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Emile Richard, Stéphane Gaı̈ffas, Nicolas Vayatis

595 Adaptivity of Averaged Stochastic Gradient Descent to Local Strong Con-
vexity for Logistic Regression
Francis Bach

629 Random Intersection Trees
Rajen Dinesh Shah, Nicolai Meinshausen

655 Reinforcement Learning for Closed-Loop Propofol Anesthesia: A Study
in Human Volunteers
Brett L Moore, Larry D Pyeatt, Vivekanand Kulkarni, Periklis Panousis, Kevin
Padrez, Anthony G Doufas

697 Clustering Hidden Markov Models with Variational HEM
Emanuele Coviello, Antoni B. Chan, Gert R.G. Lanckriet

749 A Novel M-Estimator for Robust PCA
Teng Zhang, Gilad Lerman

809 Policy Evaluation with Temporal Differences: A Survey and Comparison
Christoph Dann, Gerhard Neumann, Jan Peters

885 Active Learning Using Smooth Relative Regret Approximations with Ap-
plications
Nir Ailon, Ron Begleiter, Esther Ezra

921 An Extension of Slow Feature Analysis for Nonlinear Blind Source Sep-
aration
Henning Sprekeler, Tiziano Zito, Laurenz Wiskott

949 Natural Evolution Strategies
Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, Jürgen
Schmidhuber

981 Conditional Random Field with High-order Dependencies for Sequence
Labeling and Segmentation
Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, Hai Leong Chieu

1011 Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy
Separability
Tomohiko Mizutani



1041 Improving Prediction from Dirichlet Process Mixtures via Enrichment
Sara Wade, David B. Dunson, Sonia Petrone, Lorenzo Trippa

1073 Gibbs Max-margin Topic Models with Data Augmentation
Jun Zhu, Ning Chen, Hugh Perkins, Bo Zhang

1111 A Reliable Effective Terascale Linear Learning System
Alekh Agarwal, Oliveier Chapelle, Miroslav Dudı́k, John Langford

1135 New Learning Methods for Supervised and Unsupervised Preference Ag-
gregation
Maksims N. Volkovs, Richard S. Zemel

1177 Prediction and Clustering in Signed Networks: A Local to Global Per-
spective
Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon,
Ambuj Tewari

1215 Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders
Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco, Fernando Perez-Cruz

1249 Robust Near-Separable Nonnegative Matrix Factorization Using Linear
Optimization
Nicolas Gillis, Robert Luce

1281 Follow the Leader If You Can, Hedge If You Must
Steven de Rooij, Tim van Erven, Peter D. Grünwald, Wouter M. Koolen

1317 Structured Prediction via Output Space Search
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli

1351 Fully Simplified Multivariate Normal Updates in Non-Conjugate Varia-
tional Message Passing
Matt P. Wand

1371 Towards Ultrahigh Dimensional Feature Selection for Big Data
Mingkui Tan, Ivor W. Tsang, Li Wang

1431 Adaptive Sampling for Large Scale Boosting
Charles Dubout, Francois Fleuret

1455 Manopt, a Matlab Toolbox for Optimization on Manifolds
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, Rodolphe Sepulchre

1461 Training Highly Multiclass Classifiers
Maya R. Gupta, Samy Bengio, Jason Weston

1493 Locally Adaptive Factor Processes for Multivariate Time Series
Daniele Durante, Bruno Scarpa, David B. Dunson

1523 Iteration Complexity of Feasible Descent Methods for Convex Optimiza-
tion
Po-Wei Wang, Chih-Jen Lin



1549 High-Dimensional Covariance Decomposition into Sparse Markov and
Independence Models
Majid Janzamin, Animashree Anandkumar

1593 The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamilto-
nian Monte Carlo
Matthew D. Hoffman, Andrew Gelman

1625 Confidence Intervals for Random Forests: The Jackknife and the In-
finitesimal Jackknife
Stefan Wager, Trevor Hastie, Bradley Efron

1653 Surrogate Regret Bounds for Bipartite Ranking via Strongly Proper Losses
Shivani Agarwal

1675 Adaptive Minimax Regression Estimation over Sparse ℓq-Hulls
Zhan Wang, Sandra Paterlini, Fuchang Gao, Yuhong Yang

1713 Graph Estimation From Multi-Attribute Data
Mladen Kolar, Han Liu, Eric P. Xing

1751 Hitting and Commute Times in Large Random Neighborhood Graphs
Ulrike von Luxburg, Agnes Radl, Matthias Hein

1799 Bayesian Inference with Posterior Regularization and Applications to In-
finite Latent SVMs
Jun Zhu, Ning Chen, Eric P. Xing

1849 Expectation Propagation for Neural Networks with Sparsity-Promoting
Priors
Pasi Jylänki, Aapo Nummenmaa, Aki Vehtari

1903 Pattern Alternating Maximization Algorithm for Missing Data in High-
Dimensional Problems
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Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar

2949 Multimodal Learning with Deep Boltzmann Machines
Nitish Srivastava, Ruslan Salakhutdinov

2981 Optimal Data Collection For Informative Rankings Expose Well-Connected
Graphs
Braxton Osting, Christoph Brune, Stanley J. Osher

3013 Bayesian Co-Boosting for Multi-modal Gesture Recognition
Jiaxiang Wu, Jian Cheng

3037 Effective String Processing and Matching for Author Disambiguation
Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Felix Wu, Hsiao-Yu Tung, Tong
Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang,
Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen
Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei
Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin

3065 High-Dimensional Learning of Linear Causal Networks via Inverse Co-
variance Estimation
Po-Ling Loh, Peter Bühlmann
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3221 Accelerating t-SNE using Tree-Based Algorithms
Laurens van der Maaten

3247 Set-Valued Approachability and Online Learning with Partial Monitor-
ing
Shie Mannor, Vianney Perchet, Gilles Stoltz

3297 Learning Graphical Models With Hubs
Kean Ming Tan, Palma London, Karthik Mohan, Su-In Lee, Maryam Fazel,
Daniela Witten

3333 Inconsistency of Pitman-Yor Process Mixtures for the Number of Com-
ponents
Jeffrey W. Miller, Matthew T. Harrison

3371 Active Contextual Policy Search
Alexander Fabisch, Jan Hendrik Metzen

3401 Matrix Completion with the Trace Norm: Learning, Bounding, and Trans-
ducing
Ohad Shamir, Shai Shalev-Shwartz

3425 Statistical Analysis of Metric Graph Reconstruction
Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman

3447 Alternating Linearization for Structured Regularization Problems
Xiaodong Lin, Minh Pham, Andrzej Ruszczyński
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Abstract

This work considers a computationally and statistically efficient parameter estimation
method for a wide class of latent variable models—including Gaussian mixture models,
hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor
structure in their low-order observable moments (typically, of second- and third-order).
Specifically, parameter estimation is reduced to the problem of extracting a certain (orthog-
onal) decomposition of a symmetric tensor derived from the moments; this decomposition
can be viewed as a natural generalization of the singular value decomposition for matrices.
Although tensor decompositions are generally intractable to compute, the decomposition
of these specially structured tensors can be efficiently obtained by a variety of approaches,
including power iterations and maximization approaches (similar to the case of matrices).
A detailed analysis of a robust tensor power method is provided, establishing an analogue
of Wedin’s perturbation theorem for the singular vectors of matrices. This implies a ro-
bust and computationally tractable estimation approach for several popular latent variable
models.

c©2014 Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky.
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1. Introduction

The method of moments is a classical parameter estimation technique (Pearson, 1894) from
statistics which has proved invaluable in a number of application domains. The basic
paradigm is simple and intuitive: (i) compute certain statistics of the data—often empirical
moments such as means and correlations—and (ii) find model parameters that give rise to
(nearly) the same corresponding population quantities. In a number of cases, the method of
moments leads to consistent estimators which can be efficiently computed; this is especially
relevant in the context of latent variable models, where standard maximum likelihood ap-
proaches are typically computationally prohibitive, and heuristic methods can be unreliable
and difficult to validate with high-dimensional data. Furthermore, the method of moments
can be viewed as complementary to the maximum likelihood approach; simply taking a
single step of Newton-Raphson on the likelihood function starting from the moment based
estimator (Le Cam, 1986) often leads to the best of both worlds: a computationally efficient
estimator that is (asymptotically) statistically optimal.

The primary difficulty in learning latent variable models is that the latent (hidden)
state of the data is not directly observed; rather only observed variables correlated with
the hidden state are observed. As such, it is not evident the method of moments should
fare any better than maximum likelihood in terms of computational performance: match-
ing the model parameters to the observed moments may involve solving computationally
intractable systems of multivariate polynomial equations. Fortunately, for many classes of
latent variable models, there is rich structure in low-order moments (typically second- and
third-order) which allow for this inverse moment problem to be solved efficiently (Cattell,
1944; Cardoso, 1991; Chang, 1996; Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar
et al., 2012c,a; Hsu and Kakade, 2013). What is more is that these decomposition problems
are often amenable to simple and efficient iterative methods, such as gradient descent and
the power iteration method.

1.1 Contributions

In this work, we observe that a number of important and well-studied latent variable
models—including Gaussian mixture models, hidden Markov models, and Latent Dirichlet
allocation—share a certain structure in their low-order moments, and this permits certain
tensor decomposition approaches to parameter estimation. In particular, this decompo-
sition can be viewed as a natural generalization of the singular value decomposition for
matrices.

While much of this (or similar) structure was implicit in several previous works (Chang,
1996; Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar et al., 2012c,a; Hsu and
Kakade, 2013), here we make the decomposition explicit under a unified framework. Specif-
ically, we express the observable moments as sums of rank-one terms, and reduce the pa-
rameter estimation task to the problem of extracting a symmetric orthogonal decomposition
of a symmetric tensor derived from these observable moments. The problem can then be
solved by a variety of approaches, including fixed-point and variational methods.
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One approach for obtaining the orthogonal decomposition is the tensor power method
of Lathauwer et al. (2000, Remark 3). We provide a convergence analysis of this method for
orthogonally decomposable symmetric tensors, as well as a detailed perturbation analysis
for a robust (and a computationally tractable) variant (Theorem 5.1). This perturbation
analysis can be viewed as an analogue of Wedin’s perturbation theorem for singular vectors
of matrices (Wedin, 1972), providing a bound on the error of the recovered decomposition
in terms of the operator norm of the tensor perturbation. This analysis is subtle in at least
two ways. First, unlike for matrices (where every matrix has a singular value decomposi-
tion), an orthogonal decomposition need not exist for the perturbed tensor. Our robust
variant uses random restarts and deflation to extract an approximate decomposition in a
computationally tractable manner. Second, the analysis of the deflation steps is non-trivial;
a näıve argument would entail error accumulation in each deflation step, which we show can
in fact be avoided. When this method is applied for parameter estimation in latent variable
models previously discussed, improved sample complexity bounds (over previous work) can
be obtained using this perturbation analysis.

Finally, we also address computational issues that arise when applying the tensor de-
composition approaches to estimating latent variable models. Specifically, we show that the
basic operations of simple iterative approaches (such as the tensor power method) can be
efficiently executed in time linear in the dimension of the observations and the size of the
training data. For instance, in a topic modeling application, the proposed methods require
time linear in the number of words in the vocabulary and in the number of non-zero entries
of the term-document matrix. The combination of this computational efficiency and the
robustness of the tensor decomposition techniques makes the overall framework a promising
approach to parameter estimation for latent variable models.

1.2 Related Work

The connection between tensor decompositions and latent variable models has a long history
across many scientific and mathematical disciplines. We review some of the key works that
are most closely related to ours.

1.2.1 Tensor Decompositions

The role of tensor decompositions in the context of latent variable models dates back to early
uses in psychometrics (Cattell, 1944). These ideas later gained popularity in chemometrics,
and more recently in numerous science and engineering disciplines, including neuroscience,
phylogenetics, signal processing, data mining, and computer vision. A thorough survey of
these techniques and applications is given by Kolda and Bader (2009). Below, we discuss a
few specific connections to two applications in machine learning and statistics, independent
component analysis and latent variable models (between which there is also significant
overlap).

