3, (39a)

3α`
2
‖∆‖2 − 3cσx

√
log p

n
‖∆‖1, for all ‖β1 − β2‖2 ≥ 3, (39b)

with probability at least 1− c1 exp(−c2n). With the bound ‖ψ′′‖∞ ≤ αu, we also have

T (β1, β2) ≤ αuλmax(Σ)

(
3

2
‖∆‖22 +

log p

n
‖∆‖21

)
, for all β1, β2 ∈ Rp, (40)

with probability at least 1− c1 exp(−c2n).

For the proof of Proposition 1, see Appendix D.

4.2 Form of Updates

In this section, we discuss how the updates (31) are readily computable in many cases. We
begin with the case Ω = Rp, so we have no additional constraints apart from gλ,µ(β) ≤ R. In
this case, given iterate βt, the next iterate βt+1 may be obtained via the following three-step
procedure:

(1) First optimize the unconstrained program

β̂ ∈ arg min
β∈Rp

{
1

2

∥∥∥∥β − (βt − ∇Ln(βt)

η

)∥∥∥∥2

2

+
λ

η
· gλ,µ(β)

}
. (41)

(2) If gλ,µ(β̂) ≤ R, define βt+1 = β̂.

(3) Otherwise, if gλ,µ(β̂) > R, optimize the constrained program

βt+1 ∈ arg min
gλ,µ(β)≤R

{
1

2

∥∥∥∥β − (βt − ∇Ln(βt)

η

)∥∥∥∥2

2

}
. (42)

We derive the correctness of this procedure in Appendix C.1. For many nonconvex
regularizers ρλ of interest, the unconstrained program (41) has a convenient closed-form
solution: For the SCAD penalty (2), the program (41) has simple closed-form solution
given by

β̂SCAD =


0 if 0 ≤ |z| ≤ νλ,
z − sign(z) · νλ if νλ ≤ |z| ≤ (ν + 1)λ,
z−sign(z)· aνλ

a−1

1− ν
a−1

if (ν + 1)λ ≤ |z| ≤ aλ,
z if |z| ≥ aλ.

(43)
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For the MCP (3), the optimum of the program (41) takes the form

β̂MCP =


0 if 0 ≤ |z| ≤ νλ,
z−sign(z)·νλ

1−ν/b if νλ ≤ |z| ≤ bλ,

z if |z| ≥ bλ.

(44)

In both (43) and (44), we have

z :=
1

1 + µ/η

(
βt − ∇Ln(βt)

η

)
, and ν :=

1/η

1 + µ/η
,

and the operations are taken componentwise. See Appendix C.2 for the derivation of these
closed-form updates.

More generally, when Ω ( Rp (such as in the case of the graphical Lasso), the mini-
mum in the program (31) must be taken over Ω, as well. Although the updates are not
as simply stated, they still involve solving a convex optimization problem. Despite this
more complicated form, however, our results from Section 4.1 on fast global convergence
under restricted strong convexity and restricted smoothness assumptions carry over without
modification, since they only require RSC/RSM conditions holding over a sufficiently small
radius together with feasibility of β∗.

4.3 Proof of Theorem 3

We provide the outline of the proof here, with more technical results deferred to Appendix C.
In broad terms, our proof is inspired by a result of Agarwal et al. (2012), but requires various
modifications in order to be applied to the much larger family of nonconvex regularizers
considered here.

Our first lemma shows that the optimization error βt − β̂ lies in an approximate cone
set:

Lemma 1 Under the conditions of Theorem 3, suppose there exists a pair (η̄, T ) such that

φ(βt)− φ(β̂) ≤ η̄, ∀t ≥ T. (45)

Then for any iteration t ≥ T , we have

‖βt − β̂‖1 ≤ 8
√
k‖βt − β̂‖2 + 16

√
k‖β̂ − β∗‖2 + 2 ·min

(
2η̄

λL
,R

)
.

Our second lemma shows that as long as the composite gradient descent algorithm is
initialized with a solution β0 within a constant radius of a global optimum β̂, all successive
iterates also lie within the same ball:

Lemma 2 Under the conditions of Theorem 3, and with an initial vector β0 such that
‖β0 − β̂‖2 ≤ 3, we have

‖βt − β̂‖2 ≤ 3, for all t ≥ 0. (46)
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In particular, suppose we initialize the composite gradient procedure with a vector β0

such that ‖β0‖2 ≤ 3
2 . Then by the triangle inequality,

‖β0 − β̂‖2 ≤ ‖β0‖2 + ‖β̂ − β∗‖2 + ‖β∗‖2 ≤ 3,

where we have assumed our scaling of n guarantees ‖β̂ − β∗‖2 ≤ 1/2.
Finally, recalling our earlier definition (36) of κ, the third lemma combines the results

of Lemmas 1 and 2 to establish a bound on the value of the objective function that decays
exponentially with t:

Lemma 3 Under the same conditions of Lemma 2, suppose in addition that (45) holds and
32kτ log p

n ≤ 2α−µ
4 . Then for any t ≥ T , we have

φ(βt)− φ(β̂) ≤ κt−T (φ(βT )− φ(β̂)) +
ξ

1− κ(ε2 + ε2),

where ε := 8
√
kεstat, ε := 2 · min

(
2η̄
λL , R

)
, the quantities κ and ϕ are defined according

to (36), and

ξ :=
1

1− ϕ(n, p, k)
· τ log p

n
·
(

2α− µ
4η

+ 2ϕ(n, p, k) + 5

)
. (47)

The remainder of the proof follows an argument used in Agarwal et al. (2012), so we
only provide a high-level sketch. We first prove the following inequality:

φ(βt)− φ(β̂) ≤ δ2, for all t ≥ T ∗(δ), (48)

as follows. We divide the iterations t ≥ 0 into a series of epochs [T`, T`+1) and define
tolerances η̄0 > η̄1 > · · · such that

φ(βt)− φ(β̂) ≤ η̄`, ∀t ≥ T`.

In the first iteration, we apply Lemma 3 with η̄0 = φ(β0)− φ(β̂) to obtain

φ(βt)− φ(β̂) ≤ κt
(
φ(β0)− φ(β̂)

)
+

ξ

1− κ(4R2 + ε2), ∀t ≥ 0.

Let η̄1 := 2ξ
1−κ(4R2 + ε2), and note that for T1 :=

⌈
log(2η̄0/η̄1)

log(1/κ)

⌉
, we have

φ(βt)− φ(β̂) ≤ η̄1 ≤
4ξ

1− κ max{4R2, ε2}, for all t ≥ T1.

For ` ≥ 1, we now define

η̄`+1 :=
2ξ

1− κ(ε2` + ε2), and T`+1 :=

⌈
log(2η̄`/η̄`+1)

log(1/κ)

⌉
+ T`,
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where ε` := 2 min
{ η̄`
λL , R

}
. From Lemma 3, we have

φ(βt)− φ(β̂) ≤ κt−T`
(
φ(βT`)− φ(β̂)

)
+

ξ

1− κ(ε2` + ε2), for all t ≥ T`,

implying by our choice of {(η`, T`)}`≥1 that

φ(βt)− φ(β̂) ≤ η̄`+1 ≤
4ξ

1− κ max{ε2` , ε2}, ∀t ≥ T`+1.

Finally, we use the recursion

η̄`+1 ≤
4ξ

1− κ max{ε2` , ε2}, T` ≤ `+
log(2`η̄0/η̄`)

log(1/κ)
, (49)

to establish the recursion

η̄`+1 ≤
η̄`

42`−1 ,
η̄`+1

λL
≤ R

42`
. (50)

Inequality (48) then follows from computing the number of epochs and time steps necessary
to obtain λRL

42`−1 ≤ δ2. For the remaining steps used to obtain (50) from (49), we refer the

reader to Agarwal et al. (2012).
Finally, by (85b) in the proof of Lemma 3 in Appendix C.5 and the relative scaling of

(n, p, k), we have

2α− µ
4
‖βt − β̂‖22 ≤ φ(βt)− φ(β̂) + 2τ

log p

n

(
2δ2

λL
+ ε

)2

≤ δ2 + 2τ
log p

n

(
2δ2

λL
+ ε

)2

,

where we have set ε = 2δ2

λL . Rearranging and performing some algebra with our choice of λ
gives the `2-bound.

5. Simulations

In this section, we report the results of simulations we performed to validate our theoretical
results. In particular, we present results for two versions of the loss function Ln, corre-
sponding to linear and logistic regression, and three penalty functions, namely the `1-norm
(Lasso), the SCAD penalty, and the MCP, as detailed in Section 2.2. In all cases, we chose

regularization parameters R = 1.1
λ · ρλ(β∗), to ensure feasibility of β∗, and λ =

√
log p
n ; in

practical applications where β∗ is unknown, we would need to tune λ and R using a method
such as cross-validation.

Linear regression: In the case of linear regression, we simulated covariates corrupted
by additive noise according to the mechanism described in Section 3.2, giving the estimator

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

2
βT
(
ZTZ

n
− Σw

)
β − yTZ

n
β + ρλ(β)

}
. (51)
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We generated i.i.d. samples xi ∼ N(0, I) and set Σw = (0.2)2I, and generated additive noise
εi ∼ N(0, (0.1)2).

Logistic regression: In the case of logistic regression, we also generated i.i.d. samples
xi ∼ N(0, I). Since ψ(t) = log(1 + exp(t)), the program (15) becomes

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

n

n∑
i=1

{log(1 + exp(〈β, xi〉)− yi〈β, xi〉}+ ρλ(β)

}
. (52)

We optimized the programs (51) and (52) using the composite gradient updates (31).
In order to compute the updates, we used the three-step procedure described in Section 4.2,
together with the updates for SCAD and MCP given by (43) and (44). Note that the
updates for the Lasso penalty may be generated more simply and efficiently as discussed
in Agarwal et al. (2012).

Figure 2 shows the results of corrected linear regression with Lasso, SCAD, and MCP
regularizers for three different problem sizes p. In each case, β∗ is a k-sparse vector with
k = b√pc, where the nonzero entries were generated from a normal distribution and the
vector was then rescaled so that ‖β∗‖2 = 1. As predicted by Theorem 1, the three curves
corresponding to the same penalty function stack up when the estimation error ‖β̂ − β∗‖2
is plotted against the rescaled sample size n

k log p , and the `2-error decreases to zero as the
number of samples increases, showing that the estimators (51) and (52) are statistically
consistent. The Lasso, SCAD, and MCP regularizers are depicted by solid, dotted, and
dashed lines, respectively. We chose the parameter a = 3.7 for the SCAD penalty, suggested
by Fan and Li (2001) to be “optimal” based on cross-validated empirical studies, and chose
b = 3.5 for the MCP. Each point represents an average over 20 trials.

The simulations in Figure 3 depict the optimization-theoretic conclusions of Theo-
rem 3. Each panel shows two different families of curves, depicting the statistical error
log(‖β̂ − β∗‖2) in red and the optimization error log(‖βt − β̂‖2) in blue. Here, the vertical
axis measures the `2-error on a logarithmic scale, while the horizontal axis tracks the iter-
ation number. Within each panel, the blue curves were obtained by running the composite
gradient descent algorithm from 10 different initial starting points chosen at random, and
the optimization error is measured with respect to a stationary point obtained from an ear-
lier run of the composite gradient descent algorithm in place of β̂, since a global optimum
is unknown. The statistical error is similarly displayed as the distance between β∗ and the
stationary points computed from successive runs of composite gradient descent. In all cases,
we used the parameter settings p = 128, k = b√pc, and n = b20k log pc. As predicted by
our theory, the optimization error decreases at a linear rate (on the log scale) until it falls to
the level of statistical error. Furthermore, it is interesting to compare the plots in panels (c)
and (d), which provide simulation results for two different values of the SCAD parameter
a. We see that the choice a = 3.7 leads to a tighter cluster of optimization trajectories,
providing further evidence that this setting suggested by Fan and Li (2001) is in some sense
optimal.

Figure 4 provides analogous results to Figure 3 in the case of logistic regression, using
p = 64, k = b√pc, and n = b20k log pc. The plot shows solution trajectories for 20 different
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Figure 2: Plots showing statistical consistency of linear and logistic regression with Lasso,
SCAD, and MCP regularizers, and with sparsity level k = b√pc. Panel (a) shows
results for corrected linear regression, where covariates are subject to additive
noise with SNR = 5. Panel (b) shows similar results for logistic regression.
Each point represents an average over 20 trials. In both cases, the estimation
error ‖β̂ − β∗‖2 is plotted against the rescaled sample size n

k log p . Lasso, SCAD,
and MCP results are represented by solid, dotted, and dashed lines, respectively.
As predicted by Theorem 1 and Corollaries 1 and 2, the curves for each of the
three types stack up for different problem sizes p, and the error decreases to zero
as the number of samples increases, showing that our methods are statistically
consistent.

initializations of composite gradient descent. Again, we see that the log optimization error
decreases at a linear rate up to the level of statistical error, as predicted by Theorem 3.
Furthermore, the Lasso penalty yields a unique global optimum β̂, since the program (52) is
convex, as we observe in panel (a). In contrast, the nonconvex program based on the SCAD
penalty produces multiple local optima, whereas the MCP yields a relatively large number
of local optima. Note that empirically, all local optima appear to lie within the small ball
around β∗ defined in Theorem 1. However, if we use λmin(∇2Ln(β∗)) as a surrogate for α1,
we see that 2α1 < µ in the case of the SCAD or MCP regularizers, which is not covered by
our theory.

Finally, Figure 5 explores the behavior of our algorithm when the condition µ < 2α1

from Theorem 1 is significantly violated. We generated i.i.d. samples xi ∼ N(0,Σ), with Σ
taken to be a Toeplitz matrix with entries Σij = ζ |i−j|, for some parameter ζ ∈ [0, 1), so that
λmin(Σ) ≥ (1 − ζ)2. We chose ζ ∈ {0.5, 0.9}, resulting in α1 ≈ {0.25, 0.01}. The problem
parameters were chosen to be p = 512, k = b√pc, and n = b10k log pc. Panel (a) shows the
expected good behavior of `1-regularization, even for α1 = 0.01; although convergence is
slow and the overall statistical error is greater than for Σ = I (cf. Figure 3(a)), composite
gradient descent still converges at a linear rate. Panel (b) shows that for SCAD parameter
a = 2.5 (corresponding to µ ≈ 0.67), local optima still seem to be well-behaved even for
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Figure 3: Plots illustrating linear rates of convergence on a log scale for corrected linear
regression with Lasso, MCP, and SCAD regularizers, with p = 128, k = b√pc, and
n = b20k log pc, where covariates are corrupted by additive noise with SNR = 5.
Red lines depict statistical error log

(
‖β̂−β∗‖2

)
and blue lines depict optimization

error log
(
‖βt−β̂‖2

)
. As predicted by Theorem 3, the optimization error decreases

linearly when plotted against the iteration number on a log scale, up to statistical
accuracy. Each plot shows the solution trajectory for 10 different initializations
of the composite gradient descent algorithm. Panels (a) and (b) show the results
for Lasso and MCP regularizers, respectively; panels (c) and (d) show results for
the SCAD penalty with two different parameter values. Note that the empirically
optimal choice a = 3.7 proposed by Fan and Li (2001) generates solution paths
that exhibit a smaller spread than the solution paths generated for a smaller
setting of the parameter a.

2α1 = 0.5 < µ. However, for much smaller values of α1, the good behavior breaks down,
as seen in panels (c) and (d). Note that in the latter two panels, the composite gradient
descent algorithm does not appear to be converging, even as the iteration number increases.
Comparing (c) and (d) also illustrates the interplay between the curvature parameter α1

of Ln and the nonconvexity parameter µ of ρλ. Indeed, the plot in panel (d) is slightly
“better” than the plot in panel (c), in the sense that initial iterates at least demonstrate
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Figure 4: Plots that demonstrate linear rates of convergence on a log scale for logistic
regression with p = 64, k =

√
p, and n = b20k log pc. Red lines depict statistical

error log
(
‖β̂ − β∗‖2

)
and blue lines depict optimization error log

(
‖βt − β̂‖2

)
.

(a) Lasso penalty. (b) SCAD penalty. (c) MCP. As predicted by Theorem 3, the
optimization error decreases linearly when plotted against the iteration number on
a log scale, up to statistical accuracy. Each plot shows the solution trajectory for
20 different initializations of the composite gradient descent algorithm. Multiple
local optima emerge in panels (b) and (c), due to nonconvex regularizers.

some pattern of convergence. This could be attributed to the fact that the SCAD parameter
is larger, corresponding to a smaller value of µ.

6. Discussion

We have analyzed theoretical properties of local optima of regularized M -estimators, where
both the loss and penalty function are allowed to be nonconvex. Our results are the first
to establish that all stationary points of such nonconvex problems are close to the truth,
implying that any optimization method guaranteed to converge to a stationary point will

586



Local Optima of Nonconvex M-estimators

0 500 1000 1500
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iteration count

lo
g(

||β
t
−

β̂
|| 2

)

log error plot for linear regression with Lasso, alpha = 0.1

 

 

opt err
stat err

0 500 1000 1500
−6

−5

−4

−3

−2

−1

0

iteration count

lo
g(

||β
t
−

β̂
|| 2

)

log error plot for linear regression with SCAD, a = 2.5, alpha = 0.5

 

 

opt err
stat err

(a) (b)

0 500 1000 1500
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iteration count

lo
g(

||β
t
−

β̂
|| 2

)

log error plot for linear regression with SCAD, a = 2.5, alpha = 0.1

 

 

opt err
stat err

0 500 1000 1500
−2.5

−2

−1.5

−1

−0.5

0

iteration count

lo
g(

||β
t
−

β̂
|| 2

)

log error plot for linear regression with SCAD, a = 3.7, alpha = 0.1

 

 

opt err
stat err

(c) (d)

Figure 5: Plots showing breakdown points as a function of the curvature parameter α1

of the loss function and the nonconvexity parameter µ of the penalty function.
The loss comes from ordinary least squares linear regression, where covariates are
fully-observed and sampled from a Gaussian distribution with covariance equal
to a Toeplitz matrix. Panel (a) depicts the good behavior of Lasso-based linear
regression. Panel (b) shows that local optima may still be well-behaved even when
2α1 < µ, although this situation is not covered by our theory. Panels (c) and (d)
show that the good behavior nonetheless disintegrates for very small values of α1

when the regularizer is nonconvex.

provide statistically consistent solutions. We show concretely that a variant of composite
gradient descent may be used to obtain near-global optima in linear time, and verify our
theoretical results with simulations.

Future directions of research include further generalizing our statistical consistency re-
sults to other nonconvex regularizers not covered by our present theory, such as bridge
penalties or regularizers that do not decompose across coordinates. In addition, it would
be interesting to expand our theory to nonsmooth loss functions such as the hinge loss. For
both nonsmooth losses and nonsmooth penalties (including capped-`1), it remains an open
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question whether a modified version of composite gradient descent may be used to obtain
near-global optima in polynomial time. Finally, it would be useful to develop a general
method for establishing RSC and RSM conditions, beyond the specialized methods used for
studying GLMs in this paper.
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Appendix A. Properties of Regularizers

In this section, we establish properties of some nonconvex regularizers covered by our theory
(Appendix A.1) and verify that specific regularizers satisfy Assumption 1 (Appendix A.2).
The properties given in Appendix A.1 are used in the proof of Theorem 1.

A.1 General Properties

We begin with some general properties of regularizers that satisfy Assumption 1.

Lemma 4

(a) Under conditions (i)–(ii) of Assumption 1, conditions (iii) and (iv) together imply that
ρλ is λL-Lipschitz as a function of t. In particular, all subgradients and derivatives
of ρλ are bounded in magnitude by λL.

(b) Under the conditions of Assumption 1, we have

λL‖β‖1 ≤ ρλ(β) +
µ

2
‖β‖22, ∀β ∈ Rp. (53)

Proof (a): Suppose 0 ≤ t1 ≤ t2. Then

ρλ(t2)− ρλ(t1)

t2 − t1
≤ ρλ(t1)

t1
,

by condition (iii). Applying (iii) once more, we have

ρλ(t1)

t1
≤ lim

t→0+

ρλ(t)

t
= λL,

where the last equality comes from condition (iv). Hence,

0 ≤ ρλ(t2)− ρλ(t1) ≤ λL(t2 − t1).
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A similar argument applies to the cases when one (or both) of t1 and t2 are negative.
(b): Clearly, it suffices to verify the inequality for the scalar case:

λLt ≤ ρλ(t) +
µt2

2
, ∀t ∈ R.

The inequality is trivial for t = 0. For t > 0, the convexity of the right-hand expression
implies that for any s ∈ (0, t), we have(

ρλ(t) +
µt2

2

)
−
(
ρλ(0) +

µ · 02

2

)
≥ (t− 0) ·

(
ρ′λ(s) + µs

)
.

Taking a limit as s → 0+ then yields the desired inequality. The case t < 0 follows by
symmetry.

Lemma 5 Suppose ρλ satisfies the conditions of Assumption 1. Let v ∈ Rp, and let A
denote the index set of the k largest elements of v in magnitude. Suppose ξ > 0 is such that
ξρλ(vA)− ρλ(vAc) ≥ 0. Then

ξρλ(vA)− ρλ(vAc) ≤ λL(ξ‖vA‖1 − ‖vAc‖1). (54)

Moreover, if β∗ ∈ Rp is k-sparse, then for an vector β ∈ Rp such that ξρλ(β∗)− ρλ(β) > 0
and ξ ≥ 1, we have

ξρλ(β∗)− ρλ(β) ≤ λL
(
ξ‖νA‖1 − ‖νAc‖1

)
, (55)

where ν := β − β∗ and A is the index set of the k largest elements of ν in magnitude.

Proof We first establish (54). Define f(t) := t
ρλ(t) for t > 0. By our assumptions on ρλ,

the function f is nondecreasing in |t|, so

‖vAc‖1 =
∑
j∈Ac

ρλ(vj) · f(|vj |) ≤
∑
j∈Ac

ρλ(vj) · f(‖vAc‖∞) = ρλ(vAc) · f (‖vAc‖∞) . (56)

Again using the nondecreasing property of f , we have

ρλ(vA) · f(‖vAc‖∞) =
∑
j∈A

ρλ(vj) · f(‖vAc‖∞) ≤
∑
j∈A

ρλ(vj) · f(|vj |) = ‖vA‖1. (57)

Note that for t > 0, we have

f(t) ≥ lim
s→0+

f(s) = lim
s→0+

s− 0

ρλ(s)− ρλ(0)
=

1

λL
,

where the last equality follows from condition (iv) of Assumption 1. Combining this result
with (56) and (57) yields

0 ≤ ξρλ(vA)− ρλ(vAc) ≤
1

f(‖vAc‖∞)
·
(
ξ‖vA‖1 − ‖vAc‖1

)
≤ λL

(
ξ‖vA‖1 − ‖vAc‖1

)
,

589



Loh and Wainwright

as claimed.
We now turn to the proof of the bound (55). Letting S := supp(β∗) denote the support

of β∗, the triangle inequality and subadditivity of ρ (see the remark following Assumption 1;
cf. Lemma 1 of Chen and Gu, 2014) imply that

0 ≤ ξρλ(β∗)− ρλ(β) = ξρλ(β∗S)− ρλ(βS)− ρλ(βSc)

≤ ξρλ(νS)− ρλ(βSc)

= ξρλ(νS)− ρλ(νSc)

≤ ξρλ(νA)− ρλ(νAc)

≤ λL
(
ξ‖νA‖1 − ‖νAc‖1

)
,

thereby completing the proof.

A.2 Verification for Specific Regularizers

We now verify that Assumption 1 is satisfied by the SCAD and MCP regularizers. (The
properties are trivial to verify for the Lasso penalty.)

Lemma 6 The SCAD regularizer (2) with parameter a satisfies the conditions of Assump-
tion 1 with L = 1 and µ = 1

a−1 .

Proof Conditions (i)–(iii) were already verified in Zhang and Zhang (2012). Furthermore,
we may easily compute the derivative of the SCAD regularizer to be

∂

∂t
ρλ(t) = sign(t) ·

(
λ · I {|t| ≤ λ}+

(aλ− |t|)+

a− 1
· I {|t| > λ}

)
, t 6= 0, (58)

and any point in the interval [−λ, λ] is a valid subgradient at t = 0, so condition (iv) is

satisfied for any L ≥ 1. Furthermore, we have ∂2

∂t2
ρλ(t) ≥ −1

a−1 , so ρλ,µ is convex whenever

µ ≥ 1
a−1 , giving condition (v).

Lemma 7 The MCP regularizer (3) with parameter b satisfies the conditions of Assump-
tion 1 with1 L = 1 and µ = 1

b .

Proof Again, the conditions (i)–(iii) are already verified in Zhang and Zhang (2012). We
may compute the derivative of the MCP regularizer to be

∂

∂t
ρλ(t) = λ · sign(t) ·

(
1− |t|

λb

)
+

, t 6= 0, (59)

with subgradient λ[−1,+1] at t = 0, so condition (iv) is again satisfied for any L ≥ 1.

Taking another derivative, we have ∂2

∂t2
ρλ(t) ≥ −1

b , so condition (v) of Assumption 1 holds
with µ = 1

b .
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Appendix B. Proofs of Corollaries in Section 3

In this section, we provide proofs of the corollaries to Theorem 1 stated in Section 3.
Throughout this section, we use the convenient shorthand notation

En(∆) := 〈∇Ln(β∗ + ∆)−∇Ln(β∗), ∆〉. (60)

B.1 General Results for Verifying RSC

We begin with two lemmas that will be useful for establishing the RSC conditions (4) in
the special case where Ln is convex. We assume throughout that ‖∆‖1 ≤ 2R, since β∗ and
β∗ + ∆ lie in the feasible set.

Lemma 8 Suppose Ln is convex. If condition (4a) holds and n ≥ 4R2τ2
1 log p, then

En(∆) ≥ α1‖∆‖2 −
√

log p

n
‖∆‖1, for all ‖∆‖2 ≥ 1. (61)

Proof Fix an arbitrary ∆ ∈ Rp with ‖∆‖2 ≥ 1. Since Ln is convex, the function f :
[0, 1] → R given by f(t) := Ln(β∗ + t∆) is also convex, so f ′(1)− f ′(0) ≥ f ′(t)− f ′(0) for
all t ∈ [0, 1]. Computing the derivatives of f yields the inequality

En(∆) = 〈∇Ln(β∗ + ∆)−∇Ln(β∗), ∆〉 ≥ 1

t
〈∇Ln(β∗ + t∆)−∇Ln(β∗), t∆〉.

Taking t = 1
‖∆‖2 ∈ (0, 1] and applying condition (4a) to the rescaled vector ∆

‖∆‖2 then yields

En(∆) ≥ ‖∆‖2
(
α1 − τ1

log p

n

‖∆‖21
‖∆‖22

)
≥ ‖∆‖2

(
α1 −

2Rτ1 log p

n

‖∆‖1
‖∆‖22

)
≥ ‖∆‖2

(
α1 −

√
log p

n

‖∆‖1
‖∆‖2

)

= α1‖∆‖2 −
√

log p

n
‖∆‖1,

where the third inequality uses the assumption on the relative scaling of (n, p) and the fact
that ‖∆‖2 ≥ 1.

On the other hand, if (4a) holds globally over ∆ ∈ Rp, we obtain (4b) for free:

Lemma 9 If inequality (4a) holds for all ∆ ∈ Rp and n ≥ 4R2τ2
1 log p, then (4b) holds, as

well.

Proof Suppose ‖∆‖2 ≥ 1. Then

α1‖∆‖22 − τ1
log p

n
‖∆‖21 ≥ α1‖∆‖2 − 2Rτ1

log p

n
‖∆‖1 ≥ α1‖∆‖2 −

√
log p

n
‖∆‖1,

again using the assumption on the scaling of (n, p).
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B.2 Proof of Corollary 1

Note that En(∆) = ∆T Γ̂∆, so in particular,

En(∆) ≥ ∆TΣx∆− |∆T (Σx − Γ̂)∆|.

Applying Lemma 12 in Loh and Wainwright (2012) with s = n
log p to bound the second

term, we have

En(∆) ≥ λmin(Σx)‖∆‖22 −
(
λmin(Σx)

2
‖∆‖22 +

c log p

n
‖∆‖21

)
=
λmin(Σx)

2
‖∆‖22 −

c log p

n
‖∆‖21,

a bound which holds for all ∆ ∈ Rp with probability at least 1 − c1 exp(−c2n) whenever
n % k log p. Then Lemma 9 in Appendix B.1 implies that the RSC condition (4b) holds. It
remains to verify the validity of the specified choice of λ. We have

‖∇Ln(β∗)‖∞ = ‖Γ̂β∗ − γ̂‖∞ = ‖(γ̂ − Σxβ
∗) + (Σx − Γ̂)β∗‖∞

≤ ‖(γ̂ − Σxβ
∗)‖∞ + ‖(Σx − Γ̂)β∗‖∞.

As shown in previous work (Loh and Wainwright, 2012), both of these terms are upper-

bounded by c′ ϕ
√

log p
n with high probability. Consequently, the claim in the corollary follows

by applying Theorem 1.

B.3 Proof of Corollary 2

In the case of GLMs, we have

En(∆) =
1

n

n∑
i=1

(ψ′(〈xi, β∗ + ∆〉)− ψ′(〈xi, β∗〉))xTi ∆.

Applying the mean value theorem, we find that

En(∆) =
1

n

n∑
i=1

ψ′′(〈xi, β∗〉+ ti 〈xi, ∆〉)
(
〈xi, ∆〉

)2
,

where ti ∈ [0, 1]. From (the proof of) Proposition 2 in Negahban et al. (2012), we then have

En(∆) ≥ α1‖∆‖22 − τ1

√
log p

n
‖∆‖1‖∆‖2, ∀‖∆‖2 ≤ 1, (62)

with probability at least 1 − c1 exp(−c2n), for an appropriate choice of α1. Note that by
the arithmetic mean-geometric mean inequality,

τ1

√
log p

n
‖∆‖1‖∆‖2 ≤

α1

2
‖∆‖22 +

τ2
1

2α1

log p

n
‖∆‖21,
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and consequently,

En(∆) ≥ α1

2
‖∆‖22 −

τ2
1

2α1

log p

n
‖∆‖21,

which establishes (4a). Inequality (4b) then follows via Lemma 8 in Appendix B.1.

It remains to show that there are universal constants (c, c1, c2) such that

P

(
‖∇Ln(β∗)‖∞ ≥ c

√
log p

n

)
≤ c1 exp(−c2 log p). (63)

For each 1 ≤ i ≤ n and 1 ≤ j ≤ p, define the random variable Vij := (ψ′(xTi β
∗) − yi)xij .

Our goal is to bound maxj=1,...,p | 1n
∑n

i=1 Vij |. Note that

P

[
max
j=1,...,p

∣∣ 1
n

n∑
i=1

Vij
∣∣ ≥ δ] ≤ P[Ac] + P

[
max
j=1,...,p

∣∣ 1
n

n∑
i=1

Vij
∣∣ ≥ δ | A] , (64)

where

A :=

{
max
j=1,...,p

{
1

n

n∑
i=1

x2
ij

}
≤ 2E[x2

ij ]

}
.

Since the xij ’s are sub-Gaussian and n % log p, there exist universal constants (c1, c2) such
that P[Ac] ≤ c1 exp(−c2n). The last step is to bound the second term on the right side
of (64). For any t ∈ R, we have

logE[exp(tVij) | xi] = log
[
exp(txijψ

′(xTi β
∗)
]
· E[exp(−txijyi)]

= txijψ
′(xTi β

∗) +
(
ψ(−txij + xTi β

∗)− ψ(xTi β
∗)
)
,

using the fact that ψ is the cumulant generating function for the underlying exponential
family. Thus, by a Taylor series expansion, there is some vi ∈ [0, 1] such that

logE[exp(tVij) | xi] =
t2x2

ij

2
ψ′′(xTi β

∗ − vi txij) ≤
αut

2x2
ij

2
, (65)

where the inequality uses the boundedness of ψ′′. Consequently, conditioned on the event A,
the variable 1

n

∑n
i=1 Vij is sub-Gaussian with parameter at most κ = αu ·maxj=1,...,p E[x2

ij ],
for each j = 1, . . . , p. By a union bound, we then have

P

[
max
j=1,...,p

∣∣ 1
n

n∑
i=1

Vij
∣∣ ≥ δ | A] ≤ p exp

(
−nδ

2

2κ2

)
.

The claimed `1- and `2-bounds then follow directly from Theorem 1.

B.4 Proof of Corollary 3

We first verify condition (4a) in the case where |||∆|||F ≤ 1. A straightforward calculation
yields

∇2Ln(Θ) = Θ−1 ⊗Θ−1 = (Θ⊗Θ)−1 .
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Moreover, letting vec(∆) ∈ Rp2 denote the vectorized form of the matrix ∆, applying the
mean value theorem yields

En(∆) = vec(∆)T
(
∇2Ln(Θ∗ + t∆)

)
vec(∆) ≥ λmin(∇2Ln(Θ∗ + t∆)) |||Θ|||2F , (66)

for some t ∈ [0, 1]. By standard properties of the Kronecker product (Horn and Johnson,
1990), we have

λmin(∇2Ln(Θ∗ + t∆)) = |||Θ∗ + t∆|||−2
2 ≥ (|||Θ∗|||2 + t |||∆|||2)−2

≥ (|||Θ∗|||2 + 1)−2 ,

using the fact that |||∆|||2 ≤ |||∆|||F ≤ 1. Plugging back into (66) yields

En(∆) ≥ (|||Θ∗|||2 + 1)−2 |||Θ|||2F ,

so (4a) holds with α1 = (|||Θ∗|||2 + 1)−2 and τ1 = 0. Lemma 9 then implies (4b) with
α2 = (|||Θ∗|||2 + 1)−2. Finally, we need to establish that the given choice of λ satisfies the
requirement (6) of Theorem 1. By the assumed deviation condition (17), we have

|||∇Ln(Θ∗)|||max =
∣∣∣∣∣∣∣∣∣Σ̂− (Θ∗)−1

∣∣∣∣∣∣∣∣∣
max

=
∣∣∣∣∣∣∣∣∣Σ̂− Σ

∣∣∣∣∣∣∣∣∣
max

≤ c0

√
log p

n
.

Applying Theorem 1 then implies the desired result.

Appendix C. Auxiliary Optimization-Theoretic Results

In this section, we provide proofs of the supporting lemmas used in Section 4.

C.1 Derivation of Three-Step Procedure

We begin by deriving the correctness of the three-step procedure given in Section 4.2. Let
β̂ be the unconstrained optimum of the program (41). If gλ,µ(β̂) ≤ R, we clearly have the

update given in step (2). Suppose instead that gλ,µ(β̂) > R. Then since the program (31)
is convex, the iterate βt+1 must lie on the boundary of the feasible set; i.e.,

gλ,µ(βt+1) = R. (67)

By Lagrangian duality, the program (31) is also equivalent to

βt+1 ∈ arg min
gλ,µ(β)≤R′

{
1

2

∥∥∥∥β − (βt − ∇Ln(βt)

η

)∥∥∥∥2

2

}
,

for some choice of constraint parameter R′. Note that this is projection of βt− ∇Ln(βt)
η onto

the set {β ∈ Rp | gλ,µ(β) ≤ R′}. Since projection decreases the value of gλ,µ, equation (67)
implies that

gλ,µ

(
βt − ∇Ln(βt)

η

)
≥ R.

In fact, since the projection will shrink the vector to the boundary of the constraint set,
(67) forces R′ = R. This yields the update (42) appearing in step (3).
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C.2 Derivation of Updates for SCAD and MCP

We now derive the explicit form of the updates (43) and (44) for the SCAD and MCP
regularizers, respectively. We may rewrite the unconstrained program (41) as

βt+1 ∈ arg min
β∈Rp

{
1

2

∥∥∥∥β − (βt − ∇Ln(βt)

η

)∥∥∥∥2

2

+
1

η
· ρλ(β) +

µ

2η
‖β‖22

}

= arg min
β∈Rp

{(
1

2
+

µ

2η

)
‖β‖22 − βT

(
βt − ∇Ln(βt)

η

)
+

1

η
· ρλ(β)

}
= arg min

β∈Rp

{
1

2

∥∥∥∥β − 1

1 + µ/η

(
βt − ∇Ln(βt)

η

)∥∥∥∥2

2

+
1/η

1 + µ/η
· ρλ(β)

}
. (68)

Since the program in the last line of equation (68) decomposes by coordinate, it suffices to
solve the scalar optimization problem

x̂ ∈ arg min
x

{
1

2
(x− z)2 + νρ(x;λ)

}
, (69)

for general z ∈ R and ν > 0.

We first consider the case when ρ is the SCAD penalty. The solution x̂ of the pro-
gram (69) in the case when ν = 1 is given in Fan and Li (2001); the expression (43) for the
more general case comes from writing out the subgradient of the objective as

(x− z) + νρ′(x;λ) =


(x− z) + νλ[−1,+1] if x = 0,

(x− z) + νλ if 0 < x ≤ λ,
(x− z) + ν(aλ−x)

a−1 if λ ≤ x ≤ aλ,
x− z if x ≥ aλ,

using the equation for the SCAD derivative (58), and setting the subgradient equal to zero.
Similarly, when ρ is the MCP parameterized by (b, λ), the subgradient of the objective

takes the form

(x− z) + νρ′(x;λ) =


(x− z) + νλ[−1,+1] if x = 0,

(x− z) + νλ
(
1− x

bλ

)
if 0 < x ≤ bλ,

x− z if x ≥ bλ,

using the expression for the MCP derivative (59), leading to the closed-form solution given
in (44). This agrees with the expression provided in Breheny and Huang (2011) for the
special case when ν = 1.

C.3 Proof of Lemma 1

We first show that if λ ≥ 8
L · ‖∇Ln(β∗)‖∞, then for any feasible β such that

φ(β) ≤ φ(β∗) + η̄, (70)
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we have

‖β − β∗‖1 ≤ 8
√
k‖β − β∗‖2 + 2 ·min

(
2η̄

λL
,R

)
. (71)

Defining the error vector ∆ := β − β∗, (70) implies

Ln(β∗ + ∆) + ρλ(β∗ + ∆) ≤ Ln(β∗) + ρλ(β∗) + η̄,

so subtracting 〈∇Ln(β∗), ∆〉 from both sides gives

T (β∗ + ∆, β∗) + ρλ(β∗ + ∆)− ρλ(β∗) ≤ −〈∇Ln(β∗), ∆〉+ η̄. (72)

We divide the argument into two cases. First suppose ‖∆‖2 ≤ 3. Note that if η̄ ≥ λL
4 ‖∆‖1,

the claim (71) is trivially true; so assume η̄ ≤ λL
4 ‖∆‖1. Then the RSC condition (34a),

together with (72), implies that

α1‖∆‖22 − τ1
log p

n
‖∆‖21 + ρλ(β∗ + ∆)− ρλ(β∗) ≤ ‖∇Ln(β∗)‖∞ · ‖∆‖1 + η̄

≤ λL

8
‖∆‖1 +

λL

4
‖∆‖1. (73)

Rearranging and using the assumption λL ≥ 16Rτ1
log p
n , along with Lemma 4 in Ap-

pendix A.1, we then have

α1‖∆‖22 ≤ ρλ(β∗)− ρλ(β∗ + ∆) +
λL

2
‖∆‖1

≤ ρλ(β∗)− ρλ(β∗ + ∆) +
ρλ(β∗) + ρλ(β∗ + ∆)

2
+
µ

4
‖∆‖22,

implying that

0 ≤
(
α1 −

µ

4

)
‖∆‖22 ≤

3

2
ρλ(β∗)− 1

2
ρλ(β∗ + ∆),

so

ρλ(β∗)− ρλ(β∗ + ∆) ≤ 3ρλ(β∗)− ρλ(β∗ + ∆) ≤ 3λL‖∆A‖1 − λL‖∆Ac‖1, (74)

by Lemma 5 in Appendix A.1. Furthermore, note that the bound (73) also implies that

ρλ(β∗ + ∆)− ρλ(β∗) ≤ λL

2
‖∆‖1 + η̄. (75)

Combining (74) and (75) then gives

‖∆Ac‖1 − 3‖∆A‖1 ≤
1

2
‖∆‖1 +

η̄

λL
≤ 1

2
‖∆A‖1 +

1

2
‖∆Ac‖1 +

η̄

λL
,

so

‖∆Ac‖1 ≤ 7‖∆A‖1 +
2η̄

λL
,

implying that

‖∆‖1 ≤ 8‖∆A‖1 +
2η̄

λL
≤ 8
√
k‖∆‖2 +

2η̄

λL
.
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In the case when ‖∆‖2 ≥ 3, the RSC condition (34b) gives

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1 + ρλ(β∗ + ∆)− ρλ(β∗) ≤ ‖∇Ln(β∗)‖∞ · ‖∆‖1 + η̄

≤ λL

8
‖∆‖1 +

λL

4
‖∆‖1, (76)

so

α2‖∆‖2 ≤ ρλ(β∗)− ρλ(β∗ + ∆) +

(
3λL

8
+ τ2

√
log p

n

)
‖∆‖1.

In particular, if ρλ(β∗)− ρλ(β∗ + ∆) ≤ 0, we have

‖∆‖2 ≤
2R

α2

(
3λL

8
+ τ2

√
log p

n

)
< 3,

a contradiction. Hence, using Lemma 5 in Appendix A.1, we have

0 ≤ ρλ(β∗)− ρλ(β∗ + ∆) ≤ λL‖∆A‖1 − λL‖∆Ac‖1. (77)

Note that under the scaling λL ≥ 4τ2

√
log p
n , the bound (76) also implies (75). Combin-

ing (75) and (77), we then have

‖∆Ac‖1 − ‖∆A‖1 ≤
1

2
‖∆‖1 +

η̄

λL
=

1

2
‖∆Ac‖1 +

1

2
‖∆A‖1 +

η̄

λL
,

and consequently,

‖∆Ac‖1 ≤ 3‖∆A‖1 +
2η̄

λL
,

so

‖∆‖1 ≤ 4‖∆A‖1 +
2η̄

λL
≤ 4
√
k‖∆‖2 +

2η̄

λL
.

Using the trivial bound ‖∆‖1 ≤ 2R, we obtain the claim (71).

We now apply the implication (70) to the vectors β̂ and βt. Note that by optimality of
β̂, we have

φ(β̂) ≤ φ(β∗),

and by the assumption (45), we also have

φ(βt) ≤ φ(β̂) + η̄ ≤ φ(β∗) + η̄.

Hence,

‖β̂ − β∗‖1 ≤ 8
√
k‖β̂ − β∗‖2, and

‖βt − β∗‖1 ≤ 8
√
k‖βt − β∗‖2 + 2 ·min

(
2η̄

λL
,R

)
.
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By the triangle inequality, we then have

‖βt − β̂‖1 ≤ ‖β̂ − β∗‖1 + ‖βt − β∗‖1

≤ 8
√
k ·
(
‖β̂ − β∗‖2 + ‖βt − β∗‖2

)
+ 2 ·min

(
2η̄

λL
,R

)
≤ 8
√
k ·
(

2‖β̂ − β∗‖2 + ‖βt − β̂‖2
)

+ 2 ·min

(
2η̄

λL
,R

)
,

as claimed.

C.4 Proof of Lemma 2

Our proof proceeds via induction on the iteration number t. Note that the base case t = 0
holds by assumption. Hence, it remains to show that if ‖βt − β̂‖2 ≤ 3 for some integer
t ≥ 1, then ‖βt+1 − β̂‖2 ≤ 3, as well.

We assume for the sake of a contradiction that ‖βt+1 − β̂‖2 > 3. By the RSC condi-
tion (34b) and the relation (33), we have

T (βt+1, β̂) ≥ α‖β̂ − βt+1‖2 − τ
√

log p

n
‖β̂ − βt+1‖1 −

µ

2
‖β̂ − βt+1‖22. (78)

Furthermore, by convexity of g := gλ,µ, we have

g(βt+1)− g(β̂)− 〈∇g(β̂), βt+1 − β̂〉 ≥ 0. (79)

Multiplying by λ and summing with (78) then yields

φ(βt+1)− φ(β̂)− 〈∇φ(β̂), βt+1 − β̂〉

≥ α‖β̂ − βt+1‖2 − τ
√

log p

n
‖β̂ − βt+1‖1 −

µ

2
‖β̂ − βt+1‖22.

Together with the first-order optimality condition 〈∇φ(β̂), βt+1 − β̂〉 ≥ 0, we then have

φ(βt+1)− φ(β̂) ≥ α‖β̂ − βt+1‖2 − τ
√

log p

n
‖β̂ − βt+1‖1 −

µ

2
‖β̂ − βt+1‖22. (80)

Since ‖β̂ − βt‖2 ≤ 3 by the induction hypothesis, applying the RSC condition (34a) to
the pair (β̂, βt) also gives

Ln(β̂) ≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+
(
α− µ

2

)
· ‖βt − β̂‖22 − τ

log p

n
‖βt − β̂‖21.

Combining with the inequality

g(β̂) ≥ g(βt+1) + 〈∇g(βt+1), β̂ − βt+1〉,
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we then have

φ(β̂) ≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ λg(βt+1) + λ〈∇g(βt+1), β̂ − βt+1〉

+
(
α− µ

2

)
· ‖βt − β̂‖22 − τ

log p

n
‖βt − β̂‖21

≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ λg(βt+1)

+ λ〈∇g(βt+1), β̂ − βt+1〉 − τ log p

n
‖βt − β̂‖21. (81)

Finally, the RSM condition (35) on the pair (βt+1, βt) gives

φ(βt+1) ≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ λg(βt+1) (82)

+
(
α3 −

µ

2

)
‖βt+1 − βt‖22 + τ

log p

n
‖βt+1 − βt‖21

≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ λg(βt+1)

+
η

2
‖βt+1 − βt‖22 +

4R2τ log p

n
, (83)

since η
2 ≥ α3 − µ

2 by assumption, and ‖βt+1 − βt‖1 ≤ 2R. It is easy to check that the
update (31) may be written equivalently as

βt+1 ∈ arg min
g(β)≤R, β∈Ω

{
Ln(βt) + 〈∇Ln(βt), β − βt〉+

η

2
‖β − βt‖22 + λg(β)

}
,

and the optimality of βt+1 then yields

〈∇Ln(βt) + η(βt+1 − βt) + λ∇g(βt+1), βt+1 − β̂〉 ≤ 0. (84)

Summing up (81), (82), and (84), we then have

φ(βt+1)−φ(β̂) ≤ η

2
‖βt+1 − βt‖22 + η〈βt − βt+1, βt+1 − β̂〉+ τ

log p

n
‖βt − β̂‖21

+
4R2τ log p

n

=
η

2
‖βt − β̂‖22 −

η

2
‖βt+1 − β̂‖22 + τ

log p

n
‖βt − β̂‖21 +

4R2τ log p

n
.

Combining this last inequality with (80), we have

α‖β̂ − βt+1‖2−τ
√

log p

n
‖β̂ − βt+1‖1

≤ η

2
‖βt − β̂‖22 −

η − µ
2
‖βt+1 − β̂‖22 +

8R2τ log p

n

≤ 9η

2
− 3(η − µ)

2
‖βt+1 − β̂‖2 +

8R2τ log p

n
,
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since ‖βt − β̂‖2 ≤ 3 by the induction hypothesis and ‖βt+1 − β̂‖2 > 3 by assumption, and
using the fact that η ≥ µ. It follows that(

α+
3(η − µ)

2

)
· ‖β̂ − βt+1‖2 ≤

9η

2
+ τ

√
log p

n
‖β̂ − βt+1‖1 +

8R2τ log p

n

≤ 9η

2
+ 2Rτ

√
log p

n
+

8R2τ log p

n

≤ 3

(
α+

3(η − µ)

2

)
,

where the final inequality holds whenever 2Rτ
√

log p
n + 8R2τ log p

n ≤ 3
(
α− 3µ

2

)
. Rearranging

gives ‖βt+1 − β̂‖2 ≤ 3, providing the desired contradiction.

C.5 Proof of Lemma 3

We begin with an auxiliary lemma:

Lemma 10 Under the conditions of Lemma 3, we have

T (βt, β̂) ≥ −2τ
log p

n
(ε+ ε)2, and (85a)

φ(βt)− φ(β̂) ≥ 2α− µ
4
‖β̂ − βt‖22 −

2τ log p

n
(ε+ ε)2. (85b)

We prove this result later, taking it as given for the moment.

Define

φt(β) := Ln(βt) + 〈∇Ln(βt), β − βt〉+
η

2
‖β − βt‖22 + λg(β),

the objective function minimized over the constraint set {g(β) ≤ R} at iteration t. For
any γ ∈ [0, 1], the vector βγ := γβ̂ + (1 − γ)βt belongs to the constraint set, as well.
Consequently, by the optimality of βt+1 and feasibility of βγ , we have

φt(β
t+1)≤ φt(βγ) = Ln(βt)+〈∇Ln(βt), γβ̂ − γβt〉+ ηγ2

2
‖β̂ − βt‖22 + λg(βγ).

Appealing to (85a), we then have

φt(β
t+1) ≤ (1− γ)Ln(βt) + γLn(β̂) + 2γτ

log p

n
(ε+ ε)2

+
ηγ2

2
‖β̂ − βt‖22 + λg(βγ)

(i)

≤ φ(βt)− γ(φ(βt)− φ(β̂)) + 2γτ
log p

n
(ε+ ε)2 +

ηγ2

2
‖β̂ − βt‖22

≤ φ(βt)− γ(φ(βt)− φ(β̂)) + 2τ
log p

n
(ε+ ε)2 +

ηγ2

2
‖β̂ − βt‖22, (86)
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where inequality (i) incorporates the fact that

g(βγ) ≤ γg(β̂) + (1− γ)g(βt),

by the convexity of g.

By the RSM condition (35), we also have

T (βt+1, βt) ≤ η

2
‖βt+1 − βt‖22 + τ

log p

n
‖βt+1 − βt‖21,

since α3 − µ ≤ η
2 by assumption, and adding λg(βt+1) to both sides gives

φ(βt+1) ≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+
η

2
‖βt+1 − βt‖22

+ τ
log p

n
‖βt+1 − βt‖21 + λg(βt+1)

= φt(β
t+1) + τ

log p

n
‖βt+1 − βt‖21.

Combining with (86) then yields

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖β̂ − βt‖22

+ τ
log p

n
‖βt+1 − βt‖21 + 2τ

log p

n
(ε+ ε)2. (87)

By the triangle inequality, we have

‖βt+1 − βt‖21 ≤
(
‖∆t+1‖1 + ‖∆t‖1

)2 ≤ 2‖∆t+1‖21 + 2‖∆t‖21,

where we have defined ∆t := βt − β̂. Combined with (87), we therefore have

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖∆t‖22

+ 2τ
log p

n
(‖∆t+1‖21 + ‖∆t‖21) + 2ψ(n, p, ε),

where ψ(n, p, ε) := τ log p
n (ε+ ε)2. Then applying Lemma 1 to bound the `1-norms, we have

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖∆t‖22

+ ckτ
log p

n
(‖∆t+1‖22 + ‖∆t‖22) + c′ψ(n, p, ε)

= φ(βt)− γ(φ(βt)− φ(β̂)) +

(
ηγ2

2
+ ckτ

log p

n

)
‖∆t‖22

+ ckτ
log p

n
‖∆t+1‖22 + c′ψ(n, p, ε). (88)
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Now introduce the shorthand δt := φ(βt) − φ(β̂) and υ(k, p, n) = kτ log p
n . By apply-

ing (85b) and subtracting φ(β̂) from both sides of (88), we have

δt+1 ≤
(
1− γ

)
δt +

ηγ2 + cυ(k, p, n)

α− µ/2 (δt + 2ψ(n, p, ε))

+
cυ(k, p, n)

α− µ/2 (δt+1 + 2ψ(n, p, ε)) + c′ψ(n, p, ε).

Choosing γ = 2α−µ
4η ∈ (0, 1) yields(

1− cυ(k, p, n)

α− µ/2

)
δt+1 ≤

(
1− 2α− µ

8η
+
cυ(k, p, n)

α− µ/2

)
δt

+ 2

(
2α− µ

8η
+

2cυ(k, p, n)

α− µ/2 + c′
)
ψ(n, p, ε),

or δt+1 ≤ κδt+ξ(ε+ε)2, where κ and ξ were previously defined in (36) and (47), respectively.
Finally, iterating the procedure yields

δt ≤ κt−T δT + ξ(ε+ ε)2(1 + κ+ κ2 + · · ·+ κt−T−1) ≤ κt−T δT +
ξ(ε+ ε)2

1− κ , (89)

as claimed.

The only remaining step is to prove the auxiliary lemma.

Proof of Lemma 10: By the RSC condition (34a) and the assumption (46), we have

T (βt, β̂) ≥
(
α− µ

2

)
‖β̂ − βt‖22 − τ

log p

n
‖β̂ − βt‖21. (90)

Furthermore, by convexity of g, we have

λ
(
g(βt)− g(β̂)− 〈∇g(β̂), βt − β̂〉

)
≥ 0, (91)

and the first-order optimality condition for β̂ gives

〈∇φ(β̂), βt − β̂〉 ≥ 0. (92)

Summing (90), (91), and (92) then yields

φ(βt)− φ(β̂) ≥
(
α− µ

2

)
‖β̂ − βt‖22 − τ

log p

n
‖β̂ − βt‖21.

Applying Lemma 1 to bound the term ‖β̂ − βt‖21 and using the assumption ckτ log p
n ≤ 2α−µ

4
yields the bound (85b). On the other hand, applying Lemma 1 directly to (90) with βt and
β̂ switched gives

T (β̂, βt) ≥
(
α− µ

2

)
‖β̂ − βt‖22 − τ

log p

n

(
ck‖β̂ − βt‖22 + 2(ε+ ε)2

)
≥ −2τ

log p

n
(ε+ ε)2.

This establishes (85a).
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Appendix D. Verifying RSC/RSM Conditions

In this Appendix, we provide a proof of Proposition 1, which verifies the RSC (34) and
RSM (35) conditions for GLMs.

D.1 Main Argument

Using the notation for GLMs in Section 3.3, we introduce the shorthand ∆ := β1 − β2 and
observe that, by the mean value theorem, we have

T (β1, β2) =
1

n

n∑
i=1

ψ′′
(
〈β1, xi〉) + ti〈∆, xi〉

)
(〈∆, xi〉)2, (93)

for some ti ∈ [0, 1]. The ti’s are i.i.d. random variables, with each ti depending only on the
random vector xi.

Proof of bound (40): The proof of this upper bound is relatively straightforward given
earlier results (Loh and Wainwright, 2013a). From the Taylor series expansion (93) and the
boundedness assumption ‖ψ′′‖∞ ≤ αu, we have

T (β1, β2) ≤ αu ·
1

n

n∑
i=1

(
〈∆, xi〉

)2
.

By known results on restricted eigenvalues for ordinary linear regression (cf. Lemma 13
in Loh and Wainwright (2012)), we also have

1

n

n∑
i=1

(〈∆, xi〉)2 ≤ λmax(Σ)

(
3

2
‖∆‖22 +

log p

n
‖∆‖21

)
,

with probability at least 1−c1 exp(−c2n). Combining the two inequalities yields the desired
result.

Proof of bounds (39): The proof of the RSC bound is much more involved, and we
provide only high-level details here, deferring the bulk of the technical analysis to later in
the appendix. We define

α` :=

(
inf
|t|≤2T

ψ′′(t)

)
λmin(Σ)

8
,

where T is a suitably chosen constant depending only on λmin(Σ) and the sub-Gaussian
parameter σx. (In particular, see (99) below, and take T = 3τ .) The core of the proof is
based on the following lemma, proved in Section D.2:

Lemma 11 With probability at least 1− c1 exp(−c2n), we have

T (β1, β2) ≥ α`‖∆‖22 − cσx‖∆‖1‖∆‖2
√

log p

n
,
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uniformly over all pairs (β1, β2) such that β2 ∈ B2(3) ∩ B1(R), ‖β1 − β2‖2 ≤ 3, and

‖∆‖1
‖∆‖2

≤ α`
cσx

√
n

log p
. (94)

Taking Lemma 11 as given, we now complete the proof of the RSC condition (39). By
the arithmetic mean-geometric mean inequality, we have

cσx‖∆‖1‖∆‖2
√

log p

n
≤ α`

2
‖∆‖22 +

c2σ2
x

2α`

log p

n
‖∆‖21,

so Lemma 11 implies that (39a) holds uniformly over all pairs (β1, β2) such that β2 ∈
B2(3) ∩ B1(R) and ‖β1 − β2‖2 ≤ 3, whenever the bound (94) holds. On the other hand, if
the bound (94) does not hold, then the lower bound in (39a) is negative. By convexity of
Ln, we have T (β1, β2) ≥ 0, so (39a) holds trivially in that case.

We now show that (39b) holds: in particular, consider a pair (β1, β2) with β2 ∈ B2(3)
and ‖β1 − β2‖2 ≥ 3. For any t ∈ [0, 1], the convexity of Ln implies that

Ln(β2 + t∆) ≤ tLn(β2 + ∆) + (1− t)Ln(β2),

where ∆ := β1 − β2. Rearranging yields

Ln(β2 + ∆)− Ln(β2) ≥ Ln(β2 + t∆)− Ln(β2)

t
,

so

T (β2 + ∆, β2) ≥ T (β2 + t∆, β2)

t
. (95)

Now choose t = 3
‖∆‖2 ∈ [0, 1] so that ‖t∆‖2 = 1. Introducing the shorthand α1 := α`

2 and

τ1 := c2σ2
x

2α`
, we may apply (39a) to obtain

T (β2 + t∆, β2)

t
≥ ‖∆‖2

3

(
α1

(
3‖∆‖2
‖∆‖2

)2

− τ1
log p

n

(
3‖∆‖1
‖∆‖2

)2
)

= 3α1‖∆‖2 − 9τ1
log p

n

‖∆‖21
‖∆‖2

. (96)

Note that (39b) holds trivially unless ‖∆‖1‖∆‖2 ≤
α`

2cσx

√
n

log p , due to the convexity of Ln. In

that case, (95) and (96) together imply

T (β2 + ∆, β2) ≥ 3α1‖∆‖2 −
9τ1 α`
2cσx

√
log p

n
‖∆‖1,

which is exactly the bound (39b).
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D.2 Proof of Lemma 11

For a truncation level τ ′ > 0 to be chosen, define the functions

ϕτ ′(u) =


u2, if |u| ≤ τ ′

2 ,

(τ ′ − u)2, if τ ′

2 ≤ |u| ≤ τ ′,
0, if |u| ≥ τ ′.

By construction, ϕτ ′ is τ ′-Lipschitz and

ϕτ ′(u) ≤ u2 · I {|u| ≤ τ ′}, for all u ∈ R. (97)

In addition, we define the trapezoidal function

γ′τ (u) =


1, if |u| ≤ τ ′

2 ,

2− 2
τ ′ |u|, if τ ′

2 ≤ |u| ≤ τ ′,
0, if |u| ≥ τ ′,

and note that γ′τ is 2
τ ′ -Lipschitz and γ′τ (u) ≤ I {|u| ≤ τ ′}.

Taking T ≥ 3τ ′ so that T ≥ τ ′‖∆‖2 (since ‖∆‖2 ≤ 3 by assumption), and defining

Lψ(T ) := inf
|u|≤2T

ψ′′(u),

we have the following inequality:

T (β + ∆, β) =
1

n

n∑
i=1

ψ′′(xTi β + ti · xTi ∆) · (xTi ∆)2

≥ Lψ(T ) ·
n∑
i=1

(xTi ∆)2 · I {|xTi ∆| ≤ τ ′‖∆‖2} · I {|xTi β| ≤ T}

≥ Lψ(T ) · 1

n

n∑
i=1

ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β), (98)

where the first equality is the expansion (93) and the second inequality uses the bound (97).

Now define the subset of Rp × Rp via

Aδ :=

{
(β,∆) : β ∈ B2(3) ∩ B1(R), ∆ ∈ B2(3),

‖∆‖1
‖∆‖2

≤ δ
}
,

as well as the random variable

Z(δ) := sup
(β,∆)∈Aδ

1

‖∆‖22

∣∣∣∣∣ 1n
n∑
i=1

ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β)− E
[
ϕτ ′‖∆‖2(xTi ∆) γT (xTi β)

]∣∣∣∣∣ .
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For any pair (β,∆) ∈ Aδ, we have

E
[
(xTi ∆)2 − ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β)

]
≤ E

[
(xTi ∆)2I

{
|xTi ∆| ≥ τ ′‖∆‖2

2

}]
+ E

[
(xTi ∆)2I

{
|xTi β| ≥

T

2

}]
≤
√
E
[
(xTi ∆)4

]
·
(√

P
(
|xTi ∆| ≥ τ ′‖∆‖2

2

)
+

√
P
(
|xTi β| ≥

T

2

))

≤ σ2
x‖∆‖22 · c exp

(
−c
′τ
′2

σ2
x

)
,

where we have used Cauchy-Schwarz and a tail bound for sub-Gaussians, assuming β ∈
B2(3). It follows that for τ ′ chosen such that

cσ2
x exp

(
−c
′τ
′2

σ2
x

)
=
λmin

(
E[xix

T
i ]
)

2
, (99)

we have the lower bound

E
[
ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β)

]
≥ λmin

(
E[xix

T
i ]
)

2
· ‖∆‖22. (100)

By construction of ϕ, each summand in the expression for Z(δ) is sandwiched as

0 ≤ 1

‖∆‖22
· ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β) ≤ τ

′2

4
.

Consequently, applying the bounded differences inequality yields

P

(
Z(δ) ≥ E[Z(δ)] +

λmin

(
E[xix

T
i ]
)

4

)
≤ c1 exp(−c2n). (101)

Furthermore, by Lemmas 12 and 13 in Appendix E, we have

E[Z(δ)] ≤ 2

√
π

2
· E
[

sup
(β,∆)∈Aδ

1

‖∆‖22

∣∣∣∣∣ 1n
n∑
i=1

gi

(
ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β)

)∣∣∣∣∣
]
, (102)

where the gi’s are i.i.d. standard Gaussians. Conditioned on {xi}ni=1, define the Gaussian
processes

Zβ,∆ :=
1

‖∆‖22
· 1

n

n∑
i=1

gi

(
ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β)

)
,

and note that for pairs (β,∆) and (β̃, ∆̃), we have

var
(
Zβ,∆ − Zβ̃,∆̃

)
≤ 2 var

(
Zβ,∆ − Zβ̃,∆

)
+ 2 var

(
Z
β̃,∆
− Z

β̃,∆̃

)
,
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with

var
(
Zβ,∆ − Zβ̃,∆

)
=

1

‖∆‖42
· 1

n2

n∑
i=1

ϕ2
τ ′‖∆‖2(xTi ∆) ·

(
γT (xTi β)− γT (xTi β̃)

)2

≤ 1

n2

n∑
i=1

τ
′4

16
· 4

T 2

(
xTi (β − β̃)

)2
,

since ϕτ ′‖∆‖2 ≤
τ
′2‖∆‖22

4 and γT is 2
T -Lipschitz. Similarly, using the homogeneity property

1

c2
· ϕct(cu) = ϕt(u), ∀c > 0,

and the fact that ϕτ ′‖∆‖2 is τ ′‖∆‖2-Lipschitz, we have

var
(
Z
β̃,∆
−Z

β̃,∆̃

)
≤ 1

n2

n∑
i=1

γ2
T (xTi β̃)

ϕτ ′‖∆‖2(xTi ∆)

‖∆‖22
−
ϕ
τ ′‖∆̃‖2(xTi ∆̃)

‖∆̃‖22

2

=
1

n2

n∑
i=1

γ2
T (xTi β̃)

‖∆‖42

(
ϕτ ′‖∆‖2(xTi ∆)− ϕτ ′‖∆‖2

(
xTi ∆̃ · ‖∆‖2

‖∆̃‖2

))2

≤ 1

n2

n∑
i=1

τ
′2

‖∆‖22

(
xTi ∆− xTi ∆̃ · ‖∆‖2

‖∆̃‖2

)2

=
1

n2

n∑
i=1

τ
′2

(
xTi ∆

‖∆‖2
− xTi ∆̃

‖∆̃‖2

)2

.

Defining the centered Gaussian process

Yβ,∆ :=
τ
′2

√
2T
· 1

n

n∑
i=1

ĝi · xTi β +

√
2τ ′

‖∆‖2
· 1

n

n∑
i=1

g̃i · xTi ∆,

where the ĝi’s and g̃i’s are independent standard Gaussians, it follows that

var
(
Zβ,∆ − Zβ̃,∆̃

)
≤ var

(
Yβ,∆ − Yβ̃,∆̃

)
.

Applying Lemma 14 in Appendix E, we then have

E

[
sup

(β,∆)∈Aδ
Zβ,∆

]
≤ 2 · E

[
sup

(β,∆)∈Aδ
Yβ,∆

]
. (103)

Note further (cf. p.77 of Ledoux and Talagrand (1991)) that

E

[
sup

(β,∆)∈Aδ
|Zβ,∆|

]
≤ E [|Zβ0,∆0 |] + 2E

[
sup

(β,∆)∈Aδ
Zβ,∆

]
, (104)
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for any (β0,∆0) ∈ Aδ, and furthermore,

E [|Zβ0,∆0 |] ≤
√

2

π
·
√

var (Zβ0,∆0) ≤ c0 ·
√

2

π
·
√
τ ′2

4n
. (105)

Finally,

E

[
sup

(β,∆)∈Aδ
Yβ,∆

]
≤ τ

′2R√
2T
· E
[∥∥∥∥∥ 1

n

n∑
i=1

ĝixi

∥∥∥∥∥
∞

]
+
√

2τ ′δ · E
[∥∥∥∥∥ 1

n

n∑
i=1

g̃ixi

∥∥∥∥∥
∞

]

≤ cτ
′2Rσx
T

√
log p

n
+ cτ ′δσx ·

√
log p

n
, (106)

by Lemma 16 in Appendix E. Combining (102), (103), (104), (105), and (106), we then
obtain

E[Z(δ)] ≤ c′τ
′2Rσx
T

√
log p

n
+ c′τ ′δσx ·

√
log p

n
. (107)

Finally, combining (100), (101), and (107), we see that under the scaling R
√

log p
n - 1, we

have

1

‖∆‖22
· 1

n

n∑
i=1

ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β)

≥ λmin

(
E[xix

T
i ]
)

4
−
(
c′τ
′2Rσx
T

√
log p

n
+ c′τ ′δσx

√
log p

n

)

≥ λmin

(
E[xix

T
i ]
)

8
− c′τ ′δσx

√
log p

n
, (108)

uniformly over all (β,∆) ∈ Aδ, with probability at least 1− c1 exp(−c2n).

It remains to extend this bound to one that is uniform in the ratio ‖∆‖1‖∆‖2 , which we do

via a peeling argument (Alexander, 1987; van de Geer, 2000). Consider the inequality

1

‖∆‖22
· 1

n

n∑
i=1

ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β) ≥ λmin

(
E[xix

T
i ]
)

8
− 2c′τ ′σx

‖∆‖1
‖∆‖2

√
log p

n
, (109)

as well as the event

E :=

{
Inequality (109) holds ∀‖β‖2 ≤ 3 and ‖∆‖1‖∆‖2 ≤

λmin(E[xix
T
i ])

16c′τσx

√
n

log p

}
.

Define the function

f(β,∆;X) :=
λmin

(
E[xix

T
i ]
)

8
− 1

‖∆‖22
· 1

n

n∑
i=1

ϕτ ′‖∆‖2(xTi ∆) · γT (xTi β), (110)

along with

g(δ) := c′τ ′σxδ

√
log p

n
, and h(β,∆) :=

‖∆‖1
‖∆‖2

.

608



Local Optima of Nonconvex M-estimators

Note that (108) implies

P

(
sup

h(β,∆)≤δ
f(β,∆;X) ≥ g(δ)

)
≤ c1 exp(−c2n), for any δ > 0, (111)

where the sup is also restricted to {(β,∆) : β ∈ B2(3) ∩ B1(R), ∆ ∈ B2(3)}.
Since ‖∆‖1‖∆‖2 ≥ 1, we have

1 ≤ h(β,∆) ≤ λmin

(
E[xix

T
i ]
)

16c′τ ′σx

√
n

log p
, (112)

over the region of interest. For each integer m ≥ 1, define the set

Vm :=
{

(β,∆) | 2m−1µ ≤ g(h(β,∆)) ≤ 2mµ
}
,

where µ = c′τ ′σx

√
log p
n . By a union bound, we then have

P(Ec) ≤
M∑
m=1

P (∃(β,∆) ∈ Vm s.t. f(β,∆;X) ≥ 2g(h(β,∆))) ,

where the index m ranges up to M :=
⌈

log
(
c
√

n
log p

)⌉
over the relevant region (112). By

the definition (110) of f , we have

P(Ec) ≤
M∑
m=1

P

(
sup

h(β,∆)≤g−1(2mµ)

f(β,∆;X) ≥ 2mµ

)
(i)

≤ M · c1 exp(−c2n),

where inequality (i) applies the tail bound (111). It follows that

P(Ec) ≤ c1 exp

(
−c2n+ log log

(
n

log p

))
≤ c′1 exp

(
−c′2n

)
.

Multiplying through by ‖∆‖22 then yields the desired result.

Appendix E. Auxiliary Results

In this section, we provide some auxiliary results that are useful for our proofs. The first
lemma concerns symmetrization and desymmetrization of empirical processes via Rademacher
random variables:

Lemma 12 (Lemma 2.3.6 in van der Vaart and Wellner, 1996) Let {Zi}ni=1 be in-
dependent zero-mean stochastic processes. Then

1

2
E

[
sup
t∈T

∣∣∣∣∣
n∑
i=1

εiZi(ti)

∣∣∣∣∣
]
≤E

[
sup
t∈T

∣∣∣∣∣
n∑
i=1

Zi(ti)

∣∣∣∣∣
]
≤2E

[
sup
t∈T

∣∣∣∣∣
n∑
i=1

εi(Zi(ti)− µi)
∣∣∣∣∣
]
,

where the εi’s are independent Rademacher variables and the functions µi : F → R are
arbitrary.
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We also have a useful lemma that bounds the Gaussian complexity in terms of the
Rademacher complexity:

Lemma 13 (Lemma 4.5 in Ledoux and Talagrand, 1991) Let Z1, . . . , Zn be indepen-
dent stochastic processes. Then

E

[
sup
t∈T

∣∣∣∣∣
n∑
i=1

εiZi(ti)

∣∣∣∣∣
]
≤
√
π

2
· E
[

sup
t∈T

∣∣∣∣∣
n∑
i=1

giZi(ti)

∣∣∣∣∣
]
,

where the εi’s are Rademacher variables and the gi’s are standard normal.

We next state a version of the Sudakov-Fernique comparison inequality:

Lemma 14 (Corollary 3.14 in Ledoux and Talagrand, 1991) Given a countable in-
dex set T , let {X(t), t ∈ T} and {Y (t), t ∈ T} be centered Gaussian processes such that

var (Y (s)− Y (t)) ≤ var (X(s)−X(t)) , ∀(s, t) ∈ T × T.

Then

E
[
sup
t∈T

Y (t)

]
≤ 2 · E

[
sup
t∈T

X(t)

]
.

A zero-mean random variable Z is sub-Gaussian with parameter σ if P(Z > t) ≤
exp(− t2

2σ2 ) for all t ≥ 0. The next lemma provides a standard bound on the expected
maximum of N such variables (cf. Equation 3.6 in Ledoux and Talagrand, 1991):

Lemma 15 Suppose X1, . . . , XN are zero-mean sub-Gaussian random variables such that

max
j=1,...,N

‖Xj‖ψ2 ≤ σ. Then E
[

max
j=1,...,p

|Xj |
]
≤ c0 σ

√
logN , where c0 > 0 is a universal

constant.

We also have a lemma about maxima of products of sub-Gaussian variables:

Lemma 16 Suppose {gi}ni=1 are i.i.d. standard Gaussians and {Xi}ni=1 ⊆ Rp are i.i.d. sub-
Gaussian vectors with parameter bounded by σx. Then as long as n ≥ c

√
log p for some

constant c > 0, we have

E

[∥∥∥∥∥ 1

n

n∑
i=1

giXi

∥∥∥∥∥
∞

]
≤ c′σx

√
log p

n
.

Proof Conditioned on {Xi}ni=1, for each j = 1, . . . , p, the variable
∣∣ 1
n

∑n
i=1 giXij

∣∣ is zero-

mean and sub-Gaussian with parameter bounded by σx
n

√∑n
i=1X

2
ij . Hence, by Lemma 15,

we have

E

[∥∥∥∥∥ 1

n

n∑
i=1

giXi

∥∥∥∥∥
∞

∣∣∣∣∣X
]
≤ c0σx

n
· max
j=1,...,p

√√√√ n∑
i=1

X2
ij ·
√

log p,
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implying that

E

[∥∥∥∥∥ 1

n

n∑
i=1

giXi

∥∥∥∥∥
∞

]
≤ c0σx

√
log p

n
· E

max
j

√∑n
i=1X

2
ij

n

 . (113)

Furthermore, Zj :=
∑n
i=1X

2
ij

n is an i.i.d. average of subexponential variables, each with
parameter bounded by cσx. Since E[Zj ] ≤ 2σ2

x, we have

P
(
Zj − E[Zj ] ≥ u+ 2σ2

x

)
≤ c1 exp

(
−c2nu

σx

)
, ∀u ≥ 0 and 1 ≤ j ≤ p. (114)

Now fix some t ≥
√

2σ2
x. Since the {Zj}pj=1 are all nonnegative, we have

E
[

max
j=1,...,p

√
Zj

]
≤ t+

∫ ∞
t

P
(

max
j=1,...,p

√
Zj > s

)
ds

≤ t+

p∑
j=1

∫ ∞
t

P
(√

Zj > s
)
ds

≤ t+ c1p

∫ ∞
t

exp

(
−c2n(s2 − 2σ2

x)

σx

)
ds

where the final inequality follows from the bound (114) with u = s2 − 2σ2
x, valid as long as

s2 ≥ t2 ≥ 2σ2
x. Integrating, we have the bound

E
[

max
j=1,...,p

√
Zj

]
≤ t+ c′1pσx exp

(
−c
′
2n(t2 − 2σ2

x)

σ2
x

)
.

Since n %
√

log p by assumption, setting t equal to a constant implies E
[
maxj

√
Zj
]

= O(1),
which combined with (113) gives the desired result.

Appendix F. Capped-`1 Penalty

In this section, we show how our results on nonconvex but subdifferentiable regularizers may
be extended to include certain types of more complicated regularizers that do not possess
(sub)gradients everywhere, such as the capped-`1 penalty.

In order to handle the case when ρλ has points where neither a gradient nor subderivative
exists, we assume the existence of a function ρ̃λ (possibly defined according to the particular
local optimum β̃ of interest), such that the following conditions hold:

Assumption 2

(i) The function ρ̃λ is differentiable/subdifferentiable everywhere, and ‖∇ρ̃λ(β̃)‖∞ ≤ λL.

(ii) For all β ∈ Rp, we have ρ̃λ(β) ≥ ρλ(β).

(iii) The equality ρ̃λ(β̃) = ρλ(β̃) holds.
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(iv) There exists µ1 ≥ 0 such that ρ̃λ(β) + µ1
2 ‖β‖22 is convex.

(v) For some index set A with |A| ≤ k and some parameter µ2 ≥ 0, we have

ρ̃λ(β∗)− ρ̃λ(β̃) ≤ λL‖β̃A − β∗A‖1 − λL‖β̃Ac − β∗Ac‖1 +
µ2

2
‖β̃ − β∗‖22.

In addition, we assume conditions (i)–(iii) of Assumption 1 in Section 2.2 above.
When ρλ(β) + µ1

2 ‖β‖22 is convex for some µ1 ≥ 0 (as in the case of SCAD or MCP), we
may take ρ̃λ = ρλ and µ2 = 0 (cf. Lemma 5 in Appendix A.1). When no such convexification
of ρλ exists (as in the case of the capped-`1 penalty), we instead construct a separate convex
function ρ̃λ to upper-bound ρλ and take µ1 = 0.

Under the conditions of Assumption 2, we have the following variant of Theorems 1
and 2:

Theorem 4 Suppose Ln satisfies the RSC conditions (4), and the functions ρλ and ρ̃λ
satisfy Assumption 1 and Assumption 2, respectively. Suppose λ is chosen according to the

bound (6) and n ≥ 16R2 max(τ21 ,τ
2
2 )

α2
2

log p. Then for any stationary point β̃ of the program (1),

we have

‖β̃ − β∗‖2 ≤
7λL
√
k

4α1 − 2µ1 − 2µ2
, and ‖β̃ − β∗‖1 ≤

28λLk

2α1 − µ1 − µ2
,

along with the prediction error bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≤ λ2L2k

(
21

8α1 − 4µ1 − 4µ2)
+

49(µ1 + µ2)

8(2α1 − µ1 − µ2)2

)
.

Proof
The proof is essentially the same as the proofs of Theorems 1 and 2, so we only mention

a few key modifications here. First note that any local minimum β̃ of the program (1) is a
local minimum of Ln + ρ̃λ, since

Ln(β̃) + ρ̃λ(β̃) = Ln(β̃) + ρλ(β̃) ≤ Ln(β) + ρλ(β) ≤ Ln(β) + ρ̃λ(β),

locally for all β in the constraint set, where the first inequality comes from the fact that β̃
is a local minimum of Ln + ρλ, and the second inequality holds because ρ̃λ upper-bounds
ρλ. Hence, the first-order condition (5) still holds with ρλ replaced by ρ̃λ. Consequently,
(20) holds, as well.

Next, note that (22) holds as before, with ρλ replaced by ρ̃λ and µ replaced by µ1. By
condition (v) on ρ̃λ, we then have (27) with µ replaced by µ1 + µ2. The remainder of the
proof is essentially the same as before. Note that condition (v) does not include the extra
factor of ξ appearing in Lemma 5, but this condition is actually strong enough for the proof
arguments to hold, since we do not impose a positivity condition on the difference between
‖ν̃A‖1 and ‖ν̃Ac‖1.

Specializing now to the case of the capped-`1 penalty, we have the following lemma. For
a fixed parameter c ≥ 1, the capped-`1 penalty (Zhang and Zhang, 2012) is given by

ρλ(t) := min

{
λ2c

2
, λ|t|

}
. (115)
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Lemma 17 The capped-`1 regularizer (115) with parameter c satisfies the conditions of
Assumption 2, with µ1 = 0, µ2 = 4

c , and L = 1.

Proof We will show how to construct an appropriate choice of ρ̃λ. Note that ρλ is piecewise
linear and locally equal to |t| in the range

[
−λc

2 ,
λc
2

]
, and takes on a constant value outside

that region. However, ρλ does not have either a gradient or subgradient at t = ±λc
2 , hence

is not “convexifiable” by adding a squared-`2 term.
For a fixed local optimum β̃, we define the functions ρ̃jλ : R→ R via

ρ̃jλ(t) =

{
λ|t|, if |β̃j | ≤ λc

2 ,
λ2c
2 , otherwise,

and let ρ̃λ(β) =
∑p

j=1 ρ̃
j
λ(βj), for β ∈ Rp. Then

ρ̃λ(β) =
∑
j∈T

λ|βj |+
∑
j∈T c

λ2c

2
,

where T :=
{
j | |β̃j | ≤ λc

2

}
. It is easy to see that ρ̃λ is a convex upper bound on ρλ, with

ρ̃λ(β̃) = ρλ(β̃), since ρ̃jλ(β̃j) = ρλ(β̃j) for all j. Then

ρ̃λ(β∗)− ρ̃λ(β̃) =
∑

j∈S∩T

(
ρ̃jλ(β∗j )− ρ̃jλ(β̃j)

)
+

∑
j∈Sc∩T

(
ρ̃jλ(β∗j )− ρ̃jλ(β̃j)

)
, (116)

using decomposability of ρ̃λ. Furthermore, ρ̃jλ(β∗j ) = ρ̃jλ(0) = 0 for j ∈ Sc ∩ T , and for
j ∈ T , we have

ρ̃jλ(β∗j )− ρ̃jλ(β̃j) ≤ λ|β∗j | − λ|β̃j | ≤ λ|ν̃j |,

whereas for j /∈ T , we have ρ̃jλ(β∗j )− ρ̃jλ(β̃j) = 0 ≤ λ|ν̃j |. Combined with (116), we obtain

ρ̃λ(β∗)− ρ̃λ(β̃) ≤
∑

j∈S∩T
λ|ν̃j | −

∑
j∈Sc∩T

ρ̃jλ(β̃j)

= λ‖ν̃S∩T ‖1 −
∑

j∈Sc∩T
ρλ(β̃j)

= λ‖ν̃S∩T ‖1 − λ‖ν̃Sc∩T ‖1 +
∑

j∈Sc∩T

(
λ|β̃j | − ρλ(β̃j)

)
. (117)

Now observe that

λ|t| − ρλ(t) =

{
0, if |t| ≤ λc

2 ,

λ|t| − λ2c
2 , if |t| > λc

2 ,

and moreover, the derivative of t2

c always exceeds λ for |t| > λc
2 . Consequently, we have

λ|t| − ρλ(t) ≤ t2

c for all t ∈ R. Substituting this bound into (117) yields

ρ̃λ(β∗)− ρ̃λ(β̃) ≤ λ‖ν̃S∩T ‖1 − λ‖ν̃Sc∩T ‖1 +
1

c
‖ν̃Sc∩T ‖22 ≤ λ‖ν̃S‖1 − λ‖ν̃Sc∩T ‖1 +

1

c
‖ν̃Sc∩T ‖22.

(118)
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Finally, note that

λ‖ν̃Sc∩T c‖1 = λ‖β̃Sc∩T c‖1 ≤
2

c
‖β̃Sc∩T c‖22 =

2

c
‖ν̃Sc∩T c‖22, (119)

since λ|t| ≤ 2t2

c when |t| ≥ λc
2 . Combining (118) and (119) then yields

ρ̃λ(β∗)− ρ̃λ(β̃) ≤ λ‖ν̃S‖1 − λ‖ν̃Sc‖1 +
2

c
‖ν̃Sc‖22 ≤ λ‖ν̃S‖1 − λ‖ν̃Sc‖1 +

2

c
‖ν̃‖22,

which is condition (v) of Assumption 2 on ρ̃λ with L = 1, A = S, and µ2 = 4
c . The remain-

ing conditions are easy to verify (see also Zhang and Zhang, 2012).
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Abstract

This paper generalizes the framework of Hierarchical Kernel Learning (HKL) and illustrates
its utility in the domain of rule learning. HKL involves Multiple Kernel Learning over
a set of given base kernels assumed to be embedded on a directed acyclic graph. This
paper proposes a two-fold generalization of HKL: the first is employing a generic `1/`ρ
block-norm regularizer (ρ ∈ (1, 2]) that alleviates a key limitation of the HKL formulation.
The second is a generalization to the case of multi-class, multi-label and more generally,
multi-task applications. The main technical contribution of this work is the derivation of a
highly specialized partial dual of the proposed generalized HKL formulation and an efficient
mirror descent based active set algorithm for solving it. Importantly, the generic regularizer
enables the proposed formulation to be employed in the Rule Ensemble Learning (REL)
where the goal is to construct an ensemble of conjunctive propositional rules. Experiments
on benchmark REL data sets illustrate the efficacy of the proposed generalizations.

Keywords: multiple kernel learning, mixed-norm regularization, multi-task learning, rule
ensemble learning, active set method

1. Introduction

A Multiple Kernel Learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004) framework for
construction of sparse linear combinations of base kernels embedded on a directed acyclic
graph (DAG) was recently proposed by Bach (2008). Since the DAG induces hierarchical
relations between the base kernels, this framework is more commonly known as Hierarchical
Kernel Learning (HKL). It has been established that HKL provides a powerful algorithm
for task specific non-linear feature selection. HKL employs a carefully designed `1/`2 block-
norm regularizer: `1-norm across some predefined components associated with the DAG
and `2-norm within each such component. However, the sparsity pattern of kernel (feature)
selection induced by this regularizer is somewhat restricted: a kernel is selected only if the
kernels associated with all its ancestors in the DAG are selected. In addition, it can be
proved that the weight of the kernel associated with a (selected) node will always be greater
than the weight of the kernels associated with its descendants. Such a restricted selection
pattern and weight bias may limit the applicability of HKL in real world problems.

This paper proposes a two-fold generalization of HKL. The first is employing a `1/`ρ, ρ ∈
(1, 2), block-norm regularizer that mitigates the above discussed weight and selection bias

©2015 Pratik Jawanpuria, Jagarlapudi Saketha Nath and Ganesh Ramakrishnan.
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among the kernels, henceforth termed as gHKL. Note that for the special case of ρ = 2,
gHKL renders the HKL regularizer. Further, gHKL is generalized to the paradigm of Multi-
task Learning (MTL), where multiple related tasks need to be learnt jointly. We consider
the MTL setup where the given learning tasks share a common sparse feature space (Lounici
et al., 2009; Jawanpuria and Nath, 2011; Obozinski et al., 2011). Our goal is to construct a
shared sparse feature representation that is suitable for all the given related tasks. We pose
the problem of learning this shared feature space as that of learning a shared kernel, common
across all the tasks. The proposed generalization is henceforth referred to as gHKLMT. In
addition to learning a common feature representation, gHKLMT is generic enough to model
additional correlations existing among the given tasks.

Though employing a `1/`ρ, ρ ∈ (1, 2), regularizer is an incremental modification to the
HKL formulation, devising an algorithm for solving it is not straightforward. The projected
gradient descent employed in the active set algorithm for solving HKL (Bach, 2008) can no
longer be employed for solving gHKL as projections onto `ρ-norm balls are known to be
significantly more challenging than those onto `1-norm balls (Liu and Ye, 2010). Hence naive
extensions of the existing HKL algorithm will not scale well. Further, the computational
challenge is compounded with the generalization for learning multiple tasks jointly. The
key technical contribution of this work is the derivation of a highly specialized partial
dual of the gHKL/gHKLMT formulations and an efficient mirror descent (Ben-Tal and
Nemirovski, 2001; Beck and Teboulle, 2003) based active set algorithm for solving it. The
dual presented here is an elegant convex optimization problem with a Lipschitz continuous
objective and constrained over a simplex. Moreover, the gradient of the objective can
be obtained by solving a known and well-studied variant of the MKL formulation. This
motivates employing the mirror descent algorithm that is known to solve such problems
efficiently. Further efficiency is brought in by employing an active set method similar in
spirit to that in Bach (2008).

A significant portion of this paper focuses on the application of Rule Ensemble Learn-
ing (REL) (Dembczyński et al., 2010, 2008), where HKL has not been previously explored.
Given a set of basic propositional features describing the data, the goal in REL is to con-
struct a compact ensemble of conjunctions with the given propositional features that gen-
eralizes well for the problem at hand. Such ensembles are expected to achieve a good
trade-off between interpretability and generalization ability. REL approaches (Cohen and
Singer, 1999; Friedman and Popescu, 2008; Dembczyński et al., 2010) have additionally
addressed the problem of learning a compact set of rules that generalize well in order to
maintain their readability. One way to construct a compact ensemble is to consider a linear
model involving all possible conjunctions of the basic propositional features and then per-
forming a `1-norm regularized empirical risk minimization (Friedman and Popescu, 2008;
Dembczyński et al., 2010). Since this is a computationally infeasible problem, even with
moderate number of basic propositions, the existing methods either approximate such a
regularized solution using strategies such as shrinkage (Friedman and Popescu, 2008; Dem-
bczyński et al., 2010, 2008) or resort to post-pruning (Cohen and Singer, 1999). This work
proposes to solve a variant of this regularized empirical risk minimization problem optimally
using the framework of gHKL. The key idea is to define kernels representing every possible
conjunction and arranging them on a DAG. The proposed gHKL regularizer is applied on
this DAG of kernels, leading to a sparse combination of promising conjunctions. Note that
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with such a setup, the size of the gHKL optimization problem is exponential in the number
of basic propositional features. However, a key result in the paper shows that the proposed
gHKL algorithm is guaranteed to solve this exponentially large problem with a complexity
polynomial in the final active set1 size. Simulations on benchmark binary (and multiclass)
classification data sets show that gHKL (and gHKLMT) indeed constructs a compact en-
semble that on several occasions outperforms state-of-the-art REL algorithms in terms of
generalization ability. These results also illustrate the benefits of the proposed generaliza-
tions over HKL: i) the ensembles constructed with gHKL (with low ρ values) involve fewer
number of rules than with HKL; though the accuracies are comparable ii) gHKLMT can
learn rule ensemble on multiclass problems; whereas HKL is limited to two-class problems.

The rest of the paper2 is organized as follows. Section 2 introduces the classical Multi-
ple Kernel Learning setup, briefly reviews the HKL framework and summarizes the existing
works in Multi-task Learning. In Section 3, we present the proposed gHKL and gHKLMT

formulations. The key technical derivation of the specialized dual is also presented in this
section. The proposed mirror descent based active set algorithm for solving gHKL/gHKLMT

formulations is discussed in Section 4. In Section 5, we propose to solve the REL problem
by employing the gHKL formulation and discuss its details. In Section 6, we report em-
pirical evaluations of gHKL and gHKLMT formulations for REL on benchmark binary and
multiclass data sets respectively. Section 7 concludes the paper.

2. Related Works

This section provides a brief introduction to the Multiple Kernel Learning (MKL) frame-
work, the HKL setup and formulation (Bach, 2008, 2009) as well as the existing works in
Multi-task Learning.

2.1 Multiple Kernel Learning Framework

We begin by discussing the regularized risk minimization framework (Vapnik, 1998), which
has been employed in the proposed formulations.

Consider a learning problem like classification or regression and let its training data be
denoted by D = {(xi, yi), i = 1, . . . ,m | xi ∈ X , yi ∈ R ∀i}, where (xi, yi) represents the ith

input-output pair. The aim is to learn an affine prediction function F (x) that generalize
well on unseen data. Given a positive definite kernel k that induces a feature map φk(·), the
prediction function can be written as: F (x) = 〈f, φk(x)〉Hk−b. Here Hk is the Reproducing
Kernel Hilbert Space (RKHS) (Schölkopf and Smola, 2002) associated with the kernel k,
endowed with an inner product 〈·, ·〉Hk , and f ∈ Hk, b ∈ R are the model parameters to
be learnt. A popular framework to learn these model parameters is the regularized risk
minimization (Vapnik, 1998), which considers the following problem:

min
f∈Hk,b∈R

1

2
Ω(f)2 + C

m∑
i=1

`(yi, F (xi)), (1)

1. Roughly, this is the number of selected conjunctions and is potentially far less than the total number of
conjunctions.

2. Preliminary results of this work were reported in Jawanpuria et al. (2011).
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where Ω(·) is a norm based regularizer, ` : R×R→ R is a suitable convex loss function and C
is a regularization parameter. As an example, the support vector machine (SVM) (Vapnik,
1998) employs Ω(f) = ‖f‖Hk . From the representer theorem (Schölkopf and Smola, 2002),
we know that the optimal f has the following form f(·) =

∑m
i αik(·,xi) where α = (αi)

m
i=1

is a vector of coefficients to be learnt.
It can be observed from above that the kernel definition plays a crucial role in defining

the quality of the solution obtained by solving (1). Hence learning a kernel suitable to the
problem at hand has been an active area of research over the past few years. One way
to learn kernels is via the Multiple Kernel Learning (MKL) framework (Lanckriet et al.,
2004; Bach et al., 2004). Lanckriet et al. (2004) proposed to learn the kernel k as a conic
combination of the given base kernels k1, . . . , kl: k =

∑l
i=1 ηiki, ηi ≥ 0 ∀ i. Here η = (ηi)

l
i=1

is a coefficient vector to be (additionally) learnt in the optimization problem (1). In this
setting, the feature map with respect to the kernel k is given by φk = (

√
ηiφki)

l
i=1 (see

Rakotomamonjy et al., 2008, for details). It is a weighted concatenation of feature maps
induced by the individual base kernels. Hence, sparse kernel weights will result in a low
dimensional φk. Some of the additional constraints on η explored in the existing MKL works
are `1-norm constraint (Bach et al., 2004; Rakotomamonjy et al., 2008), `p-norm constraint
(p > 1) (Kloft et al., 2011; Vishwanathan et al., 2010; Aflalo et al., 2011), etc.

2.2 Hierarchical Kernel Learning

Hierarchical Kernel Learning (HKL) (Bach, 2008) is a generalization of MKL and assumes
a hierarchy over the given base kernels. The base kernels are embedded on a DAG and a
carefully designed `1/`2 block-norm regularization over the associated RKHS is proposed
to induce a specific sparsity pattern over the selected base kernels. We begin by discussing
its kernel setup.

Let G(V, E) be the given DAG with V denoting the set of vertices and E denoting
the set of edges. The DAG structure entails relationships like parent, child, ancestor and
descendant (Cormen et al., 2009). Let D(v) and A(v) represent the set of descendants and
ancestors of the node v in the G. It is assumed that both D(v) and A(v) include the node
v. For any subset of nodes W ⊂ V, the hull and sources of W are defined as:

hull(W) =
⋃
w∈W

A(w), sources(W) = {w ∈ W | A(w) ∩W = {w}} .

The size and complement ofW are denoted by |W| andWc respectively. Let kv : X×X → R
be the positive definite kernel associated with the vertex v ∈ V. In addition, let Hkv be
its associated RKHS and φkv be its induced feature map. Given this, HKL employs the
following prediction function:

F (x) =
∑
v∈V
〈fv, φkv(x)〉Hkv − b,

which is an affine model parameterized by f = (fv)v∈V , the tuple with entries as fv ∈ Hkv
and b ∈ R. Some more notations follow: for any subset of nodes W ⊂ V, fW = (fv)v∈W
and φW = (φv)v∈W . In general, the entries in a vector are referred to using an appropriate
subscript, i.e., entries in u ∈ Rd are denoted by u1, . . . , ud. The kernels are denoted by the
lower case ‘k’ and the corresponding Gram matrices are denoted by the upper case ‘K’.
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HKL formulates the problem of learning the optimal prediction function F as the fol-
lowing regularized risk minimization problem:

min
fv∈Hkv∀v∈V,b∈R

1

2

(∑
v∈V

dv‖fD(v)‖2

)2

+ C

m∑
i=1

` (yi, F (xi)) , (2)

where ‖fD(v)‖2 =
(∑

w∈D(v) ‖fw‖2
) 1

2 ∀v ∈ V, `(·, ·) is a suitable convex loss function and

(dv)v∈V are given non-negative parameters.
As is clear from (2), HKL employs a `1/`2 block-norm regularizer, which is known

to promote group sparsity (Yuan and Lin, 2006). Its implications are discussed in the
following. For most of v ∈ V, ‖fD(v)‖2 = 0 at optimality due to the sparsity inducing
nature of the `1-norm. Moreover (‖fD(v)‖2 = 0) ⇒ (fw = 0 ∀w ∈ D(v)). Thus it is
expected that most fv will be zero at optimality. This implies that the prediction function
involves very few kernels. Under mild conditions on the kernels (being strictly positive),
it can be shown that this hierarchical penalization induces the following sparsity pattern:
(fw 6= 0)⇒ (fv 6= 0 ∀v ∈ A(w)). In other words, if the prediction function employs a kernel
kw then it certainly employs all the kernels associated with the ancestor nodes of w.

Bach (2008) proposes to solve the following equivalent variational formulation:

min
γ∈∆1

min
fv∈Hkv∀v∈V,b∈R

1

2

∑
w∈V

δw(γ)−1‖fw‖2 + C

m∑
i=1

` (yi, F (xi)) , (3)

where ∆1 =
{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
and δw(γ)−1 =

∑
v∈A(w)

d2
v
γv

. From the repre-
senter theorem (Schölkopf and Smola, 2002), it follows that the effective kernel employed
in the HKL is: k =

∑
w∈V δw(γ)kw. Since the optimization problem (3) has a `1-norm

constraint over γ variables, most γv at optimality are expected to be zero. Moreover the
kernel weight δw(γ) is zero whenever γv = 0 for any v ∈ A(w). Thus, the HKL performs
a sparse selection of the base kernels and can be understood as a generalization of the
classical MKL framework. However, the sparsity pattern for the kernels has the following
restriction: if a kernel is not selected then none of the kernels associated with its descen-
dants are selected, as (γv = 0) ⇒ (δw(γ) = 0 ∀w ∈ D(v)). For the case of strictly positive
kernels, it follows that a kernel is selected only if all the kernels associated with its ances-
tors are selected. In addition, the following relationship holds among the kernels weights:
δv(γ) ≥ δw(γ) ∀w ∈ D(v) (strict inequality holds if δw(γ) > 0). Hence, the weight of the
kernel associated with a (selected) node is always be greater than the weight of the kernels
associated with its descendants.

Since the size of γ is same as that of V and since the optimal γ is known to be sparse, Bach
(2008) proposes an active set based algorithm (Lee et al., 2007) for solving (3). At each
iteration of the active set algorithm, (3) is solved with respect to only those variables in the
active set via the projected gradient descent technique (Rakotomamonjy et al., 2008).

As illustrated in Bach (2008), the key advantage of HKL is in performing non-linear
feature selection. For example, consider the case where the input space is X = Rn and
let I be power set of {1, . . . , n}. Consider the following 2n kernels arranged on the usual
subset lattice: ki(x,x

′) = Πj∈ixjx
′
j ∀i ∈ I. HKL can be applied in this setup to select
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the promising sub-products of the input features over all possible sub-products. Please
refer to Bach (2008) for more such pragmatic examples of kernels and corresponding DAGs.
The most interesting result in Bach (2008) is that in all these examples where the size of
the DAG is exponentially large, the computational complexity of the active set algorithm
is polynomial in the training set dimensions and the active set size. Importantly, the
complexity is independent of |V|!

Though encouraging, the above discussed weight bias (in favor of the kernels towards
the top of the DAG) and restricted kernel selection pattern may limit the applicability
of HKL in real world problems. For instance, in case of the sub-product kernel example
mentioned above, the following is true: a sub-product is selected only if all the products
including it are selected. This clearly may lead to selection of many redundant sub-products
(features). In Section 3, we present the proposed generalization that provides a more flexible
kernel selection pattern by employing a `1/`ρ, ρ ∈ (1, 2), regularizer. A key result of this
paper (refer Corollary 6) is that for all the cases discussed in Bach (2008), the proposed
mirror descent based active set algorithm for solving the generalization has a computational
complexity that is still polynomial in the training set dimensions and the active set size.
In other words, the proposed generalization does not adversely affect the computational
feasibility of the problem and hence is an interesting result in itself.

2.3 Multi-task Learning

Multi-task Learning (Caruana, 1997; Baxter, 2000) focuses on learning several prediction
tasks simultaneously. This is in contrast with the usual approach of learning each task
separately and independently. The key underlying idea behind MTL is that an appropriate
sharing of information while learning related tasks will help in obtaining better prediction
models. Various definitions of task-relatedness have been explored over the past few years
like proximity of task parameters (Baxter, 2000; Evgeniou and Pontil, 2004; Xue et al., 2007;
Jacob et al., 2008; Jawanpuria and Nath, 2012) or sharing common feature space (Ando
and Zhang, 2005; Ben-David and Schuller, 2008; Argyriou et al., 2008; Lounici et al., 2009;
Obozinski et al., 2011). Many learning settings like multiclass classification, multi-label
classification or learning vector-valued function may be viewed as a special case of multi-
task learning.

In this work, we consider the common setting in which the task parameters share a simul-
taneously sparse structure: only a small number of input features are relevant for each of the
tasks and the set of such relevant features is common across all the tasks (Turlach et al., 2005;
Lounici et al., 2009). Existing works in this setting typically employ a group lasso penalty
on the tasks parameters: `1/`2 block-norm (Lounici et al., 2009; Obozinski et al., 2011) or
the `1/`∞ block-norm (Turlach et al., 2005; Negahban and Wainwright, 2009). Thus, they

propose a multi-task regularizer of the form: Ω(f1, . . . , fT ) =
∑d

i=1

(∑T
t=1 |fti|q

) 1
q

where

the input feature space is assumed to be d dimensional, ft is the task parameter of the
tth task and ft = (fti)i=1,...,d and q = {2,∞}. Note that in addition to (sparse) shared
feature selection, the `1/`∞ block-norm penalty also promote proximity among the task
parameters.

We pose the problem of learning the shared features as that of learning a shared ker-
nel, whose induced feature space is common across all the tasks. The shared kernel is

622



Generalized Hierarchical Kernel Learning

constructed as a sparse combination of the given base kernels. A hierarchical relationship
exists over the given kernels (feature spaces). We employ a graph based `1/`ρ block-norm
regularization over the task parameters that enable non-linear feature selection for multiple
tasks simultaneously. The details of the proposed MTL formulation are discussed in the
following section.

3. Generalized Hierarchical Kernel Learning

In this section, we present the proposed generalizations over HKL. As discussed earlier, the
first generalization aims at mitigating the weight bias problem as well as the restrictions
imposed on the kernel selection pattern of HKL, and is termed as gHKL. The gHKL formu-
lation is then further generalized to the paradigm of MTL, the proposed formulation being
termed as gHKLMT. We begin by introducing the gHKL formulation.

3.1 gHKL Primal Formulation

Recall that HKL employs a `1/`2 block norm regularizer. As we shall understand in more
detail later, a key reason for the kernel weight bias problem and the restricted sparsity
pattern in HKL is the `2-norm regularization. One way to mitigate these restrictions is by
employing the following generic regularizer:

ΩS(f) =
∑
v∈V

dv‖fD(v)‖ρ, (4)

where f = (fv)v∈V , ‖fD(v)‖ρ =
(∑

w∈D(v) ‖fw‖ρ
) 1
ρ

and ρ ∈ (1, 2]. The implications of the

`1/`ρ block-norm regularization are discussed in the following. Since the `1-norm promotes
sparsity, it follows that ‖fD(v)‖ρ = 0 (that is fw = 0 ∀w ∈ D(v)) for most v ∈ V. This
phenomenon is similar as in HKL. But now, even in cases where ‖fD(v)‖ρ is not forced to
zero by the `1-norm, many components of fD(v) tend to zero3 (that is fw → 0 for many
w ∈ D(v)) as the value of ρ tends to unity. Also note that ρ = 2 renders the HKL regularizer.
To summarize, the proposed gHKL formulation is

min
fv∈Hkv∀v∈V,b∈R

1

2
(ΩS(f))2 + C

m∑
i=1

` (yi, F (xi)) . (5)

We next present the gHKLMT formulation, which further generalizes gHKL to MTL paradigm.

3.2 gHKLMT Primal Formulation

We begin by introducing some notations for the multi-task learning setup. Let T be the
number of tasks and let the training data for the tth task be denoted by Dt = {(xti, yti), i =
1, . . . ,m | xti ∈ X , yti ∈ R ∀i}, where (xti, yti) represents the ith input-output pair of the

3. Note that as `ρ-norm (ρ > 1) is differentiable, it rarely induce sparsity (Szafranski et al., 2010). However,
as ρ → 1, they promote only a few leading terms due to the high curvatures of such norms (Szafranski
et al., 2007). In order to obtain a sparse solution in such cases, thresholding is commonly employed by
existing `p-MKL (ρ > 1) algorithms (Vishwanathan et al., 2010; Orabona et al., 2012; Jain et al., 2012;
Jawanpuria et al., 2014). We employed thresholding in our experiments.

623



Jawanpuria, Nath and Ramakrishnan

tth task. For the sake of notational simplicity, it is assumed that the number of training
examples is same for all the tasks. The prediction function for the tth task is given by:
Ft(x) =

∑
v∈V〈ftv, φkv(x)〉Hkv − bt, where ft = (ftv)v∈V and bt are the task parameters to

be learnt. We propose the following regularized risk minimization problem for estimating
these task parameters and term it as gHKLMT:

min
ft,bt∀t

1

2


∑
v∈V

dv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 1
ρ

︸ ︷︷ ︸
ΩT (f1,...,fT )


2

+ C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)), (6)

where ρ ∈ (1, 2] and Qw(f1, . . . , fT ) is a norm-based multi-task regularizer on the task
parameters ftw ∀t . In the following, we discuss the effect of the above regularization.
Firstly, there is a `1-norm regularization over the group of nodes (feature spaces) and a
`ρ-norm regularization within each group. This `1/`ρ block-norm regularization is same as
that of gHKL and will have the same effect on the sparsity pattern of the selected feature
spaces (kernels). Hence, only a few nodes (feature spaces) will be selected by the gHKLMT

regularizer ΩT (f1, . . . , fT ). Secondly, nature of the task relatedness within each (selected)
feature space is governed by the Qw(f1, . . . , fT ) regularizer.

For instance, consider the following definition of Qw(f1, . . . , fT ) (Lounici et al., 2009;
Jawanpuria and Nath, 2011):

Qw(f1, . . . , fT ) =

(
T∑
t=1

‖ftw‖2
) 1

2

. (7)

The above regularizer couples the task parameters within each feature space via `2-norm. It
encourages the task parameters within a feature space to be either zero or non-zero across
all the tasks. Therefore, ΩT (f1, . . . , fT ) based on (7) has the following effect: i) all the tasks
will simultaneously select or reject a given feature space, and ii) overall only a few feature
spaces will be selected in the gHKL style sparsity pattern.

Several multi-task regularizations (Evgeniou and Pontil, 2004; Evgeniou et al., 2005;
Jacob et al., 2008) have been proposed to encourage proximity among the task parameters
within a given feature space. This correlation among the tasks may be enforced while
learning a shared sparse feature space by employing the following Qw(f1, . . . , fT ):

Qw(f1, . . . , fT ) =

µ∥∥∥∥∥ 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2

+

T∑
t=1

∥∥∥∥∥ftw − 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2
 1

2

, (8)

where µ > 0 is a given parameter. The above Qw(f1, . . . , fT ) consists of two terms: the first
regularizes the mean while the second regularizes the variance of the task parameters in
the feature space induced by kernel kw. The parameter µ controls the degree of proximity
among the task parameters, with lower µ encouraging higher proximity. Note that when
µ =∞, (8) simplifies to (7). The gHKLMT regularizer ΩT (f1, . . . , fT ) based on (8) has the
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following effect: i) all the tasks will simultaneously select or reject a given feature space, ii)
overall only a few feature spaces will be selected in the gHKL style sparsity pattern, and
iii) within each selected feature space, the task parameters ftw ∀t are in proximity.

Thus, gHKLMT framework provides a mechanism to learn a shared feature space across
the tasks. In addition, it can also preserve proximity among the tasks parameters in the
learnt feature space. As we shall discuss in the next section, more generic correlations
among task parameters may be also modeled within the gHKLMT framework.

It is clear that the gHKL optimization problem (5) may be viewed as a special case
of the gHKLMT optimization problem (7), with the number of tasks set to unity. Hence
the rest of the discussion regarding dual derivation and optimization focuses primarily on
gHKLMT formulation.

3.3 gHKLMT Dual Formulation

As mentioned earlier, due to the presence of the `ρ-norm term in gHKLMT formulation,
naive extensions of the projected gradient based active set method in Bach (2008) will
be rendered computationally infeasible on real world data sets. Hence, we first re-write
gHKLMT formulation in an elegant form, which can then be solved efficiently. To this end,
we note the following variational characterization of ΩT (f1, . . . , fT ).

Lemma 1 Given ΩT (f1, . . . , fT ) and Qw(f1, . . . , fT ) as defined in (6) and (8) respectively,
we have:

ΩT (f1, . . . , fT )2 = min
γ∈∆

min
λv∈∆v

ρ̂ ∀v∈V

∑
w∈V

δw(γ, λ)−1Qw(f1, . . . , fT )2, (9)

where ρ̂ = ρ
2−ρ , δw(γ, λ)−1 =

∑
v∈A(w)

d2
v

γvλvw
, ∆1 =

{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
and

∆v
r =

{
z ∈ R|D(v)| | z ≥ 0,

∑
w∈D(v) zrw ≤ 1

}
.

Note that ρ ∈ (1, 2) ⇒ ρ̂ ∈ (1,∞). The proof of the above lemma is provided in Ap-
pendix A.2.

In order to keep the notations simple, in the remainder of this section, it is assumed
that the learning tasks at hand are binary classification, i.e., yti ∈ {−1, 1} ∀t, i, and the
loss function is the hinge loss. However, one can easily extend these ideas to other loss
functions and learning problems. Refer Appendix A.8 for gHKLMT dual formulation with
general convex loss functions.

Lemma 2 Consider problem (6) with the regularizer term replaced with its variational char-
acterization (9) and the loss function as the hinge loss `(y, Ft(x)) = max (0, 1− yFt(x)).
Then the following is a partial dual of it with respect to the variables ft, bt ∀t = 1, . . . , T :

min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
max

αt∈S(yt,C)∀t
G(γ, λ, α), (10)

where

G(γ, λ, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(γ, λ)Hw

)
Yα,
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α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤ β ≤ C,

∑m
i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]>,

Y is the diagonal matrix corresponding to the vector [y>1 , . . . ,y
>
T ]>, 1 is a mT × 1 vector

with entries as unity, δw(γ, λ)−1 =
∑

v∈A(w)
d2
v

γvλvw
, ∆1 =

{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
,

∆v
r =

{
z ∈ R|D(v)| | z ≥ 0,

∑
w∈D(v) zrw ≤ 1

}
, ρ̂ = ρ

2−ρ , and Hw ∈ RmT×mT is the multi-task

kernel matrix corresponding to the multi-task kernel hw ∀w ∈ V. The kernel function hw is
defined as follows:

hw(xt1i,xt2j) = kw(xt1i,xt2j)B(t1, t2), (11)

where B is a T × T matrix. B = I (identity matrix) when the multi-task regularizer (7)
is employed in (6). Alternatively, B = I + 11>/µ (here 1 is a T × 1 vector with entries
as unity) in the case when the regularizer (8) is employed. The prediction function for the
task t1 is given by

Ft1(xt1j) =
T∑

t2=1

m∑
i=1

ᾱt2iyt2i

(∑
w∈V

δw(γ̄, λ̄)kw(xt1i,xt2j)B(t1, t2)

)
,

where (γ̄, λ̄, ᾱ) is an optimal solution of (10).

Proof The proof follows from the representer theorem (Schölkopf and Smola, 2002). Also
refer to Appendix A.3.

This lemma shows that gHKLMT essentially constructs the same prediction function as an
SVM with the effective multi-task kernel as: h =

∑
w∈V δw(γ, λ)hw. Similarly, in the case

of the gHKL, the effective kernel is k =
∑

w∈V δw(γ, λ)kw (since the terms T and B are
unity). Here, as well as in the rest of the paper, we employ the symbols ‘h’ and ‘H’ for the
multi-task kernel and the corresponding Gram matrix respectively.

The multi-task kernel (11) consists of two terms: the first term corresponds to the
similarity between two instances xt1i and xt2j in the feature space induced by the kernel
kw. The second term corresponds to the correlation between the tasks t1 and t2. In the case
of the regularizer (7), the matrix B simplifies to: B(t1, t2) = 1 if t1 = t2 and B(t1, t2) = 0
if t1 6= t2, thereby making the kernel matrices Hw(w ∈ V) block diagonal. Hence, the
gHKLMT regularizer based on (7) promotes simultaneous sparsity in kernel selection among
the tasks, without enforcing any additional correlations among the tasks.

In general, any T × T positive semi-definite matrix may be employed as B to model
generic correlations among tasks. The multi-task kernel given by (11) will still remain a
valid kernel (Sheldon, 2008; Álvarez et al., 2012). The matrix B is sometimes referred to as
the output kernel in the setting of learning vector-valued functions. It is usually constructed
from the prior domain knowledge.

We now discuss the nature of the optimal solution of (10). Most of the kernel weights
δw(γ, λ) are zero at optimality of (10): δw(γ, λ) = 0 whenever γv = 0 or λvw = 0 for
any v ∈ A(w). The vector γ is sparse due to `1-norm constraint in (10). In addition,
ρ → 1 ⇒ ρ̂ → 1. Hence the vectors λv ∀v ∈ V get close to becoming sparse as ρ → 1 due
to the `ρ̂-norm constraint in (10). The superimposition of these two phenomena leads to a
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flexible4 sparsity pattern in kernel selection. This is explained in detail towards the end of
this section.

Note that ρ = 2 ⇒ λvw = 1 ∀v ∈ A(w), w ∈ W at optimality in (10). Hence for
ρ = 2, the minimization problem in (10) can be efficiently solved using a projected gradient
method (Rakotomamonjy et al., 2008; Bach, 2009). However, as established in Liu and Ye
(2010), projection onto the kind of feasibility set in the minimization problem in (10) is
computationally challenging for ρ ∈ (1, 2). Hence, we wish to re-write this problem in a
relatively simpler form that can be solved efficiently. To this end, we present the following
important theorem.

Theorem 3 The following is a dual of (6) considered with the hinge loss function, and the
objectives of (6) (with the hinge loss), (10) and (12) are equal at optimality:

min
η∈∆1

g(η), (12)

where g(η) is the optimal objective value of the following convex problem:

max
αt∈S(yt,C)∀t

1>α− 1

2

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

, (13)

where ζw(η) =
(∑

v∈A(w) d
ρ
vη

1−ρ
v

) 1
1−ρ

, α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤

β ≤ C,
∑m

i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]>, Y is the diagonal matrix corresponding to

the vector [y>1 , . . . ,y
>
T ]>, 1 is a mT × 1 vector with entries as unity, ρ̄ = ρ̂

ρ̂−1 , ρ̂ = ρ
2−ρ ,

∆1 =
{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
, and Hw ∈ RmT×mT is the multi-task kernel matrix

corresponding to the multi-task kernel (11).

The key idea in the proof of the above theorem is to eliminate the λ variables and the details
are presented in Appendix A.5. The expression for the prediction function F , in terms of
the variables η and α, is provided in Appendix A.9.

This theorem provides some key insights: firstly, we have that (12) is essentially a `1-
norm regularized problem and hence it is expected that most η will be zero at optimality.
Since (ηv = 0) ⇒ (ζw(η) = 0 ∀w ∈ D(v)), it follows that most nodes in V will not
contribute in the optimization problems (12) and (13). Secondly, in a single task learning
setting (T = 1), the problem in (13) is equivalent to the `ρ̂-norm MKL dual problem (Kloft

et al., 2011) with the base kernels as (ζv(η))
1
ρ̄ kv ∀v ∈ V 3 ζv(η) 6= 0. The optimization

problem (13) essentially learns an effective kernel of the form h =
∑

v∈V θv (ζv(η))
1
ρ̄ hv,

where the θ are intermediate optimization variables constrained to be non-negative and lie
within a `ρ̂-norm ball. The expression for θ in terms of the variables η and α is provided in
Appendix A.9.

The variable θ influence the nature of the effective kernel h in two important ways: i)
it follows from the expression of θ that

θv (ζv(η))
1
ρ̄ ∝ ζv(η)

(
α>YHvYα

) 1
(ρ̂−1)

.

4. The HKL dual formulation (Bach, 2009) is a special case of (10) with ρ = 2, T = 1 and B = 1. When
ρ = 2, ρ̂ = ∞. This implies λvw = 1 ∀ v ∈ A(w), w ∈ V at optimality, resulting in the weight bias
towards kernels embedded in the ancestor nodes and restricted sparsity pattern in kernel selection
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Algorithm 1 Active Set Algorithm - Outline

Input: Training data D, the kernels (kv) embedded on the DAG (V), the T × T matrix
B that models task correlations and tolerance ε.
Initialize the active set W with sources(V).
Compute η, α by solving (14)
while Optimal solution for (12) is NOT obtained do

Add some nodes to W
Recompute η, α by solving (14)

end while
Output: W, η, α

The above relation implies that the weight of the kernel hv in the DAG V is not only
dependent on the position5 of the node v, but also on the suitability of the kernel hv to
the problem at hand. This helps in mitigating the kernel weight bias in favour of the nodes
towards the top of the DAG from gHKLMT, but which is present in HKL, and ii) as ρ→ 1
(and hence as ρ̂ → 1), the optimal θ get close to becoming sparse (Szafranski et al., 2007;
Orabona et al., 2012). This superimposed with the sparsity of η promotes a more flexible
sparsity pattern in kernel selection that HKL, especially when ρ→ 1.

Next, we propose to solve the problem (12) by exploiting the sparsity pattern of the
η variables and the corresponding ζ(η) terms at optimality. We discuss it in detail in the
following section.

4. Optimization Algorithm

Note that problem (12) remains the same whether solved with the original set of variables
(η) or when solved with only those ηv 6= 0 at optimality (refer Appendix A.4 for details).
However the computational effort required in the latter case can be significantly lower since
it involves low number of variables and kernels. This motivates us to explore an active set
algorithm, which is similar in spirit to that in Bach (2008).

An outline of the proposed active set algorithm is presented in Algorithm 1. The algo-
rithm starts with an initial guess for the setW such that ηw 6= 0 (∀w ∈ W) at the optimality
of (12). This set W is called the active set. Since the weight associated with the kernel hw
will be zero whenever ηv = 0 for any v ∈ A(w), the active set W must contain sources(V),
else the problem has a trivial solution. Hence, the active set is initialized with sources(V).
At each iteration of the algorithm, (12) is solved with variables restricted to those in W:

min
η∈∆1

max
αt∈S(yt,C)∀t

1>α− 1

2

(∑
w∈W

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

. (14)

In order to formalize the active set algorithm, we need: i) an efficient algorithm for
solving problem (14), ii) a condition for verifying whether a candidate solution is optimal

5. Similar to the δv function in HKL (3), it follows from the definition of ζv that ζv(η) ≥ ζw(η) ∀w ∈ D(v)
(strict inequality holds if ζw(η) > 0).
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Algorithm 2 Mirror Descent Algorithm for solving (14)

Input: Gram matrices Hw (w ∈ W) and the regularization parameter C
Initialize ηW (w ∈ W) such that ηW ∈ ∆1 (warm-start may be used)
Iteration number: i = 0
while convergence criterion is not met6 do
i = i+ 1
Compute ζw(ηW) ∀w ∈ W (Theorem 3)

Compute αW (13) using `ρ̂-norm MKL algorithm with kernels as
(

(ζw(ηW))
1
ρ̄ Hw

)
w∈W

Compute ∇g(ηW) as in (24)
Compute step size s =

√
log(|W|)/i·‖∇g(ηW ))‖2∞

Compute ηw = exp (1 + log(ηw)− s · ∇g(ηW)w) ∀w ∈ W
Normalize ηw = ηw∑

v∈W ηv
∀w ∈ W

end while
Output: ηW , αW

with respect to the optimization problem (12), and iii) a procedure for building/improving
the active set after each iteration.

We begin with the first. We propose to solve the optimization problem (14) using the
mirror descent algorithm (Ben-Tal and Nemirovski, 2001; Beck and Teboulle, 2003). Mirror
descent algorithm is known to efficiently solve convex programs with Lipschitz continuous
and differentiable objectives constrained over a convex compact set. It achieves a near-
optimal convergence rate whenever the feasibility set is a simplex (which is true in our
optimization problem (14)). Mirror descent is close in spirit to the projected gradient
descent algorithm and hence assumes that an oracle for computing the gradient of the
objective is available.

Following the common practice of smoothing (Bach, 2009), in the rest of the paper, we
employ ζw((1 − ε)η + ε

|V|) instead7 of ζw(η) in (13) with ε > 0. The following theorem

establishes the applicability of mirror descent for solving (14):

Theorem 4 The function g(η) given by (13) is convex. Also, the expression for the ith

entry in the gradient (∇g(η))i is given in (24). If all the eigenvalues of the Gram matrices
Hw are finite and non-zero, then g is Lipschitz continuous.

The proof of the above theorem is technical and is provided in Appendix A.6.

Algorithm 2 summarizes the proposed mirror descent based algorithm for solving (14).
One of its steps involve computing ∇g(ηW) (expression provided in (24)), which in turn
requires solving (13). As noted before, (13) is similar to the `ρ̂-norm MKL problem (Kloft
et al., 2011) but with a different feasibility set for the optimization variables α. Hence,
(13) can be solved by employing a modified cutting planes algorithm (Kloft et al., 2011) or
a modified sequential minimal optimization (SMO) algorithm (Platt, 1999; Vishwanathan

6. Relative objective gap between two successive iteration being less than a given tolerance ε is taken to be
the convergence criterion. Objective here is the value of g(ηW), calculated after `ρ̂-norm MKL step.

7. Note that this is equivalent to smoothing the regularizer ΩT while preserving its sparsity inducing
properties (Bach, 2009).
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Algorithm 3 Active Set Algorithm

Input: Training data D, the kernels (kv) embedded on the DAG (V), the T × T matrix
B that models task correlations and tolerance ε.
Initialize the active set W with sources(V)
Compute η, α by solving (14) using Algorithm 2
while sufficient condition for optimality (15) is not met do

Add those nodes to W that violate (15)
Recompute η, α by solving (14) using Algorithm 2

end while
Output: W, η, α

et al., 2010). Empirically, we observed the SMO based algorithm to be much faster than
the cutting planes algorithm for gHKLMT (and gHKL) with SVM loss functions. In the
special case of ρ = 2, T = 1 and B = 1, (13) is simply a regular SVM problem.

Now we turn our attention to the second requirement of the active set algorithm: a
condition to verify the optimality of a candidate solution. We present the following theorem
that provides a sufficient condition for verifying optimality of a candidate solution.

Theorem 5 Suppose the active set W is such that W = hull(W). Let (ηW , αW) be a εW-
approximate optimal solution of (14), obtained from Algorithm (2). Then, it is an optimal
solution for (12) with a duality gap less than ε if the following condition holds:

max
u∈sources(Wc)

α>WYKuYαW ≤

(∑
w∈W

ζw(ηW)
(
α>WYHwYαW

)ρ̄) 1
ρ̄

+ 2(ε− εW), (15)

where Ku =
∑

w∈D(u)
Hw

(
∑
v∈A(w)∩D(u) dv)

2 .

The proof is provided in Appendix A.7. It closely follows that for the case of HKL (Bach,
2008).

The summary of the proposed mirror descent based active set algorithm is presented in
Algorithm 3. At each iteration, Algorithm (3) verifies optimality of the current iterate by
verifying the condition in (15). In case the current iterate does not satisfy this condition, the
nodes in sources(Wc) that violate the condition (15) are included in the active set.8 This
takes care of the third requirement of the active set algorithm. The algorithm terminates
if the condition (15) is satisfied by the iterate.

In the following, an estimate of the computational complexity of the active set algorithm
is presented. Let W be the final active set size. The optimization problem (14) needs to
be solved at most W times, assuming the worst case scenario of adding one node per
active set iteration. Each run of the mirror descent algorithm requires at most O(log(W ))
iterations (Ben-Tal and Nemirovski, 2001; Beck and Teboulle, 2003). A conservative time
complexity estimate for computing the gradient ∇g(ηW) by solving a variant of the `ρ̂-
norm MKL problem (13) is O(m3T 3W 2). This amounts to O(m3T 3W 3 log(W )). As for
the computational cost of the sufficient condition, let z denote the maximum out-degree

8. It is easy to see that with this update scheme, W is always equal to hull(W), as required in Theorem 5.
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of a node in G, i.e., z is an upper-bound on the the maximum number of children of any
node in G. Then the size of sources(Wc) is upper-bounded by Wz. Hence, a total of
O(ωm2T 2Wz) operations are required for evaluating the matrices K in (15), where ω is the
complexity of computing a single entry in any K. In all the pragmatic examples of kernels
and the corresponding DAGs provided by Bach (2008), ω is polynomial in the training
set dimensions. Moreover, caching of K usually renders ω to be a constant (Bach, 2009).
Further, the total cost of the quadratic computation in (15) is O(m2T 2W 2z). Thus the
overall computational complexity is O(m3T 3W 3 log(W ) + ωm2T 2Wz + m2T 2W 2z). More
importantly, because the sufficient condition for optimality (Theorem 5) is independent of
ρ, we have the following result:

Corollary 6 In a given input setting, HKL algorithm converges in time polynomial in the
size of the active set and the training set dimensions if and only if the proposed mirror
descent based active set algorithm (i.e., gHKLMT algorithm) has a polynomial time conver-
gence in terms of the active set and training set sizes.

The proof is provided in Appendix A.10.

In the next section, we present an application of the proposed formulation that illustrate
the benefits of the proposed generalizations over HKL.

5. Rule Ensemble Learning

In this section, we propose a solution to the problem of learning an ensemble of decision rules,
formally known as Rule Ensemble Learning (REL) (Cohen and Singer, 1999), employing
the gHKL and gHKLMT formulations. For the sake of simplicity, we only discuss the single
task REL setting in this section, i.e., REL as an application of gHKL. Similar ideas can
be applied to perform REL in multi-task learning setting, by employing gHKLMT. In fact,
we present empirical results of REL in both single and multiple task learning settings in
Section 6. We begin with a brief introduction to REL.

If-then decision rules (Rivest, 1987) are one of the most expressive and human readable
representations for learned hypotheses. It is a simple logical pattern of the form: IF condi-
tion THEN decision. The condition consists of a conjunction of a small number of simple
boolean statements (propositions) concerning the values of the individual input variables
while the decision specifies a value of the function being learned. An instance of a decision
rule from Quinlan’s play-tennis example (Quinlan, 1986) is:

IF HUMIDITY==normal AND WIND==weak THEN PlayTennis==yes.

The dominant paradigm for induction of rule sets, in the form of decision list (DL) models
for classification (Rivest, 1987; Michalski, 1983; Clark and Niblett, 1989), has been a greedy
sequential covering procedure.

REL is a general approach that treats decision rules as base classifiers in an ensemble.
This is in contrast to the more restrictive decision list models that are disjunctive sets of
rules and use only one in the set for each prediction. As pointed out in Cohen and Singer
(1999), boosted rule ensembles are in fact simpler, better-understood formally than other
state-of-the-art rule learners and also produce comparable predictive accuracy.
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REL approaches like SLIPPER (Cohen and Singer, 1999), LRI (Weiss and Indurkhya,
2000), RuleFit (Friedman and Popescu, 2008), ENDER/MLRules (Dembczyński et al.,
2008, 2010) have additionally addressed the problem of learning a compact set of rules that
generalize well in order to maintain their readability. Further, a number of rule learners like
RuleFit, LRI encourage shorter rules (i.e., fewer conjunctions in the condition part of the
rule) or rules with a restricted number of conjunctions, again for purposes of interpretability.
We build upon this and define our REL problem as that of learning a small set of simple
rules and their weights that leads to a good generalization over new and unseen data. The
next section introduces the notations and the setup in context of REL.

5.1 Notations and Setup

Let D = {(x1, y1), . . . , (xm, ym)} be the training data described using p basic (boolean)
propositions, i.e., xi ∈ {0, 1}p. In case the input features are not boolean, such propositions
can be derived using logical operators such as ==, 6=,≤ or ≥ over the input features (refer
Friedman and Popescu, 2008; Dembczyński et al., 2008, for details). Let V be an index-
set for all possible conjunctions with the p basic propositions and let φv : Rn 7→ {0, 1}
denote the vth conjunction in V. Let fv ∈ R denote the weight for the conjunction φv.
Then, the rule ensemble to be learnt is the weighted combination of these conjunctive rules:
F (x) =

∑
v∈V fvφv(x)− b, where perhaps many weights (fv) are equal to zero.

One way to learn the weights is by performing a `1-norm regularized risk minimization in
order to select few promising conjunctive rules (Friedman and Popescu, 2008; Dembczyński
et al., 2008, 2010). However, to the best of our knowledge, rule ensemble learners that iden-
tify the need for sparse f , either approximate such a regularized solution using strategies
such as shrinkage (Rulefit, ENDER/MLRules) or resort to post-pruning (SLIPPER). This
is because the size of the minimization problem is exponential in the number of basic propo-
sitions and hence the problem becomes computationally intractable with even moderately
sized data sets. Secondly, conjunctive rules involving large number of propositions might
be selected. However, such conjunctions adversely effect the interpretability. We present
an approach based on the gHKL framework that addresses these issues.

We begin by noting that 〈V,⊆〉 is a subset-lattice; hereafter this will be referred to
as the conjunction lattice. In a conjunction lattice, ∀ v1, v2 ∈ V, v1 ⊆ v2 if and only if
the set of propositions in conjunction v1 is a subset of those in conjunction v2. As an
example, (HUMIDITY==normal) is considered to be a subset of (HUMIDITY==normal
AND WIND==weak). The top node of this lattice is a node with no conjunctions and is
also sources(V). Its children, the second level nodes, are all the basic propositions, p in
number. The third level nodes, children of these basic propositions, are the conjunctions
of length two and so on. The bottom node at (p+ 1)th level is the conjunction of all basic
propositions. The number of different conjunctions of length r is

(
p
r

)
and the total number

of nodes in this conjunction lattice is 2p. Figure (1) shows a complete conjunction lattice
with p = 4.

We now discuss how the proposed gHKL regularizer (5) provides an efficient and optimal
solution to a regularized empirical risk minimization formulation for REL.
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Figure 1: Example of a conjunction lattice with 4 basic propositions: (x1 = a), (x2 6= b),
(x3 ≥ c) and (x4 ≤ d). The input space consist of four features: x1, x2, x3 and
x4. The number of nodes in conjunction lattice is exponential in the number of
basic propositions. In this particular example, the number of nodes is 16 (= 24).

5.2 Rule Ensemble Learning with gHKL

The key idea is to employ gHKL formulation (5) with the DAG as the conjunction lattice
and the kernels as kv(xi,xj) = φv(xi)φv(xj) for learning an ensemble of rules. Note that
with such a setup, the `1/`ρ block-norm regularizer in gHKL (ΩS(f) =

∑
v∈V dv‖fD(v)‖ρ)

implies: 1) for most v ∈ V, fv = 0, and 2) for most v ∈ V, fw = 0 ∀ w ∈ D(v). In the context
of the REL problem, the former statement is equivalent to saying: selection of a compact
set of conjunctions is promoted, while the second reads as: selection of conjunctive rules
with small number of propositions is encouraged. Thus, gHKL formulation constructs a
compact ensemble of simple conjunctive rules. In addition, we set dv = a|Sv | (a > 1), where
Sv is the set of basic propositions involved in the conjunction φv. Such a choice further
encourages selection of short conjunctions and leads to the following elegant computational
result:

Theorem 7 The complexity of the proposed gHKL algorithm in solving the REL problem,
with the DAG, the base kernels and the parameters dv as defined above, is polynomial in the
size of the active set and the training set dimensions. In particular, if the final active set
size is W , then its complexity is given by O(m3W 3 log(W ) +m2W 2p).

The proof is provided in Appendix A.11.
We end this section by noting the advantage of the generic regularizer in gHKL formu-

lation over the that in HKL formulation in the context of REL application. Recall that
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the sparsity pattern allowed by HKL has the following consequence: a conjunction is se-
lected only after selecting all the conjunctions which are subsets of it. This, particularly
in the context of REL, is psycho-visually redundant, because a rule with k propositional
statements, if included in the result, will necessarily entail the inclusion of (2k−1) more gen-
eral rules in the result. This violates the important requirement for a small set (Friedman
and Popescu, 2008; Dembczyński et al., 2008, 2010) of human-readable rules. The gHKL
regularizer, with ρ ∈ (1, 2), alleviates this restriction by promoting additional sparsity in
selecting the conjunctions. We empirically evaluate the proposed gHKL based solution for
REL application in the next section.

6. Experimental Results

In this section, we report the results of simulation in REL on several benchmark binary and
multiclass classification data sets from the UCI repository (Blake and Lichman, 2013). The
goal is to compare various rule ensemble learners on the basis of: (a) generalization, which
is measured by the predictive performance on unseen test data, and (b) ability to provide
compact set of simple rules to facilitate their readability and interpretability (Friedman and
Popescu, 2008; Dembczyński et al., 2010; Cohen and Singer, 1999). The latter is judged
using i) average number of rules learnt, and ii) average number of propositions per rule.
The following REL approaches were compared.

• RuleFit: Rule ensemble learning algorithm proposed by Friedman and Popescu
(2008). All the parameters were set to the default values mentioned by the authors. In
particular, the model was set in the mixed linear-rule mode, average tree size was set 4
and maximum number of trees were kept as 500. The same configuration was also used
by Dembczyński et al. (2008, 2010) in their simulations. This REL system cannot han-
dle multi-class data sets and hence is limited to the simulations on binary classification
data sets. Its code is available at www-stat.stanford.edu/~jhf/R-RuleFit.html.

• SLI: The SLIPPER algorithm proposed by Cohen and Singer (1999). Following Dem-
bczyński et al. (2008, 2010), all parameters were set to their defaults. We retained
the internal cross-validation for selecting the optimal number of rules.

• ENDER: State-of-the-art rule ensemble learning algorithm (Dembczyński et al.,
2010). For classification setting, ENDER is same as MLRules (Dembczyński et al.,
2008). The parameters were set to the default values suggested by the authors. The
second order heuristic was used for minimization. Its code is available at www.cs.

put.poznan.pl/wkotlowski.

• HKL-`1-MKL: A two-stage rule ensemble learning approach. In the first stage, HKL
is employed to prune the exponentially large search space of all possible conjunctive
rules and select a set of candidate rules (kernels). The rule ensemble is learnt by
employing `1-MKL over the candidate set of rules. In both the stages, a three-fold
cross validation procedure was employed to tune the C parameter with values in
{10−3, 10−2, . . . , 103}.

• gHKLρ: The proposed gHKL based REL formulation for binary classification prob-
lem. We considered three different values of ρ: 2, 1.5 and 1.1. Note that for binary
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classification, ρ = 2 renders the HKL formulation (Bach, 2008). In each case, a three-
fold cross validation procedure was employed to tune the C parameter with values in
{10−3, 10−2, . . . , 103}. As mentioned earlier, the parameters dv = 2|v|.

• gHKLMT−ρ: The proposed gHKLMT based REL formulation for multiclass classi-
fication problem. For each class, a one-vs-rest binary classification task is created.
Since we did not have any prior knowledge about the correlation among the classes
in the data sets, we employed the multi-task regularizer (7) in the gHKLMT primal
formulation (6).

We considered three different values of ρ: 2, 1.5 and 1.1. Its parameters and cross validation
details are same as that of gHKLρ. The implementations of both gHKLρ and gHKLMT−ρ are
available at http://www.cse.iitb.ac.in/~pratik.j/ghkl.

Note that the above methods differ in the way they control the number of rules (M) in
the ensemble. In the case of gHKLρ (gHKLMT−ρ), M implicitly depends on the parameters: ρ,
C and dv. SLI has a parameter for maximum number of rules Mmax and M is decided via a
internal cross-validation such that M ≤Mmax. For the sake of fairness in comparison with
gHKLρ, we set Mmax = max(M1.5,M1.1), where Mρ is the average number of rules obtained
with gHKLρ (gHKLMT−ρ). ENDER has an explicit parameter for the number of rules, which is
also set to max(M1.5,M1.1). In case of RuleFit, the number of rules in the ensemble is
determined internally and is not changed by us.

6.1 Binary Classification in REL

This section summarizes our results on binary REL classification. Table 1 provides the
details of the binary classification data sets. For every data set, we created 10 random
train-test splits with 10% train data (except for MONK-3 data set, whose train-test split
of 122 − 432 instances respectively was already given in the UCI repository). Since many
data sets were highly unbalanced, we report the average F1-score along with the standard
deviation (Table 5 in Appendix A.12 reports the average AUC). The results are presented in
Table 2. The best result, in terms of the average F1-score, for each data set is highlighted.

Data set Num Bias p |V| Data set Num Bias p |V|
TIC-TAC-TOE (TIC) 958 1.89 54 ≈ 1016 HEARTSTAT (HTS) 270 0.8 76 ≈ 1022

B-CANCER-W (BCW) 699 0.53 72 ≈ 1021 MONK-3 (MK3) 554 1.08 30 ≈ 109

DIABETES (DIA) 768 0.54 64 ≈ 1019 VOTE (VTE) 232 0.87 32 ≈ 109

HABERMAN (HAB) 306 0.36 40 ≈ 1012 B-CANCER (BCC) 277 0.41 76 ≈ 1022

HEARTC (HTC) 296 0.85 78 ≈ 1023 MAM. MASS (MAM) 829 0.94 46 ≈ 1013

BLOOD TRANS (BLD) 748 3.20 32 ≈ 109 LIVER (LIV) 345 1.38 48 ≈ 1014

Table 1: Data sets used for binary REL classification. ‘Num’ is the number of instances in
the data set while ‘Bias’ denotes the ratio of # of +ve and −ve instances. The
number of number of basic propositions is ‘p’ and |V| represents the total number
of possible conjunctions. For each numerical input feature, 8 basic propositions
were derived. The letters in brackets are the acronym used for the corresponding
data set in Table 2.
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RuleFit SLI ENDER
HKL- gHKLρ
`1-MKL ρ = 2 ρ = 1.5 ρ = 1.1

TIC 0.517± 0.092 0.665± 0.053 0.668± 0.032 0.749± 0.040 0.889± 0.093 0.897± 0.093 0.905± 0.096∗

(57.7, 2.74) (10.3, 1.96) (187, 3.17) (74.8, 1.89) (161.7, 1.72) (186.6, 1.76) (157.6, 1.72)

BCW 0.879± 0.025 0.928± 0.018 0.900± 0.041 0.925± 0.032 0.923± 0.032 0.924± 0.032 0.925± 0.032
(17.5, 2.03) (4.4, 1.15) (21, 1.56) (27,1.03) (30.9, 1) (20, 1.03) (20.4, 1.02)

DIA 0.428± 0.052 0.659± 0.027 0.656± 0.027 0.658± 0.028 0.661± 0.018 0.663± 0.017 0.661± 0.023
(32.9, 2.66) (4.9, 1.42) (74.0, 2.65) (47.6, 1.40) (83.2, 1.31) (73.2, 1.17) (62.6, 1.27)

HAB 0.175± 0.079 0.483± 0.057 0.474± 0.057 0.506± 0.048 0.523± 0.062 0.521± 0.060 0.521± 0.060
(7.5, 1) (2.1, 1) (52, 3.59) (45.6, 1.48) (112.1, 1.366) (51.2, 1.235) (17.1, 1.142)

HTC 0.581± 0.047 0.727± 0.05 0.724± 0.032 0.750± 0.038 0.743± 0.038 0.735± 0.058 0.736± 0.055
(8.8, 1) (3.2, 1.23) (32, 2.05) (32.9, 1.09) (46.7, 1.06) (23.9, 1) (32, 1.09)

BLD 0.163± 0.088 0.476± 0.057 0.433± 0 0.572± 0.029 0.586± 0.029 0.587± 0.028 0.588± 0.027
(40.7, 2.26) (2.0, 1) (63, 1.97) (175.9, 2.13) (229.7, 1.98) (62.8, 1.79) (19, 1.29)

HTS 0.582± 0.040 0.721± 0.065 0.713± 0.055 0.752± 0.036 0.747± 0.031 0.746± 0.028 0.747± 0.028
(9.3, 1) (3.5, 1.07) (25, 2.02) (24.6, 1.06) (34.7, 1.02) (25, 1.02) (24.4, 1.03)

MK3 0.947 0.802 0.972 0.972 0.972 0.972 0.972
(52, 2.88) (1, 3) (93, 1.96) (17, 1.88) (200, 2.07) (93, 1.84) (7, 1.43)

VTE 0.913± 0.047 0.935± 0.055 0.951± 0.035 0.927± 0.045 0.93± 0.042 0.929± 0.043 0.934± 0.038
(2.7, 1) (1.3, 1.15) (9, 1.07) (23.5, 1.17) (39, 1.11) (8.2, 1) (6.4, 1)

BCC 0.254± 0.089 0.476± 0.086 0.452± 0.079 0.588± 0.057 0.565± 0.059 0.563± 0.061 0.569± 0.063
(8.1, 1) (1.2, 1) (31, 2.93) (33.6, 1.17) (39.6, 1.15) (30.2, 1.07) (29.4, 1.17)

MAM 0.668± 0.032 0.808± 0.022 0.816± 0.018 0.805± 0.028 0.796± 0.026 0.796± 0.026 0.797± 0.024
(26.4, 2.68) (5.3, 1.43) (48, 2.53) (38.7, 1.32) (92.2, 1.27) (47.6, 1.24) (40.5, 1.25)

LIV 0.357± 0.016 0.445± 0.083 0.563± 0.058 0.585± 0.071 0.594± 0.046 0.595± 0.048 0.588± 0.049
(10, 1) (1.5, 1) (59, 2.35) (43.4, 1.56) (242.5, 1.42) (58.2, 1.32) (45.7, 1.36)

Table 2: Results on binary REL classification. We report the F1-score along with standard
deviation and, in brackets below, the number of the learnt rules as well as the
average length of the learnt rules. The proposed REL algorithm, gHKLρ (ρ =
1.5, 1.1), obtains better generalization performance than state-of-the-art ENDER in
most data sets, with the additional advantage of learning a smaller set of more
compact rules. The ‘*’ symbol denotes statistically significant improvement. The
results are averaged over ten random train-test splits.
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Additionally if the best result achieves a statistically significant improvement over its nearest
competitor, it is marked with a ‘*’. Statistical significance test is performed using the paired
t-test at 99% confidence. We also report the average number of rules learnt (r) and the
average length of the rules (c), specified below each F1-score as: (r, c). As discussed earlier,
it is desirable that REL algorithms achieve high F1-score with a compact set of simple rules,
i.e., low r and c.

We can observe from Table 2 that gHKLρ obtains better generalization performance than
state-of-the-art ENDER in most of the data sets with the additional advantage of having
rules with smaller number of conjunctions. In fact, when averaged over the data sets,
gHKL1.1 and gHKL1.5 output the shortest rules among all the methods. gHKL1.1 obtains
statistically significant performance in TIC-TAC-TOE data set. Though the generalization
obtained by gHKL2 (HKL), gHKL1.5 and gHKL1.1 are similar, the number of rules selected by
gHKL2 is always higher than gHKL1.1 (by as much as 25 times in a few cases), hampering its
interpretability.

6.2 Multiclass Classification in REL

This section summarizes our results on multiclass REL classification. The details of the
multiclass data sets are provided in Table 3. Within the data sets, classes with too few
instances (< 3) were not considered for simulations since we perform a three-fold cross
validation for hyper-parameter selection. The results, averaged over 10 random train-test
splits with 10% train data are presented in Table 4. Following Dembczyński et al. (2008,
2010), we report the accuracy to compare generalization performance among the algorithms.
The number of rules as well as the average length of the rules is also reported to judge the
interpretability of the output.

We can observe that gHKLMT−ρ obtains the best generalization performance in seven data
sets, out of which four are statistically significant. Moreover, gHKLMT−1.5 and gHKLMT−1.1

usually select the shortest rules among all the methods. The number of rules as well as
the average rule length of gHKLMT−2 is generally very large compared to gHKLMT−1.5 and
gHKLMT−1.1. This again demonstrates the suitability of the proposed `1/`ρ regularizer in
obtaining a compact set of simple rules.

Data set Num c p |V| Data set Num c p |V|
BALANCE 625 3 32 ≈ 109 IRIS 150 3 50 ≈ 1015

CAR 1728 4 42 ≈ 1012 LYMPH 146 3 86 ≈ 1025

C.M.C. 1473 3 54 ≈ 1016 T.A.E. 151 3 114 ≈ 1034

ECOLI 332 6 42 ≈ 1012 YEAST 1484 10 54 ≈ 1016

GLASS 214 6 72 ≈ 1021 ZOO 101 7 42 ≈ 1012

Table 3: Data sets used for multiclass REL classification. ‘Num’ is the number of instances
in the data set while ‘c’ denotes the number of classes. The number of number of
basic propositions is ‘p’ and |V| represents the total number of possible conjunc-
tions. For each numerical input feature, 8 basic propositions were derived.
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SLI ENDER
gHKLMT−ρ

ρ = 2 ρ = 1.5 ρ = 1.1

BALANCE 0.758± 0.025 0.795± 0.034 0.817± 0.028 0.808± 0.032 0.807± 0.034
(10.4, 1.7) (112, 2.4) (2468.9, 2.84) (112, 1.64) (85, 1.61)

CAR 0.823± 0.029 0.835± 0.024 0.864± 0.020 0.86± 0.028 0.875± 0.029∗

(18.3, 2.93) (270, 3.05) (9571.2, 3.14) (220.3, 1.64) (269.3, 1.85)

C.M.C. 0.446± 0.016 0.485± 0.015∗ 0.472± 0.014 0.463± 0.017 0.465± 0.016
(21.1, 1.9) (513, 4.36) (10299.3, 2.85) (512.9, 1.95) (396.4, 1.88)

ECOLI 0.726± 0.042 0.636± 0.028 0.779± 0.057 0.784± 0.045∗ 0.778± 0.054
(7.8, 1.34) (35, 2.15) (4790.2, 2.99) (34.3, 1.05) (32.4, 1.16)

GLASS 0.43± 0.061 0.465± 0.052 0.501± 0.049 0.525± 0.043∗ 0.524± 0.046
(7.4, 1.41) (70, 3.21) (5663.7, 2.40) (69.1, 1.15) (54.6, 1.04)

IRIS 0.766± 0.189 0.835± 0.093 0.913± 0.083 0.927± 0.024∗ 0.893± 0.091
(2.2, 1.02) (10, 1.34) (567, 2.44) (9.8, 1) (8.6, 1)

LYMPH 0.61± 0.066 0.706± 0.058 0.709± 0.061 0.724± 0.078 0.722± 0.078
(2.7, 1) (34, 2.2) (4683.8, 2.30) (33.7, 1.01) (33, 1.01)

T.A.E. 0.334± 0.035 0.41± 0.065 0.418± 0.049 0.399± 0.049 0.402± 0.046
(1.1, 1) (39, 1.86) (5707.4, 2.25) (38.3, 1.00) (38.1, 1.05)

YEAST 0.478± 0.035 0.497± 0.015 0.487± 0.021 0.485± 0.022 0.486± 0.021
(23.4, 1.63) (218, 5.78) (8153.6, 2.85) (217.8, 1.80) (179.6, 1.73)

ZOO 0.556± 0.062 0.938± 0.033 0.877± 0.06 0.928± 0.037 0.927± 0.039
(7.1, 1.24) (33, 1.29) (3322.2, 2.70) (32.3, 1.00) (31.9, 1.01)

Table 4: Results on multiclass REL classification. We report the accuracy along with stan-
dard deviation and, in the brackets below, the number of learnt rules as well as the
average length of the learnt rules. The proposed REL algorithm, gHKLMT−ρ, obtains
the best generalization performance in most data sets. In addition, for ρ = 1.5 and
1.1, our algorithm learns a smaller set of more compact rules than state-of-the-art
ENDER. The ‘*’ symbol denotes statistically significant improvement. The results
are averaged over ten random train-test splits.

7. Summary

This paper generalizes the HKL framework in two ways. First, a generic `1/`ρ block-norm
regularizer, ρ ∈ (1, 2), is employed that provides a more flexible kernel selection pattern than
HKL by mitigating the weight bias towards the kernels that are nearer to the sources of the
DAG. Secondly, the framework is further generalized to the setup of learning a shared feature
representation among multiple related tasks. We pose the problem of learning shared fea-
tures across the tasks as that of learning a shared kernel. An efficient mirror descent based
active set algorithm is proposed to solve the generalized formulations (gHKL/gHKLMT).
An interesting computational result is that gHKL/gHKLMT can be solved in time polyno-
mial in the active set and training set sizes whenever the HKL formulation can be solved in
polynomial time. The other important contribution in this paper is the application of the
proposed gHKL/gHKLMT formulations in the setting of Rule Ensemble Learning (REL),
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where HKL has not been previously explored. We pose the problem of learning an en-
semble of propositional rules as a kernel learning problem. Empirical results on binary
as well as multiclass classification for REL demonstrate the effectiveness of the proposed
generalizations.
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Appendix A.

In the appendix section, we provide the proofs of theorems/lemmas referred to in the main
paper.

A.1 Lemma 26 of Micchelli and Pontil (2005)

Let ai ≥ 0, i = 1, . . . , d, 1 ≤ r < ∞ and ∆d,r =
{

z ∈ Rd | z ≥ 0,
∑d

i=1 zri ≤ 1
}

. Then, the

following result holds:

min
z∈∆d,r

d∑
i=1

ai
zi

=

(
d∑
i=1

a
r
r+1

i

)1+ 1
r

.

The minimum is attained at

zi =
a

1
r+1

i(∑d
j=1 a

r
r+1

j

) 1
r

∀i = 1, . . . , d.

The proof follows from Holder’s inequality.

A.2 Proof of Lemma 1

Proof Applying the above lemma (Appendix A.1) on the outermost `1-norm of the regu-
larizer ΩT (f1, . . . , fT )2 in (6), we get

ΩT (f1, . . . , fT )2 = min
γ∈∆1

∑
v∈V

d2
v

γv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 2
ρ

,

where ∆1 =
{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
. Reapplying the above lemma on the individ-

ual terms of the above summation gives ∑
w∈D(v)

(Qw(f1, . . . , fT )2)
ρ
2

 2
ρ

= min
λv∈∆v

ρ̂

∑
w∈D(v)

Qw(f1, . . . , fT )2

λvw
,
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where ρ̂ = ρ
2−ρ and ∆v

r =
{

z ∈ R|D(v)| | z ≥ 0,
∑

w∈D(v) zrw ≤ 1
}

. Using the above two re-

sults and regrouping the terms will complete the proof.

A.3 Re-parameterization of the Multi-task Regularizer in (8)

The gHKLMT dual formulation (10) follows from the representer theorem (Schölkopf and
Smola, 2002) after employing the following re-parameterization in (8).

Define f0w = 1
T+µ

∑T
t=1 ftw and f tw = ftw − f0w. Then, Qw(f1, . . . , fT ) in (8) may be

rewritten as:

Qw(f1, . . . , fT ) =

(
µ‖f0w‖2 +

T∑
t=1

‖f tw‖2
) 1

2

.

Further, construct the following feature map (Evgeniou and Pontil, 2004)

Φw(x, t) = (
φw(x)
√
µ
, 0, . . . ,0︸ ︷︷ ︸

for tasks before t

, φw(x), 0, . . . ,0︸ ︷︷ ︸
for tasks after t

) (16)

and define fw = (
√
µf0w, f1w, . . . , fTw).

With the above definitions, we rewrite the gHKLMT primal regularizer as well as the
prediction function: Qw(f1, . . . , fT )2 = ‖fw‖2 and Ft(x) =

∑
w∈V〈fw,Φw(x, t)〉 − bt ∀ t. It

follows from Lemma 1 that the gHKLMT primal problem based on (8) is equivalent to the
following optimization problem:

min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
min
f,b

1

2

∑
w∈V

δw(γ, λ)−1‖fw‖2 + C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)), (17)

where f = (fw)w∈V and b = [b1, . . . , bT ].

A.4 Motivation for the Active Set Algorithm

Lemma 8 The problem (12) remains the same whether solved with the original set of vari-
ables (η) or when solved with only those ηv 6= 0 at optimality.

Proof The above follows from the following reasoning: a) variables η owe their presence
in (12) only via ζ(η) functions, b) (ηv = 0) ⇒ (ζw(η) = 0 ∀w ∈ D(v)), c) Let (η′, α′) be
an optimal solution of the problem (12). If ζv(η

′) = 0 and η′v 6= 0, then (η∗, α′) is also an
optimal solution of the problem (12) where η∗w = η′w ∀w ∈ V \v and η∗v = 0, and d) min-max
interchange in (12) yields an equivalent formulation.

Lemma 9 The following min-max interchange is equivalent:

min
η∈∆1

max
αt∈S(yt,C)∀t

Ḡ(η, α) = max
αt∈S(yt,C)∀t

min
η∈∆1

Ḡ(η, α),
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where

Ḡ(η, α) = 1>α− 1

2

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

.

Proof Note that G(η, α) is a convex function in η and a concave function in α. The
min-max interchange follows from Sion-Kakutani minimax theorem (Sion, 1958).

A.5 Proof of Theorem 3

Before stating the proof of Theorem 3, we first prove the results in Lemma 10, Proposi-
tion 11 and Lemma 12, which will be employed therein (also see Bach, 2009, Lemma 10 and
Proposition 11).

Lemma 10 Let ai > 0 ∀i = 1, . . . , d, 1 < r <∞ and ∆1 =
{

z ∈ Rd | z ≥ 0,
∑d

i=1 zi ≤ 1
}

.

Then, the following holds true:

min
z∈∆1

d∑
i=1

aiz
r
i =

(
d∑
i=1

a
1

1−r
i

)1−r

and the minimum is attained at

zi = a
1

1−r
i

 d∑
j=1

a
1

1−r
i

−1

∀ i = 1, . . . , d.

Proof Take vectors u1 and u2 as those with entries a
1
r
i zi and a

− 1
r

i ∀ i = 1, . . . , d respectively.
The result follows from the Holder’s inequality: u>1 u2 ≤ ‖u1‖r‖u2‖ r

r−1
. Note that if any

ai = 0, then the optimal value of the above optimization problem is zero.

Proposition 11 The following convex optimization problems are dual to each other and
there is no duality gap:

max
γ∈∆1

∑
w∈V

δw(γ, λ)Mw, (18)

min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

, (19)

where L = {κ ∈ R|V|×|V| | κ ≥ 0,
∑

v∈A(w) κvw = 1, κvw = 0 ∀v ∈ A(w)c, ∀w ∈ V},
∆1 =

{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
and Mw ≥ 0 ∀w ∈ V.

Proof The optimization problem (19) may be equivalently rewritten as:

min
κ∈L

min
A
A, subject to A ≥

∑
w∈D(u)

κ2
uwλuwMw

d2
u

∀u ∈ V,
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= min
κ∈L

max
γ∈∆1

∑
u∈V

∑
w∈D(u)

γuκ
2
uwλuwMw

d2
u

(Lagrangian dual with respect to A)

= max
γ∈∆1

min
κ∈L

∑
w∈V

 ∑
u∈A(w)

κ2
uw

γuλuw
d2
u

Mw (min-max interchange and rearranging terms)

= max
γ∈∆1

∑
w∈V

 ∑
u∈A(w)

(
γuλuw
d2
u

)−1
−1

Mw (Lemma 10 with respect to variables κ)

= max
γ∈∆1

∑
w∈V

δw(γ, λ)Mw �

Lemma 12 The following min-max interchange is equivalent:

min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
max

αt∈S(yt,C)∀t
G(γ, λ, α) = max

αt∈S(yt,C)∀t
min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
G(γ, λ, α),

where G(γ, λ, α) is as defined in (10).

Proof We proceed by applying a change of variables. Note that γv = 0 implies that the
variables λvw (∀w ∈ D(v)) do not influence the objective of optimization problem (10). This
follows from the definition of the δ(γ, λ) function. Hence, we define βvw = γvλvw, ∀w ∈ D(v)
as it is a one-to-one transformation for γv 6= 0 (see also Szafranski et al., 2010). The gHKL
dual (10) (the L.H.S. of the proposed lemma) can be equivalently rewritten as:

min
βvw≥0 ∀w∈D(v),v∈V∑

v ‖βvD(v)‖ρ̂≤1

max
αt∈S(yt,C)∀t

G(β, α), where βvD(v) = (βvw)w∈D(v),

G(β, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(β)Hw

)
Yα, and δw(β)−1 =

∑
v∈A(w)

d2
v

βvw
.

Note that δw(β) is a concave function of β (in the given feasibility set) and hence G(β, α)
is convex-concave function with convex and compact feasibility sets. Therefore, we obtain
minβ maxαG(β, α) = maxα minβ G(β, α) (with constraints over β and α as stated above) by
applying the Sion-Kakutani minimax theorem (Sion, 1958). Finally, we revert to the original

variables (γ, λ) by substituting γv = (
∑

w∈D(v) (βvw)ρ̂)
1
ρ̂ ∀v ∈ V and λvw = βvw

γv
∀w ∈

D(v), ∀v ∈ V s.t. γv 6= 0. This gives us the equivalent R.H.S.

Now we begin the proof of Theorem 3.

Proof From Lemma 12, the gHKL dual (10) can be equivalently written as:

max
α∈S(y,C)

1>α− 1

2
max
γ∈∆1

max
λv∈∆v

ρ̂ ∀v∈V

(∑
w∈V

δw(γ, λ)α>YHwYα

)
︸ ︷︷ ︸

O

, (20)
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where ρ̂ = ρ
2−ρ . In the following, we equivalently rewrite the second part of the above

formulation.

O = max
λv∈∆v

ρ̂ ∀v∈V
max
γ∈∆1

∑
w∈V

δw(γ, λ)α>YHwYα︸ ︷︷ ︸
Mw

= max
λv∈∆v

ρ̂ ∀v∈V
min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

(Proposition 11)

= max
λv∈∆v

ρ̂ ∀v∈V
min
κ∈L

min
A

A (Eliminating u)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀v ∈ V

= min
κ∈L

min
A

max
λv∈∆v

ρ̂ ∀v∈V
A (Sion-Kakutani theorem)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀v ∈ V

= min
κ∈L

min
A

A (Holder’s inequality, ρ̄= ρ̂
ρ̂−1

)

s.t. A ≥ d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

∀v ∈ V

= min
κ∈L

max
u∈V

d−2
u

 ∑
w∈D(u)

(
κ2
uwMw

)ρ̄ 1
ρ̄

(Eliminating A) (21)

Now consider the problem Oρ̄ = minκ∈L maxu∈V d
−2ρ̄
u

∑
w∈D(u)

(
κ2
uwMw

)ρ̄
. Its Lagrangian

is

L(κ,A, η) = A+
∑
v∈V

ηv

d−2ρ̄
v

∑
w∈D(v)

(
κ2
vwMw

)ρ̄ −A
 .

Minimization of L with respect to A leads to the constraint η ∈ ∆1. Hence, we have:

Oρ̄ = max
η∈∆1

min
κ∈L

∑
v∈V

∑
w∈D(v)

ηv
(
d−2
v κ2

vwMw

)ρ̄
.

Using the special structure of L, the above can be rewritten as:

Oρ̄ = max
η∈∆1

∑
w∈V

(Mw)ρ̄

 min
κw∈∆|A(w)|

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw

 ,

where ∆|A(w)| =
{
η ∈ R|A(w)| | η ≥ 0,

∑
w∈A(w) ηw ≤ 1

}
. By applying Lemma 10 with re-

spect to variables κ, we obtain the following equivalence:

min
κw∈∆|A(w)|

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw = ζw(η) =

 ∑
v∈A(w)

dρvη
1−ρ
v

 1
1−ρ

. (22)
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From the above two results, we obtain the following equivalent dual of (21):

O = max
η∈∆1

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

. (23)

Substituting O in (20) by the above (23) and again interchanging the min-max completes
the proof.

A.6 Proof of Theorem 4

Proof We begin by noting that ζv(η) (v ∈ V) is a concave function of η for all v (this is
because when ρ ∈ (1, 2], ζv is a weighted q-norm in η, where q ∈ [−1, 0) and hence is concave
in the first quadrant). By simple observations regarding operations preserving convexity we
have that the objective in (13) is a convex function of η for a fixed value of α. Hence g(η),
which is a point-wise maximum over convex functions, is itself convex. The expression for
∇g(η) is computed by employing Danskin’s theorem (Bertsekas, 1999, Proposition B.25)
and is as follows:

(∇g(η))i =− (1− ε)
2ρ̄

×

P1︷ ︸︸ ︷ ∑
u∈D(i)

dρi

(
(1− ε)ηi +

ε

|V|

)−ρ
ζsu(η)ρ

(
ᾱ>YHuYᾱ

)ρ̄ (24)

×

(∑
w∈V

ζsw(η)
(
ᾱ>YHwYᾱ

)ρ̄) 1
ρ̄
−1

︸ ︷︷ ︸
P2

,

where ρ̄ = ρ
2(ρ−1) , ζsw(η) = ζw((1− ε)η + ε

|V|), i.e., the smoothed ζw(η) and ᾱ is an optimal

solution of problem (13) with that η where the gradient is to be computed.
Next, we show that g is Lipschitz continuous by showing that its gradient is bounded.

Firstly, ρ ∈ (1, 2] and hence ρ̄ ∈ [1,∞). Next, let the minimum and maximum eigenvalues
over all Hw (w ∈ V) be θ and σ respectively. Then we have θ‖ᾱ‖2 ≤ ᾱ>YHwYᾱ ≤
σ‖ᾱ‖2. Using this, we obtain:

∑
w∈V ζ

s
w(η)

(
ᾱ>YHwYᾱ

)ρ̄ ≥ θρ̄‖ᾱ‖2ρ̄
∑

w∈V ζ
s
w(η). Note

that
∑

w∈V ζ
s
w(η) ≥ ζsr (η) where r ∈ sources(V) and ζsr (η) ≥ d

ρ/(1−ρ)
max

ε
|V| where dmax is the

maximum of dv (v ∈ V). Thus we obtain: P2 ≤
(
θρ̄‖ᾱ‖2ρ̄ε/|V|

) 1
ρ̄
−1
d

2−ρ
ρ−1
max.

Now, it is easy to see that ∀u ∈ D(i), dρi ((1 − ε)ηi + ε
|V|)
−ρζu(η)ρ ≤ d

ρ
1−ρ
i ≤ d

ρ
1−ρ
min,

where dmin is the minimum of dv (v ∈ V). Hence P1 ≤ |V|σρ̄‖ᾱ‖2ρ̄d
ρ

1−ρ
min. In addition, since

0 ≤ ᾱ ≤ C, we have ‖ᾱ‖ ≤
√
mTC. Summarizing these findings, we obtain the following

bound on the gradient:

‖∇g(η)‖1 ≤
(1− ε)

2ρ̄
mTC2θ1−ρ̄σρ̄ε

1−ρ̄
ρ̄ |V|

2
ρ

+1
d

ρ
1−ρ
mind

2−ρ
ρ−1
max.

The proof will be similar for gHKLMT formulations in other learning settings.
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A.7 Proof of Theorem 5

Proof Given a candidate solution η and α = [α>1 , . . . , α
>
T ]> (with associated primal (f =

(f1, . . . , fT ), b, ξ)), the duality gap (D) between the two variational formulations in Lemma 9
is as follows:

D = max
α̂t∈S(yt,C)∀t

Ḡ(η, α̂) − min
η̂∈∆1

Ḡ(η̂, α)

≤ 1

2
ΩT (f)2 + C1>ξ − min

η̂∈∆1

Ḡ(η̂, α)

=

Gap in solving with fixed η︷ ︸︸ ︷
ΩT (f)2 + C1>ξ − 1>α+

1

2

max
η̂∈∆1

(∑
w∈V

ζw(η̂)
(
α>YHwYα

)ρ̄) 1
ρ̄

− ΩT (f)2


︸ ︷︷ ︸

Gap in solving with fixed α

.

With this upper bound on the duality gap, it is easy to see that the following condition is
sufficient for the reduced solution (with active set W) to have D ≤ ε:

max
η∈∆1

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

≤ ΩT (fW)2 + 2(ε− εW), (25)

where εW is the duality gap9 associated with the computation of the dual variables αW .
Here as well as in the rest of the proof, the subscript (·)W implies the value of the variable
obtained when the gHKLMT formulation is solved with V restricted to the active set W. In
Appendix A.5, we had proved that the L.H.S. of the above inequality is equal to the R.H.S.
of (21), i.e.,

max
η∈∆1

(∑
w∈V

ζw(η) (Mw)ρ̄
) 1

ρ̄

= min
κ∈L

max
v∈V

d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

, (26)

where Mw = α>WYHwYαW .

Next, we obtain an upper bound of the above by substituting κ ∈ L in the R.H.S of (26).
In particular, we employ the following: the value of κvw v, w ∈ W is obtained by solving
the small10 problem (14). This is fine because W = hull(W). For v ∈ Wc and w ∈ W , by
definition of L andW, we have κvw = 0. Next, κvw is set to zero ∀ v ∈ W, w ∈ Wc. For the
remaining κvw, v ∈ Wc and w ∈ Wc, we use the value of κ obtained by solving (21) with

ρ = 1, i.e., κvw = dv

(∑
u∈A(v)∩Wc du

)−1
(also see Section A.5 Bach, 2009). Note that the

above constructed value of κ is feasible in the set L. With this choice of κ substituted in

9. This is given by the gap associated with the ρ̂-norm MKL solver employed in the mirror descent algorithm
for solving the small problem (14).

10. The value of κvw (∀v, w ∈ W) obtained in this manner satisfy the constraint set L restricted to W, i.e.,
LW = {κ ∈ R|W|×|W| | κ ≥ 0,

∑
v∈A(w) κvw = 1, κvw = 0 ∀ v ∈ A(w)c ∩W, ∀ w ∈ W}
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the R.H.S. of (26), we have the following inequalities:

max
η∈∆1

(∑
w∈V

ζw(η)
(
α>WYHwYαW

)ρ̄) 1
ρ̄

≤max

ΩT (fW)2, max
u∈Wc

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄


( Specific choice of κ)

= max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄


(∵ W = hull(W))

≤max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2


ρ̄

1
ρ̄


(∵

∑
v∈A(w)∩Wc dv ≥

∑
v∈A(w)∩D(u) dv)

≤max

ΩT (fW)2, max
u∈sources(Wc)

∑
w∈D(u)

α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2


(∵ ‖β‖1 ≥ ‖β‖ρ̄ ∀ ρ̄ ≥ 1)

Employing the above upper bound in (25) leads to the result in Theorem 5. Note that in
practice, the last upper bound is not loose for Rule Ensemble Learning (REL) application.
This is because most of the matrices, especially near the bottom of the lattice, will be (near)
zero-matrices — larger the conjunctive rule, the fewer are the examples which may satisfy
it.

A.8 gHKLMT with General Convex Loss Functions

In this section, we present extension of the proposed algorithm to other learning settings
like regression. In particular, we consider the case where the loss function `(·, ·) is a general
convex loss function such as the hinge loss, the square loss, the Huber loss, etc.

The gHKLMT primal formulation with a general convex loss function `(·, ·) was given in
equation (6). The specialized gHKLMT dual formulation corresponding to (6) is as follows:

min
η∈∆1

max
αt∈Rm,1>αt=0 ∀t

−C
T∑
t=1

m∑
i=1

ϕ∗ti

(
−αti
C

)
− 1

2

(∑
w∈V

ζw(η)
(
α>Hwα

)ρ̄) 1
ρ̄

,
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where α = [α>1 , . . . , α
>
T ]>, ζw(η) =

(∑
v∈A(w) d

ρ
vη

1−ρ
v

) 1
1−ρ

(refer Theorem 3 for details)

and ϕ∗ti denotes the Fenchel11 conjugate (Boyd and Vandenberghe, 2004) of the function
ϕti : z → `(yti, z).

A.9 Prediction Function for gHKLMT with the Hinge Loss Function

Let the final active set be W and (η̄W , ᾱW) be the optimal solution of (12). Then the
prediction function for an instance xtj belonging to the tth task is given by

Ft(x) = (ᾱW � y)>

(∑
w∈W

θ̄w(ζw(η̄W))
1
ρ̄Hw(·,xtj)

)
, (27)

where symbol � denote element-wise product, Hw is the kernel matrix corresponding to the
multi-task kernel (11), Hw(·,xtj) = ((Hw(xt′i,xtj))

m
i=1)Tt′=1 and

θ̄w =

 (ζw(η̄W))
1
ρ̄ ᾱ>WYHwYᾱW(∑

v∈W

(
(ζv(η̄W))

1
ρ̄ ᾱ>WYHvYᾱW

)ρ̄) 1
ρ̄


1
ρ̂−1

.

A.10 Proof of Corollary 6

Note that proving the computational complexity of the matrix Ku (u ∈ sources(Wc)) in
(15) to be polynomial time in size of the active set and the training set dimensions suffices
to prove the corollary. This is because all the other steps in Algorithms 3 and 2 are of
polynomial time complexity (discussed in Section 4).

We begin the proof by introducing some indexing notations related to the multi-task
matrices. Let the entries in Hw, the mT ×mT multi-task kernel matrix, be arranged in the
following form: the entry corresponding to the input pair (xt1i,xt2j) be in the ((t1 − 1) ∗
m+ i)th row and ((t2 − 1) ∗m+ j)th column of Hw.

Next we observe that the expression for Ku in Theorem 5 may be rewritten as:

Ku =

 ∑
w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2


︸ ︷︷ ︸

Tu

�KT ,

where: i) Kw is a mT ×mT matrix corresponding to the base kernel kw and constructed
from the inputs from all the tasks, ii) KT is a mT ×mT such that the entry corresponding
to the ((t1 − 1) ∗ m + i)th row and ((t2 − 1) ∗ m + j)th column (1 ≤ i, j ≤ m) of KT is
B(t1, t2), and iii) � is the symbol for element-wise product (Hadamard product).

11. Fenchel conjugate ϕ∗(z) of a convex function ϕ(u) is given by ϕ∗(z) = supu z
>u−ϕ(u). As an example,

for hinge loss ϕ(u) = `(u, y) = max(0, 1− uy), ϕ∗(z) =

{
zy if zy ∈ [−1, 0]
∞ otherwise
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In the above expression, Ku is computable in polynomial time if and only if Tu is
computable in polynomial time. The proof of the corollary follows from observing the
expression of the sufficient condition for optimality of the HKL (Bach, 2009, Equation 21),
which also involves the term Tu.

A.11 Proof of Theorem 7

Given an active set W of size W , proving that the computational complexity of the verifi-
cation of the sufficient condition of optimality (15) is polynomial in terms of the active set
and the training set sizes suffices to prove Theorem 7. This is because all the other steps
in Algorithms 3 and 2 are of polynomial time complexity (discussed in Section 4).

In the REL setup, the DAG is the conjunction lattice and the embedded kernels kv v ∈ V
may be rewritten as:

kv(xi,xj) = φv(xi) · φv(xj) =

(∏
c∈Sv

φc(xi)

)
·

(∏
c∈Sv

φc(xj)

)
=
⊙
c∈Sv

kc(xi,xj),

where Sv is the set of basic propositions involved in the conjunction φv and � is the symbol
for element-wise product (Hadamard product). The kernels corresponding to the basic
propositions are in fact the base kernels embedded in the second level nodes of the lattice
V. Employing the above definition of kv(xi,xj), the matrices Ku (in L.H.S. of (15)) are
computed as:

Ku =
∑

w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2 =

(⊙
c∈Su

Kc

a2

)
�

 ⊙
c∈B/Su

(
Kc

(1 + a)2
+ 11>

) ,

where Kc is the kernel matrix corresponding to the basic proposition φc, B is the set of all
basic propositions and the parameters dv (v ∈ V) are defined as dv = a|Sv | (a > 0).

It is obvious that a trivial computational complexity of computing Ku (u ∈ V) is O(pm2).
In practice, this complexity can be reduced to O(m2) by caching the matrices Ku. For
illustration, suppose Ku1 needs to be computed, given that Ku0 is cached and u0 is a parent
of u1. Let the extra basic proposition contained in φu1 (with respect to φu0) be φe. Then
Ku1 can be calculated as follows:

Ku1 = Ku0 �
(
Ke

a2

)
�
(

Ke

(1 + a)2
+ 11>

)
,

where � is the symbol for element-wise division of matrices.

Hence, plugging the REL specific values in the runtime complexity of the gHKL algo-
rithm, ω =constant and z = p, the runtime complexity of the gHKL based REL algorithm
is O(m3W 3 log(W ) +m2W 2p).

A.12 REL Binary Classification Results in AUC

Table 5 reports the REL binary classification results in AUC (area under the ROC curve).
The experimental details (and results measured in F1-score) are discussed in Section 6.
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RuleFit SLI ENDER
HKL- gHKLρ
`1-MKL ρ = 2 ρ = 1.5 ρ = 1.1

TIC 0.736± 0.05 0.482± 0.21 0.783± 0.036 0.836± 0.024 0.967± 0.023 0.973± 0.02 0.975± 0.018

BCW 0.941± 0.011 0.917± 0.051 0.958± 0.039 0.981± 0.008 0.984± 0.005 0.93± 0.099 0.93± 0.099

DIA 0.67± 0.027 0.576± 0.115 0.761± 0.02 0.746± 0.050 0.766± 0.046 0.733± 0.058 0.636± 0.118

HAB 0.537± 0.054 0.17± 0.155 0.575± 0.039 0.524± 0.078 0.556± 0.07 0.482± 0.11 0.383± 0.166

HTC 0.764± 0.03 0.541± 0.215 0.805± 0.031 0.802± 0.085 0.837± 0.035 0.763± 0.12 0.753± 0.118

BLD 0.546± 0.06 0.175± 0.256 0.68± 0.028 0.660± 0.025 0.667± 0.034 0.634± 0.028 0.519± 0.079

HTS 0.765± 0.028 0.712± 0.085 0.801± 0.022 0.825± 0.032 0.849± 0.021 0.83± 0.027 0.811± 0.056

MK3 0.972 0.632 0.998 0.995 1 0.998 0.957

VTE 0.955± 0.022 0.919± 0.048 0.965± 0.014 0.977± 0.009 0.972± 0.016 0.948± 0.015 0.945± 0.016

BCC 0.578± 0.05 0.469± 0.078 0.622± 0.043 0.627± 0.063 0.637± 0.055 0.576± 0.089 0.513± 0.124

MAM 0.818± 0.02 0.763± 0.08 0.887± 0.006 0.866± 0.028 0.882± 0.023 0.85± 0.032 0.839± 0.03

LIV 0.607± 0.017 0.093± 0.168 0.619± 0.038 0.619± 0.074 0.623± 0.038 0.583± 0.11 0.565± 0.109

Table 5: Results on binary REL classification. We report the average AUC along with
standard deviation, over ten random train-test splits.
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Abstract

We describe discrete restricted Boltzmann machines: probabilistic graphical models with
bipartite interactions between visible and hidden discrete variables. Examples are binary
restricted Boltzmann machines and discrete näıve Bayes models. We detail the inference
functions and distributed representations arising in these models in terms of configurations
of projected products of simplices and normal fans of products of simplices. We bound the
number of hidden variables, depending on the cardinalities of their state spaces, for which
these models can approximate any probability distribution on their visible states to any
given accuracy. In addition, we use algebraic methods and coding theory to compute their
dimension.

Keywords: restricted Boltzmann machine, näıve Bayes model, representational power,
distributed representation, expected dimension

1. Introduction

A restricted Boltzmann machine (RBM) is a probabilistic graphical model with bipartite
interactions between an observed set and a hidden set of units (Smolensky, 1986; Freund
and Haussler, 1991; Hinton, 2002, 2010). A characterizing property of these models is that
the observed units are independent given the states of the hidden units and vice versa. This
is a consequence of the bipartiteness of the interaction graph and does not depend on the
units’ state spaces. Typically RBMs are defined with binary units, but other types of units
have also been considered, including continuous, discrete, and mixed type units (Welling
et al., 2005; Marks and Movellan, 2001; Salakhutdinov et al., 2007; Dahl et al., 2012; Tran
et al., 2011). We study discrete RBMs, also called multinomial or softmax RBMs, which
are special types of exponential family harmoniums (Welling et al., 2005). While each
unit Xi of a binary RBM has the state space {0, 1}, the state space of each unit Xi of a
discrete RBM is a finite set Xi = {0, 1, . . . , ri − 1}. Like binary RBMs, discrete RBMs can
be trained using contrastive divergence (CD) (Hinton, 1999, 2002; Carreira-Perpiñán and

c©2015 Guido Montúfar and Jason Morton.
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Figure 1: Examples of probability models treated in this paper, in the special case of binary
visible variables. The light (dark) nodes represent visible (hidden) variables with
the indicated number of states. The total parameter count of each model is
indicated at the top. From left to right: a binary RBM; a discrete RBM with one
8-valued and one binary hidden units; and a binary näıve Bayes model with 16
hidden classes.

Hinton, 2005) or expectation-maximization (EM) (Dempster et al., 1977) and can be used
to train the parameters of deep systems layer by layer (Hinton et al., 2006; Bengio et al.,
2007).

Non-binary visible units are natural because they can directly encode non-binary fea-
tures. The situation with hidden units is more subtle. States that appear in different hidden
units can be activated by the same visible vector, but states that appear in the same hidden
unit are mutually exclusive. Non-binary hidden units thus allow one to explicitly represent
complex exclusive relationships. For example, a discrete RBM topic model would allow some
topics to be mutually exclusive and other topics to be mixed together freely. This provides
a better match to the semantics of several learning problems, although the learnability of
such representations is mostly open. The practical need to represent mutually exclusive
properties is evidenced by the common approach of adding activation sparsity parameters
to binary RBM hidden states, which artificially create mutually exclusive non-binary states
by penalizing models which have more than a certain percentage of hidden units active.

A discrete RBM is a product of experts (Hinton, 1999); each hidden unit represents an
expert which is a mixture model of product distributions, or näıve Bayes model. Hence dis-
crete RBMs capture both näıve Bayes models and binary RBMs, and interpolate between
non-distributed mixture representations and distributed mixture representations (Bengio,
2009; Montúfar and Morton, 2015). See Figure 1. Näıve Bayes models have been studied
across many disciplines. In machine learning they are most commonly used for classification
and clustering, but have also been considered for probabilistic modeling (Lowd and Domin-
gos, 2005; Montúfar, 2013). Theoretical work on binary RBM models includes results on
universal approximation (Freund and Haussler, 1991; Le Roux and Bengio, 2008; Montúfar
and Ay, 2011), dimension and parameter identifiability (Cueto et al., 2010), Bayesian learn-
ing coefficients (Aoyagi, 2010), complexity (Long and Servedio, 2010), approximation er-
rors (Montúfar et al., 2011). In this paper we generalize some of these theoretical results
to discrete RBMs.

Probability models with more general interactions than strictly bipartite have also
been considered, including semi-restricted Boltzmann machines and higher-order interaction
Boltzmann machines (Sejnowski, 1986; Memisevic and Hinton, 2010; Osindero and Hinton,
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2008; Ranzato et al., 2010). The techniques that we develop in this paper also serve to treat
a general class of RBM-like models allowing within-layer interactions, a generalization that
will be carried out in a forthcoming work (Montúfar and Morton, 2013).

Section 2 collects basic facts about independence models, näıve Bayes models, and bi-
nary RBMs, including an overview on the aforementioned theoretical results. Section 3
defines discrete RBMs formally and describes them as (i) products of mixtures of prod-
uct distributions (Proposition 6) and (ii) as restricted mixtures of product distributions.
Section 4 elaborates on distributed representations and inference functions represented by
discrete RBMs (Proposition 9, Lemma 10, and Proposition 11). Section 5 addresses the
expressive power of discrete RBMs by describing explicit submodels (Theorem 12) and pro-
vides results on their maximal approximation errors and universal approximation properties
(Theorem 13). Section 6 treats the dimension of discrete RBM models (Proposition 14 and
Theorem 15). Section 7 contains an algebraic-combinatorial discussion of tropical discrete
RBM models (Theorem 17) with consequences for their dimension collected in Proposi-
tions 20, 21, and 22. Section 8 offers a conclusion.

2. Preliminaries

This section collects basic facts about independence models, näıve Bayes models, and binary
RBMs.

2.1 Independence Models

Consider a system of n <∞ random variables X1, . . . , Xn. Assume that Xi takes states xi
in a finite set Xi = {0, 1, . . . , ri − 1} for all i ∈ {1, . . . , n} =: [n]. The state space of this
system is X := X1 × · · · × Xn. We write xλ = (xi)i∈λ for a joint state of the variables with
index i ∈ λ for any λ ⊆ [n], and x = (x1, . . . , xn) for a joint state of all variables. We denote
by ∆(X ) the set of all probability distributions on X . We write 〈a, b〉 for the inner product
a>b.

The independence model of the variables X1, . . . , Xn is the set of product distributions
p(x) =

∏
i∈[n] pi(xi) for all x ∈ X , where pi is a probability distribution with state space Xi

for all i ∈ [n]. This model is the closure EX (in the Euclidean topology) of the exponential
family

EX :=
{ 1

Z(θ)
exp(〈θ,A(X )〉) : θ ∈ RdX

}
,

where A(X ) ∈ RdX×X is a matrix of sufficient statistics; with rows equal to the indicator
functions 1X and 1{x : xi=yi} for all yi ∈ Xi \ {0} for all i ∈ [n]. The partition function
Z(θ) normalizes the distributions. The convex support of EX is the convex hull QX :=

conv({A(X )
x }x∈X ) of the columns of A(X ), which is a Cartesian product of simplices with

QX ∼= ∆(X1)× · · · ×∆(Xn).
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Figure 2: The convex support of the independence model of three binary variables (left)
and of a binary-ternary pair of variables (right) discussed in Example 1.

Example 1 The sufficient statistics of the independence models EX and EX ′ with state
spaces X = {0, 1}3 and X ′ = {0, 1, 2}×{0, 1} are, with rows labeled by indicator functions,

A(X ) =

[
1
1
1

] [
1
1
0

] [
1
0
1

] [
1
0
0

] [
0
1
1

] [
0
1
0

] [
0
0
1

] [
0
0
0

]


1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

x3 = 1
x2 = 1
x1 = 1

A(X ′) =

[
1
2

] [
1
1

] [
1
0

] [
0
2

] [
0
1

] [
0
0

]


1 1 1 1 1 1

1 1 1 0 0 0

1 0 0 1 0 0
0 1 0 0 1 0

x2 = 1

x1 = 2
x1 = 1

.

In the first case the convex support is a cube and in the second it is a prism. Both convex
supports are three-dimensional polytopes, but the prism has fewer vertices and is more
similar to a simplex, meaning that its vertex set is affinely more independent than that of
the cube. See Figure 2.

2.2 Näıve Bayes Models

Let k ∈ N. The k-mixture of the independence model, or näıve Bayes model with k hidden
classes, with visible variables X1, . . . , Xn is the set of all probability distributions expressible
as convex combinations of k points in EX :

MX ,k :=
{∑
i∈[k]

λip
(i) : p(i) ∈ EX , λi ≥ 0, for all i ∈ [k], and

∑
i∈[k]

λi = 1
}
.

We writeMn,k for the k-mixture of the independence model of n binary variables. The
dimensions of mixtures of binary independence models are known:

Theorem 1 (Catalisano et al. 2011) The mixtures of binary independence modelsMn,k

have the dimension expected from counting parameters, min{nk + (k − 1), 2n − 1}, except
for M4,3, which has dimension 13 instead of 14.

Let AX (d) denote the maximal cardinality of a subset X ′ ⊆ X of minimum Hamming
distance at least d, i.e., the maximal cardinality of a subset X ′ ⊆ X with dH(x, y) ≥ d for

656



Discrete Restricted Boltzmann Machines

all distinct points x, y ∈ X ′, where dH(x, y) := |{i ∈ [n] : xi 6= yi}| denotes the Hamming
distance between x and y. The function AX is familiar in coding theory. The k-mixtures
of independence models are universal approximators when k is large enough. This can be
made precise in terms of AX (2):

Theorem 2 (Montúfar 2013) The mixture modelMX ,k can approximate any probability
distribution on X arbitrarily well if k ≥ |X |/maxi∈[n] |Xi| and only if k ≥ AX (2).

By results from (Gilbert, 1952; Varshamov, 1957), when q is a power of a prime number
and X = {0, 1, . . . , q − 1}n, then AX = qn−1. In these cases the previous theorem shows
that MX ,k is a universal approximator of distributions on X if and only if k ≥ qn−1.
In particular, the smallest näıve Bayes model universal approximator of distributions on
{0, 1}n has 2n−1(n+ 1)− 1 parameters.

Some of the distributions not representable by a given näıve Bayes model can be char-
acterized in terms of their modes. A state x ∈ X is a mode of a distribution p ∈ ∆(X ) if
p(x) > p(y) for all y with dH(x, y) = 1 and it is a strong mode if p(x) >

∑
y : dH(x,y)=1 p(y).

Lemma 3 (Montúfar and Morton 2015) Let p =
∑

i λip
(i) be a mixture of product

distributions. If p has strong modes C ⊆ X , then there is a mixture component p(i) with
mode x for each x ∈ C.

2.3 Binary Restricted Boltzmann Machines

The binary RBM model with n visible and m hidden units, denoted RBMn,m, is the set of
distributions on {0, 1}n of the form

p(x) =
1

Z(W,B,C)

∑
h∈{0,1}m

exp(h>Wx+B>x+ C>h) for all x ∈ {0, 1}n, (1)

where x denotes states of the visible units, h denotes states of the hidden units, W =
(Wji)ji ∈ Rm×n is a matrix of interaction weights, B ∈ Rn and C ∈ Rm are vectors
of bias weights, and Z(W,B,C) =

∑
x∈{0,1}n

∑
h∈{0,1}m exp(h>Wx + B>x + C>h) is the

normalizing partition function.
It is known that these models have the expected dimension for many choices of n and m:

Theorem 4 (Cueto et al. 2010) The dimension of the model RBMn,m is equal to nm+
n+m when m+ 1 ≤ 2n−dlog2(n+1)e and it is equal to 2n − 1 when m ≥ 2n−blog2(n+1)c.

It is also known that with enough hidden units, binary RBMs are universal approxima-
tors:

Theorem 5 (Montúfar and Ay 2011) The model RBMn,m can approximate any distri-
bution on {0, 1}n arbitrarily well whenever m ≥ 2n−1 − 1.

A previous result by Le Roux and Bengio (2008, Theorem 2) shows that RBMn,m is a
universal approximator whenever m ≥ 2n + 1. It is not known whether the bounds from
Theorem 5 are always tight, but they show that for any given n, the smallest RBM universal
approximator of distributions on {0, 1}n has at most 2n−1(n+ 1)− 1 parameters and hence
not more than the smallest näıve Bayes model universal approximator (Theorem 2).

657
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3. Discrete Restricted Boltzmann Machines

Let Xi = {0, 1, . . . , ri − 1} for all i ∈ [n] and Yj = {0, 1, . . . , sj − 1} for all j ∈ [m]. The
graphical model with full bipartite interactions {{i, j} : i ∈ [n], j ∈ [m]} on X × Y is the
exponential family

EX ,Y :=

{
1

Z(θ)
exp(〈θ,A(X ,Y)〉) : θ ∈ RdX dY

}
, (2)

with sufficient statistics matrix equal to the Kronecker product A(X ,Y) = A(X ) ⊗ A(Y)

of the sufficient statistics matrices A(X ) and A(Y) of the independence models EX and

EY . The matrix A(X ,Y) has dXdY =
(∑

i∈[n](|Xi| − 1) + 1
)(∑

j∈[m](|Yi| − 1) + 1
)

linearly

independent rows and |X ×Y| columns, each column corresponding to a joint state (x, y) of
all variables. Disregarding the entry of θ that is multiplied with the constant row of A(X ,Y),
which cancels out with the normalization function Z(θ), this parameterization of EX ,Y is
one-to-one. In particular, this model has dimension dim(EX ,Y) = dXdY − 1.

The discrete RBM model RBMX ,Y is the following set of marginal distributions:

RBMX ,Y :=
{
q(x) =

∑
y∈Y

p(x, y) for all x ∈ X : p ∈ EX ,Y
}
.

In the case of one single hidden unit, this model is the näıve Bayes model on X with
|Y1| hidden classes. When all units are binary, X = {0, 1}n and Y = {0, 1}m, this model is
RBMn,m. Note that the exponent in Equation 1 can be written as (h>Wx+B>x+C>h) =

〈θ,A(X ,Y)
(x,h) 〉, taking for θ the column-by-column vectorization of the matrix

(
0 B>
C W

)
.

3.1 Conditional Distributions

The conditional distributions of discrete RBMs can be described in the following way. Con-
sider a vector θ ∈ RdX dY parameterizing EX ,Y , and the matrix Θ ∈ RdY×dX with column-by-
column vectorization equal to θ. A lemma by Roth (1934) shows that θ>(A(X )⊗A(Y))(x,y) =

(A
(X )
x )>Θ>A

(Y)
y for all x ∈ X , y ∈ Y, and hence〈
θ,A

(X ,Y)
(x,y)

〉
=
〈

ΘA(X )
x , A(Y)

y

〉
=
〈

Θ>A(Y)
y , A(X )

x

〉
∀x ∈ X , y ∈ Y. (3)

The inner product in Equation 3 describes following probability distributions:

pθ(·, ·) =
1

Z(θ)
exp

(〈
θ,A(X ,Y)

〉)
,

pθ(·|x) =
1

Z
(
ΘA

(X )
x

) exp
(〈

ΘA(X )
x , A(Y)

〉)
, and

pθ(·|y) =
1

Z
(
Θ>A

(Y)
y

) exp
(〈

Θ>A(Y)
y , A(X )

〉)
.

Geometrically, ΘA(X ) is a linear projection of the columns of the sufficient statistics matrix
A(X ) into the parameter space of EY , and similarly, Θ>A(Y) is a linear projection of the
columns of A(Y) into the parameter space of EX .

658



Discrete Restricted Boltzmann Machines

3.2 Polynomial Parameterization

Discrete RBMs can be parameterized not only in the exponential way discussed above, but
also by simple polynomials. The exponential family EX ,Y can be parameterized by square
free monomials:

p(v, h) =
1

Z

∏
{j, i} ∈ [m]× [n],
(y′j , x

′
i) ∈ Yj ×Xi

(γ{j,i},(y′j ,x′i))
δy′

j
(hj)δx′

i
(vi)

for all (v, h) ∈ Y × X ,

where γ{j,i},(y′j ,x′i) are positive reals. The probability distributions in RBMX ,Y can be written
as

p(v) =
1

Z

∏
j∈[m]

( ∑
hj∈Yj

γ{j,1},(hj ,v1) · · · γ{j,n},(hj ,vn)

)
for all v ∈ X . (4)

The parameters γ{j,i},(y′j ,x′i) correspond to exp(θ{j,i},(y′j ,x′i)) in the parameterization given in

Equation 2.

3.3 Products of Mixtures and Mixtures of Products

In the following we describe discrete RBMs from two complementary perspectives: (i) as
products of experts, where each expert is a mixture of products, and (ii) as restricted
mixtures of product distributions. The renormalized entry-wise (Hadamard) product of two
probability distributions p and q on X is defined as p ◦ q := (p(x)q(x))x∈X /

∑
y∈X p(y)q(y).

Here we assume that p and q have overlapping supports, such that the definition makes
sense.

Proposition 6 The model RBMX ,Y is a Hadamard product of mixtures of product distri-
butions:

RBMX ,Y =MX ,|Y1| ◦ · · · ◦MX ,|Ym| .

Proof The statement can be seen directly by considering the parameterization from Equa-
tion 4. To make this explicit, one can use a homogeneous version of the matrix A(X ,Y)

which we denote by A and which defines the same model. Each row of A is indexed by an
edge {i, j} of the bipartite graph and a joint state (xi, hj) of the visible and hidden units
connected by this edge. Such a row has a one in any column when these states agree with
the global state, and zero otherwise. For any j ∈ [m] let Aj,: denote the matrix containing
the rows of A with indices ({i, j}, (xi, hj)) for all xi ∈ Xi for all i ∈ [n] for all hj ∈ Yj , and
let A(x, h) denote the (x, h)-column of A. We have

p(x) =
1

Z

∑
h

exp(〈θ,A(x, h)〉)

=
1

Z

∑
h

exp(〈θ1,:, A1,:(x, h)〉) exp(〈θ2,:, A2,:(x, h)〉) · · · exp(〈θm,:, Am,:(x, h)〉)

=
1

Z

(∑
h1

exp(〈θ1,:, A1,:(x, h1)〉)
)
· · ·
(∑
hm

exp(〈θm,:, Am,:(x, hm)〉)
)

=
1

Z
(Z1p

(1)(x)) · · · (Zmp(m)(x)) =
1

Z ′
p(1)(x) · · · p(m)(x),
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where p(j) ∈ MX ,|Yj | and Zj =
∑

x∈X
∑

hj∈Yj exp(〈θj,:, Aj,:(x, hj)〉) for all j ∈ [m]. Since

the vectors θj,: can be chosen arbitrarily, the factors p(j) can be made arbitrary within
MX ,|Yj |.

Of course, every distribution in RBMX ,Y is a mixture distribution p(x) =
∑

h∈Y p(x|h)q(h).
The mixture weights are given by the marginals q(h) on Y of distributions from EX ,Y , and
the mixture components can be described as follows.

Proposition 7 The set of conditional distributions p(·|h), h ∈ Y of a distribution in EX ,Y
is the set of product distributions in EX with parameters θh = Θ>A

(Y)
h , h ∈ Y equal to

a linear projection of the vertices {A(Y)
h : h ∈ Y} of the Cartesian product of simplices

QY ∼= ∆(Y1)× · · · ×∆(Ym).

Proof This is by Equation 3.

4. Products of Simplices and Their Normal Fans

Binary RBMs have been analyzed by considering each of the m hidden units as defining a
hyperplane Hj slicing the n-cube into two regions. To generalize the results provided by
this analysis, in this section we replace the n-cube with a general product of simplices QX ,
and replace the two regions defined by the hyperplane Hj by the |Yj | regions defined by the
maximal cones of the normal fan of the simplex ∆(Yj).

4.1 Subdivisions of Independence Models

The normal cone of a polytope Q ⊂ Rd at a point x ∈ Q is the set of all vectors v ∈ Rd with
〈v, (x− y)〉 ≥ 0 for all y ∈ Q. We denote by Rx the normal cone of the product of simplices

QX = conv{A(X )
x }x∈X at the vertex A

(X )
x . The normal fan FX is the set of all normal

cones of QX . The product distributions pθ = 1
Z(θ) exp(〈θ,A(X )〉) ∈ EX strictly maximized

at x ∈ X , with pθ(x) > pθ(y) for all y ∈ X \ {x}, are those with parameter vector θ in
the relative interior of Rx. Hence the normal fan FX partitions the parameter space of the
independence model into regions of distributions with maxima at different inputs.

4.2 Inference Functions and Slicings

For any choice of parameters of the model RBMX ,Y , there is an inference function π : X →
Y, (or more generally π : X → 2Y), which computes the most likely hidden state given
a visible state. These functions are not necessarily injective nor surjective. For a visible
state x, the conditional distribution on the hidden states is a product distribution p(y|X =

x) = 1
Z exp(〈ΘA(X )

x , A
(Y)
y 〉) which is maximized at the state y for which ΘA

(X )
x ∈ Ry. The

preimages of the cones Ry by the map Θ partition the input space RdX and are called
inference regions. See Figure 3 and Example 2.
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R0

R1

R2

0

1

2
(0, 0) (0, 1)

(1, 0) (1, 1)
Θ−1(R2)

Θ−1(R1)

Θ−1(R0)

Figure 3: Three slicings of a square by the normal fan of a triangle with maximal
cones R0, R1, and R2, corresponding to three possible inference functions of
RBM{0,1}2,{0,1,2}.

Definition 8 A Y-slicing of a finite set Z ⊂ RdX is a partition of Z into the preimages of
the cones Ry, y ∈ Y by a linear map Θ: RdX → RdY . We assume that Θ is generic, such
that it maps each element of Z into the interior of some Ry.

For example, when Y = {0, 1}, the fan FY consists of a hyperplane and the two closed
half-spaces defined by that hyperplane. A Y-slicing is in this case a standard slicing by a
hyperplane.

Example 2 Let X = {0, 1, 2} × {0, 1} and Y = {0, 1}4. The maximal cones Ry, y ∈ Y
of the normal fan of the 4-cube with vertices {0, 1}4 are the closed orthants of R4. The 6

vertices {A(X )
x : x ∈ X} of the prism ∆({0, 1, 2})×∆({0, 1}) can be mapped into 6 distinct

orthants of R4, each orthant with an even number of positive coordinates: 3 −2 −2 −2
1 2 −2 −2
1 −2 −2 2
1 −2 2 −2


Θ

 1 1 1 1 1 1
1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0


A(X )

=

 −1 −1 1 1 1 3
1 1 3 −1 −1 1
−3 1 −1 −1 3 1

1 −3 −1 3 −1 1

 .

Even in the case of one single hidden unit the slicings can be complex, but the following
simple type of slicing is always available.

Proposition 9 Any slicing by k − 1 parallel hyperplanes is a {1, 2, . . . , k}-slicing.

Proof We show that there is a line L = {λr − b : λ ∈ R}, r, b ∈ Rk intersecting all cells of
FY , Y = {1, . . . , k}. We need to show that there is a choice of r and b such that for every
y ∈ Y the set Iy ⊆ R of all λ with 〈λr− b, (ey−ez)〉 > 0 for all z ∈ Y \{y} has a non-empty
interior. Now, Iy is the set of λ with

λ(ry − rz) > by − bz for all z 6= y.

Choosing b1 < · · · < bk and ry = f(by), where f is a strictly increasing and strictly con-

cave function, we get I1 = (−∞, b2−b1r2−r1 ), Iy = (
by−by−1

ry−ry−1
,
by+1−by
ry+1−ry ) for y = 2, 3, . . . , k − 1, and
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Ik = (
bk−bk−1

rk−rk−1
,∞). The lengths∞, l2, . . . , lk−1,∞ of the intervals I1, . . . , Ik can be adjusted

arbitrarily by choosing suitable differences rj+1 − rj for all j = 1, . . . , k − 1.

4.3 Strong Modes

Recall the definition of strong modes given in page 657.

Lemma 10 Let C ⊆ X be a set of arrays which are pairwise different in at least two entries
(a code of minimum distance two).

• If RBMX ,Y contains a probability distribution with strong modes C, then there is a

linear map Θ of {A(Y)
y : y ∈ Y} into the C-cells of FX (the cones Rx above the code

words x ∈ C) sending at least one vertex into each cell.

• If there is a linear map Θ of {A(Y)
y : y ∈ Y} into the C-cells of FX , with

max
x
{〈Θ>A(Y)

y , A(X )
x 〉} = c

for all y ∈ Y, then RBMX ,Y contains a probability distribution with strong modes C.

Proof This is by Proposition 7 and Lemma 3.

A simple consequence of the previous lemma is that if the model RBMX ,Y is a universal
approximator of distributions on X , then necessarily the number of hidden states is at
least as large as the maximum code of visible states of minimum distance two, |Y| ≥ AX (2).
Hence discrete RBMs may not be universal approximators even when their parameter count
surpasses the dimension of the ambient probability simplex.

Example 3 Let X = {0, 1, 2}n and Y = {0, 1, . . . , 4}m. In this case AX (2) = 3n−1. If
RBMX ,Y is a universal approximator with n = 3 and n = 4, then m ≥ 2 and m ≥ 3,
respectively, although the smallest m for which RBMX ,Y has 3n − 1 parameters is m = 1
and m = 2, respectively.

Using Lemma 10 and the analysis by Montúfar and Morton (2015) gives the following.

Proposition 11 If 4dm/3e ≤ n, then RBMX ,Y contains distributions with 2m strong
modes.

5. Representational Power and Approximation Errors

In this section we describe submodels of discrete RBMs and use them to provide bounds on
the model approximation errors depending on the number of units and their state spaces.
Universal approximation results follow as special cases with vanishing approximation error.

Theorem 12 The model RBMX ,Y can approximate the following arbitrarily well:
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• Any mixture of dY = 1 +
∑m

j=1(|Yj | − 1) product distributions with disjoint supports.

• When dY ≥ (
∏
i∈[k] |Xi|)/maxj∈[k] |Xj | for some k ≤ n, any distribution from the

model P of distributions with constant value on each block {x1}× · · ·×{xk}×Xk+1×
· · · × Xn for all xi ∈ Xi, for all i ∈ [k].

• Any probability distribution with support contained in the union of dY sets of the form
{x1} × · · · × {xk−1} × Xk × {xk+1} × · · · × {xn}.

Proof By Proposition 6 the model RBMX ,Y contains any Hadamard product p(1)◦· · ·◦p(m)

with mixtures of products as factors, p(j) ∈ MX ,|Yj | for all j ∈ [m]. In particular, it

contains p = p(0) ◦ (1 + λ̃1p̃
(1)) ◦ · · · ◦ (1 + λ̃mp̃

(m)), where p(0) ∈ EX , p̃(j) ∈ MX ,|Yj |−1,

and λ̃j ∈ R+. Choosing the factors p̃(j) with pairwise disjoint supports shows that p =∑m
j=0 λjp

(j), whereby p(0) can be any product distribution and p(j) can be any distribution

fromMX ,|Yj |−1 for all j ∈ [m], as long as supp(p(j))∩ supp(p(j′)) for all j 6= j′. This proves
the first item.

For the second item: Any point in the set P is a mixture of uniform distributions
supported on the disjoint blocks {x1} × · · · × {xk} × Xk+1 × · · · × Xn for all (x1, . . . , xk) ∈
X1×· · ·×Xk. Each of these uniform distributions is a product distribution, since it factorizes
as px1,...,xk =

∏
i∈[k] δxi

∏
i∈[n]\[k] ui, where ui denotes the uniform distribution on Xi. For

any j ∈ [k] any mixture
∑

xj∈Xj
λxjpx1,...,xk is also a product distribution, since it factorizes

as ( ∑
xj∈Xj

λxjδxj

) ∏
i∈[k]\{j}

δxi
∏

i∈[n]\[k]

ui.

Hence any distribution from the set P is a mixture of (
∏
i∈[k] |Xi|)/maxj∈[k] |Xj | product

distributions with disjoint supports. The claim now follows from the first item.
For the third item: The model EX contains any distribution with support of the form

{x1} × · · · × {xk−1} × Xk × {xk+1} × · · · × {xn}. Hence, by the first item, the RBM model
can approximate any distribution arbitrarily well whose support can be covered by dY sets
of that form.

We now analyze the RBM model approximation errors. Let p and q be two probability
distributions on X . The Kullback-Leibler divergence from p to q is defined as D(p‖q) :=∑

x∈X p(x) log p(x)
q(x) when supp(p) ⊆ supp(q) and D(p‖q) := ∞ otherwise. The divergence

from p to a model M ⊆ ∆(X ) is defined as D(p‖M) := infq∈MD(p‖q) and the maximal
approximation error of M is supp∈∆(X )D(p‖M).

It is known that the maximal approximation error of the independence model EX satisfies
supp∈∆(X )D(p‖EX ) ≤ |X |/maxi∈[n] |Xi|, with equality when all units have the same number
of states (Ay and Knauf, 2006, Corollary 4.10).

Theorem 13 If
∏
i∈[n]\Λ |Xi| ≤ 1 +

∑
j∈[m](|Yj | − 1) = dY for some Λ ⊆ [n], then the

Kullback-Leibler divergence from any distribution p on X to the model RBMX ,Y is bounded
by

D(p‖RBMX ,Y) ≤ log

∏
i∈Λ |Xi|

maxi∈Λ |Xi|
.
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Figure 4: Illustration of Theorem 13. The left panel shows a heat map of the upper bound
on the Kullback-Leibler approximation errors of discrete RBMs with 100 visible
binary units and the right panel shows a map of the total number of model
parameters, both depending on the number of hidden units m and their possible
states k = |Yj | for all j ∈ [m].

In particular, the model RBMX ,Y is a universal approximator whenever dY ≥ |X |/maxi∈[n] |Xi|.

Proof The submodel P of RBMX ,Y described in the second item of Theorem 12 is a
partition model. The maximal divergence from such a model is equal to the logarithm
of the cardinality of the largest block with constant values (Matúš and Ay, 2003). Thus
maxpD(p‖RBMX ,Y) ≤ maxpD(p‖P) = log

(
(
∏
i∈Λ |Xi|)/maxi∈Λ |Xi|

)
, as was claimed.

Theorem 13 shows that, on a large scale, the maximal model approximation error of
RBMX ,Y is smaller than that of the independence model EX by at least log(1+

∑
j∈[m](|Yj |−

1)), or vanishes. The theorem is illustrated in Figure 4. The line k = 2 shows bounds on the
approximation error of binary RBMs with m hidden units, previously treated in (Montúfar
et al., 2011, Theorem 5.1), and the line m = 1 shows bounds for näıve Bayes models with
k hidden classes.