Tensor decompositions have been used in signal processing and computational neuro-
science for blind source separation and independent component analysis (ICA) (Comon and
Jutten, 2010). Here, statistically independent non-Gaussian sources are linearly mixed in
the observed signal, and the goal is to recover the mixing matrix (and ultimately, the orig-
inal source signals). A typical solution is to locate projections of the observed signals that
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correspond to local extrema of the so-called “contrast functions” which distinguish Gaussian
variables from non-Gaussian variables. This method can be effectively implemented using
fast descent algorithms (Hyvarinen, 1999). When using the excess kurtosis (i.e., fourth-order
cumulant) as the contrast function, this method reduces to a generalization of the power
method for symmetric tensors (Lathauwer et al., 2000; Zhang and Golub, 2001; Kofidis and
Regalia, 2002). This case is particularly important, since all local extrema of the kurtosis
objective correspond to the true sources (under the assumed statistical model) (Delfosse
and Loubaton, 1995); the descent methods can therefore be rigorously analyzed, and their
computational and statistical complexity can be bounded (Frieze et al., 1996; Nguyen and
Regev, 2009; Arora et al., 2012b).

Higher-order tensor decompositions have also been used to develop estimators for com-
monly used mixture models, hidden Markov models, and other related latent variable mod-
els, often using the the algebraic procedure of R. Jennrich (as reported in the article of
Harshman, 1970), which is based on a simultaneous diagonalization of different ways of
flattening a tensor to matrices. Jennrich’s procedure was employed for parameter estima-
tion of discrete Markov models by Chang (1996) via pair-wise and triple-wise probability
tables; and it was later used for other latent variable models such as hidden Markov models
(HMMs), latent trees, Gaussian mixture models, and topic models such as latent Dirichlet
allocation (LDA) by many others (Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar
et al., 2012c,a; Hsu and Kakade, 2013). In these contexts, it is often also possible to es-
tablish strong identifiability results, without giving an explicit estimators, by invoking the
non-constructive identifiability argument of Kruskal (1977)—see the article by Allman et al.
(2009) for several examples.

Related simultaneous diagonalization approaches have also been used for blind source
separation and ICA (as discussed above), and a number of efficient algorithms have been
developed for this problem (Bunse-Gerstner et al., 1993; Cardoso and Souloumiac, 1993;
Cardoso, 1994; Cardoso and Comon, 1996; Corless et al., 1997; Ziehe et al., 2004). A rather
different technique that uses tensor flattening and matrix eigenvalue decomposition has
been developed by Cardoso (1991) and later by De Lathauwer et al. (2007). A significant
advantage of this technique is that it can be used to estimate overcomplete mixtures, where
the number of sources is larger than the observed dimension.

The relevance of tensor analysis to latent variable modeling has been long recognized in
the field of algebraic statistics (Pachter and Sturmfels, 2005), and many works characterize
the algebraic varieties corresponding to the moments of various classes of latent variable
models (Drton et al., 2007; Sturmfels and Zwiernik, 2013). These works typically do not
address computational or finite sample issues, but rather are concerned with basic questions
of identifiability.

The specific tensor structure considered in the present work is the symmetric orthogo-
nal decomposition. This decomposition expresses a tensor as a linear combination of simple
tensor forms; each form is the tensor product of a vector (i.e., a rank-1 tensor), and the
collection of vectors form an orthonormal basis. An important property of tensors with
such decompositions is that they have eigenvectors corresponding to these basis vectors.
Although the concepts of eigenvalues and eigenvectors of tensors is generally significantly
more complicated than their matrix counterpart—both algebraically (Qi, 2005; Cartwright
and Sturmfels, 2013; Lim, 2005) and computationally (Hillar and Lim, 2013; Kofidis and
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Regalia, 2002)—the special symmetric orthogonal structure we consider permits simple
algorithms to efficiently and stably recover the desired decomposition. In particular, a gen-
eralization of the matrix power method to symmetric tensors, introduced by Lathauwer
et al. (2000, Remark 3) and analyzed by Kofidis and Regalia (2002), provides such a de-
composition. This is in fact implied by the characterization of Zhang and Golub (2001),
which shows that iteratively obtaining the best rank-1 approximation of such orthogonally
decomposable tensors also yields the exact decomposition. We note that in general, ob-
taining such approximations for general (symmetric) tensors is NP-hard (Hillar and Lim,
2013).

1.2.2 Latent Variable Models

This work focuses on the particular application of tensor decomposition methods to estimat-
ing latent variable models, a significant departure from many previous approaches in the
machine learning and statistics literature. By far the most popular heuristic for parameter
estimation for such models is the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977; Redner and Walker, 1984). Although EM has a number of merits, it may suffer
from slow convergence and poor quality local optima (Redner and Walker, 1984), requir-
ing practitioners to employ many additional heuristics to obtain good solutions. For some
models such as latent trees (Roch, 2006) and topic models (Arora et al., 2012a), maximum
likelihood estimation is NP-hard, which suggests that other estimation approaches may be
more attractive. More recently, algorithms from theoretical computer science and machine
learning have addressed computational and sample complexity issues related to estimating
certain latent variable models such as Gaussian mixture models and HMMs (Dasgupta,
1999; Arora and Kannan, 2005; Dasgupta and Schulman, 2007; Vempala and Wang, 2004;
Kannan et al., 2008; Achlioptas and McSherry, 2005; Chaudhuri and Rao, 2008; Brubaker
and Vempala, 2008; Kalai et al., 2010; Belkin and Sinha, 2010; Moitra and Valiant, 2010;
Hsu and Kakade, 2013; Chang, 1996; Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar
et al., 2012c; Arora et al., 2012a; Anandkumar et al., 2012a). See the works by Anandku-
mar et al. (2012c) and Hsu and Kakade (2013) for a discussion of these methods, together
with the computational and statistical hardness barriers that they face. The present work
reviews a broad range of latent variables where a mild non-degeneracy condition implies
the symmetric orthogonal decomposition structure in the tensors of low-order observable
moments.

Notably, another class of methods, based on subspace identification (Overschee and
Moor, 1996) and observable operator models/multiplicity automata (Schützenberger, 1961;
Jaeger, 2000; Littman et al., 2001), have been proposed for a number of latent variable
models. These methods were successfully developed for HMMs by Hsu et al. (2012b), and
subsequently generalized and extended for a number of related sequential and tree Markov
models models (Siddiqi et al., 2010; Bailly, 2011; Boots et al., 2010; Parikh et al., 2011; Rodu
et al., 2013; Balle et al., 2012; Balle and Mohri, 2012), as well as certain classes of parse
tree models (Luque et al., 2012; Cohen et al., 2012; Dhillon et al., 2012). These methods
use low-order moments to learn an “operator” representation of the distribution, which can
be used for density estimation and belief state updates. While finite sample bounds can be
given to establish the learnability of these models (Hsu et al., 2012b), the algorithms do not
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actually give parameter estimates (e.g., of the emission or transition matrices in the case of
HMMs).

1.3 Organization

The rest of the paper is organized as follows. Section 2 reviews some basic definitions of
tensors. Section 3 provides examples of a number of latent variable models which, after
appropriate manipulations of their low order moments, share a certain natural tensor struc-
ture. Section 4 reduces the problem of parameter estimation to that of extracting a certain
(symmetric orthogonal) decomposition of a tensor. We then provide a detailed analysis of
a robust tensor power method and establish an analogue of Wedin’s perturbation theorem
for the singular vectors of matrices. The discussion in Section 6 addresses a number of
practical concerns that arise when dealing with moment matrices and tensors.

2. Preliminaries

We introduce some tensor notations borrowed from Lim (2005). A real p-th order tensor
A ∈

⊗p
i=1 Rni is a member of the tensor product of Euclidean spaces Rni , i ∈ [p]. We

generally restrict to the case where n1 = n2 = · · · = np = n, and simply write A ∈
⊗pRn.

For a vector v ∈ Rn, we use v⊗p := v⊗ v⊗ · · ·⊗ v ∈
⊗pRn to denote its p-th tensor power.

As is the case for vectors (where p = 1) and matrices (where p = 2), we may identify a
p-th order tensor with the p-way array of real numbers [Ai1,i2,...,ip : i1, i2, . . . , ip ∈ [n]], where
Ai1,i2,...,ip is the (i1, i2, . . . , ip)-th coordinate of A (with respect to a canonical basis).

We can consider A to be a multilinear map in the following sense: for a set of matrices
{Vi ∈ Rn×mi : i ∈ [p]}, the (i1, i2, . . . , ip)-th entry in the p-way array representation of
A(V1, V2, . . . , Vp) ∈ Rm1×m2×···×mp is

[A(V1, V2, . . . , Vp)]i1,i2,...,ip :=
∑

j1,j2,...,jp∈[n]

Aj1,j2,...,jp [V1]j1,i1 [V2]j2,i2 · · · [Vp]jp,ip .

Note that if A is a matrix (p = 2), then

A(V1, V2) = V >1 AV2.

Similarly, for a matrix A and vector v ∈ Rn, we can express Av as

A(I, v) = Av ∈ Rn,

where I is the n× n identity matrix. As a final example of this notation, observe

A(ei1 , ei2 , . . . , eip) = Ai1,i2,...,ip ,

where {e1, e2, . . . , en} is the canonical basis for Rn.
Most tensors A ∈

⊗pRn considered in this work will be symmetric (sometimes called
supersymmetric), which means that their p-way array representations are invariant to
permutations of the array indices: i.e., for all indices i1, i2, . . . , ip ∈ [n], Ai1,i2,...,ip =
Aiπ(1),iπ(2),...,iπ(p) for any permutation π on [p]. It can be checked that this reduces to the
usual definition of a symmetric matrix for p = 2.
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The rank of a p-th order tensor A ∈
⊗pRn is the smallest non-negative integer k such

that A =
∑k

j=1 u1,j ⊗ u2,j ⊗ · · · ⊗ up,j for some ui,j ∈ Rn, i ∈ [p], j ∈ [k], and the symmetric
rank of a symmetric p-th order tensor A is the smallest non-negative integer k such that
A =

∑k
j=1 u

⊗p
j for some uj ∈ Rn, j ∈ [k].1 The notion of rank readily reduces to the usual

definition of matrix rank when p = 2, as revealed by the singular value decomposition.
Similarly, for symmetric matrices, the symmetric rank is equivalent to the matrix rank as
given by the spectral theorem. A decomposition into such rank-one terms is known as a
canonical polyadic decomposition (Hitchcock, 1927a,b).

The notion of tensor (symmetric) rank is considerably more delicate than matrix (sym-
metric) rank. For instance, it is not clear a priori that the symmetric rank of a tensor
should even be finite (Comon et al., 2008). In addition, removal of the best rank-1 approx-
imation of a (general) tensor may increase the tensor rank of the residual (Stegeman and
Comon, 2010).

Throughout, we use ‖v‖ = (
∑

i v
2
i )

1/2 to denote the Euclidean norm of a vector v, and
‖M‖ to denote the spectral (operator) norm of a matrix. We also use ‖T‖ to denote the
operator norm of a tensor, which we define later.

3. Tensor Structure in Latent Variable Models

In this section, we give several examples of latent variable models whose low-order moments
can be written as symmetric tensors of low symmetric rank; some of these examples can be
deduced using the techniques developed in the text by McCullagh (1987). The basic form
is demonstrated in Theorem 3.1 for the first example, and the general pattern will emerge
from subsequent examples.

3.1 Exchangeable Single Topic Models

We first consider a simple bag-of-words model for documents in which the words in the
document are assumed to be exchangeable. Recall that a collection of random variables
x1, x2, . . . , x` are exchangeable if their joint probability distribution is invariant to permu-
tation of the indices. The well-known De Finetti’s theorem (Austin, 2008) implies that such
exchangeable models can be viewed as mixture models in which there is a latent variable h
such that x1, x2, . . . , x` are conditionally i.i.d. given h (see Figure 1(a) for the corresponding
graphical model) and the conditional distributions are identical at all the nodes.