6. Dimension

In this section we study the dimension of the model RBMX ,Y . One reason RBMs are
attractive is that they have a large learning capacity, e.g. may be built with millions of
parameters. Dimension calculations show whether those parameters are wasted, or trans-
late into higher-dimensional spaces of representable distributions. Our analysis builds on
previous work by Cueto, Morton, and Sturmfels (2010), where binary RBMs are treated.
The idea is to bound the dimension from below by the dimension of a related max-plus
model, called the tropical RBM model (Pachter and Sturmfels, 2004), and from above by
the dimension expected from counting parameters.
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The dimension of a discrete RBM model can be bounded from above not only by its
expected dimension, but also by a function of the dimension of its Hadamard factors:

Proposition 14 The dimension of RBMX ,Y is bounded as

dim(RBMX ,Y) ≤ dim(MX ,|Yi|) +
∑

j∈[m]\{i}

dim(MX ,|Yj |−1) + (m− 1) for all i ∈ [m]. (5)

Proof Let u denote the uniform distribution. Note that EX ◦EX = EX and also EX ◦MX ,k =
MX ,k. This observation, together with Proposition 6, shows that the RBM model can be
factorized as

RBMX ,Y = (MX ,|Y1|) ◦ (λ1u+ (1− λ1)MX ,|Y1|) ◦ · · · ◦ (λmu+ (1− λm)MX ,|Ym|−1),

from which the claim follows.

By the previous proposition, the model RBMX ,Y can have the expected dimension only
if (i) the right hand side of Equation 5 equals |X | − 1, or (ii) each mixture model MX ,k
has the expected dimension for all k ≤ maxj∈[m] |Yj |. Sometimes none of both conditions
is satisfied and the models ‘waste’ parameters:

Example 4 The k-mixture of the independence model on X1×X2 is a subset of the set of
|X1|×|X2| matrices with non-negative entries and rank at most k. It is known that the set of
M ×N matrices of rank at most k has dimension k(M +N −k) for all 1 ≤ k < min{M,N}.
Hence the model MX1×X2,k has dimension smaller than its parameter count whenever 1 <
k < min{|X1|, |X2|}. By Proposition 14 if (

∑
j∈[m](|Yj |−1) + 1)(|X1|+ |X2|−1) ≤ |X1×X2|

and 1 < |Yj | ≤ min{|X1|, |X2|} for some j ∈ [m], then RBMX1×X2,Y does not have the
expected dimension.

The next theorem indicates choices of X and Y for which the model RBMX ,Y has the
expected dimension. Given a sufficient statistics matrix A(X ), we say that a set Z ⊆ X has

full rank when the matrix with columns {A(X )
x : x ∈ Z} has full rank.

Theorem 15 When X contains m disjoint Hamming balls of radii 2(|Yj | − 1)− 1, j ∈ [m]
and the subset of X not intersected by these balls has full rank, then the model RBMX ,Y has
dimension equal to the number of model parameters,

dim(RBMX ,Y) = (1 +
∑
i∈[n]

(|Xi| − 1))(1 +
∑
j∈[m]

(|Yj | − 1))− 1.

On the other hand, if m Hamming balls of radius one cover X , then

dim(RBMX ,Y) = |X | − 1.

In order to prove this theorem we will need two main tools: slicings by normal fans of
simplices, described in Section 4, and the tropical RBM model, described in Section 7. The
theorem will follow from the analysis contained in Section 7.
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7. Tropical Model

Definition 16 The tropical model RBMtropical
X ,Y is the image of the tropical morphism

RdX dY 3 θ 7→ Φ(v; θ) = max{〈θ,A(X ,Y)
(v,h) 〉 : h ∈ Y} for all v ∈ X ,

which evaluates log( 1
Z(θ)

∑
h∈Y exp(〈θ,A(X ,Y)

(v,h) 〉)) for all v ∈ X for each θ within the max-plus

algebra (addition becomes a + b = max{a, b}) up to additive constants independent of v
(i.e., disregarding the normalization factor Z(θ)).

The idea behind this definition is that log(exp(a) + exp(b)) ≈ max{a, b} when a and b
have different order of magnitude. The tropical model captures important properties of
the original model. Of particular interest is following consequence of the Bieri-Groves
theorem (Draisma, 2008), which gives us a tool to estimate the dimension of RBMX ,Y :

dim(RBMtropical
X ,Y ) ≤ dim(RBMX ,Y) ≤ min{dim(EX ,Y), |X | − 1}.

The following Theorem 17 describes the regions of linearity of the map Φ. Each of these

regions corresponds to a collection of Yj-slicings (see Definition 8) of the set {A(X )
x : x ∈ X}

for all j ∈ [m]. This result allows us to express the dimension of RBMtropical
X ,Y as the maximum

rank of a class of matrices defined by collections of slicings.

For each j ∈ [m] let Cj = {Cj,1, . . . , Cj,|Yj |} be a Yj-slicing of {A(X )
x : x ∈ X} and let

ACj,k
be the |X | × dX -matrix with x-th row equal to (A

(X )
x )> when x ∈ Cj,k and equal to a

row of zeros otherwise. Let ACj = (ACj,1 | · · · |ACj,|Yj |
) ∈ R|X |×|Yj |dX and d =

∑
j∈[m] |Yj |dX .

Theorem 17 On each region of linearity, the tropical morphism Φ is the linear map Rd →
RBMtropical

X ,Y represented by the |X | × d-matrix

A = (AC1 | · · · |ACm),

modulo constant functions. In particular, dim(RBMtropical
X ,Y ) + 1 is the maximum rank of A

over all possible collections of slicings C1, . . . , Cm.

Proof Again use the homogeneous version of the matrix A(X ,Y) as in the proof of Proposi-
tion 6; this will not affect the rank of A. Let θhj = (θ{j,i},(hj ,xi))i∈[n],xi∈Xi

and let Ahj denote

the submatrix of A(X ,Y) containing the rows with indices {{j, i}, (hj , xi) : i ∈ [n], xi ∈ Xi}.
For any given v ∈ X we have

max
{〈
θ,A

(X ,Y)
(v,h)

〉
: h ∈ Y

}
=
∑
j∈[m]

max
{〈
θhj , Ahj (v, hj)

〉
: hj ∈ Yj

}
,

from which the claim follows.

In the following we evaluate the maximum rank of the matrix A for various choices of
X and Y by examining good slicings. We focus on slicings by parallel hyperplanes.
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Lemma 18 For any x∗ ∈ X and 0 < k < n the affine hull of the set {A(X )
x : dH(x, x∗) = k}

has dimension
∑

i∈[n](|Xi| − 1)− 1.

Proof Without loss of generality let x∗ = (0, . . . , 0). The set Zk := {A(X )
x : dH(x, x∗) = k}

is the intersection of {A(X )
x : x ∈ X} with the hyperplane Hk := {z : 〈1, z〉 = k + 1}.

Now note that the two vertices of an edge of QX either lie in the same hyperplane H l,
or in two adjacent parallel hyperplanes H l and H l+1, with l ∈ N. Hence the hyperplane
Hk does not slice any edges of QX and conv(Zk) = QX ∩ Hk. The set Zk is not con-
tained in any proper face of QX and hence conv(Zk) intersects the interior of QX . Thus
dim(conv(Zk)) = dim(QX )− 1, as was claimed.

Lemma 18 implies the following.

Corollary 19 Let x ∈ X , and 2k−3 ≤ n. There is a slicing C1 = {C1,1, . . . , C1,k} of X by
k − 1 parallel hyperplanes such that ∪k−1

l=1 C1,l = Bx(2k − 3) is the Hamming ball of radius
2k − 3 centered at x and the matrix AC1 = (AC1,1 | · · · |AC1,k−1

) has full rank.

Recall that AX (d) denotes the maximal cardinality of a subset of X of minimum Ham-
ming distance at least d. When X = {0, 1, . . . , q− 1}n we write Aq(n, d). Let KX (d) denote
the minimal cardinality of a subset of X with covering radius d.

Proposition 20 (Binary visible units) Let X = {0, 1}n and |Yj | = sj for all j ∈ [m].
If X contains m disjoint Hamming balls of radii 2sj−3, j ∈ [m] whose complement has full

rank, then RBMtropical
X ,Y has the expected dimension, min{∑j∈[m](sj − 1)(n+ 1) +n, 2n− 1}.

In particular, if X = {0, 1}n and Y = {0, 1, . . . , s − 1}m with m < A2(n, d) and d =
4(s − 1) − 1, then RBMX ,Y has the expected dimension. It is known that A2(n, d) ≥
2
n−dlog2(

∑d−2
j=0 (n−1

j ))e
.

Proposition 21 (Binary hidden units) Let Y = {0, 1}m and X be arbitrary.

• If m+ 1 ≤ AX (3), then RBMtropical
X ,{0,1}m has dimension (1 +m)(1 +

∑
i∈[n](|Xi|− 1))− 1.

• If m+ 1 ≥ KX (1), then RBMtropical
X ,{0,1}m has dimension |X | − 1.

Let Y = {0, 1}m and X = {0, 1, . . . , q − 1}n, where q is a prime power.

• If m+ 1 ≤ qn−dlogq(1+(n−1)(q−1)+1)e, then RBMtropical
X ,Y has dimension

(1 +m)(1 +
∑

i∈[n](|Xi| − 1))− 1.

• If n = (qr − 1)/(q− 1) for some r ≥ 2, then AX (3) = KX (1), and RBMtropical
X ,Y has the

expected dimension for any m.

In particular, when all units are binary and m < 2n−dlog2(n+1)e, then RBMX ,Y has the
expected dimension; this was shown in (Cueto et al., 2010).
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Proposition 22 (Arbitrary sized units) If X contains m disjoint Hamming balls of

radii 2|Y1|−3, . . . , 2|Ym|−3, and the complement of their union has full rank, then RBMtropical
X ,Y

has the expected dimension.

Proof Propositions 20, 21, and 22 follow from Theorem 17 and Corollary 19 together with
the following explicit bounds on A by Gilbert (1952); Varshamov (1957):

Aq(n, d) ≥ qn∑d−1
j=0

(
n
j

)
(q − 1)j

.

If q is a prime power, then Aq(n, d) ≥ qk, where k is the largest integer with qk <
qn∑d−2

j=0 (n−1
j )(q−1)j

. In particular, A2(n, 3) ≥ 2k, where k is the largest integer with 2k <

2n

(n−1)+1 = 2n−log2(n), i.e., k = n− dlog2(n+ 1)e.

Example 5 Many results in coding theory can now be translated directly to statements
about the dimension of discrete RBMs. Here is an example. Let X = {1, 2, . . . , s} ×
{1, 2, . . . , s}×{1, 2, . . . , t}, s ≤ t. The minimum cardinality of a code C ⊆ X with covering-

radius one equals KX (1) = s2−
⌊

(3s−t)2
8

⌋
if t ≤ 3s, and KX (1) = s2 otherwise (Cohen et al.,

2005, Theorem 3.7.4). Hence RBMtropical
X ,{0,1}m has dimension |X |−1 when m+1 ≥ s2−

⌊
(3s−t)2

8

⌋
and t ≤ 3s, and when m+ 1 ≥ s2 and t > 3s.

8. Discussion

In this note we study the representational power of RBMs with discrete units. Our results
generalize a diversity of previously known results for standard binary RBMs and näıve
Bayes models. They help contrasting the geometric-combinatorial properties of distributed
products of experts versus non-distributed mixtures of experts.

We estimate the number of hidden units for which discrete RBM models can approximate
any distribution to any desired accuracy, depending on the cardinalities of their units’
state spaces. This analysis shows that the maximal approximation error increases at most
logarithmically with the total number of visible states and decreases at least logarithmically
with the sum of the number of states of the hidden units. This observation could be helpful,
for example, in designing a penalty term to allow comparison of models with differing
numbers of units. It is worth mentioning that the submodels of discrete RBMs described in
Theorem 12 can be used not only to estimate the maximal model approximation errors, but
also the expected model approximation errors given a prior of target distributions on the
probability simplex (Montúfar and Rauh, 2014). In future work it would be interesting to
study the statistical approximation errors of discrete RBMs and to complement the theory
by an empirical evaluation.

The combinatorics of tropical discrete RBMs allows us to relate the dimension of discrete
RBM models to the solutions of linear optimization problems and slicings of convex support
polytopes by normal fans of simplices. We use this to show that the model RBMX ,Y
has the expected dimension for many choices of X and Y, but not for all choices. We
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based our explicit computations of the dimension of RBMs on slicings by collections of
parallel hyperplanes, but more general classes of slicings may be considered. The same
tools presented in this paper can be used to estimate the dimension of a general class of
models involving interactions within layers, defined as Kronecker products of hierarchical
models (Montúfar and Morton, 2013). We think that the geometric-combinatorial picture
of discrete RBMs developed in this paper may be helpful in solving various long standing
theoretical problems in the future, for example: What is the exact dimension of näıve Bayes
models with general discrete variables? What is the smallest number of hidden variables
that make an RBM a universal approximator? Do binary RBMs always have the expected
dimension?
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Abstract

Parallel Graphics Processing Unit (GPU) implementations of GP have appeared in the lit-
erature using three main methodologies: (i) compilation, which generates the individuals in
GPU code and requires compilation; (ii) pseudo-assembly, which generates the individuals
in an intermediary assembly code and also requires compilation; and (iii) interpretation,
which interprets the codes. This paper proposes a new methodology that uses the concepts
of quantum computing and directly handles the GPU machine code instructions. Our
methodology utilizes a probabilistic representation of an individual to improve the global
search capability. In addition, the evolution in machine code eliminates both the overhead
of compiling the code and the cost of parsing the program during evaluation. We obtained
up to 2.74 trillion GP operations per second for the 20-bit Boolean Multiplexer benchmark.
We also compared our approach with the other three GPU-based acceleration methodolo-
gies implemented for quantum-inspired linear GP. Significant gains in performance were
obtained.
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1. Introduction

Genetic programming (GP) is a metaheuristic method to automatically generate computer
programs or key subcomponents (Banzhaf et al., 1997; Koza, 1992; Poli et al., 2008). Its
functionality is based on the Darwinian principle of natural selection, in which a popula-
tion of computer programs, or individuals, is maintained and modified based on genetic
variation. The individuals are then evaluated according to a fitness function to reach a
better solution. GP has been successfully applied to a variety of problems, such as auto-
matic design, pattern recognition, robotic control, data mining, and image analysis (Koza,
1992, 1994; Tackett, 1993; Busch et al., 2002; Harding and Banzhaf, 2008; Langdon, 2010a).
However, the evaluation process is time consuming. The computational power required by
GP is enormous, and high-performance techniques have been used to reduce the computa-
tion time (Andre and Koza, 1996; Salhi et al., 1998). GP parallelism can be exploited on
two levels: multiple individuals can be evaluated simultaneously, or multiple fitness cases
for one individual can be evaluated in parallel. These approaches have been implemented
in multiprocessor machines and computer clusters (Page et al., 1999; Turton et al., 1996;
Bennett III et al., 1999).

The recent emergence of general-purpose computing on Graphics Processing Units (GPUs)
has provided the opportunity to significantly accelerate the execution of many costly algo-
rithms, such as GP algorithms. GPUs have become popular as accelerators due to their
high computational power, low cost, impressive floating-point capabilities, and high mem-
ory bandwidth. These characteristics make them attractive platforms to accelerate GP
computations, as GP has a fine-grained parallelism that is suitable for GPU computation.

The power of the GPU to accelerate GP has been exploited in previous studies. We di-
vide these efforts into three main methodologies: (i) compilation (Chitty, 2007; Harding and
Banzhaf, 2007, 2009; Langdon and Harman, 2010); (ii) pseudo-assembly (Cupertino et al.,
2011; Pospichal et al., 2011; Lewis and Magoulas, 2011); and (iii) interpretation (Lang-
don and Banzhaf, 2008a; Langdon and Harrison, 2008; Robilliard et al., 2009; Wilson and
Banzhaf, 2008). In the compilation methodology, each evolved program, or GP individual,
is compiled for the GPU machine code and then evaluated in parallel on the GPU. In the
pseudo-assembly methodology, the individuals are generated in the pseudo-assembly code
of the GPU, and a just-in-time (JIT) compilation is performed for each individual to gen-
erate the GPU machine code, which is evaluated in parallel on the GPU. In the interpreter
methodology, an interpreter that can run programs immediately is used. The individuals
are evaluated in parallel on the GPU.

These methodologies have been used with varying levels of success, and they have differ-
ent advantages and disadvantages. In the compilation methodology, the GPU’s fine-grain
parallelism can be exploited by evaluating multiple individuals and multiple fitness cases
simultaneously. However, the time spent compiling each GP individual influences the per-
formance results considerably, making the GPU compiler decidedly slow. The compilation
process in a GPU involves a series of steps. When GP needs to evaluate millions of pro-
grams, spending a few seconds to compile a single CUDA program becomes a large obstacle
to producing a solution within a reasonable period of time. The pseudo-assembly methodol-
ogy can also exploit multiple individuals and multiple fitness case evaluations in parallel. A
pseudo-assembly code can be compiled several hundred times faster than an original GPU
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code, allowing large data sets to be considered. Nevertheless, the programs still need to
be compiled, and the compilation time must be considered as part of the overall GP pro-
cess. The interpreter methodology differs from the compilation methodology in that the
interpreter is compiled once and reused millions of times. This approach eliminates the
compilation overhead but includes the cost of parsing the evolved program. The interpreter
methodology typically works well for shorter programs and smaller training cases.

In this work, we propose a new methodology for using GPUs in the GP evolution process.
We used a quantum-inspired evolutionary algorithm (QEA) that handles the instructions
of the GPU machine code directly. QEAs represent one of the most recent advances in
evolutionary computation (Zhang, 2011). QEAs are based on quantum mechanics, particu-
larly the concepts of the quantum bit and the superposition of states. QEAs can represent
diverse individuals in a probabilistic manner. By this mechanism, QEAs offer an evolu-
tionary mechanism that is different and, in some situations, more effective than traditional
evolutionary algorithms. The quantum probabilistic representation reduces the number
of chromosomes required to guarantee adequate search diversity. In addition, the use of
quantum interference provides an effective approach to achieve fast convergence to the best
solution due to the inclusion of an individual’s past history. It offers a guide for the popu-
lation of individuals that helps to exploit the current solution’s neighborhood.

Our methodology is called GPU machine code genetic programming, GMGP, and is
based on linear genetic programming (LGP) (Nordin, 1998; Brameier and Banzhaf, 2007;
Oltean et al., 2009). In LGP, each program is a linear sequence of instructions. LGP is the
most appropriate for machine code programs, as computer architectures require programs
to be provided as linear sequences. Computers do not naturally run tree-shaped programs.
Tree-based GP must employ compilers or interpreters (Poli et al., 2008).

GMGP performs the evolution by modifying the GPU machine code, thus eliminating
the time spent compiling the individuals while also avoiding the interpretation overhead.
The individuals are generated on the CPU, and the individuals are evaluated in parallel on
the GPU. The evaluation process is performed with a high level of parallelism: individuals
are processed in parallel, and the fitness cases are simultaneously evaluated in parallel.
Figure 1 illustrates the GPU-accelerated GP methodologies.

We compared our quantum-inspired methodology with the previous attempts to ac-
celerate GP using GPUs. Our comparison considered the compilation, pseudo-assembly,
and interpretation methodologies. We implemented these three methodologies to conform
with linear GP and quantum-inspired algorithms, and to provide fair comparisons. GMGP
outperformed all of these methodologies. The gains over compilation and pseudo-assembly
originated from the elimination of the compilation time. The gains over interpretation orig-
inated from two sources. The first was the lack of the on-the-fly interpretation overhead.
The second was the high number of comparison and jump instructions required by the
interpreter, which produces serialization in the GPU execution. The main obstacle faced
by GMGP was that the GPU machine code is proprietary, and the GPU’s manufacturers
do not provide any documentation for it. To solve this problem, we had to use reverse
engineering to disassemble a series of GPU binary codes and determine the opcodes of the
relevant instructions.
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Figure 1: The different GP methodologies for GPU, considering the Nvidia technology. In
the compilation methodology, a CUDA kernel is generated from each individual.
The kernels are compiled in two main steps using the nvcc and ptxas compilers. In
the pseudo-assembly methodology, pseudo-assembly codes (PTX) are generated
from each individual and compiled using the ptxas compiler. In the interpreter
methodology, each individual’s information is used by the interpreter to execute
the program. The proposed machine code methodology generates a machine code
program directly from each individual.

2. Related Work

Several approaches to accelerate GP on GPUs have been proposed in the literature. Harding
and Banzhaf (2007) and Chitty (2007) were the first to present GP implementations on
a GPU. Both works proposed compiler methodologies using tree-based GP. They obtained
modest performance gains when small fitness cases were tested due to the overhead of
transferring data to the GPU. Considerable performance gains were obtained for larger
problems and when the compiled GP program was run many times.

Langdon and Banzhaf (2008a) were the first to propose an interpreter methodology.
Their methodology used a tree-based GP and evaluated the entire population at once.
Parallelism was exploited at the individual level, whereas the fitness cases were processed
sequentially. Their technique was called the SIMD interpreter for GP, and they used con-
ditional instructions to select opcodes, which can increase the overhead with the size of
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the function set. The experimental results indicated moderate speedups but demonstrated
performance gains even for very small programs. The same GPU SIMD interpreter was
used by Langdon and Harrison (2008), who successfully applied GP to predict the breast
cancer survival rate beyond ten years.

Robilliard et al. (2009) also studied the interpreter methodology, with a focus on avoiding
the overhead of conditional instructions when interpreting the entire population at once.
They proposed an interpreter that evaluates each GP individual on a different thread block.
Each thread block was mapped to a different GPU multiprocessor during execution, avoiding
branches. Inside the thread block, all threads executed the same instruction over different
data subsets. Their results indicated performance gains compared to the methodology
proposed by Langdon and Banzhaf (2008a).

Harding and Banzhaf (2009) studied the compilation methodology. A cluster of GPUs
was used to alleviate the program compilation overhead. The focus was on processing
very large data sets by using the cluster nodes to compile the GPU code and execute the
programs. Different combinations of compilation and execution nodes could be used. The
project was developed to run on a multi-platform Windows/Linux cluster and used low-end
GPUs. Speedups were obtained for very large data sets. However, the use of high-end
GPUs did not necessarily lead to better results, as the primary bottleneck remained in the
compilation phase.

Langdon and Harman (2010) used the compilation methodology to automatically create
an Nvidia CUDA kernel. Numerous simplifications were employed, such as not evolving
the shared memory and threading information. The best evolved parallel individual was
capable of correct calculations, proving that it was possible to elaborate a methodology
to evolve parallel code. However, it was not possible to automatically verify the speedup
obtained compared to the sequential CPU version, and the compilation still remained the
bottleneck.

Wilson and Banzhaf (2008) implemented an LGP for GPU using the interpreter method-
ology on a video game console. In a previous work (Cupertino et al., 2011), we proposed
a pseudo-assembly methodology, a modified LGP for GPU, called quantum-inspired lin-
ear genetic programming on a general-purpose graphics processing unit (QILGP3U). The
individual was created in the Nvidia pseudo-assembly code, PTX, and compiled for evalu-
ation through JIT. Dynamic or JIT compilation is performed in runtime and transformed
the assembly code to machine code during the execution of the program. Several compi-
lation phases were eliminated, and significant speedups were achieved for large data sets.
Pospichal et al. (2011) also proposed a pseudo-assembly methodology with the evolution of
PTX code using a grammar-based GP that ran entirely on the GPU.

The compilation time issue was addressed in a different manner by Lewis and Magoulas
(2011). All population individuals were pre-processed to identify their similarities, and all
of these similarities were grouped together. In this manner, repetitive compilation was
eliminated, thus reducing the compilation time by a factor of up to 4.8.

To our knowledge, no prior work has evolved GPU programs by directly handling the
GPU machine code itself.
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3. Quantum Computing and Quantum-Inspired Algorithms

In a classical computer, a bit is the smallest information unit and can take a value of 0 or
1. In a quantum computer, the basic information unit is the quantum bit, called the qubit.
A qubit can take the states |0〉 or |1〉 or a superposition of the two. This superposition of
the two states is a linear combination of the states |0〉 and |1〉 and can be represented as
follows:

|ψ〉 = α |0〉+ β |1〉 , (1)

where |ψ〉 is the qubit state , α and β are complex numbers, and |α|2 and |β|2 are the
probabilities that the qubit collapses to state 0 or 1, respectively, based on its observation
(i.e., measurement). The unitary normalization guarantees the following:

|α|2 + |β|2 = 1 | {α,β} ∈ C. (2)

The superposition of states provides quantum computers with an incomparable degree
of parallelism. This parallelism, when properly exploited, allows computers to perform tasks
that are unfeasible in classical computers due to the prohibitive computational time.

Although quantum computing is promising in terms of processing capacity, there is still
no technology for the actual implementation of a quantum computer, and there are only a
few complex quantum algorithms.

Moore and Narayanan (1995) proposed a new approach to exploit the quantum comput-
ing concepts. Instead of developing new algorithms for quantum computers or attempting
to make their use feasible, they proposed the idea of quantum-inspired computing. This
new approach aims to create classical algorithms (i.e., running on classical computers) that
utilize quantum mechanics paradigms to improve their problem-solving performance. In
particular, quantum-inspired evolutionary algorithms (QEAs) have recently become a sub-
ject of special interest in evolutionary computation. The linear superposition of states
represented in a qubit allows QEA to represent diverse individuals probabilistically. QEAs
belong to the class of estimation of distribution algorithms (EDAs) (Platel et al., 2009). The
probabilistic mechanism provides QEAs with an evolutionary mechanism that has several
advantages, such as global search capability and faster convergence and smaller population
size than those of traditional evolutionary algorithms. These algorithms have already been
successfully used to solve various problems, such as the knapsack problem (Han and Kim,
2002), ordering combinatorial optimization problems (Silveira et al., 2012), engineering op-
timization problems (Alfares and Esat, 2006), image segmentation (Talbi et al., 2007), and
image registration (Draa et al., 2004). See Zhang (2011) for more examples of QEAs and
their applications.

3.1 Multilevel Quantum Systems

Most quantum computing approaches use qubits encoded in two-level quantum systems.
However, the candidate systems for encoding quantum information often have a more com-
plex physical structure, with several directly accessible degrees of freedom (e.g., atoms,
ions, photons). Quantum systems of d levels were recently studied, where the qudit is the
quantum information unit, which may take any of d values or a superposition of d states
(Lanyon et al., 2008).
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4. Quantum-Inspired Linear Genetic Programming

The proposed quantum-inspired GP methodology for GPUs is based on the quantum-
inspired linear genetic programming (QILGP) algorithm proposed by Dias and Pacheco
(2013). QILGP evolves machine code programs for the Intel x86 platform. It uses floating
point instructions and works with data from the main memory (m) and/or eight FPU regis-
ters (ST (i) | i ∈ [0 .. 7]). The function set consists of addition, subtraction, multiplication,
division, data transfer, trigonometric, and other arithmetic instructions. QILGP generates
variable-sized programs by adding the NOP instruction to the instruction set. The code
generation ignores any gene in which a NOP is present. Table 1 provides an example of a
function set.

Each individual is represented by a linear sequence of machine code instructions. Each
instruction can use one or zero arguments. The evaluation of a program requires the input
data to be read from the main memory, which consists of the input variables of the problem
and some optional constants supplied by the user. The input data are represented by a
vector, such as

I = (V [0], V [1], 1, 2, 3) , (3)

where V [0] and V [1] have the two input values of the problem (i.e., a fitness case) and 1, 2,
and 3 are the three constant values.

The instructions are represented in QILGP by two tokens: the function token (FT),
which represents the function, and the terminal token (TT), which represents the argument
of the function. Each function has a single terminal. When a function has no terminal,
its corresponding token value is ignored. Each token is an integer value that represents an
index to the function set or terminal set.

4.1 Representation

QILGP is based on the following entities: the quantum individual, which represents the su-
perposition of all possible programs for the defined search space, and the classical individual
(or individual), which represents the machine code program coded in the token values. A
classical individual represents an individual of a traditional linear GP. In the observation
phase of QILGP, each quantum individual is observed to generate one classical individual.

4.2 Observation

The chromosome of a quantum individual is represented by a list of structures called quan-
tum genes. The observation of a quantum individual comprises the observations of all of
its chromosome genes. The observation process consists of randomly generating a value r
{r ∈ R | 0 ≤ r ≤ 1} and searching for the interval in which r belongs in all possible states
that the individual can represent. For example, the process of observing a quantum gene
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Instruction Operation Arg.

NOP No operation -
FADD m ST (0 )← ST (0 ) +m m
FADD ST(0), ST(i) ST (0 )← ST (0 ) + ST (i) i
FADD ST(i), ST(0) ST (i)← ST (i) + ST (0 ) i
FSUB m ST (0 )← ST (0 )−m m
FSUB ST(0), ST(i) ST (0 )← ST (0 )− ST (i) i
FSUB ST(i), ST(0) ST (i)← ST (i)− ST (0 ) i
FMUL m ST (0 )← ST (0 )×m m
FMUL ST(0), ST(i) ST (0 )← ST (0 )× ST (i) i
FMUL ST(i), ST(0) ST (i)← ST (i)× ST (0 ) i
FXCH ST(i) ST (0 ) � ST (i) (swap) i
FDIV m ST (0 )← ST (0 )÷m m
FDIV ST(0), ST(i) ST (0 )← ST (0 )÷ ST (i) i
FDIV ST(i), ST(0) ST (i)← ST (i)÷ ST (0 ) i
FABS ST (0 )← |ST (0 )| -

FSQRT ST (0 )←
√

ST (0 ) -
FSIN ST (0 )← sin ST (0 ) -
FCOS ST (0 )← cos ST (0 ) -

Table 1: Functional description of the instructions. The first column presents the Intel x86
instructions. The second column presents the operations performed. The third
column presents the argument of the instructions (m indexes memory positions,
and i selects a register).

represented by 10 different states follows the function

T (r) =



0 if 0 ≤ r < p′0
1 if p′0 ≤ r < p′1
2 if p′1 ≤ r < p′2
...

...

9 if p′8 ≤ r ≤ p′9,

(4)

where {r ∈ R | 0 ≤ r ≤ 1} is the randomly generated value with a uniform distribution and
T (r) returns the observed value for the token.

The observation process plays an important role in the quantum-inspired evolutionary
algorithm. The quantum-inspired representation of a gene implies that the creation of
each instruction follows a probabilistic distribution, where it is possible to represent the
instructions that are more likely to be observed. Furthermore, the evolutionary algorithm
can be fed with the results of the individual evaluations, and the superposition of states
allows the probability values to be improved iteratively. The best classical individuals
contribute to improving the probability values of the quantum individuals. This mechanism
enables the algorithm to achieve better solutions with fewer evaluations.
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Figure 2: Illustration of a qudit implementation that represents Equation (6). Each state
has an associated probability value and a token value. The observation process
generates a random number r and selects one token based on the probability
interval in which r fits.

QILGP is inspired by multilevel quantum systems (Lanyon et al., 2008), and uses the
qudit as the basic information unit. This information can be described by a state vector of
d levels, where d is the number of states in which the qudit can be measured. Accordingly,
d represents the cardinality of the token. The state of a qudit is a linear superposition of d
states and may be represented as follows:

|ψ〉 =
d−1∑
i=0

αi |i〉 , (5)

where |αi|2 is the probability that the qudit collapses to state i when observed.

For example, suppose that each instruction in Table 1 has a unique token value in
T = {0,1,2,3,...}. Equation (6) provides the state of a function qudit (FQ) whose state is
given as follows:

|ψ〉 =
1√
5
|0〉+

1√
4
|1〉+

1√
10
|2〉+

1√
8
|3〉+ . . . (6)

The probability of measuring the NOP instruction (state |0〉) is (1/
√
5)2 = 0.200, for FADD m

(state |1〉) is (1/
√
4)2 = 0.250, for FADD ST(0),ST(i) (state |2〉) is (1/

√
10)2 = 0.100, and so

on. The qudit state of this example is implemented in a data structure as shown in Figure
2.

Figure 3 illustrates the creation of a classical gene by the observation of a quantum gene
from an example based on Table 1 and the input vector I = (V [0], V [1], 1, 2, 3) (Equation
3). This process can be explained by three basic steps, indicated by the numbered circles
in Figure 3:

1. The FQ is observed, and the resulting value (e.g., 7) is assigned to the FT of this
gene.

2. The FT value determines the terminal qudit (TQ) to be observed, as each instruction
requires a different type of terminal: register or memory.

3. The TQ defined by the FT value is observed, and the resulting value (e.g., 1) is
assigned to the TT of this gene.
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Figure 3: The creation of a classical gene from the observation of a quantum gene. The FQ
is observed, and the token value selected is 7. The memory qudit is selected in the
TQ. The TQ is observed, and the TT value selected is 1. The observed instruction
in this example is FMUL V[1], as ‘7’ is the FT value for this instruction (Table
1), and ‘1’ is the TT value that represents V [1] in the input vector I defined by
Equation (3).

4.3 Evaluation of a Classical Individual

This process begins with the generation of a machine code program from the classical
individual under evaluation, where its chromosome is sequentially traversed, gene by gene
and token by token (both FTs and TTs), to serially generate the program body machine
code related to the classical individual. Then, the program is executed for all fitness cases
of the problem (i.e., samples of the training data set).

For each fitness case, the value assigned as the result of the fitness case is zero (V [0]← 0)
when the instructions FDIV require division by zero or the instructions FSQRT require the
calculation of the square root of a negative number.

4.4 Quantum Operator

The quantum operator of QILGP manipulates the probability pi of a qudit, satisfying the
normalization condition

∑d−1
i=0 |αi|2 = 1, where d is the qudit cardinality and |αi|2 = pi.

Operator P works in two main steps. First, it increases the given probability of a qudit as
follows:

pi ← pi + s× (1− pi), (7)

where s is a parameter called step size, which can assume any real value between 0 and
1. The second step is to adjust the values of all of the probabilities of that qudit to
satisfy the normalization condition. Thus, the operator modifies the state of a qudit by
increasing pi of a value that is directly proportional to s. The asymptotic behavior of pi in
Equation (7) indicates that the probability never reaches the unit value. This avoidance of
unit probabilities is an important feature of this operator, as it avoids letting a probability
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Figure 4: The four basic steps that characterize a generation of QILGP. With a population
size of 4, the quantum individuals are observed and generate classical individuals.
The classical individuals are sorted by their evaluations. The operator P is applied
to each quantum individual, using the classical individual as the reference. The
best classical individual evaluated thus far is kept in CB.

cause the qudit to collapse, which could cause a premature convergence of the evolutionary
search process.

QILGP has a hybrid population composed of a quantum population and classical pop-
ulation, both of which comprise M individuals. QILGP also has M auxiliary classical
individuals Cobs

i , which result from observations of the quantum individuals Qi, where
1 ≤ i ≤M .

4.5 Evolutionary Algorithm

Figure 4 illustrates the four basic steps that characterize a generation of QILGP, with a
population size M = 4. The algorithm works as follows:

1. Each of M quantum individuals is observed once, resulting in M classical individuals
Cobs
i .

2. The individuals of the classical population and the observed individuals (auxiliary)
are jointly sorted by their evaluations, ordered from best to worst, from C0 to CM−1.

3. The operator P is applied to each quantum individual Qi, taking their corresponding
individual Ci in the classical population as a reference. Thus, at every new generation,
the application of this operator increases the probability that the observations of the
quantum individuals generate classical individuals more similar to the best individuals
found thus far.

4. If any classical individual evaluated in the current generation is better than the best
classical individual evaluated previously, a copy is stored in CB, which keeps the best
classical individual found by the algorithm thus far.
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5. GPU Architecture

GPUs are highly parallel, many-core processors typically used as accelerators for a host
system. They provide tremendous computational power and have proven to be successful
for general-purpose parallel computing in a variety of application areas. Although different
manufacturers have developed GPUs in recent years, we have opted for GPUs from Nvidia
due to their flexibility and availability.

An Nvidia GPU consists of a set of streaming multiprocessors (SMs), each consisting
of a set of GPU cores. The memory in the GPU is organized as follows: a large global
memory with high latency; a very fast, low-latency on-chip shared memory for each SM;
and a private local memory for each thread. Data communication between the GPU and
CPU is conducted via the PCIe bus. The CPU and GPU have separate memory spaces,
referred to as the host memory and device memory, and the GPU-CPU transfer time is
limited by the speed of the PCIe bus.

5.1 Programming Model

The Nvidia programming model is CUDA (Computer Unified Device Architecture) (Nvidia,
2013). CUDA is a C-based development environment that allows the programmer to de-
fine special C functions, called kernels, which execute in parallel on the GPU by different
threads. The GPU supports a large number of fine-grain threads. The threads are orga-
nized into a hierarchy of thread grouping. The threads are divided into a two- or three-
dimensional grid of thread blocks. Each thread block is a two- or three-dimensional thread
array. Thread blocks are executed on the GPU by assigning a number of blocks to be exe-
cuted on a SM. Each thread in a thread block has a unique identifier, given by the built-in
variables threadIdx.x, threadIdx.y, and threadIdx.z. Each thread block has an iden-
tifier that distinguishes its position in the grid, given by the built-in variables blockIdx.x,
blockIdx.y, and blockIdx.z. The dimensions of the thread and thread block are specified
at the time when the kernel is launched through the identifiers blockDim and gridDim,
respectively.

All threads in a block are assigned to execute in the same SM. Hence, threads within
one block can cooperate among themselves using synchronization primitives and shared
memory. However, the number of threads within one block can exceed the number of cores
in an SM, which requires a scheduling mechanism. The scheduling mechanism divides the
block into warps. Each warp contains a fixed number of threads grouped by consecutive
thread identifiers. The warp is executed on an SM in an implicit SIMD fashion, called SIMT
(single instruction, multiple threads). Each core of an SM executes the same instruction
simultaneously but on different data elements. However, the threads may logically follow a
different control flow path and are free to branch. If some of the parallel threads choose a
different execution path, called code divergence, their execution is serialized. In this case,
the warp must be issued multiple times, one for each group of divergent threads. Thus, full
efficiency is accomplished only when all of the threads in the warp follow the same execution
path; otherwise, parallel efficiency can degrade significantly.

684



Evolving GPU Machine Code

5.2 Compilation

The compilation of a CUDA program is performed through the following stages. First, the
CUDA front end, cudafe, divides the program into the C/C++ host code and GPU device
code. The host code is compiled with a regular C compiler, such as gcc. The device code is
compiled using the CUDA compiler, nvcc, generating an intermediate code in an assembly
language called PTX (Parallel Thread Execution). PTX is a human-readable, assembly-
like low-level programming language for Nvidia GPUs that is compiled and hides many of
the machine details. PTX has been fully documented by Nvidia. The PTX code is then
translated to the GPU binary code, CUBIN, using the ptxas compiler.

Unlike the PTX language, whose documentation has been made public, the CUBIN
format is proprietary, and no information has been made available by Nvidia. All of the
work performed with CUBIN requires reverse engineering. In addition, the manufacturer
provides only the most basic elements of the underlying hardware architecture, and there
are apparently no plans to make more information public in the future.

6. GPU Machine Code Genetic Programming

Our GP methodology for GPUs is called GPU Machine Code Genetic Programming GMGP.
It is a quantum-inspired LGP, based on QILGP, that evaluates the individuals on the GPU.
The concept is to exploit the probabilistic representation of the individuals to achieve fast
convergence and to parallelize the evaluation using the GPU machine code directly.

Before the evolution begins, the entire data set is transferred to the GPU global memory.
In the first step, all of the classical individuals of one generation are created in the CPU in
the same manner as in QILGP. Each classical individual is composed of tokens representing
the instructions and arguments. For each individual, GMGP creates a GPU machine code
kernel. These programs are then loaded to the GPU program memory and executed in
parallel. The evaluation process in GMGP is performed with a high level of parallelism.
We exploit the parallelism as follows: individuals are processed in parallel in different
thread blocks, and data parallelism is exploited within each thread block, where each thread
evaluates a different fitness case.

When the number of fitness cases is smaller than the number of threads in the block,
we map one individual per block. For fitness cases greater than the number of threads per
block, a two-dimensional grid is used, and each individual is mapped on multiple blocks. The
individual is identified by the blockIdx.y, and the fitness case is identified by (blockIdx.x

* blockDim.x + threadIdx.x). To maintain all of the individual codes in a single GPU
kernel, we use a set of IF statements to distinguish each individual. However, these IF
statements do not introduce divergence in the kernel because all of the threads in each
block follow the same execution path.

This methodology allows for the rapid evaluation of individuals. The GPU binary code
is directly modified, thus avoiding the need to compile individuals. Regarding the machine
code, our implementation is based on the Nvidia CUBIN code for the current Nvidia GPU
architectures. Future Nvidia GPU machine code could be evolved using our methodology
as long as the opcodes are known.
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6.1 Function Set

GMGP is capable of evolving linear sequences of single precision floating point operations
or linear sequences of Boolean operations. The function set of floating point operations
is composed of addition, subtraction, multiplication, division, data transfer, trigonometric,
and arithmetic instructions. The function set of Boolean operations is composed of AND,
OR, NAND, NOR, and NOT. Table 2 provides the instruction set of the floating point
operations, and Table 3 provides the instruction set of the Boolean operations. Each of
these instructions has an opcode and one or two arguments. The argument can be a register
or memory position. When it is a register, it varies from R0 to R7. When it is a memory
position, it can be used to load input data or a constant value. The maximum number of
inputs in GMGP is 256, and the maximum number of predefined constant values is 128. As
an example, in Table 4, we present the CUBIN add instruction with all of the variations
of its memory positions (X) and the eight auxiliary FPU registers (Ri | i ∈ [0 .. 7]). Each
CUBIN instruction variation with its arguments (constants or registers) has a different
hexadecimal.

GMGP addresses only floating point and Boolean operations. Loops and jumps are not
handled, as they are not common in the benchmark problems that we consider. However,
GMGP could be extended to consider such problems, including mechanisms to restrict
jumping to invalid positions and to avoid infinite loops.

Each evolved CUBIN program consists of three segments: header, body, and footer. The
header and footer are the same for all individuals throughout the evolutionary process.
They are optimized in the same manner as by the Nvidia compiler. These segments contain
the following:

• Header – Loads the evaluation patterns from global memory to registers on the GPU
and initializes eight registers with zero.

• Body – The evolved CUBIN code itself.

• Footer – Transfers R0 contents to the global memory, which is the default output of
evolved programs, and then executes the exit instruction to terminate the program
and return to the evolutionary algorithm main flow.

For each individual, the body of the program is assembled by stacking the hexadecimal
code in the same order as the GP tokens have been read. There is no need for comparisons
and branches within an individual code because the instructions are executed sequentially.
Avoiding comparisons and branches is an important feature of GMGP. As explained before,
GPUs are particularly sensitive to conditional branches.

We aggregate all program bodies of the same population into a single GPU kernel. The
kernel has only one header and one footer, reducing the size of the population and thus
decreasing the time to transfer the program to the GPU memory through the PCIe bus.

6.2 Machine Code Acquisition

We developed a semi-automatic procedure to acquire the GPU machine code instructions.
Nvidia does not provide any documentation for its machine code.
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CUDA PTX Description A

No operation -

R0+=Xj ; add.f32 R0, R0, Xj ; R(0)← R(0) +X(j) j

R0+=Ri ; add.f32 R0, R0, Ri ; R(0)← R(0) +R(i) i

Ri+=R0 ; add.f32 Ri, Ri, R0 ; R(i)← R(i) +R(0) i

R0-=Xj ; sub.f32 R0, R0, Xj ; R(0)← R(0)−X(j) j

R0-=Ri ; sub.f32 R0, R0, Ri ; R(0)← R(0)−R(i) i

Ri-=R0 ; sub.f32 Ri, Ri, R0 ; R(i)← R(i)−R(0) i

R0*=Xj ; mul.f32 R0, R0, Xj ; R(0)← R(0)×X(j) j

R0*=Ri ; mul.f32 R0, R0, Ri ; R(0)← R(0)×R(i) i

Ri*=R0 ; mul.f32 Ri, Ri, R0 ; R(i)← R(i)×R(0) i

R0/=Xj ; div.full.f32 R0, R0, Xj ; R(0)← R(0)÷X(j) j

R0/=Ri ; div.full.f32 R0, R0, Ri ; R(0)← R(0)÷R(i) i

Ri/=R0 ; div.full.f32 Ri, Ri, R0 ; R(i)← R(i)÷R(0) i

R8=R0;R0=Ri;Ri=R8; mov.f32 R8, R0 ; R(0) ←→ R(i) (swap) i

mov.f32 R0, Ri ;

mov.f32 Ri, R8 ;

R0=abs(R0) ; abs.f32 R0, R0 ; R(0)← |R(0)| -

R0=sqrt(R0) ; sqrt.approx.f32 R0, R0 ; R(0)←
√
R(0) -

R0= sinf(R0) ; sin.approx.f32 R0, R0 ; R(0)← sinR(0) -

R0= cosf(R0) ; cos.approx.f32 R0, R0 ; R(0)← cosR(0) -

Table 2: Functional description of the single precision floating point instructions. The first
column presents the CUDA command; the second presents the PTX instruction;
the third describes the action performed; and the fourth column presents the
argument for the instruction (j indexes memory positions, and i selects a register).
The last two instructions, sinf and cosf, are fast math instructions, which are
less accurate but faster versions of sinf and cosf.

Our procedure creates a PTX program containing all of the PTX instructions listed
in Tables 2 or 3. In this program, each instruction is embodied inside a loop, where the
iteration count at the start of the loop is unknown, which prevents the ptxas compiler from
removing instructions.

The PTX program is compiled, and the Nvidia cuobjdump tool is used to disassemble
the binary code. The disassembled code contains the machine code of all instructions of
the PTX program. The challenge is to remove the instructions that belong to each loop
control, which is achieved by finding a pattern that repeats along the code. Once the loop
controls are removed, each instruction of our instruction set is acquired.

The header and footer are obtained using the xxd tool from Linux, which converts binary
programs into hex code and transforms the entire program into hexadecimal representation.
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CUDA PTX Description A

No operation -

R0=R0 & Xj ; and.b32 R0, R0, Xj ; R(0)← R(0) ∧X(j) j

R0=R0 & Ri ; and.b32 R0, R0, Ri ; R(0)← R(0) ∧R(i) i

Ri=Ri & R0 ; and.b32 Ri, Ri, R0 ; R(i)← R(i) ∧R(0) i

R0=R0 — Xj ; or.b32 R0, R0, Xj ; R(0)← R(0) ∨X(j) j

R0=R0 — Ri ; or.b32 R0, R0, Ri ; R(0)← R(0) ∨R(i) i

Ri=Ri — R0 ; or.b32 Ri, Ri, R0 ; R(i)← R(i) ∨R(0) i

R0= ∼ (R0 & Xj) ; and.b32 R0, R0, Xj ; R(0)← R(0) ∧X(j) j

not.b32 R0, R0 ;

R0= ∼ (R0 & Ri) ; and.b32 R0, R0, Ri ; R(0)← R(0) ∧R(i) i

not.b32 R0, R0 ;

Ri= ∼ (Ri & R0) ; and.b32 Ri, Ri, R0 ; R(i)← R(i) ∧R(0) i

not.b32 Ri, Ri ;

R0= ∼ (R0 — Xj) ; or.b32 R0, R0, Xj ; R(0)← R(0) ∨X(j) j

not.b32 R0, R0 ;

R0= ∼ (R0 — Ri) ; or.b32 R0, R0, Ri ; R(0)← R(0) ∨R(i) i

not.b32 R0, R0 ;

Ri= ∼ (Ri — R0) ; or.b32 Ri, Ri, R0 ; R(i)← R(i) ∨R(0) i

not.b32 Ri, Ri ;

R0= ∼ R0 ; not.b32 R0, R0 ; R(0)← R(0) -

Table 3: Functional description of the Boolean instructions. The first column presents the
CUDA command; the second presents the PTX instruction; the third describes the
action performed; and the fourth column presents the argument for the instruction
(j indexes memory positions, and i selects a register).

The header is the code that comes before the first instruction found, and the footer is the
remaining code after the last instruction found.

With the header and footer, our procedure generates a different program to test each
instruction acquired. This program contains a header, a footer, and one instruction. The
program is executed, and the result is compared to an expected result that was previously
computed on the CPU.

6.3 Evaluation Process

The GMGP methodology was explicitly designed to exploit the highly parallel capabilities
of the GPU architecture. Because GMGP evaluates the entire population at once using
two levels of parallelism, i.e., at the individual level and at the fitness case level, we expect
our methodology to readily exploit future GPU architectures that are likely to have more
processing cores than the recent releases. GMGP utilizes the independence of the fitness
case execution and the ability to evaluate the individuals in parallel. In addition, this
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CUBIN (hexadecimal representation) Description A

0x7e, 0x7c, 0x1c, 0x9, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0xa, 0x0, 0x80, 0xc0, 0xe2,

0x7d, 0x7c, 0x1c, 0x0, 0xfc, 0x81, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x0, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x2, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x4, 0x82, 0xc0, 0xc2, R(0)← R(0) +X(j) j

0x7d, 0x7c, 0x1c, 0x0, 0x5, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x6, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x7, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x0, 0x8, 0x82, 0xc0, 0xc2,

0x7d, 0x7c, 0x1c, 0x80, 0x8, 0x82, 0xc0, 0xc2,

0x7e, 0x7c, 0x9c, 0x0f, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0x0, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0x3, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x3, 0x0, 0x80, 0xc0, 0xe2, R(0)← R(0) +R(i) i

0x7e, 0x7c, 0x1c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x1c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

0x7e, 0x7c, 0x9c, 0x0f, 0x0, 0x80, 0xc0, 0xe2,

0x2, 0x7c, 0x1c, 0x0, 0x0, 0x80, 0xc0, 0xe2,

0x1a, 0x7c, 0x1c, 0x3, 0x0, 0x80, 0xc0, 0xe2,

0x1e, 0x7c, 0x9c, 0x3, 0x0, 0x80, 0xc0, 0xe2, R(i)← R(i) +R(0) i

0x22, 0x7c, 0x1c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x26, 0x7c, 0x9c, 0x4, 0x0, 0x80, 0xc0, 0xe2,

0x2a, 0x7c, 0x1c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

0x2e, 0x7c, 0x9c, 0x5, 0x0, 0x80, 0xc0, 0xe2,

Table 4: Hexadecimal representation of the add GPU machine code instruction.

parallelization scheme avoids code divergence, as each thread in a block executes the same
instruction over a different fitness case, and different individuals are executed by different
thread blocks. Therefore, we are employing as much parallelism as possible for a population.

The evaluation process addresses the problems caused by execution errors, such as divi-
sions by zero or square roots of negative numbers, which directly affect the fitness value of
an evolved program. In both cases, the value assigned as the result is zero (Ri← 0), which
is the same approach adopted by the QILGP implementation (Dias and Pacheco, 2009).
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7. Experiments and Results

In this section, we analyze the performance of GMGP compared with the other GP method-
ologies for GPUs. We describe the environment setup, the implementation of the other GP
methodologies, the benchmarks, and the analysis of the results obtained from our experi-
ments.

7.1 Environment Setup

The GPU used in our experiments was the GeForce GTX TITAN. This processor has 2,688
CUDA cores (at 837 MHz) and 6 GB of RAM (no ECC) with a memory bandwidth of 288.4
GB/s through a 384-bit data bus. The GTX TITAN GPU is based on the Nvidia Kepler
architecture, and its theoretical peak performance is characterized by the use of the fused
multiply-add (FMA) operations. The GTX TITAN can achieve single precision theoretical
peak performance of 4.5 TFLOPs.

GMGP creates the individuals on CPU using a single-threaded code running on a single
core of an Intel Xeon CPU X5690 processor, with 32 KB of L1 data cache, 1.5 M of L2
cache, 12 MB of L3 cache, and 24 GB of RAM, running at 3.46 GHz.

The GP methodologies were implemented in C, CUDA 5.5, and PTX 3.2. The compilers
used were gcc 4.4.7, nvcc release 5.5, V5.5.0, and ptxas release 5.5, V5.5.0. We had to be
careful in setting the compiler optimization level. It is common for the programmer to use
a more advanced optimization level to produce a more optimized and faster code. However,
the compilation time is a bottleneck for the GP methodologies that require individuals to
be compiled. The code generated by the -O2, -O3, and -O4 optimization levels is more opti-
mized and executes faster, but more time is spent in the compilation process. Experiments
were performed to determine the best optimization level. These experiments indicated that
the lowest optimization level, -O0, provided the best results. There were millions of in-
dividuals to be compiled, and each individual was executed only once. Accelerating the
execution phase was not sufficient to compensate for the time spent optimizing the code
during the compilation phase.

We used five widely used GP benchmarks: two symbolic regression problems, Mexican
Hat and Salutowicz; one time-series forecasting problem, Mackey-Glass; one image pro-
cessing problem, Sobel filter; and one Boolean regression problem, 20-bit Multiplexer. The
first four benchmarks were used to evaluate the single precision floating point instructions,
whereas the last benchmark was used to evaluate the Boolean instructions. The Mackey-
Glass, Boolean Multiplexer, and Sobel filter benchmarks were also used in previous works on
GP accelerated by GPUs (Robilliard et al., 2009; Langdon and Banzhaf, 2008c; Langdon,
2010b; Harding and Banzhaf, 2008, 2009). Nevertheless, it is not possible to perform a direct
comparison, as they used a different GP model (tree-based GP) and different hardware.

Each result in the experiments was obtained by repeating the experiment 10 times and
averaging the timing results. The standard deviations of the times obtained for all the data
sets were less than 5% of the average execution times. We present our timing results in both
seconds and GP operations per second (GPops), which has been widely used in previous
GP works. Although the focus of the paper is on the actual execution speeds of the GP
evaluation, we briefly discuss the quality of the results produced by GMGP and the other
methodologies studied.
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We used 256 threads per block in our experiments. The block grid is two-dimensional
and depends on the number of individuals and the number of fitness cases. For an experi-
ment with (number fitness cases, number individuals) the grid is (number fitness cases/256,
number individuals).

7.2 GP Implementations

To put the GMGP results in perspective, we compare the performance of GMGP with
the other GP methodologies for GPUs: compilation, pseudo-assembly, and interpretation.
However, the GP methodologies for GPUs taken from the literature are not based on LGP or
quantum-inspired algorithms. For this reason, we had to implement an LGP and quantum-
inspired approach corresponding to each methodology to make them directly comparable
with GMGP. Nevertheless, these implementations are based on the algorithms described in
the literature.

The compilation approach is based on the work by Harding and Banzhaf (2009) and is
called Compiler here. The pseudo-assembly approach is based on our previous work (Cu-
pertino et al., 2011), and is called Pseudo-Assembly here. The interpretation approach
is based on the work by Langdon and Banzhaf (2008a) and is called Interpreter here.

The Compiler and Pseudo-Assembly methodologies use a similar program assembly to
the GMGP methodology. The individuals are created by the CPU and sent to the GPU
to be computed. The main difference is the assembly of the body of the programs. In
Compiler, the bodies are created using CUDA language instructions. When the popula-
tion is complete, it is compiled using the nvcc compiler to generate the GPU binary code.
In Pseudo-Assembly, the bodies are created using the PTX pseudo-assembly language in-
structions. When the population is complete, the code can be compiled with ptxas or the
cuModuleLoad C function provided by Nvidia, both of which generate GPU binary code.
The Pseudo-Assembly methodology reduces the compilation overhead using the JIT com-
pilation.

In the Interpreter methodology, the interpreter was written in the PTX language, rather
than in RapidMind, as proposed by Langdon and Banzhaf (2008a). The interpreter is au-
tomatically built once, at the beginning of the GP evolution, and is reused to evaluate all
individuals. Algorithm 1 presents a high-level description of the interpreter process. As
the pseudo-assembly language does not have a switch-case statement, we used a combina-
tion of the instruction setp.eq.s32 (comparisons) and bra (branches) to obtain the same
functionality. These comparisons and branches represent one of the weaknesses of the In-
terpreter methodology. The interpreter must execute more instructions than the actual GP
operations. For each GP instruction, we have at least one comparison, to identify the GP
operation, and one jump to the beginning of the loop. In addition, comparisons can be
made to identify the instruction arguments.

The GP methodologies implemented employ an equivalent function set and use the same
number of registers. In QILGP (Dias and Pacheco, 2013), the function set has an atomic
exchange instruction (FXCH ST(i)) that the GPU does not have. To maintain the function
set compatibility with QILGP in the experiments, we created the exchange operation in the
GPU using three move operations. An exchange between Ri and R0 uses an intermediary
register R8 and becomes R8 = R0; R0 = Ri; Ri = R8, as shown in Table 2.
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1: TBX← X dimension of the Thread Block identification
2: TBY← Y dimension of the Thread Block identification
3: INDIV← individual number (TBY)
4: N← program length (INDIV)
5: THREAD← GPU Thread identification
6: X0← input variable 1 (THREAD + TBX * Number of threads in a block)
7: X1← input variable 2 (THREAD + TBX * Number of threads in a block)
8: for k ← 1 to N do
9: INSTRUCT← instruction number (k) (INDIV)

10: ARG← argument number (k) (INDIV)
11: switch (INSTRUCT)
12: case 0:
13: no operation
14: case 1:
15: switch (ARG) % Description: R(0)← R(0) + X(j)
16: case 0:
17: add.f32 R0, R0, X0
18: case 1:
19: add.f32 R0, R0, X1
20: → Here, we have more similar cases for all inputs and constant registers (X).
21: end switch
22: case 2:
23: switch (ARG) % Description: R(0)← R(0) + R(i)
24: case 0:
25: add.f32 R0, R0, R0
26: case 1:
27: add.f32 R0, R0, R1
28: → Here, we have more similar cases for all eight auxiliary FPU registers (Ri).
29: end switch
30: case 3:
31: switch (ARG) % Description: R(i)← R(i) + R(0)
32: case 0:
33: add.f32 Ri, R0, R0
34: case 1:
35: add.f32 Ri, R1, R0
36: → Here, we have more similar cases for all eight auxiliary FPU registers (Ri).
37: end switch
38: → Here, we have more similar cases for all other instructions, such as subtraction, multiplication,

division, data transfer, trigonometric, and arithmetic operations.
39: default:
40: exit
41: end switch
42: → Write result back to global memory.
43: end for

Algorithm 1: Pseudo-code for the GP interpreter for a GPU based on quantum-inspired
LGP.
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7.3 Symbolic Regression Benchmarks

Symbolic regression is a typical problem used to assess GP performance. We used two
well-known benchmarks: the Mexican Hat and Salutowicz. These benchmarks allow us to
evaluate GMGP over different fitness case sizes.

The Mexican Hat benchmark (Brameier and Banzhaf, 2007) is represented by a two-
dimensional function given by Equation (8):

f(x,y) =

(
1− x2

4
− y2

4

)
× e(−x2−y2)/8. (8)

The Salutowicz benchmark (Vladislavleva et al., 2009) is represented by Equation (9).
We used the two-dimensional version of this benchmark.

f(x,y) = (y − 5)× e−x × x3 × cos (x)× sin (x)×
[
cos (x)× sin (x)2 − 1

]
. (9)

For the Mexican Hat benchmark, the x and y variables are uniformly sampled in the
range [−4,4]. For the Salutowicz benchmark, they are uniformly sampled in the range
[0,10]. This sampling generates the training, validation, and testing data sets. The number
of subdivisions of each variable can be 16, 32, 64, 128, 256, and 512, which is called the
number of samples, N . At each time, both variables use the same value of N , producing a
grid. When N = 16, there is a 16×16 grid, which represents 256 fitness cases. Accordingly,
the number of fitness cases varies in the set S = {256, 1024, 4096, 16K, 64K, 256K}.

These two benchmarks represent two different surfaces, and GP has the task of recon-
structing these surfaces from a given set of points. The fitness value of an individual is its
mean absolute error (MAE) over the training cases, as given by Equation (10):

MAE =
1

n

n∑
i=1

|ti − V [0]i|, (10)

where ti is the target value for the ith case and V [0]i is the individual output value for the
same case.

7.3.1 Parameter Settings

Table 5 presents the parameters used when executing the Mexican Hat and Salutowicz
benchmarks. We used a small population size, which is a typical characteristic of QEAs.
The evolution status of QEAs is represented by a probability distribution, and there is no
need to include many individuals. The superposition of states provides a good global search
ability due to the diversity provided by the probabilistic representation.

7.3.2 Preliminary Experiments for the Compiler Methodology

Table 6 presents the execution time breakdown of all GPU methodologies for the Mexican
Hat benchmark when the fitness case is 16K. The execution time is broken down into the
following categories: nvcc represents the time spent with the nvcc compiler to generate the
PTX code from the CUDA source code; upload represents the time spent compiling the PTX
code to the GPU binary code (in our methodology, upload means the time spent loading
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Parameter Settings
Mexican Hat Salutowicz

Number of generations 400,000 400,000
Population size 36 36
NOP initial probability (α0,0) 0.9 0.9
Step size (s) 0.0003 0.002
Maximum program length 128 128
Function set Table 2 Table 2
Set of constants {1,2,3,4,5,6,7,8,9} {1,2,3,4,5,6,7,8,9}

Table 5: Parameter settings for the Mexican Hat and Salutowicz benchmarks. The values
of number of generations, population size, initial probability of NOP, and step size
were obtained from previous experiments.

Methodology Total nvcc upload evaluation interpret download CPU

GMGP 292.6 – 73.2 76.9 – 5.13 137.2

Interpreter 636.8 – 3.14 – 542.4 4.35 86.8

Pseudo-Assembly 40,777 – 40,414 118.8 – 6.13 238.8

Compiler 242,186.7 135,027.5 106,458 283.6 – 6.74 410.9

Table 6: Execution time breakdown of all GPU methodologies (in seconds). The table
presents the times for: Total, the total execution; nvcc, the compilation in the
nvcc compiler; upload, the compilation of the PTX code (Compiler and Pseudo-
Assembly), or loading the GPU binaries to the GPU memory (GMGP), or transfer-
ring the tokens through the PCIe bus (Interpreter); evaluation, the computation
of the fitness cases; interpret, the interpretation; download, the copy of the fit-
ness result from GPU to the CPU; and CPU, the GP methodology is executed on
the CPU.

the GPU binaries to the graphic card before execution); in the interpreter methodology,
upload is the time necessary to transfer the tokens through the PCIe bus; evaluation

represents the time spent computing the fitness cases; interpret is the interpretation time
for Interpreter; download is the time spent in copying the fitness result from GPU to the
CPU; and CPU represents the remainder of the execution time, including the time necessary
to execute the GP methodology on the CPU.

As can be observed in Table 6, the Compiler methodology is the only one that spends
time on the nvcc compiler. The time spent on the nvcc compiler is enormous when compared
to all other times, and Compiler becomes three orders of magnitude slower than GMGP and
Interpreter. Although some previous works have reported results for the Compiler method-
ology for GP in GPUs (Harding and Banzhaf, 2007; Chitty, 2007; Harding and Banzhaf,
2009; Langdon and Harman, 2010), they are not comparable with our results. Harding and
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Banzhaf (2007) and Chitty (2007) did not use CUDA and could therefore avoid the nvcc
overhead. Harding and Banzhaf (2009) used CUDA but handled the compilation overhead
by using a cluster to compile the population. Langdon and Harman (2010) also used CUDA,
but the total compilation time for our experiment is greater than their compilation time
for two reasons. First, the small population size of a quantum-inspired approach requires
more compiler calls. Second, the total number of individuals we are evaluating (number
of generations × population size) is at least one order of magnitude greater than in their
experiments.

Because the other methodologies solved the same problem considerably faster, we dis-
carded the Compiler methodology for the remaining experiments.

The download time is almost the same for all implementations because the same data set
was used in all approaches. Accordingly, the results to be copied through the PCIe bus are
the same. The CPU time for Interpreter is slightly smaller than for GMGP, Compiler, and
Pseudo-Assembly because Interpreter does not have to assemble the individuals in the CPU
before transferring to the GPU. Instead, the tokens are copied directly. The evaluation

time is almost the same for Compiler and Pseudo-Assembly, but GMGP presents a slightly
smaller evaluation time because the header and footer are optimized. The interpret

time is approximately one order of magnitude slower than the GMGP evaluation time
because it has to perform many additional instructions, such as comparisons and jumps.
The upload time for GMGP is approximately three orders of magnitude faster than the
upload time for Compiler and Pseudo-Assembly because GMGP directly assembles the
GPU binaries without calling the PTX compiler. The time necessary to transfer the tokens
through the PCIe bus in the Interpreter methodology is smaller than the time necessary to
load the GPU binary code in the GMGP.

7.3.3 Performance Analysis

We compare the execution times of the methodologies as the number of fitness cases varies in
the set: S = {256, 1024, 4096, 16K, 64K, 256K}. The total execution times of the Mexican
Hat and Salutowicz benchmarks for the Pseudo-Assembly, Interpreter, and GMGP method-
ologies are presented in Figure 5. The curves are plotted in log-scale. The Pseudo-Assembly
methodology execution time remains almost constant as the problem size increases in both
cases studied because Pseudo-Assembly spends most of the time compiling the individual
population code, and the compilation time does not depend on the problem size. The total
execution times of the Interpreter and GMGP methodologies increase almost linearly as
the number of fitness cases increases from 256 to 256K. For the largest data set, 256K,
the Pseudo-Assembly execution time approaches the execution time of Interpreter. How-
ever, the Pseudo-Assembly methodology performs much worse than the other methodologies
when only a few fitness cases are considered.

In Table 7, we present the performance of the three methodologies for a 256K data
set, using the GP operations per second (GPops) metric, which is widely employed in the
GP literature. Considering the total evolution, GMGP performs 2.29e+014 GP operations
on 1.17e+003 seconds, obtaining 194.4 billion GPops for Mexican Hat. Similarly, GMGP
obtained 200.5 billion GPops for Salutowicz. The Interpreter methodology took 26.6 billion
GPops for Mexican Hat and 27.5 billion GPops for Salutowicz. The Pseudo-Assembly
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Benchmark Methodology GP evolution (GPops) Best Individual (GPops)

Mexican Hat GMGP 194.4 billion 245.5 billion
Interpreter 26.6 billion 29.9 billion
Pseudo-Assembly 5.3 billion 161.0 billion

Salutowicz GMGP 200.5 billion 240.2 billion
Interpreter 27.5 billion 27.0 billion
Pseudo-Assembly 4.9 billion 158.4 billion

Table 7: Performance of GMGP, Interpreter, and Pseudo-Assembly for Mexican Hat and
Salutowicz in GPops. The table presents the results for the overall evolution,
including the time spent in the GPU and CPU, and the results for the GPU
computation of the best individual after the evolution is complete.

Figure 5: Execution time (in seconds) of Pseudo-Assembly, Interpreter, and GMGP
methodologies for the Mexican Hat and Salutowicz benchmarks with an increasing
number of fitness cases.

methodology had the smallest values, 5.3 billion GPops for Mexican Hat and 4.9 billion
GPops for Salutowicz. Table 7 also presents the GPops for the evaluation in the GPU of the
best individual found after the evolution is completed. The best individual GPops results
are greater than the GP evolution results because the evaluation of the best individual takes
considerably less time than the whole GP evolution. In addition, the GP evolution includes
the overheads of creating the individuals and transferring the data to/from the GPU. For
Pseudo-Assembly, the evaluation of the best individual does not consider the compilation
overhead, and the GPops value obtained for the best individual is similar to that obtained
by GMGP.

Figure 6 presents the speedups obtained with the Interpreter and GMGP methodologies
compared to the Pseudo-Assembly methodology for the Mexican Hat and Salutowicz bench-
marks. For the two benchmarks, the smallest data set generated the greatest speedups. For
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Figure 6: Speedup of Interpreter and GMGP compared to Pseudo-Assembly for the Mexican
Hat and Salutowicz benchmarks with an increasing number of fitness cases.

Mexican Hat, Interpreter runs 371 times faster than Pseudo-Assembly, whereas GMGP
runs 193 times faster than Pseudo-Assembly. The gains are similar for Salutowicz: In-
terpreter runs 363 times faster than Pseudo-Assembly, and GMGP runs 199 times faster
than Pseudo-Assembly. As the problem size increases, the speedups compared to Pseudo-
Assembly become smaller for both benchmarks. We will compare only Interpreter and
GMGP in the remainder of this analysis.

Figure 7 presents the speedup obtained with GMGP compared to Interpreter for Mexican
Hat and Salutowicz. GMGP performs better for larger data sets for both benchmarks.
For the small data sets, in GMGP, the number of fitness cases used is not sufficient to
compensate for the overhead of uploading the individuals, and the Interpreter methodology
is faster. GMGP outperforms Interpreter for fitness case sizes exceeding 4,096. GMGP is
7.3 times faster than Interpreter for Mexican Hat and a fitness case size of 256K. Similar
results were obtained for Salutowicz. As expected, GMGP is promising for applications
with large data sets.

To explain why GMGP outperforms Interpreter for large data sets, we analyze the
execution time breakdown for each approach in detail. Figures 8 and 9 present the execution
breakdown of GMGP and Interpreter for the Mexican Hat and Salutowicz benchmarks
with an increasing number of fitness cases. The execution time was broken into the same
components as described in Table 6.

A comparison of GMGP’s upload time from Figure 8 with Interpreter’s upload time
from Figure 9 indicates that it is more costly to load the GPU binary to the graphics card
than to transfer the tokens through the PCIe bus. However, these times remain constant
as the problem size increases. The download times for GMGP and Interpreter are almost
the same, but both times increase with increasing problem size. This result is expected, as
the two approaches use exactly the same data set, and the computations produce the same
number of results to be copied through the PCIe bus. The result of each thread execution is
one float value. The results of the threads in one block are reduced to one result in the global
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Figure 7: Speedup of GMGP compared to Interpreter for the Mexican Hat and Salutowicz
benchmarks with an increasing number of fitness cases.
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Figure 8: Execution time breakdown of GMGP. The graph presents the time broken down
as follows: upload, the time spent loading the GPU binaries to the GPU memory;
evaluation, the time spent computing the fitness cases; download, the time spent
copying the fitness result from the GPU to the CPU; and CPU, the time during
which the GP methodology is executed on the CPU.

memory. Then, the block results are reduced to one value for each individual in the CPU.
The number of results transferred depends on the number of blocks used to compute all of
the fitness cases. The CPU overhead has a similar behavior because the time spent running
the GP methodology on the CPU is expected to be the same for GMGP and Interpreter,
as the parallelized portion of the code is the evaluation function. We can compare the
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Figure 9: Execution time breakdown of Interpreter. The graph presents the time broken
into: upload, the time necessary to transfer the tokens through the PCIe bus;
interpret, the interpretation time; download, the time spent copying the fitness
result from the GPU to the CPU; and CPU, the time during which the GP
methodology is executed on the CPU.

evaluation function times for GMGP and Interpreter by comparing the evaluation time of
Figure 8 with the interpret time of Figure 9. For small data sets, the evaluation time
of GMGP is smaller than the interpret time of Interpreter, but the difference is small.
However, as the problem size increases, the interpret time increases significantly because
the Interpreter methodology must execute an excessive amount of additional instructions,
such as comparisons and branches. For GMGP, the evaluation time increases slightly
because it executes only the necessary GP instructions. Thus, the total time difference
between GMGP and Interpreter increases for larger data sets.

7.3.4 Quality of Results

To compare the quality of the results of the Compiler, Pseudo-Assembly, Interpreter, and
GMGP methodologies on the GPU, we used the same random seed at the beginning of the
first experiment of each approach. We compared the intermediate and final results. All
GPU approaches produced identical results, comparing all available precision digits. The
only difference among them was the execution time.

In Table 8, we analyze the results for 10 different executions of Compiler, Pseudo-
Assembly, Interpreter, and GMGP. Table 8 presents the best individuals’ average and stan-
dard deviation (σ) for the training, validation, and testing data sets for the Mexican Hat
and Salutowicz benchmarks considering 16K fitness cases. Because each experiment was
repeated 10 times, the standard deviations of all cases are relatively low for the number of
executions used.
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Benchmark Methodology Training Validation Test
Average σ Average σ Average σ

Mexican Hat GMGP 0.046 0.007 0.048 0.008 0.053 0.008
Interpreter 0.046 0.007 0.048 0.008 0.053 0.008
Pseudo-Assembly 0.046 0.007 0.048 0.008 0.053 0.008
Compiler 0.046 0.007 0.048 0.008 0.053 0.008

Salutowicz GMGP 0.17 0.10 0.19 0.12 0.15 0.08
Interpreter 0.17 0.10 0.19 0.12 0.15 0.08
Pseudo-Assembly 0.17 0.10 0.19 0.12 0.15 0.08
Compiler 0.17 0.10 0.19 0.12 0.15 0.08

Table 8: Mean Absolute Errors (MAEs) in GPU evolution for the Mexican Hat and Salu-
towicz benchmarks. The table presents the best individuals’ average and standard
deviation (σ) for the training, validation, and testing data sets for 16K fitness
cases, with a precision of 10−3.

7.4 Mackey-Glass Benchmark

The Mackey-Glass benchmark (Jang and Sun, 1993) is a chaotic time-series prediction
benchmark, and the Mackey-Glass chaotic system is given by the non-linear time delay
differential Equation (11).

dx(t)

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) (11)

The Mackey-Glass system has been used as a GP benchmark in various works (Langdon
and Banzhaf, 2008b,c). In our experiments, the time series consists of 1,200 data points,
and GP has the task of predicting the next value when historical data are provided. The
GP inputs are eight earlier values from the series, at 1, 2, 4, 8, 16, 32, 64, and 128 time
steps ago.

7.4.1 Parameter Settings

The parameters used for the GP evolution in the Mackey-Glass benchmark are presented in
Table 9. We used a small population size and a large number of generations, as previously
explained. The number of generations was defined according to the number of individuals
proposed by Langdon and Banzhaf (2008c).

7.4.2 Performance Analysis

We analyze the performance of GMGP for the Mackey-Glass benchmark using the GPops
metric. Table 10 presents the number of GPops obtained by GMGP. We present the GPops
for the GP evolution in the GPU considering the operations spent in executing the eval-
uation function for all individuals and counting all non-NOP operations. GMGP obtained
77.7 billion GPops. When we consider the GP evaluation combined with the load of the
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Parameter Settings

Number of generations 512,000
Population size 20
NOP initial probability (α0,0) 0.9
Step size (s) 0.004
Maximum program length 128
Function set Table 2
Set of constants {0, 0.01, 0.02, ..., 1.27}

Table 9: Parameter settings for the Mackey-Glass benchmark. The number of individuals
(number of population x number of generations) was defined according to the
literature. The initial probability of NOP and step size were obtained in previous
experiments.

GPops

GP evolution 77.7 billion
+ loading data 8.85 billion
+ results transfer 8.4 billion

Total computation 3.59 billion

Best individual 8.6 billion

Table 10: Results of GMGP running the Mackey-Glass benchmark in GPops. The table
presents the number of GPops spent in the GP evolution in the GPU, progres-
sively including the overhead of loading the individuals code into GPU and trans-
ferring the results back to the CPU. At the end, we provide the results for the
entire computation, including the overhead of CPU computation, and the results
for the execution of the best individual.

individual code into the GPU memory, GMGP obtained 8.85 billion GPops. The load of
data into the GPU memory does not include any GP operation and requires a substantial
time in the evolution process. The load time is fixed regardless of the size of the data set.
The idea is to amortize this cost by the faster execution of a larger data set. However, the
Mackey-Glass benchmark has a small number of fitness cases.

For the measures that consider the transfer of the results to the CPU memory, the
GPops value decreased to 8.4 billion. When the entire computation is considered, including
the overhead of the CPU computation, GMGP achieved 3.59 billion GPops. At the end of
the evolution, the best individual was executed, and the performance of the best individual
execution was 8.6 billion GPops.
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Figure 10: The three gray-scale images used for training. The image resolutions are 512×
512 pixels.

7.4.3 Quality of the Results

The quality of the results produced by GMGP was analyzed using 10 GP executions. We
computed the RMS error and standard deviation. The average error was 0.0077, and the
standard deviation was 0.0021. The error is lower than the errors presented in the literature
due to the difference in the GP models used. The results presented in the literature used
a tree-based GP with a tree size limited to 15 and depth limited to 4. In contrast, GMGP
can evolve individuals with at most 128 linear instructions. Accordingly, it was possible to
find an individual that better addressed this benchmark problem.

7.5 Sobel filter

The Sobel filter is a widely used edge detection filter. Edges characterize boundaries and
are therefore considered crucial in image processing. The detection of edges can assist
in image segmentation, data compression, and image reconstruction. The Sobel operator
calculates the approximate image gradient of each pixel by convolving the image with a
pair of 3 × 3 filters. These filters estimate the gradients in the horizontal (x) and vertical
(y) directions, and the magnitude of the gradient is the sum of these gradients. All edges
in the original image are greatly enhanced in the resulting image, and the slowly varying
contrast is suppressed.

The evolution of an image filter uses a reverse-engineering approach, where the problem
is to find the mapping between the original image and resulting image after the filter is
applied (Harding and Banzhaf, 2008, 2009). The GP task is to discover the operations
that transformed the input image into the filtered image. In our experiments, we used six
512×512 images taken from the USC-SIPI image repository (Weber, 1997). The gray-scale
versions of all 6 images and the resulting images after the Sobel filter were computed using
the GIMP image processing tool (GIMP, 2008). Figure 10 presents the three gray-scale
images used for training. Figure 11 shows the two images used for validation. Figure 12
shows, for the same image, the original image in gray scale, the resulting image after the
Sobel filter is applied by the GIMP tool, and the output image produced by the GMGP
evolved filter.
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Figure 11: The two gray-scale images used for validation. The image resolutions are 512×
512 pixels.

Figure 12: Results of evolving the filter for one test image. The leftmost image is the
original gray-scale test image. The center image is the output image produced
by applying the GIMP Sobel filter. The rightmost image is the output image
produced by the GMGP evolved filter.

7.5.1 Parameter Settings

The parameters used for the GP evolution of the Sobel filter are presented in Table 11. The
population size also employs a low number of individuals for the reasons explained before.
The number of generations, NOP initial probability, step size, and maximum program length
were obtained from previous experiments.

7.5.2 Performance Analysis

The performance of the Sobel filter in GPops is presented in Table 12. Considering only the
GPU evaluation of all non-NOP instructions, GMGP achieved 287.3 billion GPops. When the
overhead of uploading the GPU binaries is included, the GPops are reduced to 274.2 billion.
The reduction in GPops was less pronounced because this problem has a larger data set that
compensates for the initial overhead of loading the program. When we include the overhead
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Parameter Settings

Number of generations 400,000
Population size 20
NOP initial probability (α0,0) 0.9
Step size (s) 0.001
Maximum program length 128
Function set Table 2
Set of constants {1,2,3,4,5,6,7,8,9}

Table 11: Parameter settings for the Sobel filter. The values of the number of generations,
population size, initial probability of NOP, and step size were obtained in previous
experiments.

GPops

GP evolution 287.3 billion
+ loading data 274.2 billion
+ results transfer 268.6 billion

Total computation 249.9 billion

Best individual 295.8 billion

Table 12: Results of GMGP running the Sobel filter in GPops. The table presents the
number of GPops spent in the GP evolution in the GPU, progressively including
the overheads of loading the individual code into the GPU and transferring the
results back to the CPU. At the end, we present the results for the entire com-
putation, including the overhead of CPU computation, and the results for the
execution of the best individual.

of transferring the results back to the CPU through the PCIe bus, GMGP obtained 268.6
billion GPops. When the entire computation is considered, including the overhead of the
CPU computation during the evolution, GMGP obtained 249.9 billion GPops. After the
evolution, the best individual was executed on the GPU, and we calculated a performance
of 295.8 billion GPops for the best individual.

7.5.3 Quality of the Results

The quality of the results produced by GMGP for the Sobel filter was analyzed with 10 GP
runs. We computed the MAE and standard deviation. Table 13 presents both the MAEs
and standard deviations for the training, validation, and testing data sets. The errors
are low compared to those presented in literature because our GP parameters were set to
provide a better-quality evolved filter. The quality of the Sobel filter evolved by GMGP can
also be assessed visually. The image presented at the right of Figure 12 was produced by the
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Training Validation Test
Average σ Average σ Average σ

2.11 0.61 2.21 0.64 2.03 0.599

Table 13: MAEs in GMGP evolution for the Sobel filter. The table presents the average
and standard deviation (σ) of the best individual for the training, validation, and
testing data sets.

best individual of GMGP applied to the test image. This image can be visually compared
to the image in the center of Figure 12, which was obtained using the Sobel filter of GIMP.
A visual comparison of these two images indicates that the evolved filter produced an image
with more prominent horizontal edges without significantly increasing the noise.

7.6 20-bit Boolean Multiplexer

The Boolean instructions of GMGP were evaluated using the 20-bit Boolean Multiplexer
benchmark (Langdon, 2010b, 2011). In the 20-bit Boolean Multiplexer benchmark, there are
1,048,576 possible combinations of 20 arguments of a 20-bit Multiplexer. In our experiments,
we used 1,048,576 fitness cases to evaluate all of the individuals, which is possible because
GMGP evaluates each individual rapidly. This experiment is the first time this benchmark
has been solved in this manner, using all fitness cases. The bit-level parallelism was exploited
by performing bitwise operations over a 32-bit integer that packs 32 Boolean fitness cases.

7.6.1 Parameter Settings

The parameter settings used for the 20-bit Boolean Multiplexer benchmark are presented
in Table 14. More individuals were used in the population than in the previous benchmark
experiments reported in this paper. This problem addresses more input variables and a
larger data set. The number of generations was computed to produce a total number of
individuals similar to the numbers presented in the literature. However, the zero error
solution was found before the maximum number of generations was reached for all 10 GP
executions. The maximum program length was obtained by verifying the minimum length
needed to solve this problem benchmark.

7.6.2 Performance Analysis

Table 15 presents the number of GPops obtained by GMGP for the GP evolution in the
GPU (execution of the evaluation of all individuals considering the non-NOP operations);
the GP evolution including the loading of the individual code into the GPU memory; the
GP evolution, including the loading of the individuals and the transfer of the results to
the CPU memory; the total computation, including the CPU computation; and the best
individual computation.

Table 15 illustrates that GMGP obtained 5.88 trillion GPops when evaluating the indi-
viduals. When the load of the individuals is considered, a value of 5.24 trillion GPops was
obtained. This benchmark has a large data set. The amount of computation is sufficient to
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Parameter Settings

Number of generations First Solution
or 14,000,000

Population size 40
NOP initial probability (α0,0) 0.9
Step size (s) 0.004
Maximum program length 512
Function set Table 3
Set of constants –

Table 14: Parameter settings for the 20-bit Boolean Multiplexer. The values of the number
of generations, population size, initial probability of NOP, and maximum program
length were obtained in previous experiments, where we varied the values until
the problem was solved.

GPops

GP evolution 5.88 trillion
+ loading data 5.24 trillion
+ results transfer 5.19 trillion

Total computation 2.74 trillion

Best individual 4.87 trillion

Table 15: Results of GMGP running the 20-bit Boolean Multiplexer benchmark in GPops.
The table presents the number of GPops spent in the GP evolution in the GPU,
progressively including the overhead of loading the individual code into GPU and
transferring the results back to the CPU. At the end, we present the results for
the entire computation, including the overhead of CPU computation, and the
results for the execution of the best individual.

amortize the load time. Thus, the total number of GPops is not degraded with the inclusion
of the load of individuals. When the results transfer is included, the results remain almost
the same, and GMGP achieves 5.19 trillion GPops. When the CPU overhead is considered,
the performance is reduced to 2.74 trillion GPops. This result suggests that porting the
whole GP evolution algorithm to run in the GPU (not only the evaluation function), could
significantly improve the overall performance. The execution of the GMGP’s best individual
achieved 4.87 trillion GPops.
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Experiment Generation Total Number of Individuals

1 2,413,505 96,540,200
2 1,246,979 49,879,160
3 3,238,394 129,535,760
4 7,802,509 312,100,360
5 8,892,873 355,714,920
6 10,737,990 429,519,600
7 5,255,728 210,229,120
8 2,576,655 103,066,200
9 5,469,381 218,775,240
10 3,395,730 135,829,200

Table 16: Generation at which GMGP solved the 20-bit Boolean Multiplexer and the total
number of individuals used in the evolution. The population size is 40 individuals.

7.6.3 Quality of the Results

GMGP was able find the zero solution for the 20-bit Boolean Multiplexer benchmark before
the maximum number of generations was reached for all 10 GP executions. Table 16 presents
the number of generations and total number of individuals needed to find this solution.

8. Discussions

It is difficult to compare our quantum-inspired LGP timings to the timings of the tree-based
implementations of GP in GPU proposed in the literature. They used different individual
representations and different evolutionary algorithms. However, we can compare the GPops
results. For the Mackey-Glass benchmark, on the GTX TITAN, we obtained up to 3.59
billion GPops when considering the entire evaluation (GPU and CPU) and 77.7 billion
GPops when considering only the GPU processing. Langdon and Banzhaf (2008c) obtained
895 million GPops for this benchmark. However, we used a larger individual than Langdon
and Banzhaf (2008c) to achieve a more accurate prediction result (smaller RMS error). We
obtained up to 249.9 billion GPops considering the whole evaluation (GPU and CPU) and
287.3 billion GPops considering only the GPU processing for the Sobel filter benchmark. The
Sobel filter was also evolved, along with other filters, by Harding and Banzhaf (2008).They
obtained an average of 145 million GPops and a peak performance of 324 million GPops.
Harding and Banzhaf (2009) attained on average 4.21 billion GPops when evolving the
same type of filter. They used Cartesian GP and a cluster of 16 workstations to compile
the code. For the 20-bit Boolean Multiplexer benchmark, we obtained up to 2.74 trillion
GPops considering the entire evaluation and 5.88 trillion GPops considering only the GPU
processing. Langdon (2010b) obtained up to 254 billion GPops in the entire evaluation
process (CPU and GPU) for a 37-bit Boolean multiplexer. The literature provides other
results for different benchmarks. Recently, Langdon (2010a) obtained 8.5 billion GPops for
a bioinformatics data mining problem.
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Despite the highly data-parallel nature of the GP problems that we considered, we
could achieve 336.3 GFLOPs of execution in the GTX TITAN, whose peak performance is
4,500 GFLOPs, running the Sobel filter benchmark. The peak performance of the GPU is
measured using the FMA instruction, which is not present in our function set. Furthermore,
it is difficult to reach the peak single precision performance even for embarrassingly parallel
applications, such as SGEMM (Lai and Seznec, 2013). The main obstacles for GMGP
in achieving the peak performance are: (i) it includes more complicated floating-point
operations like divisions, sine, cosine, and square root, that take several cycles to execute;
(ii) it includes a reduction operation that requires synchronization; (iii) the small population
size makes the overhead of uploading the individuals to the GPU memory more significant.

9. Conclusions

In this work, we proposed a new methodology to parallelize the evaluation process on the
GPU called GMGP. Our methodology is inspired by quantum computing and includes the
principles of the quantum bit and the superposition of states, which increases the diversity of
a quantum population. In addition, GMGP is the first methodology to generate individuals
using the GPU machine code instead of compiling or interpreting them. We eliminate
the compilation time overhead without including the parsing of the code and divergence
required for the interpretation. The parallelism is exploited at two levels in the evaluation
process, i.e., at the individual level and at the fitness case level. This parallelization scheme
guarantees adequate scalability as the number of cores in the GPU increases.

To compare GMGP to other GP methodologies for GPUs found in the literature, we
implemented three different LGP-based and quantum-inspired approaches: (i) compilation
(Compiler), which generates the individuals in GPU code and requires compilation; (ii)
pseudo-assembly (Pseudo-Assembly), which generates the individuals in an intermediary
assembly code and also requires compilation; and (iii) interpretation of multiple programs
(Interpreter), which interprets the codes and does not require compilation. Our results
demonstrated that GMGP outperformed all of the previous methodologies for the larger
data sets of the Mexican Hat and Salutowicz benchmarks. The maximum speedups obtained
were 827.7 against Compiler, 199 against Pseudo-Assembly and 7.3 against Interpreter. In
terms of the GPops, for the entire evolution (GPU and CPU), GMGP achieved approxi-
mately 200.5 billion GPops for the Mexican Hat and Salutowicz benchmarks, 3.59 billion
GPops for the Mackey-Glass benchmark, 249.9 billion GPops for the Sobel filter benchmark,
and 2.74 trillion GPops for the 20-bit Boolean Multiplexer benchmark.

These results provide a new perspective on GPU-based implementations of GP. Our
methodology is scalable and introduces the possibility of addressing large problems within
a reasonable period of time. We were the first to evolve the 20-bit Boolean Multiplexer
problem using all of the fitness cases during the evolution. The largest evolved Multiplexer
that used all fitness cases in the evolution used only 11 bits, whereas the others used samples
to evolve larger problems.

In our future work, we intend to develop a GP evolutionary model to run entirely in the
GPU, which would offer two advantages. First, the GP model would run faster after being
parallelized to GPUs. Second, we would eliminate the overhead associated with copying
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the fitness results from the GPU to the CPU through the PCIe bus, yielding considerable
speedups.
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Abstract
We introduce a new and improved characterization of the label complexity of disagreement-based
active learning, in which the leading quantity is the version space compression set size. This quan-
tity is defined as the size of the smallest subset of the training data that induces the same version
space. We show various applications of the new characterization, including a tight analysis of
CAL and refined label complexity bounds for linear separators under mixtures of Gaussians and
axis-aligned rectangles under product densities. The version space compression set size, as well
as the new characterization of the label complexity, can be naturally extended to agnostic learning
problems, for which we show new speedup results for two well known active learning algorithms.
Keywords: active learning, selective sampling, sequential design, statistical learning theory, PAC
learning, sample complexity, selective prediction

1. Introduction

Active learning is a learning paradigm allowing the learner to sequentially request the target labels
of selected instances from a pool or stream of unlabeled data.1 The key question in the theoretical
analysis of active learning is how many label requests are sufficient to learn the labeling func-
tion to a specified accuracy, a quantity known as the label complexity. Among the many recent
advances in the theory of active learning, perhaps the most well-studied technique has been the
disagreement-based approach, initiated by Cohn, Atlas, and Ladner (1994), and further advanced in
numerous articles (e.g., Balcan, Beygelzimer, and Langford, 2009; Dasgupta, Hsu, and Monteleoni,
2007; Beygelzimer, Dasgupta, and Langford, 2009; Beygelzimer, Hsu, Langford, and Zhang, 2010;
Koltchinskii, 2010; Hanneke, 2012; Hanneke and Yang, 2012). The basic strategy in disagreement-
based active learning is to sequentially process the unlabeled examples, and for each example, the
algorithm requests its label if and only if the value of the optimal classifier’s classification on that
point cannot be inferred from information already obtained.

1. Any active learning technique for streaming data can be used in pool-based models but not vice versa

c©2015 Yair Wiener, Steve Hanneke, and Ran El-Yaniv.



WIENER, HANNEKE, AND EL-YANIV

One attractive feature of this approach is that its simplicity makes it amenable to thorough
theoretical analysis, and numerous theoretical guarantees on the performance of variants of this
strategy under various conditions have appeared in the literature (see e.g., Balcan, Beygelzimer,
and Langford, 2009; Hanneke, 2007a; Dasgupta, Hsu, and Monteleoni, 2007; Balcan, Broder, and
Zhang, 2007; Beygelzimer, Dasgupta, and Langford, 2009; Friedman, 2009; Balcan, Hanneke, and
Vaughan, 2010; Hanneke, 2011; Koltchinskii, 2010; Beygelzimer, Hsu, Langford, and Zhang, 2010;
Hsu, 2010; Hanneke, 2012; El-Yaniv and Wiener, 2012; Hanneke and Yang, 2012; Hanneke, 2014).
The majority of these results formulate bounds on the label complexity in terms of a complexity
measure known as the disagreement coefficient (Hanneke, 2007a), which we define below. A notable
exception to this is the recent work of El-Yaniv and Wiener (2012), rooted in the related topic
of selective prediction (El-Yaniv and Wiener, 2010; Wiener and El-Yaniv, 2012; Wiener, 2013;
Wiener and El-Yaniv, 2015), which instead bounds the label complexity in terms of two complexity
measures called the characterizing set complexity and the version space compression set size (El-
Yaniv and Wiener, 2010). In the current literature, the above are the only known general techniques
for the analysis of disagreement-based active learning.

In the present article, we present a new characterization of the label complexity of disagreement-
based active learning. The leading quantity in our characterization is the version space compression
set size of El-Yaniv and Wiener (2012, 2010); Wiener (2013), which corresponds to the size of the
smallest subset of the training set that induces the same version space as the entire training set. This
complexity measure was shown by El-Yaniv and Wiener (2012) to be a special case of the extended
teaching dimension of Hanneke (2007b).

The new characterization improves upon the two prior techniques in some cases. For a noise-
less setting (the realizable case), we show that the label complexity results derived from this new
technique are tight up to logarithmic factors. This was not true of either of the previous techniques;
as we discuss in Appendix B, the known upper bounds in the literature expressed in terms of these
other complexity measures are sometimes off by a factor of the VC dimension. Moreover, the new
method significantly simplifies the recent technique of Wiener (2013); El-Yaniv and Wiener (2012,
2010) by completely eliminating the need for the characterizing set complexity measure.

Interestingly, interpreted as an upper bound on the label complexity of active learning in gen-
eral, the upper bounds presented here also reflect improvements over a bound of Hanneke (2007b),
which is also expressed in terms of (a target-independent variant of) this same complexity measure:
specifically, reducing the bound by roughly a factor of the VC dimension compared to that result.
In addition to these results on the label complexity, we also relate the version space compression set
size to the disagreement coefficient, essentially showing that they are always within a factor of the
VC dimension of each other (with additional logarithmic factors).

We apply this new technique to derive new results for two learning problems: namely, linear
separators under mixtures of Gaussians, and axis-aligned hyperrectangles under product densities.
We derive bounds on the version space compression set size for each of these. Thus, using our
results relating the version space compression set size to the label complexity, we arrive at bounds
on the label complexity of disagreement-based active learning for these problems, which represent
significant refinements of the best results in the prior literature on these settings.

While the version space compression set size is initially defined for noiseless (realizable) learn-
ing problems that have a version space, it can be naturally extended to an agnostic setting, and the
new technique applies to noisy, agnostic problems as well. This surprising result, which was mo-
tivated by related observations of Hanneke (2014); Wiener (2013), is allowed through bounds on
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the disagreement coefficient in terms of the version space compression set size, and the applicabil-
ity of the disagreement coefficient to both the realizable and agnostic settings. We formulate this
generalization in Section 6 and present new sample complexity results for known active learning
algorithms, including the disagreement-based methods of Dasgupta, Hsu, and Monteleoni (2007)
and Hanneke (2012). These results tighten the bounds of Wiener (2013) using the new technique.

2. Preliminary Definitions

Let X denote a set, called the instance space, and let Y , {−1,+1}, called the label space. A
classifier is a measurable function h : X → Y . Throughout, we fix a set F of classifiers, called the
concept space, and denote by d the VC dimension of F (Vapnik and Chervonenkis, 1971; Vapnik,
1998). We also fix an arbitrary probability measure P over X ×Y , called the data distribution.
Aside from Section 6, we make the assumption that ∃ f ∗ ∈ F with P(Y = f ∗(x)|X = x) = 1 for
all x ∈ X , where (X ,Y ) ∼ P; this is known as the realizable case, and f ∗ is known as the target
function. For any classifier h, define its error rate er(h), P((x,y) : h(x) 6= y); note that er( f ∗) = 0.

For any set H of classifiers, define the region of disagreement

DIS(H ), {x ∈ X : ∃h,g ∈H s.t. h(x) 6= g(x)}.

Also define ∆H , P(DIS(H )×Y ), the marginal probability of the region of disagreement.
Let S∞ , {(x1,y1),(x2,y2), . . .} be a sequence of i.i.d. P-distributed random variables, and for

each m ∈ N, denote by Sm , {(x1,y1), . . . ,(xm,ym)}.2 For any m ∈ N∪{0}, and any S ∈ (X ×Y )m,
define the version space VSF ,S , {h ∈ F : ∀(x,y) ∈ S,h(x) = y} (Mitchell, 1977). The following
definition will be central in our results below.

Definition 1 (Version Space Compression Set Size) For any m ∈N∪{0} and any S ∈ (X ×Y )m,
the version space compression set ĈS is a smallest subset of S satisfying VSF ,ĈS

= VSF ,S. The
version space compression set size is defined to be n̂(F ,S) , |ĈS|. In the special cases where F
and perhaps S = Sm are obvious from the context, we abbreviate n̂ , n̂(Sm), n̂(F ,Sm).

Note that the value n̂(F ,S) is unique for any S, and n̂(Sm) is, obviously, a random number
that depends on the (random) sample Sm. The quantity n̂(Sm) has been studied under at least two
names in the prior literature. Drawing motivation from the work on Exact learning with Member-
ship Queries (Hegedüs, 1995; Hellerstein, Pillaipakkamnatt, Raghavan, and Wilkins, 1996), which
extends ideas from Goldman and Kearns (1995) on the complexity of teaching, the quantity n̂(Sm)
was introduced in the work of Hanneke (2007b) as the extended teaching dimension of the classi-
fier f ∗ on the space {x1, . . . ,xm} with respect to the set F [{x1, . . . ,xm}] , {xi 7→ h(xi) : h ∈ F } of
distinct classifications of {x1, . . . ,xm} realized by F ; in this context, the set ĈSm is known as a min-
imal specifying set of f ∗ on {x1, . . . ,xm} with respect to F [{x1, . . . ,xm}]. The quantity n̂(Sm) was
independently discovered by El-Yaniv and Wiener (2010) in the context of selective classification,
which is the source of the compression set terminology introduced above; we adopt this terminology
throughout the present article. See the work of El-Yaniv and Wiener (2012) for a formal proof of
the equivalence of these two notions.

It will also be useful to define minimal confidence bounds on certain quantities, as follows.

2. Note that, in the realizable case, yi = f ∗(xi) for all i with probability 1. For simplicity, we will suppose these equalities
hold throughout our discussion of the realizable case.
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Definition 2 (Version Space Compression Set Size Minimal Bound) For any m ∈ N∪ {0} and
δ ∈ (0,1], define the version space compression set size minimal bound

Bn̂(m,δ), min{b ∈ N∪{0} : P(n̂(Sm)≤ b)≥ 1−δ} .

Similarly, define the version space disagreement region minimal bound

B∆(m,δ), min
{

t ∈ [0,1] : P(∆VSF ,Sm ≤ t)≥ 1−δ
}
.

In both cases, the quantities implicitly also depend on F and P (which remain fixed throughout our
analysis below), and the only random variables involved in these probabilities are the data Sm.

Most of the existing general results on disagreement-based active learning are expressed in terms
of a quantity known as the disagreement coefficient (Hanneke, 2007a, 2009), defined as follows.

Definition 3 (Disagreement Coefficient) For any classifier f and r > 0, define the r-ball centered
at f as

B( f ,r), {h ∈ F : ∆{h, f} ≤ r} ,

and for any r0 ≥ 0, define the disagreement coefficient of F with respect to P as3

θ(r0), sup
r>r0

∆B( f ∗,r)
r

∨1.

The disagreement coefficient was originally introduced to the active learning literature by Han-
neke (2007a), and has been studied and bounded by a number of authors (see e.g., Hanneke, 2007a;
Friedman, 2009; Wang, 2011; Hanneke, 2014; Balcan and Long, 2013). Similar quantities have also
been studied in the passive learning literature, rooted in the work of Alexander (see e.g., Alexander,
1987; Giné and Koltchinskii, 2006).

Numerous recent results, many of which are surveyed by Hanneke (2014), exhibit bounds on
the label complexity of disagreement-based active learning in terms of the disagreement coeffi-
cient. It is therefore of major interest to develop such bounds for specific cases of interest (i.e.,
for specific classes F and distributions P). In particular, any result showing θ(r0) = o(1/r0) indi-
cates that disagreement-based active learning should asymptotically provide some advantage over
passive learning for that F and P (Hanneke, 2012). We are particularly interested in scenarios in
which θ(r0) = O(polylog(1/r0)), or even θ(r0) = O(1), since these imply strong improvements
over passive learning (Hanneke, 2007a, 2011).

There are several general results on the asymptotic behavior of the disagreement coefficient as
r0→ 0, for interesting cases. For the class of linear separators in Rk, perhaps the most general result
to date is that the existence of a density function for the marginal distribution of P over X is sufficient
to guarantee θ(r0) = o(1/r0) (Hanneke, 2014). That work also shows that, if the density is bounded
and has bounded support, and the target separator passes through the support at a continuity point
of the density, then θ(r0) = O(1). In both of these cases, for k ≥ 2, the specific dependence on r0
in the little-o and the constant factors in the big-O will vary depending on the particular distribution
P, and in particular, will depend on f ∗ (i.e., such bounds are target-dependent).

There are also several explicit, target-independent bounds on the disagreement coefficient in the
literature. Perhaps the most well-known of these is for homogeneous linear separators in Rk, where

3. We use the notation a∨b = max{a,b}.
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the marginal distribution of P over X is confined to be the uniform distribution over the unit sphere,
in which case θ(r0) is known to be within a factor of 4 of min{π

√
k,1/r0} (Hanneke, 2007a). In the

present paper, we are primarily focused on explicit, target-independent speedup bounds, though our
abstract results can be used to derive bounds of either type.

3. Relating n̂ and the Disagreement Coefficient

In this section, we show how to bound the disagreement coefficient in terms of Bn̂(m,δ). We also
show the other direction and bound Bn̂(m,δ) in terms of the disagreement coefficient.

Theorem 4 For any r0 ∈ (0,1),

θ(r0)≤max
{

max
r∈(r0,1)

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
.

Proof We will prove that, for any r ∈ (0,1),

∆B( f ∗,r)
r

≤max
{

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
. (1)

The result then follows by taking the supremum of both sides over r ∈ (r0,1).

Fix r ∈ (0,1), let m = d1/re, and for i ∈ {1, . . . ,m}, define Sm\i = Sm \ {(xi,yi)}. Also define
Dm\i =DIS(VSF ,Sm\i∩B( f ∗,r)) and ∆m\i =P(xi ∈Dm\i|Sm\i) =P(Dm\i×Y ). If ∆B( f ∗,r)m≤ 512,
(1) clearly holds. Otherwise, suppose ∆B( f ∗,r)m > 512. If xi ∈ DIS(VSF ,Sm\i), then we must have
(xi,yi) ∈ ĈSm . So

n̂(Sm)≥
m

∑
i=1

1DIS(VSF ,Sm\i )
(xi).

Therefore,

P{n̂(Sm)≤ (1/16)∆B( f ∗,r)m}

≤ P

{
m

∑
i=1

1DIS(VSF ,Sm\i )
(xi)≤ (1/16)∆B( f ∗,r)m

}

≤ P

{
m

∑
i=1

1Dm\i(xi)≤ (1/16)∆B( f ∗,r)m

}

= P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥
m

∑
i=1

1DIS(B( f ∗,r))(xi)− (1/16)∆B( f ∗,r)m

}
.
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Breaking the above event into two cases based on the value of ∑
m
i=11DIS(B( f ∗,r))(xi), this last line

equals

P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥

m

∑
i=1

1DIS(B( f ∗,r))(xi)−
1
16

∆B( f ∗,r)m,
m

∑
i=1

1DIS(B( f ∗,r))(xi)<
7
8

∆B( f ∗,r)m

}

+P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥

m

∑
i=1

1DIS(B( f ∗,r))(xi)−
1
16

∆B( f ∗,r)m,
m

∑
i=1

1DIS(B( f ∗,r))(xi)≥
7
8

∆B( f ∗,r)m

}

≤ P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)< (7/8)∆B( f ∗,r)m

}

+P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥ (13/16)∆B( f ∗,r)m

}
.

Since we are considering the case ∆B( f ∗,r)m > 512, a Chernoff bound implies

P

(
m

∑
i=1

1DIS(B( f ∗,r))(xi)< (7/8)∆B( f ∗,r)m

)
≤ exp{−∆B( f ∗,r)m/128}< e−4.

Furthermore, Markov’s inequality implies

P

(
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥ (13/16)∆B( f ∗,r)m

)
≤

m∆B( f ∗,r)−E
[
∑

m
i=11Dm\i(xi)

]
(13/16)m∆B( f ∗,r)

.

Since the xi values are exchangeable,

E

[
m

∑
i=1

1Dm\i(xi)

]
=

m

∑
i=1

E
[
E
[
1Dm\i(xi)

∣∣∣Sm\i

]]
=

m

∑
i=1

E
[
∆m\i

]
= mE

[
∆m\m

]
.

Hanneke (2012) proves that this is at least

m(1− r)m−1
∆B( f ∗,r).

In particular, when ∆B( f ∗,r)m > 512, we must have r < 1/511 < 1/2, which implies (1− r)d1/re−1

≥ 1/4, so that we have

E

[
m

∑
i=1

1Dm\i(xi)

]
≥ (1/4)m∆B( f ∗,r).

Altogether, we have established that

P(n̂(Sm)≤ (1/16)∆B( f ∗,r)m)<
m∆B( f ∗,r)− (1/4)m∆B( f ∗,r)

(13/16)m∆B( f ∗,r)
+ e−4 =

12
13

+ e−4 <
19
20

.
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Thus, since n̂(Sm)≤ Bn̂
(
m, 1

20

)
with probability at least 19

20 , we must have that

Bn̂

(
m,

1
20

)
> (1/16)∆B( f ∗,r)m≥ (1/16)

∆B( f ∗,r)
r

.

The following Theorem, whose proof is given in Section 4, is a “converse” of Theorem 4,
showing a bound on Bn̂(m,δ) in terms of the disagreement coefficient.

Theorem 5 There is a finite universal constant c > 0 such that, ∀r0,δ ∈ (0,1),

max
r∈(r0,1)

Bn̂

(⌈
1
r

⌉
,δ

)
≤ cθ(dr0)

(
d ln(eθ(dr0))+ ln

(
log2(2/r0)

δ

))
log2

(
2
r0

)
.

4. A Tight Analysis of CAL

The following algorithm is due to Cohn, Atlas, and Ladner (1994).

Algorithm: CAL(n)
0. m← 0, t← 0, V0← F
1. While t < n
2. m← m+1
3. If xm ∈ DIS(Vm−1)
4. Request label ym; let Vm←{h ∈Vm−1 : h(xm) = ym}, t← t +1
5. Else Vm←Vm−1
6. Return any ĥ ∈Vm

One particularly attractive feature of this algorithm is that it maintains the invariant that Vm =
VSF ,Sm for all values of m it obtains (since, if Vm−1 = VSF ,Sm−1 , then f ∗ ∈ Vm−1, so any point
xm /∈ DIS(Vm−1) has {h ∈Vm−1 : h(xm) = ym}= {h ∈Vm−1 : h(xm) = f ∗(xm)}=Vm−1 anyway). To
analyze this method, we first define, for every m ∈ N,

N(m;Sm) =
m

∑
t=1

1DIS(VSF ,St−1 )
(xt),

which counts the number of labels requested by CAL among the first m data points (assuming it
does not halt first). The following result provides data-dependent upper and lower bounds on this
important quantity, which will be useful in establishing label complexity bounds for CAL below.

Lemma 6
max
t≤m

n̂(St)≤ N(m;Sm),

and with probability at least 1−δ,

N(m;Sm)≤ max
t∈{2i:i∈{0,...,blog2(m)c}}

(
55n̂(St) ln

(
et

n̂(St)

)
+24ln

(
4log2(2m)

δ

))
log2(2m).
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Since the upper and lower bounds on N(m;Sm) in Lemma 6 require access to the labels of the
data, they are not as much interesting for practice as they are for their theoretical significance. In
particular, they will allow us to derive new distribution-dependent bounds on the performance of
CAL below (Theorems 9 and 10). Lemma 6 is also of some conceptual significance, as it shows
a direct and fairly-tight connection between the behavior of CAL and the size of the version space
compression set.

The proof of the upper bound on N(m;Sm) relies on the following two lemmas. The first lemma
(Lemma 7) is implied by a classical compression bound of Littlestone and Warmuth (1986), and
provides a high-confidence bound on the probability measure of a set, given that it has zero empirical
frequency and is specified by a small number of samples. For completeness, we include a proof of
this result below: a variant of the original argument of Littlestone and Warmuth (1986).4

Lemma 7 (Compression; Littlestone and Warmuth, 1986) For any δ ∈ (0,1), any collection D
of measurable sets D ⊆ X ×Y , any m ∈ N and n ∈ N∪ {0} with n ≤ m, and any permutation-
invariant function φn : (X ×Y )n → D, with probability of at least 1− δ over draw of Sm, every
distinct i1, . . . , in ∈ {1, . . . ,m} with Sm∩φn((xi1 ,yi1), . . . ,(xin ,yin)) = /0 satisfies5

P(φn((xi1 ,yi1), . . . ,(xin ,yin)))≤
1

m−n

(
n ln
(em

n

)
+ ln

(
1
δ

))
. (2)

Proof Let ε > 0 denote the value of the right hand side of (2). The result trivially holds if ε >
1. For the remainder, consider the case ε ≤ 1. Let In be the set of all sets of n distinct indices
{i1, . . . , in} from {1, . . . ,m}. Note that |In|=

(m
n

)
. Given a labeled sample Sm and i = {i1, . . . , in} ∈

In, denote by Si
m = {(xi1 ,yi1), . . . ,(xin ,yin)}, and by S−i

m = {(xi,yi) : i ∈ {1, . . . ,m} \ i}. Since φn

is permutation-invariant, for any distinct i1, . . . , in ∈ {1, . . . ,m}, letting i = {i1, . . . , in} denote the
unordered set of indices, we may denote φn(Si

m) = φn((xi1 ,yi1), . . . ,(xin ,yin)) without ambiguity. In
particular, we have {φn((xi1 ,yi1), . . . ,(xin ,yin)) : i1, . . . , in ∈ {1, . . . ,m} distinct}= {φn(Si

m) : i ∈ In},
so that it suffices to show that, with probability at least 1−δ, every i ∈ In with Sm∩φn(Si

m) = /0 has
P(φn(Si

m))≤ ε.
Define the events ω(i,m) =

{
Sm∩φn(Si

m) = /0
}

and ω′(i,m− n) =
{

S−i
m ∩φn(Si

m) = /0
}

. Note
that ω(i,m)⊆ ω′(i,m−n). Therefore, for each i ∈ In, we have

P
({

P(φn(Si
m))> ε

}
∩ω(i,m)

)
≤ P

({
P(φn(Si

m))> ε

}
∩ω

′(i,m−n)
)
.

By the law of total probability and σ(Si
m)-measurability of the event

{
P(φn(Si

m))> ε
}

, this equals

E
[
P
({

P(φn(Si
m))> ε

}
∩ω

′(i,m−n)
∣∣∣Si

m

)]
= E

[
1[P(φn(Si

m))> ε]P
(

ω
′(i,m−n)

∣∣∣Si
m

)]
.

Noting that |S−i
m ∩φn(Si

m)| is conditionally Binomial(m−n,P(φn(Si
m))) given Si

m, this equals

E
[
1[P(φn(Si

m))> ε]
(

1−P(φn(Si
m))
)m−n

]
≤ (1− ε)m−n ≤ e−ε(m−n),

4. See also Section 5.2.1 of Herbrich (2002) for a very clear and concise proof of a similar result (beginning with the
line above (5.15) there, for our purposes).

5. We define 0ln(1/0) = 0ln(∞) = 0.
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where the last inequality is due to 1− ε≤ e−ε (see e.g., Theorem A.101 of Herbrich, 2002). In the
case n = 0, this last expression equals δ, which establishes the result since |I0| = 1. Otherwise, if
n > 0, combining the above with a union bound, we have that

P
(
∃i ∈ In : P(φn(Si

m))> ε∧Sm∩φn(Si
m) = /0

)
= P

(⋃
i∈In

{
P(φn(Si

m))> ε

}
∩ω(i,m)

)

≤ ∑
i∈In

P
({

P(φn(Si
m))> ε

}
∩ω(i,m)

)
≤ ∑

i∈In

e−ε(m−n) =

(
m
n

)
e−ε(m−n).

Since
(m

n

)
≤
( em

n

)n (see e.g., Theorem A.105 of Herbrich, 2002), this last expression is at most( em
n

)n e−ε(m−n) = δ, which completes the proof.

The following, Lemma 8, will be used for proving Lemma 6 above. The lemma relies on
Lemma 7 and provides a high-confidence bound on the probability of requesting the next label at
any given point in the CAL algorithm. This refines a related result of El-Yaniv and Wiener (2010).
Lemma 8 is also of independent interest in the context of selective prediction (Wiener, 2013; El-
Yaniv and Wiener, 2010), as it can be used to improve the known coverage bounds for realizable
selective classification.

Lemma 8 For any δ ∈ (0,1) and m ∈ N, with probability at least 1−δ,

∆VSF ,Sm ≤
10n̂(Sm) ln

(
em

n̂(Sm)

)
+4ln

(2
δ

)
m

.

Proof The proof is similar to that of a result of El-Yaniv and Wiener (2010), except using a gener-
alization bound based directly on sample compression, rather than the VC dimension. Specifically,
let D = {DIS(VSF ,S)×Y : S ∈ (X ×Y )m}, and for each n ≤ m and S ∈ (X ×Y )n, let φn(S) =
DIS(VSF ,S)×Y . In particular, note that for any n ≥ n̂(Sm), any superset S of ĈSm of size n con-
tained in Sm has φn(S) = DIS(VSF ,Sm)×Y , and therefore Sm∩φn(S) = /0 and ∆VSF ,Sm = P(φn(S)).
Therefore, Lemma 7 implies that, for each n ∈ {0, . . . ,m}, with probability at least 1−δ/(n+2)2,
if n̂(Sm)≤ n,

∆VSF ,Sm ≤
1

m−n

(
n ln
(em

n

)
+ ln

(
(n+2)2

δ

))
.

Furthermore, since ∆VSF ,Sm ≤ 1, any n≥m/2 trivially has ∆VSF ,Sm ≤ 2n/m≤ (2/m)(n ln(em/n)+
ln((n+2)2/δ)), while any n≤ m/2 has 1/(m−n)≤ 2/m, so that the above is at most

2
m

(
n ln
(em

n

)
+ ln

(
(n+2)2

δ

))
.

Additionally, ln((n+2)2)≤ 2ln(2)+4n≤ 2ln(2)+4n ln(em/n), so that the above is at most

2
m

(
5n ln

(em
n

)
+2ln

(
2
δ

))
.

By a union bound, this holds for all n ∈ {0, . . . ,m} with probability at least 1−∑
m
n=0 δ/(n+2)2 >

1−δ. In particular, since n̂(Sm) is always in {0, . . . ,m}, this implies the result.
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Proof of Lemma 6 For any t ≤ m, by definition of n̂ (in particular, minimality), any set S ⊂ St

with |S|< n̂(St) necessarily has VSF ,S 6= VSF ,St . Thus, since CAL maintains that Vt = VSF ,St , and
Vt is precisely the set of classifiers in F that are correct on the N(t;St) points (xi,yi) with i ≤ t
for which 1DIS(VSF ,Si−1 )

(xi) = 1, we must have N(t;St)≥ n̂(St). We therefore have maxt≤m n̂(St)≤
maxt≤m N(t;St) = N(m;Sm) (by monotonicity of t 7→ N(t;St)).

For the upper bound, let δi be a sequence of values in (0,1] with ∑
blog2(m)c
i=0 δi ≤ δ/2. Lemma 8

implies that, for each i, with probability at least 1−δi,

∆VSF ,S2i ≤ 2−i
(

10n̂(S2i) ln
(

e2i

n̂(S2i)

)
+4ln

(
2
δi

))
.

Thus, by monotonicity of ∆VSF ,St in t, a union bound implies that with probability at least 1−δ/2,
for every i ∈ {0,1, . . . ,blog2(m)c}, every t ∈ {2i, . . . ,2i+1−1} has

∆VSF ,St ≤ 2−i
(

10n̂(S2i) ln
(

e2i

n̂(S2i)

)
+4ln

(
2
δi

))
. (3)

Noting that
{
1DIS(VSF ,St−1 )

(xt)−∆VSF ,St−1

}∞

t=1
is a martingale difference sequence with respect to

{xt}∞
t=1, Bernstein’s inequality (for martingales) implies that with probability at least 1−δ/2, if (3)

holds for all i ∈ {0,1, . . . ,blog2(m)c} and t ∈ {2i, . . . ,2i+1−1}, then

m

∑
t=1

1DIS(VSF ,St−1 )
(xt)≤ 1+

blog2(m)c

∑
i=0

2i+1

∑
t=2i+1

1DIS(VSF ,S2i )
(xt)

≤ log2

(
4
δ

)
+2e

blog2(m)c

∑
i=0

(
10n̂(S2i) ln

(
e2i

n̂(S2i)

)
+4ln

(
2
δi

))
.

Letting δi =
δ

2blog2(2m)c , the above is at most

max
i∈{0,1,...,blog2(m)c}

(
55n̂(S2i) ln

(
e2i

n̂(S2i)

)
+24ln

(
4log2(2m)

δ

))
log2(2m).

This also implies distribution-dependent bounds on any confidence bound on the number of
queries made by CAL. Specifically, let BN(m,δ) be the smallest nonnegative integer n such that
P(N(m;Sm)≤ n)≥ 1−δ. Then the following result follows immediately from Lemma 6.

Theorem 9 For any m ∈ N and δ ∈ (0,1), for any sequence δt in (0,1] with ∑
blog2(m)c
i=0 δ2i ≤ δ/2,

max
t≤m

Bn̂(t,δ)≤ BN(m,δ)

≤ max
t∈{2i:i∈{0,1,...,blog2(m)c}}

(
55Bn̂(t,δt) ln

(
et

Bn̂(t,δt)

)
+24ln

(
8log2(2m)

δ

))
log2(2m).
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Proof Since Lemma 6 implies every t ≤ m has n̂(St)≤ N(m;Sm), we have P(n̂(St)≤ BN(m,δ))≥
P(N(m;Sm) ≤ BN(m,δ)) ≥ 1− δ. Since Bn̂(t,δ) is the smallest n ∈ N with P(n̂(St) ≤ n) ≥ 1− δ,
we must therefore have Bn̂(t,δ)≤ BN(m,δ), from which the left inequality in the claim follows by
maximizing over t.

For the second inequality, the upper bound on N(m;Sm) from Lemma 6 implies that, with prob-
ability at least 1−δ/2, N(m;Sm) is at most

max
t∈{2i:i∈{0,...,blog2(m)c}}

(
55n̂(St) ln

(
et

n̂(St)

)
+24ln

(
8log2(2m)

δ

))
log2(2m).

Furthermore, a union bound implies that with probability at least 1−∑
blog2(m)c
i=0 δ2i ≥ 1−δ/2, every

t ∈ {2i : i ∈ {0, . . . ,blog2(m)c}} has n̂(St) ≤ Bn̂(t,δt). Since x 7→ x ln(et/x) is nondecreasing for
x ∈ [0, t], and Bn̂(t,δt) ≤ t, combining these two results via a union bound, we have that with
probability at least 1−δ, N(m;Sm) is at most

max
t∈{2i:i∈{0,1,...,blog2(m)c}}

(
55Bn̂(t,δt) ln

(
et

Bn̂(t,δt)

)
+24ln

(
8log2(2m)

δ

))
log2(2m).

Letting Um denote this last quantity, note that since N(m;Sm) is a nonnegative integer, N(m;Sm) ≤
Um⇒ N(m;Sm)≤ bUmc, so that P(N(m;Sm)≤ bUmc)≥ 1−δ. Since BN(m,δ) is the smallest non-
negative integer n with P(N(m;Sm)≤ n)≥ 1−δ, we must have BN(m,δ)≤ bUmc ≤Um.

In bounding the label complexity of CAL, we are primarily interested in the size of n suffi-
cient to guarantee low error rate for every classifier in the final Vm set (since ĥ is taken to be an
arbitrary element of Vm). Specifically, we are interested in the following quantity. For n ∈ N, de-
fine M(n;S∞) = min{m ∈ N : N(m;Sm) = n} (or M(n;S∞) = ∞ if maxm N(m;Sm)< n), and for any
ε,δ ∈ (0,1], define

Λ(ε,δ) = min

n ∈ N : P

 sup
h∈VSF ,SM(n;S∞)

er(h)≤ ε

≥ 1−δ

 .

Note that, for any n ≥ Λ(ε,δ), with probability at least 1− δ, the classifier ĥ produced by CAL(n)
has er(ĥ)≤ ε. Furthermore, for any n < Λ(ε,δ), with probability greater than δ, there exists a choice
of ĥ in the final step of CAL(n) for which er(ĥ) > ε. Therefore, in a sense, Λ(ε,δ) represents the
label complexity of the general family of CAL strategies (which vary only in how ĥ is chosen from
the final Vm set). We can also define an analogous quantity for passive learning by empirical risk
minimization:

M(ε,δ) = min

{
m ∈ N : P

(
sup

h∈VSF ,Sm

er(h)≤ ε

)
≥ 1−δ

}
.

We typically expect M(ε,δ) to be larger than Ω(1/ε), and it is known M(ε,δ) is always at most
O((1/ε)(d log(1/ε)+ log(1/δ))) (e.g., Vapnik, 1998). We have the following theorem relating these
two quantities.
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Theorem 10 There exists a universal constant c ∈ (0,∞) such that, ∀ε,δ ∈ (0,1), ∀β ∈
(

0, 1−δ

δ

)
,

for any sequence δm in (0,1] with ∑
blog2(M(ε,δ/2))c
i=0 δ2i ≤ δ/2,

max
m≤M(ε,1−βδ)

Bn̂(m,(1+β)δ)≤ Λ(ε,δ)

≤ c
(

max
m≤M(ε,δ/2)

Bn̂(m,δm) ln
(

em
Bn̂(m,δm)

)
+ ln

(
log2(2M(ε,δ/2))

δ

))
log2(2M(ε,δ/2)).

Proof By definition of M(ε,1− βδ), ∀m < M(ε,1− βδ), with probability greater than 1− βδ,
suph∈VSF ,Sm

er(h) > ε. Furthermore, by definition of Bn̂(m,(1+β)δ), ∀n < Bn̂(m,(1+β)δ), with
probability greater than (1+β)δ, n̂(Sm) > n, which together with Lemma 6 implies N(m;Sm) > n,
so that M(n;S∞) < m. Thus, fixing any m ≤M(ε,1−βδ) and n < Bn̂(m,(1+β)δ), a union bound
implies that with probability exceeding δ, M(n;S∞) < m and suph∈VSF ,Sm−1

er(h) > ε. By mono-
tonicity of t 7→ VSF ,St , this implies that with probability greater than δ, suph∈VSF ,SM(n;S∞)

er(h) > ε,

so that Λ(ε,δ)> n.
For the upper bound, Lemma 6 and a union bound imply that, with probability at least 1−δ/2,

N(M(ε,δ/2);SM(ε,δ/2))≤

c′
(

max
m≤M(ε,δ/2)

Bn̂(m,δm) ln
(

em
Bn̂(m,δm)

)
+ ln

(
log2(2M(ε,δ/2))

δ

))
log2(2M(ε,δ/2)),

for a universal constant c′ > 0. In particular, this implies that for any n at least this large, with
probability at least 1−δ/2, M(n+1;S∞)≥M(ε,δ/2). Furthermore, by definition of M(ε,δ/2) and
monotonicity of m 7→ suph∈VSF ,Sm

er(h), with probability at least 1−δ/2, every m ≥M(ε,δ/2) has
suph∈VSF ,Sm

er(h)≤ ε. By a union bound, with probability at least 1−δ, suph∈VSF ,SM(n+1;S∞)
er(h)≤ ε.

This implies Λ(ε,δ)≤ n+1, so that the result holds (for instance, it suffices to take c = c′+2).

For instance, δm = δ/(2log2(2M(ε,δ/2))) might be a natural choice in the above result.
Another implication of these results is a complement to Theorem 4 that was presented in Theo-

rem 5 above.
Proof of Theorem 5 Lemma 29 in Appendix A and monotonicity of ε 7→ θ(ε) imply that, for
m = d1/r0e,

BN(m,δ)≤ 8∨ c0θ(dr0/2)
(

d ln(eθ(dr0/2))+ ln
(

log2(2/r0)

δ

))
log2

(
2
r0

)
≤ (c0∨8)θ(dr0/2)

(
d ln(eθ(dr0/2))+ ln

(
log2(2/r0)

δ

))
log2

(
2
r0

)
,

for a finite universal constant c0 > 0. The result then follows from Theorem 9 and the fact that
θ(dr0/2)≤ 2θ(dr0) (Hanneke, 2014).

This also implies the following corollary on the necessary and sufficient conditions for CAL to
provide exponential improvements in label complexity when passive learning by empirical risk
minimization has Ω(1/ε) sample complexity (which is typically the case).6

6. All of these equivalences continue to hold even when this M(ε, ·) = Ω(1/ε) condition fails, excluding statements 1
and 2, which would then be implied by the others but not vice versa.
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Corollary 11 (Characterization of CAL) If d < ∞, and ∃δ0 ∈ (0,1) such that M(ε,δ0) = Ω(1/ε),
then the following are all equivalent:

1. Λ(ε,δ) = O
(
polylog

(1
ε

)
log
(1

δ

))
,

2. Λ
(
ε, 1

40

)
= O

(
polylog

(1
ε

))
,

3. Bn̂(m,δ) = O
(
polylog(m) log

(1
δ

))
,

4. Bn̂
(
m, 1

20

)
= O(polylog(m)),

5. θ(r0) = O
(

polylog
(

1
r0

))
,

6. B∆(m,δ) = O
(

polylog(m)
m log

(1
δ

))
,

7. B∆

(
m, 1

9

)
= O

(
polylog(m)

m

)
,

8. BN(m,δ) = O
(
polylog(m) log

(1
δ

))
,

9. BN
(
m, 1

20

)
= O(polylog(m)),

where F and P are considered constant, so that the big-O hides (F ,P)-dependent constant factors
here (but no factors depending on ε, δ, m, or r0).7

Proof We decompose the proof into a series of implications. Specifically, we show that 3⇒ 4⇒
5⇒ 8⇒ 3, 8⇒ 9⇒ 4, 5⇒ 1⇒ 2⇒ 4, and 3⇒ 6⇒ 7⇒ 5. These implications form a strongly
connected directed graph, and therefore establish equivalence of the statements.

(3⇒ 4) If Bn̂(m,δ) = O
(
polylog(m) log

(1
δ

))
, then in particular there is some (sufficiently small)

constant δ1 ∈ (0,1/20) for which Bn̂(m,δ1) = O(polylog(m)), and since δ 7→ Bn̂(m,δ) is nonin-
creasing, Bn̂

(
m, 1

20

)
≤ Bn̂(m,δ1), so that Bn̂

(
m, 1

20

)
= O(polylog(m)) as well.

(4⇒ 5) If Bn̂
(
m, 1

20

)
= O(polylog(m)), then

max
m≤1/r0

Bn̂

(
m,

1
20

)
= O

(
max

m≤1/r0

polylog(m)

)
= O

(
polylog

(
1
r0

))
.

Therefore, Theorem 4 implies

θ(r0)≤max
{

max
m≤d1/r0e

16Bn̂

(
m,

1
20

)
,512

}
≤ 528+16 max

m≤1/r0

Bn̂

(
m,

1
20

)
= O

(
polylog

(
1
r0

))
.

7. In fact, we may choose freely whether or not to allow the big-O to hide f ∗-dependent constants, or P-dependent
constants in general, as long as the same interpretation is used for all of these statements. Though validity for each
of these interpretations generally does not imply validity for the others, the proof remains valid regardless of which
of these interpretations we choose, as long as we stick to the same interpretation throughout the proof.
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(5 ⇒ 8) If θ(r0) = O
(

polylog
(

1
r0

))
, then Lemma 29 in Appendix A implies that BN(m,δ) =

O
(
polylog(m) log

(1
δ

))
.

(8⇒ 3) If BN(m,δ) = O
(
polylog(m) log

(1
δ

))
, then Theorem 9 implies

Bn̂(m,δ)≤ BN(m,δ) = O
(

polylog(m) log
(

1
δ

))
.

(8⇒ 9) If BN(m,δ) =O
(
polylog(m) log

(1
δ

))
, then for any sufficiently small value δ2 ∈ (0,1/20),

BN(m,δ2)=O(polylog(m)); monotonicity of δ 7→BN(m,δ) further implies BN
(
m, 1

20

)
≤BN(m,δ2),

so that BN
(
m, 1

20

)
= O(polylog(m)).

(9 ⇒ 4) When BN
(
m, 1

20

)
= O(polylog(m)), Theorem 9 implies that Bn̂

(
m, 1

20

)
≤ BN

(
m, 1

20

)
=

O(polylog(m)).

(5 ⇒ 1) If θ(r0) = O
(

polylog
(

1
r0

))
, then Lemma 30 in Appendix A implies that Λ(ε,δ) =

O
(
polylog

(1
ε

)
log
(1

δ

))
.

(1⇒ 2) If Λ(ε,δ) = O
(
polylog

(1
ε

)
log
(1

δ

))
, then for any sufficiently small value δ3 ∈ (0,1/40],

Λ(ε,δ3) = O
(
polylog

(1
ε

))
; furthermore, monotonicity of δ 7→ Λ(ε,δ) implies Λ

(
ε, 1

40

)
≤ Λ(ε,δ3),

so that Λ
(
ε, 1

40

)
= O

(
polylog

(1
ε

))
as well.

(2⇒ 4) Let c ∈ (0,1] and ε0 ∈ (0,1) be constants such that, ∀ε ∈ (0,ε0), M(ε,δ0) ≥ c
ε
. For any

δ ∈ (0,1/20), if 19
20 + δ ≤ δ0, then M

(
ε, 19

20 +δ
)
≥M(ε,δ0) ≥ c/ε; otherwise, if 19

20 + δ > δ0, then
letting m = M(ε, 19

20 + δ) and Li = {(xm(i−1)+1,ym(i−1)+1), . . . ,(xmi,ymi)} for i ∈ N, we have that
∀k ∈ N,

P

(
sup

h∈VSF ,Smk

er(h)> ε

)
≤ P

(
min
i≤k

sup
h∈VSF ,Li

er(h)> ε

)

=
k

∏
i=1

P

(
sup

h∈VSF ,Li

er(h)> ε

)
≤
(

19
20

+δ

)k

,

so that setting k =
⌈

ln(1/δ0)

ln(1/( 19
20+δ))

⌉
reveals that

M(ε,δ0)≤M
(

ε,
19
20

+δ

)⌈
ln(1/δ0)

ln(1/(19
20 +δ))

⌉
. (4)

Since ln(x)< x−1 for x ∈ (0,1), we have ln(1/(19
20 +δ)) =− ln(19

20 +δ)>−(19
20 +δ−1) = 1

20 −δ;
together with the fact that 1

20 −δ < 1, this implies⌈
ln(1/δ0)

ln(1/(19
20 +δ))

⌉
≤

⌈
ln(1/δ0)

1
20 −δ

⌉
<

ln(1/δ0)
1

20 −δ
+1

<
ln(1/δ0)

1
20 −δ

+
1

1
20 −δ

=
ln(e/δ0)

1
20 −δ

.
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Plugging this into (4) reveals that

M
(

ε,
19
20

+δ

)
≥

1
20 −δ

ln(e/δ0)
M(ε,δ0)≥

c( 1
20 −δ)

ln(e/δ0)

1
ε
.

If Λ
(
ε, 1

40

)
= O

(
polylog

(1
ε

))
, then Theorem 10 (with β = 1

20δ
−1 and δ = 1/40) implies

max
t≤ c/40

ln(e/δ0)
1
ε

Bn̂

(
t,

1
20

)
≤ Λ

(
ε,

1
40

)
= O

(
polylog

(
1
ε

))
.

This implies that, ∀m ∈ N,

Bn̂

(
m,

1
20

)
≤ Λ

(
c/40

m ln(e/δ0)
,

1
40

)
= O

(
polylog

(
m ln(e/δ0)

(c/40)

))
= O(polylog(m)) .

(3⇒ 6) Lemma 8 implies that with probability at least 1−δ/2,

∆VSF ,Sm ≤
1
m

(
10n̂(Sm) ln

(
em

n̂(Sm)

)
+4ln

(
4
δ

))
,

while the definition of Bn̂

(
m, δ

2

)
implies that n̂(Sm) ≤ Bn̂

(
m, δ

2

)
with probability at least 1− δ/2.

By a union bound, both of these occur with probability at least 1− δ; together with the facts that
x 7→ x ln(em/x) is nondecreasing on (0,m] and Bn̂

(
m, δ

2

)
≤ m, this implies

B∆(m,δ)≤ 1
m

10Bn̂

(
m,

δ

2

)
ln

 em

Bn̂

(
m, δ

2

)
+4ln

(
4
δ

)
= O

(
1
m

(
Bn̂

(
m,

δ

2

)
log(m)+ log

(
1
δ

)))
.

Thus, if Bn̂(m,δ) = O
(
polylog(m) log

(1
δ

))
, then we have

B∆(m,δ) = O
(

polylog(m)

m
log
(

1
δ

))
.

(6 ⇒ 7) If B∆(m,δ) = O
(

polylog(m)
m log

(1
δ

))
, then there exists a sufficiently small constant δ4 ∈

(0,1/9] such that B∆(m,δ4) = O
(

polylog(m)
m

)
; in fact, combined with monotonicity of δ 7→B∆(m,δ),

this implies B∆

(
m, 1

9

)
= O

(
polylog(m)

m

)
as well.
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(7⇒ 5) If B∆

(
m, 1

9

)
= O

(
polylog(m)

m

)
, then Lemma 31 in Appendix A implies

θ(r0)≤max

{
sup

r∈(r0,1/2)

7B∆

(
b1/rc, 1

9

)
r

,2

}

≤ 2+14 max
m≤1/r0

mB∆

(
m,

1
9

)
= O

(
max

m≤1/r0

polylog(m)

)
= O

(
polylog

(
1
r0

))
.

5. Applications

In this section, we state bounds on the complexity measures studied above, for various hypothesis
classes F and distributions P, which can then be used in conjunction with the above results. In each
case, combining the result with theorems above yields a bound on the label complexity of CAL that
is smaller than the best known result in the published literature for that problem.

5.1 Linear Separators under Mixtures of Gaussians

The first result, due to El-Yaniv and Wiener (2010), applies to the problem of learning linear sep-
arators under a mixture of Gaussians distribution. Specifically, for k ∈ N, the class of linear sep-
arators in Rk is defined as the set of classifiers (x1, . . . ,xk) 7→ sign(b+∑

k
i=1 xiwi), where the val-

ues b,w1, . . . ,wk ∈ R are free parameters specifying the classifier, with ∑
k
i=1 w2

i = 1, and where
sign(t) = 21[0,∞)(t)− 1. In this work, we also include the two constant functions x 7→ −1 and
x 7→+1 as members of the class of linear separators.

Theorem 12 (El-Yaniv and Wiener, 2010, Lemma 32) For t,k ∈ N, there is a finite constant ck,t
> 0 such that, for F the space of linear separators on Rk, and for P with marginal distribution over
X that is a mixture of t multivariate normal distributions with diagonal covariance matrices of full
rank, ∀m≥ 2,

Bn̂

(
m,

1
20

)
≤ ck,t(log(m))k−1.

Combining this result with Theorem 4 implies that there is a constant ck,t ∈ (0,∞) such that, for
F and P as in Theorem 12, ∀r0 ∈ (0,1/2],

θ(r0)≤ ck,t

(
log
(

1
r0

))k−1

.

In particular, plugging this into the label complexity bound of Hanneke (2011) for CAL (Lemma 30
of Appendix A) yields the following bound on the label complexity of CAL, which has an im-
proved asymptotic dependence on ε compared to the previous best known result, due to El-Yaniv
and Wiener (2012), reducing the exponent on the logarithmic factor from Θ(k2) to Θ(k), and reduc-
ing the dependence on δ from poly(1/δ) to log(1/δ).
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Corollary 13 For t,k ∈ N, there is a finite constant ck,t > 0 such that, for F the space of linear
separators on Rk, and for P with marginal distribution over X that is a mixture of t multivariate
normal distributions with diagonal covariance matrices of full rank, ∀ε,δ ∈ (0,1/2],

Λ(ε,δ)≤ ck,t

(
log
(

1
ε

))k

log
(

log(1/ε)

δ

)
.

Corollary 13 is particularly interesting in light of a lower bound of El-Yaniv and Wiener (2012)
for this problem, showing that there exists a distribution P of the type described in Corollary 13 for
which BN(m,δ) = Ω

(
(log(m))

k−1
2

)
.

5.2 Axis-aligned Rectangles under Product Densities

The next result applies to the problem of learning axis-aligned rectangles under product densities
over Rk: that is, classifiers h((x′1, . . . ,x

′
k)) = 2∏

k
j=11[a j,b j](x

′
j)−1, for values a1, . . . ,ak,b1, . . . ,bk ∈

R. The result specifically applies to rectangles with a probability at least λ > 0 of classifying a ran-
dom point positive. This result represents a refinement of a result of Hanneke (2007b): specifically,
reducing a factor of k2 to a factor of k.

Theorem 14 For k,m ∈ N and λ,δ ∈ (0,1), for any P with marginal distribution over X that is a
product distribution with marginals having continuous CDFs, and for F the space of axis-aligned
rectangles h on Rk with P((x,y) : h(x) = 1)≥ λ,

Bn̂(m,δ)≤ 8k
λ

ln
(

8k
δ

)
.

Proof The proof is based on a slight refinement of an argument of Hanneke (2007b). For (X ,Y )∼P,
denote (X1, . . . ,Xk), X , let Gi be the CDF of Xi, and define G(X1, . . . ,Xk), (G1(X1), . . . ,Gk(Xk)).
Then the random variable X ′ , (X ′1, . . . ,X

′
k) , (G1(X1), . . . ,Gk(Xk)) = G(X) is uniform in (0,1)k;

to see this, note that since X1, . . . ,Xk are independent, so are G1(X1), . . . ,Gk(Xk), and that for each
i ≤ k, ∀t ∈ (0,1), P(Gi(Xi) ≤ t) = supx∈R:Gi(x)=t P(Xi ≤ x) = supx∈R:Gi(x)=t Gi(x) = t, where the
first equality is by monotonicity and continuity of Gi and the intermediate value theorem (since
limx→−∞ Gi(x) = 0 < t and limx→∞ Gi(x) = 1 > t), and the second equality is by definition of Gi. Fix
any h∈ F , let a1, . . . ,ak,b1, . . . ,bk ∈R be the values such that h((z1, . . . ,zk)) = 2∏

k
i=11[ai,bi](zi)−1

for all (z1, . . . ,zk) ∈ Rk, and define Hh((z1, . . . ,zk)) = 2∏
k
i=11[Gi(ai),Gi(bi)](zi)− 1. Clearly Hh is

an axis-aligned rectangle. Furthermore, for every z ∈ Rk with h(z) = +1, monotonicity of the Gi

functions implies Hh(G(z)) = +1 as well. Therefore, P(Hh(X ′) = +1)≥ P(h(X) = +1)≥ λ.
Let G−1

i (t) = min{s : Gi(s) = t} for t ∈ (0,1), which is well-defined by continuity of Gi and the
intermediate value theorem, combined with the facts that limz→∞ Gi(z) = 1 and limz→−∞ Gi(z) =
0. Let Ti denote the set of discontinuity points of G−1

i in (0,1). Fix any (z1, . . . ,zk) ∈ Rk with
h((z1, . . . ,zk)) = −1 and G(z1, . . . ,zk) ∈ (0,1)k. In particular, this implies ∃i ∈ {1, . . . ,k} such
that zi /∈ [ai,bi]. For this i, we have Gi(zi) /∈ (Gi(ai),Gi(bi)) by monotonicity of Gi. Therefore,
if Hh(G(z1, . . . ,zk)) = +1, we must have either zi < ai and Gi(zi) = Gi(ai), or zi > bi and Gi(zi) =
Gi(bi). In the former case, for any ε with 0< ε< 1−Gi(zi), G−1

i (Gi(zi)+ε)=G−1
i (Gi(ai)+ε)> ai,

while G−1
i (Gi(zi))≤ zi, and since zi < ai, we must have Gi(zi)∈ Ti. Similarly, in the latter case (zi >

bi and Gi(zi) = Gi(bi)), any ε with 0 < ε < 1−Gi(zi) has G−1
i (Gi(bi)+ ε) = G−1

i (Gi(zi)+ ε)> zi,
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while G−1
i (Gi(bi)) ≤ bi, and since zi > bi, we have Gi(bi) ∈ Ti; since Gi(zi) = Gi(bi), this also

implies Gi(zi) ∈ Ti. Thus, any (z1, . . . ,zk) ∈ Rk with Hh(G(z1, . . . ,zk)) 6= h((z1, . . . ,zk)) must have
some i ∈ {1, . . . ,k} with Gi(zi) ∈ Ti.

For each i ∈ {1, . . . ,k}, since Gi is nondecreasing, G−1
i is also nondecreasing, and this implies

G−1
i has at most countably many discontinuity points (see e.g., Kolmogorov and Fomin, 1975,

Section 31, Theorem 1). Furthermore, for every t ∈ R,

P(Gi(Xi) = t)≤ P(inf{x ∈ R : Gi(x) = t} ≤ Xi ≤ sup{x ∈ R : Gi(x) = t})
= Gi(sup{x ∈ R : Gi(x) = t})−Gi(inf{x ∈ R : Gi(x) = t}) = t− t = 0,

where the inequality is due to monotonicity of Gi, the first equality is by definition of Gi as the
CDF and by continuity of Gi (which implies P(Xi < x) = Gi(x)), and the second equality is due to
continuity of Gi. Therefore,

P(∃h ∈ F : Hh(G(X)) 6= h(X))≤ P(∃i ∈ {1, . . . ,k} : Gi(Xi) ∈ Ti)≤
k

∑
i=1

∑
t∈Ti

P(Gi(Xi) = t) = 0.

By a union bound, this implies that with probability 1, for every h ∈ F , every (x,y) ∈ Sm has
Hh(G(x)) = h(x). In particular, we have that with probability 1, every classification of the se-
quence {x1, . . . ,xm} realized by classifiers in F is also realized as a classification of the i.i.d.
Uniform((0,1)k) sequence {G(x1), . . . ,G(xm)} by the set F ′ of axis-aligned rectangles h′ with
P(h′(X ′) = +1) ≥ λ. This implies that Bn̂(m,δ) ≤ min{b ∈ N∪{0} : P(n̂(F ′,{(G(x),y) : (x,y) ∈
Sm}) ≤ b) ≥ 1− δ} (in fact, one can show they are equal). Therefore, since the right hand side is
the value of Bn̂(m,δ) one would get from the case of P having marginal P(· ×Y ) over X that is
Uniform((0,1)k), without loss of generality, it suffices to bound Bn̂(m,δ) for this special case. To-
ward this end, for the remainder of this proof, we assume P has marginal P(·×Y ) over X uniform
in (0,1)k.

Let m ∈ N, and let U = {x1, . . . ,xm}, the unlabeled portion of the first m data points. Further
denote by U+ = {xi ∈U : f ∗(xi) = +1}, and U− = U \U+. For each i ∈ N, express xi explicitly
in vector form as (xi1, . . . ,xik). If U+ 6= /0, for each j ∈ {1, . . . ,k}, let a j = min{xi j : xi ∈ U+}
and b j = max{xi j : xi ∈U+}. Denote by hclos(x) = 21×k

j=1[a j,b j]
(x)−1, the closure hypothesis; for

completeness, when U+ = /0, let hclos(x) =−1 for all x.
First, note that if m < 2e

λ

(
2k+ ln

(2
δ

))
, the result trivially holds, since n̂(Sm) ≤ m always, and

2e
λ

(
2k+ ln

(2
δ

))
≤ 8k

λ
ln
(8k

δ

)
. Otherwise, if m≥ 2e

λ

(
2k+ ln

(2
δ

))
, a result of Auer and Ortner (2004)

implies that, on an event Eclos of probability at least 1−δ/2, P((x,y) : hclos(x) 6= f ∗(x)) ≤ λ/2. In
particular, since P((x,y) : f ∗(x) = +1)≥ λ, on this event we must have P((x,y) : hclos(x) = +1)≥
λ/2. Furthermore, this implies U+ 6= /0 on Eclos.

Now fix any j ∈ {1, . . . ,k}. Let x(a j)
j denote the value xi j for the point xi ∈ U with largest

xi j such that xi j < a j, and for all j′ 6= j, xi j′ ∈ [a j′ ,b j′ ]; if no such point exists, let x(a j)
j = 0. Let

U(a j) = {xi ∈ U : xi j < a j}. Let m(a j) = |U(a j)|, and enumerate the points in U(a j) in decreasing
order of xi j, so that i1, . . . , im(a j) are distinct indices such that each t ∈ {1, . . . ,m(a j)} has xit ∈U(a j),
and each t ∈ {1, . . . ,m(a j)− 1} has xit+1 j ≤ xit j. Since P((x,y) : hclos(x) = +1) ≥ λ/2 on Eclos, it
must be that the volume of × j′ 6= j[a j′ ,b j′ ] is at least λ/2. Therefore, working under the conditional
distribution given U+ and m(a j), on Eclos, for each t ∈ {1, . . . ,m(a j)}, with conditional probability
at least λ/2, we have ∀ j′ 6= j, xit j′ ∈ [a j′ ,b j′ ]. Therefore, the value t(a j) , min{t : ∀ j′ 6= j,xit j′ ∈
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[a j′ ,b j′ ]}∪{m(a j)} is bounded by a Geometric random variable with parameter λ/2. In particular,
this implies that with conditional probability at least 1− δ

4k , t(a j)≤
⌈ 2

λ
ln
(4k

δ

)⌉
. Letting A(a j) = {xi ∈

U : x(a j)
j ≤ xi j < a j}, we note that |A(a j)| ≤ t(a j) with probability 1, so that the above reasoning,

combined with the law of total probability, implies that there is an event E(a j) of probability at least
1− δ

4k such that, on E(a j) ∩Eclos, |A(a j)| ≤
⌈ 2

λ
ln
(4k

δ

)⌉
. For the symmetric case, define x(b j)

j as the
value xi j for the point xi ∈U with smallest xi j such that xi j > b j, and for all j′ 6= j, xi j′ ∈ [a j′ ,b j′ ];
if no such point xi exists, define x(b j)

j = 1. Define A(b j) = {xi ∈U : b j < xi j ≤ x(b j)
j }. By the same

reasoning as above, there is an event E(b j) of probability at least 1− δ

4k such that, on E(b j)∩Eclos,
|A(b j)| ≤

⌈ 2
λ

ln
(4k

δ

)⌉
. Applying this to all values of j, and letting A =

⋃k
j=1 A(a j) ∪A(b j), we have

that on the event Eclos∩
⋂k

j=1 E(a j)∩E(b j),

|A| ≤ 2k
⌈

2
λ

ln
(

4k
δ

)⌉
.

Furthermore, a union bound implies that the event Eclos∩
⋂k

j=1 E(a j)∩E(b j) has probability at least
1−δ. For the remainder of the proof, we suppose this event occurs.

Next, let B =

{
argmin
xi∈U+

xi j : j ∈ {1, . . . ,k}

}
∪

{
argmax

xi∈U+

xi j : j ∈ {1, . . . ,k}

}
, and note that |B| ≤

2k. Finally, we conclude the proof by showing that the set A ∪ B has the property that {h ∈
F : ∀x ∈ A∪B,h(x) = f ∗(x)} = VSF ,Sm , which implies {(xi,yi) : xi ∈ A∪B} is a version space
compression set, so that n̂(Sm) ≤ |A∪B|, and hence Bn̂(m,δ) ≤ 2k + 2k

⌈ 2
λ

ln
(4k

δ

)⌉
≤ 8k

λ
ln
(4k

δ

)
.

To prove that A∪ B has this property, first note that any h ∈ F with h(xi) = +1 for all xi ∈ B,
must have U+ ⊇ {xi ∈ U+ : h(xi) = +1} ⊇ U+ ∩×k

j=1[minxi∈U+ xi j,maxxi∈U+ xi j] = U+, so that
{xi ∈ U : h(xi) = +1} ⊇ U+ = {xi ∈ U : f ∗(xi) = +1}. Next, for any xi ∈ U− \ (A∪B), ∃ j ∈
{1, . . . ,k} : xi j /∈ [a j,b j], and by definition of A, for this j we must have xi j /∈ [x(a j)

j ,x(b j)
j ]. Now fix

any h ∈ F , and express {x : h(x) =+1}=×k
j′=1[a

′
j′ ,b
′
j′ ]. If h(xi′) =+1 for all xi′ ∈ B, then we must

have a′j′ ≤ a j′ and b′j′ ≥ b j′ for every j′ ∈ {1, . . . ,k}. Furthermore, if h(xi) = +1, then we must have

a′j ≤ xi j ≤ b′j; but then we must have either a′j ≤ xi j < x(a j)
j or x(b j)

j < xi j ≤ b′j. In the former case,

since xi j < x(a j)
j , we must have x(a j)

j > 0, so that there exists a point xi′ ∈U with xi′ j = x(a j)
j and with

xi′ j′ ∈ [a j′ ,b j′ ] for all j′ 6= j, and furthermore (by definition of A), xi′ ∈A; but since [a j′ ,b j′ ]⊆ [a′j′ ,b
′
j′ ]

we also have xi′ j′ ∈ [a′j′ ,b
′
j′ ] for all j′ 6= j, and since a′j < x(a j)

j = xi′ j < a j ≤ b j ≤ b′j, we also have
xi′ j ∈ [a′j,b

′
j]. Altogether, we must have h(xi′) = +1, which proves there exists at least one point in

A∪B classified differently by h and f ∗. The case that x(b j)
j < xi j ≤ b′j is symmetric to this one, so

that by the same reasoning, this h must disagree with f ∗ on the classification of some point in A∪B.
Therefore, every h ∈ F with h(x) = f ∗(x) for all x ∈ A∪B has h(xi) =−1 for all xi ∈U− \ (A∪B).
Combined with the above proof that every such h also has h(xi) = +1 for every xi ∈U+, we have
that every such h has h(x) = f ∗(x) for every x ∈U.

One implication of Theorem 14, combined with Theorem 4, is that

θ(r0)≤ 128
k
λ

ln(160k)
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for all r0 ≥ 0, for P and F as in Theorem 14. This has implications, both for the label complex-
ity of CAL (via Lemma 30), and also for the label complexity of noise-robust disagreement-based
methods (see Section 6 below). More directly, combining Theorem 14 with Theorem 10 yields
the following label complexity bound for CAL, which improves over the best previously published
bound on the label complexity of CAL for this problem (due to El-Yaniv and Wiener, 2012), reduc-
ing the dependence on k from Θ(k3 log2(k)) to Θ(k log2(k)).

Corollary 15 There exists a finite universal constant c > 0 such that, for k ∈ N and λ ∈ (0,1),
for any P with marginal distribution over X that is a product distribution with marginals having
continuous CDFs, and for F the space of axis-aligned rectangles h on Rk with P((x,y) : h(x) =
1)≥ λ, ∀ε,δ ∈ (0,1/2),

Λ(ε,δ)≤ c
k
λ

log
(

k
δ

log
(

1
ε

))
log
(

k
ε

log
(

1
δ

))
log
(

λ log(1/ε)

ε log(k)
∨ e
)
.

Proof The result follows by plugging the bound from Theorem 14 into Theorem 10, taking δm =
δ/(2log2(2M(ε,δ/2))), bounding M(ε,δ/2) ≤ 8k

ε
log(8e

ε
)+ 8

ε
log(24

δ
) (Vapnik, 1982; Anthony and

Bartlett, 1999), and simplifying the resulting expression.

This result is particularly interesting in light of the following lower bound on the label complex-
ities achievable by any active learning algorithm.

Theorem 16 For k∈N\{1} and λ∈ (0,1/4], letting PX denote the uniform probability distribution
over (0,1)k, for F the space of axis-aligned rectangles h on Rk with PX(x : h(x) = 1) ≥ λ, for any
active learning algorithm A , ∀δ ∈ (0,1/2], ∀ε ∈ (0,1/(8k)), there exists a function f ∗ ∈ F such
that, if P is the realizable-case distribution having marginal PX over X and having target function
f ∗, if A is allowed fewer than

max
{

k log
(

1
4kε

)
,(1−δ)

⌊
1

ε∨λ

⌋}
−1

label requests, then with probability greater than δ, the returned classifier ĥ has er(ĥ)> ε.

Proof For any ε > 0, let M (ε) denote the maximum number M of classifiers h1, . . . ,hM ∈ F
such that, ∀i, j ≤M with i 6= j, PX(x : hi(x) 6= h j(x)) ≥ 2ε. Kulkarni, Mitter, and Tsitsiklis (1993)
prove that, for any learning algorithm based on binary-valued queries, with a budget smaller than
log2((1−δ)M (2ε)) queries, there exists a target function f ∗ ∈F such that the classifier ĥ produced
by the algorithm (when P has marginal PX over X and has target function f ∗) will have er(ĥ) > ε

with probability greater than δ. In particular, since active learning queries are binary-valued in the
binary classification setting, this lower bound applies to active learning algorithms as a special case.

Thus, for the first term in the lower bound, we focus on establishing a lower bound on M (2ε)
for this problem. First note that (1−1/k)k ≥ 1/4, so that λ ≤ (1−1/k)k. Furthermore, (1/k)(1−
1/k)k−1 > 1/(4k), so that ε < (1/k)(1−1/k)k−1. Now let

F2ε =

{
(x1, . . . ,xk) 7→ 2

k

∏
j=1

1[a j,b j](x j)−1 : ∀ j ≤ k,b j = a j +1−1/k,

a j ∈
{

0,
ε

(1−1/k)k−1 , . . . ,

⌊
(1−1/k)k−1

εk

⌋
ε

(1−1/k)k−1

}}
.
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Note that |F2ε| =
(

1+
⌊
(1−1/k)k−1

εk

⌋)k
. Furthermore, since every a j ∈ [0,1/k] in the specification

of F2ε, we have b j = a j + 1− 1/k ∈ [0,1], which implies PX((x1, . . . ,xk) : ∏
k
j=11[a j,b j](x j) = 1) =

(1− 1/k)k ≥ λ. Therefore, F2ε ⊆ F . Finally, for each {(a j,b j)}k
j=1 and {(a′j,b′j)}k

j=1 specifying
distinct classifiers in F2ε, at least one j has |a j−a′j| ≥ ε

(1−1/k)k−1 . Since all of the elements h ∈ F2ε

have PX(x : h(x) = +1) = (1−1/k)k, we can note that

PX

(
(x1, . . . ,xk) :

k

∏
i=1

1[ai,bi](xi) 6=
k

∏
i=1

1[a′i,b
′
i]
(xi)

)
= 2(1−1/k)k−2PX

(
(×k

i=1[ai,bi])∩ (×k
i=1[a

′
i,b
′
i])
)

= 2(1−1/k)k−2PX

(
×k

i=1[max{ai,a′i},min{bi,b′i}]
)

= 2(1−1/k)k−2
k

∏
i=1

(min{bi,b′i}−max{ai,a′i}).

Thus, since

k

∏
i=1

(min{bi,b′i}−max{ai,a′i})

≤ (min{b j,b′j}−max{a j,a′j})∏
i 6= j

(bi−ai) = (1−1/k)k−1(min{b j,b′j}−max{a j,a′j})

= (1−1/k)k−1(min{a j,a′j}−max{a j,a′j}+(1−1/k)) = (1−1/k)k−1(1−1/k−|a j−a′j|)

≤ (1−1/k)k−1(1−1/k− ε

(1−1/k)k−1 ) = (1−1/k)k− ε,

we have

PX((x1, . . . ,xk) :
k

∏
i=1

1[ai,bi](xi) 6=
k

∏
i=1

1[a′i,b
′
i]
(xi))≥ 2(1−1/k)k−2((1−1/k)k− ε) = 2ε.

Thus, M (2ε)≥
(

1+
⌊
(1−1/k)k−1

εk

⌋)k
. Finally, note that for δ ∈ (0,1/2], this implies

log2((1−δ)M (2ε))≥ k log2

(
(1−1/k)k−1

εk

)
−1≥ k log2

(
1

4kε

)
−1.

Together with the aforementioned lower bound of Kulkarni, Mitter, and Tsitsiklis (1993), this es-
tablishes the first term in the lower bound.

To prove the second term, we use of a technique of Hanneke (2007b). Specifically, fix any finite
set H ⊆ F with minh,g∈H PX(x : h(x) 6= g(x))≥ 2ε, let

XPTD( f ,H,U,δ)=min{t ∈N : ∃R⊆U : |R| ≤ t, |{h∈H : ∀x∈R,h(x)= f (x)}|≤ δ|H|+1}∪{∞},

for any classifier f and U ∈
⋃

m X m, and let XPTD(H,PX ,δ) denote the smallest t ∈ N such that
every classifier f has limm→∞PU∼Pm

X
(XPTD( f ,H,U,δ)> t) = 0. Then Hanneke (2007b) proves

that there exists a choice of target function f ∗ ∈ F for the distribution P such that, if A is al-
lowed fewer than XPTD(H,PX ,δ) label requests, then with probability greater than δ, the returned
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classifier ĥ has er(ĥ) > ε. For the particular problem studied here, let H be the set of classi-
fiers hi(x) = 21[(i−1)(ε∨λ),i(ε∨λ)]×[0,1]k−1(x)− 1, for i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋}
. Note that each hi ∈ H has

PX(x : hi(x) = +1) = PX((x1, . . . ,xk) : x1 ∈ [(i− 1)(ε∨ λ), i(ε∨ λ)]) = ε∨ λ ≥ λ, so that H ⊆ F .
Furthermore, for any hi,h j ∈H with i 6= j, PX(x : hi(x) 6= h j(x))≥ PX((x1, . . . ,xk) : x1 ∈ ((i−1)(ε∨
λ), i(ε∨ λ))∪ (( j− 1)(ε∨ λ), j(ε∨ λ))) = 2(ε∨ λ) ≥ 2ε. Also, let R ⊆ (0,1)k be any finite set
with no points (x1, . . . ,xk) ∈ R such that x1 ∈

{
i(ε∨λ) : i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋
−1
}}

; note that every
x ∈ R has exactly one hi ∈ H with hi(x) = +1. Thus, for the classifier f with f (x) = −1 for all
x ∈ X , |{h ∈ H : ∀x ∈ R,h(x) = f (x)}| ≥ |H| − |R|. Thus, for any set U ⊆ (0,1)k with no points
(x1, . . . ,xk) ∈U having x1 ∈

{
i(ε∨λ) : i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋
−1
}}

, we have XPTD( f ,H,U,δ)≥ (1−
δ)|H|−1. Since, for all m ∈ N, the probability that U ∼ Pm

X contains a point (x1, . . . ,xk) with x1 ∈{
i(ε∨λ) : i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋
−1
}}

is zero, we have that PU∼Pm
X
(XPTD( f ,H,U,δ) ≥ (1− δ)|H|−

1) = 1. This implies XPTD(H,PX ,δ) ≥ (1− δ)|H|− 1 = (1− δ)
⌊ 1

ε∨λ

⌋
− 1. Combining this with

the lower bound of Hanneke (2007b) implies the result.

Together, Corollary 15 and Theorem 16 imply that, for λ ∈ (0,1/4] bounded away from 0, the
label complexity of CAL is within logarithmic factors of the minimax optimal label complexity.

6. New Label Complexity Bounds for Agnostic Active Learning

In this section we present new bounds on the label complexity of noise-robust active learning al-
gorithms, expressed in terms of Bn̂(m,δ). These bounds yield new exponential label complexity
speedup results for agnostic active learning (for the low accuracy regime) of linear classifiers under
a fixed mixture of Gaussians. Analogous results also hold for the problem of learning axis-aligned
rectangles under a product density.

Specifically, in the agnostic setting studied in this section, we no longer assume ∃ f ∗ ∈ F with
P(Y = f ∗(x)|X)= 1 for (X ,Y )∼P, but rather allow that P is any probability measure over X ×Y . In
this setting, we let f ∗ : X →Y denote a classifier such that er( f ∗)= infh∈F er(h) and infh∈F P((x,y) :
h(x) 6= f ∗(x)) = 0, which is guaranteed to exist by topological considerations (see Hanneke, 2012,
Section 6.1);8 for simplicity, when ∃ f ∈ F with er( f ) = infh∈F er(h), we take f ∗ to be an element
of F . We call f ∗ the infimal hypothesis (of F , w.r.t. P) and note that er( f ∗) is sometimes called the
noise rate of F (e.g., Balcan, Beygelzimer, and Langford, 2006). The introduction of the infimal
hypothesis f ∗ allows for natural generalizations of some of the key definitions of Section 2 that
facilitate analysis in the agnostic setting.

Definition 17 (Agnostic Version Space) Let f ∗ be the infimal hypothesis of F w.r.t. P. The agnos-
tic version space of a sample S is

VSF ,S, f ∗ , {h ∈ F : ∀(x,y) ∈ S,h(x) = f ∗(x)}.

Definition 18 (Agnostic Version Space Compression Set Size) Letting ĈS, f ∗ denote a smallest
subset of S satisfying VSF ,ĈS, f∗ , f ∗

= VSF ,S, f ∗ , the agnostic version space compression set size is

n̂(F ,S, f ∗), |ĈS, f ∗ |.

8. In the agnostic setting, there are typically many valid choices of the function f ∗ satisfying these conditions. The
results below hold for any such choice of f ∗.
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We also extend the definition of the version space compression set minimal bound (see Definition 2)
to the agnostic setting, defining

Bn̂(m,δ), min{b ∈ N∪{0} : P(n̂(F ,S, f ∗)≤ b)≥ 1−δ}.

For general P in the agnostic setting, define the disagreement coefficient as before, except now
with respect to the infimal hypothesis:

θ(r0), sup
r>r0

∆B( f ∗,r)
r

∨1.

One can easily verify that these definitions are equal to those given above in the special case
that P satisfies the realizable-case assumptions ( f ∗ ∈ F and P(Y = f ∗(X)|X) = 1 for (X ,Y )∼ P).

We begin with the following extension of Theorem 4.

Lemma 19 For general (agnostic) P, for any r0 ∈ (0,1),

θ(r0)≤max
{

max
r∈(r0,1)

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
.

Proof First note that θ(r0) and Bn̂
(⌈1

r

⌉
, 1

20

)
depend on P only via f ∗ and the marginal P(· ×Y )

of P over X (in both the realizable case and agnostic case). Define a distribution P′ with marginal
P′(·×Y ) = P(·×Y ) over X , and with P(Y = f ∗(x)|X = x) = 1 for all x ∈ X , where (X ,Y ) ∼ P′.
In particular, in the special case that f ∗ ∈ F in the agnostic case, we have that P′ is a distribution
in the realizable case, with identical values of θ(r0) and Bn̂

(⌈1
r

⌉
, 1

20

)
as P, so that Theorem 4

(applied to P′) implies the result. On the other hand, when P is a distribution with f ∗ /∈ F , let θ′(r0)
denote the disagreement coefficient of F ∪ { f ∗} with respect to P′ (or equivalently P), and for
m ∈ N, let B ′n̂(m,1/20) , min{b ∈ N∪{0} : P(n̂(F ∪{ f ∗},Sm, f ∗)≤ b)≥ 19/20}. In particular,
since F ⊆ F ∪ { f ∗}, we have θ(r0) ≤ θ′(r0), and since P′ is a realizable-case distribution with
respect to the hypothesis class F ∪{ f ∗}, Theorem 4 (applied to P′ and F ∪{ f ∗}) implies

θ
′(r0)≤max

{
max

r∈(r0,1)
16B ′n̂

(⌈
1
r

⌉
,

1
20

)
,512

}
.

Finally, note that for any m ∈ N and sets C,S ∈ (X ×Y )m, VSF ∪{ f ∗},C, f ∗ = VSF ,C, f ∗ ∪{ f ∗} and
VSF ∪{ f ∗},S, f ∗ = VSF ,S, f ∗ ∪{ f ∗}, so that VSF ∪{ f ∗},C, f ∗ = VSF ∪{ f ∗},S, f ∗ if and only if VSF ,C, f ∗ =

VSF ,S, f ∗ . Thus, n̂(F ∪ { f ∗},Sm, f ∗) = n̂(F ,Sm, f ∗), so that B ′n̂
(⌈1

r

⌉
, 1

20

)
= Bn̂

(⌈1
r

⌉
, 1

20

)
, which

implies the result.

6.1 Label complexity bound for agnostic active learning

A2 (Agnostic Active) was the first general-purpose agnostic active learning algorithm with proven
improvement in error guarantees compared to passive learning. The original work of Balcan,
Beygelzimer, and Langford (2006), which first introduced this algorithm, also provided specialized
proofs that the algorithm achieves an exponential label complexity speedup (for the low accuracy
regime) compared to passive learning for a few simple cases, including: threshold functions, and
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homogeneous linear separators under a uniform distribution over the sphere. Additionally, Han-
neke (2007a) provided a general bound on the label complexity of A2, expressed in terms of the
disagreement coefficient, so that any bound on the disagreement coefficient translates into a bound
on the label complexity of agnostic active learning with A2. Inspired by the A2 algorithm, other
noise-robust active learning algorithms have since been proposed, with improved label complexity
bounds compared to those proven by Hanneke (2007a) for A2, while still expressed in terms of the
disagreement coefficient (see e.g., Dasgupta, Hsu, and Monteleoni, 2007; Hanneke, 2014). As an
example of such results, the following result was proven by Dasgupta, Hsu, and Monteleoni (2007).

Theorem 20 (Dasgupta, Hsu, and Monteleoni, 2007) There exists a finite universal constant c >
0 such that, for any ε,δ ∈ (0,1/2), using hypothesis class F , and given the input δ and a budget n
on the number of label requests, the active learning algorithm of Dasgupta, Hsu, and Monteleoni
(2007) requests at most n labels,9 and if

n≥ cθ(er( f ∗)+ ε)

(
er( f ∗)2

ε2 +1
)(

d log
(

1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it produces satisfies

er( f̂ )≤ er( f ∗)+ ε.

Combined with the results above, this implies the following theorem.

Theorem 21 There exists a finite universal constant c > 0 such that, for any ε,δ ∈ (0,1/2), using
hypothesis class F , and given the input δ and a budget n on the number of label requests, the active
learning algorithm of Dasgupta, Hsu, and Monteleoni (2007) requests at most n labels, and if

n≥ c
(

max
r>er( f ∗)+ε

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1
)(

er( f ∗)2

ε2 +1
)(

d log
(

1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it produces satisfies

er( f̂ )≤ er( f ∗)+ ε.

Proof By Lemma 19,

θ(er( f ∗)+ ε)≤max
{

max
r∈(er( f ∗)+ε,1)

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
≤ 512

(
max

r>er( f ∗)+ε

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1
)
.

Plugging this into Theorem 20 yields the result.

9. This result applies to a slightly modified variant of the algorithm of Dasgupta, Hsu, and Monteleoni (2007), studied
by Hanneke (2011), which terminates after a given number of label requests, rather than after a given number of
unlabeled samples. The same is true of Theorem 21 and Corollary 22.
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Interestingly, from the perspective of bounding the label complexity of agnostic active learning
in general, the result in Theorem 21 sometimes improves over a related bound proven by Hanneke
(2007b) (for a different algorithm). Specifically, compared to the result of Hanneke (2007b), this
result maintains an interesting dependence on f ∗, whereas the bound of Hanneke (2007b) effectively
replaces the factor Bn̂(d1/re,1/20) with the maximum of this quantity over the choice of f ∗.10 Also,
while the result of Hanneke (2007b) is proven for an algorithm that requires explicit access to a value
η≈ er( f ∗) to obtain the stated label complexity, the label complexity in Theorem 21 is achieved by
the algorithm of Dasgupta, Hsu, and Monteleoni (2007), which requires no such extra parameters.

As an application of Theorem 21, we have the following corollary.

Corollary 22 For t,k ∈ N and c ∈ (0,∞), there exists a finite constant ck,t,c > 0 such that, for
F the class of linear separators on Rk, and for P with marginal distribution over X that is a
mixture of t multivariate normal distributions with diagonal covariance matrices of full rank, for
any ε,δ ∈ (0,1/2) with ε ≥ er( f ∗)

c , using hypothesis class F , and given the input δ and a budget n
on the number of label requests, the active learning algorithm of Dasgupta, Hsu, and Monteleoni
(2007) requests at most n labels, and if

n≥ ck,t,c

(
log
(

1
ε

))k+1

log
(

1
δ

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it produces satisfies er( f̂ )≤ er( f ∗)+ ε.

Proof Let F and P be as described above. First, we argue that f ∗ ∈ F . Fix any classifier f with
infh∈F P((x,y) : h(x) 6= f (x)) = 0. There must exist a sequence {(b(t),w(t)

1 , . . . ,w(t)
k )}∞

k=1 in Rk+1

with ∑
k
i=1(w

(t)
i )2 = 1 for all t, s.t. P

(
(x1, . . . ,xk,y) : sign

(
b(t)+∑

k
i=1 xiw

(t)
i

)
6= f (x1, . . . ,xk)

)
→ 0.

If limsup
t→∞

b(t) = ∞, then ∃t j→ ∞ with b(t j)→ ∞, and since every (x1, . . . ,xk) ∈ Rk has ∑
k
i=1 xiw

(t)
i ≥

−‖x‖, we have that b(t j) +∑
k
i=1 xiw

(t j)
i → ∞, which implies sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
→ 1 for all

(x1, . . . ,xk) ∈Rk. Similarly, if liminf
t→∞

b(t) =−∞, then ∃t j→∞ with sign
(

b(t j)+∑
k
i=1 xiw

(t j)
i

)
→−1

for all (x1, . . . ,xk) ∈ Rk. Otherwise, if limsupt→∞ b(t) < ∞ and liminft→∞ b(t) > −∞, then the se-
quence {(b(t),w(t)

1 , . . . ,w(t)
k )}∞

t=1 is bounded in Rk+1. Therefore, the Bolzano-Weierstrass Theorem

implies it contains a convergent subsequence: that is, ∃t j → ∞ s.t. (b(t j),w(t j)
1 , . . . ,w(t j)

k ) converges.
Furthermore, since {w ∈ Rk : ‖w‖ = 1} is closed, and {b(t) : t ∈ N} ⊆ [inft b(t),supt b(t)], which is
a closed subset of R, ∃(b,w1, . . . ,wk) ∈ Rk+1 with ∑

k
i=1 w2

i = 1 such that (b(t j),w(t j)
1 , . . . ,w(t j)

k )→
(b,w1, . . . ,wk). Continuity of linear functions implies, ∀(x1, . . . ,xk) ∈ Rk, b(t j)+∑

k
i=1 xiw

(t j)
i → b+

∑
k
i=1 xiwi. Therefore, every (x1, . . . ,xk)∈Rk with b+∑

k
i=1 xiwi > 0 has sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
→

1, and every (x1, . . . ,xk) ∈ Rk with b+∑
k
i=1 xiwi < 0 has sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
→ −1. Since

P
(
(x1, . . . ,xk,y) : b+∑

k
i=1 xiwi = 0

)
= 0, this implies (x1, . . . ,xk) 7→ sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
con-

verges to (x1, . . . ,xk) 7→ sign
(
b+∑

k
i=1 xiwi

)
almost surely [P].

10. There are a few other differences, which are usually minor. For instance, the bound of Hanneke (2007b) uses r ≈
er( f ∗)+ε rather than maximizing over r > er( f ∗)+ε. That result additionally replaces “1/20” with a value δ′ ≈ δ/n.
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Thus, in each case, ∃t j → ∞ and h ∈ F s.t. (x1, . . . ,xk) 7→ sign
(

b(t j)+∑
k
i=1 xiw

(t j)
i

)
con-

verges to h a.s. [P]. Since convergence almost surely implies convergence in probability, we
have P

(
(x1, . . . ,xk,y) : sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
6= h(x1, . . . ,xk)

)
→ 0. Furthermore, by assump-

tion, P
(
(x1, . . . ,xk,y) : sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
6= f (x1, . . . ,xk)

)
→ 0 as well. Thus, a union bound

implies P((x,y) : h(x) 6= f (x)) = 0. In particular, we have that for any f with infg∈F P((x,y) :
g(x) 6= f (x)) = 0 and er( f ) = infg∈F er(g), ∃h ∈ F with P((x,y) : f (x) 6= h(x)) = 0, and hence
er(h) = infg∈F er(g). Thus, we may assume f ∗ ∈ F in this setting.

Therefore, in this scenario, Theorem 12 implies

max
r>er( f ∗)+ε

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1≤ c(1)k,t

(
log
(

2
er( f ∗)+ ε

))k−1

,

for an appropriate (k, t)-dependent constant c(1)k,t ∈ (0,∞). Plugging this into Theorem 21, and re-
calling that the VC dimension of the class of linear classifiers in Rk is k+1 (see e.g., Anthony and
Bartlett, 1999), we get a bound on the number of label requests of

c(2)k,t

(
log
(

2
er( f ∗)+ ε

))k−1(er( f ∗)2

ε2 +1
)(

k log
(

1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
≤ c(3)k,t

(
log
(

1
ε

))k+1(er( f ∗)2

ε2 +1
)(

k+ log
(

1
δ

))
,

for appropriate (k, t)-dependent constants c(2)k,t ,c
(3)
k,t ∈ (0,∞). Since (by assumption) ε ≥ er( f ∗)

c , this
is at most

c(4)k,t,c

(
log
(

1
ε

))k+1(
k+ log

(
1
δ

))
≤ c(5)k,t,c

(
log
(

1
ε

))k+1

log
(

1
δ

)
,

for appropriate (k, t,c)-dependent constants c(4)k,t,c,c
(5)
k,t,c ∈ (0,∞). Thus, taking ck,t,c = c(5)k,t,c estab-

lishes the result.

An analogous result can be shown for the problem of learning axis-aligned rectangles via The-
orem 14.

6.2 Label complexity bound under Mammen-Tsybakov noise

Since the original work on agnostic active learning discussed above, there have been several other
analyses, expressing the noise conditions in terms of quantities other than the noise rate er( f ∗).
Specifically, the following condition of Mammen and Tsybakov (1999) has been studied for several
algorithms (see e.g., Balcan, Broder, and Zhang, 2007; Hanneke, 2011; Koltchinskii, 2010; Han-
neke, 2012; Hanneke and Yang, 2012; Hanneke, 2014; Beygelzimer, Hsu, Langford, and Zhang,
2010; Hsu, 2010).

Condition 23 (Mammen and Tsybakov, 1999) For some a ∈ [1,∞) and α ∈ [0,1], for every f ∈
F ,

Pr( f (X) 6= f ∗(X))≤ a(er( f )− er( f ∗))α.
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In particular, for a variant of A2 known as RobustCALδ, studied by Hanneke (2012, 2014) and
Hanneke and Yang (2012), the following result is known (due to Hanneke and Yang, 2012).

Theorem 24 (Hanneke and Yang, 2012) There exists a finite universal constant c > 0 such that,
for any ε,δ ∈ (0,1/2), for any n,u ∈ N, given the arguments n and u, the RobustCALδ algorithm
requests at most n labels, and if u is sufficiently large, and

n≥ ca2
θ(aε

α)

(
1
ε

)2−2α(
d log(eθ(aε

α))+ log
(

log(1/ε)

δ

))
log
(

1
ε

)
,

for a and α as in Condition 23, then with probability at least 1− δ, the classifier f̂ ∈ F it returns
satisfies er( f̂ )≤ er( f ∗)+ ε.

Combined with Theorem 4, this implies the following theorem.

Theorem 25 There exists a finite universal constant c > 0 such that, for any ε,δ ∈ (0,1/2), for any
n,u ∈N, given the arguments n and u, the RobustCALδ algorithm requests at most n labels, and if u
is sufficiently large, and

n≥ ca2
(

max
r>aεα

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1
)(

1
ε

)2−2α(
d log

(
1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
,

for a and α as in Condition 23, then with probability at least 1− δ, the classifier f̂ ∈ F it returns
satisfies er( f̂ )≤ er( f ∗)+ ε.

In particular, reasoning as in Corollary 22 above, Theorem 25 implies the following corollary.

Corollary 26 For t,k ∈N and a ∈ [1,∞), there exists a finite constant ck,t,a > 0 such that, for F the
class of linear separators on Rk, and for P satisfying Condition 23 with α = 1 and the given value
of a, and with marginal distribution over X that is a mixture of t multivariate normal distributions
with diagonal covariance matrices of full rank, for any ε,δ ∈ (0,1/2), for any n,u ∈ N, given the
arguments n and u, the RobustCALδ algorithm requests at most n labels, and if u is sufficiently large,
and

n≥ ck,t,a

(
log
(

1
ε

))k+1

log
(

1
δ

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it returns satisfies er( f̂ )≤ er( f ∗)+ ε.

Corollary 26 proves an exponential label complexity speedup in the asymptotic dependence on
ε compared to passive learning, for which there is a lower bound on the label complexity of Ω(1/ε)
in the worst case over these distributions (Long, 1995).

Remark 27 Condition 23 can be satisfied with α = 1 if the Bayes optimal classifier is in F and the
source distribution satisfies Massart noise (Massart and Nédélec, 2006):

Pr(|P(Y = 1|X = x)−1/2|< 1/(2a)) = 0.

For example, if the data was generated by some unknown linear hypothesis with label noise (prob-
ability to flip any label) of up to (a−1)/2a, then P satisfies the requirements of Corollary 26.
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Appendix A. Analysis of CAL via the Disagreement Coefficient

The following result was first established by (Giné and Koltchinskii, 2006, page 1213), with slightly
different constant factors. The version stated here is directly from Hanneke (2009, Section 2.9), who
also presents a simple and direct proof.

Lemma 28 (Giné and Koltchinskii, 2006; Hanneke, 2009) For any t ∈ N and δ ∈ (0,1), with
probability at least 1−δ,

sup
h∈VSF ,St

er(h)≤ 24
t

(
d ln(880 ·θ(d/t))+ ln

(
12
δ

))
.

The following result is implicit in a proof of Hanneke (2011); for completeness, we present a
formal proof here.

Lemma 29 (Hanneke, 2011) There exists a finite universal constant c0 > 0 such that, ∀δ ∈ (0,1),
∀m ∈ N with m≥ 2,

BN(m,δ)≤ c0θ(d/m)

(
d ln(eθ(d/m))+ ln

(
log2(m)

δ

))
log2(m).

Proof The result trivially holds for m = 2, taking any c0 ≥ 2. Otherwise, suppose m≥ 3. Note that,
for any t ∈ N,

24
t

(
d ln(880θ(d/t))+ ln

(
24log2(m)

δ

))
≤ c1

t

(
d ln(eθ(d/t))+ ln

(
2log2(m)

δ

))
, (5)

for some universal constant c1 ∈ [1,∞) (e.g., taking c1 = 168 suffices). Thus, letting rt denote the
expression on the right hand side of (5), Lemma 28 implies that, for any t ∈ N, with probability at
least 1−δ/(2log2(m)),

sup
h∈VSF ,St

er(h)≤ rt .

By a union bound, this holds for all t ∈ {2i : i ∈ {1, . . . ,dlog2(m)e− 1}} with probability at least
1−δ/2. In particular, on this event, we have

N(m;Sm)≤ 2+
dlog2(m)e−1

∑
i=1

2i+1

∑
t=2i+1

1DIS(B( f ∗,r2i ))(xt).
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A Chernoff bound implies that, with probability at least 1−δ/2, the right hand side is at most

log2

(
8
δ

)
+2e

dlog2(m)e−1

∑
i=1

2i
∆B( f ∗,r2i)

≤ log2

(
8
δ

)
+2e

dlog2(m)e−1

∑
i=1

2i
θ(r2i)r2i

≤ log2

(
8
δ

)
+2ec1

dlog2(m)e−1

∑
i=1

θ
(
d2−i)(d ln

(
eθ
(
d2−i))+ ln

(
2log2(m)

δ

))
≤ 4ec1θ(d/m)

(
d ln(eθ(d/m))+ ln

(
log2(m)

δ

))
log2(m).

Letting c0 = 4ec1, the result holds by a union bound and minimality of BN(m,δ).

The following result is taken from the work of Hanneke (2011, Proof of Theorem 1); see also
Hanneke (2014) for a theorem and proof expressed in this exact form.

Lemma 30 (Hanneke, 2011) There exists a finite universal constant c0 > 0 such that, ∀ε,δ ∈
(0,1/2],

Λ(ε,δ)≤ c0θ(ε)

(
d ln(eθ(ε))+ ln

(
log2(1/ε)

δ

))
log2

(
1
ε

)
.

The next result is taken from the work of El-Yaniv and Wiener (2012, Corollary 39).

Lemma 31 (El-Yaniv and Wiener, 2012) For any r0 ∈ (0,1),

θ(r0)≤max

{
sup

r∈(r0,1/2)

7 ·B∆(b1/rc,1/9)
r

,2

}
.

Appendix B. Separation from the Previous Analyses

There are simple examples showing that sometimes Bn̂(m,δ) ≈ θ(1/m), so that the upper bound
Λ(ε,δ) ≤ c0dθ(ε)polylog

( 1
εδ

)
in Lemma 30 is off by a factor of d compared to Theorem 10 in

those cases (aside from logarithmic factors). For instance, consider the class of unions of k intervals,
where k ∈ N, X = [0,1], and F = {x 7→ 21⋃k

i=1[z2i−1,z2i]
(x)− 1 : 0 < z1 < · · · < z2k < 1}. Suppose

the data distribution P has a uniform marginal distribution over X , and has f ∗ = 21⋃k
i=1[z

∗
2i−1,z

∗
2i]
−

1, where z∗i = i
2k+1 for i ∈ {1, . . . ,2k}. In this case, for r0 ≥ 0, θ(r0) is within a factor of 2 of

min
{

1
r0
,4k
}

(see e.g., Balcan, Hanneke, and Vaughan, 2010; Hanneke, 2012). However, for any

m ∈ N with m≥ (2k+1) ln
(2k+1

δ

)
, with probability at least 1−δ we have for each i ∈ {0, . . . ,2k},

at least one j≤m has i
2k+1 < x j <

i+1
2k+1 , and no j≤m has x j =

i
2k+1 ; in this case, ĈSm is constructed

as follows; for each i∈ {1, . . . ,2k}, we include in ĈSm the point (x j,y j) with largest x j less than i
2k+1

and the point (x j,y j) with smallest x j greater than i
2k+1 . The number of points in this set ĈSm is at

most 4k. Therefore, for any m ∈ N, we have Bn̂(m,δ) ≤ min
{

m,max
{⌈

(2k+1) ln
(2k+1

δ

)⌉
,4k
}}

.
In particular, noting that d = 2k here, we have that for ε < 1/k, the bound on Λ(ε,δ) in Lemma 30
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has a Θ̃(k2) dependence on k, while the upper bound on Λ(ε,δ) in Theorem 10 has only a Θ̃(k)
dependence on k, which matches the lower bound in Theorem 10 (up to logarithmic factors).

Aside from the disagreement coefficient, the other technique in the existing literature for bound-
ing the label complexity of CAL is due to El-Yaniv and Wiener (2010, 2012), based on a quantity
they call the characterizing set complexity, denoted γ(F , n̂(Sm)). Formally, for n ∈ N, let γ(F ,n)
denote the VC dimension of the collection of sets {DIS(VSF ,S) : S ∈ (X ×Y )n}. Then El-Yaniv
and Wiener (2012) prove the following bound, for a universal constant c ∈ (0,∞).11

Λ(ε,δ)≤ c

(
max

m≤M(ε,δ/2)
γ(F ,Bn̂(m,δ)) ln

(
em

γ(F ,Bn̂(m,δ))

)

+ ln
(

log2(2M(ε,δ/2))
δ

))
log2(2M(ε,δ/2)). (6)

We can immediately note that γ(F ,Bn̂(m,δ))≥Bn̂(m,δ)−1; specifically, for any S∈ (X ×Y )m, let-
ting {(xi1 ,yi1), . . . ,(xin̂(Sm)

,yin̂(Sm)
)}= ĈS, we have that {xi2 , . . . ,xin̂(Sm)

} is shattered by {DIS(VSF ,S′) :
S′ ∈ (X ×Y )n̂(Sm)}, since letting S′ be any subset of {(xi2 ,yi2), . . . ,(xin̂(Sm)

,yin̂(Sm)
)} (filling in the

remaining elements as copies of (xi1 ,yi1) to make S′ of size n̂(Sm)),

{(xi2 ,yi2), . . . ,(xin̂(Sm)
,yin̂(Sm)

)}∩ (DIS(VSF ,S′)×Y ) = {(xi2 ,yi2), . . . ,(xin̂(Sm)
,yin̂(Sm)

)}\S′,

since otherwise, the (xi j ,yi j) in {(xi2 ,yi2), . . . ,(xin̂(Sm)
,yin̂(Sm)

)} \ S′ not in DIS(VSF ,S′)×Y would
have xi j /∈ DIS(VSF ,ĈS\{(xi j ,yi j )}

), so that VSF ,ĈS\{(xi j ,yi j )}
= VSF ,ĈS

= VSF ,S, contradicting mini-

mality of ĈS. Therefore, γ(F , n̂(Sm)) ≥ n̂(Sm)− 1. Then noting that γ(F ,n) is monotonic in n,
we find that γ(F ,Bn̂(m,δ)) is a minimal 1− δ confidence bound on γ(F , n̂(Sm)), which implies
γ(F ,Bn̂(m,δ))≥ Bn̂(m,δ)−1.

One can also give examples where the gap between Bn̂(m,δ) and γ(F ,Bn̂(m,δ) is large, for
instance where γ(F ,Bn̂(m,δ)) ≥ d while Bn̂(m,δ) = 2 for large m. For instance, consider X that
has d points w1, . . . ,wd and 2d+1 additional points xI and zI indexed by the sets I ⊆ {1, . . . ,d},
and say F is the space of classifiers {hJ : J ⊆ {1, . . . ,d}}, where for each J ⊆ {1, . . . ,d}, {x :
hJ(x) = +1} = {wi : i ∈ J} ∪ {xI : I ⊆ J} ∪ {zI : I ⊆ {1, . . . ,d} \ J}; in particular, the classifica-
tion on w1, . . . ,wd determines the classification on the remaining 2d+1 points, and {w1, . . . ,wd} is
shatterable, so that |F | = 2d , and the VC dimension of F is d. Let P be a distribution that has
a uniform marginal distribution over the 2d+1 + d points in X , and satisfies the realizable case as-
sumption (i.e., P(Y = f ∗(X)|X) = 1, for some f ∗ ∈ F ). For any integer m ≥ (2d+1 + d) ln(2/δ),
with probability at least 1−δ, we have (x{i≤d: f ∗(wi)=+1},+1) ∈ Sm and (z{i≤d: f ∗(wi)=−1},+1) ∈ Sm.
Since every hJ ∈ F with hJ(x{i≤d: f ∗(wi)=+1}) = +1 has {i ≤ d : f ∗(wi) = +1} ⊆ J = {i ≤ d :
hJ(wi) = +1}, and every hJ ∈ F with hJ(z{i≤d: f ∗(wi)=−1}) = +1 has {i ≤ d : f ∗(wi) = −1} ⊆
{1, . . . ,d} \ J = {i ≤ d : hJ(wi) = −1}, so that {i ≤ d : f ∗(wi) = +1} ⊇ {i ≤ d : hJ(wi) = +1},
we have that every hJ ∈ F with both hJ(x{i≤d: f ∗(wi)=+1}) = +1 and hJ(z{i≤d: f ∗(wi)=−1}) = +1
has {i ≤ d : hJ(wi) = +1} = {i ≤ d : f ∗(wi) = +1}. Since classifiers in F are completely de-
termined by their classification of {w1, . . . ,wd}, this implies hJ = f ∗. Therefore, letting ĈSm =
{(x{i≤d: f ∗(wi)=+1},+1),(z{i≤d: f ∗(wi)=−1},+1)}, we have VSF ,ĈSm

= VSF ,Sm , so that n̂(Sm) ≤ 2 (in

11. This result can be derived from their Theorem 15 via reasoning analogous to the derivation of Theorem 10 from
Lemma 8 above.
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fact, one can easily show n̂(Sm) = 2 in this case). Thus, for large m, Bn̂(m,δ) ≤ 2. However, for
any I ⊆ {1, . . . ,d}, letting S = {(x{1,...,d}\I,+1)}, we have h{1,...,d}\I ∈ VSF ,S, every h ∈ VSF ,S
has h(wi) = +1 for every i ∈ {1, . . . ,d} \ I, and every i ∈ I has h({1,...,d}\I)∪{i} ∈ VSF ,S, so that
DIS(VSF ,S)∩{w1, . . . ,wd}= {wi : i ∈ I}; therefore, the VC dimension of {DIS(VSF ,{x}) : x ∈ X }
is at least d: that is, γ(F ,1) ≥ d. Since we have n̂(Sm) ≥ 1 whenever Sm contains any point other
than x{} and z{}, and this happens with probability at least 1− (2/(2d+1 +d))m ≥ 1−δ > δ (when
δ < 1/2), this implies we have γ(F , n̂(Sm)) ≥ γ(F ,1) ≥ d with probability greater than δ, which
(by monotonicity of γ(F , ·)) implies γ(F ,Bn̂(m,δ))≥ d.

This is not quite strong enough to show a gap between (6) and Theorem 10, since the bounds
in Theorem 10 require us to maximize over the value of m, which would therefore also include
values Bn̂(m,δ) for m < (2d+1 + d) ln(2/δ). To exhibit a gap between these bounds, we can sim-
ply redefine the marginal distribution of P over X to have P({w1}×Y ) = 1. Note that with this
distribution, xi = w1 for all i, with probability 1, so that we clearly have n̂(Sm) = 1 almost surely,
and hence Bn̂(m,δ) = 1 for all m. As argued above, we have γ(F ,1) ≥ d for this space. There-
fore, maxm≤M γ(F ,Bn̂(m,δ)) ≥ d, while maxm≤M Bn̂(m,δ) ≤ 1, for all M ∈ N. However, note
that unlike the example constructed above for the disagreement coefficient, the gap in this ex-
ample could potentially be eliminated by replacing the distribution-free quantity γ(F ,n) with a
distribution-dependent complexity measure (e.g., an annealed VC entropy or a bracketing number
for {DIS(VSF ,S) : S ∈ (X ×Y )n}).
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Abstract

Blackwell’s theory of approachability provides fundamental results for repeated games with
vector-valued payoffs, which have been usefully applied in the theory of learning in games,
and in devising online learning algorithms in the adversarial setup. A target set S is
approachable by a player (the agent) in such a game if he can ensure that the average
payoff vector converges to S, no matter what the opponent does. Blackwell provided
two equivalent conditions for a convex set to be approachable. Standard approachability
algorithms rely on the primal condition, which is a geometric separation condition, and
essentially require to compute at each stage a projection direction from a certain point to
S. Here we introduce an approachability algorithm that relies on Blackwell’s dual condition,
which requires the agent to have a feasible response to each mixed action of the opponent,
namely a mixed action such that the expected payoff vector belongs to S. Thus, rather
than projections, the proposed algorithm relies on computing the response to a certain
action of the opponent at each stage. We demonstrate the utility of the proposed approach
by applying it to certain generalizations of the classical regret minimization problem, which
incorporate side constraints, reward-to-cost criteria, and so-called global cost functions. In
these extensions, computation of the projection is generally complex while the response is
readily obtainable.

Keywords: approachability, no-regret algorithms

1. Introduction

Consider a repeated matrix game with vector-valued rewards that is played by two players,
the agent and the opponent, where the latter may stand for an arbitrarily-varying learning
environment. For each pair of simultaneous actions a and b of the agent and the opponent in
the one-stage game, a reward vector r(a, b) ∈ R`, ` ≥ 1, is obtained. In the approachability
problem formulated in (Blackwell, 1956), the agent’s goal is to ensure that the long-term
average reward vector approaches a given target set S, namely converges to S almost surely
in the point-to-set distance. If that convergence can be guaranteed irrespectively of the
opponent’s strategy, the set S is said to be approachable, and the strategy of the agent

c©2015 Andrey Bernstein and Nahum Shimkin.
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that satisfies this property is an approachability strategy (or algorithm) for S. Refinements
and extensions of Blackwell’s results have been considered, among others, in Vieille (1992);
Shimkin and Shwartz (1993); Hart and Mas-Colell (2001); Spinat (2002); Lehrer (2002);
Lehrer and Solan (2009); Abernethy et al. (2011).

Blackwell’s approachability results have been broadly used in the theoretical work on
learning in games, encompassing equilibrium analysis in repeated games with incomplete
information (Aumann and Maschler, 1995), calibrated forecasting (Foster, 1999), and con-
vergence to correlated equilibria (Hart and Mas-Colell, 2000). An application of approacha-
bility to multi-criteria reinforcement learning was considered in Mannor and Shimkin (2004).
The earliest application, however, concerned the notion of no-regret strategies, that was in-
troduced in Hannan (1957). Even before Hannan’s paper appeared in print, it was shown
in Blackwell (1954) that regret minimization can be formulated as a particular approacha-
bility problem, leading to an elegant no-regret strategy. More recently, approachability was
used in Rustichini (1999) to establish a no-regret result for games with imperfect monitor-
ing, and Hart and Mas-Colell (2001) proposed an alternative approachability formulation
of the no-regret problem (see Section 5 for more details). An overview of approachability
and no-regret in the context of learning in games can be found in Fudenberg and Levine
(1998) and Young (2004), while Cesa-Bianchi and Lugosi (2006) highlights the connection
with the modern theory of on-line learning and prediction algorithms. The recent article
Perchet (2014) reviews the inter-relations between approachability, regret minimization and
calibration.

Standard approachability algorithms require, at each stage of the game, the computation
of the direction from the current average reward vector to a closest point in the target set S.
This is implied by Blackwell’s primal geometric separation condition, which is a sufficient
condition for approachability of a target set. For convex sets, this step is equivalent to
computing the projection direction of the average reward onto S. In this paper, we introduce
an approachability algorithm that avoids this projection computation step. Instead, the
algorithm relies on the availability of a response map, that assigns to each mixed action q
of the opponent a mixed action p of the agent so that r(p, q), the expected reward vector
under these two mixed actions, is in S. Existence of such a map is based on the Blackwell’s
dual condition, which is also a necessary and sufficient condition for approachability of a
convex target set.

The idea of defining an approachable set in terms of a general response map appears
in Lehrer and Solan (2007), in the context of internal no-regret strategies. An explicit
approachability algorithm which is based on computing the response to calibrated forecasts
of the opponent’s actions has been proposed in Perchet (2009), and further analyzed in
Bernstein et al. (2014). However, the algorithms in these papers are essentially based on
computing calibrated forecasts of the opponent’s actions, a task which is computation-
ally hard (Hazan and Kakade, 2012). In contrast, the algorithms proposed in the present
paper retain the dimensionality of the single-stage game, similarly to Blackwell’s original
algorithm. An approachability algorithm that combines the response map with no-regret
learning was proposed in Bernstein (2013). The algorithm accommodates some additional
adaptive properties, but its temporal convergence rate is O(n−1/4) rather than O(n−1/2).
A similar algorithm was employed in Mannor et al. (2014) to elegantly establish approach-
ability results for unknown games.
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Our motivation for the proposed algorithms is mainly derived from certain general-
izations of the basic no-regret problem, where the set to be approached is geometrically
complicated so that computing the projection direction may be hard, while the response
map is explicit by construction. These generalizations include the constrained regret min-
imization problem (Mannor et al., 2009), regret minimization with global cost functions
(Even-Dar et al., 2009), regret minimization in variable duration repeated games (Man-
nor and Shimkin, 2008), and regret minimization in stochastic game models (Mannor and
Shimkin, 2003). In these cases, the computation of a response reduces to computing a
best-response in the underlying regret minimization problem, and hence can be carried out
efficiently. The application of our algorithm to some of these problems is discussed in
Section 5 of this paper.

The paper proceeds as follows. In Section 2 we review the approachability framework
along with available approachability algorithms. Section 3 presents our basic algorithm
and establishes its approachability properties. In Section 4, we provide an interpretation of
the proposed algorithm, and examine some variants and extensions. Section 5 presents the
application to generalized no-regret problems. We conclude the paper in Section 6.

2. Review of Approachability Theory

Let us start with a brief review of the approachability problem. Consider a repeated two-
person matrix game, played between an agent and an arbitrary opponent. The agent chooses
its actions from a finite set A, while the opponent chooses its actions from a finite set B. At
each step n = 1, 2, ..., the agent selects its action an ∈ A, observes the action bn ∈ B chosen
by the opponent, and obtains a vector-valued reward Rn = r(an, bn) ∈ R`, where ` ≥ 1,
and r : A×B → R` is a given reward function. The average reward vector obtained by the
agent up to time n is then R̄n = n−1

∑n
k=1Rk. A mixed action of the agent is a probability

vector p ∈ ∆(A), where p(a) specifies the probability of choosing action a ∈ A, and ∆(A)
denotes the set of probability vectors over A . Similarly, q ∈ ∆(B) denotes a mixed action
of the opponent. Let q̄n ∈ ∆(B) denote the empirical distribution of the opponent’s actions
at time n, namely

q̄n(b) ,
1

n

n∑
k=1

I {bn = b} , b ∈ B,

where I denotes the indicator function. Further define the Euclidean span of the reward
vector as

ρ , max
a,b,a′,b′

∥∥r(a, b)− r(a′, b′)∥∥ , (1)

where ‖·‖ is the Euclidean norm. The inner product between two vectors v ∈ R` and w ∈ R`
is denoted by v · w.

In what follows, we use the shorthand notation

r(p, q) ,
∑

a∈A,b∈B
p(a)q(b)r(a, b)

for the expected reward under mixed actions p ∈ ∆(A) and q ∈ ∆(B); the distinction
between r(a, b) and r(p, q) should be clear from their arguments. We similarly denote
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r(p, b) =
∑

a∈A p(a)r(a, b) for the expected reward under mixed action p ∈ ∆(A) and pure
action b ∈ B.

Let hn , {a1, b1, ..., an, bn} ∈ (A× B)n denote the history of the game up to stage n.
A strategy π = (πn) of the agent is a collection of decision rules πn : (A× B)n−1 → ∆(A),
n ≥ 1, where each mapping πn specifies a mixed action pn = πn(hn−1) for the agent at
time n. The agent’s pure action an is sampled from pn. Similarly, the opponent’s strategy
is denoted by σ = (σn), with σn : (A× B)n−1 → ∆(B). Let Pπ,σ denote the probability
measure on (A× B)∞ induced by the strategy pair (π, σ).

Let S be a given target set in the reward space. We may assume that S is closed as
approachability of a set and its closure are equivalent.

Definition 1 (Approachable Set) A closed set S ⊆ R` is approachable by the agent if
there exists a strategy π of the agent such that R̄n = n−1

∑n
k=1Rk converges to S in the

Euclidean point-to-set distance d(·, S), almost surely for every strategy σ of the opponent,
at a uniform rate over the opponent’s strategies. That is, for every ε > 0 there exists an
integer N such that

Pπ,σ{ sup
n≥N

d(R̄n, S) ≥ ε} ≤ ε

for any strategy σ of the opponent.

In the sequel, we will find it convenient to state most of our results in terms of the time
averaged expected rewards, where expectation is applied only to the agent’s mixed actions:

r̄n =
1

n

n∑
k=1

rk, where rk = r(pk, bk).

With these smoothed rewards, the stated convergence results and bounds can be shown to
hold pathwise, for any possible sequence of the opponent’s actions. See, e.g., Theorem 4,
which states that d(r̄n, S) ≤ ρ√

n
for all n. The corresponding almost sure convergence for

the actual average reward R̄n readily follows using martingale convergence theory. Indeed,
observe that

d
(
R̄n, S

)
≤
∥∥R̄n − r̄n∥∥+ d (r̄n, S) ,

where the first normed term is the time average of the vector-valued and uniformly bounded
martingale difference sequence Dk = r(ak, bk) − r(pk, bk). By standard martingale results,
this average converges to zero at a uniform rate of O(n−1/2).

We proceed to present a formulation of Blackwell’s results, which provide a sufficient
condition for approachability of general sets, and two sets of necessary and sufficient con-
ditions for approachability of convex sets. For any x /∈ S, let c(x) ∈ S denote a closest
point in S to x. Also, for any p ∈ ∆(A), let T (p) = {r(p, q) : q ∈ ∆(B)} denote the set
of mean reward vectors that are achievable by the opponent. This evidently coincides with
the convex hull of the vectors {r(p, b)}b∈B.

Definition 2 (Approachability Conditions)

(i) B-sets: A closed set S ⊆ R` will be called a B-set if for every x /∈ S there exists a
mixed action p∗ = p∗(x) ∈ ∆(A) and a closest point c(x) ∈ S such that the hyperplane
through c(x) perpendicular to the line segment x-c(x), separates x from T (p∗).
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(ii) D-sets: A closed set S ⊆ R` will be called a D-set if for every q ∈ ∆(B) there exists
a mixed action p ∈ ∆(A) so that r(p, q) ∈ S. We shall refer to such p as a response
(or S-response) of the agent to q.

Theorem 3 (Blackwell, 1956)

(i) Primal Condition and Algorithm. A B-set is approachable, by using at stage n
the mixed action p∗(r̄n−1) whenever r̄n−1 /∈ S. If r̄n−1 ∈ S, an arbitrary action can
be used.

(ii) Dual Condition. A closed set S is approachable only if it is a D-set.

(iii) Convex Sets. Let S be a closed convex set. Then, the following statements are
equivalent: (a) S is approachable, (b) S is a B-set, (c) S is a D-set.

We note that the approachability algorithm in Theorem 3(i) remains valid if r̄n−1 in
the primal condition is replaced by R̄n−1. Blackwell’s algorithm was generalized in Hart
and Mas-Colell (2001) to a class of approachability algorithms, where the required steering
directions are generated as gradients of a suitable potential function (rather than Euclidean
projections). An alternative construction was recently proposed in Abernethy et al. (2011),
where the steering directions are generated through a no-regret algorithm. Finally, as
already mentioned, calibration-based approachability algorithms were considered in Perchet
(2009) and Bernstein et al. (2014).

3. Response-Based Approachability

In this section we present our basic response-based algorithm, and establish its convergence
properties. In the remainder of the paper, we shall assume that the target set S satisfies
the following assumption.

Assumption 1 The set S is a closed, convex and approachable set.

It follows by Theorem 3 that S is a D-set, so that for all q ∈ ∆(B) there exists an S-response
p ∈ ∆(A) such that r(p, q) ∈ S. It is further assumed that the agent can compute a response
to any q.

We note that in some cases of interest, including those discussed in Section 5, the
target S may itself be defined through an appropriate response map. Suppose that for each
q ∈ ∆(B), we are given a mixed action p∗(q) ∈ ∆(A), devised so that r(p∗(q), q) satisfies
some desired properties. Then the convex hull S = conv{r(p∗(q), q), q ∈ ∆(B)} is a convex
D-set by construction, hence approachable.

The proposed approachability strategy is presented in Algorithm 1. The general idea
is as follows. At each stage n of the algorithm, a steering vector λn−1 = r̄∗n−1 − r̄n−1 is
computed as the difference between the current average reward and the average of a certain
sequence of target points r∗k in S. The target point r∗n is computed as r(p∗n, q

∗
n), where p∗n is

chosen as an S-response to a certain fictitious action q∗n of the opponent. Both pn (the actual
mixed action of the agent) and q∗n are computed in step 3 of the algorithm, as the optimal
strategies in the scalar game obtained by projecting the payoff vectors in the direction of
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Algorithm 1 Response-Based Approachability

Initialization: At time step n = 1, use arbitrary mixed action p1 and set an arbitrary
target point r∗1 ∈ S.

At time step n = 2, 3, ...:

1. Set an approachability direction

λn−1 = r̄∗n−1 − r̄n−1,

where

r̄n−1 =
1

n− 1

n−1∑
k=1

r(pk, bk), r̄∗n−1 =
1

n− 1

n−1∑
k=1

r∗k

are, respectively, the average (smoothed) reward vector and the average target point.

2. Solve the zero-sum matrix game with payoff matrix defined by r(a, b) projected in the
direction λn−1. Namely, find the equilibrium strategies pn and q∗n that satisfy

pn ∈ argmax
p∈∆(A)

min
q∈∆(B)

λn−1 · r(p, q), (2)

q∗n ∈ argmin
q∈∆(B)

max
p∈∆(A)

λn−1 · r(p, q), (3)

3. Choose action an according to pn.

4. Pick p∗n so that r(p∗n, q
∗
n) ∈ S, and set the target point r∗n = r(p∗n, q

∗
n).

λn−1. As shown in the proof, and further elaborated in Subsection 4.1, this choice implies
the convergence of the difference λn = r̄∗n − r̄n to 0. Since r̄∗n ∈ S by construction, this in
turn implies convergence of r̄n to S.