In our simplified topic model for documents, the latent variable h is interpreted as
the (sole) topic of a given document, and it is assumed to take only a finite number of
distinct values. Let k be the number of distinct topics in the corpus, d be the number of
distinct words in the vocabulary, and ` ≥ 3 be the number of words in each document. The
generative process for a document is as follows: the document’s topic is drawn according to
the discrete distribution specified by the probability vector w := (w1, w2, . . . , wk) ∈ ∆k−1.
This is modeled as a discrete random variable h such that

Pr[h = j] = wj , j ∈ [k].

1. For even p, the definition is slightly different (Comon et al., 2008).
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Given the topic h, the document’s ` words are drawn independently according to the dis-
crete distribution specified by the probability vector µh ∈ ∆d−1. It will be convenient to
represent the ` words in the document by d-dimensional random vectors x1, x2, . . . , x` ∈ Rd.
Specifically, we set

xt = ei if and only if the t-th word in the document is i, t ∈ [`],

where e1, e2, . . . ed is the standard coordinate basis for Rd.
One advantage of this encoding of words is that the (cross) moments of these random

vectors correspond to joint probabilities over words. For instance, observe that

E[x1 ⊗ x2] =
∑

1≤i,j≤d
Pr[x1 = ei, x2 = ej ] ei ⊗ ej

=
∑

1≤i,j≤d
Pr[1st word = i, 2nd word = j] ei ⊗ ej ,

so the (i, j)-the entry of the matrix E[x1 ⊗ x2] is Pr[1st word = i, 2nd word = j]. More
generally, the (i1, i2, . . . , i`)-th entry in the tensor E[x1 ⊗ x2 ⊗ · · · ⊗ x`] is Pr[1st word =
i1, 2nd word = i2, . . . , `-th word = i`]. This means that estimating cross moments, say, of
x1 ⊗ x2 ⊗ x3, is the same as estimating joint probabilities of the first three words over all
documents. (Recall that we assume that each document has at least three words.)

The second advantage of the vector encoding of words is that the conditional expectation
of xt given h = j is simply µj , the vector of word probabilities for topic j:

E[xt|h = j] =

d∑
i=1

Pr[t-th word = i|h = j] ei =

d∑
i=1

[µj ]i ei = µj , j ∈ [k]

(where [µj ]i is the i-th entry in the vector µj). Because the words are conditionally inde-
pendent given the topic, we can use this same property with conditional cross moments,
say, of x1 and x2:

E[x1 ⊗ x2|h = j] = E[x1|h = j]⊗ E[x2|h = j] = µj ⊗ µj , j ∈ [k].

This and similar calculations lead one to the following theorem.

Theorem 3.1 (Anandkumar et al., 2012c) If

M2 := E[x1 ⊗ x2]

M3 := E[x1 ⊗ x2 ⊗ x3],

then

M2 =
k∑
i=1

wi µi ⊗ µi

M3 =

k∑
i=1

wi µi ⊗ µi ⊗ µi.
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As we will see in Section 4.3, the structure of M2 and M3 revealed in Theorem 3.1 implies
that the topic vectors µ1, µ2, . . . , µk can be estimated by computing a certain symmetric
tensor decomposition. Moreover, due to exchangeability, all triples (resp., pairs) of words
in a document—and not just the first three (resp., two) words—can be used in forming M3

(resp., M2); see Section 6.1.

3.2 Beyond Raw Moments

In the single topic model above, the raw (cross) moments of the observed words directly
yield the desired symmetric tensor structure. In some other models, the raw moments do
not explicitly have this form. Here, we show that the desired tensor structure can be found
through various manipulations of different moments.

3.2.1 Spherical Gaussian Mixtures: Common Covariance

We now consider a mixture of k Gaussian distributions with spherical covariances. We start
with the simpler case where all of the covariances are identical; this probabilistic model is
closely related to the (non-probabilistic) k-means clustering problem (MacQueen, 1967).

Let wi ∈ (0, 1) be the probability of choosing component i ∈ [k], {µ1, µ2, . . . , µk} ⊂ Rd
be the component mean vectors, and σ2I be the common covariance matrix. An observation
in this model is given by

x := µh + z,

where h is the discrete random variable with Pr[h = i] = wi for i ∈ [k] (similar to the ex-
changeable single topic model), and z ∼ N (0, σ2I) is an independent multivariate Gaussian
random vector in Rd with zero mean and spherical covariance σ2I.

The Gaussian mixture model differs from the exchangeable single topic model in the way
observations are generated. In the single topic model, we observe multiple draws (words in
a particular document) x1, x2, . . . , x` given the same fixed h (the topic of the document). In
contrast, for the Gaussian mixture model, every realization of x corresponds to a different
realization of h.

Theorem 3.2 (Hsu and Kakade, 2013) Assume d ≥ k. The variance σ2 is the smallest
eigenvalue of the covariance matrix E[x⊗ x]− E[x]⊗ E[x]. Furthermore, if

M2 := E[x⊗ x]− σ2I

M3 := E[x⊗ x⊗ x]− σ2
d∑
i=1

(
E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]

)
,

then

M2 =

k∑
i=1

wi µi ⊗ µi

M3 =
k∑
i=1

wi µi ⊗ µi ⊗ µi.
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3.2.2 Spherical Gaussian Mixtures: Differing Covariances

The general case is where each component may have a different spherical covariance. An
observation in this model is again x = µh + z, but now z ∈ Rd is a random vector whose
conditional distribution given h = i (for some i ∈ [k]) is a multivariate Gaussian N (0, σ2

i I)
with zero mean and spherical covariance σ2

i I.

Theorem 3.3 (Hsu and Kakade, 2013) Assume d ≥ k. The average variance σ̄2 :=∑k
i=1wiσ

2
i is the smallest eigenvalue of the covariance matrix E[x⊗ x]−E[x]⊗E[x]. Let v

be any unit norm eigenvector corresponding to the eigenvalue σ̄2. If

M1 := E[x(v>(x− E[x]))2]

M2 := E[x⊗ x]− σ̄2I

M3 := E[x⊗ x⊗ x]−
d∑
i=1

(
M1 ⊗ ei ⊗ ei + ei ⊗M1 ⊗ ei + ei ⊗ ei ⊗M1

)
,

then

M2 =

k∑
i=1

wi µi ⊗ µi

M3 =
k∑
i=1

wi µi ⊗ µi ⊗ µi.

As shown by Hsu and Kakade (2013), M1 =
∑k

i=1wiσ
2
i µi. Note that for the common

covariance case, where σ2
i = σ2, we have that M1 = σ2E[x] (cf. Theorem 3.2).

3.2.3 Independent Component Analysis (ICA)

The standard model for ICA (Comon, 1994; Cardoso and Comon, 1996; Hyvärinen and
Oja, 2000; Comon and Jutten, 2010), in which independent signals are linearly mixed and
corrupted with Gaussian noise before being observed, is specified as follows. Let h ∈ Rk be
a latent random vector with independent coordinates, A ∈ Rd×k the mixing matrix, and z
be a multivariate Gaussian random vector. The random vectors h and z are assumed to be
independent. The observed random vector is

x := Ah+ z.

Let µi denote the i-th column of the mixing matrix A.

Theorem 3.4 (Comon and Jutten, 2010) Define

M4 := E[x⊗ x⊗ x⊗ x]− T

where T is the fourth-order tensor with

[T ]i1,i2,i3,i4 := E[xi1xi2 ]E[xi3xi4 ] + E[xi1xi3 ]E[xi2xi4 ]

+ E[xi1xi4 ]E[xi2xi3 ], 1 ≤ i1, i2, i3, i4 ≤ k
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( i.e., T is the fourth derivative tensor of the function v 7→ 8−1E[(v>x)2]2, so M4 is the
fourth cumulant tensor). Let κi := E[h4

i ]− 3 for each i ∈ [k]. Then

M4 =
k∑
i=1

κi µi ⊗ µi ⊗ µi ⊗ µi.

Note that κi corresponds to the excess kurtosis, a measure of non-Gaussianity as κi = 0 if
hi is a standard normal random variable. Furthermore, note that A is not identifiable if h
is a multivariate Gaussian.

We may derive forms similar to that of M2 and M3 from Theorem 3.1 using M4 by
observing that

M4(I, I, u, v) =
k∑
i=1

κi(µ
>
i u)(µ>i v) µi ⊗ µi,

M4(I, I, I, v) =
k∑
i=1

κi(µ
>
i v) µi ⊗ µi ⊗ µi

for any vectors u, v ∈ Rd.

3.2.4 Latent Dirichlet Allocation (LDA)

An increasingly popular class of latent variable models are mixed membership models, where
each datum may belong to several different latent classes simultaneously. LDA is one such
model for the case of document modeling; here, each document corresponds to a mixture
over topics (as opposed to just a single topic). The distribution over such topic mixtures is a
Dirichlet distribution Dir(α) with parameter vector α ∈ Rk++ with strictly positive entries;

its density over the probability simplex ∆k−1 := {v ∈ Rk : vi ∈ [0, 1]∀i ∈ [k],
∑k

i=1 vi = 1}
is given by

pα(h) =
Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

hαi−1
i , h ∈ ∆k−1

where
α0 := α1 + α2 + · · ·+ αk.

As before, the k topics are specified by probability vectors µ1, µ2, . . . , µk ∈ ∆d−1. To
generate a document, we first draw the topic mixture h = (h1, h2, . . . , hk) ∼ Dir(α), and
then conditioned on h, we draw ` words x1, x2, . . . , x` independently from the discrete
distribution specified by the probability vector

∑k
i=1 hiµi (i.e., for each xt, we independently

sample a topic j according to h and then sample xt according to µj). Again, we encode a
word xt by setting xt = ei iff the t-th word in the document is i.

The parameter α0 (the sum of the “pseudo-counts”) characterizes the concentration of
the distribution. As α0 → 0, the distribution degenerates to a single topic model (i.e., the
limiting density has, with probability 1, exactly one entry of h being 1 and the rest are 0).
At the other extreme, if α = (c, c, . . . , c) for some scalar c > 0, then as α0 = ck → ∞, the
distribution of h becomes peaked around the uniform vector (1/k, 1/k, . . . , 1/k) (further-
more, the distribution behaves like a product distribution). We are typically interested in
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h

x1 x2 · · · x`

(a) Multi-view models

h1 h2 · · · h`

x1 x2 x`

(b) Hidden Markov model

Figure 1: Examples of latent variable models.

the case where α0 is small (e.g., a constant independent of k), whereupon h typically has
only a few large entries. This corresponds to the setting where the documents are mainly
comprised of just a few topics.

Theorem 3.5 (Anandkumar et al., 2012a) Define

M1 := E[x1]

M2 := E[x1 ⊗ x2]− α0

α0 + 1
M1 ⊗M1

M3 := E[x1 ⊗ x2 ⊗ x3]

− α0

α0 + 2

(
E[x1 ⊗ x2 ⊗M1] + E[x1 ⊗M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2]

)
+

2α2
0

(α0 + 2)(α0 + 1)
M1 ⊗M1 ⊗M1.

Then

M2 =

k∑
i=1

αi
(α0 + 1)α0

µi ⊗ µi

M3 =

k∑
i=1

2αi
(α0 + 2)(α0 + 1)α0

µi ⊗ µi ⊗ µi.

Note that α0 needs to be known to form M2 and M3 from the raw moments. This,
however, is a much weaker than assuming that the entire distribution of h is known (i.e.,
knowledge of the whole parameter vector α).

3.3 Multi-View Models

Multi-view models (also sometimes called näıve Bayes models) are a special class of Bayesian
networks in which observed variables x1, x2, . . . , x` are conditionally independent given a
latent variable h. This is similar to the exchangeable single topic model, but here we
do not require the conditional distributions of the xt, t ∈ [`] to be identical. Techniques
developed for this class can be used to handle a number of widely used models including
hidden Markov models (Mossel and Roch, 2006; Anandkumar et al., 2012c), phylogenetic
tree models (Chang, 1996; Mossel and Roch, 2006), certain tree mixtures (Anandkumar
et al., 2012b), and certain probabilistic grammar models (Hsu et al., 2012a).
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As before, we let h ∈ [k] be a discrete random variable with Pr[h = j] = wj for all j ∈ [k].
Now consider random vectors x1 ∈ Rd1 , x2 ∈ Rd2 , and x3 ∈ Rd3 which are conditionally
independent given h, and

E[xt|h = j] = µt,j , j ∈ [k], t ∈ {1, 2, 3}

where the µt,j ∈ Rdt are the conditional means of the xt given h = j. Thus, we allow the
observations x1, x2, . . . , x` to be random vectors, parameterized only by their conditional
means. Importantly, these conditional distributions may be discrete, continuous, or even a
mix of both.

We first note the form for the raw (cross) moments.

Proposition 3.1 We have that:

E[xt ⊗ xt′ ] =

k∑
i=1

wi µt,i ⊗ µt′,i, {t, t′} ⊂ {1, 2, 3}, t 6= t′

E[x1 ⊗ x2 ⊗ x3] =

k∑
i=1

wi µ1,i ⊗ µ2,i ⊗ µ3,i.

The cross moments do not possess a symmetric tensor form when the conditional distri-
butions are different. Nevertheless, the moments can be “symmetrized” via a simple linear
transformation of x1 and x2 (roughly speaking, this relates x1 and x2 to x3); this leads
to an expression from which the conditional means of x3 (i.e., µ3,1, µ3,2, . . . , µ3,k) can be
recovered. For simplicity, we assume d1 = d2 = d3 = k; the general case (with dt ≥ k) is
easily handled using low-rank singular value decompositions.

Theorem 3.6 (Anandkumar et al., 2012a) Assume that {µv,1, µv,2, . . . , µv,k} are lin-
early independent for each v ∈ {1, 2, 3}. Define

x̃1 := E[x3 ⊗ x2]E[x1 ⊗ x2]−1x1

x̃2 := E[x3 ⊗ x1]E[x2 ⊗ x1]−1x2

M2 := E[x̃1 ⊗ x̃2]

M3 := E[x̃1 ⊗ x̃2 ⊗ x3].

Then

M2 =

k∑
i=1

wi µ3,i ⊗ µ3,i

M3 =

k∑
i=1

wi µ3,i ⊗ µ3,i ⊗ µ3,i.

We now discuss three examples (taken mostly from Anandkumar et al., 2012c) where the
above observations can be applied. The first two concern mixtures of product distributions,
and the last one is the time-homogeneous hidden Markov model.
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3.3.1 Mixtures of Axis-Aligned Gaussians and Other Product Distributions

The first example is a mixture of k product distributions in Rn under a mild incoherence as-
sumption (Anandkumar et al., 2012c). Here, we allow each of the k component distributions
to have a different product distribution (e.g., Gaussian distribution with an axis-aligned co-
variance matrix), but require the matrix of component means A := [µ1|µ2| · · · |µk] ∈ Rn×k
to satisfy a certain (very mild) incoherence condition. The role of the incoherence condition
is explained below.

For a mixture of product distributions, any partitioning of the dimensions [n] into three
groups creates three (possibly asymmetric) “views” which are conditionally independent
once the mixture component is selected. However, recall that Theorem 3.6 requires that
for each view, the k conditional means be linearly independent. In general, this may not
be achievable; consider, for instance, the case µi = ei for each i ∈ [k]. Such cases, where
the component means are very aligned with the coordinate basis, are precluded by the
incoherence condition.

Define coherence(A) := maxi∈[n]{e>i ΠAei} to be the largest diagonal entry of the orthog-
onal projector to the range of A, and assume A has rank k. The coherence lies between k/n
and 1; it is largest when the range of A is spanned by the coordinate axes, and it is k/n when
the range is spanned by a subset of the Hadamard basis of cardinality k. The incoherence
condition requires, for some ε, δ ∈ (0, 1), coherence(A) ≤ (ε2/6)/ ln(3k/δ). Essentially, this
condition ensures that the non-degeneracy of the component means is not isolated in just
a few of the n dimensions. Operationally, it implies the following.

Proposition 3.2 (Anandkumar et al., 2012c) Assume A has rank k, and

coherence(A) ≤ ε2/6

ln(3k/δ)

for some ε, δ ∈ (0, 1). With probability at least 1−δ, a random partitioning of the dimensions
[n] into three groups (for each i ∈ [n], independently pick t ∈ {1, 2, 3} uniformly at random
and put i in group t) has the following property. For each t ∈ {1, 2, 3} and j ∈ [k], let
µt,j be the entries of µj put into group t, and let At := [µt,1|µt,2| · · · |µt,k]. Then for each
t ∈ {1, 2, 3}, At has full column rank, and the k-th largest singular value of At is at least√

(1− ε)/3 times that of A.

Therefore, three asymmetric views can be created by randomly partitioning the observed
random vector x into x1, x2, and x3, such that the resulting component means for each
view satisfy the conditions of Theorem 3.6.

3.3.2 Spherical Gaussian Mixtures, Revisited

Consider again the case of spherical Gaussian mixtures (cf. Section 3.2). As we shall see
in Section 4.3, the previous techniques (based on Theorem 3.2 and Theorem 3.3) lead to
estimation procedures when the dimension of x is k or greater (and when the k component
means are linearly independent). We now show that when the dimension is slightly larger,
say greater than 3k, a different (and simpler) technique based on the multi-view structure
can be used to extract the relevant structure.
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We again use a randomized reduction. Specifically, we create three views by (i) applying
a random rotation to x, and then (ii) partitioning x ∈ Rn into three views x̃1, x̃2, x̃3 ∈ Rd
for d := n/3. By the rotational invariance of the multivariate Gaussian distribution, the
distribution of x after random rotation is still a mixture of spherical Gaussians (i.e., a
mixture of product distributions), and thus x̃1, x̃2, x̃3 are conditionally independent given
h. What remains to be checked is that, for each view t ∈ {1, 2, 3}, the matrix of conditional
means of x̃t for each view has full column rank. This is true with probability 1 as long as
the matrix of conditional means A := [µ1|µ2| · · · |µk] ∈ Rn×k has rank k and n ≥ 3k. To
see this, observe that a random rotation in Rn followed by a restriction to d coordinates
is simply a random projection from Rn to Rd, and that a random projection of a linear
subspace of dimension k to Rd is almost surely injective as long as d ≥ k. Applying this
observation to the range of A implies the following.

Proposition 3.3 (Hsu and Kakade, 2013) Assume A has rank k and that n ≥ 3k. Let
R ∈ Rn×n be chosen uniformly at random among all orthogonal n × n matrices, and set
x̃ := Rx ∈ Rn and Ã := RA = [Rµ1|Rµ2| · · · |Rµk] ∈ Rn×k. Partition [n] into three groups
of sizes d1, d2, d3 with dt ≥ k for each t ∈ {1, 2, 3}. Furthermore, for each t, define x̃t ∈ Rdt
(respectively, Ãt ∈ Rdt×k) to be the subvector of x̃ (resp., submatrix of Ã) obtained by
selecting the dt entries (resp., rows) in the t-th group. Then x̃1, x̃2, x̃3 are conditionally
independent given h; E[x̃t|h = j] = Ãtej for each j ∈ [k] and t ∈ {1, 2, 3}; and with
probability 1, the matrices Ã1, Ã2, Ã3 have full column rank.

It is possible to obtain a quantitative bound on the k-th largest singular value of each At
in terms of the k-th largest singular value of A (analogous to Proposition 3.2). One avenue
is to show that a random rotation in fact causes Ã to have low coherence, after which we
can apply Proposition 3.2. With this approach, it is sufficient to require n = O(k log k)
(for constant ε and δ), which results in the k-th largest singular value of each At being
a constant fraction of the k-th largest singular value of A. We conjecture that, in fact,
n ≥ c · k for some c > 3 suffices.

3.3.3 Hidden Markov Models

Our last example is the time-homogeneous HMM for sequences of vector-valued observations
x1, x2, . . . ∈ Rd. Consider a Markov chain of discrete hidden states y1 → y2 → y3 → · · ·
over k possible states [k]; given a state yt at time t, the observation xt at time t (a random
vector taking values in Rd) is independent of all other observations and hidden states. See
Figure 1(b).

Let π ∈ ∆k−1 be the initial state distribution (i.e., the distribution of y1), and T ∈ Rk×k
be the stochastic transition matrix for the hidden state Markov chain: for all times t,

Pr[yt+1 = i|yt = j] = Ti,j , i, j ∈ [k].

Finally, let O ∈ Rd×k be the matrix whose j-th column is the conditional expectation of xt
given yt = j: for all times t,

E[xt|yt = j] = Oej , j ∈ [k].
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Proposition 3.4 (Anandkumar et al., 2012c) Define h := y2, where y2 is the second
hidden state in the Markov chain. Then

• x1, x2, x3 are conditionally independent given h;

• the distribution of h is given by the vector w := Tπ ∈ ∆k−1;

• for all j ∈ [k],

E[x1|h = j] = O diag(π)T> diag(w)−1ej

E[x2|h = j] = Oej

E[x3|h = j] = OTej .

Note the matrix of conditional means of xt has full column rank, for each t ∈ {1, 2, 3},
provided that: (i) O has full column rank, (ii) T is invertible, and (iii) π and Tπ have
positive entries.

4. Orthogonal Tensor Decompositions

We now show how recovering the µi’s in our aforementioned problems reduces to the prob-
lem of finding a certain orthogonal tensor decomposition of a symmetric tensor. We start by
reviewing the spectral decomposition of symmetric matrices, and then discuss a generaliza-
tion to the higher-order tensor case. Finally, we show how orthogonal tensor decompositions
can be used for estimating the latent variable models from the previous section.

4.1 Review: The Matrix Case

We first build intuition by reviewing the matrix setting, where the desired decomposi-
tion is the eigendecomposition of a symmetric rank-k matrix M = V ΛV >, where V =
[v1|v2| · · · |vk] ∈ Rn×k is the matrix with orthonormal eigenvectors as columns, and Λ =
diag(λ1, λ2, . . . , λk) ∈ Rk×k is diagonal matrix of non-zero eigenvalues. In other words,

M =
k∑
i=1

λi viv
>
i =

k∑
i=1

λi v
⊗2
i . (1)

Such a decomposition is guaranteed to exist for every symmetric matrix.

Recovery of the vi’s and λi’s can be viewed at least two ways. First, each vi is fixed
under the mapping u 7→Mu, up to a scaling factor λi:

Mvi =
k∑
j=1

λj(v
>
j vi)vj = λivi

as v>j vi = 0 for all j 6= i by orthogonality. The vi’s are not necessarily the only such fixed
points. For instance, with the multiplicity λ1 = λ2 = λ, then any linear combination of v1

and v2 is similarly fixed under M . However, in this case, the decomposition in (1) is not
unique, as λ1v1v

>
1 +λ2v2v

>
2 is equal to λ(u1u

>
1 +u2u

>
2 ) for any pair of orthonormal vectors,
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u1 and u2 spanning the same subspace as v1 and v2. Nevertheless, the decomposition is
unique when λ1, λ2, . . . , λk are distinct, whereupon the vj ’s are the only directions fixed
under u 7→Mu up to non-trivial scaling.