We may now present our main convergence result and its proof, followed by some addi-
tional comments on the algorithm. Recall that ρ is reward span as defined in (1).

Theorem 4 Let Assumption 1 hold, and suppose that the agent follows the strategy specified
in Algorithm 1. Then

d (r̄n, S) ≤ ‖λn‖ ≤
ρ√
n
, n ≥ 1, (4)

for any strategy of the opponent.

The proof follows from the next result, which also provides more general conditions on
the required properties of (pn, q

∗
n, p
∗
n).

Proposition 5 (i) Suppose that at each time step n ≥ 1, the agent chooses the triple
(pn, q

∗
n, p
∗
n) so that

λn−1 · (r(pn, b)− r(p∗n, q∗n)) ≥ 0, ∀b ∈ B, (5)

and sets r∗n = r(p∗n, q
∗
n). Then ‖λn‖ ≤ ρ√

n
for n ≥ 1.
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(ii) If, in addition, p∗n is chosen as an S-response to q∗n, so that r∗n = r(p∗n, q
∗
n) ∈ S, then

d (r̄n, S) ≤ ‖λn‖ ≤
ρ√
n
, n ≥ 1, (6)

Proof We first observe that

n2 ‖λn‖2 ≤ (n− 1)2 ‖λn−1‖2 + 2(n− 1)λn−1 · (r∗n − rn) + ρ2, (7)

for any n ≥ 1. Indeed,

‖r̄∗n − r̄n‖
2 =

∥∥∥∥n− 1

n

(
r̄∗n−1 − r̄n−1

)
+

1

n
(r∗n − rn)

∥∥∥∥2

=

(
n− 1

n

)2

‖λn−1‖2 +
1

n2
‖r∗n − rn‖

2 + 2
n− 1

n2
λn−1 · (r∗n − rn)

≤
(
n− 1

n

)2

‖λn−1‖2 +
ρ2

n2
+ 2

n− 1

n2
λn−1 · (r∗n − rn) .

Now, under condition (5),

λn−1 · (r∗n − rn) = λn−1 · (r(p∗n, q∗n)− r(pn, bn)) ≤ 0.

Hence, by (7),
n2 ‖λn‖2 ≤ (n− 1)2 ‖λn−1‖2 + ρ2, n ≥ 1.

Applying this inequality recursively, we obtain that n2 ‖λn‖2 ≤ nρ2, or ‖λn‖2 ≤ ρ2/n, as
claimed in part (i). Part (ii) now follows since r∗n ∈ S implies that r̄∗n ∈ S (by convexity of
S), hence

d (r̄n, S) ≤ ‖r̄n − r̄∗n‖ = ‖λn‖ .

Proof [Theorem 4] It only remains to show that the choice of (pn, q
∗
n) in equations (2)-(3)

implies the required inequality in (5). Indeed, under (2) and (3) we have that

λn−1 · r(pn, bn) ≥ max
p∈∆(A)

min
q∈∆(B)

λn−1 · r(p, q)

= min
q∈∆(B)

max
p∈∆(A)

λn−1 · r(p, q)

, max
p∈∆(A)

λn−1 · r(p, q∗n),

where the equality follows by the minimax theorem for matrix games. Therefore, condition
(5) is satisfied for any p∗n, and in particular for the one satisfying r(p∗n, q

∗
n) ∈ S. This

concludes the proof of Theorem 4.

Additional Comments:

1. Observe that the projection directions in Blackwell’s algorithm are replaced, in a
sense, by the steering vectors λn. These vectors are computed based on the agent’s
S-responses to a fictitious sequence (q∗n) of the opponent’s mixed actions, which is
computed as part of the algorithm.
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2. Theorem 4 clearly implies that the set S is approachable with the specified strategy,
and provides an explicit rate of convergence. In fact, the result is somewhat stronger
as it implies convergence of the average reward vector to r̄∗n ∈ S. This property will be
found useful in Proposition 13 below, where certain properties that do not follow from
approachability alone are established for the reward-to-cost maximization problem.

3. A stated in Proposition 5, the condition in (5) on the triplets (pn, q
∗
n, p
∗
n) is sufficient to

ensure the convergence λn → 0. Equations (2)-(3) specify a specific choice of (pn, q
∗
n)

which satisfies these conditions. This choice is useful as it implies (5) for any choice
of p∗n.

4. The computational requirements of Algorithm 1 are as follows. At each time step n,
two major computations are needed:

a. Computing (pn, q
∗
n)—the equilibrium strategies in the zero-sum matrix game with

the reward function λn−1 · r(p, q). This boils down to the solution of the related
primal and dual linear programs, and hence can be done efficiently. Note that,
given the vector λn−1, this computation does not involve the target set S.

b. Computing the S-response p∗n to q∗n and the target point r∗n = r(p∗n, q
∗
n), which is

problem dependent. Specific examples are discussed in Section 5.

4. Interpretation and Extensions

We open this section with an illuminating interpretation of the proposed algorithm in terms
of a certain approachability problem in an auxiliary game. We then proceed to present three
variants and extensions to the basic algorithm; we note that these are not essential for the
remainder of the paper and can be skipped at first reading. While each of these variants is
presented separately, they may also be combined when appropriate.

4.1 An Auxiliary Game Interpretation

A central part of Algorithm 1 is the choice of the pair (pn, q
∗
n) so that r̄n tracks r̄∗n, namely

λn = r̄∗n − r̄n → 0 (see Equations (2)-(3) and Proposition 5). If fact, the choice of (pn, q
∗
n)

in (2)-(3) can be interpreted as Blackwell’s strategy for a specific approachability problem
in an auxiliary game, which we define next.

Suppose that at stage n, the agent chooses a pair of actions (a, b∗) ∈ A × B and the
opponent chooses a pair of actions (a∗, b) ∈ A×B. The vector payoff function, now denoted
by v, is given by

v((a, b∗), (a∗, b)) = r(a∗, b∗)− r(a, b),

so that
Vn = r(a∗n, b

∗
n)−Rn.

Consider the single-point target set S0 = {0} ⊂ R`. This set is clearly convex, and we next
show that it is a D-set in the auxiliary game. We need to show that for any η ∈ ∆(A× B)
there exists µ ∈ ∆(A×B) so that v(µ, η) ∈ S0, namely v(µ, η) = 0. That that end, observe
that

v(µ, η) = r(p∗, q∗)− r(p, q)
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where p and q∗ are the marginal distributions of µ on A and B, respectively, while p∗ and q
are the respective marginal distributions of η. Therefore we obtain v(µ, η) = 0 by choosing
µ with the same marginals as η, for example {µ(a, b) = p(a)q∗(b)} with p = p∗ and q∗ = q.
Thus, by Theorem 3, S0 is approachable.

We may now apply Blackwell’s approachability strategy to this auxiliary game. Since
S0 is the origin, the direction from S0 to the average reward v̄n−1 is just the average reward
vector itself. Therefore, the primal (geometric separation) condition here is equivalent to

v̄n−1 · v(µ, η) ≤ 0, ∀ η ∈ ∆(A× B)

or

v̄n−1 · (r(p∗, q∗)− r(p, q)) ≤ 0, ∀ p∗ ∈ ∆(A), q ∈ ∆(B).

Now, a pair (p, q∗) that satisfies this inequality is any pair of equilibrium strategies in the
zero-sum game with reward v projected in the direction of v̄n−1. That is, for

p ∈ argmax
p∈∆(A)

min
q∈∆(B)

v̄n−1 · r(p, q), (8)

q∗ ∈ argmin
q∈∆(B)

max
p∈∆(A)

v̄n−1 · r(p, q), (9)

it is easily verified that

v̄n−1 · r(p∗, q∗) ≥ v̄n−1 · r(p, q), ∀ p∗ ∈ ∆(A), q ∈ ∆(B)

as required.

The choice of (pn, q
∗
n) in Equations (2)-(3) follows (8)-(9), with λn−1 replacing v̄n−1. We

note that the two are not identical, as v̄n is the temporal average of Vn = r(a∗n, b
∗
n)−r(an, bn)

while λn is the average of the expected difference r(p∗n, q
∗
n) − r(pn, bn); however this does

not change the approachability result above, and in fact either can be used. More generally,
any approachability algorithm in the auxiliary game can be used to choose the pair (pn, q

∗
n)

in Algorithm 1.

We note that in our original problem, the mixed action p∗n is not chosen by an “opponent”
but rather specified as part of Algorithm 1. But since the approachability result above holds
for an arbitrary choice of p∗n, it also holds for this particular one.

We proceed to present some additional variants of our algorithm.

4.2 Idling when S is Reached

Recall that in the original approachability algorithm of Blackwell, an arbitrary action an
can be chosen by the agent whenever r̄n−1 ∈ S. This may alleviate the computational
burden of the algorithm, and adds another degree of freedom that may be used to optimize
other criteria.

Such an arbitrary choice of an (or pn) when the average reward is in S is also possible
in our algorithm. However, some care is required in setting the average target point r̄∗n at
these time instances, as otherwise the two terms of the difference λn = r̄∗n − r̄n may drift
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apart. As it turns out, r̄∗n should be reset at these times to r̄n, which leads to the following
recursion. Set r̄∗0 = 0, and let

r̄∗n =

{
n−1
n r̄∗n−1 + 1

nr
∗
n if r̄n /∈ S

r̄n if r̄n ∈ S
(10)

for n ≥ 1. The definition of λn as r̄∗n − r̄n is retained, so that it satisfies the modified
recursion:

λn =

{
n−1
n λn−1 + 1

n(r∗n − rn), if r̄n /∈ S
0, if r̄n ∈ S,

(11)

with λ0 = 0. Thus, the steering vector λn is reset to 0 whenever the average reward r̄n is in
S. With this modified definition, the convergence properties of the algorithm are retained
(with the same rates). The proof can be found in Bernstein and Shimkin (2013).

4.3 Directionally Unbounded Target Sets

In some applications of interest, the target set S may be unbounded in certain directions.
It is often natural to define the agent’s goal in this way even if the reward function is
bounded, as it reflects clearly the agent’s desire of obtaining a reward which is as large as
possible in these directions.1 Indeed, this is the case in the approachability formulations of
the no-regret problem, where the goal is essentially to make the (scalar) average reward as
large as possible in hindsight.

In such cases, the requirement that λn = r̄∗n − r̄n → 0, which is a property of our basic
algorithm, may be too strong, and may even be counter-productive. For example, suppose
that our goal is to increase the first coordinate of the average reward vector r̄n as much as
possible. In that case, allowing negative values of λn in that component makes sense (rather
than steering it to 0 by reducing r̄n). We propose here a modification of our algorithm that
addresses this issue

Given the (closed and convex) target set S ⊂ R`, let DS be the set of vectors d ∈ R`
such that d + S ⊂ S. It may be seen that DS is a closed and convex cone, which trivially
equals {0} if (and only if) S is bounded. We refer to the unit vectors in DS as directions
in which S is unbounded.

Referring to the auxiliary game interpretation of our algorithm in Section 4.1, we may
now relax the requirement that λn approaches {0} to the requirement that λn approaches
−DS . Indeed, if we maintain r̄∗n ∈ S as before, then λn ∈ −DS suffices to verify that
r̄n = r̄∗n − λn ∈ S.

We may now apply Blackwell’s approachability strategy to the cone DS in place of the
origin. The required modification to the algorithm is simple: replace the steering direction
λn in (2)-(3) or (5) with the direction from the closest point in −DS to λn:

λ̃n = λn − Proj−DS
(λn)

That projection is particularly simple in case S is unbounded along primary coordinates,
so that the cone DS is a quadrant, generated by a collection ej , j ∈ J of orthogonal unit

1. Clearly, it is always possible to intersect S with the bounded set of feasible reward vectors without
changing its approachability properties. We find it useful here to retain S in its unbounded form.
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vectors. In that case, clearly,

Proj−DS
(λ) = −

∑
j∈J

(ej · λ)− .

Thus, the negative components of λn in directions (ej) are nullified.

The modified algorithm admits analogous bounds to those of the basic algorithm, with
(4) or (6) replaced by

d (r̄n, S) ≤ d(λn,−DS) ≤ ρ√
n
, n ≥ 1.

The proof is identical, and is obtained by replacing λn with λ̃n = λn − Proj−DS
(λn) in all

the relations. See Bernstein and Shimkin (2013) for details.

4.4 Using the Actual Rewards

In the basic algorithm of Section 3, the definition of the steering direction λn employs the
expected rewards r(pk, bk) rather than the actual rewards Rk = r(ak, bk). We consider here
the variant of the algorithm which employs the latter. This is essential in case that the
opponent’s action bk is not observed, so that r(pk, bk) cannot be computed, while the reward
vector Rk is observed directly. It also makes some sense in general since the quantity we
are actually interested in is the average reward R̄n, and not its expected version r̄n.

Thus, we replace λn−1 with

λ̃n−1 = r̄∗n−1 − R̄n−1.

The rest of the algorithm remains the same as Algorithm 1. We have the following result
for this variant.

Theorem 6 Let Assumption 1 holds. If the agent uses Algorithm 1, with λn−1 replaced by

λ̃n−1 = r̄∗n−1 − R̄n−1,

it holds that

lim
n→∞

‖λ̃n‖ = 0,

almost surely, for any strategy of the opponent, at a uniform rate of O(1/
√
n) over all

strategies of the opponent. More precisely, for every ε > 0,

P

{
sup
k≥n
‖λ̃k‖ ≥ ε

}
≤ 2ρ2

nε2
. (12)

Proof First observe that Lemma 7 still holds if rn = r(pn, bn) is replaced with Rn =
r(an, bn) throughout. Namely,

n2‖λ̃n‖2 ≤ (n− 1)2‖λ̃n−1‖2 + 2(n− 1)λ̃n−1 · (r∗n − r(an, bn)) + ρ2, n ≥ 1.
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Let {Fn} denote the filtration induced by the history. We have that

E
[
n2‖λ̃n‖2

∣∣∣ Fn−1

]
≤ (n− 1)2‖λ̃n−1‖2 + 2(n− 1)λ̃n−1 · E [(r∗n − r(an, bn)) | Fn−1] + ρ2

= (n− 1)2‖λ̃n−1‖2 + 2(n− 1)λ̃n−1 · (r∗n − E [r(an, bn) | Fn−1]) + ρ2

≤ (n− 1)2‖λ̃n−1‖2 + ρ2, (13)

where the equality follows since q∗n and p∗n are determined by the history up to time n− 1
and hence so does r∗n = r(p∗n, q

∗
n), and the last inequality holds since

λ̃n−1 · (r∗n − E [r(an, bn) | Fn−1]) = λ̃n−1 · (r∗n − r(pn, bn)) ≤ 0,

similarly to the proof of Theorem 4.

From (13) we may deduce the almost sure convergence ‖λ̃n‖ to zero, at a rate the depends
on ρ only. The argument may follow the original proof of Blackwell’s theorem (Blackwell
(1956), Theorem 1), or its adaptation in Shimkin and Shwartz (1993, Proposition 4.1) or
Mertens et al. (1994, p. 125) which rely on Doob’s maximal inequality for supermartingales.
In particular, following the latter reference, we obtain the bound stated in (12).

5. Applications to Generalized No-Regret Problems

Our response-based approachability algorithm can be usefully applied to several generalized
regret minimization problems, for which computation of a projection onto the target set is
involved, but a response is readily obtainable. In the next Subsection, we briefly review the
basic no-regret problem and its two standard formulations as an approachability problem.
In Subsection 5.2 we first outline a generic generalized no-regret problem, using a general set-
valued goal function, and then specialize the discussion to some specific problems that have
been considered in the recent literature, namely constrained regret minimization, reward-
to-cost maximization, and the so-called global cost function problem. In each case, we
specify the performance obtainable by a suitable approachability algorithm, along with
the corresponding response map that is needed in our algorithm. For the reward-to-cost
problem, we also derive some performance guarantees that rely on specific properties of the
proposed approachability algorithm.

We do not specify convergence rates in this section, but rather focus on asymptotic
convergence results. Convergence rates can be derived by referring to our bounds in the
previous sections, namely (4) or (12).

5.1 Approachability-Based No-Regret Algorithms

Let us start by reviewing the basic no-regret problem for repeated matrix games, along
with its two alternative formulations as an approachability problem by Blackwell (1954)
and Hart and Mas-Colell (2001). Consider, as before, an agent that faces an arbitrarily
varying environment (the opponent). The repeated game model is the same as above,
except that the vector reward function r is replaced by a scalar reward (or utility) function
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u : A× B → R. Let Ūn , n−1
∑n

k=1 Uk denote the average reward by time n, and let

u∗(q̄n) , max
a∈A

u(a, q̄n) =
1

n
max
a∈A

n∑
k=1

u(a, bk) (14)

denote the best reward-in-hindsight of the agent after observing b1, ..., bn, which is a convex
function u∗ of the empirical distribution q̄n. Hannan (1957) introduced the following notion
of a no-regret strategy:

Definition 7 (No-Regret Algorithm) A strategy of the agent is termed a no-regret al-
gorithm (or Hannan Consistent) if

lim sup
n→∞

(
u∗(q̄n)− Ūn

)
≤ 0

with probability 1, for any strategy of the opponent.

a. Blackwell’s No-Regret Algorithm. Following Hannan’s seminal paper, Blackwell
(1954) used his approachability theorem to elegantly show the existence of regret minimizing
strategies. Define the vector-valued rewards Rn , (Un,1(bn)) ∈ R × ∆(B), where 1(b)
is the probability vector in ∆(B) supported on b. The corresponding average reward is
R̄n , n−1

∑n
k=1Rk =

(
Ūn, q̄n

)
. Finally, define the target set

S = {(u, q) ∈ R×∆(B) : u ≥ u∗(q)} .

This set is a D-set by construction: An S-response to q is given by any p∗ ∈ ∆(A) that
maximizes u(p, q), as u(p∗, q) = u∗(q) implies that r(p∗, q) = (u(p∗, q), q) ∈ S. Also, S
is a convex set by the convexity of u∗(q) in q. Hence, by Theorem 3, S is approachable,
and by the continuity of u∗(q), an algorithm that approaches S also minimizes the regret
in the sense of Definition 7. Application of Blackwell’s approachability strategy to the set
S therefore results in a no-regret algorithm. We note that the required projection of the
average reward vector onto S cannot be defined explicitly in this formulation. However, the
computation of the S-response is explicit and straightforward: We just need to solve the
original optimization problem maxp∈∆(A) u(p, q), which clearly admits a solution in pure
actions.

b. Regret Matching. An alternative formulation due to Hart and Mas-Colell (2001)
leads to a simple and explicit no-regret algorithm. Let

Ln(a′) ,
1

n

n∑
k=1

(
u(a′, bk)− u(ak, bk)

)
(15)

denote the regret accrued due to not using action a′ exclusively up to time n. The no-regret
requirement in Definition 7 is now equivalent to lim supn→∞ Ln(a) ≤ 0, a ∈ A, a.s. for any
strategy of the opponent. This property, in turn, is equivalent to the approachability of
the negative orthant S = (R−)A in the game with vector payoff r = (ra′) ∈ RA, defined as
ra′(a, b) = u(a′, b)− u(a, b).

To verify the dual condition, observe that ra′(p, q) = u(a′, q) − u(p, q). Choosing p ∈
argmaxp u(p, q) clearly ensures r(p, q) ∈ S, hence is an S-response to q (in the sense of
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Definition 2(ii)), and S is a D-set. Note that the response here can always be taken as a
pure action.

It was shown in Hart and Mas-Colell (2001) that the application of Blackwell’s ap-
proachability strategy (or some generalizations thereof) to this formulation is simple and
leads to explicit no-regret algorithms, namely the so-called regret matching algorithm and
its variants.

5.2 Generalized No-Regret

Consider a repeated matrix game as before, except that the vector-valued reward r(a, b) is
now denoted by v(a, b) ∈ RK . Suppose that for each mixed action q of the opponent, the
agent defines a target set V ∗(q) ⊂ RK which is non-empty and closed. Let V ∗ : ∆(B)⇒ RK
denote the corresponding set-valued map, which assigns to each q the subset V ∗(q). We
refer to V ∗ as the agent’s goal function. Denote2 vn = v(an, bn), v̄n = 1

n

∑n
k=1 vk.

Definition 8 (Attainability) A strategy of the agent is said to be no-regret strategy with
respect to the set-valued goal function V ∗ if

lim
n→∞

d(v̄n, V
∗(q̄n)) = 0 (a.s),

for any strategy of the opponent. If such a strategy exists we say that V ∗ is attainable by
the agent.

The classical no-regret problem is obtained as a special case, with scalar rewards v(a, b) and
target set V ∗(q) = {u ∈ R : u ≥ v∗(q)}, where v∗(q) , maxp u(p, q).

Attainability is closely related to approachability of the graph of V ∗. Recall that the
graph of a set-valued map V : ∆(B)⇒ RK is defined as

Graph(V ) ,
{

(v, q) ∈ RK ×∆(B) : v ∈ V (q)
}
.

(For this and other properties of set-valued maps see, e.g., Aubin and Frankowska, 1990 or
Rockafellar and Wets, 1997, Chapter 5.) It is easily seen that attainability of V ∗ implies ap-
proachability of Graph(V ), in the game with augmented vector rewards r(p, q) = (v(p, q), q).
The converse is also true under a continuity requirement.

Lemma 9 Let V : q 7→ V ∗(q) ∩ V0 denote the restriction of V ∗ to the compact set V0 =
conv{v(a, b)} of feasible reward vectors. Suppose that V is continuous in the Hausdorff
metric. If Graph(V ∗) is approachable in the repeated game with reward vector r(p, q) =
(v(p, q), q), then V ∗ is attainable. Specifically, any approachability strategy for Graph(V ∗)
is a no-regret strategy for V ∗.

Proof Clearly, since v̄n ∈ V0, if Graph(V ∗) is approachable then so is Graph(V ), and we
may restrict attention to the latter. Recall that the Hausdorff distance dH between sets X
and Y , defined by

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)} ,

2. For notational convenience, we will not use here the capitalized notation Vn = v(an, bn) to distinguish
the latter from v(pn, bn), as was done above for r. In fact, vn can stand for either in the following,
depending on whether Algorithm 1 or its variant in Subsection 4.4 is used.
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is a metric on the space of non-empty compact subsets of RK . Now, V may be viewed as a
map from the compact set ∆(B) to the metric space of non-empty compact subsets of RK
with the Hausdorff metric, and is continuous in that metric by assumption. Hence, by the
Heine-Cantor Theorem, V is uniformly continuous.

Now, since S = Graph(V ) is approachable, we have (w.p. 1) that d ((v̄n, q̄n), S) → 0,
implying that

‖v̄n − v∗n‖ → 0, ‖q̄n − q∗n‖ → 0,

for some sequences v∗n ∈ V (q∗n), q∗n ∈ ∆(B). The uniform continuity of V in the Hausdorff
distance dH then implies that dH (V (q̄n), V (q∗n))→ 0, hence

d(v̄n, V (q̄n)) ≤ ‖v̄n − v∗n‖+ dH (V (q̄n), V (q∗n))→ 0,

so that V is attainable by Definition 8. Attainability of V ∗ now follows since V (q̄n) ⊆
V ∗(q̄n).

We may now formulate a sufficient condition for attainability of a goal function by
employing the dual condition for approachability of convex sets. Recall that a set-valued
map V : ∆(B) ⇒ RK is called convex if its graph Graph(V ) is a convex set. The convex
hull conv(V ) of V is the unique set-valued map whose graph is conv(Graph(V ), the convex
hull of Graph(V ). Similarly, the closed convex hull co(V ) of V is the unique set-valued map
whose graph is the closure of conv(Graph(V )).

Proposition 10 Suppose that the set-valued goal function V ∗ is feasible, in the following
sense:

• For each mixed action q ∈ ∆(B) of the opponent, there exists some mixed action
p = p∗(q) of the agent so that v(p, q) ∈ V ∗(q). We refer to p∗(q) as the agent’s
response to q.

Denote V c = co(V ∗). Then

(i) The set Graph(V c) is approachable by the agent.

(ii) The set-valued goal function V c is attainable by the agent (in the sense of Definition
8), and any approachability strategy for Graph(V c) is a no-regret strategy for V c.

Proof Let us first redefine V ∗ as its restriction to the compact set V0, as in Lemma 9. It
is clear that this restricted V ∗ still satisfies the feasibility requirement of the Proposition,
and that establishing the claimed attainability property for the restricted version implies
the same for the original one.

Let V c = co(V ∗). We first claim that Graph(V c) is approachable. By the assumed
feasibility of V ∗, for any q there exists p such that (v(p, q), q) ∈ S , Graph(V ∗). Therefore
co(S) is a convex D-set, which is approachable by Theorem 3. Now, observe that co(S) =
co(Graph(V ∗)) = Graph(V c) by definition of V c.

To conclude that V c is attainable, it remains to verify that it satisfies the continuity
requirement in Lemma 9. Observe that V c : ∆(B) ⇒ V0 is a convex, compact-valued mul-
tifunction whose domain is a polytope. By Mac̀kowiak (2006, Corrolary 2), V c is lower
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semi-continuous.3 Furthermore, since the graph of V c = co(V ∗) is closed by its definition,
V c is upper-semi-continuous (Rockafellar and Wets, 1997, Theorem 5.7). It follows that
V c is a continuous map. Finally, since standard (Kuratowski) continuity and Hausdorff-
continuity are equivalent for compact-valued map (Ibid., 4.40(a)), the required continuity
property of Vc follows. This concludes the proof.

Proposition 10 implies that a feasible and continuous goal function V ∗ that is convex is
attainable. When V ∗ is not convex, as is often the case in the following examples, we need
to resort to its convex relaxation V c = co(V ∗). The suitability of V c as a goal function
needs to be examined for each specific problem.

Proposition 10 asserts also that V c can be attained by any approachability algorithm
applied to the convex set S = Graph(V c). However, a projection onto that set as required
in the standard approachability algorithms may be hard to compute. This is especially
true when V ∗ itself is non-convex, so that V c is not explicitly specified. In such cases,
the response-based approachability algorithm proposed in this paper offers a convenient
alternative, as it only requires to compute at each stage a response p∗(q) of the agent to a
mixed action q of the opponent, which is inherent in the definition of V ∗.

The resulting generalized no-regret algorithm is presented in Algorithm 2. It is merely an
application of Algorithm 1 to the problem of approaching S = Graph(V c), with augmented
reward vectors r(p, q) = (u(p, q), q).

We next specialize the discussion to certain concrete problems of interest.

5.2.1 Constrained Regret Minimization

The following constrained regret minimization problem was introduced in Mannor et al.
(2009). Consider the repeated game model as before, where we are given a scalar reward
(or utility) function u : A× B → R and a vector-valued cost function c : A× B → Rs. We
are also given a closed and convex set Γ ⊆ Rs, the constraint set, which specifies the allowed
values for the long-term average cost. A specific case is that of upper bounds on each cost
component, that is Γ = {c ∈ Rs : ci ≤ γi, i = 1, ..., s} for some given vector γ ∈ Rs. The
constraint set is assumed to be feasible (or non-excludable), in the sense that for every
q ∈ ∆(B), there exists p ∈ ∆(A) such that c(p, q) ∈ Γ.

Let Ūn , n−1
∑n

k=1 uk and C̄n , n−1
∑n

k=1 ck denote, respectively, the average reward
and cost by stage n. The agent is required to satisfy the cost constraints, in the sense that
limn→∞ d(C̄n,Γ) = 0 must hold, irrespectively of the opponent’s play. Subject to these
constraints, the agent wishes to maximize its average reward Ūn.

We note that a concrete learning application for the constrained regret minimization
problem was proposed in Bernstein et al. (2010). There, we considered the on-line problem
of merging the output of multiple binary classifiers, with the goal of maximizing the true-
positive rate, while keeping the false-positive rate under a given threshold 0 < γ < 1. As
shown in that paper, this may be formulated as a constrained regret minimization problem.

3. This is a generalization of the Gale-Klee-Rockfellar Theorem from convex analysis to set-valued maps.
The point is of course continuity at the boundary points.
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Algorithm 2 Generalized No-Regret Algorithm

Input: The reward function v : A×B → RK ; a set-valued goal function V ∗ : ∆(B)⇒ RK ;
and for each q ∈ ∆(B), a mixed action (or actions) p ∈ ∆(A) such that v(p, q) ∈ V ∗(q).
Initialization: At step n = 1, apply an arbitrary mixed action p1, and choose arbitrary
values v∗1 ∈ RK , q∗1 ∈ ∆(B).

At step n = 2, 3, ...:

1. Set
λvn−1 = v̄∗n−1 − v̄n−1, λqn−1 = q̄∗n−1 − q̄n−1,

where

(v̄∗m, v̄m) =
1

m

m∑
k=1

(v∗k, vk), q̄∗m =
1

m

m∑
k=1

q∗k, q̄m =
1

m

m∑
k=1

I{bk=·},

and vk = v(pk, bk) or v(ak, bk).

2. Solve the following zero-sum matrix game:

pn ∈ argmax
p∈∆(A)

min
q∈∆(B)

(
λvn−1 · v(p, q) + λqn−1 · q

)
,

q∗n ∈ argmin
q∈∆(B)

max
p∈∆(A)

(
λvn−1 · v(p, q) + λqn−1 · q

)
.

3. Draw an action an randomly from pn.

4. Pick p∗n ∈ ∆(A) such that v (p∗n, q
∗
n) ∈ V ∗(q∗n), and set v∗n = v(p∗n, q

∗
n).

A natural extension of the best-reward-in-hindsight u∗(q) in (14) to the constrained
setting is given by

u∗Γ(q) , max
p∈∆(A)

{u(p, q) : c(p, q) ∈ Γ} . (16)

We can now define the target set of the pairs v = (u, c) ∈ R1+s in terms of u∗Γ(q) and Γ:

V ∗(q) ,
{
v = (u, c) ∈ R1+s : u ≥ u∗Γ(q), c ∈ Γ

}
.

Note that u∗Γ(q) is not convex in general, and consequently V ∗(q) is not convex as well.
Indeed, it was shown in Mannor et al. (2009) that V ∗(q) is not attainable in general. The
closed convex hull of V ∗(q) may be written as

V c(q) =
{

(u, c) ∈ Rs+1 : u ≥ conv (u∗Γ) (q), c ∈ Γ
}
, (17)

where the real-valued function conv (u∗Γ) is the closure of the lower convex hull of u∗Γ over
∆(A).

Two algorithms were proposed in Mannor et al. (2009) for attaining V c(q). The first
is a standard (Blackwell) approachability algorithm for S = {(v, q) : v ∈ V c(q)}, which
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requires the demanding computation of S and the projection directions to S. The second
algorithm employs a best-response to calibrated forecasts of the opponent’s mixed actions.
As mentioned in the introduction, obtaining these forecasts is computationally hard. In
contrast, our algorithm mainly requires the computation of the response p∗(q) by solving
the maximization problem in (16), which is a convex program. This further reduces to a
linear program when the constraints are linear.

Specializing Proposition 10 to this case, we obtain the following result.

Corollary 11 Consider Algorithm 2 applied to the present model. Thus, the response p∗n
to q∗n is chosen as any maximizing action in (16) with q = q∗n, and the target point is set to
v∗n = (u(p∗n, q

∗
n), c(p∗n, q

∗
n)). Then the goal function V c is attainable in the sense of Definition

8, which implies that

lim inf
n→∞

(
Ūn − conv (u∗Γ) (q̄n)

)
≥ 0, and lim

n→∞
d
(
C̄n,Γ

)
= 0 (a.s.)

for any strategy of the opponent.

We further note that V c(q) is unbounded in the direction of its first coordinate u, so
that the variant of the algorithm presented in Subsection 4.3 can be applied. In this case,
the first coordinate of the steering direction λn can be set to zero in λ̃n whenever it is
negative. This corresponds to ūn−1 ≥ ū∗n−1, thereby avoiding an unnecessary reduction in
ūn−1. Similarly, for a component-wise constraint set of the form {ci ≤ γi}, the ci-coordinate
of λn may be nullified whenever [c̄n−1]i ≤ [c̄∗n−1]i. The results of Corollary 11 are maintained
of course.

5.2.2 Reward-to-Cost Maximization

Consider the repeated game model as before, where the goal of the agent is to maximize the
ratio Ūn/C̄n. Here, Ūn is, as before, the average of a scalar reward function u(a, b) and C̄n
is the average of a scalar and positive cost function c(a, b). This problem is mathematically
equivalent to regret minimization in repeated games with variable stage duration considered
in Mannor and Shimkin (2008) (MS08 for short; in that paper, the cost was specifically
taken as the stage duration). Moreover, it can be seen that this problem is a particular
case of the global cost function model presented below. However, a direct application of
Proposition 10 does not yield a meaningful result in this specific case. We therefore resort to
specific analysis which relies on additional properties of our response-based approachability
algorithm. This yields a similar bound to that of Proposition 14(ii) below, but without the
requirement that G be convex.

Similar bounds to the ones established below were obtained in MS08. The algorithm
there was based on playing a best-response to calibrated forecasts of the opponent’s mixed
actions. The present formulation therefore offers an alternative algorithm which is consid-
erably less demanding computationally.

Denote

ρ(a, q) ,
u(a, q)

c(a, q)
, ρ(p, q) ,

u(p, q)

c(p, q)
.

and let
val(ρ) , max

p∈∆(A)
min
q∈∆(B)

ρ(p, q) = min
q∈∆(B)

max
p∈∆(A)

ρ(p, q)
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(the last equality is proved in MS08; note that ρ(p, q) is not generally concave-convex).
As further shown in MS08, val(ρ) is the value of the zero-sum repeated game with payoffs
Ūn/C̄n, hence serves as a security level for the agent. A natural goal for the agent would be
to improve on val(ρ) whenever the opponent’s actions deviate (in terms of their empirical
mean) from the minimax optimal strategy.

We next propose an attainable goal function that satisfies this requirement. To that
end, let

ρ∗(q) , max
p∈∆(A)

ρ(p, q)

denote the best ratio-in-hindsight. Let us apply Algorithm 2, with v = (u, c), and the
vector-valued goal function

V ∗(q) =
{
v = (u, c) :

u

c
≥ ρ∗(q)

}
(18)

(observe that ρ∗(q) and V ∗(q) are non-convex functions in general). The agent’s response
is given by any mixed action

p∗(q) ∈ P ∗(q) , argmax
p∈∆(A)

ρ(p, q).

It is readily verified that the maximum can always be obtained here in pure actions (MS08;
see also the proof of Prop. 13 below). Hence, computing the response is trivial in this case.

Denote

A∗(q) , argmax
a∈A

ρ(a, q),

and define the following relaxation of ρ∗(q):

ρ1(q) , inf


∑J

j=1 u(aj , qj)∑J
j=1 c(aj , qj)

: J ≥ 1, qj ∈ ∆(B),
1

J

J∑
j=1

qj = q, aj ∈ A∗(qj)

 (19)

≤ ρ∗(q).

We will show below that ρ1 is attainable by applying Algorithm 2 to this problem. First,
however, we show that ρ1 never falls below the security level val(ρ), and is strictly better
in typical cases.

Lemma 12

(i) ρ1(q) ≥ val(ρ) for all q ∈ ∆(B).

(ii) ρ1(q) > val(ρ) whenever ρ∗(q) > val(ρ).

(iii) ρ1(q) = ρ∗(q) for the q’s that represent pure actions.

(iv) ρ1(q) is a continuous function of q.
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Proof To prove this Lemma, we first derive a more convenient expression for ρ1(q). For
a ∈ A, let

Qa , {q ∈ ∆(B) : a ∈ A∗(q)}
denote the (closed) set of mixed actions to which a is a best-response action. Observe that
for given J , q1, ..., qJ and aj ∈ A∗(qj), we have∑J

j=1 u(aj , qj)∑J
j=1 c(aj , qj)

=

∑
a∈ANau(a, q̄a)∑
a∈ANac(a, q̄a)

,

where

Na =
J∑
j=1

I {aj = a} , q̄a =
1

Na

J∑
j=1

I {aj = a} qj .

Note that q̄a ∈ conv(Qa) as it is a convex combination of qj ∈ Qa. Therefore, the definition
in (19) is equivalent to

ρ1(q) = min

{∑
a∈A αau(a, qa)∑
a∈A αac(a, qa)

: α ∈ ∆(A), qa ∈ conv(Qa),
∑
a∈A

αaqa = q

}
. (20)

Now, this is exactly the definition of the so-called calibration envelope in Mannor and
Shimkin (2008), and the claims of the lemma follow by Lemma 6.1 and Proposition 6.4
there.

It may be seen that ρ1(q) does not fall below the security level val(q), and is strictly
above it when q is not a minimax action with respect to ρ(p, q). Furthermore, at the vertices
vertices of ∆(B), it actually coincides with the best ratio-in-hindsight ρ∗(q).

We proceed to the following result that proves the attainability of ρ1(q).

Proposition 13 Consider Algorithm 2 applied to the present model, with the goal function
V ∗ defined in (18). Thus, the agent’s response q∗n is chosen as any action p∗n ∈ P ∗(q∗n), and
the target point is set to v∗n = (u(p∗n, q

∗
n), c(p∗n, q

∗
n)). Then,

lim inf
n→∞

(
Ūn
C̄n
− ρ1(q̄n)

)
≥ 0 (a.s.)

for any strategy of the opponent.

Proof Algorithm 2 guarantees that, with probability 1,

‖q̄n − q̄∗n‖ → 0, (21)∣∣∣∣∣Ūn − 1

n

n∑
k=1

u(p∗k, q
∗
k)

∣∣∣∣∣→ 0,

∣∣∣∣∣C̄n − 1

n

n∑
k=1

c(p∗k, q
∗
k)

∣∣∣∣∣→ 0; (22)

see Theorem 4 and recall the asymptotic equivalence of expected and actual averages.
Noting that the cost c is positive and bounded away from zero, (22) implies that

lim
n→∞

∣∣∣∣ ŪnC̄n −
∑n

k=1 r(p
∗
k, q
∗
k)∑n

k=1 c(p
∗
k, q
∗
k)

∣∣∣∣ = 0. (23)
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Let

ρ2(q) , inf


∑J

j=1 u(pj , qj)∑J
j=1 c(pj , qj)

: J ≥ 1, qj ∈ ∆(B),
1

J

J∑
j=1

qj = q, pj ∈ P ∗(qj)

 . (24)

Clearly, ∑n
k=1 r(p

∗
k, q
∗
k)∑n

k=1 c(p
∗
k, q
∗
k)
≥ ρ2(q̄∗n). (25)

Furthermore, we verify below that the infimum in (24) is obtained in pure actions aj ∈
A∗(qj), implying that

ρ2(q) = ρ1(q). (26)

Indeed, note that the inequality ∑J
j=1 u(pj , qj)∑J
j=1 c(pj , qj)

≤ K

is equivalent to
J∑
j=1

u(pj , qj)−K
J∑
j=1

c(pj , qj) ≤ 0.

Now, consider minimizing the left-hand-side over pj ∈ P ∗(qj). Due to the linearity in pj
and the fact that P ∗(qj) is just the mixture of actions in A∗(qj), the optimal actions are
pure (that is, in A∗(qj)).

Combining (23), (25), and (26), we obtain that

lim inf
n→∞

(
Ūn
C̄n
− ρ1(q̄∗n)

)
≥ 0.

The proof is concluded by applying (21) and the continuity (hence, uniform continuity) of
ρ1 (see Lemma 12).

We finally note that the algorithm variant from Subsection 4.3 can be applied here as
well. Specifically, observe that the goal function V ∗ in (18) is unbounded in the u coordinate,
and negatively unbounded in the c coordinate. Therefore, the u-coordinate of λn can be
set to zero whenever ūn−1 ≥ ū∗n−1, while the c-coordinate of λn may be nullified whenever
c̄n−1 ≤ c̄∗n−1.

5.2.3 Global Cost Functions

The following problem of regret minimization with global cost functions was introduced in
Even-Dar et al. (2009). (A similar problem was recently addressed in Azar et al. (2014),
using a relaxed regret criterion over sub-intervals.) Suppose that the goal of the agent is to
minimize a general (i.e., non-linear) function of the average reward vector v̄n. In particular,
we are given a continuous function G : RK → R, and the goal is to minimize G(v̄n). For
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example, G may be some norm of v̄n. We define the best-cost-in-hindsight, given a mixed
action q of the opponent, as

G∗(q) , min
p∈∆(A)

G(v(p, q)), (27)

so that the target set may be defined as

V ∗(q) = {v ∈ V0 : G(v) ≤ G∗(q)} , (28)

where V0 = conv{v(a, b) : a ∈ A, b ∈ B} ⊂ RK is the set of feasible reward vectors. Clearly,
the agent’s response to q is any mixed action that minimizes G(v(p, q)), namely

p∗(q) ∈ argmin
p∈∆(A)

G(v(p, q)). (29)

By Proposition 10, the closed convex hull V c = co(V ∗) is attainable by the agent, and
Algorithm 2 can be used to attain it. Observe that, in addition to solving a zero-sum matrix
game, the algorithm requires solving the optimization problem (29). The computational
complexity of the latter depends on the cost function G. For example, if G is convex, then
(29) is a convex optimization problem. For specific instances, see Even-Dar et al. (2009)
and Example 1 below.

The relation between V c and V ∗ depends on the convexity properties of G and G∗. In
particular, we have the following result (a slight extension of Even-Dar et al. (2009)).

Proposition 14 For q ∈ ∆(B),

V c(q) ⊂ Ṽ (q) , {v ∈ V0 : conv(G)(v) ≤ conc(G∗)(q)} , (30)

where conv(G) is the lower convex hull of G, and conc(G∗) is the upper concave hull of G∗.
Consequently, any no-regret strategy with respect to V c = co(V ∗) guaranties that, for any
strategy of the opponent,

lim sup
n→∞

(conv(G)(v̄n)− conc(G∗)(q̄n)) ≤ 0 (a. s.). (31)

In particular, if G is a convex function G∗ a concave function, then V c = V ∗ and V ∗ itself
is attained, namely

lim sup
n→∞

(G(v̄n)−G∗(q̄n)) ≤ 0 (a. s.).

Proof To show (30), recall that the graph of V c = co(V ∗), by its definition, is given by

Graph(V c) = co(Graph(V ∗)),

and, by (28),

Graph(V ∗) = {(v, q) ∈ V0 ×∆(B) : G(v) ≤ G∗(q)}.

Also, for Ṽ as defined in (30),

Graph(Ṽ ) = {(v, q) ∈ V0 ×∆(B) : conv(G)(v) ≤ conc(G∗)(q)}.
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It is clear from these expressions that Graph(Ṽ ) is a convex set that contains Graph(V ∗),
hence conv(Graph(V ∗)) ⊂ Graph(Ṽ ). Furthermore, since G is a continuous function by
assumption, the G and G∗ are continuous functions on compact sets, so that conv(G) and
conc(G∗) are continuous functions, which implies that Graph(Ṽ ) is a closed set. Therefore
co(Graph(V ∗)) ⊂ Graph(Ṽ ), and (30) follows. The other claims in the Proposition now
follow directly from Proposition 10.

Clearly, if G∗ is not concave, the attainable goal function is weaker than the original
one. Still, this relaxed goal is meaningful, at least when G is convex. Noting the definition
of G∗ in (27), if follows that G∗(q) ≤ maxq′ minpG(v(p, q′)) for all q, so that

conc(G∗)(q) ≤ max
q′∈∆(B)

min
p∈∆(A)

G(v(p, q′)) ≤ min
p∈∆(A)

max
q′∈∆(B)

G(v(p, q′)) . (32)

The latter min-max bound is just the security level of the agent in the repeated game,
namely the minimal value of G(v̄n) that can be secured (as n → ∞) by playing a fixed
(non-adaptive) mixed action q′. Note that the second inequality in Equation (32) will be
strict except for special cases where the min-max theorem holds for G(v(p, q)) (which is
hardly expected if G∗(q) is non-concave).

Convexity of G(v) depends on its definition, and will hold for cases of interest such
as norm functions. Concavity of G∗(q), on the other hand, is more demanding and will
hold only in special cases. In Section 5.2.2 we already considered a specific instance of this
model whereG(v) = −u/c is not convex andG∗(q) = −maxp{u(p, q)/c(p, q)} is not concave,
hence specific analysis was required to obtain meaningful bounds. Another concrete model
was considered in Even-Dar et al. (2009), motivated by load balancing and job scheduling
problems. Under appropriate conditions, it was shown there that G is convex, while G∗ can
be seen to be concave, and the agent’s response was computed in closed form. The details
can be found in that reference and will not be elaborated here. These properties allow an
easy application of Algorithm 2 above to attain V ∗ itself.

We close this section with a simple example, in which G is convex while G∗ is not
necessarily concave.

Example 1 (Absolute Value) Let v : A × B → R be a scalar reward function, and
suppose that we wish to minimize the deviation of the average reward v̄n from a certain
preset value, say 0. Define then G(v) = |v|, and note that G is a convex function. Now,

G∗(q) , min
p∈∆(A)

|v(p, q)| =


mina∈A v(a, q), if ∀a ∈ A, v(a, q) > 0
mina∈A(−v(a, q)), if ∀a ∈ A, v(a, q) < 0
0, otherwise.

The response p∗(q) of the agent is obvious from these relations. We can observe two special
cases in this example:

(i) The problem reduces to the classical no-regret problem if the rewards v(a, b) all have
the same sign (positive or negative), as the absolute value can be removed. Indeed,
in this case G∗(q) is concave, as a minimum of linear functions.
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(ii) If the set {v(a, q), a ∈ A} includes elements of opposite signs (0 included) for each q,
then G∗ = 0, and the point v = 0 becomes attainable.

In general, however, |v(p, q)| may be a strictly convex function of q for a fixed p, and the
minimization above need not lead to a concave function. In that case, Proposition 14 implies
only the attainability of conc(G∗)(q).

We note that the computation of conc(G∗) may be fairly complicated in general, which
implies the same for computing the projection onto the associated goal set S = {(v, q) :
|v| ≤ conc(G∗)(q)}. However, these computations are not needed in the response-based
approachability algorithm, where the required computation of the agent’s response p∗(q) is
straightforward.

6. Conclusion

We have introduced in this paper an approachability algorithm that is based on Blackwell’s
dual, rather than primal, approachability condition. The proposed algorithm and its vari-
ants rely directly on the availability of a response function, rather than projection onto the
goal set (or related geometric quantities), and are therefore convenient in problems where
the latter may be hard to compute. At the same time, the additional computational re-
quirements are generally comparable to those of the standard Blackwell algorithm and its
variants.

The proposed algorithms were applied to a class of generalized no-regret problems, that
includes as specific cases the constrained no-regret problem and reward-to-cost maximiza-
tion. The resulting algorithms are apparently the first computationally efficient algorithms
in this generalized setting.

In this paper we have focused on a repeated matrix game model, where the action sets
of the agent and the opponent in the stage game are both finite. It is worth pointing out
that the essential results of this paper should apply directly to models with convex action
sets, say X and Y , provided that the reward vector r(x, y) is bilinear in its arguments. In
that case the (observed) actions x and y simply take the place of the mixed actions p and
q, leading to similar algorithms and convergence results. Such a continuous-action model is
relevant to linear classification and regression problems.

Other extensions of possible interest for the approach of this paper may include stochas-
tic game models, problems of partial monitoring, and nonlinear (concave-convex) reward
functions. These are left for future work.
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Abstract

In this paper we formulate in general terms an approach to prove strong consistency of the
Empirical Risk Minimisation inductive principle applied to the prototype or distance based
clustering. This approach was motivated by the Divisive Information-Theoretic Feature
Clustering model in probabilistic space with Kullback-Leibler divergence, which may be
regarded as a special case within the Clustering Minimisation framework.

Keywords: clustering, probabilistic space, consistency

1. Introduction

Clustering algorithms group objects into subsets (clusters) of similar items according to the
given criteria. For example, it may be Spectral Clustering (Ng et al., 2001) or Prototype
Based model (Hinneburg and Keim, 2003). Clustering has application in various areas
of computer science such as machine learning, data compression, data mining or patterns
recognition. Depending on the area of application, there are many different formulations of
the clustering problem (Ackerman et al., 2008). For example, we can consider text document
as an object with words as features, and the task is to cluster text documents into subsets,
corresponding to a few given topics. This problem maybe effectively approximated by the
clustering model in probabilistic space with Kullback Leibler (KL) divergence (Dhillon et al.,
2003) which arises as a natural measure of the dissimilarity between two distributions in
numerical way. Further related results are presented by Chaudhuri and McGregor (2008),
where authors provide algorithms for clustering using the KL-divergence measure with an
objective to achieve guaranteed approximation in the worst case.

In this paper we consider a prototype based approach which may be described as fol-
lows. Initially, we have to choose k prototypes. The corresponding empirical clusters will
be defined in accordance to the criteria of the nearest prototype measured by the distance
Φ. Respectively, we will generate initial k clusters. As a second Minimisation step, we shall
recompute cluster centers or Φ-means (Cuesta-Albertos et al., 1997), using data strictly
from the corresponding clusters. Then, we can repeat Clustering step, using new proto-
types, obtained from the previous step as cluster centers. Above algorithm has descending
property. Respectively, it will reach local minimum in a finite number of steps.

Stability is a common tool to verify the validity of sample based algorithms. Clustering is
one of the most widely used techniques for exploratory data analysis. Across all disciplines,
from social sciences over biology to computer science, people try to get a first intuition about

c©2015 Vladimir Nikulin.
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their data by identifying meaningful groups among the data points. Despite this popularity
of clustering, distressingly little is known about theoretical properties of clustering (Ben-
David et al., 2006).

1.1 Related Work

One formulation of stability is: if parameters are learned over two different samples from
the same distribution, how close they are? The statistical stability for clustering have been
extensively studied (Rakhlin and Caponnetto, 2006; Shamir and Tishby, 2008).

Pollard (1981) demonstrated that the classical K-means algorithm in Rm with squared
loss function satisfies the Key Theorem of Learning Theory (Vapnik, 1995), p.36, “the
minimal empirical risk must converge to the minimal actual risk”. Note, also study (Biau
et al., 2008), where the number of theorems that establish the universal consistency of
averaging rules are given.

Telgarsky and Dasgupta (2013) constructed an explicit moment-based uniform deviation
bounds for the convergence of the soft clustering processes in Euclidean space. The results
of Telgarsky and Dasgupta (2013) are general and significant: assuming that some proba-
bility moments are limited, an explicit convergence bounds are constructed. Compared to
the model of Pollard (1981), the framework presented by Telgarsky and Dasgupta (2013)
represents a novel direction, and we are considering to extend it to the probabilistic space
in our future work.

Note that both functions 1) squared loss and 2) KL divergence are covered by the general
structural definition of Bregman divergence. Bregman divergences give us a lot of freedom
in fitting the performance measure of our algorithm to the nature of the data, and, as a
consequence, this will lead to qualitatively better clustering (Banerjee et al., 2005), (Nock
et al., 2008). Bregman divergences have found many applications in the fields of machine
learning and computational geometry.

A new clustering algorithm in probabilistic space Pm was proposed by Dhillon et al.
(2003). It provides an attractive approach based on the Kullback-Leibler divergence. The
above methodology requires a general formulation and framework which we present in the
following Section 2.

There are many useful and popular models and algorithms in the field of machine learn-
ing in addition to clustering. Consistency of those models represents a very essential prop-
erty which should be investigated. For example, the subject of the papers (Glasmachers,
2010), (McAllester and Keshet, 2011) is consistency of support vector classifiers. Also, it
is very interesting to identify those models, which are not consistent (Long and Servedio,
2013), and explain the reasons for not consistency. Particularly interesting is to find general
conditions under which the common approaches, with various algorithmic variations, are
consistent (Kpotufe et al., 2014).

1.2 Structure of the Paper

The paper is organised as follows. Section 3 extends the methodology of Pollard (1981) in
order to cover the case of Pm with Kullback-Leibler divergence. With the aim to highlight
the most essential properties, we formulate the model in general terms, where the prob-
abilistic space is considered as an important example. We do believe that the structural
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approach, which is formulated in Section 3, maybe useful for the consideration of other
cases (different space or the same space with different loss function). In this sense our work
is similar to Kpotufe et al. (2014). Using the results and definitions of the Section 3, we
investigate relevant properties of Pm in the final Section 4 and prove a strong consistency
of the Empirical Risk Minimisation inductive principle.

2. Prototype Based Approach

In this paper we consider a sample of i.i.d. observations X := {x1, . . . , xn} drawn from
probability space (X ,A,P) where probability measure P is assumed to be unknown.

Key in this scenario is an encoding problem. Assuming that we have a codebook Q ∈ X k
with prototypes q(c) indexed by the code c = 1, . . . , k, the aim is to encode any x ∈ X by
some q(c(x)) such that the distortion between x and q(c(x)) is minimized:

c(x) := argmin
c
L(x, q(c)), (1)

where L(·, ·) is a loss function.
Using criterion (1) we split empirical data into k clusters. As a next step we compute the

cluster center specifically for any particular cluster in order to minimise overall distortion
error.

We estimate actual distortion error

<(k)[Q] := E L(x,Q) (2)

by the empirical error

<(k)
emp[Q] :=

1

n

n∑
t=1

L(xt,Q), (3)

where L(x,Q) := L(x, q(c(x))).
The following Theorem, which may be proved similarly to the Theorems 4 and 5 (Dhillon

et al., 2003), formulates the most important descending and convergence properties within
the Clustering Minimisation (CM) framework:

Theorem 1 The CM -algorithm includes 2 steps:
Clustering Step: recompute c(x) according to (1) for a fixed prototypes from the given

codebook Q, which will be updated as a cluster centers from the next step,
Minimisation Step: recompute cluster centers for a fixed mapping c(x) or minimize

the objective function (3) over Q, and
1) monotonically decreases the value of the objective function (3);
2) converges to a local minimum in a finite number of steps if Minimisation Step has

exact solution.

We define an optimal actual codebook Q by the following condition:

<(k)(Q) := inf
Q∈Xk

<(k)(Q). (4)
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The following relations are valid

<(k)
emp[Qn] ≤ <(k)

emp[Q]; <(k)
emp[Q]⇒ <(k)[Q] a.s., (5)

where Qn is an optimal empirical codebook:

<(k)
emp(Qn) := inf

Q∈Xk

{<(k)
emp(Q)}. (6)

The main target is to demonstrate asymptotic (almost sure) convergence

<(k)
emp(Qn)⇒ <(k)[Q] a.s. (n→∞) . (7)

In order to prove (7) we define in Section 3 general model which has direct relation to the
model in probabilistic space Pm with with KL divergence (Dhillon et al., 2003).

2.1 Plan of the Proof

The general strategy is to split consideration into outer deviations, and local deviations
(Telgarsky and Dasgupta, 2013). Note that the significance of outer deviations is declining
as we extend local deviation. The local deviations maybe be controlled by the technique as
described below.

The proof of the main result which is formulated in the Theorem 18 includes two steps:

(1) by Lemma 10 we prove existence of n0 such that Qn ⊂ Γ for all n ≥ n0, where subset
Γ ⊂ X (local deviation) satisfies condition: L(x, q) <∞ for all x ∈ X , q ∈ Γ; and

(2) by Lemma 11 we prove (under some additional constraints of general nature)

sup
Q∈Γk

|<(k)
emp[Q]−<(k)[Q]| ⇒ 0 a.s. (8)

3. General Theory and Definitions

In this section we employ some ideas and methods proposed by Pollard (1981) which cover
the case of Rm with loss function L(x, q) := ϕ(‖x − q‖), where ϕ is a strictly increasing
function.

Let us assume that the following structural representation with P-integrable vector-
functions ξ and η is valid

L(x, q) :=
m∑
i=0

ξi(x) · ηi(q) = 〈ξ(x), η(q)〉 ≥ 0 ∀x, q ∈ X . (9)

Remark 2 Above definition (9) was motivated by the structure of KL-divergence, see (29a)
and (29b).

Let us define subsets of X as extensions of the empirical clusters:

Xc(Q) := {x ∈ X : c = argmini L(x, q(i))} ,
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X = ∪kc=1Xc(Q),Xi(Q) ∩ Xc(Q) = ∅, i 6= c.

Then, we re-write (2) as follows

<(k)[Q] :=
∑
c

〈ξ(Xc), η(q(c))〉, (10)

where ξ(A) :=
∫
A ξ(x)P(dx), A ∈ A.

Definition 3 We define a ball with radius r and a corresponding remainder in X

B(r) = {q ∈ X : L(x, q) ≤ r, ∀x ∈ X}, (11a)

T (r) = X \B(r), r ≥ r0, (11b)

r0 = inf{r ≥ 0 : B(r) 6= ∅}. (11c)

Remark 4 By the following Lemma 10 we prove that all components of the codebook will
be within ball B(Z), 0 < Z < ∞, if sample size is large enough. Further, we shall assume
that η-transformation of the ball B(Z) represents a compact set (26), and, consequently, we
shall be able to prove strong consistency (8) by Lemma 11.

The following properties are valid

〈ξ(A1)− ξ(A2), η(q)〉 ≥ 0 (12)

for all q ∈ X and any A1, A2 ∈ A : A2 ⊂ A1;

〈ξ(X ), η(q)〉 ≤ r ∀q ∈ B(r). (13)

Suppose, that

P(T (U)) −→
U→∞

0. (14)

Remark 5 Condition (14) is the only one requirement which is necessary to prove the main
result of this paper: Theorem 18, see, also, Remark 19.

Definition 6 The following distances will be used below:

ρ(A1, A2) := inf
a1∈A1

inf
a2∈A2

L(a1, a2), A1, A2 ∈ A; (15a)

µ(A1, A2) := inf
a1∈A1

sup
a2∈A2

L(a1, a2), A1, A2 ∈ A. (15b)

Remark 7 Above distances ρ and µ have very simple interpretation: ρ - absolutely minimal
distance between elements of the subsets A1 and A2 (it is symmetrical); µ - uniformly
minimal distance between elements of the subset A1 (approximator) and elements of another
subset A2 (it is not symmetrical).
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Suppose, that

ρ(B(r), T (U)) −→
U→∞

∞ (16)

for any fixed r0 ≤ r <∞.

Remark 8 Above condition (16) is always valid for KL-divergence, see Corollary 17.

Remark 9 We assume that

T (U) 6= ∅ (17)

for any fixed U : r0 ≤ U <∞, alternatively, the following below Lemma 10 becomes trivial.

Lemma 10 Suppose, that the structure of the loss function L is defined in (9) under con-
dition (16). Probability distribution P satisfies condition (14) and the number of clusters
k ≥ 1 is fixed. Then, we can select large enough radius Z : 0 < Z < ∞ and n0 ≥ 1 such
that all components of the optimal empirical codebook Qn defined in (6) will be within the
ball B(Z): Qn ⊂ B(Z) if sample size is large enough: ∀n ≥ n0.

Proof. Existence of the element a ∈ X such that

Da = <(1)({a}) = 〈ξ(X ), η(a)〉 <∞ (18)

follows from (13) and (14).

Suppose that

P(B(r)) = P0 > 0, r ≥ r0. (19)

We construct B(V ) in accordance with conditions (16) and (17):

V = inf {v > r : ρ(B(r), T (v)) ≥ Da + ε

P0
}, ε > 0. (20)

Suppose, there are no empirical prototypes within B(V ). Then, in accordance with defini-
tion (19)

<(k)
emp[Qn] ≥ Da + ε > Da ∀n > 0.

Above contradicts to (18) and (5). Therefore, at least one prototype from Qn must be
within B(V ) if n is large enough (this fact is valid for Q as well). Without loss of generality
we assume that

q(1) ∈ B(V ). (21)

The proof of the Lemma has been completed in the case if k = 1.

Assumption. Following the method of mathematical induction, suppose, that k ≥ 2
and

<(k−1)(Q)−<(k)(Q) ≥ ε > 0. (22)
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Then, we define a ball B(U) by the following conditions

U = inf {u > V : sup
q∈B(V )

〈ξ(T (u)), η(q)〉 < ε}. (23)

Existence of the U : V < U <∞ in (23) follows from (13) and (14).
By definition of the distance µ and the ball B(V )

0 < D(U, V ) = µ(T (U), B(V )) ≤ V <∞. (24)

Now, we define reminder T (Z) 6= ∅ in accordance with condition (16):

Z = inf {z > U : ρ(B(U), T (z)) ≥ D(U, V )}. (25)

Suppose, that there is at least one prototype within T (Z), for example, q(2) ∈ T (Z). On the
other hand, we know about (21). Let us consider what will happen if we remove q(2) from
the optimal empirical codebook Qn (the case of optimal actual risk Q may be considered
similarly), and replace it by q(1):

(1) as a consequence of (24) and (25) all empirical data within B(U) are closer to q(1)
anyway, means the data from B(U) will not increase empirical (or actual) risk (3);

(2) by definition, X = B(U)∪T (U), B(U)∩T (U) = ∅ and in accordance with the condition
(23) an empirical risk increases because of the data within T (U) must be strictly less
compared with ε for all large enough n ≥ n0 (actual risk increase will be strictly less
compared with ε for all n ≥ 1).

Above contradicts to the condition (22) and (5). Therefore, all prototypes from Q must be
within Γ = B(Z) for all n ≥ 1, and Qn ⊂ Γ if n is large enough.

3.1 Uniform Strong Law of Large Numbers (SLLN)

Let F denote the family of P-integrable functions on X .
A sufficient condition for uniform SLLN (8) is: for each δ > 0 there exists a finite class

Fδ ∈ F such that for each L ∈ F there are functions L and L ∈ Fδ with the following 2
properties:

L(x) ≤ L(x) ≤ L(x) for all x ∈ X ;
∫
X
(
L(x)− L(x)

)
P(dx) ≤ δ.

We assume here existence of the function ϕ such that

‖η(q)‖ ≤ ϕ(Z) <∞ (26)

for all q ∈ B(Z), where r0 ≤ Z <∞.

Lemma 11 Suppose that the number of clusters k is fixed, and the loss function L is defined
by (9) under condition (26) and

‖ξ(x)‖ ≤ R <∞ ∀x ∈ X . (27)

Then, the asymptotic relation (8) is valid for any Γ = B(Z), r0 ≤ Z ≤ ∞.
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Proof. Let us consider the definition of Hausdorff metric H in Rm+1:

H(A1, A2) = sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖,

and denote by G a subset in Rm+1 which was obtained from Γ as a result of η-transformation.
According to the condition (26), G represents a compact set. It means, existence of a finite
subset Gδ for any δ > 0 such that H(G,Gδ) ≤ δ

2R , where R is defined in (27). We denote by
Γδ ⊂ Γ subset which corresponds to Gδ ⊂ G according to the η-transformation. Respectively,
we can define transformation (according to the principle of the nearest point) fδ from Γ
to Γδ, and Qδ = fδ(Q), where closeness may be tested independently for any particular
component of Q, that means absolute closeness.

In accordance with the Cauchy-Schwartz inequality, the following relations take place

L = L(x,Qδ)−
δ

2
≤ L(x,Q) ≤ L(x,Qδ) +

δ

2
= L ∀x ∈ X .

Finally,
∫
X
(
L(x,Qδ)− L(x,Qδ)

)
P(dx) ≤ δ, where Qδ ∈ Γkδ is the absolutely closest code-

book for the arbitrary Q ∈ Γk.

4. A Probabilistic Framework

Following Dhillon et al. (2003), we assume that the probabilities p`t = P (`|xt),
∑m

`=1 p`t =
1, t = 1, . . . , n, represent relations between observations xt and attributes or classes ` =
1, . . . ,m,m ≥ 2.

Accordingly, we define probabilistic space Pm of all m-dimensional probability vectors
with Kullback-Leibler (KL) divergence:

KL(v, u) :=
∑
`

v` · log
v`
u`

= 〈v, log
v

u
〉, v, u ∈ Pm.

Remark 12 As it was demonstrated by Dhillon et al. (2003), cluster centers qc in the space
Pm with KL-divergence must be computed using K-means:

qc =
1

nc

∑
xt∈Xc

pt, (28)

where c(xt) = c if xt ∈ Xc and nc = #Xc is the number of observations in the cluster
Xc, c = 1, . . . , k, pt = {p1t, . . . , pmt}, qc = {q1t, . . . , qmt}.

In difference to the model of Pollard (1981) in Rm, the structure (9) covers an important
case of Pm with KL-divergence:

ξ0(v) =

m∑
`=1

v` log v`; ξ`(v) = v`; (29a)

η0(u) = 1; η`(u) = − log u`, ` = 1, . . . ,m. (29b)
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Definition 13 We call element v ∈ Pm as 1) uniform center if v` = 1
m , ` = 1, . . . ,m; as

2) absolute margin if min` v` = 0.

Proposition 14 The ball B(Z) ⊂ Pm contains only one element named as uniform center
in the case if Z = r0 = log (m), and B(Z) = ∅ if Z < r0.

Proof. Suppose, that u is a uniform center. Then, KL(v, u) =
∑m

i=1 vi log vi + logm ≤
logm for all v ∈ Pm. In any other case, one of the components of u must be less than
1
m . Respectively, we can select the corresponding component of probability vector v as 1.
Therefore, KL(v, u) > log (m) and r0 = log (m).

Lemma 15 The KL divergence in probabilistic space Pm always satisfies condition (27),
where vector-function ξ is expressed by (29a)with the following upper bounds:

|ξ0(v)| ≤ log (m); |ξ`(v)| ≤ 1, ` = 1, . . . ,m, ∀v ∈ Pm.

Lemma 16 The following relations are valid in Pm

(1) min`{u`} < e−r for all u ∈ T (r) ∀r ≥ r0;

(2) u` ≥ e−r for all ` = 1, . . . ,m, and any u ∈ B(r) ∀r ≥ r0.

Proof. As far as Pm = B(r) ∪ T (r), B(r) ∩ T (r) = ∅, the first statement may be regarded
as a consequence of the second statement. Suppose, that u ∈ B(r) and u1 = e−r−ε, ε > 0.
Then, we can select v1 = 1, and KL(v, u) = r + ε > r - contradiction.

Corollary 17 The KL divergence in Pm always satisfies conditions (16), and

− log (m) + Z · e−r < ρ(B(r), T (Z)) ≤ e−r · (Z − r) +
(
1− e−r

)
log

1− e−r

1− e−Z

for all r0 ≤ r < Z, where the distance ρ is defined in (15a).

Proof. Suppose, that v ∈ B(r) and u ∈ T (Z). Then, −
∑m

i=1 vi log (ui) > Z · e−r for all
r : r0 ≤ r < Z. On the other hand, the entropy H(v) = −

∑m
i=1 vi log (vi) may not be

smaller compared to log (m). The low bound is proved. In order to prove the upper bound
we suppose without loss of generality that v1 = e−r, u1 = e−Z , and all the other components
are proportional.

Theorem 18 Suppose that probability measure P satisfies condition (14) in probabilistic
space Pm with KL divergence and the number of clusters k is fixed. Then, the minimal
empirical error (6) converges to the minimal actual error (4) with probability 1 or a.s.

Proof. Follows directly from the Lemmas 10, 11, 15 and 16.

Remark 19 Condition (14) is not valid if and only if the probability of the subset of all
absolute margins is strictly positive. Note that in order to avoid any problems with con-
sistency we can generalise definition of KL-divergence using special smoothing parameter
0 ≤ θ ≤ 1:

KLθ(v, u) = KL(vθ, uθ),

where vθ = θv + (1− θ)v0, and uθ = θu+ (1− θ)v0, v0 is uniform center.
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5. Concluding Remarks

Consistency is a key property of all statistical procedures analyzing randomly sampled data.
Surprisingly, despite decades of work, little is known about consistency of most clustering
algorithms (von Luxburg et al., 2008). In this paper we developed a general framework
to investigate and to prove consistency of the popular family of prototype based clustering
algorithms. As an illustration, we considered probabilistic space with Kullback-Leibler
divergence.
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Abstract

We propose an extensive analysis of the behavior of majority votes in binary classification.
In particular, we introduce a risk bound for majority votes, called the C-bound, that takes
into account the average quality of the voters and their average disagreement. We also
propose an extensive PAC-Bayesian analysis that shows how the C-bound can be estimated
from various observations contained in the training data. The analysis intends to be self-
contained and can be used as introductory material to PAC-Bayesian statistical learning
theory. It starts from a general PAC-Bayesian perspective and ends with uncommon PAC-
Bayesian bounds. Some of these bounds contain no Kullback-Leibler divergence and others
allow kernel functions to be used as voters (via the sample compression setting). Finally,
out of the analysis, we propose the MinCq learning algorithm that basically minimizes the
C-bound. MinCq reduces to a simple quadratic program. Aside from being theoretically
grounded, MinCq achieves state-of-the-art performance, as shown in our extensive empirical
comparison with both AdaBoost and the Support Vector Machine.

Keywords: majority vote, ensemble methods, learning theory, PAC-Bayesian theory,
sample compression

1. Previous Work and Implementation

This paper can be considered as an extended version of Lacasse et al. (2006) and Laviolette
et al. (2011), and also contains ideas from Laviolette and Marchand (2005, 2007) and Ger-
main et al. (2009, 2011). We unify this previous work, revise the mathematical approach,
add new results and extend empirical experiments.

The source code to compute the various PAC-Bayesian bounds presented in this paper
and the implementation of the MinCq learning algorithm is available at:

http://graal.ift.ulaval.ca/majorityvote/

c©2015 Pascal Germain, François Laviolette, Alexandre Lacasse, Mario Marchand and Jean-Francis Roy.

http://graal.ift.ulaval.ca/majorityvote/
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2. Introduction

In binary classification, many state-of-the-art algorithms output prediction functions that
can be seen as a majority vote of “simple” classifiers. Firstly, ensemble methods such
as Bagging (Breiman, 1996), Boosting (Schapire and Singer, 1999) and Random Forests
(Breiman, 2001) are well-known examples of learning algorithms that output majority votes.
Secondly, majority votes are also central in the Bayesian approach (see Gelman et al., 2004,
for an introductory text); in this setting, the majority vote is generally called the Bayes
Classifier. Thirdly, it is interesting to point out that classifiers produced by kernel methods,
such as the Support Vector Machine (SVM) (Cortes and Vapnik, 1995), can also be viewed
as majority votes. Indeed, to classify an example x, the SVM classifier computes

sgn

( |S|∑
i=1

αi yi k(xi, x)

)
, (1)

where k(·, ·) is a kernel function, and the input-output pairs (xi, yi) represent the examples
from the training set S. Thus, one can interpret each yi k(xi, ·) as a voter that chooses (with
confidence level |k(xi, x)|) between two alternatives (“positive” or “negative”), and αi as the
respective weight of this voter in the majority vote. Then, if the total confidence-multiplied
weight of each voter that votes positive is greater than the total confidence-multiplied weight
of each voter that votes negative, the classifier outputs a +1 label (and a −1 label in the
opposite case). Similarly, each neuron of the last layer of an artificial neural network can
be interpreted as a majority vote, since it outputs a real value given by K(

∑
iwigi(x)) for

some activation function K.1

In practice, it is well known that the classifier output by each of these learning algorithms
performs much better than any of its voters individually. Indeed, voting can dramatically
improve performance when the “community” of classifiers tends to compensate for individual
errors. In particular, this phenomenon explains the success of Boosting algorithms (e.g.,
Schapire et al., 1998). The first aim of this paper is to explore how bounds on the generalized
risk of the majority vote are not only able to theoretically justify learning algorithms but also
to detect when the voted combination provably outperforms the average of its voters. We
expect that this study of the behavior of a majority vote should improve the understanding
of existing learning algorithms and even lead to new ones. We indeed present a learning
algorithm based on these ideas at the end of the paper.

The PAC-Bayesian theory is a well-suited approach to analyze majority votes. Initiated
by McAllester (1999), this theory aims to provide Probably Approximately Correct guar-
antees (PAC guarantees) to “Bayesian-like” learning algorithms. Within this approach, one
considers a prior2 distribution P over a space of classifiers that characterizes its prior belief
about good classifiers (before the observation of the data) and a posterior distribution Q
(over the same space of classifiers) that takes into account the additional information pro-
vided by the training data. The classical PAC-Bayesian approach indirectly bounds the risk

1. In this case, each voter gi has incoming weights which are also learned (often by back propagation of
errors) together with the weights wi. The analysis presented in this paper considers fixed voters. Thus,
the PAC-Bayesian theory for artificial neural networks remains to be done. Note however that the recent
work by McAllester (2013) provides a first step in that direction.

2. Priors have been used for many years in statistics. The priors in this paper have only indirect links with
the Bayesian priors. We nevertheless use this language, since it comes from previous work.
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of a Q-weighted majority vote by bounding the risk of an associate (stochastic) classifier,
called the Gibbs classifier. A remarkable result, known as the “PAC-Bayesian Theorem”,
provides a risk bound for the “true” risk of the Gibbs classifier, by considering the empir-
ical risk of this Gibbs classifier on the training data and the Kullback-Leibler divergence
between a posterior distribution Q and a prior distribution P . It is well known (Lang-
ford and Shawe-Taylor, 2002; McAllester, 2003b; Germain et al., 2009) that the risk of the
(deterministic) majority vote classifier is upper-bounded by twice the risk of the associ-
ated (stochastic) Gibbs classifier. Unfortunately, and especially if the involved voters are
weak, this indirect bound on the majority vote classifier is far from being tight, even if the
PAC-Bayesian bound itself generally gives a tight bound on the risk of the Gibbs classifier.
In practice, as stated before, the “community” of classifiers can act in such a way as to
compensate for individual errors. When such compensation occurs, the risk of the majority
vote is then much lower than the Gibbs risk itself and, a fortiori, much lower than twice the
Gibbs risk. By limiting the analysis to Gibbs risk only, the commonly used PAC-Bayesian
framework is unable to evaluate whether or not this compensation occurs. Consequently,
this framework cannot help in producing highly accurate voted combinations of classifiers
when these classifiers are individually weak.

In this paper, we tackle this problem by studying the margin of the majority vote as
a random variable. The first and second moments of this random variable are respectively
linked with the risk of the Gibbs classifier and the expected disagreement between the voters
of the majority vote. As we will show, the well-known factor of two used to bound the risk
of the majority vote is recovered by applying Markov’s inequality to the first moment of the
margin. Based on this observation, we show that a tighter bound, that we call the C-bound,
is obtained by considering the first two moments of the margin, together with Chebyshev’s
inequality.

Section 4 presents, in a more detailed way, the work on the C-bound originally presented
in Lacasse et al. (2006). We then present both theoretical and empirical studies that show
that the C-bound is an accurate indicator of the risk of the majority vote. We also show that
the C-bound can be smaller than the risk of the Gibbs classifier and can even be arbitrarily
close to zero even if the risk of the Gibbs classifier is close to 1/2. This indicates that
the C-bound can effectively capture the compensation of the individual errors made by the
voters.

We then develop PAC-Bayesian guarantees on the C-bound in order to obtain an upper
bound on the risk of the majority vote based on empirical observations. Section 5 presents
a general approach of the PAC-Bayesian theory by which we recover the most commonly
used forms of the bounds of McAllester (1999, 2003a) and Langford and Seeger (2001);
Seeger (2002); Langford (2005). Thereafter, we extend the theory to obtain upper bounds
on the C-bound in two different ways. The first method is to separately bound the risk
of the Gibbs classifier and the expected disagreement—which are the two fundamental
ingredients that are present in the C-bound. Since the expected disagreement does not
rely on labels, this strategy is well-suited for the semi-supervised learning framework. The
second method directly bounds the C-bound and empirically improves the achievable bounds
in the supervised learning framework.
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Sections 6 and 7 bring together relatively new PAC-Bayesian ideas that allow us, for one
part, to derive a PAC-Bayesian bound that does not rely on the Kullback-Leibler divergence
between the prior and posterior distributions (as in Catoni, 2007; Germain et al., 2011;
Laviolette et al., 2011) and, for the other part, to extend the bound to the case where the
voters are defined using elements of the training data, e.g., voters defined by kernel functions
yik(xi, ·). This second approach is based on the sample compression theory (Floyd and
Warmuth, 1995; Laviolette and Marchand, 2007; Germain et al., 2011). In PAC-Bayesian
theory, the sample compression approach is a priori problematic, since a PAC-Bayesian
bound makes use of a prior distribution on the set of all voters that has to be defined before
observing the data. If the voters themselves are defined using a part of the data, there is
an apparent contradiction that has to be overcome.

Based on the foregoing, a learning algorithm, that we call MinCq, is presented in Sec-
tion 8. The algorithm basically minimizes the C-bound, but in a particular way that is, inter
alia, justified by the PAC-Bayesian analysis of Sections 6 and 7. This algorithm was origi-
nally presented in Laviolette et al. (2011). Given a set of voters (either classifiers or kernel
functions), MinCq builds a majority vote classifier by finding the posterior distribution Q
on the set of voters that minimizes the C-bound. Hence, MinCq takes into account not
only the overall quality of the voters, but also their respective disagreements. In this way,
MinCq builds a “community” of voters that can compensate for their individual errors.
Even though the C-bound consists of a relatively complex quotient, the MinCq learning
algorithm reduces to a simple quadratic program. Moreover, extensive empirical experi-
ments confirm that MinCq is very competitive when compared with AdaBoost (Schapire
and Singer, 1999) and the Support Vector Machine (Cortes and Vapnik, 1995).

In Section 9, we conclude by pointing out recent work that uses the PAC-Bayesian
theory to tackle more sophisticated machine learning problems.

3. Basic Definitions

We consider classification problems where the input space X is an arbitrary set and the
output space is a discrete set denoted Y. An example (x, y) is an input-output pair where
x ∈ X and y ∈ Y. A voter is a function X → Y for some output space Y related to Y.
Unless otherwise specified, we consider the binary classification problem where Y = {−1, 1}
and then we either consider Y as Y itself, or its convex hull [−1,+1]. In this paper, we
also use the following convention: f denotes a real-valued voter (i.e., Y = [−1, 1]), and h
denotes a binary-valued voter (i.e., Y = {−1, 1}). Note that this notion of voters is quite
general, since any uniformly bounded real-valued set of functions can be viewed as a set of
voters when properly normalized.

We consider learning algorithms that construct majority votes based on a (finite) set H
of voters. Given any x ∈ X , the output BQ(x) of a Q-weighted majority vote classifier BQ
(sometimes called the Bayes classifier) is given by

BQ(x)
def
= sgn

[
E
f∼Q

f(x)

]
, (2)

where sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0, and sgn(0) = 0.
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Thus, in case of a tie in the majority vote – i.e., Ef∼Qf(x)=0 –, we consider that the
majority vote classifier abstains – i.e., BQ(x) = 0. There are other possible ways to handle
this particular case. In this paper, we choose to define sgn(0) = 0 because it simplifies the
forthcoming analysis.

We adopt the PAC setting where each example (x, y) is drawn i.i.d. according to a
fixed, but unknown, probability distribution D on X×Y. The training set of m examples
is denoted by S = 〈 (x1, y1), . . . , (xm, ym) 〉 ∼ Dm. Throughout the paper, D′ generically
represents either the true (and unknown) distribution D, or its empirical counterpart US

(i.e., the uniform distribution over the training set S). Moreover, for notational simplicity,
we often replace US by S.

In order to quantify the accuracy of a voter, we use a loss function L : Y×Y → [0, 1] .
The PAC-Bayesian theory traditionally considers majority votes of binary voters of the form

h : X → {−1, 1}, and the zero-one loss L01

(
h(x), y

) def
= I

(
h(x) 6= y

)
, where I(a) = 1 if

predicate a is true and 0 otherwise.
The extension of the zero-one loss to real-valued voters (of the form f : X → [−1, 1]) is

given by the following definition.

Definition 1 In the (more general) case where voters are functions f : X → [−1, 1], the
zero-one loss L01 is defined by

L01

(
f(x), y

) def
= I

(
y · f(x) ≤ 0

)
.

Hence, a voter abstention – i.e., when f(x) outputs exactly 0 – results in a loss of 1. Clearly,
other choices are possible for this particular case.3

In this paper, we also consider the linear loss L` defined as follows.

Definition 2 Given a voter f : X → [−1, 1], the linear loss L` is defined by

L`
(
f(x), y

) def
=

1

2

(
1− y · f(x)

)
.

Note that the linear loss is equal to the zero-one loss when the output space is binary. That
is, for any (h(x), y) ∈ {−1, 1}2, we always have

L`
(
h(x), y

)
= L01

(
h(x), y

)
, (3)

because L`
(
h(x), y

)
= 1 if h(x) 6= y, and L`

(
h(x), y

)
= 0 if h(x) = y. Hence, we generalize

all definitions implying classifiers to voters using the equality of Equation (3) as an inspi-
ration. Figure 1 illustrates the difference between the zero-one loss and the linear loss for
real-valued voters. Remember that in the case y f(x) = 0 , the loss is 1 (see Definition 1).

Definition 3 Given a loss function L and a voter f , the expected loss ELD′(f) of f relative
to distribution D′ is defined as

ELD′(f)
def
= E

(x,y)∼D′
L
(
f(x), y

)
.

3. As an example, when f(x) outputs 0, the loss may be 1/2. However, we choose for this unlikely event
the worst loss value – i.e., L01(0, y) = 1 – because it simplifies the majority vote analysis.
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Figure 1: The zero-one loss L01 and the linear loss L` as a function of yf(x).

In particular, the empirical expected loss on a training set S is given by

ELS(f) =
1

m

m∑
i=1

L
(
f(xi), yi

)
.

We therefore define the risk of the majority vote RD′(BQ) as follows.

Definition 4 For any probability distribution Q on a set of voters, the Bayes risk RD′(BQ),
also called risk of the majority vote, is defined as the expected zero-one loss of the majority
vote classifier BQ relative to D′. Hence,

RD′(BQ)
def
= EL01D′ (BQ) = E

(x,y)∼D′
I
(
BQ(x) 6= y

)
= E

(x,y)∼D′
I
(

E
f∼Q

y · f(x) ≤ 0
)
.

Remember from the definition of BQ (Equation 2) that the majority vote classifier abstains
in the case of a tie on an example (x, y). Therefore, the above Definition 4 implies that the
Bayes risk is 1 in this case, as R〈(x,y)〉(BQ)=L01(0, y)=1. In practice, a tie in the vote is a
rare event, especially if there are many voters.

The output of the deterministic majority vote classifier BQ is closely related to the
output of a stochastic classifier called the Gibbs classifier. To classify an input example x,
the Gibbs classifier GQ randomly chooses a voter f according to Q and returns f(x). Note
the stochasticity of the Gibbs classifier: it can output different values when given the same
input x twice. We will see later how the link between BQ and GQ is used in the PAC-
Bayesian theory.

In the case of binary voters, the Gibbs risk corresponds to the probability that GQ
misclassifies an example of distribution D′. Hence,

RD′(GQ) = Pr
(x,y)∼D′
h∼Q

(
h(x) 6= y

)
= E

h∼Q
EL01D′ (h) = E

(x,y)∼D′
E
h∼Q

I
(
h(x) 6= y

)
.

In order to handle real-valued voters, we generalize the Gibbs risk as follows.

Definition 5 For any probability distribution Q on a set of voters, the Gibbs risk RD′(GQ)
is defined as the expected linear loss of the Gibbs classifier GQ relative to D′. Hence,

RD′(GQ)
def
= E

f∼Q
EL`D′(f) =

1

2

(
1− E

(x,y)∼D′
E
f∼Q

y · f(x)

)
.
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Remark 6 It is well known in the PAC-Bayesian literature (e.g., Langford and Shawe-
Taylor, 2002; McAllester, 2003b; Germain et al., 2009) that the Bayes risk RD′(BQ) is
bounded by twice the Gibbs risk RD′(GQ). This statement extends to our more general
definition of the Gibbs risk (Definition 5).

Proof Let (x, y) ∈ X × {−1, 1} be any example. We claim that

R〈(x,y)〉(BQ) ≤ 2R〈(x,y)〉(GQ) . (4)

Notice that R〈(x,y)〉(BQ) is either 0 or 1 depending of the fact that BQ errs or not on (x, y).
In the case where R〈(x,y)〉(BQ) = 0, Equation (4) is trivially true. If R〈(x,y)〉(BQ) = 1, we
know by the last equality of Definition 4 that E

f∼Q
y ·f(x) ≤ 0. Therefore, Definition 5 gives

2 ·R〈(x,y)〉(GQ) = 2 · 1

2

(
1− E

f∼Q
y · f(x)

)
≥ 1 = R〈(x,y)〉(BQ) ,

which proves the claim.
Now, by taking the expectation according to (x, y) ∼ D′ on each side of Equation (4),

we obtain

RD′(BQ) = E
(x,y)∼D′

R〈(x,y)〉(BQ) ≤ E
(x,y)∼D′

2R〈(x,y)〉(GQ) = 2RD′(GQ) ,

as wanted.

Thus, PAC-Bayesian bounds on the risk of the majority vote are usually bounds on
the Gibbs risk, multiplied by a factor of two. Even if this type of bound can be tight in
some situations, the factor two can also be misleading. Langford and Shawe-Taylor (2002)
have shown that under some circumstances, the factor of two can be reduced to (1 + ε).
Nevertheless, distributions Q on voters giving RD′(GQ) � RD′(BQ) are common. The
extreme case happens when the expected linear loss on each example is just below one half
– i.e., for all (x, y), Ef∼Q y f(x) = 1

2−ε –, leading to a perfect majority vote classifier but
an almost inaccurate Gibbs classifier. Indeed, we have RD′(GQ) = 1

2−ε and RD′(BQ) = 0.
Therefore, in this circumstance, the bound RD′(BQ) ≤ 1−2ε, given by Remark 6, fails to
represent the perfect accuracy of the majority vote. This problem is due to the fact that the
Gibbs risk only considers the loss of the average output of the population of voters. Hence,
the bound of Remark 6 states that the majority vote is weak whenever every individual voter
is weak. The bound cannot capture the fact that it might happen that the “community” of
voters compensates for individual errors. To overcome this lacuna, we need a bound that
compares the output of voters between them, not only the average quality of each voter
taken individually.

We can compare the output of binary voters by considering the probability of disagree-
ment between them:

Pr
x∼D′X
h1,h2∼Q

(
h1(x) 6= h2(x)

)
= E

x∼D′X
E

h1∼Q
E

h2∼Q
I
(
h1(x) 6= h2(x)

)
= E

x∼D′X
E

h1∼Q
E

h2∼Q
I
(
h1(x) · h2(x) 6= 1

)
= E

x∼D′X
E

h1∼Q
E

h2∼Q
L01

(
h1(x)·h2(x) , 1

)
,
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where D′X denotes the marginal on X of distribution D′. Definition 7 extends this notion
of disagreement to real-valued voters.

Definition 7 For any probability distribution Q on a set of voters, the expected disagree-
ment dD

′
Q relative to D′ is defined as

dD
′

Q
def
= E

x∼D′X
E

f1∼Q
E

f2∼Q
L`
(
f1(x)·f2(x) , 1

)
=

1

2

(
1− E

x∼D′X
E

f1∼Q
E

f2∼Q
1 · f1(x) · f2(x)

)
=

1

2

(
1− E

x∼D′X

[
E
f∼Q

f(x)

]2)
.

Notice that the value of dD
′

Q does not depend on the labels y of the examples (x, y) ∼ D′.
Therefore, we can estimate the expected disagreement with unlabeled data.

4. Bounds on the Risk of the Majority Vote

The aim of this section is to introduce the C-bound, which upper-bounds the risk of the
majority vote (Definition 4) based on the Gibbs risk (Definition 5) and the expected dis-
agreement (Definition 7). We start by studying the margin of a majority vote as a random
variable (Section 4.1). From the first moment of the margin, we easily recover the well-
known bound of twice the Gibbs risk presented by Remark 6 (Section 4.2). We therefore
suggest extending this analysis to the second moment of the margin to obtain the C-bound
(Section 4.3). Finally, we present some statistical properties of the C-bound (Section 4.4)
and an empirical study of its predictive power (Section 4.5).

4.1 The Margin of the Majority Vote and its Moments

The bounds on the risk of a majority vote classifier proposed in this section result from the
study of the weighted margin of the majority vote as a random variable.

Definition 8 Let MD′

Q be the random variable that, given any example (x, y) drawn ac-
cording to D′, outputs the margin of the majority vote BQ on that example, which is

MQ(x, y)
def
= E

f∼Q
y · f(x) .

From Definitions 4 and 8, we have the following nice property:4

RD′(BQ) = Pr
(x,y)∼D′

(
MQ(x, y) ≤ 0

)
. (5)

4. Note that for another choice of the zero-one loss definition (Definition 1), the tie in the majority vote –
i.e., when MQ(x, y) = 0 – would have been more complicated to handle, and the statement should have
been relaxed to

Pr
(x,y)∼D′

(
MQ(x, y) < 0

)
≤ RD′(BQ) ≤ Pr

(x,y)∼D′

(
MQ(x, y) ≤ 0

)
.
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The margin is not only related to the risk of the majority vote, but also to Gibbs risk.
For that purpose, let us consider the first moment µ1(MD′

Q ) of the random variable MD′

Q

which is defined as
µ1(MD′

Q )
def
= E

(x,y)∼D′
MQ(x, y) . (6)

We can now rewrite the Gibbs risk (Definition 5) as a function of µ1(MD′

Q ), since

RD′(GQ) = E
f∼Q

EL`D′(f) =
1

2

(
1− E

(x,y)∼D′
E
f∼Q

y · f(x)

)
=

1

2

(
1− E

(x,y)∼D′
MQ(x, y)

)
=

1

2

(
1− µ1(MD′

Q )
)
. (7)

Similarly, we can rewrite the expected disagreement as a function of the second moment
of the margin. We use µ2(MD′

Q ) to denote the second moment. Since y ∈ {−1, 1} and,

therefore, y2 = 1, the second moment of the margin does not rely on labels. Indeed, we
have

µ2(MD′

Q )
def
= E

(x,y)∼D′

[
MQ(x, y)

]2
(8)

= E
(x,y)∼D′

y2 ·
[

E
f∼Q

f(x)
]2

= E
x∼D′X

[
E
f∼Q

f(x)
]2
.

Hence, from the last equality and Definition 7, the expected disagreement can be expressed
as

dD
′

Q =
1

2

(
1− E

x∼D′X

[
E
f∼Q

f(x)

]2)
=

1

2

(
1− µ2(MD′

Q )
)
. (9)

Equation (9) shows that 0 ≤ dD
′

Q ≤ 1/2, since 0 ≤ µ2(MD′

Q ) ≤ 1. Furthermore, we
can upper-bound the disagreement more tightly than simply saying it is at most 1/2 by
making use of the value of the Gibbs risk. To do so, let us write the variance of the margin
as

Var(MD′

Q )
def
= Var

(x,y)∼D′

(
MQ(x, y)

)
= µ2(MD′

Q ) −
(
µ1(MD′

Q )
)2
. (10)

Therefore, as the variance cannot be negative, it follows that

µ2(MD′

Q ) ≥
(
µ1(MD′

Q )
)2
,
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which implies that

1− 2 · dD′Q ≥ (1− 2 ·RD′(GQ))2 . (11)

Easy calculation then gives the desired bound of dD
′

Q (that is based on the Gibbs risk):

dD
′

Q ≤ 2 ·RD′(GQ) ·
(
1−RD′(GQ)

)
. (12)

We therefore have the following proposition.

Proposition 9 For any distribution Q on a set of voters and any distribution D′ on
X×{−1, 1}, we have

dD
′

Q ≤ 2 ·RD′(GQ) ·
(
1−RD′(GQ)

)
≤ 1

2
.

Moreover, if dD
′

Q = 1
2 then RD′(GQ) = 1

2 .

Proof Equation (12) gives the first inequality. The rest of the proposition directly fol-
lows from the fact that f(x) = 2x(1− x) is a parabola whose (unique) maximum is at the
point (1

2 ,
1
2).

4.2 Rediscovering the bound RD′(BQ) ≤ 2 ·RD′(GQ)

The well-known factor of two with which one can transform a bound on the Gibbs risk
RD′(GQ) into a bound on the risk RD′(BQ) of the majority vote is usually justified by
an argument similar to the one given in Remark 6. However, as shown by the proof of
Proposition 10, the result can also be obtained by considering that the risk of the majority
vote is the probability that the margin MD′

Q is lesser than or equal to zero (Equation 5) and
by simply applying Markov’s inequality (Lemma 46, provided in Appendix A).

Proposition 10 For any distribution Q on a set of voters and any distribution D′ on
X×{−1, 1}, we have

RD′(BQ) ≤ 2 ·RD′(GQ) .

Proof Starting from Equation (5) and using Markov’s inequality (Lemma 46), we have

RD′(BQ) = Pr
(x,y)∼D′

(
MQ(x, y) ≤ 0

)
= Pr

(x,y)∼D′

(
1−MQ(x, y) ≥ 1

)
≤ E

(x,y)∼D′

(
1−MQ(x, y)

)
(Markov’s inequality)

= 1− E
(x,y)∼D′

MQ(x, y)

= 1− µ1(MD′

Q )

= 2 ·RD′(GQ) .

The last equality is directly obtained from Equation (7).
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Figure 2: Contour plots of the C-bound.

This proof highlights that we can upper-bound RD′(BQ) by considering solely the first
moment of the margin µ1(MD′

Q ). Once we realize this fact, it becomes natural to extend
this result to higher moments. We do so in the following subsection where we make use of
Chebyshev’s inequality (instead of Markov’s inequality), which uses not only the first, but
also the second moment of the margin. This gives rise to the C-bound of Theorem 11.

4.3 The C-bound: a Bound on RD′(BQ) That Can Be Much Smaller Than RD′(GQ)

Here is the bound on which most of the results of this paper are based. We refer to it as the
C-bound. It was first introduced (but in a different form) in Lacasse et al. (2006).5 We give
here three different (but equivalent) forms of the C-bound. Each one highlights a different
property or behavior of the bound. Figure 2 illustrates these behaviors.

It is interesting to note that the proof of Theorem 11 below has the same starting point as
the proof of Proposition 10, but uses Chebyshev’s inequality instead of Markov’s inequality
(respectively Lemmas 48 and 46, both provided in Appendix A). Therefore, Theorem 11 is
based on the variance of the margin in addition of its mean.

Theorem 11 (The C-bound) For any distribution Q on a set of voters and any distri-
bution D′ on X×{−1, 1}, if µ1(MD′

Q ) > 0 (i.e., RD′(GQ) < 1/2), we have

RD′(BQ) ≤ CD′Q ,

where

CD′Q
def
=

Var(MD′

Q )

µ2(MD′

Q )︸ ︷︷ ︸
First form

= 1−

(
µ1(MD′

Q )
)2

µ2(MD′

Q )︸ ︷︷ ︸
Second form

= 1−

(
1− 2 ·RD′(GQ)

)2

1− 2 · dD′Q︸ ︷︷ ︸
Third form

.

5. We present the form used by Lacasse et al. (2006) in Remark 12 at the end of the present subsection.
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Proof Starting from Equation (5) and using the one-sided Chebyshev inequality (Lem-
ma 48), with X=−MQ(x, y), µ = E

(x,y)∼D′

(
−MQ(x, y)

)
and a = E

(x,y)∼D′
MQ(x, y), we obtain

RD′(BQ) = Pr
(x,y)∼D′

(
MQ(x, y) ≤ 0

)
= Pr

(x,y)∼D′

(
−MQ(x, y) + E

(x,y)∼D′
MQ(x, y) ≥ E

(x,y)∼D′
MQ(x, y)

)

≤
Var

(x,y)∼D′
(MQ(x, y))

Var
(x,y)∼D′

(MQ(x, y)) +

(
E

(x,y)∼D′
MQ(x, y)

)2 (Chebyshev’s inequality)

=
Var(MD′

Q )

µ2(MD′

Q ) −
(
µ1(MD′

Q )
)2

+
(
µ1(MD′

Q )
)2 =

Var(MD′

Q )

µ2(MD′

Q )
(13)

=
µ2(MD′

Q ) −
(
µ1(MD′

Q )
)2

µ2(MD′

Q )

= 1−

(
µ1(MD′

Q )
)2

µ2(MD′

Q )
(14)

= 1−

(
1− 2 ·RD′(GQ)

)2
1− 2 · dD′Q

. (15)

Lines (13) and (14) respectively present the first and the second forms of CD′Q , and follow

from the definitions of µ1(MD′

Q ), µ2(MD′

Q ), and Var(MD′

Q ) (see Equations 6, 8 and 10).

The third form of CD′Q is obtained at Line (15) using µ1(MD′

Q ) = 1 − 2 · RD′(GQ) and

µ2(MD′

Q ) = 1− 2 · dD′Q , which can be derived directly from Equations (7) and (9).

The third form of the C-bound shows that the bound decreases when the Gibbs risk RD′(GQ)
decreases or when the disagreement dD

′
Q increases. This new bound therefore suggests that

a majority vote should perform a trade-off between the Gibbs risk and the disagreement
in order to achieve a low Bayes risk. This is more informative than the usual bound of
Proposition 10, which focuses solely on the minimization of the Gibbs risk.

The first form of the C-bound highlights that its value is always positive (since the
variance and the second moment of the margin are positive), whereas the second form of the
C-bound highlights that it cannot exceed one. Finally, the fact that dD

′
Q = 1

2 ⇒ RD′(GQ) = 1
2

(Proposition 9) implies that the bound is always defined, since RD′(GQ) is here assumed to
be strictly less than 1

2 .

Remark 12 As explained before, the C-bound was originally stated in Lacasse et al. (2006),
but in a different form. It was presented as a function of WQ(x, y), the Q-weight of voters
making an error on example (x, y). More precisely, the C-bound was presented as follows:

CDQ =

Var
(x,y)∼D′

(
WQ(x, y)

)
Var

(x,y)∼D′

(
WQ(x, y)

)
+ (1/2−RD′(GQ))2 .
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It is easy to show that this form is equivalent to the three forms stated in Theorem 11, and
that WQ(x, y) and MQ(x, y) are related by

WQ(x, y)
def
= E

f∼Q
L`
(
f(x), y

)
=

1

2

(
1− y · E

f∼Q
f(x)

)
=

1

2

(
1−MQ(x, y)

)
.

However, we do not discuss further this form of the C-bound here, since we now consider
that the margin MQ(x, y) is a more natural notion than WQ(x, y).

4.4 Statistical Analysis of the C-bound’s Behavior

This section presents some properties of the C-bound. In the first place, we discuss the
conditions under which the C-bound is optimal, in the sense that if the only information
that one has about a majority vote is the first two moments of its margin distribution, it
is possible that the value given by the C-bound is the Bayes risk, i.e., CD′Q = RD′(BQ).6

In the second place, we show that the C-bound can be arbitrarily small, especially in the
presence of “non-correlated” voters, even if the Gibbs risk is large, i.e., CD′Q � RD′(GQ).

4.4.1 Conditions of Optimality

For the sake of simplicity, let us focus on a random variable M that represents a margin
distribution (here, we ignore underlying distributions Q on H and D′ on X×{−1, 1}) of
first moment µ1(M) and second moment µ2(M). By Equation (5), we have

R(BM )
def
= Pr (M ≤ 0) . (16)

Moreover, R(BM ) is upper-bounded by CM , the C-bound given by the second form of
Theorem 11,

CM def
= 1−

(
µ1(M)

)2
µ2(M)

. (17)

The next proposition shows when the C-bound can be achieved.

Proposition 13 (Optimality of the C-bound) Let M be any random variable that rep-

resents the margin of a majority vote. Then there exists a random variable M̃ such that

µ1(M̃) = µ1(M) , µ2(M̃) = µ2(M) , and C
M̃

= CM = R(B
M̃

) (18)

if and only if
0 < µ2(M) ≤ µ1(M) . (19)

Proof First, let us show that (19) implies (18). Given 0 < µ2(M) ≤ µ1(M), we consider

a distribution M̃ concentrated in two points defined as

M̃ =


0 with probability CM = 1−

(
µ1(M)

)2
µ2(M)

,

µ2(M)

µ1(M)
with probability 1− CM =

(
µ1(M)

)2
µ2(M)

.

6. In other words, the optimality of the C-bound means here that there exists a random variable with the
same first moments as the margin distribution, such that Chebyshev’s inequality of Lemma 48 is reached.
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This distribution has the required moments, as

µ1(M̃) =

(
µ1(M)

)2
µ2(M)

[
µ2(M)

µ1(M)

]
= µ1(M) , and µ2(M̃) =

(
µ1(M)

)2
µ2(M)

[
µ2(M)

µ1(M)

]2
= µ2(M) .

It follows directly from Equation (17) that C
M̃

= CM . Moreover, by Equation (16) and

because µ2(M)
µ1(M) > 0, we obtain as desired

R(B
M̃

) = Pr (M̃ ≤ 0) = CM .

Now, let us show that (18) implies (19). Consider a distribution M̃ such that the
equalities of Line (18) are satisfied. By Proposition 10 and Equation (7), we obtain the
inequality

CM = R(B
M̃

) ≤ 1− µ1(M̃) = 1− µ1(M) .

Hence, by the definition of CM , we have

1−
(
µ1(M)

)2
µ2(M)

≤ 1− µ1(M) ,

which, by straightforward calculations, implies 0 < µ2(M) ≤ µ1(M) , and we are done.

We discussed in Section 4.1 the multiple connections between the moments of the margin,
the Gibbs risk and the expected disagreement of a majority vote. In the next proposition,
we exploit these connections to derive expressions equivalent to Line (19) of Proposition 13.
Thus, this shows three (equivalent) necessary conditions under which the C-bound is opti-
mal.

Proposition 14 For any distribution Q on a set of voters and any distribution D′ on
X×{−1, 1}, if µ1(MD′

Q ) > 0 (i.e., RD′(GQ) < 1/2), then the three following statements are
equivalent:

(i) µ2(MD′

Q ) ≤ µ1(MD′

Q ) ;

(ii) RD′(GQ) ≤ dD
′

Q ;

(iii) CD′Q ≤ 2RD′(GQ) .

Proof The truth of (i)⇔ (ii) is a direct consequence of Equations (7) and (9). To prove
(ii)⇔ (iii), we express CD′Q in its third form. Straightforward calculations give

CD′Q = 1− (1− 2RD′(GQ))2

1− 2 dD
′

Q

≤ 2RD′(GQ) ⇐⇒ RD′(GQ) ≤ dD
′

Q .

Propositions 13 and 14 illustrate an interesting result: the C-bound is optimal if and only if
its value is lower than twice the Gibbs risk, the classical bound on the risk of the majority
vote (see Proposition 10).
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4.4.2 The C-bound Can Be Arbitrarily Small, Even for Large Gibbs Risks

The next result shows that, when the number of voters tends to infinity (and the weight of
each voter tends to zero), the variance of MQ will tend to 0 provided that the average of the
covariance of the outputs of all pairs of distinct voters is ≤ 0. In particular, the variance
will always tend to 0 if the risk of the voters is pairwise independent. To quantify the
independence between voters, we use the concept of covariance of a pair of voters (f1, f2):

CovD′ (f1, f2)
def
= Cov

(x,y)∼D′

(
y · f1(x), y · f2(x)

)
= E

(x,y)∼D′
f1(x)f2(x)−

(
E

(x,y)∼D′
f1(x)

)(
E

(x,y)∼D′
f2(x)

)
.

Note that the covariance CovD′ (f1, f2) is zero when f1 and f2 are independent (uncorrelated).

Proposition 15 For any countable set of voters H, any distribution Q on H, and any
distribution D′ on X×{−1, 1}, we have

Var(MD′

Q ) ≤
∑
f∈H

Q2(f) +
∑
f1∈H

∑
f2∈H:
f2 6=f1

Q(f1)Q(f2) · CovD′ (f1, f2) .

Proof By the definition of the margin (Definition 8), we rewrite MQ(x, y) as a sum of
random variables:

Var
(x,y)∼D′

(
MQ(x, y)

)
= Var

(x,y)∼D′

(∑
f∈H

Q(f) · y · f(x)

)

=
∑
f∈H

Q2(f) Var
(x,y)∼D′

(
y · f(x)

)
+
∑
f1∈H

∑
f2∈H:
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D′

(
y · f1(x), y · f2(x)

)
.

The inequality is a consequence of the fact that ∀f ∈ H : Var
(x,y)∼D′

(
y · f(x)

)
≤ 1.

The key observation that comes out of this result is that
∑

f∈HQ
2(f) is usually much

smaller than one. Consider, for example, the case where Q is uniform on H with |H| = n.
Then

∑
f∈HQ

2(f) = 1/n. Moreover, if CovD′ (f1, f2) ≤ 0 for each pair of distinct classifiers

in H, then Var(MD′

Q ) ≤ 1/n. Hence, in these cases, we have that CD′Q ∈ O(1/n) whenever

1−2RD′(GQ) and 1−2 dD
′

Q are larger than some positive constants independent of n. Thus,
even when RD′(GQ) is large, we see that the C-bound can be arbitrarily close to 0 as we
increase the number of classifiers having non-positive pairwise covariance of their risk. More
precisely, we have

Corollary 16 Given n independent voters under a uniform distribution Q, we have

RD′(BQ) ≤ CD′Q ≤ 1

n·
(

1−2 dD
′

Q

) ≤ 1

n·
(

1−2RD′(GQ)
)2 .
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Proof The first inequality directly comes from the C-bound (Theorem 11). The second
inequality is a consequence of Proposition 15, considering that in the case of a uniform
distribution of independent voters, we have CovD′ (f1, f2) = 0, and then Var(MD′

Q ) ≤ 1/n.
Applying this to the first form of the C-bound, we obtain

CD′Q =
Var(MD′

Q )

µ2(MD′

Q )
=

Var(MD′

Q )

1−2 dD
′

Q

≤
1
n

1−2 dD
′

Q

=
1

n·
(

1−2 dD
′

Q

) .
To obtain the third inequality, we simply apply Equation (11), and we are done.

4.5 Empirical Study of The Predictive Power of the C-bound

To further motivate the use of the C-bound, we investigate how its empirical value relates
to the risk of the majority vote by conducting two experiments. The first experiment shows
that the C-bound clearly outperforms the individual capacity of the other quantities of
Theorem 11 in the task of predicting the risk of the majority vote. The second experiment
shows that the C-bound is a great stopping criterion for Boosting algorithms.

4.5.1 Comparison with Other Indicators

We study how RD′(GQ), Var(MD′

Q ), dD
′

Q and CD′Q are respectively related to RD′(BQ). Note
that these four quantities appear in the first form or the third form of the C-bound (Theo-
rem 11). We omit here the moments µ1(MD′

Q ) and µ2(MD′

Q ) required by the second form of

the C-bound, as there is a linear relation between µ1(MD′

Q ) and RD′(GQ), as well as between

µ2(MD′

Q ) and dD
′

Q .

The results of Figure 3 are obtained with the AdaBoost algorithm of Schapire and Singer
(1999), used with “decision stumps” as weak learners, on several UCI binary classification
data sets (Blake and Merz, 1998). Each data set is split into two halves: a training set S
and a testing set T . We run AdaBoost on set S for 100 rounds and compute the quantities
RT (GQ), Var(MT

Q), dTQ and CTQ on set T at every 5 rounds of boosting. That is, we study
20 different majority vote classifiers per data set.

In Figure 3a, we see that we almost always have RT (BQ) < RT (GQ). There is, however,
no clear correlation between RT (BQ) and RT (GQ). We also see no clear correlation between
RT (BQ) and Var(MT

Q) or between RT (BQ) and dTQ in Figures 3b and 3c respectively, except
that generally RT (BQ) > Var(MT

Q) and RT (BQ) < dTQ . In contrast, Figure 3d shows a

strong correlation between CTQ and RT (BQ). Indeed, it is almost a linear relation! Therefore,
the C-bound seems well-suited to characterize the behavior of the Bayes risk, whereas each
of the individual quantities contained in the C-bound is insufficient to do so.

4.5.2 The C-bound as a Stopping Criterion for Boosting

We now evaluate the accuracy of the empirical value of the C-bound as a model selection
tool. More specifically, we compare its ability to act as a stopping criterion for the AdaBoost
algorithm.
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Figure 3: RT (BQ) versus RT (GQ), Var(MT
Q), dTQ and CTQ respectively.

We use the same version of the algorithm and the same data sets as in the previous
experiment. However, for this experiment, each data set is split into a training set S of
at most 400 examples and a testing set T containing the remaining examples. We run
AdaBoost on set S for 1000 rounds. At each round, we compute the empirical C-bound
CSQ (on the training set). Afterwards, we select the majority vote classifier with the lowest

value of CSQ and compute its Bayes risk RT (BQ) (on the test set). We compare this stopping
criterion with three other methods. For the first method, we compute the empirical Bayes
risk RS(BQ) at each round of boosting and, after that, we select the one having the lowest
such risk.7 The second method consists in performing 5-fold cross-validation and selecting
the number of boosting rounds having the lowest cross-validation risk. Finally, the third
method is to reserve 10% of S as a validation set, train AdaBoost on the remaining 90%,

7. When several iterations have the same value of RS(BQ), we select the earlier one.
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Data Set Information Risk RT (BQ) by Stopping Criterion (and number of rounds performed)

Name |S| |T | C-bound CSQ Risk RS(BQ) Validation Set Cross-Validation 1000 rounds

Adult 400 11409 0.166 (149) 0.169 (314) 0.165 (13) 0.166 (97) 0.172
BreastCancer 341 342 0.050 (127) 0.047 (48) 0.041 (57) 0.047 (108) 0.058
Credit-A 326 327 0.187 (346) 0.199 (854) 0.156 (9) 0.174 (47) 0.199
Glass 107 107 0.252 (72) 0.196 (299) 0.346 (6) 0.290 (35) 0.196
Haberman 147 147 0.320 (27) 0.320 (45) 0.279 (1) 0.320 (38) 0.340
Heart 148 149 0.215 (124) 0.289 (950) 0.181 (31) 0.195 (14) 0.289
Ionosphere 175 176 0.085 (210) 0.120 (56) 0.142 (2) 0.114 (67) 0.085
Letter:AB 400 1155 0.005 (42) 0.014 (17) 0.061 (2) 0.005 (60) 0.010
Letter:DO 400 1158 0.041 (179) 0.041 (44) 0.143 (1) 0.044 (83) 0.043
Letter:OQ 400 1136 0.050 (65) 0.050 (138) 0.063 (26) 0.044 (118) 0.049
Liver 172 173 0.289 (541) 0.289 (743) 0.335 (5) 0.289 (603) 0.295
Mushroom 400 7724 0.010 (612) 0.024 (38) 0.079 (6) 0.024 (51) 0.010
Sonar 104 104 0.192 (688) 0.250 (20) 0.317 (2) 0.163 (34) 0.202
Tic-tac-toe 400 558 0.389 (59) 0.364 (2) 0.358 (5) 0.403 (9) 0.389
USvotes 217 218 0.032 (11) 0.041 (598) 0.032 (16) 0.028 (1) 0.046
Waveform 400 7600 0.101 (145) 0.102 (178) 0.106 (13) 0.103 (22) 0.115
Wdbc 284 285 0.049 (40) 0.060 (19) 0.091 (2) 0.046 (10) 0.060

Statistical Comparison Tests

CSQ vs RS(BQ) CSQ vs Validation Set CSQ vs Cross-Validation CSQ vs 1000 rounds

Poisson binomial test 91% 86% 57% 90%
Sign test (p-value) 0.05 0.23 0.60 0.02

Table 1: Comparison of various stopping criteria over 1000 rounds of boosting. The Poisson
binomial test gives the probability that CSQ is a better stopping criterion than every
other approach. The sign test gives a p-value representing the probability that the
null hypothesis is true (i.e., the CSQ stopping criterion has the same performance
as every other approach).

and keep the majority vote with the lowest Bayes risk on the validation set. Note that this
last method differs from the others because AdaBoost sees 10% fewer examples during the
learning process, but this is the price to pay for using a validation set.

Table 1 compares the Bayes risks on the test set RT (BQ) of the majority vote classifiers
selected by the different stopping criteria. We compute the probability of C-bound being
a better stopping criteria than every other methods with two statistical tests: the Poisson
binomial test (Lacoste et al., 2012) and the sign test (Mendenhall, 1983). Both statistical
tests suggest that the empirical C-bound is a better model selection tool than the empirical
Bayes risk (as usual in machine learning tasks, this method is prone to overfitting) and
the validation set (although this method performs very well sometimes, it suffers from
the small quantity of training examples on several tasks). The empirical C-bound and the
cross-validation methods obtain a similar accuracy. However, the cross-validation procedure
needs more running time. We conclude that the empirical C-bound is a surprisingly good
stopping criterion for Boosting.
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5. A PAC-Bayesian Story: From Zero to a PAC-Bayesian C-bound

In this section, we present a PAC-Bayesian theory that allows one to estimate the C-bound
value CDQ from its empirical estimate CSQ. From there, we derive bounds on the risk of
the majority vote RD(BQ) based on empirical observations. We first recall the classical
PAC-Bayesian bound (here called the PAC-Bound 0) that bounds the true Gibbs risk by its
empirical counterpart. We then present two different PAC-Bayesian bounds on the majority
vote classifier (respectively called PAC-Bounds 1 and 2). A third bound, PAC-Bound 3,
will be presented in Section 6. This analysis intends to be self-contained, and can act as an
introduction to PAC-Bayesian theory.8

The first PAC-Bayesian theorem was proposed by McAllester (1999). Given a set of
voters H, a prior distribution P on H chosen before observing the data, and a posterior
distribution Q on H chosen after observing a training set S∼Dm (Q is typically chosen by
running a learning algorithm on S), PAC-Bayesian theorems give tight risk bounds for the
Gibbs classifier GQ. These bounds on RD(GQ) usually rely on two quantities:

a) The empirical Gibbs risk RS(GQ), that is computed on the m examples of S,

RS(GQ) =
1

m

m∑
i=1

E
f∼Q

L`(f(xi), yi) .

b) The Kullback-Leibler divergence between distributions Q and P , that measures “how
far” the chosen posterior Q is from the prior P ,

KL(Q‖P )
def
= E

f∼Q
ln
Q(f)

P (f)
. (20)

Note that the obtained PAC-Bayesian bounds are uniformly valid for all possible posteri-
ors Q.

In the following, we present a very general PAC-Bayesian theorem (Section 5.1), and we
specialize it to obtain a bound on the Gibbs risk RD(GQ) that is converted in a bound on
the risk of the majority vote RD(BQ) by the factor 2 of Proposition 10 (Section 5.2). Then,
we define new losses that rely on a pair of voters (Section 5.3). These new losses allow
us to extend the PAC-Bayesian theory to directly bound RD(BQ) through the C-bound
(Sections 5.4 and 5.5). For each proposed bound, we explain the algorithmic procedure
required to compute its value.

5.1 General PAC-Bayesian Theory for Real-Valued Losses

A key step of most PAC-Bayesian proofs is summarized by the following Change of measure
inequality (Lemma 17).

We present here the same proof as in Seldin and Tishby (2010) and McAllester (2013).
Note that the same result is derived from Fenchel’s inequality in Banerjee (2006) and
Donsker-Varadhan’s variational formula for relative entropy in Seldin et al. (2012); Tol-
stikhin and Seldin (2013).

8. We also recommend the “practical prediction tutorial” of Langford (2005), that contains an insightful
PAC-Bayesian introduction.
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Lemma 17 (Change of measure inequality) For any set H, for any distributions P
and Q on H, and for any measurable function φ : H → R, we have

E
f∼Q

φ(f) ≤ KL(Q‖P ) + ln

(
E
f∼P

eφ(f)

)
.

Proof The result is obtained by simple calculations, exploiting the definition of the KL-
divergence given by Equation (20), and then Jensen’s inequality (Lemma 47, in Appendix A)
on concave function ln(·) :

E
f∼Q

φ(f) = E
f∼Q

ln eφ(f) = E
f∼Q

ln

(
Q(f)

P (f)
· P (f)

Q(f)
· eφ(f)

)
= KL(Q‖P ) + E

f∼Q
ln

(
P (f)

Q(f)
· eφ(f)

)
≤ KL(Q‖P ) + ln

(
E
f∼Q

P (f)

Q(f)
· eφ(f)

)
(Jensen’s inequality)

≤ KL(Q‖P ) + ln

(
E
f∼P

eφ(f)

)
.

Note that the last inequality becomes an equality if Q and P share the same support.

Let us now present a general PAC-Bayesian theorem which bounds the expectation of
any real-valued loss function L : Y ×Y → [0, 1]. This theorem is slightly more general than
the PAC-Bayesian theorem of Germain et al. (2009, Theorem 2.1), that is specialized to the
expected linear loss, and therefore gives rise to a bound of the “generalized” Gibbs risk of
Definition 5. A similar result is presented in Tolstikhin and Seldin (2013, Lemma 1).

Theorem 18 (General PAC-Bayesian theorem for real-valued losses) For any dis-
tribution D on X × Y, for any set H of voters X → Y, for any loss L : Y × Y → [0, 1], for
any prior distribution P on H, for any δ ∈ (0, 1], for any m′ > 0, and for any convex
function D : [0, 1]×[0, 1]→ R, we have

Pr
S∼Dm

For all posteriors Q on H :

D( E
f∼Q

ELS(f), E
f∼Q

ELD(f)) ≤ 1

m′

[
KL(Q‖P )+ln

(
1

δ
E

S∼Dm
E
f∼P

em
′·D(ELS (f),E

L
D(f))

)]≥ 1− δ ,

where KL(Q‖P ) is the Kullback-Leibler divergence between Q and P of Equation (20).

Most of the time, this theorem is used with m′ = m, the size of the training set. However,
as pointed out by Lever et al. (2010), m′ does not have to be so. One can easily show
that different values of m′ affect the relative weighting between the terms KL(Q‖P ) and

ln
(

1
δES∼DmEf∼P e

m′·D(ELS (f),ELD(f))
)

in the bound. Hence, especially in situations where
these two terms have very different values, a “good” choice for the value of m′ can tighten
the bound.
Proof Note that E

f∼P
em
′·D(ELS (f),ELD(f)) is a non-negative random variable. By Markov’s

inequality (Lemma 46, in Appendix A), we have

Pr
S∼Dm

(
E
f∼P

em
′·D(ELS (f),ELD(f)) ≤ 1

δ
E

S∼Dm
E
f∼P

em
′·D(ELS (f),ELD(f))

)
≥ 1− δ .
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Hence, by taking the logarithm on each side of the innermost inequality, we obtain

Pr
S∼Dm

(
ln

[
E
f∼P

em
′·D(ELS (f),ELD(f))

]
≤ ln

[
1

δ
E

S∼Dm
E
f∼P

em
′·D(ELS (f),ELD(f))

])
≥ 1− δ .

We apply the change of measure inequality (Lemma 17) on the left side of innermost in-
equality, with φ(f) = m′ · D(ELS(f),ELD(f)). We then use Jensen’s inequality (Lemma 47,
in Appendix A), exploiting the convexity of D :

∀Q on H : ln

[
E
f∼P

em
′·D(ELS (f),ELD(f))

]
≥ m′ · E

f∼Q
D(ELS(f),ELD(f))−KL(Q‖P )

≥ m′ · D( E
f∼Q

ELS(f), E
f∼Q

ELD(f))−KL(Q‖P ) .

We therefore have

Pr
S∼Dm

 For all posteriors Q :

m′ · D( E
f∼Q

ELS(f), E
f∼Q

ELD(f))−KL(Q‖P )≤ ln

[
1
δ E
S∼Dm

E
f∼P

em
′·D(ELS (f),E

L
D(f))

] ≥1− δ .

The result then follows from easy calculations.

As shown in Germain et al. (2009), the general PAC-Bayesian theorem can be used to
recover many common variants of the PAC-Bayesian theorem, simply by selecting a well-
suited function D. Among these, we obtain a similar bound as the one proposed by Langford
and Seeger (2001); Seeger (2002); Langford (2005) by using the Kullback-Leibler divergence
between the Bernoulli distributions with probability of success q and probability of success p:

kl
(
q ‖ p) def

= q ln
q

p
+ (1− q) ln

1− q
1− p . (21)

Note that kl
(
q ‖ p) is a shorthand notation for KL(Q‖P ) of Equation (20), with Q = (q, 1−q)

and P = (p, 1−p). Corollary 50 (in Appendix A) shows that kl
(
q ‖ p) is a convex function.

In order to apply Theorem 18 with D(q, p) = kl(q‖p) and m′ = m, we need the next lemma.

Lemma 19 For any distribution D on X ×Y, for any voter f : X → Y, for any loss
L : Y×Y → [0, 1], and any positive integer m, we have

E
S∼Dm

exp

[
m · kl

(
ELS(f) ‖ELD(f)

)]
≤ ξ(m) ,

where

ξ(m)
def
=

m∑
k=0

(
m

k

)(
k

m

)k (
1− k

m

)m−k
. (22)

Moreover,
√
m ≤ ξ(m) ≤ 2

√
m .

Proof Let us introduce a random variable Xf that follows a binomial distribution of m
trials with a probability of success ELD(f). Hence, Xf ∼ B(m,ELD(f)) .
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As em·kl
(
· ‖ELD(f)

)
is a convex function, Lemma 51 (due to Maurer, 2004, and provided

in Appendix A), shows that

E
S∼Dm

exp

[
m · kl

(
ELS(f) ‖ELD(f)

)]
≤ E

Xf∼B(m,ELD(f))
exp

[
m · kl

(
1
mXf ‖ELD(f)

)]
.

We then have

E
Xf∼B(m,ELD(f))

emkl( 1
m
Xf‖ELD(f))

= E
Xf∼B(m,ELD(f))

(
1
mXf

ELD(f)

)Xf (
1− 1

mXf

1− ELD(f)

)m−Xf

=
m∑
k=0

Pr
Xf∼B(m,ELD(f))

(
Xf = k

)
·
(

k
m

ELD(f)

)k(
1− k

m

1− ELD(f)

)m−k

=
m∑
k=0

(
m

k

)(
ELD(f)

)k(
1− ELD(f)

)m−k
·
(

k
m

ELD(f)

)k(
1− k

m

1− ELD(f)

)m−k

=
m∑
k=0

(
m

k

)(
k

m

)k (
1− k

m

)m−k
= ξ(m) .

Maurer (2004) shows that ξ(m) ≤ 2
√
m for m ≥ 8, and ξ(m) ≥ √m for m ≥ 2. However,

the cases for m ∈ {1, 2, 3, 4, 5, 6, 7} are easy to verify computationally.

Theorem 20 below specializes the general PAC-Bayesian theorem to D(q, p) = kl(q‖p), but
still applies to any real-valued loss functions. This theorem can be seen as an intermediate
step to obtain Corollary 21 of the next section, which uses the linear loss to bound the Gibbs
risk. However, Theorem 20 below is reused afterwards in Section 5.3 to derive PAC-Bayesian
theorems for other loss functions.

Theorem 20 For any distribution D on X ×Y, for any set H of voters X → Y, for any
loss L : Y × Y → [0, 1], for any prior distribution P on H, for any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

kl
(

E
f∼Q

ELS(f)
∥∥∥ E
f∼Q

ELD(f)
)
≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

Proof By Theorem 18, with D(q, p) = kl(q‖p) and m′ = m, we have

Pr
S∼Dm

 ∀Q on H :

kl( E
f∼Q

ELS(f) ‖ E
f∼Q

ELD(f))≤ 1

m

[
KL(Q‖P )+ln

(
1

δ
E

S∼Dm
E
f∼P

em·kl(E
L
S (f) ‖E

L
D(f))

)]≥ 1− δ .

As the prior P is independent of S, we can swap the two expectations in E
S∼Dm

E
f∼P

em·kl(·‖·).

This observation, together with Lemma 19, gives

E
S∼Dm

E
f∼P

em·kl(ELS (f) ‖ELD(f)) = E
f∼P

E
S∼Dm

em·kl(ELS (f) ‖ELD(f)) ≤ E
f∼P

ξ(m) = ξ(m) .
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5.2 PAC-Bayesian Theory for the Gibbs Classifier

This section presents two classical PAC-Bayesian results that bound the risk of the Gibbs
classifier. One of these bounds is used to express a first PAC-Bayesian bound on the risk of
the majority vote classifier. Then, we explain how to compute the empirical value of this
bound by a root-finding method.

5.2.1 PAC-Bayesian Theorems for the Gibbs Risk

We interpret the two following results as straightforward corollaries of Theorem 20. Indeed,
from Definition 5, the expected linear loss of a Gibbs classifier GQ on a distribution D′ is
RD′(GQ). These two Corollaries are very similar to well-known PAC-Bayesian theorems. At
first, Corollary 21 is similar to the PAC-Bayesian theorem of Langford and Seeger (2001);

Seeger (2002); Langford (2005), with the exception that ln m+1
δ is replaced by ln ξ(m)

δ . Since
ξ(m) ≤ 2

√
m ≤ m + 1, this result gives slightly better bounds. Similarly, Corollary 22

provides a slight improvement of the PAC-Bayesian bound of McAllester (1999, 2003a).

Corollary 21 (Langford and Seeger, 2001; Seeger, 2002; Langford, 2005) For any distri-
bution D on X×{−1, 1}, for any set H of voters X → [−1, 1], for any prior distribution P
on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

kl
(
RS(GQ)

∥∥RD(GQ)
)
≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

Proof The result is directly obtained from Theorem 20 using the linear loss L = L` to
recover the Gibbs risk of Definition 5.

Corollary 22 (McAllester, 1999, 2003a) For any distribution D on X×{−1, 1}, for any
set H of voters X → [−1, 1], for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

RD(GQ) ≤ RS(GQ) +

√
1

2m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

Proof The result is obtained from Corollary 21 together with Pinsker’s inequality

2(q − p)2 ≤ kl(q‖p) .
We then have

Pr
S∼Dm

For all posteriors Q on H :

2·
(
RS(GQ)−RD(GQ)

)2
≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

The result is obtained by isolating RD(GQ) in the inequality, omitting the lower bound of
RD(GQ). Recall that the probability is “≥ 1−δ ”, hence if we omit an event, the probability
may just increase, continuing to be greater than 1−δ.
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5.2.2 A First Bound for the Risk of the Majority Vote

Let assume that the Gibbs risk RD(GQ) of a classifier is lower than or equal to 1
2 . Given

an empirical Gibbs risk RS(GQ) computed on a training set of m examples, the Kullback-
Leibler divergence KL(Q‖P ), and a confidence parameter δ, Corollary 21 says that the
Gibbs risk RD(GQ) is included (with confidence 1−δ) in the continuous set R δ

Q,S defined as

R δ
Q,S

def
=

{
r : kl

(
RS(GQ)

∥∥ r) ≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

]
and r ≤ 1

2

}
. (23)

Thus, an upper bound on RD(GQ) is obtained by seeking the maximum value of R δ
Q,S . As

explained by Proposition 10, we need to multiply the obtained value by a factor 2 to have
an upper bound on RD(BQ). This methodology is summarized by PAC-Bound 0.

Note that PAC-Bound 0 is also valid when RD(GQ) is greater than 1
2 , because in this

case, 2 · supR δ
Q,S = 1 (with confidence at least 1− δ), which is a trivial upper bound

of RD(BQ).

PAC-Bound 0 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q on H : RD(BQ) ≤ 2 · supR δ

Q,S

)
≥ 1− δ .

Proof If supR δ
Q,S = 1

2 , the bound is trivially valid because RD(BQ) ≤ 1. Otherwise, the
bound is a direct consequence of Proposition 10 and Corollary 21.

As we see, the proposed bound cannot be obtained by a closed-form expression. Thus, we
need to use a strategy as the one suggested in the following.

5.2.3 Computation of PAC-Bound 0

One can compute the value r=supR δ
Q,S of PAC-Bound 0 by solving

kl
(
RS(GQ)

∥∥ r) = 1
m

[
KL(Q‖P ) + ln ξ(m)

δ

]
, with RS(GQ) ≤ r ≤ 1

2 ,

by a root-finding method. This turns out to be an easy task since the left-hand side of
the equality is a convex function of r and the right-hand side is a constant value. Note
that solving the same equation with the constraint r ≤ RS(GQ) gives a lower bound of
RD(GQ), but not a lower bound on RD(BQ). Figure 4 shows an application example of
PAC-Bound 0.

5.3 Joint Error, Joint Success, and Paired-voters

We now introduce a few notions that are necessary to obtain new PAC-Bayesian theorems
for the C-bound in Sections 5.4 and 5.5.
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kl(RS(GQ)‖r)
1
m

[
KL(Q‖P ) + ln ξ(m)
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≈ 0.0117

Figure 4: Example of application of PAC-Bound 0. We suppose that KL(Q‖P ) = 5, m =
1000 and δ = 0.05. If we observe an empirical Gibbs risk RS(GQ) = 0.30, then
RD(GQ) ∈ R δ

Q,S ≈ [0.233, 0.373] with a confidence of 95%. On the figure, the

intersections between the two curves correspond to the limits of the interval R δ
Q,S .

Then, with these values, PAC-bound 0 gives RD(BQ) . 2 · 0.373 = 0.746.

5.3.1 The Joint Error and the Joint Success

We have already defined the expected disagreement dD
′

Q of a distribution Q of voters (Defi-
nition 7). In the case of binary voters, the expected disagreement corresponds to

dD
′

Q = E
h1∼Q

E
h2∼Q

(
E

(x,y)∼D′
I(h1(x) 6= h2(x))

)
.

Let us now define two closely related notions, the expected joint success sD
′

Q and the expected

joint error eD
′

Q . In the case of binary voters, these two concepts are expressed naturally by

eD
′

Q = E
h1∼Q

E
h2∼Q

(
E

(x,y)∼D′
I(h1(x) 6= y)I(h2(x) 6= y)

)
,

sD
′

Q = E
h1∼Q

E
h2∼Q

(
E

(x,y)∼D′
I(h1(x) = y)I(h2(x) = y)

)
.

Let us now extend in the usual way these equations to the case of real-valued voters.

Definition 23 For any probability distribution Q on a set of voters, we define the expected
joint error eD

′
Q relative to D′ and the expected joint success sD

′
Q relative to D′ as

eD
′

Q
def
= E

f1∼Q
E

f2∼Q

(
E

(x,y)∼D′
L`(f1(x), y) · L`(f2(x), y)

)
,

sD
′

Q
def
= E

f1∼Q
E

f2∼Q

(
E

(x,y)∼D′

[
1− L`(f1(x), y)

]
·
[
1− L`(f2(x), y)

])
.
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From the definitions of the linear loss (Definition 2) and the margin (Definition 8), we
can easily see that

eD
′

Q = E
(x,y)∼D′

(
1−MQ(x, y)

2

)2

=
1

4

(
1− 2 · µ1(MD′

Q ) + µ2(MD′

Q )
)
,

sD
′

Q = E
(x,y)∼D′

(
1 +MQ(x, y)

2

)2

=
1

4

(
1 + 2 · µ1(MD′

Q ) + µ2(MD′

Q )
)
.

Remembering from Equation (9) that dD
′

Q = 1
2

(
1− µ2(MD′

Q )
)

, we can conclude that eD
′

Q ,

sD
′

Q and dD
′

Q always sum to one:9

eD
′

Q + sD
′

Q + dD
′

Q = 1 .

We can now rewrite the first moment of the margin and the Gibbs risk as

µ1(MD′

Q ) = sD
′

Q − eD
′

Q = 1− (2eD
′

Q + dD
′

Q ) ,

RD′(GQ) = 1
2 (1− sD′Q + eD

′
Q ) = 1

2 (2eD
′

Q + dD
′

Q ) . (24)

Therefore, the third form of C-bound of Theorem 11 can be rewritten as

CD′Q = 1−

(
1− (2eD

′
Q + dD

′
Q )
)2

1− 2dD
′

Q

. (25)

5.3.2 Paired-Voters and Their Losses

This first generalization of the PAC-Bayesian theorem allows us to bound separately either
dDQ, eDQ or sDQ, and therefore to bound CDQ . To prove this result, we need to define a new
kind of voter that we call a paired-voter.

Definition 24 Given two voters fi : X → [−1, 1] and fj : X → [−1, 1], the paired-voter
fij : X → [−1, 1]2 outputs a tuple:

fij(x)
def
= 〈 fi(x), fj(x) 〉 .

Given a set of votersH weighted by a distributionQ onH, we define a set of paired-votersH2

weighted by a distribution Q2 as

H2 def
= {fij : fi, fj ∈ H} , and Q2(fij)

def
= Q(fi) ·Q(fj) . (26)

We now present three losses for paired-voters. Remember that a loss function has the
form Y×Y → [0, 1], where Y is the voter’s output space. As a paired-voter output is a

9. This is fairly intuitive in the case of binary voters. Indeed, given any example (x, y) and any two binary
voters h1, h2, we have either: both voters misclassify the example – i.e., h1(x) = h2(x) 6= y –, both voters
correctly classify the example – i.e., h1(x) = h2(x) = y –, or both voters disagree – i.e., h1(x) 6= h2(x).
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tuple, our new loss functions map [−1, 1]2 × {−1, 1} to [0, 1]. Thus,

Le
(
fij(x), y

) def
= L`(fi(x), y) · L`(fj(x), y) ,

Ls
(
fij(x), y

) def
=

[
1− L`(fi(x), y)

]
·
[
1− L`(fj(x), y)

]
,

Ld
(
fij(x), y

) def
= L`(fi(x)·fj(x) , 1) . (27)

The key observation to understand the next theorems is that the expected losses of
paired-voters H2 defined by Equation (26) allow one to recover the values of eD

′
Q , sD

′
Q and

dD
′

Q . Indeed, it directly follows from Definitions 3, 7 and 23, that

eD
′

Q = E
fij∼Q2

ELeD′
(
fij

)
; sD

′
Q = E

fij∼Q2
ELsD′

(
fij

)
; dD

′
Q = E

fij∼Q2
ELdD′

(
fij

)
. (28)

5.4 PAC-Bayesian Theory For Losses of Paired-voters

As explained in Section 5.2, classical PAC-Bayesian theorems, like Corollaries 21 and 22,
provide an upper bound on RD(GQ) that holds uniformly for all posteriors Q. A bound on
RD(BQ) is typically obtained by multiplying the former bound by the usual factor of 2, as
in PAC-Bound 0.

In this subsection, we present a first bound of RD(BQ) relying on the C-bound of Theo-
rem 11. A uniform bound on CDQ is obtained using the third form of the C-bound, through a
bound on the Gibbs risk RD(GQ) and another bound on the disagreement dDQ. The desired
bound on RD(GQ) is obtained by Corollary 21 as in PAC-Bound 0. To obtain a bound
on dDQ, we capitalize on the notion of paired-voters presented in the previous section. This
allows us to express two new PAC-Bayesian bounds on the risk of a majority vote, one for
the supervised case and another for the semi-supervised case.

5.4.1 A PAC-Bayesian Theorem for eDQ, s
D
Q, or dDQ

The following PAC-Bayesian theorem can either bound the expected disagreement dDQ, the
expected joint success sDQ or the expected joint error eDQ of a majority vote (see Definitions 7
and 23).

Theorem 25 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

kl
(
αSQ
∥∥αDQ) ≤ 1

m

[
2·KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ ,

where αD
′

Q can be either eD
′

Q , sD
′

Q or dD
′

Q .

Proof Theorem 25 is deduced from Theorem 20. We present here the proof for αD
′

Q = eD
′

Q .
The two other cases are very similar.

Consider the set of paired-voters H2 and the posterior distribution Q2 of Equation (26).
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Also consider the prior distribution P 2 on H2 such that P 2(fij)
def
= P (fi) · P (fj) . Then

we have,

KL(Q2‖P 2) = E
fij∼Q2

ln
Q2(fij)

P 2(fij)
= E

fij∼Q2
ln
Q(fi) ·Q(fj)

P (fi) · P (fj)

= E
fij∼Q2

[
ln
Q(fi)

P (fi)
+ ln

Q(fj)

P (fj)

]
= 2 ·KL(Q‖P ) .

Finally, from Equation (28), we have E
fij∼Q2

ELeD
(
fij

)
= eDQ and E

fij∼Q2
ELeS

(
fij

)
= eSQ .

Hence, by applying Theorem 20, we are done.

5.4.2 A New Bound for the Risk of the Majority Vote

Based on the fact that Theorem 25 gives a lower bound on the expected disagreement dDQ, we
now derive PAC-Bound 1, which is a PAC-Bayesian bound for the C-bound, and therefore,
for the risk of the majority vote.

Given any prior distribution P on H, we need the interval R δ
Q,S of Equation (23),

together with

D δ
Q,S

def
=

{
d : kl(dSQ‖ d) ≤ 1

m

[
2·KL(Q‖P ) + ln

ξ(m)

δ

]}
. (29)

We then express the following bound on the Bayes risk.

PAC-Bound 1 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

∀Q on H : RD(BQ) ≤ 1−

(
1− 2 · supRδ/2Q,S

)2

1− 2 · inf Dδ/2Q,S

 ≥ 1− δ ,

where Rδ/2Q,S and Dδ/2Q,S are respectively defined by Equations (23) and (29).

Proof By Proposition 9, we have that dSQ ≤ 1
2 . This, together with the facts that m is

finite and dSQ ∈ D δ
Q,S , implies that inf Dδ/2Q,S <

1
2 , and therefore that the denominator of the

fraction in the statement of PAC-Bound 1 is always strictly positive.

Necessarily, supRδ/2Q,S ≤ 1
2 . Let us consider the two following cases.

Case 1: supRδ/2Q,S = 1
2 . Then, 1− 2 · supRδ/2Q,S = 0, and the bound on RD(BQ) is 1, which

is trivially valid.

Case 2: supRδ/2Q,S <
1
2 . Then, we can apply the third form of Theorem 11 to obtain the up-

per bound on RD(BQ). The desired bound is obtained by replacing dDQ by its lower bound
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inf Dδ/2Q,S , and RD(GQ), by its upper bound supRδ/2Q,S . The two bounds can therefore be
deduced by suitably applying Corollary 21 (replacing δ by δ/2) and Theorem 25 (replacing
αSQ by dSQ, αDQ by dDQ and δ by δ/2).

This bound has a major inconvenience: it degrades rapidly if the bounds on the nu-
merator and the denominator are not tight. Note however that in the semi-supervised
framework, we can achieve tighter results because the labels of the examples do not affect
the value of dD

′
Q (see Definition 7). Indeed, it is generally assumed in this framework that

the learner has access to a huge amount m′ of unlabeled data (i.e., m′ � m). One can then
obtain a tighter bound of the disagreement. In this context, PAC-Bound 1’ stated below is
tighter than PAC-Bound 1.

PAC-Bound 1’ (Semi-supervised bound) For any distribution D on X×{−1, 1}, for
any set H of voters X → [−1, 1], for any prior distribution P on H, and any δ ∈ (0, 1], we
have

Pr
S∼Dm

SU∼Dm
′

unlabeled

∀Q on H : RD(BQ) ≤ 1−

(
1− 2 · supRδ/2Q,S

)2

1− 2 · inf D δ/2
Q,SU

 ≥ 1− δ .

Proof In the presence of a large amount of unlabeled data (denoted by the set SU ), one
can use Corollary 25 to obtain an accurate lower bound of dDQ. An upper bound of RD(GQ)
can also be obtained via Corollary 21 but, this time, on the labeled data S. Thus, similarly
as in the proof of PAC-Bound 1, the result follows from Theorem 11.

5.4.3 Computation of PAC-Bounds 1 and 1’

To compute PAC-Bound 1, we obtain the values of r = supRδ/2Q,S and d = inf Dδ/2Q,S by
solving

kl
(
RS(GQ)

∥∥ r) = 1
m

[
KL(Q‖P ) + ln ξ(m)

δ/2

]
, with RS(GQ) ≤ r ≤ 1

2 ,

and kl
(
dSQ
∥∥ d) = 1

m

[
2 ·KL(Q‖P ) + ln ξ(m)

δ/2

]
, with d ≤ dSQ .

These equations are very similar to the one we solved to compute PAC-Bound 0, as described

in Section 5.2.2. Once r and d are computed, the bound on RD(BQ) is given by 1− (1−2·r)2
1−2·d .

The same methodology can be used to compute PAC-Bound 1’, except that in the
semi-supervised setting, the disagreement is computed on the unlabeled data SU .

5.5 PAC-Bayesian Theory to Directly Bound the C-bound

PAC-Bounds 1 and 1’ of the last section require two approximations to upper bound CDQ :
one on RD(GQ) and another on dDQ. We introduce below an extension to the PAC-Bayesian

theory (Theorem 28) that enables us to directly bound CDQ . To do so, we directly bound any
pair of expectations among eDQ, sDQ and dDQ. For this reason, the new PAC-Bayesian theorem
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is based on a trivalent random variable instead of a Bernoulli one (which is bivalent). Note
that Seeger (2003) and Seldin and Tishby (2010) have presented more general PAC-Bayesian
theorems valid for k-valent random variables, for any positive integer k. However, our result
leads to tighter bounds for the k = 3 case.

Before we get to this new PAC-Bayesian theorem (Theorem 28), we need some prelimi-
nary results.

5.5.1 A General PAC-Bayesian Theorem for Two Losses of Paired-Voters

Theorem 26 below allows us to simultaneously bound two losses of paired-voters. This
result is inspired by the general PAC-Bayesian theorem for real-valued losses (Theorem 18).

Theorem 26 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any two losses Lα,Lβ : [−1, 1] × {−1, 1} → [0, 1] with α, β ∈ {e, s, d}, for any prior
distribution P on H, for any δ ∈ (0, 1], for any m′ > 0, and for any convex function
D(q1, q2 ‖ p1, p2), we have

Pr
S∼Dm


For all posteriors Q on H :

D

(
E

fij∼Q2
ELαS
(
fij

)
, E
fij∼Q2

E
Lβ
S

(
fij

) ∥∥∥∥ E
fij∼Q2

ELαD
(
fij

)
, E
fij∼Q2

E
Lβ
D

(
fij

))
≤ 1

m′

[
2 ·KL(Q‖P ) + ln

(
Ω

δ

)]
 ≥ 1− δ ,

where Ω
def
= E

S∼Dm
E

fij∼P 2
e
m′·D

(
ELαS
(
fij

)
, E
Lβ
S

(
fij

)∥∥∥ELαD
(
fij

)
, E
Lβ
D

(
fij

))
.

Proof To simplify the notation, first let αD
′

ij
def
= ELαD′

(
fij
)

and βD
′

ij
def
= ELβD′

(
fij
)
.

Now, since Efij∼P 2 em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij ) is a positive random variable, Markov’s inequal-

ity (Lemma 46, in Appendix A) can be applied to give

Pr
S∼Dm

(
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij ) ≤ 1

δ
E

S∼Dm
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij )) ≥ 1− δ .

By exploiting the fact that ln(·) is an increasing function, and by the definition of Ω, we
obtain

Pr
S∼Dm

(
ln

[
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij )] ≤ ln

[
Ω

δ

])
≥ 1− δ . (30)

We apply the change of measure inequality (Lemma 17) on the left side of innermost in-
equality, with φ(f) = m′ · D

(
αSij , β

S
ij

∥∥αDij , βDij), P = P 2 and Q = Q2. We then use Jensen’s
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inequality (Lemma 47, in Appendix A), exploiting the convexity of D :

ln

[
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij )]
≥ m′ E

fij∼Q2
D
(
αSij , β

S
ij

∥∥αDij , βDij)−KL
(
Q2
∥∥P 2

)
≥ m′ · D

(
E

fij∼Q2
αSij , E

fij∼Q2
βSij

∥∥∥∥∥ E
fij∼Q2

αDij , E
fij∼Q2

βDij

)
−KL

(
Q2
∥∥P 2

)
= m′ · D

(
E

fij∼Q2
αSij , E

fij∼Q2
βSij

∥∥∥∥∥ E
fij∼Q2

αDij , E
fij∼Q2

βDij

)
− 2 ·KL

(
Q
∥∥P ) .

The last equality KL
(
Q2
∥∥P 2

)
= 2 ·KL

(
Q
∥∥P ) has been shown in the proof of Theorem 25.

The result can then be straightforwardly obtained by inserting the last inequality into Equa-
tion (30).

5.5.2 A PAC-Bayesian Theorem for Any Pair Among eDQ, s
D
Q, and dDQ

In Section 5.1, Theorem 20 was obtained from Theorem 18. Similarly, the main theorem of
this subsection (Theorem 28) is deduced from Theorem 26. However, a notable difference
between Theorems 20 and 28 is that the former uses of the KL-divergence kl(·‖·) between
distributions of two Bernoulli (i.e., bivalent) random variables, and the latter uses the
KL-divergence kl(·, ·‖·, ·) between distributions of two trivalent random variables.

Given two trivalent random variables Yq and Yp with P (Yq = a) = q1, P (Yq = b) = q2,
P (Yq = c) = 1−q1−q2, and P (Yp = a) = p1, P (Yp = b) = p2, P (Yp = c) = 1−p1−p2, we
denote by kl(q1, q2 ‖ p1, p2) the Kullback-Leibler divergence between Yq and Yp. Thus, we
have

kl(q1, q2 ‖ p1, p2)
def
= q1 ln

q1

p1
+ q2 ln

q2

p2
+ (1− q1 − q2) ln

1− q1 − q2

1− p1 − p2
. (31)

Note that kl
(
q1, q2 ‖ p1, p2) is a shorthand notation for KL(Q‖P ) of Equation (20), with

Q = (q1, q2, 1−q1−q2) and P = (p1, p2, 1−p1−p2). Corollary 50 (in Appendix A) shows that
kl
(
q1, q2 ‖ p1, p2) is a convex function.

To be able to apply Theorem 26 with D(q1, q2 ‖ p1, p2) = kl(q1, q2‖p1, p2), we need
Lemma 27 (below). This lemma is inspired by Lemma 19. However, in contrast with
the latter, which is based on Maurer’s lemma, Lemma 27 needs a generalization of it to
trivalent random variables (instead of bivalent ones). The proof of this generalization is
provided in Appendix A, listed as Lemma 52.

Lemma 27 For any distribution D on X×{−1, 1}, for any paired-voters fij, and any
positive integer m, we have

E
S∼Dm

e
m ·kl

(
ELαS (fij),E

Lβ
S (fij)

∥∥∥ ELαD (fij),E
Lβ
D

(
fij

))
≤ ξ(m) +m,

where Lα and Lβ can be any two of the three losses Ls, Le or Ld, and where ξ(m) is defined
at Equation (22). Therefore, m+

√
m ≤ ξ(m) +m ≤ m+ 2

√
m .
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Proof Let Yij be a random variable that follows a multinomial distribution with three

possible outcomes: a
def
= (1, 0), b

def
= (0, 1) and c

def
= (0, 0). The “Trinomial” distribu-

tion is chosen such that Pr (Yij =a) = ELαD (fij), Pr (Yij =b) = ELβD (fij) and Pr (Yij =c) =

1 − ELαD (fij) − ELβD (fij). Given m trials of Yij , we denote Y a
ij , Y

b
ij and Y c

ij the number

of times each outcome is observed. Note that Yij is totally defined by (Y a
ij , Y

b
ij), since

Y c
ij = m− Y a

ij − Y b
ij . We thus use the notation

Yij = (Y a
ij , Y

b
ij) ∼ Tij

def
= Trinomial

(
m, ELαD (fij), E

Lβ
D (fij)

)
.

Hence, we have

Pr
(Y aij ,Y

b
ij)∼Tij

(
Y aij =k1∧Y bij=k2

)
=
(
m
k1

)(
m−k1
k2

)[
ELαS (fij)

]k1[ELβS (fij)
]k2[

1−ELαS (fij)−ELβS (fij)
]m−k1−k2

,

for any k1 ∈ {0, ..,m} and any k2 ∈ {0, ..,m−k1}.
Now, applying Lemma 52 to the convex function em ·kl

(
· , · ‖ELαD (fij),E

Lβ
D (fij)

)
, and by the

definition of kl(·, ·‖·, ·), we have

E
S∼Dm

e
m ·kl

(
ELαS (fij),E

Lβ
S (fij)

∥∥∥ ELαD (fij),E
Lβ
D

(
fij

))

≤ E
(Y aij ,Y

b
ij)∼Tij

e
m ·kl

(
1
mY aij ,

1
mY bij

∥∥∥ ELαD (fij),E
Lβ
D

(
fij

))

= E
(Y aij ,Y

b
ij)∼Tij

(
1
mY

a
ij

ELαS (fij)

)Y aij ( 1
mY

b
ij

ELβS (fij)

)Y bij (
1− 1

mY
a
ij − 1

mY
b
ij

1− ELαS (fij)− ELβS (fij)

)m−Y aij−Y bij
.

As Yij follows a trinomial law, we then have

E
(Y aij ,Y

b
ij)∼Tij

(
1
mY

a
ij

ELαS (fij)

)Y aij ( 1
mY

b
ij

ELβS (fij)

)Y bij (
1− 1

mY
a
ij − 1

mY
b
ij

1− ELαS (fij)− ELβS (fij)

)m−Y aij−Y bij

=

m∑
k1=0

m−k1∑
k2=0

[
Pr

(Y aij ,Y
b
ij)∼Tij

(
Y aij = k1 ∧ Y bij = k2

)
×
(

k1
m

ELαS (fij)

)k1 ( k2
m

ELβS (fij)

)k2 (
1− k1

m − k2
m

1− ELαS (fij)− ELβS (fij)

)m−k1−k2 ]

=

m∑
k1=0

m−k1∑
k2=0

[(
m

k1

)(
m−k1
k2

)(
ELαS (fij)

)k1(
ELβS (fij)

)k2(
1−ELαS (fij)−ELβS (fij)

)m−k1−k2
×
(

k1
m

ELαS (fij)

)k1 ( k2
m

ELβS (fij)

)k2 (
1− k1

m − k2
m

1− ELαS (fij)− ELβS (fij)

)m−k1−k2 ]

=

m∑
k1=0

m−k1∑
k2=0

(
m

k1

)(
m−k1
k2

)(
k1
m

)k1 (k2
m

)k2 (
1− k1

m
− k2
m

)m−k1−k2
= ξ(m) +m.

The last equality has been proven by Younsi (2012). Recall that ξ(m) is defined by Equa-
tion (22).
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We are now ready to present the main result of this section. By bounding any pair of
expectations among eDQ, sDQ and dDQ, Theorem 28 is the perfect tool to directly bound the
C-bound.

Theorem 28 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q on H :

kl
(
αSQ, β

S
Q

∥∥αDQ, βDQ ) ≤ 1

m

[
2·KL(Q‖P ) + ln

ξ(m) +m

δ

] ≥ 1− δ ,

where αD
′

Q and βD
′

Q can be any two distinct choices among dD
′

Q , eD
′

Q and sD
′

Q .

Proof The result follows from Theorem 26 with D(q1, q2 ‖ p1, p2) = kl(q1, q2 ‖ p1, p2) and
m′ = m. Since Equation (28) shows that αD

′
Q = E

fij∼Q2
αD
′

ij and βD
′

Q = E
fij∼Q2

βD
′

ij , we have

Pr
S∼Dm

(
∀Q onH : kl

(
αSQ, β

S
Q ‖αDQ, βDQ

)
≤

1

m

[
2 ·KL(Q‖P ) + ln

(
1

δ
E

S∼Dm
E

fij∼P 2
emkl

(
αSij ,β

S
ij

∥∥αDij ,βDij ))]) ≥ 1− δ .

As the prior distribution P 2 is independent of S, we can swap the two expectations in

expression E
S∼Dm

E
fij∼P 2

emkl(αSij ,β
S
ij

∥∥αDij ,βDij ). This observation, together with Lemma 27, gives

E
S∼Dm

E
fij∼P 2

emkl
(
αSij ,β

S
ij

∥∥αDij ,βDij ) = E
fij∼P 2

E
S∼Dm

emkl
(
αSij ,β

S
ij

∥∥αDij ,βDij )
≤ E

fij∼P 2
ξ(m) +m

= ξ(m) +m.

A first version of Theorem 28 was proposed by Lacasse et al. (2006), with the differ-

ence that ln (m+1)(m+2)
2δ in the latter is now replaced by ln ξ(m)+m

δ in the former. Since

ξ(m) +m < (m+1)(m+2)
2 , the new theorem is therefore tighter.

5.5.3 Another Bound for the Risk of the Majority Vote

First, we need the following notation that is related to Theorem 28. Given any prior
distribution P on H,

A δ
Q,S

def
=

{
(d, e) : kl(dSQ, e

S
Q‖ d, e) ≤

1

m

[
2·KL(Q‖P ) + ln ξ(m)+m

δ

]}
. (32)

The bound is obtained by seeking the point of A δ
Q,S maximizing the C-bound. Since a

point (d, e) of A δ
Q,S expresses a disagreement d and a joint error e, we directly compute the

bound on CDQ using Equation (25).
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Note however that A δ
Q,S can contain points that are not possible in practice, i.e., points

that are not achievable with any data-generating distribution D. Indeed, by Proposition 9,
we know that

dDQ ≤ 2 ·RD(GQ) ·
(
1−RD(GQ)

)
.

Based on this property, it is possible to significantly reduce the achievable region of A δ
Q,S .

To do so, we must first rewrite this property based on dDQ and eDQ only.

dDQ ≤ 2 ·RD(GQ) ·
(
1−RD(GQ)

)
= 2 ·

(
eDQ + 1

2d
D
Q

)
·
(
1− (eDQ + 1

2d
D
Q)
)

⇔ 0 ≤ −1
2(dDQ)2 − 2eDQ · dDQ + 2eDQ − 2(eDQ)2

⇔ dDQ ≤ 2 ·
(√

eDQ − eDQ
)
. (33)

Note also that if RD(GQ) ≥ 1
2 , there is no bound on RD(BQ) better than the trivial one

RD(BQ) ≤ 1. We therefore consider only the pairs (d, e) ∈ A δ
Q,S that do not correspond to

that situation. Since RD(GQ) = 1
2(2eDQ + dDQ) (Equation 24), this is therefore equivalent to

considering only the pairs (d, e) such that 2e+ d < 1. We later show that this still gives a
valid bound. Thus, from all these ideas, we restrain A δ

Q,S (Equation 32) as follows:

Ã δ
Q,S

def
=

{
(d, e) ∈ A δ

Q,S : d ≤ 2(
√
e− e) and 2e+ d < 1

}
, (34)

and obtain the following bound that, in contrast with PAC-Bound 1, directly bounds CDQ .

PAC-Bound 2 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

∀Q on H : RD(BQ) ≤ sup
(d,e)∈Ã δQ,S

1−

(
1− (2e+ d)

)2

1− 2d


 ≥ 1− δ .

Proof We need to show that the supremum value in the statement of PAC-Bound 2 is a
valid upper bound of RD(BQ). Note that if Ã δ

Q,S = ∅, then the supremum is +∞, and the

bound is trivially valid. Therefore, we assume below that Ã δ
Q,S is not empty.

Let us consider (d, e) ∈ Ã δ
Q,S . From the conditions d ≤ 2(

√
e − e) and 2e + d < 1, it

follows by straightforward calculations that d < 1
2 . This implies that

1−
(
1− (2e+ d)

)2
1− 2d

< 1 ,

because both the numerator and the denominator of the fraction are strictly positive (re-
member that 2e+ d < 1). Thus, the supremum is at most 1.
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Let us consider the three following cases.

Case 1: The supremum is not attained in Ã δ
Q,S. Note that as Ã δ

Q,S is a subset of R2, the

supremum must be attained for a pair in the closure of Ã δ
Q,S . The latter is not a closed set

only because of its 2e + d < 1 constraint. Therefore, the supremum is achieved for a pair
(d, e) in the closure for which 1− (2e+ d) = 0, implying that the value of the supremum is
in that case 1, which trivially is a valid bound for RD(BQ).

Case 2: The supremum is attained in Ã δ
Q,S and has value 1. In that case, the bound is

again trivially valid.

Case 3: The supremum is attained in Ã δ
Q,S and has a value strictly lower than 1. In

that case, there must be an ε > 0 such that 2e + d < 1 − ε for all (d, e) ∈ Ã δ
Q,S . Hence,

because of Equation (33) and Theorem 28, we have that 2eDQ + dDQ < 1− ε with probability

1−δ. Since RD(GQ) = 1
2(2eDQ + dDQ) (Equation 24), this implies that, with probability 1−δ,

RD(GQ) < 1/2− 1/2ε. Hence, with probability 1−δ, Theorem 11 is valid – i.e., CDQ bounds

RD(BQ) – and (dDQ, e
D
Q) ∈ Ã δ

Q,S . Thus,

RD(BQ) ≤ CDQ = 1−

(
1− (2eDQ + dDQ)

)2

1− 2dDQ
≤ sup

(d,e)∈Ã δQ,S

1−

(
1− (2e+ d)

)2

1− 2d

 ,
and we are done.

In some situations, we can slightly improve PAC-Bound 2 by bounding the joint error eDQ
via Theorem 25 with δ replaced by δ/2. This removes all pairs (d, e) such that e does not

belong to the set Eδ/2Q,S defined as

Eδ/2Q,S
def
=

{
e : kl(eSQ‖ e) ≤

1

m

[
2·KL(Q‖P ) + ln ξ(m)

δ/2

]}
.

Then, by applying PAC-Bound 2, with δ replaced by δ/2, one can obtain the following
slightly improved bound.

PAC-Bound 2’ For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

∀Q on H : RD(BQ) ≤ sup
(d,e)∈Â δ/2Q,S

1−

(
1− (2e+ d)

)2

1− 2d


 ≥ 1− δ ,

where

Â δ/2
Q,S

def
=
{

(d, e) ∈ A δ/2
Q,S : d ≤ 2(

√
e− e) , 2e+ d < 1 and e ≤ sup Eδ/2Q,S

}
. (35)

Proof Immediate consequence of Theorem 25, PAC-Bound 2, and the union bound.
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(a) Contour plot of kl(0.4, 0.1‖d, e).
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Figure 5: Example of application of PAC-Bound 2. We suppose that KL(Q‖P ) = 5, m =
1000 and δ = 0.05. If we observe an empirical joint error eSQ = 0.10 and an

empirical disagreement dSQ = 0.40 (thus, a Gibbs risk RS(GQ) = 0.1 + 1
2 · 0.4 =

0.30), then we need to maximize the function FC(d, e) over the domain Ã δ
Q,S given

by three constraints: kl(0.4, 0.1‖ d, e) ≤ 1
m

[
2·KL(Q‖P )+ln ξ(m)+m

δ

]
≈ 0.0199 (blue

oval), d ≤ 2(
√
e−e) (black curve) and 2e+d < 1 (black dashed line). Therefore, we

obtain a bound RD(BQ) ≤ 0.679 (corresponding to the green diamond marker).

5.5.4 Computation of PAC-Bounds 2 and 2’

Let us consider the C-bound as a function FC of two variables (d, e) ∈ [0, 1
2 ]× [0, 1], instead

of a function of the distribution Q.

FC(d, e)
def
= 1−

[
1− (2e+ d)

]2
1− 2d

. (36)

Proposition 54 (provided in Appendix A) shows that FC is a concave function. There-

fore, PAC-Bound 2 is obtained by maximizing FC(d, e) in the domain Ã δ
Q,S (Equation 34),

which is both bounded and convex. Several optimization methods can achieve this. In our
experiments, we decompose FC(d, e) in two nested functions of a single argument:

sup
(d,e)∈Ã δQ,S

[
FC(d, e)

]
= sup

d:(d,·)∈Ã δQ,S

[
F ∗C (d)

]
, where F ∗C (d)

def
= sup
e:(d,e)∈Ã δQ,S

[
FC(d, e)

]
.

Thus, we implement the maximization of FC using a one-dimensional optimization algorithm
twice. Figure 5 shows an application example of PAC-Bound 2.

The computation of PAC-Bound 2’ is done using the same method, but we optimize

over the domain Â δ/2
Q,S (Equation 35) instead of Ã δ

Q,S , which is also bounded and convex.

Of course, this requires computing sup Eδ/2Q,S beforehand, using the same technique as for
PAC-Bounds 0, 1 and 1’. Figure 6 shows an application example of PAC-Bound 2’.
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Figure 6: Example of application of PAC-Bound 2’. We use the same quantities as for
Figure 5. The red vertical line corresponds to the upper bound on the joint error,
resulting in an improved bound of RD(BQ) ≤ 0.660 (corresponding to the red star
marker). Note however that, even if the bound here is tighter, the egg-region is a
bit bigger than in the case of PAC-Bound 2 because all the δ has been replaced
by δ/2.

5.6 Empirical Comparison Between PAC-Bounds on the Bayes Risk RD(BQ)

We now propose an empirical comparison of all PAC-Bounds we presented so far. The
numerical results of Figure 7 are obtained by using AdaBoost (Schapire and Singer, 1999)
with decision stumps on the Mushroom UCI data set (which contains 8124 examples). This
data set is randomly split into two halves: one training set S and one testing set T . For
each round of boosting, we compute the usual PAC-Bayesian bound of twice the Gibbs risk
(PAC-Bound 0) of the corresponding majority vote classifier, as well as the other variants
of the PAC-Bayesian bounds presented in this paper.

We can see that PAC-Bound 1 is generally tighter than PAC-Bound 0, and we obtain
a substantial improvement with PAC-Bound 2. Almost no improvement is obtained with
PAC-Bound 2’ in that case. We can also see that using unlabeled data to estimate dDQ helps,

as PAC-Bound 1’ is the tightest.10

However, we see in Figure 7 that after 8 rounds of boosting, all the bounds are degrading
even if the value of CSQ continues to decrease. This drawback is due to the fact that the

denominator of CSQ tends to 0, that is the second moment of the margin µ2(MS
Q) is close

to 0 (see the first or the second forms of Theorem 11). Hence, in this context, the first
moment of the margin µ1(MS

Q) must be small as well. Thus, any slack in the bound of
µ1(MD

Q) has a multiplicative effect on each of the three proposed PAC-bounds of RD(BQ).
Unfortunately, Boosting algorithms tend to construct majority votes with µ1(MS

Q) just
slightly larger than 0.

10. To obtain PAC-Bound 1’, we simulate the case where we have access to a large number of unlabeled
data by simply using the empirical value of dTQ computed on the testing set.
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Figure 7: Comparison of bounds of RD(BQ) during 60 rounds of Boosting.

6. PAC-Bayesian Bounds without KL

Having PAC-Bayesian theorems that bound the difference between CSQ and CDQ opens the
way to structural C-bound minimization algorithms. As for most PAC-Bayesian results, the
bound on CDQ depends on an empirical estimate of it, and on the Kullback-Leibler divergence
KL(Q‖P ) between the output distribution Q and the a priori defined distribution P . In this
section, we present a theoretical extension of our PAC-Bayesian approach that is mandatory
to develop the CDQ -minimization algorithm of Section 8.

The next theorems introduce PAC-Bayesian bounds that have the surprising property of
having no KL term. This new approach is driven by the fact that our attempts to construct
algorithms that minimize any of the PAC-Bounds presented in the previous section ended
up being unsuccessful. Surprisingly, the KL-divergence is a poor regularizer in this case, as
its empirical value tends to be overweighted in comparison with the empirical value of the
C-bound (i.e., CSQ).

There have already been some attempts to develop PAC-Bayesian bounds that do not
rely on the KL-divergence (see the localized priors of Catoni, 2007, or the distribution-
dependent priors of Lever et al., 2013). The usual idea is to bound the KL-divergence via
some concentration inequality. In the following, the KL term simply vanishes from the
bound, provided that we restrict ourselves to aligned posteriors, a notion that is properly
defined later on in this section. The fact that these new PAC-Bayesian bounds do not
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contain any KL divergence terms indicates that the restriction to aligned posteriors has
some “built in” regularization action.

The following theory is similar to the one used by Germain et al. (2011), in which two
learning algorithms inspired by the PAC-Bayesian theory are compared: one regularized
with the KL divergence, using a hyperparameter to control its weight, and one regularized by
restricting the posterior distributions to be aligned on the prior distribution. Surprisingly,
the latter algorithm uses one less parameter, and has been shown to have an as good
accuracy.

6.1 Self-Complemented Sets of Voters and Aligned Distributions

In this section, we assume that the (possibly infinite) set of voters H is self-complemented11.

Definition 29 A set of voters H is said to be self-complemented if there exists a bijection
c : H → H such that for any f ∈ H,

c(f) = −f .

Moreover, we say that a distribution Q on any self-complemented H is aligned on a prior
distribution P if

Q(f) +Q(c(f)) = P (f) + P (c(f)) , ∀f ∈ H .

When P is the uniform prior distribution and Q is aligned on P , we say that Q is
quasi-uniform. Note that the uniform distribution is itself a quasi-uniform distribution.

In the finite case, we consider self-complemented sets H of 2n voters X → Y. In this
setting, for any x ∈ X and any i ∈ {1, . . . , n}, we have that fi+n(x) = −fi(x). Moreover,
finite quasi-uniform distributions Q is such that for any i ∈ {1, . . . , n},

Q(fi) +Q(fi+n) =
1

n
. (37)

Equation (37) shows that when a distribution Q is restricted to being quasi-uniform,
the sum of the weight given to a pair of complementary voters is equal to 1

n . As Q is a
distribution, this means that the weight of any voter is lower-bounded by 0 and upper-
bounded by 1

n , giving rise to an L∞-norm regularization. Note that, in this context, the
maximum value of KL(Q‖P ) is reached when all voters have a weight of either 0 or 1

n .
Indeed, a quasi-uniform distribution Q is such that KL(Q‖P ) ≤ n( 1

n) ln( 1
n/

1
2n) = ln 2.

Consequently, the value of the KL term is necessarily small and plays a little role in PAC-
Bayesian bounds computed with quasi-uniform distributions. The following theorems and
corollaries are specializations that allow to slightly improve these PAC-Bayesian bounds
by getting rid of the KL term completely. To achieve these results, the associated proofs
require restrictions on the choice of convex function D and loss function L.

11. In Laviolette et al. (2011), this notion was introduced as an auto-complemented set of voters. However,
self-complemented is a more suitable name. Also, note that a similar notion, called a symmetric hypothesis
class, is introduced in Daniely et al. (2013).
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6.2 PAC-Bayesian Theorems without KL for the Gibbs Risk

Let us first specialize Theorem 18 to aligned distributions and linear loss L`. We first need
a new change of measure inequality, as this is the part of Theorem 18 where the KL term
appears.

Lemma 30 (Change of measure inequality for aligned posteriors)
For any self-complemented set H, for any distribution P on H, any distribution Q aligned
on P , and for any measurable function φ : H → R such that φ(f) = φ(c(f)) for all f ∈ H,
we have

E
f∼Q

φ(f) ≤ ln

(
E
f∼P

eφ(f)

)
.

Proof First, note that one can change the expectation over Q to an expectation over P ,
using the fact that φ(f) = φ(c(f)) for any f ∈ H, and that Q is aligned on P .

2 · E
f∼Q

φ(f) =

∫
H
df Q(f)φ(f) +

∫
H
df Q(c(f))φ(c(f))

=

∫
H
df Q(f)φ(f) +

∫
H
df Q(c(f))φ(f)

=

∫
H
df
(
Q(f) +Q(c(f))

)
φ(f)

=

∫
H
df
(
P (f) + P (c(f))

)
φ(f)

=

∫
H
df P (f)φ(f) +

∫
H
df P (c(f))φ(f)

=

∫
H
df P (f)φ(f) +

∫
H
df P (c(f))φ(c(f))

= 2 · E
f∼P

φ(f) .

The result is obtained by changing the expectation over Q to an expectation over P , and
then by applying Jensen’s inequality (Lemma 47, in Appendix A).

E
f∼Q

φ(f) = E
f∼P

φ(f) = E
f∼P

ln eφ(f) ≤ ln

(
E
f∼P

eφ(f)

)
.

Theorem 31 (PAC-Bayesian theorem for aligned posteriors) For any distribution
D on X×{−1, 1}, any self-complemented set H of voters X → [−1, 1], any prior distribution
P on H, any convex function D : [0, 1]× [0, 1]→ R for which D(q, p) = D(1− q, 1− p), for
any m′ > 0 and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

D
(
RS(GQ), RD(GQ)

)
≤ 1

m′

[
ln

(
1

δ
E

S∼Dm
E
f∼P

e
m′·D

(
EL`S (f),EL`D (f)

))] ≥ 1− δ .
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Similarly to Theorem 18, the statement of Theorem 31 above contains a value m′ which
is likely to be set to m in most cases. However, the distinction between m and m′ is
mandatory to develop the PAC-Bayesian theory for sample-compressed voters in Section 7.
Indeed, in proofs of forthcoming Theorems 39, 41 and 42, we have m′ = m − λ, where λ
is the size of the voters compression sequence (this concept is properly defined in Section 7).

Proof The proof follows the exact same steps as the proof of Theorem 18, using the
linear loss L = L` and replacing the use of the change of measure inequality (Lemma 17)
by the change of measure inequality for aligned posteriors (Lemma 30), with

φ(f) = m′ · D
(
EL`S (f), EL`D (f)

)
. Note that this function has the required property, as

D
(
EL`S (f), EL`D (f)

)
= D

(
1− EL`S (c(f)), 1− EL`D (c(f))

)
= D

(
EL`S (c(f)), EL`D (c(f))

)
.

The other steps of the proof stay exactly the same as the proof of Theorem 18.

Appendix B presents more general versions of the last two results.

Let us specialize Theorem 31 to the case where D(q, p) = kl(q‖p). Doing so, we re-
cover the classical PAC-Bayesian theorem (Theorem 20), but for aligned posteriors, which
therefore has no KL term.

Corollary 32 For any distribution D on X×{−1, 1}, any prior distribution P on a self-
complemented set H of voters X → [−1, 1], and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

kl
(
RS(GQ)

∥∥RD(GQ)
)
≤ 1

m

[
ln
ξ(m)

δ

] ≥ 1− δ ,

where kl(q‖p) and ξ(m) and defined by Equations (21) and (22) respectively.

Proof This result follows from Theorem 31 by choosing D(q, p) = kl(q, p) and m′ = m.
The rest of the proof relies on Lemma 19 (as for the proof of Theorem 20).

The following corollary is very similar to the original PAC-Bayesian bound of McAllester
(2003a), but without the KL term.

Corollary 33 For any distribution D on X×{−1, 1}, any self-complemented set H of vot-
ers X → [−1, 1], any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

RD(GQ) ≤ RS(GQ) +

√
1

2m

[
ln ξ(m)

δ

] ≥ 1− δ .

Proof The result is derived from Corollary 32, by using 2(q − p)2 ≤ kl(q‖p) (Pinsker’s
inequality), and isolating RD(GQ) in the obtained inequality.
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Unlike Theorem 18, Theorem 31 cannot straightforwardly be used for pairs of voters, as
we did in the proof of Theorem 25. The reason is that a posterior distribution that is the
result of the product of two aligned posteriors is not necessarily aligned itself. So, we have
to ensure that we can get rid of the KL term even in that case.

6.3 PAC-Bayesian Theorems without KL for the Expected Disagreement dDQ

The following theorem is similar to Theorem 31 for aligned posteriors, but deals with paired-
voters. Instead of the linear loss L`, we use the loss Ld of Equation (27), which is a linear
loss defined on a pair of voters. Again, the next two results can be seen as a particular case
of the two theorems from Appendix B.

In this subsection, we use the following shorthand notation. Given fij = 〈fi, fj〉 as
defined in Definition 24, the voters ficj , fijc and ficjc are defined as

ficj(x)
def
= 〈c(fi)(x), fj(x)〉, fijc(x)

def
= 〈fi(x), c(fj)(x)〉, and ficjc(x)

def
= 〈c(fi)(x), c(fj)(x)〉.

Recall that from Equation (26), we have H2 def
= {fij : fi, fj ∈ H} and Q2(fij)

def
=

Q(fi) ·Q(fj). Similarly, we define P 2(fij)
def
= P (fi) ·P (fj). Using this notation, let us first

generalize the change of measure inequality of Lemma 30 to paired-voters.

Lemma 34 (Change of measure inequality for paired-voters and aligned poste-
riors) For any self-complemented set H, for any distribution P on H, any distribution Q
aligned on P , and for any measurable function φ : H2 → R such that φ(fij) = φ(ficj) =
φ(fijc) = φ(ficjc) for all fij ∈ H2, we have

E
fij∼Q2

φ(fij) ≤ ln

(
E

fij∼P 2
eφ(fij)

)
.

Proof First, note that one can change the expectation over Q2 to an expectation over P 2,
using the fact that φ(fij) = φ(ficj) = φ(fijc) = φ(ficjc) for any fij ∈ H2, and that Q is
aligned on P . More specifically, we have the following.

4· E
fij∼Q2

φ(fij)

=

∫
H2

dfijQ
2(fij)φ(fij) +

∫
H2

dfijQ
2(ficj)φ(ficj) +

∫
H2

dfijQ
2(fijc)φ(fijc) +

∫
H2

dfijQ
2(ficjc)φ(ficjc)

=

∫
H2

dfij Q
2(fij)φ(fij) +

∫
H2

dfij Q
2(ficj)φ(fij) +

∫
H2

dfij Q
2(fijc)φ(fij) +

∫
H2

dfij Q
2(ficjc)φ(fij)

=

∫
H2

dfij

(
Q2(fij) +Q2(ficj) +Q2(fijc) +Q2(ficjc)

)
φ(fij)

=

∫
H2

dfij

(
P 2(fij) + P 2(ficj) + P 2(fijc) + P 2(ficjc)

)
φ(fij)

...

= 4 · E
fij∼P 2

φ(fij) .
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The result is then obtained by changing the expectation over Q2 to an expectation over P 2,
and then by applying Jensen’s inequality (Lemma 47, in Appendix A).

E
fij∼Q2

φ(fij) = E
fij∼P 2

φ(fij) = E
fij∼P 2

ln eφ(fij) ≤ ln

(
E

fij∼P 2
eφ(fij)

)
.

Theorem 35 (PAC-Bayesian theorem for paired-voters and aligned posteriors)
For any distribution D on X×{−1, 1}, any self-complemented set H of voters X → [−1, 1],
any prior distribution P on H, any convex function D : [0, 1] × [0, 1] → R for which
D(q, p) = D(1− q, 1− p), for any m′ > 0 and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

D
(
dSQ, d

D
Q

)
≤ 1

m′

[
ln

(
1

δ
E

S∼Dm
E

fij∼P 2
em
′·D(ELdS (fij),E

Ld
D (fij))

)] ≥ 1− δ ,

where fij is given in Definition 24, and where P 2(fij)
def
= P (fi) · P (fj).

Proof Theorem 35 is deduced from Theorem 31, by using the change of measure inequality
given by Lemma 34 instead of the one from Lemma 30, with φ(fij) = m′ · D(ELdS (fij), ELdD (fij)).
As the loss Ld is such that

ELdD′ (ficjc) = ELdD′ (fij) , and ELdD′ (ficj) = ELdD′ (fijc) = 1− ELdD′ (fij) ,

we then have that φ(fij) has the required property to apply Lemma 34.

Let us now specialize Theorem 35 to D(q, p) = kl(q‖p).
Corollary 36 For any distribution D on X×{−1, 1}, any self-complemented set H of vot-
ers X → [−1, 1], any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

kl
(
dSQ ‖ dDQ

)
≤ 1

m

[
ln ξ(m)

δ

]  ≥ 1− δ .

Proof The result is directly obtained from Theorem 35, by choosing D(q, p) = kl(q, p).
The rest of the proof relies on Lemma 19.

Similarly as for Corollary 33, we can easily derive the following result.

Corollary 37 For any distribution D on X×{−1, 1}, for any self-complemented set H of
voters X → [−1, 1], any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

dDQ ≥ dSQ −
√

1

2m

[
ln ξ(m)

δ

]  ≥ 1− δ .
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Proof The result is derived from Corollary 36, by using 2(q − p)2 ≤ kl(q‖p) (Pinsker’s
inequality), and isolating dDQ in the obtained inequality.

6.4 A Bound for the Risk of the Majority Vote without KL Term

Finally, we make use of these results to bound CDQ – and therefore RD(BQ) – for aligned
posteriors Q, giving rise to PAC-Bound 3. Aside from the fact that this bound has no KL
term, it is similar to PAC-Bound 1, as it separately bounds the Gibbs risk and the expected
disagreement. This new PAC-Bayesian bound provides us with a starting point to design
the MinCq leaning algorithm introduced in Section 8.

PAC-Bound 3 For any distribution D on X×{−1, 1}, for any self-complemented set H
of voters X → [−1, 1], for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 ∀Q aligned on P :

RD(BQ) ≤ 1−
(

1− 2 · r
)2

1− 2 · d = 1−
(
µ1

)2
µ2

 ≥ 1− δ ,

where

r
def
= min

(
1
2 , RS(GQ) +

√
1

2m

[
ln ξ(m)

δ/2

])
, d

def
= max

(
0, dSQ −

√
1

2m

[
ln ξ(m)

δ/2

])
,

µ1
def
= max

(
0, µ1(MS

Q)−
√

2
m

[
ln ξ(m)

δ/2

])
, µ2

def
= min

(
1, µ2(MS

Q) +

√
2
m

[
ln ξ(m)

δ/2

])
.

Proof The inequality is a consequence of Theorem 11, as well as Corollaries 33 and 37.

The equality 1− (1−2·r)2
1−2·d = 1− (µ1 )2

µ2
is a direct application of Equations (7) and (9).

PAC-Bound 3’ that is presented at the end of Section 7 accepts voters that are kernel
functions defined using a part of the training set S. This is unusual in the PAC-Bayesian
theory, since the prior P on the set of voters has to be defined before seeing the training
set S. To overcome this difficulty, we use the sample compression theory.

7. PAC-Bayesian Theory for Sample-Compressed Voters

PAC-Bayesian theorems of Sections 5 and 6 are not valid when H consists of a set of
functions of the form ±k(xi, ·) for some kernel k : X × X → [−1, 1], as is the case with the
Support Vector Machine classifier (see Equation 1). This is because the definition of each
involved voter depends on an example (xi, yi) of the training data S. This is problematic
from the PAC-Bayesian point of view because the prior on the voters is supposed to be
defined before seeing the data S. There are two known methods to overcome this problem.

The first method, introduced by Langford and Shawe-Taylor (2002), considers a surro-
gate set of voters Hk of all the linear classifiers in the space induced12 by the kernel k. They

12. This space is also known as a Reproducible Kernel Hilbert Space (RKHS). For more details, see Cristianini
and Shawe-Taylor (2000) and Schölkopf et al. (2001)
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then make use of the representer theorem to show that the classification function turns out
to be a linear combination of the examples, similar to the Support Vector Machine classi-
fier (Equation 1). To avoid the curse of dimensionality, they propose restricting the choice
of the prior and posterior distributions on Hk to isotropic Gaussian centered on a vector
representing a particular linear classifier. Based on this approach, Germain et al. (2009)
suggests a learning algorithm for linear classifiers that exactly consists in a PAC-Bayesian
bound minimization.

The second method, that is presented in the present section, is based on the sample
compression setting of Floyd and Warmuth (1995). It has been adapted to the PAC-
Bayesian theory by Laviolette and Marchand (2005, 2007), allowing one to directly deal
with the case where voters are constructed using examples in the training set, without
involving any RKHS notion nor any representer theorem. Conversely to the first method
described above, the sample compression approach allows one not only to deal with kernel
functions, but with any kind of similarity measure between examples, hence to deal with
any kind of voters.

7.1 The General Sample Compression Setting

In the sample compression setting, learning algorithms have access to a data-dependent set of
voters, that we refer to as sc-voters. Given a training sequence13 S = 〈 (x1, y1), . . . , (xm, ym) 〉,
each sc-voter is described by a sequence Si of elements of S called the compression sequence,
and a message σ which represents the additional information needed to obtain a voter from

Si. If i = 〈i1, i2, .., ik〉, then Si
def
= 〈(xi1 , yi1), (xi2 , yi2), . . . , (xik , yik)〉. In this paper, repeti-

tions are allowed in Si, and k, the number of indices present in i (counting the repetitions),
is denoted by |i|.

The fact that each sc-voter is described by a compression sequence and a message implies
that there exists a reconstruction function R(Si, σ) that outputs a classifier when given an
arbitrary compression sequence Si and a message σ. The message σ is chosen from the
set ΣSi

of all messages that can be supplied with the compression sequence Si. In the
PAC-Bayesian setting, ΣSi

must be defined a priori (before observing the training data)
for all possible sequences Si, and can be either a discrete or a continuous set. The sample
compression setting strictly generalizes the (classical) non-sample-compressed setting, since
the latter corresponds to the case where |i| = 0, the voters being then defined only via the
messages.

7.2 A Simplified Sample Compression Setting

For the needs of this paper, we consider a simplified framework where sc-voters have a
compression sequence of at most λ examples (possibly with repetitions) and a message
string of λ bits that we represent by a sequence of “−1” and “+1”. Instead of being defined
on sc-voters, the weighted distribution Q is defined on Iλ × Σλ, where

Iλ def
=
{
〈i1, i2, .., ik〉 : k ∈ {0, .., λ} and ij ∈ {1, ..,m}

}
and Σλ

def
=
{
− 1, 1

}λ
. (38)

13. The sample compression theory considers the training examples as a sequence instead of a set, because
it refers to the training examples by their indices.
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In other words, Q(i,σ) corresponds to the weight of the sc-voter output byR(Si,σ), i.e., the
sc-voter of compression sequence i = 〈i1, . . . , i|i|〉 ∈ Iλ and message σ = 〈σ1, . . . , σλ〉 ∈ Σλ.
In particular, a prior (resp., a posterior) on the set of all sc-voters is now simply a prior
on the set Iλ × Σλ. Thus, such a prior can really be defined a priori , before seeing the
data S.14 The set of sc-voters is therefore only defined when the training sequence S is
given, and corresponds to

HRS,λ
def
= {R(Si,σ) : i ∈ Iλ, σ ∈ Σλ} .

Finally, given a training sequence S and a reconstruction functionR, for a distribution Q
on Iλ × Σλ, we define the Bayes classifier as

BQ,S
def
= sgn

[
E

(i,σ)∼Q
R(Si,σ)

]
.

We then define the Bayes risk RD′(BQ,S) and the Gibbs risk RD′(GQ,S) of a distribution Q
on Iλ × Σλ relative to D′ as

RD′(BQ,S)
def
= EL01D′

(
BQ,S

)
,

RD′(GQ,S)
def
= E

(i,σ)∼Q
EL`D′

(
R(Si,σ)

)
.

7.3 A First Sample-Compressed PAC-Bayesian Theorem

To derive PAC-Bayesian bounds for majority votes of sc-voters, one must deal with the
following issue: even if the training sequence S is drawn i.i.d. from a data-generating distri-
bution D, the empirical risk of the Gibbs RS(GQ,S) is not an unbiased estimate of its true
risk RD(GQ,S). For instance, the reconstruction function R can be such that an sc-voter
output by R(Si,σ) never errs on an example belonging to its compression sequence Si; this
biases the empirical risk because examples of Si are all in S.

To deal with this bias, the 1
m factor in the usual PAC-Bayesian bounds is replaced by a

factor of the form 1
m−l in their sample compression versions. In Laviolette and Marchand

(2005, 2007), l corresponds to the Q-average size of the sample compression sequence. In
the present paper, we restrain ourselves to a simpler case, where l is the maximum possible
size of a compression sequence (i.e., l = λ). This simplification allows us to deal with
the biased character of the empirical Gibbs risk using a proof approach similar to the one
proposed in Germain et al. (2011). The key step of this approach is summarized in the
following lemma.

Lemma 38 Let R be a reconstruction function that outputs sc-voters of size at most λ
(where λ < m). For any distribution D on X×{−1, 1}, and for any prior distribution P
on Iλ × Σλ,

E
S∼Dm

E
(i,σ)∼P

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
≤ e4λ · ξ(m−λ) ,

where ξ(·) is defined by Equation (22), and therefore we have that ξ(m−λ) ≤ 2
√
m−λ .

14. Laviolette and Marchand (2007) describe a more general setting where, for each S ∈ (X × Y)m, a prior
is defined on Iλ × ΣSi . Hence, the messages may depend on the compression sequence Si.
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Proof As the the choice of (i,σ) according to the prior P is independent15 of S, we have

E
S∼Dm

E
(i,σ)∼P

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
= E

(i,σ)∼P
E

S∼Dm
e(m−λ)·2·

(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
(39)

= E
(i,σ)∼P

E
Si∼Dλ

E
Sic∼Dm−λ

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
. (40)

Let us now rewrite the empirical loss of an sc-voter as a combination of the loss on its
compression sequence Si and the loss on the other training examples Sic .

EL`S (R(Si,σ)) =
1

m

[
λ · EL`Si

(R(Si,σ)) + (m−λ) · EL`Sic
(R(Si,σ))

]
.

Since 0 ≤ EL`D′(R(Si,σ)) ≤ 1 and 2 · (q − p)2 ≤ kl(q‖p) (Pinsker’s inequality), we have

(m− λ) · 2 ·
(
EL`S (R(Si,σ))− EL`D (R(Si,σ))

)2
= (m− λ) · 2 ·

(
1
m

[
λ · EL`Si

(R(Si,σ)) + (m−λ) · EL`Sic
(R(Si,σ))

]
− EL`D (R(Si,σ))

)2
= (m− λ) · 2 ·

(
λ
m

[
EL`Si

(R(Si,σ))− EL`Sic
(R(Si,σ))

]
+
[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
])2

= (m− λ) · 2 ·
((

λ
m

)2[EL`Si
(R(Si,σ))− EL`Sic

(R(Si,σ))
]2

+
[
EL`Sic

(R(Si,σ))−EL`D (R(Si,σ))
]2

+ 2λ
m

[
EL`Si

(R(Si,σ))− EL`Sic
(R(Si,σ))

][
EL`Sic

(R(Si,σ))−EL`D (R(Si,σ))
])

≤ (m− λ) · 2 ·
((

λ
m

)2
+
[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
]2

+ 2λ
m

)
= 2λ ·

(
2− λ

m −
(
λ
m

)2)
+ (m− λ) · 2 ·

[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
]2

≤ 4λ+ (m− λ) · 2 ·
[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
]2

≤ 4λ+ (m− λ) · kl
(
EL`Sic

(R(Si,σ)) ‖EL`D (R(Si,σ))
)
. (41)

Note that R(Si,σ) does not depend on examples contained in Sic . Thus, from the point
of view of Sic , R(Si,σ) is a classical voter (not a sample-compressed one). Therefore, one
can apply Lemma 19, replacing S ∼Dm by Sic ∼Dm−λ, and f by R(Si,σ). Lemma 19,
together with Equations (40) and (41), gives

E
(i,σ)∼P

E
Si∼Dλ

E
Sic∼Dm−λ

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
≤ e4λ · E

(i,σ)∼P
E

Si∼Dλ
E

Sic∼Dm−λ
e

(m−λ)·kl
(
EL`Sic (R(Si,σ)) ‖EL`D (R(Si,σ))

)
≤ e4λ · E

(i,σ)∼P
E

Si∼Dλ
ξ(m−λ) = e4λ · ξ(m−λ) ,

and we are done.

15. Note that because of this independence, the exchange in the order of the two expectations (Line 39) is
trivial. This independence is a direct consequence of our choice to only consider the simplified setting
described by Equation (38). In the more general setting of Laviolette and Marchand (2007), this part of
the proof is more complicated.

833



Germain, Lacasse, Laviolette, Marchand and Roy

The next PAC-Bayesian theorem presents the generalization of McAllester’s PAC-Bayesian
bound (Corollary 22) for the sample compression case.

Theorem 39 Let R be a reconstruction function that outputs sc-voters of size at most λ
(where λ < m). For any distribution D on X×{−1, 1}, for any prior distribution P on
Iλ × Σλ , and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q :

RD(GQ,S) ≤ RS(GQ,S) +

√
1

2(m−λ)

[
KL(Q‖P ) + 4λ+ ln ξ(m−λ)

δ

]  ≥ 1− δ .

Proof We apply the exact same steps as in the proof of Theorem 18, with m′ = m − λ,
f = R(Si,σ), and D(q, p) = 2(q − p)2, we obtain

Pr
S∼Dm


For all posteriorsQ :

2
(
RS(GQ,S)−RD(GQ,S)

)2
≤ 1

m−λ

[
KL(Q‖P ) + ln

(
1

δ
E

S∼Dm
E

(i,σ)∼P
e(m−λ)·2·

(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2)]
≥ 1− δ .

The result then follows from Lemma 38 and easy calculations.

All the PAC-Bayesian results presented in the preceding sections can be similarly gen-
eralized. We leave them to the reader with the exception of the PAC-Bayesian bounds that
have no KL, that are used in the next section, as we present the learning algorithm MinCq
that minimizes the C-bound.

7.4 Sample-Compressed PAC-Bayesian Bounds without KL

The bounds presented in this section generalize the results presented in Section 6 to the
sample compression case. We first need to generalize the notion of self-complement (Defi-
nition 29) to sc-voters.

Definition 40 A reconstruction function R is said to be self-complemented if for any train-
ing sequence S ∈ (X × Y)m and any (i,σ) ∈ Iλ × Σλ, we have

−R(Si,σ) = R(Si,−σ) ,

where, if σ = 〈σ1, .., σλ〉, then −σ = 〈−σ1, ..,−σλ〉.

7.4.1 A PAC-Bayesian Theorem for the Gibbs Risk of Sc-Voters

Theorem 41 Let R be a self-complemented reconstruction function that outputs sc-voters
of size at most λ (where λ < m). For any distribution D on X×{−1, 1}, for any prior
distribution P on Iλ × Σλ , and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q aligned on P :

RD(GQ,S) ≤ RS(GQ,S) +

√
1

2(m−λ)

[
4λ+ ln ξ(m−λ)

δ

]  ≥ 1− δ .
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Proof First note that 2· (q− p)2 = 2· ((1− q)− (1− p))2. Then apply the exact same steps
as in the proof of Theorem 31 with m′ = m− λ, f = R(Si,σ), and D(q, p) = 2(q − p)2 to
obtain

Pr
S∼Dm

For all posteriorsQ aligned on P :

2
(
RS(GQ,S)−RD(GQ,S)

)2
≤ 1

m−λ

[
ln

(
1

δ
E

S∼Dm
E

(i,σ)∼P
e(m−λ)·2·

(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2)]
≥ 1− δ .

The result then follows from Lemma 38 and easy calculations.

7.4.2 A PAC-Bayesian Theorem for the Disagreement of Sc-Voters

Given a training sequence S and a reconstruction function R, we define the expected dis-
agreement of a distribution Q on Iλ × Σλ relative to D′ as

dD
′

Q,S
def
= E

x∼D′X
E

(i,σ)∼Q
E

(i′,σ′)∼Q
L`
(
R(Si,σ)(x),R(Si′ ,σ

′)(x)
)

= E
(i,i′,σ,σ′)∼Q2

ELdD′
(
R(Si,i′ ,σ,σ

′)
)
,

where

Q2(i, i′,σ,σ′)
def
= Q(i,σ) ·Q(i′,σ′) ,

R(Si,i′ ,σ,σ
′)(x)

def
=

〈
R(Si,σ)(x),R(Si′ ,σ

′)(x)
〉
.

Thus, R is a new reconstruction function that outputs an sc-paired-voter which is the
sample-compressed version of the paired-voter of Definition 24. From there, we adapt
Corollary 37 to sc-voters, and we obtain the following PAC-Bayesian theorem. This result
bounds dDQ,S for posterior distributions Q aligned on a prior distribution P .

Theorem 42 Let R be a self-complemented reconstruction function that outputs sc-voters
of size at most λ (where λ < bm2 c). For any distribution D on X×{−1, 1}, for any prior
distribution P on Iλ × Σλ, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q aligned on P :

dDQ,S ≥ dSQ,S −
√

1

2(m−2λ)

[
8λ+ ln ξ(m−2λ)

δ

]  ≥ 1− δ .

Proof Let P 2(i, i′,σ,σ′)
def
= P (i,σ)·P (i′,σ′). Now note that 2·(q−p)2 = 2·((1−q)−(1−p))2.

Then apply the exact same steps as in the proof of Theorem 35 with m′ = m − 2λ,
fij = R(Si,i′ ,σ,σ

′) and D(q, p) = 2(q − p)2 to obtain

Pr
S∼Dm

For all posteriorsQ aligned on P :

2
(
dSQ,S−dDQ,S

)2
≤ 1

m

[
ln

(
1

δ
E

S∼Dm
E

(i,i′,σ,σ′)∼P 2
em·2·

(
ELdS (R(Si,i′ ,σ,σ

′))−ELdD (R(Si,i′ ,σ,σ
′))
)2)]

≥ 1− δ .
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Calculations similar to the ones of the proof of Lemma 38 (with λ replaced by 2λ) give

E
S∼Dm

E
(i,i′,σ,σ′)∼P 2

e(m−2λ)·2·
(
ELdS (R(Si,i′ ,σ,σ

′))−ELdD (R(Si,i′ ,σ,σ
′))
)2
≤ e8λ · ξ(m−2λ) .

Therefore, we have

Pr
S∼Dm

(
For all posteriorsQ aligned on P :

2
(
dSQ,S−dDQ,S

)2
≤ 1

m−2λ

[
8λ+ ln ξ(m−2λ)

δ

]) ≥ 1− δ .

and the result is obtained by isolating dDQ,S in the inequality.

7.4.3 A Sample Compression Bound for the Risk of the Majority Vote

Let us now exploit Theorems 41 and 42, together with the C-bound of Theorem 11, to
obtain a bound on the risk on a majority vote with kernel functions as voters. Given any
similarity function (possibly a kernel) k : X × X → [−1, 1] and a training sequence size
of m, we consider a majority vote of sc-voters of compression size at most 1 given by the
following reconstruction function,

Rk
(
Si, 〈σ〉

)
(x)

def
=

{
σ if i=〈 〉,
σ · k(xi, x) otherwise ( i=〈i〉 ),

where i ∈ I1 = {〈 〉, 〈1〉, 〈2〉, . . . , 〈m〉} and 〈σ〉 ∈ Σ1 (thus, σ ∈ {−1, 1}). Here, the elements
of sets I1 and Σ1 are obtained from Equation (38), with λ = 1. Note that Rk is self-
complemented (Definition 40) because −Rk

(
Si, 〈σ〉

)
= Rk

(
Si, 〈−σ〉

)
for any (i,σ).

Once the training sequence S ∼ Dm is observed, the (self-complemented) reconstruction
function Rk gives rise to the following set of 2m+2 sc-voters,

HRkS,1
def
=
{
b(·), k(x1, ·), k(x2, ·), . . . , k(xm, ·),−b(·),−k(x1, ·),−k(x2, ·), . . . ,−k(xm, ·)

}
,

where b : X → {1} is a “dummy voter” that always outputs 1 and allows introducing a
bias value into the majority vote classifier. Note that HRkS,1 is a self-complemented set of

sc-voters, and the margin of the majority vote given by the distribution Q on HRkS,1 is

MQ,S(x, y)
def
= y

(
Q
(
b(·)

)
−Q

(
−b(·)

)
+

m∑
i=1

[
Q
(
k(xi, ·)

)
−Q

(
−k(xi, ·)

)]
k(xi, x)

)
.

Consequently, the empirical first and second moments of this margin are

µ1(MS
Q,S) =

1

m

m∑
i=1

MQ,S(xi, yi), and µ2(MS
Q,S) =

1

m

m∑
i=1

[
MQ,S(xi, yi)

]2
.

Hence, the empirical Gibbs risk and the empirical expected disagreement can be expressed
by

RS(GQ,S) =
1

2

(
1− µ1(MS

Q,S)
)
, and dSQ,S =

1

2

(
1− µ2(MS

Q,S)
)
. (42)

Thus, we obtain the following bound on the risk of a majority vote of kernel voters
RD(BQ,S) for aligned posteriors Q.
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PAC-Bound 3’ Let k : X × X → [−1, 1]. For any distribution D on X×{−1, 1}, for any
prior distribution P on HRkS,1, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 ∀Q aligned on P :

RD(BQ,S) ≤ 1−
(

1− 2 · r
)2

1− 2 · d = 1−
(
µ1

)2
µ2

 ≥ 1− δ ,

where

r
def
= min

(
1
2 , RS(GQ,S) +

√
1

2(m−1)

[
4 + ln ξ(m−1)

δ/2

])
,

d
def
= max

(
0, dSQ,S −

√
1

2(m−2)

[
8 + ln ξ(m−2)

δ/2

])
,

µ1
def
= max

(
0, µ1(MS

Q,S)−
√

2
m−1

[
4 + ln ξ(m−1)

δ/2

])
,

µ2
def
= min

(
1, µ2(MS

Q,S) +

√
2

m−2

[
8 + ln ξ(m−2)

δ/2

])
.

Proof The proof is almost identical to the one of PAC-Bound 3, except that it relies on
sample-compressed PAC-Bayesian bounds. Indeed, the inequality is a consequence of The-

orem 11, as well as Theorems 41 and 42. The equality 1 − (1−2·r)2
1−2·d = 1 − (µ1 )2

µ2
is a direct

application of Equation (42).

PAC-Bounds 3 and 3’ are expressed in two forms. The first form relies on bounds on
the Gibbs risk and the expected disagreement (denoted r and d). The second form relies
on bounds on the first and second moments of the margin (denoted µ1 and µ2). This latter
form is used to justify the learning algorithm presented in Section 8.

8. MinCq: Learning by Minimizing the C-bound

In this section, we propose a new algorithm, that we call MinCq, for constructing a weighted
majority vote of voters. One version of this algorithm is designed for the supervised induc-
tive framework and minimizes the C-bound. A second version of MinCq that minimizes the
C-bound in the transductive (or semi-supervised) setting can be found in Laviolette et al.
(2011). Both versions can be expressed as quadratic programs on positive semi-definite
matrices.

As is the case for Boosting algorithms (Schapire and Singer, 1999), MinCq is designed
to output a Q-weighted majority vote of voters that perform rather poorly individually and,
consequently, are often called weak learners. Hence, the decision of each vote is based on a
small majority (i.e., with a Gibbs risk just a bit lower than 1/2). Recall that in situations
where the Gibbs risk is high (i.e., the first moment of the margin is close to 0), the C-bound
can nevertheless remain small if the voters of the majority vote are maximally uncorrelated.

Unfortunately, minimizing the empirical value of the C-bound tends to overfit the data.
To overcome this problem, MinCq uses a distribution Q of voters which is constrained to
be quasi-uniform (see Equation 37) and for which the first moment of the margin is forced
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to be not too close to 0. More precisely, the value µ1(MS
Q) is constrained to be bigger than

some strictly positive constant µ. This µ then becomes a hyperparameter of the algorithm
that has to be fixed by cross-validation, as the parameter C is for SVM. This new learning
strategy is justified by PAC-Bound 3, dedicated to quasi-uniform posteriors16, and PAC-
Bound 3’, that is specialized to kernel voters. Hence, MinCq can be viewed as the algorithm
that simply looks for the majority vote of margin at least µ that minimizes PAC-Bound 3
(or PAC-Bound 3’ in the sample compression case).

MinCq is also justified by two important properties of quasi-uniform majority votes.
First, as we shall see in Theorem 43, there is no generality loss when restricting ourselves
to quasi-uniform distributions. Second, as we shall see in Theorem 44, for any margin
threshold µ > 0 and any quasi-uniform distribution Q such that µ1(MS

Q) ≥ µ, there is
another quasi-uniform distribution Q′ whose margin is exactly µ that achieves the same
majority vote and therefore has the same C-bound value.

Thus, to minimize the C-bound, the learner must substantially reduce the variance of
the margin distribution – i.e., µ2(MS

Q) – while maintaining its first moment – i.e., µ1(MS
Q)

– over the threshold µ. Many learning algorithms actually exploit this strategy in different
ways. Indeed, the variance of the margin distribution is controlled by Breiman (2001) for
producing random forests, by Dredze et al. (2010) in the transfer learning setting, and
by Shen and Li (2010) in the Boosting setting. Thus, the idea of minimizing the variance of
the margin is well-known and used. We propose a new theoretical justification for all these
types of algorithms and propose a novel learning algorithm, called MinCq, that directly
minimizes the C-bound.

8.1 From the C-bound to the MinCq Learning Algorithm

We only consider learning algorithms that construct majority votes based on a (finite) self-
complemented hypothesis space H = {f1, . . . , f2n} of real-valued voters. Recall that these
voters can be classifiers such as decision stumps or can be given by a kernel k evaluated on
the examples of S such as fi(·) = k(xi, ·).

We consider the second form of the C-bound, which relies on the first two moments of
the margin of the majority vote classifier (see Theorem 11):

CD′Q = 1−

(
µ1(MD′

Q )
)2

µ2(MD′

Q )
.

Our first attempts to minimize the C-bound confronted us with two problems.

Problem 1: an empirical C-bound minimization without any regularization tends to overfit
the data.

Problem 2: most of the time, the distributions Q minimizing the C-bound CSQ are such

that both µ1(MS
Q) and µ2(MS

Q) are very close to 0. Since CSQ = 1 − (µ1(MS
Q))2/µ2(MS

Q) ,

this gives a 0/0 numerical instability. Since (µ1(MD
Q))2/µ2(MD

Q) can only be empirically

estimated by (µ1(MS
Q))2/µ2(MS

Q), Problem 2 amplifies Problem 1.

16. PAC-Bound 3 is dedicated to posteriors Q that are aligned on a prior distribution P , but in this section
we always consider that the prior distribution P is uniform, thus leading to a quasi-uniform posterior Q.
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A natural way to resolve Problem 1 is to restrict ourselves to quasi-uniform distributions,
i.e., distributions that are aligned on the uniform prior (see Section 6.1 for the definition).
In Section 6, we show that with such distributions, one can upper-bound the Bayes risk
without needing a KL-regularization term. Hence, according to this PAC-Bayesian theory,
these distributions have some “built-in” regularization effect that should prevent overfitting.
Section 7 generalizes these results to the sample compression setting, which is necessary in
the case where voters such as kernels are defined using the training set.

The next theorem shows that this restriction on Q does not reduce the set of possible
majority votes.

Theorem 43 Let H be a self-complemented set. For all distributions Q on H, there exists
a quasi-uniform distribution Q′ on H that gives the same majority vote as Q, and that has
the same empirical and true C-bound values, i.e.,

BQ′ = BQ , CSQ′ = CSQ and CDQ′ = CDQ .

Proof LetQ be a distribution onH={f1, . . . , f2n}, letM
def
= maxi∈{1,..,n}|Q(fi+n)−Q(fi)|,

and let Q′ be defined as

Q′(fi)
def
=

1

2n
+
Q(fi) − Q(fi+n)

2nM
,

where the indices of f are defined modulo 2n (i.e., f(i+n)+n = fi). Then it is easy to show
that Q′ is a quasi-uniform distribution. Moreover, for any example x ∈ X , we have

E
f∼Q′

f(x)
def
=

2n∑
i=1

Q′(fi) fi(x) =
n∑
i=1

(Q′(fi)−Q′(fi+n)) fi(x)

=
n∑
i=1

2Q(fi)− 2Q(fi+n)

2nM
fi(x) =

1

nM

2n∑
i=1

Q(fi) fi(x)

=
1

nM
E
f∼Q

f(x) .

Since nM > 0, this implies that BQ′(x) = BQ(x) for all x ∈ X . It also shows that

MQ′(x, y)= 1
nMMQ(x, y), which implies that

(
µ1(MD′

Q′ )
)2

=
(

1
nM µ1(MD′

Q )
)2

and µ2(MD′

Q′ )=(
1
nM

)2
µ2(MD′

Q ) for both D′ = D and D′ = S.

The theorem then follows from the definition of the C-bound.

Theorem 43 points out a nice property of the C-bound: different distributions Q that
give rise to a same majority vote have the same (real and empirical) C-bound values. Since
the C-bound is a bound on majority votes, this is a suitable property. Moreover, PAC-
Bounds 3 and 3’, together with Theorem 43, indicate that restricting ourselves to quasi-
uniform distributions is a natural solution to the problem of overfitting (see Problem 1).
Unfortunately, Problem 2 remains since a consequence of the next theorem is that, among
all the posteriors Q that minimize the C-bound, there is always one whose empirical margin
µ1(MS

Q) is as close to 0 as we want.
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Theorem 44 Let H be a self-complemented set. For all µ ∈ (0, 1] and for all quasi-uniform
distributions Q on H having an empirical margin µ1(MS

Q) ≥ µ, there exists a quasi-uniform
distribution Q′ on H, having an empirical margin equal to µ, such that Q and Q′ induce
the same majority vote and have the same empirical and true C-bound values, i.e.,

µ1(MS
Q′) = µ , BQ′ = BQ , CSQ′ = CSQ and CDQ′ = CDQ .