The second view of recovery is via the variational characterization of the eigenvalues.
Assume λ1 > λ2 > · · · > λk; the case of repeated eigenvalues again leads to similar non-
uniqueness as discussed above. Then the Rayleigh quotient

u 7→ u>Mu

u>u

is maximized over non-zero vectors by v1. Furthermore, for any s ∈ [k], the maximizer of
the Rayleigh quotient, subject to being orthogonal to v1, v2, . . . , vs−1, is vs. Another way
of obtaining this second statement is to consider the deflated Rayleigh quotient

u 7→
u>
(
M −

∑s−1
j=1 λjvjv

>
j

)
u

u>u

and observe that vs is the maximizer.
Efficient algorithms for finding these matrix decompositions are well studied (Golub

and van Loan, 1996, Section 8.2.3), and iterative power methods are one effective class of
algorithms.

We remark that in our multilinear tensor notation, we may write the maps u 7→ Mu
and u 7→ u>Mu/‖u‖22 as

u 7→Mu ≡ u 7→M(I, u), (2)

u 7→ u>Mu

u>u
≡ u 7→ M(u, u)

u>u
. (3)

4.2 The Tensor Case

Decomposing general tensors is a delicate issue; tensors may not even have unique decom-
positions. Fortunately, the orthogonal tensors that arise in the aforementioned models have
a structure which permits a unique decomposition under a mild non-degeneracy condition.
We focus our attention to the case p = 3, i.e., a third order tensor; the ideas extend to
general p with minor modifications.

An orthogonal decomposition of a symmetric tensor T ∈
⊗3 Rn is a collection of or-

thonormal (unit) vectors {v1, v2, . . . , vk} together with corresponding positive scalars λi > 0
such that

T =
k∑
i=1

λiv
⊗3
i . (4)

Note that since we are focusing on odd-order tensors (p = 3), we have added the require-
ment that the λi be positive. This convention can be followed without loss of generality
since −λiv⊗pi = λi(−vi)⊗p whenever p is odd. Also, it should be noted that orthogonal
decompositions do not necessarily exist for every symmetric tensor.

In analogy to the matrix setting, we consider two ways to view this decomposition: a
fixed-point characterization and a variational characterization. Related characterizations
based on optimal rank-1 approximations are given by Zhang and Golub (2001).
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4.2.1 Fixed-Point Characterization

For a tensor T , consider the vector-valued map

u 7→ T (I, u, u) (5)

which is the third-order generalization of (2). This can be explicitly written as

T (I, u, u) =
d∑
i=1

∑
1≤j,l≤d

Ti,j,l(e
>
j u)(e>l u)ei.

Observe that (5) is not a linear map, which is a key difference compared to the matrix case.

An eigenvector u for a matrix M satisfies M(I, u) = λu, for some scalar λ. We say a
unit vector u ∈ Rn is an eigenvector of T , with corresponding eigenvalue λ ∈ R, if

T (I, u, u) = λu.

(To simplify the discussion, we assume throughout that eigenvectors have unit norm; oth-
erwise, for scaling reasons, we replace the above equation with T (I, u, u) = λ‖u‖u.) This
concept was originally introduced by Lim (2005) and Qi (2005). For orthogonally decom-
posable tensors T =

∑k
i=1 λiv

⊗3
i ,

T (I, u, u) =
k∑
i=1

λi(u
>vi)

2vi .

By the orthogonality of the vi, it is clear that T (I, vi, vi) = λivi for all i ∈ [k]. Therefore
each (vi, λi) is an eigenvector/eigenvalue pair.

There are a number of subtle differences compared to the matrix case that arise as a
result of the non-linearity of (5). First, even with the multiplicity λ1 = λ2 = λ, a linear
combination u := c1v1 + c2v2 may not be an eigenvector. In particular,

T (I, u, u) = λ1c
2
1v1 + λ2c

2
2v2 = λ(c2

1v1 + c2
2v2)

may not be a multiple of c1v1 + c2v2. This indicates that the issue of repeated eigenvalues
does not have the same status as in the matrix case. Second, even if all the eigenvalues
are distinct, it turns out that the vi’s are not the only eigenvectors. For example, set
u := (1/λ1)v1 + (1/λ2)v2. Then,

T (I, u, u) = λ1(1/λ1)2v1 + λ2(1/λ2)2v2 = u,

so u/‖u‖ is an eigenvector. More generally, for any subset S ⊆ [k], the vector∑
i∈S

1

λi
· vi

is (proportional to) an eigenvector.
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As we now see, these additional eigenvectors can be viewed as spurious. We say a unit
vector u is a robust eigenvector of T if there exists an ε > 0 such that for all θ ∈ {u′ ∈ Rn :
‖u′ − u‖ ≤ ε}, repeated iteration of the map

θ̄ 7→ T (I, θ̄, θ̄)

‖T (I, θ̄, θ̄)‖
, (6)

starting from θ converges to u. Note that the map (6) rescales the output to have unit
Euclidean norm. Robust eigenvectors are also called attracting fixed points of (6) (see, e.g.,
Kolda and Mayo, 2011).

The following theorem implies that if T has an orthogonal decomposition as given in (4),
then the set of robust eigenvectors of T are precisely the set {v1, v2, . . . vk}, implying that
the orthogonal decomposition is unique. (For even order tensors, the uniqueness is true up
to sign-flips of the vi.)

Theorem 4.1 Let T have an orthogonal decomposition as given in (4).

1. The set of θ ∈ Rn which do not converge to some vi under repeated iteration of (6)
has measure zero.

2. The set of robust eigenvectors of T is equal to {v1, v2, . . . , vk}.

The proof of Theorem 4.1 is given in Appendix A.1, and follows readily from simple or-
thogonality considerations. Note that every vi in the orthogonal tensor decomposition is
robust, whereas for a symmetric matrix M , for almost all initial points, the map θ̄ 7→ Mθ̄

‖Mθ̄‖
converges only to an eigenvector corresponding to the largest magnitude eigenvalue. Also,
since the tensor order is odd, the signs of the robust eigenvectors are fixed, as each −vi is
mapped to vi under (6).

4.2.2 Variational Characterization

We now discuss a variational characterization of the orthogonal decomposition. The gener-
alized Rayleigh quotient (Zhang and Golub, 2001) for a third-order tensor is

u 7→ T (u, u, u)

(u>u)3/2
,

which can be compared to (3). For an orthogonally decomposable tensor, the following
theorem shows that a non-zero vector u ∈ Rn is an isolated local maximizer (Nocedal and
Wright, 1999) of the generalized Rayleigh quotient if and only if u = vi for some i ∈ [k].

Theorem 4.2 Let T have an orthogonal decomposition as given in (4), and consider the
optimization problem

max
u∈Rn

T (u, u, u) s.t. ‖u‖ ≤ 1.

1. The stationary points are eigenvectors of T .

2. A stationary point u is an isolated local maximizer if and only if u = vi for some
i ∈ [k].
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The proof of Theorem 4.2 is given in Appendix A.2. It is similar to local optimality analysis
for ICA methods using fourth-order cumulants (e.g., Delfosse and Loubaton, 1995; Frieze
et al., 1996).

Again, we see similar distinctions to the matrix case. In the matrix case, the only local
maximizers of the Rayleigh quotient are the eigenvectors with the largest eigenvalue (and
these maximizers take on the globally optimal value). For the case of orthogonal tensor
forms, the robust eigenvectors are precisely the isolated local maximizers.

An important implication of the two characterizations is that, for orthogonally decom-
posable tensors T , (i) the local maximizers of the objective function u 7→ T (u, u, u)/(u>u)3/2

correspond precisely to the vectors vi in the decomposition, and (ii) these local maximizers
can be reliably identified using a simple fixed-point iteration (i.e., the tensor analogue of
the matrix power method). Moreover, a second-derivative test based on T (I, I, u) can be
employed to test for local optimality and rule out other stationary points.

4.3 Estimation via Orthogonal Tensor Decompositions

We now demonstrate how the moment tensors obtained for various latent variable models
in Section 3 can be reduced to an orthogonal form. For concreteness, we take the specific
form from the exchangeable single topic model (Theorem 3.1):

M2 =
k∑
i=1

wi µi ⊗ µi,

M3 =
k∑
i=1

wi µi ⊗ µi ⊗ µi.

(The more general case allows the weights wi in M2 to differ in M3, but for simplicity
we keep them the same in the following discussion.) We now show how to reduce these
forms to an orthogonally decomposable tensor from which the wi and µi can be recovered.
See Appendix D for a discussion as to how previous approaches (Mossel and Roch, 2006;
Anandkumar et al., 2012c,a; Hsu and Kakade, 2013) achieved this decomposition through
a certain simultaneous diagonalization method.

Throughout, we assume the following non-degeneracy condition.

Condition 4.1 (Non-degeneracy) The vectors µ1, µ2, . . . , µk ∈ Rd are linearly indepen-
dent, and the scalars w1, w2, . . . , wk > 0 are strictly positive.

Observe that Condition 4.1 implies that M2 � 0 is positive semidefinite and has rank k.
This is often a mild condition in applications. When this condition is not met, learning
is conjectured to be generally hard for both computational (Mossel and Roch, 2006) and
information-theoretic reasons (Moitra and Valiant, 2010). As discussed by Hsu et al. (2012b)
and Hsu and Kakade (2013), when the non-degeneracy condition does not hold, it is often
possible to combine multiple observations using tensor products to increase the rank of the
relevant matrices. Indeed, this observation has been rigorously formulated in very recent
works of Bhaskara et al. (2014) and Anderson et al. (2014) using the framework of smoothed
analysis (Spielman and Teng, 2009).
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4.3.1 The Reduction

First, let W ∈ Rd×k be a linear transformation such that

M2(W,W ) = W>M2W = I

where I is the k × k identity matrix (i.e., W whitens M2). Since M2 � 0, we may for
concreteness take W := UD−1/2, where U ∈ Rd×k is the matrix of orthonormal eigenvectors
of M2, and D ∈ Rk×k is the diagonal matrix of positive eigenvalues of M2. Let

µ̃i :=
√
wi W

>µi.

Observe that

M2(W,W ) =
k∑
i=1

W>(
√
wiµi)(

√
wiµi)

>W =

k∑
i=1

µ̃iµ̃
>
i = I,

so the µ̃i ∈ Rk are orthonormal vectors.

Now define M̃3 := M3(W,W,W ) ∈ Rk×k×k, so that

M̃3 =

k∑
i=1

wi (W>µi)
⊗3 =

k∑
i=1

1
√
wi

µ̃⊗3
i .

As the following theorem shows, the orthogonal decomposition of M̃3 can be obtained by
identifying its robust eigenvectors, upon which the original parameters wi and µi can be
recovered. For simplicity, we only state the result in terms of robust eigenvector/eigenvalue
pairs; one may also easily state everything in variational form using Theorem 4.2.

Theorem 4.3 Assume Condition 4.1 and take M̃3 as defined above.

1. The set of robust eigenvectors of M̃3 is equal to {µ̃1, µ̃2, . . . , µ̃k}.

2. The eigenvalue corresponding to the robust eigenvector µ̃i of M̃3 is equal to 1/
√
wi,

for all i ∈ [k].

3. If B ∈ Rd×k is the Moore-Penrose pseudoinverse of W>, and (v, λ) is a robust eigen-

vector/eigenvalue pair of M̃3, then λBv = µi for some i ∈ [k].

The theorem follows by combining the above discussion with the robust eigenvector charac-
terization of Theorem 4.1. Recall that we have taken as convention that eigenvectors have
unit norm, so the µi are exactly determined from the robust eigenvector/eigenvalue pairs of

M̃3 (together with the pseudoinverse of W>); in particular, the scale of each µi is correctly
identified (along with the corresponding wi). Relative to previous works on moment-based
estimators for latent variable models (e.g., Anandkumar et al., 2012c,a; Hsu and Kakade,
2013), Theorem 4.3 emphasizes the role of the special tensor structure, which in turn makes
transparent the applicability of methods for orthogonal tensor decomposition.
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4.3.2 Local Maximizers of (Cross Moment) Skewness

The variational characterization provides an interesting perspective on the robust eigen-
vectors for these latent variable models. Consider the exchangeable single topic models
(Theorem 3.1), and the objective function

u 7→ E[(x>1 u)(x>2 u)(x>3 u)]

E[(x>1 u)(x>2 u)]3/2
=
M3(u, u, u)

M2(u, u)3/2
.

In this case, every local maximizer u∗ satisfies M2(I, u∗) =
√
wiµi for some i ∈ [k]. The

objective function can be interpreted as the (cross moment) skewness of the random vectors
x1, x2, x3 along direction u.

5. Tensor Power Method

In this section, we consider the tensor power method of Lathauwer et al. (2000, Remark 3)
for orthogonal tensor decomposition. We first state a simple convergence analysis for an
orthogonally decomposable tensor T .

When only an approximation T̂ to an orthogonally decomposable tensor T is available
(e.g., when empirical moments are used to estimate population moments), an orthogonal
decomposition need not exist for this perturbed tensor (unlike for the case of matrices),
and a more robust approach is required to extract the approximate decomposition. Here,
we propose such a variant in Algorithm 1 and provide a detailed perturbation analysis. We
note that alternative approaches such as simultaneous diagonalization can also be employed
(see Appendix D).

5.1 Convergence Analysis for Orthogonally Decomposable Tensors

The following lemma establishes the quadratic convergence of the tensor power method—
i.e., repeated iteration of (6)—for extracting a single component of the orthogonal decom-
position. Note that the initial vector θ0 determines which robust eigenvector will be the
convergent point. Computation of subsequent eigenvectors can be computed with deflation,
i.e., by subtracting appropriate terms from T .

Lemma 5.1 Let T ∈
⊗3 Rn have an orthogonal decomposition as given in (4). For a vector

θ0 ∈ Rn, suppose that the set of numbers |λ1v
>
1 θ0|, |λ2v

>
2 θ0|, . . . , |λkv>k θ0| has a unique largest

element. Without loss of generality, say |λ1v
>
1 θ0| is this largest value and |λ2v

>
2 θ0| is the

second largest value. For t = 1, 2, . . . , let

θt :=
T (I, θt−1, θt−1)

‖T (I, θt−1, θt−1)‖
.

Then

‖v1 − θt‖2 ≤
(

2λ2
1

k∑
i=2

λ−2
i

)
·
∣∣∣∣λ2v

>
2 θ0

λ1v>1 θ0

∣∣∣∣2t+1

.

That is, repeated iteration of (6) starting from θ0 converges to v1 at a quadratic rate.
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To obtain all eigenvectors, we may simply proceed iteratively using deflation, executing
the power method on T −

∑
j λjv

⊗3
j after having obtained robust eigenvector / eigenvalue

pairs {(vj , λj)}.
Proof Let θ0, θ1, θ2, . . . be the sequence given by θ0 := θ0 and θt := T (I, θt−1, θt−1) for
t ≥ 1. Let ci := v>i θ0 for all i ∈ [k]. It is easy to check that (i) θt = θt/‖θt‖, and

(ii) θt =
∑k

i=1 λ
2t−1
i c2t

i vi. (Indeed, θt+1 =
∑k

i=1 λi(v
>
i θt)

2vi =
∑k

i=1 λi(λ
2t−1
i c2t

i )2vi =∑k
i=1 λ

2t+1−1
i c2t+1

i vi.) Then

1− (v>1 θt)
2 = 1− (v>1 θt)

2

‖θt‖2
= 1− λ2t+1−2

1 c2t+1

1∑k
i=1 λ

2t+1−2
i c2t+1

i

≤
∑k

i=2 λ
2t+1−2
i c2t+1

i∑k
i=1 λ

2t+1−2
i c2t+1

i

≤ λ2
1

k∑
i=2

λ−2
i ·

∣∣∣∣λ2c2

λ1c1

∣∣∣∣2t+1

.

Since λ1 > 0, we have v>1 θt > 0 and hence ‖v1 − θt‖2 = 2(1 − v>1 θt) ≤ 2(1 − (v>1 θt)
2) as

required.

5.2 Perturbation Analysis of a Robust Tensor Power Method

Now we consider the case where we have an approximation T̂ to an orthogonally decom-
posable tensor T . Here, a more robust approach is required to extract an approximate
decomposition. We propose such an algorithm in Algorithm 1, and provide a detailed per-
turbation analysis. For simplicity, we assume the tensor T̂ is of size k × k × k as per the
reduction from Section 4.3. In some applications, it may be preferable to work directly with
a n× n× n tensor of rank k ≤ n (as in Lemma 5.1); our results apply in that setting with
little modification.

Algorithm 1 Robust tensor power method

input symmetric tensor T̃ ∈ Rk×k×k, number of iterations L, N .
output the estimated eigenvector/eigenvalue pair; the deflated tensor.

1: for τ = 1 to L do
2: Draw θ

(τ)
0 uniformly at random from the unit sphere in Rk.

3: for t = 1 to N do
4: Compute power iteration update

θ
(τ)
t :=

T̃ (I, θ
(τ)
t−1, θ

(τ)
t−1)

‖T̃ (I, θ
(τ)
t−1, θ

(τ)
t−1)‖

(7)

5: end for
6: end for
7: Let τ∗ := arg maxτ∈[L]{T̃ (θ

(τ)
N , θ

(τ)
N , θ

(τ)
N )}.

8: Do N power iteration updates (7) starting from θ
(τ∗)
N to obtain θ̂, and set λ̂ := T̃ (θ̂, θ̂, θ̂).

9: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the deflated tensor T̃ − λ̂ θ̂⊗3.
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Assume that the symmetric tensor T ∈ Rk×k×k is orthogonally decomposable, and that
T̂ = T +E, where the perturbation E ∈ Rk×k×k is a symmetric tensor with small operator
norm:

‖E‖ := sup
‖θ‖=1

|E(θ, θ, θ)|.

In our latent variable model applications, T̂ is the tensor formed by using empirical mo-
ments, while T is the orthogonally decomposable tensor derived from the population mo-
ments for the given model. In the context of parameter estimation (as in Section 4.3), E
must account for any error amplification throughout the reduction, such as in the whitening
step (see, e.g., Hsu and Kakade, 2013, for such an analysis).

The following theorem is similar to Wedin’s perturbation theorem for singular vectors
of matrices (Wedin, 1972) in that it bounds the error of the (approximate) decomposition
returned by Algorithm 1 on input T̂ in terms of the size of the perturbation, provided that
the perturbation is small enough.

Theorem 5.1 Let T̂ = T + E ∈ Rk×k×k, where T is a symmetric tensor with orthogonal
decomposition T =

∑k
i=1 λiv

⊗3
i where each λi > 0, {v1, v2, . . . , vk} is an orthonormal basis,

and E is a symmetric tensor with operator norm ‖E‖ ≤ ε. Define λmin := min{λi : i ∈ [k]},
and λmax := max{λi : i ∈ [k]}. There exists universal constants C1, C2, C3 > 0 such that
the following holds. Pick any η ∈ (0, 1), and suppose

ε ≤ C1 ·
λmin

k
, N ≥ C2 ·

(
log(k) + log log

(λmax

ε

))
,

and√
ln(L/ log2(k/η))

ln(k)
·

(
1− ln(ln(L/ log2(k/η))) + C3

4 ln(L/ log2(k/η))
−

√
ln(8)

ln(L/ log2(k/η))

)

≥ 1.02

(
1 +

√
ln(4)

ln(k)

)
.

(Note that the condition on L holds with L = poly(k) log(1/η).) Suppose that Algorithm 1
is iteratively called k times, where the input tensor is T̂ in the first call, and in each
subsequent call, the input tensor is the deflated tensor returned by the previous call. Let
(v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k) be the sequence of estimated eigenvector/eigenvalue pairs re-
turned in these k calls. With probability at least 1− η, there exists a permutation π on [k]
such that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j | ≤ 5ε, ∀j ∈ [k],

and ∥∥∥∥T − k∑
j=1

λ̂j v̂
⊗3
j

∥∥∥∥ ≤ 55ε.

The proof of Theorem 5.1 is given in Appendix B.
One important difference from Wedin’s theorem is that this is an algorithm dependent

perturbation analysis, specific to Algorithm 1 (since the perturbed tensor need not have an
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orthogonal decomposition). Furthermore, note that Algorithm 1 uses multiple restarts to
ensure (approximate) convergence—the intuition is that by restarting at multiple points,
we eventually start at a point in which the initial contraction towards some eigenvector
dominates the error E in our tensor. The proof shows that we find such a point with high
probability within L = poly(k) trials. It should be noted that for large k, the required
bound on L is very close to linear in k.

We note that it is also possible to design a variant of Algorithm 1 that instead uses
a stopping criterion to determine if an iterate has (almost) converged to an eigenvector.
For instance, if T̃ (θ, θ, θ) > max{‖T̃‖F /

√
2r, ‖T̃ (I, I, θ)‖F /1.05}, where ‖T̃‖F is the tensor

Frobenius norm (vectorized Euclidean norm), and r is the expected rank of the unperturbed
tensor (r = k −# of deflation steps), then it can be shown that θ must be close to one of
the eigenvectors, provided that the perturbation is small enough. Using such a stopping
criterion can reduce the number of random restarts when a good initial point is found early
on. See Appendix C for details.

In general, it is possible, when run on a general symmetric tensor (e.g., T̂ ), for the
tensor power method to exhibit oscillatory behavior (Kofidis and Regalia, 2002, Example
1). This is not in conflict with Theorem 5.1, which effectively bounds the amplitude of
these oscillations; in particular, if T̂ = T +E is a tensor built from empirical moments, the
error term E (and thus the amplitude of the oscillations) can be driven down by drawing
more samples. The practical value of addressing these oscillations and perhaps stabilizing
the algorithm is an interesting direction for future research (Kolda and Mayo, 2011).

A final consideration is that for specific applications, it may be possible to use domain
knowledge to choose better initialization points. For instance, in the topic modeling appli-
cations (cf. Section 3.1), the eigenvectors are related to the topic word distributions, and
many documents may be primarily composed of words from just single topic. Therefore,
good initialization points can be derived from these single-topic documents themselves, as
these points would already be close to one of the eigenvectors.

6. Discussion

In this section, we discuss some practical and application-oriented issues related to the
tensor decomposition approach to learning latent variable models.

6.1 Practical Implementation Considerations

A number of practical concerns arise when dealing with moment matrices and tensors.
Below, we address two issues that are especially pertinent to topic modeling applica-
tions (Anandkumar et al., 2012c,a) or other settings where the observations are sparse.

6.1.1 Efficient Moment Representation for Exchangeable Models

In an exchangeable bag-of-words model, it is assumed that the words x1, x2, . . . , x` in a
document are conditionally i.i.d. given the topic h. This allows one to estimate p-th order
moments using just p words per document. The estimators obtained via Theorem 3.1 (single
topic model) and Theorem 3.5 (LDA) use only up to third-order moments, which suggests
that each document only needs to have three words.

2797



Anandkumar, Ge, Hsu, Kakade, and Telgarsky

In practice, one should use all of the words in a document for efficient estimation of the
moments. One way to do this is to average over all

(
`
3

)
· 3! ordered triples of words in a

document of length `. At first blush, this seems computationally expensive (when ` is large),
but as it turns out, the averaging can be done implicitly, as shown by Zou et al. (2013).
Let c ∈ Rd be the word count vector for a document of length `, so ci is the number of
occurrences of word i in the document, and

∑d
i=1 ci = `. Note that c is a sufficient statistic

for the document. Then, the contribution of this document to the empirical third-order
moment tensor is given by

1(
`
3

) · 1

3!
·
(
c⊗ c⊗ c+ 2

d∑
i=1

ci (ei ⊗ ei ⊗ ei)

−
d∑
i=1

d∑
j=1

cicj (ei ⊗ ei ⊗ ej)−
d∑
i=1

d∑
j=1

cicj (ei ⊗ ej ⊗ ei)−
d∑
i=1

d∑
j=1

cicj (ei ⊗ ej ⊗ ej)
)
. (8)

It can be checked that this quantity is equal to

1(
`
3

) · 1

3!
·

∑
ordered word triple (x, y, z)

ex ⊗ ey ⊗ ez

where the sum is over all ordered word triples in the document. A similar expression is
easily derived for the contribution of the document to the empirical second-order moment
matrix:

1(
`
2

) · 1

2!
·
(
c⊗ c− diag(c)

)
. (9)

Note that the word count vector c is generally a sparse vector, so this representation allows
for efficient multiplication by the moment matrices and tensors in time linear in the size of
the document corpus (i.e., the number of non-zero entries in the term-document matrix).