Proof Let Q be a quasi-uniform distribution on H={f1, . . . , f2n} such that µ1(MS
Q) ≥ µ.

We define Q′ as

Q′(fi)
def
=

µ

µ1(MS
Q)
·Q(fi) +

(
1− µ

µ1(MS
Q)

)
· 1/2n , i ∈ {1, .., 2n} .

Clearly Q′ is a quasi-uniform distribution since it is a convex combination of a quasi-uniform
distribution and the uniform one. Then, similarly as in the proof of Theorem 43, one can
easily show that E

f∼Q′
f(x) = µ

µ1(MS
Q)

E
f∼Q

f(x), which implies the result.

Training set bounds (such as VC-bounds for example) are known to degrade when the
capacity of classification increases. As shown by Theorem 44 for the majority vote setting,
this capacity increases as µ decreases to 0. Thus, we expect that any training set bound
degrades for small µ. This is not the case for the C-bound itself, but the C-bound is not a
training set bound. To obtain a training set bound, we have to relate the empirical value CSQ
to the true one CDQ , which is done via PAC-Bounds 3 and 3’. In these bounds, there is indeed

a degradation as µ decreases because the true C-bound is of the form 1−(µ1(MD
Q))2/µ2(MD

Q).
Since µ = µ1(MS

Q), and because a small µ1(MS
Q) tends to produce small µ2(MS

Q), the

bounds on CDQ given CSQ that outcomes from PAC-Bounds 3 and 3’ are therefore much
looser for small µ because of the 0/0 instability. As explained in the introduction of the
present section, one way to overcome the instability identified in Problem 2 is to restrict
ourselves to quasi-uniform distributions whose empirical margin is greater or equal than
some threshold µ. Interestingly, thanks to Theorem 44, this is equivalent to restricting
ourselves to distributions having empirical margin exactly equal to µ. From Theorems 11
and 44, it then follows that minimizing the C-bound, under the constraint µ1(MS

Q)≥µ, is
equivalent to minimizing µ2(MS

Q), under the constraint µ1(MS
Q)=µ , from this observation,

and the fact that minimizing PAC-Bounds 3 and 3’ is equivalent to minimizing the empirical
C-bound CSQ, we can now define the algorithm MinCq.

In this section, µ always represents a restriction on the margin. Moreover, we say
that a value µ is D′-realizable if there exists some quasi-uniform distribution Q such that
µ1(MD′

Q ) = µ. The proposed algorithm, called MinCq, is then defined as follows.

Definition 45 (MinCq Algorithm) Given a self-complemented set H of voters, a train-
ing set S, and a S-realizable µ > 0, among all quasi-uniform distributions Q of empirical
margin µ1(MS

Q) exactly equal to µ, the algorithm MinCq consists in finding one that mini-
mizes µ2(MS

Q).

This algorithm can be translated as a simple quadratic program (QP) that has only
n variables (instead of 2n), and thus can be easily solved by any QP solver. In the next
subsection, we explain how the algorithm of Definition 45 can be turned into a QP.
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8.2 MinCq as a Quadratic Program

Given a training set S, and a self-complemented set H of voters {f1, f2, . . . , f2n}, let

Mi
def
= E

(x,y)∼S
y fi(x) and Mi,j

def
= E

(x,y)∼S
fi(x) fj(x) .

Let M be a symmetric n × n matrix, a be a column vector of n elements, and m be a
column vector of n elements defined by

M
def
=


M1,1 M1,2 . . . M1,n

M2,1 M2,2 . . . M2,n
...

...
. . .

...
Mn,1 Mn,2 . . . Mn,n

 , a
def
=


1
n

∑n
i=1Mi,1

1
n

∑n
i=1Mi,2

...
1
n

∑n
i=1Mi,n

 , and m
def
=


M1

M2
...
Mn

 . (43)

Finally, let q be the column vector of n QP-variables, where each element qi represents
the weight Q(fi).

Using the above definitions and the fact that H is self-complemented, one can show that

Mi+n = −Mi , Mi+n,j =Mi,j+n = −Mi,j , and qi+n =
1

n
− qi .

Moreover, it follows from the definitions of the first two moments of the margin µ1(MS
Q)

and µ2(MS
Q) (see Equations 6 and 8) that

µ1(MS
Q) =

2n∑
i=1

qiMi , and µ2(MS
Q) =

2n∑
i=1

2n∑
j=1

qiqjMi,j .

As MinCq consists in finding the quasi-uniform distribution Q that minimizes µ2(MS
Q),

with a margin µ1(MS
Q) exactly equal to the hyperparameter µ, let us now rewrite µ2(MS

Q)
and µ1(MS

Q) using the vectors and matrices defined in Equation (43). It follows that

µ2(MS
Q) =

2n∑
i=1

2n∑
j=1

qiqjMi,j =

n∑
i=1

n∑
j=1

[
qiqj − qi+nqj − qiqj+n + qi+nqj+n

]
Mi,j

=

n∑
i=1

n∑
j=1

[
4qiqj −

4

n
qi +

1

n2

]
Mi,j

= 4

n∑
i=1

n∑
j=1

qiqj Mi,j −
4

n

n∑
i=1

n∑
j=1

qi Mi,j +
1

n2

n∑
i=1

n∑
j=1

Mi,j

= 4
(
q>M q − a> q

)
+

1

n2

n∑
i=1

n∑
j=1

Mi,j , (44)
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and

µ1(MS
Q) =

2n∑
i=1

qiMi =

n∑
i=1

(
qi − qi+n

)
Mi =

n∑
i=1

(
2qi −

1

n

)
Mi = 2

n∑
i=1

qi Mi −
1

n

n∑
i=1

Mi

= 2m>q− 1

n

n∑
i=1

Mi .

As the objective function µ2(MS
Q) and the constraint µ1(MS

Q) = µ of the QP can
be defined using only n variables, there is no need to consider in the QP the weights
of the last n voter. These weights can always be recovered from the n first, because
qi+n = 1

n − qi, for any i . Note however that to be sure that the solution of the QP has the
quasi-uniformity property, we have to add the following constraints to the program:

qi ∈ [0, 1
n ] for any i .

Note that the multiplicative constant 4 and the additive constant 1
n2

∑n
i=1

∑n
j=1Mi,j

from Equation (44) can be omitted, as the optimal solution will stay the same. From all that
precedes and given any S-realizable µ, MinCq solves the optimization problem described
by Program 1.

Program 1 : MinCq - a quadratic program for classification

Solve argminq q> M q − a> q

under constraints : m> q = µ
2 + 1

2n

∑n
i=1Mi

and : 0 ≤ qi ≤ 1
n ∀i ∈ {1, . . . , n}

To prove that Program 1 is a quadratic program, it suffices to show that M is a positive
semi-definite matrix. This is a direct consequence of the fact that eachMi,j can be viewed
as a scalar product, since

Mi,j =
(√

1
|S| fi(x)

)
x∈SX
·
(√

1
|S| fj(x)

)
x∈SX

, where SX
def
= {x : (x, y) ∈ S}.

Finally, the Q-weighted majority vote output by MinCq is

BQ(x) = sgn

[
E
f∼Q

f(x)

]
= sgn

[
2n∑
i=1

qifi(x)

]
= sgn

[
n∑
i=1

qifi(x) +
2n∑

i=n+1

qifi(x)

]

= sgn

[
n∑
i=1

qifi(x) +

n∑
i=1

( 1
n − qi) · −fi(x)

]

= sgn

[
n∑
i=1

(2qi − 1
n)fi(x)

]
.
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8.3 Experiments

We now compare MinCq to state-of-the-art learning algorithms in three different contexts:
handwritten digits recognition, classical binary classification tasks, and Amazon reviews
sentiment analysis. A context (Lacoste et al., 2012) represents a distribution on the different
tasks a learning algorithm can encounter, and a sample from a context is a collection of
data sets.

For each context, each data set is randomly split into a training set S and a testing set T .
When hyperparameters have to be chosen for an algorithm, 5-fold cross-validation is run on
the training set S, and the hyperparameter values that minimize the mean cross-validation
risk are chosen. Using these values, the algorithm is trained on the whole training set S,
and then evaluated on the testing set T .

For the first two contexts, we compare MinCq using decision stumps as voters (referred
to as StumpsMinCq), MinCq using RBF kernel functions k(x, x′) = exp(−γ||x − x′||2) as
voters (referred to as RbfMinCq), AdaBoost (Schapire and Singer, 1999) using decision
stumps (referred to as StumpsAdaBoost), and the soft-margin Support Vector Machine
(SVM) (Cortes and Vapnik, 1995) using the RBF kernel, referred to as RbfSVM. For the
last context, we compare MinCq using linear kernel functions k(x, x′) = x · x′ as voters
(referred to as LinearMinCq), and the SVM using the same linear kernel, referred to as
LinearSVM.

For the three variants of MinCq, the quadratic program is solved using CVXOPT (Dahl
and Vandenberghe, 2007), an off-the-shelf convex optimization solver.

StumpsAdaBoost: For StumpsAdaBoost, we use decision stumps as weak learners. For
each attribute, 10 decision stumps (and their complement) are generated, for a total
of 20 decision stumps per attribute. The number of boosting rounds is chosen among
the following 15 values: 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 500, 750
and 1000.

StumpsMinCq: For StumpsMinCq, we use the same 10 decision stumps per attribute as
for StumpsAdaBoost. Note that we do not need to consider the complement stumps in
this case, as MinCq automatically considers self-complemented sets of voters. MinCq’s
hyperparameter µ is chosen among 15 values between 10−4 and 100 on a logarithmic
scale.

RbfSVM: The γ hyperparameter of the RBF kernel and the C hyperparameter of the
SVM are chosen among 15 values between 10−4 and 101 for γ, and among 15 values
between 100 and 108 for C, both on a logarithmic scale.

RbfMinCq: For RbfMinCq, we consider 15 values of µ between 10−4 and 10−2 on a loga-
rithmic scale, and the same 15 values of γ as in SVM for the RBF kernel voters.

LinearSVM: When using the linear kernel, the C parameter of the SVM is chosen among
15 values between 10−4 and 102, on a logarithmic scale. All SVM experiments are
done using the implementation of Pedregosa et al. (2011).

LinearMinCq: For LinearMinCq, we consider 15 values of µ between 10−4 and 10−2 on a
logarithmic scale.
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Figure 8: Comparison of the risks on the testing set for each algorithm and each MNIST bi-
nary data set. The figure on the left shows a comparison of the risks of RbfMinCq
(x-axis) and RbfSVM (y-axis). The figure on the right compares StumpsMinCq
(x-axis) and StumpsAdaBoost (y-axis). On each scatter plot, a point represents a
pair of risks for a particular MNIST binary data set. A point above the diagonal
line indicates better performance for MinCq.

Statistical Comparison Tests

RbfMinCq vs RbfSVM StumpsMinCq vs StumpsAdaBoost

Poisson binomial test 88% 99%
Sign test (p-value) 0.01 0.00

Table 2: Statistical tests comparing MinCq to either RbfSVM or StumpsAdaBoost. The
Poisson binomial test gives the probability that MinCq has a better performance
than another algorithm on this context. The sign test gives a p-value representing
the probability that the null hypothesis is true (i.e., MinCq and the other algorithm
both have the same performance on this context).

When using the RBF kernel for the SVM or MinCq, each data set is normalized using a
hyperbolic tangent. For each example x, each attribute x1, x2, . . . , xn is renormalized with

x
′
i = tanh

[
xi−xi
σi

]
, where xi and σi are the mean and standard deviation of the ith attribute

respectively, calculated on the training set S. Normalizing the features when using the RBF
kernel is a common practice and gives better results for both MinCq and SVM. Empirically,
we observe that the performance gain of RbfMinCq with normalized data is even more
significant than for RbfSVM.
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8.3.1 Handwritten Digits Recognition Context

The first context of interest to compare MinCq with other learning algorithms is the hand-
written digits recognition. For this task, we use the MNIST database of handwritten digits
of Lecun and Cortes. We split the original data set into 45 binary classification tasks, where
the union of all binary data sets recovers the original data set, and the intersection of any
pair of binary data sets gives the empty set. Therefore, any example from the original data
set appears on one and only one binary data set, thus avoiding any correlation between the
binary data sets. For each resulting binary data set, we randomly choose 500 examples to
be in the training set S, and the testing set T consists of the remaining examples. Figure 8
shows the resulting test risk for each binary data set and each algorithm.

Table 2 shows two statistical tests to compare the algorithms on the handwritten
digits recognition context: the Poisson binomial test (Lacoste et al., 2012) and the sign
test (Mendenhall, 1983). Both methods suggest that RbfMinCq outperforms RbfSVM on
this context, and that StumpsMinCq outperforms StumpsAdaBoost.

8.3.2 Classical Binary Classification Tasks Context

This second context of interest is a more general one: it consists of multiple binary clas-
sification data sets coming from the UCI Machine Learning Repository (Blake and Merz,
1998). These data sets are commonly used as a benchmark for learning algorithms, and
may help to answer the question “How well may a learning algorithm perform on many
unrelated classification tasks”. For each data set, half of the examples (up to a maximum
of 500) are randomly chosen to be in the training set S, and the remaining examples are in
the testing set T . Table 3 shows the resulting test risks on this context, for each algorithm.

Table 3 also shows a statistical comparison of all algorithms on the classical binary
classification tasks context, using the Poisson binomial test and the sign test. On this
context, both statistical tests show no significant performance difference between RbfMinCq
and RbfSVM, and between StumpsMinCq and StumpsAdaBoost, implying that these pairs
of algorithms perform similarly well on this general context.

8.3.3 Amazon Reviews Sentiment Analysis

This context contains 4 sentiment analysis data sets, representing product types (books,
DVDs, electronics and kitchen appliances). The task is to learn from an Amazon.com
product user review in natural language, and predict the polarity of the review, that is
either negative (3 stars or less) or positive (4 or 5 stars). The data sets come from Blitzer
et al. (2007), where the natural language reviews have already been converted into a set
of unigrams and bigrams of terms, with a count. For each data set, a training set of 1000
positive reviews and 1000 negative reviews are provided, and the remaining reviews are
available in a testing set. The original feature space of these data sets is between 90, 000
and 200, 000 dimensions. However, as most of the unigrams and bigrams are not significant
and to reduce the dimensionality, we only consider unigrams and bigrams that appear
at least 10 times on the training set (as in Chen et al., 2011), reducing the numbers of
dimensions to between 3500 and 6000. Again as in Chen et al. (2011), we apply standard
tf-idf feature re-weighting (Salton and Buckley, 1988). Table 4 shows the resulting test
risks for each algorithm.
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Data Set Information Risk RT (BQ) for Each Algorithm

Name |S| |T | RbfMinCq RbfSVM StumpsMinCq StumpsAdaBoost

Australian 345 345 0.142 0.133 0.165 0.168
Balance 313 312 0.054 0.042 0.042 0.032
BreastCancer 350 349 0.037 0.046 0.037 0.060
Car 500 1228 0.074 0.032 0.320 0.291
Cmc 500 973 0.303 0.306 0.140 0.134
Credit-A 345 345 0.122 0.133 0.304 0.308
Cylinder 270 270 0.204 0.233 0.125 0.148
Ecoli 168 168 0.077 0.071 0.289 0.289
Flags 97 97 0.289 0.320 0.071 0.071
Glass 107 107 0.206 0.206 0.268 0.309
Heart 135 135 0.163 0.156 0.262 0.271
Hepatitis 78 77 0.169 0.143 0.185 0.185
Horse 184 184 0.185 0.196 0.169 0.221
Ionosphere 176 175 0.114 0.069 0.245 0.174
Letter:AB 500 1055 0.007 0.003 0.109 0.120
Letter:DO 500 1058 0.021 0.018 0.005 0.010
Letter:OQ 500 1036 0.023 0.036 0.020 0.048
Liver 173 172 0.267 0.285 0.042 0.052
Monks 216 216 0.245 0.208 0.306 0.236
Nursery 500 12459 0.025 0.026 0.025 0.026
Optdigits 500 3323 0.034 0.027 0.089 0.089
Pageblock 500 4973 0.045 0.048 0.059 0.055
Pendigits 500 6994 0.007 0.008 0.069 0.084
Pima 384 384 0.253 0.255 0.273 0.250
Segment 500 1810 0.017 0.018 0.040 0.022
Spambase 500 4101 0.067 0.077 0.133 0.070
Tic-tac-toe 479 479 0.033 0.025 0.330 0.353
USvote 218 217 0.051 0.051 0.051 0.051
Wine 89 89 0.034 0.045 0.169 0.034
Yeast 500 984 0.286 0.279 0.324 0.306
Zoo 51 50 0.040 0.060 0.060 0.040

Statistical Comparison Tests

RbfMinCq vs RbfSVM StumpsMinCq vs StumpsAdaBoost

Poisson binomial test 54% 48%
Sign test (p-value) 0.36 0.35

Table 3: Risk on the testing set for all algorithms, on the classical binary classification task
context. See Table 2 for an explanation of the statistical tests.

Table 4 also shows a statistical comparison of the algorithms on this context, again using
the Poisson binomial test and the sign test. LinearMinCq has an edge over LinearSVM,
as it wins or draws on each data set. However, both statistical tests show no significant
performance difference between LinearMinCq and LinearSVM.

These experiments show that minimizing the C-bound, and thus favoring majority votes
for which the voters are maximally uncorrelated, is a sound approach. MinCq is very
competitive with both AdaBoost and the SVM on the classical binary tasks context and
the Amazon reviews sentiment analysis context. MinCq even shows a highly significant
performance gain on the handwritten digits recognition context, implying that on certain
types of tasks or data sets, minimizing the C-bound offers a state-of-the-art performance.
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Data Set Information Risk RT (BQ) for Each Algorithm

Name |S| |T | LinearMinCq LinearSVM

Books 2000 4465 0.158 0.158
DVD 2000 3586 0.162 0.163
Kitchen 2000 5945 0.130 0.131
Electronics 2000 5681 0.116 0.118

Statistical Comparison Tests

LinearMinCq vs LinearSVM

Poisson binomial test 68%
Sign test (p-value) 0.31

Table 4: Risk on the testing set for all algorithms, on the Amazon reviews sentiment analysis
context. See Table 2 for an explanation of the statistical tests.

However, for all above experiments, we observe that the empirical values of the PAC-
Bounds are trivial (close to 1). Remember that, inspired by PAC-Bounds 3 and 3’, the
MinCq algorithm learns the weights of a majority vote by minimizing the second moment
of the margin while fixing its first moment µ to some value. In these experiments, the value
of µ chosen by cross-validation is always very close to 0 (basically, µ = 10−4). This implies

that CSQ = 1 − µ2

µ2(MS
Q)

is very close to the 1 − 0
0 form, leading to a severe degradation of

PAC-Bayesian bounds for CDQ . Note that the voters were all weak in the former experiments.
This explains why very small values of µ were selected by cross-validation.

8.3.4 Experiments with Stronger Voters

In the following experiment, we show that one can obtain much better bound values by using
stronger voters, that is, voters with a better individual performance. To do so, instead of
considering decision stumps, we consider decision trees.17 We use 100 decision tree classifiers
generated with the implementation of Pedregosa et al. (2011) (we set the maximum depth
to 10 and the number of features per node to 1). By using these strong voters, it is possible
to achieve higher values of µ.18

Figure 9 shows the empirical C-bound value and its corresponding PAC-Bayesian bound
values for multiple values of µ on the Mushroom UCI data set. From the 8124 examples, 500
have been used to construct the set of voters, 4062 for the training set, and the remaining
examples for the testing set. The figure shows the PAC-Bayesian bounds get tighter when
µ is increasing. Note however that the empirical C-bound slightly increases from 0.001 to
0.016. The risk on the testing set of the majority vote (not shown in the figure) is 0 for
most values of µ, but also increases a bit for the highest values (remaining below 0.001).

17. A decision stump can be seen as a (weak) decision tree of depth 1.
18. Note that the set of decision trees was learned on a fresh set of examples, disjoint from the training data.

We do so to ensure that all computed PAC-Bounds are valid, even if they are not designed to handle
sample-compressed voters.
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Figure 9: Values of empirical C-bound and corresponding PAC-Bounds 0, 1, 2, 2’ and 3 on
the majority votes output by MinCq, for multiple values of µ.

Hence, we obtain tight bounds for high values of µ (PAC-Bounds 2 and 2’ are under
0.2). Nevertheless, these PAC-Bayesian bounds are not tight enough to precisely guide the
selection of µ. This is why we rely on cross-validation to select a good value of µ.

Finally, we also see that PAC-Bound 3 is looser than other bounds over CDQ , but this was
expected as it was not designed to be as tight as possible. That being said, PAC-Bound 3
has the same behavior than PAC-Bounds 1 and 2. This suggests that we can rely on it to
justify the MinCq learning algorithm once the hyperparameter µ is fixed.

9. Conclusion

In this paper, we have revisited the work presented in Lacasse et al. (2006) and Laviolette
et al. (2011). We clarified the presentation of previous results and extended them, as well as
actualizing the discussion regarding the ever growing development of PAC-Bayesian theory.

We have derived a risk bound (called the C-bound) for the weighted majority vote
that depends on the first and the second moment of the associated margin distribution
(Theorem 11). The proposed bound is based on the one-sided Chebyshev inequality, which,
under the mild condition of Proposition 14, is the tightest inequality for any real-valued
random variable given only its first two moments. Also, as shown empirically by Figure 3,
this bound has a strong predictive power on the risk of the majority vote.

We have also shown that the original PAC-Bayesian theorem, together with new ones,
can be used to obtain high-confidence estimates of this new risk bound that holds uniformly
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for all posterior distributions. We have generalized these PAC-Bayesian results to the (more
general) sample compression setting, allowing one to make use of voters that are constructed
with elements of the training data, such as kernel functions yik(xi, ·). Moreover, we have
presented PAC-Bayesian bounds that have the uncommon property of having no Kullback-
Leibler divergence term (PAC-Bounds 3 and 3’). These bounds, together with the C-bound,
gave the theoretical foundation to the learning algorithm introduced at the end of the
paper, that we have called MinCq. The latter turns out to be expressible in the nice form
of a quadratic program. MinCq is not only based on solid theoretical guarantees, it also
performs very well on natural data, namely when compared with the state-of-the-art SVM.

This work tackled the simplest problem in machine learning (the supervised binary clas-
sification in presence of i.i.d. data), and we now consider that the PAC-Bayesian theory is
mature enough to embrace a variety of more sophisticated frameworks. Indeed, in the recent
years several authors applied this theory to many more complex paradigms: Transductive
Learning (Derbeko et al., 2004; Catoni, 2007; Bégin et al., 2014), Domain Adaptation (Ger-
main et al., 2013), Density Estimation (Seldin and Tishby, 2009; Higgs and Shawe-Taylor,
2010), Structured output Prediction (McAllester, 2007; Giguère et al., 2013; London et al.,
2014), Co-clustering (Seldin and Tishby, 2009, 2010), Martingales (Seldin et al., 2012), U-
Statistics of higher order (Lever et al., 2013) or other non-i.i.d. settings (Ralaivola et al.,
2010), Multi-armed Bandit (Seldin et al., 2011) and Reinforcement Learning (Fard and
Pineau, 2010; Fard et al., 2011).
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Appendix A. Auxiliary mathematical results

Lemma 46 (Markov’s inequality) For any random variable X such that E(X) = µ,
and for any a > 0, we have

Pr (|X| ≥ a) ≤ µ

a
.

Lemma 47 (Jensen’s inequality) For any random variable X and any convex func-
tion f , we have

f(E [X]) ≤ E [f(X)] .

849



Germain, Lacasse, Laviolette, Marchand and Roy

Lemma 48 (One-sided Chebyshev inequality) For any random variable X such that
E(X) = µ and Var(X) = σ2, and for any a > 0, we have

Pr
(
X − µ ≥ a

)
≤ σ2

σ2 + a2
.

Proof First observe that Pr
(
X −µ ≥ a

)
≤ Pr

( [
X − µ+ σ2

a

]2
≥
[
a+ σ2

a

]2 )
. Let us now

apply Markov’s inequality (Lemma 46) to bound this probability. We obtain

Pr

([
X − µ+

σ2

a

]2

≥
[
a+

σ2

a

]2
)
≤

E
[
X − µ+ σ2

a

]2

[
a+ σ2

a

]2 (Markov’s inequality)

=
E (X − µ)2 + 2

(
σ2

a

)
E (X − µ) +

(
σ2

a

)2

[
a+ σ2

a

]2

=
σ2 +

(
σ2

a

)2

[
a+ σ2

a

]2 =
σ2
(

1 + σ2

a2

)
(σ2 + a2)

(
1 + σ2

a2

) =
σ2

σ2 + a2
,

because E (X − µ)2 = Var(X) = σ2 and E (X − µ) = E(X)−E(X) = 0.

Note that the proof Theorem 49 (below) by Cover and Thomas (1991) considers that
probability distributions Q and P are discrete, but their argument is straightforwardly
generalizable to continuous distributions.

Theorem 49 (Cover and Thomas, 1991, Theorem 2.7.2) The Kullback-Leibler divergence
KL(Q‖P ) is convex in the pair (Q,P ), i.e., if (Q1, P1) and (Q2, P2) are two pairs of proba-
bility distributions, then

KL
(
λQ1 + (1−λ)Q2

∥∥λP1 + (1−λ)P2

)
≤ λKL

(
Q1

∥∥P1

)
+ (1−λ) KL

(
Q2

∥∥P2

)
,

for all λ ∈ [0, 1] .

Corollary 50 Both following functions are convex:

1. The function kl(q‖p) of Equation (21), i.e., the Kullback-Leibler divergence between
two Bernoulli distributions;

2. The function kl(q1, q2‖p1, p2) of Equation (31), i.e., the Kullback-Leibler divergence
between two distributions of trivalent random variables.

Proof Straightforward consequence of Theorem 49.
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Lemma 51 (Maurer, 2004) Let X be any random variable with values in [0, 1] and expec-
tation µ = E(X). Denote X the vector containing the results of n independent realizations
of X. Then, consider a Bernoulli random variable X ′ ({0, 1}-valued) of probability of suc-
cess µ, i.e., Pr(X ′ = 1) = µ. Denote X′ ∈ {0, 1}n the vector containing the results of n
independent realizations of X ′.

If function f : [0, 1]n → R is convex, then

E
[
f(X)

]
≤ E

[
f(X′)

]
.

The proof of Lemma 52 (below) follows the key steps of the proof of Lemma 51 by Maurer
(2004), but we include a few more mathematical details for completeness. Interestingly, the
proof highlights that one can generalize Maurer’s lemma even more, to embrace random
variables of any (countable) number of possible outputs. Note that another generalization
of Maurer’s lemma is given in Seldin et al. (2012) to embrace the case where the random
variables X1, . . . , Xn are a martingale sequence instead of being independent.

Lemma 52 (Generalization of Lemma 51) Let the tuple (X,Y ) be a random variable
with values in [0, 1]2, such that X +Y ≤ 1, and with expectation (µX , µY ) = (E(X),E(Y )).
Given n independent realizations of (X,Y ), denote X = (X1, . . . , Xn) the vector of cor-
responding X-values and Y = (Y1, . . . , Yn) the vector of corresponding Y -values. Then,
consider a random variable (X ′, Y ′) with three possible outcomes, (1, 0), (0, 1) and (0, 0), of
expectations µX , µY and 1−µX−µY , respectively. Denote X′,Y′ ∈ {0, 1}n the vectors of n
independent realizations of (X ′, Y ′).

If a function f : [0, 1]n×[0, 1]n → R is convex, then

E
[
f(X,Y)

]
≤ E

[
f(X′,Y′)

]
.

Proof Given two vectors x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ [0, 1]n, let us define

(x,y)
def
=
(

(x1, y1), (x2, y2), . . . , (xn, yn)
)
∈ ([0, 1]×[0, 1])n .

Consider H = {(1, 0), (0, 1), (0, 0)}. Lemma 53 (below) shows that any point (x,y) can be
written as a convex combination of the extreme points η = (η1, η2, . . . , ηn) ∈ Hn:

(x,y) =
∑

η ∈Hn

 ∏
i:ηi=(1,0)

xi

 ∏
i:ηi=(0,1)

yi

 ∏
i:ηi=(0,0)

1−xi−yi

· η . (45)

Convexity of function f implies

f(x,y) ≤
∑

η ∈Hn

 ∏
i:ηi=(1,0)

xi

 ∏
i:ηi=(0,1)

yi

 ∏
i:ηi=(0,0)

1−xi−yi

· f(η) , (46)

with equality if (x,y) ∈ Hn = {(1, 0), (0, 1), (0, 0)}n, because the elements of the sum are
0·f(η) for all η ∈ Hn \ {(x,y)} and 1·f(η) only for η = (x,y).
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Given that realizations of random variable (X,Y ) are independent and that for a given
ηi ∈ H, only one of the three products is computed19, we get

E [f(X,Y)] ≤ E

 ∑
η ∈Hn

 ∏
i:ηi=(1,0)

Xi

 ∏
i:ηi=(0,1)

Yi

 ∏
i:ηi=(0,0)

1−Xi−Yi

· f(η)


=

∑
η ∈Hn

E

 ∏
i:ηi=(1,0)

Xi

 ∏
i:ηi=(0,1)

Yi

 ∏
i:ηi=(0,0)

1−Xi−Yi

· f(η)

=
∑

η ∈Hn

 ∏
i:ηi=(1,0)

E(Xi)

 ∏
i:ηi=(0,1)

E(Yi)

 ∏
i:ηi=(0,0)

1−E(Xi)−E(Yi)

· f(η)

=
∑

η ∈Hn

 ∏
i:ηi=(1,0)

µX

 ∏
i:ηi=(0,1)

µY

 ∏
i:ηi=(0,0)

1−µX−µY

· f(η) .

This becomes an equality when (X,Y) takes values in Hn (as we explain after equation 46).
We therefore conclude that E

[
f(X,Y)

]
≤ E

[
f(X′,Y′)

]
.

Lemma 53 (Proof of Equation 45) Consider H = {(1, 0), (0, 1), (0, 0)} and an integer
n > 0. Any point (x,y) ∈

(
[0, 1]× [0, 1]

)n
can be written as a convex combination of the

extreme points η = (η1, η2, . . . , ηn) ∈ Hn:

(x,y) =
∑

η∈Hn

ρη(x,y) · η ,

where

ρη(x,y)
def
=

 ∏
i:ηi=(1,0)

xi

 ∏
i:ηi=(0,1)

yi

 ∏
i:ηi=(0,0)

1−xi−yi

 .

Proof We prove the result by induction over vector size n.
Proof for n = 1:∑

η∈H
ρη((x1, y1)) · η = x1 · ((1, 0)) + y1 · ((0, 1)) + (1−x1−y1) · ((0, 0))

= ((x1, y1)) .

Proof for n > 1: We suppose that the result is true for any vector (x,y) of a particular size
n (this is our induction hypothesis) and we prove that it implies∑

(η,ηn+1)∈Hn+1

[
ρ(η,ηn+1)

(
(x,y), (xn+1, yn+1)

)]
· (η, ηn+1) =

(
(x,y), (xn+1, yn+1)

)
,

where (a, b) denotes a vector a, augmented by one element b.

19. The equality between the second and third lines follows from the fact that each expectation inside the
sum of Line 2 can be rewritten as the following product of independent random variables:

E
[∏
ηi

gηi(Xi, Yi)
]

with gηi(Xi, Yi)
def
=


Xi if ηi = (1, 0)

Yi if ηi = (0, 1)

1−Xi−Yi otherwise.
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We have∑
(η,ηn+1)∈Hn+1

[
ρ(η,ηn+1)

(
(x,y), (xn+1, yn+1)

)]
· (η, ηn+1)

=
∑

η∈Hn

ρη(x,y) · xn+1 ·
(
η, (1, 0)

)
+
∑

η∈Hn

ρη(x,y) · yn+1 ·
(
η, (0, 1)

)
+
∑

η∈Hn

ρη(x,y) · (1−xn+1−yn+1) ·
(
η, (0, 0)

)
=

( ∑
η∈Hn

ρη(x,y) · (xn+1+yn+1+1−xn+1−yn+1) · η,
∑

η∈Hn

ρη(x,y) ·
(
xn+1, yn+1

))

=

( ∑
η∈Hn

ρη(x,y) · η,
∑

η∈Hn

ρη(x,y) ·
(
xn+1, yn+1

))

=
(

(x,y),
(
xn+1, yn+1

))
.

For the last equality, the (x,y) term of the vector above is obtained from the induction
hypothesis and the last couple is a direct consequence of the following equality:

∑
η∈Hn

ρη(x,y) =
n∏
i=1

(
xi+yi+1−xi−yi

)
= 1 .

Proposition 54 (Concavity of Equation 36) The function FC(d, e) is concave.

Proof We show that the Hessian matrix of FC(d, e) is a negative semi-definite matrix. In
other words, we need to prove that

∂2FC(d, e)

∂d2
≤ 0 ;

∂2FC(d, e)

∂e2
≤ 0 ;

∂2FC(d, e)

∂d2

∂2FC(d, e)

∂e2
−
(
∂2FC(d, e)

∂d∂e

)2

≥ 0 .

Indeed, we have

∂2FC (d, e)

∂d2
=

2(1− 4e)2

(2d− 1)3
≤ 0 ∀e ∈ [0, 1], d ∈

[
0,

1

2

]
,

∂2FC (d, e)

∂e2
=

8

2d− 1
≤ 0 ∀e ∈ [0, 1], d ∈

[
0,

1

2

]
,

∂2FC (d, e)

∂d2
∂2FC (d, e)

∂e2
−
(
∂2FC (d, e)

∂d∂e

)2

=
2(1− 4e)2

(2d− 1)3
· 8

2d− 1
−
(

4− 16e

(1− 2d)2

)2

= 0 .
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Appendix B. A General PAC-Bayesian Theorem for Tuples of Voters and
Aligned Posteriors

This section presents a change of measure inequality that generalizes both Lemmas 30
and 34, and a PAC-Bayesian theorem that generalizes both Theorems 31 and 35. As these
generalizations require more complex notation and ideas, it is provided as an appendix and
the simpler versions of the main paper have separate proofs.

LetH be a countable self-complemented set real-valued functions. In the general setting,
we recall that H is self-complemented if there exists a bijection c : H → H such that
c(f) = −f for any f ∈ H. Moreover, for a distribution Q aligned on a prior distribution P
and for any f ∈ H, we have

Q(f) +Q(c(f)) = P (f) + P (c(f)) .

First, we need to define the following notation. Let k be a sequence of length k, containing

numbers representing indices of voters. Let fk : X → Yk be a function that outputs a tuple

of votes, such that fk(x)
def
= 〈fk1(x), . . . , fkk(x)〉 .

Let us recall that P k and Qk are Cartesian products of probability distributions P
and Q. Thus, the probability of drawing fk ∼ Qk is given by

Qk(fk)
def
= Q(fk1) ·Q(fk2) · . . . ·Q(fkk) =

k∏
i=1

Q(fki) .

Finally, for each fk and each j ∈ {0, . . . , 2k−1}, let

f
[j]
k (x)

def
= 〈f (sj1)

k1
(x), . . . , f

(sjk)

kk
(x)〉 ,

where sj1s
j
2...s

j
k is the binary representation of the number j, and where f (0) = f and

f (1) = c(f). Note that f
[0]
k = fk.

To prove the next PAC-Bayesian theorem, we make use of the following change of
measure inequality.

Theorem 55 (Change of measure inequality for tuples of voters and aligned pos-
teriors) For any self-complemented set H, for any distribution P on H, for any distribution

Q aligned on P , and for any measurable function φ : Hk → R for which φ(f
[j]
k ) = φ(f

[j′]
k )

for any j, j′ ∈ {0, . . . , 2k−1}, we have

E
fk∼Qk

φ(fk) ≤ ln

(
E

fk∼Pk
eφ(fk)

)
.
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Proof First, note that one can change the expectation over Qk to an expectation over P k,

using the fact that φ(f
[j]
k ) = φ(f

[j′]
k ) for any j, j′ ∈ {0, . . . , 2k−1} and that Q is aligned

on P .

2k · E
fk∼Qk

φ(fk)

=

∫
Hk
dfk Q

k(f
[0]
k )φ(f

[0]
k ) +

∫
Hk
dfk Q

k(f
[1]
k )φ(f

[1]
k ) + . . .+

∫
Hk
dfk Q

k(f
[2k−1]
k )φ(f

[2k−1]
k )

=

∫
Hk
dfk Q

k(f
[0]
k )φ(fk) +

∫
Hk
dfk Q

k(f
[1]
k )φ(fk) + . . . +

∫
Hk
dfk Q

k(f
[2k−1]
k )φ(fk)

=

∫
Hk
dfk

2k−1∑
j=0

(
Qk(f

[j]
k )
)
φ(fk)

=

∫
Hk
dfk

2k−1∑
j=0

(
k∏
i=1

[
Q(f

(sji )
ki

)

])
φ(fk) (47)

=

∫
Hk
dfk

k∏
i=1

[
Q(f

(0)
ki

) +Q(f
(1)
ki

)
]
φ(fk) (48)

=

∫
Hk
dfk

k∏
i=1

[Q(fki) +Q(c(fki))] φ(fk)

=

∫
Hk
dfk

k∏
i=1

[P (fki) + P (c(fki))] φ(fk)

...

= 2k · E
fk∼Pk

φ(fk) ,

where we obtain Line (48) from Line (47) by developing the terms of the product of Line (48).

The result is obtained by changing the expectation over Qk to an expectation over P k,
and then by applying Jensen’s inequality (Lemma 47, in Appendix A).

E
fk∼Qk

φ(fk) = E
fk∼Pk

φ(fk) = E
fk∼Pk

ln eφ(fk) ≤ ln

(
E

fk∼Pk
eφ(fk)

)
.
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Theorem 56 (General PAC-Bayesian theorem for tuples of voters and aligned
posteriors) For any distribution D on X ×Y, any self-complemented set H of voters
X → Y, any prior distribution P on H, any integer k ≥ 1, any convex function D :

[0, 1]× [0, 1]→ R and loss function L : Yk×Yk → [0, 1] for which D
(
ELS(f

[j]
k ), ELD(f

[j]
k )
)

=

D
(
ELS(f

[j′]
k ), ELD(f

[j′]
k )
)
, for any j, j′ ∈ {0, . . . , 2k−1}, for any m′ > 0 and any δ ∈ (0, 1],

we have

Pr
S∼Dm

For all posteriors Q aligned on P :

D
(

E
fk∼Qk

ELS (fk), E
fk∼Qk

ELD(fk)

)
≤

1

m′

[
ln

(
1

δ
E

S∼Dm
E

fk∼Pk
e
m′·D(ELS (fk), ELD(fk))

)]
≥ 1− δ .

Proof This proof follows most of the steps of Theorem 18.

We have that E
fk∼Pk

em
′·D(ELS (fk),ELD(fk)) is a non-negative random variable. By Markov’s

inequality, we have

Pr
S∼Dm

(
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk)) ≤ 1

δ
E

S∼Dm
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

)
≥ 1− δ .

Hence, by taking the logarithm on each side of the innermost inequality, we obtain

Pr
S∼Dm

(
ln

[
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

]
≤ ln

[
1

δ
E

S∼Dm
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

])
≥ 1− δ .

Now, instead of using the change of measure inequality of Lemma 17, we use the change
of measure inequality of Theorem 55 on the left side of innermost inequality, with φ(fk) =
m′ · D

(
ELS(fk), ELD(fk)

)
. We then use Jensen’s inequality (Lemma 47, in Appendix A),

exploiting the convexity of D.

∀Q aligned on P : ln

[
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

]
≥ m′ · E

fk∼Qk
D(ELS(fk),ELD(fk))

≥ m′ · D( E
fk∼Qk

ELS(fk), E
fk∼Qk

ELD(fk)) .

We therefore have

Pr
S∼Dm

 For all posteriors Q aligned on P :

m′ · D( E
fk∼Qk

ELS(fk), E
fk∼Qk

ELD(fk)) ≤ ln

[
1
δ E
S∼Dm

E
fk∼Pk

em
′·D(ELS (fk),E

L
D(fk))

] ≥1− δ .

The result then follows from easy calculations.

856



Risk Bounds for the Majority Vote

References

Arindam Banerjee. On Bayesian bounds. In ICML, pages 81–88, 2006.
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Sébastien Giguère, François Laviolette, Mario Marchand, and Khadidja Sylla. Risk bounds
and learning algorithms for the regression approach to structured output prediction. In
ICML (1), pages 107–114, 2013.

Matthew Higgs and John Shawe-Taylor. A PAC-Bayes bound for tailored density estimation.
In ALT, pages 148–162, 2010.

Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, and Nicolas
Usunier. PAC-Bayes bounds for the risk of the majority vote and the variance of the
Gibbs classifier. In NIPS, pages 769–776, 2006.

Alexandre Lacoste, François Laviolette, and Mario Marchand. Bayesian comparison of
machine learning algorithms on single and multiple datasets. In AISTATS, pages 665–
675, 2012.

John Langford. Tutorial on practical prediction theory for classification. Journal of Machine
Learning Research, 6:273–306, 2005.

John Langford and Matthias Seeger. Bounds for averaging classifiers. Technical report,
Carnegie Mellon, Departement of Computer Science, 2001.

John Langford and John Shawe-Taylor. PAC-Bayes & margins. In NIPS, pages 423–430,
2002.

François Laviolette and Mario Marchand. PAC-Bayes risk bounds for sample-compressed
Gibbs classifiers. In ICML, pages 481–488, 2005.

François Laviolette and Mario Marchand. PAC-Bayes risk bounds for stochastic averages
and majority votes of sample-compressed classifiers. Journal of Machine Learning Re-
search, 8:1461–1487, 2007.

858



Risk Bounds for the Majority Vote

François Laviolette, Mario Marchand, and Jean-Francis Roy. From PAC-Bayes bounds to
quadratic programs for majority votes. In ICML, pages 649–656, 2011.

Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits. URL http:

//yann.lecun.com/exdb/mnist/.

Guy Lever, François Laviolette, and John Shawe-Taylor. Distribution-dependent PAC-
Bayes priors. In ALT, pages 119–133, 2010.

Guy Lever, François Laviolette, and John Shawe-Taylor. Tighter PAC-Bayes bounds
through distribution-dependent priors. Theoretical Computer Science, 473:4–28, 2013.

Ben London, Bert Huang, Benjamin Taskar, and Lise Getoor. PAC-Bayesian collective
stability. In AISTATS, pages 585–594, 2014.

Andreas Maurer. A note on the PAC-Bayesian theorem. CoRR, cs.LG/0411099, 2004.

David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355–363, 1999.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):5–21,
2003a.

David McAllester. Simplified PAC-Bayesian margin bounds. In COLT, pages 203–215,
2003b.

David McAllester. Generalization bounds and consistency for structured labeling. In
Gökhan Bakır, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar,
and S. V. N. Vishwanathan, editors, Predicting Structured Data, chapter 11, pages 247–
261. MIT Press, Cambridge, MA, 2007.

David McAllester. A PAC-Bayesian tutorial with a dropout bound. CoRR, abs/1307.2118,
2013.

W. Mendenhall. Nonparametric statistics. Introduction to Probability and Statistics, 604,
1983.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python .
Journal of Machine Learning Research, 12:2825–2830, 2011.

Liva Ralaivola, Marie Szafranski, and Guillaume Stempfel. Chromatic PAC-Bayes bounds
for non-iid data: Applications to ranking and stationary β-mixing processes. Journal of
Machine Learning Research, 11:1927–1956, 2010.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing & Management, 24(5):513–523, 1988.

Robert E. Schapire and Yoram Singer. Improved boosting using confidence-rated predic-
tions. Machine Learning, 37(3):297–336, 1999.

859

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Germain, Lacasse, Laviolette, Marchand and Roy

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26:
1651–1686, 1998.

Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem.
In COLT/EuroCOLT, pages 416–426, 2001.

Matthias Seeger. PAC-Bayesian generalization bounds for Gaussian processes. Journal of
Machine Learning Research, 3:233–269, 2002.

Matthias Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, University of Edinburgh, 2003.

Yevgeny Seldin and Naftali Tishby. PAC-Bayesian generalization bound for density estima-
tion with application to co-clustering. In AISTATS, pages 472–479, 2009.

Yevgeny Seldin and Naftali Tishby. PAC-Bayesian analysis of co-clustering and beyond.
Journal of Machine Learning Research, 11:3595–3646, 2010.

Yevgeny Seldin, Peter Auer, François Laviolette, John Shawe-Taylor, and Ronald Ortner.
PAC-Bayesian analysis of contextual bandits. In NIPS, pages 1683–1691, 2011.

Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John Shawe-Taylor, and Peter
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Abstract

One popular method for dealing with large-scale data sets is sampling. For example, by
using the empirical statistical leverage scores as an importance sampling distribution, the
method of algorithmic leveraging samples and rescales rows/columns of data matrices to
reduce the data size before performing computations on the subproblem. This method has
been successful in improving computational efficiency of algorithms for matrix problems
such as least-squares approximation, least absolute deviations approximation, and low-rank
matrix approximation. Existing work has focused on algorithmic issues such as worst-case
running times and numerical issues associated with providing high-quality implementations,
but none of it addresses statistical aspects of this method.

In this paper, we provide a simple yet effective framework to evaluate the statistical
properties of algorithmic leveraging in the context of estimating parameters in a linear
regression model with a fixed number of predictors. In particular, for several versions of
leverage-based sampling, we derive results for the bias and variance, both conditional and
unconditional on the observed data. We show that from the statistical perspective of bias
and variance, neither leverage-based sampling nor uniform sampling dominates the other.
This result is particularly striking, given the well-known result that, from the algorithmic
perspective of worst-case analysis, leverage-based sampling provides uniformly superior
worst-case algorithmic results, when compared with uniform sampling.

Based on these theoretical results, we propose and analyze two new leveraging algo-
rithms: one constructs a smaller least-squares problem with “shrinkage” leverage scores
(SLEV), and the other solves a smaller and unweighted (or biased) least-squares problem
(LEVUNW). A detailed empirical evaluation of existing leverage-based methods as well as
these two new methods is carried out on both synthetic and real data sets. The empirical
results indicate that our theory is a good predictor of practical performance of existing and
new leverage-based algorithms and that the new algorithms achieve improved performance.
For example, with the same computation reduction as in the original algorithmic leverag-
ing approach, our proposed SLEV typically leads to improved biases and variances both
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unconditionally and conditionally (on the observed data), and our proposed LEVUNW
typically yields improved unconditional biases and variances.

Keywords: randomized algorithm, leverage scores, subsampling, least squares, linear
regression

1. Introduction

One popular method for dealing with large-scale data sets is sampling. In this approach, one
first chooses a small portion of the full data, and then one uses this sample as a surrogate
to carry out computations of interest for the full data. For example, one might randomly
sample a small number of rows from an input matrix and use those rows to construct
a low-rank approximation to the original matrix, or one might randomly sample a small
number of constraints or variables in a regression problem and then perform a regression
computation on the subproblem thereby defined. For many problems, it is very easy to
construct “worst-case” input for which uniform random sampling will perform very poorly.
Motivated by this, there has been a great deal of work on developing algorithms for matrix-
based machine learning and data analysis problems that construct the random sample in a
nonuniform data-dependent fashion (Mahoney, 2011).

Of particular interest here is when that data-dependent sampling process selects rows
or columns from the input matrix according to a probability distribution that depends on
the empirical statistical leverage scores of that matrix. This recently-developed approach
of algorithmic leveraging has been applied to matrix-based problems that are of interest in
large-scale data analysis, e.g., least-squares approximation (Drineas et al., 2006, 2010), least
absolute deviations regression (Clarkson et al., 2013; Meng and Mahoney, 2013), and low-
rank matrix approximation (Mahoney and Drineas, 2009; Clarkson and Woodruff, 2013).
Typically, the leverage scores are computed approximately (Drineas et al., 2012; Clarkson
et al., 2013), or otherwise a random projection (Ailon and Chazelle, 2010; Clarkson et al.,
2013) is used to precondition by approximately uniformizing them (Drineas et al., 2010;
Avron et al., 2010; Meng et al., 2014). A detailed discussion of this approach can be found
in the recent review monograph on randomized algorithms for matrices and matrix-based
data problems (Mahoney, 2011).

This algorithmic leveraging paradigm has already yielded impressive algorithmic ben-
efits: by preconditioning with a high-quality numerical implementation of a Hadamard-
based random projection, the Blendenpik code of Avron et al. (2010) “beats Lapack’s1

direct dense least-squares solver by a large margin on essentially any dense tall matrix;”
the LSRN algorithm of Meng et al. (2014) preconditions with a high-quality numerical
implementation of a normal random projection in order to solve large over-constrained
least-squares problems on clusters with high communication cost, e.g., on Amazon Elas-
tic Cloud Compute clusters; the solution to the `1 regression or least absolute deviations
problem as well as to quantile regression problems can be approximated for problems with
billions of constraints (Clarkson et al., 2013; Yang et al., 2013); and CUR-based low-rank
matrix approximations (Mahoney and Drineas, 2009) have been used for structure extrac-
tion in DNA SNP matrices of size thousands of individuals by hundreds of thousands of

1. Lapack (short for Linear Algebra PACKage) is a high-quality and widely-used software library of nu-
merical routines for solving a wide range of numerical linear algebra problems.
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SNPs (Paschou et al., 2007, 2010). In spite of these impressive algorithmic results, none
of this recent work on leveraging or leverage-based sampling addresses statistical aspects
of this approach. This is in spite of the central role of statistical leverage, a traditional
concept from regression diagnostics (Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986;
Velleman and Welsch, 1981).

In this paper, we bridge that gap by providing the first statistical analysis of the algo-
rithmic leveraging paradigm. We do so in the context of parameter estimation in fitting
linear regression models for large-scale data—where, by “large-scale,” we mean that the data
define a high-dimensional problem in terms of sample size n, as opposed to the dimension
p of the parameter space. Although n � p is the classical regime in theoretical statistics,
it is a relatively new phenomenon that in practice we routinely see a sample size n in the
hundreds of thousands or millions or more. This is a size regime where sampling methods
such as algorithmic leveraging are indispensable to meet computational constraints.

Our main theoretical contribution is to provide an analytic framework for evaluating
the statistical properties of algorithmic leveraging. This involves performing a Taylor se-
ries analysis around the ordinary least-squares solution to approximate the subsampling
estimators as linear combinations of random sampling matrices. Within this framework,
we consider biases and variances, both conditioned as well as not conditioned on the data,
for several versions of the basic algorithmic leveraging procedure. We show that both
leverage-based sampling and uniform sampling are unbiased to leading order; and that
while leverage-based sampling improves the “size-scale” of the variance, relative to uniform
sampling, the presence of very small leverage scores can inflate the variance considerably. It
is well-known that, from the algorithmic perspective of worst-case analysis, leverage-based
sampling provides uniformly superior worst-case algorithmic results, when compared with
uniform sampling. However, our statistical analysis here reveals that from the statistical
perspective of bias and variance, neither leverage-based sampling nor uniform sampling
dominates the other.

Based on these theoretical results, we propose and analyze two new leveraging algorithms
designed to improve upon vanilla leveraging and uniform sampling algorithms in terms
of bias and variance. The first of these (denoted SLEV below) involves increasing the
probability of low-leverage samples, and thus it also has the effect of “shrinking” the effect
of large leverage scores. The second of these (denoted LEVUNW below) constructs an
unweighted version of the leverage-subsampled problem; and thus for a given data set it
involves solving a biased subproblem. In both cases, we obtain the algorithmic benefits of
leverage-based sampling, while achieving improved statistical performance.

Our main empirical contribution is to provide a detailed evaluation of the statistical
properties of these algorithmic leveraging estimators on both synthetic and real data sets.
These empirical results indicate that our theory is a good predictor of practical performance
for both existing algorithms and our two new leveraging algorithms as well as that our two
new algorithms lead to improved performance. In addition, we show that using shrinkage
leverage scores typically leads to improved conditional and unconditional biases and vari-
ances; and that solving a biased subproblem typically yields improved unconditional biases
and variances. By using a recently-developed algorithm of Drineas et al. (2012) to com-
pute fast approximations to the statistical leverage scores, we also demonstrate a regime for
large data where our shrinkage leveraging procedure is better algorithmically, in the sense
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of computing an answer more quickly than the usual black-box least-squares solver, as well
as statistically, in the sense of having smaller mean squared error than näıve uniform sam-
pling. Depending on whether one is interested in results unconditional on the data (which
is more traditional from a statistical perspective) or conditional on the data (which is more
natural from an algorithmic perspective), we recommend the use of SLEV or LEVUNW,
respectively, in the future.

The remainder of this article is organized as follows. We will start in Section 2 with a
brief review of linear models, the algorithmic leveraging approach, and related work. Then,
in Section 3, we will present our main theoretical results for bias and variance of leveraging
estimators. This will be followed in Sections 4 and 5 by a detailed empirical evaluation on a
wide range of synthetic and several real data sets. Then, in Section 6, we will conclude with
a brief discussion of our results in a broader context. Appendix A will describe our results
from the perspective of asymptotic relative efficiency and will consider several toy data sets
that illustrate various aspects of algorithmic leveraging; and Appendix B will provide the
proofs of our main theoretical results.

2. Background, Notation, and Related Work

In this section, we will provide a brief review of relevant background, including our notation
for linear models, an overview of the algorithmic leveraging approach, and a review of related
work in statistics and computer science.

2.1 Least-squares and Linear Models

We start with relevant background and notation. Given an n × p matrix X and an n-
dimensional vector y, the least-squares (LS) problem is to solve

argminβ∈Rp ||y −Xβ||2, (1)

where || · || represents the Euclidean norm on Rn. Of interest is both a vector exactly or
approximately optimizing Problem (1), as well as the value of the objective function at the
optimum. Using one of several related methods (Golub and Loan, 1996), this LS problem
can be solved exactly in O(np2) time (but, as we will discuss in Section 2.2, it can be solved
approximately in o(np2) time2). For example, LS can be solved using the singular value
decomposition (SVD): the so-called thin SVD of X can be written as X = UΛV T , where
U is an n× p orthogonal matrix whose columns contain the left singular vectors of X, V is
an p× p orthogonal matrix whose columns contain the right singular vectors of X, and the
p × p matrix Λ = Diag {λi}, where λi, i = 1, . . . , p, are the singular values of X. In this
case, β̂ols = V Λ−1UTy.

We consider the use of LS for parameter estimation in a Gaussian linear regression
model. Consider the model

y = Xβ0 + ε, (2)

2. Recall that, formally, f(n) = o(g(n)) as n → ∞ means that for every positive constant ε there exists
a constant N such that |f(n)| ≤ ε|g(n)|, for all n ≥ N . Informally, this means that f(n) grows more
slowly than g(n). Thus, if the running time of an algorithm is o(np2) time, then it is asymptotically
faster than any (arbitrarily small) constant times np2.
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where y is an n × 1 response vector, X is an n × p fixed predictor or design matrix, β0 is
a p × 1 coefficient vector, and the noise vector ε ∼ N(0, σ2I). In this case, the unknown
coefficient β0 can be estimated via maximum-likelihood estimation as

β̂ols = argminβ||y −Xβ||2 = (XTX)−1XTy, (3)

in which case the predicted response vector is ŷ = Hy, where H = X(XTX)−1XT is the
so-called Hat Matrix, which is of interest in classical regression diagnostics (Hoaglin and
Welsch, 1978; Chatterjee and Hadi, 1986; Velleman and Welsch, 1981). The ith diagonal
element of H, hii = xTi (XTX)−1xi, where xTi is the ith row of X, is the statistical leverage
of ith observation or sample. The statistical leverage scores have been used historically to
quantify the potential of which an observation is an influential observation (Hoaglin and
Welsch, 1978; Chatterjee and Hadi, 1986; Velleman and Welsch, 1981), and they will be
important for our main results below. Since H can alternatively be expressed as H = UUT ,
where U is any orthogonal basis for the column space of X, e.g., the Q matrix from a QR
decomposition or the matrix of left singular vectors from the thin SVD, the leverage of the
ith observation can also be expressed as

hii =

p∑
j=1

U2
ij = ||ui||2, (4)

where uTi is the ith row of U . Using Eqn. (4), the exact computation of hii, for i ∈ [n],
requires O(np2) time (Golub and Loan, 1996) (but, as we will discuss in Section 2.2, they
can be approximated in o(np2) time).

For an estimate β̂ of β, the MSE (mean squared error) associated with the prediction
error is defined to be

MSE(β̂) =
1

n
E
[
(Xβ0 −Xβ̂)T (Xβ0 −Xβ̂)

]
(5)

=
1

n
Tr
(
Var

[
Xβ̂

])
+

1

n
(E
[
Xβ̂

]
−Xβ0)

T (E
[
Xβ̂

]
−Xβ0))

=
1

n
Tr
(
Var

[
Xβ̂

])
+

1

n
[bias(Xβ̂)]T [bias(Xβ̂)]

where β0 is the true value of β. The MSE provides a benchmark to compare the different
subsampling estimators, and we will be interested in both the bias and variance components.

2.2 Algorithmic Leveraging for Least-squares Approximation

Here, we will review relevant work on random sampling algorithms for computing approxi-
mate solutions to the general overconstrained LS problem (Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012). These algorithms choose (in general, non-uniformly) a subsam-
ple of the data, e.g., a small number of rows of X and the corresponding elements of y, and
then they perform (typically weighted) LS on the subsample. Importantly, these algorithms
make no assumptions on the input data X and y, except that n� p.

A prototypical example of this approach is given by the following meta-algorithm (Drineas
et al., 2006; Mahoney, 2011; Drineas et al., 2012), which we call SubsampleLS, and which
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takes as input an n× p matrix X, where n� p, a vector y, and a probability distribution
{πi}ni=1, and which returns as output an approximate solution β̃ols, which is an estimate of
β̂ols of Eqn. (3).

• Randomly sample r > p constraints, i.e., rows of X and the corresponding elements
of y, using {πi}ni=1 as an importance sampling distribution.

• Rescale each sampled row/element by 1/(r
√
πi) to form a weighted LS subproblem.

• Solve the weighted LS subproblem, formally given in Eqn. (6) below, and then return
the solution β̃ols.

It is convenient to describe SubsampleLS in terms of a random “sampling matrix” STX and a
random diagonal “rescaling matrix” (or “reweighting matrix”) D, in the following manner.
If we draw r samples (rows or constraints or data points) with replacement, then define
an r × n sampling matrix, STX , where each of the r rows of STX has one non-zero element
indicating which row of X (and element of y) is chosen in a given random trial. That is, if
the kth data unit (or observation) in the original data set is chosen in the ith random trial,
then the ith row of STX equals ek; and thus STX is a random matrix that describes the process
of sampling with replacement. As an example of applying this sampling matrix, when the
sample size n = 6 and the subsample size r = 3, then premultiplying by

STX =

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0


represents choosing the second, fourth, and fourth data points or samples. The resulting
subsample of r data points can be denoted as (X∗,y∗), where X∗r×p = STXX and y∗r×1 =

STXy. In this case, an r× r diagonal rescaling matrix D can be defined so that ith diagonal
element of D equals 1/

√
rπk if the kth data point is chosen in the ith random trial (meaning,

in particular, that every diagonal element of D equals
√
n/r for uniform sampling). With

this notation, SubsampleLS constructs and solves the weighted LS estimator :

argminβ∈Rp ||DSTXy −DSTXXβ||2. (6)

Since SubsampleLS samples constraints and not variables, the dimensionality of the
vector β̃ols that solves the (still overconstrained, but smaller) weighted LS subproblem
is the same as that of the vector β̂ols that solves the original LS problem. The former
may thus be taken as an approximation of the latter, where, of course, the quality of the
approximation depends critically on the choice of {πi}ni=1. There are several distributions
that have been considered previously (Drineas et al., 2006; Mahoney, 2011; Drineas et al.,
2012).

• Uniform Subsampling. Let πi = 1/n, for all i ∈ [n], i.e., draw the sample uniformly
at random.

• Leverage-based Subsampling. Let πi = hii/
∑n

i=1 hii = hii/p be the normalized
statistical leverage scores of Eqn. (4), i.e., draw the sample according to an importance
sampling distribution that is proportional to the statistical leverage scores of the data
matrix X.
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Although Uniform Subsampling (with or without replacement) is very simple to implement,
it is easy to construct examples where it will perform very poorly. In particular, it fails
dramatically when it is applied to real world data where non-uniform leverage scores are
prevalent (e.g., see below or see Drineas et al. 2006; Mahoney 2011). On the other hand, it
has been shown that, for a parameter γ ∈ (0, 1] to be tuned, if

πi ≥ γ
hii
p
, and r = O(p log(p)/(γε)), (7)

then the following relative-error bounds hold:

||y −Xβ̃ols||2 ≤ (1 + ε)||y −Xβ̂ols||2 and (8)

||β̂ols − β̃ols||2 ≤
√
ε
(
κ(X)

√
ξ−2 − 1

)
||β̂ols||2, (9)

where κ(X) is the condition number of X and where ξ = ||UUTy||2/||y||2 is a parameter
defining the amount of the mass of y inside the column space of X (Drineas et al., 2006;
Mahoney, 2011; Drineas et al., 2012).

Due to the crucial role of the statistical leverage scores in Eqn. (7), we refer to algorithms
of the form of SubsampleLS as the algorithmic leveraging approach to approximating LS
approximation. Several versions of the SubsampleLS algorithm are of particular interest to
us in this paper. We start with two versions that have been studied in the past.

• Uniform Sampling Estimator (UNIF) is the estimator resulting from uniform
subsampling and weighted LS estimation, i.e., where Eqn. (6) is solved, where both the
sampling and rescaling/reweighting are done with the uniform sampling probabilities.
(Note that when the weights are uniform, then the weighted LS estimator of Eqn. (6)
leads to the same solution as same as the unweighted LS estimator of Eqn. (11) below.)
This version corresponds to vanilla uniform sampling, and it’s solution will be denoted
by β̃UNIF .

• Basic Leveraging Estimator (LEV) is the estimator resulting from exact leverage-
based sampling and weighted LS estimation, i.e., where Eqn. (6) is solved, where both
the sampling and rescaling/reweighting are done with the leverage-based sampling
probabilities given in Eqn. (7). This is the basic algorithmic leveraging algorithm that
was originally proposed in (Drineas et al., 2006), where the exact empirical statistical
leverage scores of X were first used to construct the subsample and reweight the
subproblem, and it’s solution will be denoted by β̃LEV .

Motivated by our statistical analysis (to come later in the paper), we will introduce two
variants of SubsampleLS; since these are new to this paper, we also describe them here.

• Shrinkage Leveraging Estimator (SLEV) is the estimator resulting from a shrink-
age leverage-based sampling and weighted LS estimation. By shrinkage leverage-based
sampling, we mean that we will sample according to a distribution that is a convex
combination of a leverage score distribution and the uniform distribution, thereby
obtaining the benefits of each; and the rescaling/reweighting is done according to the
same distribution. That is, if πLev denotes a distribution defined by the normalized
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leverage scores and πUnif denotes the uniform distribution, then the sampling and
reweighting probabilities for SLEV are of the form

πi = απLevi + (1− α)πUnifi , (10)

where α ∈ (0, 1). Thus, with SLEV, Eqn. (6) is solved, where both the sampling
and rescaling/reweighting are done with the probabilities given in Eqn. (10). This
estimator will be denoted by β̃SLEV , and to our knowledge it has not been explicitly
considered previously.

• Unweighted Leveraging Estimator (LEVUNW) is the estimator resulting from
a leverage-based sampling and unweighted LS estimation. That is, after the samples
have been selected with leverage-based sampling probabilities, rather than solving
the weighted LS estimator of (6), we will compute the solution of the unweighted LS
estimator :

argminβ∈Rp ||STXy − STXXβ||2. (11)

Whereas the previous estimators all follow the basic framework of sampling and rescal-
ing/reweighting according to the same distribution (which is used in worst-case analy-
sis to control the properties of both eigenvalues and eigenvectors and provide unbiased
estimates of certain quantities within the analysis, see Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012), with LEVUNW they are essentially done according to
two different distributions—the reason being that not rescaling leads to the same so-
lution as rescaling with the uniform distribution. This estimator will be denoted by
β̃LEV UNW , and to our knowledge it has not been considered previously.

These methods can all be used to estimate the coefficient vector β, and we will analyze—
both theoretically and empirically—their statistical properties in terms of bias and variance.

2.3 Running Time Considerations

Although it is not our main focus, the running time for leverage-based sampling algorithms is
of interest. The running times of these algorithms depend on both the time to construct the
probability distribution, {πi}ni=1, and the time to solve the subsampled problem. For UNIF,
the former is trivial and the latter depends on the size of the subproblem. For estimators
that depend on the exact or approximate (recall the flexibility in Eqn. (7) provided by γ)
leverage scores, the running time is dominated by the exact or approximate computation of
those scores. A näıve algorithm involves using a QR decomposition or the thin SVD of X
to obtain the exact leverage scores. Unfortunately, this exact algorithm takes O(np2) time
and is thus no faster than solving the original LS problem exactly. Of greater interest is
the algorithm of Drineas et al. (2012) that computes relative-error approximations to all of
the leverage scores of X in o(np2) time.

In more detail, given as input an arbitrary n×p matrix X, with n� p, and an error pa-
rameter ε ∈ (0, 1), the main algorithm of Drineas et al. (2012) (described also in Section 5.2
below) computes numbers ˜̀

i, for all i = 1, . . . , n, that are relative-error approximations
to the leverage scores hii, in the sense that |hii − ˜̀

i| ≤ εhii, for all i = 1, . . . , n. This
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algorithm runs in roughly O(np log(p)/ε) time,3 which for appropriate parameter settings
is o(np2) time (Drineas et al., 2012). Given the numbers ˜̀

i, for all i = 1, . . . , n, we can let
πi = ˜̀

i/
∑n

i=1
˜̀
i, which then yields probabilities of the form of Eqn. (7) with (say) γ = 0.5

or γ = 0.9. Thus, we can use these πi in place of hii in BELV, SLEV, or LEVUNW, thus
providing a way to implement these procedures in o(np2) time.

The running time of the relative-error approximation algorithm of Drineas et al. (2012)
depends on the time needed to premultiply X by a randomized Hadamard transform (i.e.,
a “structured” random projection). Recently, high-quality numerical implementations of
such random projections have been provided; see, e.g., Blendenpik (Avron et al., 2010),
as well as LSRN (Meng et al., 2014), which extends these implementations to large-scale
parallel environments. These implementations demonstrate that, for matrices as small as
several thousand by several hundred, leverage-based algorithms such as LEV and SLEV can
be better in terms of running time than the computation of QR decompositions or the SVD
with, e.g., Lapack. See Avron et al. (2010); Meng et al. (2014) for details, and see Gittens
and Mahoney (2013) for the application of these methods to the fast computation of leverage
scores. Below, we will evaluate an implementation of a variant of the main algorithm
of Drineas et al. (2012) in the software environment R.

2.4 Additional Related Work

Our leverage-based methods for estimating β are related to resampling methods such as
the bootstrap (Efron, 1979), and many of these resampling methods enjoy desirable asymp-
totic properties (Shao and Tu, 1995). Resampling methods in linear models were studied
extensively in Wu (1986) and are related to the jackknife (Miller, 1974a,b; Jaeckel, 1972;
Efron and Gong, 1983). They usually produce resamples at a similar size to that of the full
data, whereas algorithmic leveraging is primarily interested in constructing subproblems
that are much smaller than the full data. In addition, the goal of resampling is tradition-
ally to perform statistical inference and not to improve the running time of an algorithm,
except in the very recent work (Kleiner et al., 2012). Additional related work in statistics
includes Hinkley (1977); Rubin (1981); Liu et al. (1998); Bickel et al. (1997); Politis et al.
(1999).

After the submission to JMLR, we were made aware, by the reviewers, of two related
pieces of work (Dhillon et al., 2013; Hsu et al., 2014). Dhillon et al. (2013) analyzed the
random rotation and uniform sampling, and then proposed several sampling procedures that
were justified in a statistical setting. For these sampling procedures, Dhillon et al. (2013)
derived some error bounds, which are in the same line of thinking as Drineas et al. (2006,
2010). Hsu et al. (2014) applied a uniform sampling analysis to matrix X after random
rotation and derived prediction error bound.

3. Bias and Variance Analysis of Subsampling Estimators

In this section, we develop analytic methods to study the biases and variances of the sub-
sampling estimators described in Section 2.2. Analyzing these subsampling methods is

3. In more detail, the asymptotic running time of the main algorithm of Drineas et al. (2012) is
O
(
np ln

(
pε−1

)
+ npε−2 lnn+ p3ε−2 (lnn)

(
ln

(
pε−1

)))
. To simplify this expression, suppose that p ≤

n ≤ ep and treat ε as a constant; then, the asymptotic running time is O
(
np lnn+ p3 (lnn) (ln p)

)
.
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challenging for at least the following two reasons: first, there are two layers of randomness
in the estimators, i.e., the randomness inherent in the linear regression model as well as ran-
dom subsampling of a particular sample from the linear model; and second, the estimators
depends on random subsampling through the inverse of random sampling matrix, which is
a nonlinear function. To ease the analysis, we will employ a Taylor series analysis to ap-
proximate the subsampling estimators as linear combinations of random sampling matrices,
and we will consider biases and variances both conditioned as well as not conditioned on
the data. Here is a brief outline of the main results of this section.

• We will start in Section 3.1 with bias and variance results for weighted LS estimators
for general sampling/reweighting probabilities. This will involve viewing the solution
of the subsampled LS problem as a function of the vector of sampling/reweighting
probabilities and performing a Taylor series expansion of the solution to the sub-
sampled LS problem around the expected value (where the expectation is taken with
respect to the random choices of the algorithm) of that vector.

• Then, in Section 3.2, we will specialize these results to leverage-based sampling and
uniform sampling, describing their complementary properties. We will see that, in
terms of bias and variance, neither LEV nor UNIF is uniformly better than the other.
In particular, LEV has variance whose size-scale is better than the size-scale of UNIF;
but UNIF does not have leverage scores in the denominator of its variance expressions,
as does LEV, and thus the variance of UNIF is not inflated on inputs that have very
small leverage scores.

• Finally, in Section 3.3, we will propose and analyze two new leveraging algorithms that
will address deficiencies of LEV and UNIF in two different ways. The first, SLEV,
constructs a smaller LS problem with “shrinkage” leverage scores that are constructed
as a convex combination of leverage score probabilities and uniform probabilities; and
the second, LEVUNW, uses leverage-based sampling probabilities to construct and
solve an unweighted or biased LS problem.

3.1 Traditional Weighted Sampling Estimators

We start with the bias and variance of the traditional weighted sampling estimator β̃W ,
given in Eqn. (12) below. Recall that this estimator actually refers to a parameterized
family of estimators, parameterized by the sampling/rescaling probabilities. The estimate
obtained by solving the weighted LS problem of (6) can be represented as

β̃W = (XTSXD
2STXX)−1XTSTXD

2SXy

= (XTWX)−1XTWy, (12)

where W = SXD
2STX is an n×n diagonal random matrix, i.e., all off-diagonal elements are

zeros, and where both SX and D are defined in terms of the sampling/rescaling probabilities.
(In particular, W describes the probability distribution with which to draw the sample
and with which to reweigh the subsample, where both are done according to the same
distribution. Thus, this section does not apply to LEVUNW; see Section 3.3.2 for the
extension to LEVUNW.) Although our results hold more generally, we are most interested
in UNIF, LEV, and SLEV, as described in Section 2.2.

870



A Statistical Perspective on Algorithmic Leveraging

Clearly, the vector β̃W can be regarded as a function of the random weight vector
w = (w1, w2, . . . , wn)T , denoted as β̃W (w), where (w1, w2, . . . , wn) are diagonal entries of
W . Since we are performing random sampling with replacement, it is easy to see that
w = (w1, w2, . . . , wn)T has a scaled multinomial distribution,

Pr

[
w1 =

k1
rπ1

, w2 =
k2
rπ2

, . . . , wn =
kn
rπn

]
=

r!

k1!k2! . . . , kn!
πk11 π

k2
2 · · ·π

kn
n ,

and thus it can easily be shown that E [w] = 1. By setting w0, the vector around which we
will perform our Taylor series expansion, to be the all-ones vector, i.e., w0 = 1, then β̃(w)
can be expanded around the full sample ordinary LS estimate β̂ols, i.e., β̃W (1) = β̂ols. From
this, we can establish the following lemma, the proof of which may be found in Appendix B.

Lemma 1 Let β̃W be the output of the SubsampleLS Algorithm, obtained by solving the
weighted LS problem of (6). Then, a Taylor expansion of β̃W around the point w0 = 1
yields

β̃W = β̂ols + (XTX)−1XTDiag {ê} (w − 1) +RW , (13)

where ê = y − Xβ̂ols is the LS residual vector, and where RW is the Taylor expansion
remainder.

Remark. The significance of Lemma 1 is that, to leading order, the vector w that encodes
information about the sampling process and subproblem construction enters the estimator
of β̃W linearly. The additional error, RW depends strongly on the details of the sampling
process, and in particular will be very different for UNIF, LEV, and SLEV.

Remark. Our approximations hold when the Taylor series expansion is valid, i.e., when RW
is “small,” e.g., RW = op(||w − w0||), where op(·) means “little o” with high probability
over the randomness in the random vector w. Although we will evaluate the quality of
our approximations empirically in Sections 4 and 5, we currently do not have a precise
theoretical characterization of when this holds. Here, we simply make two observations.
First, this expression will fail to hold if rank is lost in the sampling process. This is because
in general there will be a bias due to failing to capture information in the dimensions that
are not represented in the sample (Recall that one may use the Moore-Penrose generalized
inverse for inverting rank-deficient matrices). Second, this expression will tend to hold
better as the subsample size r is increased. However, for a fixed value of r, the linear
approximation regime will be larger when the sample is constructed using information in
the leverage scores—since, among other things, using leverage scores in the sampling process
is designed to preserve the rank of the subsampled problem (Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012). A detailed discussion of this last point is available in Mahoney
(2011); and these observations will be confirmed empirically in Section 5.

Remark. Since, essentially, LEVUNW involves sampling and reweighting according to two
different distributions4, the analogous expression for LEVUNW will be somewhat different,
as will be discussed in Lemma 5 in Section 3.3.

4. In this case, the latter distribution is the uniform distribution, where recall that reweighting uniformly
leads to the same solution as not reweighting at all.
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Given Lemma 1, we can establish the following lemma, which provides expressions for
the conditional and unconditional expectations and variances for the weighted sampling
estimators. The first two expressions in the lemma are conditioned on the data vector y5;
and the last two expressions in the lemma provide similar results, except that they are not
conditioned on the data vector y. The proof of this lemma appears in Appendix B.

Lemma 2 The conditional expectation and conditional variance for the traditional algo-
rithmic leveraging procedure, i.e., when the subproblem solved is a weighted LS problem of
the form (6), are given by:

Ew

[
β̃W |y

]
= β̂ols + Ew [RW ] ; (14)

Varw

[
β̃W |y

]
=(XTX)−1XT

[
Diag {ê}Diag

{
1

rπ

}
Diag {ê}

]
X(XTX)−1

+ Varw [RW ] , (15)

where W specifies the probability distribution used in the sampling and rescaling steps. The
unconditional expectation and unconditional variance for the traditional algorithmic lever-
aging procedure are given by:

E
[
β̃W

]
=β0; (16)

Var
[
β̃W

]
=σ2(XTX)−1 +

σ2

r
(XTX)−1XTDiag

{
(1− hii)2

πi

}
X(XTX)−1

+ Var [RW ] . (17)

Remark. Eqn. (14) states that, when the Ew [RW ] term is negligible, i.e., when the
linear approximation is valid, then, conditioning on the observed data y, the estimate β̃W
is approximately unbiased, relative to the full sample ordinarily LS estimate β̂ols; and
Eqn. (16) states that the estimate β̃W is unbiased, relative to the “true” value β0 of the
parameter vector β. That is, given a particular data set (X,y), the conditional expectation
result of Eqn. (14) states that the leveraging estimators can approximate well β̂ols; and,
as a statistical inference procedure for arbitrary data sets, the unconditional expectation
result of Eqn. (16) states that the leveraging estimators can infer well β0.
Remark. Both the conditional variance of Eqn. (15) and the (second term of the) un-
conditional variance of Eqn. (17) are inversely proportional to the subsample size r; and
both contain a sandwich-type expression, the middle of which depends on how the leverage
scores interact with the sampling probabilities. Moreover, the first term of the uncondi-
tional variance, σ2(XTX)−1, equals the variance of the ordinary LS estimator; this implies,
e.g., that the unconditional variance of Eqn. (17) is larger than the variance of the ordinary
LS estimator, which is consistent with the Gauss-Markov theorem.

3.2 Leverage-based Sampling and Uniform Sampling Estimators

Here, we specialize Lemma 2 by stating two lemmas that provide the conditional and
unconditional expectation and variance for LEV and UNIF, and we will discuss the relative

5. Here and below, the subscript w on Ew and Varw refers to performing expectations and variances with
respect to (just) the random weight vector w and not the data.
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merits of each procedure. The proofs of these two lemmas are immediate, given the proof
of Lemma 2. Thus, we omit the proofs, and instead discuss properties of the expressions
that are of interest in our empirical evaluation.

Our main conclusion here is that Lemma 3 and Lemma 4 highlight that the statistical
properties of the algorithmic leveraging method can be quite different than the algorithmic
properties. Prior work has adopted an algorithmic perspective that has focused on providing
worst-case running time bounds for arbitrary input matrices. From this algorithmic per-
spective, leverage-based sampling (i.e., explicitly or implicitly biasing toward high-leverage
components, as is done in particular with the LEV procedure) provides uniformly superior
worst-case algorithmic results, when compared with UNIF (Drineas et al., 2006; Mahoney,
2011; Drineas et al., 2012). Our analysis here reveals that, from a statistical perspective
where one is interested in the bias and variance properties of the estimators, the situation
is considerably more subtle. In particular, a key conclusion from Lemmas 3 and 4 is that,
with respect to their variance or MSE, neither LEV nor UNIF is uniformly superior for all
input.

We start with the bias and variance of the leverage subsampling estimator β̃LEV .

Lemma 3 The conditional expectation and conditional variance for the LEV procedure are
given by:

Ew

[
β̃LEV |y

]
= β̂ols + Ew [RLEV ] ;

Varw

[
β̃LEV |y

]
=
p

r
(XTX)−1XT

[
Diag {ê}Diag

{
1

hii

}
Diag {ê}

]
X(XTX)−1

+ Varw [RLEV ] .

The unconditional expectation and unconditional variance for the LEV procedure are given
by:

E
[
β̃LEV

]
= β0;

Var
[
β̃LEV

]
= σ2(XTX)−1 +

pσ2

r
(XTX)−1XTDiag

{
(1− hii)2

hii

}
X(XTX)−1

+ Var [RLEV ] . (18)

Remark. Two points are worth making. First, the variance expressions for LEV depend
on the size (i.e., the number of columns and rows) of the n× p matrix X and the number
of samples r as p/r. This variance size-scale many be made to be very small if p� r � n.
Second, the sandwich-type expression depends on the leverage scores as 1/hii, implying
that the variances could be inflated to arbitrarily large values by very small leverage scores.
Both of these observations will be confirmed empirically in Section 4.

We next turn to the bias and variance of the uniform subsampling estimator β̃UNIF .
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Lemma 4 The conditional expectation and conditional variance for the UNIF procedure
are given by:

Ew

[
β̃UNIF |y

]
= β̂ols + Ew [RUNIF ]

Varw

[
β̃UNIF |y

]
=
n

r
(XTX)−1XT [Diag {ê}Diag {ê}]X(XTX)−1

+ Varw [RUNIF ] . (19)

The unconditional expectation and unconditional variance for the UNIF procedure are given
by:

E
[
β̃UNIF

]
= β0;

Var
[
β̃UNIF

]
= σ2(XTX)−1 +

n

r
σ2(XTX)−1XTDiag

{
(1− hii)2

}
X(XTX)−1

+ Var [RUNIF ] . (20)

Remark. Two points are worth making. First, the variance expressions for UNIF depend
on the size (i.e., the number of columns and rows) of the n× p matrix X and the number
of samples r as n/r. Since this variance size-scale is very large, e.g., compared to the p/r
from LEV, these variance expressions will be large unless r is nearly equal to n. Second,
the sandwich-type expression is not inflated by very small leverage scores.
Remark. Apart from a factor n/r, the conditional variance for UNIF, as given in Eqn. (19),
is the same as Hinkley’s weighted jackknife variance estimator (Hinkley, 1977).

3.3 Novel Leveraging Estimators

In view of Lemmas 3 and 4, we consider several ways to take advantage of the complementary
strengths of the LEV and UNIF procedures. Recall that we would like to sample with respect
to probabilities that are “near” those defined by the empirical statistical leverage scores.
We at least want to identify large leverage scores to preserve rank. This helps ensure that
the linear regime of the Taylor expansion is large, and it also helps ensure that the scale of
the variance is p/r and not n/r. But we would like to avoid rescaling by 1/hii when certain
leverage scores are extremely small, thereby avoiding inflated variance estimates.

3.3.1 The Shrinkage Leveraging (SLEV) Estimator

Consider first the SLEV procedure. As described in Section 2.2, this involves sampling and
reweighting with respect to a distribution that is a convex combination of the empirical
leverage score distribution and the uniform distribution. That is, let πLev denote a distri-
bution defined by the normalized leverage scores (i.e., πLevi = hii/p, or πLev is constructed
from the output of the algorithm of (Drineas et al., 2012) that computes relative-error ap-
proximations to the leverage scores), and let πUnif denote the uniform distribution (i.e.,

πUnifi = 1/n, for all i ∈ [n]); then the sampling probabilities for the SLEV procedure are of
the form

πi = απLevi + (1− α)πUnifi , (21)

where α ∈ (0, 1).
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Since SLEV involves solving a weighted LS problem of the form of Eqn. (6), expressions
of the form provided by Lemma 2 hold immediately. In particular, SLEV enjoys approximate
unbiasedness, in the same sense that the LEV and UNIF procedures do. The particular
expressions for the higher order terms can be easily derived, but they are much messier
and less transparent than the bounds provided by Lemmas 3 and 4 for LEV and UNIF,
respectively. Thus, rather than presenting them, we simply point out several aspects of the
SLEV procedure that should be immediate, given our earlier theoretical discussion.

First, note that mini πi ≥ (1 − α)/n, with equality obtained when hii = 0. Thus,
assuming that 1 − α is not extremely small, e.g., 1 − α = 0.1, then none of the SLEV
sampling probabilities is too small, and thus the variance of the SLEV estimator does not
get inflated too much, as it could with the LEV estimator. Second, assuming that 1− α is
not too large, e.g., 1−α = 0.1, then Eqn. (7) is satisfied with γ = 1.1, and thus the amount
of oversampling that is required, relative to the LEV procedure, is not much, e.g., 10%. In
this case, the variance of the SLEV procedure has a scale of p/r, as opposed to n/r scale
of UNIF, assuming that r is increased by that 10%. Third, since Eqn. (21) is still required
to be a probability distribution, combining the leverage score distribution with the uniform
distribution has the effect of not only increasing the very small scores, but it also has the
effect of performing shrinkage on the very large scores. Finally, all of these observations also
hold if, rather that using the exact leverage score distribution (which recall takes O(np2)
time to compute), we instead use approximate leverage scores, as computed with the fast
algorithm of Drineas et al. (2012). For this reason, this approximate version of the SLEV
procedure is the most promising for very large-scale applications.

3.3.2 The Unweighted Leveraging (LEVUNW) Estimator

Consider next the LEVUNW procedure. As described in Section 2.2, this estimator is differ-
ent than the previous estimators, in that the sampling and reweighting are done according
to different distributions. (Since LEVUNW does not sample and reweight according to the
same probability distribution, our previous analysis does not apply.) Thus, we shall exam-
ine the bias and variance of the unweighted leveraging estimator β̃LEV UNW . To do so, we
first use a Taylor series expansion to get the following lemma, the proof of which may be
found in Appendix B.

Lemma 5 Let β̃LEV UNW be the output of the modified SubsampleLS Algorithm, obtained
by solving the unweighted LS problem of (11). Then, a Taylor expansion of β̃LEV UNW
around the point w0 = rπ yields

β̃LEV UNW = β̂wls + (XTW0X)−1XTDiag {êw} (w − rπ) +RLEV UNW , (22)

where β̂wls = (XTW0X)−1XW0y is the full sample weighted LS estimator, êw = y−Xβ̂wls
is the LS residual vector, W0 = Diag {rπ} = Diag {rhii/p}, and RLEV UNW is the Taylor
expansion remainder.

Remark. This lemma is analogous to Lemma 1. Since the sampling and reweighting are
performed according to different distributions, however, the point about which the Taylor
expansion is performed, as well as the prefactors of the linear term, are somewhat different.
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In particular, here we expand around the point w0 = rπ since E [w] = rπ when no
reweighting takes place.

Given this Taylor expansion lemma, we can now establish the following lemma for the
mean and variance of LEVUNW, both conditioned and unconditioned on the data y. The
proof of the following lemma may be found in Appendix B.

Lemma 6 The conditional expectation and conditional variance for the LEVUNW proce-
dure are given by:

Ew

[
β̃LEV UNW |y

]
= β̂wls + Ew [RLEV UNW ] ;

Varw

[
β̃LEV UNW |y

]
= (XTW0X)−1XTDiag {êw}W0Diag {êw}X(XTW0X)−1

+ Varw [RLEV UNW ] ,

where W0 = Diag {rπ}, and where β̂wls = (XTW0X)−1XW0y is the full sample weighted
LS estimator. The unconditional expectation and unconditional variance for the LEVUNW
procedure are given by:

E
[
β̃LEV UNW

]
= β0;

Var
[
β̃LEV UNW

]
= σ2(XTW0X)−1XTW 2

0X(XTW0X)−1

+ σ2(XTW0X)−1XTDiag {I − PX,W0}W0Diag {I − PX,W0}X
(XTW0X)−1 + Var [RLEV UNW ] (23)

where PX,W0 = X(XTW0X)−1XTW0.

Remark. The two expectation results in this lemma state: (i), when Ew [RLEV UNW ]
is negligible, then, conditioning on the observed data y, the estimator β̃LEV UNW is ap-
proximately unbiased, relative to the full sample weighted LS estimator β̂wls; and (ii) the
estimator β̃LEV UNW is unbiased, relative to the “true” value β0 of the parameter vector β.
That is, if we apply LEVUNW to a given data set N times, then the average of the N LEV-
UNW estimates are not centered at the LS estimate, but instead are centered roughly at the
weighted least squares estimate; while if we generate many data sets from the true model
and apply LEVUNW to these data sets, then the average of these estimates is centered
around true value β0.
Remark. As expected, when the leverage scores are all the same, the variance in Eqn. (23)
is the same as the variance of uniform random sampling. This is expected since, when
reweighting with respect to the uniform distribution, one does not change the problem being
solved, and thus the solutions to the weighted and unweighted LS problems are identical.
More generally, the variance is not inflated by very small leverage scores, as it is with LEV.
For example, the conditional variance expression is also a sandwich-type expression, the
center of which is W0 = Diag {rhii/n}, which is not inflated by very small leverage scores.

4. Main Empirical Evaluation

In this section, we describe the main part of our empirical analysis of the behavior of the
biases and variances of the subsampling estimators described in Section 2.2. Additional
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empirical results will be presented in Section 5. In these two sections, we will use both syn-
thetic data and real data to illustrate the extreme properties of the subsampling methods
in realistic settings. We will use the MSE as a benchmark to compare the different subsam-
pling estimators; but since we are interested in both the bias and variance properties of our
estimates, we will present results for both the bias and variance separately.

Here is a brief outline of the main results of this section.

• In Section 4.1, we will describe our synthetic data. These data are drawn from three
standard distributions, and they are designed to provide relatively-realistic synthetic
examples where leverage scores are fairly uniform, moderately nonuniform, or very
nonuniform.

• Then, in Section 4.2, we will summarize our results for the unconditional bias and
variance for LEV and UNIF, when applied to the synthetic data.

• Then, in Section 4.3, we will summarize our results for the unconditional bias and
variance of SLEV and LEVUNW. This will illustrate that both SLEV and LEVUNW
can overcome some of the problems associated with LEV and UNIF.

• Finally, in Section 4.4, we will present our results for the conditional bias and variance
of SLEV and LEVUNW (as well as LEV and UNIF). In particular, this will show that
LEVUNW can incur substantial bias, relative to the other methods, when conditioning
on a given data set.

4.1 Description of Synthetic Data

We consider synthetic data of 1000 runs generated from y = Xβ + ε, where ε ∼ N(0, 9In),
where several different values of n and p, leading to both “very rectangular” and “moderately
rectangular” matrices X, are considered. The design matrix X is generated from one of
three different classes of distributions introduced below. These three distributions were
chosen since the first has nearly uniform leverage scores, the second has mildly non-uniform
leverage scores, and the third has very non-uniform leverage scores.

• Nearly uniform leverage scores (GA). We generated an n × p matrix X from
multivariate normal N(1p,Σ), where the (i, j)th element of Σij = 2 × 0.5|i−j|, and
where we set β = (110, 0.11p−20,110)

T . (Referred to as GA data.)

• Moderately nonuniform leverage scores (T3). We generatedX from multivariate
t-distribution with 3 degree of freedom and covariance matrix Σ as before. (Referred
to as T3 data.)

• Very nonuniform leverage scores (T1). We generated X from multivariate t-
distribution with 1 degree of freedom and covariance matrix Σ as before. (Referred
to as T1 data.)

See Table 4.1 for a summary of the parameters for the synthetic data we considered and
for basic summary statistics for the leverage scores probabilities (i.e., the leverage scores
that have been normalized to sum to 1 by dividing by p) of these data matrices. The
results reported in Table 4.1 are for leverage score statistics for a single fixed data matrix
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Distn n p Min Median Max Mean Std.Dev. Max
Min

Max
Median

GA 1K 10 1.96e-4 9.24e-4 2.66e-3 1.00e-3 4.49e-4 13.5 2.88
GA 1K 50 4.79e-4 9.90e-4 1.74e-3 1.00e-3 1.95e-4 3.63 1.76
GA 1K 100 6.65e-4 9.94e-4 1.56e-3 1.00e-3 1.33e-4 2.35 1.57

GA 5K 10 1.45e-5 1.88e-4 6.16e-4 2.00e-4 8.97e-5 42.4 3.28
GA 5K 50 9.02e-5 1.98e-4 3.64e-4 2.00e-4 3.92e-5 4.03 1.84
GA 5K 250 1.39e-4 1.99e-4 2.68e-4 2.00e-4 1.73e-5 1.92 1.34
GA 5K 500 1.54e-4 2.00e-4 2.48e-4 2.00e-4 1.20e-5 1.61 1.24

T3 1K 10 2.64e-5 4.09e-4 5.63e-2 1.00e-3 2.77e-3 2.13e+3 138
T3 1K 50 6.57e-5 5.21e-4 1.95e-2 1.00e-3 1.71e-3 297 37.5
T3 1K 100 7.26e-5 6.39e-4 9.04e-3 1.00e-3 1.06e-3 125 14.1

T3 5K 10 5.23e-6 7.73e-5 5.85e-2 2.00e-4 9.66e-4 1.12e+4 757
T3 5K 50 9.60e-6 9.84e-5 1.52e-2 2.00e-4 4.64e-4 1.58e+3 154
T3 5K 250 1.20e-5 1.14e-4 3.56e-3 2.00e-4 2.77e-4 296 31.2
T3 5K 500 1.72e-5 1.29e-4 1.87e-3 2.00e-4 2.09e-4 108 14.5

T1 1K 10 4.91e-8 4.52e-6 9.69e-2 1.00e-3 8.40e-3 1.97e+6 2.14e+4
T1 1K 50 2.24e-6 6.18e-5 2.00e-2 1.00e-3 3.07e-3 8.93e+3 323
T1 1K 100 4.81e-6 1.66e-4 9.99e-3 1.00e-3 2.08e-3 2.08e+3 60.1

T1 5K 10 5.00e-9 6.18e-7 9.00e-2 2.00e-4 3.00e-3 1.80e+7 1.46e+5
T1 5K 50 4.10e-8 2.71e-6 2.00e-2 2.00e-4 1.39e-3 4.88e+5 7.37e+3
T1 5K 250 3.28e-7 1.50e-5 4.00e-3 2.00e-4 6.11e-4 1.22e+4 267
T1 5K 500 1.04e-6 2.79e-5 2.00e-3 2.00e-4 4.24e-4 1.91e+3 71.6

Table 1: Summary statistics for leverage-score probabilities (i.e., leverage scores divided by
p) for the synthetic data sets.

X generated in the above manner (for each of the 3 procedures and for each value of n and
p), but we have confirmed that similar results hold for other matrices X generated in the
same manner.

Several observations are worth making about the summaries presented in Table 4.1.
First, and as expected, the Gaussian data tend to have the most uniform leverage scores,
the T3 data are intermediate, and the T1 data have the most nonuniform leverage scores, as
measured by both the standard deviation of the scores as well as the ratio of maximum to
minimum leverage score. Second, the standard deviation of the leverage score distribution
is substantially less sensitive to non-uniformities in the leverage scores than is the ratio
of the maximum to minimum leverage score (or the maximum to the mean/median score,
although all four measures exhibit the same qualitative trends). Although we have not
pursued it, this suggests that these latter measures will be more informative as to when
leverage-based sampling might be necessary in a particular application. Third, in all these
cases, the variability trends are caused both by the large (in particular, the maximum)
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leverage scores increasing as well as the small (in particular, the minimum) leverage scores
decreasing. Fourth, within a given type of distribution (i.e., GA or T3 or T1), leverage scores
are more nonuniform when the matrix X is more rectangular, and this is true both when n
is held fixed and when p is held fixed.

4.2 Leveraging Versus Uniform Sampling on Synthetic Data

Here, we will describe the properties of LEV versus UNIF for synthetic data. See Figures 1,
2, and 3 for the results on data matrices with n = 1000 and p = 10, 50, and 100, respectively.
(The results for data matrices for n = 5000 and other values of n are similar.) In each case,
we generated a single matrix from that distribution (which we then fixed to generate the
y vectors) and β0 was set to be the all-ones vector; and then we ran the sampling process
multiple times, typically ca. 1000 times, in order to obtain reliable estimates for the biases
and variances. In each of the Figures 1, 2, and 3, the top panel is the variance, the bottom
panel is the squared bias; for both the bias and variance, we have plotted the results in
log-scale; and, in each figure, the first column is the GA model, the middle column is the
T3 model, and the right column is the T1 model.

The simulation results corroborate what we have learned from our theoretical analysis,
and there are several things worth noting. First, in general the squared bias is much
less than the variance, even for the T1 data, suggesting that the solution is unbiased in
the sense quantified in Lemmas 3 and 4. Second, LEV and UNIF perform very similarly
for GA, somewhat less similarly for T3, and quite differently for T1, consistent with the
results in Table 4.1 indicating that the leverage scores are very uniform for GA and very
nonuniform for T1. In addition, when they are different, LEV tends to perform better than
UNIF, i.e., have a lower MSE for a fixed sampling complexity. Third, as the subsample
size increases, the squared bias and variance tend to decrease monotonically. In particular,
the variance tends to decrease roughly as 1/r, where r is the size of the subsample, in
agreement with Lemmas 3 and 4. Moreover, the decrease for UNIF is much slower, in a
manner more consistent with the leading term of n/r in Eqn. (20), than is the decrease for
LEV, which by Eqn. (18) has leading term p/r. Fourth, for all three models, both the bias
and variance tend to increase when the matrix is less rectangular, e.g., as p increases 10 to
100 for n = 1000. All in all, LEV is comparable to or outperforms UNIF, especially when
the leverage scores are nonuniform.

4.3 Improvements from Shrinkage Leveraging and Unweighted Leveraging

Here, we will describe how our proposed SLEV and LEVUNW procedures can both lead
to improvements over LEV and UNIF. Recall that LEV can lead to large MSE by inflating
very small leverage scores. The SLEV procedure deals with this by considering a convex
combination of the uniform distribution and the leverage score distribution, thereby pro-
viding a lower bound on the leverage scores; and the LEVUNW procedure deals with this
by not rescaling the subproblem to be solved.

Consider Figures 4, 5, and 6, which present the variance and bias for synthetic data
matrices (for GA, T3, and T1 data) of size n× p, where n = 1000 and p = 10, 50, and 100,
respectively. In each case, LEV, SLEV for three different values of the convex combination
parameter α, and LEVUNW were considered. Several observations are worth making. First
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Figure 1: (Leveraging Versus Uniform Sampling subsection.) Comparison of variances and
squared biases of the LEV and UNIF estimators in three data sets (GA, T3, and
T1) for n = 1000 and p = 10. Left panels are GA data; Middle panels are T3
data; Right panels are T1 data. Upper panels are Logarithm of Variances; Lower
panels are Logarithm of Squared bias. Black lines are LEV; Dash lines are UNIF.

of all, for GA data (left panel in these figures), all the results tend to be quite similar; but
for T3 data (middle panel) and even more so for T1 data (right panel), differences appear.
Second, SLEV with α ' 0.1, i.e., when SLEV consists mostly of the uniform distribution, is
notably worse in a manner similarly as with UNIF. Moreover, there is a gradual decrease in
both bias and variance for our proposed SLEV as α is increased; and when α ' 0.9 SLEV is
slightly better than LEV. Finally, our proposed LEVUNW often has the smallest variance
over a wide range of subsample sizes for both T3 and T1, although the effect is not major.
All in all, these observations are consistent with our main theoretical results.

Next consider Figure 7. This figure examines the optimal convex combination choice
for α in SLEV, with α being the x-axis in all the plots. Different column panels in Figure 7
correspond to different subsample sizes r. Recall that there are two conflicting goals for
SLEV: adding (1 − α)/n to the small leverage scores will avoid substantially inflating the
variance of the resulting estimate by samples with extremely small leverage scores; and doing
so will lead to larger sample size r in order to obtain bounds of the form Eqns. (8) and (9).
Figure 7 plots the variance and bias for T1 data for a range of parameter values and for a
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Figure 2: (Leveraging Versus Uniform Sampling subsection.) Same as Figure 1, except that
n = 1000 and p = 50.

range of subsample sizes. In general, one sees that using SLEV to increase the probability
of choosing small leverage components with α around 0.8− 0.9 (and relatedly shrinking the
effect of large leverage components) has a beneficial effect on bias as well as variance. This
is particularly true in two cases: first, when the matrix is very rectangular, e.g., when the
p = 10, which is consistent with the leverage score statistics from Table 4.1; and second,
when the subsample size r is larger, as the results for r = 3p are much choppier (and for
r = 2p, they are still choppier). As a rule of thumb, these plots suggest that choosing
α = 0.9, and thus using πi = απLevi + (1− α)/n as the importance sampling probabilities,
strikes a balance between needing more samples and avoiding variance inflation.

Inspecting in Figure 7 the grey lines, dots, and dashes, which correspond to LEVUNW
for the various values of p, one can see that LEVUNW consistently has smaller variances
than SLEV for all values of α. We should emphasize, though, that these are unconditional
biases and variances. Since LEVUNW is approximately unbiased relative to the full sample
weighted LS estimate β̂wls, however, there is a large bias away from the full sample un-
weighted LS estimate β̂ols. This suggests that LEVUNW may be used when the primary
goal is to infer the true β0; but rather when the primary goal is to approximate the full
sample unweighted LS estimate, or when conditional biases and variances are of interest,
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Figure 3: (Leveraging Versus Uniform Sampling subsection.) Same as Figure 1, except that
n = 1000 and p = 100.

then SLEV may be more appropriate. We will discuss this in greater detail in Section 4.4
next.

4.4 Conditional Bias and Variance

Here, we will describe the properties of the conditional bias and variance under various
subsampling estimators. These will provide a more direct comparison between Eqns. (14)
and (15) from Lemma 2 and the corresponding results from Lemma 6. These will also
provide a more direct comparison with previous work that has adopted an algorithmic
perspective on algorithmic leveraging (Drineas et al., 2006; Mahoney, 2011; Drineas et al.,
2012).

Consider Figure 8, which presents our main empirical results for conditional biases and
variances. As before, matrices were generated from GA, T3 and T1; and we calculated
the empirical bias and variance of UNIF, LEV, SLEV with α = 0.9, and LEVUNW—in
all cases, conditional on the empirical data y. Several observations are worth making.
First, for GA the variances are all very similar; and the biases are also similar, with the
exception of LEVUNW. This is expected, since by the conditional expectation bounds from
Lemma 6, LEVUNW is approximately unbiased, relative to the full sample weighted LS
estimate β̂wls—and thus there should be a large bias away from the full sample unweighted
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Figure 4: (Improvements from SLEV and LEVUNW subsection.) Comparison of variances
and squared biases of the LEV, SLEV, and LEVUNW estimators in three data
sets (GA, T3, and T1) for n = 1000 and p = 10. Left panels are GA data; Middle
panels are T3 data; Right panels are T1 data. Grey lines are LEVUNW; black
lines are LEV; dotted lines are SLEV with α = 0.1; dot-dashed lines are SLEV
with α = 0.5; thick black lines are SLEV with α = 0.9.

LS estimate. Second, for T3 and even more prominently for T1, the variance of LEVUNW is
less than that for the other estimators. Third, when the leverage scores are very nonuniform,
as with T1, the relative merits of UNIF versus LEVUNW depend on the subsample size r.
In particular, the bias of LEVUNW is larger than that of UNIF even for very aggressive
downsampling; but it is substantially less than UNIF for moderate to large sample sizes.

Based on these and our other results, our default recommendation is to use SLEV (with
either exact or approximate leverage scores) with α ≈ 0.9: it is no more than slightly worse
than LEVUNW when considering unconditional biases and variances, and it can be much
better than LEVUNW when considering conditional biases and variances.

5. Additional Empirical Evaluation

In this section, we provide additional empirical results (of a more specialized nature than
those presented in Section 4). Here is a brief outline of the main results of this section.
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Figure 5: (Improvements from SLEV and LEVUNW subsection.) Same as Figure 4, except
that n = 1000 and p = 50.

• In Section 5.1, we will consider the synthetic data, and we will describe what happens
when the subsampled problem looses rank. This can happen if one is extremely ag-
gressive in downsampling with SLEV; but it is much more common with UNIF, even
if one samples many constraints. In both cases, the behavior of bias and variance is
very different than when rank is preserved.

• Then, in Section 5.2, we will summarize our results on synthetic data when the leverage
scores are computed approximately with the fast approximation algorithm of Drineas
et al. (2012). Among other things, we will describe the running time of this algorithm,
illustrating that it can solve larger problems compared to traditional deterministic
methods; and we will evaluate the unconditional bias and variance of SLEV when this
algorithm is used to approximate the leverage scores.

• Finally, in Section 5.3, we will consider real data, and we will present our results for
the conditional bias and variance for two data sets that are drawn from our previous
work in two genetics applications. One of these has very uniform leverage scores,
and the other has moderately nonuniform leverage scores; and our results from the
synthetic data hold also in these realistic applications.
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Figure 6: (Improvements from SLEV and LEVUNW subsection.) Same as Figure 4, except
that n = 1000 and p = 100.

5.1 Leveraging and Uniform Estimates for Singular Subproblems

Here, we will describe the properties of LEV versus UNIF for situations in which rank is lost
in the construction of the subproblem. That is, in some cases, the subsampled matrix, X∗,
may have column rank that is smaller than the rank of the original matrix X, and this leads
to a singular X∗TX∗ = XTWX. Of course, the LS solution of the subproblem can still
be solved, but there will be a “bias” due to the dimensions that are not represented in the
subsample. (We use the Moore-Penrose generalized inverse to compute the estimators when
rank is lost in the construction of the subproblem.) Before describing these results, recall
that algorithmic leveraging (in particular, LEV, but it holds for SLEV as well) guarantees
that this will not happen in the following sense: if roughly O(p log p) rows of X are sampled
using an importance sampling distribution that approximates the leverage scores in the
sense of Eqn. (7), then with very high probability the matrix X∗ does not lose rank (Drineas
et al., 2006; Mahoney, 2011; Drineas et al., 2012). Indeed, this observation is crucial from
the algorithmic perspective, i.e., in order to obtain relative-error bounds of the form of
Eqns. (8) and (9), and thus it was central to the development of algorithmic leveraging.
On the other hand, if one downsamples more aggressively, e.g., if one samples only, say,
p + 100 or p + 10 rows, or if one uses uniform sampling when the leverage scores are very
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Figure 7: (Improvements from SLEV and LEVUNW subsection.) Varying α in SLEV. Com-
parison of variances and squared biases of the SLEV estimator in data generated
from T1 with n = 1000 and variable p. Left panels are subsample size r = 3p;
Middle panels are r = 5p; Right panels are r = 10p. Circles connected by black
lines are p = 10; squares connected by dash lines are p = 50; triangles connected
by dotted lines are p = 100. Grey corresponds to the LEVUNW estimator.

nonuniform, then it is possible to lose rank. Here, we examine the statistical consequences
of this.

We have observed this phenomenon with the synthetic data for both UNIF as well as for
leverage-based sampling procedures; but the properties are somewhat different depending
on the sampling procedure. To illustrate both of these with a single synthetic example, we
first generated a 1000×10 matrix from multivariate t-distribution with 3 (or 2 or 1, denoted
T3, T2, and T1, respectively) degrees of freedom and covariance matrix Σij = 2×0.5|i−j|; we
then calculated the leverage scores of all rows; and finally we formed the matrix X was by
keeping the 50 rows with highest leverage scores and replicating 950 times the row with the
smallest leverage score. (This is a somewhat more realistic version of the toy Worst-case
Matrix that is described in Appendix A) We then applied LEV and UNIF to the data sets
with different subsample sizes, as we did for the results summarized in Section 4.2. Our
results are summarized in Figure 9 and 10.
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Figure 8: (Conditional Bias and Variance subsection.) Comparison of conditional variances
and squared biases of the LEV and UNIF estimators in three data sets (GA, T3,
and T1) for n = 1000 and p = 50. Left panels are GA data; Middle panels are
T3 data; Right panels are T1 data. Upper panels are Variances; Lower panels are
Squared Bias. Black lines for LEV estimate; dash lines for UNIF estimate; grey
lines for LEVUNW estimate; dotted lines for SLEV estimate with α = 0.9.

The top row of Figure 9 plots the fraction of singular XTWX, out of 500 trials, for
both LEV and UNIF; from left to right, results for T3, T2, and T1 are shown. Several
points are worth emphasizing. First, both LEV and UNIF loose rank if the downsampling
is sufficiently aggressive. Second, for LEV, as long as one chooses more than roughly 20
(or less for T2 and T1), i.e., the ratio r/p is at least roughly 2, then rank is not lost; but
for uniform sampling, one must sample a much larger fraction of the data. In particular,
when fewer than r = 100 samples are drawn, nearly all of the subproblems constructed
with the UNIF procedure are singular, and it is not until more than r = 300 that nearly
all of the subproblems are not singular. Although these particular numbers depend on the
particular data, one needs to draw many more samples with UNIF than with LEV in order
to preserve rank and this is a very general phenomenon. The middle row of Figure 9 shows
the boxplots of rank for the subproblem for LEV for those 500 tries; and the bottom row
shows the boxplots of the rank of the subproblem for UNIF for those 500 tries. Note the
unusual scale on the X-axis designed to highlight the lost rank data for both LEV as well
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Figure 9: Comparison of LEV and UNIF when rank is lost in the sampling process (n =
1000 and p = 10 here). Left panels are T3; Middle panels are T2; Right panels
are T1. Upper panels are proportion of singular XTWX, out of 500 trials, for
both LEV (solid lines) and UNIF (dashed lines); Middle panels are boxplots of
ranks of 500 LEV subsamples; Lower panels are boxplots of ranks of 500 UNIF
subsamples. Note the nonstandard scaling of the X axis.

as UNIF. These boxplots illustrate the sigmoidal distribution of ranks obtained by UNIF as
a function of the number of samples and the less severe beginning of the sigmoid for LEV;
and they also show that when subproblems are singular, then often many dimensions fail
to be captured. All in all, LEV outperforms UNIF, especially when the leverage scores are
nonuniform.

Figure 10 illustrates the variance and bias of the corresponding estimators. In particular,
the upper panels plot the logarithm of variances; the middle panels plot the same quantities,
except that it is zoomed-in on the X-axis; and the lower panels plot the logarithm of
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Figure 10: Comparison of LEV and UNIF when rank is lost in the sampling process (n =
1000 and p = 10 here). Left panel are T3; Middle panels are T2; Right panels
are T1. Upper panels are logarithm of variances of the estimates; Middle panels
are logarithm of variances, zoomed-in on the X-axis; Lower panels are logarithm
of squared bias of the estimates. Black line for LEV; Dash line for UNIF.

squared bias. As before, the left/middle/right panels present results for the T3/T2/T1 data,
respectively. The behavior here is very different that that shown in Figures 1, 2, and 3; and
several observations are worth making. First, for all three models and for both LEV and
UNIF, when the downsampling is very aggressive, e.g, r = p+5 or r = p+10, then the bias
is comparable to the variance. That is, since the sampling process has lost dimensions, the
linear approximation implicit in our Taylor expansion is violated. Second, both bias and
variance are worse for T1 than for T2 than for T3, which is consistent with Table 4.1, but the
effect is minor; and the bias and variance are generally much worse for UNIF than for LEV.
Third, as r increases, the variance for UNIF increases, hits a maximum and then decreases;
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and at the same time the bias for UNIF gradually decreases. Upon examining the original
data, the reason that there is very little variance initially is that most of the subsamples have
rank 1 or 2; then the variance increases as the dimensionality of the subsamples increases;
and then the variance decreases due to the 1/r scaling, as we saw in the plots in Section 4.2.
Fourth, as r increases, both the variance and bias of LEV decrease, as we saw in Section 4.2;
but in the aggressive downsampling regime, i.e., when r is very small, the variance of LEV
is particularly “choppy,” and is actually worse than that of UNIF, perhaps also due to rank
deficiency issues.

5.2 Approximate Leveraging via the Fast Leveraging Algorithm

Here, we employ the fast randomized algorithm from Drineas et al. (2012) to compute
approximations to the leverage scores of X, to be used in place of the exact leverage scores
in LEV, SLEV, and LEVUNW. To start, we provide a brief description of the algorithm
of Drineas et al. (2012), which takes as input an arbitrary n× p matrix X.

• Generate an r1 × n random matrix Π1 and a p× r2 random matrix Π2.

• Let R be the R matrix from a QR decomposition of Π1X.

• Compute and return the leverage scores of the matrix XR−1Π2.

For appropriate choices of r1 and r2, if one chooses Π1 to be a Hadamard-based random
projection matrix, then this algorithm runs in o(np2) time, and it returns 1± ε approxima-
tions to all the leverage scores of X (Drineas et al., 2012). In addition, with a high-quality
implementation of the Hadamard-based random projection, this algorithm runs faster than
traditional deterministic algorithms based on Lapack for matrices as small as several thou-
sand by several hundred (Avron et al., 2010; Gittens and Mahoney, 2013).

We have implemented in the software environment R two variants of this fast algorithm
of Drineas et al. (2012), and we have compared it with QR-based deterministic algorithms
also supported in R for computing the leverage scores exactly. In particular, the following
results were obtained on a PC with Intel Core i7 Processor and 6 Gbytes RAM running
Windows 7, on which we used the software package R, version 2.15.2. In the following, we
refer to the above algorithm as BFast (the Binary Fast algorithm) when (up to normal-
ization) each element of Π1 and Π2 is generated i.i.d. from {−1, 1} with equal sampling
probabilities; and we refer to the above algorithm as GFast (the Gaussian Fast algorithm)
when each element of Π1 is generated i.i.d. from a Gaussian distribution with mean zero and
variance 1/n and each element of Π2 is generated i.i.d. from a Gaussian distribution with
mean zero and variance 1/p. In particular, note that here we do not consider Hadamard-
based projections for Π1 or more sophisticated parallel and distributed implementations of
these algorithms (Avron et al., 2010; Meng et al., 2014; Gittens and Mahoney, 2013; Yang
et al., 2013).

To illustrate the behavior of this algorithm as a function of its parameters, we considered
synthetic data where the 20, 000×1, 000 design matrix X is generated from T1 distribution.
All the other parameters are set to be the same as before, except Σij = 0.1, for i 6= j,
and Σii = 2. We then applied BFast and GFast with varying r1 and r2 to the data. In
particular, we set r1 = p, 1.5p, 2p, 3p, 5p, where p = 1, 000, and we set r2 = κ log(n), for κ =
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Figure 11: (Fast Leveraging Algorithm subsection.) Effect of approximating leverage scores
using BFast and GFast for varying parameters. Upper panels: Varying parame-
ter r1 for fixed r2, where r2 = log(n) (black lines), r2 = 5 log(n) (dashed lines),
and r2 = 10 log(n) (dotted lines). Lower panels: Varying parameter r2 for fixed
r1, where r1 = p (black lines), r1 = 3p (dashed lines), and r1 = 5p (dotted lines).
Left two panels: Correlation between exact leverage scores and leverage scores
approximated using BFast and GFast, for varying r1 and r2. Right two panels:
CPU time for varying r1 and r2, using BFast and GFast.

1, 2, 3, 4, 5, 10, 20, where n = 20, 000. See Figure 11, which presents both a summary of the
correlation between the approximate and exact leverage scores as well as a summary of the
running time for computing the approximate leverage scores, as r1 and r2 are varied for both
BFast and GFast. We can see that the correlations between approximated and exact leverage
scores are not very sensitive to r1, whereas the running time increases roughly linearly for
increasing r1. In contrast, the correlations between approximated and exact leverage scores
increases rapidly for increasing r2, whereas the running time does not increase much when
r2 increases. These observations suggest that we may use a combination of small r1 and
large r2 to achieve high-quality approximation and short running time.

Next, we examine the running time of the approximation algorithms for computing the
leverage scores. Our results for running times are summarized in Figure 12. In that figure,
we plot the running time as sample size n and predictor size p are varied for BFast and
GFast. We can see that when the sample size is very small, the computation time of the
fast algorithms is slightly worse than that of the exact algorithm. (This phenomenon occurs
primarily due to the fact that the fast algorithm requires additional projection and matrix
multiplication steps, which dominate the running time for very small matrices.) On the
other hand, when the sample size is larger than ca. 20, 000, the computation time of the
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fast approximation algorithms becomes slightly less expensive than that of exact algorithm.
Much more significantly, when the sample size is larger than roughly 35, 000, the exact
algorithm requires more memory than our standard R environment can provide, and thus
it fails to run at all. In contrast, the fast algorithms can work with sample size up to
roughly 60, 000.

That is, the use of this randomized algorithm to approximate the leverage scores permits
us to work with data that are roughly 1.5 times larger in n or p, even when a simple
vanilla implementation is provided in the R environment. If one is interested in much
larger inputs, e.g., with n = 106 or more, then one should probably not work within
R and instead use Hadamard-based random projections for Π1 and/or the use of more
sophisticated methods, such as those described in Avron et al. (2010); Meng et al. (2014);
Gittens and Mahoney (2013); Yang et al. (2013); here we simply evaluate an implementation
of these methods in R. The reason that BFast and GFast can run for much larger input
is likely that the computational bottleneck for the exact algorithm is a QR decomposition,
while the computational bottleneck for the fast randomized algorithms is the matrix-matrix
multiplication step.

Finally, we evaluate the bias and variance of LEV, SLEV and LEVUNW estimates where
the leverage scores are calculated using exact algorithm, BFast, and GFast. In Figure 13,
we plot the variance and squared bias for T3 data sets. (We have observed similar but
slightly smoother results for the Gaussian data sets and similar but slightly choppier results
for the T1 data sets.) Observe that the variances of LEV estimates where the leverage
scores are calculated using exact algorithm, BFast, and GFast are almost identical; and
this observation is also true for SLEV and LEVUNW estimates. All in all, using the fast
approximation algorithm of Drineas et al. (2012) to compute approximations to the leverage
scores for use in LEV, SLEV, and LEVUNW leads to improved algorithmic performance,
while achieving nearly identical statistical results as LEV, SLEV, and LEVUNW when the
exact leverage scores are used.

5.3 Illustration of the Method on Real Data

Here, we provide an illustration of our methods on two real data sets drawn from two
problems in genetics with which we have prior experience (Dalpiaz et al., 2013; Mahoney
and Drineas, 2009). The first data set has relatively uniform leverage scores, while the
second data set has somewhat more nonuniform leverage scores. These two examples simply
illustrate that observations we made on the synthetic data also hold for more realistic data
that we have studied previously. For more information on the application of these ideas in
genetics, see previous work on PCA-correlated SNPs (Paschou et al., 2007, 2010).

5.3.1 Linear Model for Bias Correction in RNA-Seq Data

In order to illustrate how our methods perform on a real data set with nearly uniform
leverage scores, we consider an RNA-Seq data set containing n = 51, 751 read counts from
embryonic mouse stem cells (Cloonan et al., 2008). Recall that RNA-Seq is becoming the
major tool for transcriptome analysis; it produces digital signals by obtaining tens of millions
of short reads; and after being mapped to the genome, RNA-Seq data can be summarized by
a sequence of short-read counts. Recent work found that short-read counts have significant
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Figure 12: (Fast Leveraging Algorithm subsection.) CPU time for calculating exact leverage
scores and approximate leverage scores using the BFast and GFast versions of
the fast algorithm of (Drineas et al., 2012). Left panel is CPU time for varying
sample size n for fixed predictor size p = 500; Right panel is CPU time for
varying predictor size p for fixed sample size n = 2000. Black lines connect
the CPU time for calculating exact leverage scores; dash lines connect the CPU
time for using GFast to approximate the leverage scores; dotted lines connect
the CPU time for using BFast to approximate the leverage scores.

sequence bias (Li et al., 2010). Here, we consider a simplified linear model of Dalpiaz et al.
(2013) for correcting sequence bias in RNA-Seq. Let nij denote the counts of reads that are
mapped to the genome starting at the jth nucleotide of the ith gene, where i = 1, 2, . . . , 100
and j = 1, . . . , Li. We assume that the log transformed count of reads, yij = log(nij + 0.5),
depends on 40 nucleotides in the neighborhood, denoted as bij,−20, bij,−19, . . . , bij,18, bij,19
through the following linear model: yij = α +

∑19
k=−20

∑
h∈H βkhI(bij,k = h) + εij , where

H = {A,C,G}, where T is used as the baseline level, α is the grand mean, I(bij,k = h)
equals to 1 if the kth nucleotide of the surrounding sequence is h, and 0 otherwise, βkh is
the coefficient of the effect of nucleotide h occurring in the kth position, and εij ∼ N(0, σ2).
This linear model uses p = 121 parameters to model the sequence bias of read counts. For
n = 51, 751, model-fitting via LS is time-consuming.

893



Ma, Mahoney and Yu

5000 10000 15000 20000

0
1

2
3

4
5

LEV

subsample size

lo
g(

va
ria

nc
e)

●
●

●

●

●

Exact
BFast
GFast

5000 10000 15000 20000

0
1

2
3

4
5

SLEV

subsample size
lo

g(
va

ria
nc

e)

●

●

●

●
●

5000 10000 15000 20000

0
1

2
3

4
5

LEVUNW

subsample size

lo
g(

va
ria

nc
e)

●
●

●

●

●

5000 10000 15000 20000

−
5

−
3

−
1

0
1

2

subsample size

lo
g(

sq
ua

re
d 

bi
as

)

●

●

●

●
●

5000 10000 15000 20000

−
5

−
3

−
1

0
1

2

subsample size

lo
g(

sq
ua

re
d 

bi
as

)

●

●

●

●

●

5000 10000 15000 20000

−
5

−
3

−
1

0
1

2

subsample size
lo

g(
sq

ua
re

d 
bi

as
)

●

●

●

●
●

Figure 13: (Fast Leveraging Algorithm subsection.) Comparison of variances and squared
biases of the LEV, SLEV, and LEVUNW estimators in T3 data sets for n = 20000
and p = 5000 using BFast and GFast versions of the fast algorithm of (Drineas
et al., 2012). Left panels are LEV estimates; Middle panels are SLEV estimates;
Right panels are LEVUNW estimates. Black lines are exact algorithm; dash
lines are BFast; dotted lines are GFast.

Coefficient estimates were obtained using three subsampling algorithms for seven differ-
ent subsample sizes: 2p, 3p, 4p, 5p, 10p, 20p, 50p. We compare the estimates using the sample
bias and variances; and, for each subsample size, we repeat our sampling 100 times to get
100 estimates. (At each subsample size, we take one hundred subsamples and calculate all
the estimates; we then calculate the bias of the estimates with respect to the full sample
least squares estimate and their variance.) See Figure 14 for a summary of our results. In
the left panel of Figure 14, we plot the histogram of the leverage score sampling probabili-
ties. Observe that the distribution is quite uniform, suggesting that leverage-based sampling
methods will perform similarly to uniform sampling. To demonstrate this, the middle and
right panels of Figure 14 present the (conditional) empirical variances and biases of each
of the four estimates, for seven different subsample sizes. Observe that LEV, LEVUNW,
SLEV, and UNIF all have comparable sample variances. When the subsample size is very
small, all four methods have comparable sample bias; but when the subsample size is larger,
then LEVUNW has a slightly larger bias than the other three estimates.
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Figure 14: Empirical results for real data. Left panel is the histogram of the leverage
score sampling probabilities for the RNA-Seq data (the largest leverage score is
2.25× 10−5, and the mean is 1.93× 10−5, i.e., the largest is only slightly larger
than the mean); Middle panel is the empirical conditional variances of the LEV,
UNIF, LEVUNW, and SLEV estimates; Right panel is the empirical conditional
biases. Black lines for LEV; dash lines for UNIF; grey lines for LEVUNW;
dotted lines for SLEV with α = 0.9.

5.3.2 Linear Model for Predicting Gene Expressions of Cancer Patient

In order to illustrate how our methods perform on real data with moderately nonuniform
leverage scores, we consider a microarray data set that was presented in Nielsen et al.
(2002) (and also considered in Mahoney and Drineas 2009) for 46 cancer patients with
respect to n = 5, 520 genes. Here, we randomly select one patient’s gene expression as the
response y and use the remaining patients’ gene expressions as the predictors (so p = 45);
and we predict the selected patient’s gene expression using other patients gene expressions
through a linear model. We fit the linear model using subsampling algorithms with nine
different subsample sizes. See Figure 15 for a summary of our results. In the left panel
of Figure 15, we plot the histogram of the leverage score sampling probabilities. Observe
that the distribution is highly skewed and quite a number of probabilities are significantly
larger than the average probability. Thus, one might expect that leveraging estimates will
have an advantage over the uniform sampling estimate. To demonstrate this, the middle
and right panels of Figure 15 present the (conditional) empirical variances and biases of
each of the four estimates, for nine different subsample sizes. Observe that SLEV and LEV
have smaller sample variance than LEVUNW and that UNIF consistently has the largest
variance. Interestingly, since LEVUNW is approximately unbiased to the weighted least
squares estimate, here we observe that LEVUNW has by far the largest bias and that the
bias does not decrease as the subsample size increases. In addition, when the subsample
size is less than 2000, the biases of LEV, SLEV and UNIF are comparable; but when the
subsample size is greater than 2000, LEV and SLEV have slightly smaller bias than UNIF.

895



Ma, Mahoney and Yu

sampling prob

F
re

qu
en

cy

0.0000 0.0005 0.0010 0.0015

0
50

0
15

00
25

00

1000 3000 5000

−
6

−
5

−
4

−
3

−
2

subsample size
lo

g(
va

ria
nc

e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

LEV
UNIF
SLEV
LEVUNW

1000 3000 5000

−
11

−
9

−
8

−
7

−
6

−
5

subsample size

lo
g(

sq
ua

re
d 

bi
as

)

●

●
●

●

●

●
●

●

●

●●● ●● ● ● ● ●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

● ●

●
●

Figure 15: Empirical results for real data. Left panel is the histogram of the leverage
score sampling probabilities for the microarray data (the largest leverage score
is 0.00124, and the mean is 0.00018, i.e., the largest is 7 times the mean); Middle
panel is the empirical conditional variances of the LEV, UNIF, LEVUNW, and
SLEV estimates; Right panel is the empirical conditional biases. Black lines for
LEV; dash lines for UNIF; grey lines for LEVUNW; dotted lines for SLEV with
α = 0.9.

6. Discussion and Conclusion

Algorithmic leveraging—a recently-popular framework for solving large least-squares re-
gression and other related matrix problems via sampling based on the empirical statistical
leverage scores of the data—has been shown to have many desirable algorithmic proper-
ties. In this paper, we have adopted a statistical perspective on algorithmic leveraging, and
we have demonstrated how this leads to improved performance of this paradigm on real
and synthetic data. In particular, from the algorithmic perspective of worst-case analysis,
leverage-based sampling provides uniformly superior worst-case algorithmic results, when
compared with uniform sampling. Our statistical analysis, however, reveals that, from the
statistical perspective of bias and variance, neither leverage-based sampling nor uniform
sampling dominates the other. Based on this, we have developed new statistically-inspired
leveraging algorithms that achieve improved statistical performance, while maintaining the
algorithmic benefits of the usual leverage-based method. Our empirical evaluation demon-
strates that our theory is a good predictor of the practical performance of both existing as
well as our newly-proposed leverage-based algorithms. In addition, our empirical evalua-
tion demonstrates that, by using a recently-developed algorithm to approximate the leverage
scores, we can compute improved approximate solutions for much larger least-squares prob-
lems than we can compute the exact solutions with traditional deterministic algorithms.

Finally, we should note that, while our results are straightforward and intuitive, obtain-
ing them was not easy, in large part due to seemingly-minor differences between problem
formulations in statistics, computer science, machine learning, and numerical linear algebra.
Now that we have “bridged the gap” by providing a statistical perspective on a recently-
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popular algorithmic framework, we expect that one can ask even more refined statistical
questions of this and other related algorithmic frameworks for large-scale computation.
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Appendix A. Asymptotic Analysis and Toy Data

In this appendix, we will relate our analytic methods to the notion of asymptotic relative
efficiency, and we will consider several toy data sets that illustrate various aspects of algo-
rithmic leveraging. Although the results of this appendix are not used elsewhere, and thus
some readers may prefer skip this appendix, we include it in order to relate our approach
to ideas that may be more familiar to certain readers.

A.1 Asymptotic Relative Efficiency Analysis

Here, we present an asymptotic analysis comparing UNIF with LEV, SLEV, and LEVUNW
in terms of their relative efficiency. Recall that one natural way to compare two procedures
is to compare the sample sizes at which the two procedures meet a given standard of
performance. One such standard is efficiency, which addresses how “spread out” about β0

is the estimator. In this case, the smaller the variance, the more “efficient” is the estimator
(Serfling, 2010). Since β0 is a p-dimensional vector, to determine the relative efficiency of
two estimators, we consider the linear combination of β0, i.e., cTβ0, where c is the linear
combination coefficient. In somewhat more detail, when β̂ and β̃ are two one-dimensional
estimates, their relative efficiency can be defined as

e(β̂, β̃) =
Var(β̃)

Var(β̂)
,

and when β̂ and β̃ are two p-dimensional estimates, we can take their linear combinations
cT β̂ and cT β̃, where c is the linear combination coefficient vector, and define their relative
efficiency as

e(cT β̂, cT β̃) =
Var(cT β̃)

Var(cT β̂)
.

In order to discuss asymptotic relative efficiency, we start with the following seemingly-
technical observation.
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Definition 7 A k × k matrix A is said to be A = O(αn) if and only if every element of A
satisfies Aij = O(αn) for i, j = 1, . . . , k.

Assumption 1 XTX =
∑n

i=1 xix
T
i is positive definite and (XTX)−1 = O(α−1n ).

Remark. Assuming XTX is nonsingular, for a LS estimator β̂ols to converge to true value
β0 in probability, it is sufficient and necessary that (XTX)−1 → 0 as n → ∞ (Anderson
and Taylor, 1976; Lai et al., 1978).
Remark. Although we have stated this as an assumption, one typically assumes an n-
dependence for αn (Anderson and Taylor, 1976). Since the form of the n-dependence is
unspecified, we can alternatively view Assumption 1 as a definition of αn. The usual as-
sumption that is made (typically for analytical convenience) is that αn = n (Fu and Knight,
2000). We will provide examples of toy data for which αn = n, as well as examples for which
αn 6= n. In light of our empirical results in Section 4 and the empirical observation that
leverage scores are often very nonuniform (Mahoney and Drineas, 2009; Gittens and Ma-
honey, 2013), it is an interesting question to ask whether the common assumption that
αn = n is too restrictive, e.g., whether it excludes interesting matrices X with very hetero-
geneous leveraging scores.

Under Assumption 1, i.e., that (XTX)−1 is asymptotically parameterized as (XTX)−1 =
O(α−1n ), we have the following three results to compare the leveraging estimators and the
uniform sampling estimator. The expressions in these three lemmas are complicated; and,
since they are expressed in terms of αn, they are not easy to evaluate on real or synthetic
data. (It is partly for this reason that our empirical evaluation is in terms of the bias and
variance of the subsampling estimators.) We start by stating a lemma characterizing the
relative efficiency of LEV and UNIF; the proof of this lemma may be found in Appendix B.

Lemma 8 To leading order, the asymptotic relative efficiency of cT β̃LEV and cT β̃UNIF is

e(cT β̃LEV , c
T β̃UNIF ) ' O(

1
αn

+ 1
r

√∑
i(1− hii)4 max(hii)

1
αn

+ 1
αnr

√∑
i
(1−hii)4
h2ii

max(hii)

), (24)

where the residual variance is ignored.

Next, we state a lemma characterizing the relative efficiency of SLEV and UNIF; the proof
of this lemma is similar to that of Lemma 8 and is thus omitted.

Lemma 9 To leading order, the asymptotic relative efficiency of cT β̃SLEV and cT β̃UNIF
is

e(cT β̃SLEV , c
T β̃UNIF ) ' O(

1
αn

+ 1
r

√∑
i(1− hii)4 max(hii)

1
αn

+ 1
αnr

√∑
i
(1−hii)4

π2
i

max(hii)

),

where the residual variance is ignored.

Finally, we state a lemma characterizing the relative efficiency of LEVUNW and UNIF; the
proof of this lemma may be found in Appendix B.
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Lemma 10 To leading order, the asymptotic relative efficiency of cT β̃LEV UNW and cT β̃UNIF
is

e(cT β̃LEV UNW , c
T β̃UNIF ) ' O(

1
αn

+ 1
r

√∑
i(1− hii)4 max(hii)

max(hii)
αn min(hii)

+ 1
αn min(hii)r

√∑
i(1− gii)4 max(gii)

),

where the residual variance is ignored and gii = hiix
T
i (XTDiag {hii}X)−1xi.

Of course, in an analogous manner, one could derive expressions for the asymptotic relative
efficiencies e(cT β̃SLEV , c

T β̃LEV ), e(cT β̃LEV UNW , c
T β̃LEV ), and e(cT β̃LEV UNW , c

T β̃SLEV ).

A.2 Illustration of the Method on Toy Data

Here, we will consider several toy data sets that illustrate various aspects of algorithmic
leveraging, including various extreme cases of the method. While some of these toy data
may seem artificial or contrived, they will highlight properties that manifest themselves in
less extreme forms in the more realistic data in Section 4. Since the leverage score structure
of the matrix X is crucial for the behavior of the method, we will focus primarily on that
structure. To do so, consider the two extreme cases. At one extreme, when the leverage
scores are all equal, i.e., hii = p/n, for all i ∈ [n], the first two variance terms in Eqn. (20)
are equal to the first two variance terms in Eqn. (18). In this case, LEV simply reduces to
UNIF. At the other extreme, the leverage scores can be very nonuniform—e.g., there can
be a small number of leverage scores that are much larger than the rest and/or there can
be some leverage scores that are much smaller than the mean score. Dealing with these
two cases properly is crucial for the method of algorithmic leveraging, but these two cases
highlight important differences between the more common algorithmic perspective and our
more novel statistical perspective.

The former problem (of a small number of very large leverage scores) is of particular
importance from an algorithmic perspective. The reason is that in that case one wants to
compare the output of the sampling algorithm with the optimum based on the empirical
data (as opposed to the “ground truth” solution). Thus, dealing with large leverage scores
was a main issue in the development of the leveraging paradigm (Drineas et al., 2006;
Mahoney, 2011; Drineas et al., 2012). On the other hand, the latter problem (of some
very small leverage scores) is also an important concern if we are interested in statistical
properties of algorithmic leveraging. To see why, consider, e.g., the extreme case that a few
data points have very very small leverage scores, e.g. hii = 1/n4 for some i. In this case,
e.g., the second variance term in Eqn. (18) will be much larger than the second variance
term in Eqn. (20).

In light of this discussion, here are several toy examples to consider. We will start with
several examples where p = 1 that illustrate things in the simplest setting.

• Example 1A: Sample Mean. Let n be arbitrary, p = 1, and let the n × p matrix
X be such that Xi = 1, for all i ∈ [n], i.e., let X be the all-ones vector. In this case,
XTX = n and hii = 1/n, for all i ∈ [n], i.e., the leverage scores are uniform, and
thus algorithmic leveraging reduces to uniform sampling. Also, in this case, αn = n
in Assumption 1. All three asymptotic efficiencies are equal to O(1).

899



Ma, Mahoney and Yu

• Example 1B: Simple Linear Combination. Let n be arbitrary, p = 1, and let
the n× p matrix X be such that Xi = ±1, for all i ∈ [n], either uniformly at random,
or such that Xi = +1 if i is odd and Xi = −1 if i is even. In this case, XTX = n and
hii = 1/n, for all i ∈ [n], i.e., the leverage scores are uniform; and, in addition, αn = n
in Assumption 1. For all four estimators, all four unconditional variances are equal

to σ2{ 1n + (1−1/n)2
r }. In addition, for all four estimators, all three relative efficiencies

are equal to O(1).

• Example 2: “Domain Expansion” Regression Line Through Origin. Let n
be arbitrary, p = 1, and let the n × p matrix X be such that Xi = i, i.e., they are
evenly spaced and increase without limit with increasing i. In this case,

XTX = n(n+ 1)(2n+ 1)/6,

and the leverage scores equal

hii =
6i2

n(n+ 1)(2n+ 1)
,

i.e., the leverage scores hii are very nonuniform. This is illustrated in the left panel
of Figure 16. Also, in this case, αn = n3 in Assumption 1. It is easy to see that the
first variance components of UNIF, LEV, SLEV are the same, i.e., they equal

(XTX)−1 =
6

n(n+ 1)(2n+ 1)
.

It is also easy to see that variances of LEV, SLEV and UNIF are dominated by their
second variance component. The leading terms of the second variance component of
LEV and UNIF are the same, and we expect to see the similar performance based
on their variance. The leading term of the second variance component of SLEV is
smaller than that of LEV and UNIF; and thus SLEV has smaller variance than LEV
and UNIF. Simple calculation shows that LEVUNW has a smaller leading term for
the second variance component than those of LEV, UNIF and SLEV.

• Example 3: “In-fill” Regression Line Through Origin. Let n be arbitrary,
p = 1, and let the n × p matrix X be such that Xi = 1/i. This is different than the
evenly spaced data points in the “inflated” toy example since the unevenly spaced data
points this this example get denser in the interval (0, 1]. The asymptotic properties
of such design matrix are so-called “in-fill” asymptotics (Cressie, 1991). In this case,

XTX = π2/6− ψ(1)(n+ 1),

where ψ(k) is the kth derivative of digamma function, and the leverage scores equal

hii =
1

i2(π2/6− ψ(1)(n+ 1))
,

i.e., the leverage scores hii are very nonuniform. This is illustrated in the middle panel
of Figure 16. Also, in this case, αn = 1 in Assumption 1.
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Figure 16: Leverage score-based sampling probabilities for three toy examples (Example 2,
Example 3, and Example 4). Left panel is Inflated Regression Line (Example 2);
Middle panel is In-fill Regression Line (Example 3); Right panel is Regression
Surface (Example 4). In this example, we set n = 10. Black lines connect the
sampling probability for each data points for LEV; dash lines (below black) con-
nect sampling probability for SLEV; and grey lines connect sampling probability
for LEV after we add an intercept (i.e., the sample mean) as a second column
to X.

To obtain an improved understanding of these examples, consider the first two panels of
Figures 16 and 17. Figure 16 shows the sampling probabilities for the Inflated Regression
Line and the In-fill Regression Line. Both the Inflated Regression Line and the In-fill
Regression Line have very nonuniform leverage scores, and by construction there is a natural
ordering such that the leverage scores increase or decrease respectively. For the Inflated
Regression Line, the minimum, mean, and maximum leverage scores are 6/(n(n+ 1)(2n+
1)), 1/n, and 6n/(n + 1)(2n + 1), respectively; and for the In-fill Regression Line, the
minimum, mean, and maximum leverage scores are 1/(n2(π2/6 − ψ(1)(n + 1))), 1/n, and
1/(π2/6− ψ(1)(n+ 1)), respectively. For reference, note that for the Sample Mean (as well
as for the Simple Linear Combination) all of the the leverage scores are equal to 1/n, which
equals 0.1 for the value of n = 10 used in Figure 16.

Figure 17 illustrates the theoretical variances for the same examples for particular values
of σ2 and r. In particular, observe that for the Inflated Regression Line, all three sampling
methods tend to have smaller variance as n is increased for a fixed value of p. This is
intuitive, and it is a common phenomenon that we observe in most of the synthetic and real
data sets. The property of the In-fill Regression Line where the variances are roughly flat
(actually, they increase slightly) is more uncommon, but it illustrates that other possibilities
exist. The reason is that leverage scores of most data points are relatively homogeneous (as
long as i is greater than

√
6n/π2, the leverage score of ith observation is less than mean

1/n but greater than 1/n2(π2/6)). When subsample size r is reasonably large, we have high
probabilities to sample these data points, whose sample probabilities inflate the variance.
These curves also illustrate that LEV and UNIF can be better or worse with respect to each
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Figure 17: Theoretical variances for three toy examples (Example 2, Example 3, and Exam-
ple 4) for various sample sizes n. Left panel is Inflated Regression Line (Example
2); Middle panel is In-fill Regression Line (Example 3); Right panel is Regression
Surface (Example 4). In this example, we set σ2 = 1 and r = 0.1n, for varying
n from 100 to 1000. Black line for LEV (Equation 18); dash line for UNIF
(Equation 20); dotted line (below black) for SLEV; and grey line for LEVUNW
(Equation 23).

other, depending on the problem parameters; and that SLEV and LEVUNW can be better
than either, for certain parameter values.

From these examples, we can see that the variance for the leveraging estimate can be
inflated by very small leverage scores. That is, since the variances involve terms that depend
on the inverse of hii, they can be large if hii is very small. Here, we note that the common
practice of adding an intercept, i.e., a sample mean or all-ones vector tends to uniformize
the leverage scores. That is, in statistical model building applications, we usually have
intercept—which is an all-ones vector, called the Sample Mean above—in the model, i.e.,
the first column of X is 1 vector; and, in this case, the hiis are bounded below by 1/n and
above by 1/wi (Weisberg, 2005). This is also illustrated in Figure 16, which shows the the
leverage scores for when an intercept is included. Interestingly, for the Inflated Regression
Line, the scores for elements that originally had very small score actually increase to be
on par with the largest scores. In our experience, it is much more common for the small
leverage scores to simply be increased a bit, as is illustrated with the modified scores for
the In-fill Regression Line.

We continue the toy examples with an example for p = 2; this is the simplest case that
allows us to look at what is behind Assumption 1.

• Example 4: Regression Surface Through Origin. Let p = 2 and n = 2k be even.
Let the elements of X be defined as x2j−1,n =

( √
n
3j

0
)
, and x2j,n =

(
0
√

n
3j

)
.

In this case,

XTX = (n
n∑
j=1

1

3j
)I2 = k

3k − 1

3k
I2 = O(n),
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and the leverage scores equal

h2j−1,2j−1 = h2j,2j =
2× 3k

3j(3k − 1)
.

Here, αn = n in Assumption 1, and the largest leverage score does not converge to
zero.

To see the leverage scores and the (theoretically-determined) variance for the Regression
Surface of Example 4, see the third panel of Figures 16 and 17. In particular, the third
panel of Figure 16 demonstrates what we saw with the p = 1 examples, i.e., that adding
an intercept tends to increase the small leverage scores; and Figure 17 illustrates that the
variances of all four estimates are getting close as sample size n becomes larger.
Remark. It is worth noting that (Miller, 1974a) showed αn = n in Assumption 1 implies
that maxhii → 0. In his proof, Miller essentially assumed that xi, i = 1, . . . , n is a
single sequence. Example 4 shows that Miller’s theorem does not hold for triangular array
(with one pattern for even numbered observations and the other pattern for odd numbered
observations) (Shao, 1987).

Finally, we consider several toy data sets with larger values of p. In this case, there
starts to be a nontrivial interaction between the singular value structure and the singular
vector structure of the matrix X.

• Example 5: Truncated Hadamard Matrix. An n × p matrix consisting of p
columns from a Hadamard Matrix (which is an orthogonal matrix) has uniform lever-
age scores—all are equal. Similarly, for an n × p matrix with entries i.i.d. from
Gaussian distribution—that is, unless the aspect ratio of the matrix is extremely
rectangular, e.g., p = 1, the leverage scores of a random Gaussian matrix are very
close to uniform. (In particular, as our empirical results demonstrate, using nonuni-
form sampling probabilities is not necessary for data generated from Gaussian random
matrices.)

• Example 6: Truncated Identity Matrix. An n×p matrix consisting of the first p
columns from an Identity Matrix (which is an orthogonal matrix) has very nonuniform
leverage scores—the first p are large, and the remainder are zero. (Since one could
presumably remove the all-zeros rows, this example might seem trivial, but it is useful
as a worst-case thought experiment.)

• Example 7: Worst-case Matrix. An n × p matrix consisting of n − 1 rows all
pointing in the same direction and 1 row pointing in some other direction. This has
one leverage score—the one corresponding to the row pointing in the other direction—
that is large, and the rest are mediumly-small. (This is an even better worst-case
matrix than Example 6; and in the main text we have an even less trivial example of
this.)

Example 5 is “nice” from an algorithmic perspective and, as seen in Section 4, from a sta-
tistical perspective as well. Since they have nonuniform leverage scores; Example 6 and
Example 7 are worse from an algorithmic perspective. As our empirical results will demon-
strate, they are also problematic from a statistical perspective, but for slightly different
reasons.
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Appendix B. Proofs of our main results

In this appendix, we will provide proofs of several of our main results.

B.1 Proof of Lemma 1

Recall that the matrix W = SXD
2STX encodes information about the sampling/rescaling

process; in particular, this includes UNIF, LEV, and SLEV, although our results hold more
generally.

By performing a Taylor expansion of β̃W (w) around the point w0 = 1, we have

β̃W (w) = β̃W (w0) +
∂β̃W (w)

∂wT
|w=w0(w −w0) +RW ,

where RW is remainder. Remainder RW = op(||w−w0||) when w is close to w0. By setting
w0 as the all-one vector, i.e., w0 = 1, β̃W (w0) is expanded around the full sample ordinary
LS estimate β̂ols, i.e., β̃W (1) = β̂ols. That is,

β̃W (w) = β̂ols +
∂(XTDiag {w}X)−1XTDiag {w}y

∂wT
|w=1(w − 1) +RW .

By differentiation by parts, we obtain

∂(XTDiag {w}X)−1XTDiag {w}y
∂wT

=
∂Vec[(XTDiag {w}X)−1XTDiag {w}y]

∂wT

= (1⊗ (XTDiag {w}X)−1)
∂Vec[XTDiag {w}y]

∂wT

(25)

+ (yTDiag {w}X ⊗ Ip)
∂Vec[(XTDiag {w}X)−1]

∂wT

(26)

where Vec is Vec operator, which stacks the columns of a matrix into a vector, and ⊗ is the
Kronecker product. The Kronecker product is defined as follows: suppose A = {aij} is an
m×n matrix and B = {bij} is a p× q matrix; then, A⊗B is a mp×nq matrix, comprising
m rows and n columns of p× q blocks, the ijth of which is aijB.

To simplify (25), note that is easy to show that (25) can be seen as

(1⊗ (XTDiag {w}X)−1)(yT ⊗XT )
∂Vec[Diag {w}]

∂wT
. (27)

To simplify (26), we need the following two results of matrix differentiation,

∂Vec[X−1]

∂(VecX)T
= −(X−1)T ⊗X−1, and

∂Vec[AWB]

∂wT
= (BT ⊗A)

∂Vec[W ]

∂wT
, (28)
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where the details on these two results can be found on page 366-367 of (Harville, 1997). By
combining the two results in (28), by the chain rule, we have

∂Vec[(XTDiag {w}X)−1]

∂wT

=
∂Vec[(XTDiag {w}X)−1]

∂Vec[(XTDiag {w}X)]T
∂Vec[(XTDiag {w}X)]

∂wT

= −(XTDiag {w}X)−1 ⊗ (XTDiag {w}X)−1(XT ⊗XT )
∂Vec[Diag {w}]

∂wT

By simple but tedious algebra, (25) and (26) give rise to

{(yT−yTDiag {w}X(XTDiag {w}X)−1XT )⊗(XTDiag {w}X)−1XT }∂Vec[Diag {w}]
∂wT

= {(y −Xβ̃W (w))T ⊗ (XTDiag {w}X)−1XT }∂Vec[Diag {w}]
∂wT

(29)

By combining these results, we thus have,

β̃W = β̂ols + {(y −Xβ̂ols)T ⊗ (XTX)−1XT }∂Vec(Diag {w})
∂wT

(w − 1) +RW

= β̂ols + {êT ⊗ (XTX)−1XT }


e1e

T
1

e2e
T
2

ene
T
n

 (w − 1) +RW

= β̂ols + (XTX)−1XTDiag {ê} (w − 1) +RW

where ê = y−Xβ̂ols is the LS residual vector, ei is a length n vector with ith element equal
to one and all other elements equal to zero, from which the lemma follows.

B.2 Proof of Lemma 2

Recall that we will use W to refer to the sampling process.

We start by establishing the conditional result. Since E [w] = 1, it is straightforward to
calculate conditional expectation of β̃W . Then, it is easy to see that

E [(wi − 1)(wj − 1)] =
1

rπi
− 1

r
for i = j

= −1

r
for i 6= j.

We rewrite it in matrix form,

Var [w] = E
[
(w − 1)(w − 1)T

]
= Diag

{
1

rπ

}
− 1

r
Jn,
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where π = (π1, π2, . . . , πn)T and Jn is a n × n matrix of ones. Some additional algebra
yields that the variance of β̃W is

Varw

[
β̃W − β̂|y

]
= Var

[
(XTX)−1XTDiag {ê} (w − 1)|y

]
+ Varw [RW ]

= (XTX)−1XTDiag {ê} (Diag

{
1

rπ

}
− 1

r
Jn)Diag {ê}X(XTX)−1

+ Varw [RW ]

= (XTX)−1XT [Diag {ê}Diag
{

1

rπ

}
Diag {ê}]X(XTX)−1 + Var [RW ]

= (XTX)−1XTDiag

{
1

rπ
ê2
}
X(XTX)−1 + Varw [RW ] .

Setting πi = hii/p in above equations, we thus prove the conditional result.
We next establish the unconditional result as follows. The unconditional expectation

result is easy to see as each data point is unbiased to β0. By rule of double expectations,
we have the variance of β̃W result, from which the lemma follows.

B.3 Proof of Lemma 5

First note that the unweighted leveraging estimate β̃LEV UNW can be written as

β̃LEV UNW = (XTSXS
T
XX)−1XTSXS

T
Xy = (XTWLEV UNWX)−1XTWLEV UNWy,

where WLEV UNW = SXS
T
X = Diag {wLEV UNW }, and where wLEV UNW has a multinomial

distribution Multi(r,π). The proof of this lemma is analogous to the proof of Lemma 1; and
so here we provide only some details on the differences. By employing a Taylor expansion,
we have

β̃LEV UNW (wLEV UNW ) = β̃LEV UNW (w0) +
∂β̃LEV UNW (w)

∂wT
|w=w0(wLEV UNW −w0)

+RLEV UNW ,

where RLEV UNW = op(||wLEV UNW −w0||). Following the proof of the previous lemma, we
have that

β̃LEV UNW = β̂wls + {(y −Xβ̂wls)T ⊗ (XTW0X)−1XT }∂vec(Diag {wLEV UNW })
∂wT

LEV UNW

(wLEV UNW −w0) +RLEV UNW

= β̂wls + {êTw ⊗ (XTW0X)−1XT }


e1e

T
1

e2e
T
2

ene
T
n

 (wLEV UNW −w0) +RLEV UNW

= β̂wls + (XTW0X)−1XTDiag {êw0} (wLEV UNW −w0) +RLEV UNW ,

where W0 = Diag {w0} = Diag {rπ}, β̂wls = (XTW0X)−1XTW0y, êw = y−Xβ̂wls is the
weighted LS residual vector, ei is a length n vector with ith element equal to one and all
other elements equal to zero. From this the lemma follows.
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B.4 Proof of Lemma 6

By taking the conditional expectation of Taylor expansion of the LEVUNW estimate
β̃LEV UNW in Lemma 5, we have that

Ew

[
β̃LEV UNW |y

]
= β̂wls + (XTW0X)−1XTDiag {êw}Ew [w − rπ] + Ew [RLEV UNW ] .

Since Ew [wLEV UNW ] = rπ, the conditional expectation is thus obtained. Since wLEV UNW

is multinomial distributed, we have

Var [wLEV UNW ] = E
[
(wLEV UNW − rπ)(wLEV UNW − rπ)T

]
= Diag {rπ} − rππT .

Some algebra yields that the conditional variance of β̃LEV UNW is

Varw

[
β̃LEV UNW − β̂wls|y

]
= Varw

[
(XTW0X)−1XTDiag {êw} (wLEV UNW − rπ)|y

]
+ Varw [RLEV UNW ]

= (XTW0X)−1XTDiag {êw}W0Diag {êw}X(XTW0X)−1 + Varw [RLEV UNW ] .

Finally, note that

E
[
β̂wls

]
= (XTW0X)−1XW0E [y] = (XTW0X)−1XW0Xβ0 = β0.

From this the lemma follows.

B.5 Proof of Lemma 8

Since Var(cT β̃LEV ) = cTVar(β̃LEV )c, we shall the derive the asymptotic order of Var(β̃LEV ).
The second variance component of β̃LEV in (18) is seen to be

pσ2

r
(XTX)−1XTDiag

{
(1− hii)2

hii

}
X(XTX)−1

=
pσ2

r

∑
i

(1− hii)2

hii
(XTX)−1xix

T
i (XTX)−1

≤ pσ2

r

√∑
i

(1− hii)4
h2ii

∑
i

((XTX)−1xixTi (XTX)−1)2,

where Cauchy-Schwartz inequality has been used. Next, we show that∑
i

((XTX)−1xix
T
i (XTX)−1)2 = O(max(hii)α

−2
n ).

To see this, observe that∑
i

((XTX)−1xix
T
i (XTX)−1)2 ≤ max((XTX)−1xix

T
i )
∑
i

(XTX)−2xix
T
i (XTX)−1

≤ max(xTi (XTX)−1xi)
∑
i

(XTX)−2xix
T
i (XTX)−1

= max(xTi (XTX)−1xi)(X
TX)−2

= O(max(hii)α
−2
n )
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Thus, the second variance component of β̃LEV in (18) is of the order of

O(
1

αnr

√∑
i

(1− hii)4
h2ii

max(hii)).

Analogously, the second variance component of β̃UNIF in (20) is of the order of

O(
1

r

√∑
i

(1− hii)4 max(hii)).

The lemma then follows immediately.

B.6 Proof of Lemma 10

It is easy to see that (XTDiag {hii}X)−1 = O(1/(min(hii)αn)). The second variance
component of β̃LEV UNW in (23) is seen to be

pσ2

r
(XTDiag {hii}X)−1XTDiag

{
(1− gii)2hii

}
X(XTDiag {hii}X)−1

=
pσ2

r

∑
i

(1− gii)2hii(XTDiag {hii}X)−1xix
T
i (XTDiag {hii}X)−1

≤ pσ2

r

√∑
i

(1− gii)4
∑
i

(hii(XTDiag {hii}X)−1xixTi (XTDiag {hii}X)−1)2,

where Cauchy-Schwartz inequality has used. Next, we show that∑
i

(hii(X
TDiag {hii}X)−1xix

T
i (XTDiag {hii}X)−1)2 = O(max(gii)(min(hii)αn)−2).

To see this, observe that∑
i

(hii(X
TDiag {hii}X)−1xix

T
i (XTDiag {hii}X)−1)2

≤ max(hii(X
TDiag {hii}X)−1xix

T
i )
∑
i

hii(X
TDiag {hii}X)−2xix

T
i (XTDiag {hii}X)−1

≤ max(hiix
T
i (XTDiag {hii}X)−1xi)

∑
i

hii(X
TDiag {hii}X)−2xix

T
i (XTDiag {hii}X)−1

= max(hiix
T
i (XTDiag {hii}X)−1xi)(X

TDiag {hii}X)−2 = O(max(gii)(min(hii)αn)−2).

Thus, the second variance component of β̃LEV UNW in (23) is of the order of

O(
1

αn min(hii)r

√∑
i

(1− gii)4 max(gii)).

The lemma then follows immediately.
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Abstract

If learning methods are to scale to the massive sizes of modern data sets, it is essential for
the field of machine learning to embrace parallel and distributed computing. Inspired by
the recent development of matrix factorization methods with rich theory but poor compu-
tational complexity and by the relative ease of mapping matrices onto distributed architec-
tures, we introduce a scalable divide-and-conquer framework for noisy matrix factorization.
We present a thorough theoretical analysis of this framework in which we characterize the
statistical errors introduced by the “divide” step and control their magnitude in the “con-
quer” step, so that the overall algorithm enjoys high-probability estimation guarantees
comparable to those of its base algorithm. We also present experiments in collaborative
filtering and video background modeling that demonstrate the near-linear to superlinear
speed-ups attainable with this approach.

Keywords: collaborative filtering, divide-and-conquer, matrix completion, matrix fac-
torization, parallel and distributed algorithms, randomized algorithms, robust matrix fac-
torization, video surveillance

1. Introduction

The scale of modern scientific and technological data sets poses major new challenges for
computational and statistical science. Data analyses and learning algorithms suitable for
modest-sized data sets are often entirely infeasible for the terabyte and petabyte data sets
that are fast becoming the norm. There are two basic responses to this challenge. One
response is to abandon algorithms that have superlinear complexity, focusing attention on
simplified algorithms that—in the setting of massive data—may achieve satisfactory results

c©2015 Lester Mackey, Ameet Talwalkar and Michael I. Jordan.
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because of the statistical strength of the data. While this is a reasonable research strategy,
it requires developing suites of algorithms of varying computational complexity for each
inferential task and calibrating statistical and computational efficiencies. There are many
open problems that need to be solved if such an effort is to bear fruit.

The other response to the massive data problem is to retain existing algorithms but to
apply them to subsets of the data. To obtain useful results under this approach, one em-
braces parallel and distributed computing architectures, applying existing base algorithms
to multiple subsets of the data in parallel and then combining the results. Such a divide-
and-conquer methodology has two main virtues: (1) it builds directly on algorithms that
have proven their value at smaller scales and that often have strong theoretical guarantees,
and (2) it requires little in the way of new algorithmic development. The major challenge,
however, is in preserving the theoretical guarantees of the base algorithm once one em-
beds the algorithm in a computationally-motivated divide-and-conquer procedure. Indeed,
the theoretical guarantees often refer to subtle statistical properties of the data-generating
mechanism (e.g., sparsity, information spread, and near low-rankedness). These may or
may not be retained under the “divide” step of a putative divide-and-conquer solution. In
fact, we generally would expect subsampling operations to damage the relevant statisti-
cal structures. Even if these properties are preserved, we face the difficulty of combining
the intermediary results of the “divide” step into a final consilient solution to the original
problem. The question, therefore, is whether we can design divide-and-conquer algorithms
that manage the tradeoffs relating these statistical properties to the computational degrees
of freedom such that the overall algorithm provides a scalable solution that retains the
theoretical guarantees of the base algorithm.

In this paper,1 we explore this issue in the context of an important class of machine
learning algorithms—the matrix factorization algorithms underlying a wide variety of prac-
tical applications, including collaborative filtering for recommender systems , e.g., Koren
et al. (2009) and the references therein, link prediction for social networks (Hoff, 2005),
click prediction for web search (Das et al., 2007), video surveillance (Candès et al., 2011),
graphical model selection (Chandrasekaran et al., 2009), document modeling (Min et al.,
2010), and image alignment (Peng et al., 2010). We focus on two instances of the general
matrix factorization problem: noisy matrix completion (Candès and Plan, 2010), where the
goal is to recover a low-rank matrix from a small subset of noisy entries, and noisy robust
matrix factorization (Candès et al., 2011; Chandrasekaran et al., 2009), where the aim is
to recover a low-rank matrix from corruption by noise and outliers of arbitrary magnitude.
These two classes of matrix factorization problems have attracted significant interest in the
research community.

Various approaches have been proposed for scalable noisy matrix factorization prob-
lems, in particular for noisy matrix completion, though the vast majority tackle rank-
constrained non-convex formulations of these problems with no assurance of finding optimal
solutions (Zhou et al., 2008; Gemulla et al., 2011; Recht and Ré, 2011; F. Niu et al., 2011; Yu
et al., 2012). In contrast, convex formulations of noisy matrix factorization relying on the
nuclear norm have been shown to admit strong theoretical estimation guarantees (Agarwal
et al., 2011; Candès et al., 2011; Candès and Plan, 2010; Negahban and Wainwright, 2012),

1. A preliminary form of this work appears in Mackey et al. (2011).
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and a variety of algorithms (e.g., Lin et al., 2009b; Ma et al., 2011; Toh and Yun, 2010) have
been developed for solving both matrix completion and robust matrix factorization via con-
vex relaxation. Unfortunately, however, all of these methods are inherently sequential, and
all rely on the repeated and costly computation of truncated singular value decompositions
(SVDs), factors that severely limit the scalability of the algorithms. Moreover, previous
attempts at reducing this computational burden have introduced approximations without
theoretical justification (Mu et al., 2011).

To address this key problem of noisy matrix factorization in a scalable and theoret-
ically sound manner, we propose a divide-and-conquer framework for large-scale matrix
factorization. Our framework, entitled Divide-Factor-Combine (DFC), randomly divides
the original matrix factorization task into cheaper subproblems, solves those subproblems
in parallel using a base matrix factorization algorithm for nuclear norm regularized for-
mulations, and combines the solutions to the subproblems using efficient techniques from
randomized matrix approximation. We develop a thoroughgoing theoretical analysis for the
DFC framework, linking statistical properties of the underlying matrix to computational
choices in the algorithms and thereby providing conditions under which statistical estima-
tion of the underlying matrix is possible. We also present experimental results for several
DFC variants demonstrating that DFC can provide near-linear to superlinear speed-ups in
practice. Indeed, DFC naturally handles massive data sets that are too large to fit on a
single machine, as DFC’s minimal communication footprint is particularly well-suited for
distributed computing environments.

The remainder of the paper is organized as follows. In Section 2, we define the setting of
noisy matrix factorization and introduce the components of the DFC framework. Secs. 3,
4, and 5 present our theoretical analysis of DFC, along with a new analysis of convex
noisy matrix completion and a novel characterization of randomized matrix approximation
algorithms. To illustrate the practical speed-up and robustness of DFC, we present exper-
imental results on collaborative filtering, video background modeling, and simulated data
in Section 6. Finally, we conclude in Section 7.

Notation: For a matrix M ∈ Rm×n, we define M(i) as the ith row vector, M(j) as the jth
column vector, and Mij as the ijth entry. If rank(M) = r, we write the compact singular
value decomposition (SVD) of M as UMΣMV>M , where ΣM is diagonal and contains the
r non-zero singular values of M, and UM ∈ Rm×r and VM ∈ Rn×r are the corresponding
left and right singular vectors of M. We define M+ = VMΣ−1

M U>M as the Moore-Penrose
pseudoinverse of M and PM = MM+ as the orthogonal projection onto the column space
of M. We let ‖·‖2, ‖·‖F , and ‖·‖∗ respectively denote the spectral, Frobenius, and nuclear
norms of a matrix, ‖·‖∞ denote the maximum entry of a matrix, and ‖·‖ represent the `2
norm of a vector.

2. The Divide-Factor-Combine Framework

In this section, we present a general divide-and-conquer framework for scalable noisy matrix
factorization. We begin by defining the problem setting of interest.
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2.1 Noisy Matrix Factorization (MF)

In the setting of noisy matrix factorization, we observe a subset of the entries of a matrix
M = L0 + S0 + Z0 ∈ Rm×n, where L0 has rank r � m,n, S0 represents a sparse matrix
of outliers of arbitrary magnitude, and Z0 is a dense noise matrix. We let Ω represent the
locations of the observed entries and PΩ be the orthogonal projection onto the space of
m× n matrices with support Ω, so that

(PΩ(M))ij = Mij , if (i, j) ∈ Ω and (PΩ(M))ij = 0 otherwise.2

Our goal is to estimate the low-rank matrix L0 from PΩ(M) with error proportional to the
noise level ∆ , ‖Z0‖F . We will focus on two specific instances of this general problem:

• Noisy Matrix Completion (MC): s , |Ω| entries of M are revealed uniformly
without replacement, along with their locations. There are no outliers, so that S0 is
identically zero.

• Noisy Robust Matrix Factorization (RMF): S0 is identically zero save for s
outlier entries of arbitrary magnitude with unknown locations distributed uniformly
without replacement. All entries of M are observed, so that PΩ(M) = M.

2.2 Divide-Factor-Combine

The Divide-Factor-Combine (DFC) framework divides the expensive task of matrix factor-
ization into smaller subproblems, executes those subproblems in parallel, and then efficiently
combines the results into a final low-rank estimate of L0. We highlight three variants of this
general framework in Algorithms 1, 2, and 3. These algorithms, which we refer to as DFC-
Proj, DFC-RP, and DFC-Nys, differ in their strategies for division and recombination
but adhere to a common pattern of three simple steps:

(D step) Divide input matrix into submatrices: DFC-Proj and DFC-RP randomly
partition PΩ(M) into t l-column submatrices, {PΩ(C1), . . . ,PΩ(Ct)},3 while DFC-
Nys selects an l-column submatrix, PΩ(C), and a d-row submatrix, PΩ(R), uniformly
at random.

(F step) Factor each submatrix in parallel using any base MF algorithm: DFC-
Proj and DFC-RP perform t parallel submatrix factorizations, while DFC-Nys
performs two such parallel factorizations. Standard base MF algorithms output the
following low-rank approximations: {Ĉ1, . . . , Ĉt} for DFC-Proj and DFC-RP; Ĉ
and R̂ for DFC-Nys. All matrices are retained in factored form.

(C step) Combine submatrix estimates: DFC-Proj generates a final low-rank esti-
mate L̂proj by projecting [Ĉ1, . . . , Ĉt] onto the column space of Ĉ1, DFC-RP uses
random projection to compute a rank-k estimate L̂rp of [Ĉ1 · · · Ĉt] where k is the me-
dian rank of the returned subproblem estimates, and DFC-Nys forms the low-rank

2. When Q is a submatrix of M we abuse notation and let PΩ(Q) be the corresponding submatrix of
PΩ(M).

3. For ease of discussion, we assume that t evenly divides n so that l = n/t. In general, PΩ(M) can always
be partitioned into t submatrices, each with either bn/tc or dn/te columns.
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Algorithm 1 DFC-Proj

Input: PΩ(M), t
{PΩ(Ci)}1≤i≤t = SampCol(PΩ(M), t)
do in parallel

Ĉ1 = Base-MF-Alg(PΩ(C1))
...

Ĉt = Base-MF-Alg(PΩ(Ct))
end do
L̂proj = ColProjection(Ĉ1, . . . , Ĉt)

Algorithm 2 DFC-RP

Input: PΩ(M), t
{PΩ(Ci)}1≤i≤t = SampCol(PΩ(M), t)
do in parallel

Ĉ1 = Base-MF-Alg(PΩ(C1))
...

Ĉt = Base-MF-Alg(PΩ(Ct))
end do
k = mediani∈{1...t}

(
rank(Ĉi)

)
L̂proj = RandProjection(Ĉ1, . . . , Ĉt, k)

Algorithm 3 DFC-Nys

Input: PΩ(M), l, d
PΩ(C) ,PΩ(R) = SampColRow(PΩ(M), l, d)
do in parallel

Ĉ = Base-MF-Alg(PΩ(C))
R̂ = Base-MF-Alg(PΩ(R))

end do
L̂nys = GenNyström(Ĉ, R̂)

estimate L̂nys from Ĉ and R̂ via the generalized Nyström method. These matrix
approximation techniques are described in more detail in Section 2.3.

2.3 Randomized Matrix Approximations

Underlying the C step of each DFC algorithm is a method for generating randomized low-
rank approximations to an arbitrary matrix M.

Column Projection: DFC-Proj (Algorithm 1) uses the column projection method of
Frieze et al. (1998). Suppose that C is a matrix of l columns sampled uniformly and
without replacement from the columns of M. Then, column projection generates a “matrix
projection” approximation (Kumar et al., 2009a) of M via

Lproj = CC+M = UCU>CM.

In practice, we do not reconstruct Lproj but rather maintain low-rank factors, e.g., UC and
U>CM.

Random Projection: The celebrated result of Johnson and Lindenstrauss (1984) shows
that random low-dimensional embeddings preserve Euclidean geometry. Inspired by this
result, several random projection algorithms (e.g., Papadimitriou et al., 1998; Liberty, 2009;
Rokhlin et al., 2009) have been introduced for approximating a matrix by projecting it onto
a random low-dimensional subspace (see Halko et al. 2011 for further discussion). DFC-RP
(Algorithm 2) uses such a random projection method due to Halko et al. (2011). Given a
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target low-rank parameter k, let G be an n× (k + p) standard Gaussian matrix G, where
p is an oversampling parameter. Next, let Y = (MM>)qMG, and define Q ∈ Rm×k as the
top k left singular vectors of Y. The random projection approximation of M is then given
by

Lrp = QQ+M.

We work with an implementation (Tygert, 2009) of a numerically stable variant of this
algorithm described in Algorithm 4.4 of Halko et al. (2011). Moreover, the parameters p
and q are typically set to small positive constants (Tygert, 2009; Halko et al., 2011), and
we set p = 5 and q = 2.

Generalized Nyström Method : The Nyström method was developed for the discretization
of integral equations (Nyström, 1930) and has since been used to speed up large-scale learn-
ing applications involving symmetric positive semidefinite matrices (Williams and Seeger,
2000). DFC-Nys (Algorithm 3) makes use of a generalization of the Nyström method for
arbitrary real matrices (Goreinov et al., 1997). Suppose that C consists of l columns of M,
sampled uniformly without replacement, and that R consists of d rows of M, independently
sampled uniformly and without replacement. Let W be the d×l matrix formed by sampling
the corresponding rows of C.4 Then, the generalized Nyström method computes a “spectral
reconstruction” approximation (Kumar et al., 2009a) of M via

Lnys = CW+R = CVWΣ+
WU>WR .

As with Mproj , we store low-rank factors of Lnys, such as CVWΣ+
W and U>WR.

Algorithm
Factorization (Per Iteration) Combine Step

Serial Parallel Serial Parallel

Base Alg O(mnk̂) O(mnk̂) - -

DFC-Proj O(tmlk̂) O(mlk̂) O(tmk̂2) O(mk̂2)

DFC-RP O(tmlk̂) O(mlk̂) O(tmk̂2 + nk̂) O(mk̂2 + tmk̂ + nk̂)

DFC-Nys O((ml + nd)k̂) O(max(ml, nd)k̂) O(mk̂2) O(mk̂2)

Table 1: Summary of running time complexity of DFC variants in contrast to many stan-
dard start-of-the-art MF algorithms. This running time analysis assumes that
l ≤ m ≤ n and that all low-rank matrices considered have rank k̂. See Section 2.4
for a more detailed analysis.

2.4 Running Time of DFC

Many state-of-the-art MF algorithms have Ω(mnkM ) per-iteration time complexity due to
the rank-kM truncated SVD performed on each iteration. DFC significantly reduces the
per-iteration complexity to O(mlkCi) time for Ci (or C) and O(ndkR) time for R. The cost
of combining the submatrix estimates is even smaller when using column projection or the
generalized Nyström method, since the outputs of standard MF algorithms are returned

4. This choice is arbitrary: W could also be defined as a submatrix of R.

918



Distributed Matrix Completion and Robust Factorization

in factored form. Indeed, if we define k′ , maxi kCi , then the column projection step of
DFC-Proj requires only O(mk′2 + lk′2) time: O(mk′2 + lk′2) time for the pseudoinversion
of Ĉ1 and O(mk′2 + lk′2) time for matrix multiplication with each Ĉi in parallel. Similarly,
the generalized Nyström step of DFC-Nys requires only O(lk̄2 + dk̄2 + min(m,n)k̄2) time,
where k̄ , max(kC , kR).

DFC-RP also benefits from the factored form of the outputs of standard MF algorithms.
Assuming that p and q are positive constants, the random projection step of DFC-RP
requires O(mkt + mkk′ + lkk′ + nk) time where k is the low-rank parameter of Q: O(nk)
time to generate G, O(mkk′ + lkk′ + mkt) to compute Y in parallel, O(mk2) to compute
the SVD of Y, and O(mk′2 + lk′2) time for matrix multiplication with each Ĉi in parallel
in the final projection step. Note that the running time of the random projection step
depends on t (even when executed in parallel) and thus has a larger complexity than the
column projection and generalized Nyström variants. Nevertheless, the random projection
step need be performed only once and thus yields a significant savings over the repeated
computation of SVDs required by typical base algorithms.

A summary of these running times is presented in Table 1.

2.5 Ensemble Methods

Ensemble methods have been shown to improve performance of matrix approximation al-
gorithms, while straightforwardly leveraging the parallelism of modern many-core and dis-
tributed architectures (Kumar et al., 2009b). As such, we propose ensemble variants of
the DFC algorithms that demonstrably reduce estimation error while introducing a negli-
gible cost to the parallel running time. For DFC-Proj-Ens, rather than projecting only
onto the column space of Ĉ1, we project [Ĉ1, . . . , Ĉt] onto the column space of each Ĉi

in parallel and then average the t resulting low-rank approximations. For DFC-RP-Ens,
rather than projecting only onto a column space derived from a single random matrix G,
we project [Ĉ1, . . . , Ĉt] onto t column spaces derived from t random matrices in parallel
and then average the t resulting low-rank approximations. For DFC-Nys-Ens, we choose a
random d-row submatrix PΩ(R) as in DFC-Nys and independently partition the columns
of PΩ(M) into {PΩ(C1), . . . ,PΩ(Ct)} as in DFC-Proj and DFC-RP. After running the
base MF algorithm on each submatrix, we apply the generalized Nyström method to each
(Ĉi, R̂) pair in parallel and average the t resulting low-rank approximations. Section 6
highlights the empirical effectiveness of ensembling.

3. Roadmap of Theoretical Analysis

While DFC in principle can work with any base matrix factorization algorithm, it offers the
greatest benefits when united with accurate but computationally expensive base procedures.
Convex optimization approaches to matrix completion and robust matrix factorization (e.g.,
Lin et al., 2009b; Ma et al., 2011; Toh and Yun, 2010) are prime examples of this class,
since they admit strong theoretical estimation guarantees (Agarwal et al., 2011; Candès
et al., 2011; Candès and Plan, 2010; Negahban and Wainwright, 2012) but suffer from poor
computational complexity due to the repeated and costly computation of truncated SVDs.
Section 6 will provide empirical evidence that DFC provides an attractive framework to
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improve the scalability of these algorithms, but we first present a thorough theoretical
analysis of the estimation properties of DFC.

Over the course of the next three sections, we will show that the same assumptions
that give rise to strong estimation guarantees for standard MF formulations also guarantee
strong estimation properties for DFC. While these results represent an important first step
toward understanding the theoretical behavior of DFC, we will see that certain gaps remain
between our theoretical characterization and the practical performance of DFC. We will
reflect on these gaps and the attendant opportunities for tightened theoretical analysis in
Section 6.4. In the remainder of this section, we first introduce these standard assumptions
and then present simplified bounds to build intuition for our theoretical results and our
underlying proof techniques.

3.1 Standard Assumptions for Noisy Matrix Factorization

Since not all matrices can be recovered from missing entries or gross outliers, recent theo-
retical advances have studied sufficient conditions for accurate noisy MC (Candès and Plan,
2010; Keshavan et al., 2010; Negahban and Wainwright, 2012) and RMF (Agarwal et al.,
2011; Zhou et al., 2010). Informally, these conditions capture the degree to which informa-
tion about a single entry is “spread out” across a matrix. The ease of matrix estimation is
correlated with this spread of information. The most prevalent set of conditions are matrix
coherence conditions, which limit the extent to which the singular vectors of a matrix are
correlated with the standard basis. However, there exist classes of matrices that violate the
coherence conditions but can nonetheless be recovered from missing entries or gross outliers.
Negahban and Wainwright (2012) define an alternative notion of matrix spikiness in part
to handle these classes.

3.1.1 Matrix Coherence

Letting ei be the ith column of the standard basis, we define two standard notions of
coherence (Recht, 2011):

Definition 1 (µ0-Coherence) Let V ∈ Rn×r contain orthonormal columns with r ≤ n.
Then the µ0-coherence of V is:

µ0(V) , n
r max1≤i≤n ‖PV ei‖2 = n

r max1≤i≤n ‖V(i)‖2 .

Definition 2 (µ1-Coherence) Let L ∈ Rm×n have rank r. Then, the µ1-coherence of L
is:

µ1(L) ,
√

mn
r maxij |e>i ULV>Lej | .

For conciseness, we extend the definition of µ0-coherence to an arbitrary matrix L ∈ Rm×n
with rank r via µ0(L) , max(µ0(UL), µ0(VL)). Further, for any µ > 0, we will call a matrix
L (µ, r)-coherent if rank(L) = r, µ0(L) ≤ µ, and µ1(L) ≤ √µ. Our analysis in Section 4
will focus on base MC and RMF algorithms that express their estimation guarantees in
terms of the (µ, r)-coherence of the target low-rank matrix L0. For such algorithms, lower
values of µ correspond to better estimation properties.
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3.1.2 Matrix Spikiness

The matrix spikiness condition of Negahban and Wainwright (2012) captures the intuition
that a matrix is easier to estimate if its maximum entry is not much larger than its average
entry (in the root mean square sense):

Definition 3 (Spikiness) The spikiness of L ∈ Rm×n is:

α(L) ,
√
mn‖L‖∞/‖L‖F .

We call a matrix α-spiky if α(L) ≤ α.

Our analysis in Section 5 will focus on base MC algorithms that express their estimation
guarantees in terms of the α-spikiness of the target low-rank matrix L0. For such algorithms,
lower values of α correspond to better estimation properties.

3.2 Prototypical Estimation Bounds

We now present a prototypical estimation bound for DFC. Suppose that a base MC algo-
rithm solves the noisy nuclear norm heuristic, studied in Candès and Plan (2010):

minimizeL ‖L‖∗ subject to ‖PΩ(M− L)‖F ≤ ∆,

and that, for simplicity, M is square. The following prototype bound, derived from a new
noisy MC guarantee in Theorem 10, describes the behavior of this estimator under matrix
coherence assumptions. Note that the bound implies exact recovery in the noiseless setting,
i.e., when ∆ = 0.

Proto-Bound 1 (MC under Incoherence) Suppose that L0 is (µ, r)-coherent, s en-
tries of M ∈ Rn×n are observed uniformly at random where s = Ω(µrn log2(n)), and
‖M− L0‖F ≤ ∆. If L̂ solves the noisy nuclear norm heuristic, then

‖L0 − L̂‖F ≤ f(n)∆

with high probability, where f is a function of n.

Now we present a corresponding prototype bound for DFC-Proj, a simplified version
of our Corollary 14, under precisely the same coherence assumptions. Notably, this bound
i) preserves accuracy with a flexible (2 + ε) degradation in estimation error over the base
algorithm, ii) allows for speed-up by requiring only a vanishingly small fraction of columns
to be sampled (i.e., l/n → 0) whenever s = ω(n log2(n)) entries are revealed, and iii)
maintains exact recovery in the noiseless setting.

Proto-Bound 2 (DFC-MC under Incoherence) Suppose that L0 is (µ, r)-coherent, s
entries of M ∈ Rn×n are observed uniformly at random, and ‖M− L0‖F ≤ ∆. Then it
suffices to choose

l ≥ cµ
2r2n2 log2(n)

sε2

921



Mackey, Talwalkar and Jordan

random columns suffice to have

‖L0 − L̂proj‖F ≤ (2 + ε)f(n)∆

with high probability when the noisy nuclear norm heuristic is used as a base algorithm,
where f is the same function of n defined in Proto. 1 and c is a fixed positive constant.

The proof of Proto. 2, and indeed of each of our main DFC results, consists of three high-
level steps:

1. Bound coherence of submatrices: Recall that the F step of DFC operates by applying
a base MF algorithm to submatrices. We show that, with high probability, uniformly
sampled submatrices are only moderately more coherent and moderately more spiky
than the matrix from which they are drawn. This allows for accurate estimation
of submatrices using base algorithms with standard coherence or spikiness require-
ments. The conservation of incoherence result is summarized in Lemma 4, while the
conservation of non-spikiness is presented in Lemma 17.

2. Bound error of randomized matrix approximations: The error introduced by the C
step of DFC depends on the framework variant. Drawing upon tools from random-
ized `2 regression (Drineas et al., 2008), randomized matrix multiplication (Drineas
et al., 2006a,b), and matrix concentration (Hsu et al., 2012), we show that the same
assumptions on the spread of information responsible for accurate MC and RMF also
yield high fidelity reconstructions for column projection (Corollary 6 and Theorem 18)
and the Nyström method (Corollary 7 and Corollary 8). We additionally present gen-
eral approximation guarantees for random projection due to Halko et al. (2011) in
Corollary 9. These results give rise to “master theorems” for coherence (Theorem 12)
and spikiness (Theorem 20) that generically relate the estimation error of DFC to
the error of any base algorithm.

3. Bound error of submatrix factorizations: The final step combines a master theorem
with a base estimation guarantee applied to each DFC subproblem. We study both
new (Theorem 10) and established bounds (Theorem 11 and Corollary 19) for MC and
RMF and prove that DFC submatrices satisfy the base guarantee preconditions with
high probability. We present the resulting coherence-based estimation guarantees for
DFC in Corollary 14 and Corollary 16 and the spikiness-based estimation guarantee
in Corollary 22.

The next two sections present the main results contributing to each of these proof steps,
as well as their consequences for MC and RMF. Section 4 presents our analysis under
coherence assumptions, while Section 5 contains our spikiness analysis.

4. Coherence-based Theoretical Analysis

This section presents our analysis of DFC under standard coherence assumptions encoun-
tered in the MC and RMF literature.
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4.1 Coherence Analysis of Randomized Approximation Algorithms

We begin our coherence-based analysis by characterizing the behavior of randomized ap-
proximation algorithms under standard coherence assumptions. The derived properties will
aid us in deriving DFC estimation guarantees. Hereafter, ε ∈ (0, 1] represents a prescribed
error tolerance, and δ, δ′ ∈ (0, 1] denote target failure probabilities.

4.1.1 Conservation of Incoherence

Our first result bounds the µ0 and µ1-coherence of a uniformly sampled submatrix in terms
of the coherence of the full matrix. This conservation of incoherence allows for accurate
submatrix completion or submatrix outlier removal when using standard MC and RMF
algorithms. Its proof is given in Section B.

Lemma 4 (Conservation of Incoherence) Let L ∈ Rm×n be a rank-r matrix and define
LC ∈ Rm×l as a matrix of l columns of L sampled uniformly without replacement. If
l ≥ crµ0(VL) log(n) log(1/δ)/ε2, where c is a fixed positive constant defined in Corollary 6,
then

i) rank(LC) = rank(L)

ii) µ0(ULC
) = µ0(UL)

iii) µ0(VLC
) ≤ µ0(VL)

1− ε/2

iv) µ2
1(LC) ≤ rµ0(UL)µ0(VL)

1− ε/2

all hold jointly with probability at least 1− δ/n.

4.1.2 Column Projection Analysis

Our next result shows that projection based on uniform column sampling leads to near
optimal estimation in matrix regression when the covariate matrix has small coherence.
This statement will immediately give rise to estimation guarantees for column projection
and the generalized Nyström method.

Theorem 5 (Subsampled Regression under Incoherence) Given a target matrix B ∈
Rp×n and a rank-r matrix of covariates L ∈ Rm×n, choose l ≥ 3200rµ0(VL) log(4n/δ)/ε2,
let BC ∈ Rp×l be a matrix of l columns of B sampled uniformly without replacement, and
let LC ∈ Rm×l consist of the corresponding columns of L. Then,

‖B−BCL+
CL‖F ≤ (1 + ε)‖B−BL+L‖F

with probability at least 1− δ − 0.2.

Fundamentally, Theorem 5 links the notion of coherence, common in matrix estimation
communities, to the randomized approximation concept of leverage score sampling (Ma-
honey and Drineas, 2009). The proof of Theorem 5, given in Section A, builds upon the
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randomized `2 regression work of Drineas et al. (2008) and the matrix concentration re-
sults of Hsu et al. (2012) to yield a subsampled regression guarantee with better sampling
complexity than that of Drineas et al. (2008, Theorem 5).

A first consequence of Theorem 5 shows that, with high probability, column projection
produces an estimate nearly as good as a given rank-r target by sampling a number of
columns proportional to the coherence and r log n.

Corollary 6 (Column Projection under Incoherence) Given a matrix M ∈ Rm×n
and a rank-r approximation L ∈ Rm×n, choose l ≥ crµ0(VL) log(n) log(1/δ)/ε2, where c is
a fixed positive constant, and let C ∈ Rm×l be a matrix of l columns of M sampled uniformly
without replacement. Then,

‖M−CC+M‖F ≤ (1 + ε)‖M− L‖F
with probability at least 1− δ.

Our result generalizes Theorem 1 of Drineas et al. (2008) by providing improved sampling
complexity and guarantees relative to an arbitrary low-rank approximation. Notably, in the
“noiseless” setting, when M = L, Corollary 6 guarantees exact recovery of M with high
probability. The proof of Corollary 6 is given in Section C.

4.1.3 Generalized Nyström Analysis

Theorem 5 and Corollary 6 together imply an estimation guarantee for the generalized
Nyström method relative to an arbitrary low-rank approximation L. Indeed, if the ma-
trix of sampled columns is denoted by C, then, with appropriately reduced probability,
O(µ0(VL)r log n) columns and O(µ0(UC)r logm) rows suffice to match the reconstruction
error of L up to any fixed precision. The proof can be found in Section D.

Corollary 7 (Generalized Nyström under Incoherence) Given a matrix M ∈ Rm×n
and a rank-r approximation L ∈ Rm×n, choose l ≥ crµ0(VL) log(n) log(1/δ)/ε2 with c a
constant as in Corollary 6, and let C ∈ Rm×l be a matrix of l columns of M sampled
uniformly without replacement. Further choose d ≥ clµ0(UC) log(m) log(1/δ′)/ε2, and let
R ∈ Rd×n be a matrix of d rows of M sampled independently and uniformly without re-
placement. Then,

‖M−CW+R‖F ≤ (1 + ε)2‖M− L‖F
with probability at least (1− δ)(1− δ′ − 0.2).

Like the generalized Nyström bound of Drineas et al. (2008, Theorem 4) and unlike our
column projection result, Corollary 7 depends on the coherence of the submatrix C and
holds only with probability bounded away from 1. Our next contribution shows that we
can do away with these restrictions in the noiseless setting, where M = L.

Corollary 8 (Noiseless Generalized Nyström under Incoherence) Let L ∈ Rm×n
be a rank-r matrix. Choose l ≥ 48rµ0(VL) log(4n/(1−

√
1− δ)) and d ≥ 48rµ0(UL) log(4m/(1−√

1− δ)). Let C ∈ Rm×l be a matrix of l columns of L sampled uniformly without replace-
ment, and let R ∈ Rd×n be a matrix of d rows of L sampled independently and uniformly
without replacement. Then,

L = CW+R
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with probability at least 1− δ.

This result may appear surprising at first sight, since only vanishingly small fractions of
rows and columns may participate in the generalized Nyström reconstruction. The intuition
for the method’s success that when the rank of L is small, only a small number of well-
chosen rows and columns are needed to reconstruct the row and column space of L and
that, when L is incoherent, uniform random sampling is likely produce well-chosen rows
and columns. The proof of Corollary 8, given in Section E, adapts a strategy of Talwalkar
and Rostamizadeh (2010) developed for the analysis of positive semidefinite matrices.

4.1.4 Random Projection Analysis

We next present an estimation guarantee for the random projection method relative to an
arbitrary low-rank approximation L. The result implies that using a random matrix with
oversampled columns proportional to r log(1/δ) suffices to match the reconstruction error
of L up to any fixed precision with probability 1− δ. The result is a direct consequence of
the random projection analysis of Halko et al. (2011, Theorem 10.7), and the proof can be
found in Section F.

Corollary 9 (Random Projection) Given a matrix M ∈ Rm×n and a rank-r approxi-
mation L ∈ Rm×n with r ≥ 2, choose an oversampling parameter

p ≥ 242 r log(7/δ)/ε2.

Draw an n × (r + p) standard Gaussian matrix G and define Y = MG. Then, with
probability at least 1− δ,

‖M−PY M‖F ≤ (1 + ε)‖M− L‖F .

Moreover, define Lrp as the best rank-r approximation of PY M with respect to the Frobenius
norm. Then, with probability at least 1− δ,

‖M− Lrp‖F ≤ (2 + ε)‖M− L‖F .

We note that, in contrast to Corollary 6 and Corollary 7, Corollary 9 does not depend on
the coherence of L and hence can be fruitfully applied even in the absence of an incoherence
assumption. We demonstrate such a use case in Section 5. We note moreover that past
empirical studies have demonstrated excellent estimation error with p ≤ 10 irrespective of
the target matrix rank (Halko et al., 2011); bridging the gap between theory and practice
in this instance represents an interesting open problem.

4.2 Base Algorithm Guarantees

As prototypical examples of the coherence-based estimation guarantees available for noisy
MC and noisy RMF, consider the following two theorems. The first bounds the estimation
error of a convex optimization approach to noisy matrix completion, under the assumptions
of incoherence and uniform sampling.
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Theorem 10 (Noisy MC under Incoherence) Suppose that L0 ∈ Rm×n is (µ, r)-coherent
and that, for some target rate parameter β > 1,

s ≥ 32µr(m+ n)β log2(m+ n)

entries of M are observed with locations Ω sampled uniformly without replacement. Then,
if m ≤ n and ‖PΩ(M)− PΩ(L0)‖F ≤ ∆ a.s., the minimizer L̂ of the problem

minimizeL ‖L‖∗ subject to ‖PΩ(M− L)‖F ≤ ∆. (1)

satisfies

‖L0 − L̂‖F ≤ 8

√
2m2n

s
+m+

1

16
∆ ≤ ce

√
mn∆

with probability at least 1− 4 log(n)n2−2β for ce a positive constant.

A similar estimation guarantee was obtained by Candès and Plan (2010) under stronger
assumptions. We give the proof of Theorem 10 in Section J.

The second result, due to Zhou et al. (2010) and reformulated for a generic rate pa-
rameter β, as described in Candès et al. (2011, Section 3.1), bounds the estimation error of
a convex optimization approach to noisy RMF, under the assumptions of incoherence and
uniformly distributed outliers.

Theorem 11 (Noisy RMF under Incoherence, Zhou et al. 2010, Theorem 2) Suppose
that L0 is (µ, r)-coherent and that the support set of S0 is uniformly distributed among all
sets of cardinality s. Then, if m ≤ n and ‖M− L0 − S0‖F ≤ ∆ a.s., there is a constant cp
such that with probability at least 1− cpn−β, the minimizer (L̂, Ŝ) of the problem

minimizeL,S ‖L‖∗ + λ‖S‖1 subject to ‖M− L− S‖F ≤ ∆ with λ = 1/
√
n (2)

satisfies ‖L0 − L̂‖2F + ‖S0 − Ŝ‖2F ≤ c′2e mn∆2, provided that

r ≤ ρrm

µ log2(n)
and s ≤ (1− ρsβ)mn

for target rate parameter β > 2, and positive constants ρr, ρs, and c′e.

4.3 Coherence Master Theorem

We now show that the same coherence conditions that allow for accurate MC and RMF
also imply high-probability estimation guarantees for DFC. To make this precise, we let
M = L0 + S0 + Z0 ∈ Rm×n, where L0 is (µ, r)-coherent and ‖PΩ(Z0)‖F ≤ ∆. Then, our
next theorem provides a generic bound on the estimation error of DFC used in combination
with an arbitrary base algorithm. The proof, which builds upon the results of Section 4.1,
is given in Section G.
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Theorem 12 (Coherence Master Theorem) Choose t = n/l, l ≥ crµ log(n) log(2/δ)/ε2,
where c is a fixed positive constant, and p ≥ 242 r log(14/δ)/ε2. Under the notation of Al-
gorithms 1 and 2, let {C0,1, · · · ,C0,t} be the corresponding partition of L0. Then, with

probability at least 1− δ, C0,i is ( rµ2

1−ε/2 , r)-coherent for all i, and

‖L0 − L̂∗‖F ≤ (2 + ε)

√∑t
i=1‖C0,i − Ĉi‖

2

F ,

where L̂∗ is the estimate returned by either DFC-Proj or DFC-RP.

Under the notation of Algorithm 3, let C0 and R0 be the corresponding column and row
submatrices of L0. If in addition d ≥ clµ0(Ĉ) log(m) log(4/δ)/ε2, then, with probability at

least (1− δ)(1− δ− 0.2), DFC-Nys guarantees that C0 and R0 are ( rµ2

1−ε/2 , r)-coherent and
that

‖L0 − L̂nys‖F ≤ (2 + 3ε)

√
‖C0 − Ĉ‖2F + ‖R0 − R̂‖2F .

Remark 13 The DFC-Nys guarantee requires the number of rows sampled to grow in
proportion to µ0(Ĉ), a quantity always bounded by µ in our simulations. Here and in the
consequences to follow, the DFC-Nys result can be strengthened in the noiseless setting
(∆ = 0) by utilizing Corollary 8 in place of Corollary 7 in the proof of Theorem 12.

When a target matrix is incoherent, Theorem 12 asserts that – with high probability
for DFC-Proj and DFC-RP and with fixed probability for DFC-Nys – the estimation
error of DFC is not much larger than the error sustained by the base algorithm on each
subproblem. Because Theorem 12 further bounds the coherence of each submatrix, we can
use any coherence-based matrix estimation guarantee to control the estimation error on
each subproblem. The next two sections demonstrate how Theorem 12 can be applied to
derive specific DFC estimation guarantees for noisy MC and noisy RMF. In these sections,
we let n̄ , max(m,n).

4.4 Consequences for Noisy MC

As a first consequence of Theorem 12, we will show that DFC retains the high-probability
estimation guarantees of a standard MC solver while operating on matrices of much smaller
dimension. Suppose that a base MC algorithm solves the convex optimization problem of
Eq. (1). Then, Corollary 14 follows from the Coherence Master Theorem (Theorem 12) and
the base algorithm guarantee of Theorem 10.

Corollary 14 (DFC-MC under Incoherence) Suppose that L0 is (µ, r)-coherent and
that s entries of M are observed, with locations Ω distributed uniformly. Fix any target rate
parameter β > 1. Then, if ‖PΩ(M)− PΩ(L0)‖F ≤ ∆ a.s., and the base algorithm solves
the optimization problem of Eq. (1), it suffices to choose t = n/l,

l ≥ cµ2r2(m+ n)nβ log2(m+ n)/(sε2), d ≥ clµ0(Ĉ)(2β − 1) log2(4n̄)n̄/(nε2),

and p ≥ 242 r log(14n̄2β−2)/ε2 to achieve

DFC-Proj : ‖L0 − L̂proj‖F ≤ (2 + ε)ce
√
mn∆
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DFC-RP : ‖L0 − L̂rp‖F ≤ (2 + ε)ce
√
mn∆

DFC-Nys : ‖L0 − L̂nys‖F ≤ (2 + 3ε)ce
√
ml + dn∆

with probability at least

DFC-Proj / DFC-RP : 1− (5t log(n̄) + 1)n̄2−2β ≥ 1− n̄3−2β

DFC-Nys : 1− (10 log(n̄) + 2)n̄2−2β − 0.2,

respectively, with c as in Theorem 12 and ce as in Theorem 10.

Remark 15 Corollary 14 allows for the fraction of columns and rows sampled to decrease
as the number of revealed entries, s, increases. Only a vanishingly small fraction of columns
(l/n→ 0) and rows (d/n̄→ 0) need be sampled whenever s = ω((m+ n) log2(m+ n)).

To understand the conclusions of Corollary 14, consider the base algorithm of The-
orem 10, which, when applied to PΩ(M), recovers an estimate L̂ satisfying ‖L0 − L̂‖F ≤
ce
√
mn∆ with high probability. Corollary 14 asserts that, with appropriately reduced prob-

ability, DFC-Proj and DFC-RP exhibit the same estimation error scaled by an adjustable
factor of 2 + ε, while DFC-Nys exhibits a somewhat smaller error scaled by 2 + 3ε.

The key take-away is that DFC introduces a controlled increase in error and a controlled
decrement in the probability of success, allowing the user to interpolate between maximum
speed and maximum accuracy. Thus, DFC can quickly provide near-optimal estimation in
the noisy setting and exact recovery in the noiseless setting (∆ = 0), even when entries are
missing. The proof of Corollary 14 can be found in Section H.

4.5 Consequences for Noisy RMF

Our next corollary shows that DFC retains the high-probability estimation guarantees of a
standard RMF solver while operating on matrices of much smaller dimension. Suppose that
a base RMF algorithm solves the convex optimization problem of Eq. (2). Then, Corol-
lary 16 follows from the Coherence Master Theorem (Theorem 12) and the base algorithm
guarantee of Theorem 11.

Corollary 16 (DFC-RMF under Incoherence) Suppose that L0 is (µ, r)-coherent with

r2 ≤ min(m,n)ρr

2µ2 log2(n̄)

for a positive constant ρr. Suppose moreover that the uniformly distributed support set of
S0 has cardinality s. For a fixed positive constant ρs, define the undersampling parameter

βs ,
(

1− s

mn

)
/ρs,

and fix any target rate parameter β > 2 with rescaling β′ , β log(n̄)/ log(m) satisfying
4βs − 3/ρs ≤ β′ ≤ βs. Then, if ‖M− L0 − S0‖F ≤ ∆ a.s., and the base algorithm solves
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the optimization problem of Eq. (2), it suffices to choose t = n/l,

l ≥ max

(
cr2µ2β log2(2n̄)

ε2ρr
,
4 log(n̄)β(1− ρsβs)
m(ρsβs − ρsβ′)2

)
,

d ≥ max

(
clµ0(Ĉ)β log2(4n̄)

ε2
,
4 log(n̄)β(1− ρsβs)
n(ρsβs − ρsβ′)2

)

and p ≥ 242 r log(14n̄β)/ε2 to have

DFC-Proj : ‖L0 − L̂proj‖F ≤ (2 + ε)c′e
√
mn∆

DFC-RP : ‖L0 − L̂rp‖F ≤ (2 + ε)c′e
√
mn∆

DFC-Nys : ‖L0 − L̂nys‖F ≤ (2 + 3ε)c′e
√
ml + dn∆

with probability at least

DFC-Proj / DFC-RP : 1− (t(cp + 1) + 1)n̄−β ≥ 1− cpn̄1−β

DFC-Nys : 1− (2cp + 3)n̄−β − 0.2,

respectively, with c as in Theorem 12 and ρr, c
′
e, and cp as in Theorem 11.

Note that Corollary 16 places only very mild restrictions on the number of columns and
rows to be sampled. Indeed, l and d need only grow poly-logarithmically in the matrix
dimensions to achieve estimation guarantees comparable to those of the RMF base algorithm
(Theorem 11). Hence, DFC can quickly provide near-optimal estimation in the noisy setting
and exact recovery in the noiseless setting (∆ = 0), even when entries are grossly corrupted.
The proof of Corollary 16 can be found in Section I.

5. Theoretical Analysis under Spikiness Conditions

This section presents our analysis of DFC under standard spikiness assumptions from the
MC and RMF literature.

5.1 Spikiness Analysis of Randomized Approximation Algorithms

We begin our spikiness analysis by characterizing the behavior of randomized approximation
algorithms under standard spikiness assumptions. The derived properties will aid us in
developing DFC estimation guarantees. Hereafter, ε ∈ (0, 1] represents a prescribed error
tolerance, and δ, δ′ ∈ (0, 1] designates a target failure probability.

5.1.1 Conservation of Non-Spikiness

Our first lemma establishes that the uniformly sampled submatrices of an α-spiky matrix
are themselves nearly α-spiky with high probability. This property will allow for accurate
submatrix completion or outlier removal using standard MC and RMF algorithms. Its proof
is given in Section K.
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Lemma 17 (Conservation of Non-Spikiness) Let LC ∈ Rm×l be a matrix of l columns
of L ∈ Rm×n sampled uniformly without replacement. If l ≥ α4(L) log(1/δ)/(2ε2), then

α(LC) ≤ α(L)√
1− ε

with probability at least 1− δ.

5.1.2 Column Projection Analysis

Our first theorem asserts that, with high probability, column projection produces an ap-
proximation nearly as good as a given rank-r target by sampling a number of columns
proportional to the spikiness and r log(mn).

Theorem 18 (Column Projection under Non-Spikiness) Given a matrix M ∈ Rm×n
and a rank-r, α-spiky approximation L ∈ Rm×n, choose

l ≥ 8rα4 log(2mn/δ)/ε2,

and let C ∈ Rm×l be a matrix of l columns of M sampled uniformly without replacement.
Then,

‖M− Lproj‖F ≤ ‖M− L‖F + ε

with probability at least 1− δ, whenever ‖M‖∞ ≤ α/
√
mn.

The proof of Theorem 18 builds upon the randomized matrix multiplication work of
Drineas et al. (2006a,b) and will be given in Section L.

5.2 Base Algorithm Guarantee

The next result, a reformulation of Negahban and Wainwright (2012, Corollary 1), is a
prototypical example of a spikiness-based estimation guarantee for noisy MC. Corollary 19
bounds the estimation error of a convex optimization approach to noisy matrix completion,
under non-spikiness and uniform sampling assumptions.

Corollary 19 (Noisy MC under Non-Spikiness) (Negahban and Wainwright, 2012)
Suppose that L0 ∈ Rm×n is α-spiky with rank r and ‖L0‖F ≤ 1 and that Z0 ∈ Rm×n
has i.i.d. zero-mean, sub-exponential entries with variance ν2/mn. If, for an oversampling
parameter β > 0,

s ≥ α2βr(m+ n) log(m+ n)

entries of M = L0 + Z0 are observed with locations Ω sampled uniformly with replacement,
then any solution L̂ of the problem

minimizeL
mn

2s
‖PΩ(M− L)‖2F + λ‖L‖∗ subject to ‖L‖∞ ≤

α√
mn

(3)

with λ = 4ν
√

(m+ n) log(m+ n)/s

satisfies

‖L0 − L̂‖2F ≤ c1 max
(
ν2, 1

)
/β

with probability at least 1− c2 exp(−c3 log(m+ n)) for positive constants c1, c2, and c3.
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5.3 Spikiness Master Theorem

We now show that the same spikiness conditions that allow for accurate MC also imply high-
probability estimation guarantees for DFC. To make this precise, we let M = L0 + Z0 ∈
Rm×n, where L0 is α-spiky with rank r and that Z0 ∈ Rm×n has i.i.d. zero-mean, sub-
exponential entries with variance ν2/mn. We further fix any ε, δ ∈ (0, 1]. Then, our
Theorem 20 provides a generic bound on estimation error for DFC when used in combination
with an arbitrary base algorithm. The proof, which builds upon the results of Section 5.1,
is deferred to Section M.

Theorem 20 (Spikiness Master Theorem) Choose t = n/l, l ≥ 13rα4 log(4mn/δ)/ε2,
and p ≥ 242 r log(14/δ)/ε2. Under the notation of Algorithms 1 and 2, let {C0,1, · · · ,C0,t}
be the corresponding partition of L0. Then, with probability at least 1− δ, DFC-Proj and
DFC-RP guarantee that C0,i is (

√
1.25α)-spiky for all i and that

‖L0 − L̂proj‖F ≤ 2

√∑t
i=1‖C0,i − Ĉi‖

2

F + ε and

‖L0 − L̂rp‖F ≤ (2 + ε)

√∑t
i=1‖C0,i − Ĉi‖

2

F

whenever ‖Ĉi‖∞ ≤
√

1.25α/
√
ml for all i.

Remark 21 The factor of
√

1.25 can be replaced with the smaller term
√

1 + ε/(4
√
r).

When a target matrix is non-spiky, Theorem 20 asserts that, with high probability, the
estimation error of DFC is not much larger than the error sustained by the base algorithm
on each subproblem. Theorem 20 further bounds the spikiness of each submatrix with
high probability, and hence we can use any spikiness-based matrix estimation guarantee
to control the estimation error on each subproblem. The next section demonstrates how
Theorem 20 can be applied to derive specific DFC estimation guarantees for noisy MC.

5.4 Consequences for Noisy MC

Our corollary of Theorem 20 shows that DFC retains the high-probability estimation guar-
antees of a standard MC solver while operating on matrices of much smaller dimension.
Suppose that a base MC algorithm solves the convex optimization problem of Eq. (3).
Then, Corollary 22 follows from the Spikiness Master Theorem (Theorem 20) and the base
algorithm guarantee of Corollary 19.

Corollary 22 (DFC-MC under Non-Spikiness) Suppose that L0 ∈ Rm×n is α-spiky
with rank r and ‖L0‖F ≤ 1 and that Z0 ∈ Rm×n has i.i.d. zero-mean, sub-exponential
entries with variance ν2/mn. Let c1, c2, and c3 be positive constants as in Corollary 19. If
s entries of M = L0 +Z0 are observed with locations Ω sampled uniformly with replacement,
and the base algorithm solves the optimization problem of Eq. (3), then it suffices to choose
t = n/l,

l ≥ 13(c3 + 1)

√
(m+ n) log(m+ n)β

s
nrα4 log(4mn)/ε2,
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and p ≥ 242 r log(14(m+ l)c3)/ε2 to achieve

‖L0 − L̂proj‖F ≤ 2
√
c1 max((l/n)ν2, 1)/β + ε and

‖L0 − L̂rp‖F ≤ (2 + ε)
√
c1 max((l/n)ν2, 1)/β

with respective probability at least 1−(t+1)(c2+1) exp(−c3 log(m+ l)), if the base algorithm
of Eq. (3) is used with λ = 4ν

√
(m+ n) log(m+ n)/s.

Remark 23 Corollary 22 allows for the fraction of columns sampled to decrease as the
number of revealed entries, s, increases. Only a vanishingly small fraction of columns
(l/n→ 0) need be sampled whenever s = ω((m+ n) log3(m+ n)).

To understand the conclusions of Corollary 22, consider the base algorithm of Corol-
lary 19, which, when applied to M, recovers an estimate L̂ satisfying

‖L0 − L̂‖F ≤
√
c1 max(ν2, 1)/β

with high probability. Corollary 14 asserts that, with appropriately reduced probability,
DFC-RP exhibits the same estimation error scaled by an adjustable factor of 2 + ε, while
DFC-Proj exhibits at most twice this error plus an adjustable factor of ε. Hence, DFC
can quickly provide near-optimal estimation for non-spiky matrices as well as incoherent
matrices, even when entries are missing. The proof of Corollary 22 can be found in Section N.