6.1.2 Dimensionality Reduction

Another serious concern regarding the use of tensor forms of moments is the need to op-
erate on multidimensional arrays with Ω(d3) values (it is typically not exactly d3 due to
symmetry). When d is large (e.g., when it is the size of the vocabulary in natural language
applications), even storing a third-order tensor in memory can be prohibitive. Sparsity is
one factor that alleviates this problem. Another approach is to use efficient linear dimen-
sionality reduction. When this is combined with efficient techniques for matrix and tensor
multiplication that avoid explicitly constructing the moment matrices and tensors (such as
the procedure described above), it is possible to avoid any computational scaling more than
linear in the dimension d and the training sample size.

Consider for concreteness the tensor decomposition approach for the exchangeable single
topic model as discussed in Section 4.3. Using recent techniques for randomized linear
algebra computations (e.g., Halko et al., 2011), it is possible to efficiently approximate the
whitening matrix W ∈ Rd×k from the second-moment matrix M2 ∈ Rd×d. To do this, one
first multiplies M2 by a random matrix R ∈ Rd×k′ for some k′ ≥ k, and then computes the
top k singular vectors of the product M2R. This provides a basis U ∈ Rd×k whose span
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is approximately the range of M2. From here, an approximate SVD of U>M2U is used to
compute the approximate whitening matrix W . Note that both matrix products M2R and
U>M2U may be performed via implicit access to M2 by exploiting (9), so that M2 need
not be explicitly formed. With the whitening matrix W in hand, the third-moment tensor
M̃3 = M3(W,W,W ) ∈ Rk×k×k can be implicitly computed via (8). For instance, the core

computation in the tensor power method θ′ := M̃3(I, θ, θ) is performed by (i) computing
η := Wθ, (ii) computing η′ := M3(I, η, η), and finally (iii) computing θ′ := W>η′. Using the
fact that M3 is an empirical third-order moment tensor, these steps can be computed with
O(dk + N) operations, where N is the number of non-zero entries in the term-document
matrix (Zou et al., 2013).

6.2 Computational Complexity

It is interesting to consider the computational complexity of the tensor power method in the
dense setting where T ∈ Rk×k×k is orthogonally decomposable but otherwise unstructured.
Each iteration requires O(k3) operations, and assuming at most k1+δ random restarts for
extracting each eigenvector (for some small δ > 0) and O(log(k)+log log(1/ε)) iterations per
restart, the total running time is O(k5+δ(log(k)+ log log(1/ε))) to extract all k eigenvectors
and eigenvalues.

An alternative approach to extracting the orthogonal decomposition of T is to reorganize
T into a matrix M ∈ Rk×k2 by flattening two of the dimensions into one. In this case, if
T =

∑k
i=1 λiv

⊗3
i , then M =

∑k
i=1 λivi ⊗ vec(vi ⊗ vi). This reveals the singular value

decomposition of M (assuming the eigenvalues λ1, λ2, . . . , λk are distinct), and therefore can
be computed with O(k4) operations. Therefore it seems that the tensor power method is
less efficient than a pure matrix-based approach via singular value decomposition. However,
it should be noted that this matrix-based approach fails to recover the decomposition when
eigenvalues are repeated, and can be unstable when the gap between eigenvalues is small—
see Appendix D for more discussion.

It is worth noting that the running times differ by roughly a factor of Θ(k1+δ), which
can be accounted for by the random restarts. This gap can potentially be alleviated or
removed by using a more clever method for initialization. Moreover, using special structure
in the problem (as discussed above) can also improve the running time of the tensor power
method.

6.3 Sample Complexity Bounds

Previous work on using linear algebraic methods for estimating latent variable models cru-
cially rely on matrix perturbation analysis for deriving sample complexity bounds (Mossel
and Roch, 2006; Hsu et al., 2012b; Anandkumar et al., 2012c,a; Hsu and Kakade, 2013).
The learning algorithms in these works are plug-in estimators that use empirical moments in
place of the population moments, and then follow algebraic manipulations that result in the
desired parameter estimates. As long as these manipulations can tolerate small perturba-
tions of the population moments, a sample complexity bound can be obtained by exploiting
the convergence of the empirical moments to the population moments via the law of large
numbers. As discussed in Appendix D, these approaches do not directly lead to practical
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algorithms due to a certain amplification of the error (a polynomial factor of k, which is
observed in practice).

Using the perturbation analysis for the tensor power method, improved sample complex-
ity bounds can be obtained for all of the examples discussed in Section 3. The underlying
analysis remains the same as in previous works (e.g., Anandkumar et al., 2012a; Hsu and
Kakade, 2013), the main difference being the accuracy of the orthogonal tensor decompo-
sition obtained via the tensor power method. Relative to the previously cited works, the
sample complexity bound will be considerably improved in its dependence on the rank pa-
rameter k, as Theorem 5.1 implies that the tensor estimation error (e.g., error in estimating

M̃3 from Section 4.3) is not amplified by any factor explicitly depending on k (there is
a requirement that the error be smaller than some factor depending on k, but this only
contributes to a lower-order term in the sample complexity bound). See Appendix D for
further discussion regarding the stability of the techniques from these previous works.

6.4 Other Perspectives

The tensor power method is simply one approach for extracting the orthogonal decomposi-
tion needed in parameter estimation. The characterizations from Section 4.2 suggest that a
number of fixed point and variational techniques may be possible (and Appendix D provides
yet another perspective based on simultaneous diagonalization). One important consider-
ation is that the model is often misspecified, and therefore approaches with more robust
guarantees (e.g., for convergence) are desirable. Our own experience with the tensor power
method (as applied to exchangeable topic modeling) is that while model misspecification
does indeed affect convergence, the results can be very reasonable even after just a dozen
or so iterations (Anandkumar et al., 2012a). Nevertheless, robustness is likely more impor-
tant in other applications, and thus the stabilization approaches (Kofidis and Regalia, 2002;
Regalia and Kofidis, 2003; Erdogan, 2009; Kolda and Mayo, 2011) may be advantageous.
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Appendix A. Fixed-Point and Variational Characterizations of
Orthogonal Tensor Decompositions

We give detailed proofs of Theorems 4.1 and 4.2 in this section for completeness.

A.1 Proof of Theorem 4.1

Theorem A.1 Let T have an orthogonal decomposition as given in (4).
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1. The set of θ ∈ Rn which do not converge to some vi under repeated iteration of (6)
has measure zero.

2. The set of robust eigenvectors of T is {v1, v2, . . . , vk}.

Proof For a random choice of θ ∈ Rn (under any distribution absolutely continuous with
respect to Lebesgue measure), the values |λ1v

>
1 θ|, |λ2v

>
2 θ|, . . . , |λkv>k θ| will be distinct with

probability 1. Therefore, there exists a unique largest value, say |λiv>i θ| for some i ∈ [k],
and by Lemma 5.1, we have convergence to vi under repeated iteration of (6). Thus the
first claim holds.

We now prove the second claim. First, we show that every vi is a robust eigenvector.
Pick any i ∈ [k], and note that for a sufficiently small ball around vi, we have that for all θ
in this ball, λiv

>
i θ is strictly greater than λjv

>
j θ for j ∈ [k] \ {i}. Thus by Lemma 5.1, vi is

a robust eigenvector. Now we show that the vi are the only robust eigenvectors. Suppose
there exists some robust eigenvector u not equal to vi for any i ∈ [k]. Then there exists a
positive measure set around u such that all points in this set converge to u under repeated
iteration of (6). This contradicts the first claim.

A.2 Proof of Theorem 4.2

Theorem A.2 Let T have an orthogonal decomposition as given in (4), and consider the
optimization problem

max
u∈Rn

T (u, u, u) s.t. ‖u‖ ≤ 1.

1. The stationary points are eigenvectors of T .

2. A stationary point u is an isolated local maximizer if and only if u = vi for some
i ∈ [k].

Proof Consider the Lagrangian form of the corresponding constrained maximization prob-
lem over unit vectors u ∈ Rn:

L(u, λ) := T (u, u, u)− 3

2
λ(u>u− 1).

Since

∇uL(u, λ) = ∇u
( k∑
i=1

λi(v
>
i u)3 − 3

2
λ(u>u− 1)

)
= 3
(
T (I, u, u)− λu

)
,

the stationary points u ∈ Rn (with ‖u‖ ≤ 1) satisfy

T (I, u, u) = λu

for some λ ∈ R, i.e., (u, λ) is an eigenvector/eigenvalue pair of T .
Now we characterize the isolated local maximizers. Observe that if u 6= 0 and T (I, u, u) =

λu for λ < 0, then T (u, u, u) < 0. Therefore u′ = (1 − δ)u for any δ ∈ (0, 1) satisfies
T (u′, u′, u′) = (1 − δ)3T (u, u, u) > T (u, u, u). So such a u cannot be a local maximizer.
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Moreover, if ‖u‖ < 1 and T (I, u, u) = λu for λ > 0, then u′ = (1 + δ)u for a small enough
δ ∈ (0, 1) satisfies ‖u′‖ ≤ 1 and T (u′, u′, u′) = (1 + δ)3T (u, u, u) > T (u, u, u). Therefore a
local maximizer must have T (I, u, u) = λu for some λ ≥ 0, and ‖u‖ = 1 whenever λ > 0.

Extend {v1, v2, . . . , vk} to an orthonormal basis {v1, v2, . . . , vn} of Rn. Now pick any
stationary point u =

∑n
i=1 civi with λ := T (u, u, u) = u>T (I, u, u). Then

λic
2
i = λi(u

>vi)
2 = v>i T (I, u, u) = λv>i u = λci ≥ 0, i ∈ [k],

and thus

∇2
uL(u, λ) = 6

k∑
i=1

λici viv
>
i − 3λI = 3λ

(
2
∑
i∈Ω

viv
>
i − I

)

where Ω := {i ∈ [k] : ci 6= 0}. This implies that for any unit vector w ∈ Rn,

w>∇2
uL(u, λ)w = 3λ

(
2
∑
i∈Ω

(v>i w)2 − 1

)
.

The point u is an isolated local maximum if the above quantity is strictly negative for all
unit vectors w orthogonal to u. We now consider three cases depending on the cardinality
of Ω and the sign of λ.

• Case 1: |Ω| = 1 and λ > 0. This means u = vi for some i ∈ [k] (as u = −vi implies
λ = −λi < 0). In this case,

w>∇2
uL(u, λ)w = 3λi(2(v>i w)2 − 1) = −3λi < 0

for all w ∈ Rn satisfying (u>w)2 = (v>i w)2 = 0. Hence u is an isolated local maximizer.