6. Experimental Evaluation

We now explore the accuracy and speed-up of DFC on a variety of simulated and real-world
data sets. We use the Accelerated Proximal Gradient (APG) algorithm of Toh and Yun
(2010) as our base noisy MC algorithm5 and the APG algorithm of Lin et al. (2009b) as our
base noisy RMF algorithm. In order to provide a fair comparison with baseline algorithms,
we perform all experiments on an x86-64 architecture using a single 2.60 Ghz core and 30GB
of main memory. In practice, one will typically run DFC jobs in a distributed fashion across
a cluster; our released code supports this standard use case. We use the default parameter
settings suggested by Toh and Yun (2010) and Lin et al. (2009b), and measure estimation
error via root mean square error (RMSE). To achieve a fair running time comparison, we
execute each subproblem in the F step of DFC in a serial fashion on the same machine
using a single core. Since, in practice, each of these subproblems would be executed in
parallel, the parallel running time of DFC is calculated as the time to complete the D and
C steps of DFC plus the running time of the longest running subproblem in the F step.
We compare DFC with two baseline methods: the base algorithm APG applied to the full
matrix M and Partition, which carries out the D and F steps of DFC-Proj but omits
the final C step (projection). We denote a particular sampling method along with the size
of its partitions as ‘method-xx%,’ e.g., Proj-25% refers to DFC-Proj with partitioned
submatrices containing 25% of the columns of the full matrix (i.e., t = 4). For Partition,
DFC-Proj, and DFC-RP, we orient our data matrices such that n ≥ m and partition by
column. Moreover, for DFC-RP we set p = 5 and q = 2.

5. Our experiments with the Augmented Lagrange Multiplier (ALM) algorithm of Lin et al. (2009a) as a
base algorithm (not reported) yield comparable relative speedups and performance for DFC.
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6.1 Simulations

For our simulations, we focused on square matrices (m = n) and generated random low-rank
and sparse decompositions, similar to the schemes used in related work (Candès et al., 2011;
Keshavan et al., 2010; Zhou et al., 2010). We created L0 ∈ Rm×m as a random product,
AB>, where A and B are m× r matrices with independent N (0,

√
1/r) entries such that

each entry of L0 has unit variance. Z0 contained independent N (0, 0.1) entries. In the MC
setting, s entries of L0 + Z0 were revealed uniformly at random. In the RMF setting, the
support of S0 was generated uniformly at random, and the s corrupted entries took values
in [0, 1] with uniform probability. For each algorithm, we report error between L0 and the
estimated low-rank matrix, and all reported results are averages over ten trials.
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Figure 1: Recovery error of DFC relative to base algorithms.

We first explored the estimation error of DFC as a function of s, using (m = 10K,
r = 10) with varying observation sparsity for MC and (m = 1K, r = 10) with a varying
percentage of outliers for RMF. The results are summarized in Figure 1. In both MC and
RMF, the gaps in estimation between APG and DFC are small when sampling only 10%
of rows and columns. Moreover, of the standard DFC algorithms, DFC-RP performs the
best, as shown in Figures 1(a) and (b). Ensembling improves the performance of DFC-
Nys and DFC-Proj, as shown in Figures 1(c) and (d), and DFC-Proj-Ens in particular
consistently outperforms Partition and DFC-Nys-Ens, slightly outperforms DFC-RP,
and matches the performance of APG for most settings of s. In practice we observe that Lrp

equals the optimal (with respect to the spectral or Frobenius norm) rank-k approximation
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of [Ĉ1, . . . , Ĉt], and thus the performance of DFC-RP consistently matches that of DFC-
RP-Ens. We therefore omit the DFC-RP-Ens results in the remainder this section.

We next explored the speed-up of DFC as a function of matrix size. For MC, we revealed
4% of the matrix entries and set r = 0.001 ·m, while for RMF we fixed the percentage of
outliers to 10% and set r = 0.01·m. We sampled 10% of rows and columns and observed that
estimation errors were comparable to the errors presented in Figure 1 for similar settings
of s; in particular, at all values of n for both MC and RMF, the errors of APG and DFC-
Proj-Ens were nearly identical. Our timing results, presented in Figure 2, illustrate a
near-linear speed-up for MC and a superlinear speed-up for RMF across varying matrix
sizes. Note that the timing curves of the DFC algorithms and Partition all overlap, a
fact that highlights the minimal computational cost of the final matrix approximation step.
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Figure 2: Speed-up of DFC relative to base algorithms.

6.2 Collaborative Filtering

Collaborative filtering for recommender systems is one prevalent real-world application of
noisy matrix completion. A collaborative filtering data set can be interpreted as the in-
complete observation of a ratings matrix with columns corresponding to users and rows
corresponding to items. The goal is to infer the unobserved entries of this ratings matrix.
We evaluate DFC on two of the largest publicly available collaborative filtering data sets:
MovieLens 10M (http://www.grouplens.org/) with m = 10K, n = 72K, s > 10M, and
the Netflix Prize data set (http://www.netflixprize.com/) with m = 18K, n = 480K,
s > 100M. To generate test sets drawn from the training distribution, for each data set,
we aggregated all available rating data into a single training set and withheld test entries
uniformly at random, while ensuring that at least one training observation remained in
each row and column. The algorithms were then run on the remaining training portions
and evaluated on the test portions of each split. The results, averaged over three train-test
splits, are summarized in Table 2. Notably, DFC-Proj, DFC-Proj-Ens, DFC-Nys-Ens,
and DFC-RP all outperform Partition, and DFC-Proj-Ens performs comparably to
APG while providing a nearly linear parallel time speed-up. Similar to the simulation re-
sults presented in Figure 1, DFC-RP performs the best of the standard DFC algorithms,
though DFC-Proj-Ens slightly outperforms DFC-RP. Moreover, the poorer performance
of DFC-Nys can be in part explained by the asymmetry of these problems. Since these
matrices have many more columns than rows, MF on column submatrices is inherently
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Method
MovieLens 10M Netflix
RMSE Time RMSE Time

Base algorithm (APG) 0.8005 552.3s 0.8433 4775.4s

Partition-25% 0.8146 146.2s 0.8451 1274.6s
Partition-10% 0.8461 56.0s 0.8491 548.0s

DFC-Nys-25% 0.8449 141.9s 0.8832 1541.2s
DFC-Nys-10% 0.8776 82.5s 0.9228 797.4s

DFC-Nys-Ens-25% 0.8085 153.5s 0.8486 1661.2s
DFC-Nys-Ens-10% 0.8328 96.2s 0.8613 909.8s

DFC-Proj-25% 0.8061 146.3s 0.8436 1274.8s
DFC-Proj-10% 0.8270 56.0s 0.8486 548.1s

DFC-Proj-Ens-25% 0.7944 146.3s 0.8411 1274.8s
DFC-Proj-Ens-10% 0.8117 56.0s 0.8434 548.1s

DFC-RP-25% 0.8027 147.4s 0.8438 1283.6s
DFC-RP-10% 0.8074 56.2s 0.8448 550.1s

Table 2: Performance of DFC relative to base algorithm APG on collaborative filtering
tasks.

easier than MF on row submatrices, and for DFC-Nys, we observe that Ĉ is an accurate
estimate while R̂ is not.

6.3 Background Modeling in Computer Vision

Background modeling has important practical ramifications for detecting activity in surveil-
lance video. This problem can be framed as an application of noisy RMF, where each video
frame is a column of some matrix (M), the background model is low-rank (L0), and moving
objects and background variations, e.g., changes in illumination, are outliers (S0). We evalu-
ate DFC on two videos (treating each frame as a row): ‘Hall’ (200 frames of size 176×144)
contains significant foreground variation and was studied by Candès et al. (2011), while
‘Lobby’ (1546 frames of size 168 × 120) includes many changes in illumination (a smaller
video with 250 frames was studied by Candès et al. 2011). We focused on DFC-Proj-Ens,
due to its superior performance in previous experiments, and measured the RMSE between
the background model estimated by DFC and that of APG. On both videos, DFC-Proj-
Ens estimated nearly the same background model as the full APG algorithm in a small
fraction of the time. On ‘Hall,’ the DFC-Proj-Ens-5% and DFC-Proj-Ens-0.5% models
exhibited RMSEs of 0.564 and 1.55, quite small given pixels with 256 intensity values. The
associated running time was reduced from 342.5s for APG to real-time (5.2s for a 13s video)
for DFC-Proj-Ens-0.5%. Snapshots of the results are presented in Figure 3. On ‘Lobby,’
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Original frame APG 5% sampled 0.5% sampled
(342.5s) (24.2s) (5.2s)

Figure 3: Sample ‘Hall’ estimation by APG, DFC-Proj-Ens-5%, and DFC-Proj-Ens-
.5%.

the RMSE of DFC-Proj-Ens-4% was 0.64, and the speed-up over APG was more than
20X, i.e., the running time reduced from 16557s to 792s.

6.4 From Theory to Practice

Our experimental results suggest that the theoretical error bounds of Secs. 4 and 5 can be
further tightened. In particular, our master theorems Theorems 12 and 20 guarantee that
DFC-Proj-Ens and DFC-RP are never more than a constant factor worse than Par-
tition, yet in both real data experiments and simulations we observe significant gains in
accuracy over Partition due to the incorporation of projection and ensembling. More-
over, our theory gives rise to comparable estimation guarantees for DFC-Nys, albeit under
stronger assumptions as noted in Remark 13. This is a surprising fact given that DFC-Nys
may make use of only a vanishingly small subset of all available matrix entries; however, we
find that for data sets with high noise levels, methods that make use of all available data
like DFC-Proj and DFC-RP are unsurprisingly more accurate than DFC-Nys. We view
addressing these gaps between theory and practice as important directions for future work.

7. Conclusions

To improve the scalability of existing matrix factorization algorithms while leveraging the
ubiquity of parallel computing architectures, we introduced, evaluated, and analyzed DFC,
a divide-and-conquer framework for noisy matrix factorization with missing entries or out-
liers. DFC is trivially parallelized and particularly well suited for distributed environments
given its low communication footprint. Moreover, DFC provably maintains the estimation
guarantees of its base algorithm, even in the presence of noise, and yields linear to super-
linear speedups in practice. A number of natural follow-up questions suggest themselves:

• Can the sampling complexities and conclusions of our theoretical analyses be strength-
ened? For example, can the (2 + ε) approximation guarantees of our master theorems
be sharpened to (1 + ε)? More generally, can we close the gaps between theory and
practice described in Section 6.4?
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• How does DFC compare empirically with scalable heuristics for MC and RMF that
have little theoretical backing (see, e.g., Zhou et al., 2008; Gemulla et al., 2011; Recht
and Ré, 2011; F. Niu et al., 2011; Yu et al., 2012; Mu et al., 2011)? Is improved perfor-
mance obtained by pairing DFC with base algorithms lacking theoretical guarantees
but displaying other practical benefits?

• Which algorithmic refinements lead to enhanced performance for DFC? For instance,
could ensemble variants of DFC be improved by learning combination weights in a
manner analogous to that of Kumar et al. (2009b)? In the matrix completion setting,
could one use held-out entries to determine the optimal dimension (via rows or via
columns) for partitioning in DFC-Proj or DFC-RP?

These open questions are fertile ground for future work.
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Appendix A. Proof of Theorem 5: Subsampled Regression under
Incoherence

We now give a proof of Theorem 5. While the results of this section are stated in terms of
i.i.d. with-replacement sampling of columns and rows, a concise argument due to Hoeffding
(1963, Section 6) implies the same conclusions when columns and rows are sampled without
replacement.

Our proof of Theorem 5 will require a strengthened version of the randomized `2 regres-
sion work of Drineas et al. (2008, Theorem 5). The proof of Theorem 5 of Drineas et al.
(2008) relies heavily on the fact that ‖AB−GH‖F ≤

ε
2‖A‖F ‖B‖F with probability at

least 0.9, when G and H contain sufficiently many rescaled columns and rows of A and
B, sampled according to a particular non-uniform probability distribution. A result of Hsu
et al. (2012), modified to allow for slack in the probabilities, establishes a related claim with
improved sampling complexity.6

Lemma 24 (Hsu et al. 2012, Example 4.3) Given a matrix A ∈ Rm×k with r ≥ rank(A),
an error tolerance ε ∈ (0, 1], and a failure probability δ ∈ (0, 1], define probabilities pj sat-
isfying

pj ≥
β

Z
‖A(j)‖2, Z =

∑
j

‖A(j)‖2, and
∑k

j=1pj = 1

6. The general conclusion of (Hsu et al., 2012, Example 4.3) is incorrectly stated as noted in Hsu (2012).
However, the original statement is correct in the special case when a matrix is multiplied by its own
transpose, which is the case of interest here.
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for some β ∈ (0, 1]. Let G ∈ Rm×l be a column submatrix of A in which exactly l ≥
48r log(4r/(βδ))/(βε2) columns are selected in i.i.d. trials in which the j-th column is chosen
with probability pj. Further, let D ∈ Rl×l be a diagonal rescaling matrix with entry Dtt =
1/
√
lpj whenever the j-th column of A is selected on the t-th sampling trial, for t = 1, . . . , l.

Then, with probability at least 1− δ,

‖AA> −GDDG>‖2 ≤
ε

2
‖A‖22.

Using Lemma 24, we now establish a stronger version of Lemma 1 of Drineas et al.
(2008). For a given β ∈ (0, 1] and L ∈ Rm×n with rank r, we first define column sampling
probabilities pj satisfying

pj ≥
β

r
‖(VL)(j)‖2 and

∑n
j=1pj = 1. (4)

We further let S ∈ Rn×l be a random binary matrix with independent columns, where a
single 1 appears in each column, and Sjt = 1 with probability pj for each t ∈ {1, . . . , l}.
Moreover, let D ∈ Rl×l be a diagonal rescaling matrix with entry Dtt = 1/

√
lpj whenever

Sjt = 1. Postmultiplication by S is equivalent to selecting l random columns of a matrix,
independently and with replacement. Under this notation, we establish the following lemma:

Lemma 25 Let ε ∈ (0, 1], and define V>l = V>LS and Γ = (V>l D)+ − (V>l D)>. If
l ≥ 48r log(4r/(βδ))/(βε2) for δ ∈ (0, 1] then with probability at least 1− δ:

rank(Vl) = rank(VL) = rank(L)

‖Γ‖2 = ‖Σ−1
V >
l D
−ΣV >

l D‖
2

(LSD)+ = (V>l D)+Σ−1
L U>L

‖Σ−1
V >
l D
−ΣV >

l D‖
2
≤ ε/
√

2.

Proof By Lemma 24, for all 1 ≤ i ≤ r,

|1− σ2
i (V

>
l D)| = |σi(V>LVL)− σi(V>l DDVl)|

≤ ‖V>LVL −V>LSDDS>VL‖2
≤ ε/2‖V>L‖

2

2 = ε/2,

where σi(·) is the i-th largest singular value of a given matrix. Since ε/2 ≤ 1/2, each singu-
lar value of Vl is positive, and so rank(Vl) = rank(VL) = rank(L). The remainder of the
proof is identical to that of Lemma 1 of Drineas et al. (2008).

Lemma 25 immediately yields improved sampling complexity for the randomized `2
regression of Drineas et al. (2008):

Proposition 26 Suppose B ∈ Rp×n and ε ∈ (0, 1]. If l ≥ 3200r log(4r/(βδ))/(βε2) for
δ ∈ (0, 1], then with probability at least 1− δ − 0.2:

‖B−BSD(LSD)+L‖F ≤ (1 + ε)‖B−BL+L‖F .
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Proof The proof is identical to that of Theorem 5 of Drineas et al. (2008) once Lemma 25
is substituted for Lemma 1 of Drineas et al. (2008).

A typical application of Prop. 26 would involve performing a truncated SVD of M to
obtain the statistical leverage scores, ‖(VL)(j)‖2, used to compute the column sampling
probabilities of Eq. (4). Here, we will take advantage of the slack term, β, allowed in the
sampling probabilities of Eq. (4) to show that uniform column sampling gives rise to the
same estimation guarantees for column projection approximations when L is sufficiently
incoherent.

To prove Theorem 5, we first notice that n ≥ rµ0(VL) and hence

l ≥ 3200rµ0(VL) log(4rµ0(VL)/δ)/ε2

≥ 3200r log(4r/(βδ))/(βε2)

whenever β ≥ 1/µ0(VL). Thus, we may apply Prop. 26 with β = 1/µ0(VL) ∈ (0, 1] and
pj = 1/n by noting that

β

r
‖(VL)(j)‖2 ≤

β

r

r

n
µ0(VL) =

1

n
= pj

for all j, by the definition of µ0(VL). By our choice of probabilities, D = I
√
n/l, and hence

‖B−BCL+
CL‖F = ‖B−BCD(LCD)+L‖F ≤ (1 + ε)‖B−BL+L‖F

with probability at least 1− δ − 0.2, as desired.

Appendix B. Proof of Lemma 4: Conservation of Incoherence

Since for all n > 1,

c log(n) log(1/δ) = (c/4) log(n4) log(1/δ) ≥ 48 log(4n2/δ) ≥ 48 log(4rµ0(VL)/(δ/n))

as n ≥ rµ0(VL), claim i follows immediately from Lemma 25 with β = 1/µ0(VL), pj = 1/n
for all j, and D = I

√
n/l. When rank(LC) = rank(L), Lemma 1 of Mohri and Talwalkar

(2011) implies that PULC
= PUL

, which in turn implies claim ii.
To prove claim iii given the conclusions of Lemma 25, assume, without loss of generality,

that Vl consists of the first l rows of VL. Then if LC = ULΣLV>l has rank(LC) =
rank(L) = r, the matrix Vl must have full column rank. Thus we can write

L+
CLC = (ULΣLV>l )+ULΣLV>l

= (ΣLV>l )+U+
LULΣLV>l

= (ΣLV>l )+ΣLV>l

= (V>l )+Σ+
LΣLV>l

= (V>l )+V>l

= Vl(V
>
l Vl)

−1V>l ,
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where the second and third equalities follow from UL having orthonormal columns, the
fourth and fifth result from ΣL having full rank and Vl having full column rank, and the
sixth follows from V>l having full row rank.

Now, denote the right singular vectors of LC by VLC
∈ Rl×r. Observe that PVLC

=

VLC
V>LC

= L+
CLC , and define ei,l as the ith column of Il and ei,n as the ith column of In.

Then we have,

µ0(VLC
) =

l

r
max
1≤i≤l

‖PVLC
ei,l‖2

=
l

r
max
1≤i≤l

e>i,lL
+
CLCei,l

=
l

r
max
1≤i≤l

e>i,l(V
>
l )+V>l ei,l

=
l

r
max
1≤i≤l

e>i,lVl(V
>
l Vl)

−1V>l ei,l

=
l

r
max
1≤i≤l

e>i,nVL(V>l Vl)
−1V>Lei,n,

where the final equality follows from V>l ei,l = V>Lei,n for all 1 ≤ i ≤ l.
Now, defining Q = V>l Vl we have

µ0(VLC
) =

l

r
max
1≤i≤l

e>i,nVLQ−1V>Lei,n

=
l

r
max
1≤i≤l

Tr
[
e>i,nVLQ−1V>Lei,n

]
=
l

r
max
1≤i≤l

Tr
[
Q−1V>Lei,ne

>
i,nVL

]
≤ l

r
‖Q−1‖2 max

1≤i≤l
‖V>Lei,ne

>
i,nVL‖∗ ,

by Hölder’s inequality for Schatten p-norms. Since V>Lei,ne
>
i,nVL has rank one, we can

explicitly compute its trace norm as ‖V>Lei,n‖
2

= ‖PVLei,n‖2. Hence,

µ0(VLC
) ≤ l

r
‖Q−1‖2 max

1≤i≤l
‖PVLei,n‖2

≤ l

r

r

n
‖Q−1‖2

(
n

r
max

1≤i≤n
‖PVLei,n‖2

)
=

l

n
‖Q−1‖2µ0(VL) ,

by the definition of µ0-coherence. The proof of Lemma 25 established that the smallest
singular value of n

l Q = V>l DDVl is lower bounded by 1− ε
2 and hence ‖Q−1‖2 ≤

n
l(1−ε/2) .

Thus, we conclude that µ0(VLC
) ≤ µ0(VL)/(1− ε/2).
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To prove claim iv under Lemma 25, we note that

µ1(LC) =

√
ml

r
max

1≤i≤m
1≤j≤l

|e>i,mULC
V>LC

ej,l|

≤
√
ml

r
max

1≤i≤m
‖U>LC

ei,m‖ max
1≤j≤l

‖V>LC
ej,l‖

=
√
r

(√
m

r
max

1≤i≤m
‖PULC

ei,m‖
)(√

l

r
max
1≤j≤l

‖PVLC
ej,l‖

)
=
√
rµ0(ULC

)µ0(VLC
) ≤

√
rµ0(UL)µ0(VL)/(1− ε/2)

by Hölder’s inequality for Schatten p-norms, the definition of µ0-coherence, and claims ii
and iii.

Appendix C. Proof of Corollary 6: Column Projection under Incoherence

Fix c = 48000/ log(1/0.45), and notice that for n > 1,

48000 log(n) ≥ 3200 log(n5) ≥ 3200 log(16n).

Hence l ≥ 3200rµ0(VL) log(16n)(log(δ)/ log(0.45))/ε2.

Now partition the columns of C into b = log(δ)/ log(0.45) submatrices, C = [C1, · · · ,Cb],
each with a = l/b columns,7 and let [LC1 , · · · ,LCb

] be the corresponding partition of LC .
Since

a ≥ 3200rµ0(VL) log(4n/0.25)/ε2,

we may apply Prop. 26 independently for each i to yield

‖M−CiL
+
Ci

L‖
F
≤ (1 + ε)‖M−ML+L‖F ≤ (1 + ε)‖M− L‖F (5)

with probability at least 0.55, since ML+ minimizes ‖M−YL‖F over all Y ∈ Rm×m.

Since each Ci = CSi for some matrix Si and C+M minimizes ‖M−CX‖F over all
X ∈ Rl×n, it follows that

‖M−CC+M‖F ≤ ‖M−CiL
+
Ci

L‖
F
,

for each i. Hence, if

‖M−CC+M‖F ≤ (1 + ε)‖M− L‖F ,

fails to hold, then, for each i, Eq. (5) also fails to hold. The desired conclusion therefore
must hold with probability at least 1− 0.45b = 1− δ.

7. For simplicity, we assume that b divides l evenly.
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Appendix D. Proof of Corollary 7: Generalized Nyström Method under
Incoherence

With c = 48000/ log(1/0.45) as in Corollary 6, we notice that for m > 1,

48000 log(m) = 16000 log(m3) ≥ 16000 log(4m).

Therefore,

d ≥ 16000rµ0(UC) log(4m)(log(δ′)/ log(0.45))/ε2

≥ 3200rµ0(UC) log(4m/δ′)/ε2,

for all m > 1 and δ′ ≤ 0.8. Hence, we may apply Theorem 5 and Corollary 6 in turn to
obtain

‖M−CW+R‖F ≤ (1 + ε)‖M−CC+M‖F ≤ (1 + ε)2‖M− L‖

with probability at least (1− δ)(1− δ′ − 0.2) by independence.

Appendix E. Proof of Corollary 8: Noiseless Generalized Nyström
Method under Incoherence

Since rank(L) = r, L admits a decomposition L = Y>Z for some matrices Y ∈ Rr×m

and Z ∈ Rr×n. In particular, let Y> = ULΣ
1
2
L and Z = Σ

1
2
LV>L . By block partitioning

Y and Z as Y =
[
Y1 Y2

]
and Z =

[
Z1 Z2

]
for Y1 ∈ Rr×d and Z1 ∈ Rr×l, we may

write W = Y>1 Z1,C = Y>Z1, and R = Y>1 Z. Note that we assume that the generalized
Nyström approximation is generated from sampling the first l columns and the first d rows
of L, which we do without loss of generality since the rows and columns of the original
low-rank matrix can always be permuted to match this assumption.

Prop. 27 shows that, like the Nyström method (Kumar et al., 2009a), the generalized
Nyström method yields exact recovery of L whenever rank(L) = rank(W). The same result
was established in Wang et al. (2009) with a different proof.

Proposition 27 Suppose r = rank(L) ≤ min(d, l) and rank(W) = r. Then L = Lnys.

Proof By appealing to our factorized block decomposition, we may rewrite the generalized
Nyström approximation as Lnys = CW+R = Y>Z1(Y>1 Z1)+Y>1 Z. We first note that
rank(W) = r implies that rank(Y1) = r and rank(Z1) = r so that Z1Z

>
1 and Y1Y

>
1 are

full-rank. Hence, (Y>1 Z1)+ = Z>1 (Z1Z
>
1 )−1(Y1Y

>
1 )−1Y1, yielding

Lnys = Y>Z1Z
>
1 (Z1Z

>
1 )−1(Y1Y

>
1 )−1Y1Y

>
1 Z = Y>Z = L.

Prop. 27 allows us to lower bound the probability of exact recovery with the probability
of randomly selecting a rank-r submatrix. As rank(W) = r iff both rank(Y1) = r and
rank(Z1) = r, it suffices to characterize the probability of selecting full rank submatrices of
Y and Z. Following the treatment of the Nyström method in Talwalkar and Rostamizadeh
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(2010), we note that Σ
− 1

2
L Z = V>L and hence that Z>1 Σ

− 1
2

L = Vl where Vl ∈ Rl×r contains
the first l components of the leading r right singular vectors of L. It follows that rank(Z1) =

rank(Z>1 Σ
− 1

2
L ) = rank(Vl). Similarly, rank(Y1) = rank(Ud) where Ud ∈ Rd×r contains the

first d components of the leading r left singular vectors of L. Thus, we have

P(rank(Z1) = r) = P(rank(Vl) = r) and (6)

P(rank(Y1) = r) = P(rank(Ud) = r). (7)

Next we can apply the first result of Lemma 25 to lower bound the RHSs of Eq. (6)
and Eq. (7) by selecting ε = 1, S such that its diagonal entries equal 1, and β = 1

µ0(VL) for

the RHS of Eq. (6) and β = 1
µ0(UL) for the RHS of Eq. (7). In particular, given the lower

bounds on d and l in the statement of the corollary, the RHSs are each lower bounded by√
1− δ. Furthermore, by the independence of row and column sampling and Eq. (6) and

Eq. (7), we see that

1− δ ≤ P(rank(Ud) = r)P(rank(Vl) = r)

= P(rank(Y1) = r)P(rank(Z1) = r)

= P(rank(W) = r).

Finally, Prop. 27 implies that

P(L = Lnys) ≥ P(rank(W) = r) ≥ 1− δ,

which proves the statement of the theorem.

Appendix F. Proof of Corollary 9: Random Projection

Our proof rests upon the following random projection guarantee of Halko et al. (2011):

Theorem 28 (Halko et al. 2011, Theorem 10.7) Given a matrix M ∈ Rm×n and a
rank-r approximation L ∈ Rm×n with r ≥ 2, choose an oversampling parameter p ≥ 4,
where r+ p ≤ min(m,n). Draw an n× (r+ p) standard Gaussian matrix G, let Y = MG.
For all u, t ≥ 1,

‖M−PY M‖F ≤ (1 + t
√

12r/p)‖M−Mr‖F + ut · e
√
r + p

p+ 1
‖M−Mr‖

with probability at least 1− 5t−p − 2e−u
2/2.

Fix (u, t) = (
√

2 log(7/δ), e), and note that

1− 5e−p − 2e−u
2/2 = 1− 5e−p − 2δ/7 ≥ 1− δ,
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since p ≥ log(7/δ). Hence, Theorem 28 implies that

‖M−PY M‖F ≤ (1 + e
√

12r/p)‖M−Mr‖F +
e2
√

2(r + p) log(7/δ)

p+ 1
‖M−Mr‖2

≤

(
1 + e

√
12r/p+

e2
√

2(r + p) log(7/δ)

p+ 1

)
‖M− L‖F

≤
(

1 + e
√

12r/p+ e2
√

2r log(7/δ)/p
)
‖M− L‖F

≤
(

1 + 11
√

2r log(7/δ)/p
)
‖M− L‖F ≤ (1 + ε)‖M− L‖F

with probability at least 1 − δ, where the second inequality follows from ‖M−Mr‖2 ≤
‖M−Mr‖F ≤ ‖M− L‖F , the third follows from

√
r + p

√
p ≤ (p + 1)

√
r for all r and p,

and the final follows from our choice of p ≥ 242 r log(7/δ)/ε2.
Next, we note, as in the proof of Theorem 9.3 of Halko et al. (2011), that

‖PY M− Lrp‖F ≤ ‖PY M−PY Mr‖F ≤ ‖M−Mr‖F ≤ ‖M− L‖F .

The first inequality holds because Lrp is by definition the best rank-r approximation to
PY M and rank(PY Mr) ≤ r. The second inequality holds since

‖M−Mr‖F = ‖PY (M−Mr)‖F + ‖P⊥Y (M−Mr)‖F .

The final inequality holds since Mr is the best rank-r approximation to M and rank(L) = r.
Moreover, by the triangle inequality,

‖M− Lrp‖F ≤ ‖M−PY M‖F + ‖PY M− Lrp‖F
≤ ‖M−PY M‖F + ‖M− L‖F . (8)

Combining Eq. (8) with the first statement of the corollary yields the second statement.

Appendix G. Proof of Theorem 12: Coherence Master Theorem

G.1 Proof of DFC-Proj and DFC-RP Bounds

Let L0 = [C0,1, . . . ,C0,t] and L̃ = [Ĉ1, . . . , Ĉt]. Define A(X) as the event that a matrix

X is ( rµ2

1−ε/2 , r)-coherent and K as the event ‖L̃− L̂proj‖F ≤ (1 + ε)‖L0 − L̃‖F . When K
holds, we have that

‖L0 − L̂proj‖F ≤ ‖L0 − L̃‖F + ‖L̃− L̂proj‖F ≤ (2 + ε)‖L0 − L̃‖F

= (2 + ε)

√∑t
i=1‖C0,i − Ĉi‖

2

F ,

by the triangle inequality, and hence it suffices to lower bound P(K ∩
⋂
iA(C0,i)). Our

choice of l, with a factor of log(2/δ), implies that each A(C0,i) holds with probability at
least 1−δ/(2n) by Lemma 4, while K holds with probability at least 1−δ/2 by Corollary 6.
Hence, by the union bound,

P(K ∩
⋂
iA(C0,i)) ≥ 1−P(Kc)−

∑
iP(A(C0,i)

c) ≥ 1− δ/2− tδ/(2n) ≥ 1− δ.

An identical proof with Corollary 9 substituted for Corollary 6 yields the random projection
result.
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G.2 Proof of DFC-Nys Bound

To prove the generalized Nyström result, we redefine L̃ and write it in block notation as:

L̃ =

[
Ĉ1 R̂2

Ĉ2 L0,22

]
, where Ĉ =

[
Ĉ1

Ĉ2

]
, R̂ =

[
R̂1 R̂2

]
and L0,22 ∈ R(m−d)×(n−l) is the bottom right submatrix of L0. We further redefine K as

the event ‖L̃− L̂nys‖F ≤ (1 + ε)2‖L0 − L̃‖F . As above,

‖L0 − L̂nys‖F ≤ ‖L0 − L̃‖F + ‖L̃− L̂nys‖F ≤ (2 + 2ε+ ε2)‖L0 − L̃‖F ≤ (2 + 3ε)‖L0 − L̃‖F ,

when K holds, by the triangle inequality. Our choices of l and

d ≥ clµ0(Ĉ) log(m) log(4/δ)/ε2 ≥ crµ log(m) log(1/δ)/ε2

imply that A(C) and A(R) hold with probability at least 1 − δ/(2n) and 1 − δ/(4n) re-
spectively by Lemma 4, while K holds with probability at least (1− δ/2)(1− δ/4− 0.2) by
Corollary 7. Hence, by the union bound,

P(K ∩A(C) ∩A(R)) ≥ 1−P(Kc)−P(A(C)c)−P(A(R)c)

≥ 1− (1− (1− δ/2)(1− δ/4− 0.2))− δ/(2n)− δ/(4n)

≥ (1− δ/2)(1− δ/4− 0.2)− 3δ/8

≥ (1− δ)(1− δ − 0.2)

for all n ≥ 2 and δ ≤ 0.8.

Appendix H. Proof of Corollary 14: DFC-MC under Incoherence

H.1 Proof of DFC-Proj and DFC-RP Bounds

We begin by proving the DFC-Proj bound. Let G be the event that

‖L0 − L̂proj‖F ≤ (2 + ε)ce
√
mn∆,

H be the event that

‖L0 − L̂proj‖F ≤ (2 + ε)

√∑t
i=1‖C0,i − Ĉi‖

2

F ,

A(X) be the event that a matrix X is ( rµ2

1−ε/2 , r)-coherent, and, for each i ∈ {1, . . . , t}, Bi
be the event that ‖C0,i − Ĉi‖F > ce

√
ml∆.

Note that, by assumption,

l ≥ cµ2r2(m+ n)nβ log2(m+ n)/(sε2) ≥ crµ log(n)2β log(m+ n)/ε2

≥ crµ log(n)((2β − 2) log(n̄) + log(2))/ε2 = crµ log(n) log(2n̄2β−2)/ε2.
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Hence the Coherence Master Theorem (Theorem 12) guarantees that, with probability at
least 1− n̄2−2β, H holds and the event A(C0,i) holds for each i. Since G holds whenever H
holds and Bc

i holds for each i, we have

P(G) ≥ P(H ∩
⋂
iB

c
i ) ≥ P(H ∩

⋂
iA(C0,i) ∩

⋂
iB

c
i )

= P(H ∩
⋂
iA(C0,i))P(

⋂
iB

c
i | H ∩

⋂
iA(C0,i))

= P(H ∩
⋂
iA(C0,i))(1−P(

⋃
iBi | H ∩

⋂
iA(C0,i)))

≥ (1− n̄2−2β)(1−
∑

iP(Bi | A(C0,i)))

≥ 1− n̄2−2β −
∑

iP(Bi | A(C0,i)).

To prove our desired claim, it therefore suffices to show

P(Bi | A(C0,i)) ≤ 4 log(n̄)n̄2−2β + n̄−2β ≤ 5 log(n̄)n̄2−2β

for each i.
For each i, let Di be the event that si < 32µ′r(m + l)β′ log2(m + l), where si is the

number of revealed entries in C0,i,

µ′ ,
µ2r

1− ε/2
, and β′ ,

β log(n̄)

log(max(m, l))
.

By Theorem 10 and our choice of β′,

P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), D
c
i ) + P(Di | A(C0,i))

≤ 4 log(max(m, l)) max(m, l)2−2β′
+ P(Di)

≤ 4 log(n̄)n̄2−2β + P(Di).

Further, since the support of S0 is uniformly distributed and of cardinality s, the variable si
has a hypergeometric distribution with E(si) = sl

n and hence satisfies Hoeffding’s inequality
for the hypergeometric distribution (Hoeffding, 1963, Section 6):

P(si ≤ E(si)− st) ≤ exp
(
−2st2

)
.

Since, by assumption,

s ≥ cµ2r2(m+ n)nβ log2(m+ n)/(lε2) ≥ 64µ′r(m+ l)nβ′ log2(m+ l)/l,

and
sl2/n2 ≥ cµ2r2(m+ n)lβ log2(m+ n)/(nε2) ≥ 4 log(n̄)β,

it follows that

P(Di) = P

(
si < E(si)− s

(
l

n
− 32µ′r(m+ l)β′ log2(m+ l)

s

))
≤ P

(
si < E(si)− s

(
l

n
− l

2n

))
= P

(
si < E(si)− s

l

2n

)
≤ exp

(
− sl

2

2n2

)
≤ exp(−2 log(n̄)β) = n̄−2β.

Hence, P(Bi | A(C0,i)) ≤ 4 log(n̄)n̄2−2β+n̄−2β for each i, and the DFC-Proj result follows.
Since, p ≥ 242 r log(14n̄2β−2)/ε2, the DFC-RP bound follows in an identical manner

from the Coherence Master Theorem (Theorem 12).
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H.2 Proof of DFC-Nys Bound

For DFC-Nys, let BC be the event that ‖C0 − Ĉ‖F > ce
√
ml∆ and BR be the event that

‖R0 − R̂‖F > ce
√
dn∆. The Coherence Master Theorem (Theorem 12) and our choice of

d ≥ clµ0(Ĉ)(2β − 1) log2(4n̄)n̄/(nε2) ≥ clµ0(Ĉ) log(m) log(4n̄2β−2)/ε2

guarantee that, with probability at least (1− n̄2−2β)(1− n̄2−2β − 0.2) ≥ 1− 2n̄2−2β − 0.2,

‖L0 − L̂nys‖F ≤ (2 + 3ε)

√
‖C0 − Ĉ‖2F + ‖R0 − R̂‖2F ,

and both A(C) and A(R) hold. Moreover, since

d ≥ clµ0(Ĉ)(2β − 1) log2(4n̄)n̄/(nε2) ≥ cµ2r2(m+ n)n̄β log2(m+ n)/(sε2),

reasoning identical to the DFC-Proj case yields P(BC | A(C)) ≤ 4 log(n̄)n̄2−2β+ n̄−2β and
P(BR | A(R)) ≤ 4 log(n̄)n̄2−2β + n̄−2β, and the DFC-Nys bound follows as above.

Appendix I. Proof of Corollary 16: DFC-RMF under Incoherence

I.1 Proof of DFC-Proj and DFC-RP Bounds

We begin by proving the DFC-Proj bound. Let G be the event that

‖L0 − L̂proj‖F ≤ (2 + ε)c′e
√
mn∆

for the constant c′e defined in Theorem 11, H be the event that

‖L0 − L̂proj‖F ≤ (2 + ε)

√∑t
i=1‖C0,i − Ĉi‖

2

F ,

A(X) be the event that a matrix X is ( rµ2

1−ε/2 , r)-coherent, and, for each i ∈ {1, . . . , t}, Bi
be the event that ‖C0,i − Ĉi‖F > c′e

√
ml∆.

We may take ρr ≤ 1, and hence, by assumption,

l ≥ cr2µ2β log2(2n̄)/(ε2ρr) ≥ crµ log(n) log(2n̄β)/ε2.

Hence the Coherence Master Theorem (Theorem 12) guarantees that, with probability at
least 1− n̄−β, H holds and the event A(C0,i) holds for each i. Since G holds whenever H
holds and Bc

i holds for each i, we have

P(G) ≥ P(H ∩
⋂
iB

c
i ) ≥ P(H ∩

⋂
iA(C0,i) ∩

⋂
iB

c
i )

= P(H ∩
⋂
iA(C0,i))P(

⋂
iB

c
i | H ∩

⋂
iA(C0,i))

= P(H ∩
⋂
iA(C0,i))(1−P(

⋃
iBi | H ∩

⋂
iA(C0,i)))

≥ (1− n̄−β)(1−
∑

iP(Bi | A(C0,i)))

≥ 1− n̄−β −
∑

iP(Bi | A(C0,i)).

To prove our desired claim, it therefore suffices to show

P(Bi | A(C0,i)) ≤ (cp + 1)n̄−β
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for each i.

Define m̄ , max(m, l) and β′′ , β log(n̄)/ log(m̄) ≤ β′. By assumption,

r ≤ ρrm

2µ2r log2(n̄)
≤ ρrm(1− ε/2)

µ2r log2(m̄)
and r ≤ ρrlε

2

cµ2rβ log2(2n̄)
≤ ρrl(1− ε/2)

µ2r log2(m̄)
.

Hence, by Theorem 11 and the definitions of β′ and β′′,

P(Bi | A(C0,i)) ≤ P
(
Bi | A(C0,i), si ≤ (1− ρsβ′′)ml

)
+ P

(
si > (1− ρsβ′′)ml | A(C0,i)

)
≤ cpm̄−β

′′
+ P

(
si > (1− ρsβ′′)ml

)
≤ cpn̄−β + P

(
si > (1− ρsβ′)ml

)
,

where si is the number of corrupted entries in C0,i. Further, since the support of S0 is
uniformly distributed and of cardinality s, the variable si has a hypergeometric distribution
with E(si) = sl

n and hence satisfies Bernstein’s inequality for the hypergeometric (Hoeffding,
1963, Section 6):

P(si ≥ E(si) + st) ≤ exp
(
−st2/(2σ2 + 2t/3)

)
≤ exp

(
−st2n/4l

)
,

for all 0 ≤ t ≤ 3l/n and σ2 , l
n(1− l

n) ≤ l
n . It therefore follows that

P
(
si > (1− ρsβ′)ml

)
= P

(
si > E(si) + s

(
(1− ρsβ′)ml

s
− l

n

))
= P

(
si > E(si) + s

l

n

(
(1− ρsβ′)
(1− ρsβs)

− 1

))
≤ exp

(
−s l

4n

(
(1− ρsβ′)
(1− ρsβs)

− 1

)2
)

= exp

(
−ml

4

(ρsβs − ρsβ′)2

(1− ρsβs)

)
≤ n̄−β

by our assumptions on s and l and the fact that l
n

(
(1−ρsβ′)
(1−ρsβs) − 1

)
≤ 3l/n whenever 4βs −

3/ρs ≤ β′. Hence, P(Bi | A(C0,i)) ≤ (cp + 1)n̄−β for each i, and the DFC-Proj result
follows.

Since, p ≥ 242 r log(14n̄β)/ε2, the DFC-RP bound follows in an identical manner from
the Coherence Master Theorem (Theorem 12).

I.2 Proof of DFC-Nys Bound

For DFC-Nys, let BC be the event that ‖C0 − Ĉ‖F > c′e
√
ml∆ and BR be the event that

‖R0 − R̂‖F > c′e
√
dn∆. The Coherence Master Theorem (Theorem 12) and our choice of

d ≥ clµ0(Ĉ)β log2(4n̄)/ε2 guarantee that, with probability at least (1−n̄−β)(1−n̄−β−0.2) ≥
1− 2n̄−β − 0.2,

‖L0 − L̂nys‖F ≤ (2 + 3ε)

√
‖C0 − Ĉ‖2F + ‖R0 − R̂‖2F ,
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and both A(C) and A(R) hold. Moreover, since

d ≥ clµ0(Ĉ)β log2(4n̄)/ε2 ≥ cµ2r2β log2(n̄)/(ε2ρr),

reasoning identical to the DFC-Proj case yields

P(BC | A(C)) ≤ (cp + 1)n̄−β and P(BR | A(R)) ≤ (cp + 1)n̄−β ,

and the DFC-Nys bound follows as above.

Appendix J. Proof of Theorem 10: Noisy MC under Incoherence

In the spirit of Candès and Plan (2010), our proof will extend the noiseless analysis of Recht
(2011) to the noisy matrix completion setting. As suggested in Gross and Nesme (2010),
we will obtain strengthened results, even in the noiseless case, by reasoning directly about
the without-replacement sampling model, rather than appealing to a with-replacement sur-
rogate, as done in Recht (2011).

For UL0ΣL0V
>
L0

the compact SVD of L0, we let T = {UL0X + YV>L0
: X ∈ Rr×n,Y ∈

Rm×r}, PT denote orthogonal projection onto the space T , and PT⊥ represent orthogonal
projection onto the orthogonal complement of T . We further define I as the identity
operator on Rm×n and the spectral norm of an operator A : Rm×n → Rm×n as ‖A‖2 =
sup‖X‖F≤1 ‖A(X)‖F .

We begin with a theorem providing sufficient conditions for our desired estimation guar-
antee.

Theorem 29 Under the assumptions of Theorem 10, suppose that

mn

s

∥∥∥PTPΩPT −
s

mn
PT
∥∥∥

2
≤ 1

2
(9)

and that there exists a Y = PΩ(Y) ∈ Rm×n satisfying

‖PT (Y)−UL0V
>
L0
‖
F
≤
√

s

32mn
and ‖PT⊥(Y)‖2 <

1

2
. (10)

Then,

‖L0 − L̂‖F ≤ 8

√
2m2n

s
+m+

1

16
∆ ≤ c′′e

√
mn∆.

Proof We may write L̂ as L0 + G + H, where PΩ(G) = G and PΩ(H) = 0. Then, under
Eq. (9),

‖PΩPT (H)‖2F =
〈
H,PTP2

ΩPT (H)
〉
≥ 〈H,PTPΩPT (H)〉 ≥ s

2mn
‖PT (H)‖2F .

Furthermore, by the triangle inequality, 0 = ‖PΩ(H)‖F ≥ ‖PΩPT (H)‖F − ‖PΩPT⊥(H)‖F .
Hence, we have√

s

2mn
‖PT (H)‖F ≤ ‖PΩPT (H)‖F ≤ ‖PΩPT⊥(H)‖F ≤ ‖PT⊥(H)‖F ≤ ‖PT⊥(H)‖∗, (11)
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where the penultimate inequality follows as PΩ is an orthogonal projection operator.
Next we select U⊥ and V⊥ such that [UL0 ,U⊥] and [VL0 ,V⊥] are orthonormal and〈

U⊥V>⊥,PT⊥(H)
〉

= ‖PT⊥(H)‖∗ and note that

‖L0 + H‖∗ ≥
〈
UL0V

>
L0

+ U⊥V>⊥,L0 + H
〉

= ‖L0‖∗ +
〈
UL0V

>
L0

+ U⊥V>⊥ −Y,H
〉

= ‖L0‖∗ +
〈
UL0V

>
L0
− PT (Y),PT (H)

〉
+
〈
U⊥V>⊥,PT⊥(H)

〉
− 〈PT⊥(Y),PT⊥(H)〉

≥ ‖L0‖∗ − ‖UL0V
>
L0
− PT (Y)‖

F
‖PT (H)‖F + ‖PT⊥(H)‖∗ − ‖PT⊥(Y)‖2‖PT⊥(H)‖∗

> ‖L0‖∗ +
1

2
‖PT⊥(H)‖∗ −

√
s

32mn
‖PT (H)‖F

≥ ‖L0‖∗ +
1

4
‖PT⊥(H)‖F

where the first inequality follows from the variational representation of the trace norm,
‖A‖∗ = sup‖B‖2≤1〈A,B〉, the first equality follows from the fact that 〈Y,H〉 = 0 for
Y = PΩ(Y), the second inequality follows from Hölder’s inequality for Schatten p-norms,
the third inequality follows from Eq. (10), and the final inequality follows from Eq. (11).

Since L0 is feasible for Eq. (1), ‖L0‖∗ ≥ ‖L̂‖∗, and, by the triangle inequality, ‖L̂‖∗ ≥
‖L0 + H‖∗−‖G‖∗. Since ‖G‖∗ ≤

√
m‖G‖F and ‖G‖F ≤ ‖PΩ(L̂−M)‖F+‖PΩ(M− L0)‖F ≤

2∆, we conclude that

‖L0 − L̂‖2F = ‖PT (H)‖2F + ‖PT⊥(H)‖2F + ‖G‖2F

≤
(

2mn

s
+ 1

)
‖PT⊥(H)‖2F + ‖G‖2F

≤ 16

(
2mn

s
+ 1

)
‖G‖2∗ + ‖G‖2F

≤ 64

(
2m2n

s
+m+

1

16

)
∆2.

Hence

‖L0 − L̂‖F ≤ 8

√
2m2n

s
+m+

1

16
∆ ≤ c′′e

√
mn∆

for some constant c′′e , by our assumption on s.

To show that the sufficient conditions of Theorem 29 hold with high probability, we will
require four lemmas. The first establishes that the operator PTPΩPT is nearly an isometry
on T when sufficiently many entries are sampled.

Lemma 30 For all β > 1,

mn

s

∥∥∥PTPΩPT −
s

mn
PT
∥∥∥

2
≤
√

16µr(m+ n)β log(n)

3s

with probability at least 1− 2n2−2β provided that s > 16
3 µr(n+m)β log(n).
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The second states that a sparsely but uniformly observed matrix is close to a multiple
of the original matrix under the spectral norm.

Lemma 31 Let Z be a fixed matrix in Rm×n. Then for all β > 1,∥∥∥(mn
s
PΩ − I

)
(Z)
∥∥∥

2
≤
√

8βmn2 log(m+ n)

3s
‖Z‖∞

with probability at least 1− (m+ n)1−β provided that s > 6βm log(m+ n).

The third asserts that the matrix infinity norm of a matrix in T does not increase under
the operator PTPΩ.

Lemma 32 Let Z ∈ T be a fixed matrix. Then for all β > 2∥∥∥mn
s
PTPΩ(Z)− Z

∥∥∥
∞
≤
√

8βµr(m+ n) log(n)

3s
‖Z‖∞

with probability at least 1− 2n2−β provided that s > 8
3βµr(m+ n) log(n).

These three lemmas were proved in Recht (2011, Theorem 6, Theorem 7, and Lemma 8)
under the assumption that entry locations in Ω were sampled with replacement. They
admit identical proofs under the sampling without replacement model by noting that the
referenced Noncommutative Bernstein Inequality (Recht, 2011, Theorem 4) also holds under
sampling without replacement, as shown in Gross and Nesme (2010).

Lemma 30 guarantees that Eq. (9) holds with high probability. To construct a matrix
Y = PΩ(Y) satisfying Eq. (10), we consider a sampling with batch replacement scheme rec-
ommended in Gross and Nesme (2010) and developed in Chen et al. (2011). Let Ω̃1, . . . , Ω̃p

be independent sets, each consisting of q random entry locations sampled without replace-
ment, where pq = s. Let Ω̃ = ∪pi=1Ω̃i, and note that there exist p and q satisfying

q ≥ 128

3
µr(m+ n)β log(m+ n) and p ≥ 3

4
log(n/2).

It suffices to establish Eq. (10) under this batch replacement scheme, as shown in the next
lemma.

Lemma 33 For any location set Ω0 ⊂ {1, . . . ,m} × {1, . . . , n}, let A(Ω0) be the event that
there exists Y = PΩ0(Y) ∈ Rm×n satisfying Eq. (10). If Ω(s) consists of s locations sampled
uniformly without replacement and Ω̃(s) is sampled via batch replacement with p batches of
size q for pq = s, then P(A(Ω̃(s))) ≤ P(A(Ω(s))).

Proof As sketched in Gross and Nesme (2010)

P
(
A( ˜Ω(s))

)
=

s∑
i=1

P(|Ω̃| = i)P(A(Ω̃(i)) | |Ω̃| = i)

≤
s∑
i=1

P(|Ω̃| = i)P(A(Ω(i)))

≤
s∑
i=1

P(|Ω̃| = i)P(A(Ω(s))) = P(A(Ω(s))),
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since the probability of existence never decreases with more entries sampled without replace-
ment and, given the size of Ω̃, the locations of Ω̃ are conditionally distributed uniformly
(without replacement).

We now follow the construction of Recht (2011) to obtain Y = PΩ̃(Y) satisfying

Eq. (10). Let W0 = UL0V
>
L0

and define Yk = mn
q

∑k
j=1 PΩ̃j

(Wj−1) and Wk = UL0V
>
L0
−

PT (Yk) for k = 1, . . . , p. Assume that

mn

q

∥∥∥PTPΩ̃k
PT −

q

mn
PT
∥∥∥

2
≤ 1

2
(12)

for all k. Then

‖Wk‖F =

∥∥∥∥Wk−1 −
mn

q
PTPΩ̃k

(Wk−1)

∥∥∥∥
F

=

∥∥∥∥(PT −
mn

q
PTPΩ̃k

PT )(Wk−1)

∥∥∥∥
F

≤ 1

2
‖Wk−1‖F

and hence ‖Wk‖F ≤ 2−k‖W0‖F = 2−k
√
r. Since

p ≥ 3

4
log(n/2) ≥ 1

2
log2(n/2) ≥ log2

√
32rmn/s ,

Y , Yp satisfies the first condition of Eq. (10).
The second condition of Eq. (10) follows from the assumptions∥∥∥∥Wk−1 −

mn

q
PTPΩ̃k

(Wk−1)

∥∥∥∥
∞
≤ 1

2
‖Wk−1‖∞ (13)∥∥∥∥(mnq PΩ̃k

− I
)

(Wk−1)

∥∥∥∥
2

≤

√
8mn2β log(m+ n)

3q
‖Wk−1‖∞ (14)

for all k, since Eq. (13) implies ‖Wk‖∞ ≤ 2−k‖UL0V
>
L0
‖∞, and thus

‖PT⊥(Yp)‖2 ≤
p∑
j=1

∥∥∥∥mnq PT⊥PΩ̃j
(Wj−1)

∥∥∥∥
2

=

p∑
j=1

∥∥∥∥PT⊥(
mn

q
PΩ̃j

(Wj−1)−Wj−1)

∥∥∥∥
2

≤
p∑
j=1

∥∥∥∥(
mn

q
PΩ̃j
− I)(Wj−1)

∥∥∥∥
2

≤
p∑
j=1

√
8mn2β log(m+ n)

3q
‖Wj−1‖∞

= 2

p∑
j=1

2−j

√
8mn2β log(m+ n)

3q
‖UWV>W ‖∞ <

√
32µrnβ log(m+ n)

3q
< 1/2

by our assumption on q. The first line applies the triangle inequality; the second holds since
Wj−1 ∈ T for each j; the third follows because PT⊥ is an orthogonal projection; and the
final line exploits (µ, r)-coherence.
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We conclude by bounding the probability of any assumed event failing. Lemma 30
implies that Eq. (9) fails to hold with probability at most 2n2−2β. For each k, Eq. (12)
fails to hold with probability at most 2n2−2β by Lemma 30, Eq. (13) fails to hold with
probability at most 2n2−2β by Lemma 32, and Eq. (14) fails to hold with probability at
most (m+n)1−2β by Lemma 31. Hence, by the union bound, the conclusion of Theorem 29
holds with probability at least

1− 2n2−2β − 3

4
log(n/2)(4n2−2β + (m+ n)1−2β) ≥ 1− 15

4
log(n)n2−2β ≥ 1− 4 log(n)n2−2β.

Appendix K. Proof of Lemma 17: Conservation of Non-Spikiness

By assumption,

LCL>C =
l∑

a=1

L(ja)(L(ja))>

where {j1, . . . , jl} are random indices drawn uniformly and without replacement from {1, . . . , n}.
Hence, we have that

E
[
‖LC‖2F

]
= E

[
Tr
[
LCL>C

]]
= Tr

[
E

[
l∑

a=1

L(ja)(L(ja))>

]]

= Tr

 l∑
a=1

1

n

n∑
j=1

L(j)(L(j))>

 =
l

n
Tr
[
LL>

]
=

l

n
‖L‖2F .

Since ‖L(j)‖4 ≤ m2‖L‖4∞ for all j ∈ {1, . . . , n}, Hoeffding’s inequality for sampling
without replacement (Hoeffding, 1963, Section 6) implies

P
(

(1− ε)(l/n)‖L‖2F ≥ ‖LC‖
2
F

)
≤ exp

(
−2ε2‖L‖4F l

2/(n2lm2‖L‖4∞)
)

= exp
(
−2ε2l/α4(L)

)
≤ δ,

by our choice of l. Hence,
√
l

1

‖LC‖F
≤
√
n√

1− ε
1

‖L‖F
with probability at least 1− δ. Since, ‖LC‖∞ ≤ ‖L‖∞ almost surely, we have that

α(LC) =

√
ml‖LC‖∞
‖LC‖F

≤
√
mn‖L‖∞√
1− ε‖L‖F

=
α(L)√
1− ε

with probability at least 1− δ as desired.

Appendix L. Proof of Theorem 18: Column Projection under
Non-Spikiness

We now give a proof of Theorem 18. While the results of this section are stated in terms of
i.i.d. with-replacement sampling of columns and rows, a simple argument due to (Hoeffding,
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1963, Section 6) implies the same conclusions when columns and rows are sampled without
replacement.

Our proof builds upon two key results from the randomized matrix approximation lit-
erature. The first relates column projection to randomized matrix multiplication:

Theorem 34 (Theorem 2 of Drineas et al. 2006b) Let G ∈ Rm×l be a matrix of l
columns of A ∈ Rm×n, and let r be a nonnegative integer. Then,

‖A−GrG
+
r A‖F ≤ ‖A−Ar‖F +

√
r‖AA> − (n/l)GG>‖F .

The second allows us to bound ‖AA> − (n/l)GG>‖F in probability when entries are
bounded:

Lemma 35 (Lemma 2 of Drineas et al. 2006a) Given a failure probability δ ∈ (0, 1]
and matrices A ∈ Rm×k and B ∈ Rk×n with ‖A‖∞ ≤ b and ‖B‖∞ ≤ b, suppose that G is
a matrix of l columns drawn uniformly with replacement from A and that H is a matrix of
the corresponding l rows of B. Then, with probability at least 1− δ,

|(AB)ij − (n/l)(GH)ij | ≤
kb2√
l

√
8 log(2mn/δ) ∀i, j.

Under our assumption, ‖M‖∞ is bounded by α/
√
mn. Hence, Lemma 35 with A = M

and B = M> guarantees

‖MM> − (n/l)CC>‖2F ≤
m2n2α48 log(2mn/δ)

m2n2l
≤ ε2/r

with probability at least 1− δ, by our choice of l.
Now, Theorem 34 implies that

‖M−CC+M‖F ≤ ‖M−CrC
+
r M‖F ≤ ‖M−Mr‖F +

√
r‖MM> − (n/l)CC>‖F

≤ ‖M− L‖F + ε

with probability at least 1− δ, as desired.

Appendix M. Proof of Theorem 20: Spikiness Master Theorem

Define A(X) as the event that a matrix X is (α
√

1 + ε/(4
√
r))-spiky. Since

√
1 + ε/(4

√
r) ≤√

1.25 for all ε ∈ (0, 1] and r ≥ 1, X is (
√

1.25α)-spiky whenever A(X) holds.
Let L0 = [C0,1, . . . ,C0,t] and L̃ = [Ĉ1, . . . , Ĉt], and defineH as the event ‖L̃− L̂proj‖F ≤

‖L0 − L̃‖F + ε. When H holds, we have that

‖L0 − L̂proj‖F ≤ ‖L0 − L̃‖F + ‖L̃− L̂proj‖F ≤ 2‖L0 − L̃‖F + ε

= 2

√∑t
i=1‖C0,i − Ĉi‖

2

F + ε,

by the triangle inequality, and hence it suffices to lower bound P(H ∩
⋂
iA(C0,i)).

By assumption,

l ≥ 13rα4 log(4mn/δ)/ε2 ≥ α4 log(2n/δ)/(2ε̃2)
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where ε̃ , ε/(5
√
r). Hence, for each i, Lemma 17 implies that α(C0,i) ≤ α/

√
1− ε̃ with

probability at least 1− δ/(2n). Since

(1− ε/(5
√
r))(1 + ε/(4

√
r)) = 1 + ε(1− ε/

√
r)/(20

√
r) ≥ 1

it follows that
1√

1− ε̃
=

1√
1− ε/(5

√
r)
≤
√

1 + ε/(4
√
r),

so that each event A(C0,i) also holds with probability at least 1− δ/(2n).

Our assumption that ‖Ĉi‖∞ ≤
√

1.25α/
√
mn for all i implies that ‖L̃‖∞ ≤

√
1.25α/

√
mn.

Our choice of l, with a factor of log(4mn/δ), therefore implies that H holds with probability
at least 1− δ/2 by Theorem 18. Hence, by the union bound,

P(H ∩
⋂
iA(C0,i)) ≥ 1−P(Hc)−

∑
iP(A(C0,i)

c) ≥ 1− δ/2− tδ/(2n) ≥ 1− δ.

To establish the DFC-RP bound, redefineH as the event ‖L̃− Lrp‖F ≤ (2+ε)‖L0 − L̃‖F .
Since p ≥ 242 r log(14/δ)/ε2, H holds with probability at least 1− δ/2 by Corollary 9, and
the DFC-RP bound follows as above.

Appendix N. Proof of Corollary 22: Noisy MC under Non-Spikiness

N.1 Proof of DFC-Proj Bound

We begin by proving the DFC-Proj bound. Let G be the event that

‖L0 − L̂proj‖F ≤ 2
√
c1 max((l/n)ν2, 1)/β + ε,

H be the event that

‖L0 − L̂proj‖F ≤ 2

√∑t
i=1‖C0,i − Ĉi‖

2

F + ε,

A(X) be the event that a matrix X is (
√

1.25α)-spiky, and, for each i ∈ {1, . . . , t}, Bi be

the event that ‖C0,i − Ĉi‖
2

F > (l/n)c1 max
(
(l/n)ν2, 1

)
/β.

By definition, ‖Ĉi‖∞ ≤
√

1.25α/
√
ml for all i. Furthermore, we have assumed that

l ≥ 13(c3 + 1)

√
(m+ n) log(m+ n)β

s
nrα4 log(4mn)/ε2

≥ 13rα4(log(4mn) + c3 log(m+ n))/ε2 ≥ 13rα4 log(4mn(m+ l)c3)/ε2.

Hence the Spikiness Master Theorem (Theorem 20) guarantees that, with probability at
least 1−exp(−c3 log(m+ l)), H holds and the event A(C0,i) holds for each i. Since G holds
whenever H holds and Bc

i holds for each i, we have

P(G) ≥ P(H ∩
⋂
iB

c
i ) ≥ P(H ∩

⋂
iA(C0,i) ∩

⋂
iB

c
i )

= P(H ∩
⋂
iA(C0,i))P(

⋂
iB

c
i | H ∩

⋂
iA(C0,i))

= P(H ∩
⋂
iA(C0,i))(1−P(

⋃
iBi | H ∩

⋂
iA(C0,i)))

≥ (1− exp(−c3 log(m+ l)))(1−
∑

iP(Bi | A(C0,i)))

≥ 1− (c2 + 1) exp(−c3 log(m+ l))−
∑

iP(Bi | A(C0,i)).
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To prove our desired claim, it therefore suffices to show

P(Bi | A(C0,i)) ≤ (c2 + 1) exp(−c3 log(m+ l))

for each i.

For each i, let Di be the event that si < 1.25α2β(n/l)r(m + l) log(m + l), where si is
the number of revealed entries in C0,i. Since rank(C0,i) ≤ rank(L0) = r and ‖C0,i‖F ≤
‖L0‖F ≤ 1, Corollary 19 implies that

P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), D
c
i ) + P(Di | A(C0,i))

≤ c2 exp(−c3 log(m+ l)) + P(Di). (15)

Further, since the support of S0 is uniformly distributed and of cardinality s, the vari-
able si has a hypergeometric distribution with E(si) = sl

n and hence satisfies Hoeffding’s
inequality for the hypergeometric distribution (Hoeffding, 1963, Section 6):

P(si ≤ E(si)− st) ≤ exp
(
−2st2

)
.

Our assumption on l implies that

l

n
≥ 169(c3 + 1)2α8β

n

ls
r2(m+ n) log(m+ n) log2(4mn)/ε4

≥ 1.25α2β
n

ls
r(m+ l) log(m+ l) +

√
c3 log(m+ l)/(2s),

and therefore

P(Di) = P

(
si < E(si)− s

(
l

n
− 1.25α2β

n

ls
r(m+ l) log(m+ l)

))
= P

(
si < E(si)− s

√
c3 log(m+ l)/(2s)

)
≤ exp(−2sc3 log(m+ l)/(2s)) = exp(−c3 log(m+ l)).

Combined with Eq. (15), this yields P(Bi | A(C0,i)) ≤ (c2 + 1) exp(−c3 log(m+ l)) for each
i, and the DFC-Proj result follows.

N.2 Proof of DFC-RP Bound

Let G be the event that

‖L0 − L̂rp‖F ≤ (2 + ε)
√
c1 max((l/n)ν2, 1)/β

and H be the event that

‖L0 − L̂rp‖F ≤ (2 + ε)

√∑t
i=1‖C0,i − Ĉi‖

2

F .

Since p ≥ 242 r log(14(m + l)c3)/ε2, the DFC-RP bound follows in an identical manner
from the Spikiness Master Theorem (Theorem 20).
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Abstract

We introduce a computationally effective algorithm for a linear model selection consisting
of three steps: screening–ordering–selection (SOS). Screening of predictors is based on the
thresholded Lasso that is `1 penalized least squares. The screened predictors are then fitted
using least squares (LS) and ordered with respect to their |t| statistics. Finally, a model
is selected using greedy generalized information criterion (GIC) that is `0 penalized LS in
a nested family induced by the ordering. We give non-asymptotic upper bounds on error
probability of each step of the SOS algorithm in terms of both penalties. Then we obtain
selection consistency for different (n, p) scenarios under conditions which are needed for
screening consistency of the Lasso. Our error bounds and numerical experiments show
that SOS is worth considering alternative for multi-stage convex relaxation, the latest
quasiconvex penalized LS. For the traditional setting (n > p) we give Sanov-type bounds
on the error probabilities of the ordering–selection algorithm. It is surprising consequence
of our bounds that the selection error of greedy GIC is asymptotically not larger than of
exhaustive GIC.

Keywords: linear model selection, penalized least squares, Lasso, generalized information
criterion, greedy search, multi-stage convex relaxation

1. Introduction

Literature concerning linear model selection has been lately dominated by analysis of the
least absolute shrinkage and selection operator (Lasso) that is `1 penalized least squares
for the ’large p - small n scenario’, where n is number of observations and p is number of
all predictors. For a broad overview of the subject we refer to Bühlmann and van de Geer
(2011). It is known that consistency of selection based on the Lasso requires strong regularity
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of an experimental matrix named irrepresentable conditions which are rather unlikely to hold
in practice (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006). However, consistency
of the Lasso predictors or consistency of the Lasso estimators of the linear model parameters
is proved under weaker assumptions such as the restricted isometry property (RIP). The last
condition means that singular values of normalized experimental submatrices corresponding
to small sets of predictors are uniformly bounded away from zero and infinity. Under those
more realistic conditions and provided that a certain lower bound on the absolute values of
model parameters called beta-min condition holds, the Lasso leads to consistent screening,
that is the set of nonzero Lasso coefficients S contains with large predetermined probability
the uniquely defined true model T . This property explains Bühlmann’s suggestion that one
should interpret the second ’s’ in ’Lasso’ as ’screening’ rather than ’selection’ (see discussion
of Tibshirani, 2011) and the task is now to remove the spurious selected predictors. To this
aim two-stage procedures as the adaptive or the thresholded Lasso have been proposed
(cf. Zou, 2006; Huang et al., 2008; Meinshausen and Yu, 2009; Zhou, 2009, 2010; van de
Geer et al., 2011). They yield selection consistency under strong version of the beta-min
condition and without such strengthening tend to diminish the number of selected spurious
predictors, but, similarly to the Lasso they yield screening consistency only. Alternative
approaches require minimization of least squares (LS) penalized by quasiconvex functions
that are closer to the `0 penalty then `1 (Fan and Li, 2001; Zou and Li, 2008; Zhang,
2010a,b; Zhang and Zhang, 2012; Huang and Zhang, 2012; Zhang, 2013; Wang et al., 2014).
These methods lead to consistent selection under RIP and considerably weaker version of
the beta-min condition, nevertheless are more computationally demanding.

Regularization is required when a model matrix is not a full rank or when n < p, but for
the traditional regression when an experimental plan is of full rank and n > p it is possible to
construct a computationally effective and selection consistent two-stage ordering–selection
(OS) procedure, as follows. First, a full model F using LS is fitted, predictors are ordered
with respect to their |t| statistics from the fit and finally, a submodel of F in a nested family
pertaining to the ordering is selected using thresholding as in Rao and Wu (1989), Bunea
et al. (2006) or generalized information criterion (GIC) as in Zheng and Loh (1995). The OS
algorithm can be treated as greedy `0 penalized LS because it requires computing a criterion
function for 2p models only instead of all 2p models. Frequently, sufficient conditions on an
experimental plan and a vector of true coefficients for consistency of such procedures are
stated in terms of the Kullback-Leibler divergence (KL) of the true model from models which
lack at least one true predictor (Zheng and Loh, 1995; Shao, 1998; Chen and Chen, 2008;
Casella et al., 2009; Pötscher and Schneider, 2011; Luo and Chen, 2013). In particular,
a bound on the probability of selection error in Shao (1998) closely resembles the Sanov
theorem in information theory on bounds of probability of a non-typical event using the KL
divergence.

In our contribution we introduce a computationally effective three-step algorithm for
linear model selection based on a screening–ordering–selection (SOS) scheme. Screening of
predictors is based on a version of the thresholded Lasso proposed by Zhou (2009, 2010)
and yields the screening set S such that |S| ≤ n. Next, an implementation of the OS
algorithm described above proposed by Zheng and Loh (1995) is applied. We give non-
asymptotic upper bounds on error probability of each step of the SOS algorithm in terms
of the Lasso and GIC penalties (Theorem 1). As a consequence of proved bounds we obtain
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selection consistency for different (n, p) scenarios under weak conditions which are sufficient
for screening consistency of the Lasso. Our assumptions allow for strong correlation between
predictors, in particular replication of spurious predictors is possible.

The SOS algorithm is an improvement of the new version of the thresholded Lasso and
turns out to be a promising competitor to multi-stage convex relaxation (MCR), the latest
quasiconvex penalized LS (Zhang, 2010b, 2013). The condition on correlation of predictors
assumed there seems to be stronger than ours, whereas the beta-min condition may be
weaker (Section 5). In our simulations for |T | � n� p scenario, SOS was faster and more
accurate than MCR (Section 8).

For case n > p we also give a bound on probability of selection error of the OS algorithm.
Our bound in this case is more general than in Shao (1998) as we allow ordering of predictors,
p = pn → ∞ , |T | = |Tn| → ∞ or the GIC penalty may be of order n (Theorem 2). It is
surprising consequence of Theorems 1-2 that the probability of selection error of greedy
GIC is asymptotically not larger than of exhaustive GIC. Thus employment of greedy
search dramatically decreases computational cost of l0 penalized LS minimization without
increasing selection error probability.

As a by-product we obtained a strengthened version of the nonparametric sparse oracle
inequality for the Lasso proved by Bickel et al. (2009) and, as its consequence, more tight
bounds on prediction and estimation error (Theorem 4). We simplified and strengthened
an analogous bound for the thresholded Lasso given by Zhou (2009, 2010) (Theorem 1
part T1). It is worth noticing that all results are proved simultaneously for two versions of
the algorithm: for the Lasso used in practice when a response is centered and predictors
are standardized as well as for its formal version for which an intercept corresponds to a
dummy predictor.

The paper is organized as follows. In Section 2 the SOS algorithm is introduced and
in Section 3 we study properties of geometric characteristics pertaining to an experimental
matrix and a vector of coefficients which are related to identifiability of a true model.
Section 4 contains our main results that is bounds on selection error probabilities for the SOS
and OS algorithm. In Section 5 we briefly discuss the MCR algorithm and compare error
bounds for SOS and MCR. Section 6 treats properties of post-model selection estimators
pertaining to SOS and MCR. Section 7 contains improved bounds on the Lasso estimation
and prediction. Section 8 presents a simulational study. Concluding remarks are given in
Section 9. Appendix contains detailed proofs of the stated results.

2. Selection Algorithm

The aim of this section is to describe the proposed selection algorithm. As in the first step
of the algorithm we use the Lasso estimator to screen predictors and since in the literature
there exist two versions of the Lasso for the linear model which differ in the treatment of the
intercept, we start this section by defining two parametrizations of the linear model related
to these versions of the Lasso. Next we state a general definition encompassing both cases,
present our implementation of the SOS scheme and finally we discuss its computational
complexity.
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2.1 Linear Regression Model Parametrizations

We consider a general regression model of real-valued responses having the following struc-
ture

yi = µ(xi.) + εi, i = 1, 2, . . . , n,

where ε1, . . . , εn are iid N(0, σ2), xi. ∈ Rp, and p = pn may depend on n. In a vector form
we have

y = µ+ ε, (1)

where µ = (µ(x1.), . . . , µ(xn.))
T , ε = (ε1, . . . , εn)T and y = (y1, . . . , yn)T .

Let X = [x1., . . . , xn.]
T = [x1, . . . , xp] be the n × p matrix of experiment. We consider

two linear parametrizations of (1). The first parametrization is:

µ = α∗ +Xβ∗, (2)

where α∗ ∈ R is an intercept and β∗ ∈ Rp is a vector of coefficients corresponding to
predictors. The second parametrization is

µ = Xβ∗, (3)

where the intercept is either set to 0 or is incorporated into vector β∗ and treated in the same
way as all other coefficients in the linear model. In order to treat both parametrizations in
the same way we write µ = X̃β̃∗ where, with 1n denoting a column of ones, X̃ = [1n, X]
and β̃∗ = (α∗, β∗T )T in the case of (2) and X̃ = X and β̃∗ = β∗ in the case of (3). We note
that (3) is convenient for theoretical considerations and simulations on synthetic data, but
(2) is natural for real data applications and occurs as a default option in popular statistical
software.

Let J ⊆ {1, 2, . . . , p} = F be an arbitrary subset of the full model F and |J | the number
of its elements, XJ is a submatrix of X with columns having indices in J , βJ is a subvector
of β with columns having indices in J . Moreover, let X̃J = [1n, XJ ] and β̃J = (α, βTJ )T in
the case of (2) or X̃J = XJ and β̃J = βJ in the case of (3). H̃J will stand for a projection
matrix onto the subspace spanned by columns of X̃J . Linear model pertaining to predictors
being columns of XJ will be frequently identified as J . We will also denote by T = Tn a
true model that is a model such that T = supp(β∗) = {j ∈ F : β∗j 6= 0} for some β∗ such

that µ = X̃β̃∗. The uniqueness of T and β∗ for a given n will be discussed in Section 3.

2.2 Practical and Formal Lasso

The Lasso introduced in Tibshirani (1996) is a popular method of estimating β∗ in the
linear model. For discussion of properties of the Lasso see for example Tibshirani (2011)
and Bühlmann and van de Geer (2011). When using the Lasso for data analytic purposes
parametrization (2) is considered, vector of responses y is centered and columns of X are
standardized. The standardization step is usually omitted in formal analysis in which
parametrization (3) is assumed, α is taken to be 0 and X consists of meaningful predictors
only, without column of ones corresponding to intercept. Alternatively, columns of X are
normalized by their norms (see for example formula 2.1 in Bickel et al., 2009). Here, in
order to accommodate considered approaches in one definition we introduce a general form
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of the Lasso. Let H0 be an n × n projection matrix, where H0 is specified as a vector
centering matrix In − 1n1

T
n/n in the case of the applied version of the Lasso pertaining to

parametrization (2) and the identity matrix In for the formal Lasso corresponding to (3).
Moreover, let

D = diag(||H0xj ||)pj=1, X0 = H0XD
−1, X0 = [x01, . . . , x0p], y0 = H0y (4)

and θ∗ = Dβ∗, µ0 = H0µ. For estimation of β∗, data (X0, y0) will be used. Note that for
the first choice of orthogonal projection in the definition of X0 columns in X are normal-
ized by their norms whereas for the second they are standardized (centered and divided
by their standard deviations). Consider the case of (2) and denote by H0J projection onto
sp{(H0xj)j∈J}. Observe that as sp{1n, (xj)j∈J} = sp{1n} ⊕ sp{(H0xj)j∈J} and conse-
quently H̃J = H0J + 1n1

T
n/n, we have that

In − H̃J = (In −H0J)H0. (5)

The above equality trivially holds also in the case of (3).
For a = (aj) ∈ Rk, let |a| =

∑k
j=1 |aj | and ||a|| = (

∑k
j=1 a

2
j )

1/2 be `1 and `2 norms,
respectively. As J may be viewed as sequence of zeros and ones on F , |J | denotes cardinality
of J .

General form of the Lasso estimator of β is defined as follows

β̂ = argminβ{||H0(y −Xβ)||2 + 2rL|Dβ|} = D−1(argminθ{||y0 −X0θ||2 + 2rL|θ|}), (6)

where a parameter rL = rnL is a penalty on l1 norm of a potential estimator of β. Thus
in the case of parametrization (2) the Lasso estimator of β may be defined without using
extended matrix X̃ by applying H0 to y − Xβ that is by centering it. In the case of
parametrization (3) H0 = In and the usual definition of the Lasso used in formal analysis
is obtained. We remark that the approaches used in theoretical considerations for which
columns of X are not normalized as in Bühlmann and van de Geer (2011) or Zhang (2013)
formally correspond to (6) with H0 = In and D = dIp, where d = max1≤j≤p ||xj ||.

Note that in the case of parametrization (2) β̂ is subvector corresponding to β of the
following minimizer

argminβ̃{||y − X̃β̃||
2 + 2rL|Dβ|} = argminα,β{||y − α1n −Xβ||2 + 2rL|Dβ|}, (7)

where the equality of minimal values of expressions appearing in (6) and (7) is obtained
when the expression ||y−α1n−Xβ||2 is minimized with respect to α for fixed β. However,
omitting centering projection H0 in (6) when the first column of X consists of ones and
corresponds to intercept, leads to lack of invariance of β̂ when the data are shifted by a
constant and yields different estimates that those used in practice. This is a difference
between the Lasso and the LS estimator: LS estimator has the same form regardless of
which of the two parametrizations (2) or (3) is applied. Using (5) we have for the LS
estimator β̂LSJ in model J that the sum of squared residuals for the projection H̃y equals

RJ = ||(In − H̃J)y||2 = ||(In −H0J)y0||2 = ||y0 −X0J θ̂
LS
J ||2 (8)

and
β̂LSJ = D−1θ̂LSJ , θ̂LSJ = argminθJ ||y0 −X0JθJ ||2.
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2.3 Implementation of the Screening–Ordering–Selection Scheme

The SOS algorithm which is the main subject of the paper is the following implementation
of the SOS scheme.

Algorithm (SOS)
Input: y,X and rL, b, r.

Screening. Compute the Lasso estimator β̂ = D−1θ̂, θ̂ = (θ̂1, . . . θ̂p)
T with a penalty

parameter rL and set S0 = {j : |θ̂j | > b}, B = b(|S0| ∨ 1)1/2, S1 = {j : |θ̂j | > B}.
Ordering. Fit the model S1 by ordinary LS and order predictors Ô = (j1, j2, . . . , j|S1|)

using values of corresponding squared t statistics t2j1 ≥ t
2
j2
≥ . . . ≥ t2j|S1|

.

Selection. In the nested family G = {∅, {j1}, {j1, j2}, . . . , S1} choose a model T̂ ≡ T̂S1,Ô

according to the generalized information criterion (GIC) T̂ = argminJ∈G{RJ + |J |r},
where r = rn is a penalty pertaining to GIC.

Output: T̂SOS = T̂ , β̂SOS = β̂LS
T̂
.

The OS algorithm is intended for the case p < n and is a special case of SOS for which
S1 is taken equal to F .

We note that empty set in the definition of G corresponds to µ = 0 in the case of
parametrization (3) and µ = α∗ in the case of (2). It is easy to check also that

t2j
n− |S1|

=
RS1\{j} −RS1

RS1

, (9)

thus ordering with respect to decreasing values of (t2j ) in the second step of the procedure
is the same as ordering of (RS1\{j}) in decreasing order.

2.4 Computational Complexity of the SOS Algorithm

There are many approximate algorithms for the Lasso estimator (6) as quadratic program
solvers or coordinate descent in Friedman et al. (2010). The popular LARS method proposed
in Efron et al. (2004) can be used to compute exactly, in finitely many steps, the whole Lasso
regularized solution path which is piecewise linear with respect to rL. It has been shown
recently in Mairal and Yu (2012) that, in the worst case, the number of linear segments of
this path is exactly (3p+1)/2, so the overall computational cost of the Lasso is O(3ppn), see
Rosset and Zhu (2007). Hence, by the most popular criterion of computational complexity
LARS does not differ from, for example, an exhaustive search for the `0 penalized LS
problem. However, experience with data suggests that the number of linear segments of the
LARS regularization path is typically O(n), so LARS execution requires O(npmin(n, p))
flops, see Rosset and Zhu (2007) and Bühlmann and van de Geer (2011), chapter 2.12. Thus
taking into account the result in Mairal and Yu (2012) on uniform approximation of the
Lasso regularization paths, for typical data set the Lasso may be considered computationally
efficient (cf. also discussion on the page 7 in Zhang (2013)).

In Section 4 we will discuss conditions on X and β∗T , under which S1 includes a unique
true model T and |S1| ≤ n or even |S1| ≤ 4|T | with high probability. In this case we can
use LS to fit a linear model, thus the ordering step takes O(n|S1|2) calculations by the
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QR decomposition of the matrix X0S1 . Computing (RJ)J∈G in the selection step demands
also only one QR decomposition of X0S1 with columns ordered according to Ô. Indeed,
let X0S1 = QW , where an orthogonal matrix Q = [q1, . . . , q|S1|]. The following iterative
procedure can be used

R∅ = ||y0||2; for k = 1, . . . , |S1| do R{1,...,k} = R{1,...,k−1} − (qTk y0)2 endfor.

Observe, that from (9) the ordering part demands GIC only for |S1| models that is for
S1 \ {j}, j ∈ S1. Thus two last parts of the SOS algorithm or, equivalently, the OS
algorithm demands GIC only for 2|S1| models instead of all 2|S1| and we can call it greedy
`0 penalized LS.

We conclude that the SOS algorithm is computationally efficient and the most time
expensive part of it is the screening. The same conclusion follows from our simulations
described in Section 8.

3. A True Model Identifiability

In this section we consider two types of linear model characteristics which will be used to
quantify the difficulty of selection or, equivalently, a true model identifiability problem, and
we study the interplay between them.

3.1 Kullback-Leibler Divergences

Let T be given true model that is T ⊆ F such that µ = X̃β̃∗ = X̃T β̃
∗
T and T = supp(β∗T ) =

{j ∈ F : β∗j,T 6= 0}. For J ⊆ F define

δ(T ‖ J) = ||(In − H̃J)X̃T β̃∗T ||
2.

In view of (5) we obtain

δ(T ‖ J) = ||(In−H0J)H0X̃T β̃∗T ||
2 = ||(In−H0J)H0XTβ

∗
T ||2 = ||(In−H0J)X0T θ

∗
T ||2. (10)

Let KL(β̃∗T ‖ β̃J) = Eβ̃∗T
log(fβ̃∗T

/fβ̃J ) be the Kullback-Leibler divergence of the normal

density fβ̃∗T
of N(X̃T β̃

∗
T , σ

2
In) from the normal density fβ̃J of N(X̃J β̃J , σ

2
In). Let Σ =

XT
0 X0 be a coherence matrix if H0 is the identity matrix and a correlation matrix if H0 =

In − 1n1
T
n/n. Let ΣJ stands for a submatrix of Σ with columns having indices in J and

let λmin(ΣJ), λmax(ΣJ) denote extremal eigenvalues of ΣJ . The following proposition lists
the basic properties of the parameter δ. Observe also that δ(T ‖ J) is a parameter of
non-centrality of χ2 distribution of RJ that is RJ ∼ χ2

n−|J |(δ(T ‖ J)).

Proposition 1

(i) δ(T ‖ J) = 2σ2 min
β̃J

KL(β̃∗T ‖ β̃J) = 2σ2 min
β̃J

KL(β̃J ‖ β̃∗T ).

(ii) δ(T ‖ J) = min
θJ

∣∣∣∣∣
∣∣∣∣∣[X0,T\J , X0,J ]

(
θ∗T\J
θJ

) ∣∣∣∣∣
∣∣∣∣∣
2

≥ λmin(ΣJ∪T )||θ∗T\J ||
2 (11)
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The following scaled Kullback-Leibler divergence will be employed in our main results
in Section 4.

δ(T, s) = min
j∈T,J⊇T,|J |≤s

δ(T ‖ J \ {j}).

This coefficient was previously used to prove selection consistency in Zheng and Loh
(1995); Chen and Chen (2008); Luo and Chen (2013) and to establish asymptotic law of
post-selection estimators in Pötscher and Schneider (2011). Similar coefficients appear in
proofs of selection consistency in Shao (1998) and Casella et al. (2009). Obviously, δ(T, s)
is a nonincreasing function of s.

Identifiability of a true model is stated in the proposition below in terms of

δ(T ) = min
J+T,|J |≤|T |

δ(T ‖ J).

Proposition 2 There exists at most one true model T such that δ(T ) > 0.

Assume by contradiction that T ′ is a different true model, that is we have T ′ = supp(β̃) for
some β̃ such that µ = X̃β̃. Then by symmetry we can assume |T | ≤ |T ′|. Hence |T ′ \T | > 0
and δ(T ′) ≤ δ(T ′ ‖ T ) = 0.
It is easy to see that if δ(T ) > 0 then columns of XT are linearly independent and, conse-
quently, there exists at most one β̃∗T such that µ = X̃T β̃

∗
T .

In Section 4.2 we infer identifiability of a true model T from Proposition 2 and the
following inequality

δ(T, p) ≤ δ(T ). (12)

Indeed, for any J such that J + T and |J | ≤ |T | there exists j ∈ T such that J ⊆ F \ {j}.
Thus we obtain δ(T ‖ F \ {j}) ≤ δ(T ‖ J) and minimizing both sides yields (12).

3.2 Restricted Eigenvalues

For J ⊆ F , J̄ = F \ J and c > 0 let

κ2(J, c) = min
ν 6=0,|νJ̄ |≤c|νJ |

νTΣν

νTJ νJ
and κ2(s, c) = min

J :|J |≤s
κ(J, c).

Both coefficients will be called restricted eigenvalues of Σ. Observe that

κ2(J, c) = min
ν 6=0,|νJ̄ |≤c|νJ |

||X0ν||2

||νJ ||2
= min

ν 6=0,|νJ̄ |≤c|νJ |

||X0νJ −X0νJ̄ ||2

||νJ ||2
. (13)

The coefficient κ(s, c) is a modified version of an index introduced in Bickel et al. (2009).
Modification consists in replacing X appearing in the original definition by X0 and omitting
the term n−1/2. Pertaining parameters for a fixed set of predictors J and their various
modifications were introduced and applied to bound the Lasso errors by van de Geer and
Bühlmann (2009).

In order to study relations between sparse and restricted eigenvalues we set

κ2(J, 0) = min
ν 6=0,supp(ν)⊆J

νTΣν

νT ν
and κ2(s, 0) = min

J :|J |≤s
κ2(J, 0).
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Note that ifX0 is defined in (4) or in remark below (6) applies we have that max1≤j≤p ||x0j || ≤
1. Thus from Rayleigh-Ritz theorem we have

κ2(J, 0) = λmin(ΣJ) ≤ tr(ΣJ)

|J |
≤ 1 ∧ λmax(ΣJ). (14)

The upper bound above equals 1 when the columns are normalized or standardized. Note
that κ(J, c) and κ(s, c) are nonincreasing functions of both arguments. Moreover, κ2(J, c) ≤
κ2(J, 0) and κ2(s, c) ≤ κ2(s, 0). This holds in view of an observation that for any fixed J
and c > 0, any ν such that supp(ν) ⊆ J satisfies ν = νJ and thus |νJ̄ | ≤ c|νJ |. It is easy
to show also that κ2(J, c) → κ2(J, 0) and κ2(s, c) → κ2(s, 0) monotonically when c → 0+.
Another less obvious bound, which is used in the following is stated below.

Proposition 3 For any s ∈ N and c > 0

κ2(s, c) ≤ (bcc+ 1)κ2((bcc+ 1)s, 0).

Condition κ(s, c) > 0 imposed on matrix X is called restricted eigenvalue condition in
Bickel et al. (2009) for their slightly different κ. Proposition 3 generalizes an observation
there (p. 1720) that if the restricted eigenvalue condition holds for c ≥ 1, then all square
submatrices of Σ of size 2s are necessarily positive definite. Indeed, the proposition above
implies that κ(2s, 0) > 0 from which the observation follows. Positiveness of κ(T, c) which
due to the restriction on vectors ν over which minimization is performed can hold even for
p > n, is a certain condition on weak correlation of columns. This condition, which will be
assumed later, is much less stringent than κ(|T |, c) > 0, as it allows for example replication
of columns belonging to the complement of T . Moreover κ(T, c) > 0 for c ≥ 1 implies
identifiability of a true model.

Proposition 4 There exists at most one true model T such that κ(T, 1) > 0.

It follows that if κ(T, 1) > 0, then columns of XT are linearly independent and, conse-
quently, there exists at most one β̃∗T such that µ = X̃T β̃

∗
T .

The following κ−δ inequalities follow from the Propositions 1 (ii) and the Proposition 3.
We set θ∗min = minj∈T |θ∗j | and t = |T |.

Proposition 5 We have

κ2(T, 3)θ∗2min ≤ δ(T, t) (15)

and

κ2(t, 3)θ∗2min ≤ 4δ(T, 4t). (16)

4. Error Bounds for the SOS and OS Algorithms

In this section we present the main result that is non-asymptotic bounds on the error
probabilities for all steps of the SOS algorithm. The errors of consecutive steps of SOS
constitute decomposition of the selection error into four parts. Two errors which can be
possibly committed in the selection step correspond to two situations when the selected
model is a proper subset or a superset of T .
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4.1 Error Bounds for SOS

Let Sn be a family of models having no more than s predictors where s is defined below and
Tn = {S ∈ Sn : S ⊇ T} consists of all true models in Sn. Observe that |Tn| =

∑s−t
k=0

(
p−t
k

)
.

Moreover, let OS1 denote a set of all correct orderings of S1 that is orderings such that
all true variables in S1 precede the spurious ones. To simplify notation set δs = δ(T, s),
δt = δ(T, t) and κ = κ(T, 3). We also define two constants c1 = (3 + 6

√
2)−1 ≈ 0.087 and

c2 = (6+4
√

2)−1 ≈ 0.086. We assume for the remaining part of the paper that p ≥ t+1 ≥ 2
as boundary cases are easy to analyze. Moreover, we assume the following condition which
ensures that the size of S1 defined in the first step of the SOS algorithm does not exceed n
with large probability and consequently LS could be performed on data (y0, X0S1). It states
that

s = s(T ) = t+ bt1/2κ−2c ≤ n. (17)

Theorem 1 (T1) If for some a ∈ (0, 1) 8a−1σ2 log p ≤ r2
L ≤ b2/36 ≤ c2

1t
−1κ4θ∗2min, then

P (S1 6∈ Tn) ≤ exp

(
−

(1− a)r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

. (18)

(T2) If for some a ∈ (0, 1) a−1σ2 log p ≤ c2(s− t+ 2)−1δs, then

P (S1 ∈ Tn, Ô 6∈ OS1) ≤ 3

2
exp

(
− (1− a)c2δs

σ2

)(
πc2δs
σ2

)−1/2

. (19)

(T3) If for some a ∈ (0, 1) (a) r < at−1δt and (b) 8a−1σ2 log t ≤ (1− a)2δt, then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂SOS | < t) ≤ 1

2
exp

(
− (1− a)3δt

8σ2

)(
π(1− a)2δt

8σ2

)−1/2

. (20)

(T4) If for some a ∈ (0, 1) 4a−1σ2 log p ≤ r, then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂SOS | > t) ≤ exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

. (21)

A regularity condition on the plan of experiment X̃ and the true β̃∗ induced by the
assumption of Theorem 1 (T1), namely 8a−1σ2 log p ≤ c2

1t
−1κ4θ∗2min, is known as the beta-

min condition. Its equivalent form, which is popular in the literature states that for some
a ∈ (0, 1) √

8c−2
1 a−1σ2tκ−4 log p ≤ min

j∈T
||H0xj || |β∗j |. (22)

Observe that (22) implies that κ > 0, so it guarantees identifiability of T in view of Propo-
sition 4.

Note that bounds in (T2) and (T3) as well as the bounds in Theorem 2 below can be
interpreted as results analogous to the Sanov theorem in information theory on bounding
probability of a non-typical event (cf. for example Cover and Thomas (2006), Section 11.4),
as in view of Proposition 1 (i) δs may be expressed as minβ∈B 2σ2KL(β ‖ β∗) for a certain
set B such that β∗ /∈ B.
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The first corollary provides an upper bound on a selection error of the SOS algorithm
under simpler conditions. The assumption r2

L = 4r is quite arbitrary, but results in the
same lower bound for penalty and almost the same bound on error probability as in the
Corollary 3 below. Note that boundary values of r2

L and r of order log p are allowed in
Corollaries 1–3.

Corollary 1 Assume (17) and r2
L = 4r. If for some a ∈ (0, 1− c1) we have

(i) 4a−1σ2 log p ≤ r ≤ b2/144 ≤ (c2
1/4)at−1κ4θ∗2min and (ii) r ≤ (4c2/3)t−1/2κ2δs, then

P (T̂SOS 6= T ) ≤ 4 exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

.

We consider now the results above under stronger conditions. We replace κ = κ(T, 3) in
(17) and the assumption (T1) by smaller κt = κ(t, 3) and additionally assume the following
weak correlation condition

κ−2
t ≤ 3t1/2, (23)

which is weaker than a condition κ−2
t ≤ t1/2 in Theorem 1.1 in Zhou (2009, 2010). Observe

that (23) is stronger than inequality (17) with κt instead of κ. Indeed, (23) implies in view
of definition of s, that s ≤ 4t. Next, from Proposition 3 we obtain 0 < t−1/2/3 ≤ κ2

t ≤
4κ(4t, 0), but obviously κ(4t, 0) = 0 for 4t > n, hence 4t ≤ n and s ≤ n. Moreover, we
obtain from (16) that (c2

1/4)at−1κ4
t θ
∗2
min < (4c2/3)t−1/2κ2

t δs as δs ≥ δ4t and 16c2/(3c
2
1) ≥ 1.

Hence the Corollary 1 simplifies to the following corollary.

Corollary 2 Assume (23) and r = r2
L/4. If for some a ∈ (0, 1− c1) we have

16a−1σ2 log p ≤ r2
L ≤ b2/36 ≤ c2

1at
−1κ4

t θ
∗2
min, then

P (T̂SOS 6= T ) ≤ 4 exp

(
−

(1− a)r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

.

Theorem 1 shows that the SOS algorithm is an improvement of the adaptive and the
thresholded Lasso (see Zou, 2006; Huang et al., 2008; Meinshausen and Yu, 2009; Zhou,
2009, 2010; van de Geer et al., 2011) as under weaker assumptions on an experimental
matrix than assumed there we obtain much stronger result, namely selection consistency.
Indeed, assumptions of Theorem 1 are stated in terms of κ(T, 3), δs and δt instead of κ(t, 3),
thus allowing for example replication of spurious predictors. Discussion of assumptions of
Corollary 2 shows that the original conditions in Zhou (2009, 2010) are stronger than our
conditions ensuring screening consistency of the thresholded Lasso. We stress also that
our bounds are valid in both cases when the formal or the practical Lasso is used in the
screening step. In Section 5 our results will be compared with a corresponding result for
MCR.

4.2 Error Bounds for OS

Now we state the corresponding bounds for error probabilities of the OS algorithm in the
case of p ≤ n. We recall that in the case of OS S1 = F . Thus Sn = Tn = {S1} and
P (S1 6∈ Tn) = 0.
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Theorem 2 If for some a ∈ (0, 1) a−1σ2 log(t(p− t)) ≤ c2δp, then

P (Ô 6∈ O) ≤ 3

2
exp

(
− (1− a)c2δp

σ2

)(
πc2δp
σ2

)−1/2

.

Moreover, (T3) and (T4) of Theorem 1 hold.

Observe that assumptions of Theorem 2 imply that δp > 0 which guarantees uniqueness
of T in view of (12).

The next corollary is analogous to Corollary 1 and provides an upper bound on a se-
lection error of the OS algorithm under simpler conditions. This bound is more general
than in Shao (1998) as we allow for greedy selection (specifically ordering of predictors),
p = pn →∞, t = tn →∞ or GIC penalty may be of order n.

Corollary 3 If for some a ∈ (0, 2c2) 4a−1σ2 log p ≤ r ≤ min
(
at−1δt, 2c2δp

)
, then

P (T̂OS 6= T ) ≤ 3 exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

.

It is somewhat surprising consequence of the Corollary 1–3 that, from an asymptotic
point of view, the selection error of the SOS and OS algorithms, which are versions of a
greedy GIC, is not greater than the selection error of a plain, exhaustive GIC. Specifically,
if we define the exhaustive GIC selector by

T̂E = argminJ :J⊆F,|J |≤p{RJ + |J |r},

then it follows from the lower bound in (37) below, that for an arbitrary fixed index j0 6∈ T
and r > 0 we have

P (T̂E 6= T ) ≥ P (RT∪{j0} −RT > r) ≥ r

r + σ2
exp

(
− r

2σ2

)(
πr

2σ2

)−1/2

. (24)

If the penalty term satisfies log p � r � min(δt/t, δp) for n → ∞, then from Corollary 3
and (24) we obtain

lim
n

logP (T̂OS 6= T ) ≤ lim
n

logP (T̂E 6= T ). (25)

The last inequality indicates that it pays off to apply greedy algorithm in this context as a
greedy search dramatically reduces `0 penalized LS without increasing its selection error.

The bounds on the selection error given in Corollaries 1–3 imply consistency of SOS
and OS provided rn → ∞ and its strong consistency provided rn ≥ c log n for some c >
2σ2/(1− a). For boundary penalty rn = 4a−1σ2 log pn where a ∈ (0, 2c2), we obtain strong
consistency of these algorithms if nca/(1−a) ≤ pn for some c > 0.5. Comparison of selection
errors probabilities of the SOS and OS algorithms for p < n requires further research.
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5. Comparison of SOS and MCR

The SOS algorithm also turns out to be a competitor of iterative approaches which require
minimization of more demanding LS penalized by quasiconvex functions (Fan and Li, 2001;
Zou and Li, 2008; Zhang, 2010a,b; Zhang and Zhang, 2012; Huang and Zhang, 2012; Zhang,
2013; Wang et al., 2014). In this section we compare selection error bounds for SOS and
multi-stage convex relaxation (MCR) studied in Zhang (2010b, 2013) which is the latest
example of this group of algorithms. In Section 8 we compare SOS and MCR in numerical
experiments.

5.1 Multi-stage Convex Relaxation Algorithm

Results in Zhang (2013) concern parametrization of the linear model without intercept given
in (3). Moreover, coordinates of β are not individually penalized in MCR. In concordance
with the discussion below equation (6) this corresponds to H0 = In and D = dIp, where
d = max1≤j≤p ||xj ||. Obviously,

X0 = H0XD
−1 = X/d, y0 = y, Xβ∗ = µ = µ0 = X0θ

∗, H0J = HJ , J ⊆ F

and ||x0j || ≤ 1. The MCR procedure finds for given rZ , bZ > 0 approximate solution of the
quasiconvex minimization problem

β̂MCR = d−1argminθ
{
||y −X0θ||2 + 2rZ

p∑
j=1

(|θj | ∧ bZ)
}
. (26)

As was shown in Zhang (2010b) a local minimum of (26) could be approximated by the
following iterative convex minimization algorithm.

Algorithm (MCR)
Input: y,X and rZ , bZ , l.

Compute d, X0 = X/d, S̄ = F
for k = 1, 2, . . . , l do

θ̂ = argminθ{||y −X0θ||2 + 2rZ |θS̄ |}
S̄ = {j ∈ F : |θ̂j | ≤ bZ}

endfor
S = F \ S̄

Output: T̂MCR = S, β̂MCR = θ̂S/d.

Since X0θ = X0SθS +X0S̄θS̄ and (I −HS)X0S = 0, we obtain

||y −X0θ||2 = ||HS(y −X0S̄θS̄)−X0SθS ||2 + ||(I −HS)(y −X0S̄θS̄)||2. (27)

Let θS = W+
S Q

T
S (y −X0S̄θS̄), where X0S = QSWS , QS is an orthogonal matrix, W+

S is a
pseudoinverse of WS and QS ,WS are computed from the QR or SVD decomposition of X0S .
Then θS is the LS solution for the response y−X0S̄θS̄ and predictors X0S and the first term
on the right in (27) equals 0. Thus if we set y� = (I −HS)y and X�S̄ = (I −HS)X0S̄ , then

||y −X0θ||2 = ||(I −HS)(y −X0S̄θS̄)||2 = ||y� −X�S̄θS̄)||2.
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It follows that for computing θ̂ in the MCR algorithm, we can use the Lasso and LS
subroutines separately as in the following (cf. Zou and Li (2008), Algorithm 2).

Algorithm (MCR via Lasso and LS)
Input: y,X and rZ , bZ , l.

Compute d, X�S̄ = X/d, y� = y, S = ∅, S̄ = F
for k = 1, 2, . . . , l do

θ̂S̄ = argminθS̄{||y� −X�S̄θS̄ ||
2 + 2rZ |θS̄ |}

θ̂S = W+
S Q

T
S (y −X0S̄ θ̂S̄), where X0S = QSWS

and QS ,WS are computed from the QR or SVD decomposition of X0S

S = {j ∈ F : |θ̂j | > bZ}, S̄ = F \ S
X�S̄ = X0S̄ −QS(QTSX0S̄), y� = y −QS(QTSy)

endfor
Output: T̂MCR = S, β̂MCR = θ̂S/d.

In the above algorithm θ̂S̄ is the Lasso estimator for the response y� and the experimental
matrix X�S̄ and θ̂S is the LS estimator with the experimental matrix X0S and the response
equal to residuals of the Lasso fit y−X0S̄ θ̂S̄ . When one of the iterations returns S such that
|S| > n then the LS estimator can be calculated using the SVD decomposition instead of the
QR decomposition. The above algorithm allows for usage of one of many implementations
of the Lasso and is applied in our numerical experiments in Section 8.

5.2 Error Bound for MCR

In order to compare our results with selection error bounds in Zhang (2013), we restate his
result using our notation. The proof of its equivalence with the original form is deferred
to the Appendix. We stress that the Zhang’s result holds for more general case of sub-
Gaussian errors whereas we consider Gaussian errors only. Let c3 = 2/49 and recalling that
Σ = XT

0 X0 = d−2XTX and ΣJ = XT
0JX0J we define sparse eigenvalues of Σ

λs = min
J :|J |≤s

λmin(ΣJ) = min
ν:supp(ν)≤s

||X0ν||2

||ν||2
= κ2(s, 0),

Λs = max
J :|J |≤s

λmax(ΣJ) = max
ν:supp(ν)≤s

||X0ν||2

||ν||2
.

Theorem 3 (Zhang, 2013) Assume that there exist s ≥ 1.5t and a ∈ (0, 1) such that
(i) (sparse eigenvalue condition) Λs/λ1.5t+2s ≤ 1 + s/(1.5t) and
(ii) c−1

3 a−1σ2 log p ≤ r2
Z ≤ b2Zλ2

1.5t+s/81 ≤ (18)−2λ2
1.5t+sθ

∗2
min,

then for l > b1.24 ln tc+ 1 we have

P (T̂MCR 6= T ) ≤ exp

(
−

(1− a)c3r
2
Z

σ2

)(
πc3r

2
Z

σ2

)−1/2

.

Now we compare Theorem 3 with Corollary 2. Both results assume variants of the
beta-min condition and bounds on (restricted or sparse) eigenvalues of Σ, namely the weak
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correlation condition (23) in Corollary 2 and the sparse eigenvalue condition in Theorem
3, which is similar to restricted isometry property described in the Introduction. More
specifically, observe that according to (14)

0 ≤ λs′ ≤ λs ≤ Λ1 = 1 ≤ Λs ≤ Λs′ ≤ s′ ∧ n

for 1 ≤ s < s′ ≤ p and obviously λs = 0 for s > n. Then it follows from the sparse eigen-
value condition that λ4.5t ≥ λ1.5t+2s > 0 and thus 4.5t ≤ n whereas the weak correlation
condition stipulates that 4t ≤ n. Whence the condition on correlation of predictors assumed
in Theorem 3 is stronger than the corresponding assumption in the Corollary 2, moreover,
Corollary 1 allows for replications of spurious predictors. However, from Proposition 3 we
have t−1/2κ2

t < 4λ4t ≤ 4λ3t and thus for the minimal allowed s = 1.5t and disregarding
constants, Theorem 3 imposes weaker variant of the beta-min condition. It is worth noting
that the considered algorithms as well as the error bounds assuming uniform weak corre-
lation of predictors (Corollary 2 and Theorem 3) do not depend on n. Remaining error
bounds require explicitly s ≤ n.

6. Properties of Post-model Selection Estimators

We list now several properties of post-model selection estimators which follow from the
main results. Let B̂ = B(T̂ , y) be any event defined in terms of given selector T̂ and y and
B = B(T, y) be an analogous event pertaining to T and y. Let Bc and B̂c be complements
of B and B̂, respectively. Observe that we have

P (B̂) ≤ P (B̂, T̂ = T ) + P (T̂ 6= T ) ≤ P (B) + P (T̂ 6= T ).

Analogously, P (B̂c) ≤ P (Bc) + P (T̂ 6= T ), which implies P (B) ≤ P (B̂) + P (T̂ 6= T ). Both
inequalities yield

|P (B̂)− P (B)| ≤ P (T̂ 6= T ). (28)

In particular, when B = {G > u} and B̂ = {Ĝ > u} and G is some pivotal quantity
then (28) implies that P (B̂) is approximated by P (B) uniformly in u. For example, let
ˆ̃
βT denote the LS estimator fitted on T , h = t + 1 for parametrization (2) and h = t for
parametrization (3) and define

f = f(T, y) =
||X̃T

ˆ̃
βLST − X̃T β̃

∗
T ||2/h

||y − X̃T
ˆ̃
βLST ||2/(n− h)

.

Observe that the variable f follows a Fisher-Snedecor distribution Fh,n−h. Then the bound
on the selection error given in Corollary 1, the assumption ε ∼ N(0, σ2

In) and (28) imply
the following corollary.

Corollary 4 Assume that conditions of Corollary 1 are satisfied. Then

sup
u∈R
|P (f̂ ≤ u)− P (f ≤ u)| ≤ 4 exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

.
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Note that any a priori upper bound on h in conjunction with Corollary 4 yields an approx-
imate confidence region for β̃∗

T̂
.

Moreover, it follows from the Corollary 7 below that the Lasso estimator has the follow-
ing estimation and prediction errors

Corollary 5 Assume that conditions of Corollary 7 are satisfied. Then

||Xβ̂ −Xβ∗|| = OP
(
t1/2n κ−1

n

√
log pn

)
, |D(β̂ − β∗)| = OP

(
tnκ
−2
n

√
log pn

)
,

where κn = κ(Tn, 3).

Analogous properties of post-selection estimators are given below without proof for λn =
λmin(ΣTn).

Corollary 6 (i) Assume that conditions of Corollary 1 are satisfied. Then

||Xβ̂SOS −Xβ∗|| = OP
(
t1/2n

)
, |D(β̂SOS − β∗)| = OP

(
tnλ
−1/2
n

)
,

(ii) Assume that conditions of Theorem 3 are satisfied. Then

||Xβ̂MCR −Xβ∗|| = OP
(
t1/2n

)
, |D(β̂MCR − β∗)| = OP

(
tnλ
−1/2
n

)
,

In view of the inequality κ2
n < λn it is seen that the estimation and prediction rates for

the SOS and MCR post-selection estimators are better by the factor κ−1
n

√
log pn than the

corresponding rates for the Lasso.

7. Error Bounds for the Lasso Estimator

We assume from now on that the general model (1) holds. Let µ0 = H0µ, µβ = H0Xβ = X0θ

for an arbitrary β ∈ Rp and µβ̂ = H0Xβ̂ = X0θ̂. Moreover, ∆ = θ̂ − θ = D(β̂ − β) and

recall that ∆J stands for subvector of ∆ restricted to coordinates in J and Jβ = supp(β) =
{j : βj 6= 0}. Finally let A =

⋂p
j=1{2|xT0jε| ≤ rL} and Ac be a complement of A. From the

Mill inequality (see the right hand side inequality in (37) below) we obtain for Z ∼ N(0, 1)

P (Ac) ≤
p∑
j=1

P (2|xT0jε| > rL) = pP
(
Z2 >

r2
L

4σ2

)
≤ p exp

(
−

r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

. (29)

As a by-product of the proofs of the theorems above we state in this section a strengthened
version of the Lasso error bounds and their consequences.

Theorem 4 (i) On A we have

||µ0 − µβ̂|| ≤ ||µ0 − µβ||+ 3rL|Jβ|1/2κ−1(Jβ, 3). (30)

(ii) Moreover, on the set A ∩ {β : |∆| ≤ 4|∆J |} we have

rL|∆| ≤ 2||µ0 − µβ||2 + 8r2
L|Jβ|κ−2(Jβ, 3). (31)
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Squaring both sides of (30) yields the following bound

||µ0 − µβ̂||
2 ≤

(
||µ0 − µβ||+

3rL|Jβ|1/2

κ(Jβ, 3)

)2
= inf

a>0
(1 + a)

(
||µ0 − µβ||2 +

9r2
L|Jβ|

aκ2(Jβ, 3)

)
,

where the equality above is easily seen. Obviously κ(|Jβ|, 3) ≤ κ(Jβ, 3), hence (30) is tighter
than Theorem 6.1 in Bickel et al. (2009) if we disregard a small difference in normalization
of X mentioned in Section 3. Moreover, the bound above is valid for both the practical and
the formal Lasso.

Let us note that as β in (30) is arbitrary, the minimum over all β ∈ RP can be taken.
Analogously we can minimize the right hand side of (31) over all β : |∆| ≤ 4|∆J |. Note
also that if a parametric model µ = X̃J β̃J holds, then (33) below implies that indeed a
condition |∆| ≤ 4|∆J | is satisfied. The next corollary strengthens the `1 estimation error
inequality (7.7) and the predictive inequality (7.8) in Theorem 7.2 in Bickel et al. (2009).
Note that X below does not need to have normalized columns and the constant appearing
in (7.7) and (7.8) in Bickel et al. (2009) is 16.

Corollary 7 Let β be such that µ0 = µβ. Then (31) and (30) have the following form

|∆| ≤ 8rL|Jβ|κ−2(Jβ, 3) and ||µβ̂ − µβ||
2 ≤ 9r2

L|Jβ|κ−2(Jβ, 3). (32)

Moreover, we have on A the following bounds.

Corollary 8

||∆J || ≤ 3rL|Jβ|1/2κ−2(Jβ, 3) and |∆J | ≤ 3rL|Jβ|κ−2(Jβ, 3).

8. Simulational Study

In this section we investigate the performance of our implementation of SOS and compare
it with MCR. We describe the framework of numerical experiments, discuss their results
and draw conclusions. More detailed results are presented in Appendix A.4.

8.1 Description of the Experiments

We consider three models with number of potential predictors p exceeding number of ob-
servations n. The first model M1 was analyzed in Zhang (2013). Beside it we introduce
two models M2 and M3 which seem to fit even more to the sparse high-dimensional sce-
nario t � n � p and are described in Table 1, columns 1 − 4. Observe that sparseness
of the model measured by ratio p/t increases from 8.3 for M1 to 100 for M2 and to 400
for M3. Corresponding ratios p/n are 2.5, 10 and 20, respectively. Note also that the as-
sumptions of either Corollary 2 or Theorem 3 are not satisfied for M1 as 4t > n, whereas
two remaining models satisfy 10t ≤ n. In all simulations the n × p matrix of experiment
X with iid standard normal entries is generated and then its columns are normalized to
have `2-norm equal to

√
n. A noise level is specified by σ = 1. For each replication of

the true model, elements of β∗T are independently generated from uniform distribution with
parameters given in the column 5 of Table 1. Such layout resulted in signal to noise ra-
tio SNR = ||XTβ

∗
T ||/

√
E||ε||2 = ||XTβ

∗
T ||/
√
n and it values averaged over replications are

given in column 6 of Table 1.
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model t n p β∗T SNR SOS accuracy MCR accuracy

M1 30 100 250 U(1, 10) 33 72 / 71 56 / 97
M2 10 100 1000 U(1, 10)/2 9.5 91 / 88 73 / 82
M3 5 100 2000 U(1, 10)/3 4.5 85 / 77 69 / 73

Table 1: Summary of the simulations (details explained in the text).

All computations have been performed using open source software R (see supplemental
material at http://www.mimuw.edu.pl/~pokar/Publications/) using two frequently used
Lasso implementations: lars (Efron et al., 2004) and glmnet (Friedman et al., 2010).
Preliminary experiments indicated that using lars yields higher selection accuracies for
SOS as well as for MCR than when using glmnet; even on grids of order 105 the gain in
accuracy was around 10%. Moreover, for such dense grids glmnet was considerably slower.
Thus in main numerical experiments lars has been used. We established that accuracy of
SOS for all models is the highest when r ≈ 20 and thus the value of r is fixed at 20. The
MCR procedure is implemented via the Lasso and LS as described in Section 5.1. Similarly
to Zhang (2013) we fixed number of iterations l = 8 for MCR. Thus compared algorithms
have mutually corresponding parameters (rL, b) and (rZ , bZ). As in Zhang (2013) we found
optimal grid parameters for which selection accuracy is the highest one. In particular
we confirmed high selection accuracy for the best parameters shown in Table 1 in Zhang
(2013). Namely, the highest selection accuracy of MCR reported there is 93% for penalty
and the threshold both equal 0.94 whereas we found selection accuracy 95% for both these
parameters equal to 5. The difference is minor taking into account that the original penalty
in Zhang (2013) corresponds in our implementation to 2rZ/

√
n = rZ/5.

As a measure of performance of both algorithms we present in columns 7− 8 of Table 1
a percent of correct screening and percent of correct selection separated by the slash that
is 100 × P̂ (T ⊆ S) / 100 × P̂ (T̂ = T ). In simulations for the SOS algorithm, we used as
a screening set S = S0 = {j : |θ̂j | > b}, since a double-pass screening S1 does not lead
to significant improvement of selection accuracy. Similarly, for MCR we considered as a
screening set S = {j : |θ̂j | > bZ} after the first iteration of the algorithm. Knowledge of
both screening and selection errors allows us to estimate errors pertaining to ordering and
greedy selection for SOS as well as advantage of MCR over the thresholded Lasso. Note
that algorithms behave differently in that whereas for MCR probability of correct selection
is larger than that of screening after the first iteration, the opposite is true for SOS. Both
measures for all grid parameters are reported in Appendix A.4.

All results are based on N = 5000 replicates as for estimation a success probability
π ≈ 0.75 (corresponding crudely to our selection accuracies) in N Bernoulli experiments
with prescribed error η = 0.01 and confidence level 1 − γ = 0.9, we need N ≈ π(1 −
π)η−2(Φ−1(1 − γ/2))2 ≈ 5000, where Φ−1 denotes the quantile function of the standard
normal distribution.

978
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8.2 Conclusions from the Experiments

Computing time of both SOS and MCR is dominated by calls to the lars function which
is used to compute the Lasso, and as MCR uses l = 8 calls of this function and SOS only
one, so MCR is around eight time slower than SOS.

For model M1, MCR is substantially more precise then SOS in selecting the true subset
of variables: 97% versus 71%. Recall that the highest accuracy given in Zhang (2013) is
93%. The SOS selection error is mostly due to the screening error of the Lasso as in the
case of relatively large number of true predictors compared to n, the Lasso finds it difficult
to filtering in all of them.

For models M2 and M3, SOS is more precise than MCR by approximately 5%. We
note that optimal grid penalty rL for SOS and MCR coincide whereas the threshold b is
approximately twice as large for MCR as for SOS. As the results for SOS are better in
these cases it turns out that thresholding the Lasso, ranking the remaining estimators and
optimizing GIC in the nested family is superior to MCR iterations performed on the same
initial Lasso estimator.

In conclusion, if we expect large number of genuine predictors compared to sample size,
MCR is preferable, but for the sparse high-dimensional scenario SOS may be faster and
more accurate.

For practical model selection we recommend the following easily achievable strategy.
After performing the Lasso, we look at the paths of parameters and choose only those
whose magnitude is substantially larger than others. This yields screening set S on which
LS is computed, and then screened regressors are ordered according to their |t| statistics
from the fit. Finally we look for an ’elbow’ of RJ in the nested family of the models
J ∈ {∅, {j1}, {j1, j2}, . . . , S} which determines a cut-off point.

9. Concluding Remarks

We introduce the three-step SOS algorithm for a linear model selection. The most compu-
tationally demanding part of the method is screening of predictors by the Lasso. Ordering
and greedy GIC could be computed using only two QR decompositions of X0S1 . In the
paper we give non-asymptotic upper bounds on error probabilities of each step of SOS
in terms of the Lasso and GIC penalties (Theorem 1). As corollaries we obtain selection
consistency for different (n, p) scenarios under conditions which are needed for screening
consistency of the Lasso (Corollaries 1-2). The SOS algorithm is an improvement of the
new version of the thresholded Lasso (Zhou, 2009, 2010) and turns out to be competitive
for MCR, the latest quasiconvex penalized LS (Zhang, 2010b, 2013). The condition on cor-
relation of predictors assumed there seems to be stronger than ours, whereas the beta-min
condition may be weaker (compare discussion of Corollary 2 and Theorem 3). Theoretical
comparison of SOS and MCR, in general, requires comparing λ3t and κ2(T, 3) and remains
an open problem. In simulations for the sparse high-dimensional scenario, SOS was faster
and more accurate than MCR. For a traditional setting when n > p we give Sanov-type
bounds on error probabilities of the OS algorithm (Theorem 2). It is surprising consequence
of Theorems 1-2 that the selection error of greedy GIC is asymptotically not larger than of
exhaustive GIC, see formula (25). Comparison of selection errors probabilities of the SOS
and OS algorithms for p < n requires further research.
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It is worth noticing that all results are proved for general form of the Lasso defined in
(6), which encompasses two versions of the estimator: algorithm used in practice as well as
its formal version.
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Appendix A: Proofs and Supplemental Tables.

In the Appendix we provide all proofs and supplemental tables for numerical experiments.

A.1 Proofs for Section 3.

Proof of Proposition 1. We have

2σ2KL(β̃∗T ||β̃J) = 2σ2Eβ̃∗T

(
||y − X̃J β̃J ||2 − ||y − X̃T β̃

∗
T ||2

2σ2

)
= ||X̃T β̃

∗
T − X̃J β̃J ||2.

The last expression is symmetric with respect to β̃∗T and β̃J , thus KL(β̃∗T ||β̃J) = KL(β̃J ||β̃∗T )
and the second equality in (i) follows. For the proof of the first equality in (i) observe that
δ(T ||J) = minβ̃J ||X̃T β̃

∗
T − X̃J β̃J ||2. The equality in (ii) follows from (10), the inequality

there follows from Rayleigh-Ritz theorem.

Proof of Proposition 3. We can assume that c ≥ 1. Consider a model J and a vector
ν such that J ⊇ supp(ν) and |J | = (bcc + 1)s and κ2(bcc + 1)s, 0) = νTΣν/νT ν. Sort
coordinates of ν in nonincreasing order |νj1 | ≥ |νj2 | . . . ≥ |νj(bcc+1)s

| and let J0 = {j1, . . . , js}.
Then we have |J0| = s, |νJ̄0

| ≤ bcc|νJ0 | ≤ c|νJ0 | and (bcc+ 1)νTJ0
νJ0 ≥ νT ν. Thus

κ2(s, c) ≤ νTΣν

νTJ0
νJ0

≤ (bcc+ 1)
νTΣν

νT ν
= (bcc+ 1)κ2((bcc+ 1)s, 0)

and the conclusion follows.

Proof of Proposition 4. Assume by contradiction that there are two different true mod-
els T1, T2 such that Ti = supp(βi) = supp(θi) for some different βi = Dθi, i = 1, 2 and
µ0 = X0θ1 = X0θ2. It is enough to prove that assumptions imply γ(T1, 1)γ(T2, 1) = 0,
where γ(J, c) = inf{||X0θJ −X0θJ̄ ||, |θJ | = 1, |θJ̄ | ≤ c} as in view of (13) and Schwarz in-
equality κ(J, c)/

√
|J | ≤ γ(J, c). Define a vector θ with support equal to T1∪T2 in such a way

that θT1∩T2 = θT1∩T2,1− θT1∩T2,2, θT1\T2
= θT1\T2,1 and θT2\T1

= θT2\T1,2. As assumptions on
T1 and T2 are symmetric we may assume that |θT1\T2

| ≥ |θT2\T1
| and let θo = θ/|θT1 |. Then

|θoT1
| = 1 and |θo

T̄1
| = |θoT2\T1

| ≤ 1. Moreover, XθoT1
= Xθo

T̄1
which yields γ(T1, 1) = 0.

Proof of Proposition 5. To prove (i) observe that (11) and (14) imply for j ∈ T

κ2(T, 3) ≤ κ2(T, 0) ≤ θ∗−2
j δ(T ‖ T \ {j}).

980



Combined `1 and Greedy `0 Penalized Least Squares

For (ii) we have

κ2(t, 3)/4 ≤ κ2(4t, 0) = min
J :|J |≤4t

λmin(ΣJ) ≤ min
J :J⊇T,|J |≤4t

λmin(ΣJ)

= min
J :J+T,|J∪T |≤4t

λmin(ΣJ∪T ) ≤ θ∗−2
min min

J :J+T,|J∪T |≤4t
δ(T ||J)

≤ θ∗−2
min min

j∈T,J⊇T,|J |≤4t
δ(T ||J \ {j}) = θ∗−2

minδ(T, 4t),

where the first inequality follows from the Proposition 3 and the third from (11).

A.2 Proofs for Section 6.

We now proceed to prove Theorem 4 and its corollaries. The following modified version of
Lemma 1 in Bunea et al. (2007) holds.

Lemma 1 (i) We have on A for an arbitrary β ∈ Rp and J = {j : βj 6= 0}

||µ0 − µβ̂||
2 + rL|∆| ≤ ||µ0 − µβ||2 + 4rL|∆J |. (33)

(ii) Moreover, we have

||µ0 − µβ̂||
2 ≤ ||µ0 − µβ||2 + 3rL|∆J |. (34)

Proof. It follows from (6) that

||H0(ε+ µ−Xβ̂)||2 + 2rL|Dβ̂| ≤ ||H0(ε+ µ−Xβ)||2 + 2rL|Dβ|.

Equivalently, as H0 is symmetric and idempotent, we get

||H0(µ−Xβ̂)||2 ≤ ||H0(µ−Xβ)||2 + 2εTH0X(β̂ − β) + 2rL(|Dβ| − |Dβ̂|).

Thus we obtain the basic inequality

||µ0 − µβ̂||
2 ≤ ||µ0 − µβ||2 + 2εTX0(θ̂ − θ) + 2rL(|θ| − |θ̂|).

On A we have |2εTX0(θ̂ − θ)| ≤ 2 maxj |xT0jε||θ̂ − θ| ≤ rL|θ̂ − θ| and whence on this set

||µ0 − µβ̂||
2 + rL|θ̂ − θ| ≤ ||µ0 − µβ||2 + 2rL(|θ̂ − θ|+ |θ| − |θ̂|).

Note that for j 6∈ J |θ̂j − θj |+ |θj | − |θ̂j | = 0 and thus

||µ0 − µβ̂||
2 + rL|θ̂ − θ| ≤ ||µ0 − µβ||2 + 2rL(|θ̂J − θJ |+ |θJ | − |θ̂J |).

Thus (i) follows from triangle inequality and (ii) from (i) in view of |θ̂J − θJ | ≤ |θ̂ − θ|.

Proof of Theorem 4. Proof of (i). Let J = Jβ and κ = κ(J, 3). We consider two cases:
(a) |∆| > 4|∆J | and (b) |∆| ≤ 4|∆J |. In the case (a) it follows from (33) that stronger
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inequality ||µ0 − µβ̂|| ≤ ||µ0 − µβ|| holds. When (b) is satisfied we have |∆J̄ | ≤ 3|∆J | and

it follows from the definition of κ that κ2||∆J ||2 ≤ ||X0∆||2 = ||µβ̂ − µβ||
2 and thus

||∆J || ≤ ||µβ̂ − µβ||κ
−1. (35)

Using (35) and Jensen inequality we get

|∆J | ≤ |J |1/2||µβ̂ − µβ||κ
−1. (36)

It follows now from (34), (36) and triangle inequality that

||µ0 − µβ̂||
2 ≤ ||µ0 − µβ||2 + 3rL|J |1/2κ−1(||µ0 − µβ̂||+ ||µ0 − µβ||)

and whence

(||µ0 + µβ̂||+ ||µ0 − µβ||)(||µ0 − µβ̂|| − ||µ0 − µβ||) ≤ 3rL|J |1/2κ−1(||µ0 − µβ̂||+ ||µ0 − µβ||)

from which the conclusion follows.

Proof of (ii). Define m = ||µ0 − µβ||, m̂ = ||µ0 − µβ̂|| and c = 2rL|J |1/2κ−1. Using (33),

(36) which holds provided |∆| ≤ 4|∆J |, and triangle inequality we get

m̂2 + rL|∆| ≤ m2 + 2c(m̂+m) ≤ 2m2 + c2 + m̂2 + c2,

from which the desired bound follows.

Proof of Corollary 8. The proof follows from inequality (35), (36) and the second in-
equality in Corollary 7.

A.3 Proofs for Section 4.

The next lemma states bounds on upper tail of χ2
k distribution

Lemma 2 Let Wk denote variable having χ2
k distribution.(i) (Gordon, 1941 and Mill, 1926)

We have for k = 1 and x > 0

wxklxk ≤ P (Wk ≥ x) ≤ wxk, (37)

where wxk = e−x/2(x2 )k/2−1Γ−1(k2 ) and lxk = x
x−k+2 .

(ii) (Inglot and Ledwina, 2006) Let k > 1 and x > k − 2. Then

wxk ≤ P (Wk ≥ x) ≤ wxklxk. (38)

Proof. We provide the unified reasoning for both cases. For x > 0 and k ∈ Z let Ik(x) =∫∞
x t(k/2)−1e−t/2 dt. Integration by parts yields

Ik(x) = 2x(k/2)−1e−x/2 + (k − 2)Ik−2(x). (39)
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It is easy to see that the following inequalities hold for x > 0 and k ∈ Z

0 ≤ Ik−2(x) ≤ Ik(x)/x. (40)

We treat cases k = 1 and k > 1 separately, as k = 1 is the only integer for which the second
term on the RHS of (39) is negative. Dividing both sides of (39) by 2k/2Γ(k/2), noting that
the LHS is then P (Wk ≥ x) and using (40) we have for k = 1 and x > 0

P (Wk ≥ x) ≤ e−x/2
(x

2

)−1/2
Γ−1

(1

2

)
and

P (Wk ≥ x) ≥ e−x/2
(x

2

)−1/2
Γ−1

(1

2

)(
1− 1

1 + x

)
,

which proves (37). Analogously for k = 2, 3, . . . we obtain from (39) inequalities proved by
Inglot and Ledwina (2006)

P (Wk ≥ x) ≤ e−x/2
(x

2

)k/2−1
Γ−1

(k
2

)(
1 +

k − 2

x− k + 2

)
for x > k − 2, and for x > 0

P (Wk ≥ x) ≥ e−x/2
(x

2

)k/2−1
Γ−1

(k
2

)
,

which proves (38).

Now we state the main lemma from which Theorems 1 and 2 follow. Let us recall that
c1 = (3 + 6

√
2)−1 and c2 = (6 + 4

√
2)−1. Define T on = Tn \ {T} and observe that for OS

algorithm we have P (S1 6∈ Tn) = 0 and as p ≥ t+ 1, Tn = T on = {F}, so |T on | = 1.

Lemma 3 (T1) If r2
L ≤ b2/36 ≤ c2

1t
−1κ4θ∗2min, then

P (S1 6∈ Tn) ≤ p exp

(
−

r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

.

(T2) If s ≤ n, then

P (S1 ∈ Tn, Ô 6∈ OS1) ≤ 3

2
|T on |t(s− t) exp

(
− c2δs

σ2

)(
πc2δs
σ2

)−1/2

.

(T3) If for some a ∈ (0, 1) r ≤ at−1δt, then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | < t) ≤ t

2
exp

(
− (1− a)2δt

8σ2

)(
π(1− a)2δt

8σ2

)−1/2

.

(T4) Assume that r/σ2 ≥ 2 and (r/σ2)− log(r/σ2) ≥ 2 log p. Then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | > t) ≤ (p− t)(s− t) exp

(
− r

2σ2

)(
πr

2σ2

)−1/2

.
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Proof. Observe that we may assume that t > 0 in proofs of (T2) − (T3) as for t = 0
probabilities appearing in those parts are 0 and the conclusions are trivially satisfied.

Proof of (T1). It follows from (29) or equivalently from Lemma 2 that it is enough to
prove that {S1 ∈ Tn} ⊇ A that is that on A we have

T ⊆ S1 and |S1| ≤ t+ b
√
tκ−2c. (41)

For parametric models µβ = µ0 and from (33) we have |∆| ≤ 4|∆T | or equivalently
4|∆T̄ | ≤ 3|∆|, which together with the first part of (32) yields

|∆T̄ | ≤ 6rLtκ
−2. (42)

From the assumption 6rL ≤ b and (42) we obtain |S0 \ T | < |∆T̄ |/b ≤ tκ−2, |S0| <
t(1 + κ−2) and B < b

√
t(1 + κ−2). Using this and the first part of Corollary 8 we have

||∆T ||+B < θ∗min or

||∆T ||2 < (θ∗min −B)2.

Indeed, from Corollary 8, the fact that κ ≤ 1 and the assumption of the lemma, respectively,
we have

||∆T ||+B < 3rLt
1/2κ−2 + b

√
t(1 + κ−2) ≤ 0.5bt1/2κ−2(1 + 2

√
κ4 + κ2)

≤ 0.5(1 + 2
√

2)bt1/2κ−2 = (6c1)−1bt1/2κ−2 ≤ θ∗min.

Evidently, |T \ S1|(θ∗min − B)2 ≤ ||∆T ||2 < (θ∗min − B)2 and thus we have T ⊆ S1 on
A. But S1 ⊆ S0, hence |S0| ≥ t and B ≥ bt1/2. Thus using (42) again, we have
|S1 \ T | < |∆T̄ |/B ≤ t1/2κ−2. Hence |S1 \ T | ≤ bt1/2κ−2c and we obtain (41).

Proof of (T2). Let for J1 ∈ Sn \Tn and J2 ∈ Tn WJ1J2 = εT (H̃J1 − H̃J1∩J2)ε, σ2WJ2J1 =
εT (H̃J2 − H̃J1∩J2)ε and σZJ1 = β̃∗TT X̃T

T (I − H̃J1)ε/
√
δJ1 , where δJ1 = δ(T ‖ J1). Then we

have that WJ1J2 ∼ χ2
d, where d ≤ |J1 \ J2|, WJ2J1 ≥ 0 and ZJ1 ∼ N(0, 1). We will use a

popular decomposition of a difference between sums of squared residuals

RJ1 −RJ2 = β̃∗TT X̃T
T (I − H̃J1)X̃T β̃

∗
T + 2β̃∗TT X̃T

T (I − H̃J1)ε
+ εT (I − H̃J1)ε− εT (I − H̃J2)ε
= δJ1 + 2

√
δJ1σZJ1 − σ2WJ1J2 + σ2WJ2J1

≥ δJ1

(
1 +

2σZJ1√
δJ1

− σ2WJ1J2

δJ1

)
.

For fixed S ∈ T on let j̄ = S \ {j}. Then we have from (9)

{S1 ∈ T on , Ô 6∈ OS1} ⊆
⋃
S∈T o

n

⋃
j1∈T

⋃
j2∈S\T

{Rj̄1 ≤ Rj̄2}

⊆
⋃
S∈T o

n

⋃
j1∈T

⋃
j2∈S\T

{
−

2σZj̄1√
δj̄1

+
σ2Wj̄1j̄2

δj̄1
≥ 1
}
,
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where Zj̄1 ∼ N(0, 1) and Wj̄1j̄2 ∼ χ
2
d, with d ≤ 1. Thus it follows that for W = Z2 denoting

r.v. with χ2
1 distribution, we get

P (S1 ∈ T on , Ô 6∈ OS1) ≤
∑
S∈T o

n

∑
j1∈T

∑
j2∈S\T

P
(
−

2σZj̄1√
δj̄1

+
σ2Wj̄1j̄2

δj̄1
≥ 1
)

≤
∑
S∈T o

n

∑
j1∈T

∑
j2∈S\T

(
P
(
−

2σZj̄1√
δj̄1
≥ c
)

+ P
(σ2Wj̄1j̄2

δj̄1
≥ 1− c

))
≤ |T on |t(s− t)

(1

2
P
(
Z2 ≥ c2δs

4σ2

)
+ P

(
W ≥ (1− c)δs

σ2

))
,

where j1 ∈ T and j2 ∈ S\T are fixed and we used δj̄1 ≥ δs. Choosing c such that c2/4 = 1−c
that is c = 1− 2c2 in view of Lemma 2 we get the desired bound.

Proof of (T3). Reasoning as previously we have for j̄ = T \ {j}

{S1 ∈ Tn, Ô ∈ OS1 , |T̂ | < t} ⊆
⋃
S⊂T
{RS + r|S| ≤ RT + r|T |} ⊆

⋃
j∈T
{Rj̄ ≤ RT + rt}.

Thus in view of Lemma 2 and the assumption rt < aδt we obtain

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | < t) ≤
∑
j∈T

P (Rj̄ ≤ RT + rt)

≤
∑
j∈T

P
(
− 2σZj̄ ≥

√
δj̄

(
1− rt

δj̄

))
≤ tP

(
− 2σZ ≥

√
δt

(
1− rt

δt

))
=

t

2
P
(
W ≥ 1

4σ2
δt

(
1− rt

δt

)2)
≤ t

2
exp

(
− (1− a)2δt

8σ2

)(
π(1− a)2δt

8σ2

)−1/2

.

Proof of (T4). Observe first that for m > 0

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | = t+m)
≤ P (RT∪{j1,...,jm} + (t+m)r ≤ RT + tr for some j1, . . . , jm ∈ F \ T )

≤
(
p− t
m

)
P (σ2Wm ≥ mr) ≤

(p− t)m

m!
P (σ2Wm ≥ mr) = Bm,

where Wm ∼ χ2
m. This follows since for any fixed J = T ∪ {j1, . . . , jm} we have RT −RJ ∼

σ2χ2
d, where d ≤ m and Wd ≤Wm in stochastic order. We will show that under conditions

given in (T4) Bm ≥ Bm+1 for any m = 1, 2, . . . thus yielding

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | ≥ t+m) ≤ (s− t−m+ 1)Bm,

which for m = 1 coincides with the desired inequality. Let Qm = Bm/Bm+1, r̄ = r/σ2 and
observe that for m > 1 we have in view of (38) (note that mr̄ ≥ m− 2 as r̄ ≥ 2)

Qm ≥
m+ 1

p
er̄/2

( m

m+ 1

)m/2−1 1(
(m+ 1)r̄/2

)1/2 Γ((m+ 1)/2)

Γ(m/2)

(m+ 1)r̄ −m+ 1

(m+ 1)r̄
.
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Using the inequality for gamma functions (cf. formula 2.2 in Laforgia, 1984)

Γ
(m+ 1

2

)/
Γ
(m

2

)
≥
(m− 1/2

2

)1/2

we have that

Qm ≥ exp
{ r̄

2
− 1

2
log r̄ − log p

}
f1(m, r̄),

where

f1(m, r̄) =
( m

m+ 1

)m/2−1
(m+ 1)1/221/2

(m− 1/2

2

)1/2 (m+ 1)r̄ −m+ 1

(m+ 1)r̄
.

Thus in order to show that Qm ≥ 1 for m > 1 in view of assumptions it is enough to
show that f1(m, r̄) > 1. As f(m, ·) is increasing, it suffices to check that f1(m, 2) > 1. Let

f2(m) = (m−1/2
m+1 )(m−1)/2(m+3

2 ). We have f1(m, 2) > f2(m) and f2(2) > 1 thus it is enough
to show that f2 is increasing. Let

f3(m) = log(2f2(m)) =
m− 1

2
log

m− 1/2

m+ 1
+ log(m+ 3).

We have that

f ′3(m) =
1

2
log

m− 1/2

m+ 1
+
m− 1

2

m+ 1

(m− 1/2)

3

2(m+ 1)2
+

1

m+ 3

≥ 1

2

−3

−3 + 2(m+ 1)
+

3(m− 1)

4(m− 1/2)(m+ 1)
+

1

m+ 3
,

where the last inequality follows from log(1 + x) > x/(1 + x) for x > −1. As 1/(m+ 3) ≥
3/(−6 + 2(m+ 1)) it follows that f ′3 > 0 which implies that f3 and thus f2 is increasing.

Proof of Theorem 1. The result readily follows from Lemma 3. For (T1) we observe that

−
r2
L

8σ2
+ log p ≤ −

(1− a)r2
L

8σ2

is equivalent to 8σ2a−1 log p ≤ r2
L. Similar reasoning yields (T4). Consider derivation of

(T2). From the bound

|T on | = |Tn| − 1 =
s−t∑
k=1

(
p− t
k

)
≤ (p− t) + . . .+

(p− t)s−t

(s− t)!
≤ (p− t)s−t

(s− t)!
(s− t)

it follows that |T on |t(s− t) ≤ (p− t)s−tt(s− t) ≤ ps−tt(s− t). Thus the bound in (T2) will
follow from −c2δn/σ

2 + (s− t) log p+ log(s− t) + log t ≤ −c2(1− a)δs/σ
2 which is implied

by (s− t+ 2) log p ≤ c2aδs/σ
2. For (T3) we observe that

−(1− a)2δt
8σ2

+ log t ≤ −(1− a)3δt
8σ2

is equivalent to 8σ2 log t ≤ (1− a)2aδt.
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Proof of Corollary 1. We proceed by showing that assumptions (i) and (ii) imply all
assumptions of Theorem 1. We first note that (i) with the assumption r2

L = 4r is stronger
than the assumption in Theorem 1 (T1). Next, observe that condition

4a−1σ2 log p ≤ (4c2/3)t−1/2κ2δs (43)

is stronger than the assumption in Theorem 1 (T2). Indeed, as κ ≤ 1 ≤ t we have

s− t+ 2 = bt1/2κ−2c+ 2 ≤ t1/2κ−2 + 2 ≤ 3t1/2κ−2.

Obviously, left inequalities in (i) and (ii) imply (43). Moreover, the assumption of Theorem
1 (T4) is satisfied. Furthermore, from the first κ − δ inequality (15) and assumption a ∈
(0, 1− c1) we obtain that (i) is stronger than both conditions in Theorem 1 (T3).

In order to justify the conclusion, in view of the fact that e−(1−a)x(πx)−1/2 is decreasing
function of x > 0, it is enough to show that the expressions in the exponents of the bounds
(19) and (20) are larger than r/(2σ2) that is a value in the exponents of the bounds (18)
and (21) . In the case of (19) the condition is equivalent to r ≤ 2c2δs, which is implied by
(ii). In the case of (20) the ensuing inequality is implied by r ≤ ((1 − a)2/4)κ2θ∗2min which
in turn is implied by (i) as a ∈ (0, 1− c1).

Proof of Theorem 2. Let us recall that for OS algorithm we have P (S1 6∈ Tn) = 0 and
|T on | = 1, so the results follow from Lemma 3 analogously to Theorem 1.

Proof of Corollary 3. We proceed as in the proof of Corollary 1. The following condition

4a−1σ2 log p ≤ 2c2δs. (44)

is stronger than the assumption in Theorem 2. The assumption imply (44) and the assump-
tion of (T4). Furthermore, from the first κ− δ inequality (15) and assumption a ∈ (0, 2c2)
we obtain that the assumption is stronger than both conditions in (T3).

Next we show that the powers in the exponents of the bounds (19) and (20) are larger
than r/(2σ2). In the case of (19) the condition is equivalent to r ≤ 2c2δs which is implied by
the assumption. In the case of (20) the ensuing inequality is implied by r ≤ ((1− a)2/4)δt,
which is implied by r ≤ at−1δt because for a ∈ (0, 1) a condition a ≤ (1−a)2/4 is equivalent
to a ∈ (0, 2c2).

A.4 Proof for Section 5.

Proof of Theorem 3. Let vTj = xTj (I − HT ) for j 6∈ T and 0 otherwise and uTj =

eTj (XT
TXT )−1XT

T for j ∈ T and 0 otherwise, where ej is the unit vector having 1 as the jth
coordinate. Let

A =
{
∀j ∈ F |vTj ε| <

2rZ
7

, |uTj ε| <
2rZ
7λt

}
.

Using the left part of the assumption (ii), we observe that the following statement, which
is equivalent of Lemma 3 in Zhang (2013) in the case of Gaussian errors, holds

P (Ac) ≤ exp
(−c3(1− a)r2

Z

σ2

)(c3πr
2
Z

σ2

)−1/2
. (45)
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Then the proof of Theorem 3 follows the lines of the original proof in Zhang (2013), but
just before the end we simplify the condition l > l0 + 1, noting that

l0 =
ln t

2 ln(λ1.5t+sbZ/(6rZ))
≤ ln t

2 ln(1.5)
< 1.24 ln t.

In order to prove (45) observe that for j 6∈ T var(vTj ε) = σ2xTj (I − HT )xj ≤ σ2 and

Wj = (vTj ε)
2/var(vTj ε) ∼ χ2

1. Thus using Mill’s inequality (37) we have

P
(
|vTj ε| ≥

2rZ
7

)
≤ P

(
Wj ≥

2c3r
2
Z

σ2

)
≤ exp

(−c3r
2
Z

σ2

)(c3πr
2
Z

σ2

)−1/2
. (46)

Using the same reasoning for j ∈ T with var(uTj ε) = σ2eTj (XT
TXT )−1ej ≤ σ2λ−1

t and

W̃j = (uTj ε)
2/var(uTj ε) ∼ χ2

1, we have

P
(
|uTj ε| ≥

2rL

7
√
λt

)
≤ P

(
W̃j ≥

2c3r
2
Z

σ2

)
≤ exp

(−c3r
2
Z

σ2

)(c3πr
2
Z

σ2

)−1/2
. (47)

From (46) and (47) we obtain with c = 2c3r
2
Z/σ

2

P (Ac) ≤
∑
j∈T

P (W̃j ≥ c) +
∑
j 6∈T

P (Wj ≥ c) ≤ p exp
(−c3r

2
Z

σ2

)(c3πr
2
Z

σ2

)−1/2
.

Finally, we observe that inequality

−c3r
2
Z/σ

2 + log p ≤ −(1− a)c3r
2
Z/σ

2

is equivalent to the left part of the assumption (ii) of the theorem c−1
3 a−1σ2 log p ≤ r2

Z , thus
yielding (45).
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A.4 Tables for Section 8.

rL \ b 1.3 1.9 2.5 3.1 3.7

0.01 74.9 / 55.9 73.8 / 65.3 72.5 / 70.5 70.8 / 70.3 68.7 / 68.4
1.0 74.9 / 57.9 73.8 / 67.0 72.5 / 71.0 70.8 / 70.5 68.7 / 68.6
2.5 74.7 / 60.7 73.6 / 68.7 72.3 / 71.3 70.6 / 70.4 68.6 / 68.6
5.0 74.0 / 64.7 72.8 / 70.2 71.6 / 71.1 69.5 / 69.5 67.6 / 67.6
10.0 70.1 / 67.2 68.4 / 68.1 66.5 / 66.5 64.2 / 64.2 62.0 / 62.0

Table 2: Screening / selection accuracy of SOS for M1, r = 20.

rL \ b 0.6 0.9 1.2 1.5 1.8

5.0 95.7 / 74.0 94.2 / 78.8 92.6 / 83.9 90.6 / 86.0 88.5 / 85.7
10.0 95.5 / 78.1 94.2 / 83.4 92.5 / 86.7 90.5 / 87.1 87.8 / 85.4
15.0 94.7 / 82.0 93.1 / 85.9 91.3 / 87.5 89.1 / 86.6 86.1 / 84.2
20.0 93.1 / 85.1 91.2 / 86.7 89.1 / 86.4 86.1 / 84.2 83.6 / 82.2
30.0 87.6 / 84.7 85.1 / 83.1 82.2 / 80.9 78.4 / 77.4 75.2 / 74.4

Table 3: Screening / selection accuracy of SOS for M2, r = 20.

rL \ b 0.4 0.8 1.2 1.6 2.0

2.5 93.0 / 69.4 90.1 / 70.0 86.4 / 74.4 82.4 / 75.5 78.3 / 74.3
5.0 93.0 / 69.7 90.1 / 71.6 86.4 / 75.3 82.4 / 76.0 78.2 / 74.7
10.0 92.5 / 70.0 89.4 / 72.8 85.6 / 76.3 81.9 / 76.2 77.8 / 74.8
15.0 91.7 / 71.2 88.6 / 74.8 84.9 / 76.9 80.4 / 76.0 76.5 / 74.2
25.0 88.7 / 74.8 84.8 / 76.8 80.5 / 76.0 76.0 / 73.7 72.2 / 71.0
35.0 82.0 / 76.1 77.4 / 74.2 73.2 / 71.6 68.7 / 67.9 64.5 / 64.2

Table 4: Screening / selection accuracy of SOS for M3, r = 20.

rZ \ bZ 4.0 5.0 6.0 7.0

0.5 67.5 / 63.0 63.3 / 90.9 57.8 / 95.6 50.7 / 94.2
2.5 67.5 / 75.0 63.3 / 94.1 57.8 / 96.3 50.7 / 94.6
5.0 66.2 / 84.5 61.9 / 95.4 56.0 / 96.9 48.7 / 94.8
10.0 60.8 / 90.4 55.2 / 96.5 49.0 / 96.9 41.8 / 94.2
20.0 43.8 / 93.9 37.3 / 96.8 31.4 / 96.0 25.6 / 90.0
30.0 28.0 / 94.2 23.0 / 95.3 18.9 / 90.0 15.1 / 78.8

Table 5: Screening / selection accuracy of MCR for M1, l = 8.
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rZ \ bZ 2.5 3.0 3.5 4.0

2.5 82.5 / 40.0 76.6 / 72.2 70.3 / 79.9 63.7 / 76.5
5.0 82.0 / 49.5 76.0 / 76.2 69.8 / 80.8 63.3 / 76.3
10.0 80.9 / 64.2 75.3 / 80.2 68.9 / 81.1 62.1 / 75.2
15.0 78.5 / 72.7 72.8 / 81.9 66.5 / 80.4 59.6 / 73.2
20.0 75.6 / 76.8 69.7 / 81.5 63.3 / 78.0 56.5 / 70.9
25.0 71.6 / 78.1 65.2 / 79.6 59.0 / 74.0 52.8 / 67.1

Table 6: Screening / selection accuracy of MCR for M2, l = 8.

rZ \ bZ 1.3 1.95 2.6 3.25

5.0 85.8 / 0.2 79.0 / 28.5 71.4 / 67.1 63.1 / 68.5
10.0 85.5 / 1.6 78.0 / 45.8 70.7 / 71.1 62.4 / 68.4
15.0 84.6 / 7.7 77.4 / 58.5 69.4 / 72.5 61.2 / 66.9
20.0 82.9 / 22.2 75.5 / 66.9 67.1 / 72.2 59.2 / 65.0
25.0 80.2 / 40.4 72.2 / 71.4 64.5 / 70.6 56.7 / 62.6
30.0 77.1 / 53.6 69.1 / 71.2 61.2 / 67.1 54.0 / 59.3
40.0 67.1 / 64.1 60.0 / 64.3 53.1 / 58.5 46.4 / 50.9

Table 7: Screening / selection accuracy of MCR for M3, l = 8.
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S. van de Geer, P. Bühlmann, and S. Zhou. The adaptive and the thresholded Lasso for
potentially misspecified models (and a lower bound for the Lasso). Electronic Journal of
Statistics, 5:688–749, 2011.

Z. Wang, H. Liu, and T. Zhang. Optimal computational and statistical rates of convergence
for sparse nonconvex learning problems. ArXiv, 2014.

C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of
Statistics, 38:894–942, 2010a.

C.H. Zhang and T. Zhang. A general theory of concave regularization for high-dimensional
sparse estimation problems. Statistical Science, 27:576–593, 2012.

T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of
Machine Learning Research, 11:1081–1107, 2010b.

T. Zhang. Multistage convex relaxation for feature selection. Bernoulli, 19:2277–2293, 2013.

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning
Research, 7:2541–2563, 2006.

H. Zheng and W. Loh. Consistent variable selection in linear models. Journal of the
American Statistical Association, 90:151–156, 1995.

S. Zhou. Thresholding procedures for high dimensional variable selection and statistical
estimation. In NIPS, pages 2304–2312, 2009.

S. Zhou. Thresholded Lasso for high dimensional variable selection and statistical estima-
tion. ArXiv, 2010.

H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418–1429, 2006.

H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models.
Annals of Statistics, 36:1509–1533, 2008.

992



Journal of Machine Learning Research 16 (2015) 993-1034 Submitted 12/13; Revised 8/14; Published 5/15

Learning with the Maximum Correntropy Criterion Induced
Losses for Regression

Yunlong Feng yunlong.feng@esat.kuleuven.be

Xiaolin Huang huangxl06@mails.tsinghua.edu.cn

Department of Electrical Engineering, ESAT-STADIUS, KU Leuven

Kasteelpark Arenberg 10, Leuven, B-3001, Belgium

Lei Shi leishi@fudan.edu.cn

Shanghai Key Laboratory for Contemporary Applied Mathematics

School of Mathematical Sciences, Fudan University, Shanghai, 200433, P.R. China

Yuning Yang yuning.yang@esat.kuleuven.be

Johan A. K. Suykens johan.suykens@esat.kuleuven.be

Department of Electrical Engineering, ESAT-STADIUS, KU Leuven

Kasteelpark Arenberg 10, Leuven, B-3001, Belgium

Editor: Saharon Rosset

Abstract

Within the statistical learning framework, this paper studies the regression model associ-
ated with the correntropy induced losses. The correntropy, as a similarity measure, has
been frequently employed in signal processing and pattern recognition. Motivated by its
empirical successes, this paper aims at presenting some theoretical understanding towards
the maximum correntropy criterion in regression problems. Our focus in this paper is two-
fold: first, we are concerned with the connections between the regression model associated
with the correntropy induced loss and the least squares regression model. Second, we study
its convergence property. A learning theory analysis which is centered around the above
two aspects is conducted. From our analysis, we see that the scale parameter in the loss
function balances the convergence rates of the regression model and its robustness. We then
make some efforts to sketch a general view on robust loss functions when being applied into
the learning for regression problems. Numerical experiments are also implemented to verify
the effectiveness of the model.

Keywords: correntropy, the maximum correntropy criterion, robust regression, robust
loss function, least squares regression, statistical learning theory

1. Introduction and Motivation

Recently, a generalized correlation function named correntropy (see Santamaŕıa et al., 2006)
has drawn much attention in the signal processing and machine learning community (see Liu
et al., 2007; Gunduz and Pŕıncipe, 2009; He et al., 2011a,b). Formally speaking, correntropy
is a generalized similarity measure between two scalar random variables U and V , which
is defined by Vσ(U, V ) = EKσ(U, V ). Here Kσ is a Gaussian kernel given by Kσ(u, v) =
exp

{
−(u− v)2/σ2

}
with the scale parameter σ > 0, (u, v) being a realization of (U, V ).

c©2015 Yunlong Feng, Xiaolin Huang, Lei Shi, Yuning Yang, and Johan A.K. Suykens.
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In this paper, we are interested in the application of the similarity measure Vσ in re-
gression problems, namely, the maximum correntropy criterion for regression. Therefore,
we first assume that the data generation model is given as

Y = f?(X) + ε, E(ε |X = x) = 0. (1)

In model (1), X is the explanatory variable that takes values in a separable metric space
X and Y ∈ Y = R stands for the response variable. The main purpose of the regression
problem is to estimate f∗ from a set of observations generated by (1). The underlying
unknown probability distribution on Z := X × Y is denoted as ρ.

Under the regression model (1), probably the most widely employed methodology for
quantifying the regression efficiency is the mean squared error. This is the classical tool
that minimizes the variance of ε and belongs to the second-order statistics. The drawback
of the second-order statistics is that its optimality depends heavily on the assumption of
Gaussianity. However, in many real-life applications, data may be contaminated by non-
Gaussian noise or outliers. This motivates the introduction of the maximum correntropy
criterion into the regression problems.

Given a set of i.i.d observations z = {(xi, yi)}mi=1, for any f : X → Y, the empirical
estimator of the correntropy between f(X) and Y is given as

V̂σ,z(f) =
1

m

m∑
i=1

Kσ(yi, f(xi)).

The maximum correntropy criterion for regression models the output function via maximiz-
ing the empirical estimator of Vσ as follows

fz = arg max
f∈H
V̂σ,z(f),

where H is a certain underlying hypothesis space. The maximum correntropy criterion in
regression problems has shown its efficiency for cases when the noises are non-Gaussian,
and also with large outliers (see Santamaŕıa et al., 2006; Liu et al., 2007; Pŕıncipe, 2010;
Wang et al., 2013). It has also succeeded in many real-world applications, e.g., wind power
forecasting (see Bessa et al., 2009) and pattern recognition (see He et al., 2011b).

In this paper, we attempt to present a theoretical understanding on the maximum
correntropy criterion for regression (MCCR) within the statistical learning framework. To
this end, we first generalize the idea of the maximum correntropy criterion in regression
problems using the following supervised regression loss:

Definition 1 The correntropy induced regression loss `σ : R× R→ [0,+∞) is defined as

`σ(y, t) = σ2
(

1− e−
(y−t)2

σ2

)
, y ∈ Y, t ∈ R,

with σ > 0 being a scale parameter.

Figure 1 plots the correntropy induced loss function `σ (the `σ loss for short in what
follows) with different choices of σ. Associated with this regression loss, the MCCR model
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Figure 1: Plots of `σ(y, t) = σ2(1− e−(y−t)2/σ2
) with respect to y − t for different σ values:

σ = 0.6 (the dashed curve), σ = 0.8 (the dotted-dashed curve), and σ = 1.1 (the
dotted curve).

that we will investigate is the following empirical risk minimization (ERM) scheme

fz = arg min
f∈H

1

m

m∑
i=1

`σ(yi, f(xi)), (2)

where, throughout, the hypothesis space H is assumed to be a compact subset of C(X ).
Here C(X ) is the Banach space of continuous functions on X with the norm ‖f‖∞ =
supx∈X |f(x)|. Note that the compactness of H ensures the existence of the empirical target
function fz.

We remark that the `σ loss is in fact a variant of the Welsch function, which was originally
introduced in robust statistics (see Holland and Welsch, 1977; Dennis and Welsch, 1978).
Consequently, the estimator from the MCCR model (2) is essentially a non-parametric M-
estimator. For linear regression models, the robustness and the consistency properties of
the M-estimator induced by the `σ loss have been investigated in Wang et al. (2013). In
Santamaŕıa et al. (2006) and Liu et al. (2007), an information-theoretical interpretation of
the `σ loss by viewing it as a correlation measurement is provided.

However, existing theoretical results on understanding the `σ loss and the MCCR model
are still very limited, the barriers of which lie in their non-convexity properties. From
Taylor’s expansion, it is easy to see that there holds `σ(t) ≈ t2 for sufficiently large σ.
Therefore, in some existing empirical studies, the `σ loss has been roughly taken as the
least squares loss when σ is large enough. However, our studies in this paper suggest
that this is in general not the case. On the other hand, the consistency property and the
convergence rates of the MCCR model are yet unknown, which are the central focuses of
the statistical learning research. In view of the above considerations, in this paper, our
main concerns are the following two aspects:
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- We are concerned with the connections between the `σ loss and the least squares
loss when they are employed in regression problems. Therefore, we will study the
relations between the MCCR model (2) and the ERM-based least squares regression
(LSR) model.

- We are concerned with the approximation ability of the output function fz modeled
by (2). More concretely, we aim at carrying out a learning theory analysis to bound
the difference between fz and f?.

It should be mentioned that our study on the MCCR model (2) is inspired by Hu et al.
(2013), which presented comprehensive and thorough studies on the minimum error entropy
criterion from a learning theory viewpoint. According to Hu et al. (2013), a specific form
of the minimum error entropy criterion for regression (MEECR) can be stated as

f̃z = arg min
f∈H

− σ2

m(m− 1)

m∑
i=1

∑
j 6=i

G

{
[(yi − f(xi))− (yj − f(xj))]

2

2σ2

} ,

where G(·) is a window function and can be chosen as G(t) = exp(−t). Hu et al. (2013,
2014) presented the first results concerning the regression consistency and convergence rates
of the above MEECR model and its regularized variant when σ becomes large. Concerning
the two regression models, we can see that MEECR models the empirical target function
f̃z via a pairwise empirical risk minimization scheme while the MCCR model learns in a
point-wise fashion. More discussions on the two different learning schemes will be provided
in Section 2.

The rest of this paper is organized as follows. In Section 2, results on the convergence
rates of the MCCR model (2) in different situations are provided. Discussions and compar-
isons with related studies will be also presented. Section 3 concerns connections between the
two regression models: MCCR and LSR, which are explored from three aspects. Section 4
is dedicated to analyzing the MCCR model and giving proofs of theoretical results stated in
Section 2. Discussions on the role that the scale parameter σ in the `σ loss plays is given in
Section 5. Section 6 makes some efforts in sketching a general view of learning with robust
regression losses. Numerical experiments are implemented in Section 7. We end this paper
with concluding remarks in Section 8.

2. Theoretical Results on Convergence Rates and Discussions

In this section, we provide theoretical results on the convergence rates of the MCCR model
(2). Explicitly, denoting ρX as the marginal distribution of ρ on X , we are going to bound
‖fz − fρ‖2L2ρX

, where fρ is defined as

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X ,

and is assumed to satisfy that fρ ∈ L∞ρX throughout this paper. Due to the zero-mean noise
assumption in the data generation model (1), almost surely there holds fρ = f?. To analyze
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the convergence of the model, we need to introduce the following target function in H

fH = arg min
f∈H

∫
Z

(f(x)− y)2dρ.

In addition, the convergence rates that we are going to present are obtained by controlling
the complexity of the hypothesis space H. Therefore, we need the following definitions and
assumptions to state our main results.

2.1 Definitions and Assumptions

Definition 2 (Covering Number) The covering number of the hypothesis space H, which
is denoted as N (H, η) with the radius η > 0, is defined as

N (H, η) := inf

{
l ≥ 1 : there exist f1, . . . , fl ∈ H, such that H ⊂

l⋃
i=1

B(fi, η)

}
,

where B(f, η) = {g ∈ H : ‖f − g‖∞ ≤ η} denotes the closed ball in C(X ) with center f ∈ H
and radius η.

Definition 3 (`2-Empirical Covering Number) Let x = {x1, x2, . . . , xn} ⊂ X n. The
`2-empirical covering number of the hypothesis space H, which is denoted as N2 (H, η) with
radius η > 0, is defined by

N2 (H, η) := sup
n∈N

sup
x∈Xn

inf
{
` ∈ N : ∃{fi}`i=1 ⊂ H such that for each f ∈ H, there exists some

i ∈ {1, 2, . . . , `} with
1

n

n∑
j=1

|f(xj)− fi(xj)|2 ≤ η2
}
.

Assumption 1 (Complexity Assumption I) There exist positive constants p and cI,p
such that

logN (H, η) ≤ cI,pη−p, ∀ η > 0.

Assumption 2 (Complexity Assumption II) There exist positive constants s and cII,s
with 0 < s < 2, such that

logN2 (H, η) ≤ cII,sη−s, ∀ η > 0.

In learning theory, the covering number is frequently used to measure the capacity of
the hypothesis spaces (see Anthony and Bartlett, 1999; Zhou, 2002). As explained in Zhou
(2002), the Complexity Assumption I is typical in the statistical learning theory literature.
For instance, it holds whenH is chosen as a ball of reproducing kernel Hilbert spaces induced
by Sobolev smooth kernels. The `2-empirical covering number is another data-dependent
complexity measurement and usually leads to sharper convergence rates. Several examples
of hypothesis spaces satisfying the Complexity Assumption II can be found in Guo and
Zhou (2013).
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Assumption 3 (Moment Assumption) Assume that the tail behavior of the response
variable Y satisfies

∫
Z y

4dρ <∞.

We will give some discussions on the above Moment Assumption in Subsection 2.3. In
our study, the Moment Assumption will be employed to analyze the convergence of the
MCCR model. For some specific situations of the regression model (1), in our study we will
also restrict ourselves to the noise that satisfies the following Noise Assumption.

Assumption 4 (Noise Assumption) The density function of the noise variable ε for
any given X = x, which is denoted as pε|X=x, is symmetric and uniformly bounded by the
interval [−M0,M0] with M0 > 0.

2.2 Theoretical Results on Convergence Rates

We are now ready to state our main results on the convergence rates of the MCCR model
(2). Our first result considers a general case of the regression model (1), where the Moment
Assumption is assumed to hold.

Theorem 4 Assume that the Complexity Assumption I with p > 0 and the Moment As-
sumption hold. Let fz be produced by (2). For any 0 < δ < 1, with confidence 1− δ, there
holds

‖fz − fρ‖2L2ρX ≤ 3 ‖fH − fρ‖2L2ρX
+ CH,ρ log(2/δ)

(
σ−2 + σm−1/(1+p)

)
,

where CH,ρ is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

Discussions on the convergence rates established in Theorem 4 are postponed to Sub-
section 2.3. Here we remark that the moment condition in the Moment Assumption which
is used in Theorem 4 can be relaxed to a weaker moment condition, i.e.,

∫
Z |y|

`dρ <
∞ with ` > 2, where meaningful convergence rates can be still derived. Meanwhile, when
the condition in the Moment Assumption is further strengthened, refined convergence rates
can be derived. For instance, when |y| ≤M almost surely for some M > 0, we can get the
following improved convergence rates:

Theorem 5 Assume that the Complexity Assumption II with 0 < s < 2 holds, and |y| ≤M
almost surely for some M > 0. Let fρ ∈ H and fz be produced by (2) with σ = m1/(2+s).
For any 0 < δ < 1, with confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ C
′
H,ρ log(2/δ)m−

2
2+s ,

where C ′H,ρ is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

From Theorem 4 and Theorem 5, we can see that meaningful convergence rates can be
obtained when σ is properly chosen, e.g., σ = O(mα) with some α > 0. That is, σ has
to grow in accordance with the sample size m to ensure non-trivial convergence rates. In
view of this, it is natural to ask whether one can also get consistency properties or even
convergence rates for the MCCR model (2) when σ is fixed. Under certain conditions, we
give a positive answer in the following theorem.
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Theorem 6 Assume that the Complexity Assumption II with 0 < s < 2 and the Noise
Assumption hold. Let fρ ∈ H, fz be produced by (2) with σ being fixed and σ > σH,ρ where

σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
.

For any 0 < δ < 1, with confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ CH,σ,ρ log(1/δ)m−
2

2+s ,

where CH,σ,ρ is a positive constant independent of m or δ and will be given explicitly in the
proof.

Proofs of the above theorems will be given in Subsection 4.3.

2.3 Discussions and Comparisons

We now give some discussions on the obtained convergence rates, the Moment Assumption
and also comparisons with related studies.

2.3.1 Convergence Rates

As shown in Theorem 4, under the Moment Assumption, the convergence rates of the
MCCR model depend on the choice of σ and the regularity of fρ. In the case when fρ ∈ H
and σ = O(m1/(2+2p)), the convergence rate of O(m−2/(3+3p)) can be obtained. We then
show in Theorem 5 and Theorem 6 that under the boundedness assumption on Y , or with
the Noise Assumption, refined convergence rates of O(m−2/(2+s)) can be derived. Note
that when s tends to zero which corresponds to the case where functions in H are smooth
enough, convergence rates established in Theorem 5 and Theorem 6 tend to O(m−1), which
are considered as the optimal rates in learning theory according to the law of large numbers
(see Caponnetto and De Vito, 2007; Steinwart et al., 2009; Mendelson and Neeman, 2010;
Wang and Zhou, 2011). The established convergence rates indicate the feasibility of applying
the `σ loss in regression problems.

2.3.2 Moment Assumption and Related Studies on Robustness

Note that convergence rates in Theorem 4 are obtained under the Moment Assumption,
which restricts the tail behavior of Y . In fact, as commented in Christmann and Steinwart
(2007), tail properties of Y are frequently used in linear regression as well as nonparametric
regression problems. For instance, tail behaviors of Y are usually employed to study the
robustness and the consistency properties of M-estimators in linear regression problems, see
e.g., Hampel et al. (1986); Davies (1993); Audibert and Catoni (2011) and many others. In
the statistical learning literature, some recent studies have also confined the tail properties
of Y to explore the robustness of the kernel-based regression schemes, see e.g., Christmann
and Steinwart (2007); Christmann and Messem (2008); Steinwart and Christmann (2008);
De Brabanter et al. (2009); Debruyne et al. (2010).

Note also that in the statistical learning literature there are many existing studies on
the robust regression problem. For instance, Suykens et al. (2002a,b) presented a weighted
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least squares method to pursue a robust approximation to the regression function. Debruyne
et al. (2008) addressed the model selection problem in kernel-based robust regression. Some
efforts have been made in Steinwart and Christmann (2008) to understand generalization
abilities of regression schemes associated with convex robust loss functions, e.g., Huber’s
loss, which are also conducted by restricting the tail behavior of Y . As shown in Steinwart
and Christmann (2008), under certain conditions, empirical estimators learned from the
ERM schemes associated with certain convex robust loss functions can generalize. How-
ever, this does not directly indicate the regression consistency property of the empirical
estimators, e.g., the convergence from the empirical estimator to the regression function
with respect to the L2ρX -distance. On the other hand, as far as we can see, few studies
can be found in the statistical learning literature towards understanding regression schemes
associated with nonconvex robust loss functions, which are frequently employed in robust
statistics (see Huber, 1981; Hampel et al., 1986).

2.3.3 Comparisons with Related Studies

As mentioned earlier, our study is motivated by recent work towards understanding the
minimum error entropy criterion in regression problems (see Hu et al., 2013). Observing
that when being applied to regression problems, both of the two models aim at modeling an
empirical estimator that approximates the regression function fρ. Therefore, we can give
comparisons on the convergence rates of the two models. Under the same assumptions on
the tail behavior of Y and the Complexity Assumption I, when fρ ∈ H, the convergence
rates established in Hu et al. (2013) are of the type O(m−2/(3+3p)), which are presented
with respect to the variance of f̃z(X) − fρ(X) due to the mean insensitive property of
the MEECR model. In addition, when Y is bounded, under the Complexity Assumption
I, Hu et al. (2013) reported convergence rates of the type O(m−1/(1+p)). In view of the
convergence rates reported in Theorem 4 and Theorem 5, we conclude that the convergence
rates of the two regression models are comparable. This is a nice property of the MCCR
model considering that it has a lower computational complexity.

3. Connections between MCCR and LSR

As aforementioned, it is not suggested to roughly treat the `σ loss as the least squares loss
in regression problems even if σ is sufficiently large. This section is dedicated to explaining
this issue and trying to explore the connections between the two different regression models:
MCCR and LSR.

To this end, we first give some notations. For any measurable function f : X → Y, the
generalization error of f under the `σ loss and the least squares loss are defined, respectively,
as

Eσ(f) =

∫
Z
`σ(y, f(x))dρ(x, y), and E(f) =

∫
Z

(y − f(x))2dρ(x, y).

The corresponding target functions with respect to the hypothesis space H are given, re-
spectively, by

fσH = arg min
f∈H
Eσ(f), and fH = arg min

f∈H
E(f).
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3.1 A Useful Lemma

We first give a lemma which bounds the deviation of the excess risks of f associated with
the `σ loss and the least squares loss for any f ∈ H. It will play an important role in our
following analysis. In this context, the excess risk of f with respect to the `σ loss refers to
the term Eσ(f) − Eσ(fρ) while the excess risk of f with respect to the least squares loss
refers to the term E(f)− E(fρ).

Lemma 7 Assume that the Moment Assumption holds. For any f ∈ H, the deviation of
the two excess risk terms can be bounded as follows∣∣∣ {Eσ(f)− Eσ(fρ)} − {E(f)− E(fρ)}

∣∣∣ ≤ cH,ρ
σ2

,

where cH,ρ is a positive constant given by

cH,ρ = 8

∫
Z
y4dρ+ 4 sup

f∈H
‖f‖4∞ + 4‖fρ‖4∞. (3)

Proof Following the inequality |1− t− e−t| ≤ t2

2 for t > 0, one has∣∣∣∣1− (y − f(x))2

σ2
− exp

{
−(y − f(x))2

σ2

}∣∣∣∣ ≤ (y − f(x))4

2σ4
.

Simple computations show that∣∣∣∣Eσ(f)−
∫
Z

(y − f(x))2dρ

∣∣∣∣ ≤ 1

2σ2

∫
Z

(y − f(x))4dρ. (4)

Since fρ ∈ L∞ρX , the same estimation process can be applied to fρ, which gives∣∣∣∣Eσ(fρ)−
∫
Z

(y − fρ(x))2dρ

∣∣∣∣ ≤ 1

2σ2

∫
Z

(y − fρ(x))4dρ. (5)

Combining estimates in (4) and (5), we come to the following inequality

∣∣∣ {Eσ(f)− Eσ(fρ)} − {E(f)− E(fρ)}
∣∣∣ ≤ 1

σ2

(
8

∫
Z
y4dρ+ 4‖f‖4∞ + 4‖fρ‖4∞

)
,

where the basic inequality (a+ b)4 ≤ 8a4 + 8b4 for a, b ∈ R has been applied. By denoting

cH,ρ = 8

∫
Z
y4dρ+ 4 sup

f∈H
‖f‖4∞ + 4‖fρ‖4∞,

we complete the proof of Lemma 7.
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3.2 An Equivalence Relation between MCCR and LSR

In this part, we proceed with exploring the connections between the two models: MCCR
and LSR. We will show that, when σ is large enough, under certain conditions, there does
exist an equivalence relation between the two regression models. By equivalence, we mean
that the two regression models admit the same target function when working in the same
hypothesis space, i.e., fσH = fH in our study.

Theorem 8 Suppose that the Noise Assumption holds. Under the condition that fρ ∈ H
and σ > σH,ρ with

σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
,

almost surely we have

fσH = fH.

Proof Since fρ ∈ H, it is immediate to see that almost surely we have fH = fρ. To finish
the proof, it remains to show that there holds fσH = fρ. In fact, for any f ∈ H, we know
that

Eσ(f) = σ2
∫
Z

(
1− exp

{
−(y − f(x))2

σ2

})
dρ(x, y) = σ2

∫
X
Fx(f(x)− fρ(x))dρX (x),

where

Fx(u) := 1−
∫ M0

−M0

exp

{
−(t− u)2

σ2

}
pε|X=x(t)dt, x ∈ X .

By taking the derivative of F with respect to u, we get

F ′x(u) = −2

∫ M0

−M0

exp

{
−(t− u)2

σ2

}(
t− u
σ2

)
pε|X=x(t)dt, x ∈ X .

According to the symmetry property of pε|X=x, we know that F ′x(0) = 0. Moreover,

F ′′x (u) = 2

∫ M0

−M0

exp

{
−(t− u)2

σ2

}(
σ2 − 2(t− u)2

σ4

)
pε|X=x(t)dt, x ∈ X .

Obviously, F ′′x (u) > 0 for all x ∈ X when σ > σH,ρ. Consequently, u = 0 is the unique
minimizer of Fx(·) for any x ∈ X . The proof of Theorem 8 can be completed by recalling
the definitions of fσH and fρ.

Theorem 8 provides a situation where the equivalence relation between the two regression
models holds. In the sense of Theorem 8, one can take the `σ loss as the least squares loss
when σ is large enough. However, Theorem 8 also indicates that the equivalence relation
holds when the Noise Assumption is valid, fρ ∈ H and σ is sufficiently large. Note that the
condition fρ ∈ H imposes a regularity requirement on the regression function fρ while the
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Noise Assumption asks for the boundedness and symmetry of the noise. In view of these,
we conclude that one is not suggested to simply treat the `σ loss as the least squares loss
even if σ is sufficiently large.

We remark that Theorem 8 merely provides a sufficient condition to ensure the existence
of the equivalence relation between the two models. It would be meaningful to explore some
other relaxed conditions to get a similar equivalence relation. However, we also remark that
the non-convexity of the `σ loss makes it non-trivial since in this case there exists more than
one local optimum of the MCCR model.

3.3 Comparisons on the Convergence Rates of MCCR and LSR

To further elucidate connections between the two regression models, in this part we move
our attention to comparing the learning performance of their empirical estimators, i.e., the
convergence rates of ‖fz − fρ‖2L2ρX

and ‖f lsz − fρ‖2L2ρX
where f lsz is modeled by the following

ERM scheme

f lsz = arg min
f∈H

1

m

m∑
i=1

(f(xi)− yi)2. (6)

Noticing that due to the assumption that H is a compact subset of C(X ), (6) is in fact a
constrained optimization model. When H is taken as a bounded subset of a certain repro-
ducing kernel Hilbert spaceHK, there exists an equivalence relation between the constrained
optimization model (6) and the following unconstrained model

f lsz,λ = arg min
f∈HK

1

m

m∑
i=1

(f(xi)− yi)2 + λ‖f‖2K, (7)

where λ > 0 is a regularization parameter. Therefore, our comparison will be conducted
between the MCCR model (2) and the regularized least squares regression model (7), which
has been well understood in the statistical learning literature.

When Y is bounded, fρ ∈ H and the Complexity Assumption II with 0 < s < 2
holds, the convergence rate of ‖fz − fρ‖2L2ρX

established in Theorem 5 belongs to the type

of O(m−2/(2+s)), which is the same as that of the regularized LSR (7) under the same
conditions as revealed in Wu et al. (2006). In fact, when H is taken as a bounded subset
of HK and the Mercer kernel K is sufficiently smooth, the constant s in the Complexity
Assumption II can be arbitrarily small. As mentioned earlier, in this case, learning rates
of the type O(m−1) can be derived which are regarded as the optimal learning rates in
learning theory according to the law of large numbers.

On the other hand, due to the non-robustness of the least squares loss, almost all the
existing convergence rates established for (7) are reported under the restriction that the
response variable has a sub-Gaussian tail (see Wu et al., 2006; Caponnetto and De Vito,
2007; Steinwart et al., 2009; Mendelson and Neeman, 2010; Wang and Zhou, 2011). However,
we see from Theorem 4 that for the MCCR model, convergence rates can be obtained under
the Moment Assumption. This shows that the MCCR model can deal with non-Gaussian
noise, which consequently distinguishes the two models in terms of conditions needed to
establish meaningful convergence rates.
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Before ending this section, let us briefly summarize the connections between MCCR and
LSR as follows:

• For any given f ∈ H, the difference between the excess risk of f with respect to the
two regression models can be upper bounded by O(σ−2);

• Under certain conditions, we do see the existence of an equivalence relation between
the two models, as commonly expected when σ is large enough. However, this equiv-
alence relation might hold only under very specific conditions as suggested by our
analysis;

• The MCCR model can deal with the heavy-tailed noise while the LSR model can
only deal with sub-Gaussian noise. Moreover, when being restricted to cases with the
bounded output or with the Gaussian noise, the performance of the two regression
models are comparable. Therefore, in the above sense, we suggest that one can count
on the MCCR model (2) to solve regression problems.

4. Deriving the Convergence Rates

This section presents detailed convergence analysis of the MCCR model (2) and proofs
of theorems given in Section 2. The main difficulty in analyzing the model lies in the
non-convexity of the loss function `σ, which disables usual techniques for analyzing convex
learning models (see Cucker and Zhou, 2007; Steinwart and Christmann, 2008). We over-
come this difficulty by introducing a novel error decomposition strategy with the help of
Lemma 7. Analysis presented in this section is inspired by Cucker and Zhou (2007); Hu
et al. (2013) and Fan et al..

4.1 Decomposing the Error into Bias-Variance Terms

The L2ρX -distance between the empirical target function fz and the regression function fρ
can be decomposed into the bias and the variance terms (see Vapnik, 1998; Cucker and
Zhou, 2007; Steinwart and Christmann, 2008). Roughly speaking, the bias refers to the
data-free error terms while the variance refers to the data-dependent error terms. The
spirit of the learning theory approach to analyzing the convergence of learning models is
trying to find a compromise between bias and variance by controlling the complexity of
the hypothesis space. The following proposition offers a method for such compromise with
respect to the MCCR model (2).

Proposition 9 Assume that the Moment Assumption holds and let fz be produced by (2).
The L2ρX -distance between fz and fρ can be decomposed as follows:

‖fz − fρ‖2L2ρX
≤ AH,σ,ρ +AH,ρ + S1(z) + S2(z),
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where

AH,σ,ρ = 2cH,ρ/σ
2,

AH,ρ = E(fH)− E(fρ),

S1(z) = {Eσz (fσH)− Eσz (fρ)} − {Eσ(fσH)− Eσ(fρ)} ,
S2(z) = {Eσ(fz)− Eσ(fρ)} − {Eσz (fz)− Eσz (fρ)} .

Proof Following from Lemma 7, with simple computations, we see that

‖fz − fρ‖2L2ρX
≤ Eσ(fz)− Eσ(fρ) + cH,ρ/σ

2

≤ {Eσ(fz)− Eσz (fz)}+ {Eσz (fz)− Eσz (fσH)}+ {Eσz (fσH)− Eσ(fσH)} .
+ {Eσ(fσH)− Eσ(fH)}+ {Eσ(fH)− Eσ(fρ)}+ cH,ρ/σ

2

≤ {Eσ(fz)− Eσz (fz)}+ {Eσz (fz)− Eσz (fσH)}+ {Eσz (fσH)− Eσ(fσH)} .
+ {Eσ(fσH)− Eσ(fH)}+ {E(fH)− E(fρ)}+ 2cH,ρ/σ

2.

The definitions of fz, fσH and fH tell us that the second and the fourth terms of right-hand
side of the last inequality are at most zero. By introducing intermediate terms Eσz (fρ),
Eσ(fρ) and corresponding notations, we finish the proof of Proposition 9.

As shown in Proposition 9, the L2ρX -distance between fz and fρ are decomposed into four
error terms: AH,σ,ρ, AH,ρ, S1(z), and S2(z). It is easy to see that the first two error terms are
data-independent and correspond to the bias while the last two terms are data-dependent,
which consequently are referred as the sample error (variance). The quantity AH,ρ can be
translated as the approximation ability of fH to fρ, the estimation of which belongs to
the topics of the approximation theory and has been well conducted. For instance, when
H is chosen as a bounded subset of a certain reproducing kernel Hilbert space (RKHS), a
comprehensive study on this term can be found in Smale and Zhou (2003). On the other
hand, we remind that the bias term AH,σ,ρ is introduced into the above error decomposition
method, which not only depends on the hypothesis space H and the underlying probability
distribution ρ, but also relies on the scale parameter σ. As explained later, this is caused by
the introduction of the robustness into the regression model. This makes the decomposition
strategy for the MCCR model different from those for convex regression models (see Cucker
and Zhou, 2007; Steinwart and Christmann, 2008).

As a consequence of Proposition 9, to bound ‖fz − fρ‖2L2ρX
, it suffices to estimate the

two sample error terms: S1(z) and S2(z), which will be tackled in the next subsection.

4.2 Concentration Estimates of Sample Error Terms

This part presents concentration estimates for the sample error terms S1(z) and S2(z) when
the Moment Assumption is assumed. In learning theory, this is typically done by applying
concentration inequalities to certain random variables that may be function-space valued.

In our study, for this purpose we introduce the following two random variables, ξ1(z)
and ξ2(z) with z ∈ Z, which are defined by

ξ1(z) := −σ2 exp
{
−(y − fσH(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
,
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and

ξ2(z) := −σ2 exp
{
−(y − fz(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
.

By applying the one-sided Bernstein’s inequality in Lemma 12 to the random variable
ξ1, we can get the concentrated estimate for the sample error term S1(z). However, the
estimation of the sample error term S2(z) requires us to apply concentration inequalities to
the function-space valued random variable ξ2 and consequently depends on the capacity of
the hypothesis space H. This is due to the fact that the random variable ξ2 is dependent
with fz which varies in accordance with the sample z.

Concentrated estimates for S1(z) and S2(z) are presented in the following two proposi-
tions, the proofs of which are given in Subsection 4.3.

Proposition 10 Assume that the Moment Assumption holds. For any 0 < δ < 1, with
confidence 1− δ/2, there holds

S1(z) ≤ 1

2

∥∥fH − fρ∥∥2L2ρX + CH,ρ,1

(
log

2

δ

)(
σ

m
+

1

σ2

)
,

where CH,ρ,1 is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

Proposition 11 Assume that the Complexity Assumption I with p > 0 and the Moment
Assumption hold. For any 0 < δ < 1, with confidence 1− δ/2, there holds

S2(z) ≤ 1

2
(S1(z) + S2(z)) +

1

2
‖fH − fρ‖2L2ρX

+ CH,ρ,2

(
log

2

δ

){
1

σ2
+

σ

m
1

1+p

}
,

where CH,ρ,2 is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

4.3 Proofs

4.3.1 Lemmas

We first list several lemmas that will be used in the proofs. Lemma 12 and Lemma 13 are
one-sided Bernstein’s concentration inequalities, which were introduced in Bernstein (1946)
and can be found in many statistical learning textbooks, see e.g., Cucker and Zhou (2007);
Steinwart and Christmann (2008). Lemma 14 was proved in Wu et al. (2007).

Lemma 12 Let ξ be a random variable on a probability space Z with variance σ2? satisfying
|ξ − Eξ| ≤Mξ almost surely for some constant Mξ and for all z ∈ Z. Then

Probz∈Zm

{
1

m

m∑
i=1

ξ(zi)− Eξ ≥ ε

}
≤ exp

{
− mε2

2(σ2? + 1
3Mξε)

}
.
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Lemma 13 Let ξ be a random variable on a probability space Z with variance σ2? satisfying
|ξ−Eξ| ≤Mξ almost surely for some constant Mξ and for all z ∈ Z. Then for any 0 < δ < 1,
with confidence 1− δ, we have

1

m

m∑
i=1

ξ(zi)− Eξ ≤
2Mξ log 1

δ

3m
+

√
2σ2? log 1

δ

m
.

Lemma 14 Let F be a class of measurable functions on Z. Assume that there are constants
B, c > 0 and θ ∈ [0, 1] such that ‖f‖∞ ≤ B and Ef2 ≤ c(Ef)θ for every f ∈ F . If for some
a > 0 and s ∈ (0, 2),

logN2 (F , η) ≤ aη−s, ∀ η > 0,

then there exists a constant αp depending only on p such that for any t > 0, with probability
at least 1− e−t, there holds

Ef − 1

m

m∑
i=1

f(zi) ≤
1

2
γ1−θ (Ef)θ + αpγ + 2

(
ct

m

) 1
2−θ

+
18Bt

m
, ∀ f ∈ F ,

where

γ := max

{
c

2−s
4−2θ+sθ

( a
m

) 2
4−2θ+sθ

, B
2−s
2+s

( a
m

) 2
2+s

}
.

4.3.2 Proof of Proposition 10

Proof To bound the sample error term S1(z), we apply the one-sided Bernstein’s inequality
in Lemma 13 to the random variable ξ1 introduced in Subsection 4.2. To this end, we need
to verify conditions in Lemma 13.

We first verify the boundedness condition. Recall that the random variable ξ1 is defined
as

ξ1(z) := −σ2 exp
{
−(y − fσH(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z.

Introducing the auxiliary function h(t) = exp{−t2} with t ∈ R, it is easy to see that
‖h′‖∞ =

√
2/e. By taking t1 = (y − fσH(x))/σ, t2 = (y − fρ(x))/σ and applying the mean

value theorem to h, we see that

|ξ1(z)| ≤
√

2/eσ|fσH(x)− fρ(x)| ≤
√

2/eσ‖fσH − fρ‖∞, z ∈ Z.

Consequently,

|ξ1 − Eξ1| ≤ 2‖ξ1‖∞ ≤ 2
√

2/eσ‖fσH − fρ‖∞ ≤ 2
√

2/eσ sup
f∈H
‖f − fρ‖∞.

We are now in a position to bound the variance of the random variable ξ1, which is
denoted as var(ξ1). Applying the mean value theorem to the auxiliary function h1(t) =
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exp(−t) at t1 = (y−fσH(x))2/σ2, t2 = (y−fρ(x))2/σ2 and recalling that ‖h′1‖∞ ≤ 1, we get

var(ξ1) = Eξ21 − (Eξ1)2 ≤ Eξ21
≤ E

(
(fσH(x)− fρ(x))2(2y − fσH(x)− fρ(x))2

)
≤
∫
Y

(
12y2 + 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
dρ(y|x)

∫
X

(fσH(x)− fρ(x))2dρX (x)

= cH,ρ,0

∫
X

(fσH(x)− fρ(x))2dρX (x),

where the second inequality is from the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2)
for a, b, c ∈ R and the positive constant cH,ρ,0 is denoted as

cH,ρ,0 = 12

∫
Z
y2dρ+ 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞. (8)

Now applying Lemma 13 to the random variable ξ1, we see that for any 0 < δ < 1, with
confidence 1− δ/2, there holds

S1(z) ≤
4
√

2/e supf∈H ‖f − fρ‖∞
3

σ log(2/δ)

m
+

√
2cH,ρ,0 log(2/δ)‖fσH − fρ‖2L2ρX

m
. (9)

The elementary inequality
√
ab ≤ (a+ b)/2 for a, b ≥ 0 gives1√

2cH,ρ,0 log(2/δ)‖fσH − fρ‖2L2ρX
m

≤ 1

2
‖fσH − fρ‖2L2ρX +

cH,ρ,0 log(2/δ)

m
. (10)

In addition, as a consequence of Lemma 7, we have

‖fσH − fρ‖2L2ρX ≤ E
σ(fσH)− Eσ(fρ) + cH,ρ/σ

2

= Eσ(fσH)− Eσ(fH) + Eσ(fH)− Eσ(fρ) + cH,ρ/σ
2

≤ ‖fH − fρ‖2L2ρX + 2cH,ρ/σ
2,

(11)

where the last inequality is due to the fact that fσH is the minimizer of the risk functional
Eσ(·) in H.

Combining estimates in (9), (10), and (11), we come to the conclusion that for any
0 < δ < 1, with confidence 1− δ/2, there holds

S1(z) ≤ 1

2

∥∥fH − fρ∥∥2L2ρX + CH,ρ,1

(
log

2

δ

)(
σ

m
+

1

σ2

)
,

where CH,ρ,1 is a positive constant independent of m, σ or δ and given by

CH,ρ,1 = (4/3)
√

2/e sup
f∈H
‖f − fρ‖∞ + 2cH,ρ + cH,ρ,0.

Thus we have completed the proof of Proposition 10.

1. Refined estimate can be derived here by applying Young’s inequality ab ≤ ta2

2
+ b2

2t
for a, b ∈ R, t > 0.

In our proof, we choose t = 1 for simplification.
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4.3.3 Proof of Proposition 11

To prove Proposition 11, we first need to prove the following intermediate conclusion, which
is in fact a concentrated estimate for function-space valued random variables.

Proposition 15 Assume that the Moment Assumption holds. Let ε satisfy ε ≥ cH,ρ/σ
2.

For any 0 < δ < 1, with confidence 1− δ/2, there holds

Probz∈Zm

{
sup
f∈H

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε

}

≤ N

(
H, ε√

2/eσ

)
exp

{
− 3mε

4
√

2/e supf∈H ‖f − fρ‖∞σ + 6cH,ρ,0

}
,

where cH,ρ is given in (3) and cH,ρ,0 is given in (8), both of which are positive constants
independent of m, σ or δ.

Proof To derive the desired estimate, we will apply the one-sided Bernstein’s inequality
in Lemma 13 to the function set H by taking its capacity into account.

For any f ∈ H, we redefine the random variable ξ2(z) as follows

ξ2(z) = −σ2 exp
{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z.

Following from the proof of Proposition 10, we know that

‖ξ2‖∞ ≤
√

2/eσ‖f − fρ‖∞ and |ξ2 − Eξ2| ≤ 2
√

2/eσ sup
f∈H
‖f − fρ‖∞.

Meanwhile, we also know from the proof of Proposition 10 that

Eξ22 ≤ cH,ρ,0‖f − fρ‖2L2ρX ,

where the constant cH,ρ,0 is given in (8).

Consider a function set {fj}Jj=1 ⊂ H with J = N (H, ε/(
√

2/eσ)). The compactness of
H ensures the existence and finiteness of J . Now we let

µ =
√
Eσ(fj)− Eσ(fρ) + 2ε,

and choose ε such that ε ≥ cH,ρ/σ2. Applying the one-sided Bernstein’s inequality in Lemma
12 to the following group of random variables

ξ2,j(z) = −σ2 exp
{
−(y − fj(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, j = 1, . . . , J,
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we come to the following conclusion

Probz∈Zm

{
(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√

Eσ(fj)− Eσ(fρ) + 2ε
>
√
ε

}

≤ exp

− 3mεµ2

4
√

2/e‖fj − fρ‖∞
√
εµσ + 6cH,ρ,0‖fj − fρ‖2L2ρX


≤ exp

{
− 3mεµ2

4
√

2/e‖fj − fρ‖∞
√
εµσ + 6cH,ρ,0µ2

}

≤ exp

{
− 3mε

4
√

2/e supf∈H ‖f − fρ‖∞σ + 6cH,ρ,0

}
,

where the last two inequalities follow from the inequality in Lemma 7, the equation that
E(fj)− E(fρ) = ‖fj − fρ‖2L2ρX

, the fact that ε ≥ cH,ρ/σ2 and

µ2 = Eσ(fj)− Eσ(fρ) + 2ε ≥ Eσ(fj)− Eσ(fρ) + cH,ρ/σ
2 + ε ≥ E(fj)− E(fρ) + ε ≥ ε.

From the choice of fj , we know that for each f ∈ H, there exists some j such that ‖f −
fj‖∞ ≤ ε/(

√
2/eσ). Therefore |Eσ(f) − Eσ(fj)| and |Eσz (f) − Eσz (fj)| can be both upper

bounded by ε, which yields

|(Eσz (f)− Eσz (fρ))− (Eσz (fj)− Eσz (fρ))|√
Eσ(f)− Eσ(fρ) + 2ε

≤
√
ε (12)

and

|(Eσ(f)− Eσ(fρ))− (Eσ(fj)− Eσ(fρ))|√
Eσ(f)− Eσ(fρ) + 2ε

≤
√
ε. (13)

The latter inequality together with the fact that ε ≤ Eσ(f)− Eσ(fρ) + 2ε implies

Eσ(fj)− Eσ(fρ) + 2ε = (Eσ(fj)− Eσ(fρ))− (Eσ(f)− Eσ(fρ)) + Eσ(f)− Eσ(fρ) + 2ε

≤
√
ε
√

(Eσ(f)− Eσ(fρ)) + 2ε+ Eσ(f)− Eσ(fρ) + 2ε

≤ 2(Eσ(f)− Eσ(fρ) + 2ε).

(14)

For any f ∈ H, if the following inequality holds

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε,

then combining estimates in (12) and (13) we know that there holds

(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 2
√
ε.
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This together with inequality (14) tells us that the following inequality holds

(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√
Eσ(fj)− Eσ(fρ) + 2ε

>
√
ε.

Consequently, based on the above estimates, we come to the following conclusion

Probz∈Zm

{
sup
f∈H

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε

}

≤
J∑
j=1

Probz∈Zm

{
(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√

Eσ(fj)− Eσ(fρ) + 2ε
>
√
ε

}

≤ N

(
H, ε√

2/eσ

)
exp

{
− 3mε

4
√

2/e supf∈H ‖f − fρ‖∞σ + 6cH,ρ,0

}
.

This completes the proof of Proposition 15.

Proof [Proof of Proposition 11] From the Complexity Assumption I, we know that

N
(
H, ε

/
(
√

2/eσ)
)
≤ exp

{
cI,p(

√
2/e)pσp/εp

}
.

This in connection with Proposition 15 yields

Probz∈Zm

{
sup
f∈H

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε

}

≤ exp

{
Apσ

p

εp
− mε

σBH,ρ + 2cH,ρ,0

}
,

where Ap and BH,ρ are positive constants given by

Ap = cI,p(
√

2/e)p and BH,ρ = 4
√

2/e sup
f∈H
‖f − fρ‖∞/3.

By setting

exp

{
Apσ

p

εp
− mε

σBH,ρ + 2cH,ρ,0

}
≤ δ

2
,

we obtain

εp+1 −
log(2/δ) (σBH,ρ + 2cH,ρ,0)

m
εp −

Ap (σBH,ρ + 2cH,ρ,0)σ
p

m
≥ 0.

Lemma 7.2 in Cucker and Zhou (2007) tells us that the above inequality holds if

ε ≥ max

{
cH,ρ
σ2

,
2 log(2/δ) (σBH,ρ + 2cH,ρ,0)

m
,

(
2Ap (σBH,ρ + 2cH,ρ,0)σ

p

m

)1/(1+p)
}
.
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In view of the above condition, we choose a sufficient large εH,ρ as follows

εH,ρ = cH,ρ,1 log(2/δ)(σ−2 + σm−1/(1+p)),

where cH,ρ,1 is a positive constant independent of m, σ or δ and given by

cH,ρ,1 = 2cH,ρ + 2(Ap + 1)(BH,ρ + 2cH,ρ,0).

With the above choice of εH,ρ and following the above discussions, we see that for any
0 < δ < 1, with confidence 1− δ/2, there holds

sup
f∈H

{
((Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ)))

/√
Eσ(f)− Eσ(fρ) + εH,ρ

}
≤ 4
√
εH,ρ,

which yields

(Eσ(fz)− Eσ(fρ))− (Eσz (fz)− Eσz (fρ)) ≤ 4
√
εH,ρ

√
Eσ(fz)− Eσ(fρ) + 2εH,ρ.

Applying the basic inequality
√
ab ≤ (a+ b)/2 for a, b ≥ 0, we know that for any 0 < δ < 1,

with confidence 1− δ, there holds2

S2(z) = (Eσ(fz)− Eσ(fρ))− (Eσz (fz)− Eσz (fρ)) ≤
1

2
(Eσ(fz)− Eσ(fρ)) + 9εH,ρ. (15)

Proposition 9 tells us that

Eσ(fz)− Eσ(fρ) = Eσ(fz)− Eσ(fσH) + Eσ(fσH)− Eσ(fρ)

≤ S1(z) + S2(z) + ‖fH − fρ‖2L2ρX + cH,ρ/σ
2,

(16)

where the above inequality is due to Lemma 7 and the observation that

Eσ(fσH)− Eσ(fρ) = Eσ(fσH)− Eσ(fH) + Eσ(fH)− Eσ(fρ)

≤ Eσ(fH)− Eσ(fρ)

≤ ‖fH − fρ‖2L2ρX + cH,ρ/σ
2.

Combining estimates in (15) and (16), we come to the conclusion that for any 0 < δ < 1,
with confidence 1− δ/2, there holds

S2(z) ≤ 1

2
(S1(z) + S2(z)) +

1

2
‖fH − fρ‖2L2ρX

+ CH,ρ,2

(
log

2

δ

){
1

σ2
+

σ

m1/(1+p)

}
,

where CH,ρ,2 is a positive constant independent of m, σ or δ and given by CH,ρ,2 =
2cH,ρ + 9cH,ρ,1. This completes the proof of Proposition 11.

2. Similarly, refined estimate can be also derived here by using Young’s inequality ab ≤ ta2

2
+ b2

2t
for a, b ∈ R,

t > 0. In our proof, again we choose t = 1 for simplification.
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4.3.4 Proof of Theorem 4

Proof From Lemma 7 and Proposition 9, we know that

‖fz − fρ‖2L2ρX
≤ S1(z) + S2(z) + ‖fH − fρ‖2L2ρX

+ 2cH,ρ/σ
2. (17)

Combining estimates in Proposition 10 and Proposition 11 for the sample error terms S1(z)
and S2(z), we know that for any 0 < δ < 1, with confidence 1− δ, there holds

S1(z) + S2(z) ≤ 2 ‖fH − fρ‖2L2ρX
+ (2CH,ρ,1 + 4CH,ρ,2) log (2/δ) {σ−2 + σm−1/(1+p)}.

This in connection with the estimate in (17) tells us that for any 0 < δ < 1, with confidence
1− δ, there holds

‖fz − fρ‖2L2ρX
≤ 3 ‖fH − fρ‖2L2ρX

+ CH,ρ log (2/δ) {σ−2 + σm−1/(1+p)},

where CH,ρ = 2CH,ρ,1 + 4CH,ρ,2 + 4cH,ρ. This completes the proof of Theorem 4.

4.3.5 Proof of Theorem 5

The proof of Theorem 5 can be similarly conducted as that of Theorem 4, since the error
decomposition in Proposition 9 holds when Y is bounded. Therefore, we also need to bound
the two sample error terms S1(z) and S1(z), respectively.

Proposition 16 Assume that |y| ≤ M almost surely for some M > 0, and fρ ∈ H. For
any 0 < δ < 1, with confidence 1− δ/2, there holds

S1(z) ≤ C ′H,ρ,1 log(2/δ)(σ−2 +m−1),

where C ′H,ρ,1 is a positive constant that independent of m, σ or δ and will be given explicitly
in the proof.

Proof We will finish the proof by following similar process as done for Proposition 10. We
first introduce the random variable ξ̄1(z) as follows

ξ̄1(z) = −σ2 exp
{
−(y − fσH(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z.

It follows from the proof of Proposition 10 and the boundedness of Y that for any z ∈ Z,
there holds

|ξ̄1(z)| ≤
∣∣(2y − fσH(x)− fρ(x))(fσH(x)− fρ(x))

∣∣
≤
(

2M + ‖fρ‖∞ + sup
f∈H
‖f‖∞

)
sup
f∈H
‖f − fρ‖∞.

Consequently, the following estimate holds∣∣ξ̄1 − Eξ̄1
∣∣ ≤ 2

(
2M + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
sup
f∈H
‖f − fρ‖∞ := c′H,ρ,0.
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Denote the variance of the random variable ξ̄1 as var(ξ̄1). From the proof of Proposition
10 and the boundedness of Y , we have

var(ξ̄1) = Eξ̄21 − (Eξ̄1)2

≤ Eξ̄21 ≤ E
(
(fσH(x)− fρ(x))2(2y − fσH(x)− fρ(x))2

)
≤
(

12M2 + 3 sup
f∈H
‖f‖2∞ + 3‖fρ‖2∞

)∫
X

(fσH(x)− fρ(x))2dρX (x).

Recalling the fact that fρ ∈ H, as a consequence of Lemma 7, we obtain∫
X

(fσH(x)− fρ(x))2dρX (x) ≤
∫
X

(fH(x)− fρ(x))2dρX (x) +
2cH,ρ
σ2

=
2cH,ρ
σ2

.

Combining the above two estimates, we obtain the following upper bound for the variance
of ξ̄1:

var(ξ̄1) ≤ c′H,ρ,1/σ2 with c′H,ρ,1 = 2cH,ρ

(
12M2 + 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
.

Applying the one-sided Bernstein’s inequality in Lemma 13 to the random variable ξ̄1
and with simple computations, we come to the conclusion that for any 0 < δ < 1, with
confidence 1− δ/2, there holds

S1(z) ≤ C ′H,ρ,1 log(2/δ)(σ−2 +m−1),

where C ′H,ρ,1 is a positive constant independent of m, σ or δ and given by C ′H,ρ,1 =
2 + c′H,ρ,1/2 + 2c′H,ρ,0/3. This completes the proof.

We now turn to bound the sample error term S2(z) when Y is bounded.

Proposition 17 Assume that the Complexity Assumption II with 0 < s < 2 holds, |y| ≤M
almost surely for some M > 0. Let fρ ∈ H and σ ≥ 1. For any f ∈ H and 0 < δ < 1, with
confidence 1− δ/2, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ C ′H,ρ,2 log(2/δ)m−

2
2+s ,

where C ′H,ρ,2 is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

Proof To prove the proposition, we apply Lemma 14 to the function set FH, which is
defined as

FH =
{
g
∣∣∣ g(z) = `σ(y, f(x))− `σ(y, fρ(x)) +

cH,ρ
σ2

, f ∈ H, z ∈ Z
}
.

According to the definition of FH, for any g ∈ FH, it can be explicitly expressed as

g(z) = −σ2 exp
{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
+
cH,ρ
σ2

,
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with z ∈ Z and f ∈ H. Recalling that |y| ≤ M almost surely and σ ≥ 1, simple computa-
tions show that

‖g‖∞ ≤
(

2M + ‖fρ‖∞ + sup
f∈H
‖f‖∞

)
sup
f∈H
‖f − fρ‖∞ + cH,ρ.

Applying the mean value theorem again as done in the proof of Proposition 10, we get(
−σ2 exp

{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

})2
≤
(
(y − f(x))2 − (y − fρ(x))2

)2
≤
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2
(f(x)− fρ(x))2,

where the last inequality is again due to the boundedness of Y . This in connection with
Lemma 7 tells us that

Eg2 =

∫
Z

(
−σ2 exp

{
−(y − f(x))2

σ2

}
+ σ2 exp

{
−(y − fρ(x))2

σ2

})2

dρ

+
2cH,ρ
σ2

∫
Z

(
−σ2 exp

{
−(y − f(x))2

σ2

}
+ σ2 exp

{
−(y − fρ(x))2

σ2

})
dρ+

c2H,ρ
σ4

≤
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2
(E(f)− E(fρ)) +

2cH,ρ
σ2

(
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
≤
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2 (
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
+

2cH,ρ
σ2

(
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
=

((
2M + sup

f∈H
‖f‖∞ + ‖fρ‖∞

)2
+

2cH,ρ
σ2

)(
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
=

((
2M + sup

f∈H
‖f‖∞ + ‖fρ‖∞

)2
+

2cH,ρ
σ2

)
Eg

≤

((
2M + sup

f∈H
‖f‖∞ + ‖fρ‖∞

)2
+ 2cH,ρ

)
Eg,

where the last inequality is due to the assumption that σ ≥ 1.
For any g1, g2 ∈ FH, there exist f1, f2 ∈ H such that

g1(z) = −σ2 exp
{
−(y − f1(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
+
cH,ρ
σ2

and

g2(z) = −σ2 exp
{
−(y − f2(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
+
cH,ρ
σ2

.

Applying the mean value theorem and noticing the boundedness of Y , we have

|g1(z)− g2(z)| ≤ 2
(
M + sup

f∈H
‖f‖∞

)
‖f1 − f2‖∞, z ∈ Z.

1015



Feng, Huang, Shi, Yang, and Suykens

Under the Complexity Assumption II with 0 < s < 2, the following relation between the
`2-empirical covering numbers of FH and H holds

logN2(FH, η) ≤ logN2

(
H, η

/(
2M + 2 sup

f∈H
‖f‖∞

))
≤ cII,s

((
2M + 2 sup

f∈H
‖f‖∞

)/
η
)s
.

For notation simplification, we denote

c′H,ρ,2 =
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2
+ 2cH,ρ,

B′H,ρ =
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)
sup
f∈H
‖f − fρ‖∞ + cH,ρ,

aH,s = cII,s

(
2M + 2 sup

f∈H
‖f‖∞

)s
.

Applying Lemma 14 to the function set FH, with simple computations, we come to the
conclusion that when σ ≥ 1, for any 0 < δ < 1 with confidence 1− δ/2, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ C ′H,ρ,2 log(2/δ)m−

2
2+s ,

where C ′H,ρ,2 is a positive constant independent of m, σ or δ and given by

C ′H,ρ,2 = 18B′H,ρ + 2c′H,ρ,2 + 2asa
2/(2+s)
H,s (c′H,ρ,2 +B′H,ρ)

(2−s)/(2+s),

and as is a positive constant depending only on s. This completes the proof of Proposition
17.

Proof [Proof of Theorem 5] Following from the estimate in inequality (11), and recalling
that fρ ∈ H, we have

‖fz − fρ‖2L2ρX
≤ S1(z) + S2(z) + 2cH,ρ/σ

2. (18)

As a consequence of Proposition 17, we know that when σ ≥ 1, for any 0 < δ < 1 with
confidence 1− δ/2, there holds

{Eσ(fz)− Eσ(fρ)} − {Eσz (fz)− Eσz (fρ)} ≤
1

2
{Eσ(fz)− Eσ(fρ)}+ C ′H,ρ,2 log(2/δ)m−

2
2+s .

The above inequality together with Lemma 7 yields

S2(z) = {Eσ(fz)− Eσ(fρ)} − {Eσz (fz)− Eσz (fρ)}

≤ 1

2
‖fz − fρ‖2L2ρX +

cH,ρ
2σ2

+ C ′H,ρ,2 log(2/δ)m−
2

2+s .

This in connection with the upper bound for the sample error term S1(z) in Proposition
16 and inequality (18), with the choice σ = m1/(2+s), yields that for any 0 < δ < 1, with
confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ C
′
H,ρ log(2/δ)m−

2
2+s ,

where C ′H,ρ = 2C ′H,ρ,1 + C ′H,ρ,2 + 3cH,ρ. This completes the proof of Theorem 5.
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4.3.6 Proof of Theorem 6

To prove Theorem 6, we first prove the following conclusion.

Lemma 18 Assume that the Noise Assumption holds, and fρ ∈ H. Let σ be fixed and
satisfy

σ > σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
.

For any f ∈ H, there exists a positive constant cH,σ,ρ ∈ (0, 1), such that

cH,σ,ρ {E(f)− E(fρ)} ≤ Eσ(f)− Eσ(fρ).

Proof Under the Noise Assumption, when σ > σH,ρ, Theorem 8 shows that for any f ∈ H,

Eσ(f)− Eσ(fσH) = Eσ(f)− Eσ(fH) = Eσ(f)− Eσ(fρ).

For any x ∈ X , again we denote Fx(u) = 1−
∫M0

−M0
exp

{
− (t−u)2

σ2

}
pε|X=x(t)dt, then

Eσ(f)− Eσ(fρ) = σ2
∫
X

(Fx(f(x)− fρ(x))− Fx(0)) dρX (x)

= σ2
∫
X

{
F ′x(0)(f(x)− fρ(x)) +

F ′′x (ξx)

2
(f(x)− fρ(x))2

}
dρX (x)

=

∫
X

σ2F ′′x (ξx)

2
(f(x)− fρ(x))2dρX (x),

where the last equality follows from the fact that F ′x(0) = 0 and ξx falls between 0 and
f(x)− fρ(x) for any x ∈ X . It is easy to see that when σ is fixed and σ > σH,ρ, we have

F ′′x (ξx) = 2

∫ M0

−M0

exp

{
−(t− ξx)2

σ2

}(
σ2 − 2(t− ξx)2

σ4

)
pε|X=x(t)dt

≥ (2σ2 − 2σ2H,ρ)/σ
4 exp(−σ2H,ρ/σ2), for any x ∈ X ,

where the last inequality is due to the following fact

|t− ξx| ≤
√

2σH,ρ/2, t ∈ [−M0,M0], x ∈ X .

As a result, we come to the conclusion that

Eσ(f)− Eσ(fρ) ≥ cH,σ,ρ {E(f)− E(fρ)} ,

where cH,σ,ρ = (σ2 − σ2H,ρ)/σ2 exp(−σ2H,ρ/σ2). Noticing that 0 < cH,σ,ρ < 1, we have verified
our assertion.

The proof of Theorem 6 is different from the proofs of Theorem 4 and Theorem 5. This
is because when σ is fixed, σ−1 does not tend to zero and consequently we cannot get
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meaningful convergence rates via the error decomposition in Proposition 9. However, from
Lemma 18, we know that

‖fz − fρ‖2L2ρX ≤ c
−1
H,σ,ρ {Eσ(fz)− Eσ(fρ)} = c−1H,σ,ρ (S1(z) + S2(z)) ,

where the definitions of S1(z) and S2(z) are inherited from Proposition 9.

We notice that under the condition that the Noise Assumption holds, and fρ ∈ H, when
σ is fixed and satisfies

σ > σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
,

Theorem 8 tells us that almost surely fσH = fρ. In this situation, almost surely we have
S1(z) = 0. Therefore, to prove Theorem 6, it suffices to bound the sample error term S2(z).
This can be done by applying Lemma 14 to the function set

FH =
{
g
∣∣ g(z) = `σ(y, f(x))− `σ(y, fρ(x)) : f ∈ H, z ∈ Z

}
.

Proposition 19 Assume that the Complexity Assumption II with 0 < s < 2 and the Noise
Assumption hold. Let fρ ∈ H, σ be fixed and satisfy

σ > σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
.

For any f ∈ H and 0 < δ < 1, with confidence 1− δ, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ CH,σ,ρ,1 log(1/δ)m−

2
2+s ,

where CH,σ,ρ,1 is a positive constant independent of m or δ and will be given explicitly in
the proof.

Proof For any g ∈ FH, we know from the definition of FH that g can be expressed as

g(z) = −σ2 exp
{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z,

for some f ∈ H. Following from the proof of Proposition 10, we know that

‖g‖∞ ≤
√

2/eσ sup
f∈H
‖f − fρ‖∞ := BH,σ,ρ.

When the Noise Assumption holds, fρ ∈ H, and σ > σH,ρ, we have

Eg2 ≤ E
(
(f(x)− fρ(x))2(2y − f(x)− fρ(x))2

)
≤
∫
Y

(
12y2 + 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
dρ(y|x)

∫
X

(f(x)− fρ(x))2dρX (x)

≤ c−1H,σ,ρ
(

12

∫
Z
y2dρ+ 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
Eg := cH,σ,ρ,1Eg,
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where the last inequality follows from Lemma 18. For any g1, g2 ∈ FH, there exist f1, f2 ∈ H
such that

g1(z) = −σ2 exp
{
−(y − f1(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
and

g2(z) = −σ2 exp
{
−(y − f2(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
.

From the proof of Proposition 10, we know that |g1 − g2| ≤
√

2/eσ‖f1 − f2‖∞. This in
connection with the Complexity Assumption II yields

logN2(FH, η) ≤ logN2

(
H, η/(

√
2/eσ)

)
≤ cII,s

(√
2/eσ/η

)s
:= aσ,sη

−s.

Applying Lemma 14 to the function set FH, with simple computations, we see that for any
0 < δ < 1 with confidence 1− δ, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ CH,σ,ρ,1 log(1/δ)m−2/(2+s),

where CH,ρ,σ,1 is a positive constant independent of m or δ and given by

CH,ρ,σ,1 = 18BH,σ,ρ + 2cH,σ,ρ,1 + 2a′sa
2/(2+s)
σ,s (cH,σ,ρ,1 +BH,σ,ρ)

(2−s)/(2+s),

and a′s is a positive constant depending only on s. This completes the proof of Proposition
19.

Proof [Proof of Theorem 6] As a consequence of Proposition 19, we see that for any
0 < δ < 1, with confidence 1− δ, there holds

S2(z) ≤ 1

2
{Eσ(fz)− Eσ(fρ)}+ CH,σ,ρ,1 log(1/δ)m−2/(2+s).

Following from Lemma 18 and recalling that S1(z) = 0, we come to the conclusion that for
any 0 < δ < 1, with confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ c
−1
H,σ,ρ {Eσ(fz)− Eσ(fρ)} = c−1H,σ,ρS2(z) ≤ 2c−1H,σ,ρCH,σ,ρ,1 log(1/δ)m−2/(2+s).

By denoting CH,σ,ρ = 2c−1H,σ,ρCH,σ,ρ,1, we complete the proof of Theorem 6.

5. Towards the Role that σ Plays

We now move our attention to discuss the scale parameter σ in the `σ loss by making some
attempts to interpret the role that σ plays from a learning theory viewpoint.

The first observation on the parameter σ in the `σ loss is that it determines the ro-
bustness of the regression models. For linear regression models, this observation has been
quantitatively described in terms of the influence function and finite-sample breakdown
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point in Wang et al. (2013). For nonlinear regression models, similar observations on the
robustness have been also empirically reported. For instance, the robustness of the regres-
sion models induced by the `σ losses can be enhanced with a decreasing value of σ. In
fact, this is reasonable if we look at the `σ loss in which a smaller σ would limit the influ-
ence of the outliers in the response variable. In addition, in the learning theory literature,
the robustness property of kernel-based regression models has been studied by considering
the growth type of the loss function and investigating the existence and boundedness of
the corresponding influence function (see Christmann and Steinwart, 2007; Steinwart and
Christmann, 2008). From Chapter 2 in Steinwart and Christmann (2008), it is easy to check
that the `σ loss is of upper growth type 1 due to its Lipschitz continuity property and con-
sequently can be used to deal with unbounded Y . It would be also worthwhile to derive a
quantitative description on the robustness of the MCCR model (2) in terms of the influence
function as done in Christmann and Steinwart (2007) and Christmann and Messem (2008)
for convex regression models. However, we remark that due to the non-convexity of the `σ
loss, the deduction of the influence function of the MCCR model in H (which is possibly
infinite dimensional) can be much involved and is worthy for further study.

On the other hand, we realize that in the robustness literature, the scale parameter not
only controls the robustness property of the regression model associated with the `σ loss but
also specifies its efficiency and plays a trade-off role. Considering the nonparametric setting
in our study and given that our primary concern is the convergence rates of the MCCR
model (2), we restrict ourselves to discussions of the influence of the scale parameter σ on the
convergence rates. To this end, we recall the following relation from the error decomposition
in Proposition 9:

‖fz − fρ‖2L2ρX
≤
{
Eσ(fz)− Eσ(fσH)

}
+ ‖fH − fρ‖2L2ρX

+AH,σ,ρ.

On the right-hand side of the above inequality, the first term is the excess risk of the
empirical estimator modeled by the MCCR model, the convergence of which can be ensured
by controlling the complexity of the hypothesis space H and confining the tail behavior of
the response variable. The second term ‖fH − fρ‖2L2ρX

represents the approximation error

and is independent of the scale parameter σ. The influence of the scale parameter σ on the
convergence rates can be revealed from the bias term AH,σ,ρ. According to Proposition 9,
we know that AH,σ,ρ = 2cH,ρ/σ

2. Therefore, a decreasing value of σ will lead to increasing
bias and consequently yields slower convergence rates.

From the above discussions, we can see that the parameter σ in the `σ loss balances
the robustness of the MCCR model (2) and its convergence rates. We will continue our
discussion on the role that σ plays by trying to extend our preceding analysis for the `σ loss
to other robust regression loss functions in the next section.

6. Generalization to Other Robust Loss Functions

In the preceding sections, motivated by the information-theoretic interpretation of the max-
imum correntropy criterion and its empirical successes in real-world applications, we gener-
alize the idea of the maximum correntropy criterion in regression with the `σ loss. We then
present a theoretical understanding towards the maximum correntropy criterion in regres-
sion by conducting a learning theory analysis for ‖fz − fρ‖2L2ρX

. We conclude that one can

1020



Maximum Correntropy Criterion in Regression

rely on the `σ loss to solve regression problems with non-Gaussian as well as Gaussian noise.
However, one may argue that from a regression viewpoint, the `σ loss is merely a special
case of robust loss functions arise in robust statistics. In view of this, in this section we
try to generalize our previous analysis to other robust loss functions and see what happens
when a robust loss function is applied into the learning for regression scenarios.

The robust loss functions refer to those used to obtain robust M-estimators in linear
regression models. As mentioned earlier, the MCCR model can be viewed as a nonpara-
metric M-estimator. Therefore, we first give a glimpse of the robust M-estimation methods
in linear regression models to distinguish them from the robust nonparametric M-estimator
we investigate in this paper. In linear regression models, it is assumed that the observations
z are drawn i.i.d from Z = X × Y with X = Rd and Y = R. In this setting, the regression
function f?(x) := xT θ?, where θ? ∈ Θ := Rd is unknown and one of the main tasks in
linear regression problem is to estimate the regression parameter θ?. A common approach
to obtaining a robust estimator θ̂ for θ? is to solve the following optimization problem

θ̂ = arg min
θ∈Rd

m∑
i=1

φ

(
yi − xTi θ

σ

)
, (19)

where σ > 0 is the scale parameter and φ is a robust loss function that downweights large
residual errors. In fact, by using the above robust loss function φ, concerning the nonlinear
regression model (1), one can also propose the following robust nonparametric ERM-based
regression scheme

f̂z = arg min
f∈H

m∑
i=1

φ

(
yi − f(xi)

σ

)
. (20)

Notice that (19) aims at estimating a vector in Rd while (20) is proposed to estimate
a function in a function space H that can have an infinite dimension. This gives the
main difference between the two models. Denoting φσ(t) := φ(t/σ), besides the `σ loss
investigated in this paper, several frequently employed robust loss functions include:

• Huber’s loss: φσ(t) = t2I{|t|≤σ} + (2σ|t| − σ2)I{|t|>σ};

• Cauchy loss: φσ(t) = σ2 log
(
1 + t2/σ2

)
;

• Tukey’s biweight loss: φσ(t) = (σ2/6)(1− (1− (t/σ)2)3)I{|t|≤σ} + (σ2/6)I{|t|>σ}.

In the above loss functions, IS is an indicator function which takes the value 1 if S is true
and gets the value 0 otherwise.

Recall that our previous analysis on the `σ loss and the MCCR model (2) relies heavily
on Lemma 7. From the proof of Lemma 7, we know that similar analysis can be also applied
to other robust loss functions that are sufficiently smooth and satisfy certain conditions,
e.g., the Cauchy loss given above. On the other hand, although our analysis cannot cover
all the robust loss functions, following from our previous analyzing process, we can still
get a general view on the robust loss functions and see what happens when a robust loss
function is employed from a learning theory viewpoint.
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fH

fρ
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Figure 2: The statistical learning approach to bounding the L2ρX -distance between fz and
fρ for the ERM scheme (6), which is induced by the least squares loss.

H

fz

fHfσH

fρ

III
III

Figure 3: The statistical learning approach to bounding the L2ρX -distance between fz and
fρ for the ERM scheme induced by a robust loss function φσ.
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To illustrate this, we first recall that to analyze the convergence of an ERM scheme
associated with the least squares loss (e.g., the unconstrained regression model (6)), a
typical statistical learning approach is proceeded as follows: instead of directly measuring
the L2ρX -distance between f lsz and fρ, one first introduces the projection of fρ in H, i.e., fH.
With the help of fH, one can decompose the distance into sample error and approximation
error as follows:

‖f lsz − fρ‖2L2ρX ≤ ‖f
ls
z − fH‖2L2ρX + ‖fH − fρ‖2L2ρX .

The idea of the above decomposition is depicted in Figure 2, where I represents the sample
error ‖f lsz − fH‖2L2ρX

while II gives the approximation error ‖fH − fρ‖2L2ρX
.

However, situations will be quite different if a robust regression loss φσ is employed. To
explain this, we redefine fσH as the target function of the regression model induced by a
general robust loss φσ and fz as the corresponding empirical target function, definitions of
which are given as follows

fσH = arg min
f∈H

∫
Z
φσ(y − f(x))dρ and fz = arg min

f∈H

1

m

m∑
i=1

φσ(yi − f(xi)).

The analysis in our study indicates that to analyze the convergence of a regression model
induced by a robust loss function φσ, one may proceed via the following decomposition

‖fz − fρ‖2L2ρX ≤ ‖fz − f
σ
H‖2L2ρX + ‖fσH − fH‖2L2ρX + ‖fH − fρ‖2L2ρX .

Figure 3 gives an intuitive description on the above decomposition. Similarly, in Figure 3, I
represents the sample error term ‖fz − fσH‖2L2ρX

, II stands for the approximation error term

‖fH−fρ‖2L2ρX
while III measures the L2ρX -distance between fσH and fH. Notice that the bias

term III is caused by the introduction of the scale parameter σ that delivers the robustness
to the model. Due to the non-robustness of LSR and the fact that fH is the target function
of LSR, again we conclude that the smaller of the L2ρX -distance between fσH and fH is, the
less robustness the regression model associated with the φσ loss possesses.

Taking the `σ loss for example, we know from our previous analysis that under very
specific conditions the two points, fσH and fH, meet and consequently the bias term III
disappears. Technically speaking, a nice point of the `σ loss lies in that it is sufficiently
smooth which makes it possible to bound the L2ρX -distance between fσH and fH explicitly.
For instance, when the Moment Assumption holds and fρ ∈ H, as a consequence of Lemma
7, we see that

‖fσH − fH‖2L2ρX ≤ cH,ρ/σ
2.

As mentioned in the previous section, the above estimate reveals that when the value of σ
decreases, the upper bound of the bias term III increases.

Based on the above discussions, we conclude that when a robust loss function is employed
in nonparametric regression problems, the enhancement of robustness is at the sacrifice of
the convergence rate of the model and what one needs to do is to find a good compromise.
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7. Numerical Experiments

Studies in this paper are motivated by empirical success of the MCCR model. However, for
the sake of completeness, in this section, we carry out numerical experiments on synthetic
and real data sets to show the effectiveness of the MCCR model (2).

7.1 Experimental Setup

Notice that the MCCR model (2) is a constrained optimization model since H is assumed
to be a compact subset of C(X ). As mentioned previously, a typical choice of H is a
bounded subset of a certain reproducing kernel Hilbert space HK induced by some Mercer
kernel K. However, to determine the diameter of this bounded subset in applications, prior
information is usually required. In our experiments, instead of evaluating the optimization
model (2), we focus on its unconstrained version

fz = arg min
f∈HK

1

m

m∑
i=1

`σ(yi, f(xi)) + λ‖f‖2K, (21)

where λ is a positive regularization parameter.
The representer theorem ensures that we can search within the function set HK,z for

the minimizer of the optimization model (21), where

HK,z =

{
m∑
i=1

αiK(x, xi) + b, b ∈ R, αi ∈ R, i = 1, · · · ,m

}
,

with b being an offset. In our experiments, we use the Gaussian kernel

Kh(xi, xj) = exp
(
−‖xi − xj‖2/h2

)
,

with the parameter h to be determined. To show the effectiveness of the MCCR model, we
compare the empirical performance of (21) with other robust regression schemes, including
robust regression models based on the Huber’s loss and the least absolute deviation loss.
These robust regression schemes are obtained by replacing the `σ loss in (21) with the
Huber’s loss and the least absolute deviation loss, respectively. Explicit definitions of the
two loss functions are given as follows:

φHuber
a (u, v) =

{
(u− v)2, if |u− v| ≤ a
2a|u− v|, if |u− v| > a

and φLAD(u, v) = |u− v|, u, v ∈ R.

For notation simplifications, we denote the two robust regression models as Huber and LAD,
respectively.

To solve (21), we apply the iteratively reweighted least squares method (IRLS). The
basic procedure is to iteratively solve the weighted least squares problem and give weights
according to the current solution. Due to the non-convexity of the MCCR model, solving
(21) by using IRLS only guarantees a stationary point. In our experiment, we use the result
of the least squares method as the starting point.

In our experiment, noise added to the toy examples is given as follows

noise := τ1ε1 + τ2ε
p
2, (22)
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where ε1 follows the standard Gaussian distribution and εp2 is an impulse noise (outliers)
defined as

Prob(εp2 = t) =


1− p, t = 0,
p/2, t = 1,
p/2, t = −1.

τ1 and τ2 are introduced to set the variance of the Gaussian noise and the magnitude
of the impulsive noise. In our experiment, we always set p = 0.1, i.e., 10% samples are
contaminated by impulsive noise. In addition, in some of our experiments on synthetic data
sets, we will also consider the noise ε1 that is drawn from the Student’s t-distribution with
3 degrees of freedom, and Cauchy distribution.

7.2 Example of the Noisy Sinc Function

We first choose the sinc function as the regression function. The one-dimension sinc function
is given as

f(x) = sin(πx)/(πx), x ∈ [−4, 4], (23)

which is frequently adopted to illustrate the regression models (see Vapnik, 1998; Suykens
et al., 2002a,b; Schölkopf et al., 2000; Smola and Schölkopf, 2004).

In our experiment, we first draw a training set of size 100 from the sinc function (23)
that are corrupted by the Gaussian noise. We then draw another training set with the same
size corrupted by the Gaussian noise and the outliers. With each training set, the fitting
results of the sinc function are plotted in Figure 4, in which the red dot-dashed curve is the
one reconstructed by MCCR, the blue dashed curve represents the one from Huber while
LAD gives the green dotted curve.

From Figure 4, one can see that all of the three models can fit the curve of the sinc
function well when the data is only contaminated by the Gaussian noise. When the train-
ing data are also corrupted by outliers, all of the three robust regression models can still
successfully reconstruct the curve. However, we can see that MCCR gives the best fitting
results, especially at positions where data are corrupted by outliers.

7.3 Example of the Noisy Friedman’s Benchmark Functions

Our second numerical experiment on toy examples considers multiple dimensional regression
problems. We now use the Friedman’s benchmark functions as our test functions, which were
introduced in Friedman (1991) and have become widely employed models when studying
regression problems (see Tipping, 2001; Brown et al., 2005; Debruyne et al., 2010).

The Friedman’s benchmark functions are listed as follows:

• f1(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5;

• f2(x) =

√
(x1)2 + (x2x3 − 1/(x2x4))2;

• f3(x) = arctan
(
1/x1

(
x2x3 − 1/(x2x4)

))
.
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Figure 4: Sinc function (black solid curves) and the regression results (MCCR: red dot-
dashed curve; Huber: blue dashed curve; LAD: green dotted curve). (top) The
training data (crosses) are corrupted by Gaussian noise; (bottom) Some observed
data are outliers (marked by squares).
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Figure 5: Box-plots of the residuals of Friedman’s benchmark functions for the case of Gaus-
sian noise. Each box-plot features a lower quartile (25 percentile) line, a median
(50 percentile) line and an upper quartile (75 percentile) line for the residuals on
test data.
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For f1, x = (x1, . . . , x10) where each xj , j = 1, . . . , 10, is uniformly distributed in [0, 1] and
x6, . . . , x10 are noisy variables. For f2 and f3, x = (x1, x2, x3, x4) and each is uniformly
distributed in the following intervals: x1 ∈ [0, 100], x2 ∈ [40π, 560π], x3 ∈ [0, 1] and x4 ∈
[1, 11].

For each function, 1000 observations are randomly taken from corresponding domain for
training and cross-validating. Another independent 1000 observations are also randomly
drawn as the test set. Noise and outliers are then added according to (22). For f1, we set
τ1 = 1. For f2 and f3, τ1 is set such that the ratio of the signal power to the power of ε1 is 3.
In the outlier-free cases, we set τ2 = 0. To observe the performance for the three models in
the presence of outliers in the training data sets, we set τ2 = maxx∈D f(x)−minx∈D f(x),
where D is the domain of each benchmark function. For each regression model, the width
of the Gaussian kernel h, the regularization parameter λ and the scale parameter in the loss
function (no scale parameter for the LAD loss) are all tuned via a 10-fold cross-validation
under the mean squared error criterion. The residuals {yi − f(xi)}1000i=1 are recorded. For
the case of Gaussian noise, we boxplot all the residuals in Figure 5. Each box-plot features
a lower quartile (25 percentile) line, a median (50 percentile) line and an upper quartile (75
percentile) line.

In Table 1, we also report the relative sum of squared error (RSSE) on the test data set
T , i.e.,

RSSE(f̂) =
∑
x∈T

(
f(x)− f̂(x)

)2/∑
x∈T

(
f(x)− f̄T

)2
,

where f̄T is the mean value of f(x) on T .

test function noise MCCR Huber LAD

f1 Gaussian noise, no outliers 0.048 0.049 0.103
Gaussian noise, outliers 0.062 0.073 0.157

f2 Gaussian noise, no outliers 0.020 0.021 0.136
Gaussian noise, outliers 0.023 0.032 0.156

f3 Gaussian noise, no outliers 0.091 0.117 0.136
Gaussian noise, outliers 0.062 0.073 0.157

f1 Cauchy noise, no outliers 0.042 0.042 0.116
Cauchy noise, outliers 0.045 0.049 0.089

f2 Cauchy noise, no outliers 0.005 0.005 0.025
Cauchy noise, outliers 0.006 0.006 0.021

f3 Cauchy noise, no outliers 0.180 0.195 0.177
Cauchy noise, outliers 0.219 0.143 0.154

f1 Student noise, no outliers 0.040 0.040 0.101
Student noise, outliers 0.046 0.075 0.092

f2 Student noise, no outliers 0.017 0.017 0.129
Student noise, outliers 0.023 0.024 0.123

f3 Student noise, no outliers 0.423 0.429 0.430
Student noise, outliers 0.471 0.544 0.434

Table 1: The relative sum of squared error on the test data
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7.4 Evaluation on Real Data Sets

We also evaluate the three robust regression models on four real data sets downloaded from
UCI repository of machine learning databases (see Bache and Lichman, 2013): Concrete
Compressive Strength Data Set, Housing Data Set, Yacht Hydrodynamics Data Set and
Airfoil Self-Noise Data Set.

For each data set, two third of the instances are used for training and the remaining are
used for test. We repeat our experiment as done for the Friedman’s benchmark functions
for ten times. The residuals for the three robust regression models are displayed by box-
plots in Figure 6, the accuracy of which are measured by RSSE. Experimental results on
the RSSEs and the details of training data, including the size of features n and the size of
instances m, are reported in Table 2.

data sets n m MCCR Huber LAD

concrete 9 686 0.061 0.061 0.062
house 14 338 0.128 0.126 0.175
yacht-hydrodynamics 7 205 0.022 0.024 0.159
airfoil 6 1000 0.184 0.195 0.238

Table 2: The relative sum of squared error on real data

In the above numerical evaluations on toy examples and real data sets, our experiments
show that when the data is only contaminated by Gaussian noise, a large sigma value in the
MCCR model and a large a value in the regression model based on the Huber’s criterion will
be selected via cross-validation. However, for other noise and in the presence and absence of
outliers, smaller values of the scale parameters in the two regression models will be selected.
These coincide with our understandings on the robust regression models.

From the above experimental results, we can see the effectiveness of MCCR especially
for the cases in the presence of impulsive noise.

8. Concluding Remarks

In this paper, we presented a statistical learning interpretation of the regression model
associated with the correntropy induced regression loss. We investigated its connections
with the least squares regression. We found that the correntropy induced loss could help for
regression with non-Gaussian noise. Meanwhile, comparable performance could be obtained
by applying this regression model when the noise is Gaussian. Convergence rates of the
proposed model under various circumstances were derived explicitly. We showed that the
scale parameter in the loss function balanced the convergence rates and the robustness of
the model. We also made some efforts to extend our analysis to other robust loss functions
and gave a general view on analyzing regression models induced by general robust loss
functions. It is expected that our observations can shed some light towards future real-life
applications.
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Figure 6: Box-plots of the residuals on four real data sets. Each box-plot features a lower
quartile (25 percentile) line, a median (50 percentile) line and an upper quartile
(75 percentile) line for the residuals on test data. (top left) concrete; (top right)
Boston house; (bottom left) yacht hydrodynamics; (bottom right) airfoil.
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Abstract

Estimation of inverse covariance matrices, known as precision matrices, is important in
various areas of statistical analysis. In this article, we consider estimation of multiple
precision matrices sharing some common structures. In this setting, estimating each preci-
sion matrix separately can be suboptimal as it ignores potential common structures. This
article proposes a new approach to parameterize each precision matrix as a sum of com-
mon and unique components and estimate multiple precision matrices in a constrained l1
minimization framework. We establish both estimation and selection consistency of the
proposed estimator in the high dimensional setting. The proposed estimator achieves a
faster convergence rate for the common structure in certain cases. Our numerical examples
demonstrate that our new estimator can perform better than several existing methods in
terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data
set reveals some interesting gene networks across multiple cancer subtypes.

Keywords: covariance matrix, graphical model, high dimension, joint estimation, preci-
sion matrix

1. Introduction

Estimation of a precision matrix, which is an inverse covariance matrix, has attracted a
lot of attention recently. One reason is that the precision matrix plays an important role
in various areas of statistical analysis. For example, some classification techniques such as
linear discriminant analysis and quadratic discriminant analysis require good estimates of
precision matrices. In addition, estimation of a precision matrix is essential to establish
conditional dependence relationships in the context of Gaussian graphical models. Another
reason is that the high-dimensional nature of many modern statistical applications makes
the problem of estimating a precision matrix very challenging. In situations where the
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dimension p is comparable to or much larger than the sample size n, more feasible and
stable techniques are required for accurate estimation of a precision matrix.

To tackle such problems, various penalized maximum likelihood methods have been
considered by many researchers in recent years (Yuan and Lin, 2007; Banerjee et al., 2008;
Friedman et al., 2008; Rothman et al., 2008; Lam and Fan, 2009; Fan et al., 2009, and many
more). These approaches produce a sparse estimator of the precision matrix by maximizing
the penalized Gaussian likelihood with sparse penalties such as the l1 penalty and the
smoothly clipped absolute deviation penalty (Fan and Li, 2001). Ravikumar et al. (2011)
studied the theoretical properties of the l1 penalized likelihood estimator for a broad class
of population distributions.

Instead of using likelihood approaches, several techniques take advantage of the con-
nection between linear regression and the entries of the precision matrix. See for example
Meinshausen and Bühlmann (2006); Peng et al. (2009); Yuan (2010). In particular, these
approaches convert the estimation problem of the precision matrix into relevant regression
problems and solve them with sparse regression techniques accordingly. One advantage of
these approaches is that they can handle a wide range of distributions including the Gaus-
sian case. Cai et al. (2011) recently proposed a very interesting method to directly estimate
the precision matrix without the Gaussian distributional assumption. This approach solves
a constrained l1 minimization problem to obtain a sparse estimator of the precision ma-
trix. They showed that the proposed estimator has a faster convergence rate than the l1
penalized likelihood estimator for some non-Gaussian cases.

All aforementioned approaches focus on estimation of a single precision matrix. The
fundamental assumption of these approaches is that all observations follow the same dis-
tribution. However, in some real applications, this assumption can be unreasonable. As a
motivating example, consider the glioblastoma multiforme (GBM) cancer data set studied
by The Cancer Genome Atlas Research Network (The Cancer Genome Atlas Research Net-
work, 2008). It is shown in the literature that the GBM cancer can be classified into four
subtypes (Verhaak et al., 2010). In this case, it would be more realistic to assume that the
distribution of gene expression levels can vary from one subtype to another, which results
in multiple precision matrices to estimate (Lee et al., 2012). A naive way to estimate them
is to model each subtype separately. However, in this separate approach, modeling of one
subtype completely ignores the information on other subtypes. This can be suboptimal if
there exists some common structure across different subtypes.

To improve the estimation in presence of some common structure, several joint esti-
mation methods have been proposed recently in a penalized likelihood framework. See for
example Guo et al. (2011); Honorio and Samaras (2012); Danaher et al. (2014). These
methods employ various group penalties in the Gaussian likelihood framework to link the
estimation of separate precision matrices.

In this article, we propose a new method to jointly estimate multiple precision matrices.
Our approach uses a novel representation of each precision matrix as a sum of common and
unique matrices. Then we apply sparse constrained optimization on the common and unique
components. The proposed method is applicable for a broad class of distributions including
both the Gaussian and some non-Gaussian cases. The main strength of our method is
that it uses all available information to jointly estimate the common and unique structures,
which can be more preferable than separate modelings. The estimation can be improved
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if the precision matrices are similar to each other. Furthermore, our method is able to
discover unique structures of each precision matrix, which enables us to identify differences
among multiple precision matrices. The proposed estimator is shown to achieve a faster
convergence rate for the common structures in certain cases.

The rest of this article is organized as follows. In Section 2, we introduce our proposed
method after reviewing some existing separate approaches. We establish its theoretical
properties in Section 3. Section 4 develops computational algorithms to obtain a solution
for the proposed method. Simulated examples are presented in Section 5 to demonstrate
performance of our estimator and analysis of a glioblastoma cancer data example is provided
in Section 6. The proofs of theorems are provided in Appendix.

2. Methodology

In this section, we introduce a new method for estimating multiple precision matrices in
an l1 minimization framework. Consider a heterogeneous data set with G different groups.
For the gth group (g = 1, . . . , G), let {x(g)

1 , . . . , x(g)
ng} be an independent and identically

distributed random sample of size ng, where x(g)

k = (x(g)

ki , . . . , x
(g)

kp)T is a p-dimensional ran-

dom vector with the covariance matrix Σ(g)

0 and precision matrix Ω(g)

0 := (Σ(g)

0 )−1. For
detailed illustration of our proposed method, we first define some notations similar to
Cai et al. (2011). For a matrix X = (xij) ∈ Rp×q, we define the elementwise l1 norm
||X||1 =

∑p
i=1

∑q
j=1 |xij |, the elementwise l∞ norm |X|∞ = max1≤i≤p,1≤j≤q |xij | and the

matrix l1 norm ||X||L1
= max1≤j≤q

∑p
i=1 |xij |. For a vector x = (x1, . . . , xp)

T ∈ Rp, |x|1
and |x|∞ denote vector l1 and l∞ norms respectively. The notation X � 0 indicates that
X is positive definite. Let I be a p× p identity matrix. For the gth group, Σ̂(g) denotes the
sample covariance matrix. Write Ω(g)

0 = (ω(g)

ij,0); g = 1, . . . , G.

Our aim is to estimate the precision matrices, Ω(1)

0 , . . . ,Ω(G)

0 . The most naive way to
achieve this goal is to estimate each precision matrix separately by taking the inverses of
the sample covariance matrices. However, in high dimensional cases, the sample covari-
ance matrices are not only unstable for estimating the covariance matrices, but also not
invertible. To estimate the precision matrix in high dimensions, various estimators have
been introduced in the literature. For example, various l1 penalized Gaussian likelihood
estimators have been studied intensively in the literature (see for example, Yuan and Lin,
2007; Banerjee et al., 2008; Friedman et al., 2008; Rothman et al., 2008). In this framework,
the precision matrices can be estimated by solving the following G optimization problems:

min
Ω(g)�0

tr(Σ̂(g)Ω(g))− log{det(Ω(g))}+ λg
∑
i 6=j
|w(g)

ij |, g = 1, . . . , G, (1)

where λg is a tuning parameter which controls the degree of the sparsity in the estimated
precision matrices. Other sparse penalized Gaussian likelihood estimators have been pro-
posed as well (Lam and Fan, 2009; Fan et al., 2009).

Recently, Cai et al. (2011) proposed an interesting method of constrained l1 minimization
for inverse matrix estimation (CLIME), which can be directly implemented using linear
programming. In particular, the CLIME estimator of Ω(g)

0 is the solution of the following
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optimization problem:

min ||Ω(g)||1 subject to: |Σ̂(g)Ω(g) − I|∞ ≤ λg, (2)

where Σ̂(g) is the sample covariance matrix and λg is a tuning parameter. As the optimization
problem in (2) does not require symmetry of the solution, the final CLIME estimator is
obtained by symmetrizing the solution of (2). The CLIME estimator does not need the
Gaussian distributional assumption. Cai et al. (2011) showed that the convergence rate of
the CLIME estimator is faster than that of the l1 penalized Gaussian likelihood estimator
if the underlying true distribution has polynomial-type tails.

To estimate multiple precision matrices, Ω(1)

0 , . . . ,Ω(G)

0 , we can build G individual models
using the optimization problem (1) or (2). However, these separate approaches can be
suboptimal when the precision matrices share some common structure. Several recent
papers have proposed joint estimations of multiple precision matrices under the Gaussian
distributional assumption to improve estimation. In particular, such an estimator is the
solution of

min
{Ω}

G∑
g=1

ng

[
tr(Σ̂(g)Ω(g))− log{det(Ω(g))}

]
+ P ({Ω}),

where ng is the sample size of the g-th group, {Ω} = {Ω(1), . . . ,Ω(G)}, and P ({Ω}) is
a penalty function that encourages similarity across the G estimated precision matrices.
For example, Guo et al. (2011) employs a non-convex penalty called hierarchical group

penalty which has the form, P ({Ω}) = λ
∑

i 6=j

(∑G
g=1 |ω

(g)

ij |
)1/2

. Honorio and Samaras

(2012) adopts a convex penalty, P ({Ω}) = λ
∑

i 6=j |(ω
(1)

ij , . . . , ω
(G)

ij )|
p

(p > 1) where | · |p is

the vector lp norm. To separately control the sparsity level and the extent of similarity,

Danaher et al. (2014) considered a fused lasso penalty, P ({Ω}) = λ1
∑G

g=1

∑
i 6=j |ω

(g)

ij | +
λ2
∑

g<g′
∑

ij |ω
(g)

ij −ω
(g′)
ij |. In some simulation settings, they showed that the joint estimation

can perform better than separate l1 penalized normal likelihood estimation. As pointed by
Ravikumar et al. (2011), these penalized Gaussian likelihood estimators are applicable even
for some mild non-Gaussian data since maximizing a penalized likelihood can be interpreted
as minimizing a penalized log-determinant Bregman divergence. However, these approaches
were mainly designed for Gaussian data and can be less efficient when the underlying
distribution becomes far from Gaussian. In this paper, we propose a new joint method
for estimating multiple precision matrices, which is less dependent on the distributional
assumption and applicable for both Gaussian and non-Gaussian cases.

In our joint estimation method, we take the multi-task learning perspective and first
define the common structure M0 and the unique structure R(g)

0 as

M0 :=
1

G

G∑
g=1

Ω(g)

0 , R(g)

0 := Ω(g)

0 −M0; g = 1, . . . , G.

It follows from the definition that
∑G

g=1R
(g)

0 = 0, and consequently our representation is
identifiable. The idea of decomposing parameters into common and individual structures
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was previously considered in the context of supervised multi-tasking learning (Evgeniou
and Pontil, 2004). Their aim was to improve prediction performance of supervised multi-
tasking learning. Here we focus on better estimation of precision matrices with the common
and individual structures. The unique structure is defined to capture different strength of
the edges across all classes. In a special case that an element of M0 is zero, then the
corresponding nonzero element in R(g)

0 can be interpreted as a unique edge. Thus, the
unique structure can address differences in magnitude as well as unique edges. If all precision
matrices are very similar, then the unique structures defined above would be close to zero. In
this case, it can be natural and advantageous to encourage sparsity among {R(1)

0 , . . . , R(G)

0 }
in the estimation. To estimate the precision matrices consistently in high dimensions, it is
also necessary to assume some special structure of M0 as well. In our work, we also assume
that M0 is sparse. To estimate {M0, R

(1)

0 , . . . , R(G)

0 }, we propose the following constrained
l1 minimization criterion:

min{||M ||1 + ν

G∑
g=1

||R(g)||1}

s.t | 1
G

G∑
g=1

{Σ̂(g)(M +R(g))− I}|∞ ≤ λ1, |Σ̂(g)(M +R(g))− I|∞ ≤ λ2,
G∑
g=1

R(g) = 0, (3)

where λ1 and λ2 are tuning parameters and ν is a prespecified weight. Note that if λ1 > λ2,
then the second inequality constraints in (3) imply the first inequality constraint. Therefore,
we only consider a pair of (λ1, λ2) satisfying λ1 ≤ λ2. The first inequality constraint in (3)
reflects how close the final estimators are to the inverses of the sample covariance matrices in
an average sense. On the other hand, the second inequality constraint controls an individual
level of closeness between the estimators and the sample covariance matrices.

For illustration, consider an extreme case where all the precision matrices are the same.
In this case, the unique structures may be negligible and the first inequality constraint in
(3) approximately reduces to |(G−1

∑G
g=1 Σ̂(g))M−I|∞ ≤ λ1. Therefore, we can pool all the

sample covariance matrices to estimate the common structure which is the precision matrix
in this case. This would be advantageous than building each model separately. The value
of ν in (3) reflects how complex the unique structures of the resulting estimators are. If the
resulting estimators are expected to be very similar from each other, then a large value of
ν is preferred. In Section 3, ν is set to be G−1 or G−1/2 for our theoretical results.

Similar to Cai et al. (2011), the solutions in (3) are not symmetric in general. Therefore,
the final estimators are obtained after a symmetrization step. Let {M̂, R̂(1), . . . , R̂(G)} be
the solution of (3). Then we define Ω̂(g)

1 := M̂ + R̂(g); g = 1, . . . , G. The final estimator of
{Ω(1)

0 , . . . ,Ω(G)

0 } is obtained by symmetrizing {Ω̂(1)

1 , . . . , Ω̂(G)

1 } as follows. Let Ω̂(g)

1 = (ω̂(g)

ij,1).

Our joint estimator of multiple precision matrices (JEMP), {Ω̂(1), . . . , Ω̂(G)}, is defined as
symmetric matrices, {Ω̂(g) = (ω̂(g)

ij ); g = 1, . . . , G} with

ω̂(g)

ij = ω̂(g)

ij,1I{
G∑
g=1

|ω̂(g)

ij,1| ≤
G∑
g=1

|ω̂(g)

ji,1|}+ ω̂(g)

ji,1I{
G∑
g=1

|ω̂(g)

ij,1| >
G∑
g=1

|ω̂(g)

ji,1|}; g = 1, . . . , G.

Note that the solution Ω̂(g) is not necessarily positive definite. Although there is no guar-
antee for the solution to be positive definite, it can be positive definite with high probability.
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In our simulation study, we observed that within a reasonable range of tuning parameters,
almost all solutions are positive definite. Furthermore, one can perform projection of the
estimator to the space of positive definite matrices to ensure positive definitiveness as dis-
cussed in Yuan (2010).

As a remark, although we focus on generalizing CLIME for multiple graph estimation in
this paper, our proposed common and unique structure approach can also be applied to the
graphical lasso estimator under the Gaussian assumption as pointed out by one reviewer.
As a future research direction, it would be interesting to investigate how the common and
unique structure framework works in the graphical lasso estimator.

3. Theoretical Properties

In this section, we investigate theoretical properties of our proposed joint estimator JEMP.
In particular, we first construct the convergence rate of our estimator in the high dimensional
setting. Then we show that the convergence rate can be improved for the common structure
of the precision matrices in certain cases. Finally, the model selection consistency is shown
with an additional thresholding step.

For theoretical properties, we follow the set-up of Cai et al. (2011) and the results therein
are also used for our technical derivations. In this section, for simplicity, we assume that
n = n1 = · · · = nG. We consider the following class of matrices,

U := {Ω : Ω � 0, ‖Ω‖L1
≤ CM},

and assume that Ω(g)

0 ∈ U for all g = 1, . . . , G. This assumption requires that the true
precision matrices are sparse in terms of the l1 norm while allowing them to have many small
entries. Write E(x(g)) = (µ(g)

1 , . . . , µ(g)
p )T. We also make the following moment condition on

x(g) for our theoretical results.

Condition 1 There exists some 0 < η < 1/4 such that E[exp{t(x(g)

i − µ
(g)

i )2}] ≤ K < ∞
for all |t| ≤ η and all i, g and G log p/n ≤ η, where K is a bounded constant.

Condition 1 indicates that the components of x(g) are uniformly sub-Gaussian. This
condition is satisfied if x(g) follows a multivariate Gaussian distribution or has uniformly
bounded components.

Theorem 1 Assume Condition 1 holds. Let λ1 = λ2 = 3CMC0(log p/n)1/2, where C0 =
2η−2(2 + τ + η−1e2K2)2 and τ > 0. Set ν = G−1. Then

max
ij

 1

G

G∑
g=1

|ω̂(g)

ij − ω
(g)

ij,0|

 ≤ 6C2
MC0

(
log p

n

)1/2

,

with probability greater than 1− 4Gp−τ .

In an average sense, the convergence rate can be viewed the same as that of the CLIME
estimator which is of order (log p/n)1/2. In this theorem, the first inequality constraint in
(3) does not play any role in the estimation procedure as we set λ1 = λ2. In the next
theorem, with properly chosen λ1, we construct a faster convergence rate for the common
part under certain conditions.
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Theorem 2 Assume Condition 1 holds. Suppose that there exists CR > 0 such that
‖R(g)

0 ‖L1 ≤ CR for all g = 1, . . . , G and (
∑G

g=1 ‖R
(g)

0 ‖L1) ≤ CRG
1/2. Set ν = G−1/2 and let

λ1 = (CM + CR)C0{log p/(nG)}1/2 and λ2 = CMC0(log p/n)1/2. Then

|M̂ −M0|∞ ≤ C0(2C2
M + 4CMCR + C2

R)

(
log p

nG

)1/2

,

with probability greater than 1− 2(1 + 3G)p−τ .

Theorem 2 states that our proposed method can estimate the common part more ef-
ficiently with the corresponding convergence rate of order {log p/(nG)}1/2, which is faster

than the order (log p/n)1/2.

Note that our theorems show consistency of our estimator in terms of the elementwise
l∞ norm. On the other hand, Guo et al. (2011) showed consistency of their estimator under
the Frobenious norm. Therefore, our theoretical results are not directly comparable to
the theorems in Guo et al. (2011). However, it is worthwhile to note that our Theorem 2
reveals the effect of G on the consistency while the theorems in Guo et al. (2011) do not
show explicitly how their estimator can have advantage over separate estimation in terms
of consistency.

Besides its estimation consistency, we also prove the model selection consistency of our
estimator which means that it reveals the exact set of nonzero components in the true
precision matrices with high probability. For this result, a thresholding step is introduced.
In particular, a threshold estimator Ω̃(g) = (ω̃(g)

ij ) based on {Ω̂(1), . . . , Ω̂(G)} is defined as,

ω̃(g)

ij = ω̂(g)

ij I{|ω̂
(g)

ij | ≥ δn},

where δn ≥ 2CMGλ2 and λ2 is given in Theorem 1. To state the model selection consistency
precisely, we define

S0 := {(i, j, g) : ω(g)

ij,0 6= 0}, Ŝ := {(i, j, g) : ω̃(g)

ij 6= 0} and θmin := min
(i,j,g)∈S0

G∑
g=1

|ω(g)

ij,0|.

Then the next theorem states the model selection consistency of our estimator.

Theorem 3 Assume Condition 1 holds. If θmin > 2δn, then

pr(S0 = Ŝ) ≥ 1− 4Gp−τ .

4. Numerical Algorithm

In this section, we describe how to obtain the numerical solutions of the optimization
problem (3). In Section 4.1, the optimization problem (3) is decomposed into p individual
subproblems and a linear programming approach is used to solve them. In Section 4.2, we
describe another algorithm using the alternating directions method of multiplier (ADMM).
Section 4.3 explains how the tuning parameters can be selected.
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4.1 Decomposition of (3)

Similar to the Lemma 1 in Cai et al. (2011), one can show that the optimization problem
(3) can be decomposed into p individual minimization problems. In particular, let ei be
the ith column of I. For 1 ≤ i ≤ p, let {m̂i, r̂

(1)

i , . . . , r̂
(G)

i } be the solution of the following
optimization problem:

min{|m|1 + ν

G∑
g=1

|r(g)|1}

s.t. | 1
G

G∑
g=1

{Σ̂(g)(m+ r(g))− ei}|∞ ≤ λ1, |Σ̂(g)(m+ r(g))− ei|∞ ≤ λ2,

G∑
g=1

r(g) = 0, (4)

where m, r(1), . . . , r(G) are vectors inRp. We can show that solving the optimization problem
(3) is equivalent to solving the p optimization problems in (4). The optimization problem in
(4) can be further reformulated as a linear programming problem and the simplex method
is used to solve this problem (Boyd and Vandenberghe, 2004). For our simulation study
and the GBM data analysis, we obtain the solution of (3) using the efficient R-package
fastclime, which provides a generic fast linear programming solver (Pang et al., 2014).

4.2 An ADMM Algorithm

In this section, we describe an alternating directions method of multipliers (ADMM) al-
gorithm to solve (4) which can be potentially more scalable than the previously explained
linear programming approach. We refer the reader to Boyd et al. (2010) for detailed expla-
nation of ADMM algorithms and their convergence properties.

To reformulate (4) into an appropriate ADMM form, define y = (mT, νr(1)T, . . . , νr(G)T)
T
,

zm =
∑G

g=1{Σ̂(g)(m+ r(g))− ei}/G, zg = Σ̂(g)(m+ r(g))− ei, and z = (z1
T, . . . , zG

T, zm
T)T.

Denote the a × a identity matrix as Ia×a and the a × b zero matrix as Oa×b. Then the
problem (4) can be rewritten as

min |y|1 s.t. |zm|∞ ≤ λ1, |zg|∞ ≤ λ2, Ay −Bz = C, where (5)

A =



Σ̂(1) ν−1Σ̂(1) Op×p · · · Op×p
Σ̂(2) Op×p ν−1Σ̂(2) · · · Op×p

...
...

...
. . .

...

Σ̂(G) Op×p Op×p · · · ν−1Σ̂(G)

G−1
∑G

g=1 Σ̂(g) (νG)−1Σ̂(1) (νG)−1Σ̂(2) · · · (νG)−1Σ̂(G)

Op×p Ip×p Ip×p · · · Ip×p


,

B =

(
I(1+G)p×(1+G)p

Op×(1+G)p

)
, and C = (ei

T, . . . , ei
T, Op×1)T. The scaled augmented Lagrangian

for (5) is given by

L(y, z, u) = |y|1 +
ρ

2
||Ay −Bz − C + u||22, s.t. |zm|∞ ≤ λ1, |zg|∞ ≤ λ2,

where u is a (2+G)p-dimensional vector of dual variables. With the current solution zk, uk,
the ADMM algorithm updates solutions sequentially as follows:
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(a) yk+1 = argminyL(y, zk, uk).

(b) zk+1 = argminzL(yk+1, z, uk), s.t. |zm|∞ ≤ λ1, |zg|∞ ≤ λ2.

(c) uk+1 = uk +Ayk+1 −Bzk+1 − c.

As argminyL(y, zk, uk) = argminy{|y|1 + ρ
2 ||Ay −Bz

k − C + uk||22}, the step (a) can be
viewed as an L1 penalized least squares problem. Therefore, the step (a) can be solved using
some existing algorithms for L1 penalized least squares problems. In addition, one can show
that the step (b) has a closed form of solution, zk+1 = min{max{A′yk+1−C ′+(uk)′,−λ}, λ}
where A′ is the submatrix of A consisting of the first (1 + G)p rows, C ′ and (uk)′ are the
corresponding subvectors of C and uk, and λ is a (1 +G)p-dimensional vector of which the
first Gp elements are λ2 and the rest are λ1. Note that scalability and computational speed
of this ADMM algorithm largely depend on the algorithm used for the step (a) as the other
steps have the explicit form of solutions.

4.3 Tuning Parameter Selection

To apply our method, we need to choose the tuning parameters, λ1 and λ2. In practice,
we construct several models with many pairs of λ1 and λ2 satisfying λ1 ≤ λ2 and evaluate
them to determine the optimal pair. To evaluate each estimator, we measure the likelihood
loss (LL) used in Cai et al. (2011) and its definition is

LL =
G∑
g=1

tr(Σ̂(g)
v Ω̂(g))− log{det(Ω̂(g))},

where Σ̂(g)
v is the sample covariance matrix of the gth group computed from an independent

validation set. As mentioned in Section 2, the likelihood loss can be applicable for both
Gaussian and some non-Gaussian data as it corresponds to the log-determinant Bregman
divergence between the estimators and empirical precision matrices in the validation set.
Among several pairs of tuning values, we select the pair which minimizes LL. If a validation
set is not available, aK-fold cross-validation can be combined to this criterion. In particular,
we first randomly split the data set into K parts of equal sizes. Denote the data in the kth
part by {X(1)

(k), . . . , X
(G)

(k)} which is used as a validation set for the kth estimator. For each

k, with a given value of (λ1, λ2), we obtain estimators using all observations which do not
belong to {X(1)

(k), . . . , X
(G)

(k)} and denote them as {Ω̂(G)

(k), . . . , Ω̂
(G)

(k)}. Then the likelihood loss

(LL) is defined as

LL =

K∑
k=1

G∑
g=1

tr(Σ̂(g)

(k)Ω̂
(g)

(k))− log{det(Ω̂(g)

(k))},

where Σ̂(g)

(k) is the sample covariance matrix of the gth group using X(g)

(k). Once the optimal
pair is selected which minimizes LL, the final model is constructed using all data points
with the selected pair.
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5. Simulated Examples

In this section, we carry out simulation studies to assess the numerical performance of our
proposed method. In particular, we compare the numerical performance of five methods:
two separate methods and three joint methods. In separate approaches, each precision
matrix is estimated separately via the CLIME estimator or the GLASSO estimator. For
joint approaches, all precision matrices are estimated together using our JEMP estimator,
the fused graphical lasso (FGL) estimator by Danaher et al. (2014), or the estimator by Guo
et al. (2011), which we refer to as JOINT estimator hereafter. In our proposed method, ν is
set to be G−1/2. We also tried different values of ν such as G−1, and the results are similar
thus omitted. We consider three models as described below: the first two from Guo et al.
(2011) and the last from Rothman et al. (2008); Cai et al. (2011). In all models, we set
p = 100, G = 3 and Ω(g)

0 = Ωc +U (g), where Ωc is common in all groups and U (g) represents
unique structure to the gth group. The common part, Ωc, is generated as follows:

Model 1. Ωc is a tridiagonal precision matrix. In particular, Σc := Ω−1
c = (σij) is first

constructed, where σij = exp(−|di − dj |/2), d1 < . . . < dp, and di − di−1 ∼ Unif(0.5, 1), i =
2, . . . , p. Then let Ωc = Σ−1

c .

Model 2. Ωc is a 3 nearest-neighbor network. In particular, p points are randomly
picked on a unit square and all pairwise distances among the points are calculated. Then we
find 3 nearest neighbors for each point and a pair of symmetric entries in Ωc corresponding
to a pair of neighbors has a value randomly chosen from the interval [−1,−0.5] ∪ [0.5, 1].

Model 3. Ωc = Γ + δI, where each off-diagonal entry in Γ is generated independently
from 0.5y, with y following the Bernoulli distribution with success probability 0.02. Here,
δ is selected so that the condition number of Ωc is equal to p.

For each U (g), we randomly pick a pair of symmetric off-diagonal entries and replace them
with values randomly chosen from the interval [−1,−0.5]∪[0.5, 1]. We repeat this procedure
until

∑
i<j I(|u(g)

ij | > 0)/
∑

i<j I(|ωij,c| > 0) = ρ, where Ωc = (ωij,c) and U (g) = u(g)

ij .
Therefore, ρ is the ratio of the number of unique nonzero entries to the number of common
nonzero entries. We consider four values of ρ = 0, 0.25, 1 and 4. To make the resulting
precision matrices positive-definite, each diagonal element of each matrix Ω(g)

0 is replaced
with 1.5 times the sum of the absolute values of the corresponding row. Finally, each
matrix Ω(g)

0 is standardized to have unit diagonals. Note that in the case of ρ = 1 or 4,
the true precision matrices are quite different from each other. From these cases, we can
assess how joint methods work when the precision matrices are not similar. In addition, we
also consider Model 4 below to assess how JEMP works when the precision matrices have
different structures from each other.

Model 4. Ω(1)

0 is the tridiagonal precision matrix as in Model 1, Ω(2)

0 is the 3 nearest-
neighbor network in Model 2, and Ω(3)

0 is the random network in Model 3.

For each group in each model, we generate a training sample of size n = 100 from
either a multivariate normal distribution N(0,Σ(g)

0 ) or a multivariate t-distribution with
the covariance matrix Σ(g)

0 and degrees of freedom of 3 or 5. In order to select optimal
tuning parameters, an independent validation set of size n = 100 is also generated from the
same distribution of the training sample. For each estimator, optimal tuning parameters
are selected as described in Section 4. We replicate simulations 50 times for each model.
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ρ = 0 ρ = 0.25

EL FL EL FL

Normal

CLIME 4.42 (0.02) 8.57 (0.03) 4.35 (0.02) 8.42 (0.03)

GLASSO 3.70 (0.02) 6.90 (0.03) 3.60 (0.02) 6.73 (0.03)

JOINT 3.43 (0.02) 6.64 (0.04) 3.41 (0.02) 6.61 (0.03)

FGL 1.99 (0.02) 3.75 (0.03) 2.09 (0.02) 3.92 (0.03)

JEMP 2.08 (0.02) 4.06 (0.04) 2.20 (0.02) 4.31 (0.04)

t (DF=5)

CLIME 5.75 (0.17) 10.63 (0.26) 5.81 (0.19) 10.75 (0.33)

GLASSO 5.60 (0.09) 10.23 (0.16) 5.45 (0.09) 10.00 (0.16)

JOINT 5.08 (0.11) 9.44 (0.15) 5.01 (0.12) 9.28 (0.19)

FGL 3.47 (0.07) 6.12 (0.11) 3.46 (0.08) 6.12 (0.11)

JEMP 3.21 (0.06) 6.14 (0.11) 3.41 (0.10) 6.52 (0.19)

t (DF=3)

CLIME 10.34 (0.83) 18.08 (1.05) 10.15 (0.91) 17.25 (1.06)

GLASSO 11.87 (0.33) 24.10 (0.95) 11.78 (0.33) 24.21 (0.95)

JOINT 8.84 (0.58) 15.16 (0.85) 8.95 (0.66) 15.17 (0.92)

FGL 7.01 (0.24) 12.39 (0.52) 7.40 (0.31) 13.23 (0.66)

JEMP 6.02 (0.33) 11.56 (0.73) 5.95 (0.30) 11.16 (0.62)

ρ = 1 ρ = 4

EL FL EL FL

Normal

CLIME 4.23 (0.02) 8.15 (0.03) 3.67 (0.01) 6.95 (0.03)

GLASSO 3.37 (0.02) 6.33 (0.03) 2.57 (0.01) 4.96 (0.03)

JOINT 3.27 (0.01) 6.40 (0.03) 2.51 (0.01) 4.95 (0.02)

FGL 2.18 (0.01) 4.07 (0.02) 1.82 (0.01) 3.47 (0.02)

JEMP 2.38 (0.01) 4.77 (0.04) 2.11 (0.01) 4.28 (0.02)

t (DF=5)

CLIME 5.53 (0.16) 10.12 (0.23) 4.83 (0.17) 8.72 (0.25)

GLASSO 5.11 (0.09) 9.54 (0.17) 4.28 (0.09) 8.35 (0.19)

JOINT 4.71 (0.10) 8.71 (0.14) 3.87 (0.12) 7.03 (0.16)

FGL 3.31 (0.07) 5.95 (0.11) 2.54 (0.06) 4.68 (0.10)

JEMP 3.32 (0.07) 6.40 (0.13) 2.78 (0.07) 5.35 (0.12)

t (DF=3)

CLIME 9.89 (0.86) 17.82 (1.16) 8.93 (0.91) 16.58 (1.28)

GLASSO 11.32 (0.32) 23.77 (0.99) 10.42 (0.31) 23.70 (1.05)

JOINT 9.27 (1.68) 14.23 (1.26) 7.14 (0.65) 11.90 (0.72)

FGL 6.51 (0.25) 11.73 (0.56) 5.95 (0.27) 11.55 (0.67)

JEMP 5.71 (0.29) 10.99 (0.73) 4.72 (0.24) 9.04 (0.49)

Table 1: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 1.
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ρ = 0 ρ = 0.25

EL FL EL FL

Normal

CLIME 5.10 (0.02) 9.80 (0.04) 5.05 (0.02) 9.68 (0.04)

GLASSO 4.50 (0.02) 8.07 (0.03) 4.44 (0.02) 7.98 (0.03)

JOINT 3.89 (0.02) 7.42 (0.04) 4.13 (0.02) 7.84 (0.04)

FGL 2.26 (0.02) 4.26 (0.03) 2.70 (0.02) 5.02 (0.03)

JEMP 2.31 (0.02) 4.44 (0.03) 2.80 (0.02) 5.36 (0.03)

t (DF=5)

CLIME 6.60 (0.17) 12.03 (0.25) 6.62 (0.19) 12.09 (0.32)

GLASSO 6.78 (0.09) 11.67 (0.15) 6.56 (0.09) 11.37 (0.14)

JOINT 6.16 (0.10) 11.18 (0.16) 6.12 (0.14) 11.14 (0.23)

FGL 4.03 (0.07) 6.88 (0.11) 4.28 (0.07) 7.30 (0.10)

JEMP 3.74 (0.06) 6.98 (0.11) 4.15 (0.09) 7.72 (0.20)

t (DF=3)

CLIME 11.41 (0.87) 19.55 (1.06) 11.16 (0.93) 18.66 (1.09)

GLASSO 13.16 (0.34) 24.31 (0.88) 12.90 (0.34) 24.29 (0.88)

JOINT 10.14 (0.56) 16.96 (0.80) 10.24 (0.68) 17.03 (0.94)

FGL 8.34 (0.28) 13.78 (0.55) 8.55 (0.31) 14.16 (0.59)

JEMP 7.17 (0.36) 13.31 (0.84) 7.08 (0.31) 12.76 (0.61)

ρ = 1 ρ = 4

EL FL EL FL

Normal

CLIME 4.84 (0.02) 9.27 (0.04) 3.77 (0.01) 7.14 (0.03)

GLASSO 4.07 (0.02) 7.42 (0.03) 2.68 (0.01) 5.09 (0.02)

JOINT 3.99 (0.01) 7.72 (0.03) 2.63 (0.01) 5.16 (0.02)

FGL 2.99 (0.01) 5.51 (0.02) 1.98 (0.01) 3.74 (0.01)

JEMP 3.20 (0.01) 6.34 (0.04) 2.35 (0.01) 4.74 (0.02)

t (DF=5)

CLIME 6.14 (0.16) 11.22 (0.24) 4.95 (0.17) 8.96 (0.25)

GLASSO 5.85 (0.09) 10.52 (0.16) 4.44 (0.09) 8.56 (0.18)

JOINT 5.44 (0.10) 10.05 (0.15) 4.02 (0.12) 7.32 (0.16)

FGL 4.07 (0.07) 7.17 (0.10) 2.68 (0.06) 4.91 (0.10)

JEMP 4.11 (0.06) 7.87 (0.13) 3.00 (0.07) 5.77 (0.13)

t (DF=3)

CLIME 10.53 (0.88) 18.53 (1.15) 9.10 (0.92) 16.84 (1.29)

GLASSO 12.11 (0.32) 23.89 (0.93) 10.59 (0.32) 23.77 (1.04)

JOINT 10.00 (1.67) 15.26 (1.26) 7.27 (0.64) 12.10 (0.72)

FGL 7.23 (0.25) 12.34 (0.52) 6.02 (0.26) 11.50 (0.64)

JEMP 6.59 (0.31) 12.19 (0.70) 4.99 (0.26) 9.48 (0.53)

Table 2: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 2.
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ρ = 0 ρ = 0.25

EL FL EL FL

Normal

CLIME 3.62 (0.02) 6.87 (0.03) 3.92 (0.02) 7.51 (0.04)

GLASSO 2.60 (0.01) 5.03 (0.03) 3.03 (0.01) 5.78 (0.03)

JOINT 2.53 (0.01) 4.97 (0.02) 2.99 (0.01) 5.89 (0.03)

FGL 1.54 (0.01) 2.95 (0.02) 2.21 (0.01) 4.16 (0.02)

JEMP 1.80 (0.01) 3.61 (0.03) 2.48 (0.01) 4.96 (0.03)

t (DF=5)

CLIME 4.77 (0.17) 8.68 (0.26) 5.23 (0.19) 9.63 (0.33)

GLASSO 4.32 (0.09) 8.42 (0.20) 4.82 (0.09) 9.11 (0.18)

JOINT 3.84 (0.12) 7.02 (0.16) 4.43 (0.15) 8.10 (0.21)

FGL 2.54 (0.06) 4.68 (0.10) 3.11 (0.07) 5.62 (0.10)

JEMP 2.60 (0.06) 4.99 (0.11) 3.35 (0.10) 6.44 (0.18)

t (DF=3)

CLIME 9.08 (0.84) 16.05 (1.07) 9.40 (0.92) 15.92 (1.06)

GLASSO 10.64 (0.33) 24.09 (1.06) 11.14 (0.33) 24.26 (1.01)

JOINT 7.54 (0.57) 13.03 (0.87) 8.35 (0.66) 14.09 (0.89)

FGL 5.87 (0.26) 11.39 (0.65) 6.72 (0.30) 12.53 (0.70)

JEMP 5.05 (0.37) 10.10 (0.93) 5.49 (0.30) 10.44 (0.66)

ρ = 1 ρ = 4

EL FL EL FL

Normal

CLIME 4.33 (0.02) 8.33 (0.03) 4.03 (0.02) 7.68 (0.03)

GLASSO 3.52 (0.02) 6.54 (0.03) 3.00 (0.01) 5.67 (0.03)

JOINT 3.50 (0.01) 6.86 (0.02) 2.94 (0.01) 5.78 (0.02)

FGL 2.90 (0.01) 5.37 (0.02) 2.28 (0.01) 4.28 (0.01)

JEMP 3.17 (0.01) 6.40 (0.02) 2.66 (0.01) 5.40 (0.02)

t (DF=5)

CLIME 5.64 (0.16) 10.31 (0.23) 5.20 (0.17) 9.42 (0.26)

GLASSO 5.31 (0.09) 9.81 (0.17) 4.71 (0.09) 8.93 (0.18)

JOINT 4.91 (0.11) 9.09 (0.14) 4.29 (0.12) 7.86 (0.17)

FGL 3.66 (0.06) 6.53 (0.10) 2.98 (0.07) 5.40 (0.10)

JEMP 3.93 (0.07) 7.56 (0.12) 3.27 (0.07) 6.32 (0.14)

t (DF=3)

CLIME 10.00 (0.87) 17.87 (1.16) 9.36 (0.88) 17.25 (1.26)

GLASSO 11.60 (0.32) 23.89 (0.97) 10.89 (0.31) 23.79 (0.99)

JOINT 9.52 (1.68) 14.60 (1.27) 7.57 (0.63) 12.59 (0.71)

FGL 6.71 (0.24) 11.84 (0.52) 6.36 (0.26) 11.87 (0.61)

JEMP 5.90 (0.26) 11.02 (0.59) 5.20 (0.26) 9.70 (0.51)

Table 3: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 3.

1047



Lee and Liu

Normal t (DF=5) t (DF=3)

EL FL EL FL EL FL

CLIME 4.39 (0.02) 8.45 (0.04) 6.06 (0.39) 10.82 (0.43) 10.59 (1.03) 17.35 (1.08)

GLASSO 3.62 (0.02) 6.71 (0.03) 5.57 (0.11) 10.02 (0.14) 11.79 (0.43) 24.06 (1.29)

JOINT 3.68 (0.01) 7.16 (0.03) 5.24 (0.14) 9.56 (0.17) 8.28 (0.37) 13.83 (0.50)

FGL 3.12 (0.01) 5.75 (0.02) 3.85 (0.07) 6.84 (0.11) 7.08 (0.33) 12.26 (0.71)

JEMP 3.50 (0.01) 7.04 (0.02) 4.27 (0.08) 8.17 (0.14) 6.22 (0.29) 11.27 (0.60)

Table 4: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 4.

To compare performance of five different methods, we use the average entropy loss and
the average Frobenius loss defined as,

EL = G−1
G∑
g=1

{
tr(Σ(g)

0 Ω̂(g))− log det(Σ(g)

0 Ω̂(g))− p
}
,

FL = G−1
G∑
g=1

‖ Ω(g)

0 − Ω̂(g) ‖2F ,

where ‖ . ‖F is the Frobenius norm of a matrix.

Table 1 reports the results for Model 1. In terms of estimation accuracy, the three
joint estimation methods, JEMP, FGL, and JOINT, outperform the two separate estima-
tion methods while JEMP and FGL show better performance than JOINT. In Gaussian
cases, FGL exhibits slightly smaller losses than JEMP. However, JEMP outperforms FGL
in terms of entropy loss for some cases when the underlying distribution is t5. If the true
underlying distribution is t3, then JEMP clearly outperforms FGL in both entropy loss and
Frobenius loss for all cases. This indicates that our proposed JEMP can have some ad-
vantage in estimation for some non-Gaussian data. Overall, JEMP shows very competitive
performance compared with other methods. Tables 2-3 report the results for Models 2 and
3 respectively. Performances of the methods show similar patterns as in Model 1. JEMP
and FGL perform best while FGL is slightly better in Gaussian cases and JEMP has the
best performance in the t3 case.

Table 4 summarizes the results for Model 4 in which the true precision matrices have dif-
ferent structures. As in Models 1-3, our method outperforms JOINT, CLIME, and GLASSO
for all cases. It shows competitive performance with FGL when the distribution is Gaussian
or t5. However, it outperforms FGL in the case of t3 distribution. This indicates that our
method works as well even when structures of precision matrices are different from each
other. Note that the precision matrices in Model 4 share many zero components although
their main structures are different. Joint methods can work better here since they encourage
many common zeros to be estimated as zeros simultaneously.
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Figure 1: Receiver operating characteristic curves averaged over 50 replications from Gaus-
sian distributions. In each panel, the horizontal and vertical axes are false posi-
tive rate and sensitivity respectively. Here, ρ is the ratio of the number of unique
nonzero entries to the number of common nonzero entries.
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Figure 2: Receiver operating characteristic curves averaged over 50 replications from t5
distributions. In each panel, the horizontal and vertical axes are false positive
rate and sensitivity respectively. Here, ρ is the ratio of the number of unique
nonzero entries to the number of common nonzero entries.

1050



Joint Estimation of Multiple Precision Matrices

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 1: ρ = 0

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 1: ρ = 0.25

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 1: ρ = 1

CLIME

GLASSO

JOINT

FGL

JEMP

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 2: ρ = 0

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 2: ρ = 0.25

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 2: ρ = 1

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 3: ρ = 0

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 3: ρ = 0.25

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

Model 3: ρ = 1

Figure 3: Receiver operating characteristic curves averaged over 50 replications from t3
distributions. In each panel, the horizontal and vertical axes are false positive
rate and sensitivity respectively. Here, ρ is the ratio of the number of unique
nonzero entries to the number of common nonzero entries.
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Figures 1-3 show the estimated receiver operating characteristic (ROC) curves averaged
over 50 replications. In the Gaussian case of Figure 1, JEMP and FGL show similar per-
formance and outperform the others except the case of ρ = 1 in Model 3. In Figures 2
and 3 of multivariate t-distributions, it can be observed that JEMP has better ROC curves
when ρ = 0 for all three models. It also shows better performance than the others when
ρ = 0.25 for Models 1-2. When ρ = 1, all ROC curves move closer together. This is because
the true precision matrices become much denser in terms of the number of edges and thus
all methods have some difficulty in edge selection. Overall, our proposed JEMP estimator
delivers competitive performance in terms of both estimation accuracy and selection.

Note that JEMP and FGL encourage the estimated precision matrices to be similar
across all classes. This can be advantageous especially when the true precision matrices
have many common values. Therefore, JEMP and FGL can have better performance than
JOINT for such problems.

In terms of computational complexity, JEMP can be more intensive than separate es-
timation methods and JOINT as it involves a pair of tuning parameters (λ1, λ2) satisfying
λ1 ≤ λ2. The computational cost of JEMP can be potentially reduced using the ADMM
algorithm discussed in Section 4 with a further improved algorithm for the least squares
step.

6. Application on Glioblastoma Cancer Data

In this section, we apply our joint method to a Glioblastoma cancer data set. The data set
consists of 17814 gene expression levels of 482 GBM patients. The patients were classified
into four subtypes, namely, classical, mesenchymal, neural, and proneural with sample sizes
of 127, 145, 85, and 125 respectively (Verhaak et al., 2010). These subtypes are shown to be
different biologically, while at the same time, share similarities as well since they all belong
to GBM cancer. In this application, we consider the signature genes reported by Verhaak
et al. (2010). They established 210 signature genes for each subtype, which results 840
signature genes in total. These signature genes are highly distinctive for four subtypes and
reported to have good predictive power for subtype prediction. In our analysis, the goal
is to produce graphical presentation of relationships among these signature genes in each
subtype based on the estimation of the precision matrices. Among the 840 signature genes,
we excluded the genes with no subtype information or the genes with missing values. As
a result, total 680 genes were included in our analysis. To produce interpretable graphical
models using our JEMP estimator, we set the values of the tuning parameters as λ1 = 0.30
and λ2 = 0.40. JEMP estimated 214 edges shared among all subtypes, 9 edges present only
in two subtypes, and 1 edge present only in three subtypes.

The resulting gene networks are shown in Figure 4. The black lines are the edges shared
by all subtypes and the thick grey lines are the unique edges present only in two or three
subtypes. It is noticeable that most of edges are black lines, which means that they appear
in all subtypes. This indicates that the networks of the signature genes reported by Verhaak
et al. (2010) may be very similar across all subtypes as they all belong to GBM cancer.

All of the small red network’s genes in the upper region belong to the ZNF gene family.
This network includes ZNF211, ZNF227, ZNF228, ZNF235, ZNF419, and ZNF671. These
are known to be involved in making zinc finger proteins, which are regulatory proteins
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Figure 4: Graphical presentation of conditional dependence structures among genes using
our estimator of precision matrices. The black lines are the edges shared in
all subtypes and the thick grey lines are the unique edges present only in two or
three subtypes. The red, green, blue and orange genes are classical, mesenchymal,
proneural and neural genes respectively (Verhaak et al., 2010).
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Classical Mesenchymal

Neural Proneural

Figure 5: Four gene networks corresponding to four subtypes of the GMB cancer. In each
network, the black lines are the edges shared in all subtypes. The colored lines
are the edge shared only in two or three subtypes.
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that are related to many cellular functions. As they are all involved in the same biological
process, it may seem reasonable that this network is shared in all GBM subtypes.

The red genes are signature genes for the classical subtype. Likewise, green, blue and
orange genes are the mesenchymal, proneural and neural signature genes respectively. Each
class of signature genes tends to have more links with the genes in the same class. This is
expected because each class of signature genes is more likely to be highly co-expressed.

Each estimated network for each subtype is depicted in Figure 5. The black lines are
the edges shared by all subtypes and the colored lines are the edges appearing only in two
or three subtypes. One interesting edge is the one between EGFR and MEOX2. It does not
appear in the classical subtype while it is shared by all the other subtypes. EGFR is known
to be involved in cell proliferation and Verhaak et al. (2010) demonstrated the essential
role of this gene in GBM tumor genesis. Furthermore, high rates of EGFR alteration were
claimed in the classical subtype. Therefore, studying the relationship between EGFR and
MEOX2 can be an interesting direction for future investigation as only the classical subtype
lacks this edge.

There are 9 edges appearing only in two subtypes. These include SCG3 and ACSBG1,
GRIK5 and BTBD2, NCF4 and CSTA, IFI30 and BATF, HK3 and SLC11A1, ACSBG1 and
SCG3, GPM6A and OLIG2, C1orf61 and CKB, and PPFIA2 and GRM1. It would be also
interesting to investigate these relationships further as they are unique only in two subtypes.
For example, the edge between OLIG2 and GPM6A does not appear in the proneural
subtype while it is shared by Neural and Mesenchymal subtypes. High expression of OLIG2
was observed in the proneural subtype (Verhaak et al., 2010), which can down-regulate the
tumor suppressor p21. Therefore, it may be helpful to investigate the relationship between
OLIG2 and GPM6A for understanding the effect of OLIG2 in the proneural subtype.
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Appendix A.

Write Σ(g)

0 = (σ(g)

ij,0) and Σ̂(g) = (σ̂(g)

ij ). Let mj,0 and r(g)j,0 be the jth columns of M0 and R(g)

0

respectively. Define the jth columns of M̂ and R̂(g) as m̂j and r̂(g)j respectively. We first
state some results established by Cai et al. (2011) in the proof of their Theorem 1.

Lemma 4 Suppose Condition 1 holds. For any fixed g = 1, . . . , G, with probability greater
than 1− 4p−τ ,

max
ij
|σ̂(g)

ij − σ
(g)

ij,0| ≤ C0

(
log p

n

)1/2

,

where C0 is given in Theorem 1.
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Proof [Proof of Theorem 1] It follows from Lemma 4 that

max
ij
|σ̂(g)

ij − σ
(g)

ij,0| ≤ λ2/(3CM ) for all g = 1, . . . , G, (6)

with probability greater than 1− 4Gp−τ . All following arguments assume (6) holds. First,
we have that

|(Ω̂(g)

1 − Ω(g)

0 )ej |∞ = |Ω(g)

0 (Σ(g)

0 Ω̂(g)

1 − I)ej |∞ ≤ ||Ω(g)

0 ||L1
|(Σ(g)

0 Ω̂(g)

1 − I)ej |∞
≤ CM

{
|(Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ + |(Σ̂(g)Ω̂(g)

1 − I)ej |∞
}

≤ CM |Ω̂(g)

1 ej |1|Σ
(g)

0 − Σ̂(g)|∞ + CMλ2

≤ |Ω̂(g)

1 ej |1λ2/3 + CMλ2,

for all g = 1, . . . , G. Second, note that {M0, R
(1)

0 , . . . , R(G)

0 } is a feasible solution of (3) as

|I − Σ̂(g)(M0 +R(g)

0 )|∞ = |(Σ(g)

0 − Σ̂(g))Ω(g)

0 |∞ ≤ ||Ω
(g)

0 ||L1
|Σ(g)

0 − Σ̂(g)|∞ ≤ CMλ2/(3CM ) <
λ2 and λ1 = λ2. Therefore, we have that

G∑
g=1

|(Ω̂(g)

1 − Ω(g)

0 )ej |∞ ≤
G∑

g=1

|Ω̂(g)

1 ej |1λ2/3 +GCMλ2 ≤ G

{
|m̂j |1 +G−1

G∑
g=1

|r̂(g)

j |1

}
λ2/3 +GCMλ2

≤ G

{
|mj,0|1 +G−1

G∑
g=1

|r(g)

j,0|1

}
λ2/3 +GCMλ2

≤ G3CMλ2/3 +GCMλ2 = 2GCMλ2 = 6GC2
MC0(log p/n)1/2.

By the inequality

max
ij

 1

G

G∑
g=1

|ω̂(g)

ij − ω
(g)

ij,0|

 ≤ max
j

1

G

G∑
g=1

|(Ω̂(g)

1 − Ω(g)

0 )ej |∞ ≤ 6C2
MC0

(
log p

n

)1/2

,

the proof is completed.

Lemma 5 With probability greater than 1− 2(1 +G)p−τ , the following holds:

max
ij
|
G∑
g=1

(σ̂(g)

ij − σ
(g)

ij,0)| ≤ C0

(
G log p

n

)1/2

.

Proof We adopt a similar technique used in Cai et al. (2011) for the proof of their Theorem
1. Without loss of generality, we assume that µ(g)

i = 0 for all i and g. Let y(g)

kij := x(g)

ki x
(g)

kj −
E(x(g)

ki x
(g)

kj ). Define x̄(g)

i :=
∑n

k=1 x
(g)

ki /n; i = 1, . . . , p, g = 1, . . . , G. Then
∑G

g=1(σ̂(g)

ij −σ
(g)

ij,0) =∑G
g=1

(∑n
k=1 y

(g)

kij/n− x̄
(g)

i x̄
(g)

j

)
. Let t := η(log p)1/2(nG)−1/2 and C1 := 2 + τ + η−1K2.

Using the Markov’s inequality and the inequality | exp(s) − 1 − s| ≤ s2 exp{max(s, 0)} for
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any s ∈ R, we can show that

pr

{
1

n

G∑
g=1

n∑
k=1

y(g)

kij ≥ η
−1C1

(
G log p

n

)1/2
}

= pr

{
G∑

g=1

n∑
k=1

y(g)

kij ≥ η
−1C1 (nG log p)

1/2

}

≤ exp
{
−tη−1C1(nG log p)1/2

}
E

{
exp

(
t

G∑
g=1

n∑
k=1

y(g)

kij

)}

= exp {−C1 log p}
G∏

g=1

n∏
k=1

E
{

exp(ty(g)

kij)
}

= exp

[
−C1 log p+

G∑
g=1

n log
{
E
(
ety

(g)
kij

)}]

≤ exp

[
−C1 log p+

G∑
g=1

n
{
E
(
ety

(g)
kij

)
− 1
}]

= exp

[
−C1 log p+

G∑
g=1

n
{
E
(
ety

(g)
kij − ty(g)

kij − 1
)}]

≤ exp

{
−C1 log p+

G∑
g=1

nt2E
(
y(g)

kij

2
e|ty

(g)
kij |
)}

≤ exp

{
−C1 log p+

G∑
g=1

(ηG)−1K2 log p

}
. (7)

The last inequality (7) holds since

nt2E

(
y(g)

kij

2
e|ty

(g)
kij |
)

= (ηG)−1(log p)E

{(
η3/2|y(g)

kij |
)2
et|y

(g)
kij |
}

and

E

{(
η3/2|y(g)

kij |
)2
et|y

(g)
kij |
}
≤ E

{
eη

3/2|y(g)kij |et|y
(g)
kij |
}
≤ E

{
eη

3/2|y(g)kij |eη
3/2|y(g)kij |

}
≤ E

{
eη|y

(g)
kij |
}
≤ E

{
e
η|x(g)ki x

(g)
kj |+ηE

(
|x(g)ki x

(g)
kj |

)}
≤
{
E

(
eη|x

(g)
ki x

(g)
kj |
)}2

≤
{
E

(
eηx

(g)
ki

2
/2+ηx

(g)
kj

2
/2

)}2

≤ E
(
eηx

(g)
ki

2
)
E

(
eηx

(g)
kj

2
)
≤ K2.

From (7), it follows that

pr

 1

n

G∑
g=1

n∑
k=1

y(g)

kij ≥ η
−1C1

(
G log p

n

)1/2
 ≤ exp

{
−C1 log p+ η−1K2 log p

}
≤ p−(τ+2).
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Therefore, we have

pr

max
ij

∣∣∣∣∣∣ 1n
G∑
g=1

n∑
k=1

y(g)

kij

∣∣∣∣∣∣ ≥ η−1C1

(
G log p

n

)1/2
 ≤ 2p−τ . (8)

Next, let C2 = 2+τ+η−1(eK)2. Cai et al. (2011) showed in the proof of their Theorem
1 that

pr

(
max
ij
|x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2 log p/n

)
≤ 2p−τ−1.

Using this result, we have that

pr

max
ij
|
G∑
g=1

x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2G log p/n

 ≤ pr

 G∑
g=1

max
ij
|x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2G log p/n


≤

G∑
g=1

pr

(
max
ij
|x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2 log p/n

)

≤
G∑
g=1

2p−τ−1 ≤ 2Gp−τ (9)

By (8), (9) and the inequality C0 > η−1C1 + η−2C2
2 (G log p/n)1/2, we see that

pr

max
ij
|
G∑
g=1

(σ̂(g)

ij − σ
(g)

ij,0)| ≥ C0

(
G log p

n

)1/2


≤ pr

max
ij

∣∣∣∣∣∣ 1n
G∑
g=1

n∑
k=1

y(g)

kij

∣∣∣∣∣∣ ≥ η−1C1

(
G log p

n

)1/2


+ pr

max
ij
|
G∑
g=1

x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2G log p/n


≤ 2(1 +G)p−τ .

The proof is completed.

Proof [Proof of Theorem 2] By Lemma 4 and 5, we see that

max
ij
|
G∑
g=1

(σ̂(g)

ij − σ
(g)

ij,0)| ≤ C0

(
G log p

n

)1/2

and max
ij
|σ̂(g)

ij − σ
(g)

ij,0| ≤ C0

(
log p

n

)1/2

, (10)

for all g = 1, . . . , G with probability greater than 1−2(1+3G)p−τ . All following arguments
assume (10) holds. Note that {M0, R

(1)

0 , . . . , R(G)

0 } is a feasible solution of (3) as

|I − Σ̂(g)(M0 +R(g)

0 )|∞ = |(Σ(g)

0 − Σ̂(g))Ω(g)

0 |∞ ≤ ||Ω
(g)

0 ||L1
|Σ(g)

0 − Σ̂(g)|∞
≤ CMC0(log p/n)1/2 = λ2
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and

|G−1
G∑

g=1

{
I − Σ̂(g)(M0 +R(g)

0 )
}
|∞

≤ |G−1
G∑

g=1

(Σ(g)

0 − Σ̂(g))M0|∞ + |G−1
G∑

g=1

(Σ(g)

0 − Σ̂(g))R(g)

0 |∞

≤ ||M0||L1
|G−1

G∑
g=1

(Σ(g)

0 − Σ̂(g))|∞ +G−1
G∑

g=1

||R(g)

0 ||L1
|Σ(g)

0 − Σ̂(g)|∞

≤ CMC0 {log p/(nG)}1/2 + CRC0 {log p/(nG)}1/2 = λ1.

Now, we find an upper bound of |G(M̂ −M0)ej |∞ = |
∑G

g=1(Ω̂(g)

1 −Ω(g)

0 )ej |∞. In particular,
we use

|
G∑
g=1

(Ω̂(g)

1 − Ω(g)

0 )ej |∞ ≤ |
G∑
g=1

Ω(g)

0 (Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ + |
G∑
g=1

Ω(g)

0 (Σ̂(g)Ω̂(g)

1 − I)ej |∞. (11)

First, consider the first term in the right-hand side of (11). We can show that

|
G∑

g=1

Ω(g)

0 (Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ ≤ |
G∑

g=1

M0(Σ(g)

0 − Σ̂(g))m̂j |∞ + |
G∑

g=1

M (g)

0 (Σ(g)

0 − Σ̂(g))r̂(g)

j |∞

+ |
G∑

g=1

R(g)

0 (Σ(g)

0 − Σ̂(g))m̂j |∞ + |
G∑

g=1

R(g)

0 (Σ(g)

0 − Σ̂(g))r̂(g)

j |∞

≤ ||M0||L1

{
|

G∑
g=1

(Σ(g)

0 − Σ̂(g))|∞|m̂j |1 +

G∑
g=1

|Σ(g)

0 − Σ̂(g)|∞|r̂(g)

j |1

}

+

G∑
g=1

|R(g)

0 (Σ(g)

0 − Σ̂(g))|∞|m̂j |1 +

G∑
g=1

|R(g)

0 (Σ(g)

0 − Σ̂(g))|∞|r̂(g)

j |1.

Using the assumptions ||R(g)

0 ||L1 ≤ CR and
∑G

g=1 ||R
(g)

0 ||L1 ≤ G1/2CR, we have

|
G∑

g=1

Ω(g)

0 (Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ ≤ CMC0(G log p/n)1/2|m̂j |1 + CMC0(log p/n)1/2
G∑

g=1

|r̂(g)

j |1

+ CRC0(G log p/n)1/2|m̂j |1 + CRC0(log p/n)1/2
G∑

g=1

|r̂(g)

j |1

≤ C0(CM + CR)(G log p/n)1/2(|m̂j |1 +G−1/2
G∑

g=1

|r̂(g)

j |1)

≤ C0(CM + CR)(G log p/n)1/2(|mj,0|1 +G−1/2
G∑

g=1

|r(g)

j,0|1)

≤ C0(CM + CR)2(G log p/n)1/2. (12)
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For the second term in the right-hand side of (11), note that

|
G∑
g=1

Ω(g)

0 (Σ̂(g)Ω̂(g)

1 − I)ej |∞

≤ |
G∑
g=1

M0(Σ̂(g)Ω̂(g) − I)ej |∞ + |
G∑
g=1

R(g)

0 (Σ̂(g)Ω̂(g) − I)ej |∞

≤ ||M0||L1
|
G∑
g=1

(Σ̂(g)Ω̂(g) − I)ej |∞ +

G∑
g=1

||R(g)

0 ||L1
|(Σ̂(g)Ω̂(g) − I)ej |∞

≤ CMλ1 +G1/2CRλ2 = C0CM (CM + 2CR)(G log p/n)1/2. (13)

By (11), (12), (13) and the equality |M̂ −M0|∞ = maxj |(M̂ −M0)ej |∞ , we have

|M̂ −M0|∞ ≤ C0(2C2
M + 4CMCR + C2

R)

(
log p

nG

)1/2

.

The proof is completed.

Proof [Proof of Theorem 3] By Theorem 1, we see that

max
ij

G∑
g=1

|ω̂(g)

ij − ω
(g)

ij,0| ≤ 2GCMλ2 ≤ δn, (14)

with probability greater than 1 − 4Gp−τ . We show that S0 = Ŝ when (14) holds. For
any (i, j, g) /∈ S0, we have |ω̂(g)

ij | = |ω̂(g)

ij − ω
(g)

ij,0| ≤
∑G

g=1 |ω̂
(g)

ij − ω
(g)

ij,0| ≤ δn. Therefore, we

see ω̃(g)

ij = 0, which implies Ŝ ⊂ S0. On the other hand, for any (i, j, g) ∈ S0, we have

|ω̂(g)

ij | ≥ |ω
(g)

ij,0| − |ω̂
(g)

ij − ω
(g)

ij,0| ≥ |ω
(g)

ij,0| −
∑G

g=1 |ω̂
(g)

ij − ω
(g)

ij,0| > δn. Therefore, we see that

ω̃(g)

ij 6= 0, which implies S0 ⊂ Ŝ. In summary, we see that S0 = Ŝ if (14) holds, which implies

that pr(S0 = Ŝ) ≥ pr(maxij
∑G

g=1 |ω̂
(g)

ij − ω
(g)

ij,0| ≤ δn).

References

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection
through sparse maximum likelihood estimation for multivariate gaussian or binary data.
Journal of Machine Learning Research, 9:485–516, 2008.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3:1–122, 2010.

1060



Joint Estimation of Multiple Precision Matrices

Tony Cai, Weidong Liu, and Xi Luo. A constrained l1 minimization approach to sparse
precision matrix estimation. Journal of the American Statistical Association, 106:594–
607, 2011.

Patrick Danaher, Pei Wang, and Daniela M. Witten. The joint graphical lasso for inverse
covariance estimation across multiple classes. Journal of the Royal Statistical Society,
Series B, 76:373–379, 2014.

Theodoros Evgeniou and Massimiliano Pontil. Regularized multitask learning. In Proceed-
ings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 109–117, Seattle, Washington, 2004.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96:1348–1360, 2001.

Jianqing Fan, Yang Feng, and Yichao Wu. Network exploration via the adaptive lasso and
scad penalties. The Annals of Applied Statistics, 3:521–541, 2009.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 9:432–441, 2008.

Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Joint estimation of multiple
graphical models. Biometrika, 98:1–15, 2011.

Jean Honorio and Dimitris Samaras. Simultaneous and group-sparse multi-task learning of
gaussian graphical models. arXiv:1207.4255, 2012.

Clifford Lam and Jianqing Fan. Sparsistency and rates of convergence in large covariance
matrix estimation. The Annals of Statistics, 37:4254–4278, 2009.

Wonyul Lee, Ying Du, Wei Sun, David Neil Hayes, and Yufeng Liu. Multiple response
regression for gaussian mixture models with known labels. Statistical Analysis and Data
Mining, 5:493–508, 2012.
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Abstract

Lasso is a widely used regression technique to find sparse representations. When the di-
mension of the feature space and the number of samples are extremely large, solving the
Lasso problem remains challenging. To improve the efficiency of solving large-scale Lasso
problems, El Ghaoui and his colleagues have proposed the SAFE rules which are able to
quickly identify the inactive predictors, i.e., predictors that have 0 components in the solu-
tion vector. Then, the inactive predictors or features can be removed from the optimization
problem to reduce its scale. By transforming the standard Lasso to its dual form, it can
be shown that the inactive predictors include the set of inactive constraints on the optimal
dual solution. In this paper, we propose an efficient and effective screening rule via Dual
Polytope Projections (DPP), which is mainly based on the uniqueness and nonexpansive-
ness of the optimal dual solution due to the fact that the feasible set in the dual space is a
convex and closed polytope. Moreover, we show that our screening rule can be extended to
identify inactive groups in group Lasso. To the best of our knowledge, there is currently no
exact screening rule for group Lasso. We have evaluated our screening rule using synthetic
and real data sets. Results show that our rule is more effective in identifying inactive
predictors than existing state-of-the-art screening rules for Lasso.

Keywords: lasso, safe screening, sparse regularization, polytope projection, dual formu-
lation, large-scale optimization

1. Introduction

Data with various structures and scales comes from almost every aspect of daily life. To
effectively extract patterns in the data and build interpretable models with high prediction
accuracy is always desirable. One popular technique to identify important explanatory
features is by sparse regularization. For instance, consider the widely used `1-regularized
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least squares regression problem known as Lasso (Tibshirani, 1996). The most appealing
property of Lasso is the sparsity of the solutions, which is equivalent to feature selection.
Suppose we have N observations and p features. Let y denote the N dimensional response
vector and X = [x1,x2, . . . ,xp] be the N×p feature matrix. Let λ ≥ 0 be the regularization
parameter. The Lasso problem is formulated as the following optimization problem:

inf
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1. (1)

Lasso has achieved great success in a wide range of applications (Chen et al., 2001; Candès,
2006; Zhao and Yu, 2006; Bruckstein et al., 2009; Wright et al., 2010) and in recent years
many algorithms have been developed to efficiently solve the Lasso problem (Efron et al.,
2004; Kim et al., 2007; Park and Hastie, 2007; Donoho and Tsaig, 2008; Friedman et al.,
2007; Becker et al., 2010; Friedman et al., 2010). However, when the dimension of feature
space and the number of samples are very large, solving the Lasso problem remains chal-
lenging because we may not even be able to load the data matrix into main memory. The
idea of screening has been shown very promising in solving Lasso for large-scale problems.
Essentially, screening aims to quickly identify the inactive features that have 0 components
in the solution and then remove them from the optimization. Therefore, we can work on a
reduced feature matrix to solve the Lasso problem, which may lead to substantial savings
in computational cost and memory usage.

Existing screening methods for Lasso can be roughly divided into two categories: the
Heuristic Screening Methods and the Safe Screening Methods. As the name indicated,
the heuristic screening methods can not guarantee that the discarded features have zero
coefficients in the solution vector. In other words, they may mistakenly discard the active
features which have nonzero coefficients in the sparse representations. Well-known heuristic
screening methods for Lasso include SIS (Fan and Lv, 2008) and strong rules (Tibshirani
et al., 2012). SIS is based on the associations between features and the prediction task,
but not from an optimization point of view. Strong rules rely on the assumption that the
absolute values of the inner products between features and the residue are nonexpansive
(Bauschke and Combettes, 2011) with respect to the parameter values. Notice that, in
real applications, this assumption is not always true. In order to ensure the correctness of
the solutions, strong rules check the KKT conditions for violations. In case of violations,
they weaken the screened set and repeat this process. In contrast to the heuristic screening
methods, the safe screening methods for Lasso can guarantee that the discarded features
are absent from the resulting sparse models. Existing safe screening methods for Lasso
includes SAFE (El Ghaoui et al., 2012) and DOME (Xiang et al., 2011), which are based on
an estimation of the dual optimal solution. The key challenge of searching for effective safe
screening rules is how to accurately estimate the dual optimal solution. The more accurate
the estimation is, the more effective the resulting screening rule is in discarding the inactive
features. Moreover, Xiang et al. (2011) have shown that the SAFE rule for Lasso can be
read as a special case of their testing rules.

In this paper, we develop novel efficient and effective screening rules for the Lasso prob-
lem; our screening rules are safe in the sense that no active features will be discarded. As
the name indicated (DPP), the proposed approaches heavily rely on the geometric proper-
ties of the Lasso problem. Indeed, the dual problem of problem (1) can be formulated as
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a projection problem. More specifically, the dual optimal solution of the Lasso problem is
the projection of the scaled response vector onto a nonempty closed and convex polytope
(the feasible set of the dual problem). This nice property provides us many elegant ap-
proaches to accurately estimate the dual optimal solutions, e.g., nonexpansiveness, firmly
nonexpansiveness (Bauschke and Combettes, 2011). In fact, the estimation of the dual
optimal solution in DPP is a direct application of the nonexpansiveness of the projection
operators. Moreover, by further exploiting the properties of the projection operators, we
can significantly improve the estimation of the dual optimal solution. Based on this esti-
mation, we develop the so called enhanced DPP (EDPP) rules which are able to detect far
more inactive features than DPP. Therefore, the speedup gained by EDPP is much higher
than the one by DPP.

In real applications, the optimal parameter value of λ is generally unknown and needs
to be estimated. To determine an appropriate value of λ, commonly used approaches such
as cross validation and stability selection involve solving the Lasso problems over a grid of
tuning parameters λ1 > λ2 > . . . > λK. Thus, the process can be very time consuming.
To address this challenge, we develop the sequential version of the DPP families. Briefly
speaking, for the Lasso problem, suppose we are given the solution β∗(λk−1) at λk−1. We
then apply the screening rules to identify the inactive features of problem (1) at λk by
making use of β∗(λk−1). The idea of the sequential screening rules is proposed by El Ghaoui
et al. (2012) and Tibshirani et al. (2012) and has been shown to be very effective for the
aforementioned scenario. In Tibshirani et al. (2012), the authors demonstrate that the
sequential strong rules are very effective in discarding inactive features especially for very
small parameter values and achieve the state-of-the-art performance. However, in contrast
to the recursive SAFE (the sequential version of SAFE rules) and the sequential version
of DPP rules, it is worthwhile to mention that the sequential strong rules may mistakenly
discard active features because they are heuristic methods. Moreover, it is worthwhile to
mention that, for the existing screening rules including SAFE and strong rules, the basic
versions are usually special cases of their sequential versions, and the same applies to our
DPP and EDPP rules. For the DOME rule (Xiang et al., 2011), it is unclear whether its
sequential version exists.

The rest of this paper is organized as follows. We present the family of DPP screening
rules, i.e., DPP and EDPP, in detail for the Lasso problem in Section 2. Section 3 extends
the idea of DPP screening rules to identify inactive groups in group Lasso (Yuan and
Lin, 2006). We evaluate our screening rules on synthetic and real data sets from many
different applications. In Section 4, the experimental results demonstrate that our rules are
more effective in discarding inactive features than existing state-of-the-art screening rules.
We show that the efficiency of the solver can be improved by several orders of magnitude
with the enhanced DPP rules, especially for the high-dimensional data sets (notice that,
the screening methods can be integrated with any existing solvers for the Lasso problem).
Some concluding remarks are given in Section 5.

2. Screening Rules for Lasso via Dual Polytope Projections

In this section, we present the details of the proposed DPP and EDPP screening rules for
the Lasso problem. We first review some basics of the dual problem of Lasso including its
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geometric properties in Section 2.1; we also briefly discuss some basic guidelines for devel-
oping safe screening rules for Lasso. Based on the geometric properties discussed in Section
2.1, we then develop the basic DPP screening rule in Section 2.2. As a straightforward ex-
tension in dealing with the model selection problems, we also develop the sequential version
of DPP rules. In Section 2.3, by exploiting more geometric properties of the dual problem
of Lasso, we further improve the DPP rules by developing the so called enhanced DPP
(EDPP) rules. The EDPP screening rules significantly outperform DPP rules in identifying
the inactive features for the Lasso problem.

2.1 Basics

Different from Xiang et al. (2011), we do not assume y and all xi have unit length.The dual
problem of problem (1) takes the form of (to make the paper self-contained, we provide the
detailed derivation of the dual form in the appendix):

sup
θ

{
1

2
‖y‖22 −

λ2

2

∥∥∥θ − y

λ

∥∥∥2
2

: |xTi θ| ≤ 1, i = 1, 2, . . . , p

}
, (2)

where θ is the dual variable. For notational convenience, let the optimal solution of problem
(2) be θ∗(λ) [recall that the optimal solution of problem (1) with parameter λ is denoted
by β∗(λ)]. Then, the KKT conditions are given by:

y = Xβ∗(λ) + λθ∗(λ), (3)

xTi θ
∗(λ) ∈

{
sign([β∗(λ)]i), if [β∗(λ)]i 6= 0,

[−1, 1], if [β∗(λ)]i = 0,
i = 1, . . . , p, (4)

where [·]k denotes the kth component. In view of the KKT condition in (4), we have

|xTi (θ∗(λ))T | < 1⇒ [β∗(λ)]i = 0⇒ xi is an inactive feature. (R1)

In other words, we can potentially make use of (R1) to identify the inactive features for the
Lasso problem. However, since θ∗(λ) is generally unknown, we can not directly apply (R1)
to identify the inactive features. Inspired by the SAFE rules (El Ghaoui et al., 2012), we
can first estimate a region Θ which contains θ∗(λ′′). Then, (R1) can be relaxed as follows:

sup
θ∈Θ
|xTi θ| < 1⇒ [β∗(λ)]i = 0⇒ xi is an inactive feature. (R1’)

Clearly, as long as we can find a region Θ which contains θ∗(λ), (R1’) will lead to a screening
rule to detect the inactive features for the Lasso problem. Moreover, in view of (R1) and
(R1’), we can see that the smaller the region Θ is, the more accurate the estimation of θ∗(λ)
is. As a result, more inactive features can be identified by the resulting screening rules.

The dual problem has interesting geometric interpretations. By a closer look at the dual
problem (2), we can observe that the dual optimal solution is the feasible point which is
closest to y/λ. For notational convenience, let the feasible set of problem (2) be F . Clearly,
F is the intersection of 2p closed half-spaces, and thus a closed and convex polytope. (Notice
that, F is also nonempty since 0 ∈ F .) In other words, θ∗(λ) is the projection of y/λ onto
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the polytope F . Mathematically, for an arbitrary vector w and a convex set C in a Hilbert
space H, let us define the projection operator as

PC(w) = argmin
u∈C

‖u−w‖2. (5)

Then, the dual optimal solution θ∗(λ) can be expressed by

θ∗(λ) = PF (y/λ) = argmin
θ∈F

∥∥∥θ − y

λ

∥∥∥
2
. (6)

Indeed, the nice property of problem (2) illustrated by (6) leads to many interesting
results. For example, it is easy to see that y/λ would be an interior point of F when λ is
large enough. If this is the case, we immediately have the following assertions: 1) y/λ is
an interior point of F implies that none of the constraints of problem (2) would be active
on y/λ, i.e., |xTi (y/(λ)|) < 1 for all i = 1, . . . , p; 2) θ∗(λ) is an interior point of F as well
since θ∗(λ) = PF (y/λ) = y/λ by (6) and the fact y/λ ∈ F . Combining the results in 1)
and 2), it is easy to see that |xTi θ∗(λ)| < 1 for all i = 1, . . . , p. By (R1), we can conclude
that β∗(λ) = 0, under the assumption that λ is large enough.

The above analysis may naturally lead to a question: does there exist a specific param-
eter value λmax such that the optimal solution of problem (1) is 0 whenever λ > λmax? The
answer is affirmative. Indeed, let us define

λmax = max
i
|xTi y|. (7)

It is well known (Tibshirani et al., 2012) that λmax defined by (7) is the smallest parameter
such that problem (1) has a trivial solution, i.e.,

β∗(λ) = 0, ∀ λ ∈ [λmax,∞). (8)

Combining the results in (8) and (3), we immediately have

θ∗(λ) =
y

λ
, ∀ λ ∈ [λmax,∞). (9)

Therefore, through out the rest of this paper, we will focus on the cases with λ ∈ (0, λmax).

In the subsequent sections, we will follow (R1’) to develop our screening rules. More
specifically, the derivation of the proposed screening rules can be divided into the following
three steps:

1. We first estimate a region Θ which contains the dual optimal solution θ∗(λ).

2. We solve the maximization problem in (R1’), i.e., supθ∈Θ |xTi θ|.

3. By plugging in the upper bound we find in 2, it is straightforward to develop the
screening rule based on (R1’).

The geometric property of the dual problem illustrated by (6) serves as a fundamentally
important role in developing our DPP and EDPP screening rules.
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2.2 Fundamental Screening Rules via Dual Polytope Projections (DPP)

In this Section, we propose the so called DPP screening rules for discarding the inactive
features for Lasso. As the name indicates, the idea of DPP heavily relies on the properties
of projection operators, e.g., the nonexpansiveness (Bertsekas, 2003). We will follow the
three steps stated in Section 2.1 to develop the DPP screening rules.

First, we need to find a region Θ which contains the dual optimal solution θ∗(λ). Indeed,
the result in (9) provides us an important clue. That is, we may be able to estimate a possible
region for θ∗(λ) in terms of a known θ∗(λ0) with λ < λ0. Notice that, we can always set
λ0 = λmax and make use of the fact that θ∗(λmax) = y/λmax implied by (9). Another key
ingredient comes from (6), i.e., the dual optimal solution θ∗(λ) is the projection of y/λ onto
the feasible set F , which is nonempty closed and convex. A nice property of the projection
operators defined in a Hilbert space with respect to a nonempty closed and convex set is the
so called nonexpansiveness. For convenience, we restate the definition of nonexpansiveness
in the following theorem.

Theorem 1 Let C be a nonempty closed convex subset of a Hilbert space H. Then the
projection operator defined in (5) is continuous and nonexpansive, i.e.,

‖PC(w2)− PC(w1)‖2 ≤ ‖w2 −w1‖2, ∀w2,w1 ∈ H. (10)

In view of (6), a direct application of Theorem 1 leads to the following result:

Theorem 2 For the Lasso problem, let λ, λ0 > 0 be two regularization parameters. Then,

‖θ∗(λ)− θ∗(λ0)‖2 ≤
∣∣∣∣ 1λ − 1

λ0

∣∣∣∣ ‖y‖2. (11)

For notational convenience, let a ball centered at c with radius ρ be denoted by B(c, ρ).
Theorem 2 actually implies that the dual optimal solution must be inside a ball centered
at θ∗(λ0) with radius |1/λ− 1/λ0| ‖y‖2, i.e.,

θ∗(λ) ∈ B
(
θ∗(λ0),

∣∣∣∣ 1λ − 1

λ0

∣∣∣∣ ‖y‖2) . (12)

We thus complete the first step for developing DPP. Because it is easy to find the upper
bound of a linear functional over a ball, we combine the remaining two steps as follows.

Theorem 3 For the Lasso problem, assume that the dual optimum at λ0, i.e., θ∗(λ0), is
known. Let λ be a positive value different from λ0. Then [β∗(λ)]i = 0 if

∣∣xTi θ∗(λ)
∣∣ < 1− ‖xi‖2‖y‖2

∣∣∣∣ 1λ − 1

λ0

∣∣∣∣ .
Proof The dual optimal solution θ∗(λ) is estimated to be inside the ball given by (12). To
simplify notations, let c = θ∗(λ0) and ρ = |1/λ− 1/λ0| ‖y‖2. To develop a screening rule
based on (R1’), we need to solve the optimization problem: supθ∈B(c,ρ) |xTi θ|.
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Indeed, for any θ ∈ B(c, ρ), it can be expressed by:

θ = θ∗(λ0) + v, ‖v‖2 ≤ ρ.

Therefore, the optimization problem can be easily solved as follows:

sup
θ∈B(c,ρ)

∣∣xTi θ∣∣ = sup
‖v‖2≤ρ

∣∣xTi (θ∗(λ0) + v)
∣∣ =

∣∣xTi θ∗(λ0)∣∣+ ρ‖xi‖2. (13)

By plugging the upper bound in (13) to (R1’), we obtain the statement in Theorem 3, which
completes the proof.

Theorem 3 implies that we can develop applicable screening rules for Lasso as long as
the dual optimal solution θ∗(·) is known for a certain parameter value λ0. By simply setting
λ0 = λmax and noting that θ∗(λmax) = y/λmax from (9), Theorem 3 immediately leads to
the following result.

Corollary 4 Basic DPP: For the Lasso problem (1), let λmax = maxi |xTi y|. If λ ≥ λmax,
then [β∗]i = 0,∀i ∈ I. Otherwise, [β∗(λ)]i = 0 if∣∣∣∣xTi y

λmax

∣∣∣∣ < 1−
(

1

λ
− 1

λmax

)
‖xi‖2‖y‖2.

Remark 5 Notice that, DPP is not the same as ST1 Xiang et al. (2011) and SAFE El
Ghaoui et al. (2012), which discards the ith feature if

|xTi y| < λ− ‖xi‖2‖y‖2
λmax − λ
λmax

. (14)

From the perspective of the sphere test, the radius of ST1/SAFE and DPP are the same.
But the centers of ST1 and DPP are y/λ and y/λmax respectively, which leads to different
formulas, i.e., (14) and Corollary 4.

In real applications, the optimal parameter value of λ is generally unknown and needs
to be estimated. To determine an appropriate value of λ, commonly used approaches such
as cross validation and stability selection involve solving the Lasso problem over a grid
of tuning parameters λ1 > λ2 > . . . > λK, which is very time consuming. Motivated by
the ideas of Tibshirani et al. (2012) and El Ghaoui et al. (2012), we develop a sequential
version of DPP rules. We first apply the DPP screening rule in Corollary 4 to discard
inactive features for the Lasso problem (1) with parameter being λ1. After solving the
reduced optimization problem for λ1, we obtain the exact solution β∗(λ1). Hence by (3), we
can find θ∗(λ1). According to Theorem 3, once we know the optimal dual solution θ∗(λ1),
we can construct a new screening rule by setting λ0 = λ1 to identify inactive features
for problem (1) with parameter being λ2. By repeating the above process, we obtain the
sequential version of the DPP rule as in the following corollary.

Corollary 6 Sequential DPP: For the Lasso problem (1), suppose we are given a se-
quence of parameter values λmax = λ0 > λ1 > . . . > λm. Then for any integer 0 ≤ k < m,
we have [β∗(λk+1)]i = 0 if β∗(λk) is known and the following holds:∣∣∣∣xTi y −Xβ∗(λk)

λk

∣∣∣∣ < 1−
(

1

λk+1
− 1

λk

)
‖xi‖2‖y‖2.
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Remark 7 From Corollaries 4 and 6, we can see that both of the DPP and sequential DPP
rules discard the inactive features for the Lasso problem with a smaller parameter value
by assuming a known dual optimal solution at a larger parameter value. This is in fact
a standard way to construct screening rules for Lasso (Tibshirani et al., 2012; El Ghaoui
et al., 2012; Xiang et al., 2011).

Remark 8 For illustration purpose, we present both the basic and sequential version of
the DPP screening rules. However, it is easy to see that the basic DPP rule can be easily
derived from its sequential version by simply setting λk = λmax and λk+1 = λ. Therefore,
in this paper, we will focus on the development and evaluation of the sequential version of
the proposed screening rules. To avoid any confusions, DPP and EDPP all refer to the
corresponding sequential versions.

2.3 Enhanced DPP Rules for Lasso

In this section, we further improve the DPP rules presented in Section 2.2 by a more careful
analysis of the projection operators. Indeed, from the three steps by which we develop the
DPP rules, we can see that the first step is a key. In other words, the estimation of the dual
optimal solution serves as a fundamentally important role in developing the DPP rules.
Moreover, (R1’) implies that the more accurate the estimation is, the more effective the
resulting screening rule is in discarding the inactive features. The estimation of the dual
optimal solution in DPP rules is in fact a direct consequence of the nonexpansiveness of the
projection operators. Therefore, in order to improve the performance of the DPP rules in
discarding the inactive features, we propose two different approaches to find more accurate
estimations of the dual optimal solution. These two approaches are presented in detail in
Sections 2.3.1 and 2.3.2 respectively. By combining the ideas of these two approaches, we
can further improve the estimation of the dual optimal solution. Based on this estimation,
we develop the enhanced DPP rules (EDPP) in Section 2.3.3. Again, we will follow the
three steps in Section 2.1 to develop the proposed screening rules.

2.3.1 Improving the DPP rules via Projections of Rays

In the DPP screening rules, the dual optimal solution θ∗(λ) is estimated to be inside the
ball B (θ∗(λ0), |1/λ− 1/λ0|‖y‖2) with θ∗(λ0) given. In this section, we show that θ∗(λ) lies
inside a ball centered at θ∗(λ0) with a smaller radius.

Indeed, it is well known that the projection of an arbitrary point onto a nonempty closed
convex set C in a Hilbert space H always exists and is unique (Bauschke and Combettes,
2011). However, the converse is not true, i.e., there may exist w1,w2 ∈ H such that
w1 6= w2 and PC(w1) = PC(w2). In fact, it is known that the following result holds:

Lemma 9 (Bauschke and Combettes, 2011) Let C be a nonempty closed convex subset of
a Hilbert space H. For a point w ∈ H, let w(t) = PC(w) + t(w − PC(w)). Then, the
projection of the point w(t) is PC(w) for all t ≥ 0, i.e.,

PC(w(t)) = PC(w),∀t ≥ 0.

Clearly, when w 6= PC(w), i.e., w /∈ C, w(t) with t ≥ 0 is the ray starting from PC(w)
and pointing in the same direction as w−PC(w). By Lemma 9, we know that the projection
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of the ray w(t) with t ≥ 0 onto the set C is a single point PC(w). [When w = PC(w), i.e.,
w ∈ C, w(t) with t ≥ 0 becomes a single point and the statement in Lemma 9 is trivial.]

By making use of Lemma 9 and the nonexpansiveness of the projection operators, we
can improve the estimation of the dual optimal solution in DPP [please refer to Theorem 2
and (12)]. More specifically, we have the following result:

Theorem 10 For the Lasso problem, suppose that the dual optimal solution θ∗(·) at λ0 ∈
(0, λmax] is known. For any λ ∈ (0, λ0], let us define

v1(λ0) =


y

λ0
− θ∗(λ0), if λ0 ∈ (0, λmax),

sign(xT∗ y)x∗, if λ0 = λmax,
where x∗ = argmaxxi

|xTi y|, (15)

v2(λ, λ0) =
y

λ
− θ∗(λ0), (16)

v⊥2 (λ, λ0) = v2(λ, λ0)−
〈v1(λ0),v2(λ, λ0)〉
‖v1(λ0)‖22

v1(λ0). (17)

Then, the dual optimal solution θ∗(λ) can be estimated as follows:

θ∗(λ) ∈ B
(
θ∗(λ0), ‖v⊥2 (λ, λ0)‖2

)
⊆ B

(
θ∗(λ0),

∣∣∣∣ 1λ − 1

λ0

∣∣∣∣ ‖y‖2) .
Proof By making use of Lemma 9, we present the proof of the statement for the cases
with λ0 ∈ (0, λmax). We postpone the proof of the statement for the case with λ0 = λmax

after we introduce more general technical results.
In view of the assumption λ0 ∈ (0, λmax), it is easy to see that

y

λ0
/∈ F ⇒ y

λ0
6= PF

(
y

λ0

)
= θ∗(λ0)⇒

y

λ0
− θ∗(λ0) 6= 0. (18)

For each λ0 ∈ (0, λmax), let us define

θλ0(t) = θ∗(λ0) + tv1(λ0) = θ∗(λ0) + t

(
y

λ0
− θ∗(λ0)

)
, t ≥ 0. (19)

By the result in (18), we can see that θλ0(·) defined by (19) is a ray which starts at θ∗(λ0)
and points in the same direction as y/λ0 − θ∗(λ0). In view of (6), a direct application of
Lemma 9 leads to that:

PF (θλ0(t)) = θ∗(λ0), ∀ t ≥ 0. (20)

By applying Theorem 1 again, we have

‖θ∗(λ)− θ∗(λ0)‖2 =
∥∥∥PF (y

λ

)
− PF (θλ0(t))

∥∥∥
2

(21)

≤
∥∥∥y

λ
− θλ0(t)

∥∥∥
2

=

∥∥∥∥t( y

λ0
− θ∗(λ0)

)
−
(y

λ
− θ∗(λ0)

)∥∥∥∥
2

= ‖tv1(λ0)− v2(λ, λ0)‖2, ∀ t ≥ 0.
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Because the inequality in (21) holds for all t ≥ 0, it is easy to see that

‖θ∗(λ)− θ∗(λ0)‖2 ≤ min
t≥0
‖tv1(λ0)− v2(λ, λ0)‖2 (22)

=

{
‖v2(λ, λ0)‖2, if 〈v1(λ0),v2(λ, λ0)〉 < 0,∥∥v⊥2 (λ, λ0)

∥∥
2
, otherwise.

The inequality in (22) implies that, to prove the first half of the statement, i.e., θ∗(λ) ∈
B(θ∗(λ0), ‖v⊥2 (λ, λ0)‖2), we only need to show that 〈v1(λ0),v2(λ, λ0)〉 ≥ 0.

Indeed, it is easy to see that 0 ∈ F . Therefore, in view of (20), the distance between
θλ0(t) and θ∗(λ0) must be shorter than the one between θλ0(t) and 0 for all t ≥ 0, i.e.,

‖θλ0(t)− θ∗(λ0)‖22 ≤ ‖θλ0(t)− 0‖22 (23)

⇒ 0 ≤ ‖θ∗(λ0)‖22 + 2t

(〈
θ∗(λ0),

y

λ0

〉
− ‖θ∗(λ0)‖22

)
, ∀ t ≥ 0.

Since the inequality in (23) holds for all t ≥ 0, we can conclude that:〈
θ∗(λ0),

y

λ0

〉
− ‖θ∗(λ0)‖22 ≥ 0⇒ ‖y‖2

λ0
≥ ‖θ∗(λ0)‖2. (24)

Therefore, we can see that:

〈v1(λ0),v2(λ, λ0)〉 =

〈
y

λ0
− θ∗(λ0),

y

λ
− y

λ0
+

y

λ0
− θ∗(λ0)

〉
(25)

≥
(

1

λ
− 1

λ0

)〈
y

λ0
− θ∗(λ0),y

〉
=

(
1

λ
− 1

λ0

)(
‖y‖22
λ0
− 〈θ∗(λ0),y〉

)
≥
(

1

λ
− 1

λ0

)(
‖y‖22
λ0
− ‖θ∗(λ0)‖2‖y‖2

)
≥ 0.

The last inequality in (25) is due to the result in (24).
Clearly, in view of (22) and (25), we can see that the first half of the statement holds, i.e.,

θ∗(λ) ∈ B(θ∗(λ0), ‖v⊥2 (λ, λ0)‖2). The second half of the statement, i.e., B(θ∗(λ0), ‖v⊥2 (λ, λ0)‖2) ⊆
B(θ∗(λ0), |1/λ − 1/λ0|‖y‖2), can be easily obtained by noting that the inequality in (21)
reduces to the one in (12) when t = 1. This completes the proof of the statement with
λ0 ∈ (0, λmax).

Before we present the proof of Theorem 10 for the case with λ0 = λmax, let us briefly
review some technical results from convex analysis first.

Definition 11 (Ruszczyński, 2006) Let C be a nonempty closed convex subset of a Hilbert
space H and w ∈ C. The set

NC(w) := {v : 〈v,u−w〉 ≤ 0, ∀u ∈ C}

is called the normal cone to C at w.
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In terms of the normal cones, the following theorem provides an elegant and useful
characterization of the projections onto nonempty closed convex subsets of a Hilbert space.

Theorem 12 (Bauschke and Combettes, 2011) Let C be a nonempty closed convex subset
of a Hilbert space H. Then, for every w ∈ H and w0 ∈ C, w0 is the projection of w onto
C if and only if w −w0 ∈ NC(w0), i.e.,

w0 = PC(w)⇔ 〈w −w0,u−w0〉 ≤ 0, ∀u ∈ C.

In view of the proof of Theorem 10, we can see that (20) is a key step. When λ0 = λmax,
similar to (19), let us define

θλmax(t) = θ∗(λmax) + tv1(λmax), ∀ t ≥ 0. (26)

By Theorem 12, the following lemma shows that (20) also holds for λ0 = λmax.

Lemma 13 For the Lasso problem, let v1(·) and θλmax(·) be given by (15) and (26), then
the following result holds:

PF (θλmax(t)) = θ∗(λmax), ∀ t ≥ 0. (27)

Proof To prove the statement, Theorem 12 implies that we only need to show:

〈v1(λmax), θ − θ∗(λmax)〉 ≤ 0, ∀ θ ∈ F. (28)

Recall that v1(λmax) = sign(xT∗ y)x∗, x∗ = argmaxxi
|xTi y| from (15), and θ∗(λmax) =

y/λmax from (9). It is easy to see that

〈v1(λmax), θ∗(λmax)〉 =

〈
sign(xT∗ y)x∗,

y

λmax

〉
=
|xT∗ y|
λmax

= 1. (29)

Moreover, assume θ is an arbitrary point of F . Then, we have |〈x∗, θ〉| ≤ 1, and thus

〈v1(λmax), θ〉 = 〈sign(xT∗ y)x∗, θ〉 ≤ |〈x∗, θ〉| ≤ 1. (30)

Therefore, the inequality in (28) easily follows by combing the results in (29) and (30),
which completes the proof.

We are now ready to give the proof of Theorem 10 for the case with λ0 = λmax.

Proof In view of Theorem 1 and Lemma 13, we have

‖θ∗(λ)− θ∗(λmax)‖2 =
∥∥∥PF (y

λ

)
− PF (θλmax(t))

∥∥∥
2

(31)

≤
∥∥∥y

λ
− θλmax(t)

∥∥∥
2

=
∥∥∥tv1(λmax)−

(y

λ
− θ∗(λmax)

)∥∥∥
2

= ‖tv1(λmax)− v2(λ, λmax)‖2, ∀ t ≥ 0.
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Because the inequality in (31) holds for all t ≥ 0, we can see that

‖θ∗(λ)− θ∗(λmax)‖2 ≤ min
t≥0
‖tv1(λmax)− v2(λ, λmax)‖2 (32)

=

{
‖v2(λ, λmax)‖2, if 〈v1(λmax),v2(λ, λmax)〉 < 0,∥∥v⊥2 (λ, λmax)

∥∥
2
, otherwise.

Clearly, we only need to show that 〈v1(λmax),v2(λ, λmax)〉 ≥ 0.
Indeed, Lemma 13 implies that v1(λmax) ∈ NF (θ∗(λmax)) [please refer to the inequality

in (28)]. By noting that 0 ∈ F , we have〈
v1(λmax), 0− y

λmax

〉
≤ 0⇒ 〈v1(λmax),y〉 ≥ 0.

Moreover, because y/λmax = θ∗(λmax), it is easy to see that

〈v1(λmax),v2(λ, λmax)〉 =

〈
v1(λmax),

y

λ
− y

λmax

〉
(33)

=

(
1

λ
− 1

λmax

)
〈v1(λmax),y〉 ≥ 0.

Therefore, in view of (32) and (33), we can see that the first half of the statement
holds, i.e., θ∗(λ) ∈ B(θ∗(λmax), ‖v⊥2 (λ, λmax)‖2). The second half of the statement, i.e.,
B(θ∗(λmax), ‖v⊥2 (λ, λmax)‖2) ⊆ B(θ∗(λmax), |1/λ− 1/λmax|‖y‖2), can be easily obtained by
noting that the inequality in (32) reduces to the one in (12) when t = 0. This completes
the proof of the statement with λ0 = λmax. Thus, the proof of Theorem 10 is completed.

Theorem 10 in fact provides a more accurate estimation of the dual optimal solution than
the one in DPP, i.e., θ∗(λ) lies inside a ball centered at θ∗(λ0) with a radius ‖v⊥2 (λ, λ0)‖2.
Based on this improved estimation and (R1’), we can develop the following screening rule
to discard the inactive features for Lasso.

Theorem 14 For the Lasso problem, assume the dual optimal solution θ∗(·) at λ0 ∈
(0, λmax] is known. Then, for each λ ∈ (0, λ0), we have [β∗(λ)]i = 0 if

|xTi θ∗(λ0)| < 1− ‖v⊥2 (λ, λ0)‖2‖xi‖2.

We omit the proof of Theorem 14 since it is very similar to the one of Theorem 3. By
Theorem 14, we can easily develop the following sequential screening rule.

Improvement 1: For the Lasso problem (1), suppose we are given a sequence of pa-
rameter values λmax = λ0 > λ1 > . . . > λK. Then for any integer 0 ≤ k < K, we have
[β∗(λk+1)]i = 0 if β∗(λk) is known and the following holds:∣∣∣∣xTi y −Xβ∗(λk)

λk

∣∣∣∣ < 1− ‖v⊥2 (λk+1, λk)‖2‖xi‖2.

The screening rule in Improvement 1 is developed based on (R1’) and the estimation
of the dual optimal solution in Theorem 10, which is more accurate than the one in DPP.
Therefore, in view of (R1’), the screening rule in Improvement 1 are more effective in
discarding the inactive features than the DPP rule.
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2.3.2 Improving the DPP rules via Firmly Nonexpansiveness

In Section 2.3.1, we improve the estimation of the dual optimal solution in DPP by making
use of the projections of properly chosen rays. (R1’) implies that the resulting screening
rule stated in Improvement 1 is more effective in discarding the inactive features than DPP.
In this Section, we present another approach to improve the estimation of the dual optimal
solution in DPP by making use of the so called firmly nonexpansiveness of the projections
onto nonempty closed convex subset of a Hilbert space.

Theorem 15 (Bauschke and Combettes, 2011) Let C be a nonempty closed convex subset
of a Hilbert space H. Then the projection operator defined in (5) is continuous and firmly
nonexpansive. In other words, for any w1,w2 ∈ H, we have

‖PC(w1)− PC(w2)‖22 + ‖(Id− PC)(w1)− (Id− PC)(w2)‖22 ≤ ‖w1 −w2‖22, (34)

where Id is the identity operator.

In view of the inequalities in (34) and (10), it is easy to see that firmly nonexpansiveness
implies nonexpansiveness. But the converse is not true. Therefore, firmly nonexpansiveness
of the projection operators is a stronger property than the nonexpansiveness. A direct
application of Theorem 15 leads to the following result.

Theorem 16 For the Lasso problem, let λ, λ0 > 0 be two parameter values. Then

θ∗(λ) ∈ B
(
θ∗(λ0) +

1

2

(
1

λ
− 1

λ0

)
y,

1

2

∣∣∣∣ 1λ − 1

λ0

∣∣∣∣ ‖y‖2) ⊂ B(θ∗(λ0), ∣∣∣∣ 1λ − 1

λ0

∣∣∣∣ ‖y‖2) .
(35)

Proof In view of (6) and the firmly nonexpansiveness in (34), we have

‖θ∗(λ)− θ∗(λ0)‖22 +

∥∥∥∥(y

λ
− θ∗(λ)

)
−
(

y

λ0
− θ∗(λ0)

)∥∥∥∥2
2

≤
∥∥∥∥y

λ
− y

λ0

∥∥∥∥2
2

(36)

⇔ ‖θ∗(λ)− θ∗(λ0)‖22 ≤
〈
θ∗(λ)− θ∗(λ0),

y

λ
− y

λ0

〉
⇔

∥∥∥∥θ∗(λ)−
(
θ∗(λ0) +

1

2

(
1

λ
− 1

λ0

)
y

)∥∥∥∥
2

≤ 1

2

∣∣∣∣ 1λ − 1

λ0

∣∣∣∣ ‖y‖2,
which completes the proof of the first half of the statement. The second half of the state-
ment is trivial by noting that the first inequality in (36) (firmly nonexpansiveness) implies
the inequality in (11) (nonexpansiveness) but not vice versa. Indeed, it is easy to see that
the ball in the middle of (35) is inside the right one and has only a half radius.

Clearly, Theorem 16 provides a more accurate estimation of the dual optimal solution
than the one in DPP, i.e., the dual optimal solution must be inside a ball which is a subset
of the one in DPP and has only a half radius. Again, based on the estimation in Theorem
16 and (R1’), we have the following result.
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Theorem 17 For the Lasso problem, assume that the dual optimal solution θ∗(·) at λ0 ∈
(0, λmax] is known. Then, for each λ ∈ (0, λ0), we have [β∗(λ)]i = 0 if∣∣∣∣xTi (θ∗(λ0) +

1

2

(
1

λ
− 1

λ0

)
y

)∣∣∣∣ < 1− 1

2

(
1

λ
− 1

λ0

)
‖y‖2‖xi‖2.

We omit the proof of Theorem 17 since it is very similar to the proof of Theorem 3. A
direct application of Theorem 17 leads to the following sequential screening rule.

Improvement 2: For the Lasso problem (1), suppose that we are given a sequence of
parameter values λmax = λ0 > λ1 > . . . > λK. Then for any integer 0 ≤ k < K, we have
[β∗(λk+1)]i = 0 if β∗(λk) is known and the following holds:∣∣∣∣xTi (y −Xβ∗(λk)

λk
+

1

2

(
1

λk+1
− 1

λk

)
y

)∣∣∣∣ < 1− 1

2

(
1

λk+1
− 1

λk

)
‖y‖2‖xi‖2.

Because the screening rule in Improvement 2 is developed based on (R1’) and the esti-
mation in Theorem 16, it is easy to see that Improvement 2 is more effective in discarding
the inactive features than DPP.

2.3.3 The Proposed Enhanced DPP Rules

In Sections 2.3.1 and 2.3.2, we present two different approaches to improve the estimation of
the dual optimal solution in DPP. In view of (R1’), we can see that the resulting screening
rules, i.e., Improvements 1 and 2, are more effective in discarding the inactive features than
DPP. In this section, we give a more accurate estimation of the dual optimal solution than
the ones in Theorems 10 and 16 by combining the aforementioned two approaches together.
The resulting screening rule for Lasso is the so called enhanced DPP rule (EDPP). Again,
(R1’) implies that EDPP is more effective in discarding the inactive features than the screen-
ing rules in Improvements 1 and 2. We also present several experiments to demonstrate that
EDPP is able to identify more inactive features than the screening rules in Improvements
1 and 2. Therefore, in the subsequent sections, we will focus on the generalizations and
evaluations of EDPP.

To develop the EDPP rules, we still follow the three steps in Section 2.1. Indeed, by
combining the two approaches proposed in Sections 2.3.1 and 2.3.2, we can further improve
the estimation of the dual optimal solution in the following theorem.

Theorem 18 For the Lasso problem, suppose that the dual optimal solution θ∗(·) at λ0 ∈
(0, λmax] is known, and ∀ λ ∈ (0, λ0], let v⊥2 (λ, λ0) be given by (17). Then, we have∥∥∥∥θ∗(λ)−

(
θ∗(λ0) +

1

2
v⊥2 (λ, λ0)

)∥∥∥∥
2

≤ 1

2
‖v⊥2 (λ, λ0)‖2.

Proof Recall that θλ0(t) is defined by (19) and (26). In view of (34), we have∥∥∥PF (y

λ

)
− PF (θλ0(t))

∥∥∥2
2

+
∥∥∥(Id− PF )

(y

λ

)
− (Id− PF ) (θλ0(t))

∥∥∥2
2
≤
∥∥∥y

λ
− θλ0(t)

∥∥∥2
2
.

(37)
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By expanding the second term on the left hand side of (37) and rearranging the terms, we
obtain the following equivalent form:∥∥∥PF (y

λ

)
− PF (θλ0(t))

∥∥∥2
2
≤
〈y

λ
− θλ0(t), PF

(y

λ

)
− PF (θλ0(t))

〉
. (38)

In view of (6), (20) and (27), the inequality in (38) can be rewritten as

‖θ∗(λ)− θ∗(λ0)‖22 ≤
〈y

λ
− θλ0(t), θ∗(λ)− θ∗(λ0)

〉
(39)

=
〈y

λ
− θ∗(λ0)− tv1(λ0), θ

∗(λ)− θ∗(λ0)
〉

= 〈v2(λ, λ0)− tv1(λ0), θ
∗(λ)− θ∗(λ0)〉, ∀t ≥ 0.

[Recall that v1(λ0) and v2(λ, λ0) are defined by (15) and (16) respectively.] Clearly, the
inequality in (39) is equivalent to∥∥∥∥θ∗(λ)−

(
θ∗(λ0) +

1

2
(v2(λ, λ0)− tv1(λ0))

)∥∥∥∥2
2

≤ 1

4
‖v2(λ, λ0)− tv1(λ0)‖22, ∀t ≥ 0. (40)

The statement follows easily by minimizing the right hand side of the inequality in (40),
which has been done in the proof of Theorem 10.

Indeed, Theorem 18 is equivalent to bounding θ∗(λ) in a ball as follows:

θ∗(λ) ∈ B
(
θ∗(λ0) +

1

2
v⊥2 (λ, λ0),

1

2
‖v⊥2 (λ, λ0)‖2

)
. (41)

Based on this estimation and (R1’), we immediately have the following result.

Theorem 19 For the Lasso problem, assume that the dual optimal problem θ∗(·) at λ0 ∈
(0, λmax] is known, and λ ∈ (0, λ0]. Then [β∗(λ)]i = 0 if the following holds:∣∣∣∣xTi (θ∗(λ0) +

1

2
v⊥2 (λ, λ0)

)∣∣∣∣ < 1− 1

2
‖v⊥2 (λ, λ0)‖2‖xi‖2.

We omit the proof of Theorem 19 since it is very similar to the one of Theorem 3. Based
on Theorem 19, we can develop the EDPP rules as follows.

Corollary 20 EDPP: For the Lasso problem, suppose that we are given a sequence of
parameter values λmax = λ0 > λ1 > . . . > λK. Then for any integer 0 ≤ k < K, we have
[β∗(λk+1)]i = 0 if β∗(λk) is known and the following holds:∣∣∣∣xTi (y −Xβ∗(λk)

λk
+

1

2
v⊥2 (λk+1, λk)

)∣∣∣∣ < 1− 1

2
‖v⊥2 (λk+1, λk)‖2‖xi‖2. (42)

It is easy to see that the ball in (41) has the smallest radius compared to the ones in
Theorems 10 and 16, and thus it provides the most accurate estimation of the dual optimal
solution. According to (R1’), EDPP is more effective in discarding the inactive features
than DPP, Improvements 1 and 2.
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Figure 1: Comparison of the family of DPP rules on three real data sets: Prostate Cancer
digit data set (left), PIE data set (middle) and MNIST image data set (right).
The first row shows the rejection ratios of DPP, Improvement 1, Improvement 2
and EDPP. The second row presents the speedup gained by these four methods.

We evaluate the performance of the family of DPP screening rules, i.e., DPP, Improve-
ment 1, Improvement 2 and EDPP, on three real data sets: a) the Prostate Cancer (Petricoin
et al., 2002); b) the PIE face image data set (Sim et al., 2003); c) the MNIST handwritten
digit data set (Lecun et al., 1998). To measure the performance of the screening rules, we
compute the following two quantities:

1. the rejection ratio, i.e., the ratio of the number of features discarded by screening
rules to the actual number of zero features in the ground truth;

2. the speedup, i.e., the ratio of the running time of the solver with screening rules to the
running time of the solver without screening.

For each data set, we run the solver with or without the screening rules to solve the Lasso
problem along a sequence of 100 parameter values equally spaced on the λ/λmax scale
from 0.05 to 1.0. Figure 1 presents the rejection ratios and speedup by the family of DPP
screening rules. Table 1 reports the running time of the solver with or without the screening
rules for solving the 100 Lasso problems, as well as the time for running the screening rules.

The Prostate Cancer data set (Petricoin et al., 2002) is obtained by protein mass spec-
trometry. The features are indexed by time-of-flight values, which are related to the mass
over charge ratios of the constituent proteins in the blood. The data set has 15154 mea-
surements of 132 patients. 69 of the patients have prostate cancer and the rest are healthy.
Therefore, the data matrix X is of size 132× 15154, and the response vector y ∈ {1,−1}132
contains the binary labels of the patients.
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Data solver DPP+solver Imp.1+solver Imp.2+solver EDPP+solver DPP Imp.1 Imp.2 EDPP

Prostate
Cancer

121.41 23.36 6.39 17.00 3.70 0.30 0.27 0.28 0.23

PIE 629.94 74.66 11.15 55.45 4.13 1.63 1.34 1.54 1.33

MNIST 2566.26 332.87 37.80 226.02 11.12 5.28 4.36 4.94 4.19

Table 1: Running time (in seconds) for solving the Lasso problems along a sequence of
100 tuning parameter values equally spaced on the scale of λ/λmax from 0.05 to
1 by (a): the solver (Liu et al., 2009) (reported in the second column) without
screening; (b): the solver combined with different screening methods (reported in
the 3rd to the 6th columns). The last four columns report the total running time
(in seconds) for the screening methods.

The PIE face image data set used in this experiment1 (Cai et al., 2007) contains 11554
gray face images of 68 people, taken under different poses, illumination conditions and
expressions. Each of the images has 32×32 pixels. Therefore, in each trial, we first randomly
pick an image as the response y ∈ R1024, and then use the remaining images to form the
data matrix X ∈ R1024×11553. We run 100 trials and report the average performance of the
screening rules.

The MNIST data set contains gray images of scanned handwritten digits, including
60, 000 for training and 10, 000 for testing. The dimension of each image is 28 × 28. We
first randomly select 5000 images for each digit from the training set (and in total we have
50000 images) and get a data matrix X ∈ R784×50000. Then in each trial, we randomly
select an image from the testing set as the response y ∈ R784. We run 100 trials and report
the average performance of the screening rules.

From Figure 1, we can see that both Improvements 1 and 2 are able to discard more
inactive features than DPP, and thus lead to a higher speedup. Compared to Improvement
2, we can also observe that Improvement 1 is more effective in discarding the inactive
features. For the three data sets, the second row of Figure 1 shows that Improvement 1
leads to about 20, 60, 70 times speedup respectively, which are much higher than the ones
gained by Improvement 1 (roughly 10 times for all the three cases).

Moreover, the EDPP rule, which combines the ideas of both Improvements 1 and 2, is
even more effective in discarding the inactive features than Improvement 1. We can see
that, for all of the three data sets and most of the 100 parameter values, the rejection ratios
of EDPP are very close to 100%. In other words, EDPP is able to discard almost all of the
inactive features. Thus, the resulting speedup of EDPP is significantly better than the ones
gained by the other three DPP rules. For the PIE and MNIST data sets, we can see that the
speedup gained EDPP is about 150 and 230 times, which are two orders of magnitude. In
view of Table 1, for the MNIST data set, the solver without screening needs about 2566.26
seconds to solve the 100 Lasso problems. In contrast, the solver with EDPP only needs
11.12 seconds, leading to substantial savings in the computational cost. Moreover, from

1. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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the last four columns of Table 1, we can also observe that the computational cost of the
family of DPP rules are very low. Compared to that of the solver without screening, the
computational cost of the family of DPP rules is negligible.

In Section 4, we will only compare the performance of EDPP against several other
state-of-the-art screening rules.

3. Extensions to Group Lasso

To demonstrate the flexibility of the family of DPP rules, we extend the idea of EDPP to the
group Lasso problem (Yuan and Lin, 2006) in this section. Although the Lasso and group
Lasso problems are very different from each other, we will see that their dual problems
share a lot of similarities. For example, both of the dual problems can be formulated as
looking for projections onto nonempty closed convex subsets of a Hilbert space. Recall that,
the EDPP rule for the Lasso problem is entirely based on the properties of the projection
operators. Therefore, the framework of the EDPP screening rule we developed for Lasso is
also applicable for the group Lasso problem. In Section 3.1, we briefly review some basics
of the group Lasso problem and explore the geometric properties of its dual problem. In
Section 3.2, we develop the EDPP rule for the group Lasso problem.

3.1 Basics

With the group information available, the group Lasso problem takes the form of:

inf
β∈Rp

1

2

∥∥∥∥y −∑G

g=1
Xgβg

∥∥∥∥2
2

+ λ
∑G

g=1

√
ng‖βg‖2, (43)

where Xg ∈ RN×ng is the data matrix for the gth group and p =
∑G

g=1 ng. The dual problem
of (43) is (see detailed derivation in the appendix):

sup
θ

{
1

2
‖y‖22 −

λ2

2

∥∥∥θ − y

λ

∥∥∥2
2

: ‖XT
g θ‖2 ≤

√
ng, g = 1, 2, . . . , G

}
(44)

The KKT conditions are given by

y =
∑G

g=1
Xgβ

∗
g (λ) + λθ∗(λ), (45)

(θ∗(λ))TXg ∈

{√
ng

β∗g (λ)

‖β∗g (λ)‖2
, ifβ∗g (λ) 6= 0,

√
ngu, ‖u‖2 ≤ 1, ifβ∗g (λ) = 0.

(46)

for g = 1, 2, . . . , G. Clearly, in view of (46), we can see that

‖(θ∗(λ))TXg‖2 <
√
ng ⇒ β∗g (λ) = 0 (R2)

However, since θ∗(λ) is generally unknown, (R2) is not applicable to identify the inactive
groups, i.e., the groups which have 0 coefficients in the solution vector, for the group Lasso
problem. Therefore, similar to the Lasso problem, we can first find a region Θ which
contains θ∗(λ), and then (R2) can be relaxed as follows:

sup
θ∈Θ

‖(θ)TXg‖2 <
√
ng ⇒ β∗g (λ) = 0. (R2′)
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Therefore, to develop screening rules for the group Lasso problem, we only need to estimate
the region Θ which contains θ∗(λ), solve the maximization problem in (R2′), and plug it
into (R2′). In other words, the three steps proposed in Section 2.1 can also be applied to
develop screening rules for the group Lasso problem. Moreover, (R2′) also implies that the
smaller the region Θ is, the more accurate the estimation of the dual optimal solution is. As
a result, the more effective the resulting screening rule is in discarding the inactive features.

The dual problem of group Lasso has similar geometric interpretations to the one of
Lasso. For notational convenience, let F be the feasible set of problem (44). Similar to the
case of Lasso, problem (44)implies that the dual optimal θ∗(λ) is the projection of y/λ onto
the feasible set F , i.e.,

θ∗(λ) = PF

(y

λ

)
, ∀ λ > 0. (47)

Compared to (6), the only difference in (47) is that the feasible set F is the intersection of
a set of ellipsoids, and thus not a polytope. However, similar to F , F is also a nonempty
closed and convex (notice that 0 is a feasible point). Therefore, we can make use of all the
aforementioned properties of the projection operators, e.g., Lemmas 9 and 13, Theorems 12
and 15, to develop screening rules for the group Lasso problem.

Moreover, similar to the case of Lasso, we also have a specific parameter value (Tibshirani
et al., 2012) for the group Lasso problem, i.e.,

λmax = max
g

‖XT
g y‖2
√
ng

. (48)

Indeed, λmax is the smallest parameter value such that the optimal solution of problem (43)
is 0. More specifically, we have:

β∗(λ) = 0, ∀ λ ∈ [λmax,∞). (49)

Combining the result in (49) and (45), we immediately have

θ∗(λ) =
y

λ
, ∀ λ ∈ [λmax,∞). (50)

Therefore, all through the subsequent sections, we will focus on the cases with λ ∈ (0, λmax).

3.2 Enhanced DPP rule for Group Lasso

In view of (R2′), we can see that the estimation of the dual optimal solution is the key step
to develop a screening rule for the group Lasso problem. Because θ∗(λ) is the projection
of y/λ onto the nonempty closed convex set F [please refer to (47)], we can make use of
all the properties of projection operators, e.g., Lemmas 9 and 13, Theorems 12 and 15, to
estimate the dual optimal solution. First, let us develop a useful technical result as follows.

Lemma 21 For the group Lasso problem, let λmax be given by (48) and

X∗ := argmaxXg

‖XT
g y‖2
√
ng

. (51)
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Suppose that the dual optimal solution θ∗(·) is known at λ0 ∈ (0, λmax], let us define

v1(λ0) =


y

λ0
− θ∗(λ0), if λ0 ∈ (0, λmax),

X∗X
T
∗ y, if λ0 = λmax.

(52)

θλ0(t) = θ∗(λ0) + tv1(λ0), t ≥ 0.

Then, we have the following result holds

PF (θλ0(t)) = θ∗(λ0), ∀ t ≥ 0. (53)

Proof Let us first consider the cases with λ0 ∈ (0, λmax). In view of the definition of λmax,
it is easy to see that y/λ0 /∈ F . Therefore, in view of (47) and Lemma 9, the statement in
(53) follows immediately.

We next consider the case with λ0 = λmax. By Theorem 12, we only need to check if

v1(λmax) ∈ NF (θ∗(λmax))⇔
〈
v1(λmax), θ − θ∗(λmax)

〉
≤ 0, ∀ θ ∈ F . (54)

Indeed, in view of (48) and (50), we can see that

〈v1(λmax), θ∗(λmax)〉 =

〈
X∗X

T
∗ y,

y

λmax

〉
=
‖XT
∗ y‖22
λmax

. (55)

On the other hand, by (48) and (51), we can see that

‖XT
∗ y‖2 = λmax

√
n∗, (56)

where n∗ is the number of columns of X∗. By plugging (56) into (55), we have

〈v1(λmax), θ∗(λmax)〉 = λmax · n∗.

Moreover, for any feasible point θ ∈ F , we can see that

‖XT
∗ θ‖2 ≤

√
n∗. (57)

In view of the result in (57) and (56), it is easy to see that〈
v1(λmax), θ

〉
=
〈
X∗X

T
∗ y, θ

〉
=
〈
XT
∗ y,XT

∗ θ
〉
≤ ‖XT

∗ y‖2‖XT
∗ θ‖2 = λmax · n∗. (58)

Combining the result in (55) and (58), it is easy to see that the inequality in (54) holds for
all θ ∈ F , which completes the proof.

By Lemma 21, we can accurately estimate the dual optimal solution of the group Lasso
problem in the following theorem. It is easy to see that the result in Theorem 22 is very
similar to the one in Theorem 18 for the Lasso problem.
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Theorem 22 For the group Lasso problem, suppose that the dual optimal solution θ∗(·) at
θ0 ∈ (0, λmax] is known, and v1(λ0) is given by (52). For any λ ∈ (0, λ0], let us define

v2(λ, λ0) =
y

λ
− θ∗(λ0),

v⊥2 (λ, λ0) = v2(λ, λ0)−
〈v1(λ0),v2(λ, λ0)〉
‖v1(λ0)‖22

v1(λ0).

Then, the dual optimal solution θ∗(λ) can be estimated as follows:∥∥∥∥θ∗(λ)−
(
θ∗(λ0) +

1

2
v⊥2 (λ, λ0)

)∥∥∥∥
2

≤ 1

2
‖v⊥2 (λ, λ0)‖2.

We omit the proof of Theorem 22 since it is exactly the same as the one of Theorem 18.
Indeed, Theorem 22 is equivalent to estimating θ∗(λ) in a ball as follows:

θ∗(λ) ∈ B
(
θ∗(λ0) +

1

2
v⊥2 (λ, λ0),

1

2
‖v⊥2 (λ, λ0)‖2

)
. (59)

Based on this estimation and (R2′), we immediately have the following result.

Theorem 23 For the group Lasso problem, assume the dual optimal solution θ∗(·) is known
at λ0 ∈ (0, λmax], and λ ∈ (0, λ0]. Then β∗g (λ) = 0 if the following holds∥∥∥∥XT

g

(
θ∗(λ0) +

1

2
v⊥2 (λ, λ0)

)∥∥∥∥
2

<
√
ng −

1

2
‖v⊥2 (λ, λ0)‖2‖Xg‖2. (60)

Proof In view of (R2′), we only need to check if∥∥XT
g θ
∗(λ)

∥∥
2
<
√
ng.

To simplify notations, let

o = θ∗(λ0) +
1

2
v⊥2 (λ, λ0), r =

1

2
‖v⊥2 (λ, λ0)‖2.

It is easy to see that∥∥XT
g θ
∗(λ)

∥∥
2
≤ ‖XT

g (θ∗(λ)− o)‖2 + ‖XT
g o‖2 (61)

< ‖Xg‖2‖θ∗(λ)− o‖2 +
√
ng − r‖Xg‖2

≤ r‖Xg‖2 +
√
ng − r‖Xg‖2 =

√
ng,

which completes the proof. The second and third inequalities in (61) are due to (60) and
Theorem 22, respectively.

In view of (45) and Theorem 23, we can derive the EDPP rule to discard the inactive
groups for the group Lasso problem as follows.

Corollary 24 EDPP: For the group Lasso problem (43), suppose we are given a sequence
of parameter values λmax = λ0 > λ1 > . . . > λK. For any integer 0 ≤ k < K, we have
β∗g (λk+1) = 0 if β∗(λk) is known and the following holds:∥∥∥∥∥XT

g

(
y −

∑G
g=1 Xgβ

∗
g (λk)

λk
+

1

2
v⊥2 (λk+1, λk)

)∥∥∥∥∥
2

<
√
ng −

1

2
‖v⊥2 (λk+1, λk)‖2‖Xg‖2.

1083



Wang, Wonka, and Ye

4. Experiments

In this section, we evaluate the proposed EDPP rules for Lasso and group Lasso on both
synthetic and real data sets. To measure the performance of our screening rules, we compute
the rejection ratio and speedup (please refer to Section 2.3.3 for details). Because the EDPP
rule is safe, i.e., no active features/groups will be mistakenly discarded, the rejection ratio
will be less than one.

In Section 4.1, we conduct two sets of experiments to compare the performance of
EDPP against several state-of-the-art screening methods. We first compare the performance
of the basic versions of EDPP, DOME, SAFE, and strong rule. Then, we focus on the
sequential versions of EDPP, SAFE, and strong rule. Notice that, SAFE and EDPP are
safe. However, strong rule may mistakenly discard features with nonzero coefficients in the
solution. Although DOME is also safe for the Lasso problem, it is unclear if there exists
a sequential version of DOME. Recall that, real applications usually favor the sequential
screening rules because we need to solve a sequence of of Lasso problems to determine an
appropriate parameter value (Tibshirani et al., 2012). Moreover, DOME assumes special
structure on the data, i.e., each feature and the response vector should be normalized to
have unit length.

In Section 4.2, we compare EDPP with strong rule for the group Lasso problem on
synthetic data sets. We are not aware of any safe screening rules for the group Lasso
problem at this point. For SAFE and Dome, it is not straightforward to extend them to
the group Lasso problem.

An efficient MATLAB implementation of the EDPP screening rules—combined with the
solvers from SLEP package (Liu et al., 2009)—for both Lasso and group Lasso is available
at http://dpc-screening.github.io/.

4.1 EDPP for the Lasso Problem

For the Lasso problem, we first compare the performance of the basic versions of EDPP,
DOME, SAFE and strong rule in Section 4.1.1. Then, we compare the performance of the
sequential versions of EDPP, SAFE and strong rule in Section 4.1.2.

4.1.1 Evaluation of the Basic EDPP Rule

In this section, we perform experiments on six real data sets to compare the performance
of the basic versions of SAFE, DOME, strong rule and EDPP. Briefly speaking, suppose
that we are given a parameter value λ. Basic versions of the aforementioned screening rules
always make use of β∗(λmax) to identify the zero components of β∗(λ). Take EDPP for
example. The basic version of EDPP can be obtained by replacing β∗(λk) and v⊥2 (λk+1, λk)
with β∗(λ0) and v⊥2 (λk, λ0), respectively, in (42) for all k = 1, . . . ,K.

In this experiment, we report the rejection ratios of the basic SAFE, DOME, strong
rule and EDPP along a sequence of 100 parameter values equally spaced on the λ/λmax

scale from 0.05 to 1.0. We note that DOME requires that all features of the data sets have
unit length. Therefore, to compare the performance of DOME with SAFE, strong rule
and EDPP, we normalize the features of all the data sets used in this section. However,
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(b) Lung Cancer, X ∈ R203×12600
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(c) Prostate Cancer, X ∈ R132×15154
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(d) PIE, X ∈ R1024×11553
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(e) MNIST, X ∈ R784×50000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

λ/λmax

R
ej

ec
tio

n 
R

at
io

 

 

SAFE
DOME
Strong Rule
EDPP

(f) COIL-100, X ∈ R1024×7199

Figure 2: Comparison of basic versions of SAFE, DOME, Strong Rule and EDPP on six
real data sets.

it is worthwhile to mention that SAFE, strong rule and EDPP do not assume any specific
structures on the data set. The data sets used in this section are listed as follows:

a) Colon Cancer data set (Alon et al., 1999);

b) Lung Cancer data set (Bhattacharjee et al., 2001);

c) Prostate Cancer data set (Petricoin et al., 2002);

d) PIE face image data set (Sim et al., 2003; Cai et al., 2007);

e) MNIST handwritten digit data set (Lecun et al., 1998);

f) COIL-100 image data set (Nene et al., 1996; Cai et al., 2011).

The Colon Cancer data set contains gene expression information of 22 normal tissues
and 40 colon cancer tissues, and each has 2000 gene expression values.

The Lung Cancer data set contains gene expression information of 186 lung tumors and
17 normal lung specimens. Each specimen has 12600 expression values.

The COIL-100 image data set consists of images of 100 objects. The images of each
object are taken every 5 degree by rotating the object, yielding 72 images per object. The
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dimension of each image is 32 × 32. In each trial, we randomly select one image as the
response vector and use the remaining ones as the data matrix. We run 100 trials and
report the average performance of the screening rules.

The description and the experimental settings for the Prostate Cancer data set, the PIE
face image data set and the MNIST handwritten digit data set are given in Section 2.3.3.

Figure 2 reports the rejection ratios of the basic versions of SAFE, DOME, strong rule
and EDPP. We can see that EDPP significantly outperforms the other three screening
methods on five of the six data sets, i.e., the Colon Cancer, Lung Cancer, Prostate Cancer,
MNIST, and COIL-100 data sets. On the PIE face image data set, EDPP and DOME
provide similar performance and both significantly outperform SAFE and strong rule.

However, as pointed out by Tibshirani et al. (2012), the real strength of screening
methods stems from their sequential versions. The reason is because the optimal parameter
value is unknown in real applications. Typical approaches for model selection usually involve
solving the Lasso problems many times along a sequence of parameter values. Thus, the
sequential screening methods are more suitable in facilitating the aforementioned scenario
and more useful than their basic-version counterparts in practice (Tibshirani et al., 2012).

4.1.2 Evaluation of the Sequential EDPP Rule

In this section, we compare the performance of the sequential versions of SAFE, strong
rule and EDPP by the rejection ratio and speedup. We first perform experiments on two
synthetic data sets. We then apply the three screening rules to six real data sets.

We first perform experiments on several synthetic problems, which have been commonly
used in the sparse learning literature (Bondell and Reich, 2008; Zou and Hastie, 2005;
Tibshirani, 1996). We simulate data from the true model

y = Xβ∗ + σε, ε ∼ N(0, 1). (62)

We generate two data sets with 250 × 10000 entries: Synthetic 1 and Synthetic 2. For
Synthetic 1, the entries of the data matrix X are i.i.d. standard Gaussian with pairwise
correlation zero, i.e., corr(xi,xi) = 0. For Synthetic 2, the entries of the data matrix X are
drawn from i.i.d. standard Gaussian with pairwise correlation 0.5|i−j|, i.e., corr(xi,xj) =
0.5|i−j|. To generate the response vector y ∈ R250 by the model in (62), we need to set the
parameter σ and construct the ground truth β∗ ∈ R10000. Throughout this section, σ is set
to be 0.1. To construct β∗, we randomly select p components which are populated from a
uniform [−1, 1] distribution, and set the remaining ones as 0. After we generate the data
matrix X and the response vector y, we run the solver with or without screening rules to
solve the Lasso problems along a sequence of 100 parameter values equally spaced on the
λ/λmax scale from 0.05 to 1.0. We then run 100 trials and report the average performance.

We first apply the screening rules, i.e., SAFE, strong rule and EDPP to Synthetic 1
with p = 100, 1000, 5000 respectively. Figure 3(a), Figure 3(b) and Figure 3(c) present the
corresponding rejection ratios and speedup of SAFE, strong rule and EDPP. We can see
that the rejection ratios of strong rule and EDPP are comparable to each other, and both of
them are more effective in discarding inactive features than SAFE. In terms of the speedup,
EDPP provides better performance than strong rule. The reason is because strong rule
is a heuristic screening method, i.e., it may mistakenly discard active features which have
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Figure 3: Comparison of SAFE, Strong Rule and EDPP on two synthetic data sets with
different numbers of nonzero components of the ground truth.

nonzero components in the solution. Thus, strong rule needs to check the KKT conditions
to ensure the correctness of the screening result. In contrast, the EDPP rule does not need
to check the KKT conditions since the discarded features are guaranteed to be absent from
the resulting sparse representation. From the last two columns of Table 2, we can observe
that the running time of strong rule is about twice of that of EDPP.

Figure 3(d), Figure 3(e) and Figure 3(f) present the rejection ratios and speedup of
SAFE, strong rule and EDPP on Synthetic 2 with p = 100, 1000, 5000 respectively. We can
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Data p solver SAFE+solver Strong Rule+solver EDPP+solver SAFE Strong Rule EDPP

Synthetic 1

100 109.01 100.09 2.67 2.47 4.60 0.65 0.36

1000 123.60 111.32 2.97 2.71 4.59 0.66 0.37

5000 124.92 113.09 3.00 2.72 4.57 0.65 0.36

Synthetic 2

100 107.50 96.94 2.62 2.49 4.61 0.67 0.37

1000 113.59 104.29 2.84 2.67 4.57 0.63 0.35

5000 125.25 113.35 3.02 2.81 4.62 0.65 0.36

Table 2: Running time (in seconds) for solving the Lasso problems along a sequence of 100
tuning parameter values equally spaced on the scale of λ/λmax from 0.05 to 1 by
(a): the solver (Liu et al., 2009) (reported in the third column) without screening;
(b): the solver combined with different screening methods (reported in the 4th to
the 6th columns). The last four columns report the total running time (in seconds)
for the screening methods.

observe patterns similar to Synthetic 1. Clearly, our method, EDPP, is very robust to the
variations of the intrinsic structures of the data sets and the sparsity of the ground truth.

We next compare the performance of the EDPP rule with SAFE and strong rule on six
real data sets along a sequence of 100 parameter values equally spaced on the λ/λmax scale
from 0.05 to 1.0. The data sets are listed as follows:

a) Breast Cancer data set (West et al., 2001; Shevade and Keerthi, 2003);

b) Leukemia data set (Armstrong et al., 2002);

c) Prostate Cancer data set (Petricoin et al., 2002);

d) PIE face image data set (Sim et al., 2003; Cai et al., 2007);

e) MNIST handwritten digit data set (Lecun et al., 1998);

f) Street View House Number (SVHN) data set (Netzer et al., 2001).

We present the rejection ratios and speedup of EDPP, SAFE and strong rule in Figure 4.
Table 3 reports the running time of the solver with or without screening for solving the 100
Lasso problems, and that of the screening rules.

The Breast Cancer data set contains 44 tumor samples, each of which is represented by
7129 genes. Therefore, the data matrix X is of 44×7129. The response vector y ∈ {1,−1}44
contains the binary label of each sample.

The Leukemia data set is a DNA microarray data set, containing 52 samples and 11225
genes. Therefore, the data matrix X is of 52 × 11225. The response vector y ∈ {1,−1}52
contains the binary label of each sample.

The SVHN data set contains color images of street view house numbers, including
73257 images for training and 26032 for testing. The dimension of each image is 32 × 32.
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Figure 4: Comparison of SAFE, Strong Rule, and EDPP on six real data sets.

In each trial, we first randomly select an image as the response y ∈ R3072, and then use the
remaining ones to form the data matrix X ∈ R3072×99288. We run 100 trials and report the
average performance.

The description and the experiment settings for the Prostate Cancer data set, the PIE
face image data set and the MNIST handwritten digit data set are given in Section 2.3.3.

From Figure 4, we can see that the rejection ratios of strong rule and EDPP are com-
parable to each other. Compared to SAFE, both of strong rule and EDPP are able to
identify far more inactive features, leading to a much higher speedup. However, because
strong rule needs to check the KKT conditions to ensure the correctness of the screening
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Data solver SAFE+solver Strong Rule+solver EDPP+solver SAFE Strong Rule EDPP

Breast Cancer 12.70 7.20 1.31 1.24 0.44 0.06 0.05

Leukemia 16.99 9.22 1.15 1.03 0.91 0.09 0.07

Prostate Cancer 121.41 47.17 4.83 3.70 3.60 0.46 0.23

PIE 629.94 138.33 4.84 4.13 19.93 2.54 1.33

MNIST 2566.26 702.21 15.15 11.12 64.81 8.14 4.19

SVHN 11023.30 5220.88 90.65 59.71 583.12 61.02 31.64

Table 3: Running time (in seconds) for solving the Lasso problems along a sequence of
100 tuning parameter values equally spaced on the scale of λ/λmax from 0.05 to
1 by (a): the solver (Liu et al., 2009) (reported in the second column) without
screening; (b): the solver combined with different screening methods (reported in
the 3rd to the 5th columns). The last three columns report the total running time
(in seconds) for the screening methods.

results, the speedup gained by EDPP is higher than that by strong rule. When the size
of the data matrix is not very large, e.g., the Breast Cancer and Leukemia data sets, the
speedup gained by EDPP are slightly higher than that by strong rule. However, when the
size of the data matrix is large, e.g., the MNIST and SVHN data sets, the speedup gained
by EDPP are significantly higher than that by strong rule. Moreover, we can also observe
from Figure 4 that, the larger the data matrix is, the higher the speedup can be gained
by EDPP. More specifically, for the small data sets, e.g., the Breast Cancer, Leukemia and
Prostate Cancer data sets, the speedup gained by EDPP is about 10, 17 and 30 times. In
contrast, for the large data sets, e.g., the PIE, MNIST and SVHN data sets, the speedup
gained by EDPP is two orders of magnitude. Take the SVHN data set for example. The
solver without screening needs about 3 hours to solve the 100 Lasso problems. Combined
with the EDPP rule, the solver only needs less than 1 minute to complete the task.

Clearly, the proposed EDPP screening rule is very effective in accelerating the com-
putation of Lasso especially for large-scale problems, and outperforms the state-of-the-art
approaches like SAFE and strong rule. Notice that, the EDPP method is safe in the sense
that the discarded features are guaranteed to have zero coefficients in the solution.

4.1.3 EDPP with Least-Angle Regression (LARS)

As we mentioned in the introduction, we can combine EDPP with any existing solver. In
this experiment, we integrate EDPP and strong rule with another state-of-the-art solver for
Lasso, i.e., Least-Angle Regression (LARS) (Efron et al., 2004). We perform experiments on
the same real data sets used in the last section with the same experiment settings. Because
the rejection ratios of screening methods are irrelevant to the solvers, we only report the
speedup. Table 4 reports the running time of LARS with or without screening for solving
the 100 Lasso problems, and that of the screening methods. Figure 5 shows the speedup
of these two methods. We can still observe a substantial speedup gained by EDPP. The
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Data LARS Strong Rule+LARS EDPP+LARS Strong Rule EDPP

Breast Cancer 1.30 0.06 0.04 0.04 0.03

Leukemia 1.46 0.09 0.05 0.07 0.04

Prostate Cancer 5.76 1.04 0.37 0.42 0.24

PIE 22.52 2.42 1.31 2.30 1.21

MNIST 92.53 8.53 4.75 8.36 4.34

SVHN 1017.20 65.83 35.73 62.53 32.00

Table 4: Running time (in seconds) for solving the Lasso problems along a sequence of
100 tuning parameter values equally spaced on the scale of λ/λmax from 0.05 to
1 by (a): the solver (Efron et al., 2004; Mairal et al., 2010) (reported in the sec-
ond column) without screening; (b): the solver combined with different screening
methods (reported in the 3rd and 4th columns). The last two columns report the
total running time (in seconds) for the screening methods.
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Figure 5: The speedup gained by Strong Rule and EDPP combined with LARS on six real
data sets.

reason is that EDPP has a very low computational cost (see Table 4) and it is very effective
in discarding inactive features (see Figure 4).

4.2 EDPP for the Group Lasso Problem

In this experiment, we evaluate the performance of EDPP and strong rule with different
numbers of groups. The data matrix X is fixed to be 250 × 200000. The entries of the
response vector y and the data matrix X are generated i.i.d. from a standard Gaussian
distribution. For each experiment, we repeat the computation 20 times and report the
average results. Moreover, let ng denote the number of groups and sg be the average group
size. For example, if ng is 10000, then sg = p/ng = 20.
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Figure 6: Comparison of EDPP and strong rules with different numbers of groups.

ng solver Strong Rule+solver EDPP+solver Strong Rule EDPP

10000 4535.54 296.60 53.81 13.99 8.32

20000 5536.18 179.48 46.13 14.16 8.61

40000 6144.48 104.50 37.78 13.13 8.37

Table 5: Running time (in seconds) for solving the group Lasso problems along a sequence
of 100 tuning parameter values equally spaced on the scale of λ/λmax from 0.05
to 1.0 by (a): the solver from SLEP (reported in the second column) without
screening; (b): the solver combined with different screening methods (reported in
the 3rd and 4th columns). The last two columns report the total running time (in
seconds) for the screening methods. The data matrix X is of size 250× 200000.

From Figure 6, we can see that EDPP and strong rule are able to discard more inactive
groups when the number of groups ng increases. The intuition behind this observation
is that the estimation of the dual optimal solution is more accurate with a smaller group
size. Notice that, a large ng implies a small average group size. Figure 6 also implies that
compared to strong rule, EDPP is able to discard more inactive groups and is more robust
with respect to different values of ng.

Table 5 further demonstrates the effectiveness of EDPP in improving the efficiency of
the solver. When ng = 10000, the efficiency of the solver is improved by about 80 times.
When ng = 20000 and 40000, the efficiency of the solver is boosted by about 120 and 160
times with EDPP respectively.
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5. Conclusion

In this paper, we develop new screening rules for the Lasso problem by making use of the
properties of the projection operators with respect to a closed convex set. Our proposed
methods, i.e., DPP screening rules, are able to effectively identify inactive predictors of the
Lasso problem, thus greatly reducing the size of the optimization problem. Moreover, we
further improve DPP rule and propose the enhanced DPP rule, which is more effective in
discarding inactive features than DPP rule. The idea of the family of DPP rules can be
easily generalized to identify the inactive groups of the group Lasso problem. Extensive
numerical experiments on both synthetic and real data demonstrate the effectiveness of the
proposed rules. It is worthwhile to mention that the family of DPP rules can be combined
with any Lasso solver as a speedup tool. In the future, we plan to generalize our ideas
to other sparse formulations consisting of more general structured sparse penalties, e.g.,
tree/graph Lasso, fused Lasso.
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Appendix A. The Dual Problem of Lasso

In this appendix, we give the detailed derivation of the dual problem of Lasso.

A.1 Dual Formulation

Assuming the data matrix is X ∈ RN×p, the standard Lasso problem is given by:

inf
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1. (63)

For completeness, we give a detailed deviation of the dual formulation of (63) in this section.
Note that problem (63) has no constraints. Therefore the dual problem is trivial and useless.
A common trick (Boyd and Vandenberghe, 2004) is to introduce a new set of variables
z = y −Xβ such that problem (63) becomes:

inf
β

1

2
‖z‖22 + λ‖β‖1, (64)

subject to z = y −Xβ.

By introducing the dual variables η ∈ RN , we get the Lagrangian of problem (64):

L(β, z, η) =
1

2
‖z‖22 + λ‖β‖1 + ηT · (y −Xβ − z).

For the Lagrangian, the primal variables are β and z. And the dual function g(η) is:

g(η) = inf
β,z

L(β, z, η) = ηTy + inf
β

(−ηTXβ + λ‖β‖1) + inf
z

(1

2
‖z‖22 − ηT z

)
.
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In order to get g(η), we need to solve the following two optimization problems.

inf
β
−ηTXβ + λ‖β‖1, (65)

and

inf
z

1

2
‖z‖22 − ηT z. (66)

Let us first consider problem (65). Denote the objective function of problem (65) as

f1(β) = −ηTXβ + λ‖β‖1. (67)

f1(β) is convex but not smooth. Therefore let us consider its subgradient

∂f1(β) = −XT η + λv,

in which ‖v‖∞ ≤ 1 and vTβ = ‖β‖1, i.e., v is the subgradient of ‖β‖1.
The necessary condition for f1 to attain an optimum is

∃β′, such that 0 ∈ ∂f1(β′) = {−XT η + λv′},

where v′ ∈ ∂‖β′‖1. In other words, β′,v′ should satisfy

v′ =
XT η

λ
, ‖v′‖∞ ≤ 1,v′

T
β′ = ‖β′‖1,

which is equivalent to
|xTi η| ≤ λ, i = 1, 2, . . . , p.

Then we plug v′ = XT η
λ and v′Tβ′ = ‖β′‖1 into (67):

f1(β
′) = inf

β
f1(β) = −ηTXβ′ + λ

(XT η

λ

)T
β′ = 0.

Therefore, the optimum value of problem (65) is 0.
Next, let us consider problem (66). Denote the objective function of problem (66) as

f2(z). Let us rewrite f2(z) as:

f2(z) =
1

2
(‖z− η‖22 − ‖η‖22).

Clearly,
z′ = argmin

z
f2(z) = η,

and

inf
z
f2(z) = −1

2
‖η‖22.

Combining everything above, we get the dual problem:

sup
η

g(η) = ηTy − 1

2
‖η‖22,

subject to |xTi η| ≤ λ, i = 1, 2, . . . , p.
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which is equivalent to

sup
η

g(η) =
1

2
‖y‖22 −

1

2
‖η − y‖22, (68)

subject to |xTi η| ≤ λ, i = 1, 2, . . . , p.

By a simple re-scaling of the dual variables η, i.e., let θ = η
λ , problem (68) transforms

to:

sup
θ

g(θ) =
1

2
‖y‖22 −

λ2

2
‖θ − y

λ
‖22,

subject to |xTi θ| ≤ 1, i = 1, 2, . . . , p.

A.2 The KKT Conditions

Problem (64) is clearly convex and its constraints are all affine. By Slater’s condition, as
long as problem (64) is feasible we will have strong duality. Denote β∗, z∗ and θ∗ as optimal
primal and dual variables. The Lagrangian is

L(β, z, θ) =
1

2
‖z‖22 + λ‖β‖1 + λθT · (y −Xβ − z).

From the KKT condition, we have

0 ∈ ∂βL(β∗, z∗, θ∗) = −λXT θ∗ + λv, in which ‖v‖∞ ≤ 1 and vTβ∗ = ‖β∗‖1, (69)

∇zL(β∗, z∗, θ∗) = z∗ − λθ∗ = 0, (70)

∇θL(β∗, z∗, θ∗) = λ(y −Xβ∗ − z∗) = 0. (71)

From (70) and (71), we have:
y = Xβ∗ + λθ∗.

From (69), we know there exists v∗ ∈ ∂‖β∗‖1 such that

XT θ∗ = v∗, ‖v∗‖∞ ≤ 1 and (v∗)Tβ∗ = ‖β∗‖1,

which is equivalent to

|xTi θ∗| ≤ 1, i = 1, 2, . . . , p, and (θ∗)TXβ∗ = ‖β∗‖1. (72)

From (72), it is easy to conclude:

(θ∗)Txi ∈

{
sign(β∗i ) if β∗i 6= 0,

[−1, 1] if β∗i = 0.

Appendix B. The Dual Problem of Group Lasso

In this appendix, we present the detailed derivation of the dual problem of group Lasso.
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B.1 Dual Formulation

Assuming the data matrix is Xg ∈ RN×ng and p =
∑G

g=1 ng, the group Lasso problem is
given by:

inf
β∈Rp

1

2
‖y −

G∑
g=1

Xgβg‖22 + λ
G∑
g=1

√
ng‖βg‖2. (73)

Let z = y −
∑G

g=1 Xgβg and problem (73) becomes:

inf
β

1

2
‖z‖22 + λ

G∑
g=1

√
ng‖βg‖2, (74)

subject to z = y −
G∑
g=1

Xgβg.

By introducing the dual variables η ∈ RN , the Lagrangian of problem (74) is:

L(β, z, η) =
1

2
‖z‖22 + λ

G∑
g=1

√
ng‖βg‖2 + ηT · (y −

G∑
g=1

Xgβg − z).

and the dual function g(η) is:

g(η) = inf
β,z

L(β, z, η)

= ηTy + inf
β

(
− ηT

G∑
g=1

Xgβg + λ
G∑
g=1

√
ng‖βg‖2

)
+ inf

z

(1

2
‖z‖22 − ηT z

)
.

In order to get g(η), let us solve the following two optimization problems.

inf
β
−ηT

G∑
g=1

Xgβg + λ

G∑
g=1

√
ng‖βg‖2, (75)

and

inf
z

1

2
‖z‖22 − ηT z. (76)

Let us first consider problem (75). Denote the objective function of problem (75) as

f̂(β) = −ηT
G∑
g=1

Xgβg + λ
G∑
g=1

√
ng‖βg‖2,

Let
f̂g(βg) = −ηTXgβg + λ

√
ng‖βg‖2, g = 1, 2, . . . , G.

then we can split problem (75) into a set of subproblems. Clearly f̂g(βg) is convex but not

smooth because it has a singular point at 0. Consider the subgradient of f̂g,

∂f̂g(βg) = −XT
g η + λ

√
ngvg, g = 1, 2, . . . , G,
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where vg is the subgradient of ‖βg‖2:

vg ∈

{
βg
‖βg‖2 if βg 6= 0,

u, ‖u‖2 ≤ 1 if βg = 0.
(77)

Let β′g be the optimal solution of f̂g, then β′g satisfy

∃v′g ∈ ∂‖β′g‖2, −XT
g η + λ

√
ngv

′
g = 0.

If β′g = 0, clearly, f̂g(β
′
g) = 0. Otherwise, since λ

√
ngv

′
g = XT

g η and v′g =
β′g
‖β′g‖2

, we have

f̂g(β
′
g) = −λ√ng

(β′g)
T

‖β′g‖2
β′g + λ

√
ng‖β′g‖2 = 0.

All together, we can conclude the

inf
βg
f̂g(βg) = 0, g = 1, 2, . . . , G

and thus

inf
β
f̂(β) = inf

β

G∑
g=1

f̂g(βg) =
G∑
g=1

inf
βg
f̂g(βg) = 0.

The second equality is due to the fact that βg’s are independent.

Note, from (77), it is easy to see ‖vg‖2 ≤ 1. Since λ
√
ngv

′
g = XT

g η, we get a constraint
on η, i.e., η should satisfy:

‖XT
g η‖2 ≤ λ

√
ng, g = 1, 2, . . . , G.

Next, let us consider problem (76). Since problem (76) is exactly the same as problem
(66), we conclude:

z′ = argmin
z

1

2
‖z‖22 − ηT z = η,

and

inf
z

1

2
‖z‖22 − ηT z = −1

2
‖η‖22.

Therefore the dual function g(η) is:

g(η) = ηTy − 1

2
‖η‖22.

Combining everything above, we get the dual formulation of the group Lasso:

sup
η

g(η) = ηTy − 1

2
‖η‖22,

subject to ‖XT
g η‖2 ≤ λ

√
ng, g = 1, 2, . . . , G.
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which is equivalent to

sup
η

g(η) =
1

2
‖y‖22 −

1

2
‖η − y‖22, (78)

subject to ‖XT
g η‖2 ≤ λ

√
ng, g = 1, 2, . . . , G.

By a simple re-scaling of the dual variables η, i.e., let θ = η
λ , problem (78) transforms

to:

sup
θ

g(θ) =
1

2
‖y‖22 −

λ2

2
‖θ − y

λ
‖22,

subject to ‖XT
g θ‖2 ≤

√
ng, g = 1, 2, . . . , G.

B.2 The KKT Conditions

Clearly, problem (74) is convex and its constraints are all affine. By Slater’s condition, as
long as problem (74) is feasible we will have strong duality. Denote β∗, z∗ and θ∗ as optimal
primal and dual variables. The Lagrangian is

L(β, z, θ) =
1

2
‖z‖22 + λ

G∑
g=1

√
ng‖βg‖2 + λθT · (y −

G∑
g=1

Xgβg − z).

From the KKT condition, we have

0 ∈ ∂βgL(β∗, z∗, θ∗) = −λXT
g θ
∗ + λ

√
ngvg, in which vg ∈ ∂‖β∗g‖2, g = 1, 2, . . . , G, (79)

∇zL(β∗, z∗, θ∗) = z∗ − λθ∗ = 0, (80)

∇θL(β∗, z∗, θ∗) = λ · (y −
G∑
g=1

Xgβ
∗
g − z∗) = 0. (81)

From (80) and (81), we have:

y =
G∑
g=1

Xgβ
∗
g + λθ∗.

From (79), we know there exists v′g ∈ ∂‖β∗g‖2 such that

XT
g θ
∗ =
√
ngv

′
g

and

v′g ∈

{ β∗g
‖β∗g‖2

if β∗g 6= 0,

u, ‖u‖2 ≤ 1 if β∗g = 0,

Then the following holds:

XT
g θ
∗ ∈

{√
ng

β∗g
‖β∗g‖2

if β∗g 6= 0,
√
ngu, ‖u‖2 ≤ 1 if β∗g = 0,

for g = 1, 2, . . . , G. Clearly, if ‖XT
g θ
∗‖2 <

√
ng, we can conclude β∗g = 0.
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Abstract

With the increasing size of today’s data sets, finding the right parameter configuration in
model selection via cross-validation can be an extremely time-consuming task. In this pa-
per we propose an improved cross-validation procedure which uses nonparametric testing
coupled with sequential analysis to determine the best parameter set on linearly increas-
ing subsets of the data. By eliminating underperforming candidates quickly and keeping
promising candidates as long as possible, the method speeds up the computation while
preserving the power of the full cross-validation. Theoretical considerations underline the
statistical power of our procedure. The experimental evaluation shows that our method
reduces the computation time by a factor of up to 120 compared to a full cross-validation
with a negligible impact on the accuracy.

Keywords: cross-validation, statistical testing, nonparametric methods

1. Introduction

Model selection by cross-validation is a de-facto standard in applied machine learning to
tune parameter configurations of machine learning methods in supervised learning settings
(see Mosteller and Tukey 1968; Stone 1974; Geisser 1975 and also Arlot et al. 2010 for a
recent and extensive review of the method). Part of the data is held back and used as a
test set to get a less biased estimate of the true generalization error. Cross-validation is
computationally quite demanding, though. Doing a full grid search on all possible combi-
nations of parameter candidates quickly takes a lot of time, even if one exploits the obvious
potential for parallelization.

Therefore, cross-validation is seldom executed in full in practice, but different heuristics
are usually employed to speed up the computation. For example, instead of using the full
grid, local search heuristics may be used to find local minima in the test error (see for
instance Kohavi and John 1995; Bengio 2000; Keerthi et al. 2006). However, in general, as
with all local search methods, no guarantees can be given as to the quality of the found
local minima. Another frequently used heuristic is to perform the cross-validation on a
subset of the data, and then train on the full data set to get the most accurate predictions.
The problem here is to find the right size of the subset: If the subset is too small and

c©2015 Tammo Krueger, Danny Panknin and Mikio Braun.
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cannot reflect the true complexity of the learning problem, the configurations selected by
cross-validation will lead to underfitted models. On the other hand, a too large subset will
take longer for the cross-validation to finish.

Effective use of model selection heuristics requires both an experienced practitioner
and familiarity with the data set. However, as we will discuss in more depth below, the
effect of taking subsets on the estimated generalization error is more manageable: Given
increasing subsets of the data, the test errors converge to the values on the full data set
for each parameter configuration, but the parameter configuration achieving the minimum
test error will converge much faster. Thus, using subsets in a systematic way opens up a
promising way to speed up the model selection process, since training models on smaller
subsets of the data is much more time-efficient. During this process care has to be taken
when an increase in available data suddenly reveals more structure in the data, leading to
a change of the optimal parameter configuration. Still, as we will discuss in more depth,
there are ways to guard against such change points, making the heuristic of taking subsets
a more promising candidate for an automated procedure.

In this paper we will propose a method which speeds up cross-validation by considering
subsets of increasing size. By removing clearly underperforming parameter configurations on
the way this leads to a substantial saving in total computation time as sketched in Figure 1.
In order to account for possible change points, sequential testing (Wald, 1947) is adapted to
control a safety zone, roughly speaking, a certain number of allowed failures for a parameter
configuration; at the same time this framework allows for dropping clearly underperforming
configurations. Finally, we add a stopping criterion to watch for early convergence of the
process to further speed up the computation. The resulting method thus consumes less
time and space than a full grid cross-validation procedure at no significant loss in accuracy.
We prove certain theoretical properties about its optimality, yet, this procedure relies on
the availability of a vast amount of data to guide the decision process into a stable region
where each configuration sees enough data to show its real performance.

In the following, we will first discuss the effects of taking subsets on learners and cross-
validation (Section 2), discuss related work in Section 3, present our method Fast Cross-
Validation via Sequential Testing (CVST, Section 4), state the theoretical properties of the
method (Section 5) and finally evaluate our method on synthetic and real-world data sets
in Section 6. Section 7 gives an overview of possible extensions and Section 8 concludes the
paper. The impatient practitioner may skip some theoretical treatments and focus on the
self-contained Section 4 describing the CVST algorithm and its evaluation in Section 6. To
ease the reading process we collected our notational conventions in Table 1.

2. Cross-Validation on Subsets

Our approach is based on taking subsets of the data to speed up cross-validation. For this
approach to work well, we need that the minima of the test errors give reliable estimates of
the true performance already for small subsets. In this section, we will discuss the setting
and motivate our approach. The goal is to understand which effects lead to making the
estimates reliable.

Let us first introduce some notation: Assume that our N training data points di are
given by input/output pairs di = (Xi, Yi) ∈ X × Y drawn i.i.d. from some probability
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Figure 1: Performance of a 5-fold cross-validation (CV, left) and fast cross-validation via
sequential testing (CVST, right): While the CV has to calculate the model for
each configuration (here: σ of a Gaussian kernel) on the full data set, the CVST
algorithm uses increasing subsets of the data and drops significantly underper-
forming configurations in each step (upper panels), resulting in a drastic decrease
of total calculation time (sum of colored area in lower panels).

distribution P on X × Y. We assume an example-wise loss function ` : Y × Y → R so that
the overall error or expected risk of a predictor g : X → Y is given by R(g) = E[`(g(X), Y )]
where (X,Y ) ∼ P . For some finite set of possible parameter configurations C, let gn(c) be
the predictor learned for parameter c ∈ C from the first n training examples.

The core procedure in a cross-validation approach is to train predictors for each c and
consider their test error. Denote by gn(c) the predictor obtained by training on the first n
points of the training data for parameter c. We wish to study whether this error converges
as n grows. Let us denote by c∗n a configuration optimal for subset size n:

R(gn(c∗n)) = min
c∈C

R(gn(c)).

We will ignore cases where there are multiple minima c∗n, because we are only interested in
the test error achieved, not the location of the minimum.
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Symbol Description

di = (Xi, Yi) ∈ X × Y Data points
N Total data set size
g : X 7→ Y Learned predictor
` : Y × Y 7→ R Loss function
R(g) = E[`(g(X), Y )] Risk of predictor g
c Configuration of learner
C Finite set of examined configurations
gn(c) : X 7→ Y Predictor learned on n data points for configuration c
c∗ Overall best configuration
c∗n Best configuration for models based on n data points
s Current step of CVST procedure
S Total number of steps
∆ = N/S Increment of model size
Pp Pointwise performance matrix
PS Overall performance matrix of dimension |C| × S
TS Trace matrix of dimension |C| × S
wstop Size of early stopping window
α, αl, βl Significance levels
π Success probability of a binomial variable

Table 1: List of symbols

In cross-validation, the true test error is not known and estimated by the empirical error
on an independent test set. For the sake of simplicity, we will consider the true test error
nevertheless for the remainder of this section. In our experience, the effects discussed below
also hold for cross-validation, because the estimation error is small and does not create a
systematic distortion of the choice of configuration.

Since we want to infer the performance of the predictor on the full training set based on
its performance on a subset, we need that the errors are similar for a fixed configuration c
as the size of the subset approaches the full training set size. A necessary condition for this
to hold in general is that R(gn(c)) converges as n tends to infinity. Luckily, this holds for
most existing learning methods (see Appendix A for some examples). A counter example
is the case of k-nearest neighbor with fixed k. Training with k = 10 leads to quite different
predictions on data sets of size 100 compared to, say, 10,000. More discussion can be found
below in Section 5.3.

We are interested in the difference in errors between the best parameter configuration
learned on the subset of size n, and on the full data set N , that is, R(gn(c∗n))−R(gN (c∗N )).
This error can be bounded by considering the difference between R(gn(c)) and R(gN (c))
uniformly over the whole configuration set C. If the learner itself converges it is trivial to
show that the errors also converge for finite parameter configuration sets C. On the other
hand, uniform convergence is quite a strong requirement, since it requires that the test errors
also converge for suboptimal configurations. In particular for parameter configurations c
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Figure 2: Test error of an SVR model on the noisy sinc data set introduced in Section 6.1.
We can observe a shift of the optimal σ of the Gaussian kernel to the fine-grained
structure of the problem, if we have seen enough data. In Figure (b), approxi-
mation error is indicated by the black solid line, and the estimation error by the
black dashed line. The minimal risk is shown as the blue dashed line. One can
see that uniform approximation of the estimation error is not the main driving
force, instead, the decay of the approximation error with smaller kernel widths
together with an increase of the estimation error at small kernel widths makes
sure that the minimum converges quickly.

which correspond to complex models, gn(c) may continue to improve right up to the full
number N of data points.

So while uniform convergence seems a sufficient condition, let us look at a concrete
example to see whether uniform convergence is a necessary condition for convergence of the
minima. Figure 2(a) shows the test errors for a typical example. We train a support vector
regression model (SVR) on subsets of the full training set consisting of 500 data points.
The data set is the noisy sinc data set introduced in Section 6.1. Model parameters are
the kernel width σ of the Gaussian kernel used and the regularization parameter, where
the results shown are already optimized over the regularization parameter for the sake of
simplicity.

We see that the minimum converges rather quickly, first to the plateau of log(σ) ∈
[−1.5,−0.3] approximately, and then towards the lower one at [−2.5,−1.7], which is also
the optimal one at training set size n = 500. We see that uniform convergence is not the
main driving force. In fact, the errors for small kernel widths are still very far apart even
when the minimum is already converged.

In the following, it is helpful to continue the discussion using the concepts of estimation
error and approximation error. We assume that the learner is trained by picking the model
which minimizes the empirical risk over some hypothesis set G. Let us denote this predictor
as g∗n. In this setting, one can write the difference between the expected risk of the pre-
dictor R(g∗n) and the Bayes risk R∗ as follows (see Section 12.1 in Devroye et al. 1996 or
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Section 2.4.3 in Mohri et al. 2012):

R(g∗n)−R∗ =

(
R(g∗n)− inf

g∈G
R(g)

)
︸ ︷︷ ︸

estimation error

+

(
inf
g∈G

R(g)−R∗)
)

︸ ︷︷ ︸
approximation error

.

The estimation error measures how far the chosen model is from the one which would
be asymptotically optimal, while the approximation error measures the difference in risk
between the best possible model in the hypothesis class and the true function.

Using this decomposition, we can interpret the figure as follows (see Figure 2(b)): The
kernel width controls the approximation error. For log(σ) ≥ −1.8, the resulting hypothesis
class is too coarse to represent the function under consideration. It becomes smaller until
it reaches the level of the Bayes risk as indicated by the dashed blue line. For even larger
training set sizes, we can assume that it will stay on this level even for smaller kernel sizes.

The difference between the blue line and the upper lines shows the estimation error. The
estimation error has been extensively studied in statistical learning theory and is known to
be linked to different notions of complexity like VC-dimension (Vapnik, 1998), fat-shattering
dimension (Bartlett et al., 1996), or the norm in the reproducing kernel Hilbert space
(RKHS) (Evgeniou and Pontil, 1999). A typical result shows that the estimation error can
be bounded by terms of the form

R(g∗n)− inf
g∈G

R(g) ≤ O

(√
d(G) log n

n

)
,

where d(G) is some notion of complexity of the underlying hypothesis class, and the bound
holds with high probability. For our figure, this means that we can expect the estimation
error to become larger for smaller kernel widths.

If we image the parameter configurations ordered according to their complexity, we see
that for parameter configurations with small complexity (that is, large kernel width), the
approximation error will be high, but the estimation error will be small. At the same
time, for parameter configurations with high complexity, the approximation error will be
small, even optimal, but the estimation error will be large, although it will decay with
increasing training set size. In combination, the estimates at smaller training set sizes tend
to underestimate the true model complexity, but as the estimation error decreases and
becomes small compared to the approximation error, the minimum also converges to the
true one. The fact that the estimation error is larger for more complex models acts as a
guard to choose too complex models. The estimation error for models which have higher
complexity than the optimal one can effectively be ignored. Therefore, we can expect much
faster convergence than given by a uniform error bound, which is, however, highly data
dependent.

Unfortunately, existing theoretical results are not able to bound the error sufficiently
tightly to make these arguments more exact. In particular, the speed of the convergence
on the minimum hinges on a tight lower bound on the approximation error, and a realistic
upper bound on the estimation error. Approximation errors have been studied for example
in the papers by Smale and Zhou (2003) and Steinwart and Scovel (2007), but the papers
only prove upper bounds, and the rates are also worst-case rates which are likely not close
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enough to the true errors. A more formal study of the effects discussed above is therefore
the subject of future work.

On the other hand, the mechanisms which lead to fast convergence of the minimum are
plausible when looking at concrete examples as we did above. Therefore, we will assume in
the following that the location of the best parameter configuration might initially change
but then become more or less stable quickly. Note that we do not claim that the speed of
this convergence is known. Instead, we will use sequential testing to introduce a safety zone
which will be as large as possible to ensure that our method is robust against these initial
changes and good configurations survive till final stable regime.

3. Related Work

Using statistical tests and the sequential analysis framework in order to speed up learning
has been the topic of several lines of research. However, the existing body of work mostly
focuses on reducing the number of test evaluations, while we focus on the overall process of
eliminating candidates themselves. To the best of our knowledge, this is a new concept and
can apparently be combined with the already available racing techniques to further reduce
the total calculation time.

Maron and Moore (1994, 1997) introduce the so-called Hoeffding Races which are based
on the nonparametric Hoeffding bound for the mean of the test error. At each step of the
algorithm a new test point is evaluated by all remaining models and the confidence intervals
of the test errors are updated accordingly. Models whose confidence interval of the test error
lies outside of at least one interval of a better performing model are dropped. In a similar
vein Zheng and Bilenko (2013) have applied this concept to cross-validation and improve
this approach by using paired t-test and power analysis to control both the false positive
and false negative rate. Chien et al. (1995, 1999) devise a similar range of algorithms
using concepts of PAC learning and game theory: Different hypotheses are ordered by their
expected utility according to the test data the algorithm has seen so far. As for Hoeffding
Races, the emphasis in this approach lies on reducing the number of evaluations. Thus,
the application domain for these kind of algorithms is best suited where the evaluation of a
data point given a learned model is costly. Since this approach expects that a model is fully
trained before its evaluation, the direct utilization of racing algorithms for model selection
would result in a procedure similar to a one-fold cross-validation: First learn a model on
one half of the data and do the time efficient evaluation as described above on the other
half. Obviously, this would yield a maximal relative time improvement of k compared to
standard k-fold cross-validation since we learn one model instead of the k for k-fold cross-
validation. Yet, the orthogonality of this approach to the CVST procedure could be utilized
in each step and for each remaining configuration to further increase the runtime benefits
by minimizing the necessary evaluations of a model for determining whether it belongs to
the top configurations or not.

This concept of racing is further extended by Domingos and Hulten (2001): By intro-
ducing an upper bound for the learner’s loss as a function of the examples, the procedure
allows for an early stopping of the learning process, if the loss is nearly as optimal as for
infinite data. Birattari et al. (2002) apply racing in the domain of evolutionary algorithms
and extend the framework by using the Friedman test to filter out non-promising configu-
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rations. While Bradley and Schapire (2008) use similar concepts in the context of boosting
(FilterBoost), Mnih et al. (2008) introduce the empirical Bernstein Bounds to extend both
the FilterBoost framework and the racing algorithms. In both cases the bounds are used
to estimate the error within a specific ε-region with a given probability. Pelossof and Jones
(2009) use the concept of sequential testing to speed up the boosting process by control-
ling the number of features which are evaluated for each sample. In a similar fashion this
approach is used in Pelossof and Ying (2010) to increase the speed of the evaluation of
the perceptron and in Pelossof and Ying (2011) to speed up the Pegasos algorithm. Stan-
ski (2012) uses a partial leave-one-out evaluation of model performance to get an estimate
of the overall model performance, which is used to pick the most probable best model.
These racing concepts are applied in a wide variety of domains like reinforcement learning
(Heidrich-Meisner and Igel, 2009) and timetabling (Birattari, 2009) showing the relevance
and practical impact of the topic.

Recently, Bayesian optimization has been applied to the problem of hyper-parameter
optimization of machine learning algorithms. Bergstra et al. (2011) use the sequential
model-based global optimization framework (SMBO) and implement the loss function of
an algorithm via hierarchical Gaussian processes. Given the previously observed history of
performances, a candidate configuration is selected which minimizes this historical surro-
gate loss function. Applied to the problem of training deep belief networks this approach
shows superior performance over random search strategies. Snoek et al. (2012) extend this
approach by including timing information for each potential model, i.e., the cost of learning
a model and optimizing the expected improvement per seconds leads to a global optimiza-
tion in terms of wall-clock time. Thornton et al. (2012) apply the SMBO framework in the
context of the WEKA machine learning toolbox: The so-called Auto-WEKA procedure not
only finds the optimal parameter for a specific learning problem but also searches for the
most suitable learning algorithm. Like the racing concepts, these Bayesian optimization
approaches are orthogonal to the CVST approach and could be combined to speed up each
step of the CVST loop.

On first sight, the multi-armed bandit problem (Berry and Fristedt, 1985; Cesa-Bianchi
and Lugosi, 2006) also seems to be related to the problem here in another way: In the multi-
armed bandit problem, a number of distributions are given and the task is to identify the
distribution with the largest mean from a chosen sequence of samples from the individual
distributions. In each round, the agent chooses one distribution to sample from and typically
has to find some balance between exploring the different distributions, rejecting distributions
which do not seem promising and focusing on a few candidates to get more accurate samples.

This looks similar to our setting where we also wish to identify promising candidates
and reject underperforming configurations early on in the process, but the main difference
is that the multi-armed bandit setting assumes that the distributions are fixed whereas we
specifically have to deal with distributions which change as the sample size increases. This
leads to the introduction of a safety zone, among other things. Therefore, the multi-armed
bandit setting is not applicable across different sample sizes. On the other hand, the multi-
armed bandit approach is a possible extension to speed up the computation within a fixed
training size similar to the Hoeffding races already mentioned above.
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4. Fast Cross-Validation via Sequential Testing (CVST)

Recall from Section 2 that we have a data set consisting of N data points di = (Xi, Yi) ∈
X × Y which we assume to be drawn i.i.d. from P . We have a learning algorithm which
depends on several parameters collected in a configuration c ∈ C. The goal is to select the
configuration c∗ out of all possible configurations C such that the learned predictor g has
the best generalization error with respect to some loss function ` : Y × Y → R.

Our approach attempts to speed up the model selection process by learning just on
subsamples of size n := sNS = s∆ for 1 ≤ s ≤ S where S is the maximal number of steps
the CVST algorithm should run. The procedure starts with the full set of configurations and
eliminates clearly underperforming configurations at each step s based on the performances
observed in steps 1 to s. The main loop of Algorithm 1 on page 1112 executes the following
parts at each step s:

Ê The procedure learns a model on the first n data points for the remaining configura-
tions and stores the test errors on the remaining N − n data points in the pointwise
performance matrix Pp (Lines 10-14). This matrix Pp is used on Lines 15-16 to esti-
mate the top performing configurations via robust testing (see Algorithm 2) and saves
the outcome as a binary “top or flop” scheme accordingly.

Ë The procedure drops significant loser configurations along the way (Lines 17-19 and
Algorithm 3) using tests from the sequential analysis framework.

Ì Applying robust, distribution free testing techniques allows for an early stopping of the
procedure when we have seen enough data for a stable parameter estimation (Line 20
and Algorithm 4).

In the following we will discuss the individual steps in the algorithm and formally define
the notations used. A conceptual overview of one iteration of the procedure is depicted in
Figure 3 for reference. Additionally, we have released a software package on CRAN named
CVST which is publicly available via all official CRAN repositories and also via GitHub
(https://github.com/tammok/CVST). This package contains the CVST procedure and all
learners used in Section 6 ready for use.

4.1 Robust Transformation of Test Errors

To robustly transform the performance of configurations into the binary information whether
it is among the top-performing configurations or turns out to be a flop, we rely on distribution-
free tests. The basic idea is to calculate the performance of a given configuration on data
points not used during learning and store this information in the pointwise performance
matrix Pp. Then we find the group of best configurations by first ordering them according
to their mean performance in this step and then compare in a stepwise fashion whether the
pointwise performance matrix Pp of a given subset of the configurations are significantly
different.

We give an example of this procedure by the situation depicted in Figure 3 with K
remaining configurations c1, c2, . . . , cK which are ordered according to their mean perfor-
mances (i.e., sorted ascending with regard to their expected loss). We now want to find the
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Algorithm 1 CVST Main Loop

1: function CVST(d1, . . . , dN , S, C, α, βl, αl, wstop)
2: ∆← N/S . Initialize subset increment
3: n← ∆ . Initialize model size
4: test ←getTest(S, βl, αl) . Get sequential test
5: ∀s ∈ {1, . . . , S}, c ∈ C : TS [c, s]← 0
6: ∀s ∈ {1, . . . , S}, c ∈ C : PS [c, s]← NA
7: ∀c ∈ C : isActive[c] ←true
8: for s← 1 to S do
9: ∀i ∈ {1, . . . , N − n}, c ∈ C : Pp[c, i]← NA

10: for c ∈ C do
11: if isActive[c] then
12: g = gn(c) . Learn model on the first n data points
13: ∀i ∈ {1, . . . , N − n} : Pp[c, i]← `(g(xn+i), yn+i) . Evaluate on the rest

14: PS [c, s]← 1
N−n

∑N−n
i=1 Pp[c, i] . Store mean performance

15: indextop ←topConfigurations(Pp, α) . Find the top configurations
16: TS [indextop, s] ←1 . And set entry in trace matrix
17: for c ∈ C do
18: if isActive[c] and isFlopConfiguration(TS [c, 1 : s], s, S, βl, αl) then
19: isActive[c] ←false . De-activate flop configuration

20: if similarPerformance(TS [isActive, (s− wstop + 1) : s], α) then
21: break
22: n← n+ ∆

23: return selectWinnner(PS , isActive, wstop, s)

Algorithm 2 Find the top configurations via iterative testing

1: function topConfigurations(Pp, α)

2: ∀i ∈ {1, . . . , C} : Pm[k]← 1
N−n

∑N−n
j=1 Pp[k, j]

3: indexsort ← sortIndexDecreasing(Pm)
4: P̃p = Pp[indexsort, ] . Sort Pp according to the mean performance
5: K ←which(isNA(Pm))− 1 . K is the number of active configurations
6: α̃ = α/(K − 1) . Bonferroni correction for K − 1 potential tests
7: for k ∈ {2, . . . ,K} do
8: if is classification task then . Choose according test
9: p← cochranQTest(P̃p[1 : k, ])

10: else
11: p← friedmanTest(P̃p[1 : k, ])

12: if p ≤ α̃ then . We found a significant effect
13: break . so the k − 1th preceding configurations are the top ones

14: return indexsort[1 : (k − 1)]
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Algorithm 3 Check for flop configurations via sequential testing

1: function isFlopConfiguration(T , s, S, βl, αl)

2: π0 ← 0.5;π1 ← 1
2
S

√
1−βl
αl

3: a←
log

βl
1−αl

log
π1
π0
−log 1−π1

1−π0

4: b←
log

1−π0
1−π1

log
π1
π0
−log 1−π1

1−π0
5: return

∑s
i=1 Ti ≤ a+ bs

Algorithm 4 Compare performance of remaining configurations

1: function similarPerformance(TS , α)
2: p← cochranQTest(TS)
3: return p ≤ α

smallest index k ≤ K, such that the configurations c1, c2, . . . , ck all show a similar behavior
on the remaining data points dn+1, dn+2, . . . , dN not used in the current model learning
process based on a statistical test.

The rationale behind our comparison procedure is three-fold: First, by ordering the
configurations by the mean performances we start with the comparison of the currently
best performing configurations first. Second, by using the first n := s∆ data points for
the model building and the remaining N − n data points for the estimation of the average
performance of each configuration, we compensate the error introduced by learning on
smaller subsets of the data by better error estimates on more data points. I.e., for small
s we will learn the model on relatively small subsets of the overall available data while we
estimate the test error on relatively large portions of the data and vice versa. Third, by
applying test procedures directly on the error estimates of individual data points we exploit
a further robustifying pooling effect: If we have outliers in the testing data, all models will
be affected by this and therefore the overall testing result will not be affected. We will

Algorithm 5 Select the winning configuration out of the remaining ones

1: function selectWinnner(PS , isActive, wstop, s)
2: ∀i ∈ {1, . . . , s}, c ∈ C : RS [c, i]←∞
3: for i ∈ {1, . . . , s} do
4: for c ∈ C do
5: if isActive[c] then
6: RS [c, i] = rank(PS [c, i], PS [, i]) . Gather the rank of c in step i

7: ∀c ∈ C : MS [c]←∞
8: for c ∈ C do
9: if isActive[c] then

10: MS [c]← 1
wstop

∑s
i=s−wstop+1RS [c, i] . Mean rank for the last wstop steps

11: return whichMin(MS) . Return configuration with minimal mean rank
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data points step

conf. dn+1 dn+2 · · · dN−1 dN E[`] 1 2 3 4 5 6 7 8 9 10

c1 0.6 0.6 -0.8 -0.4 0.5 top 0 1 0 1 1 1 1 0 1 1
c2 0.5 0.4 -0.3 0.0 0.5 top 1 1 0 1 1 1 0 1 1 1
c3 0.1 0.5 · · · -0.9 -0.1 0.6 top 0 1 1 1 1 1 0 1 1 1
...

...
...

... Ê ...
cK−2 -1.4 -0.9 0.5 0.5 1.5 flop → 0 1 1 0 0 1 0 0 0 0
cK−1 -2.2 -1.9 2.1 1.5 1.5 flop 0 0 0 0 1 0 0 0 0 0 (†)
cK -1.9 -2.4 · · · 1.9 2.4 1.6 flop 0 1 0 0 0 0 0 0 0 0 (†)

Pointwise performance matrix Pp Trace matrix TS
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Figure 3: One step of CVST. Shown is the situation in step s = 10. Ê A model based on
the first n data points is learned for each configuration (c1 to cK). Test errors
are calculated on the remaining data (dn+1 to dN ) and transformed into a binary
performance indicator via robust testing. Ë Traces of configurations are filtered
via sequential analysis (cK−1 and cK are dropped). Ì The procedure checks
whether the remaining configurations perform equally well in the past and stops
if this is the case. See Appendix B for a complete example run.

see in the evaluation section that all these effects are indeed helpful for an overall good
performance of the CVST algorithm.

To find the top performing configurations for step s we look at the outcome of the
learned model for each configuration, i.e., we subsequently take the rows of the pointwise
performance matrix Pp into account and apply either the Friedman test (Friedman, 1937)
for regression experiments or the Cochran’s Q test (Cochran, 1950) to see whether we
observe statistically significant differences between configurations (see Appendix C for a
summary of these tests). In essence these robust tests check whether the performance
outcomes of a subset of the configurations show significant differences, i.e., in our case behave
differently in terms of overall best performance. The assumption here is that the mean
performance of a configuration is a good, yet wiggly estimator of its overall performance.
By subsequently checking the finer-grained outcome of the models on the individual data
points we want to find the breakpoint where the overall top-performing configurations for
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this step are separated from the rest of the configurations which will show a significantly
different behavior on the individual data points.

More formally, the function topConfigurations described in Algorithm 2 takes the
pointwise performance matrix Pp as input and rearranges the rows according to the mean

performances of the configurations yielding a matrix P̃p. Now for k ∈ {2, 3, . . . ,K} we
check, whether the first k configurations show a significantly different effect on the N − n
data points. This is done by executing either the Friedman test or the Cochran’s Q test on
the submatrix P̃p[1 : k, 1 : (N−n)] with the pre-specified significance level α. If the test does
not indicate a significant difference in the performance of the k configurations, we increment
k by one and test again until we find a significant effect. Suppose we find a significant effect
at index k̃. Since all previous tests indicated no significant effect for the k̃−1 configurations
we argue that the addition of the k̃th configuration must have triggered the test procedure
to indicate that in the set of these k̃ configurations is at least one configuration, which
shows a significantly different behavior than all other configurations. Thus, we flag the
configurations 1, . . . , k̃ − 1 as top configurations and the remaining k̃, . . . ,K configurations
as flop configurations. Note that this incremental procedure is a multiple testing situation,
thus we apply the Bonferroni correction to the calculated p-values.

For the actual calculation of the test errors we apply an incremental model building
process, i.e., the data added in each step on Line 22 increases the training data pool for
each step by a set of size ∆. This would allow online algorithms to adapt their model also
incrementally leading to even further speed improvements. The results of this first step are
collected for each configuration in the trace matrix TS (see Figure 3, top right), which shows
the gradual transformation for the last 10 steps of the procedure highlighting the results of
the last test. More formally, TS [c, s] is 1 iff configuration c is amongst the top configuration
in step s; if c is not a top configuration in step s, the entry TS [c, s] is 0.

So this new column generated in step s in the trace matrix TS summarizes the perfor-
mance of all models learned on the first n data points in a robust way. Thus, the trace
matrix TS records the history of each configuration in a binary fashion, i.e., whether it
performed as a top or flop configuration in each step of the CVST main loop. This leads
to a robust transformation of the test errors of the configurations which can be modeled in
the next step as a binary random variable with a success probability π indicating whether
a configuration is amongst the top (high π) or the flop (low π) configurations.

4.2 Determining Significant Losers

Having transformed the test errors in a scale-independent top or flop scheme, we can now
test whether a given parameter configuration is an overall loser. For this we represent
a configuration as a binary random variable which turns out to be a top configuration
with a given probability π. During the course of the execution of the CVST algorithm we
gather information about the behavior of each configuration and want to estimate at each
step whether the observed behavior is more likely to be associated with a binomial variable
having a high π meaning that it is a winning configuration or a low one deeming it as a loser
configuration. The standard tool for this kind of task is the sequential testing of binary
random variables which is addressed in the sequential analysis framework developed by
Wald (1947). Originally it has been applied in the context of production quality assessment
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(compare two production processes) or biological settings (stop bioassays as soon as the
gathered data leads to a significant result). In this section we focus on the general idea
of this approach while Section 5 gives details about how the CVST algorithm deals with
potential switches in the winning probability π of a given configuration.

The main idea of the sequential analysis framework is the following: One observes a
sequence of i.i.d. Bernoulli variables B1, B2, . . ., and wants to test whether these variables
are distributed according to the hypotheses H0 : Bi ∼ π0 or the alternative hypotheses
H1 : Bi ∼ π1 with π0 < π1 denoting the according success probabilities of the Bernoulli
variables. Both significance levels for the acceptance of H1 and H0 can be controlled via
the user-supplied meta-parameters αl and βl. The test computes the likelihood for the so
far observed data and rejects one of the hypothesis when the respective likelihood ratio
exceeds an interval controlled by the meta-parameters. It can be shown that the procedure
has a very intuitive geometric representation, shown in Figure 3, lower left: The binary
observations are recorded as cumulative sums at each time step. If this sum exceeds the
upper red line L1, we accept H1; if the sum is below the lower red line L0 we accept H0; if
the sum stays between the two red lines we have to draw another sample.

Wald’s test requires that we fix both success probabilities π0 and π1 beforehand. Since
our main goal is to use the sequential test to eliminate underperformers, we choose the
parameters π0 and π1 of the test such that H1 (a configuration wins) is postponed as long
as possible. This will allow the CVST algorithm to keep configurations until the evidence
of their performances definitely shows that they are overall loser configurations. At the
same time, we want to maximize the area where configurations are eliminated (region 4H0

denoted by “LOSER” in Figure 3), rejecting as many loser configurations on the way as
possible:

(π0, π1) = argmax
π′0,π

′
1

4H0(π′0, π
′
1, βl, αl) (1)

s.t. Sa(π
′
0, π
′
1, βl, αl) ∈ (S − 1, S]

with Sa(·, ·, ·, ·) being the earliest step of acceptance of H1 marked by an X in Figure 3
and S denotes again the total number of steps. By using approximations from Wald (1947)
for the expected number of steps the test will take, if the real success probability of the
underlying process would indicate a constant winner (i.e., π = 1.0), we can fix Sa to the
maximal number of steps S and solve Equation (1) as follows (see Appendix D for details):

π0 = 0.5 ∧ π1 =
1

2
S

√
1− βl
αl

. (2)

Equipped with these parameters for the sequential test, we can check each remaining trace
on Line 18 of Algorithm 1 in the function isFlopConfiguration detailed in Algorithm 3
whether it is a statistically significant flop configuration (i.e., exceeds the lower decision
boundary L0) or not.

Note that sequential analysis formally requires i.i.d. variables. In the CVST procedure
both the independence of the top/flop variable and the identically distributed assump-
tion might be violated for configurations which transform to a winner configuration later
on, thereby changing their behavior from a flop to a top configuration. With the modeling
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approach taken in this step of the CVST algorithm this would amount to a change of the un-
derlying success probability π of the configuration. Thus, the assumptions of the sequential
testing framework would definitely be violated. We accommodate for this by introducing in
Section 5.1 a so-called safety zone which acts as a safeguard against prematurely dropping
of a configuration. Note that this safety zone can be controlled by the experimenter using
the parameters αl and βl of the sequential test. If the experimenter chooses the right safety
zone the underlying success probabilities of the configuration remain stable after the safety
zone and, hence, again will satisfy the preconditions of the sequential testing framework.
So by ensuring no premature drop of a configuration in the safety zone we heuristically
adapt the sequential test to the potential switch of underlying success probabilities. To give
a complete account of the assumptions of the sequential analysis we will discuss potential
violations of the independence of the top/flop variables and its implication for the CVST
procedure in Section 5.

For details of the open sequential analysis please consult Wald (1947) or see for instance
Wetherill and Glazebrook (1986) for a general overview of sequential testing procedures.
Appendix D contains the necessary details needed to implement the proposed testing scheme
for the CVST algorithm.

4.3 Early Stopping and Final Winner

Finally, we employ an early stopping rule (Line 20) which takes the last wstop columns from
the trace matrix and checks whether all remaining configurations performed equally well
in the past. In Figure 3 this submatrix of the overall trace matrix TS is shown for a value
of wstop = 4 for the remaining configurations after step 10. For the test, we again apply
the Cochran’s Q test (see Appendix C) in the similarPerformance procedure on the
submatrix of TS as denoted in Algorithm 4. Figure 4 illustrates a complete run of the CVST
algorithm for roughly 600 configurations. Each configuration marked in red corresponds to
a flop configuration and a black one to a top configuration. Configurations marked in gray
have been dropped via the sequential test during the CVST algorithm. The small zoom-ins
in the lower part of the picture show the last wstop remaining configurations during each
step which are used in the evaluation of the early stopping criterion. We can see that the
procedure keeps on going if there is a heterogeneous behavior of the remaining configurations
(zoom-in is mixed red/black). When all the remaining configurations performed equally well
in the past (zoom-in is nearly black), the early stopping test does not see a significant effect
anymore and the procedure is stopped.

Finally, in the procedure selectWinner, Line 23 and Algorithm 5, the winning con-
figuration is picked from the configurations which have survived all steps as follows: For
each remaining configuration we determine the rank in a step according to the average
performance during this step. Then we average the rank over the last wstop steps and pick
the configuration which has the lowest mean rank. This way, we make most use of the
data accumulated during the course of the procedure. By restricting our view to the last
wstop observations we also take into account that the optimal parameter might change with
increasing model size: Since we focus on the most recent observations with the biggest
models, we always pick the configuration which is most suitable for the data size at hand.
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Figure 4: The upper plot shows a run of the CVST algorithm for roughly 600 configurations.
At each step a configuration is marked as top (black), flop (red) or dropped (gray).
The zoom-ins show the situation for step 5 to 7 without the dropped entries. The
early stopping rule takes effect in step 7, because the remaining configurations
performed equally well during step 5 to 7.

4.4 Meta-Parameters for the CVST

The CVST algorithm has a number of meta-parameters which the experimenter has to
choose beforehand. In this section we give suggestions on how to choose these parameters.
The parameter α controls the significance level for the test for similar behavior in each step
of the procedure. We suggest to set this to the usual level of α = 0.05. Furthermore βl and
αl control the significance level of the H0 (configuration is a loser) and H1 (configuration is
a winner) respectively. We suggest an asymmetric setup by setting βl = 0.1, since we want
to drop loser configurations relatively fast and αl = 0.01, since we want to be really sure
when we accept a configuration as overall winner. Finally, we set wstop to 3 for S = 10 and
6 for S = 20, as we have observed that this choice works well in practice.

5. Properties of the CVST Algorithm

After having introduced the overall concept of the CVST algorithm, we now focus on some
properties of the procedure: Exploiting properties of the underlying sequential testing
framework, we show how the experimenter can control the algorithm to work in a sta-
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ble regime. Given some assumptions about the top/flop variables we show that the CVST
algorithm performs with high accuracy after a configuration has reached its stable regime.
Additionally, we show how the CVST algorithm can be used to work best on a given time
budget. Finally, we discuss some unsolved questions and give possible directions for future
research.

5.1 Performance in a Stable Regime

As discussed in Section 2 the winning probability of a configuration might change if we feed
the learning algorithm more data. Therefore, a reasonable algorithm exploiting the learning
on subsets of the data must be capable of dealing with these difficulties and potential
change points in the behavior of certain configurations. In this section we investigate some
properties of the CVST algorithm which makes it particularly suitable for learning on
increasing subsets of the data.

The first property of the open sequential test employed in the CVST algorithm comes
in handy to control the overall convergence process and to assure that no configurations are
dropped prematurely:

Lemma 1 (Safety Zone) Given the CVST algorithm with significance level αl, βl for be-
ing a top or flop configuration respectively, and maximal number of steps S, and a configu-
ration which loses for the first scp iterations, as long as

0 ≤ scp
S
≤
ssafe
S

with ssafe =
log βl

1−αl

log 2− S

√
1−βl
αl

and S ≥
⌈

log
1− βl
αl

/ log 2

⌉
,

the probability that the configuration is dropped prematurely by the CVST algorithm is zero.

Proof The details of the proof are deferred to Appendix D.

The consequence of Lemma 1 is that the experimenter can directly control via the signif-
icance levels αl, βl until which iteration no premature dropping should occur and therefore
guide the whole process into a stable regime in which the configurations will see enough
data to show their real performance. Note that this property is a direct consequence of the
sequential analysis framework and is used here to guide the test into a controlled region
where we do not observe a premature dropping of configurations. Equation (2) ensures
that we actually perform a meaningful test to discriminate a loser configuration (π0 = 0.5)
from a winning configuration (π1 > π0). Thus, by adjusting the safety zone of the CVST
algorithm the experimenter can ensure that the configurations act according to the precon-
ditions of the sequential testing framework introduced in Section 4.2, namely exhibiting a
fixed probability π of being a winner configuration at each step.

Note that this safety zone is solely a guard for premature dropping of a configuration
due to insufficient data in the first few steps of the CVST algorithm. The experimenter
should have a notion at which point the performance of the configurations should stabilize
in terms of error behavior, i.e., the learners see enough data to show their real performance.
We argue that at this point the configurations behave reasonable stable, thus, fulfilling
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Figure 5: Visualization of the worst-case scenario for the error probability of the CVST
algorithm: A global winner configuration is labeled as a constant loser until the
safety zone is reached. Then we can calculate the probability that this configura-
tion endures the sequential test by a recurrence scheme, which counts the number
of remaining paths ending up in the non-loser region.

both the independence and identically distributed assumption of the sequential learning
framework. We are fully aware that these assumptions are strong, yet, backed up by our
extensive experimental evaluation in Section 6, we want to shed some light on why the CVST
procedure shows such impressive speed-ups with small impact on the accuracy compared
to ordinary cross-validation and even outperforms other model selection heuristics.

Hence, we define a stable configuration as a configuration which sticks to a certain
probability π of being a winning configuration. So after having seen enough data to show
its real behavior the robust transformation of the test error of the configuration inside the
CVST algorithm (see Section 4.1) exhibits the properties of an i.i.d. Bernoulli variable and
thus acts as a stable configuration in the subsequent steps of the CVST procedure. So a
global winning configuration will be a stable configuration with a probability π � π0 = 0.5.

Using these assumptions we can now take a look at the worst case performance of the
CVST algorithm. Suppose a global winning configuration has been constantly marked
as a loser up to the safety zone, because the amount of data available up to this point
was not sufficient to show the superiority of this configuration. Given that the global
winning configuration now sees enough data to be marked as a winning configuration by
the binarization process throughout the next steps with probability π, we can give an error
bound of the overall process by solving specific recurrences.

Figure 5 gives a visual impression of our worst case analysis for the example of a 20 step
CVST execution: The winning configuration generated a straight line of zeros up to the
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safety zone of 7. Our approach to bound the error of the fast cross-validation now consists
essentially in calculating the probability mass that ends up in the non-loser region. The
following lemma shows how we can express the number of paths which lead to a specific
point on the graph by a two-dimensional recurrence relation:

Lemma 2 (Recurrence Relation) Denote by Path(sR, sC) the number of paths, which
lead to the point at the intersection of row sR and column sC and lie above the lower decision
boundary L0 of the sequential test. Given the worst case scenario described above the number
of paths can be calculated as follows:

Path(sR, sC) =



1 if sR = 0 ∧ c ≤ ssafe =
log

βl
1−αl

log 2− S

√
1−βl
αl

1 if sR = sC − ssafe
Path(sR, sC − 1) + Path(sR − 1, sC − 1) if L0(c) < sR < sC − ssafe
0 otherwise.

Proof We split the proof into the four cases:

1. The first case is by definition: The configuration has a straight line of zeros up to the
safety zone ssafe.

2. The second case describes the diagonal path starting from the point (1, ssafe + 1): By
construction of the paths (1 means diagonal up; 0 means one step to the right) the
diagonal path can just be reached by a single combination, namely a straight line of
ones.

3. The third case is the actual recurrence: If the given point is above the lower decision
bound L0, then the number of paths leading to this point is equal to the number
of paths that lie directly to the left of this point plus the paths which lie directly
diagonal downwards from this point. From the first paths this point can be reached
by a direct step to the right and from the latter the current point can be reached by
a diagonal step upwards. Since there are no other options than that by construction,
this equality holds.

4. The last case describes all other paths, which either lie below the lower decision bound
and therefore end up in the loser region or are above the diagonal and thus can never
be reached.

This recurrence is visualized in Figure 5. Each number on the grid gives the number of
valid, non-loser paths, which can reach the specific point. With this recurrence we are now
able to prove a global, worst-case error probability of the fast cross-validation.

Theorem 3 (Error Bound of CVST for Stable Configuration) Suppose a global win-
ning configuration has reached the safety zone with a constant loser trace and then switches
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Figure 6: Error bound of the fast cross-validation as proven in Theorem 3 for different
success probabilities π and maximal step sizes S. To mark the global trend we
fitted a LOESS curve given as dotted line to the data.

to a stable winner configuration with a success probability of π � π0 = 0.5. Then the error
that the CVST algorithm erroneously drops this configuration can be determined as follows:

P (reject π) ≤ 1−
r∑

i=bL0(S)c+1

Path(i, S)πi(1− π)r−i with r = S −

 log βl
1−αl

log 2− S

√
1−βl
αl

 .
Proof The basic idea is to use the number of paths leading to the non-loser region to
calculate the probability that the configuration actually survives. This corresponds to the
last column of the example in Figure 5. Since we model the outcome of the binarization
process as a binomial variable with the success probability of π, the first diagonal path has
a probability of πr. The next paths each have a probability of π(r−1)(1 − π)1 and so on
until the last viable paths are reached in the point (bL0(S)c+ 1, S). So the complete prob-
ability of the survival of the configuration is summed up with the corresponding number of
paths from Lemma 2. Since we are interested in the complementary event, we subtract the
resulting sum from one, which concludes the proof.

Note that the early stopping rule does not interfere with this bound: The worst case
is indeed that the process goes on for the maximal number of steps S, since then the
probability mass will be maximally spread due to the linear lower decision boundary and
the corresponding exponents are maximal. So if the early stopping rule terminates the
process before reaching the maximum number of steps, the resulting error probability will
be lower than our given bound.

The error bound for different success probabilities and the proposed sequential test with
αl = 0.01 and βl = 0.1 are depicted in Figure 6. First of all we can observe a relatively fast
convergence of the overall error with increasing maximal number of steps S. The impact on
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urations , i.e., at the given change point the Bernoulli variable changes its πbefore
from the indicated value to 1.0.

the error is marginal for the shown success probabilities, i.e., for instance for π = 0.95 the
error nearly converges to the optimum of 0.05. Note that the oscillations especially for small
step sizes originate from the rectangular grid imposed by the interplay of the Path-operator
and the lower decision boundary L0 leading to some fluctuations. Overall, the chosen test
scheme allows us not only to control the safety zone but also has only a small impact on
the error probability, which once again shows the practicality of the open sequential ratio
test for the fast cross-validation procedure. By using this statistical test we can balance the
need for a conservative retention of configurations as long as possible with the statistically
controlled dropping of significant loser configurations with nearly no impact on the overall
error probability.

Our analysis assumes that the experimenter has chosen the right safety zone for the
learning problem at hand. For small data sizes it could happen that this safety zone was
chosen too small, therefore the change point of the global winning configuration might lie
outside the safety zone. While this will not occur often for today’s sizes of data sets we
have analyzed the behavior of CVST under this circumstances to give a complete view of
the properties of the algorithm. To get insight into the drop rate for the case when the
experimenter underestimated the change point scp we simulate those switching configura-
tions by independent Bernoulli variables which change their success probability π from a
chosen πbefore ∈ {0.1, 0.2, . . . , 0.5} to a constant 1.0 at a given change point. This behavior
essentially imitates the behavior of a switching configuration which starts out as a loser
(i.e., up to the change point the trace will consist more or less of zeros) and after enough
data is available turns into a constant winner.

The relative loss of these configurations for 10 and 20 steps is plotted in Figure 7 for
different change points. The figure reveals our theoretical findings of Lemma 1 showing
the corresponding safety zone for the specific parameter settings: For instance for αl =
0.01 and βl = 0.1 and S = 10 steps, the safety zone amounts to 0.27 × 10, meaning that
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Figure 8: Approximation of the time consumption for a cubic learner. In each step we
calculate a model on a subset of the data, so the model calculation time t on the
full data set is adjusted accordingly. After sr×S steps of the process, we assume
a drop to r ×K remaining configurations.

if the change point for all switching configurations occurs at step one or two, the CVST
algorithm would not suffer from false positives. Similarly, for S = 20 the safety zone is
0.39 × 20 = 7.8. These theoretical results are confirmed in our simulation study, where
the false negative rate is zero for sufficiently small change points for the open variant
of the test. After that, there are increasing probabilities that the configuration will be
removed. Depending on the success probability of the configuration before the change
point, the resulting false negative rate ranges from mild for π = 0.5 to relatively severe for
π = 0.1. The later the change point occurs, the higher the resulting false negative rate
will be. Interestingly, if we increase the total number of steps from 10 to 20, the absolute
values of the false negative rates are significantly lower. So even when the experimenter
underestimates the actual change point, the CVST algorithm has some extra room which
can even be extended by increasing the total number of steps.

5.2 Fast-Cross Validation on a Time Budget

While the CVST algorithm can be used out of the box to speed up regular cross-validation,
the aforementioned properties of the procedure come in handy when we face a situation
in which an optimal parameter configuration has to be found given a fixed computational
budget. If the time is not sufficient to perform a full cross-validation or the amount of data
that has to be processed is too big to explore a sufficiently spaced parameter grid with
ordinary cross-validation in a reasonable time, the CVST algorithm can easily be adjusted
to the specified time constraint. Thus, the experimenter is able to get the maximal number
of model evaluations given the time budget available to judge which model is the best.

This is achieved by calculating a maximal steps parameter S which leads to a near
coverage of the available time budget T as depicted in Figure 8. The idea is to specify
an expected drop rate (1 − r) of configurations and a safety zone bound ssafe. Then we
can give a rough estimate of the total time needed for a CVST with a total number of
steps S, equating this with the available time budget T and solving for S. More formally,
given K parameter configurations and a pre-specified safety zone bound ssafe = sr×S with
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0 < sr < 1 to ensure that no configuration is dropped prematurely, the computational
demands of the CVST algorithm are approximated by the sum of the time needed before
step ssafe involving the model calculation of all K configurations and after step ssafe for
r×K configurations with 0 < r < 1. As we will see in the experimental evaluation section,
this assumption of a given drop rate of (1− r) leading to the form of time consumption as
depicted in Figure 8 is quite common. The observed drop rate corresponds to the overall
difficulty of the problem at hand.

Given the computation time t needed to perform the model calculation on the full data
set, we prove in Appendix E that the optimal maximum step parameter for a learner of
time complexity f(n) = nm can be calculated as follows:

S =

⌊
m+ 1

4

2T − tK(1− r)smr + tKr

((1− r)sm+1
r + r)tK

+

√[
m+ 1

4

2T − tK(1− r)smr + tKr

((1− r)sm+1
r + r)tK

]2
− m(m+ 1)

12

(1− r)sm−1r + r

(1− r)sm+1
r + r

 .
After calculating the maximal number of steps S given the time budget T , we can use the
results of Lemma 1 to determine the maximal βl given a fixed αl, which yields the requested
safety zone bound ssafe.

5.3 Discussion of Further Theoretical Analyses

In Section 2 we have noted that in order for the test performances to converge, the parameter
configurations should be independent of the sample size. As shown in Appendix A this holds
for a range of standard methods in machine learning. Yet, special care has to be taken to
really ensure this assumption. For instance for kernel ridge regression one has to scale the
ridge parameter during each step of the CVST algorithm to accommodate for the change in
the learning set size (see the reference implementation in the official CRAN package named
CVST or the development version at https://github.com/tammok/CVST). The ν-Support
Vector Machine on the other hand directly incorporates this scaling of parameters which
makes it a good fit for the CVST algorithm. Generally, it would be preferable to have
this scaling automatically incorporated in the CVST algorithm such that the experimenter
could plug-in his favorite method without the need to think about any scaling issues of
hyper-parameters. Unfortunately, this is highly algorithm dependent and, thus, is an open
problem for further research.

An additional concern to the practitioner is how to choose the correct size of the safety
zone ssafe. If the training set does not contain enough data to get to a stable regime of
the parameter configurations, even regular cross-validation on the full data set would yield
incorrect configurations. But if we have just barely enough data to reach this stable region,
setting the right safety zone is essential for the CVST algorithm to return the correct
configurations. Unfortunately we are not aware of any test or bound which could hint at
the right safety zone given a data set and learner. Yet, in today’s world of big data where
sample sizes are more often too big than too small, this might not pose a serious problem
anymore. Nevertheless, we have analyzed the behavior of the CVST algorithm in case the
experimenter underestimates the safety zone in Section 5.1 showing that even for these cases
CVST is able to absorb a certain amount of misspecification.
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The similarity test introduced in Section 4.1 relies on two assumptions: First, the aver-
aged loss function over the data not used for training in one step gives us a good indicator
of the performance of a configuration. Second, well performing configurations show simi-
lar behavior in classification or regression on the data not used for learning. While these
assumptions definitely make sense, they encode a certain optimism of how the grid of con-
figurations is populated: If we have too few configurations as input to the procedure it
might happen that some non-optimal configurations mask out the other, normally optimal,
configurations just by chance. To overcome this problem we therefore would need a certain
amount of redundancy in the configuration grid. Both the amount of redundancy and thus
the similarity measure underlying this redundancy assumption are hard to grasp theoreti-
cally, yet, it could lead to new ways to model the binary transformation of the performance
of configurations in each step of the CVST algorithm.

There might be even further potential in the behavior of similar configurations that
could be used in the CVST algorithm: If there is a notion of similarity between different
configurations, it would be interesting to exploit this information and incorporate it into
the CVST algorithm. For instance, one could add this kind of information in the function
topConfigurations of Algorithm 1 to average the result of similar configurations and,
hence, extend the pooling effect of the test already available for the data point dimension
in the direction of configurations.

While the selection scheme explained in Section 4.2 deals with the fact of potential
change points of a configuration, it is not clear how independent the individual entries of a
trace for a given configuration are and how much these potential dependencies influence the
power of the sequential testing framework. Preliminary experiments comparing the CVST
algorithm as described in this paper and a version of the CVST algorithm where at each
step the data pool is shuffled, thus, yielding always different data points for learning and
evaluation, showed no significant differences between these two versions. This indicates
that at least the potential dependencies introduced by the overlap of learning sets due to
subsequent addition of data points do not interfere with the dependency assumption of
the sequential testing framework. We will see in the evaluation section that the CVST
procedure in its current form shows excellent behavior throughout a wide range of data
sets; yet, further research of the theoretical properties of CVST might yield even better
procedures in the future.

6. Experiments

Before we evaluate the CVST algorithm on real data, we investigate its performance on
controlled data sets. Both for regression and classification tasks we introduce special tai-
lored data sets to highlight the overall behavior and to stress-test the fast cross-validation
procedure. To evaluate how the choice of learning method influences the performance of the
CVST algorithm, we compare kernel logistic regression (KLR) against a ν-Support Vector
Machine (SVM) for classification problems and kernel ridge regression (KRR) versus ν-
SVR for regression problems each using a Gaussian kernel (see Roth, 2001; Schölkopf et al.,
2000). In all experiments we use a 10 step CVST with parameter settings as described in
Section 4.4 (i. e. α = 0.05, αl = 0.01, βl = 0.1, wstop = 3) to give us an upper bound of the
expected speed gain. Note that we could get even higher speed gains by either lowering the
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Figure 9: The noisy sine (left) and noisy sinc data set (right).

number of steps or increasing βl. From a practical point of view we believe that the settings
studied are highly realistic.

6.1 Artificial Data Sets

To assess the quality of the CVST algorithm we first examine its behavior in a controlled
setting. We have seen in our motivation section that a specific learning problem might
have several layers of structure which can only be revealed by the learner if enough data is
available. For instance in Figure 2(a) we can see that the first optimal plateau occurs at
σ = 0.1, while the real optimal parameter centers around σ = 0.01. Thus, the real optimal
choice just becomes apparent if we have seen more than 200 data points.

In this section we construct a learning problem both for regression and classification
tasks which could pose severe problems for the CVST algorithm: If it stops too early, it will
return a suboptimal parameter set. We evaluate how different intrinsic dimensionalities of
the data and various noise levels affect the performance of the procedure. For classification
tasks we use the noisy sine data set, which consists of a sine uniformly sampled from a
range controlled by the intrinsic dimensionality d:

y = sin(x) + ε with ε ∼ N (0, n2), x ∈ [0, 2πd], n ∈ {0.25, 0.5}, d ∈ {5, 50, 100}.

The labels of the sampled points are just the sign of y. An example for d = 5, n = 0.25 is
plotted in the left subplot of Figure 9. For regression tasks we devise the noisy sinc data
set, which consists of a sinc function overlayed with a high-frequency sine:

y = sinc(4x) +
sin(15dx)

5
+ ε with ε ∼ N (0, n2), x ∈ [−π, π], n ∈ {0.1, 0.2}, d ∈ {2, 3, 4}.

An example for d = 2, n = 0.1 is plotted in the right subplot of Figure 9. For each
of these data sets we generate 1,000 data points and run a 10 step CVST and compare
its results with a normal 10-fold cross-validation on the full data set. We record both
the test error on additional 10,000 data points and the time consumed for the parameter
search. The explored parameter grid contains 610 equally spaced parameter configurations
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Figure 10: Difference in mean square error (left) and relative speed gain (right) for the
noisy sine data set.

for each method (log10(σ) ∈ {−3,−2.9, . . . , 3} and ν ∈ {0.05, 0.1, . . . , 0.5} for SVM/SVR
and log10(λ) ∈ {−7,−6, . . . 2} for KLR/KRR, respectively). This process is repeated 50
times to gather sufficient data for an interpretation of the overall process. Apart from
recording the difference in mean square error (MSE) of the learner selected by normal
cross-validation and by the CVST algorithm we also look at the relative speed gain. Note
that we have encoded the classes as 0 and 1 for the classification experiments so the MSE
corresponds to the misclassification rate of the learner. So the difference in MSE gives us a
good measurement of the impact of using the CVST algorithm for both classification and
regression experiments.

The results for the noisy sine data set can be seen in Figure 10. The left boxplots show
the distribution of the difference in MSE of the best parameter determined by CVST and
normal cross-validation. In the low noise setting (n = 0.25) the CVST algorithm finds the
same optimal parameter as the normal cross-validation up to the intrinsic dimensionality of
d = 50. For d = 100 the CVST algorithm gets stuck in a suboptimal parameter configura-
tion yielding an increased classification error compared to the normal cross-validation. This
tendency is slightly increased in the high noise setting (n = 0.5) yielding a broader distri-
bution. The classification method used seems to have no direct influence on the difference,
both SVM and KLR show nearly similar behavior. This picture changes when we look at
the speed gains: While the SVM nearly always ranges between 10 and 20, the KLR shows
a speed-up between 20 and 70 times. The variance of the speed gain is generally higher
compared to the SVM which seems to be a direct consequence of the inner workings of KLR:
The main loop performs at each step a matrix inversion of the whole kernel matrix until
the calculated coefficients converge. Obviously this convergence criterion leads to a relative
wide-spread distribution of the speed gain when compared to the SVM performance.

Figure 11 shows the distribution of the number of remaining configurations after each
step of the CVST algorithm. In the low noise setting (upper row) we can observe a tendency
of higher drop rates up to d = 100. For the high noise setting (lower row) we observe a
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Figure 11: Remaining configurations after each step for the noisy sine data set.

n=0.10 n=0.20

●●●
●
●
●●●

●

●

●
●

●

●
●

●
●
●●●●

●●●
●
●

●

●

●

●

●●●
●●●

●

●

●

●●●●●●●

●●

●

●

●
●

●

●

●

●

●
●
●

●●
●

●

●

●

●●

●

●
●●
●●
●
●●0.000

0.005

0.010

0.015

0.020

d=2 d=3 d=4 d=2 d=3 d=4

M
S

E
 F

as
t C

V
 −

 M
S

E
 F

ul
l C

V

Method

KRR

SVR

n=0.10 n=0.20

●

●

●

●

●●
●●

● ●

●

●

●

●

●

●

●

●
●●●

0

25

50

75

100

125

d=2 d=3 d=4 d=2 d=3 d=4

T
im

e 
F

ul
l C

V
 / 

T
im

e 
Fa

st
 C

V

Method

KRR

SVR

Figure 12: Difference in mean square error (left plots) and relative speed gain (right plots)
for the noisy sinc data set.

steady increase of kept configurations combined with a higher spread of the distribution.
Overall we see a very effective drop rate of configurations for all settings. The SVM and the
KLR show nearly similar behavior so that the higher speed gain of the KLR we have seen
before is a consequence of the algorithm itself and is not influenced by the CVST algorithm.

The performance on the noisy sinc data set is shown in Figure 12. The first striking
observation is the transition of the CVST algorithm which can be observed for the intrinsic
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Figure 13: Remaining configurations after each step for the noisy sinc data set.

dimensionality of d = 3. At this point the overall excellent performance of the CVST
algorithm is on the verge of choosing a suboptimal parameter configuration. This behavior
is more evident in the high noise setting. In the case of SVR the difference to the solution
found by the normal cross-validation is always smaller than for KRR. The speed gain
observed shows a small decline over the different dimensionalities and noise levels and
ranges between 10 and 20 for the SVR and 50 to 100 for KRR.

This is a direct consequence of the behavior which can be observed in the number of
remaining configurations shown in Figure 13. Compared to the classification experiments
the drop is much more drastic. The intrinsic dimensionality and the noise level show a small
influence (higher dimensionality or noise level yields more remaining configurations) but the
overall variance of the distribution is much smaller than in the classification experiments.

In Figure 14 we examine the influence of more data on the performance of the CVST
algorithm. Both for the noisy sine and noisy sinc data set we are able to estimate the correct
parameter configuration for all noise and dimensionality settings if we feed the CVST with
enough data.1 Clearly, the CVST is capable of extracting the right parameter configuration
if we increase the amount of data to 2000 or 5000 data points, rendering our method even
more suitable for big data scenarios: If data is abundant, CVST will be able to estimate
the correct parameter in a much smaller time frame.

1. Note that we have to limit this experiment to the SVM/SVR method, since the full cross-validation of
the KLR/KRR would have taken too much time to compute.
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Figure 14: Difference in mean square error for SVM/SVR with increasing data set size for
noisy sine (left) and the noisy sinc (right) data sets. By adding more data, the
CVST algorithm converges to the correct parameter configuration.

6.2 Benchmark Data Sets

After demonstrating the overall performance of the CVST algorithm on controlled data
sets we will investigate its performance on real life and well known benchmark data sets.
For classification we picked a representative choice of data sets from the IDA benchmark
repository (see Rätsch et al. 20012). Furthermore we added the first two classes with the
most entries of the covertype data set (see Blackard and Dean, 1999). Then we follow the
procedure of the paper in sampling 2,000 data points of each class for the model learning
and estimate the test error on the remaining data points. For regression we pick the data
used in Donoho and Johnstone (1994) and add the bank32nm, pumadyn32nm and kin32nm
of the Delve repository.3

We process each data set as follows: First we normalize each variable of the data to
zero mean and variance of one, and in case of regression we also normalize the dependent
variable. Then we split the data set in half and use one part for training and the other for
the estimation of the test error. This process is repeated 50 times to get sufficient statistics
for the performance of the methods. As in the artificial data setting we compare the speed
gain of the fast compared to the normal cross-validation on the same parameter grid of 610
values. To allow for better comparability of the performance on the different data sets we
report the mean square error (MSE) ratio of the CVST procedure compared to the normal

2. Available at http://www.mldata.org.
3. Available at http://www.cs.toronto.edu/~delve.
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Data Method MSE Ratio Speed Data Method MSE Ratio Speed

banana KLR 0.998± 0.012 61.1 bank KRR 0.994± 0.003 85.7
banana SVM 1.001± 0.008 16.9 bank SVR 0.998± 0.001 43.9
covtype KLR 0.994± 0.011 84.3 blocks KRR 0.762± 0.022 81.3
covtype SVM 0.939± 0.009 53.4 blocks SVR 0.886± 0.016 39.5
german KLR 0.987± 0.017 27.5 bumps KRR 0.784± 0.043 86.1
german SVM 0.981± 0.024 5.5 bumps SVR 0.666± 0.030 37.3
image KLR 1.032± 0.051 33.5 doppler KRR 0.766± 0.035 92.4
image SVM 0.923± 0.060 13.8 doppler SVR 0.937± 0.014 41.2

ringnorm KLR 0.814± 0.050 111.7 heavisine KRR 0.981± 0.005 53.2
ringnorm SVM 0.999± 0.017 32.4 heavisine SVR 0.988± 0.003 33.7

splice KLR 0.991± 0.019 52.2 kin KRR 0.994± 0.002 58.7
splice SVM 1.005± 0.016 18.1 kin SVR 0.996± 0.001 39.9

twonorm KLR 1.017± 0.034 50.1 pumadyn KRR 0.992± 0.003 68.2
twonorm SVM 1.015± 0.014 25.7 pumadyn SVR 0.984± 0.007 29.6
waveform KLR 0.989± 0.014 54.0
waveform SVM 0.992± 0.013 22.8

Table 2: Comparison of performance of the CVST algorithm to full cross-validation (clas-
sification data sets in left part, regression data sets in right part). MSE ratio is
the relative gain in MSE of CVST compared to the full cross-validation. Speed
denotes the relative speed increase of CVST compared to the full cross-validation.
We report the mean values over 50 repetitions and 1.96 standard errors. If CVST
performs on par or better than the full cross-validation (i.e., MSE ratio plus 1.96
standard errors is bigger than 1.0) the values are in boldface.

cross-validation, i.e., values over 1.0 favor the CVST procedure. For the blocks, bumps, and
doppler data set of Donoho and Johnstone (1994) we adjusted the range of σ to a smaller
scale (log10(σ) ∈ {−6,−5.9, . . . , 0}) to have reasonable results in the parameter grid of 610
values since these data sets contain a very fine-grained structure. Note that this adjustment
is just for the sake of comparability to the other data sets.

Figure 15 shows the result for the classification data sets (left side) and the regression
data sets (right side). The upper panels depict the relative gain in MSE of CVST compared
to the full cross-validation. For the classification tasks we see that CVST is on par with
the full cross-validation except for the SVM for covtype and KLR for ringnorm. For the
regression task we observe that except for the blocks, bumps and doppler data sets CVST
chooses reasonable parameter set. Although for some problems the CVST algorithm picks a
suboptimal parameter set, even then the relative performance decreases are always relatively
small and range around 80%. The learners have hardly any impact on the behavior; just for
the ringnorm and the blocks, bumps and doppler data set we see a strong difference of the
corresponding methods. These findings can also be observed in Table 2: Given the mean of
the relative MSE ratio and the speed ratio with its corresponding 1.96 standard errors we
mark entries in boldface where the MSE ratio plus the 1.96 standard error is bigger than 1.0
indicating a performance on par or better than the normal cross-validation. While CVST
can tackle most of the classification task we see a relative decline in the regression tasks.
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Figure 15: MSE ratio (upper plots) and relative speed gain (lower plots) for the benchmark
data sets.
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Figure 16: Remaining configurations after each step for different benchmark data sets.
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But except for the blocks, bumps and doppler data sets the relative performance decrease
ranges around 99% indicating a nearly optimal performance.

In terms of speed gain we see a much more diverse and varying picture. Overall, the
speed improvements for KLR and KRR are higher than for SVM and SVR and reach up
to 120 times compared to normal cross-validation. Regression tasks in general seem to be
solved faster than classification tasks, which can clearly be explained when we look at the
traces in Figure 16: For classification tasks the number of kept configurations is generally
much higher than for the regression tasks. Furthermore we can observe several types of
difficulty of the learning problems. For instance the german data set seems to be much
more difficult than the ringnorm data (see Braun et al., 2008) which is also reflected in the
difference and speed improvement seen in the previous figure. We will see in Section 7.1
that we can trade time for increasing the accuracy of CVST for the regression tasks by
leveraging the modular construction of the CVST procedure.

Since finding the top configurations inside the loop of the CVST algorithm is a crucial
step to the overall performance of the procedure we further investigate how our choice of
tests influence the performance of the CVST procedure. Recall from Algorithm 2 that we
used the Cochran’s Q test for classification experiments (see line 9) and Friedman test for
regression problems (see line 11) to find the top configurations in an iterative testing scheme.
Both these test are non-parametric and paired tests, i.e., they both take into account the
pointwise performance of a configuration and, thus, compare the performance on individual
data points. In Section 4.1 we argued that this pooling effect robustifies the estimation of
the top configurations since outliers in the testing data do not have such a dramatic effect
on the test results compared to using for instance the overall test error as input for the
test. To verify this claim we have replaced the tests in the Algorithm 2 by unpaired, non-
parametric versions which solely test whether the test error is significantly different without
taking the results of the individual data points into account. To this end we have replaced
the Cochran’s Q test for classification experiments on line 9 of Algorithm 2 by an unpaired
version described by Wilson (1927) and the Friedman test by the Kruskal-Wallis rank sum
test (Kruskal and Wallis, 1952). Again we repeat the procedure for each benchmark set 50
times to get reliable statistics.

The results are reported in Table 3, upper part. We can see that the relative level of
MSE is almost always around 1.0 if we take the 1.96 standard error ranges into account.
The upper plot of Figure 17 shows the distribution of the MSE ratio. Except for the bumps
and doppler data set all distributions are clearly centered around 1.0 with a narrow spread
which further highlights the equality of the two methods in terms of accuracy.

Comparing the ratio of the CVST procedure to the unpaired variant we can see that the
paired test variant improves the runtime of the procedure significantly. This clearly demon-
strates that the usage of the paired tests which directly estimate the top configurations on
the pointwise predictions saves computation time with no impact on the accuracy.

Since we compared the CVST algorithm to a full cross-validation it is also of interest to
see how CVST compares to a simple heuristic which uses just 10% of the data for the cross-
validation. We have executed this experiment for all benchmark data sets and repeated the
procedure 50 times to get statistically sound estimates. The middle part of Table 3 reports
the MSE ratio of the CVST compared to the 10% cross-validation annotated with their
corresponding 1.96 standard errors and again the speed ratio. The first striking thing to
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observe is that the MSE ratios are all significantly bigger than 1.0, indicating that CVST
always finds a better performing configuration than the simple 10% heuristic. While the
accuracy impact varies across the different data sets CVST always picks significantly better
performing configurations with a modest impact on the runtime compared to the simple
10% heuristic. This trend can clearly be seen in the middle plot of Figure 17 which shows
the corresponding distributions of the relative level of MSE. For all data sets the bulk of
the distribution is above 1.0 indicating better performance of the CVST method compared
to the 10% heuristic.

The last comparison of the performance of the CVST method is shown in the lower
part of Table 3. Here we show the MSE ratio of CVST compared to a random search as
described in Bergstra and Bengio (2012). In each step of the random search procedure
we choose parameters uniformly distributed over the range of the corresponding grid of
the CVST procedure and learn a full-data model. After having spent the same amount of
time as the CVST procedure on a specific data set we stop the random search. Then we
pick the best model of the so far evaluated parameters and compare its performance to the
CVST model. Again, the lower part of Table 3 shows the relative gain in MSE and their
corresponding 1.96 standard errors gathered over 50 repetitions for each data set. Both
the table and the lower part of Figure 17 indicate that CVST shows better performance
compared to random search especially in the regression data sets. In some cases (covtype
with SVM, ringnorm with SVM and splice with SVM) the random search outperforms
CVST but in the majority of cases the CVST procedure can extract better parameter
configurations in the same amount of time than the random search.

In summary, the evaluation of the benchmark data sets shows that the CVST algorithm
gives a huge speed improvement compared to the normal cross-validation. While we see some
non-optimal choices of configurations, the total impact on the error is never exceptionally
high. We have to keep in mind that we have chosen the parameters of our CVST algorithm
to give an impression of the maximal attainable speed-up: More conservative settings would
trade computational time for lowering the impact on the test error. The CVST outperforms
both unpaired variants of the procedure, the simple heuristics of cross-validation on just
10% of the data, and a random search in parameter space. This clearly demonstrates
that the individual parts of the CVST procedure are well chosen and the combination of
tests are superior to other methods. Trading some speed compared to simpler heuristics
for more robust and stable estimates of optimal performing configurations and the huge
speed improvement compared to a full cross-validation renders the CVST procedure as a
promising candidate for model selection in big data settings.

7. Modularization and Extensions

In this Section we will deal with several aspects of the CVST algorithm: We illuminate the
inner structure of the overall procedure and discuss potential extensions and properties of
specific steps. The CVST algorithm consists of a sequence of tightly coupled modules: The
output of the top or flop test is the input for the subsequent test for significant losers. The
performance history of all remaining configurations is then the input for the early stopping
rule which looks for similar performance of the remaining configurations on the learning
problem to capture the right point in time to stop the CVST loop. This stepwise procedure
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Data Method MSE Ratio Speed Data Method MSE Ratio Speed

banana KLR 1.001± 0.010 2.9 bank KRR 0.984± 0.005 3.0
banana SVM 1.005± 0.009 1.6 bank SVR 1.000± 0.001 1.2
covtype KLR 1.003± 0.005 1.6 blocks KRR 0.957± 0.030 1.4
covtype SVM 0.992± 0.007 1.2 blocks SVR 0.986± 0.006 1.4
german KLR 0.993± 0.013 0.9 bumps KRR 0.920± 0.074 1.0
german SVM 0.984± 0.019 0.6 bumps SVR 0.999± 0.003 1.1
image KLR 1.011± 0.040 3.3 doppler KRR 0.954± 0.051 1.3
image SVM 1.030± 0.047 1.5 doppler SVR 0.981± 0.010 1.1

ringnorm KLR 0.963± 0.037 1.1 heavisine KRR 0.990± 0.005 2.6
ringnorm SVM 1.005± 0.013 1.0 heavisine SVR 0.995± 0.003 6.9

splice KLR 0.992± 0.020 1.6 kin KRR 1.000± 0.003 6.8
splice SVM 1.012± 0.014 1.1 kin SVR 1.000± 0.000 3.8

twonorm KLR 0.988± 0.029 0.9 pumadyn KRR 1.003± 0.003 26.0
twonorm SVM 1.001± 0.010 0.9 pumadyn SVR 1.000± 0.001 18.4
waveform KLR 0.997± 0.013 1.5

Unpaired Version of CVST
waveform SVM 1.011± 0.012 1.3

banana KLR 1.056± 0.036 0.7 bank KRR 1.073± 0.024 0.6
banana SVM 1.106± 0.086 0.3 bank SVR 1.006± 0.003 0.7
covtype KLR 1.062± 0.028 0.9 blocks KRR 1.428± 0.102 0.7
covtype SVM 1.031± 0.020 0.4 blocks SVR 1.189± 0.033 0.7
german KLR 1.085± 0.031 1.5 bumps KRR 1.947± 0.380 0.7
german SVM 1.132± 0.061 0.6 bumps SVR 1.049± 0.015 0.7
image KLR 1.544± 0.185 0.4 doppler KRR 1.896± 0.186 0.7
image SVM 1.279± 0.143 0.8 doppler SVR 1.210± 0.035 0.7

ringnorm KLR 2.083± 0.291 1.3 heavisine KRR 1.104± 0.022 0.4
ringnorm SVM 1.044± 0.038 0.5 heavisine SVR 1.042± 0.011 0.5

splice KLR 1.106± 0.067 0.6 kin KRR 1.074± 0.030 0.3
splice SVM 1.092± 0.039 0.6 kin SVR 1.014± 0.006 0.7

twonorm KLR 1.197± 0.103 0.7 pumadyn KRR 1.053± 0.016 0.4
twonorm SVM 1.032± 0.026 0.4 pumadyn SVR 1.026± 0.007 0.4
waveform KLR 1.099± 0.036 0.7

Cross-Validation on 10% of Data
waveform SVM 1.088± 0.063 0.4

banana KLR 1.198± 0.131 1.0 bank KRR 1.339± 0.068 1.0
banana SVM 0.970± 0.012 1.0 bank SVR 3.070± 0.376 1.0
covtype KLR 1.185± 0.044 1.0 blocks KRR 2.059± 0.529 1.0
covtype SVM 0.886± 0.032 1.0 blocks SVR 1.526± 0.314 1.0
german KLR 1.128± 0.098 1.0 bumps KRR 2.567± 0.629 1.0
german SVM 1.020± 0.024 1.0 bumps SVR 4.461± 0.511 1.0
image KLR 2.188± 0.512 1.0 doppler KRR 1.891± 0.405 1.0
image SVM 1.133± 0.064 1.0 doppler SVR 2.337± 0.583 1.0

ringnorm KLR 5.972± 2.315 1.0 heavisine KRR 1.075± 0.012 1.0
ringnorm SVM 0.648± 0.094 1.0 heavisine SVR 1.012± 0.043 1.0

splice KLR 2.062± 0.389 1.0 kin KRR 1.283± 0.049 1.0
splice SVM 0.874± 0.022 1.0 kin SVR 1.190± 0.033 1.0

twonorm KLR 2.427± 1.444 1.0 pumadyn KRR 1.113± 0.026 1.0
twonorm SVM 0.939± 0.027 1.0 pumadyn SVR 1.070± 0.025 1.0
waveform KLR 2.032± 0.600 1.0

Random Search
waveform SVM 0.959± 0.019 1.0

Table 3: Comparison of performance of the CVST algorithm to different competitors (de-
tails see text). MSE ratio is the relative gain in MSE of CVST compared to the
other variant. Speed denotes the relative speed increase of CVST compared to the
other variant. We report the mean values over 50 repetitions and 1.96 standard
errors with significant better values of CVST in boldface.
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Figure 17: Distributions of the MSE ratio of the CVST procedure compared to the unpaired
variant (upper panel), the cross-validation on 10% of the data (middle panel)
and random search (lower panel). The horizontal line denotes the 1.0, i.e., equal
performance ratio. Values over 1.0 favor the CVST procedure.
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Configuration-Specific Problem-Specific

Ê Similar Error
Landscape

Ë Significant
Loser

Ì Similar
Performance

CVST Loop

Figure 18: Conceptual view of the CVST algorithm. Each execution of the loop body con-
sists of a sequence of test, each delivering the input for the following test. This
modular structure allows for customization of the CVST algorithm to special
situations (multi-class experiments, structured learning etc.).

is depicted in Figure 18: While the tests for top or flop configurations (step Ê) and the
following sequential analysis (step Ë) focuses solely on the individual configurations, the
early stopping rule (step Ì) acts on a global scope by determining the right point to stop
the CVST algorithm. Thus, we face two kinds of test, namely the configuration-specific
and the problem-specific tests.

To complete our discussion of the CVST algorithm, we focus on the configuration-
specific procedures. First, we analyze the inner structure of the similarity test based on
the error landscape in Section 7.1 and how this module can be adjusted for specific side
constraints. Furthermore, in Section 7.2 we look at the suitability of the sequential analysis
for determining significant loser configurations. It is shown that a so-called closed sequential
test lacks essential properties of the open variant of Wald used in the CVST algorithm,
which further underlines the appropriateness of the open test of Wald for the learning on
increasing subsets of data.

7.1 Checking the Similarity of the Error Landscape

In the evaluation of the CVST method in Section 6 we see that the Friedman test for the
regression case shows a much more aggressive behavior than the Cochran’s Q test used in
the top or flop conversion in the classification case. This feature can be clearly seen in
Figure 16 where the dropping rates of the classification and regression benchmark data sets
can be easily compared. Since the Friedman test acts on the squared residuals it uses more
information compared to the classification task where we just have the information whether
a specific data point was correctly classified or not. Thus, the Friedman test can exploit
the higher detail of the information and can decide much faster than the Cochran’s Q test
which of the configurations are significantly different from the top performing ones.

In this section we show how the modular design of the CVST algorithm can be utilized
to fit a less aggressive, yet more robust similarity test for regression data into the overall
framework. It comes as no surprise that this increased tolerance affects the runtime of the
CVST procedure. In the following we will first develop the alternative similarity test and
then compare its performance both on the toy and the benchmark data sets to the original
Friedman variant.
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Recall from Section 4.1 that the top or flop assignment was calculated in a sequential
manner: First we order all remaining configurations according to their mean performance;
then we check at which point the addition of another configuration shows a significantly
different behavior compared to all other, better performing configurations. To employ a
less strict version of the Friedman test we drop the actual residual information and instead
use the outlier behavior of a configuration for comparison. To this end we assume that the
residuals are normally distributed with mean zero and a configuration-dependent variance
σ2c which we estimate from the actual residuals. Now we can check for each calculated
residual whether it exceeds the α

2 confidence interval around zero by using the normality
assumption, thus converting the raw residuals in a binary information whether it is deemed
as an outlier or not. Similar to the classification case this binary matrix forms the input
to the Cochran’s Q test which then asserts whether a specific configuration belongs to the
top-performing ones or not.

The results of this procedure on the noisy sinc data set is shown in Figure 19: Compared
to the outcome of the Friedman test in Figure 12 we can clearly see that the conservative
nature of the outlier-based test helps in finding the correct parameter configuration. Obvi-
ously its higher retention rate leads to lower runtime performance: The speed ratio drops
roughly by a factor of 2

3 . A similar behavior can be observed on the benchmark data sets in
Figure 20: The conservative behavior of the outlier-based measure increases the MSE ratio
compared to the residual-based test, but at the same time lowers the speed ratio. Interest-
ingly, for the benchmark data sets the speed impact on the SVR is much lower compared to
the speed ratio decrease of the KRR method. We can observe this shift also in the number
of kept configurations shown in Figure 21 both for the noisy sinc and the benchmark data
sets.

The conclusion of this discussion is two-fold: First, this section shows how the modular
construction of the CVST methods allows for the exchange of the individual parts of the
algorithm without disrupting the workflow of the procedure. If the residual-based test turns
out to be unsuitable for a given regression problem, it is extremely easy to devise an adapted
version for instance by looking at the outlier behavior of the configurations. Second, we see
the inherent flexibility of the CVST algorithm. If there is a need for different error measures
(for instance multi-class experiments, structured learning etc.), the modularized structure
of the CVST algorithms allows for maximal flexibility and adaptability to special cases.

7.2 Determining Significant Losers: Open versus Closed Sequential Testing

As already introduced in Section 4.2 the sequential testing was pioneered by Wald (1947);
the test monitors a likelihood ratio of a sequence of i.i.d. Bernoulli variables B1, B2, . . . :

` =

n∏
i=1

f(bi, π1)/

n∏
i=1

f(bi, π0) given Hh : Bi ∼ πh, h ∈ {0, 1}.

Hypothesis H1 is accepted if ` ≥ A and contrary H0 is accepted if ` ≤ B. If neither of
these conditions apply, the procedure cannot accept either of the two hypotheses and needs
more data. A and B are chosen such that the error probability of the two decisions does
not exceed αl and βl respectively. In Wald and Wolfowitz (1948) it is proven that the open
sequential probability ratio test of Wald is optimal in the sense that compared to all tests
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Figure 19: Difference in mean square error (left plots) and relative speed gain (right plots)
for the noisy sinc data set using the outlier-based similarity test. In comparison
to the stricter Friedman test used in Figure 12 we can observer a more conser-
vative behavior resulting in increased robustness at the expense of performance.
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Figure 20: MSE ratio (left plot) and relative speed gain (right plot) for the benchmark data
sets using the outlier-based similarity test. Compared to Figure 15 we can see
better accuracy but decreased speed performance.
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Figure 21: Remaining configurations after each step for the noisy sinc and different bench-
mark data sets using the outlier-based similarity test. Compared to Figure 13
and Figure 16 we can clearly observe the higher retention rate of this more
conservative test.
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with the same power it requires on average fewest observations for a decision. The testing
scheme of Wald is called open since the procedure could potentially go on forever, as long
as ` does not leave the (A,B)-tunnel.

The open design of Wald’s procedure led to a development of a different kind of sequen-
tial tests, where the number of observations is fixed beforehand (see Armitage, 1960; Spicer,
1962; Alling, 1966; McPherson and Armitage, 1971). For instance in clinical studies it might
be impossible or ethically prohibitive to use a test which potentially could go on forever.
Unfortunately, none of these so-called closed tests exhibit an optimality criterion, therefore
we choose one which at least in simulation studies showed the best behavior in terms of
average sample number statistics: The method of Spicer (1962) is based on a gambler’s
ruin scenario in which both players have a fixed fortune and decide to play for n games.
If f(n, π, Fa, Fb) is the probability that a player with fortune Fa and stake b will ruin his
opponent with fortune Fb in exactly n games, then the following recurrence holds:

f(n, π, Fa, Fb) =


0 if Fa < 0 ∨ (n = 0 ∧ Fb > 0),

1 if n = 0 ∧ Fa > 0 ∧ Fb ≤ 0,

πf(n− 1, π, Fa + 1, Fb − b)
+(1− π)f(n− 1, π, Fa − b, Fb + b) otherwise.

In each step, the player can either win a game with probability π and win 1 from his
opponent or lose the stake b to the other player. Now, given n = x + y games of which
player A has won y and player B has won x, the game will stop if either of the following
conditions hold:

y − bx = −Fa ⇔ y =
b

1 + b
n− Fa

1 + b
or y − bx = Fb ⇔ y =

b

1 + b
n− Fb

1 + b
.

This formulation casts the gambler’s ruin problem into a Wald-like scheme, where we just
observe the cumulative wins of player A and check whether we reached the lower or upper
line. If we now choose Fa and Fb such that f(n, 0.5, Fa, Fb) ≤ αl, we construct a test
which allows us to check whether a given configuration performs worse than π = 0.5 (i.e.,
crosses the lower line) and can therefore be flagged as an overall loser with controlled error
probability of αl (see Alling 1966). For more details on the closed design of Spicer please
consult Spicer (1962).

Since simulation studies show that the closed variants of the sequential testing exhibit
low average sample number statistics, we first have a look at the runtime performance of
the CVST algorithm equipped with either the open or the closed sequential test. The most
influential parameter in terms of runtime is the S parameter. In principle, a larger number
of steps leads to more robust estimates, but also to an increase of computation time. We
study the effect of different choices of this parameter in a simulation. For the sake of
simplicity we assume that the binary top or flop scheme consists of independent Bernoulli
variables with πwinner ∈ [0.9, 1.0] and πloser ∈ [0.0, 0.1]. We test both the open and the
closed sequential test and compare the relative speed-up of the CVST algorithm compared
to a full 10-fold cross-validation in case the learner is cubic.

Figure 22 shows the resulting simulated runtimes for different settings. The overall
speed-up is much higher for the closed sequential test indicating a more aggressive behavior
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Figure 23: False negatives generated with the closed sequential test for non-stationary con-
figurations, i.e., at the given change point the Bernoulli variable changes its
πbefore from the indicated value to 1.0.

compared to the more conservative open alternative. Both tests show their highest increase
in the range of 10 to 20 steps with a rapid decline towards the higher step numbers. So in
terms of speed the closed sequential test definitely beats the more conservative open test.

To evaluate the false negatives of the closed sequential test we simulate switching config-
urations by independent Bernoulli variables which change their success probability π from
a chosen πbefore ∈ {0.1, 0.2, . . . , 0.5} to a constant 1.0 at a given change point. By using
this setup we mimic the behavior of a switching configuration which starts out as a loser
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and after enough data is available turns into a constant winner. The results can be seen in
Figure 23 which reveals that the speed gain comes at a price: Apart from having no control
over the safety zone, the number of falsely dropped configurations is much higher than for
the open sequential test (see Figure 7 in Section 5.1). While having a definitive advantage
over the open test in terms of speed, the false negative rate of the closed test renders it
useless for the CVST algorithm.

8. Conclusion

We presented a method to speed up the cross-validation procedure by starting at subsets
of the full training set size, identifying clearly underperforming parameter configurations
early on and focusing on the most promising candidates for the larger subset sizes. We have
discussed that taking subsets of the data set has theoretical advantages when compared
to other heuristics like local search on the parameter set because the effects on the test
errors are systematic and can be understood statistically. On the one hand, we argued that
the optimal configurations converge to the true ones as sample sizes tend to infinity, but
we also discussed in a concrete setting how the different behaviors of estimation error and
approximation error lead to much faster convergence practically. These insights led to the
introduction of a safety zone through sequential testing, which ensures that underperforming
configurations are not removed prematurely when the minima are not converged yet. In
experiments we showed that our procedure leads to a speed-up of up to 120 times compared
to the full cross-validation without a significant increase in prediction error.

It will be interesting to combine this method with other procedures like the Hoeff-
ding races or algorithms for multi-armed bandit problems. Furthermore, getting accurate
convergence bounds even for finite sample size settings is another topic for future research.
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Appendix A. Sample-Size Independent Parametrization

In Section 2 we needed as a precondition that the test performances converge for a fixed
parameter configuration c as n tends to infinity. In this section, we discuss this condition
in the context of the empirical risk minimization. We refer to the book by Devroye et al.
(1996) and the references contained therein for the theoretical results.

In the empirical risk minimization framework, a learning algorithm is interpreted as
choosing the solution gn with the best error on the training set R̂n(g) = 1

n

∑n
i=1 `(g(Xi), Yi)

from some hypothesis class G. If the VC-dimension of G, which roughly measures the
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complexity of G, is finite then it holds that

R̂n(g)→ R(g)

uniformly over g ∈ G, and consequently also R(gn)→ infg∈G R(g).

Now in order to make the link to our condition, we need that each parameter c corre-
sponds to a fixed hypothesis class Gc (and not depend on the sample size in some way), and
that the VC-dimension is finite. For feed-forward neural networks, one can show, for exam-
ple, that neural networks with one hidden layer with k inner nodes and sigmoid activation
function have finite VC-dimension (Devroye et al., 1996, Theorem 30.6).

For kernel machines, we consider the reproducing kernel Hilbert space (RKHS, Aron-
szajn 1950) view: Let Hk the RKHS induced by a Mercer kernel k with norm ‖ · ‖Hk .
Evgeniou and Pontil (1999) show that the Vγ-dimension of the hypothesis class G(A) =
{f ∈ Hk | ‖f‖2Hk ≤ A} is finite, from which uniform converges of the kind described above
follows, and thus also that our condition holds.

Many kernel methods, including kernel ridge regression and support vector machines
can be written as regularized optimization problems in the RKHS of the form:

min
f∈Hk

(
1

n

n∑
i=1

`(f(Xi), Yi) + C‖f‖2Hk

)
= min

f∈Hk

(
R̂n(f) + C‖f‖2Hk

)
.

Now if we assume that `(f(x), y) is bounded by B and continuous in f , it follows that the
minimum is attained for some f with ‖f‖2Hk ≤ B/C: For ‖f‖Hk = 0, R̂n(f)+C‖f‖2Hk ≤ B,

and for ‖f‖Hk > B/C, R̂n(f) + C‖f‖2Hk > B. Because R̂(f) + C‖f‖2Hk is continuous in f ,
it follows that the minimum is somewhere in-between.

Now R̂n(f) converges to R(f) uniformly over f ∈ G(B/C), such that there exists an
A ≤ B/C such that

min
f∈Hk

(
R̂(f) + C‖f‖2Hk

)
= min

f∈G(A)
R(f),

and we see that a regularization constant C corresponds to a fixed hypothesis class G(A)
and our condition holds again.

As a direct consequence of this discussion we have to take care of the correct scaling
of the regularization constants during the CVST run. Thus, for kernel ridge regression we
have to scale the λ parameter linearly with the data set size and for the SVR divide the
C parameter accordingly (see the reference implementation in the official CRAN package
named CVST or the development version at https://github.com/tammok/CVST for details).

Appendix B. Example Run of CVST Algorithm

In this section we give an example of the whole CVST algorithm on one noisy sinc data set
of n = 1, 000 data points with intrinsic dimensionality of d = 2. The CVST algorithm is
executed with S = 10 and wstop = 4. We use a ν-SVM (Schölkopf et al., 2000) and test a
parameter grid of log10(σ) ∈ {−3,−2.9, . . . , 3} and ν ∈ {0.05, 0.1, . . . , 0.5}. The procedure
runs for 4 steps after which the early stopping rule takes effect. This yields the following
traces matrix (only remaining configurations are shown):
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n = 90 n = 180 n = 270 n = 360

log10(σ) = −2.3, ν = 0.35 0 0 1 0
log10(σ) = −2.3, ν = 0.40 0 1 1 0
log10(σ) = −2.3, ν = 0.45 0 1 0 1
log10(σ) = −2.2, ν = 0.30 0 1 0 0
log10(σ) = −2.2, ν = 0.35 0 1 1 0
log10(σ) = −2.2, ν = 0.40 0 1 1 1
log10(σ) = −2.2, ν = 0.45 0 1 1 1
log10(σ) = −2.2, ν = 0.50 0 0 1 1
log10(σ) = −2.1, ν = 0.35 0 1 1 1

log10(σ) = −2.1, ν = 0.40 0 1 1 1

log10(σ) = −2.1, ν = 0.45 0 1 1 1
log10(σ) = −2.1, ν = 0.50 1 0 1 1
log10(σ) = −2.0, ν = 0.50 0 0 1 1

The corresponding mean square errors of the remaining configurations after each step
are shown in the next matrix. Based on these values, the winning configuration, namely
log10(σ) = −2.1, ν = 0.40 is chosen:

n = 90 n = 180 n = 270 n = 360

log10(σ) = −2.3, ν = 0.35 0.0370 0.0199 0.0145 0.0150
log10(σ) = −2.3, ν = 0.40 0.0362 0.0197 0.0146 0.0146
log10(σ) = −2.3, ν = 0.45 0.0356 0.0197 0.0146 0.0144
log10(σ) = −2.2, ν = 0.30 0.0365 0.0195 0.0146 0.0148
log10(σ) = −2.2, ν = 0.35 0.0351 0.0193 0.0142 0.0145
log10(σ) = −2.2, ν = 0.40 0.0345 0.0194 0.0143 0.0141
log10(σ) = −2.2, ν = 0.45 0.0340 0.0193 0.0143 0.0140
log10(σ) = −2.2, ν = 0.50 0.0332 0.0200 0.0145 0.0138
log10(σ) = −2.1, ν = 0.35 0.0353 0.0194 0.0144 0.0142

log10(σ) = −2.1, ν = 0.40 0.0343 0.0195 0.0142 0.0138

log10(σ) = −2.1, ν = 0.45 0.0340 0.0197 0.0140 0.0138
log10(σ) = −2.1, ν = 0.50 0.0329 0.0199 0.0142 0.0137
log10(σ) = −2.0, ν = 0.50 0.0351 0.0204 0.0145 0.0137

Appendix C. Nonparametric Tests

The tests used in the CVST algorithm are common tools in the field of statistical data
analysis. Here we give a short summary based on Heckert and Filliben (2003) and cast
the notation into the CVST framework context. Both methods deal with the performance
matrix of K configurations with performance values on r data points:
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Data Points

Configuration 1 2 . . . r

1 x11 x12 . . . x1r
2 x21 x22 . . . x2r
3 x31 x32 . . . x3r
...

...
...

...
K xK1 xK2 . . . xKr

Both tests treat similar questions (“Do the K configurations have identical effects?”)
but are designed for different kinds of data: Cochran’s Q test is tuned for binary xij while
the Friedman test acts on continuous values. In the context of the CVST algorithm the
tests are used for two different tasks:

1. Determine whether a set of configurations are the top performing ones (step Ê in the
overview Figure 3 and the function topConfigurations defined in Algorithm 2).

2. Check whether the remaining configurations behaved similar in the past (step Ì in
the overview Figure 3 and the function similarPerformance in Algorithm 4).

In both cases, the configurations are compared either by the performance on the samples
(Point 1 above) or on the last wstop traces (Point 2 above) of the remaining configurations.
Depending on the learning problem either the Friedman test for regression task or the
Cochran’s Q test for classification tasks is used in Point 1.

In both cases the hypotheses for the tests are as follows:

• H0: All configurations are equally effective (no effect)

• H1: There is a difference in the effectiveness among the configurations, i.e., there is
at least one configuration showing a significantly different effect on the data points.

C.1 Cochran’s Q Test

The test statistic T is calculated as follows:

T = K(K − 1)

∑K
i=1(Ri −

M
K )2∑r

i=1Ci(K − Ci)

with Ri denoting the row total for the ith configuration, Ci the column total for the ith data
point, and M the grand total. We reject H0, if T > χ2(1−α,K − 1) with χ2(1−α,K − 1)
denoting the (1 − α)-quantile of the χ2 distribution with K − 1 degrees of freedom and α
is the significance level. As Cochran (1950) points out, the χ2 approximation breaks down
for small tables. Tate and Brown (1970) state that as long as the table contains at least 24
entries, the χ2 approximation will suffice, otherwise the exact distribution should be used
which can either be calculated explicitly (see Patil, 1975) or determined via permutation.
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C.2 Friedman Test

Let R(xij) be the rank assigned to xij within data point i (i.e., rank of a configuration on
data point i). Average ranks are used in the case of ties. The ranks for a configuration at
position k are summed up over the data points to obtain

Rk =

r∑
i=1

R(xki).

The test statistic T is then calculated as follows:

T =
12

rK(K + 1)

K∑
i=1

(Ri − r(K + 1)/2)2.

If there are ties, then

T =
(K − 1)

∑K
i=1(Ri − r(K + 1)/2)2

[
∑K

i=1

∑r
j=1R(xij)2]− [rK(K + 1)2]/4

.

We reject H0 if T > χ2(α,K − 1) with χ2(α,K − 1) denoting the α-quantile of the χ2

distribution with K − 1 degrees of freedom and α being the significance level.

Appendix D. Proof of Safety Zone Bound

In this section we prove the safety zone bound of Section 5.1 of the paper. We will follow
the notation and treatment of the sequential analysis as found in the original publication
of Wald (1947), Sections 5.3 to 5.5. First of all, Wald proves in Equation 5:27 that the
following approximation holds:

ASN(π0, π1|π = 1.0) ≈
log 1−βl

αl

log π1
π0

.

where ASN(·, ·) (Average Sample Number) is the expected number of steps until the given
test will yield a decision, if the underlying success probability of the tested sequence is
π = 1.0. The minimal ASN(π0, π1|π = 1.0) is therefore attained if log π1

π0
is maximal, which

is clearly the case for π1 = 1.0 and π0 = 0.5, which holds by construction. So we get the
lower bound of S for a given significance level αl, βl:

S ≥
⌈

log
1− βl
αl

/ log 2
⌉
.

The lower line L0 of the graphical sequential analysis test as exemplified in Figure 3 of the
paper is defined as follows (see Equation 5:13 - 5:15):

L0 =
log βl

1−αl
log π1

π0
− log 1−π1

1−π0
+ n

log 1−π0
1−π1

log π1
π0
− log 1−π1

1−π0
.
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Setting L0 = 0, we can get the intersection of the lower test line with the x-axis and therefore
the earliest step ssafe, in which the procedure will drop a constant loser configuration. This
yields

ssafe = −
log βl

1−αl
log π1

π0
− log 1−π1

1−π0
/

log 1−π0
1−π1

log π1
π0
− log 1−π1

1−π0
= −

log βl
1−αl

log 1−π0
1−π1

=
log βl

1−αl
log 1−π1

1−π0
=

log βl
1−αl

log 2− S

√
1−βl
αl

.

The last equality can be derived by inserting the closed form of π1 given π0 = 0.5:

S = ASN(π0, π1|π = 1.0) =
log 1−βl

αl

log π1
π0

=
log 1−βl

αl

log 2π1
⇔ 2π1 = S

√
1− βl
αl

⇔ π1 =
1

2
S

√
1− βl
αl

.

Setting ssafe in relation to the maximal number of steps S yields the safety zone bound
of Section 5.1.

Appendix E. Proof of Computational Budget

For the size N of the whole data set and a learner of time complexity f(n) = nm, where
m ∈ N, resulting in a learning time of t = Nm, one observes that learning on a proportion
of size i

SN takes about im

Sm t time. By construction one has to learn on all K parameter
configurations in each step before hitting sr × S and on K × r parameter configurations
with drop rate (1− r) afterwards. Thus the entirely needed computation time is given by

K × (1− r)
sr×S∑
i=1

im

Sm
t+K × r

S∑
i=1

im

Sm
t

which should be smaller than the given time budget T .

Making use of the fact proved in Appendix E.1 that 1
nm−1

n∑
i=1

im
·
≤ n2

m+1 + n
2 + m

12 holds

under the mild condition of n > m
2π , where

·
≤ describes an asymptotic relation, one can

reformulate the inequality as follows:

tK(1− r)sm−1r

S

1

(srS)m−1

srS∑
i=1

im +
tKr

S

1

Sm−1

S∑
i=1

im

·
≤ tK

S

[
(1− r)sm−1r

(
(srS)2

m+ 1
+
srS

2
+
m

12

)
+ r

(
S2

m+ 1
+
S

2
+
m

12

)] ·
≤ T.

It is obvious that this inequality is quadratic in the variable S which can be solved by
bringing the above inequality in standard form:

0
·
≥
[
(1− r)sm−1r

(
(srS)2

m+ 1
+
srS

2
+
m

12

)
+ r

(
S2

m+ 1
+
S

2
+
m

12

)]
− TS

tK

⇔ 0
·
≥ (1− r)sm+1

r + r

m+ 1
S2 +

[(1− r)smr + r

2
− T

tK

]
S +

(
(1− r)sm−1r + r

) m
12

⇔ 0
·
≥ S2 + 2

[
m+ 1

4

tK(1− r)smr + tKr − 2T

((1− r)sm+1
r + r)tK

]
S +

m(m+ 1)

12

(1− r)sm−1r + r

(1− r)sm+1
r + r

.
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Substituting a = m+1
4

tK(1−r)smr +tKr−2T
((1−r)sm+1

r +r)tK
and b = m(m+1)

12
(1−r)sm−1

r +r

(1−r)sm+1
r +r

above is equivalent to:

S = −a+ y, y ∈
{
−
√
a2 − b,+

√
a2 − b

}
.

For the sake of a meaningful step amount, i.e., S > 0 and furthermore S as large as possible
we choose it as

S =
⌊
−a+

√
a2 − b

⌋
.

Note that S is a function of the parameter sr. The mild condition for the upper bound of
power sums mentioned above has to be fulfilled. Since obviously b ≥ 0 holds, a must be
negative in order to gain a positive step amount. Furthermore the root has to be solvable.
So the following constraints on sr have to be made:

(1) 2T ≥ tK(1− r)smr + tKr

(2) a2 ≥ b

(3) srS >
m

2π
.

Note that condition (3) is trivial for a small degree of complexity m, which is the common
case.

E.1 Proof of the Upper Bound

Assume that n = m
c where c < 2π. Denote by Bi the Bernoulli numbers.

1

nm−1

n∑
i=1

im =
1

nm−1
[nm

2
+

1

m+ 1

bm
2
c∑

k=0

(
m+ 1

2k

)
B2kn

m+1−2k]
=

n2

m+ 1
+
n

2
+
m

12
+

bm
2
c∑

k=2

(−1)i+1 1

m+ 1

(
m+ 1

2k

)
|B2k|n2−2k

The sum term is alternating in sign and asymptotically monotone decreasing in k:

1

m+ 1

(
m+ 1

2k

)
|B2k|n2−2k ∼

m!

(2k)!(m+ 1− 2k)!
2

(2k)!

(2π)2k

(m
c

)2−2k
=

2m

c2

2k−2∏
j=0

(
1− j

m

)
︸ ︷︷ ︸
↓ 0 as k →∞

( c

2π

)2k
︸ ︷︷ ︸
↓ 0 , c

2π
< 1

where we use the asymptotic behavior of |B2k| ∼ 2 (2k)!
(2π)2k

. Now that the sequence under the

sum starts negative, grouping up each two subsequent elements gives a negative value, such
that the sum also is negative.

Therefore

1

nm−1

n∑
i=1

im
·
≤ n2

m+ 1
+
n

2
+
m

12
.
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Abstract

We consider learning, from strictly behavioral data, the structure and parameters of linear
influence games (LIGs), a class of parametric graphical games introduced by Irfan and Or-
tiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal
interventions on stable behavior in strategic settings. Applications include the identifi-
cation of the most influential individuals in large (social) networks. Such tasks can also
support policy-making analysis. Motivated by the computational work on LIGs, we cast the
learning problem as maximum-likelihood estimation (MLE) of a generative model defined
by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental
interplay between goodness-of-fit and model complexity: good models capture equilibrium
behavior within the data while controlling the true number of equilibria, including those
unobserved. We provide a generalization bound establishing the sample complexity for
MLE in our framework. We propose several algorithms including convex loss minimiza-
tion (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in
LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on
synthetic data and real-world U.S. congressional voting records. We briefly discuss our
learning framework’s generality and potential applicability to general graphical games.

Keywords: linear influence games, graphical games, structure and parameter learning,
behavioral data in strategic settings

1. Introduction

Game theory has become a central tool for modeling multi-agent systems in AI. Non-
cooperative game theory has been considered as the appropriate mathematical framework
in which to formally study strategic behavior in multi-agent scenarios.1 The core solu-
tion concept of Nash equilibrium (NE) (Nash, 1951) serves a descriptive role of the stable
outcome of the overall behavior of systems involving self-interested individuals interacting
strategically with each other in distributed settings for which no direct global control is

1. See, e.g., the survey of Shoham (2008) and the books of Nisan et al. (2007) and Shoham and Leyton-
Brown (2009) for more information.
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Honorio and Ortiz

possible. NE is also often used in predictive roles as the basis for what one might call
causal strategic inference, i.e., inferring the results of causal interventions on stable ac-
tions/behavior/outcomes in strategic settings (See, e.g., Ballester et al. 2004, 2006; Heal
and Kunreuther 2003, 2006, 2007; Kunreuther and Michel-Kerjan 2007; Ortiz and Kearns
2003; Kearns 2005; Irfan and Ortiz 2014, and the references therein). Needless to say, the
computation and analysis of NE in games is of significant interest to the computational
game-theory community within AI.

The introduction of compact representations to game theory over the last decade have
extended computational/algorithmic game theory’s potential for large-scale, practical ap-
plications often encountered in the real-world. For the most part, such game model repre-
sentations are analogous to probabilistic graphical models widely used in machine learning
and AI.2 Introduced within the AI community about a decade ago, graphical games (Kearns
et al., 2001) constitute an example of one of the first and arguably one of the most influential
graphical models for game theory.3

There has been considerable progress on problems of computing classical equilibrium
solution concepts such as NE and correlated equilibria (CE) (Aumann, 1974) in graphical
games (see, e.g., Kearns et al. 2001; Vickrey and Koller 2002; Ortiz and Kearns 2003; Blum
et al. 2006; Kakade et al. 2003; Papadimitriou and Roughgarden 2008; Jiang and Leyton-
Brown 2011 and the references therein). Indeed, graphical games played a prominent role in
establishing the computational complexity of computing NE in general normal-form games
(see, e.g., Daskalakis et al. 2009 and the references therein).

An example of a recent computational application of non-cooperative game-theoretic
graphical modeling and causal strategic inference (CSI) that motivates the current paper
is the work of Irfan and Ortiz (2014). They proposed a new approach to the study of
influence and the identification of the “most influential” individuals (or nodes) in large
(social) networks. Their approach is strictly game-theoretic in the sense that it relies on non-
cooperative game theory and the central concept of pure-strategy Nash equilibria (PSNE)4 as
an approximate predictor of stable behavior in strategic settings, and, unlike other models of
behavior in mathematical sociology,5 it is not interested and thus avoids explicit modeling
of the complex dynamics by which such stable outcomes could have arisen or could be
achieved. Instead, it concerns itself with the “bottom-line” end-state stable outcomes (or
steady state behavior). Hence, the proposed approach provides an alternative to models
based on the diffusion of behavior through a social network (See Kleinberg 2007 for an
introduction and discussion targeted to computer scientists, and further references).

2. The fundamental property such compact representation of games exploit is that of conditional inde-
pendence: each player’s payoff function values are determined by the actions of the player and those
of the player’s neighbors only, and thus are conditionally (payoff) independent of the actions of the
non-neighboring players, given the action of the neighboring players.

3. Other game-theoretic graphical models include game networks (La Mura, 2000), multi-agent influence
diagrams (MAIDs) (Koller and Milch, 2003), and action-graph games (Jiang and Leyton-Brown, 2008).

4. In this paper, because we concern ourselves primarily with PSNE, whenever we use the term “equilib-
rium” or “equilibria” without qualification, we mean PSNE.

5. Some of these models have recently gained interest and have been studied within computer science,
specially those related to diffusion or contagion processes (see, e.g., Granovetter 1978; Morris 2000;
Domingos and Richardson 2001; Domingos 2005; Even-Dar and Shapira 2007).
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The underlying assumption for most work in computational game theory that deals with
algorithms for computing equilibrium concepts is that the games under consideration are
already available, or have been “hand-designed” by the analyst. While this may be possible
for systems involving a handful of players, it is in general impossible in systems with at
least tens of agent entities, if not more, as we are interested in this paper.6 For instance,
in their paper, Irfan and Ortiz (2014) propose a class of games, called influence games. In
particular, they concentrate on linear influence games (LIGs), and, as briefly mentioned
above, study a variety of computational problems resulting from their approach, assuming
such games are given as input.

Research in computational game theory has paid relatively little attention to the problem
of learning (both the structure and parameters of) graphical games from data. Addressing
this problem is essential to the development, potential use and success of game-theoretic
models in practical applications. Indeed, we are beginning to see an increase in the avail-
ability of data collected from processes that are the result of deliberate actions of agents
in complex system. A lot of this data results from the interaction of a large number of
individuals, being not only people (i.e., individual human decision-makers), but also com-
panies, governments, groups or engineered autonomous systems (e.g., autonomous trading
agents), for which any form of global control is usually weak. The Internet is currently a
major source of such data, and the smart grid, with its trumpeted ability to allow individual
customers to install autonomous control devices and systems for electricity demand, will
likely be another one in the near future.

In this paper, we investigate in considerable technical depth the problem of learning LIGs
from strictly behavioral data: We do not assume the availability of utility, payoff or cost
information in the data; the problem is precisely to infer that information from just the joint
behavior collected in the data, up to the degree needed to explain the joint behavior itself.
We expect that, in most cases, the parameters quantifying a utility function or best-response
condition are unavailable and hard to determine in real-world settings. The availability of
data resulting from the observation of an individual public behavior is arguably a weaker
assumption than the availability of individual utility observations, which are often private.
In addition, we do not assume prior knowledge of the conditional payoff/utility independence
structure as represented by the game graph.

Motivated by the work of Irfan and Ortiz (2014) on a strictly non-cooperative game-
theoretic approach to influence and strategic behavior in networks, we present a formal
framework and design algorithms for learning the structure and parameters of LIGs with a
large number of players. We concentrate on data about what one might call “the bottom
line:” i.e., data about“end-states”, “steady-states” or final behavior as represented by pos-
sibly noisy samples of joint actions/pure-strategies from stable outcomes, which we assume
come from a hidden underlying game. Thus, we do not use, consider or assume available any
temporal data about the detailed behavioral dynamics. In fact, the data we consider does
not contain the dynamics that might have possibly led to the potentially stable joint-action

6. Of course, modeling and hand-crafting games for systems with many agents may be possible if the system
has particular structure one could exploit. To give an example, this would be analogous to how one can
exploit the probabilistic structure of HMMs to deal with long stochastic processes in a representationally
succinct and computationally tractable way. Yet, we believe it is fair to say that such systems are
largely/likely the exception in real-world settings in practice.
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outcome! Since scalability is one of our main goals, we aim to propose methods that are
polynomial-time in the number of players.

Given that LIGs belong to the class of 2-action graphical games (Kearns et al., 2001)
with parametric payoff functions, we first needed to deal with the relative dearth of work
on the broader problem of learning general graphical games from purely behavioral data.
Hence, in addressing this problem, while inspired by the computational approach of Irfan
and Ortiz (2014), the learning problem formulation we propose is in principle applicable
to arbitrary games (although, again, the emphasis is on the PSNE of such games). In
particular, we introduce a simple statistical generative mixture model, built “on top of” the
game-theoretic model, with the only objective being to capture noise in the data. Despite
the simplicity of the generative model, we are able to learn games from U.S. congressional
voting records, which we use as a source of real-world behavioral data, that, as we will
illustrate, seem to capture interesting, non-trivial aspects of the U.S. congress. While such
models learned from real-world data are impossible to validate, we argue that there exists
a considerable amount of anecdotal evidence for such aspects as captured by the models we
learned. Figure 1 provides a brief illustration. (Should there be further need for clarification
as to the why we present this figure, please see Footnote 14.)

As a final remark, given that LIGs constitute a non-trivial sub-class of parametric graph-
ical games, we view our work as a step in the direction of addressing the broader problem
of learning general graphical games with a large number of players from strictly behavioral
data. We also hope our work helps to continue to bring and increase attention from the
machine-learning community to the problem of inferring games from behavioral data (in
which we attempt to learn a game that would “rationalize” players’ observed behavior).7

1.1 A Framework for Learning Games: Desiderata

The following list summarizes the discussion above and guides our choices in our pursuit
of a machine-learning framework for learning game-theoretic graphical models from strictly
behavioral data.

• The learning algorithm

– must output an LIG (which is a special type of graphical game); and
– should be practical and tractably deal with a large number of players (typically

in the hundreds, and certainly at least 4).

• The learned model objective is the “bottom line” in the sense that the basis for
its evaluation is the prediction of end-state (or steady-state) joint decision-making
behavior, and not the temporal behavioral dynamics that might have lead to end-
state or the stable steady-state joint behavior.8

7. This is a type of problem arising from game theory and economics that is different from the problem of
learning in games (in which the focus is the study of how individual players learn to play a game by a
sequence of repeated interactions), a more matured and perhaps better known problem within machine
learning (see, e.g., Fudenberg and Levine 1999).

8. Note that we are in no way precluding dynamic models as a way to end-state prediction. But there is
no inherent need to make any explicit attempt or effort to model or predict the temporal behavioral
dynamics that might have lead to end-state or the stable steady-state joint behavior, including pre-play
“cheap talk,” which are often overly complex processes. (See Appendix A.1 for further discussion.)
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Figure 1: 110th US Congress’s LIG (January 3, 2007-09): We provide an illustra-
tion of the application of our approach to real congressional voting data. Irfan
and Ortiz (2014) use such games to address a variety of computational problems,
including the identification of most influential senators. (We refer the reader
to their paper for further details.) We show the graph connectivity of a game
learned by independent `1-regularized logistic regression (see Section 6.5). The
reader should focus on the overall characteristics of the graph and not the de-
tails of the connectivity or the actual “influence” weights between senators. We
highlight some particularly interesting characteristics consistent with anecdotal
evidence. First, senators are more likely to be influenced by members of the same
party than by members of the opposite party (the dashed green line denotes
the separation between the parties). Republicans were “more strongly united”
(tighter connectivity) than Democrats at the time. Second, the current US Vice
President Biden (Dem./Delaware) and McCain (Rep./Arizona) are displayed at
the “extreme of each party” (Biden at the bottom-right corner, McCain at the
bottom-left) eliciting their opposite ideologies. Third, note that Biden, McCain,
the current US President Obama (Dem./Illinois) and US Secretary of State Hillary
Clinton (Dem./New York) have very few outgoing arcs; e.g., Obama only directly
influences Feingold (Dem./Wisconsin), a prominent senior member with strongly
liberal stands. One may wonder why do such prominent senators seem to have so
little direct influence on others? A possible explanation is that US President Bush
was about to complete his second term (the maximum allowed). Both parties had
very long presidential primaries. All those senators contended for the presidential
candidacy within their parties. Hence, one may posit that those senators were
focusing on running their campaigns and that their influence in the day-to-day
business of congress was channeled through other prominent senior members of
their parties.
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• The learning framework

– would only have available strictly behavioral data on actual decisions/actions
taken. It cannot require or use any kind of payoff-related information.

– should be agnostic as to the type or nature of the decision-maker and does not
assume each player is a single human. Players can be institutions or govern-
ments, or associated with the decision-making process of a group of individuals
representing, e.g., a company (or sub-units, office sites within a company, etc.),
a nation state (like in the UN, NATO, etc.), or a voting district. In other words,
the recorded behavioral actions of each player may really be a representative of
larger entities or groups of individuals, not necessarily a single human.

– must provide computationally efficient learning algorithm with provable guaran-
tees: worst-case polynomial running time in the number of players.

– should be “data efficient” and provide provable guarantees on sample complexity
(given in terms of “generalization” bounds).

1.2 Technical Contributions

While our probabilistic model is inspired by the concept of equilibrium from game theory,
our technical contributions are not in the field of game theory nor computational game
theory. Our technical contributions and the tools that we use are the ones in classical
machine learning.

Our technical contributions include a novel generative model of behavioral data in Sec-
tion 4 for general games. Motivated by the LIGs and the computational game-theoretic
framework put forward by Irfan and Ortiz (2014), we formally define “identifiability” and
“triviality” within the context of non-cooperative graphical games based on PSNE as the
solution concept for stable outcomes in large strategic systems. We provide conditions that
ensure identifiability among non-trivial games. We then present the maximum-likelihood
estimation (MLE) problem for general (non-trivial identifiable) games. In Section 5, we
show a generalization bound for the MLE problem as well as an upper bound of the func-
tional/strategic complexity (i.e., analogous to the“VC-dimension” in supervised learning)
of LIGs. In Section 6, we provide technical evidence justifying the approximation of the
original problem by maximizing the number of observed equilibria in the data as suitable
for a hypothesis-space of games with small true number of equilibria. We then present our
convex loss minimization approach and a baseline sigmoidal approximation for LIGs. For
completeness, we also present exhaustive search methods for both general games as well
as LIGs. In Section 7, we formally define the concept of absolute-indifference of players
and show that our convex loss minimization approach produces games in which all players
are non-absolutely-indifferent. We provide a bound which shows that LIGs have small true
number of equilibria with high probability.

2. Related Work

We provide a brief summary overview of previous work on learning games here, and delay
discussion of the work presented below until after we formally present our model; this will
provide better context and make “comparing and contrasting” easier for those interested,
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Reference Class Needs Learns Learns Guarant. Equil. Dyn. Num.
Payoff Param. Struct. Concept Agents

Wright and Leyton-Brown (2010) NF Y Na - N QRE N 2
Wright and Leyton-Brown (2012) NF Y Na - N QRE N 2
Gao and Pfeffer (2010) NF Y Y - N QRE N 2
Vorobeychik et al. (2007) NF Y Y - N MSNE N 2-5
Ficici et al. (2008) NF Y Y - N MSNE N 10-200
Duong et al. (2008) NGT Y Na N N - N 4,10

Duong et al. (2010) NGTb Y Nc N N - Yd 10

Duong et al. (2012) NGTb Y Nc Ye N - Yd 36

Duong et al. (2009) GG Y Y Yf N PSNE N 2-13

Kearns and Wortman (2008) NGT N - - Y - Y 100
Ziebart et al. (2010) NF N Y - N CE N 2-3
Waugh et al. (2011) NF N Y - Y CE Y 7
Our approach GG N Y Yg Y PSNE N 100g

Table 1: Summary of approaches for learning models of behavior. See main text
for a discussion. For each method we show its model class (GG: graphical games,
NF: normal-form non-graphical games, NGT: non-game-theoretic model); whether
it needs observed payoffs, learns utility parameters, learns graphical structure or
provides guarantees(e.g., generalization, sample complexity or PAC learnability);
its equilibria concept (PSNE: pure strategy or MSNE: mixed strategy Nash equi-
libria, CE: correlated equilibria, QRE: quantal response equilibria), whether it is
dynamic (i.e., behavior predicted from past behavior); and the number of agents
in the experimental validation. Note that there are relatively fewer models that
do not assume observed payoff; among them, our method is the only one that
learns the structure of graphical games, furthermore, we provide guarantees and a
polynomial-time algorithm. aLearns only the “rationality parameter”. bA graph-
ical game could in principle be extracted, after removing the temporal/dynamic
part. cIt learns parameters for the “potential functions.” dIf the dynamic part
is kept, it is not a graphical game. eIt performs greedy search by constraining
the maximum degree. fIt performs branch and bound. gIt has polynomial time-
complexity in the number of agents, thus it can scale to thousands.

without affecting expert readers who may want to get to the technical aspects of the paper
without much delay.

Table 1 constitutes our best attempt at a simple visualization to fairly present the
differences and similarities of previous approaches to modeling behavioral data within the
computational game-theory community in AI.

The research interest of previous work varies in what they intend to capture in terms of
different aspects of behavior (e.g., dynamics, probabilistic vs. strategic) or simply different
settings/domains (i.e., modeling “real human behavior,” knowledge of achieved payoff or
utility, etc.).

With the exception of Ziebart et al. (2010); Waugh et al. (2011); Kearns and Wortman
(2008), previous methods assume that the actions as well as corresponding payoffs (or noisy
samples from the true payoff function) are observed in the data. Our setting largely differs
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from Ziebart et al. (2010); Kearns and Wortman (2008) because of their focus on system
dynamics, in which future behavior is predicted from a sequence of past behavior. Kearns
and Wortman (2008) proposed a learning-theory framework to model collective behavior
based on stochastic models.

Our problem is clearly different from methods in quantal response models (McKelvey
and Palfrey, 1995; Wright and Leyton-Brown, 2010, 2012) and graphical multiagent models
(GMMs) (Duong et al., 2008, 2010) that assume known structure and observed payoffs.
Duong et al. (2012) learns the structure of games that are not graphical, i.e., the payoff
depends on all other players. Their approach also assumes observed payoff and consider a
dynamic consensus scenario, where agents on a network attempt to reach a unanimous vote.
In analogy to voting, we do not assume the availability of the dynamics (i.e., the previous
actions) that led to the final vote. They also use fixed information on the conditioning sets of
neighbors during their search for graph structure. We also note that the work of Vorobeychik
et al. (2007); Gao and Pfeffer (2010); Ziebart et al. (2010) present experimental validation
mostly for 2 players only, 7 players in Waugh et al. (2011) and up to 13 players in Duong
et al. (2009).

In several cases in previous work, researchers define probabilistic models using knowledge
of the payoff functions explicitly (i.e., a Gibbs distribution with potentials that are functions
of the players payoffs, regrets, etc.) to model joint behavior (i.e., joint pure-strategies); see,
e.g., Duong et al. (2008, 2010, 2012), and to some degree also Wright and Leyton-Brown
(2010, 2012). It should be clear to the reader that this is not the same as our generative
model, which is defined directly on the PSNE (or stable outcomes) of the game, which the
players’ payoffs determine only indirectly.

In contrast, in this paper, we assume that the joint actions are the only observable
information and that both the game graph structure and payoff functions are unknown,
unobserved and unavailable. We present the first techniques for learning the structure and
parameters of a non-trivial class of large-population graphical games from joint actions
only. Furthermore, we present experimental validation in games of up to 100 players. Our
convex loss minimization approach could potentially be applied to larger problems since it
has polynomial time complexity in the number of players.

2.1 On Learning Probabilistic Graphical Models

There has been a significant amount of work on learning the structure of probabilistic
graphical models from data. We mention only a few references that follow a maximum
likelihood approach for Markov random fields (Lee et al., 2007), bounded tree-width dis-
tributions (Chow and Liu, 1968; Srebro, 2001), Ising models (Wainwright et al., 2007;
Banerjee et al., 2008; Höfling and Tibshirani, 2009), Gaussian graphical models (Banerjee
et al., 2006), Bayesian networks (Guo and Schuurmans, 2006; Schmidt et al., 2007b) and
directed cyclic graphs (Schmidt and Murphy, 2009).

Our approach learns the structure and parameters of games by maximum likelihood
estimation on a related probabilistic model. Our probabilistic model does not fit into any of
the types described above. Although a (directed) graphical game has a directed cyclic graph,
there is a semantic difference with respect to graphical models. Structure in a graphical
model implies a factorization of the probabilistic model. In a graphical game, the graph
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structure implies strategic dependence between players, and has no immediate probabilistic
implication. Furthermore, our general model differs from Schmidt and Murphy (2009) since
our generative model does not decompose as a multiplication of potential functions.

Finally, it is very important to note that our specific aim is to model behavioral data
that is strategic in nature. Hence, our modeling and learning approach deviates from those
for probabilistic graphical models which are of course better suited for other types of data,
mostly probabilistic in nature (i.e., resulting from a fixed underlying probability distribu-
tion). As a consequence, it is also very important to keep in mind that our work is not in
competition with the work in probabilistic graphical models, and is not meant to replace
it (except in the context of data sets collected from complex strategic behavior just men-
tioned). Each approach has its own aim, merits and pitfalls in terms of the nature of data
sets that each seeks to model. We return to this point in Section 8 (Experimental Results).

2.2 On Linear Threshold Models and Econometrics

Irfan and Ortiz (2014) introduced LIGs in the AI community, showed that such games are
useful, and addressed a variety of computational problems, including the identification of
most influential senators. The class of LIGs is related to the well-known linear threshold
model (LTM) in sociology (Granovetter, 1978), recently very popular within the social
network and theoretical computer science community (Kleinberg, 2007).9 Irfan and Ortiz
(2014) discusses linear threshold models in depth; we briefly discuss them here for self-
containment. LTMs are usually studied as the basis for some kind of diffusion process.
A typical problem is the identification of most influential individuals in a social network.
An LTM is not in itself a game-theoretic model and, in fact, Granovetter himself argues
against this view in the context of the setting and the type of questions in which he was
most interested (Granovetter, 1978). Our reading of the relevant literature suggests that
subsequent work on LTMs has not taken a strictly game-theoretic view either. The problem
of learning mathematical models of influence from behavioral data has just started to receive
attention. There has been a number of articles in the last couple of years addressing the
problem of learning the parameters of a variety of diffusion models of influence (Saito et al.,
2008, 2009, 2010; Goyal et al., 2010; Gomez Rodriguez et al., 2010; Cao et al., 2011).10

Our model is also related to a particular model of discrete choice with social interactions
in econometrics (see, e.g. Brock and Durlauf 2001). The main difference is that we take
a strictly non-cooperative game-theoretic approach within the classical “static”/one-shot
game framework and do not use a random utility model. We follow the approach of Irfan
and Ortiz (2014) who takes a strictly non-cooperative game-theoretic approach within the
classical “static”/one-shot game framework, and thus we do not use a random utility model.
In addition, we do not make the assumption of rational expectations, which in the context

9. López-Pintado and Watts (2008) also provide an excellent summary of the various models in this area
of mathematical social science.

10. Often learning consists of estimating the threshold parameter from data given as temporal sequences
from“traces” or “action logs.” Sometimes the “influence weights” are estimated assuming a given graph,
and almost always the weights are assumed positive and estimated as “probabilities of influence.” For
example, Saito et al. (2010) considers a dynamic (continuous time) LTM that has only positive influence
weights and a randomly generated threshold value. Cao et al. (2011) uses active learning to estimate
the threshold values of an LTM leading to a maximum spread of influence.
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of models of discrete choice with social interactions essentially implies the assumption that
all players use exactly the same mixed strategy.11

3. Background: Game Theory and Linear Influence Games

In classical game-theory (see, e.g. Fudenberg and Tirole 1991 for a textbook introduction),
a normal-form game is defined by a set of players V (e.g., we can let V = {1, . . . , n} if
there are n players), and for each player i, a set of actions, or pure-strategies Ai, and a
payoff function ui : ×j∈VAj → R mapping the joint actions of all the players, given by
the Cartesian product A ≡ ×j∈VAj , to a real number. In non-cooperative game theory
we assume players are greedy, rational and act independently, by which we mean that each
player i always want to maximize their own utility, subject to the actions selected by others,
irrespective of how the optimal action chosen help or hurt others.

A core solution concept in non-cooperative game theory is that of an Nash equilibrium.
A joint action x∗ ∈ A is a pure-strategy Nash equilibrium (PSNE) of a non-cooperative
game if, for each player i, x∗i ∈ arg maxxi∈Aiui(xi,x

∗
−i); that is, x∗ constitutes a mutual

best-response, no player i has any incentive to unilaterally deviate from the prescribed
action x∗i , given the joint action of the other players x∗−i ∈ ×j∈V−{i}Aj in the equilibrium.
In what follows, we denote a game by G, and the set of all pure-strategy Nash equilibria of
G by12

NE(G) ≡ {x∗ | (∀i ∈ V ) x∗i ∈ arg maxxi∈Aiui(xi,x
∗
−i)} .

A (directed) graphical game is a game-theoretic graphical model (Kearns et al., 2001).
It provides a succinct representation of normal-form games. In a graphical game, we have a
(directed) graph G = (V,E) in which each node in V corresponds to a player in the game.
The interpretation of the edges/arcs E of G is that the payoff function of player i is only a
function of the set of parents/neighbors Ni ≡ {j | (i, j) ∈ E} in G (i.e., the set of players
corresponding to nodes that point to the node corresponding to player i in the graph). In
the context of a graphical game, we refer to the ui’s as the local payoff functions/matrices.

Linear influence games (LIGs) (Irfan and Ortiz, 2014) are a sub-class of 2-action graphi-
cal games with parametric payoff functions. For LIGs, we assume that we are given a matrix
of influence weights W ∈ Rn×n, with diag(W) = 0, and a threshold vector b ∈ Rn. For
each player i, we define the influence function fi(x−i) ≡

∑
j∈Ni wijxj − bi = wi,−i

Tx−i − bi
and the payoff function ui(x) ≡ xifi(x−i). We further assume binary actions: Ai ≡
{−1,+1} for all i. The best response x∗i of player i to the joint action x−i of the other
players is defined as

wi,−i
Tx−i > bi ⇒ x∗i = +1,

wi,−i
Tx−i < bi ⇒ x∗i = −1 and

wi,−i
Tx−i = bi ⇒ x∗i ∈ {−1,+1}

⇔ x∗i (wi,−i
Tx−i − bi) ≥ 0 .

11. A formal definition of “rational expectations” is beyond the scope of this paper. We refer the reader
to the early part of the article by Brock and Durlauf (2001) where they explain why assuming rational
expectations leads to the conclusion that all players use exactly the same mixed strategy. That is the
relevant part of that work to ours.

12. Because this paper concerns mostly PSNE, we denote the set of PSNE of game G as NE(G) to simplify
notation.
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Intuitively, for any other player j, we can think of wij ∈ R as a weight parameter quantifying
the “influence factor” that j has on i, and we can think of bi ∈ R as a threshold parameter
quantifying the level of “tolerance” that player i has for playing −1.13

As discussed in Irfan and Ortiz (2014), LIGs are also a sub-class of polymatrix games
(Janovskaja, 1968). Furthermore, in the special case of b = 0 and symmetric W, a LIG
becomes a party-affiliation game (Fabrikant et al., 2004).

In this paper, the use of the verb “influence” strictly refers to influences defined by the
model.

Figure 1 provides a preview illustration of the application of our approach to congres-
sional voting.14

4. Our Proposed Framework for Learning LIGs

Our goal is to learn the structure and parameters of an LIG from observed joint actions only
(i.e., without any payoff data/information).15 Yet, for simplicity, most of the presentation
in this section is actually in terms of general 2-action games. While we make sporadic
references to LIGs throughout the section, it is not until we reach the end of the section
that we present and discuss the particular instantiation of our proposed framework with
LIGs.

Our main performance measure will be average log-likelihood (although later we will be
considering misclassification-type error measures in the context of simultaneous-classification,
as a result of an approximation of the average log-likelihood). Our emphasis on a PSNE-

13. As we formally/mathematically define here, LIGs are 2-action graphical games with linear-quadratic
payoff functions. Given our main interest in this paper on the PSNE solution concept, for the most part,
we simply view LIGs as compact representations of the PSNE of graphical games that the algorithms
of Irfan and Ortiz (2014) use for CSI. (This is in contrast to a perhaps more natural, “intuitive” but
still informal description/interpretation one may provide for instructive/pedagogical purposes based on
“direct influences,” as we do here.) This view of LIGs is analogous to the modern, predominant view of
Bayesian networks as compact representations of joint probability distributions that are also very useful
for modeling uncertainty in complex systems and practical for probabilistic inference (Koller and Fried-
man, 2009). (And also analogous is the “intuitive” descriptions/interpretations of BN structures, used
for instructive/pedagogical purposes, based on “causal” interactions between the random variables Koller
and Friedman, 2009.)

14. We present this game graph because many people express interest in “seeing” the type of games we learn
on this particular data set. The reader should please understand that by presenting this graph we are
definitely not implying or arguing that we can identify the ground-truth graph of “direct influences.”
(We say this even in the very unlikely event that the “ground-truth model” be an LIG that faithfully
capture the “true direct influences” in this U.S. Congress, something arguably no model could ever do.)
As we show later in Section 4.2, LIGs are not identifiable with respect to their local compact parametric
representation encoding the game graph through their weights and biases, but only with respect to their
PSNE, which are joint actions capturing a global property of a game that we really care about for CSI.
Certainly, we could never validate the model parameters of an LIG at the local, microscopic level of
“direct influences” using only the type of observational data we used to learn the model depicted by the
graph in the figure. For that, we would need help from domain experts to design controlled experiments
that would yield the right type of data for proper/rigorous scientific validation.

15. In principle, the learning framework itself is technically immediately/easily applicable to any class of
simultaneous/one-shot games. Generalizing the algorithms and other theoretical results (e.g., on gener-
alization error) while maintaining the tractability in sample complexity and computation may require
significant effort.
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based statistical model for the behavioral data results from the approach to causal strategic
inference taken by Irfan and Ortiz (2014), which is strongly founded on PSNE.16

Note that our problem is unsupervised, i.e., we do not know a priori which joint actions
are PSNE and which ones are not. If our only goal were to find a game G in which all the
given observed data is an equilibrium, then any “dummy” game, such as the “dummy” LIG
G = (W,b),W = 0,b = 0, would be an optimal solution because |NE(G)| = 2n.17 In this
section, we present a probabilistic formulation that allows finding games that maximize the
empirical proportion of equilibria in the data while keeping the true proportion of equilibria
as low as possible. Furthermore, we show that trivial games such as LIGs with W = 0,b =
0, obtain the lowest log-likelihood.

4.1 Our Proposed Generative Model of Behavioral Data

We propose the following simple generative (mixture) model for behavioral data based
strictly in the context of “simultaneous”/one-shot play in non-cooperative game theory,
again motivated by Irfan and Ortiz (2014)’s PSNE-based approach to causal strategic in-
ference (CSI).18 Let G be a game. With some probability 0 < q < 1, a joint action x
is chosen uniformly at random from NE(G); otherwise, x is chosen uniformly at random
from its complement set {−1,+1}n − NE(G). Hence, the generative model is a mixture
model with mixture parameter q corresponding to the probability that a stable outcome
(i.e., a PSNE) of the game is observed, uniform over PSNE. Formally, the probability mass
function (PMF) over joint-behaviors {−1,+1}n parameterized by (G, q) is

p(G,q)(x) = q
1[x ∈ NE(G)]

|NE(G)| + (1− q) 1[x /∈ NE(G)]

2n − |NE(G)| , (1)

where we can think of q as the “signal” level, and thus 1− q as the “noise” level in the data
set.

Remark 1 Note that in order for Eq. (1) to be a valid PMF for any G, we need to enforce
the following conditions |NE(G)| = 0 ⇒ q = 0 and |NE(G)| = 2n ⇒ q = 1. Furthermore,
note that in both cases (|NE(G)| ∈ {0, 2n}) the PMF becomes a uniform distribution. We
also enforce the following condition:19 if 0 < |NE(G)| < 2n then q 6∈ {0, 1}.
16. The possibility that PSNE may not exist in some LIGs does not present a significant problem in our case

because we are learning the game, and can require that the LIG output has at least one PSNE. Indeed, in
our approach, games with no PSNE achieve the lowest possible likelihood within our generative model
of the data; said differently, games with PSNE have higher likelihoods than those that do not have any
PSNE.

17. Ng and Russell (2000) made a similar observation in the context of single-agent inverse reinforcement
learning (IRL).

18. Model “simplicity” and “abstractions” are not necessarily a bad thing in practice. More “realism” often
leads to more “complexity” in terms of model representation and computation; and to potentially poorer
generalization performance as well (Kearns and Vazirani, 1994). We believe that even if the data could
be the result of complex cognitive, behavioral or neuronal processes underlying human decision making
and social interactions, the practical guiding principle of model selection in ML, which governs the
fundamental tradeoff between model complexity and generalization performance, still applies.

19. We can easily remove this condition at the expense of complicating the theoretical analysis on the
generalization bounds because of having to deal with those extreme cases.
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4.2 On PSNE-Equivalence and PSNE-Identifiability of Games

For any valid value of mixture parameter q, the PSNE of a game G completely determines
our generative model p(G,q). Thus, given any such mixture parameter, two games with the
same set of PSNE will induce the same PMF over the space of joint actions.20

Definition 2 We say that two games G1 and G2 are PSNE-equivalent if and only if their
PSNE sets are identical, i.e., G1 ≡NE G2 ⇔ NE(G1) = NE(G2).

We often drop the “PSNE-” qualifier when clear from context.

Definition 3 We say a set Υ∗ of valid parameters (G, q) for the generative model is PSNE-
identifiable with respect to the PMF p(G,q) defined in Eq. (1), if and only if, for every pair
(G1, q1), (G2, q2) ∈ Υ∗, if p(G1,q1)(x) = p(G2,q2)(x) for all x ∈ {−1,+1}n then G1 ≡NE G2 and
q1 = q2. We say a game G is PSNE-identifiable with respect to Υ∗ and the p(G,q), if and
only if, there exists a q such that (G, q) ∈ Υ∗.

Definition 4 We define the true proportion of equilibria in the game G relative to all
possible joint actions as

π(G) ≡ |NE(G)|/2n . (2)

We also say that a game G is trivial if and only if |NE(G)| ∈ {0, 2n} (or equivalently π(G) ∈
{0, 1}), and non-trivial if and only if 0 < |NE(G)| < 2n (or equivalently 0 < π(G) < 1).

The following propositions establish that the condition q > π(G) ensures that the prob-
ability of an equilibrium is strictly greater than a non-equilibrium. The condition also
guarantees that non-trivial games are identifiable.

Proposition 5 Given a non-trivial game G, the mixture parameter q > π(G) if and only if
p(G,q)(x1) > p(G,q)(x2) for any x1 ∈ NE(G) and x2 /∈ NE(G).

Proof Note that p(G,q)(x1) = q/|NE(G)| > p(G,q)(x2) = (1 − q)/(2n − |NE(G)|) ⇔ q >
|NE(G)|/2n and given Eq. (2), we prove our claim.

Proposition 6 Let (G1, q1) and (G2, q2) be two valid generative-model parameter tuples.

(a) If G1 ≡NE G2 and q1 = q2 then (∀x) p(G1,q1)(x) = p(G2,q2)(x),

(b) Let G1 and G2 be also two non-trivial games such that q1 > π(G1) and q2 > π(G2). If
(∀x) p(G1,q1)(x) = p(G2,q2)(x), then G1 ≡NE G2 and q1 = q2.

20. It is not hard to come up with examples of multiple games that have the same PSNE set. In fact, later in
this section, we show three instances of LIGs with very different weight-matrix parameter that have this
property. Note that this is not a roadblock to our objectives of learning LIGs because our main interest
is the PSNE of the game, not the individual parameters that define it. We note that this situation is
hardly exclusive to game-theoretic models: an analogous issue occurs in probabilistic graphical models
(e.g., Bayesian networks).
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Proof Let NEk ≡ NE(Gk). First, we prove part (a). By Definition 2, G1 ≡NE G2 ⇒
NE1 = NE2. Note that p(Gk,qk)(x) in Eq. (1) depends only on characteristic functions
1[x ∈ NEk]. Therefore, (∀x) p(G1,q1)(x) = p(G2,q2)(x).

Second, we prove part (b) by contradiction. Assume, wlog, (∃x) x ∈ NE1 ∧ x /∈ NE2.
Then p(G1,q1)(x) = p(G2,q2)(x) implies by Eq. (1) that q1/|NE1| = (1− q2)/(2n − |NE2|) ⇒
q1/π(G1) = (1− q2)/(1− π(G2)) by Eq. (2). By assumption, we have q1 > π(G1), which im-
plies that (1−q2)/(1−π(G2)) > 1⇒ q2 < π(G2), a contradiction. Hence, we have G1 ≡NE G2.
Assume, q1 6= q2. Then we have p(G1,q1)(x) = p(G2,q2)(x) implies by Eq. (1) and G1 ≡NE G2

(and after some algebraic manipulations) that (q1 − q2)
(

1[x∈NE(G1)]
|NE(G1)| −

1[x/∈NE(G1)]
2n−|NE(G1)|

)
= 0 ⇒

1[x∈NE(G1)]
|NE(G1)| = 1[x/∈NE(G1)]

2n−|NE(G1)| , a contradiction.

The last proposition, along with our definitions of “trivial” (as given in Definition 4)
and “identifiable” (Definition 3), allows us to formally define our hypothesis space.

Definition 7 Let H be a class of games of interest. We call the set Υ ≡ {(G, q) | G ∈
H ∧ 0 < π(G) < q < 1} the hypothesis space of non-trivial identifiable games and mixture
parameters. We also refer to a game G ∈ H that is also in some tuple (G, q) ∈ Υ for some
q, as a non-trivial identifiable game.21

Remark 8 Recall that a trivial game induces a uniform PMF by Remark 1. Therefore,
a non-trivial game is not equivalent to a trivial game since by Proposition 5, non-trivial
games do not induce uniform PMFs.22

4.3 Additional Discussion on Modeling Choices

We now discuss other equilibrium concepts, such as mixed-strategy Nash equilibria (MSNE)
and quantal response equilibria (QRE). We also discuss a more sophisticated noise process as
well as a generalization of our model to non-uniform distributions; while likely more realistic,
the alternative models are mathematically more complex and potentially less tractable
computationally.

4.3.1 On Other Equilibrium Concepts

There is still quite a bit of debate as to the appropriateness of game-theoretic equilibrium
concepts to model individual human behavior in a social context. Camerer’s book on
behavioral game theory (Camerer, 2003) addresses some of the issues. Our interpretation

21. Technically, we should call the set Υ “the hypothesis space consisting of tuples of non-trivial games from
H and mixture parameters identifiable up to PSNE, with respect to the probabilistic model defined in
Eq. (1).” Similarly, we should call such game G “a non-trivial game from H identifiable up to PSNE,
with respect to the probabilistic model defined in Eq. (1).” We opted for brevity.

22. In general, Section 4.2 characterizes our hypothesis space (non-trivial identifiable games and mixture
parameters) via two specific conditions. The first condition, non-triviality (explained in Remark 1), is
0 < π(G) < 1. The second condition, identifiability of the PSNE set from its related PMF (discussed in
Propositions 5 and 6), is π(G) < q. For completeness, in this remark, we clarify that the class of trivial
games (uniform PMFs) is different from the class of non-trivial games (non-uniform PMFs). Thus, in
the rest of the paper we focus exclusively on non-trivial identifiable games; that is, games that produce
non-uniform PMFs and for which the PSNE set is uniquely identified from their PMFs.
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of Camerer’s position is not that Nash equilibria is universally a bad predictor but that it is
not consistently the best, for reasons that are still not well understood. This point is best
illustrated in Chapter 3, Figure 3.1 of Camerer (2003).

(Logit) quantal response equilibria (QRE) (McKelvey and Palfrey, 1995) has been pro-
posed as an alternative to Nash in the context of behavioral game theory. Models based on
QRE have been shown superior during initial play in some experimental settings, but prior
work assumes known structure and observed payoffs, and only the “precision/rationality
parameter” is estimated, e.g. Wright and Leyton-Brown (2010, 2012). In a logit QRE,
the precision parameter, typically denoted by λ, can be mathematically interpreted as the
inverse-temperature parameter of individual Gibbs distributions over the pure-strategy of
each player i.

It is customary to compute the MLE for λ from available data. To the best of our
knowledge, all work in QRE assumes exact knowledge of the game payoffs, and thus, no
method has been proposed to simultaneously estimate the payoff functions ui when they are
unknown. Indeed, computing MLE for λ, given the payoff functions, is relatively efficient
for normal-form games using standard techniques, but may be hard for graphical games; on
the other hand, MLE estimation of the payoff functions themselves within a QRE model
of behavior seems like a highly non-trivial optimization problem, and is unclear that it is
even computationally tractable, even in normal-form games. At the very least, standard
techniques do not apply and more sophisticated optimization algorithms or heuristics would
have to be derived. Such extensions are clearly beyond the scope of this paper.23

Wright and Leyton-Brown (2012) also considers even more mathematically complex
variants of behavioral models that combine QRE with different models that account for
constraints in “cognitive levels” of reasoning ability/effort, yet the estimation and usage of
such models still assumes knowledge of the payoff functions.

It would be fair to say that most of the human-subject experiments in behavioral game
theory involve only a handful of players (Camerer, 2003). The scalability of those results
to games with a large population of players is unclear.

Now, just as an example, we do not necessarily view the Senators final votes as those
of a single human individual anyway: after all, such a decision is (or should be) obtained
with consultation with their staff and (one would at least hope) the constituency of the
state they represent. Also, the final voting decision is taken after consultation or meetings
between the staff of the different senators. We view this underlying process as one of “cheap
talk.” While cheap talk may be an important process to study, in this paper, we just
concentrate on the end result: the final vote. The reason is more than just scientific; as the
congressional voting setting illustrates, data for such process is sometimes not available, or
would seem very hard to infer from the end-states alone. While our experiments concentrate
on congressional voting data, because it is publicly available and easy to obtain, the same
would hold for other settings such as Supreme court decisions, voluntary vaccination, UN
voting records and governmental decisions, to name a few. We speculate that in almost

23. Note that despite the apparent similarity in mathematical expression between logit QRE and the PSNE
of the LIG we obtain by using individual logistic regression, they are fundamentally different because
of the complex correlations that QRE conditions impose on the parameters (W,b) of the payoff func-
tions. It is unclear how to adapt techniques for logistic regression similar to the ones we used here to
efficiently/tractably compute MLE within the logit QRE framework.
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all those cases, only the end-result is likely to be recorded and little information would be
available about the “cheap talk” process or “pre-play” period leading to the final decision.

In our work we consider PSNE because of our motivation to provide LIGs for use within
the casual strategic inference framework for modeling “influence” in large-population net-
works of Irfan and Ortiz (2014). Note that the universality of MSNE does not diminish
the importance of PSNE in game theory.24 Indeed, a debate still exist within the game
theory community as to the justification for randomization, specially in human contexts.
While concentrating exclusively on PSNE may not make sense in all settings, it does make
sense in some.25 In addition, were we to introduce mixed-strategies into the inference and
learning framework and model, we would be adding a considerable amount of complexity
in almost all respects, thus requiring a substantive effort to study on its own.26

4.3.2 On the Noise Process

Here we discuss a more sophisticated noise process as well as a generalization of our model to
non-uniform distributions. The problem with these models is that they lead to a significantly
more complex expression for the generative model and thus likelihood functions. This is
in contrast to the simplicity afforded us by the generative model with a more global noise
process defined above. (See Appendix A.2.1 for further discussion.)

In this paper we considered a “global” noise process, modeled using a parameter q cor-
responding to the probability that a sample observation is an equilibrium of the underlying
hidden game. One could easily envision potentially better and more natural/realistic “local”
noise processes, at the expense of producing a significantly more complex generative model,
and less computationally amenable, than the one considered in this paper. For instance, we
could use a noise process that is formed of many independent, individual noise processes,
one for each player. (See Appendix A.2.2 for further discussion.)

4.4 Learning Games via MLE

We now formulate the problem of learning games as one of maximum likelihood estimation
with respect to our PSNE-based generative model defined in Eq. (1) and the hypothesis
space of non-trivial identifiable games and mixture parameters (Definition 7). We remind

24. Research work on the properties and computation of PSNE include Rosenthal (1973); Gilboa and Zemel
(1989); Stanford (1995); Rinott and Scarsini (2000); Fabrikant et al. (2004); Gottlob et al. (2005); Sureka
and Wurman (2005); Daskalakis and Papadimitriou (2006); Dunkel (2007); Dunkel and Schulz (2006);
Dilkina et al. (2007); Ackermann and Skopalik (2007); Hasan et al. (2008); Hasan and Galiana (2008);
Ryan et al. (2010); Chapman et al. (2010); Hasan and Galiana (2010).

25. For example, in the context of congressional voting, we believe Senators almost always have full-
information about how some, if not all other Senators they care about would vote. Said differently,
we believe uncertainty in a Senator’s final vote, by the time the vote is actually taken, is rare, and
certainly not the norm. Hence, it is unclear how much there is to gain, in this particular setting, by
considering possible randomization in the Senators’ voting strategies.

26. For example, note that because in our setting we learn exclusively from observed joint actions, we could
not assume knowledge of the internal mixed-strategies of players. Perhaps we could generalize our model
to allow for mixed-strategies by defining a process in which a joint mixed strategy p from the set of
MSNE (or its complement) is drawn according to some distribution, then a (pure-strategy) realization x
is drawn from p that would correspond to the observed joint actions. One problem we might face with
this approach is that little is known about the structure of MSNE in general multi-player games. For
example, it is not even clear that the set of MSNE is always measurable in general!
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the reader that our problem is unsupervised; that is, we do not know a priori which joint
actions are equilibria and which ones are not. We base our framework on the fact that
games are PSNE-identifiable with respect to their induced PMF, under the condition that
q > π(G), by Proposition 6.

First, we introduce a shorthand notation for the Kullback-Leibler (KL) divergence be-
tween two Bernoulli distributions parameterized by 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1:

KL(p1‖p2)≡ KL(Bernoulli(p1)‖Bernoulli(p2))

= p1 log p1
p2

+ (1− p1) log 1−p1
1−p2 .

(3)

Using this function, we can derive the following expression of the MLE problem.

Lemma 9 Given a data set D = {x(1), . . . ,x(m)}, define the empirical proportion of equi-
libria, i.e., the proportion of samples in D that are equilibria of G, as

π̂(G) ≡ 1
m

∑
l 1[x(l) ∈ NE(G)] . (4)

The MLE problem for the probabilistic model given in Eq. (1) can be expressed as finding:

(Ĝ, q̂) ∈ arg max(G,q)∈ΥL̂(G, q),where L̂(G, q) = KL(π̂(G)‖π(G))−KL(π̂(G)‖q)− n log 2 ,
(5)

where H and Υ are as in Definition 7, and π(G) is defined as in Eq. (2). Also, the optimal
mixture parameter q̂ = min(π̂(G), 1− 1

2m).

Proof LetNE ≡ NE(G), π ≡ π(G) and π̂ ≡ π̂(G). First, for a non-trivial G, log p(G,q)(x
(l)) =

log q
|NE| for x(l) ∈ NE , and log p(G,q)(x

(l)) = log 1−q
2n−|NE| for x(l) /∈ NE . The average log-

likelihood L̂(G, q) = 1
m

∑
l log pG,q(x

(l)) = π̂ log q
|NE| + (1 − π̂) log 1−q

2n−|NE| = π̂ log q
π + (1 −

π̂) log 1−q
1−π −n log 2. By adding 0 = −π̂ log π̂+ π̂ log π̂− (1− π̂) log(1− π̂)+(1− π̂) log(1− π̂),

this can be rewritten as L̂(G, q) = π̂ log π̂
π +(1−π̂) log 1−π̂

1−π−π̂ log π̂
q −(1−π̂) log 1−π̂

1−q −n log 2,
and by using Eq. (3) we prove our claim.

Note that by maximizing with respect to the mixture parameter q and by properties of
the KL divergence, we get KL(π̂‖q̂) = 0⇔ q̂ = π̂. We define our hypothesis space Υ given
the conditions in Remark 1 and Propositions 5 and 6. For the case π̂ = 1, we “shrink” the
optimal mixture parameter q̂ to 1 − 1

2m in order to enforce the second condition given in
Remark 1.

Remark 10 Recall that a trivial game (e.g., LIG G = (W,b),W = 0,b = 0, π(G) = 1)
induces a uniform PMF by Remark 1, and therefore its log-likelihood is −n log 2. Note that
the lowest log-likelihood for non-trivial identifiable games in Eq. (5) is −n log 2 by setting
the optimal mixture parameter q̂ = π̂(G) and given that KL(π̂(G)‖π(G)) ≥ 0.

Furthermore, Eq. (5) implies that for non-trivial identifiable games G, we expect the true
proportion of equilibria π(G) to be strictly less than the empirical proportion of equilibria
π̂(G) in the given data. This is by setting the optimal mixture parameter q̂ = π̂(G) and the
condition q > π(G) in our hypothesis space.
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4.4.1 Learning LIGs via MLE: Model Selection

Our main learning problem consists of inferring the structure and parameters of an LIG
from data with the main purpose being modeling the game’s PSNE, as reflected in the
generative model. Note that, as we have previously stated, different games (i.e., with dif-
ferent payoff functions) can be PSNE-equivalent. For instance, the three following LIGs,
with different weight parameter matrices, induce the same PSNE sets, i.e., NE(Wk,0) =
{(−1,−1,−1), (+1,+1,+1)} for k = 1, 2, 3:27

W1 =

 0 0 0
1/2 0 0
0 1 0

 , W2 =

 0 0 0
2 0 0
1 0 0

 , W3 =

 0 1 1
1 0 1
1 1 0

 .

Thus, not only the MLE may not be unique, but also all such PSNE-equivalent MLE games
will achieve the same level of generalization performance. But, as reflected by our generative
model, our main interest in the model parameters of the LIGs is only with respect to the
PSNE they induce, not the model parameters per se. Hence, all we need is a way to select
among PSNE-equivalent LIGs.

In our work, the indentifiability or interpretability of exact model parameters of LIGs is
not our main interest. That is, in the research presented here, we did not seek or attempt to
work on creating alternative generative models with the objective to provide a theoretical
guarantee that, given an infinite amount of data, we can recover the model parameters of an
unknown ground-truth model generating the data, assuming the ground-truth model is an
LIG. We opted for a more practical ML approach in which we just want to learn a single LIG
that has good generalization performance (i.e., predictive performance in terms of average
log-likelihood) with respect to our generative model. Given the nature of our generative
model, this essentially translate to learning an LIG that captures as best as possible the
PSNE of the unknown ground-truth game. Unfortunately, as we just illustrated, several
LIGs with different model parameter values can have the same set of PSNE. Thus, they all
would have the same (generalization) performance ability.

As we all know, model selection is core to ML. One of the reason we chose an ML-
approach to learning games is precisely the elegant way in which ML deals with the problem
of how to select among multiple models that achieve the same level of performance: invoke
the principle of Ockham’s razor and select the “simplest” model among those with the
same (generalization) performance. This ML philosophy is not ad hoc. It is instead well
established in practice and well supported by theory. Seminal results from the various
theories of learning, such as computational and statistical learning theory and PAC learning,
support the well-known ML adage that “learning requires bias.” In short, as is by now

27. Using the formal mathematical definition of “identifiability” in statistics, we would say that the LIG
examples prove that the model parameters (W,b) of an LIG G are not identifiable with respect to the
generative model p(G,q) defined in Eq. (1). We note that this situation is hardly exclusive to game-
theoretic models. As example of an analogous issue in probabilistic graphical models is the fact that
two Bayesian networks with different graph structures can represent not only the same conditional
independence properties but also exactly the same set of joint probability distributions (Chickering,
2002; Koller and Friedman, 2009).

As a side note, we can distinguish these games with respect to their larger set of mixed-strategy
Nash equilibria (MSNE), but, as stated previously, we do not consider MSNE in this paper because our
primary motivation is the work of Irfan and Ortiz (2014), which is based on the concept of PSNE.
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standard in an ML-approach, we measure the quality of our data-induced models via their
generalization ability and invoke the principle of Ockham’s razor to bias our search toward
simpler models using well-known and -studied regularization techniques.

Now, as we also all know, exactly what “simple” and “bias” means depends on the
problem. In our case, we would prefer games with sparse graphs, if for no reason other than
to simplify analysis, exploration, study, and (visual) “interpretability” of the game model by
human experts, everything else being equal (i.e., models with the same explanatory power
on the data as measured by the likelihoods).28 For example, among the LIGs presented
above, using structural properties alone, we would generally prefer the former two models
to the latter, all else being equal (e.g., generalization performance).

5. Generalization Bound and VC-Dimension

In this section, we show a generalization bound for the maximum likelihood problem as well
as an upper bound of the VC-dimension of LIGs. Our objective is to establish that with
probability at least 1−δ, for some confidence parameter 0 < δ < 1, the maximum likelihood
estimate is within ε > 0 of the optimal parameters, in terms of achievable expected log-
likelihood.

Given the ground-truth distribution Q of the data, let π̄(G) be the expected proportion
of equilibria, i.e.,

π̄(G) = PQ[x ∈ NE(G)] ,

and let L̄(G, q) be the expected log-likelihood of a generative model from game G and mixture
parameter q, i.e.,

L̄(G, q) = EQ[log p(G,q)(x)] .

Let θ̂ ≡ (Ĝ, q̂) be a maximum-likelihood estimate as in Eq. (5) (i.e., θ̂ ∈ arg maxθ∈ΥL̂(θ)),
and θ̄ ≡ (Ḡ, q̄) be the maximum-expected-likelihood estimate: θ̄ ∈ arg maxθ∈ΥL̄(θ).29 We
use, without formally re-stating, the last definitions in the technical results presented in the
remaining of this section.

Note that our hypothesis space Υ as stated in Definition 7 includes a continuous pa-
rameter q that could potentially have infinite VC-dimension. The following lemma will
allow us later to prove that uniform convergence for the extreme values of q implies uniform
convergence for all q in the domain.

28. Just to be clear, here we mean “interpretability” not in any formal mathematical sense, or as often used
in some areas of the social sciences such as economics. But, instead, as we typically use it in ML/AI
textbooks, such as for example, when referring to shallow/sparse decision trees, generally considered to
be easier to explain and understand. Similarly, the hope here is that the “sparsity” or “simplicity” of the
game graph/model would make it also simpler for human experts to explain or understand what about the
model is leading them to generate novel hypotheses, reach certain conclusions or make certain inferences
about the global strategic behavior of the agents/players, such as those based on the game’s PSNE and
facilitated by CSI. We should also point out that, in preliminary empirical work, we have observed that
the representationally sparser the LIG graph, the computationally easier it is for algorithms and other
heuristics that operate on the LIG, as those of Irfan and Ortiz (2014) for CSI, for example.

29. If the ground-truth model belongs to the class of LIGs, then θ̄ is also the ground-truth model, or PSNE-
equivalent to it.
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Lemma 11 Consider any game G and, for 0 < q′′ < q′ < q < 1, let θ = (G, q), θ′ = (G, q′)
and θ′′ = (G, q′′). If, for any ε > 0 we have |L̂(θ)− L̄(θ)| ≤ ε/2 and |L̂(θ′′)− L̄(θ′′)| ≤ ε/2,
then |L̂(θ′)− L̄(θ′)| ≤ ε/2.

Proof Let NE ≡ NE(G), π ≡ π(G), π̂ ≡ π̂(G), π̄ ≡ π̄(G), and E[·] and P[·] be the
expectation and probability with respect to the ground-truth distribution Q of the data.

First note that for any θ = (G, q), we have L̄(θ) = E[log p(G,q)(x)] = E[1[x ∈ NE ] log q
|NE|+

1[x /∈ NE ] log 1−q
2n−|NE| ] = P[x ∈ NE ] log q

|NE| + P[x /∈ NE ] log 1−q
2n−|NE| = π̄ log q

|NE| + (1 −
π̄) log 1−q

2n−|NE| = π̄ log
(

q
1−q ·

2n−|NE|
|NE|

)
+ log 1−q

2n−|NE| = π̄ log
(

q
1−q · 1−π

π

)
+ log 1−q

1−π − n log 2.

Similarly, for any θ = (G, q), we have L̂(θ) = π̂ log
(

q
1−q · 1−π

π

)
+ log 1−q

1−π − n log 2. So

that L̂(θ)− L̄(θ) = (π̂ − π̄) log
(

q
1−q · 1−π

π

)
.

Furthermore, the function q
1−q is strictly monotonically increasing for 0 ≤ q < 1. If

π̂ > π̄ then −ε/2 ≤ L̂(θ′′)− L̄(θ′′) < L̂(θ′)− L̄(θ′) < L̂(θ)− L̄(θ) ≤ ε/2. Else, if π̂ < π̄, we
have ε/2 ≥ L̂(θ′′) − L̄(θ′′) > L̂(θ′) − L̄(θ′) > L̂(θ) − L̄(θ) ≥ −ε/2. Finally, if π̂ = π̄ then
L̂(θ′′)− L̄(θ′′) = L̂(θ′)− L̄(θ′) = L̂(θ)− L̄(θ) = 0.

In the remaining of this section, denote by d(H) ≡ |∪G∈H{NE(G)}| the number of all
possible PSNE sets induced by games in H, the class of games of interest.

The following theorem shows that the expected log-likelihood of the maximum likelihood
estimate θ̂ converges in probability to that of the optimal θ̄ = (Ḡ, q̄), as the data size m
increases.

Theorem 12 The following holds with Q-probability at least 1− δ:

L̄(θ̂) ≥ L̄(θ̄)−
(

log max(2m, 1
1−q̄ ) + n log 2

)√
2
m

(
log d(H) + log 4

δ

)
.

Proof First our objective is to find a lower bound for P[L̄(θ̂)−L̄(θ̄) ≥ −ε] ≥ P[L̄(θ̂)−L̄(θ̄) ≥
−ε + (L̂(θ̂) − L̂(θ̄))] ≥ P[−L̂(θ̂) + L̄(θ̂) ≥ − ε

2 , L̂(θ̄) − L̄(θ̄) ≥ − ε
2 ] = P[L̂(θ̂) − L̄(θ̂) ≤

ε
2 , L̂(θ̄)− L̄(θ̄) ≥ − ε

2 ] = 1− P[L̂(θ̂)− L̄(θ̂) > ε
2 ∨ L̂(θ̄)− L̄(θ̄) < − ε

2 ].

Let q̃ ≡ max(1− 1
2m , q̄). Now, we have P[L̂(θ̂)−L̄(θ̂) > ε

2 ∨L̂(θ̄)−L̄(θ̄) < − ε
2 ] ≤ P[(∃θ ∈

Υ, q ≤ q̃) |L̂(θ) − L̄(θ)| > ε
2 ] = P[(∃θ,G ∈ H, q ∈ {π(G), q̃}) |L̂(θ) − L̄(θ)| > ε

2 ]. The last
equality follows from invoking Lemma 11.

Note that E[L̂(θ)] = L̄(θ) and that since π(G) ≤ q ≤ q̃, the log-likelihood is bounded
as (∀x) −B ≤ log p(G,q)(x) ≤ 0, where B = log 1

1−q̃ + n log 2 = log max(2m, 1
1−q̄ ) + n log 2.

Therefore, by Hoeffding’s inequality, we have P[|L̂(θ)− L̄(θ)| > ε
2 ] ≤ 2e−

mε2

2B2 .

Furthermore, note that there are 2d(H) possible parameters θ, since we need to con-
sider only two values of q ∈ {π(G), q̃}) and because the number of all possible PSNE sets
induced by games in H is d(H) ≡ |∪G∈H{NE(G)}|. Therefore, by the union bound we
get the following uniform convergence P[(∃θ,G ∈ H, q ∈ {π(G), q̃}) |L̂(θ) − L̄(θ)| > ε

2 ] ≤
4d(H)P[|L̂(θ)−L̄(θ)| > ε

2 ] ≤ 4d(H)e−
mε2

2B2 = δ. Finally, by solving for δ we prove our claim.
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Remark 13 A more elaborate analysis allows to tighten the bound in Theorem 12 from
O(log 1

1−q̄ ) to O(log q̄
1−q̄ ). We chose to provide the former result for clarity of presentation.

The following theorem establishes the complexity of the class of LIGs, which implies
that the term log d(H) of the generalization bound in Theorem 12 is only polynomial in the
number of players n.

Theorem 14 If H is the class of LIGs, then d(H) ≡ |∪G∈H{NE(G)}| ≤ 2n
n(n+1)

2
+1 ≤ 2n

3
.

Proof The logarithm of the number of possible pure-strategy Nash equilibria sets supported
byH (i.e., that can be produced by some game inH) is upper bounded by the VC-dimension
of the class of neural networks with a single hidden layer of n units and n+

(
n
2

)
input units,

linear threshold activation functions, and constant output weights.

For every LIG G = (W,b) inH, define the neural network with a single layer of n hidden
units, n of the inputs corresponds to the linear terms x1, . . . , xn and

(
n
2

)
corresponds to the

quadratic polynomial terms xixj for all pairs of players (i, j), 1 ≤ i < j ≤ n. For every
hidden unit i, the weights corresponding to the linear terms x1, . . . , xn are −b1, . . . ,−bn,
respectively, while the weights corresponding to the quadratic terms xixj are −wij , for all
pairs of players (i, j), 1 ≤ i < j ≤ n, respectively. The weights of the bias term of all the
hidden units are set to 0. All n output weights are set to 1 while the weight of the output
bias term is set to 0. The output of the neural network is 1[x /∈ NE(G)]. Note that we
define the neural network to classify non-equilibrium as opposed to equilibrium to keep the
convention in the neural network literature to define the threshold function to output 0 for
input 0. The alternative is to redefine the threshold function to output 1 instead for input
0.

Finally, we use the VC-dimension of neural networks (Sontag, 1998).

From Theorems 12 and 14, we state the generalization bounds for LIGs.

Corollary 15 The following holds with Q-probability at least 1− δ:

L̄(θ̂) ≥ L̄(θ̄)−
(

log max(2m, 1
1−q̄ ) + n log 2

)√
2
m

(
n3 log 2 + log 4

δ

)
,

where H is the class of LIGs, in which case Υ ≡ {(G, q) | G ∈ H ∧ 0 < π(G) < q < 1}
(Definition 7) becomes the hypothesis space of non-trivial identifiable LIGs and mixture
parameters.

6. Algorithms

In this section, we approximate the maximum likelihood problem by maximizing the number
of observed equilibria in the data, suitable for a hypothesis space of games with small true
proportion of equilibria. We then present our convex loss minimization approach. We also
discuss baseline methods such as sigmoidal approximation and exhaustive search.

But first, let us discuss some negative results that justifies the use of simple approaches.
Irfan and Ortiz (2014) showed that counting the number of Nash equilibria in LIGs is
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Algorithm 1 Sample-Picking for General Games

Input: Data set D = x(1), . . . ,x(m).
Compute the unique samples y(1), . . . ,y(U) and their frequency p̂(1), . . . , p̂(U) in the data set D.
Sort joint actions by their frequency such that p̂(1) ≥ p̂(2) ≥ · · · ≥ p̂(U).
for each unique sample k = 1, . . . , U do

Define Gk by the Nash equilibria set NE(Gk) = {y(1), . . . ,y(k)}.
Compute the log-likelihood L̂(Gk, q̂k) in Eq. (5) (Note that q̂k = π̂(G) = 1

m (p̂(1) + · · ·+ p̂(k)),

π(G) = k
2n ).

end for
Output: The game Gk̂ such that k̂ = arg maxkL̂(Gk, q̂k).

#P-complete; thus, computing the log-likelihood function, and therefore MLE, is NP-
hard.30 General approximation techniques such as pseudo-likelihood estimation do not
lead to tractable methods for learning LIGs.31 From an optimization perspective, the log-
likelihood function is not continuous because of the number of equilibria. Therefore, we
cannot rely on concepts such as Lipschitz continuity.32 Furthermore, bounding the number
of equilibria by known bounds for Ising models leads to trivial bounds.33

6.1 An Exact Quasi-Linear Method for General Games: Sample-Picking

As a first approach, consider solving the maximum likelihood estimation problem in Eq. (5)
by an exact exhaustive search algorithm. This algorithm iterates through all possible Nash
equilibria sets, i.e., for s = 0, . . . , 2n, we generate all possible sets of size s with elements
from the joint-action space {−1,+1}n. Recall that there exist

(
2n

s

)
of such sets of size s and

since
∑2n

s=0

(
2n

s

)
= 22n the search space is super-exponential in the number of players n.

Based on few observations, we can obtain an O(m logm) algorithm for m samples. First,
note that the above method does not constrain the set of Nash equilibria in any fashion.
Therefore, only joint actions that are observed in the data are candidates of being Nash
equilibria in order to maximize the log-likelihood. This is because the introduction of an

30. This is not a disadvantage relative to probabilistic graphical models, since computing the log-likelihood
function is also NP-hard for Ising models and Markov random fields in general, while learning is also
NP-hard for Bayesian networks.

31. We show that evaluating the pseudo-likelihood function for our generative model is NP-hard. Consider a
non-trivial LIG G = (W,b). Furthermore, assume G has a single non-absolutely-indifferent player i and
absolutely-indifferent players ∀j 6= i; that is, assume that (wi,−i, bi) 6= 0 and (∀j 6= i) (wj,−j , bj) = 0 (See
Definition 19). Let fi(x−i) ≡ wi,−i

Tx−i − bi, we have 1[x ∈ NE(G)] = 1[xifi(x−i) ≥ 0] and therefore

p(G,q)(x) = q
1[xifi(x−i)≥0]

|NE(G)| + (1 − q) 1−1[xifi(x−i)≥0]

2n−|NE(G)| . The result follows because computing |NE(G)| is

#P-complete, even for this specific instance of a single non-absolutely-indifferent player (Irfan and Ortiz,
2014).

32. To prove that counting the number of equilibria is not (Lipschitz) continuous, we show how small changes
in the parameters G = (W,b) can produce big changes in |NE(G)|. For instance, consider two games
Gk = (Wk,bk), where W1 = 0,b1 = 0, |NE(G1)| = 2n and W2 = ε(11T − I),b2 = 0, |NE(G2)| = 2 for
ε > 0. For ε→ 0, any `p-norm ‖W1 −W2‖p → 0 but |NE(G1)| − |NE(G2)| = 2n − 2 remains constant.

33. The log-partition function of an Ising model is a trivial bound for counting the number of equilibria.
To see this, let fi(x−i) ≡ wi,−i

Tx−i − bi, |NE(G)| =
∑

x

∏
i 1[xifi(x−i) ≥ 0] ≤

∑
x

∏
i e
xifi(x−i) =∑

x e
xTWx−bTx = Z( 1

2
(W + WT),b), where Z denotes the partition function of an Ising model. Given

the convexity of Z (Koller and Friedman, 2009), and that the gradient vanishes at W = 0,b = 0, we
know that Z( 1

2
(W + WT),b) ≥ 2n, which is the maximum |NE(G)|.
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unobserved joint action will increase the true proportion of equilibria without increasing
the empirical proportion of equilibria and thus leading to a lower log-likelihood in Eq. (5).
Second, given a fixed number of Nash equilibria k, the best strategy would be to pick the
k joint actions that appear more frequently in the observed data. This will maximize the
empirical proportion of equilibria, which will maximize the log-likelihood. Based on these
observations, we propose Algorithm 1.

As an aside note, the fact that general games do not constrain the set of Nash equilibria,
makes the method more likely to over-fit. On the other hand, LIGs will potentially include
unobserved equilibria given the linearity constraints in the search space, and thus they
would be less likely to over-fit.

6.2 An Exact Super-Exponential Method for LIGs: Exhaustive Search

Note that in the previous subsection, we search in the space of all possible games, not only
the LIGs. First note that sample-picking for linear games is NP-hard, i.e., at any iteration
of sample-picking, checking whether the set of Nash equilibria NE corresponds to an LIG
or not is equivalent to the following constraint satisfaction problem with linear constraints:

min
W,b

1

s.t. (∀x ∈ NE) x1(w1,−1
Tx−1 − b1) ≥ 0 ∧ · · · ∧ xn(wn,−n

Tx−n − bn) ≥ 0 ,
(∀x /∈ NE) x1(w1,−1

Tx−1 − b1) < 0 ∨ · · · ∨ xn(wn,−n
Tx−n − bn) < 0 .

(6)

Note that Eq. (6) contains “or” operators in order to account for the non-equilibria. This
makes the problem of finding the (W,b) that satisfies such conditions NP-hard for a non-
empty complement set {−1,+1}n −NE . Furthermore, since sample-picking only consider
observed equilibria, the search is not optimal with respect to the space of LIGs.

Regarding a more refined approach for enumerating LIGs only, note that in an LIG
each player separates hypercube vertices with a linear function, i.e., for v ≡ (wi,−i, bi)
and y ≡ (xix−i,−xi) ∈ {−1,+1}n we have xi(wi,−i

Tx−i − bi) = vTy. Assume we assign a
binary label to each vertex y, then note that not all possible labelings are linearly separable.
Labelings which are linearly separable are called linear threshold functions (LTFs). A lower
bound of the number of LTFs was first provided in Muroga (1965), which showed that the
number of LTFs is at least α(n) ≡ 20.33048n2

. Tighter lower bounds were shown later in
Yamija and Ibaraki (1965) for n ≥ 6 and in Muroga and Toda (1966) for n ≥ 8. Regarding
an upper bound, Winder (1960) showed that the number of LTFs is at most β(n) ≡ 2n

2
. By

using such bounds for all players, we can conclude that there is at least α(n)n = 20.33048n3

and at most β(n)n = 2n
3

LIGs (which is indeed another upper bound of the VC-dimension of
the class of LIGs; the bound in Theorem 14 is tighter and uses bounds of the VC-dimension
of neural networks). The bounds discussed above would bound the time-complexity of a
search algorithm if we could easily enumerate all LTFs for a single player. Unfortunately,
this seems to be far from a trivial problem. By using results in Muroga (1971), a weight

vector v with integer entries such that (∀i) |vi| ≤ β(n) ≡ (n+ 1)(n+1)/2/2n is sufficient to
realize all possible LTFs. Therefore we can conclude that enumerating LIGs takes at most

(2β(n) + 1)n
2 ≈ (

√
n+1
2 )

n3

steps, and we propose the use of this method only for n ≤ 4.
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For n = 4 we found that the number of possible PSNE sets induced by LIGs is 23,706.
Experimentally, we did not find differences between this method and sample-picking since
most of the time, the model with maximum likelihood was an LIG.

6.3 From Maximum Likelihood to Maximum Empirical Proportion of
Equilibria

We approximately perform maximum likelihood estimation for LIGs, by maximizing the
empirical proportion of equilibria, i.e., the equilibria in the observed data. This strategy
allows us to avoid computing π(G) as in Eq. (2) for maximum likelihood estimation (given
its dependence on |NE(G)|). We propose this approach for games with small true proportion
of equilibria with high probability, i.e., with probability at least 1−δ, we have π(G) ≤ κn

δ for
1/2 ≤ κ < 1. Particularly, we will show in Section 7 that for LIGs we have κ = 3/4. Given
this, our approximate problem relies on a bound of the log-likelihood that holds with high
probability. We also show that under very mild conditions, the parameters (G, q) belong to
the hypothesis space of the original problem with high probability.

First, we derive bounds on the log-likelihood function.

Lemma 16 Given a non-trivial game G with 0 < π(G) < π̂(G), the KL divergence in the
log-likelihood function in Eq. (5) is bounded as follows:

−π̂(G) log π(G)− log 2 < KL(π̂(G)‖π(G)) < −π̂(G) log π(G) .

Proof Let π ≡ π(G) and π̂ ≡ π̂(G). Note that α(π) ≡ limπ̂→0KL(π̂‖π) = 0,34 and
β(π) ≡ limπ̂→1KL(π̂‖π) = − log π ≤ n log 2. Since the function is convex we can upper-
bound it by α(π) + (β(π)− α(π))π̂ = −π̂ log π.

To find a lower bound, we find the point in which the derivative of the original function
is equal to the slope of the upper bound, i.e., ∂KL(π̂‖π)

∂π̂ = β(π) − α(π) = − log π, which
gives π̂∗ = 1

2−π . Then, the maximum difference between the upper bound and the original
function is given by limπ→0−π̂∗ log π −KL(π̂∗‖π) = log 2.

Note that the lower and upper bounds are very informative when π(G) → 0 (or in our
setting when n→ +∞), since log 2 becomes small when compared to − log π(G), as shown
in Figure 2.

Next, we derive the problem of maximizing the empirical proportion of equilibria from
the maximum likelihood estimation problem.

Theorem 17 Assume that with probability at least 1−δ we have π(G) ≤ κn

δ for 1/2 ≤ κ < 1.
Maximizing a lower bound (with high probability) of the log-likelihood in Eq. (5) is equivalent

34. Here we are making the implicit assumption that π < π̂. This is sensible. For example, in most models
learned from the congressional voting data using a variety of learning algorithms we propose, the total
number of PSNE would range roughly from 100K—1M; using base 2, this is roughly from 216—220. This
may look like a huge number until one recognizes that there could potential be 2100 PSNE. Hence, we
have that π would be in the range of 2−84—2−80. In fact, we believe this holds more broadly because,
as a general objective, we want models that can capture as many PSNE behavior as possible but no
more than needed, which tend to reduce the PSNE of the learned models, and thus their π values, while
simultaneously trying to increase π̂ as much as possible.
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Figure 2: KL divergence (blue) and bounds derived in Lemma 16 (red) for π = (3/4)n

where n = 9 (left), n = 18 (center) and n = 36 (right). Note that the bounds are
very informative when n→ +∞ (or equivalently when π → 0).

to maximizing the empirical proportion of equilibria:

max
G∈H

π̂(G) , (7)

furthermore, for all games G such that π̂(G) ≥ γ for some 0 < γ < 1/2, for sufficiently large
n > logκ (δγ) and optimal mixture parameter q̂ = min(π̂(G), 1 − 1

2m), we have (G, q̂) ∈ Υ,
where Υ = {(G, q) | G ∈ H ∧ 0 < π(G) < q < 1} is the hypothesis space of non-trivial
identifiable games and mixture parameters.

Proof By applying the lower bound in Lemma 16 in Eq. (5) to non-trivial games, we
have L̂(G, q̂) = KL(π̂(G)‖π(G))−KL(π̂(G)‖q̂)− n log 2 > −π̂(G) log π(G)−KL(π̂(G)‖q̂)−
(n + 1) log 2. Since π(G) ≤ κn

δ , we have − log π(G) ≥ − log κn

δ . Therefore L̂(G, q̂) >
−π̂(G) log κn

δ −KL(π̂(G)‖q̂)− (n+1) log 2. Regarding the term KL(π̂(G)‖q̂), if π̂(G) < 1⇒
KL(π̂(G)‖q̂) = KL(π̂(G)‖π̂(G)) = 0, and if π̂(G) = 1 ⇒ KL(π̂(G)‖q̂) = KL(1‖1 − 1

2m) =
− log(1− 1

2m) ≤ log 2 and approaches 0 when m→ +∞. Maximizing the lower bound of the
log-likelihood becomes maxG∈H π̂(G) by removing the constant terms that do not depend
on G.

In order to prove (G, q̂) ∈ Υ we need to prove 0 < π(G) < q̂ < 1. For proving the first
inequality 0 < π(G), note that π̂(G) ≥ γ > 0, and therefore G has at least one equilibria.
For proving the third inequality q̂ < 1, note that q̂ = min(π̂(G), 1 − 1

2m) < 1. For prov-
ing the second inequality π(G) < q̂, we need to prove π(G) < π̂(G) and π(G) < 1 − 1

2m .
Since π(G) ≤ κn

δ and γ ≤ π̂(G), it suffices to prove κn

δ < γ ⇒ π(G) < π̂(G). Simi-
larly we need to prove κn

δ < 1 − 1
2m ⇒ π(G) < 1 − 1

2m . Putting both together, we have
κn

δ < min(γ, 1− 1
2m) = γ since γ < 1/2 and 1− 1

2m ≥ 1/2. Finally, κ
n

δ < γ ⇔ n > logκ (δγ).

6.4 A Non-Concave Maximization Method: Sigmoidal Approximation

A very simple optimization approach can be devised by using a sigmoid in order to approx-
imate the 0/1 function 1[z ≥ 0] in the maximum likelihood problem of Eq. (5) as well as
when maximizing the empirical proportion of equilibria as in Eq. (7). We use the following
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sigmoidal approximation:

1[z ≥ 0] ≈ Hα,β(z) ≡ 1
2(1 + tanh( zβ − arctanh(1− 2α1/n))) . (8)

The additional term α ensures that for G = (W,b),W = 0,b = 0 we get 1[x ∈ NE(G)] ≈
Hα,β(0)n = α. We perform gradient ascent on these objective functions that have many
local maxima. Note that when maximizing the “sigmoidal” likelihood, each step of the
gradient ascent is NP-hard due to the “sigmoidal” true proportion of equilibria. Therefore,
we propose the use of the sigmoidal maximum likelihood only for n ≤ 15.

In our implementation, we add an `1-norm regularizer −ρ‖W‖1 where ρ > 0 to both
maximization problems. The `1-norm regularizer encourages sparseness and attempts to
lower the generalization error by controlling over-fitting.

6.5 Our Proposed Approach: Convex Loss Minimization

From an optimization perspective, it is more convenient to minimize a convex objective
instead of a sigmoidal approximation in order to avoid the many local minima.

Note that maximizing the empirical proportion of equilibria in Eq. (7) is equivalent to
minimizing the empirical proportion of non-equilibria, i.e., minG∈H (1− π̂(G)). Further-
more, 1− π̂(G) = 1

m

∑
l 1[x(l) /∈ NE(G)]. Denote by ` the 0/1 loss, i.e., `(z) = 1[z < 0]. For

LIGs, maximizing the empirical proportion of equilibria in Eq. (7) is equivalent to solving
the loss minimization problem:

min
W,b

1

m

∑
l

max
i
`(x

(l)
i (wi,−i

Tx
(l)
−i − bi)) . (9)

We can further relax this problem by introducing convex upper bounds of the 0/1 loss.
Note that the use of convex losses also avoids the trivial solution of Eq. (9), i.e., W =
0,b = 0 (which obtains the lowest log-likelihood as discussed in Remark 10). Intuitively
speaking, note that minimizing the logistic loss `(z) = log(1 + e−z) will make z → +∞,
while minimizing the hinge loss `(z) = max (0, 1− z) will make z → 1 unlike the 0/1 loss
`(z) = 1[z < 0] that only requires z = 0 in order to be minimized. In what follows, we
develop four efficient methods for solving Eq. (9) under specific choices of loss functions,
i.e., hinge and logistic.

In our implementation, we add an `1-norm regularizer ρ‖W‖1 where ρ > 0 to all the
minimization problems. The `1-norm regularizer encourages sparseness and attempts to
lower the generalization error by controlling over-fitting.

6.5.1 Independent Support Vector Machines and Logistic Regression

We can relax the loss minimization problem in Eq. (9) by using the loose bound maxi `(zi) ≤∑
i `(zi). This relaxation simplifies the original problem into several independent problems.

For each player i, we train the weights (wi,−i, bi) in order to predict independent (disjoint)
actions. This leads to 1-norm SVMs of Bradley and Mangasarian (1998); Zhu et al. (2004)
and `1-regularized logistic regression. We solve the latter with the `1-projection method
of Schmidt et al. (2007a). While the training is independent, our goal is not the predic-
tion for independent players but the characterization of joint actions. The use of these
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well known techniques in our context is novel, since we interpret the output of SVMs and
logistic regression as the parameters of an LIG. Therefore, we use the parameters to mea-
sure empirical and true proportion of equilibria, KL divergence and log-likelihood in our
probabilistic model.

6.5.2 Simultaneous Support Vector Machines

While converting the loss minimization problem in Eq. (9) by using loose bounds allow to
obtain several independent problems with small number of variables, a second reasonable
strategy would be to use tighter bounds at the expense of obtaining a single optimization
problem with a higher number of variables.

For the hinge loss `(z) = max (0, 1− z), we have maxi `(zi) = max (0, 1− z1, . . . , 1− zn)
and the loss minimization problem in Eq. (9) becomes the following primal linear program:

min
W,b,ξ

1

m

∑
l

ξl + ρ‖W‖1

s.t. (∀l, i) x(l)
i (wi,−i

Tx
(l)
−i − bi) ≥ 1− ξl , (∀l) ξl ≥ 0 ,

(10)

where ρ > 0.

Note that Eq. (10) is equivalent to a linear program since we can set W = W+ −W−,
‖W‖1 =

∑
ij w

+
ij + w−ij and add the constraints W+ ≥ 0 and W− ≥ 0. We follow the

regular SVM derivation by adding slack variables ξl for each sample l. This problem is a
generalization of 1-norm SVMs of Bradley and Mangasarian (1998); Zhu et al. (2004).

By Lagrangian duality, the dual of the problem in Eq. (10) is the following linear pro-
gram:

max
α

∑
li

αli

s.t. (∀i) ‖∑l αlix
(l)
i x

(l)
−i‖∞ ≤ ρ , (∀l, i) αli ≥ 0 ,

(∀i) ∑l αlix
(l)
i = 0 , (∀l) ∑i αli ≤ 1

m .

(11)

Furthermore, strong duality holds in this case. Note that Eq. (11) is equivalent to a linear
program since we can transform the constraint ‖c‖∞ ≤ ρ into −ρ1 ≤ c ≤ ρ1.

6.5.3 Simultaneous Logistic Regression

For the logistic loss `(z) = log(1+e−z), we could use the non-smooth loss maxi `(zi) directly.
Instead, we chose a smooth upper bound, i.e., log(1 +

∑
i e
−zi). The following discussion

and technical lemma provides the reason behind our us of this simultaneous logistic loss.

Given that any loss `(z) is a decreasing function, the following identity holds maxi `(zi) =
`(mini zi). Hence, we can either upper-bound the max function by the logsumexp function
or lower-bound the min function by a negative logsumexp. We chose the latter option for the
logistic loss for the following reasons: Claim i of the following technical lemma shows that
lower-bounding min generates a loss that is strictly less than upper-bounding max. Claim
ii shows that lower-bounding min generates a loss that is strictly less than independently
penalizing each player. Claim iii shows that there are some cases in which upper-bounding
max generates a loss that is strictly greater than independently penalizing each player.
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Lemma 18 For the logistic loss `(z) = log(1+e−z) and a set of n > 1 numbers {z1, . . . , zn}:

i. (∀z1, . . . , zn) maxi `(zi) ≤ ` (− log
∑

i e
−zi) < log

∑
i e
`(zi) ≤ maxi `(zi) + log n ,

ii. (∀z1, . . . , zn) ` (− log
∑

i e
−zi) <

∑
i `(zi) ,

iii. (∃z1, . . . , zn) log
∑

i e
`(zi) >

∑
i `(zi) .

Proof Given a set of numbers {a1, . . . , an}, the max function is bounded by the logsumexp
function by maxi ai ≤ log

∑
i e
ai ≤ maxi ai + log n (Boyd and Vandenberghe, 2006). Equiv-

alently, the min function is bounded by mini ai − log n ≤ − log
∑

i e
−ai ≤ mini ai.

These identities allow us to prove two inequalities in Claim i, i.e., maxi `(zi) = `(mini zi) ≤
` (− log

∑
i e
−zi) and log

∑
i e
`(zi) ≤ maxi `(zi) + log n. To prove the remaining inequality

` (− log
∑

i e
−zi) < log

∑
i e
`(zi), note that for the logistic loss ` (− log

∑
i e
−zi) = log(1 +∑

i e
−zi) and log

∑
i e
`(zi) = log(n+

∑
i e
−zi). Since n > 1, strict inequality holds.

To prove Claim ii, we need to show that ` (− log
∑

i e
−zi) = log(1+

∑
i e
−zi) <

∑
i `(zi) =∑

i log(1 + e−zi). This is equivalent to 1 +
∑

i e
−zi <

∏
i (1 + e−zi) =

∑
c∈{0,1}n e

−cTz =

1 +
∑

i e
−zi +

∑
c∈{0,1}n,1Tc>1 e

−cTz. Finally, we have
∑

c∈{0,1}n,1Tc>1 e
−cTz > 0 because

the exponential function is strictly positive.

To prove Claim iii, it suffices to find set of numbers {z1, . . . , zn} for which log
∑

i e
`(zi) =

log(n +
∑

i e
−zi) >

∑
i `(zi) =

∑
i log(1 + e−zi). This is equivalent to n +

∑
i e
−zi >∏

i (1 + e−zi). By setting (∀i) zi = log n, we reduce the claim we want to prove to n+ 1 >
(1+ 1

n)n. Strict inequality holds for n > 1. Furthermore, note that limn→+∞ (1 + 1
n)n = e.

Returning to our simultaneous logistic regression formulation, the loss minimization
problem in Eq. (9) becomes

min
W,b

1

m

∑
l

log(1 +
∑

i e
−x(l)i (wi,−iTx

(l)
−i−bi)) + ρ‖W‖1 , (12)

where ρ > 0.

In our implementation, we use the `1-projection method of Schmidt et al. (2007a) for
optimizing Eq. (12). This method performs a limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) step in an expanded model (i.e., W = W+−W−, ‖W‖1 =

∑
ij w

+
ij + w−ij)

followed by a projection onto the non-negative orthant to enforce W+ ≥ 0 and W− ≥ 0.

7. On the True Proportion of Equilibria

In this section, we justify the use of convex loss minimization for learning the structure and
parameters of LIGs. We define absolute indifference of players and show that our convex loss
minimization approach produces games in which all players are non-absolutely-indifferent.
We then provide a bound of the true proportion of equilibria with high probability. Our
bound assumes independence of weight vectors among players, and applies to a large fam-
ily of distributions of weight vectors. Furthermore, we do not assume any connectivity
properties of the underlying graph.

Parallel to our analysis, Daskalakis et al. (2011) analyzed a different setting: random
games which structure is drawn from the Erdős-Rényi model (i.e., each edge is present
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independently with the same probability p) and utility functions which are random tables.
The analysis in Daskalakis et al. (2011), while more general than ours (which only focus on
LIGs), it is at the same time more restricted since it assumes either the Erdős-Rényi model
for random structures or connectivity properties for deterministic structures.

7.1 Convex Loss Minimization Produces Non-Absolutely-Indifferent Players

First, we define the notion of absolute indifference of players. Our goal in this subsection is
to show that our proposed convex loss algorithms produce LIGs in which all players are non-
absolutely-indifferent and therefore every player defines constraints to the true proportion
of equilibria.

Definition 19 Given an LIG G = (W,b), we say a player i is absolutely indifferent if
and only if (wi,−i, bi) = 0, and non-absolutely-indifferent if and only if (wi,−i, bi) 6= 0.

Next, we concentrate on the first ingredient for our bound of the true proportion of
equilibria. We show that independent and simultaneous SVM and logistic regression pro-
duce games in which all players are non-absolutely-indifferent except for some “degenerate”
cases. The following lemma applies to independent SVMs for c(l) = 0 and simultaneous

SVMs for c(l) = max(0,maxj 6=i (1− x(l)
j (wi,−i

Tx
(l)
−i − bi))).

Lemma 20 Given (∀l) c(l) ≥ 0, the minimization of the hinge training loss ̂̀(wi,−i, bi) =
1
m

∑
l max(c(l), 1− x(l)

i (wi,−i
Tx

(l)
−i − bi)) guarantees non-absolutely-indifference of player i

except for some “degenerate” cases, i.e., the optimal solution (w∗i,−i, b
∗
i ) = 0 if and only if

(∀j 6= i)
∑

l 1[x
(l)
i x

(l)
j =1]u(l) =

∑
l 1[x

(l)
i x

(l)
j =−1]u(l) and

∑
l 1[x

(l)
i =1]u(l) =

∑
l 1[x

(l)
i =−1]u(l)

where u(l) is defined as c(l) > 1⇔ u(l) = 0, c(l) < 1⇔ u(l) = 1 and c(l) = 1⇔ u(l) ∈ [0; 1].

Proof Let fi(x−i) ≡ wi,−i
Tx−i−bi. By noting that max(α, β) = max0≤u≤1 (α+ u(β − α)),

we can rewrite ̂̀(wi,−i, bi) = 1
m

∑
l max0≤u(l)≤1 (c(l) + u(l)(1− x(l)

i fi(x
(l)
−i)− c(l))).

Note that ̂̀has the minimizer (w∗i,−i, b
∗
i ) = 0 if and only if 0 belongs to the subdifferential

set of the non-smooth function ̂̀ at (wi,−i, bi) = 0. In order to maximize ̂̀, we have

c(l) > 1 − x
(l)
i fi(x

(l)
−i) ⇔ u(l) = 0, c(l) < 1 − x

(l)
i fi(x

(l)
−i) ⇔ u(l) = 1 and c(l) = 1 −

x
(l)
i fi(x

(l)
−i)⇔ u(l) ∈ [0; 1]. The previous rules simplify at the solution under analysis, since

(wi,−i, bi) = 0⇒ fi(x
(l)
−i) = 0.

Let gj(wi,−i, bi) ≡ ∂ ̂̀
∂wij

(wi,−i, bi) and h(wi,−i, bi) ≡ ∂ ̂̀
∂bi

(wi,−i, bi). By making (∀j 6=
i) 0 ∈ gj(0, 0) and 0 ∈ h(0, 0), we get (∀j 6= i)

∑
l x

(l)
i x

(l)
j u

(l) = 0 and
∑

l x
(l)
i u

(l) = 0.

Finally, by noting that x
(l)
i ∈ {−1, 1}, we prove our claim.

Remark 21 Note that for independent SVMs, the “degenerate” cases in Lemma 20 simplify

to (∀j 6= i)
∑

l 1[x
(l)
i x

(l)
j = 1] = m

2 and
∑

l 1[x
(l)
i = 1] = m

2 .

The following lemma applies to independent logistic regression for c(l) = 0 and simulta-

neous logistic regression for c(l) =
∑

j 6=i e
−x(l)j (wi,−iTx

(l)
−i−bi).
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Lemma 22 Given (∀l) c(l) ≥ 0, the minimization of the logistic training loss ̂̀(wi,−i, bi) =
1
m

∑
l log(c(l) + 1 + e−x

(l)
i (wi,−iTx

(l)
−i−bi)) guarantees non-absolutely-indifference of player i ex-

cept for some “degenerate” cases, i.e., the optimal solution (w∗i,−i, b
∗
i ) = 0 if and only if

(∀j 6= i)
∑

l

1[x
(l)
i x

(l)
j =1]

c(l)+2
=
∑

l

1[x
(l)
i x

(l)
j =−1]

c(l)+2
and

∑
l

1[x
(l)
i =1]

c(l)+2
=
∑

l
1[x

(l)
i =−1]

c(l)+2
.

Proof Note that ̂̀ has the minimizer (w∗i,−i, b
∗
i ) = 0 if and only if the gradient of

the smooth function ̂̀ is 0 at (wi,−i, bi) = 0. Let gj(wi,−i, bi) ≡ ∂ ̂̀
∂wij

(wi,−i, bi) and

h(wi,−i, bi) ≡ ∂ ̂̀
∂bi

(wi,−i, bi). By making (∀j 6= i) gj(0, 0) = 0 and h(0, 0) = 0, we get

(∀j 6= i)
∑

l

x
(l)
i x

(l)
j

c(l)+2
= 0 and

∑
l
x
(l)
i

c(l)+2
= 0. Finally, by noting that x

(l)
i ∈ {−1, 1}, we prove

our claim.

Remark 23 Note that for independent logistic regression, the “degenerate” cases in Lemma

22 simplify to (∀j 6= i)
∑

l 1[x
(l)
i x

(l)
j = 1] = m

2 and
∑

l 1[x
(l)
i = 1] = m

2 .

Based on these results, after termination of our proposed algorithms, we fix cases in
which the optimal solution (w∗i,−i, b

∗
i ) = 0 by setting b∗i = 1 if the action of player i was

mostly −1 or b∗i = −1 otherwise. We point out to the careful reader that we did not include
the `1-regularization term in the above proofs since the subdifferential of ρ‖wi,−i‖1 vanishes
at wi,−i = 0, and therefore our proofs still hold.

7.2 Bounding the True Proportion of Equilibria

In what follows, we concentrate on the second ingredient for our bound of the true proportion
of equilibria. We show a bound for a single non-absolutely-indifferent player and a fixed
joint-action x, that interestingly does not depend on the specific joint-action x. This is a
key ingredient for bounding the true proportion of equilibria in our main theorem.

Lemma 24 Given an LIG G = (W,b) with non-absolutely-indifferent player i, assume
that (wi,−i, bi) is a random vector drawn from a distribution Pi. If for all x ∈ {−1,+1}n,
PPi [xi(wi,−i

Tx−i − bi) = 0] = 0, then

i. for all x, PPi [xi(wi,−i
Tx−i − bi) ≥ 0] = PPi [xi(wi,−i

Tx−i − bi) ≤ 0]

if and only if, for all x, PPi [xi(wi,−i
Tx−i − bi) ≥ 0] = 1/2 .

If Pi is a uniform distribution of support {−1,+1}n, then

ii. for all x, PPi [xi(wi,−i
Tx−i − bi) ≥ 0] ∈ [1/2, 3/4] .

Proof Claim i follows immediately from a simple condition we obtain from the normal-
ization axiom of probability and the hypothesis of the claim: i.e., for all x ∈ {−1,+1}n,
PPi [xi(wi,−i

Tx−i − bi) ≥ 0] + PPi [xi(wi,−i
Tx−i − bi) ≤ 0] = 1.

To prove Claim ii, first let v ≡ (wi,−i, bi) and y ≡ (xix−i,−xi) ∈ {−1,+1}n. Note that
xi(wi,−i

Tx−i − bi) = vTy. Then, let f1(v−1,y) ≡ v−1
Ty−1 + y1. Note that (v1, v1v−1)
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spans all possible vectors in {−1,+1}n. Because Pi is a uniform distribution of support
{−1,+1}n, we have:

PPi [v
Ty ≥ 0] = 1

2n
∑

v 1[vTy ≥ 0]

= 1
2n
∑

v 1[v1f1(v−1,y) ≥ 0]

= 1
2n
∑

v (1[v1 = +1]1[f1(v−1,y) ≥ 0] + 1[v1 = −1]1[f1(v−1,y) ≤ 0])

= 1
2n
∑

v−1
(1[f1(v−1,y) ≥ 0] + 1[f1(v−1,y) ≤ 0])

= 2n−1

2n + 1
2n
∑

v−1
1[f1(v−1,y) = 0]

= 1/2 + 1
2nα(y)

where α(y) ≡ ∑v−1
1[f1(v−1,y) = 0] =

∑
v−1

1[v−1
Ty−1 + y1 = 0]. Note that α(y) ≥ 0

and thus, PPi [vTy ≥ 0] ≥ 1/2. Geometrically speaking, α(y) is the number of vertices of the
(n−1)-dimensional hypercube that are covered by the hyperplane with normal y−1 and bias
y1. Recall that y 6= 0 since y ∈ {−1,+1}n. By relaxing this fact, as noted in Aichholzer
and Aurenhammer (1996) a hyperplane with n − 2 zeros on y−1 (i.e., a (n − 2)-parallel
hyperplane) covers exactly half of the 2n−1 vertices, the maximum possible. Therefore,

PPi [vTy ≥ 0] = 1/2 + 1
2nα(y) ≤ 1/2 + 2n−2

2n = 3/4.

Remark 25 It is important to note that under the conditions of Lemma 24, in a measure-
theoretic sense, for almost all vectors (wi,−i, bi) in the surface of the hypersphere in n-
dimensions (i.e., except for a set of Lebesgue-measure zero), we have that, xi(wi,−i

Tx−i −
bi) 6= 0 for all x ∈ {−1,+1}n. Hence, the hypothesis stated for Claim i of Lemma 24 holds
for almost all probability measures Pi (i.e., except for a set of probability measures, over the
surface of the hypersphere in n-dimensions, with Lebesgue-measure zero). Note that Claim
ii essentially states that we can still upper bound, for all x ∈ {−1,+1}n, the probability that
such x is a PSNE of a random LIG even if we draw the weights and threshold parameters
from a Pi belonging to such sets of Lebesgue-measure zero.

Remark 26 Note that any distribution that has zero mean and that depends on some norm
of (wi,−i, bi) fulfills the requirements for Claim i of Lemma 24. This includes, for instance,
the multivariate normal distribution with arbitrary covariance which is related to the Bhat-
tacharyya norm. Additionally, any distribution in which each entry of the vector (wi,−i, bi)
is independent and symmetric also fulfills those requirements. This includes, for instance,
the Laplace and uniform distributions. Furthermore, note that distributions with support on
non-empty subsets of entries of (wi,−i, bi), as well as mixtures of the above cases are also
allowed. This includes, for instance, sparse graphs.

Next, we present our bound for the true proportion of equilibria of games in which all
players are non-absolutely-indifferent.

Theorem 27 Assume that all players are non-absolutely-indifferent and that the rows of
an LIG G = (W,b) are independent (but not necessarily identically distributed) random
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vectors, i.e., for every player i, (wi,−i, bi) is independently drawn from an arbitrary distri-
bution Pi. If for all i and x, PPi [xi(wi,−i

Tx−i − bi) ≥ 0] ≤ κ for 1/2 ≤ κ < 1, then the
expected true proportion of equilibria is bounded as

EP1,...,Pn [π(G)] ≤ κn .

Furthermore, the following high probability statement

PP1,...,Pn [π(G) ≤ κn

δ ] ≥ 1− δ

holds.

Proof Let fi(wi,−i, bi,x) ≡ 1[xi(wi,−i
Tx−i − bi) ≥ 0] and P ≡ {P1, . . . ,Pn}. By Eq. (2),

EP [π(G)] = 1
2n
∑

x EP [
∏
i fi(wi,−i, bi,x)]. For any x, f1(w1,−1, b1,x), . . . , fn(wn,−n, bn,x)

are independent since (w1,−1, b1), . . . , (wn,−n, bn) are independently distributed. Thus,
EP [π(G)] = 1

2n
∑

x

∏
i EPi [fi(wi,−i, bi,x)]. Since for all i and x, EPi [fi(wi,−i, bi,x)] =

PPi [xi(wi,−i
Tx−i − bi) ≥ 0] ≤ κ, we have EP [π(G)] ≤ κn.

By Markov’s inequality, given that π(G) ≥ 0, we have PP [π(G) ≥ c] ≤ EP [π(G)]
c ≤ κn

c .
For c = κn

δ ⇒ PP [π(G) ≥ κn

δ ] ≤ δ ⇒ PP [π(G) ≤ κn

δ ] ≥ 1− δ.

Remark 28 Under the same assumptions of Theorem 27, it is possible to prove that with

probability at least 1 − δ we have π(G) ≤ κn +
√

1
2 log 1

δ by using Hoeffding’s lemma. We

point out that such a bound is not better than the Markov’s bound derived above.

8. Experimental Results

For learning LIGs we used our convex loss methods: independent and simultaneous SVM
and logistic regression (See Section 6.5). Additionally, we used the (super-exponential)
exhaustive search method (See Section 6.2) only for n ≤ 4. As a baseline, we used the (NP-
hard) sigmoidal maximum likelihood only for n ≤ 15 as well as the sigmoidal maximum
empirical proportion of equilibria (See Section 6.4). Regarding the parameters α and β our
sigmoidal function in Eq. (8), we found experimentally that α = 0.1 and β = 0.001 achieved
the best results.

For reasons briefly discussed at the end of Section 2.1, we have little interest in deter-
mining how much worst game-theoretic models are relative to probabilistic models when
applied to data from purely probabilistic processes, without any strategic component, as we
think this to be a futile exercise. We believe the same is true for evaluating the quality
of a probabilistic graphical model vs. a game-theoretic model when applied to strategic
behavioral data, resulting from a process defined by game-theoretic concepts based on the
(stable) outcomes of a game. Nevertheless, we summarize some experiments in Figure 3
that should help illustrate the point of discussed at the end of Section 2.1.

Still, for scientific curiosity, we compare LIGs to learning Ising models. Once again,
our goal is not to show the superiority of either games or Ising models. For n ≤ 15
players, we perform exact `1-regularized maximum likelihood estimation by using the FO-
BOS algorithm (Duchi and Singer, 2009a,b) and exact gradients of the log-likelihood of
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Figure 3: On the Distinction between Game-Theoretic and Probabilistic Models
in the Context of “Probabilistic” vs. “Strategic” Behavioral Data.
The plot shows the performance of Ising models (in green) vs. LIGs (in red)
when we learn models from each respective class from data generated by drawing
i.i.d. samples from a mixture model of an Ising model, pIsing, and our PSNE-
based generative model, pLIG, with mixing parameter qstrat corresponding to the
probability that the sample is drawn from the LIG component. Hence, we can
view qstrat as controlling the proportion of the data that is “strategic” in nature.
The graph of the Ising model is an (undirected) chain with 4 variable nodes, while
that of the LIG is, as shown in the left, also a chain of 4 players with arcs between
every consecutive pair of nodes. The parameters of each mixture component in
the “ground-truth” mixture model pmix(x) ≡ qstrat pLIG(x) + (1− qstrat) pIsing(x)
are the same: node-potential/bias-threshold parameters are all 0; weights of all
the edges is +1. We set the “signal” parameter q of our generative model pLIG

to 0.9. The x-axis of the plot in the right-hand side above corresponds to the
mixture parameter qstrat; so that, as we move from left to right in the plot, more
proportion of the data is “strategic” in nature: qstrat = 0 means the data is
“purely probabilistic” while qstrat = 1 means it is “purely strategic.” For each
value of qstrat ∈ {0, 0.25, 0.50, 0.75, 1}, we generated 50 pairs of data sets from
pmix, each of size 50, each pair corresponding to a training and a validation
data set, respectively. The learning methods used the validation data set to
estimate their respective `1 regularization parameter. The Ising models learned
correspond exactly to the optimal penalized likelihood. We use a simultaneous
logistic regression approach, described in Section 6, to learn LIGs. In the y-axis
of the plot in the right-hand side is the average, over the 50 repetitions, of the
exact KL-divergence between the respective learned model and pmix(x). We also
include (a linear interpolation of the individual) error bars at 95% confidence level.
The plot clearly shows that the more “strategic” the data the better the game-
theoretic-based generative model. We can see that the learned Ising models (1)
do considerably better than the LIG models when the data is purely probabilistic;
and (2) are more “robust” across the spectrum, degrading very gracefully as the
data becomes more strategic in nature; but (3) seem to need more data to learn
when the data comes exclusively from an Ising model than the LIG model does
when the data is purely strategic: The LIG achieves KL values much closer to
0 when the data is purely strategic than the Ising model does when the data is
purely probabilistic.
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the Ising model. Since the computation of the exact gradient at each step is NP-hard,
we used this method only for n ≤ 15. For n > 15 players, we use the Höfling-Tibshirani
method (Höfling and Tibshirani, 2009), which uses a sequence of first-order approximations
of the exact log-likelihood. We also used a two-step algorithm, by first learning the structure
by `1-regularized logistic regression (Wainwright et al., 2007) and then using the FOBOS
algorithm (Duchi and Singer, 2009a,b) with belief propagation for gradient approximation.
We did not find a statistically significant difference between the test log-likelihood of both
algorithms and therefore we only report the latter.

Our experimental setup is as follows: after learning a model for different values of
the regularization parameter ρ in a training set, we select the value of ρ that maximizes
the log-likelihood in a validation set, and report statistics in a test set. For synthetic
experiments, we report the Kullback-Leibler (KL) divergence, average precision (one minus
the fraction of falsely included equilibria), average recall (one minus the fraction of falsely
excluded equilibria) in order to measure the closeness of the recovered models to the ground
truth. For real-world experiments, we report the log-likelihood. In both synthetic and real-
world experiments, we report the number of equilibria and the empirical proportion of
equilibria. Our results are statistically significant, we avoided showing error bars for clarity
of presentation since error bars and markers overlapped.

8.1 Experiments on Synthetic Data

We first test the ability of the proposed methods to recover the PSNE induced by ground-
truth games from data when those games are LIGs. We use a small first synthetic model in
order to compare with the (super-exponential) exhaustive search method. The ground-truth
model Gg = (Wg,bg) has n = 4 players and 4 Nash equilibria (i.e., π(Gg)=0.25), Wg was
set according to Figure 4 (the weight of each edge was set to +1) and bg = 0. The mixture
parameter of the ground-truth model qg was set to 0.5,0.7,0.9. For each of 50 repetitions,
we generated a training, a validation and a test set of 50 samples each. Figure 4 shows
that our convex loss methods and sigmoidal maximum likelihood outperform (lower KL)
exhaustive search, sigmoidal maximum empirical proportion of equilibria and Ising models.
Note that the exhaustive search method which performs exact maximum likelihood suffers
from over-fitting and consequently does not produce the lowest KL. From all convex loss
methods, simultaneous logistic regression achieves the lowest KL. For all methods, the
recovery of equilibria is perfect for qg = 0.9 (number of equilibria equal to the ground
truth, equilibrium precision and recall equal to 1). Additionally, the empirical proportion
of equilibria resembles the mixture parameter of the ground-truth model qg.

Next, we use a slightly larger second synthetic model with more complex interactions.
We still keep the model small enough in order to compare with the (NP-hard) sigmoidal
maximum likelihood method. The ground truth model Gg = (Wg,bg) has n = 9 players
and 16 Nash equilibria (i.e., π(Gg)=0.03125), Wg was set according to Figure 5 (the weight
of each blue and red edge was set to +1 and −1 respectively) and bg = 0. The mixture
parameter of the ground truth qg was set to 0.5,0.7,0.9. For each of 50 repetitions, we
generated a training, a validation and a test set of 50 samples each. Figure 5 shows that
our convex loss methods outperform (lower KL) sigmoidal methods and Ising models. From
all convex loss methods, simultaneous logistic regression achieves the lowest KL. For convex
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Figure 4: Closeness of the Recovered Models to the Ground-Truth Synthetic
Model for Different Mixture Parameters qg. Our convex loss methods
(IS,SS: independent and simultaneous SVM, IL,SL: independent and simultaneous
logistic regression) and sigmoidal maximum likelihood (S1) have lower KL than
exhaustive search (EX), sigmoidal maximum empirical proportion of equilibria
(S2) and Ising models (IM). For all methods, the recovery of equilibria is perfect
for qg = 0.9 (number of equilibria equal to the ground truth, equilibrium precision
and recall equal to 1) and the empirical proportion of equilibria resembles the
mixture parameter of the ground truth qg.
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Figure 5: Closeness of the recovered models to the ground truth synthetic model for dif-
ferent mixture parameters qg. Our convex loss methods (IS,SS: independent and
simultaneous SVM, IL,SL: independent and simultaneous logistic regression) have
lower KL than sigmoidal maximum likelihood (S1), sigmoidal maximum empiri-
cal proportion of equilibria (S2) and Ising models (IM). For convex loss methods,
the equilibrium recovery is better than the remaining methods (number of equi-
libria equal to the ground truth, higher equilibrium precision and recall) and the
empirical proportion of equilibria resembles the mixture parameter of the ground
truth qg.
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Figure 6: KL divergence between the recovered models and the ground truth for data sets
of different number of samples. Each chart shows the density of the ground
truth, probability P (+1) that an edge has weight +1, and average number of
equilibria (NE). Our convex loss methods (IS,SS: independent and simultaneous
SVM, IL,SL: independent and simultaneous logistic regression) have lower KL
than sigmoidal maximum empirical proportion of equilibria (S2) and Ising models
(IM). The results are remarkably better when the number of equilibria in the
ground truth model is small (e.g., for NE< 20).

loss methods, the equilibrium recovery is better than the remaining methods (number of
equilibria equal to the ground truth, higher equilibrium precision and recall). Additionally,
the empirical proportion of equilibria resembles the mixture parameter of the ground truth
qg.

In the next experiment, we show that the performance of convex loss minimization im-
proves as the number of samples increases. We used random graphs with slightly more
variables and varying number of samples (10,30,100,300). The ground truth model Gg =

1193



Honorio and Ortiz

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.2, P(+1):0, NE~5;17

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.5, P(+1):0, NE~5;30

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.8, P(+1):0, NE~6;122

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.2, P(+1):0.5, NE~5;19

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.5, P(+1):0.5, NE~3;9

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.8, P(+1):0.5, NE~2;5

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.2, P(+1):1, NE~6;13

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.5, P(+1):1, NE~3;2

S1 S2 SL

0

0.5

1

1.5

2

2.5

K
ul

lb
ac

k−
Le

ib
le

r 
di

ve
rg

en
ce

4 6 8 10 12

Players
Density:0.8, P(+1):1, NE~2;2

S1 S2 SL

Figure 7: KL divergence between the recovered models and the ground truth for data sets
of different number of players. Each chart shows the density of the ground truth,
probability P (+1) that an edge has weight +1, and average number of equilibria
(NE) for n = 2;n = 14. In general, simultaneous logistic regression (SL) has
lower KL than sigmoidal maximum empirical proportion of equilibria (S2), and
the latter one has lower KL than sigmoidal maximum likelihood (S1). Other
convex losses behave the same as simultaneous logistic regression (omitted for
clarity of presentation).
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(Wg,bg) contains n = 20 players. For each of 20 repetitions, we generate edges in the
ground truth model Wg with a required density (either 0.2,0.5,0.8). For simplicity, the
weight of each edge is set to +1 with probability P (+1) and to −1 with probability
1 − P (+1).35 Hence, the Nash equilibria of the generated games does not depend on the
magnitude of the weights, just on their sign. We set the bias bg = 0 and the mixture
parameter of the ground truth qg = 0.7. We then generated a training and a validation set
with the same number of samples. Figure 6 shows that our convex loss methods outperform
(lower KL) sigmoidal maximum empirical proportion of equilibria and Ising models (except
for the synthetic model with high true proportion of equilibria: density 0.8, P (+1) = 0,
NE> 1000). The results are remarkably better when the number of equilibria in the ground
truth model is small (e.g., for NE< 20). From all convex loss methods, simultaneous logistic
regression achieves the lowest KL.

In the next experiment, we evaluate two effects in our approximation methods. First,
we evaluate the impact of removing the true proportion of equilibria from our objective
function, i.e., the use of maximum empirical proportion of equilibria instead of maximum
likelihood. Second, we evaluate the impact of using convex losses instead of a sigmoidal
approximation of the 0/1 loss. We used random graphs with varying number of players and
50 samples. The ground truth model Gg = (Wg,bg) contains n = 4, 6, 8, 10, 12 players. For
each of 20 repetitions, we generate edges in the ground truth model Wg with a required
density (either 0.2,0.5,0.8). As in the previous experiment, the weight of each edge is set to
+1 with probability P (+1) and to −1 with probability 1− P (+1). We set the bias bg = 0
and the mixture parameter of the ground truth qg = 0.7. We then generated a training and a
validation set with the same number of samples. Figure 7 shows that in general, convex loss
methods outperform (lower KL) sigmoidal maximum empirical proportion of equilibria, and
the latter one outperforms sigmoidal maximum likelihood. A different effect is observed for
mild (0.5) to high (0.8) density and P (+1) = 1 in which the sigmoidal maximum likelihood
obtains the lowest KL. In a closer inspection, we found that the ground truth games usually
have only 2 equilibria: (+1, . . . ,+1) and (−1, . . . ,−1), which seems to present a challenge
for convex loss methods. It seems that for these specific cases, removing the true proportion
of equilibria from the objective function negatively impacts the estimation process, but note
that sigmoidal maximum likelihood is not computationally feasible for n > 15.

35. Part of the reason for using such “simple”/”limited” binary set of weight values in this synthetic exper-
iment regards the ability to generate “interesting” LIGs; that is, games with interesting sets of PSNE.
As a word of caution, this is not as simple as it appears at first glance. LIGs with weights and biases
generated uniformly at random from some set of real values are almost always not interesting, often
having only 1 or 2 PSNE (Irfan and Ortiz, 2014). It is not until we move to more “special”/restricted
classes of games, such as that used in this experiments, that more interesting PSNE structure arises from
randomly generated LIGs. That is in large part why we concentrated our experiments in games with
those simple properties. (Simplicity itself also had a role in our decision, of course.)

Please understand that we are not saying that LIGs that use a larger set of integers, or non-
integer real-valued weights wij ’s or bi’s are not interesting, as the LIGs we learn from the real-world
data demonstrate. What we are saying is that we do not yet have a good understanding on how to
randomly generate “interesting” synthetic games from the standpoint of their induced PSNE. We leave
a comprehensive evaluation of our MLE-based algorithms’ ability to recover the PSNE of randomly
generated synthetic LIGs, which would involve a diversity of synthetic game graph structures, influence
weights and biases that induce “interesting” sets of PSNE, for future work.
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Figure 8: Statistics for games learnt from 20 senators from the first session of the 104th
congress, first session of the 107th congress and second session of the 110th
congress. The log-likelihood of our convex loss methods (IS,SS: independent
and simultaneous SVM, IL,SL: independent and simultaneous logistic regression)
is higher than sigmoidal maximum empirical proportion of equilibria (S2) and
Ising models (IM). For all methods, the number of equilibria (and so the true
proportion of equilibria) is low.

8.2 Experiments on Real-World Data: U.S. Congressional Voting Records

We used the U.S. congressional voting records in order to measure the generalization perfor-
mance of convex loss minimization in a real-world data set. The data set is publicly available
at http://www.senate.gov/. We used the first session of the 104th congress (Jan 1995 to
Jan 1996, 613 votes), the first session of the 107th congress (Jan 2001 to Dec 2001, 380 votes)
and the second session of the 110th congress (Jan 2008 to Jan 2009, 215 votes). Following
on other researchers who have experimented with this data set (e.g., Banerjee et al. 2008),
abstentions were replaced with negative votes. Since reporting the log-likelihood requires
computing the number of equilibria (which is NP-hard), we selected only 20 senators by
stratified random sampling. We randomly split the data into three parts. We performed
six repetitions by making each third of the data take turns as training, validation and test-
ing sets. Figure 8 shows that our convex loss methods outperform (higher log-likelihood)
sigmoidal maximum empirical proportion of equilibria and Ising models. From all convex
loss methods, simultaneous logistic regression achieves the lowest KL. For all methods, the
number of equilibria (and so the true proportion of equilibria) is low.

We apply convex loss minimization to larger problems, by learning structures of games
from all 100 senators. Figure 9 shows that simultaneous logistic regression produce struc-
tures that are sparser than its independent counterpart. The simultaneous method better
elicits the bipartisan structure of the congress. We define the (aggregate) direct influence
of player j to all other players as

∑
i |wij | after normalizing all weights, i.e., for each player

i we divide (wi,−i, bi) by ‖wi,−i‖1 + |bi|. Note that Jeffords and Clinton are one of the 5
most directly-influential as well as 5 least directly-influenceable (high bias) senators, in the
107th and 110th congress respectively. McCain and Feingold are both in the list of 5 most
directly-influential senators in the 104th and 107th congress. McCain appears again in the
list of 5 least directly influenceable senators in the 110th congress (as defined above in the
context of the LIG model).
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Figure 9: (Top) Matrices of (direct) influence weights W for games learned from
all 100 senators, from the first session of the 104th congress (left), first session
of the 107th congress (center) and second session of the 110th congress (right),
by using our independent (a) and simultaneous (b) logistic regression methods.
A row represents how much every other senator directly-influence the senator in
such row, in terms of the influence weights of the learned LIG. Positive influence-
weight parameter values are shown in blue; negative values are in red. Democrats
are shown in the top/left corner, while Republicans are shown in the bottom/right
corner. Note that simultaneous method produce structures that are sparser than
its independent counterpart. (c) Partial view of the graph for simultaneous
logistic regression. (d) Most directly-influential senators and (e) least
directly-influenceable senators. Regularization parameter ρ = 0.0006.
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Figure 10: Direct influence between parties and direct influences from Obama and McCain.
Games were learned from all 100 senators from the 101th congress (Jan 1989)
to the 111th congress (Dec 2010) by using our simultaneous logistic regression
method. Direct influence between senators of the same party are stronger than
senators of different party, which is also decreasing over time. In the last ses-
sions, direct influence from Obama to Republicans increased, and influence from
McCain to both parties decreased. Regularization parameter ρ = 0.0006.

We test the hypothesis that the aggregate direct influence, as defined by our model,
between senators of the same party are stronger than senators of different party. We learn
structures of games from all 100 senators from the 101th congress to the 111th congress (Jan
1989 to Dec 2010). The number of votes cast for each session were average: 337, minimum:
215, maximum: 613. Figure 10 validates our hypothesis and more interestingly, it shows
that influence between different parties is decreasing over time. Note that the influence
from Obama to Republicans increased in the last sessions, while McCain’s influence to
Republicans decreased.

Since the U.S. Congressional voting data is observational, we used the log-likelihood as
an adequate measure of predictive performance. We argue that the log-likelihood of joint
actions provides a more “global view” compared to predicting the action of a single agent.
Furthermore, predicting the action of a single agent (i.e., xi) works under the assumption
that we have access to the decisions of the other agents (i.e., x−i), which is in contrast to
our framework. Regarding causal strategic inference, Irfan and Ortiz (2014) use the games
that we produce in this section in order to address problems such as the identification of
most influential senators. (We refer the reader to their paper for further details.)

9. Concluding Remarks

In Section 6, we present a variety of algorithms to learn LIGs from strictly behavioral
data, including what we call independent logistic regression (ILR). There is a very popular
technique for learning Ising models that uses independent regularized logistic regression
to compute the individual conditional probabilities as a step toward computing a globally
coherent joint probability distribution. However, this approach is inherently problematic, as
some authors have previously pointed out (see, e.g., Guo et al. 2010). Without getting too
technical, the main roadblock is that there is no guarantee that estimates of the weights
produced by the individual regressions be symmetric: ŵij = ŵji for all i, j. Learning an
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Ising model requires the enforcement of this condition, and a variety of heuristics have been
proposed. (Please see Section 2.1 for relevant work and references in this area.)

We also apply ILR in exactly the same manner but for a different objective: learning
LIGs. Some seem to think that this diminishes the significance of our contributions. We
strongly believe the opposite is true: That we can learn games by using such simple, prac-
tical, efficient and well-studied techniques is a significant plus in our view. Again, without
getting too technical, the estimates of ILR need not be symmetric for LIG models, and
are always perfectly consistent with the LIG definition. In fact, asymmetric estimates are
common in practice (the LIG for the 110th Congress depicted in Figure 1 is an example).
And we believe this makes the model more interesting. In the ILR-learned LIG, a player
may have a positive, negative or no direct effect on another players utility, and vice versa.36

Thus, despite the process of estimation of model parameters being similar, the view of
the output of that estimation process is radically different in each case. Our experiments
show that our generative model with LIGs built from ILR estimates achieves higher gener-
alization likelihoods than standard probabilistic models such as Ising models that may also
use ILR. This fact, that the generative model defined in terms of game-theoretic equilibrium
concepts can explain the data better than traditional probabilistic models, provides further
evidence supporting such a game-theoretic “view” of the ILR estimated parameters and
yields additional confidence in their use in game-theoretic models.

In short, ILR is a thoroughly studied method with a long tradition and an extensive
literature from which we can only benefit. We find it to a be a good, unexpected outcome
of our research in this work, and thus a reasonably significant contribution, that we can
successfully and effectively use ILR, a very simple and practical estimation technique for
learning probabilistic graphical models, to learn game-theoretic graphical models too.

9.1 Extensions and Future Work

There are several ways of extending this research. We can extend our approach to ε-
approximate PSNE.37 In this case, for each player instead of one condition, we will have
two best-response conditions which are still linear in W and b. Additionally, we can
extend our approach to a broader class of graphical games and non-Boolean actions. Note
that our analysis does not rely on binary actions, but on binary features of one player
1[xi = 1] or two players 1[xi = xj ]. We can use features of three players 1[xi = xj = xk] or
of non-Boolean actions 1[xi = 3, xj = 7]. This kernelized version is still linear in W and
b. These extensions are possible because our algorithms and analysis rely on linearity and
binary features; additionally, we can obtain a new upper-bound on the “VC-dimension” by
changing the inputs of the neural-network architecture. We can easily extend our approach
to parameter learning for fixed structures by using a `22 regularizer instead.

36. It is easy to come up with examples of such opposing/antagonistic interactions between individuals in
real-world settings. (See, e.g., “parents with teenagers,” perhaps a more timely example is the U.S.
Congress in recent times.)

37. By definition, given ε ≥ 0, a joint pure-strategy x∗ is an ε-approximate PSNE if for each player i, we
have ui(x

∗) ≥ maxxi ui(xi,x
∗
−i) − ε; in other words, no players can gain more than ε in payoff/utility

value from unilaterally deviating from x∗i , assuming the other players play x∗−i. Using this definition, we
can see that a PSNE is simply a 0-approximate PSNE.
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Future work should also consider and study more sophisticated noise processes, MSNE,
and the analysis of different upper bounds for the 0/1 loss (e.g., exponential, smooth hinge).
Finally, we should consider other slightly more complex versions of our model based on
Bayesian or stochastic games to account for possible variations of the influence-weights
and bias-threshold parameters. As an example, we may consider versions of our model for
congressional voting that would explicitly capture game differences in terms of influences
and biases that depend on the nature or topic of each specific bill being voted on, as well
as Senators’ time-changing preferences and trends.
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Appendix A. Additional Discussion

In this section, we discuss our choice of modeling end-state predictions without model-
ing dynamics. We also discuss some alternative noise models to the one studied in this
manuscript.

A.1 On End-State Predictions without Explicitly Modeling Dynamics

Certainly, in cases in which information about the dynamics is available, the learned model
may use such information while still making end-state predictions. But no such information,
either via data sequences or prior knowledge, is available in any of the publicly-available
real-world data sets we study here. Take congressional voting as an example. Consider-
ing the voting records as sequence of votes does not seem sensible in our context from a
modeling/engineering perspective because the data set does not have any detailed informa-
tion about the nature of the vote: we just have each senator’s vote on whatever bill they
considered, and little to no information about the detailed dynamics that might have lead
to the senators’ final votes. Indeed, one may go further and argue that assuming the the
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availability of information about the dynamics of the process is a considerable burden on
the modeler and something of a wishful thinking in many practical, real-world settings.

Besides the nature of our setting, the lack of data or information, and the CSI motivation,
there are other more fundamental ML reasons why we have no interest in considering
dynamics in this paper. First, we view the additional complexity of a dynamic/temporal
model as providing the wrong tradeoff: dynamic/temporal models are often inherently more
complex to express and learn from data. Second, it is common ML practice to separate
single example/outcome problems from sequence problems; said differently, ML generally
treats the problem of learning from individual i.i.d. examples different from that of learning
from sequences or sequence prediction. Third, we invoke Vapnik’s Principle of Transduction
(Vapnik, 1998, page 477):38

“When solving a problem of interest, do not solve a more general problem as an
intermediate step. Try to get the answer that you really need but not a more
general one.”

We believe this additional complexity of temporal dynamics, while possibly more “real-
istic,” might easily weaken the power of the “bottom-line” prediction of the possible stable
final outcomes because the resulting models can get side-tracked by the details of the in-
teraction. We believe the difficulty of modeling such details, specially with the relatively
limited amount of the data available, leads to poor prediction performance on what we
really care about from an engineering stand point: We would like to know or predict what
will end up happening, and have little or no interest on the how or why this happens.

We recognize the scientific significance and importance of research in social and behav-
ioral sciences such as sociology, psychology and, in some cases economics, on explaining, at
a higher level of abstraction, often going as low as the “cognitive” or “neuroscience” level,
the process by which final decisions are reached.

We believe the sudden growth of interest from industry (both online and physical compa-
nies), government and other national and international institutions on predicting “behavior”
for the purpose of revenue, improving efficiency, instituting effective policies with minimal
regulations, etc., should shift the focus of the study of “behavior” closer to an engineering
endeavor. We believe such entities are after the “bottom line” and will care more about the
end-goal than how or why a specific outcome is achieved, modulo, of course, having simple
enough and tractable computational models that provide reasonably accurate predictions
of final end-state behavior, or at least accurate enough for their purposes.

A.2 On Alternative Noise Models

Next, we discuss some alternative noise models to the one studied in this manuscript.
Specifically, we discuss an extension of the PSNE-based mixture noise model as well as
individual-player noise models.

A.2.1 On Generalizations of the PSNE-based Mixture Noise Models

A simple extension to our model in Eq. (1) is to allow for more general distributions for the
PSNE and the non-PSNE sets. That is, with some probability 0 < q < 1, a joint action x is

38. See also http://www.cs.man.ac.uk/~jknowles/transductive.html additional information.
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chosen fromNE(G) by following a distribution Pα parameterized by α; otherwise, x is chosen
from its complement set {−1,+1}n −NE(G) by following a distribution Pβ parameterized
by β. The corresponding probability mass function (PMF) over joint-behaviors {−1,+1}n
parameterized by (G, q, α, β) is

p(G,q,α,β)(x) = q pα(x)1[x∈NE(G)]∑
z∈NE(G) pα(z) + (1− q) pβ(x)1[x/∈NE(G)]∑

z/∈NE(G) pβ(z) ,

where G is a game, pα(x) and pβ(x) are PMFs over {−1,+1}n.
One reasonable technique to learn such a model from data is to perform an alternate

method. Compared to our simpler model, this model requires a step that maximizes the
likelihood by changing α and β while keeping G and q constant. The complexity of this step
will depend on how we parameterize the PMFs Pα and Pβ but will very likely be an NP-
hard problem because of the partition function. Furthermore, the problem of maximizing
the likelihood by changing NE(G) (while keeping α, β and q constant) is combinatorial
in nature and in this paper, we provided a tractable approximation method with provable
guarantees (for the case of uniform distributions). Other approaches for maximizing the
likelihood by changing G are very likely to be exponential as we discuss briefly at the start
of Section 6.

A.2.2 On Individual-Player Noise Models

As an example, consider a the generative model in which we first randomly select a PSNE
x of the game from a distribution Pα parameterized by α, and then each player i, inde-
pendently, acts according to xi with probability qi and switches its action with probability
1− qi. The corresponding probability mass function (PMF) over joint-behaviors {−1,+1}n
parameterized by (G, q1, . . . , qn, α) is

pG,q,α(x) =
∑

y∈NE(G)
pα(y)∑

z∈NE(G) pα(z)

∏
i q

1[xi=yi]
i (1− qi)1[xi 6=yi] ,

where G is a game, q = (q1, . . . , qn) and pα(y) is a PMF over {−1,+1}n.
One reasonable technique to learn such a model from data is to perform an alternate

method. In one step, we maximize the likelihood by changing NE(G) while keeping q
and α constant, which could be tractably performed by applying Jensen’s inequality since
the problem is combinatorial in nature. In another step, we maximize the likelihood by
changing q while keeping G and α constant, which could be performed by gradient ascent
(the complexity of this step depends on the size of NE(G) which could be exponential!). In
yet another step, we maximize the likelihood by changing α while keeping G and q constant
(the complexity of this step will depend on how we parameterize the PMF Pα but will very
likely be an NP-hard problem because of the partition function). The main problem with
this technique is that it can be formally proved that the first step (Jensen’s inequality) will
almost surely pick a single equilibria for the model (i.e., |NE(G)| = 1).
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Abstract

This paper presents the first theoretical results showing that stable identification of over-
complete µ-coherent dictionaries Φ ∈ Rd×K is locally possible from training signals with
sparsity levels S up to the order O(µ−2) and signal to noise ratios up to O(

√
d). In particu-

lar the dictionary is recoverable as the local maximum of a new maximization criterion that
generalizes the K-means criterion. For this maximization criterion results for asymptotic
exact recovery for sparsity levels up to O(µ−1) and stable recovery for sparsity levels up
to O(µ−2) as well as signal to noise ratios up to O(

√
d) are provided. These asymptotic

results translate to finite sample size recovery results with high probability as long as the
sample size N scales as O(K3dSε̃−2), where the recovery precision ε̃ can go down to the
asymptotically achievable precision. Further, to actually find the local maxima of the new
criterion, a very simple Iterative Thresholding and K (signed) Means algorithm (ITKM),
which has complexity O(dKN) in each iteration, is presented and its local efficiency is
demonstrated in several experiments.

Keywords: dictionary learning, dictionary identification, sparse coding, sparse compo-
nent analysis, vector quantization, K-means, finite sample size, sample complexity, maxi-
mization criterion, sparse representation

1. Introduction

Be it the 300 million photos uploaded to Facebook per day, the 800GB the large Hadron
collider records per second or the 320.000GB per second it cannot record, it is clear that we
have reached the age of big data. Indeed, in 2012, the amount of data existing worldwide
is estimated to have reached 2.8 ZB = 2.800 billion GB and while 23 % of these data are
expected to be useful if analyzed, only 1% actually are. So how do we deal with this big
data challenge? The key concept, that has driven data processing and data analysis in the
past decade, is that even high-dimensional data has intrinsically low complexity, meaning
that every data point y can be represented as linear combination of a sparse (small) number
of elements or atoms φi ∈ Rd, ‖φ‖2 = 1 of an overcomplete dictionary Φ = (φ1, . . . φK), that
is,

y ≈ ΦIxI =
∑
i∈I

x(i)ϕi,

for a set I of size S, |I| = S, which is small compared to the ambient dimension, S � d ≤ K.
These sparse components do not only describe the data but the representations can also be

c©2015 Karin Schnass.
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used for a myriad of efficient sparsity based data processing schemes, ranging from denoising
(Donoho et al., 2006) to compressed sensing (Donoho, 2006; Candès et al., 2006). Therefore
a promising tool both for data analysis and data processing, that has emerged in the last
years, is dictionary learning, also known as sparse coding or sparse component analysis.
Dictionary learning addresses the fundamental question of how to automatically learn a
dictionary, providing sparse representations for a given data class. That is, given N signals
yn ∈ Rd, stored as columns in a matrix Y = (y1, . . . , yN ), find a decomposition

Y ≈ ΦX

into a d×K dictionary matrix Φ with unit norm columns and a K ×N coefficient matrix
with sparse columns.
Until recently the main research focus in dictionary learning has been on the development
of algorithms. Thus by now there is an ample choice of learning algorithms, that perform
well in experiments and are popular in applications (Field and Olshausen, 1996; Kreutz-
Delgado and Rao, 2000; Kreutz-Delgado et al., 2003; Aharon et al., 2006; Yaghoobi et al.,
2009; Mairal et al., 2010; Skretting and Engan, 2010; Rubinstein et al., 2010). However,
slowly the interest is shifting and researchers are starting to investigate also the theoret-
ical aspects of dictionary learning. Following the first theoretical insights, originating in
the blind source separation community (Zibulevsky and Pearlmutter, 2001; Georgiev et al.,
2005), there is now a set of generalization bounds predicting how well a learned dictionary
can be expected to sparsely approximate future data (Maurer and Pontil, 2010; Vainsencher
et al., 2011; Mehta and Gray, 2012; Gribonval et al., 2013). These results give a theoretical
foundation for dictionary learning as data processing tool, for example for compression,
but unfortunately do not give guarantees that an efficient algorithm will find/recover a
good dictionary provided that it exists. However, in order to justify the use of dictionary
learning as data analysis tool, for instance in blind source separation, it is important to
provide conditions under which an algorithm or scheme can identify the dictionary from a
finite number of training signals, that is, the sources from the mixtures. Following the first
dictionary identification results for the `1-minimization principle (Gribonval and Schnass,
2010; Geng et al., 2011; Jenatton et al., 2014), which was suggested by Zibulevsky and
Pearlmutter (2001)/Plumbley (2007), and for the ER-SPuD algorithm for learning a basis
(Spielman et al., 2012), 2013 has seen a number of interesting developments. First it was
shown that the K-SVD minimization principle suggested by Aharon et al. (2006) can locally
identify overcomplete tight dictionaries (Schnass, 2014). Later algorithms with global iden-
tification guarantees for coherent dictionaries were presented (Arora et al., 2014; Agarwal
et al., 2014b). Finally it was shown that an alternating minimization method is locally
convergent to the correct generating dictionary (Agarwal et al., 2014a). One aspect that all
these results have in common is that the sparsity level of the training signals required for
successful identification is of order O(µ−1) or O(

√
d) for incoherent dictionaries. Consid-

ering that on average sparse recovery in a given dictionary is successful for sparsity levels
O(µ−2) (Tropp, 2008; Schnass and Vandergheynst, 2007) and that for dictionary learning
we usually have a lot of training signals at our disposal, the same sparsity level should be
sufficient for dictionary learning and indeed in this paper we provide the first indication
that global dictionary identification could be possible for sparsity levels O(µ−2) by proving
that it is locally possible. Further we show that in experiments a very simple iterative
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algorithm, based on thresholding and K signed means, is locally successful.
The paper is organized as follows. After introducing all necessary notation in Section 2
we present a new optimization criterion, motivated by the analysis of the K-SVD principle
(Schnass, 2014) in Section 3. In Section 4 we give asymptotic identification results both for
exact and stable recovery, which in Section 5 are extended to results to finite sample sizes.
Section 6 provides an algorithm for actually finding a local optimum and some experiments
confirming the theoretical results. Finally in the last section we compare the results for the
new criterion to existing identification results, discuss the implications of these local results
for global dictionary identification algorithms and point out directions for future research.

2. Notations and Conventions

Before we jump into the fray, we collect some definitions and lose a few words on notations;
usually subscripted letters will denote vectors with the exception of c and ε where they are
numbers, e.g., (x1, . . . , xK) = X ∈ Rd×K vs. c = (c1, . . . , cK) ∈ RK , however, it should
always be clear from the context what we are dealing with.
We consider a dictionary Φ a collection of K unit norm vectors φi ∈ Rd, ‖φi‖2 = 1. By
abuse of notation we will also refer to the d×K matrix collecting the atoms as its columns
as the dictionary, that is Φ = (φi, . . . φK). The maximal absolute inner product between two
different atoms is called the coherence µ of the dictionary, µ = maxi 6=j |〈φi, φj〉|. By ΦI we
denote the restriction of the dictionary to the atoms indexed by I, that is ΦI = (φi1 . . . φiS ),
ij ∈ I. We indicate the conjugate transpose of a matrix with a ?, for example Φ? would be
the transpose of Φ.
The set of all dictionaries of a given size (d × K) is denoted by D. For two dictionaries
Φ,Ψ ∈ D we define the distance between each other as the maximal distance between two
corresponding atoms,

d(Φ,Ψ) := max
i
‖φi − ψi‖2.

We consider a frame F a collection of K ≥ d vectors fi ∈ Rd for which there exist two
positive frame constants A,B such that for all v ∈ Rd we have

A‖v‖22 ≤
K∑
i=1

|〈fi, v〉|2 ≤ B‖v‖22. (1)

From (1) it follows that F , interpreted as d ×K matrix, has rank d and that its non-zero
singular values are in the interval [

√
A,
√
B]. If B can be chosen equal to A, that is B = A,

the frame is called tight. If all frame elements fi have unit norm, we call F a unit norm
frame. For more details on frames see for instance the introduction by Christensen (2003).
Finally we introduce the Landau symbols O, o to characterise the growth of a function. We
write

f(t) = O(g(t)) if lim
t→0/∞

f(t)/g(t) = C <∞

and f(t) = o(g(t)) if lim
t→0/∞

f(ε)/g(ε) = 0.

.
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3. A Response Maximization Criterion

One of the origins of dictionary learning can be found in the field of vector quantization,
where the aim is to find a codebook (dictionary) such that the codewords (atoms) closely
represent the data, that is

min
Φ,X
‖Y − ΦX‖2F s.t. xn ∈ {ei}i.

Indeed the vector quantization problem can be seen as an extreme case of dictionary learn-
ing, where we do not only want all our signals to be approximately 1-sparse but also want the
single non-zero coefficient equal to one. On the other hand we allow the atoms (codewords)
to have any length. The problem above is usually solved by a K-means algorithm, which
alternatively separates the training data into K clusters, each assigned to one codeword,
and then updates the codeword to be the mean of the associated train signals. For more
detailed information about vector quantization or the K-means algorithm see for instance
the book by Gersho and Gray (1992) or the introduction by Aharon et al. (2006). If we
relax the condition that each coefficient has to be positive, but in turn ask for the atoms to
have unit norm, we are already getting closer to the concept of 1-sparse dictionary learning,

min
Φ∈D,X

‖Y − ΦX‖2F s.t. xn ∈ {±ei}i.

This minimization problem can be rewritten as

min
Φ∈D

∑
n

min
i,σi=±1

‖yn − σiφi‖22 = min
Φ∈D

∑
n

min
i,σi=±1

‖yn‖22 − 2σi〈yn, φi〉+ ‖φi‖22

= ‖Y ‖2F +N − 2 max
Φ∈D

∑
n

max
i
|〈yn, φi〉|,

and is therefore equivalent to the maximization problem

max
Φ∈D

∑
n

max
i
|〈yn, φi〉|. (2)

A local maximum of (2) can be found with a signed K-means algorithm, which assigns
each training signal to the atom of the current dictionary giving the largest response in
absolute value and then updating the atom as normalized signed mean of the associated
training signals, see Section 6 for more details. The question now is how do we go from
these 1-sparse dictionary learning formulations to S-sparse formulations with S > 1. The
most common generalization, which provides the starting point for the MOD and the K-
SVD algorithm, is to give up all constraints on the coefficients except for S-sparsity and to
minimize,

(PP2) min
Φ∈D,X

‖Y − ΦX‖2F s.t. ‖xn‖0 ≤ S. (3)

However, rewriting the problem we see that this formulation does not reduce to the same
maximization problem in case S = 1. Then the best one term approximation in the given
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dictionary is simply the largest projection onto one atom and we have

min
Φ∈D

∑
n

min
i,xi
‖yn − xiφi‖22 = min

Φ∈D

∑
n

min
i
‖yn − 〈φi, yn〉φi‖22

= ‖Y ‖2F −max
Φ∈D

∑
n

max
i
|〈yn, φi〉|2,

leading instead to the maximization problem

max
Φ∈D

∑
n

max
i
|〈yn, φi〉|2 vs. max

Φ∈D

∑
n

max
i
|〈yn, φi〉|.

A local maximum can now be found using the same partitioning strategy as before but
updating the atoms as largest singular vector rather than signed mean of the associated
training signals, requiring K SVDs as opposed to K means. While the minimization problem
(3) is definitely the most effective generalization for dictionary learning when the goal is
compression, it brings with it some complications when used as analysis tool. Indeed it has
been shown (Schnass, 2014) that for S = 1 the K-SVD criterion (3) can only identify the
underlying dictionary from sparse random mixtures to arbitrary precision (given enough
training samples) if this dictionary is tight and it is conjectured that the same holds for
S ≥ 1. Roughly simplified the reason for this is that for random sparse signals ΦIxI and
an ε-perturbation Ψ the average of the largest squared response behaves like

1

2

(
1− ε2

2
+ c(Ψ)

)2

+
1

2

(
1− ε2

2
− c(Ψ)

)2

= 1− ε2 +
ε4

4
+ c(Ψ)2.

If Φ is tight the term c(Ψ) is constant over all dictionaries and therefore there is a local
maximum at Φ. From the above we also see that the average of the largest absolute response
should behave like

1

2

∣∣∣∣1− ε2

2
+ c(Ψ)

∣∣∣∣+
1

2

∣∣∣∣1− ε2

2
− c(Ψ)

∣∣∣∣ = 1− ε2

2
,

meaning that we should have a maximum at Φ also if it is non-tight. This suggests as
alternative way to generalize the K-means optimization principle for dictionary identification
to simply maximize the absolute norm of the S-largest responses,

(PR1) max
Ψ∈D

∑
n

max
|I|=S

‖Ψ?
Iyn‖1. (4)

Other than for the K-SVD criterion it is not obvious that there should be a local optimum
of (4) at Φ even if all signals yn are perfectly S-sparse in Φ. Therefore it is quite intriguing
that we will not only be able to prove local identifiability of any generating dictionary via
(4) from randomly sparse signals, but that these identifiability properties are stable under
coherence and noise. However, before we get to the main result in Theorem 5 on page 1221,
we first have to lay the foundation, by providing suitable random signal models and by
studying the asymptotic identifiability properties of the new principle.
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4. Asymptotic Results

We can get to the asymptotic version of the S-response maximization principle in (4) simply
by replacing the sum over the training signals with the expectation, leading to

max
Ψ∈D

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
. (5)

Next we need a random sparse coefficient model to generate our signals y. We make the
following definition, see also Schnass (2014).

Definition 1 A probability distribution (measure) ν on the unit sphere SK−1 ⊂ RK is
called symmetric if for all measurable sets X ⊆ SK−1, for all sign sequences σ ∈ {−1, 1}K
and all permutations p we have

ν(σX ) = ν(X ), where σX := {(σ1x1, . . . , σKxK) : x ∈ X}, and

ν(p(X )) = ν(X ), where p(X ) := {(xp(1), . . . , xp(K)) : x ∈ X}.

Setting y = Φx where x is drawn from a symmetric probability measure ν on the unit
sphere has the advantage that for dictionaries which are orthonormal bases the resulting
signals have unit norm and for general dictionaries the signals have unit square norm in
expectation, that is E(‖y‖22) = 1. This reflects the situation in practical application, where
we would normalize the signals in order to equally weight their importance.
One example of such a probability measure can be constructed from a non-negative, non-
increasing sequence c ∈ RK with ‖c‖2 = 1, which we permute uniformly at random and
provide with random± signs. To be precise for a permutation p : {1, ...,K} → {1, ...,K} and
a sign sequence σ, σi = ±1, we define the sequence cp,σ component-wise as cp,σ(i) := σicp(i),

and set ν(x) = (2KK!)−1 if there exist p, σ such that x = cp,σ and ν(x) = 0 otherwise.
While being very simple this measure exhibits all the necessary structure and indeed in our
proofs we will reduce the general case of a symmetric measure to this simple case.
So far we have not incorporated any sparse structure in our coefficient distribution. To
motivate the sparsity requirements on our coefficients we will recycle the simple negative
example of a sparse coefficient distribution for which the original generating dictionary is
not at a local maximum of (5) with S = 1 (Schnass, 2014).

Example 1 Let U be an orthonormal basis and let the signals be constructed as y = Φx.
If x is randomly 2-sparse with ’flat’ coefficients, that is, drawn from the simple symmetric
probability measure with base sequence c, where c1 = c2 = 1/

√
2, ci = 0 for i ≥ 3, then U is

not a local maximum of (5) with S = 1.
Indeed, since the signals are all 2-sparse, the maximal inner product with all atoms in U is
the same as the maximal inner product with only d − 1 atoms. This degree of freedom we
can use to construct an ascent direction. Choose Uε = (u1, . . . , ud−1, (ud + εu1)/

√
1 + ε2),
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then we have

Ey (‖U?ε y‖∞) = Ex
(∥∥∥∥(x1, . . . , xd−1,

xd + εx1√
1 + ε2

)∥∥∥∥
∞

)
= Ex max

{
1√
2
,

∣∣∣∣xd + εx1√
1 + ε2

∣∣∣∣}
=

1√
2

(
1− 1

d(d− 1)
+

1

d(d− 1)

1 + ε√
1 + ε2

)
≥ 1√

2

(
1 +

1

d(d− 1)

ε− ε2

1 + ε2

)
>

1√
2

= Ey (‖U?y‖∞) .

From the above example we see that, in order to have a local maximum of (5) with S = 1
at the original dictionary, we need our signals to be truly 1-sparse, that is, we need to have
a decay between the first and the second largest coefficient. In the following sections we
will study how large this decay should be to have a local maximum exactly at or near to
the generating dictionary for more general dictionaries and sparsity levels.

4.1 Exact Recovery

To warm up we first provide an asymptotic exact dictionary identification result for (5) for
incoherent dictionaries in the noiseless setting.

Theorem 2 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients x be drawn from a symmetric probability distribution ν on the unit sphere
SK−1 ⊂ RK and assume that the signals are generated as y = Φx. If there exists β > 0 such
that for c1(x) ≥ c2(x) ≥ . . . ≥ cK(x) ≥ 0 the non-increasing rearrangement of the absolute
values of the components of x we have cS(x)− cS+1(x)− 2µ‖x‖1 ≥ β almost surely, that is

ν (cS(x)− cS+1(x)− 2µ‖x‖1 ≥ β) = 1, (6)

then there is a local maximum of (5) at Φ.
Moreover for Ψ 6= Φ we have Ey

(
max|I|=S ‖Ψ?

Iy‖1
)
< Ey

(
max|I|=S ‖Φ?

Iy‖1
)

as soon as

ε <
β

1 + 3

√
log
(

25K2S
√
B

β(c̄1+...+c̄S)

) , (7)

where c̄i := Ex(ci(x)).

Proof idea We briefly sketch the main ideas of the proof, which are the same as for the
corresponding theorem for the K-SVD principle (Schnass, 2014). For self-containedness of
the paper the full proof is included in Appendix A.1.
Assume that we have the case of a simple probability measure based on one sequence c,
that is x = cp,σ. For any fixed permutation p the condition in (6) ensures that for all sign
sequences σ, and consequently all signals, the maximal S responses of the original dictionary
Φ are attained at Ip = p−1 ({1 . . . S}) and that there is a gap of size β to the remaining
responses.

1217



Schnass

For an ε-perturbation of the generating dictionary we have ψi ≈ (1−ε2
i /2)φi+εizi for some

unit vectors zi with 〈zi, φi〉 = 0 and εi ≤ ε. Now for most sign sequences the contribution
of εizi to the response 〈ψi,Φcp,σ〉 will be smaller than β/2 so the maximal S responses will
still be attained at Ip. Comparing the loss of the perturbed dictionary over the typical

sign sequences of all permutations, which scales as (c1+...+cS)
2K

∑
ε2
i , to the maximal gain

Sε
√
B over the approximately 2

∑
i exp

(
−β2/ε2

i

)
atypical sign sequences shows that there

is a maximum at the original dictionary. The general result follows from an integration
argument.

As already mentioned, while for the K-SVD criterion (3) there is always an optimum at
the generating dictionary if all training signals are S-sparse, this it is not obvious for the
response principle. Indeed, in the special case where all the training signals are exactly
S-sparse, cS+1(x) = 0 almost surely, we get an additional condition to ensure asymptotic
recoverability,

cS(x)− 2µ
S∑
s=1

cs(x) ≥ β > 0, almost surely.

To get a better feeling for this constraint we bound the sum over the S largest responses by
S times the largest response,

∑S
s=1 cs(x) ≤ Sc1(x) and arrive at the condition

cS(x)

c1(x)
& 2Sµ, (8)

which is the classical condition under which simple thresholding will find the support of an
exactly S-sparse signal (Schnass and Vandergheynst, 2008).

4.2 Stability under Coherence and Noise

While giving a first insight into the identification properties of the response principle, The-
orem 2 suffers from two main limitations.
First, the required condition on the coherence of the dictionary with respect to the de-
cay of the coefficients, cS(x) − cS+1(x) − 2µ‖c(x)‖1 > 0, is unfortunately quite strict.
In the most favourable case of exactly S sparse signals with equally sized coefficients,
c1(x) = cS(x) = 1/

√
S, we see from (8) that we can only identify dictionaries from very

sparse signals, where S =. µ−1. In case of very incoherent dictionaries with µ = O(1/
√
d)

this means that S .
√
d. However, for most sign sequences σ we have

|〈φi,Φcp,σ〉| =
∣∣∣σicp(i) +

∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ ≈ cp(i) ±

∑
j 6=i

c2
p(j)|〈φi, φj〉|

2

1/2

≈ cp(i) ± µ,

which indicates that a condition of the form µ . cS − cS+1 may be strong enough to guar-
antee (approximate) recoverability of the dictionary. Assuming again the most favourable
case of equally sized coefficients, we could therefore identify dictionaries from signals with
sparsity levels of the order S . µ−2, which, in case of incoherent dictionaries, means of the
order of the ambient dimension S . d.
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The second limitation of Theorem 2 is that, even if it allows for not exact S-sparseness of the
signals, it does not take into account noise. Our next goal is therefore to extend the exact
identification result in Theorem 2 to a stable identification result for less sparse (larger S)
and noisy signals. For this task we first need to amend our signal model to incorporate
noise. We would like to consider unbounded white noise, but also keep the property that in
expectation the signals have unit square norm. Further for the next section, where we want
to transform our asymptotic identification results to results for finite sample sizes, it will
be convenient if our signals are bounded. These considerations lead to the following model:

y =
Φx+ r√
1 + ‖r‖22

, (9)

where r = (r(1) . . . r(d)) is a centred random subgaussian vector with parameter ρ. That
is, the entries r(i) are independent and satisfy E(et·r(i)) ≤ et2ρ2/2.
Employing this noisy signal model and formalizing the ideas about the typical gap size
between responses of the generating dictionary inside and outside the true support, leads
to the following theorem.

Theorem 3 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients x be drawn from a symmetric probability distribution ν on the unit sphere
SK−1 ⊂ RK . Further let r = (r(1) . . . r(d)) be a centred random subgaussian noise-vector
with parameter ρ and assume that the signals are generated according to the noisy signal
model in (9). If there exists β > 0 such that for c1(x) ≥ c2(x) ≥ . . . ≥ cK(x) ≥ 0
the non-increasing rearrangement of the absolute values of the components of x we have
cS(x)− cS+1(x) ≥ β almost surely and

max{µ, ρ} ≤ β√
72(log a+ log log a)

for a =
112K2S(

√
B + 1)

Crβ(c̄1 + . . .+ c̄S)
, (10)

where Cr = Er
(
(1 + ‖r‖22)−1/2

)
and c̄i := Ex(ci(x)), then there is a local maximum of (5)

at Ψ̃ satisfying

d(Ψ̃,Φ) ≤ 12SK2
√
B

Cr(c̄1 + . . .+ c̄S)
exp

(
−β2

72 max{µ2, ρ2}

)
. (11)

Proof idea As outlined at the beginning of the section the main ingredient we have to
add to the proof idea of Theorem 2 is a probabilistic argument to substitute the condition
guaranteeing that the S largest responses of the generating dictionary are Ip. Due to
concentration of measure we get that for most sign sequences, and therefore most signals,
the maximum is still attained at Ip. Moreover the gap to the remaining responses is actually
large enough to accommodate relatively high levels of noise and/or perturbations.
The detailed proof can be found in Appendix A.2.

Let us make some observations about the last result.
First, we want to point out that for sub-Gaussian noise with parameter ρ, the quantity
Cr = Er

(
(1 + ‖r‖22)−1/2

)
in the statement above is well behaved. If for example the r(i)

are iid Bernoulli-variables, that is P (r(i) = ±ρ) = 1
2 , we have Cr = (1+dρ2)−1/2. In general
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we have the following estimate due for instance to Theorem 1 by Hsu et al. (2012). Since
we have

P
(
‖x‖22 ≥ ρ2(d+ 2

√
dt+ 2t

)
≤ e−t,

setting t = d, we get P
(
‖x‖22 ≥ 5dρ2

)
≤ e−d, which leads to

Er

(
1√

1 + ‖r‖22

)
≥ (1− e−d)√

1 + 5dρ2
.

Also to illustrate the result we again specialize it to the most favourable case of exactly S-
sparse signals with balanced coefficients, that is cS(x) = S−1/2. Assuming white Gaussian
noise with variance ρ2

G we see that identification is possible even for expected signal to noise
ratios of the order O(Sd ), that is

E(‖Φx‖22)

E(‖r‖22)
&
S

d
.

Similarly, by specializing Theorem 3 to the case of exactly S-sparse and noiseless signals
we get - to the best of our knowledge - the first result establishing that locally it is possible
to stably identify dictionaries from signals with sparsity levels beyond the spark of the gen-
erating dictionary. Indeed, even if some of the S-sparse signals could have representations
in Φ that require less than S atoms, there will still be a local maximum of the asymptotic
criterion close to the original dictionary as long as the smallest coefficient of each signal is
of the order O(µ), which in the most favourable case means that we can have S . µ−2 or
S . d. The quality of this result is on a par with the best results for finding sparse ap-
proximations in a given dictionary, which say that on average Basis Pursuit or thresholding
can find the correct sparse support even for signals with sparsity levels of the order of the
ambient dimension (Tropp, 2008; Schnass and Vandergheynst, 2007).
Next note that with the available tools it would be possible to consider also a signal model
where a small fraction of the coefficients violates the decay condition cS(x)− cS+1(x) ≥ β
and still have stability. However, we leave explorations in that direction to the interested
reader and instead turn to the study of the criterion for a finite number of training samples.

5. Finite Sample Size Results

In this section we will transform the two asymptotic results from the last section into results
for finite sample sizes, that is, we will study when Φ is close to a local maximum of

max
Ψ∈D

1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1, (12)

assuming that the yn are following either the noise-free or the noisy signal model. For conve-
nience we will do the analysis for the normalized version (12) of the S-response criterion (4).

Theorem 4 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients xn be drawn from a symmetric probability distribution ν on the unit sphere
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SK−1 ⊂ RK and assume that the signals are generated as yn = Φxn. If there exists β > 0
such that for c1(xn) ≥ c2(xn) ≥ . . . ≥ cK(xn) ≥ 0 the non-increasing rearrangement of the
absolute values of the components of xn we have cS(xn)− cS+1(xn)− 2µ‖xn‖1 ≥ β almost
surely and the target precision ε̃ satisfies

ε̃ ≤ β

1 + 3

√
log
(

50K2S
√
B

β(c̄1+...+c̄S)

) ,
where c̄i := Exn(ci(xn)), then except with probability,

2 exp

(
−Nε̃

2(c̄1 + . . .+ c̄S)2

129S2K2B
+Kd log

(
25SK

√
B

ε̃(c̄1 + . . .+ c̄S)

))
,

there is a local maximum of (12) respectively (4) at Ψ̃ satisfying

d(Ψ̃,Φ) ≤ ε̃+
ε̃2

4K
.

Theorem 5 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients xn be drawn from a symmetric probability distribution ν on the unit sphere
SK−1 ⊂ RK . Further let rn = (rn(1) . . . rn(d)) be i.i.d. centred random subgaussian noise-
vectors with parameter ρ and assume that the signals are generated according to the noisy
signal model in (9). If there exists β > 0 such that for c1(xn) ≥ c2(xn) ≥ . . . ≥ cK(xn) ≥ 0
the non-increasing rearrangement of the absolute values of the components of x we have
cS(xn) − cS+1(xn) ≥ β almost surely and if the target precision ε̃, the noise parameter ρ
and the coherence µ satisfy

ε̃ ≤ β
9
4 + 9

√
log a

and (13)

max{µ, ρ} ≤ β√
72(log a+ log log a)

for a =
150K2S(

√
B + 1)

Crβ(c̄1 + . . .+ c̄S)
,

where Cr = Ern
(
(1 + ‖rn‖22)−1/2

)
and c̄i := Exn(ci(xn)), then except with probability

2 exp

(
−
Nε̃2

µ,ρ(c̄1 + . . .+ c̄S)2

513C2
rS

2K2
(√
B + 1

)2 +Kd log

(
49SK

(√
B + 1

)
εµ,ρ(c̄1 + . . .+ c̄S)

))
,

where ε̃µ,ρ = max

{
ε̃,

16SK2
(√
B + 1

)
Cr(c̄1 + . . .+ c̄S)

exp

(
− β2

72 max{µ2, ρ2}

)}
,

there is a local maximum of (12) respectively (4) at Ψ̃, satisfying

d(Ψ̃,Φ) ≤ ε̃µ,ρ +
ε̃2
µ,ρ

16K
.
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Proof idea The proofs, which can be found in Appendix A.3, are based on three ingredients,
a Lipschitz property for the mapping Ψ→ 1

N

∑N
n=1 max|I|=S ‖Ψ?

Iyn‖1 for the respective sig-
nal model, the concentration of the sum around its expectation for a δ-net covering the
space of all admissible dictionaries close to Φ and a triangle inequality argument to show
that the finite sample response differences are close to the expected response differences and
therefore larger than 0 for all ε & εµ,ρ.

To see better how the sample complexity behaves, we simplify the two theorems to the spe-
cial case of noiseless exactly S-sparse signals with balanced coefficients for various orders
of magnitude of S.
If we have S = O(1), Theorem 4 implies that in order to have a maximum within radius ε̃
to the original dictionary Φ with probability e−Kd we need N = O

(
K3dε̃−2

)
samples. Con-

versely given N training signals we can expect the distance between generating dictionary
and closest local maximum to be of the order O

(
K2N−1/2

)
.

If we assume a very incoherent dictionary where µ = O(d−1/2) and thus let the sparsity
level be of the order O(

√
d) the sample complexity rises to N = O

(
K3d3/2ε̃−2

)
. Taking

into account that by (13) the target precision ε̃ needs to be of order O
(
S−1/2

)
= O

(
d−1/4

)
this means that we need at least N = O

(
K3d2

)
training signals and once this initial level

is reached, the error goes to zero at rate N−1/2.
For an even lower sparsity level, S = O(d), again assuming a very incoherent dictionary,
the sample complexity for target precision ε̃ implied now by Theorem 5 rises to N =
O
(
K3d2ε̃−2

)
. In this regime, however, we cannot reach arbitrarily small errors by choosing

N large enough but only approach the asymptotic precision ε̃µ = 16K2
√
SB exp (−d/72S).

Following these promising theoretical results, in the next section we will finally see how
theory translates into practice.

6. Experiments

After showing that the optimization criterion in (4) is locally suitable for dictionary iden-
tification, in this section we present an iterative thresholding and K means type algorithm
(ITKM) to actually find the local maxima of (4) and conduct some experiments to illustrate
the theoretical results. We recall that given the input signals Y = (y1 . . . yN ) and a fixed
sparsity parameter S we want to solve,

max
Ψ∈D

∑
n

max
|I|=S

‖Ψ?
Iyn‖1.

Using Lagrange multipliers,

∂

∂ψk

(∑
n

max
|I|=S

‖Ψ?
Iyn‖1

)
=

∑
n:k∈I(Ψ,yn)

sign(〈ψk, yn〉)y?n,

∂

∂ψk

(
‖ψk‖22

)
= 2ψ?k,
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where I(Ψ, yn) := argmax|I|=S ‖Φ?
Iyn‖1, we arrive at the following update rule,

ψnewk = λk ·
∑

n:k∈I(Ψold,yn)

sign(〈ψoldk , yn〉)yn, (14)

where λk is a scaling parameter ensuring that ‖ψnewk ‖2 = 1.
In practice, when we do not have an oracle giving us the generating dictionary as initial-
ization, we also need to safeguard against bad initializations resulting in a zero-update
ψnewk = 0. For example we can choose the zero-updated atom uniformly at random from
the unit sphere or from the input signals.
Note that finding the sets I(Ψold, yn) corresponds to N thresholding operations while up-
dating according to (14) corresponds to K signed means. Altogether this means that each
iteration of ITKM has computational complexity determined by the matrix multiplication
Ψ?Y , meaning O(dKN). This is light in comparison to K-SVD, which even when using
thresholding instead of OMP as sparse approximation procedure still requires the calculation
of the maximal singular vector of K on average d × N

K matrices. It is also more compu-
tationally efficient than the algorithm for local dictionary refinement, proposed by Arora
et al. (2014), which is also based on averaging. Furthermore it is straightforward to derive
online or parallelized versions of ITKM. In an online version for each newly arriving signal
yn we calculate I(Ψold, yn) using thresholding and update ψnewk = ψnewk + sign(〈ψoldk , yn〉)yn
for k ∈ I(Ψold, yn). After N signals have been processed we renormalize the atoms ψnewk

to have unit norm and set Ψold = Ψnew. Similarly, to parallelize we divide the training
samples into m sets of size N

m . Then on each node m we learn a dictionary Ψnew
m according

to (14) with λk = 1. We then calculate the sum of these dictionaries Ψnew
0 =

∑
m Ψnew

m and
renormalize the atoms in Ψnew

0 to have unit norm.
Armed with this very simple algorithm we will now conduct four experiments to illustrate
our theoretical findings1.

6.1 ITKM vs. K-SVD

In our first experiment we compare the local recovery error of ITKM and K-SVD for 3-
dimensional bases with increasing condition numbers.
The bases are perturbations of the canonical basis Φ = (e1, e2, e3) with the vector v =
(1, 1, 1). That is, Φt = (et1, e

t
2, e

t
3), where eti = (ei + tv)/‖(ei + tv)‖2 and t varying from

0 to 0.5 in steps of 0.1, which corresponds to condition numbers κ(Φt) varying from 1 to
2.5. We generate N = 4096 approximately 1-sparse noiseless signals from the signal model
described in Table 1 with S = 1, T = 2, ρ = 0 and b = 0.1/0.2 and run both ITKM and
K-SVD with 1000 iterations, sparsity parameter S = 1 and the true dictionary (basis) as
initialization. Figure 1(a) shows the recovery error d(Φt, Ψ̃) between the original dictionary
and the output of the respective algorithm averaged over 10 runs.
As predicted by the theoretical results on the corresponding underlying minimization prin-
ciples, the recovery errors of ITKM and K-SVD are roughly the same for Φ0, which is an
orthogonal basis and therefore tight. However, while for ITKM the recovery error stays

1. A Matlab penknife (mini-toolbox) for playing around with ITKM and reproducing the experiments can
be found at http://homepage.uibk.ac.at/~c7021041/ITKM.zip.
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Signal Model
Given the generating dictionary Φ our signal model further depends on four coefficient
parameters,

S - the effective sparsity or number of comparatively large coefficients,
b - deciding the decay factor of these sparse coefficients,
T - the total number of non-zero coefficients (T ≥ S) and
ρ - the noise level.

Given these parameters we choose a decay factor cb uniformly at random in the interval
[1 − b, 1]. We set ci = cib/

√
S for 1 ≤ i ≤ S and ci = 0 for T < i ≤ K. If T = S

we renormalize the sequence to have unit norm, while if T > S we choose the vector
(cS+1, . . . , cT ) uniformly at random on the sphere of radius R, where R is chosen such that
the resulting sequence c has unit norm. We then choose a permutation p and a sign sequence
σ uniformly at random and set y = Φcp,σ, respectively y = (Φcp,σ + r)/

√
1 + ‖r‖2 where r

is a Gaussian noise-vector with variance ρ2 if ρ > 0.

Table 1: Signal Model

constantly low over all condition numbers, for K-SVD it increases with increasing condition
number or non-tightness.

6.2 Recovery Error and Sample Size

The next experiment is designed to show how fast the maximizer Ψ̃ near the original dic-
tionary Φ converges to Φ with increasing sample size N .
The generating dictionaries consist of the canonical basis in Rd for d = 4, 8, 16 and the first
d/2 elements of the Hadamard basis and as such are not tight. For every set of parameters
d, S(T ), b we generate N noiseless signals with N varying from 27 = 128 to 214 = 16384 and
run ITKM with 1000 iterations, sparsity parameter S equal to the coefficient parameter
S and the true dictionary as initialization. Figure 1(b) shows the recovery error d(Φ, Ψ̃)
between the original dictionary Φ and the output of ITKM Ψ̃ averaged over 10 runs.
As predicted by Theorem 4 the recovery error decays as N−1/2. However, the separation of
the curves for d = 4, 8, 16 and almost exactly sparse signals (b = 0.01) by a factor around√

2 instead of 4, as suggested by the estimate ε̃ ≈ K2N−1/2, indicates that the cubic de-
pendence of the sampling complexity on the number of atoms K may be too pessimistic
and could be lowered.

6.3 Stability of Recovery Error under Coherence and Noise

With the last two experiments we illustrate the stability of the maximization criterion under
coherence and noise. As generating dictionaries we use again the canonical basis plus half
Hadamard dictionaries described in the last experiment, which have coherence µ = d−1/2.To
test the stability under coherence we use a large enough number of noiseless training signals
N = 16384, such that the distance between the local maximum of the criterion near the
generating dictionary, that is the output of ITKM with oracle initialization, and the gener-
ating dictionary is mainly determined by the ratio between the gap size β and the coherence.
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Figure 1: (a) Local recovery error of K-SVD and ITKM for two different types of decaying
coefficients and bases with varying condition numbers in R3, (b) Decay of recovery
error of ITKM with increasing number of training signals

For each set of parameters d, S(T ) we create N training signals with decreasing gap sizes
β by increasing b from 0 to 0.1 in steps of 0.01 and run ITKM with oracle initialization,
parameter S and 1000 iterations. Figure 2(a) shows the recovery error d(Φ, Ψ̃) between the
original dictionary Φ and the output of ITKM Ψ̃ again averaged over 10 trials.
Again the experiments reflect our theoretical results. For d = 8, 16 with S = 1 or d = 16
with S = 2 the gap size is large enough that over the whole range of parameters the recovery
error stays constantly low at the level defined by the number of samples. Note that this is
quite good, since for b = 0.1 we are already far beyond the gap size coherence ratios where
the stable theoretical results hold. On the other hand for d = 8 with S = 2 or d = 16 with
S = 3 early on the gap decreases enough to become the error determining factor and so we
see an increase in recovery error as b grows.
Conversely to test the stability under noise we use a large enough number of exactly sparse
training signals, such that the recovery error will be mainly determined by the noise level.
For each set of parameters d, S(S), b we create N = 16384 training signals with Gaussian
noise of variance (noise level) ρ2 going from 0 to 0.1 in steps of 0.01 and run ITKM with
oracle initialization, parameter S and 1000 iterations. Figure 2(b) shows the recovery error
d(Φ, Ψ̃) between the original dictionary Φ and the output of ITKM Ψ̃, this time averaged
over 20 trials.

The curves again correspond to the prediction of the theoretical results, that is the re-
covery error stays at roughly the same level defined by the number of samples until the
noise becomes large enough and then increases. What is maybe interesting to observe in
both experiments is the dithering effect for d = 16 with S = 3, which is due to the special
structure of the dictionary. Indeed using almost equally sized, almost exactly sparse coef-
ficients, it is possible to build signals using only the canonical basis that have almost the
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Figure 2: Increase of recovery error with (a) decreasing ratio between coefficient gap and
coherence and (b) increasing noise level

same response in only half the Hadamard basis and the other way round. This indicates
that slight perturbations of one with the other lead to even better responses and therefore
a larger recovery error. After showing that the theoretical results translate into algorithmic
practice, we finally turn to a discussion of our results in the context of existing work and
point out directions of future research.

7. Discussion

We have introduced a new response maximization principle for dictionary learning and
shown that this is locally suitable to identify a generating µ-coherent dictionary from ap-
proximately S-sparse training signals to arbitrary precision as long as the sparsity level is of
the order O(µ−1). We have also presented - to the best of our knowledge - the first results
showing that stable dictionary identification is locally possible not only for signal to noise
ratios of the order O(

√
d) but also for sparsity levels of the order O(µ−2).

The derived sample complexity (omitting log factors) of O(K3dε̃−2), for signals with spar-
sity levels S = O(1) is roughly the same as for the K-SVD criterion (Schnass, 2014) or the
`1-minimization criterion (Jenatton et al., 2014) but somewhat large compared to recently
developed dictionary algorithms that have a sample complexity of O(K2) (Arora et al.,
2014; Agarwal et al., 2014a) or O(Kε−2) (Agarwal et al., 2014b). However, as the sparsity
approaches and goes beyond µ−1 ∼

√
d the derived sample complexity of O(K3d2ε̃−2) com-

pares quite favourably to the sample complexity of O(K1/(4η)) for a sparsity level d1/2−η

as projected by Arora et al. (2014). Given that also our experimental results suggest that
O(K3dε̃−2) is quite pessimistic, one future direction of research aims to lower the sample
complexity. In particular ongoing work suggests that for the ITKM algorithm a sample size
of order K logK is enough to guarantee local recovery with high probability.
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Another strong point of the results is that the corresponding maximization algorithm ITKM
(Iterative Thresholding andK signed Means) is locally successful, as demonstrated in several
experiments, and computationally very efficient. The most complex step in each iteration
is the matrix multiplication Φ?Y of order O(dKN), which is even lighter than the iterative
averaging algorithm described by Arora et al. (2014).
However, the serious drawback is that ITKM is only a local algorithm and that all our results
are only local. Also while for the K-SVD criterion and the `1-minimization criterion there
is reason to believe that all local minima might be equivalent, the response maximization
principle has a lot of smaller local maxima, which is confirmed by preliminary experiments
with random initializations. There ITKM fails but with grace, that is, it outputs local
maximizers that have not all, but only most atoms in common with what seems to be the
global maximizer near the generating dictionary. This behaviour is in strong contrast to
the algorithms presented by Arora et al. (2014); Agarwal et al. (2014b), that have global
success guarantees at a computational cost of the order O(dN2), and leads to several very
important research directions.
First we want to confirm that ITKM has a convergence radius of the order O(1/

√
S). This

is suggested by the derived radius of the area on which the generating dictionary is the
optimal maximizer as well as preliminary experiments. Alternatively, we could investigate
how the results for the local iterative algorithms (Arora et al., 2014; Agarwal et al., 2014a)
could be extended to larger sparsity levels and convergence radii using our techniques. The
associated important question is how to extend the results for the algorithms presented by
Arora et al. (2014); Agarwal et al. (2014b) to sparsity levels O(µ−2), if possible at lower
cost than O(dN2). Given the conjectured size of the convergence radius for ITKM it would
even be sufficient for the output of the algorithm to arrive at a dictionary within distance
O(1/

√
S) to the generating dictionary, since the output could then be used as initialization

for ITKM.
A parallel approach for getting global identification results for sparsity levels O(µ−2), that
we are currently pursuing, is to analyze a version of ITKM using residual instead of pure
signal means, which in preliminary experiments exhibits global convergence properties.
The last research directions we want to point out are concerned with the realism of the
signal model. The fact that for an input sparsity S a gap of order O(µ−2) between the S
and S + 1 largest coefficient is sufficient can be interpreted as a relaxed dependence of the
algorithm on the sparsity parameter, since a gap of order µ−2 can occur quite frequently. To
further decrease this sensitivity to the sparsity parameter in the criterion and the algorithm
we would therefore like to extend our results to the case where we can only guarantee a gap
of order O(µ−2) between the S largest and the S + T largest coefficient for some T > 1.
Last but not least we would like to exactly reflect the practical situation, where we would
normalize our training signals to equally weight their importance and analyze the unit norm
signal model where y = Φx+ r/‖Φx+ r‖2.
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Appendix A. Proofs

We now provide the full proofs for all our results.

A.1 Proof of Theorem 2

We first reformulate and prove the theorem for the simple case of a symmetric coefficient
distribution based on one sequence and then use an integration argument to extend it to
the general case.

Proposition 6 Let Φ be a unit norm frame with frame constants A ≤ B and coherence
µ. Let x ∈ RK be a random permutation of a sequence c, where c1 ≥ c2 ≥ c3 . . . ≥
cK ≥ 0 and ‖c‖2 = 1, provided with random ± signs, that is x = cp,σ with probability
P(p, σ) = (2KK!)−1. Assume that the signals are generated as y = Φx. If c satisfies
cS > cS+1 + 2µ‖c‖1 then there is a local maximum of (5) at Φ.
Moreover for Ψ 6= Φ we have Ey

(
max|I|=S ‖Ψ?

Iy‖1
)
< Ey

(
max|I|=S ‖Φ?

Iy‖1
)

as soon as

d(Φ,Ψ) ≤ cS − cS+1 − 2µ‖c‖1

1 + 3

√
log
(

25K2S
√
B

(cS−cS+1−2µ‖c‖1)(c1+...+cS)

) . (15)

Proof We start by evaluating the objective function at the original dictionary Φ.

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
= EpEσ

(
max
|I|=S

‖Φ?
IΦcp,σ‖1

)
= EpEσ

(
max
|I|=S

∑
i∈I
|〈φi,Φcp,σ〉|

)
.

To estimate the sum of the (in absolute value) largest S inner products, we first assume
that p is fixed. Setting Ip = p−1 ({1, . . . S}) we have,

|〈φi,Φcp,σ〉| =
∣∣∣σicp(i) +

∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ ≥ cS − µ‖c‖1 ∀i ∈ Ip
≤ cS+1 + µ‖c‖1 ∀i /∈ Ip

.

Together with the condition that cS > cS+1 + 2µ‖c‖1 these estimates ensure that the S
maximal inner products in absolute value are attained at Ip and so we get for the expecta-
tion,

EpEσ
(

max
|I|=S

‖Φ?
IΦcp,σ‖1

)
= EpEσ

(
‖Φ?

IpΦcp,σ‖1
)

= EpEσ

∑
i∈Ip

∣∣∣cp(i) + σi
∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣
 = c1 + . . .+ cS .

To compute the expectation for a perturbation of the original dictionary we use the following
parameterization of all ε-perturbations Ψ of the original dictionary Φ. If d(Ψ,Φ) = ε then
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‖ψi−φi‖2 = εi with maxi εi = ε and we have zi with 〈φi, zi〉 = 0, ‖zi‖2 = 1 and αi := 1−ε2
i /2

and ωi := (ε2
i − ε4

i /4)
1
2 , such that

ψi = αiφi + ωizi.

Expanding the expectation as before we get,

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
= EpEσ

(
max
|I|=S

‖Ψ?
IΦcp,σ‖1

)
= EpEσ

(
max
|I|=S

∑
i∈I
|〈ψi,Φcp,σ〉|

)
. (16)

The tried and tested strategy applied now is showing that for small perturbations and most
sign patterns σ the maximal inner products are still attained by i ∈ Ip. We have

∀i ∈ Ip : |〈ψi,Φcp,σ〉| ≥ αi(cS − µ‖c‖1)− ωi|〈zi,Φcp,σ〉|
∀i /∈ Ip : |〈ψi,Φcp,σ〉| ≤ αi(cS+1 + µ‖c‖1) + ωi|〈zi,Φcp,σ〉|.

Using Hoeffding’s inequality we can estimate the typical sizes of the terms |〈zi,Φcp,σ〉|,

P(|〈zi,Φcp,σ〉| ≥ t) = P(|
∑
j 6=i

σjcp(j)〈zi, φj〉| > t)

≤ 2 exp

(
− t2

2
∑

j 6=i c
2
p(j)〈zi, φj〉2

)
≤ 2 exp

(
− t

2

2

)
.

In case ωi 6= 0 or equivalently εi 6= 0, we set t = s/ωi to arrive at

P(ωi|〈zi,Φcp,σ〉| ≥ s) ≤ 2 exp

(
− s2

2ω2
i

)
≤ 2 exp

(
− s2

2ε2
i

)
,

where we have used that ω2
i = ε2

i − ε4
i /4 ≤ ε2

i , while in case εi = 0 we trivially have that
P(ωi|〈zi,Φcp,σ〉| ≥ s) = 0. Summarizing these findings we see that except with probability

η := 2
∑
i:εi 6=0

exp

(
− s2

2ε2
i

)
,

we have

∀i ∈ Ip : |〈ψi,Φcp,σ〉| ≥ αi(cS − µ‖c‖1)− s
∀i /∈ Ip : |〈ψi,Φcp,σ〉| ≤ αi(cS+1 + µ‖c‖1) + s.

This means that as long as mini∈Ip αi(cS−µ‖c‖1)−s ≥ maxi/∈Ip αi(cS+1 +µ‖c‖1)+s, which

is for instance implied by setting s := 1
2(cS − cS+1 − 2µ‖c‖1 − ε2

2 ), we have

max
|I|=S

‖Ψ?
IΦcp,σ‖1 = ‖Ψ?

IpΦcp,σ‖1.

We now use this result for the calculation of the expectation over σ in (16). For any
permutation p we define the set

Σp :=
⋃
i

{σ s.t. ωi|〈zi,Φcp,σ〉| ≥ s}.
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We then have

Eσ
(

max
|I|=S

‖Ψ?
IΦcp,σ‖1

)
=
∑
σ∈Σp

P(σ) · max
|I|=S

‖Ψ?
IΦcp,σ‖1 +

∑
σ/∈Σp

P(σ) · ‖Ψ?
IpΦcp,σ‖1

=
∑
σ∈Σp

P(σ) ·
(

max
|I|=S

‖Ψ?
IΦcp,σ‖1 − ‖Ψ?

IpΦcp,σ‖1
)

+ Eσ
(
‖Ψ?

IpΦcp,σ‖1
)
. (17)

To estimate the sum over Σp, note that we have the following bounds:

|〈ψi,Φcp,σ〉| = |αi〈φi,Φcp,σ〉+ ωi〈zi,Φcp,σ〉|

{
≤ (1− ε2

2 )|〈φi,Φcp,σ〉|+ ε
√
B

≥ (1− ε2

2 )|〈φi,Φcp,σ〉| − ε
√
B

,

leading to

max
|I|=S

‖Ψ?
IΦcp,σ‖1 ≤ (1− ε2

2
) max
|I|=S

‖Φ?
IΦcp,σ‖1 + S · ε

√
B = (1− ε2

2
)‖Φ?

IpΦcp,σ‖1 + S · ε
√
B

‖Ψ?
IpΦcp,σ‖1 ≥ (1− ε2

2
)‖Φ?

IpΦcp,σ‖1 − S · ε
√
B.

Substituting these estimates into (17) we get

Eσ
(

max
|I|=S

‖Ψ?
IΦcp,σ‖1

)
≤
∑
σ∈Σp

P(σ) · 2εS
√
B + Eσ

(
‖Ψ?

IpΦcp,σ‖1
)

≤ η · 2εS
√
B + Eσ

(
‖Ψ?

IpΦcp,σ‖1
)
.

Next we calculate Eσ
(
‖Ψ?

Ip
Φcp,σ‖1

)
:

Eσ
(
‖Ψ?

IpΦcp,σ‖1
)

= Eσ

∑
i∈Ip

|〈ψi,Φcp,σ〉|


= Eσ

∑
i∈Ip

∣∣∣αicp(i) + σi〈αiφi + ωizi,
∑
j 6=i

σjcp(j)φj〉
∣∣∣
 =

∑
i∈Ip

αicp(i), (18)

where have used that ε ≤ ((1− ε2

2 )cS−µ‖c‖1)/
√
B guarantees the expression within absolute

values in (18) to always be positive. Collecting all these results we arrive at the following
estimate for the value of the objective function at Ψ:

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
= EpEσ

(
max
|I|=S

‖Ψ?
IΦcp,σ‖1

)

≤ Ep

4εS
√
B
∑
i:εi 6=0

exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2
i

)
+
∑
i∈Ip

αicp(i)


≤ 4εS

√
B
∑
i:εi 6=0

exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2
i

)
+
c1 + . . .+ cS

K

∑
i

αi.
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Finally we are able to compare the expectation at the original dictionary to that at an

ε-perturbation. Remembering that αi = 1− ε2i
2 , we get

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
− Ey

(
max
|I|=S

‖Ψ?
Iy‖1

)
≥ c1 + . . .+ cS

K

∑
i

ε2
i

2
− 4εS

√
B
∑
i:εi 6=0

exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2
i

)

≥ ε2 c1 + . . .+ cS
2K

− 4εSK
√
B exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2

)
.

Thus to have a local maximum at the original dictionary we need that

ε >
8SK2

√
B

c1 + . . .+ cS
exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2

)
,

and all that remains to be shown is that this is implied by (15). Since K ≥ 2, (15) implies

that ε2

2 <
cS−cS+1−2µ‖c‖1
2(1+3

√
log 96)2

≤ cS−cS+1−2µ‖c‖1
100 and it suffices to show that (15) further implies

ε >
8SK2

√
B

c1 + . . .+ cS
exp

(
−(cS − cS+1 − 2µ‖c‖1)2 · 992

8ε2 · 1002

)
. (19)

Applying Lemma A.3 by Schnass (2014), which says that for a, b, ε > 0,

ε ≤ 4b

1 +
√

1 + 16 log(ab )
implies that a exp

(
−b2

ε2

)
< ε,

to the situation at hand, where a = 8SK2
√
B

c1+...+cS
and b =

(cS−cS+1−2µ‖c‖1)·99√
8·100

, we get that (19)

is ensured by

ε <
cS − cS+1 − 2µ‖c‖1

√
8 · 25

99

(
1 +

√
16 log

(
8
√

8· 100
99
e1/16SK2

√
B

(cS−cS+1−2µ‖c‖1)(c1+...+cS)

)) ,

which simplifies to (15).

Proof [of Theorem 2]
Using the symmetry of ν, our strategy is to reduce the general to the simple coefficient
model. Let c denote the mapping that assigns to each x ∈ SK−1 the non increasing rear-
rangement of the absolute values of its components, that is ci(x) = |xp(i)| for a permutation
p such that c1(x) ≥ c2(x) ≥ . . . ≥ cK(x) ≥ 0. Then the mapping c together with the
probability measure ν on SK−1 induces a pull-back probability measure νc on c(SK−1), by
νc(Ω) := ν(c−1(Ω)) for any measurable set Ω ⊆ c(SK−1). With the help of this new measure
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we can rewrite the expectations we need to calculate as

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
= Ex

(
max
|I|=S

‖Φ?
IΦx‖1

)
=

∫
x

max
|I|=S

‖Φ?
IΦx‖1dν =

∫
c(x)

EpEσ
(

max
|I|=S

‖Φ?Φcp,σ(x)‖1
)
dνc.

The expectation inside the integral should seem familiar. Indeed we have calculated it
already in the proof of Proposition 6 for c(x) a fixed decaying sequence satisfying cS(x) >
cS+1(x) + 2µ‖x‖1. Since this property is satisfied almost surely we have

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
=

∫
c(x)

EpEσ
(

max
|I|=S

‖Φ?Φcp,σ(x)‖1
)
dνc

=

∫
c(x)

c1(x) + . . .+ cS(x)dνc := c̄1 + . . .+ c̄S .

For the expectation of a perturbed dictionary Ψ we get in analogy

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
=

∫
c(x)

EpEσ
(

max
|I|=S

‖Ψ?Φcp,σ(x)‖1
)
dνc

≤
∫
c(x)

η(x) + (c1(x) + . . .+ cS(x))
1

K

∑
i

αi dνc,

where

η(x) := 4εS
√
B
∑
i:εi 6=0

exp

(
−

(cS(x)− cS+1(x)− 2µ‖x‖1 − ε2

2 )2

8ε2
i

)
.

Since cS(x)− cS+1(x)− 2µ‖x‖1 ≥ β almost surely we have

η(x) ≤ 4εS
√
B
∑
i:εi 6=0

exp

(
−

(β − ε2

2 )2

8ε2
i

)
:= ηβ,

almost surely and therefore

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
≤ ηβ + (c̄1 + . . .+ c̄S)

1

K

∑
i

αi.

Following the same argument as in the proof of Proposition 6 we see that Ey
(
max|I|=S ‖Φ?

Iy‖1
)
>

Ey
(
max|I|=S ‖Ψ?

Iy‖1
)

as soon as

ε <
β

1 + 3

√
log
(

25K2S
√
B

β(c̄1+...+c̄S)

) .
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A.2 Proof of Theorem 3

Again we first reformulate and prove the theorem for the case of a symmetric coefficient
distribution based on one sequence and then extend it with an integration argument.

Proposition 7 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ.
Let x ∈ RK be a random permutation of a sequence c, where c1 ≥ c2 ≥ c3 . . . ≥ cK ≥ 0
and ‖c‖2 = 1, provided with random ± signs, that is x = cp,σ with probability P(p, σ) =
(2KK!)−1. Further let r = (r(1) . . . r(d)) be a centred random subgaussian noise-vector with
parameter ρ and assume that the signals are generated according to the noisy signal model
in (9). If we have

max{µ, ρ} ≤ cS − cS+1√
72(log a+ log log a)

for a =
112K2S(

√
B + 1)

Cr(cS − cS+1)(c1 + . . .+ cS)
, (20)

where Cr = Er
(
(1 + ‖r‖22)−1/2

)
, then there is a local maximum of (5) at Ψ̃ satisfying

d(Ψ̃,Φ) ≤ 12SK2
√
B

Cr(c1 + . . .+ cS)
exp

(
−(cS − cS+1)2

72 max{µ2, ρ2}

)
.

Proof To prove the proposition we digress from the conventional scheme of first calculating
the expectation of our objective function for both the original and a perturbed dictionary
and then comparing and instead bound the difference of the expectations directly.

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
− Ey

(
max
|I|=S

‖Ψ?
Iy‖1

)
= Ep,σ,r

(
max
|I|=S

∥∥∥∥∥Φ?
I(Φcp,σ + r)√

1 + ‖r‖22

∥∥∥∥∥
1

− max
|I|=S

∥∥∥∥∥Ψ?
I(Φcp,σ + r)√

1 + ‖r‖22

∥∥∥∥∥
1

)

= Ep,σ,r

(
max|I|=S ‖Φ?

I(Φcp,σ + r)‖1 −max|I|=S ‖Ψ?
I(Φcp,σ + r)‖1√

1 + ‖r‖22

)
:= Ep,σ,r(∆p,σ,r)

Again our strategy is to show that for a fixed p for most σ and r the maximal response
of both the original dictionary and the perturbation is attained at Ip. The expressions we
therefore need to lower (upper) bound for i ∈ Ip (i /∈ Ip) are

|〈φi,Φcp,σ + r〉| =
∣∣σicp(i) +

∑
j 6=i

σjcp(j)〈φi, φj〉+ 〈φi, r〉
∣∣,

|〈ψi,Φcp,σ + r〉| =
∣∣αiσicp(i) + αi

∑
j 6=i

σjcp(j)〈φi, φj〉+ ωi〈zi,Φcp,σ〉+ 〈ψi, r〉
∣∣.

However, instead of using a worst case estimate for the gap between the responses of the
original dictionary inside and outside Ip, we now make use of the fact that for most sign se-
quences we have a gap size of order cS−cS+1. This means that as soon as |

∑
j 6=i σjcp(j)〈φi, φj〉|,

ωi|〈zi,Φcp,σ〉| and the noise related terms |〈φi, r〉| and |〈ψi, r〉| are of order (cS − cS+1) the
maximal response of both the original dictionary and the perturbation is attained at Ip. In
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particular, defining the sets

Σp :=
⋃
i

σ s.t.
∣∣∣∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ ≥ cS − cS+1

6
or ωi|〈zi,Φcp,σ〉| ≥

cS − cS+1 − 3ε2

2

6

 ,

for a fixed permutation p and

R :=
⋃
i

{
r s.t. |〈φi, r〉| ≥

cS − cS+1

3
or |〈ψi, r〉| ≥

cS − cS+1

6

}
,

we see that both maxima are attained at Ip as long as σ /∈ Σp and r /∈ R. Using Hoeffding’s
inequality we get that

P

∣∣∣∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ > t

 ≤ 2 exp

(
−t2

2
∑

j 6=i c
2
p(j)|〈φi, φj〉|2

)
≤ 2 exp

(
−t2

2µ2

)
,

while from the proof of Proposition 6 we know that for εi 6= 0 we have P(ωi|〈zi,Φcp,σ〉| ≥
s) ≤ 2 exp

(
− s2

2ε2i

)
. Setting t = (cS − cS+1)/6, s = (cS − cS+1 − 3ε2

2 )/6 and using a union

bound then leads to

P(Σp) ≤ 2K exp

(
−
(
cS − cS+1 − 3ε2

2

)2
72ε2

)
+ 2K exp

(
−(cS − cS+1)2

72µ2

)
. (21)

Since the r(i) are subgaussian with parameter ρ we have for any v = (v1 . . . vd) and t ≥ 0,

P(|〈v, r〉| ≥ t) ≤ exp
(
− t2

2ρ2‖v‖22

)
(Vershynin, 2012). Taking a union bound over all φi, ψi

with the corresponding choice for t then leads to the estimate

P(R) ≤ 2K exp

(
−
(
cS − cS+1

)2
72ρ2

)
+ 2K exp

(
−
(
cS − cS+1

)2
18ρ2

)
. (22)

We now split the expectations over the sign and noise patterns for a fixed p to get

EσEr(∆p,σ,r) = Eσ
(∫

r/∈R
∆p,σ,rdνr

)
+ Eσ

(∫
r∈R

∆p,σ,rdνr

)
=
∑
σ/∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr +
∑
σ∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr

+ Eσ
(∫

r∈R
∆p,σ,rdνr

)
. (23)

Next note that Σp is symmetric in the sense that we either have (σ1, . . . ,±σi, . . . , σK) ∈ Σp

or (σ1, . . . ,±σi, . . . , σK) /∈ Σp. Thus we get for the first term in (23),

∑
σ/∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr =

∫
r/∈R

∑
σ/∈Σp

P(σ)


∥∥∥Φ?

Ip
(Φcp,σ + r)

∥∥∥
1
−
∥∥∥Ψ?

Ip
(Φcp,σ + r)

∥∥∥
1√

1 + ‖r‖22

 dνr

=

∫
r/∈R

∑
σ/∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22

 dνr.
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To bound the last two terms in (23) we first find an upper bound formax|I|=S ‖Ψ?
I(Φcp,σ +

r)‖1:

max
|I|=S

‖Ψ?
I(Φcp,σ + r)‖1 = max

|I|=S

∑
i∈I
|〈αiφi + ωizi,Φcp,σ + r)〉|

≤ max
|I|=S

∑
i∈I

(
1− ε2

i

2

)
|〈φi,Φcp,σ + r)〉|+ εi‖Φcp,σ + r‖2

≤ max
|I|=S

∑
i∈I

(
1− ε2

2

)
|〈φi,Φcp,σ + r)〉|+ ε

(√
B + ‖r‖2

)
=
(
1− ε2

2

)
max
|I|=S

‖Φ?
I(Φcp,σ + r)‖1 + εS

(√
B + ‖r‖2

)
.

This then leads to the following lower bound for ∆p,σ,r:

∆p,σ,r ≥ (1 + ‖r‖22)−1/2

(
max
|I|=S

‖Φ?
I(Φcp,σ + r)‖1

ε2

2
− εS

(√
B + ‖r‖2

))
≥ (1 + ‖r‖22)−1/2

(
‖Φ?

Ip(Φcp,σ + r)‖1
ε2

2
− εS

(√
B + ‖r‖2

))
.

Using again the symmetry of Σp we have

∑
σ∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr ≥
∫
r/∈R

∑
σ∈Σp

P(σ)
‖Φ?

Ip
(Φcp,σ + r)‖1 ε

2

2 − εS
(√
B + ‖r‖2

)√
1 + ‖r‖22

dνr

≥
∫
r/∈R

∑
σ∈Σp

P(σ)

(∑
i∈Ip cp(i)

ε2

2√
1 + ‖r‖22

− εS
(√
B + 1

))
dνr

≥
∫
r/∈R

∑
σ∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

) dνr,

and similarly

Eσ
(∫

r∈R
∆p,σ,rdνr

)
≥
∫
r∈R

Eσ

(
‖Φ?

Ip
(Φcp,σ + r)‖1 ε

2

2 − εS
(√
B + ‖r‖2

)√
1 + ‖r‖22

)
dνr

≥
∫
r∈R

∑
i∈Ip cp(i)

ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

)
dνr.
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Resubstituting into (23) we get

EσEr(∆p,σ,r) ≥
∫
r∈R

∑
i∈Ip cp(i)

ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

)
dνr

+

∫
r/∈R

∑
σ∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

) dνr

+

∫
r/∈R

∑
σ/∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22

 dνr

≥
∫
r

∑
i∈Ip cp(i)

ε2i
2√

1 + ‖r‖22
dνr − εS

(√
B + 1

)
·
(
P (R) + P (Σp)

)
. (24)

Taking the expectation over the permutations then yields

Ep,σ,r(∆p,σ,r) ≥ ErEp

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22

− εS(√B + 1
)
·
(
P(R) + EpP(Σp)

)
≥ Er

(
1√

1 + ‖r‖22

)
c1 + . . .+ cS

2K

∑
i

ε2
i − εS

(√
B + 1

)
·
(
P(R) + EpP(Σp)

)
.

Using the probability estimates from (21)/(22) we see that Ep,σ,r(∆p,σ,r) > 0 is implied by

ε ≥
4SK2

(√
B + 1

)
Crγ

(
exp

(
−
(
β − 3ε2

2

)2
72ε2

)
+ exp

(
−β2

72µ2

)
+ exp

(
−β2

72ρ2

)
+ exp

(
−β2

18ρ2

))
,

where we have used the abbreviations γ = c1 + . . . + cS , β = cS − cS+1 and Cr =
Er
(
(1 + ‖r‖22)−1/2

)
. We now proceed by splitting the above condition. We define εmin

by asking that

ε

3
≥

4SK2
(√
B + 1

)
Crγ

exp

(
− β2

72 max{µ2, ρ2}

)
:=

εmin

3

and εmax implicitly by asking that

ε

3
− ε4

81
≥

4SK2
(√
B + 1

)
Crγ

exp

(
−
(
β − 3ε2

2

)2
72ε2

)
.

Following the line of argument in the proof of Proposition 6 we see that the above condition
is guaranteed as soon as

ε ≤ β

5
2 + 9

√
log
(

112K2S(
√
B+1)

Crβγ

) := εmax.
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The statement follows from making sure that εmin < εmax.

Proof [of Theorem 3] Using the pull-back probability measure νc we can write

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
− Ey

(
max
|I|=S

‖Ψ?
Iy‖1

)
=

∫
c(x)

Ep,σ,r
(
∆p,σ,r,c(x)

)
dνc,

where ∆p,σ,r,c(x) is defined analogue to ∆p,σ,r in the last proof, that is replacing c by c(x).
The statement follows from employing the lower estimate for Ep,σ,r

(
∆p,σ,r,c(x)

)
from (24)

and replacing c1 + . . .+ cS by c̄1 + . . .+ c̄S resp. cS− cS+1 by its lower bound β in the proof
of Proposition 7.

A.3 Proof of Theorems 4 and 5

Since the proofs of Theorems 4 and 5 are conceptually equivalent we will combine them
into one and just split the argument for the inevitable juggling of constants.
Proof As outlined in the proof idea we need a Lipschitz property for the mapping Ψ →
1
N

∑N
n=1 max|I|=S ‖Ψ?

Iyn‖1 for both signal models, the concentration of the sum around its
expectation for a δ net covering the space of all admissible dictionaries close to Φ and a
triangle inequality argument to get to the final statement.
To show the Lipschitz property we use a reverse triangle inequality:∣∣∣∣max

|I|=S
‖Ψ?

Iyn‖1 − max
|I|=S

‖Ψ̄?
Iyn‖1

∣∣∣∣ =

∣∣∣∣max
|I|=S

‖Ψ̄?
Iyn − (Ψ̄?

I −Ψ?
I)yn‖1 − max

|I|=S
‖Ψ̄?

Iyn‖1
∣∣∣∣

≤ max
|I|=S

‖(Ψ̄?
I −Ψ?

I)yn‖1

≤ Smax
k
‖ψk − ψ̄k‖2‖yn‖2

≤ d(Ψ, Ψ̄)S
(√
B + 1

)
.

Note that for the noise-free signal model we can replace
(√
B + 1

)
by
√
B in the last

expression. By averaging over n we get that the mapping in question is Lipschitz with
constant S

(√
B + 1

)
in the noisy and S

√
B in the noise-free case, that is∣∣∣∣∣ 1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1 −

1

N

N∑
n=1

max
|I|=S

‖Ψ̄?
Iyn‖1

∣∣∣∣∣ ≤ d(Ψ, Ψ̄)S
(√
B + 1

)
.

To show that the averaged sums concentrate around their expectations we use our favourite
tool Hoeffding’s inequality. Set Xn = max|I|=S ‖Φ?

Iyn‖1 −max|I|=S ‖Ψ?
Iyn‖1, then we have

|Xn| ≤ εS
(√
B + 1

)
, resp. |Xn| ≤ εS

√
B in the noise-free case, and get the estimate

P

(∣∣∣∣∣ 1

N

N∑
n=1

(
max
|I|=S

‖Φ?
Iyn‖1 − max

|I|=S
‖Ψ?

Iyn‖1
)
− E

(
max
|I|=S

‖Φ?
Iy1‖1 − max

|I|=S
‖Ψ?

Iy1‖1
)∣∣∣∣∣ ≥ 2t

)

≤ 2 exp

(
−2Nt2

ε2S2
(√
B + 1

)2
)
.

1237



Schnass

Next we need to choose a δ-net for all perturbations Ψ with d(Φ,Ψ) ≤ εmax, that is a finite
set of perturbations N such that for every Ψ we can find Ψ̄ ∈ N with d(Ψ, Ψ̄) ≤ δ. Recalling
the parameterization of all ε-perturbations from the proof of Proposition 6, we see that the
space we need to cover is included in the product of K balls with radius εmax in dimension
d. For instance from Lemma 2 by Vershynin (2012) we know that for the d dimensional ball

of radius εmax we can find a δ-net Nd satisfying ]Nd ≤
(
εmax + 2εmax

δ

)d
, so for our space of

ε-perturbations we can find a δ-net N satisfying

]N ≤
(
εmax +

2εmax

δ

)Kd
≤
(

3εmax

δ

)Kd
.

Taking a union bound we can now estimate the probability that we have concentration for
all perturbations in the net as

P

(
∃Ψ ∈ N :

∣∣∣∣∣ 1

N

N∑
n=1

(
max
|I|=S

‖Φ?
Iyn‖1 − max

|I|=S
‖Ψ?

Iyn‖1
)

− E
(
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Finally we are ready for the triangle inequality argument. For any Ψ with d(Ψ,Φ) = ε ≤
εmax we can find Ψ̄ ∈ N with d(Ψ̄,Ψ) ≤ δ and d(Φ, Ψ̄) = ε̄ and therefore get
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Depending on the signal model we now have to substitute the values for the asymptotic
differences E

(
max|I|=S ‖Φ?

Iy1‖1
)
− E

(
max|I|=S ‖Ψ̄?

Iy1‖1
)

calculated in the previous proofs.
Under the conditions given in Theorem 4 we have,
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To make sure that the above expression is larger than zero, we split it into two conditions.
The first condition
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)) .
To concretise the second condition
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While for the asymptotic results we tried to make εmax as large as possible to indicate
how large the basin of attraction could be, for the finite sample size results we want it
as small as possible in order to keep the sampling complexity small and therefore choose
εmax = εmin. The statement then follows from making sure that the right most inequality
in (26) is satisfied and simplifications.
In case of the noisy signal model, that is under the conditions given in Theorem 5, we have
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Splitting equally gives us four conditions:
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Choosing t = ε̃2
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we can merge the first three conditions

to ε̄ ≥ ε̃2
µ,ρ, while following the usual argument, Condition (28) is satisfied once
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Given that ε̄ differs at most by δ from ε we see that (27) is larger than zero except with
probability
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Again the statement follows from choosing εmax = εmin, making sure that the right most
inequality in (29) is satisfied and simplifications.
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Abstract

This paper introduces the Encog library for Java and C#, a scalable, adaptable, multi-
platform machine learning framework that was first released in 2008. Encog allows a variety
of machine learning models to be applied to data sets using regression, classification, and
clustering. Various supported machine learning models can be used interchangeably with
minimal recoding. Encog uses efficient multithreaded code to reduce training time by
exploiting modern multicore processors. The current version of Encog can be downloaded
from http://www.encog.org.

Keywords: Java, C#, neural network, support vector machine, open source software

1. Intention and Goals

This paper describes the Encog API for Java and C# that is provided as a JAR or DLL
library. The C# version of Encog is also compatible with the Xamarin Mono package.
Encog has an active community that has provided many enhancements that are beyond the
scope of this paper. This includes extensions such as Javascript, GPU processing, C/C++
support, Scala support, and interfaces to various automated trading platforms. The scope
of this paper is limited to the Java and C# API.

Encog allows the Java or C# programmer to experiment with a wide range of machine
language models using a simple, consistent interface for clustering, regression, and classifi-
cations. This allows the programmer to construct applications that discover which model
provides the most suitable fit for the data. Encog provides basic tools for automated model
selection. Most Encog models are implemented as efficient multithreaded algorithms to
reduce processing time. This often allows Encog to perform more efficiently than many
other Java and C# libraries, as demonstrated empirically by Taheri (2014) and Matviykiv
and Faitas (2012). Luhasz et al. (2013) and Ramos-Pollán et al. (2012) also saw favorable
results when evaluating Encog to similar libraries.

The Encog’s API is presented in an intuitive object-oriented paradigm that allows vari-
ous models, optimization algorithms, and training algorithms to be highly interchangeable.
However, beneath the API, the models are represented as one and two-dimensional arrays.
This internal representation allows for highly efficient calculation. The API shields the
programmer from the complexity of model calculation and fitting.

c©2015 Jeff Heaton.
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Encog contains nearly 400 unit tests to ensure consistency between the Java and C#
model implementations. Expected results are calculated and cross-checked between the two
platforms. A custom pseudorandom number generator (PRNG) is used in both language’s
unit tests to ensure that even stochastic models produce consistent, verifiable test results.

Encog contains nearly 150 examples to demonstrate the use of the API in a variety
of scenarios. These examples include simple prediction, time series, simulation, financial
applications, path finding, curve fitting, and other applications. Documentation for Encog
is provided as Java/C# docs and an online wiki. Additionally, discussion groups and a
Stack Overflow tag are maintained for support. Links to all of these resources can be found
at http://www.encog.org.

2. Framework Overview

The design goal of Encog is to provide interchangeable models with efficient, internal imple-
mentations. The Encog framework supports machine learning models with multiple training
algorithms. These models are listed here:

• Adaline, Feedforward, Hopfield, PNN/GRNN, RBF & NEAT neural networks

• generalized linear regression (GLM)

• genetic programming (tree-based)

• k-means clustering

• k-nearest neighbors

• linear regression

• self-organizing map (SOM)

• simple recurrent network (Elman and Jordan)

• support vector machine (SVM)

Encog provides optimization algorithms such as particle swarm optimization (PSO)
(Poli, 2008), genetic algorithms (GA), Nelder-Mead and simulated annealing. These algo-
rithms can optimize a vector to minimize a loss function; consequently, these algorithms
can fit model parameters to data sets.

Propagation-training algorithms for neural network fitting, such as back propagation
(Rumelhart et al., 1988), resilient propagation (Riedmiller and Braun, 1992), Levenberg-
Marquardt (Marquardt, 1963), quickpropagation (Fahlman, 1988), and scaled conjugate
gradient (Møller, 1993) are included. Neural network pruning and model selection can be
used to find optimal network architectures. Neural network architectures can be automati-
cally built by a genetic algorithm using NEAT and HyperNEAT (Stanley and Miikkulainen,
2002).

A number of preprocessing tools are built into the Encog library. Collected data can be
divided into training, test, and validation sets. Time-series data can be encoded into data
windows. Quantitative data can be normalized by range or z-score to prevent biases in some
models. Masters (1993) normalizes qualitative data using one-of-n encoding or equilateral
encoding. Encog uses these normalization techniques.
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Encog also contains extensive support for genetic programming using a tree represen-
tation (Koza, 1993). A full set of mathematical and programming functions are provided.
Additionally, new functions can be defined. Constant nodes can either be drawn from a
constant pool or generated as needed. Rules can optionally be added to simplify expressions
and penalize specific genome patterns.

3. API Overview

One of the central design philosophies of Encog is to allow models to be quickly interchanged
without a great deal of code modification. A classification example will demonstrate this
interchangeability, using the iris data set (Fisher, 1936). Portions of this classification
example are presented in this paper, using the Java programming language. The complete
example, in both Java and C#, is provided in the Encog Quick Start Guide (available
from http://www.encog.org). The Quick Start Guide also provides regression and
time-series examples.

The following example learns to predict the species of an iris flower by using four types
of measurements from each flower. To begin, the program loads the iris data set’s CSV
file. In addition to CSV, Encog contains classes to read fixed-length text, JDBC, ODBC,
and XML data sources. The iris data set is loaded, and the four measurement columns are
defined as continuous values.

VersatileDataSource source = new CSVDataSource(irisFile, false,
CSVFormat.DECIMAL_POINT);

VersatileMLDataSet data = new VersatileMLDataSet(source);
data.defineSourceColumn("sepal-length", 0, ColumnType.continuous);
data.defineSourceColumn("sepal-width", 1, ColumnType.continuous);
data.defineSourceColumn("petal-length", 2, ColumnType.continuous);
data.defineSourceColumn("petal-width", 3, ColumnType.continuous);

The species of Iris is defined as nominal value. Defining the columns as continuous,
nominal or ordinal allows Encog to determine the appropriate way to encode these data for
a model. For specialized cases, it is possible to override Encog’s encoding defaults for any
model type.

ColumnDefinition outputColumn = data.defineSourceColumn("species", 4,
ColumnType.nominal);

Once the columns have been defined, the file is analyzed to determine minimum, maximum,
and other statistical properties of the columns. This allows the columns to be properly
normalized and encoded by Encog for modeling.

data.analyze();
data.defineSingleOutputOthersInput(outputColumn);

Next the model type is defined to be a feedforward neural network.

EncogModel model = new EncogModel(data);
model.selectMethod(data, MLMethodFactory.TYPE_FEEDFORWARD);

Only the above line needs to be changed to switch to model types that include the following:

• MLMethodFactory.SVM: support vector machine

• MLMethodFactory.TYPE RBFNETWORK: RBF neural network
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• MLMethodFactor.TYPE NEAT: NEAT neural network

• MLMethodFactor.TYPE PNN: probabilistic neural network

Next the data set is normalized and encoded. Encog will automatically determine the
correct normalization type based on the model chosen in the last step. For model validation,
30% of the data are held back. Though the validation sampling is random, a seed of 1001
is used so that the items selected for validation remain constant between program runs.
Finally, the default training type is selected.

data.normalize();
model.holdBackValidation(0.3, true, 1001);
model.selectTrainingType(data);

The example trains using a 5-fold cross-validated technique that chooses the model with
the best validation score. The resulting training and validation errors are displayed.

MLRegression bestMethod = (MLRegression)model.crossvalidate(5, true);
System.out.println( "Training error: " + EncogUtility.calculateRegressionError(

bestMethod, model.getTrainingDataset()));
System.out.println( "Validation error: " + EncogUtility.calculateRegressionError

(bestMethod, model.getValidationDataset()));

Display normalization parameters and final model.

NormalizationHelper helper = data.getNormHelper();
System.out.println(helper.toString());
System.out.println("Final model: " + bestMethod);

4. Future Plans and Conclusions

A number of enhancements are planned for Encog. Gradient boosting machines (GBM) and
deep learning are two future model additions. Several planned enhancements will provide
interoperability with other machine learning packages. Future versions of Encog will have
the ability to read and write Weka Attribute-Relation File Format (ARFF) and libsvm data
files. Encog will gain the ability to load and save models in the Predictive Model Markup
Language (PMML) format. A code contribution by Mosca (2012) will soon be integrated,
enhancing Encog’s ensemble learning capabilities.
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Abstract

We introduce an efficient message passing scheme for solving Constraint Satisfaction Prob-
lems (CSPs), which uses stochastic perturbation of Belief Propagation (BP) and Survey
Propagation (SP) messages to bypass decimation and directly produce a single satisfying
assignment. Our first CSP solver, called Perturbed Belief Propagation, smoothly interpo-
lates two well-known inference procedures; it starts as BP and ends as a Gibbs sampler,
which produces a single sample from the set of solutions. Moreover we apply a similar
perturbation scheme to SP to produce another CSP solver, Perturbed Survey Propaga-
tion. Experimental results on random and real-world CSPs show that Perturbed BP is
often more successful and at the same time tens to hundreds of times more efficient than
standard BP guided decimation. Perturbed BP also compares favorably with state-of-
the-art SP-guided decimation, which has a computational complexity that generally scales
exponentially worse than our method (w.r.t. the cardinality of variable domains and con-
straints). Furthermore, our experiments with random satisfiability and coloring problems
demonstrate that Perturbed SP can outperform SP-guided decimation, making it the best
incomplete random CSP-solver in difficult regimes.

Keywords: constraint satisfaction problem, message passing, belief propagation, survey
propagation, Gibbs sampling, decimation

1. Introduction

Probabilistic Graphical Models (PGMs) provide a common ground for recent convergence
of themes in computer science (artificial neural networks), statistical physics of disordered
systems (spin-glasses) and information theory (error correcting codes). In particular, mes-
sage passing methods have been successfully applied to obtain state-of-the-art solvers for
Constraint Satisfaction Problems (Mézard et al., 2002)

The PGM formulation of a CSP defines a uniform distribution over the set of solutions,
where each unsatisfying assignment has a zero probability. In this framework, solving a CSP
amounts to producing a sample from this distribution. To this end, usually an inference
procedure estimates the marginal probabilities, which suggests an assignment to a subset
of the most biased variables. This process of sequentially fixing a subset of variables, called
decimation, is repeated until all variables are fixed to produce a solution. Due to inaccuracy
of the marginal estimates, this procedure gives an incomplete solver (Kautz et al., 2009), in

c©2015 Siamak Ravanbakhsh, Russell Greiner.
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the sense that the procedure’s failure is not a certificate of unsatisfiability. An alternative
approach is to use message passing to guide a search procedure that can back-track if a
dead-end is reached (e.g., Kask et al., 2004; Parisi, 2003). Here using a branch and bound
technique and relying on exact solvers, one may also determine when a CSP is unsatisfiable.

The most common inference procedure for this purpose is Belief Propagation (Pearl,
1988). However, due to geometric properties of the set of solutions (Krzakala et al., 2007)
as well as the complications from the decimation procedure (Coja-Oghlan, 2011; Kroc et al.,
2009), BP-guided decimation fails on difficult instances. The study of the change in the
geometry of solutions has lead to Survey Propagation (Braunstein et al., 2002) which is
a powerful message passing procedure that is slower than BP (per iteration) but typically
remains convergent, even in many situations when BP fails to converge.

Using decimation, or other search schemes that are guided by message passing, usually
requires estimating marginals or partition functions, which is harder than producing a single
solution (Valiant, 1979). This paper introduces a message passing scheme to eliminate
this requirement, therefore also avoiding the complications of applying decimation. Our
alternative has advantage over both BP- and SP-guided decimation when applied to solve
CSPs. Here we consider BP and Gibbs Sampling (GS) updates as operators—Φ and Ψ
respectively—on a set of messages. We then consider inference procedures that are convex
combination (i.e., γΨ + (1− γ)Φ) of these two operators. Our CSP solver, Perturbed BP,
starts at γ = 0 and ends at γ = 1, smoothly changing from BP to GS, and finally producing
a sample from the set of solutions. This change amounts to stochastic biasing the BP
messages towards the current estimate of marginals, where this random bias increases in
each iteration. This procedure is often much more efficient than BP-guided decimation (BP-
dec) and sometimes succeeds where BP-dec fails. Our results on random CSPs (rCSPs) show
that Perturbed BP is competitive with SP-guided decimation (SP-dec) in solving difficult
random instances.

Since SP can be interpreted as BP applied to an “auxiliary” PGM (Braunstein et al.,
2005), we can apply the same perturbation scheme to SP, which we call Perturbed SP. Note
that this system, also, does not perform decimation and directly produce a solution (without
using local search). Our experiments show that Perturbed SP is often more successful than
both SP-dec and Perturbed BP in finding satisfying assignments.

Stochastic variations of BP have been previously proposed to perform inference in graph-
ical models (e.g., Ihler and Mcallester, 2009; Noorshams and Wainwright, 2013). However,
to our knowledge, Perturbed BP is the first method to directly combine GS and BP updates.

In the following, Section 1.1 introduces PGM formulation of CSP using factor-graph
notation. Section 1.2 reviews the BP equations and decimation procedure, then Section 1.3
casts GS as a message update procedure. Section 2 introduces Perturbed BP as a combi-
nation of GS and BP. Section 2.1 compares BP-dec and Perturbed BP on benchmark CSP
instances, showing that our method is often several folds faster and more successful in solv-
ing CSPs. Section 3 overviews the geometric properties of the set of solutions of rCSPs, then
reviews first order Replica Symmetry Breaking Postulate and the resulting SP equations
for CSP. Section 3.2 introduces Perturbed SP and Section 3.3 presents our experimental
results for random satisfiability and random coloring instances close to the unsatisfiability
threshold. Finally, Section 3.4 further discusses the behavior of decimation and perturbed
BP in the light of a geometric picture of the set of solutions and the experimental results.
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1.1 Factor Graph Representation of CSP

Let x = (x1, x2, . . . , xN ) be a tuple of N discrete variables xi ∈ Xi, where each Xi is
the domain of xi. Let I ⊆ N = {1, 2, . . . , N} denote a subset of variable indices and
xI ={xi | i ∈ I} be the (sub)tuple of variables in x indexed by the subset I. Each constraint
CI(xI) :

(∏
i∈I Xi

)
→ {0, 1} maps an assignment to 1 iff that assignment satisfies that

constraint. Then the normalized product of all constraints defines a uniform distribution
over solutions

µ(x) ,
1

Z

∏
I

CI(xI) (1)

where the partition function Z =
∑
X
∏
I CI(xI) is equal to the number of solutions.1

Notice that µ(x) is non-zero iff all of the constraints are satisfied—that is x is a solution.
With slight abuse of notation we will use probability density and probability distribution
interchangeably.

Example 1 (q-COL:) Here, xi ∈ Xi = {1, . . . , q} is a q-ary variable for each i ∈ N , and
we have M constraints; each constraint Ci,j(xi, xj) = 1 − δ(xi, xj) depends only on two
variables and is satisfied iff the two variables have different values (colors). Here δ(x, x′) is
equal to 1 if x = x′ and 0 otherwise.

This model can be conveniently represented as a bipartite graph, known as a factor
graph (Kschischang et al., 2001), which includes two sets of nodes: variable nodes xi, and
constraint (or factor) nodes CI . A variable node i (note that we will often identify a variable
“xi” with its index “i”) is connected to a constraint node I if and only if i ∈ I. We will
use ∂ to denote the neighbors of a variable or constraint node in the factor graph—that is
∂I = {i | i ∈ I} (which is the set I) and ∂i = {I | i ∈ I}. Finally we use ∆i to denote
the Markov blanket of node xi (∆i = {j ∈ ∂I | I ∈ ∂i, j 6= i}).

The marginal of µ(·) for variable xi is defined as

µ(xi) ,
∑
XN\i

µ(x)

where the summation above is over all variables but xi. Below, we use µ̂(xi) to denote an
estimate of this marginal. Finally, we use S to denote the (possibly empty) set of solutions
S = {x ∈ X | µ(x) 6= 0}.

Example 2 (κ-SAT:) All variables are binary (Xi = {True, False}) and each clause (con-
straint CI) depends on κ = |∂I| variables. A clause evaluates to 0 only for a single assign-
ment out of 2κ possible assignment of variables (Garey and Johnson, 1979).

Consider the following 3-SAT problem over 3 variables with 5 clauses

SAT (x) = (¬x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C1

∧ (¬x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
C2

∧ (x1 ∨ ¬x2 ∨ x3)︸ ︷︷ ︸
C3

∧ (¬x1 ∨ x2 ∨ ¬x3)︸ ︷︷ ︸
C4

∧ (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
C5

. (2)

1. For Equation (1) to remain valid when the CSP is unsatisfiable, we define 0
0
, 0.
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(a)
(b)

Figure 1: (a) The set of all possible assignments to 3 variables. The solutions to the 3-SAT
problem of Equation (2) are in white circles. (b) The factor-graph correspond-
ing to the 3-SAT problem of Equation (2). Here each factor prohibits a single
assignment.

The constraint corresponding to the first clause takes the value 1, except for
x = {True, True, False}, in which case it is equal to 0. The set of solutions for this prob-
lem is given by S =

{
(True, True, True), (False, False, False), (False, False, T rue)

}
.

Figure 1 shows the solutions as well as the corresponding factor graph.2

1.2 Belief Propagation-guided Decimation

Belief Propagation (Pearl, 1988) is a recursive update procedure that sends a sequence of
messages from variables to constraints (νi→I) and vice-versa (νI→i)

νi→I(xi) ∝
∏

J∈∂i\I

νJ→i(xi) (3)

νI→i(xi) ∝
∑

xI\i∈X∂I\i

CI(xI)
∏

j∈∂I\i

νj→I(xj) (4)

where J ∈ ∂i \ I refers to all the factors connected to variable xi, except for factor CI .
Similarly the summation in Equation (4) is over X∂I\i, means we are summing out all xj
that are connected to CI (i.e., xj s.t. j ∈ I \ i) except for xi.

The messages are typically initialized to a uniform or a random distribution. This re-
cursive update of messages is usually performed until convergence—i.e., until the maximum
change in the value of all messages, from one iteration to the next, is negligible (i.e., below
some small ε). At any point during the updates, the estimated marginal probabilities are
given by

µ̂(xi) ∝
∏
J∈∂i

νJ→i(xi). (5)

2. In this simple case, we could combine all the constraints into a single constraint over 3 variables and
simplify the factor graph. However, in general SAT, this cost-saving simplification is often not possible.
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In a factor graph without loops, each BP message summarizes the effect of the (sub-tree
that resides on the) sender-side on the receiving side.

Example 3 Applying BP to the 3-SAT problem of Equation (2) takes 20 iterations to
converge (i.e., for the maximum change in the marginals to be below ε = 10−9). Here the
message, νC1→1(x1), from C1 to x1 is

νC1→1(x1) ∝
∑
x2,3

C1(x1,2,3) ν2→C1(x2) ν3→C1(x3)

and similarly, the message in the opposite direction, ν1→C1(x1), is defined as

ν1→C1(x1) ∝ νC2→1(x1) νC3→1(x1) νC4→1(x1) νC5→1(x1).

Here BP gives us the following approximate marginals: µ̂(x1 = True) = µ̂(x2 = True) =
.319 and µ̂(x3 = True) = .522. From the set of solutions, we know that the correct marginals
are µ̂(x1 = True) = µ̂(x2 = True) = 1/3 and µ̂(x3 = True) = 2/3. The error of BP is
caused by influential loops in the factor-graph of Figure 1(b). Here the error is rather small;
it can be arbitrarily large in some instances or BP may not converge at all.

The time complexity of BP updates of Equation (3) and Equation (4), for each of the
messages exchanged between i and I, are O(|∂i| |Xi|) and O(|XI |) respectively. We may
reduce the time complexity of BP by synchronously updating all the messages νi→I ∀I ∈ ∂i
that leave node i. For this, we first calculate the beliefs µ̂(xi) using Equation (5) and
produce each νi→I using

νi→I(xi) ∝
µ̂(xi)

νI→i(xi)
. (6)

Note than we can substitute Equation (4) into Equation (3) and Equation (5) and only
keep variable-to-factor messages. After this substitution, BP can be viewed as a fixed-point
iteration procedure that repeatedly applies the operator
Φ({νi→I}) , {Φi→I({νj→J}j∈∆i,J∈∂i\I})}i,I∈∂i to the set of messages in hope of reaching a
fixed point—that is

νi→I(xi) ∝
∏

J∈∂i\I

∑
X∂J\i

CJ(xJ)
∏

j∈∂J\i

νj→J(xj) , Φi→I({νj→J}j∈∆i,J∈∂i\I)(xi) (7)

and therefore Equation (5) becomes

µ̂(xi) ∝
∏
I∈∂i

∑
X∂I\i

CI(xI)
∏

j∈∂I\i

νj→I(xj) (8)

where Φi→I denotes individual message update operators. We let operator Φ(.) denote the
set of these Φi→I operators.
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1.2.1 Decimation

The decimation procedure can employ BP (or SP) to solve a CSP. We refer to the cor-
responding method as BP-dec (or SP-dec). After running the inference procedure and
obtaining µ̂(xi), ∀i, the decimation procedure uses a heuristic approach to select the most
biased variables (or just a random subset) and fixes these variables to their most biased
values (or a random x̂i ∼ µ̂(xi)). If it selects a fraction ρ of remaining variables to fix after
each convergence, this multiplies an additional log 1

ρ
(N) to the linear (in N) cost3 for each

iteration of BP (or SP). The following algorithm 1 summarizes BP-dec with a particular
scheduling of updates:

input : factor-graph of a CSP
output: a satisfying assignment x∗ if an assignment was found. unsatisfied

otherwise

1 initialize the messages

2 Ñ ← N (set of all variable indices)

3 while Ñ is not empty do // decimation loop

4

5 repeat// BP loop

6

7 foreach i ∈ Ñ do
8 calculate messages {νI→i}I∈∂i using Equation (4)
9 if {νI→i}I∈∂i are contradictory then

return : unsatisfied
10 calculate marginal µ̂(xi) using Equation (5)
11 calculate messages {νi→I}I∈∂i using Equation (3) or Equation (6)

12 until convergence

13 select B ⊆ Ñ using {µ̂(xi)}i∈Ñ
14 fix x∗j ← argxj max µ̂(xj) ∀j ∈ B
15 reduce the constraints {CI}I∈∂j for every j ∈ B

return : x∗ = (x∗1, . . . , x
∗
N )

Algorithm 1: Belief Propagation-guided Decimation (BP-dec)

The condition of line 9 is satisfied iff the product of incoming messages to node i is 0
for all xi ∈ Xi. This means that neighboring constraints have strict disagreement about
the value of xi and the decimation has found a contradiction. This contradiction can
happen because, either (I) there is no solution for the reduced problem even if the original
problem had a solution, or (II) the reduced problem has a solution but the BP messages
are inaccurate.

Example 4 To apply BP-dec to previous example, we first calculate BP marginals, as
shown in the example above. Here µ̂(x1) and µ̂(x2) have the highest bias. By fixing the

3. Assuming the number of edges in the factor graph are in the order of N . In general, using synchronous
update of Equation (6) and assuming a constant factor cardinality, |∂I|, the cost of each iteration is
O(E), where E is the number of edges in the factor-graph.
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value of x1 to False, the SAT problem of Equation (2) collapses to

SAT (x{2,3})|x1=False = (¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3).

BP-dec applies BP again to this reduced problem, which give µ̂(x2 = True) = .14 (note
here that µ(x2 = True) = 0) and µ̂(x3 = True) = 1/2. By fixing x2 to False, another
round of decimation yields a solution x∗ = (False, False, T rue).

1.3 Gibbs Sampling as Message Update

Gibbs Sampling (GS) is a Markov Chain Monte Carlo (MCMC) inference procedure (An-
drieu et al., 2003) that can produce a set of samples x̂[1], . . . , x̂[L] from a given PGM. We
can then recover the marginal probabilities, as empirical expectations

µ̂L(xi) ∝ 1

L

L∑
n=1

δ(x̂[n]i, xi). (9)

Our algorithm only considers a single particle x̂ = x̂[1]. GS starts from a random initial
state x̂(t=0) and at each time-step t, updates each x̂i by sampling from:

x̂
(t)
i ∼ µ(xi) ∝

∏
I∈∂i

CI(xi, x̂
(t−1)
∂I\i ) (10)

If the Markov chain satisfies certain basic properties (Robert and Casella, 2005), x
(∞)
i

is guaranteed to be an unbiased sample from µ(xi) and therefore our marginal estimate,
µ̂L(xi), becomes exact as L→∞.

In order to interpolate between BP and GS, we establish a correspondence between a
particle in GS and a set of variable-to-factor messages—i.e., x̂ ⇔ {νi→I(.)}i,I∈∂i. Here all
the messages leaving variable xi are equal to a δ-function defined based on x̂i

νi→I(xi) = δ(xi, x̂i) ∀I ∈ ∂i.

We define the random GS operator Ψ = {Ψi}i and rewrite the GS update of Equa-
tion (10) as

νi→I(xi) , Ψi({νj→J(xj)}j∈∆i,J∈∂i)(xi) = δ(x̂i, xi) (11)

where x̂i is sampled from

x̂i ∼ µ̂(xi) ∝
∏
J∈∂i

CI(xi, x̂∂I\i)

∝
∏
I∈∂i

∑
X∂I\i

CI(xI)
∏

j∈∂I\i

νj→I(xj). (12)

Note that Equation (12) is identical to BP estimate of the marginal Equation (8). This
equality is a consequence of the way we have defined messages in the GS update and allows
us to combine BP and GS updates in the following section.
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2. Perturbed Belief Propagation

Here we introduce an alternative to decimation that does not require repeated application
of inference. The idea is to use a linear combination of BP and GS operators (Equation 7
and Equation 11) to update the messages

Γ({νi→I}) , γ Ψ({νi→I}) + (1− γ)Φ({νi→I}).

The Perturbed BP operator Γ = {Γi→I}i,I∈∂i updates each message by calculating the
outgoing message according to BP and GS operators and linearly combines them to get
the final message. During T iterations of Perturbed BP, the parameter γ is gradually and
linearly changed from 0 towards 1. Algorithm 2 below summarizes this procedure.

input : factor graph of a CSP, number of iterations T
output: a satisfying assignment x∗ if an assignment was found. unsatisfied

otherwise

1 initialize the messages
2 γ ← 0

3 Ñ ← N (set of all variable indices)
4 for t = 1 to T do
5 foreach variable xi do
6 calculate νI→i using Equation (4) ∀I ∈ ∂i
7 if {νI→i}I∈∂i are contradictory then

return : unsatisfied
8 calculate marginals µ̂(xi) using Equation (12)
9 calculate BP messages νi→I using Equation (3) or Equation (6) ∀I ∈ ∂i.

10 sample x̂i ∼ µ̂(xi)
11 combine BP and Gibbs sampling messages:

νi→I ← γ νi→I + (1− γ) δ(xi, x̂i)

12 γ ← γ + 1
T−1

return : x∗ = {x∗1, . . . , x∗N}
Algorithm 2: Perturbed Belief Propagation

In step 7, if the product of incoming messages is 0 for all xi ∈ Xi for some i, different
neighboring constraints have strict disagreement about xi; therefore this run of Perturbed
BP will not be able to satisfy this CSP. Since the procedure is inherently stochastic, if
the CSP is satisfiable, re-application of the same procedure to the problem may avoid this
specific contradiction.

2.1 Experimental Results on Benchmark CSP

This section compares the performance of BP-dec and Perturbed BP on benchmark CSPs.
We considered CSP instances from XCSP repository (Roussel and Lecoutre, 2009; Lecoutre,
2013), without global constraints or complex domains.4

4. All instances with intensive constraints (i.e., functional form) were converted into extensive format for
explicit representation using dense factors. We further removed instances containing constraints with
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We used a convergence threshold of ε = .001 for BP and terminated if the threshold
was not reached after T = 10 × 210 = 10, 240 iterations. To perform decimation, we sort
the variables according to their bias and fix ρ fraction of the most biased variables in each
iteration of decimation. This fraction, ρ, was initially set to 100%, and it was divided by
2 each time BP-dec failed on the same instance. BP-dec was repeatedly applied using the
reduced ρ, at most 10 times, unless a solution was reached (that is ρ = .1% at final attempt).

For Perturbed BP, we set T = 10 at the starting attempt, which was increased by a
factor of 2 in case of failure. This was repeated at most 10 times, which means Perturbed
BP used T = 10, 240 at its final attempt. Note that Perturbed BP at most uses the same
number of iterations as the maximum iterations per single iteration of decimation in BP-dec.

Figure 2(a,b) compares the time and iterations of BP-dec and Perturbed BP for success-
ful attempts where both methods satisfied an instance. The result for individual problem-
sets is reported in the appendix.

Empirically, we found that Perturbed BP both solved (slightly) more instances than
BP-dec (284 vs 253), and was (hundreds of times) more efficient: while Perturbed BP
required only 133 iterations on average, BP-dec required an average of 41,284 iterations for
successful instances.

We also ran BP-dec on all the benchmarks with maximum number of iterations set to
T = 1000 and T = 100 iterations. This reduced the number of satisfied instances to 249
for T = 1000 and 247 for T = 100, but also reduced the average number of iterations to
1570 and 562 respectively, which are still several folds more expensive than Perturbed BP.
Figure 2(c-f) compare the time and iterations used by BP-dec in these settings with that
of Perturbed BP, when both methods found a satisfying assignment. See the appendix for
a more detailed report on these results.

3. Critical Phenomena in Random CSPs

Random CSP (rCSP) instances have been extensively used in order to study the properties
of combinatorial problems (Mitchell et al., 1992; Achioptas and Sorkin, 2000; Krzakala
et al., 2007) as well as in analysis and design of algorithms (e.g., Selman et al., 1994;
Mézard et al., 2002). Random CSPs are closely related to spin-glasses in statistical physics
(Kirkpatrick and Selman, 1994; Fu and Anderson, 1986). This connection follows from the
fact that the Hamiltonian of these spin-glass systems resembles the objective functions in
many combinatorial problems, which decompose to pairwise (or higher order) interactions,
allowing for a graphical representation in the form of a PGM. Here message passing methods,
such as belief propagation (BP) and survey propagation (SP), provide consistency conditions
on locally tree-like neighborhoods of the graph.

The analogy between a physical system and computational problem extends to their
critical behavior where computation relates to dynamics (Ricci-Tersenghi, 2010). In com-

more than 106 entries in their tabular form. We also discarded instances that collectively had more
than 108 entries in the dense tabular form of their constraints. Since our implementation represents all
factors in a dense tabular form, we had to remove many instances because of their large factor size. We
anticipate that Perturbed BP and BP-dec could probably solve many of these instances using a sparse
representation.
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Figure 2: Comparison of time and number of iterations used by BP-dec and Perturbed BP
in benchmark instances where both methods found satisfying assignments. (a,b)
Maximum number of BP iterations per iteration of decimation is T = 10240,
equal to the maximum iterations used by Perturbed BP. (c,d) Maximum number
of iterations for BP in BP-dec is reduced to T = 1000. (e,f) Maximum number
of iterations for BP in BP-dec is further reduced to T = 100.
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puter science, this critical behavior is related to the time-complexity of algorithms employed
to solve such problems, while in spin-glass theory this translates to dynamics of glassy state,
and exponential relaxation times (Mézard et al., 1987). In fact, this connection has been
used to attempt to prove the conjecture that P is not equal to NP (Deolalikar, 2010).

Studies of rCSP, as a critical phenomena, focus on the geometry of the solution space
as a function of the problem’s difficulty, where rigorous (e.g., Achlioptas and Coja-Oghlan,
2008; Cocco et al., 2003) and non-rigorous (e.g., cavity method of Mézard and Parisi, 2001,
2003) analyses have confirmed the same geometric picture.

When working with large random instances, a scalar α associated with a problem in-
stance, a.k.a. control parameter—for example, the clause to variable ratio in SAT—can
characterize that instance’s difficulty (i.e., larger control parameter corresponds to a more
difficult instance) and in many situations it characterizes a sharp transition from satisfia-
bility to unsatisfiability (Cheeseman et al., 1991).

Example 5 (Random κ-SAT) Random κ-SAT instance with N variables and M = αN
constraints are generated by selecting κ variables at random for each constraint. Each
constraint is set to zero (i.e., unsatisfied) for a single random assignment (out of 2κ). Here
α is the control parameter.

Example 6 (Random q-COL) The control parameter for a random q-COL instances
with N variables and M constraints is its average degree α = 2M

N . We consider Erdős-
Rény random graphs and generate a random instance by sequentially selecting two distinct
variables out of N at random to generate each of M edges. For large N , this is equivalent to
selecting each possible factor with a fixed probability, which means the nodes have Poisson
degree distribution P(|∂i| = d) ∝ e−ααd.

While there are tight bounds for some problems (e.g., Achlioptas et al., 2005), finding
the exact location of this transition for different CSPs is still an open problem. Besides
transition to unsatisfiability, these analyses has revealed several other (phase) transitions
(Krzakala et al., 2007). Figure 3(a)-(c) shows how the geometry of the set of solutions
changes by increasing the control parameter.

Here we enumerate various phases of the problem for increasing values of the control
parameter: (a) In the so-called Replica Symmetric (RS) phase, the symmetries of the set
of solutions (a.k.a. ground states) reflect the trivial symmetries of problem w.r.t. variable
domains. For example, for q-COL the set of solutions is symmetric w.r.t. swapping all red
and blue assignment. In this regime, the set of solutions form a giant cluster (i.e., a set
of neighboring solutions), where two solutions are considered neighbors when their Ham-
ming distance is one (Achlioptas and Coja-Oghlan, 2008) or non-divergent with number of
variables (Mézard and Parisi, 2003). Local search methods (e.g., Selman et al., 1994) and
BP-dec can often efficiently solve random CSPs that belong to this phase.

(b) In clustering or dynamical transition (1dRSB5), the set of solutions decomposes
into an exponential number of distant clusters. Here two clusters are distant if the Ham-
ming distance between their respective members is divergent (e.g., linear) in the number

5. 1dRSB stands for 1st order dynamical RSB. The term Replica Symmetry Breaking (RSB) originates
from the technique—i.e., Replica trick (Mézard et al. 1987)—that was first used to analyze this setting.
According to RSB, the trivial symmetries of the problem do not characterize the clusters of solution.
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(a) Replica Symmetric (b) clustering (c) condensation

Figure 3: A 2-dimensional schematic view of how the set of solutions of CSP varies as we
increase the control parameter α from (a) replica symmetric phase to (b) clus-
tering phase to (c) condensation phase. Here small circles represent solutions
and the bigger circles represent clusters of solutions. Note that this view is very
simplistic in many ways; for example, the total number of solutions and the size
of clusters should generally decrease from (a) to (c).

of variables. (c) In the condensation phase transition (1sRSB6), the set of solutions con-
denses into a few dominant clusters. Dominant clusters have roughly the same number of
solutions and they collectively contain almost all of the solutions. While SP can be used
even within the condensation phase, BP usually fails to converge in this regime. However
each cluster of solutions in the clustering and condensation phase is a valid fixed-point of
BP, which is called a “quasi-solution” of BP. (d) A rigidity transition (not included in
Figure 3) identifies a phase in which a finite portion of variables are fixed within dominant
clusters. This transition triggers an exponential decrease in the total number of solutions,
which leads to (e) unsatisfiability transition.7 This rough picture summarizes first order
Replica Symmetry Breaking’s (1RSB) basic assumptions (Mézard and Montanari, 2009).

From a geometric perspective, the intuitive idea behind Perturbed BP, is to perturb the
messages towards a solution. However, in order to achieve this, we need to initialize the
messages to a proper neighborhood of a solution. Since these neighborhoods are not initially
known, we resort to stochastic perturbation of messages to make local marginals more biased
towards a subspace of solutions. This continuous perturbation of all messages is performed
in a way that allows each BP message to re-adjust itself to the other perturbations, more
and more focusing on a random subset of solutions.

3.1 1RSB Postulate and Survey Propagation

Large random graphs are locally tree-like, which means the length of short loops are typically
in the order of log(N) (Janson et al., 2001). This ensures that, in the absence of long-
range correlations, BP is asymptotically exact, as the set of messages incoming to each
node or factor are almost independent. Although BP messages remain uncorrelated until
the condensation transition (Krzakala et al., 2007), the BP equations do not completely
characterize the set of solutions after the clustering transition. This inadequacy is indicated

6. 1sRSB is short for 1st order static Replica Symmetry Breaking.
7. In some problems, the rigidity transition occurs before condensation transition.
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by the existence of a set of several valid fixed points (rather than a unique fixed-point) for
BP, each of which corresponds to a quasi-solution. For a better intuition, consider the
cartoons of Figures 3(b) and (c). During the clustering phase (b), xi and xj (corresponding
to the x and y axes) are not highly correlated, but they become correlated during and after
condensation (c). This correlation between variables that are far apart in the PGM results
in correlation between the BP messages. This violates BP’s assumption that messages are
uncorrelated, which results in BP’s failure in this regime.

1RSB’s approach to incorporating this clustering of solutions into the equilibrium condi-
tions is to define a new Gibbs measure over clusters. Let y ⊂ S denote a cluster of solutions
and Y be the set of all such clusters. The idea is to treat Y the same as we treated X , by
defining a distribution

µ(y) ∝ |y|m ∀ y ∈ Y (13)

where m ∈ [0, 1], called the Parisi parameter (Mézard et al., 1987), specifies how each
cluster’s weight depends on its size. This implicitly defines a distribution over X

µ(x) ∝
∑
y3x

µ(y) (14)

N.b., m = 1 corresponds to the original distribution (Equation (1)).

Example 7 Going back to our simple 3-SAT example, y(1) = {(True, True, True)} and
y(2) = {(False, False, False), (False, False, T rue)} are two clusters of solutions. Using
m = 1, we have
µ({{True, True, True}}) = 1/3 and µ({{False, False, False}, {False, False, T rue}}) =
2/3. This distribution over clusters reproduces the distribution over solutions—i.e., µ(x) =
1/3 ∀x ∈ S. On the other hand, using m = 0, produces a uniform distribution over clusters,
but it does not give us a uniform distribution over the solutions.

This meta-construction for µ(y) can be represented using an auxiliary PGM. One may
use BP to find marginals over this PGM; here BP messages are distributions over all BP
messages in the original PGM, as each cluster is a fixed-point for BP. This requirement to
represent a distribution over distributions makes 1RSB practically intractable. In general,
each original BP message is a distribution over Xi and it is difficult to define a distribution
over this infinite set. However this simplifies if the original BP messages can have limited
values. Fortunately if we apply max-product BP to solve a CSP, instead of sum-product
BP (of Equations (3) and (4)), the messages can have a finite set of values.

Max-Product BP: Our previous formulation of CSP was using sum-product BP. In general,
max-product BP is used to find the Maximum a Posteriori (MAP) assignment in a PGM,
which is a single assignment with the highest probability. In our PGM, the MAP assignment
is a solution for the CSP. The max-product update equations are

ηi→I(xi) =
∏
J∈∂i\I ηJ→i(xi) = Λi→I( {ηJ→i}J∈∂i\I )(xi) (15)

ηI→i(xi) = maxX∂I\i CI(xI)
∏
j∈∂I\i ηj→I(xj) = ΛI→i( {ηj→I}j∈∂I\i )(xi) (16)

µ̂(xi) =
∏
J∈∂i ηJ→i(xi) = Λi( {ηJ→i}J∈∂i )(xi) (17)
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where Λ = {Λi→I ,ΛI→i}i,I∈∂I is the max-product BP operator and Λi represents the
marginal estimate as a function of messages. Note that here messages and marginals are
not distributions. We initialize νi→I(xi) ∈ {0, 1}, ∀I, i ∈ ∂I, xi ∈ Xi. Because of the way
constraints and update equations are defined, at any point during the updates we have
νi→I(xi) ∈ {0, 1}. This is also true for µ̂(xi). Here any of νi→I(xi) = 1, νI→i(xi) = 1
or µ̂(xi) = 1, shows that value xi is allowed according to a message or marginal, while
0 forbids that value. Note that µ̂(xi) = 0 ∀xi ∈ Xi iff no solution was found, because
the incoming messages were contradictory. The non-trivial fixed-points of max-product BP
define quasi-solutions in 1RSB phase, and therefore define clusters y.

Example 8 If we initialize all messages to 1 for our simple 3-SAT example, the final
marginals over all the variables are equal to 1, allowing all assignments for all variables.
However beside this trivial fixed-point, there are other fixed points that correspond to two
clusters of solutions.

For example, considering the cluster {(False, False, False), (False, False, T rue)}, the
following {ηi→I} (and their corresponding {ηI→i} define a fixed-point for max-product BP:

η1→I(True) = µ̂1(True) = 0 η1→I(False) = µ̂1(False) = 1 ∀I ∈ ∂1

η2→I(True) = µ̂2(True) = 0 η2→I(False) = µ̂2(False) = 1 ∀I ∈ ∂2

η3→I(True) = µ̂3(True) = 1 η3→I(False) = µ̂3(False) = 1 ∀I ∈ ∂3

Here the messages indicate the allowed assignments within this particular cluster of solu-
tions.

3.1.1 Survey Propagation

Here we define the 1RSB update equations over max-product BP messages. We skip the
explicit construction of the auxiliary PGM that results in SP update equations, and confine
this section to the intuition offered by SP messages. Braunstein et al. (2005) and Mézard
and Montanari (2009) give details on the construction of the auxiliary-PGM. Ravanbakhsh
and Greiner (2014) present an algebraic perspective on SP. Maneva et al. (2007) provide a
different view on the relation of BP and SP for the satisfiability problem and Kroc et al.
(2007) present empirical study of SP as applied to SAT.

Let Yi = 2|Xi| be the power-set8 of Xi. Each max-product BP message can be seen as
a subset of Xi that contains the allowed states. Therefore Yi as its power-set contains all
possible max-product BP messages. Each message νi→I : Yi → [0, 1] in the auxiliary PGM
defines a distribution over original max-product BP messages.

Example 9 (3-COL) Xi = {1, 2, 3} is the set of colors and
Yi = {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}. Here yi = {} corresponds to the case
where none of the colors are allowed.

8. The power-set of X is the set of all subsets of X , including {} and X itself.
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Applying sum-product BP to our auxiliary PGM gives entropic SP(m) updates as:

νi→I(yi) ∝ |yi|m
∑

{ηJ→i}J∈∂i\I

δ(yi,Λi→I({ηJ→i}J∈∂i\I))
∏

J∈∂i\I

νJ→i(ηJ→i) (18)

νI→i(yi) ∝ |yi|m
∑

{ηj→I}j∈∂I\i

δ(yi,ΛI→i({ηj→I}j∈∂I\i))
∏

j∈∂I\i

νj→I(ηj→I) (19)

νi→I({}) := νI→i({}) := 0 ∀i, I ∈ ∂i (20)

where the summations are over all combinations of max-product BP messages. Here the
δ-function ensures that only the set of incoming messages that satisfy the original BP
equations make contributions. Since we only care about the valid assignments and yi = {}
forbids all assignments, we ignore its contribution (Equation 20).

Example 10 (3-SAT) Consider the SP message ν1→C1(y1) in the factor graph of Fig-
ure 1b. Here the summation in Equation (18) is over all possible combinations of incoming
max-product BP messages ηC2→1, . . . , ηC5→1. Since each of these messages can assume one
of the three valid values—e.g., ηC2→1(x1) ∈ { {True}, {False}, {True, False} }—for each
particular assignment of y1, a total of |{{True}, {False}, {True, False}}||∂1\C1| = 34 pos-
sible combinations are enumerated in the summations of Equation (18). However only the
combinations that form a valid max-product message update have non-zero contribution in
calculating ν1→C1(y1). These are basically the messages that appear in a max-product fixed
point as discussed in Example 8.

Each of original messages corresponds to a different sub-set of clusters and m (from
Equation (13)) controls the effect of each cluster’s size on its contribution. At any point,
we can use these messages to estimate the marginals of µ̂(y) defined in Equation (13) using

µ̂(yi) ∝ |yi|m
∑

{ηJ→i}J∈∂i

δ(yi, Λi( {ηJ→i}J∈∂i) )
∏
J∈∂i

νJ→i(ηJ→i). (21)

This also implies a distribution over the original domain, which we slightly abuse nota-
tion to denote by

µ̂(xi) ∝
∑
yi3xi

µ̂(yi). (22)

The term SP usually refers to SP(0)—that is m = 0—where all clusters, regardless of
their size, contribute the same amount to µ(y). Now that we can obtain an estimate of
marginals, we can employ this procedure within a decimation process to incrementally fix
some variables. Here either µ̂(xi) or µ̂(yi) can be used by the decimation procedure to fix
the most biased variables. In the former case, a variable yi is fixed to y∗i = {x∗i } when
x∗i = argxi max µ̂(xi). In the latter case, y∗i = argyi max µ̂(yi). Here we use SP-dec(S) to
refer to the former procedure (that uses µ̂(xi) to fix variables to a single value) and use
SP-dec(C) to refer to the later case (in which variables are fixed to a cluster of assignments).

The original decimation procedure for κ-SAT (Braunstein et al., 2002) corresponds to
SP-dec(S). SP-dec(C) for CSP with Boolean variables is only slightly different, as SP-dec(C)
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can choose to fix a cluster to yi = {True, False} in addition to the options of yi = {True}
and yi = {False}, available to SP-dec(S). However, for larger domains (e.g., q-COL),
SP-dec(C) has a clear advantage. For example in 3-COL, SP-dec(C) may choose to fix a
cluster to yi = {1, 2} while SP-dec(S) can only choose between yi ∈ {{1}, {2}, {3}}. This
significant difference is also reflected in their comparative success-rate on q-COL.9 (See
Table 1 in Section 3.3.)

During the decimation process, usually after fixing a subset of variables, the SP marginals
µ̂(xi) become uniform, indicating that clusters of solutions have no preference over particu-
lar assignments of the remaining variables. The same happens when we apply SP to random
instances in RS phase. At this point (a.k.a. paramagnetic phase), a local search method or
BP-dec can often efficiently find an assignment to the variables that are not yet fixed by
decimation. Note that both SP-dec(C) and SP-dec(S) switch to local search as soon as all
µ̂(xi) become close to uniform.

The computational complexity of each SP update of Equation (19) isO(2|Xi|−1)|∂I| as for
each particular value yi, SP needs to consider every combination of incoming messages, each
of which can take 2|Xi| values (minus the empty set). Similarly, using a naive approach the
cost of update of Equation (18) is O(2|Xi|−1)|∂i|. However by considering incoming messages
one at a time, we can perform the same exact update in O(|∂i| 22|Xi|). In comparison to
the cost of BP updates, we see that SP updates are substantially more expensive for large
|Xi| and |∂I|.10

3.2 Perturbed Survey Propagation

The perturbation scheme that we use for SP is similar to what we did for BP. Let
Φi→I( {νj→J}j∈∆i,(J∈∂i)\I) ) denote the update operator for the message from variable yi
to factor CI . This operator is obtained by substituting Equation (19) into Equation (18)
to get a single SP update equation. Let Φ({νi→I}i,I∈∂i) denote the aggregate SP operator,
which applies Φi→I to update each individual message.

We perform Gibbs sampling from the “original” domain X using the implicit marginal
of Equation (22). We denote this random operator by Ψ = {Ψi}i, defined by

νi→I(yi) = Ψi( {νj→J}j∈∆i,J∈∂i ) , δ(yi, {x̂i}) where x̂i ∼ µ̂(xi)

where the second argument of the δ-function is a singleton set, containing a sample from the
estimate of marginal. Now, define the Perturbed SP operator as the convex combination of
SP and either of the GS operator above:

Γ({νi→I}) , γΨ({νi→I}) + (1− γ)Φ({νi→I}).

Similar to perturbed BP, during iterations of Perturbed SP, γ is gradually increased
from 0 to 1. If perturbed SP reaches the final iteration, the samples from the implicit

9. Previous applications of SP-dec to q-COL by Braunstein et al. (2003) used a heuristic for decimation
that is similar SP-dec (C).

10. Note that our representation of distributions is over-complete—that is we are not using the fact that the
distributions sum to one. However even in their more compact forms, for general CSPs, the cost of each
SP update remains exponentially larger than that of BP (in |Xi|, |∂I|). However if the factors are sparse
and have high order, both BP and SP allow more efficient updates.
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marginals represent a satisfying assignment. The advantage of this scheme to SP-dec is
that perturbed SP does not require any further local search. In fact we may apply Γ to
CSP instances in the RS phase as well, where the solutions form a single giant cluster. In
contrast, applying SP-dec, to these instances simply invokes the local search method.

To demonstrate this, we applied Perturbed SP(S) to benchmark CSP instances of Table 2
in which the maximum number of elements in the factor was less than 10. Here Perturbed
SP(S) solved 80 instances out of 202 cases, while Perturbed BP solved 78 instances.

3.3 Experiments on random CSP

We implemented all the methods above for general factored CSP using the libdai code base
(Mooij, 2010). To our knowledge this is the first general implementation of SP and SP-dec.
Previous applications of SP-dec to κ-SAT and q-COL (Braunstein et al., 2003; Mulet et al.,
2002; Braunstein et al., 2002) were specifically tailored to just one of those problems.

Here we report the results on κ-SAT for κ ∈ {3, 4} and q-COL for q ∈ {3, 4, 9}. We used
the procedure discussed in the examples of Section 3 to produce 100 random instances with
N = 5, 000 variables for each control parameter α. We report the probability of finding
a satisfying assignment for different methods (i.e., the portion of 100 instances that were
satisfied by each method). For coloring instances, to help decimation, we break the initial
symmetry of the problem by fixing a single variable to an arbitrary value.

For BP-dec and SP-dec, we use a convergence threshold of ε = .001 and fix ρ = 1%
of variables per iteration of decimation. Perturbed BP and Perturbed SP use T = 1000
iterations. Decimation-based methods use a maximum of T = 1000 iterations per iteration
of decimation. If any of the methods failed to find a solution in the first attempt, T was
increased by a factor of 4 at most 3 times (so in the final attempt: T = 64, 000). To avoid
blow-up in run-time, for BP-dec and SP-dec, only the maximum iteration, T , during the
first iteration of decimation, was increased (this is similar to the setting of Braunstein et al.
(2002) for SP-dec). For both variations of SP-dec (see Section 3.1.1), after each decimation
step, if maxi,xi µ(xi) − 1

|Xi| < .01 we consider the instance para-magnetic, and run BP-dec

(with T = 1000, ε = .001 and ρ = 1%) on the simplified instance.

Figure 4(first row) visualizes the success rate of different methods on 100 instances of
3-SAT (right) and 3-COL (left). Figure 4(second row) reports the number of variables that
are fixed by SP-dec(C) and (S) before calling BP-dec as local search. The third row shows
the average amount of time that is used to find a satisfying solution. This does not include
the failed attempts. For SP-dec variations, this time includes the time used by local search.
The final row of Figure 4 shows the number of iterations used by each method at each level
of difficulty over the successful instances. Here the area of each disk is proportional to the
frequency of satisfied instances with that particular number of iterations for each control
parameter and inference method11.

Here we make the following observations:

• Perturbed BP is much more effective than BP-dec, while remaining ten to
hundreds of times more efficient.

11. The number of iterations are rounded to the closest power of two.
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Figure 4: (first row) Success-rate of different methods for 3-COL and 3-SAT for various
control parameters. (second row) The average number of variables (out of N =
5000) that are fixed using SP-dec (C) and (S) before calling local search, averaged
over 100 instances. (third row) The average amount of time (in seconds) used by
the successful setting of each method to find a satisfying solution. For SP-dec(C)
and (S) this includes the time used by local search. (fourth row) The number
of iterations used by different methods at different control parameters, when the
method was successful at finding a solution. The number of iterations for each of
100 random instances is rounded to the closest power of 2. This does not include
the iterations used by local search after SP-dec.
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• As the control parameter grows larger, the chance of requiring more iterations to
satisfy the instance increases for all methods.

• Although computationally very inefficient, BP-dec is able to find solutions for in-
stances with larger control parameters than suggested by previous results (e.g., Mézard
and Montanari, 2009).

• For many instances where SP-dec(C) and (S) use few iterations, the variables are
fixed to a trivial cluster yi = Xi, which allows all assignments. This is particularly
pronounced for 3-COL, where up to α = 4.4 the non-trivial fixes remains zero and
therefore the success rate up to this point is solely due to BP-dec.

• While for 3-SAT, SP-dec(C) and SP-dec(S) have a similar performance, for 3-COL,
SP-dec(C) significantly outperforms SP-dec(S).

Table 1 reports the success-rate as well as the average of total iterations in the successful
attempts of each method. Here the number of iterations for SP-dec(C) and (S) is the sum
of iterations used by the method and the following local search. We observe that Perturbed
BP can solve most of the easier instances using only T = 1000 iterations (e.g., see Perturb
BP’s result for 3-SAT at α = 4.1, 3-COL at α = 4.2 and 9-COL at α = 33.4).

Table 1 also supports our speculation in Section 3.1.1 that SP-dec(C) is in general
preferable to SP-dec(S), in particular when applied to the coloring problem.

The most important advantage of Perturbed BP over SP-dec and Perturbed SP is that
Perturbed BP can be applied to instances with large factor cardinality (e.g., 10-SAT) and
large variable domains (e.g., 9-COL). For example for 9-COL, the cardinality of each SP
message is 29 = 512, which makes SP-dec and Perturbed SP impractical. Here BP-dec is
not even able to solve a single instance around the dynamical transition (as low as α = 33.4)
while Perturbed BP satisfies all instances up to α = 34.1.12 Besides the experimental re-
sults reported here, we have also used perturbed BP to efficiently solve other CSPs such as
K-Packing, K-set-cover and clique-cover within the context of min-max inference (Ravan-
bakhsh et al., 2014).

3.4 Discussion

It is easy to check that, for m = 1, SP updates produce sum-product BP messages as an
average case; that is, the SP updates (equations 18, 19) reduce to that of sum-product BP
(equations 3, 4) where

νi→I(xi) ∝
∑
yi3xi

νi→I(yi)

This suggests that the BP equation remains correct wherever SP(1) holds, which has lead
to the belief that BP-dec should perform well up to the condensation transition (Krzakala
et al., 2007). However in reaching this conclusion, the effect of decimation was ignored. More

12. Note that for 9-COL condensation transition happens after rigidity transition. So if we were able to find
solutions after rigidity, it would have implied that condensation transition marks the onset of difficulty.
However, this did not occur and similar to all other cases, Perturbed BP failed before rigidity transition.
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3-SAT

3.86 dynamical and condensation transition
4.1 85405 99% 102800 100% 96475 100% 1301 100% 1211 100%
4.15 104147 83% 118852 100% 111754 96% 5643 95% 1121 100%
4.2 93904 28% 118288 65% 113910 64% 19227 53% 3415 87%
4.22 100609 12% 112910 33% 114303 36% 22430 28% 8413 69%
4.23 123318 5% 109659 36% 107783 36% 18438 16% 9173 58%
4.24 165710 1% 126794 23% 118284 19% 29715 7% 10147 41%
4.25 N/A 0% 123703 9% 110584 8% 64001 1% 14501 18%
4.26 37396 1% 83231 6% 106363 5% 32001 3% 22274 11%
4.268 satisfiability transition

4-SAT

9.38 dynamical transition
9.547 condensation transition
9.73 134368 8% 119483 32% 120353 35% 25001 43% 11142 86%
9.75 168633 5% 115506 15% 96391 21% 36668 27% 9783 68%
9.78 N/A 0% 83720 9% 139412 7% 34001 12% 11876 37%
9.88 rigidity transition
9.931 satisfiability transition

3-COL

4 dynamical and condensation transition
4.2 24148 93% 25066 94% 24634 94% 1511 100% 1151 100%
4.4 51590 95% 52684 89% 54587 93% 1691 100% 1421 100%
4.52 61109 20% 68189 63% 54736 1% 7705 98% 2134 98%
4.56 N/A 0% 63980 32% 13317 1% 28047 65% 3607 99%
4.6 N/A 0% 74550 2% N/A 0% 16001 1% 18075 81%
4.63 N/A 0% N/A 0% N/A 0% 48001 3% 29270 26%
4.66 rigidity transition
4.66 N/A 0% N/A 0% N/A 0% N/A 0% 40001 2%
4.687 satisfiability transition

4-COL

8.353 dynamical transition
8.4 64207 92% 72359 88% 71214 93% 1931 100% 1331 100%
8.46 dynamical transition
8.55 77618 13% 60802 13% 62876 9% 3041 100% 5577 100%
8.7 N/A 0% N/A 0% N/A 0% 50287 14% N/A 0%
8.83 rigidity transition
8.901 satisfiability transition

9-COL

33.45 dynamical transition
33.4 N/A 0% N/A N/A N/A N/A 1061 100% N/A N/A
33.9 N/A 0% N/A N/A N/A N/A 3701 100% N/A N/A
34.1 N/A 0% N/A N/A N/A N/A 12243 100% N/A N/A
34.5 N/A 0% N/A N/A N/A N/A 48001 6% N/A N/A
35.0 N/A 0% N/A N/A N/A N/A N/A 0% N/A N/A
39.87 rigidity transition
43.08 condensation transition
43.37 satisfiability transition

Table 1: Comparison of different methods on {3, 4}-SAT and {3, 4, 9}-COL. For each
method the success-rate and the average number of iterations (including local
search) on successful attempts are reported. The approximate location of phase
transitions are given by Montanari et al. (2008); Zdeborova and Krzakala (2007).

1268



Perturbed Message Passing for CSP

Figure 5: This schematic view demonstrates the clustering during condensation phase. Here
assume horizontal and vertical axes correspond to x1 and x2. Considering the
whole space of assignments, x1 and x2 are highly correlated. The formation of
this correlation between distant variables on a PGM breaks BP. Now assume that
Perturbed BP messages are focused on the largest shaded ellipse. In this case the
correlation is significantly reduced.

recent analyses (Coja-Oghlan, 2011; Montanari et al., 2007; Ricci-Tersenghi and Semerjian,
2009) draw a similar conclusion about the effect of decimation: At some point during the
decimation process, variables form long-range correlations such that fixing one variable
may imply an assignment for a portion of variables that form a loop, potentially leading
to contradictions. Alternatively the same long-range correlations result in BP’s lack of
convergence and error in marginals that may lead to unsatisfying assignments.

Perturbed BP avoids the pitfalls of BP-dec in two ways: (I) Since many configurations
have non-zero probability until the final iteration, Perturbed BP can avoid contradictions by
adapting to the most recent choices. This is in contrast to decimation in which variables are
fixed once and are unable to change afterwards. A backtracking scheme suggested by Parisi
(2003) attempts to fix the same problem with SP-dec. (II) We speculate that simultaneous
bias of all messages towards sub-regions over which the BP equations remain valid, prevents
the formation of long-range correlations between variables that breaks BP in 1sRSB; see
Figure 5.

In all experiments, we observed that Perturbed BP is competitive with SP-dec, while
BP-dec often fails on much easier problems. We saw that the cost of each SP update grows
exponentially faster than the cost of each BP update. Meanwhile, our perturbation scheme
adds a negligible cost to that of BP—i.e., that of sampling from these local marginals and
updating the outgoing messages accordingly. Considering the computational complexity
of SP-dec, and also the limited setting under which it is applicable, Perturbed BP is an
attractive substitute. Furthermore our experimental results also suggest that Perturbed
SP(S) is a viable option for real-world CSPs with small variable domains and constraint
cardinalities.
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4. Conclusion

We considered the challenge of efficiently producing assignments that satisfy hard combi-
natorial problems, such as κ-SAT and q-COL. We focused on ways to use message passing
methods to solve CSPs, and introduced a novel approach, Perturbed BP, that combines
BP and GS in order to sample from the set of solutions. We demonstrated that Perturbed
BP is significantly more efficient and successful than BP-dec. We also demonstrated that
Perturbed BP can be as powerful as a state-of-the-art algorithm (SP-dec), in solving rCSPs
while remaining tractable for problems with large variable domains and factor cardinali-
ties. Furthermore we provided a method to apply the similar perturbation procedure to SP,
producing the Perturbed SP process that outperforms SP-dec in solving difficult rCSPs.
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Geometric - 100 92 77 208.63 30383 81 .70 74

Dimacs

aim-50 24 16 9 11.41 25344 14 .07 181
aim-100 24 16 8 18.2 16755 11 .15 213
aim-200 24 N/A 7 401.90 160884 6 .17 46

ssa 8 N/A 4 .60 373.25 4 .50 86
jhnSat 16 16 16 5839.86 141852 13 9.82 117

varDimacs 9 N/A 4 2.95 715 4 .12 18

QCP
QCP-10 15 10 10 43.87 30054 10 .22 51
QCP-15 15 10 3 5659.70 600741 4 9.59 530
QCP-25 15 10 0 0 0 0 0 0

Graph-Coloring

ColoringExt 17 N/A 4 .05 103 5 .04 25
school 8 N/A 0 N/A N/A 5 62.86 153
myciel 16 N/A 5 .21 59 5 .05 11

hos 13 N/A 5 27.34 606 5 10.04 37
mug 8 N/A 4 .068 313 4 .004 11

register-fpsol 25 N/A 0 N/A N/A 0 N/A N/A
register-inithx 25 N/A 0 N/A N/A 0 N/A N/A
register-zeroin 14 N/A 3 5906.16 26544 0 N/A N/A
register-mulsol 49 N/A 5 59.27 418 0 N/A N/A

sgb-queen 50 N/A 7 35.66 916 11 7.56 81
sgb-games 4 N/A 1 .91 434 1 .07 21
sgb-miles 34 N/A 4 20.86 371 2 4.20 181
sgb-book 26 N/A 5 1.72 444 5 .18 39
leighton-5 8 N/A 0 N/A N/A 0 N/A N/A
leighton-15 28 N/A 0 N/A N/A 1 106.46 641
leighton-25 29 N/A 2 304.49 1516 2 94.11 241

All Interval Series series 12 12 2 4.78 11319 7 1.85 520

Job Shop
e0ddr1 10 10 9 707.74 9195 5 37 257
e0ddr2 10 10 5 3640.40 26544 7 74.49 366
ewddr2 10 10 10 10871.96 48053 9 21.24 72

Schurr’s Lemma - 10 N/A 1 39.89 120152 2 .97 100

Ramsey
Ramsey 3 8 N/A 1 .01 61 4 .75 283
Ramsey 4 8 N/A 2 12941.51 561300 7 7.39 81

Chessboard Coloration - 14 N/A 5 35.51 3111 5 .66 27

Hanoi - 3 3 3 .48 12 3 .52 14

Golomb Ruler Arity 3 8 N/A 2 1.39 103 2 19.78 660

Queens queens 8 8 7 3.30 159 8 2.43 57

Multi-Knapsack mknap 2 2 2 2.44 6 2 4.41 10

Driver - 7 7 5 10.14 1438 5 4.74 274

Composed 25-10-20 10 10 8 1.62 695 5 .17 38

Langford
lagford-ext 4 2 0 N/A N/A 1 .002 10
lagford 2 22 N/A 4 .67 127 10 11.64 10
lagford 3 20 N/A 0 N/A N/A N/A N/A N/A

Table 2: Comparison of Perturbed BP and BP-guided decimation on benchmark CSPs.
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Abstract

We consider the problem of learning a non-negative linear classifier with a `1-norm of at
most k, and a fixed threshold, under the hinge-loss. This problem generalizes the problem
of learning a k-monotone disjunction. We prove that we can learn efficiently in this setting,
at a rate which is linear in both k and the size of the threshold, and that this is the best
possible rate. We provide an efficient online learning algorithm that achieves the optimal
rate, and show that in the batch case, empirical risk minimization achieves this rate as
well. The rates we show are tighter than the uniform convergence rate, which grows with
k2.

Keywords: linear classifiers, monotone disjunctions, online learning, empirical risk min-
imization, uniform convergence

1. Introduction

We consider the problem of learning non-negative, low-`1-norm linear classifiers with a fixed
(or bounded) threshold. That is, we consider hypothesis classes over instances x ∈ [0, 1]d of
the following form:

Hk,θ =
{
x 7→ 〈w, x〉 − θ

∣∣∣ w ∈ Rd+, ‖w‖1 ≤ k
}
, (1)

c©2015 Sivan Sabato, Shai Shalev-Shwartz, Nathan Srebro, Daniel Hsu, and Tong Zhang.
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where we associate each (real valued) linear predictor in Hk,θ with a binary classifier:1

x 7→ sign(〈w, x〉 − θ) =

{
1 if 〈w, x〉 > θ

−1 if 〈w, x〉 < θ
. (2)

Note that the hypothesis class is specified by both the `1-norm constraint k and the
fixed threshold θ. In fact, the main challenge here is to understand how the complexity of
learning Hk,θ changes with θ.

The classesHk,θ can be seen as a generalization and extension of the class of k-monotone-
disjunctions and r-of-k-formulas. Considering binary instances x ∈ {0, 1}d, the class of
k-monotone-disjunctions corresponds to linear classifiers with binary weights, w ∈ {0, 1}d,
with ‖w‖1 ≤ k and a fixed threshold of θ = 1

2 . That is, a restriction of Hk, 1
2

to integer

weights and integer instances. More generally, the class of r-of-k formulas (i.e., formulas
which are true if at least r of a specified k variables are true) corresponds to a similar
restriction, but with a threshold of θ = r − 1

2 .

Studying k-disjunctions and r-of-k formulas, Littlestone (1988) presented the efficient
Winnow online learning rule, which admits an online mistake bound (in the separable case)
of O(k log d) for k-disjunctions and O(rk log d) for r-of-k-formulas. In fact, in this analysis,
Littlestone considered also the more general case of real-valued weights, corresponding to
the class Hk,θ over binary instances x ∈ {0, 1}d and for separable data, and showed that
Winnow enjoys a mistake bound of O(θk log d) in this case as well. By applying a standard
online-to-batch conversion (see, e.g., Shalev-Shwartz, 2012), one can also achieve a sample
complexity upper bound of O(θk log(d)/ε) for batch supervised learning of this class in the
separable case.

In this paper, we consider the more general case, where the instances x can also be
fractional, i.e., where x ∈ [0, 1]d and in the agnostic, non-separable, case. It should be
noted that Littlestone (1989) also studied a limited version of the non-separable setting.

In order to move on to the fractional and agnostic analysis, we must clarify the loss
function we will use, and the related issue of separation with a margin. When the instances
x and weight vectors w are integer-valued, we have that 〈w, x〉 is always integer. Therefore,
if positive and negative instances are at all separated by some predictor w (i.e., sign(〈w, x〉−
θ) = y where y ∈ {±1} denotes the target label), they are necessarily separated by a margin
of half. That is, setting θ = r − 1

2 for an integer r, we have y(〈w, x〉 − θ) ≥ 1
2 . Moving

to fractional instances and weight vectors, we need to require such a margin explicitly.
And if considering the agnostic case, we must account not only for misclassified points,
but also for margin violations. As is standard both in online learning (e.g., the agnostic
Perceptron guarantee of Gentile 2003) and in statistical learning using convex optimization
(e.g., support vector machines), we will rely on the hinge loss at margin half,2 which is
equal to: 2 ·

[
1
2 − yh(x)

]
+

. The hinge loss is a convex upper bound to the zero-one loss
(that is, the misclassification rate) and so obtaining learning guarantees for it translates to
guarantees on the misclassification error rate.

1. The value of the mapping when 〈w, x〉 = θ can be arbitrary, as our results and our analysis do not
depend on it.

2. Measuring the hinge loss at a margin of half rather than a margin of one is an arbitrary choice, which
corresponds to a scaling by a factor of two, which fits better with the integer case discussed above.
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Phrasing the problem as hinge-loss minimization over the hypothesis class Hk,θ, we can
use Online Exponentiated Gradient (EG) (Kivinen and Warmuth, 1994) or Online Mirror
Descent (MD) (e.g., Shalev-Shwartz, 2007; Srebro et al., 2011), which rely only on the `1-
bound and hold for any threshold. In the statistical setting, we can use Empirical Risk
Minimization (ERM), in this case minimizing the empirical hinge loss, and rely on uniform
concentration for bounded `1 predictors (Schapire et al., 1997; Zhang, 2002; Kakade et al.,
2009), again regardless of the threshold.

However, these approaches yield mistake bounds or sample complexities that scale
quadratically with the `1 norm, that is with k2 rather than with θk. Since the relevant
range of thresholds is 0 ≤ θ ≤ k, a scaling of θk is always better than k2. When θ is
large, that is, roughly k/2, the Winnow bound agrees with the EG and MD bounds. But
when we consider classification with a small threshold (for instance, θ = 1

2) in the case of
disjunctions, the Winnow analysis clarifies that this is a much simpler class, with a resulting
smaller mistake bound and sample complexity, scaling with k rather than with k2. This
distinction is lost in the EG and MD analyses, and in the ERM guarantee based on uniform
convergence arguments. For small thresholds, where θ = O(1), the difference between these
analyses and the Winnow guarantee is a factor of k.

Our starting point and our main motivation for this paper is to understand this gap
between the EG, MD and uniform concentration analyses and the Winnow analysis. Is this
gap an artifact of the integer domain or the separability assumption? Or can we obtain
guarantees that scale as θk rather then k2 also in the non-integer non-separable case? In
the statistical setting, must we use an online algorithm (such as Winnow) and an online-
to-batch conversion in order to ensure a sample complexity that scales with θk, or can we
obtain the same sample complexity also with ERM? This is an important question, since the
ERM algorithm is considered the canonical batch learning algorithm, and understanding its
scope and limitations is of theoretical and practical interest. A related question is whether
it is possible to establish uniform convergence guarantees with a dependence on θk rather
then k2, or do the learning guarantees here arise from a more delicate argument.

If an ERM algorithm obtains similar bounds to the ones of the online algorithm with
online-to-batch convergence, then any algorithm that can minimize the risk on the sample
can be used for learning in this setting. Moreover, this advances our theoretical understand-
ing of the limitations and scope of the canonical ERM algorithm.

The gap between the Winnow analysis and the more general `1-norm-based analyses is
particularly interesting since we know that, in a sense, online mirror descent always provides
the best possible rates in the online setting (Srebro et al., 2011). It is thus desirable to
understand whether mirror descent is required here to achieve the best rates, or can it be
replaced by a simple regularized loss minimization.

Answering the above questions, our main contributions are:

• We provide a variant of online Exponentiated Gradient, for which we establish a
regret bound of O(

√
θk log(d)T ) for Hk,θ, improving on the O(

√
k2 log(d)T ) regret

guarantee ensured by the standard EG analysis. We do so using a more refined
analysis based on local norms. Using a standard online-to-batch conversion, this
yields a sample complexity of O(θk log(d)/ε2) in the statistical setting. This result is
given in Corollary 5, Section 3.
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• In the statistical agnostic PAC setting, we show that the rate of uniform convergence
of the empirical hinge loss of predictors in Hk,θ is indeed Ω(

√
k2/m) where m is

the sample size, corresponding to a sample complexity of Ω(k2/ε2), even when θ is
small. We show this in Theorem 21 in Section 5. Nevertheless, we establish a learning
guarantee for empirical risk minimization which matches the online-to-batch guarantee
above (up to logarithmic factors), and ensures a sample complexity of Õ(θk log(d)/ε2)
also when using ERM. This is obtained by a more delicate local analysis, focusing on
predictors which might be chosen as empirical risk minimizers, rather than a uniform
analysis over the entire class Hk,θ. The result is given in Theorem 6, Section 4.

• We also establish a matching lower bound (up to logarithmic factors) of Ω(θk/ε2) on
the required sample complexity for learning Hk,θ in the statistical setting. This shows
that our ERM analysis is tight (up to logarithmic factors), and that, furthermore,
the regret guarantee we obtain in the online setting is likewise tight up to logarithmic
factors. This lower bound is provided in Theorem 17, Section 5.

1.1 Related Prior Work

We discussed Littlestone’s work on Winnow at length above. In our notation, Littlestone
(1988) established a mistake bound (that is, a regret guarantee in the separable case, where
there exists a predictor with zero hinge loss) of O(kθ log(d)) for Hk,θ, when the instances
are integer x ∈ {0, 1}d. Littlestone also established a lower bound of k log(d/k) on the
VC-dimension of k-monotone-disjunctions, corresponding to the case θ = 1

2 , thus implying
a Ω(k log(d/k)/ε2) lower bound on learning Hk, 1

2
. However, the question of obtaining a

lower bound for other values of the threshold θ was left open by Littlestone.

In the agnostic case, Auer and Warmuth (1998) studied the discrete problem of k-
monotone disjunctions, corresponding to Hk, 1

2
with integer instances x ∈ {0, 1}d and integer

weights w ∈ {0, 1}d, under the attribute loss, defined as the number of variables in the
assignment that need to be flipped in order to make the predicted label correct. They
provide an online algorithm with an expected mistake bound of A∗ + 2

√
A∗k ln(d/k) +

O(k ln(d/k)), where A∗ is the best possible attribute loss for the given online sequence. An
online-to-batch conversion thus achieves here a zero-one loss which converges to the optimal
attribute loss on this problem at the rate of O(k ln(d/k)/ε2). Since the attribute loss is upper
bounded by the hinge loss, a similar result, in which A∗ is replaced with the optimal hinge-
loss for the given sequence, also holds for the same algorithm. This establishes an agnostic
guarantee of the desired form, for a threshold of θ = 1

2 , and when both the instances and
weight vectors are integers.

2. Notations and Definitions

For a real number q, we denote its positive part by [q]+ := max{0, q}. We denote universal
positive constants by C. The value of C may be different between statements or even
between lines of the same expression. We denote by Rd+ the non-negative orthant in Rd.
The all-zero vector in Rd is denoted by 0. For an integer n, we denote [n] = {1, . . . , n}. For
a vector x ∈ Rd, and i ∈ [d], x[i] denotes the i’th coordinate of x.
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We will slightly overload notation and useHk,θ to denote both the set of linear predictors
x 7→ 〈w, x〉 − θ and the set of vectors w ∈ Rd+ such that ‖w‖1 ≤ k. We will use w to denote
both the vector and the linear predictor associated with it.

For convenience we will work with half the hinge loss at margin half, and denote this
loss, for a predictor w ∈ Hk,θ, for θ ∈ [0, k], by

`θ(x, y, w) :=
[1

2
− y(〈w, x〉 − θ)

]
+
.

The subscript θ will sometimes be omitted when it is clear from context. We term `θ the
Winnow loss.

Echoing the half-integer thresholds for k-monotone-disjunctions, r-of-k formulas, and
the discrete case more generally, we will denote r = θ+ 1

2 , so that θ = r− 1
2 . In the discrete

case r is integer, but in this paper 1
2 ≤ r ≤ k − 1

2 can also be fractional. We will also
sometimes refer to r′ = 1

2 − θ. Note that r′ can be negative.
In the statistical setting, we refer to some fixed and unknown distribution D over

instance-label pairs (X,Y ), where we assume access to a sample (training set) drawn
i.i.d. from D, and the objective is to minimize the expected loss:

`θ(w,D) = EX,Y∼D[`θ(X,Y,w)]. (3)

When the distribution D is clear from context, we simply write `θ(w), and we might also
omit the subscript θ. For fixed D and θ we let w∗ ∈ argminw∈Hk,θ E[`(X,Y,w)]. This is the
true minimizer of the loss on the distribution.

For a set of predictors (hypothesis class) H, we denote `∗θ(H,D) := minw∈H `θ(w,D).
For a sample S ∈ ([0, 1]d × {±1})∗, we use the notation

ÊS [f(X,Y )] =
1

|S|

|S|∑
i=1

f(xi, yi) (4)

and again sometimes drop the subscript S when it is clear from context. For a fixed
sample S, and fixed θ and D, the empirical loss of a predictor w on the sample is denoted
ˆ̀(w) = ÊS [`θ(X,Y,w)].

2.1 Rademacher Complexity

The empirical Rademacher complexity of the Winnow loss for a class W ⊆ Rd with respect
to a sample S = ((x1, y1), . . . , (xm, ym)) ∈ ([0, 1]d × {±1})m is

R(W,S) :=
2

m
E

[
sup
w∈W

∣∣∣∣ m∑
i=1

εi`(xi, yi, w)

∣∣∣∣
]

(5)

where the expectation is over the Rademacher random variables ε1, . . . , εm. These are de-
fined as independent random variables drawn uniformly from {±1}. The average Rademacher
complexity of the Winnow loss for a class W ⊆ Rd with respect to a distribution D over
[0, 1]d × {±1} is denoted by

Rm(W,D) := ES∼Dm [R(W,S)]. (6)

1279



Sabato, Shalev-Shwartz, Srebro, Hsu, and Zhang

We also define the average Rademacher complexity of W with respect to the linear loss by

RLm(W,D) :=
2

m
E

[
sup
w∈W

∣∣∣∣ m∑
i=1

εiYi〈w,Xi〉
∣∣∣∣
]

(7)

where the expectation is over ε1, . . . , εm as above and ((X1, Y1), . . . , (Xm, Ym)) ∼ Dm.

2.2 Probability Tools

We use the following variation on Bernstein’s inequality.

Proposition 1 Let B > 0. For a random variable X ∈ [0, B], δ ∈ (0, 1) and n an integer,
with probability at least 1− δ over n i.i.d. draws of X,∣∣∣Ê[X]− E[X]

∣∣∣ ≤ 2B

√
ln(1/δ)

n
·max

{
E[X]

B
,

ln(1/δ)

n

}
.

Proof By Bernstein’s inequality (Bernstein, 1946), if Z1, . . . , Zn are i.i.d. draws from a
random variable Z ∈ [−1, 1] such that E[Z] = 0, and Var[Z2] = σ2, then

P[Ê[Z] ≥ ε] ≤ exp

(
− nε2

2(σ2 + ε/3)

)
. (8)

Fix δ ∈ (0, 1) and an integer n. If ln(1/δ)/n ≤ σ2 then let ε = 2

√
ln(1/δ)
n · σ2 ≤ 2σ2. In this

case
nε2

2σ2 + 2ε/3
≥ nε2

10σ2/3
≥ ln(1/δ).

If ln(1/δ)/n > σ2 then let ε = 2 ln(1/δ)/n. Then σ2 ≤ ln(1/δ)/n = ε/2. In this case

nε2

2σ2 + 2ε/3
≥ nε2

5ε/3
≥ nε/4 = ln(1/δ).

In both cases, the RHS of Eq. (8) is at most δ. Therefore, with probability at least 1− δ,

Ê[Z] ≤ 2

√
ln(1/δ)

n
max

{
σ2,

ln(1/δ)

n

}
.

where the last inequality follows from the range of Z. Now, for a random variable X with
range in [0, B], let Z = (X − E[X])/B. We have σ2 = Var[Z] = Var[X]/B2 ≤ E[X2/B2] ≤
E[X/B], where the last inequality follows from the range of X. Therefore

Ê[X]− E[X]

B
≤ 2

√
ln(1/δ)

n
max

{
E[X]

B
,

ln(1/δ)

n

}
.

The same bound on E[X]−Ê[X] can be derived similarly by considering Z = (E[X]−X)/B.

We further use the following fact, which bounds the ratio between the empirical fraction
of positive or negative labels and their true probabilities. We will apply this fact to make
sure that enough negative and positive labels can be found in a random sample.
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Proposition 2 Let B be a binomial random variable, B ∼ Binomial(m, p). If p ≥ 8 ln(1/δ)/m
then with probability of at least 1− δ, B ≥ mp/2.

Proof This follows from a multiplicative Chernoff bound (Angluin and Valiant, 1979).

3. Online Algorithm

Consider the following algorithm:

Unnormalized Exponentiated Gradient (unnormalized-EG)

parameters: η, λ > 0
input: z1, . . . , zT ∈ Rd
initialize: w1 = (λ, . . . , λ) ∈ Rd
update rule: ∀i, wt+1[i] = wt[i]e

−ηzt[i]

The following theorem provides a regret bound with local-norms for the unnormalized
EG algorithm (for a proof, see Theorem 2.23 of Shalev-Shwartz, 2012).

Theorem 3 Assume that the unnormalized EG algorithm is run on a sequence of vectors
such that for all t, i we have ηzt[i] ≥ −1. Then, for all u ∈ Rd+,

T∑
t=1

〈wt − u, zt〉 ≤
dλ+

∑d
i=1 u[i] ln(u[i]/(e λ))

η
+ η

T∑
t=1

d∑
i=1

wt[i]zt[i]
2 .

Now, let us apply it to a case in which we have a sequence of convex functions f1, . . . , fT ,
and zt is the sub-gradient of ft at wt. Additionally, set λ = k/d and consider u s.t. ‖u‖1 ≤ k.
We obtain the following.

Theorem 4 Assume that the unnormalized EG algorithm is run with λ = k/d. Assume
that for all t, we have zt ∈ ∂ft(wt), for some convex function ft. Further assume that
for all t, i we have ηzt[i] ≥ −1, and that for some positive constants α, β, it holds that
η =

√
k ln(d)/(βT ), T ≥ 4α2k ln(d)/β, and

d∑
i=1

wt[i]zt[i]
2 ≤ αft(wt) + β . (9)

Then, for all u ∈ Rd+, with ‖u‖1 ≤ k we have

T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) +

√
4α2k ln(d)

βT
·
T∑
t=1

ft(u) +
√

4βk ln(d)T + 4αk ln(d).

Proof Using the convexity of ft and the assumption that zt ∈ ∂ft(wt) we have that

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

〈wt − u, zt〉 .
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Combining with Theorem 3 we obtain

T∑
t=1

(ft(wt)− ft(u)) ≤
dλ+

∑d
i=1 u[i] ln(u[i]/(e λ))

η
+ η

T∑
t=1

d∑
i=1

wt[i]zt[i]
2 .

Using the assumption in Eq. (9), the definition of λ = k/d, and the assumptions on u, we
obtain

T∑
t=1

(ft(wt)− ft(u)) ≤ k ln(d)

η
+ ηβT + ηα

T∑
t=1

ft(wt) .

Rearranging the above we conclude that

T∑
t=1

ft(wt) ≤
1

1− αη

(
T∑
t=1

ft(u) +
k ln(d)

η
+ ηβT

)
.

Now, since 1/(1− x) ≤ 1 + 2x for x ∈ [0, 1/2] and αη ≤ 1
2 , we conclude, by substituting for

the definition of η, that

T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) + 2
√
k ln(d)βT + 2α

√
k ln(d)

βT
·
T∑
t=1

ft(u) + 4αk ln(d).

We can now derive the desired regret bound for our algorithm. We also provide a bound
for the statistical setting, using online-to-batch conversion.

Corollary 5 Let ` ≡ `θ for some θ ∈ [0, k]. Fix any sequence (x1, y1), (x2, y2), . . . , (xT , yT ) ∈
[0, 1]d × {±1} and assume T ≥ 4k ln(d)/r. Suppose the unnormalized EG algorithm listed

in Section 3 is run using η :=

√
k ln(d)
rT , λ := k/d, and any zt ∈ ∂w`(xt, yt, wt) for all t.

Define LUEG :=
∑T

t=1 `(xt, yt, wt), let L(u) :=
∑T

t=1 `(xt, yt, u), and let u∗ ∈ argminL(u).
Then the following regret bound holds.

LUEG − L(u∗) ≤
√

16rk ln(d)T + 4k ln(d). (10)

Moreover, for m ≥ 1, assume that a random sample S = ((x1, y1), (x2, y2), . . . , (xm, ym))
is drawn i.i.d. from an unknown distribution D over [0, 1]d × {±1}. Then there exists an
online-to-batch conversion of the UEG algorithm that takes S as input and outputs w̄, such
that

E[`(w̄,D)] ≤ `(w∗, D) +

√
16rk ln(d)

m
+

4k ln(d)

m
, (11)

where the expectation is over the random draw of S.

Proof Every sub-gradient zt ∈ ∂w`(xt, yt, wt) is of the form zt = atxt for some at ∈
{−1, 0,+1}. Since 0 ≤ xt[i] ≤ 1 and wt[i] ≥ 0 for all i, it follows that

∑d
i=1wt[i]zt[i]

2 =

|at|
∑d

i=1w[i]xt[i]
2 ≤ |at|〈wt, xt〉. Now consider three disjoint cases.

• Case 1: 〈wt, xt〉 ≤ r. Then
∑d

i=1wt[i]zt[i]
2 ≤ 〈wt, xt〉 ≤ r.
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• Case 2: 〈wt, xt〉 > r and yt = 1. Then at = 0 and
∑d

i=1wt[i]zt[i]
2 = 0.

• Case 3: 〈wt, xt〉 > r and yt = −1. Then
∑d

i=1wt[i]zt[i]
2 ≤ 〈wt, xt〉 ≤ [r′+ 〈wt, xt〉]+−

r′ ≤ [r′ + 〈wt, xt〉]+ + r.

In all three cases, the final upper bound on
∑d

i=1wt[i]zt[i]
2 is at most `(xt, yt, wt) + r.

Therefore, Eq. (9) from Theorem 4 is satisfied with ft(w) := `(xt, yt, w), α := 1, and β := r.
From Theorem 4 with this choice of ft and the given settings of η, λ, and zt, we get that
for any u such that ‖u‖1 ≤ k,

LUEG ≤ L(u) + L(u)

√
4k ln(d)

rT
+
√

4rk ln(d)T + 4k ln(d). (12)

Observing that L(u∗) ≤ L(0) ≤ rT , we conclude the regret bound in Eq. (10).
For the statistical setting, a simple approach for online-to-batch conversion is to run

the UEG algorithm as detailed in Corollary 5, with T = m, and to return the average
predictor w̄ = 1

m

∑
i∈[m]wi. By standard analysis (e.g., Shalev-Shwartz, 2012, Theorem

5.1), E[`θ(w̄,D)] ≤ 1
mE[LUEG], where the expectation is over the random draw of S. Setting

u = w∗, Eq. (12) gives

E[`θ(w̄,D)] ≤ E

[
ˆ̀(w∗) +

√
ˆ̀(w∗)2 · 4k ln(d)

rm
+

√
4rk ln(d)

m
+

4k ln(d)

m

]
.

Since E[ˆ̀(w∗)] = `(w∗) and `(w∗) ≤ r, Eq. (11) follows.

In the online setting a simple version of the canonical mirror descent algorithm thus
achieves the postulated regret bound of O(

√
rk log(d)T ) ≡ O(

√
θk log(d)T ). For the sta-

tistical setting, an online-to-batch conversion provides the desired rate of O(rk log(d)/ε2) ≡
O(θk log(d)/ε2). Is this online-to-batch approach necessary, or is a similar rate for the statis-
tical setting achievable also using standard ERM? Moreover, this online-to-batch approach
leads to an improper algorithm, that is, the output w might not be in Hk,θ, since it might
not satisfy the norm bound. In the next section we show that standard, proper, ERM, leads
to the same learning rate.

4. ERM Upper Bound

We now proceed to analyze the performance of empirical risk minimization in the statistical
batch setting. As above, assume a random sample S = ((x1, y1), . . . , (xm, ym)) of pairs
drawn i.i.d. according to a distribution D over [0, 1]d × {±1}. An empirical risk minimizer
on the sample is denoted ŵ ∈ argminw∈Hk,θ

1
m

∑
i∈[m] `(xi, yi, w). We wish to show an upper

bound on `(ŵ)− `(w∗). We will prove the following theorem:

Theorem 6 For k ≥ r ≥ 0, and m ≥ k, with probability 1− δ over the random draw of S,

`(ŵ) ≤ `(w∗) +

√
O(rk(ln(d) ln3(3m) + ln(1/δ)))

m
+
O(r log(1/δ))

m
. (13)
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The proof strategy is based on considering the loss on negative examples and the loss on
positive examples separately. Denote

`−(w,D) = E(X,Y )∼D[`(X,Y,w) | Y = −1], and

`+(w,D) = E(X,Y )∼D[`(X,Y,w) | Y = +1].

For a given sample, denote ˆ̀
−(w) = Ê[`(X,Y,w) | Y = −1] and similarly for ˆ̀

+(w). Denote

p+ = E(X,Y )∼D[Y = +1] and p̂+ = Ê[Y = +1], and similarly for p− and p̂− .

As Theorem 21 in Section 5 below shows, the rate of uniform convergence of ˆ̀
−(w)

to `−(w) for all w ∈ Hk,θ is Ω̃(
√
k2/m), which is slower than the desired Õ(

√
θk/m).

Therefore, uniform convergence analysis for Hk,θ cannot provide a tight result. Instead,
we define a subset Ub ⊆ Hk,θ, such that with probability at least 1 − δ, the empirical
risk minimizer of a random sample is in Ub. We show that a uniform convergence rate of
Õ(
√
θk/m) does in fact hold for all w ∈ Ub. The analysis of uniform convergence of the

negative loss is carried out in Section 4.1.
For positive labels, uniform convergence rates over Hk,θ in fact suffice to provide the

desired guarantee. This analysis is provided in Section 4.2. The analysis uses the results
in Section 3 for the online algorithm to construct a small cover of the relevant function
class. This then bounds the Rademacher complexity of the class and leads to a uniform
convergence guarantee. In Section 4.3, the two convergence results are combined, while
taking into account the mixture of positive and negative labels in D.

4.1 Convergence on Negative Labels

We now commence the analysis for negative labels. Denote by D− the distribution of
(X,Y ) ∼ D conditioned on Y = −1, so that P(X,Y )∼D− [Y = −1] = 1, and P(X,Y )∼D− [X =

x] = P(X,Y )∼D[X = x | Y = −1]. For b ≥ 0 define

Ub(D) = {w ∈ Rd+ | ‖w‖1 ≤ k,ED[〈w,X〉 | Y = −1] ≤ b}.

Note that Ub(D) ⊆ Hk,θ.
We now bound the rate of convergence of ˆ̀

− to `− for all w ∈ Ub(D). We will then show
that b can be set so that with high probability ŵ ∈ Ub(D). Our technique is related to
local Rademacher analysis (Bartlett et al., 2005), in that the latter also proposes to bound
the Rademacher complexity of subsets of a function class, and uses these bounds to provide
tighter convergence rates. Our analysis is better tailored to the Winnow loss, by taking into
account the different effects of the negative and positive labels.

The convergence rate for Ub(D) is bounded by first bounding RLm(Ub(D), D−), the
Rademacher complexity of the linear loss for the distribution over the examples with nega-
tive labels, and then concluding a similar bound on Rm(Ub(D), D). We start with a more
general bound on RLm.

Lemma 7 For a fixed distribution over D over [0, 1]d × {±1}, let αj = E(X,Y )∼D[X[j]],

and let µ ∈ Rd+. Define Uµ = {w ∈ Rd+ | 〈w, µ〉 ≤ 1}. Then if dm ≥ 3,

RLm(Uµ, D) ≤ max
j:αj>0

1

µj

√
32 ln(d)

m
·max

{
αj ,

ln(dm)

m

}
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Proof Assume w.l.o.g that αj > 0 for all j (if this is not the case, dimensions with αj = 0
can be removed because this implies that X[j] = 0 with probability 1).

m

2
RLm(Uµ, S) = Eσ

[
sup

w:〈w,µ〉≤1

m∑
i=1

σi〈w, xi〉

]

= Eσ

[
sup

w:〈w,µ〉≤1
〈w,

m∑
i=1

σixi〉

]

= Eσ

[
max
j∈[d]

m∑
i=1

σi
xi[j]

µ[j]

]
.

Therefore, using Massart’s lemma (Massart, 2000, Lemma 5.2) and denoting α̂j = 1
m

∑m
i∈[m] xi[j],

we have:

RLm(Uµ, S) ≤
√

8 ln(d)

m
·max

j

√∑
i xi[j]

2

µ[j]

≤
√

8 ln(d)

m
·max

j

√∑
i xi[j]

µ[j]

=

√
8 ln(d)

m
·max

j

√
α̂j

µ[j]

=

√
8 ln(d)

m
·max

j

α̂j
µ[j]2

.

Taking expectation over S and using Jensen’s inequality we obtain

RLm(Uµ, D) = ES [RLm(Uµ, S)] ≤

√
8 ln(d)

m
· ES [max

j

α̂j
µ[j]2

]

By Bernstein’s inequality (Proposition 1), with probability 1− δ over the choice of {xi}, for
all j ∈ [d]

α̂j ≤ αj + 2

√
ln(d/δ)

m
·max

{
αj ,

ln(d/δ)

m

}
.

And, in any case, α̂j ≤ 1. Therefore,

ES
[
max
j

α̂j
µ[j]2

]
≤ max

j

1

µ[j]2

(
δ + αj + 2

√
ln(d/δ)

m
·max

{
αj ,

ln(d/δ)

m

})
Choose δ = 1/m and let j be a maximizer of the above. Consider two cases. If αj <
ln(dm)/m then

ES
[
max
j

α̂j
µ[j]2

]
≤ max

j

1

µ[j]2
· 4 ln(dm)

m
.

Otherwise,

ES
[
max
j

α̂j
µ[j]2

]
≤ max

j

1

µ[j]2
(δ + 3αj) ≤ max

j

4αj
µ[j]2

.
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All in all, we have shown

RLm(Uµ, D) ≤ max
j

1

µ[j]

√
32 ln(d)

m
·max

{
αj ,

ln(dm)
m

}
.

The lemma above can now be used to bound the Rademacher complexity of the linear loss
for D− .

Lemma 8 For any distribution D over (X,Y ) ∈ [0, 1]d × {±1}, if dm ≥ 3,

RLm(Ub(D), D−) ≤

√
128k ln(d)

m
max

{
b,
k ln(dm)

m

}
.

Proof Let αj = E(X,Y )∼D− [X[j]]. Let J = {j ∈ [d] | αj ≥ b
k}, and J̄ = {j ∈ [d] | αj < b

k}.
For a vector v ∈ Rd and a set I ⊆ [d], denote by v[I] the vector which is obtained from
v by setting the coordinates not in I to zero. Let ((X1, Y1), . . . , (Xm, Ym)) ∼ Dm

− . By the

definition of RLm, with Rademacher random variables ε1, . . . , εm (see Eq. 7), we have

RLm(Ub(D), D−)

=
2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w,Xi〉
∣∣∣∣
]

=
2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w[J ], Xi[J ]〉+
m∑
i=1

εiYi〈w[J̄ ], Xi[J̄ ]〉
∣∣∣∣
]

≤ 2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w[J ], Xi[J ]〉
∣∣∣∣
]

+
2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w[J̄ ], Xi[J̄ ]〉
∣∣∣∣
]

= RLm(Ub(D), D1) +RLm(Ub(D), D2), (14)

where D1 is the distribution of (X[J ], Y ), where (X,Y ) ∼ D− , and D2 is the distribution
of (X[J̄ ], Y ). We now bound the two Rademacher complexities of the right-hand side using
Lemma 7.

To bound RLm(Ub(D), D1), define Uµ as in Lemma 7 for µ ∈ Rd+, and define µ1 ∈
Rd+ by µ1[j] = αj/b. It is easy to see that Ub(D) ⊆ Uµ1 . Therefore RLm(Ub(D), D1) ≤
RLm(Uµ1 , D1). By Lemma 7 and the definition of µ1

RLm(Uµ1) ≤ max
j∈J

1

µ1[j]

√
32 ln(d)

m
max

{
αj ,

ln(dm)

m

}

= max
j∈J

b

αj

√
32 ln(d)

m
max

{
αj ,

ln(dm)

m

}

= max
j∈J

√
b

αj

32 ln(d)

m
max

{
b,
b

αj

ln(dm)

m

}
.
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By the definition of J , for all j ∈ J we have b
αj
≤ k. It follows that

RLm(Uµ1 , D1) ≤

√
32k ln(d)

m
max

{
b,
k ln(dm)

m

}
. (15)

To bound RLm(Ub(D), D2), define µ2 ∈ Rd+ by µ2[j] = 1
k . Note that Uµ2 = Hk,θ and

Ub(D) ⊆ Hk,θ, hence RLm(Ub(D), D2) ≤ RLm(Uµ2 , D2). By Lemma 7 and the definition of
µ2

RLm(Uµ2 , D2) ≤ max
j∈J̄

1

µ2[j]

√
32 ln(d)

m
max

{
αj ,

ln(dm)

m

}

= max
j∈J̄

√
32k ln(d)

m
max

{
kαj ,

k ln(dm)

m

}
.

By the definition of J̄ , for all j ∈ J we have kαj ≤ b. Therefore

RLm(Uµ2 , D2) ≤

√
32k ln(d)

m
max

{
b,
k ln(dm)

m

}
. (16)

Combining Eq. (14), Eq. (15) and Eq. (16) we get the statement of the theorem.

Finally, the bound on RLm(Ub(D), D) is used in the following theorem to obtain a uniform
convergence result of the negative loss for predictors in Ub(D).

Theorem 9 Let b ≥ 0. There exists a universal constant C such that for any distribution
D over [0, 1]d × {±1}, with probability 1− δ over samples of size m, for any w ∈ Ub(D),

`−(w) ≤ ˆ̀
−(w) + C

(√
kb ln(d/δ) + |r′|

mp̂−
+
k ln(dmp̂−/δ)

mp̂−

)
. (17)

Proof Define φ : R → R by φ(z) = [r′ − z]+. Since P(X,Y )∼D[Y = −1] = 1, the Winnow
loss on pairs (X,Y ) drawn from D is exactly φ(Y 〈w,X〉). Note that φ is an application
of a 1-Lipschitz function to a translation of the linear loss. Thus, by the properties of
the Rademacher complexity (Bartlett and Mendelson, 2002) and by Lemma 8 we have, for
dm ≥ 3,

Rm(Ub(D), D−) ≤ RLm(Ub(D), D−)

≤

√
128k ln(d)

m
max

{
b,
k ln(dm)

m

}
. (18)

Assume that r′ ≤ 0. By Talagrand’s inequality (see, e.g., Boucheron et al., 2005, Theorem
5.4), with probability 1− δ over samples of size m drawn from D− , for all w ∈ Ub(D)

`(w) ≤ ˆ̀(w) + 2Rm(Ub(D), D−) +

√
2 supw∈Ub(D) VarD− [`(X,Y,w)] ln(1/δ)

m
+

4k ln(1/δ)

3m
.

(19)
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To bound VarD− [`(X,Y,w)], note that `(X,Y,w) ∈ [0, k]. In addition, PD− [Y = −1] = 1,

thus with probability 1, `(X,Y,w) = [r′ + 〈w,X〉]+ ≤ 〈w, x〉, where the last inequality
follows from the assumption r′ ≤ 0. Therefore, for any w ∈ Ub(D)

VarD− [`(X,Y,w)] ≤ E[`2(X,Y,w)] ≤ ED− [k`(X,Y,w)] ≤ k · ED− [〈w,X〉] ≤ kb. (20)

Combining Eq. (18), Eq. (19) and Eq. (20) we conclude that there exists a universal constant
C such that for any w ∈ Ub(D), if a sample of size m is drawn i.i.d. from D− , then

`(w) ≤ ˆ̀(w) + C

(√
kb ln(d/δ)

m
+
k ln(dm/δ)

m

)
.

If r′ > 0, ˆ̀
−(w)− `−(w) is identical to the case r′ = 0, thus the same result holds.

To get Eq. (17), consider a sample of size m drawn from D instead of D− . In this case,

`(w,D−) = `−(w,D), ˆ̀(w,D−) = ˆ̀
−(w,D), and the effective sample size for D− is mp̂− .

We now show that with an appropriate setting of b, ŵ ∈ Ub(D) with high probability over
the draw of a sample from D. First, the following lemma provides a sample-dependent
guarantee for ŵ.

Lemma 10 Let ŵ and p̂− be defined as above and let Ê := ÊS for the fixed sample S
defined above. Then

Ê[〈ŵ,X〉 | Y = −1] ≤ r

p̂−
.

Proof Let m+ = |{i | yi = +1}|, and m− = |{i | yi = −1}|. By the definition of the hinge
function and the fact that 〈xi, ŵ〉 ≥ 0 for all i we have that

m−r
′ +

∑
yi=−1

〈xi, ŵ〉 ≤
∑
yi=−1

(r′ + 〈xi, ŵ〉)

≤
∑
yi=+1

[r − 〈xi, ŵ〉]+ +
∑
yi=−1

[r′ + 〈xi, ŵ〉]+

=
∑
i∈[m]

`(xi, yi, ŵ).

By the optimality of ŵ,
∑

i∈[m] `(xi, yi, ŵ) ≤
∑

i∈[m] `(xi, yi,0) = m+r+m− [r′]+. Therefore∑
yi=−1

〈xi, ŵ〉 ≤ m+r +m−([r′]+ − r′) = m+r +m− [−r′]+ ≤ (m+ +m−)r = mr,

where we have used the definitions of r′ and r to conclude that [−r′]+ ≤ r. Dividing both
sides by m− we conclude our proof.

The following lemma allows converting the sample-dependent restriction on ŵ given in
Lemma 10 to one that holds with high probability over samples.

Lemma 11 For any distribution over [0, 1]d, with probability 1− δ over samples of size n,
for any w ∈ Hk,θ

E[〈w,X〉] ≤ 2Ê[〈w,X〉] +
16k ln(dδ )

n
.
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Proof For every j ∈ [d], denote αj = E[X[j]]. Denote α̂j = Ê[X[j]]. By Bernstein’s
inequality (Proposition 1), with probability 1− δ,

αj ≤ α̂j + 2

√
ln(1/δ)

n
·max

{
αj ,

ln(1/δ)

n

}
≤ α̂j + max

{
αj
2
,
8 ln(1/δ)

n

}
,

where the last inequality can be verified by considering the cases αj ≤ 16 ln(1/δ)
n and αj ≥

16 ln(1/δ)
n . Applying the union bound over j ∈ [d] we obtain that with probability of 1 − δ

over samples of size n, for any w ∈ Hk,θ

E[〈w,X〉] = 〈w,α〉 ≤
∑
j∈[d]

wj

(
α̂j +

αj
2

+
8 ln(d/δ)

n

)

≤ Ê[〈w,X〉] +
1

2
E[〈w,X〉] +

8 ln(d/δ)

n
· k.

Thus E[〈w,X〉] ≤ 2Ê〈w,X〉+ 16k ln(d/δ)
n .

Combining the two lemmas above, we conclude that with high probability, ŵ ∈ Ub for an
appropriate setting of b.

Lemma 12 If p− ≥
8 ln(1/δ)

m , then with probability 1−δ over samples of size m, ŵ ∈ Ub(D),
where

b =
4r

p−
+

32k ln(2d/δ)

mp−
. (21)

Proof Apply Lemma 11 to D− . With probability of 1 − δ over samples of size n drawn
from D− ,

ED− [〈w,X〉] ≤ 2ÊD− [〈w,X〉] +
16k ln(d/δ)

n
.

Now, consider a sample of size m drawn according to D. Then ED− [·] = ED[· | Y = −1],
and n = mp̂−. Therefore, with probability 1− 2δ,

E[〈w,X〉 | Y = −1] ≤ 2Ê[〈w,X〉 | Y = −1] +
16k ln(d/δ)

mp̂−

≤ 2r

p̂−
+

16k ln(d/δ)

mp̂−

≤ 4r

p−
+

32k ln(d/δ)

mp−
, (22)

where the second inequality follows from Lemma 10, and the last inequality follows from
the assumption on p− and Proposition 2.

This lemma shows that to bound the sample complexity of an ERM algorithm for the
Winnow loss, it suffices to bound the convergence rates of the empirical loss for w ∈ Ub(D),
with b defined as in Eq. (21). Thus, we will be able to use Theorem 9 to bound the
convergence of the loss on negative examples.
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4.2 Convergence on Positive Labels

For positive labels, we show a uniform convergence result that holds for the entire class
Hk,θ. The idea of the proof technique below is as follows. First, following a technique in
the spirit of the one given by Zhang (2002), we show that the regret bound for the online
learning algorithm presented in Section 3 can be used to construct a small cover of the
set of loss functions parameterized by Hk,θ. Second, we convert the bound on the size of
the cover to a bound on the Rademacher complexity, thus showing a uniform convergence
result. This argument is a refinement of Dudley’s entropy bound (Dudley, 1967), which is
stated in explicit terms by Srebro et al. (2010, Lemma A.3).

We first observe that by Theorem 4, if the conditions of the theorem hold and there is
u such that ft(u) = 0 for all t, then

1

T

T∑
t=1

ft(wt) ≤ 4

√
βk ln(d)

T
. (23)

Let k ≥ r ≥ 0 be two real numbers and let W ⊆ Rd+. Let φw denote the function
defined by φw(x, y) = `(x, y, w), and consider the class of functions ΦW = {φw | w ∈ W}.
Given S = ((x1, y1), . . . , (xm, ym)), where xi ∈ [0, 1]d and yi ∈ {±1}, we say that (ΦW , S)
is (∞, ε)-properly-covered by a set V ⊆ ΦW if for any f ∈ ΦW there is a g ∈ V such that

‖(f(x1, y1), . . . , f(xm, ym))− (g(x1, y1), . . . , g(xm, ym))‖∞ ≤ ε.

We denote by N∞(W,S, ε) the minimum value of an integer N such that exists a V ⊆ ΦW

of size N that (∞, ε)-properly-covers (ΦW , S).
The following lemma bounds the covering number for FW , for sets S with all-positive

labels yi.

Lemma 13 Let S = ((x1, 1), . . . , (xm, 1)), where xi ∈ [0, 1]d. Then,

lnN∞(Hk,θ, S, ε) ≤ 16 · rk ln(d) ln(3m)/ε2.

Proof We use a technique in the spirit of the one given by Zhang (2002). Fix some u,
with u ≥ 0 and ‖u‖1 ≤ k. For each i let

gui (w) =

{
|〈w, xi〉 − 〈u, xi〉| if 〈u, xi〉 ≤ r
[r − 〈w, xi〉]+ o.w.

and define the function
Gu(w) = max

i
gui (w) .

It is easy to verify that for any w,

‖(φw(x1, 1), . . . , φw(xm, 1))− (φu(x1, 1), . . . , φu(xm, 1))‖∞ ≤ Gu(w).

Now, clearly, Gu(u) = 0. In addition, for any w ≥ 0, a sub-gradient of Gu at w is
obtained by choosing i that maximizes gui (w) and then taking a sub-gradient of gui , which
is of the form z = αxi where α ∈ {−1, 0, 1}. If α ∈ {−1, 1}, it is easy to verify that∑

j

w[j]z[j]2 ≤ 〈w, xi〉 ≤ gui (w) + r = Gu(w) + r .
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If α = 0 then clearly
∑

j w[j]z[j]2 ≤ Gu(w) + r as well.

We can now use Eq. (23) by setting ft = Gu for all t, setting α = 1 and β = r in Eq. (9),
and noting that since xi ∈ [0, 1]d, we have zt ∈ [−1, 1]d for all t. If η ≤ 1 we have ηzt[i] ≥ −1

for all t, i as needed. Since η =

√
k ln(d)
rT , this holds for all T ≥ k ln(d)/r.

We conclude that if we run the unnormalized EG algorithm with T ≥ k ln(d)/r and η
and λ as required, we get

T∑
t=1

Gu(wt) ≤ 4
√
rk ln(d)T .

Dividing by T and using Jensen’s inequality we conclude

Gu

(
1
T

∑
t

wt

)
≤ 4

√
rk ln(d)

T
.

Denote wu = 1
T

∑
twt. Setting ε = 4

√
rk ln(d)
T , it follows that the following set is a (∞, ε)-

proper-cover for (FHk,θ , S):

V = {wu | u ∈ Hk,θ}.

Now, we only have left to bound the size of V . Consider again the unnormalized EG
algorithm. Since zt = αxi for some α ∈ {−1, 0,+1} and i ∈ {1, . . . ,m}, at each round
of the algorithm there are only two choices to be made: the value of i and the value of
α. Therefore, the number of different vectors produced by running unnormalized EG for
T iterations on Gu for different values of u is at most (3m)T . Thus |V | ≤ (3m)T . By our
definition of ε,

ln |V | ≤ T ln(3m) ≤ 16rk ln(d) ln(3m)/ε2.

This concludes our proof.

Using this result we can bound from above the covering number defined using the Eu-
clidean norm: We say that (ΦW , S) is (2, ε)-properly-covered by a set V ⊆ ΦW if for any
f ∈ ΦW there is a g ∈ V such that

1√
m
‖(f(x1, y1), . . . , f(xm, ym))− (g(x1, y1), . . . , g(xm, ym))‖2 ≤ ε.

We denote by N2(W,S, ε) the minimum value of an integer N such that exists a V ⊆ ΦW

of size N that (2, ε)-properly-covers (ΦW , S). It is easy to see that for any two vectors
u, v ∈ Rm, 1√

m
‖u−v‖2 ≤ ‖u−v‖∞. It follows that for any W and S, we have N2(W,S, ε) ≤

N∞(W,S, ε).

The N2 covering number can be used to bound the Rademacher complexity of (ΦW , S)
using a refinement of Dudley’s entropy bound (Dudley, 1967), which is stated explicitly
by Srebro et al. (2010, Lemma A.3). The lemma states that for any ε ≥ 0,

R(W,S) ≤ 4ε+
10√
m

∫ B

ε

√
lnN2(W,S, γ) dγ,
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where B is an upper bound on the possible values of f ∈ ΦW on members of S. For S with
all-positive labels we clearly have B ≤ r.

Combining this with Lemma 13, we get

R(Hk,θ, S) ≤ C·
(
ε+

1√
m

∫ r

ε

√
rk ln(d) ln(3m)/γ dγ

)
= C·

(
ε+

√
rk ln(d) ln(3m)

m
ln(r/ε)

)
.

Setting ε = rk/m we get

R(Hk,θ, S) ≤ C ·

√
rk ln(d) ln3(3m)

m
.

Thus, for any distribution D over [0, 1]d×{±1} that draws only positive labels, we have

Rm(Hk,θ, D) ≤ C

√rk ln(d) ln3(3m)

m

 .

By Rademacher sample complexity bounds (Bartlett and Mendelson, 2002), and since
` for positive labels is bounded by r, we can immediately conclude the following:

Theorem 14 Let k ≥ r ≥ 0. For any distribution D over [0, 1]d × {±1} that draws only
positive labels, with probability 1− δ over samples of size m, for any w ∈ Hk,θ,

`+(w) ≤ ˆ̀
+(w) + C ·

√rk ln(d) ln3(3m)

m
+

√
r2 ln(1/δ)

m


≤ ˆ̀

+(w) + C ·

√rk(ln(d) ln3(3m) + ln(1/δ))

m

 .

4.3 Combining Negative and Positive Losses

We have shown separate convergence rate results for the loss on positive labels and for
the loss on negative labels. We now combine these results to achieve a convergence rate
upper bound for the full Winnow loss. To do this, the convergence results given above
must be adapted to take into account the fraction of positive and negative labels in the
true distribution as well as in the sample. The following theorems accomplish this for the
negative and the positive cases. First, a bound is provided for the positive part of the loss.

Theorem 15 There exists a universal constant C such that for any distribution D over
[0, 1]d × {±1}, with probability 1− δ over samples of size m

p+`+(ŵ) ≤ p̂+
ˆ̀
+(ŵ) + C ·

√
rk(ln(kd) ln3(m) + ln(3/δ))

m
.
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Proof First, if p+ ≤ 8 ln(1/δ)
m then the theorem trivially holds. Therefore we assume that

p+ ≥ 8 ln(1/δ)
m . We have

p+`+(ŵ) = p̂+
ˆ̀
+(ŵ) + (p+ − p̂+)ˆ̀

+(ŵ) + p+(`+(ŵ)− ˆ̀
+(ŵ)). (24)

To prove the theorem, we will bound the two rightmost terms. First, to bound (p+ −
p̂+)ˆ̀

+(ŵ), note that by definition of the loss function for positive labels we have that ˆ̀
+(ŵ) ∈

[0, r]. Therefore, Bernstein’s inequality (Proposition 1) implies that with probability 1−δ/3

(p+ − p̂+)ˆ̀
+(ŵ) ≤ 2r

√
ln(3/δ)

m
max

{
p+,

ln(3/δ)

m

}
≤
√

4r ln(3/δ)

m
. (25)

Second, to bound p+(`+(ŵ)− ˆ̀
+(ŵ)), we apply Theorem 14 to the conditional distribu-

tion induced by D on X given Y = 1, to get that with probability 1− δ/3

p+(`+(ŵ)− ˆ̀
+(ŵ)) ≤ p+ · C ·

√
rk(ln(d) ln3(3m) + ln(3/δ))

mp̂+
.

Using our assumption on p+ we obtain from Proposition 2 that with probability 1 − δ/3,
p+/p̂+ ≤ 2. Therefore, p+/

√
p̂+ ≤

√
2p+ ≤

√
2. Thus, with probability 1− 2δ/3,

p+(`+(ŵ)− ˆ̀
+(ŵ)) ≤ C ·

√
rk(ln(d) ln3(3m) + ln(3/δ))

m
. (26)

Combining Eq. (24), Eq. (25) and Eq. (26) and applying the union bound, we get the
theorem.

Second, a bound is provided for the negative part of the loss.

Theorem 16 There exists a universal constant C such that for any distribution D over
[0, 1]d × {±1}, with probability 1− δ over samples of size m

p−`−(ŵ) ≤ p̂− ˆ̀
−(ŵ) + C

(√
rk ln(d/δ)

m
+
k ln(dm/δ)

m

)
. (27)

Proof First, if p− ≤
8 ln(1/δ)

m then the theorem trivially holds (since `−(ŵ) ∈ [0, r + k]).

Therefore we assume that p− ≥
8 ln(1/δ)

m . Thus, by Proposition 2, p̂− ≥ p−/2. We have

p−`−(ŵ) = p̂−
ˆ̀
−(ŵ) + (p− − p̂−)ˆ̀

−(ŵ) + p−(`−(ŵ)− ˆ̀
−(ŵ)). (28)

To prove the theorem, we will bound the two rightmost terms. First, to bound (p− −
p̂−)ˆ̀

−(ŵ), note that by Bernstein’s inequality (Proposition 1) and our assumption on p− ,
with probability 1− δ

p− − p̂− ≤ 2

√
ln(1/δ)

m
max

{
p− ,

ln(1/δ)

m

}
= 2

√
p− ln(1/δ)

m
.
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By Lemma 10 and Proposition 2, ˆ̀
−(ŵ) ≤ 2r

p̂−
≤ 4r

p−
. In addition, by definition ˆ̀

−(ŵ) ≤
r + k ≤ 2k. Therefore

(p− − p̂−)ˆ̀
−(ŵ) ≤ 4 min

{
2r

p−
, k

}√
p− ln(1/δ)

m
. (29)

Now, if k > 2r/p− , then the right-hand of the above becomes

8
r

p−

√
p− ln(1/δ)

m
= 8

√
(r/p−) · r ln(1/δ)

m
≤ 8

√
k · r ln(1/δ)

m
.

Otherwise, k ≤ 2r/p− and the right-hand of Eq. (29) becomes

4k

√
p− ln(1/δ)

m
≤ 4k

√
(2r/k) ln(1/δ)

m
≤ 8

√
k · r ln(1/δ)

m
.

All in all, we have shown that

(p− − p̂−)ˆ̀
−(ŵ) ≤ 8

√
rk ln(1/δ)

m
. (30)

Second, to bound p−(`−(ŵ) − ˆ̀
−(ŵ)), recall that by Lemma 12, we have ŵ ∈ Ub(D),

where

b =
4r

p−
+

32k ln(d/δ)

mp−
≤ C

p−

(
2r +

k ln(d/δ)

m

)
.

Thus, by Theorem 9, with probability 1− δ

`−(w) ≤ ˆ̀
−(w) + C

(√
kb ln(d/δ)

mp̂−
+
k ln(dm/δ)

mp̂−

)
.

Since p̂− ≥ p−/2,

`−(w) ≤ ˆ̀
−(w) + C

(√
kb ln(d/δ)

mp−
+
k ln(dm/δ)

mp−

)
.

for some other constant C. Therefore, substituting b for its upper bound we get

p−(`−(w)− ˆ̀
−(w)) ≤ C

(√
kr ln(d/δ)

m
+
k ln(dm/δ)

m

)
. (31)

Combining Eq. (28), Eq. (30) and Eq. (31) we get the statement of the theorem.

Finally, we prove our main result for the sample complexity of ERM algorithms for
Winnow.
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Proof (Proof of Theorem 6) From Theorem 15 and Theorem 16 we conclude that with
probability 1− δ,

`(ŵ) = p−`−(ŵ) + p+`+(ŵ)

≤ p̂− ˆ̀
−(ŵ) + p̂+

ˆ̀
+(ŵ) +

√
O(rk(ln(d) ln3(3m) + ln(1/δ)))

m
. (32)

Now,
p̂−

ˆ̀
−(ŵ) + p̂+

ˆ̀
+(ŵ) = ˆ̀(ŵ) ≤ ˆ̀(w∗). (33)

We have E[`(X,Y,w∗)] = `(w∗) ≤ `(0) ≤ r. By Bernstein’s inequality (Proposition 1), with
probability 1− δ

ˆ̀(w∗) = Ê[`(X,Y,w∗)] ≤ E[`(X,Y,w∗)] + 2r

√
ln(1/δ)

m
max

{
E[`(X,Y,w∗)]

r
,
ln(1/δ)

m

}
≤ `(w∗) + 2

√
r2 ln(1/δ)

m
+ 2

r ln(1/δ)

m
.

Combining this with Eq. (33), we get that with probability 1− δ

p̂−
ˆ̀
−(ŵ) + p̂+

ˆ̀
+(ŵ) ≤ `(w∗) + 2

√
r2 ln(1/δ)

m
+ 2

r ln(1/δ)

m
.

In light of Eq. (32), we conclude Eq. (13)

Theorem 6 shows that using empirical risk minimization, the loss of the obtained pre-
dictor converges to the loss of the optimal predictor at a rate of the order

Õ

(√
rk log(d)

m

)
≡ Õ

(√
θk log(d)

m

)
.

Up to logarithmic factors, this is the best possible rate for learning in the generalized
Winnow setting. This is shown in the next section, in Theorem 17. We also show, in
Theorem 21, that this rate cannot be obtain via standard uniform convergence analysis.

5. Lower Bounds

In this section we provide lower bounds for the learning rate and for the uniform convergence
rate of the Winnow loss `θ.

5.1 Learning Rate Lower Bound

Fix a threshold θ. The best Winnow loss for a distribution D over [0, 1]d × {±1} using a
hyperplane from a set W ⊆ Rd+ is denoted by `∗θ(W ) = minw∈W `θ(w). The following result
shows that even if the data domain is restricted to the discrete domain {0, 1}d, the number
of samples required for learning with the Winnow loss grows at least linearly in θk. This
resolves an open question posed by Littlestone (1988).
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Theorem 17 Let k ≥ 1 and let θ ∈ [1, k/2]. The sample complexity of learning Hk,θ with
respect to the loss `θ is Ω(θk/ε2). That is, for all ε ∈ (0, 1/2) if the training set size is
m = o(θk/ε2), then for any learning algorithm, there exists a distribution such that the
classifier, h : {0, 1}d → R+, that the algorithm outputs upon receiving m i.i.d. examples
satisfies `θ(h)− `∗θ(Hk,θ) > ε with a probability of at least 1/4.

The construction which shows the lower bound proceeds in several stages: First, we
prove that there exists a set of size k2 in {±1}k2 which is shattered on the linear loss
with respect to predictors with a norm bounded by k. Then, apply a transformation on
this construction to show a set in {0, 1}2k2+1 which is shattered on the linear loss with a
threshold of k/2. In the next step, we adapt the construction to hold for any value of the
threshold. Finally, we use the resulting construction to prove Theorem 17.

The construction uses the notion of a Hadamard matrix. A Hadamard matrix of order
n is an n× n matrix Hn with entries in {±1} such that HnH

T
n = nIn. In other words, all

rows in the matrix are orthogonal to each other. Hadamard matrices exist at least for each
n which is a power of 2 (Sylvester, 1867). The first lemma constructs a shattered set for
the linear loss on {±1}k2 .

Lemma 18 Assume k is a power of 2, and let d = k2. Let x1, . . . , xd ⊆ {±1}d be the rows
of the Hadamard matrix of order d. For every y ∈ {±1}d, there exists a w ∈ W ′ = {w ∈
[−1, 1]d | ‖w‖ ≤ k} such that for all i ∈ [d], y[i]〈w, xi〉 = 1.

Proof By the definition of a Hadamard matrix, for all i 6= j, 〈xi, xj〉 = 0. Given y ∈ {±1}d,
set w = 1

d

∑
j∈[d] yjxj . Then for each i,

yi〈w, xi〉 = yi
1

d

∑
j∈[d]

yj〈xi, xj〉 =
1

d
y2
i 〈xi, xi〉 =

1

d
‖xi‖22 = 1.

It is left to show that w ∈W ′. First, for all i ∈ [d], we have

|w[i]| = |1
d

∑
j∈[d]

yjxj [i]| ≤
1

d

∑
j∈[d]

|xj [i]| = 1,

which yields w ∈ [−1, 1]d. Second, using ‖w‖1 ≤
√
d‖w‖2 and

‖w‖22 = 〈w,w〉 =
1

d2

∑
i,j∈[d]

〈yixi, yjxj〉 =
1

d2

∑
i∈[d]

y2
i 〈xi, xi〉 =

1

d2

∑
i∈[d]

d = 1,

we obtain that ‖w‖1 ≤
√
d = k.

The next lemma transforms the construction from Lemma 18 to a linear loss with a threshold
of k/2.

Lemma 19 Let k be a power of 2 and let d = 2k2 + 1. There is a set {x1, . . . , xk2} ⊆
{0, 1}d such that for every y ∈ {±1}k2, there exists w ∈ Hk,θ such that for all i ∈ [k2],
y[i](〈w, xi〉 − k/2) = 1

2 .
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Proof From Lemma 18 we have that there is a set X = {x1, . . . , xk2} ⊆ {±1}k2 such that
for each labeling y ∈ {±1}k2 , there exists a wy ∈ [−1, 1]d with ‖wy‖1 ≤ k such that for all
i ∈ [k2], y[i]〈wy, xi〉 = 1. We now define a new set X̃ = {x̃1, . . . , x̃k2} ⊆ {0, 1}d based on X
that satisfies the requirements of the lemma.

For each i ∈ [k2] let x̃i = [
~1+xi

2 ,
~1−xi

2 , 1], where [·, ·, ·] denotes a concatenation of vectors

and ~1 is the all-ones vector. In words, each of the first k2 coordinates in x̃i is 1 if the
corresponding coordinate in xi is 1, and zero otherwise. Each of the next k2 coordinates in
x̃i is 1 if the corresponding coordinate in xi is −1, and zero otherwise. The last coordinate
in x̃i is always 1.

Now, let y ∈ {±1}k2 be a desired labeling. We defined w̃y based on wy as follows:

w̃y = [[wy]+, [−wy]+, k−‖wy‖12 ], where by z = [v]+ we mean that z[j] = max{v[j], 0}. In
words, the first k2 coordinates of w̃y are copies of the positive coordinates of wy, with zero
in the negative coordinates, and the next k2 coordinates of w̃y are the absolute values of
the negative coordinates of wy, with zero in the positive coordinates. The last coordinate
is a scaling term.

We now show that w̃y has the desired property on X̃. For each i ∈ [k2],

〈w̃y, x̃i〉 =

〈
~1 + xi

2
, [wy]+

〉
+

〈
~1− xi

2
, [−wy]+

〉
+
k − |wy|1

2

=
|wy|1

2
+
〈xi, wy〉

2
+
k − |wy|1

2
=
〈xi, wy〉

2
+
k

2
=
yi
2

+
k

2
.

It follows that yi(〈w̃y, x̃i〉 − k/2) = y2
i /2 = 1/2.

Now, clearly w̃y ∈ Rd+. In addition,

‖w̃y‖1 = ‖wy‖1 +
k − ‖wy‖1

2
=
‖wy‖1

2
+
k

2
≤ k.

Hence w̃y ∈ Hk,θ as desired.

The last lemma adapts the previous construction to hold for any threshold.

Lemma 20 Let z be a power of 2 and let k such that z divides k. Let d = 2kz+k/z. There
is a set {x1, . . . , xzk} ⊆ {0, 1}d such that for every y ∈ {±1}zk, there exists a w ∈ Hk,θ such
that for all i ∈ [zk], y[i](〈w, xi〉 − z/2) = 1

2 .

Proof By Lemma 19 there is a set X = {x1, . . . , xz2} ⊆ {0, 1}2z
2+1 such that for all

y ∈ {±1}z2 , there exists a wy ∈ R2z2+1
+ such that ‖wy‖1 ≤ z and for all i ∈ [z2], y[i](〈wy, xi〉−

z/2) = 1
2 .

We now construct a new set X̃ = {x̃1, . . . , x̃zk} ⊆ {0, 1}2kz+k/z as follows: For i ∈ [zk],
let n = bi/z2c and m = i mod z2, so that i = nz2 +m.The vector x̃i is the concatenation of
kz
z2

= k
z vectors, each of which is of dimension 2z2 + 1, where all the vectors are the all-zeros

vector, except the (n+ 1)’th vector which equals to xm+1. That is:

x̃i = [

∈R2z2+1︷︸︸︷
0 , . . . ,

∈R2z2+1︷︸︸︷
0 ,

block n+1︷ ︸︸ ︷
xm+1 ,

∈R2z2+1︷︸︸︷
0 , . . . ,

∈R2z2+1︷︸︸︷
0 ] ∈ R

k
z (2z2+1) .
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Given ỹ ∈ {±1}kz, let us rewrite it as a concatenation of k/z vectors, each of which in
{±1}z2 , namely,

ỹ = [

∈{±1}z2︷︸︸︷
ỹ(1) , . . . ,

∈{±1}z2︷ ︸︸ ︷
ỹ(k/z)] ∈ {±1}kz .

Define w̃ỹ as the concatenation of k/z vectors in {±1}z2 , using wy defined above for each

y ∈ {±1}z2 , as follows:

w̃ỹ = [

∈R2z2+1
+︷ ︸︸ ︷
wỹ(1) , . . . ,

∈R2z2+1
+︷ ︸︸ ︷

wỹ(k/z)] ∈ R
k
z (2z2+1) .

For each i such that n = bi/z2c and m = i mod z2, we have

〈w̃ỹ, x̃i〉 − z/2 = 〈wỹ(n+1), xm+1〉 − z/2 =
1

2
ỹ(n+ 1)[m+ 1].

Now ỹ(n + 1)[m + 1] = ỹ[i], thus we get ỹ[i](〈w̃ỹ, x̃i〉 − z/2) = 1
2 as desired. Finally, we

observe that ‖w̃ỹ‖1 =
∑

n∈[k/z] ‖wỹ(n)‖1 ≤ k/z · z = k, hence w̃ỹ ∈ Hk,θ.

Finally, the construction above is used to prove the convergence rate lower bound.
Proof (Proof of Theorem 17) Let k ≥ 1, θ ∈ [1

2 ,
k
2 ]. Define z = 2θ. Let n = max{n |

2n ≤ z}, and let m = max{m | m2n ≤ k}. Define z̃ = 2n and k̃ = m2n. We have that
z̃ is a power of 2 and z̃ divides k̃. Let d̃ = 2k̃z̃ + k̃/z̃. By Lemma 20, there is a set

X = {x1, . . . , xz̃k̃} ⊆ {0, 1}
d̃ such that for every y ∈ {±1}|X|, there exists a wy ∈ Hk,θ such

that for all i ∈ [z̃k̃], y[i](〈wy, xi〉 − z̃/2) = 1
2 .

Now, let d = d̃+ 1, and define w̃y = [wy,
z−z̃

2 ] and x̃i = [xi, 1]. It follows that

y[i](〈w̃y, x̃i〉 − θ) = y[i](〈w̃y, x̃i〉 − z/2)

= y[i](〈wy, xi〉+ z/2− z̃/2− z/2)

= y[i](〈wy, xi〉 − z̃/2) =
1

2
.

We conclude that for all i ∈ [z̃k̃], `θ(x̃i, y[i], w̃y) = 0 and `θ(x̃i, 1− y[i], w̃y) = 1. Moreover,
sign(〈w̃y, x̃i〉 − θ) = y[i].

Now, for a given w define hw(x) = sign(〈w, xi〉 − θ), and consider the binary hypothesis
class H = {hw | w ∈ Hk,θ} over the domain X. Our construction of w̃y shows that the
set X is shattered by this hypothesis class, thus its VC dimension is at least |X|. By VC-
dimension lower bounds (e.g., Anthony and Bartlett, 1999, Theorem 5.2), it follows that
for any learning algorithm for H, if the training set size is o(|X|/ε2), then there exists a
distribution over X so that with probability greater than 1/64, the output ĥ of the algorithm
satisfies

E[ĥ(x) 6= y] > min
w∈Hk,θ

E[hw(x) 6= y] + ε . (34)

Next, we show that the existence of a learning algorithm for Hk,θ with respect to `θ
whose sample complexity is o(|X|/ε2) would contradict the above statement. Indeed, let
w∗ be a minimizer of the right-hand side of Eq. (34), and let y∗ be the vector of predictions
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of w∗ on X. As our construction of w̃y∗ shows, we have `θ(w̃y∗) = E[hw∗(x) 6= y]. Now,
suppose that some algorithm learns ŵ ∈ Hk,θ so that `θ(ŵ) ≤ `∗θ(Hk,θ) + ε. This implies
that

`θ(ŵ) ≤ `θ(w̃y∗) + ε = E[hw∗(x) 6= y] + ε .

In addition, define a (probabilistic) classifier, ĥ, that outputs the label +1 with probability
p(ŵ, x) where p(ŵ, x) = min{1,max{0, 1/2 + (〈ŵ, x〉 − θ)}}. Then, it is easy to verify that

P[ĥ(x) 6= y] ≤ `θ(x, y, ŵ) .

Therefore, E[ĥ(x) 6= y] ≤ `θ(ŵ), and we obtain that

E[ĥ(x) 6= y] ≤ E[hw∗(x) 6= y] + ε ,

which leads to the desired contradiction.

We next show that the uniform convergence rate for our problem is in fact slower than the
achievable learning rate.

5.2 Uniform Convergence Lower Bound

The next theorem shows that the rate of uniform convergence for our problem is asymptoti-
cally slower than the rate of convergence of the empirical loss minimizer given in Theorem 6,
even if the drawn label in a random pair is negative with probability 1. This indicates that
indeed, a more subtle argument than uniform convergence is needed to show that ERM
learns at a rate of Õ(

√
θk/m), as done in Section 4.

Theorem 21 Let k ≥ 1, and assume θ ≤ k/2. There exists a distribution D over {0, 1}k2+1×
Y such that ∀x ∈ {0, 1}d,P[Y = −1 | X = x] = 1, and `∗(Hk,θ, D) = [r′]+, and such that
with probability at least 1/2 over samples S ∼ Dm,

∃w ∈ Hk,θ, |`(w, S)− `(w,D)| ≥ Ω(
√
k2/m). (35)

This claim may seem similar to well-known uniform convergence lower bounds for classes
with a bounded VC dimension (see, e.g., Anthony and Bartlett, 1999, Chapter 5). However,
these standard results rely on constructions with non-realizable distributions, while Theo-
rem 21 asserts the existence of a realizable distribution which exhibits this lower bound.

To prove this theorem we first show two useful lemmas. The first lemma shows that a
lower bound on the uniform convergence of a function class can be derived from a lower
bound on the Rademacher complexity of a related function class.

Lemma 22 Let Z be a set, and consider a function class F ⊆ [0, 1]Z . Let D be a distribu-
tion over Z. Let F̄ = {(x1, x2) → f(x1) − f(x2) | f ∈ F}. With probability at least 1 − δ
over samples S ∼ Dm,

∃f ∈ F, |EX∼S [f(X)]− EX∼D[f(X)]| ≥ 1

4
Rm(F̄ ,D ×D)−

√
ln(1/δ)

8m
. (36)
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Proof Denote E[f, S] = EX∼S [f(X)], and E[f,D] = EX∼D[f(X)]. Consider two inde-
pendent samples S = (X1, . . . , Xm), S′ = (X ′1, . . . , X

′
m) ∼ Dm. Let σ = (σ1, . . . , σm) be

Rademacher random variables, and let S ∼ (D ×D)m. We have

2 · ES

[
sup
f∈F
|E[f, S]− E[f,D]|

]
= ES,S′

[
sup
f∈F
|E[f, S]− E[f,D]|+ sup

f∈F
|E[f, S′]− E[f,D]|

]

≥ ES,S′
[

sup
f∈F
|E[f, S]− E[f,D]|+ |E[f, S′]− E[f,D]|

]

≥ ES,S′
[

sup
f∈F
|E[f, S]− E[f, S′]|

]

=
1

m
ES,S′

sup
f∈F

∣∣∣∣∑
i∈[m]

f(Xi)− f(X ′i)

∣∣∣∣


=
1

m
Eσ,S̄

sup
f̄∈F̄

∣∣∣∣∑
i∈[m]

σif̄(Xi)

∣∣∣∣
 = Rm(F̄ ,D ×D)/2.

We have left to show a lower bound with high probability. Define g(S) = supf∈F |E[f, S]−
E[f,D]|. Any change of one element in S can cause g(S) to change by at most 1/m, There-
fore, by McDiarmid’s inequality, P[g(S) ≤ E[g(S)] − t] ≤ exp(−2mt2). Eq. (36) thus holds
with probability 1− δ.

The next lemma provides a uniform convergence lower bound for a universal class of
binary functions.

Lemma 23 Let H = {0, 1}[n] be the set of all binary functions on [n]. Let D be the uniform
distribution over [n]. For any n ≥ 45 and m ≥ 32n, with probability of at least 1

2 over i.i.d.
samples of size m drawn from D,

∃h ∈ H, |EX∼S [h(X)]− EX∼D[h(X)]| ≥
√

n

512m
.

Proof Let n ≥ 45 and m ≥ 32n. By Lemma 22, it suffices to provide a lower bound for
Rm(H̄,D ×D). Fix a sample S = ((x1, x

′
1), . . . , (xm, x

′
m)) ∼ (D ×D)m. We have

m

2
R(H̄, S) = Eσ

[∣∣∣∣sup
h∈H

m∑
i=1

σi(h(xi)− h(x′i))

∣∣∣∣
]
,
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where σ = (σ1, . . . , σm) are Rademacher random variables. For a given σ ∈ {±1}m, define
hσ ∈ H such that hσ(j) = sign(

∑
i:xi=j

σi −
∑

i:x′i=j
σi). Then

m

2
R(H̄, S) ≥ Eσ

∣∣∣∣∑
i∈[m]

σi(hσ(xi)− hσ(x′i))

∣∣∣∣


= Eσ

∣∣∣∣∑
j∈[n]

 ∑
i:xi=j

σi −
∑
i:x′i=j

σi

hσ(j)

∣∣∣∣


=
∑
j∈[n]

Eσ

∣∣∣∣ ∑
i:xi=j

σi −
∑
i:x′i=j

σi

∣∣∣∣
 .

Let cj(S) be the number of indices i such that exactly one of xi = j and x′i = j holds. Then
Eσ[|

∑
i:xi=j

σi −
∑

i:x′i=j
σi|] is the expected distance of a random walk of length cj(S),

which can be bounded from below by
√
cj(S)/2 (Szarek, 1976). Therefore,

R(H̄, S) ≥
√

2

m

∑
j∈[n]

√
cj(S).

Taking expectation over samples, we get

R(H̄,D ×D) = ES∼(D×D)m [R(H̄, S)] ≥
√

2

m

∑
j∈[n]

ES
[√

cj(S)

]
. (37)

Our final step is to bound ES
[√

cj(S)
]
. We have

ES [cj(S)] = m

(
1

n
− 1

n2

)
≥ m

2n
,

and

VarS [cj(S)] = m

(
1

n
− 1

n2

)(
1− 1

n
+

1

n2

)
≤ m

n
.

Thus, by Chebyshev’s inequality,

P
[
cj(S) ≤ m

2n
− t
]
≤ m

nt2
.

Therefore

ES
[√

cj(S)

]
≥
(

1− m

nt2

)√m

2n
− t.

Setting t = m
4n , and since m/n ≥ 32, ES

[√
cj(S)

]
≥
√

m
16n . Plugging this into Eq. (37), we

get that R(H̄,D×D) ≥
√

n
8m . By Lemma 22, it follows that with probability at least 1− δ

over samples,

∃f ∈ F, |EX∼S [f(X)]− EX∼D[f(X)]| ≥
√

n

128m
−
√

ln(1/δ)

8m
.
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Fixing δ = 1/2, we get that since n ≥ 64 ln(2), the RHS is at least
√

n
512m .

Using the two lemmas above, we are now ready to prove our uniform convergence lower
bound. This is done by mapping a subset of Hk,θ to a universal class of binary functions
over Θ(k2) elements from our domain. Note that for this lower bound it suffices to consider
the more restricted domain of binary vectors.
Proof (Proof of Theorem 21) Let q be the largest power of 2 such that q ≤ k. By Lemma 19,
there exists a set of vectors Z = {z1, . . . , zq2} ⊆ {0, 1}q

2+1 such that for every t ∈ {±1}q2

there exists a wt ∈ Hk,θ such that for all i, t[i](〈w, zi〉 − q/2) = 1
2 . Denote U = {wt | t ∈

{±1}q2}. It suffices to prove a lower bound on the uniform convergence of U , since this
implies the same lower bound for Hk,θ. Define the distribution D over Z × {±1} such that
for (X,Y ) ∼ D, X is drawn uniformly from z1, . . . , zq2 and Y = −1 with probability 1.

Consider the set of functions H = {0, 1}Z , and for h ∈ H define th ∈ {±1}q2 such that
for all i ∈ [q2], th[i] = 2h(zi)− 1. For any i ∈ q2, we have

`(zi,−1, wth) = [r′+〈w, zi〉]+ = [r′+(t[i]+k)/2]+ = [r′+(k−1)/2+h(i)]+ = r′+(k−1)/2+h(zi).

The last equality follows since r′ ≥ 1−k
2 . It follows that for any h ∈ H and any sample S

drawn from D,

|`(wth , S)− `(wth , D)| = |EX∼S [h(X)]− EX∼D[h(X)]|.

By Lemma 23, with probability of at least 1
2 over the sample S ∼ Dm,

∃h ∈ H, |EX∼S [h(X)]− EX∼D[h(X)]| ≥ Ω(
√
q2/m) = Ω(

√
k2/m).

Thus, with probability at least 1/2,

∃w ∈ Hk,θ, |`(wth , S)− `(wth , D)| ≥ Ω(
√
k2/m).
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