• Case 2: |Ω| ≥ 2 and λ > 0. Since |Ω| ≥ 2, we may pick a strict non-empty subset
S ( Ω and set

w :=
1

Z

(
1

ZS

∑
i∈S

civi −
1

ZSc

∑
i∈Ω\S

civi

)

where ZS :=
∑

i∈S c
2
i , ZSc :=

∑
i∈Ω\S c

2
i , and Z :=

√
1/ZS + 1/ZSc . It is easy to

check that ‖w‖2 =
∑

i∈Ω(v>i w)2 = 1 and u>w = 0. Consider any open neighborhood

U of u, and pick δ > 0 small enough so that ũ :=
√

1− δ2u + δw is contained in
U . Set u0 :=

√
1− δ2u. By Taylor’s theorem, there exists ε ∈ [0, δ] such that, for
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ū := u0 + εw, we have

T (ũ, ũ, ũ) = T (u0, u0, u0) +∇uT (u, u, u)>(ũ− u0)
∣∣∣
u=u0

+
1

2
(ũ− u0)>∇2

uT (u, u, u)(ũ− u0)
∣∣∣
u=ū

= (1− δ2)3/2λ+ δ(1− δ2)λu>w +
1

2
δ2w>∇2

uT (u, u, u)w
∣∣∣
u=ū

= (1− δ2)3/2λ+ 0 + 3δ2
k∑
i=1

λi(v
>
i (u0 + εw))(v>i w)2

= (1− δ2)3/2λ+ 3δ2
√

1− δ2

k∑
i=1

λici(v
>
i w)2 + 3δ2ε

k∑
i=1

λi(v
>
i w)3

= (1− δ2)3/2λ+ 3δ2
√

1− δ2λ
∑
i∈Ω

(v>i w)2 + 3δ2ε

k∑
i=1

λi(v
>
i w)3

= (1− δ2)3/2λ+ 3δ2
√

1− δ2λ+ 3δ2ε
k∑
i=1

λi(v
>
i w)3

=

(
1− 3

2
δ2 +O(δ4)

)
λ+ 3δ2

√
1− δ2λ+ 3δ2ε

k∑
i=1

λi(v
>
i w)3.

Since ε ≤ δ, for small enough δ, the RHS is strictly greater than λ. This implies that
u is not an isolated local maximizer.

• Case 3: |Ω| = 0 or λ = 0. Note that if |Ω| = 0, then λ = 0, so we just consider λ = 0.
Consider any open neighborhood U of u, and pick j ∈ [n] and δ > 0 small enough so
that ũ :=

√
1− δ2u+ δvj is contained in U . Then

T (ũ, ũ, ũ) = (1− δ2)3/2T (u, u, u) + 3λj(1− δ2)δc2
j + 3λi

√
1− δ2δ2cj + δ3 > 0 = λ

for sufficiently small δ. Thus u is not an isolated local maximizer.

From these exhaustive cases, we conclude that a stationary point u is an isolated local
maximizer if and only if u = vi for some i ∈ [k].

We are grateful to Hanzhang Hu, Drew Bagnell, and Martial Hebert for alerting us of
an issue with our original statement of Theorem 4.2 and its proof, and for suggesting a
simple fix. The original statement used the optimization constraint ‖u‖ = 1 (rather than
‖u‖ ≤ 1), but the characterization of the decomposition with this constraint is then only
given by isolated local maximizers u with the additional constraint that T (u, u, u) > 0—that
is, there can be isolated local maximizers with T (u, u, u) ≤ 0 that are not vectors in the
decomposition. The suggested fix of Hu, Bagnell, and Herbert is to relax to ‖u‖ ≤ 1, which
eliminates isolated local maximizers with T (u, u, u) ≤ 0; this way, the characterization of
the decomposition is simply the isolated local maximizers under the relaxed constraint.
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Appendix B. Analysis of Robust Power Method

In this section, we prove Theorem 5.1. The proof is structured as follows. In Appendix B.1,
we show that with high probability, at least one out of L random vectors will be a good
initializer for the tensor power iterations. An initializer is good if its projection onto an
eigenvector is noticeably larger than its projection onto other eigenvectors. We then analyze
in Appendix B.2 the convergence behavior of the tensor power iterations. Relative to the
proof of Lemma 5.1, this analysis is complicated by the tensor perturbation. We show that
there is an initial slow convergence phase (linear rate rather than quadratic), but as soon
as the projection of the iterate onto an eigenvector is large enough, it enters the quadratic
convergence regime until the perturbation dominates. Finally, we show how errors accrue
due to deflation in Appendix B.3, which is rather subtle and different from deflation with
matrix eigendecompositions. This is because when some initial set of eigenvectors and
eigenvalues are accurately recovered, the additional errors due to deflation are effectively
only lower-order terms. These three pieces are assembled in Appendix B.4 to complete the
proof of Theorem 5.1.

B.1 Initialization

Consider a set of non-negative numbers λ̃1, λ̃2, . . . , λ̃k ≥ 0. For γ ∈ (0, 1), we say a unit
vector θ0 ∈ Rk is γ-separated relative to i∗ ∈ [k] if

λ̃i∗ |θi∗,0| − max
i∈[k]\{i∗}

λ̃i|θi,0| ≥ γλ̃i|θi∗,0|

(the dependence on λ̃1, λ̃2, . . . , λ̃k is implicit).
The following lemma shows that for any constant γ, with probability at least 1 − η,

at least one out of poly(k) log(1/η) i.i.d. random vectors (uniformly distributed over the
unit sphere Sk−1) is γ-separated relative to arg maxi∈[k] λ̃i. (For small enough γ and large
enough k, the polynomial is close to linear in k.)

Lemma B.1 There exists an absolute constant c > 0 such that if positive integer L ≥ 2
satisfies √

ln(L)

ln(k)
·

(
1− ln(ln(L)) + c

4 ln(L)
−

√
ln(8)

ln(L)

)
≥ 1

1− γ
·

(
1 +

√
ln(4)

ln(k)

)
, (10)

the following holds. With probability at least 1/2 over the choice of L i.i.d. random vectors
drawn uniformly distributed over the unit sphere Sk−1 in Rk, at least one of the vectors is
γ-separated relative to arg maxi∈[k] λ̃i. Moreover, with the same c, L, and for any η ∈ (0, 1),
with probability at least 1− η over L · log2(1/η) i.i.d. uniform random unit vectors, at least
one of the vectors is γ-separated.

Proof Without loss of generality, assume arg maxi∈[k] λ̃i = 1. Consider a random matrix

Z ∈ Rk×L whose entries are independent N (0, 1) random variables; we take the j-th column
of Z to be comprised of the random variables used for the j-th random vector (before
normalization). Specifically, for the j-th random vector,

θi,0 :=
Zi,j√∑k
i′=1 Z

2
i′,j

, i ∈ [n].
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It suffices to show that with probability at least 1/2, there is a column j∗ ∈ [L] such that

|Z1,j∗ | ≥
1

1− γ
max

i∈[k]\{1}
|Zi,j∗ |.

Since maxj∈[L] |Z1,j | is a 1-Lipschitz function of L independentN (0, 1) random variables,
it follows that

Pr

[∣∣∣max
j∈[L]

|Z1,j | −median
[
max
j∈[L]

|Z1,j |
]∣∣∣ >√2 ln(8)

]
≤ 1/4.

Moreover,

median
[
max
j∈[L]

|Z1,j |
]
≥ median

[
max
j∈[L]

Z1,j

]
=: m.

Observe that the cumulative distribution function of maxj∈[L] Z1,j is given by F (z) = Φ(z)L,

where Φ is the standard Gaussian CDF. Since F (m) = 1/2, it follows that m = Φ−1(2−1/L).
It can be checked that

Φ−1(2−1/L) ≥
√

2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)

for some absolute constant c > 0. Also, let j∗ := arg maxj∈[L] |Z1,j |.
Now for each j ∈ [L], let |Z2:k,j | := max{|Z2,j |, |Z3,j |, . . . , |Zk,j |}. Again, since |Z2:k,j | is

a 1-Lipschitz function of k − 1 independent N (0, 1) random variables, it follows that

Pr

[
|Z2:k,j | > E

[
|Z2:k,j |

]
+
√

2 ln(4)

]
≤ 1/4.

Moreover, by a standard argument,

E
[
|Z2:k,j |

]
≤
√

2 ln(k).

Since |Z2:k,j | is independent of |Z1,j | for all j ∈ [L], it follows that the previous two displayed
inequalities also hold with j replaced by j∗.

Therefore we conclude with a union bound that with probability at least 1/2,

|Z1,j∗ | ≥
√

2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(8) and |Z2:k,j∗ | ≤
√

2 ln(k) +
√

2 ln(4).

Since L satisfies (10) by assumption, in this event, the j∗-th random vector is γ-separated.

B.2 Tensor Power Iterations

Recall the update rule used in the power method. Let θt =
∑k

i=1 θi,tvi ∈ Rk be the unit
vector at time t. Then

θt+1 =

k∑
i=1

θi,t+1vi := T̃ (I, θt, θt)/‖T̃ (I, θt, θt)‖.
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In this subsection, we assume that T̃ has the form

T̃ =

k∑
i=1

λ̃iv
⊗3
i + Ẽ (11)

where {v1, v2, . . . , vk} is an orthonormal basis, and, without loss of generality,

λ̃1|θ1,t| = max
i∈[k]

λ̃i|θi,t| > 0.

Also, define

λ̃min := min{λ̃i : i ∈ [k], λ̃i > 0}, λ̃max := max{λ̃i : i ∈ [k]}.

We further assume the error Ẽ is a symmetric tensor such that, for some constant p > 1,

‖Ẽ(I, u, u)‖ ≤ ε̃, ∀u ∈ Sk−1; (12)

‖Ẽ(I, u, u)‖ ≤ ε̃/p, ∀u ∈ Sk−1 s.t. (u>v1)2 ≥ 1− (3ε̃/λ̃1)2. (13)

In the next two propositions (Propositions B.1 and B.2) and next two lemmas (Lemmas B.2
and B.3), we analyze the power method iterations using T̃ at some arbitrary iterate θt using
only the property (12) of Ẽ. But throughout, the quantity ε̃ can be replaced by ε̃/p if θt
satisfies (θ>t v1)2 ≥ 1− (3ε̃/λ̃1)2 as per property (13).

Define

Rτ :=

(
θ2

1,τ

1− θ2
1,τ

)1/2

, ri,τ :=
λ̃1θ1,τ

λ̃i|θi,τ |
,

γτ := 1− 1

mini 6=1 |ri,τ |
, δτ :=

ε̃

λ̃1θ2
1,τ

, κ :=
λ̃max

λ̃1

(14)

for τ ∈ {t, t+ 1}.

Proposition B.1

min
i 6=1
|ri,t| ≥

Rt
κ
, γt ≥ 1− κ

Rt
, θ2

1,t =
R2
t

1 +R2
t

.

Proposition B.2

ri,t+1 ≥ r2
i,t ·

1− δt
1 + κδtr2

i,t

=
1− δt

1
r2i,t

+ κδt
, i ∈ [k], (15)

Rt+1 ≥ Rt ·
1− δt

1− γt + δtRt
≥ 1− δt

κ
R2
t

+ δt
. (16)

Proof Let θ̌t+1 := T̃ (I, θt, θt), so θt+1 = θ̌t+1/‖θ̌t+1‖. Since θ̌i,t+1 = T̃ (vi, θt, θt) =
T (vi, θt, θt) + E(vi, θt, θt), we have

θ̌i,t+1 = λ̃iθ
2
i,t + E(vi, θt, θt), i ∈ [k].
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Using the triangle inequality and the fact ‖E(vi, θt, θt)‖ ≤ ε̃, we have

θ̌i,t+1 ≥ λ̃iθ2
i,t − ε̃ ≥ |θi,t| ·

(
λ̃i|θi,t| − ε̃/|θi,t|

)
(17)

and

|θ̌i,t+1| ≤ |λ̃iθ2
i,t|+ ε̃ ≤ |θi,t| ·

(
λ̃i|θi,t|+ ε̃/|θi,t|

)
(18)

for all i ∈ [k]. Combining (17) and (18) gives

ri,t+1 =
λ̃1θ1,t+1

λ̃i|θi,t+1|
=

λ̃1θ̌1,t+1

λ̃i|θ̌i,t+1|
≥ r2

i,t ·
1− δt

1 + ε̃
λ̃iθ2i,t

= r2
i,t ·

1− δt
1 + (λ̃i/λ̃1)δtr2

i,t

≥ r2
i,t ·

1− δt
1 + κδtr2

i,t

.

Moreover, by the triangle inequality and Hölder’s inequality,( n∑
i=2

[θ̌i,t+1]2
)1/2

=

( n∑
i=2

(
λ̃iθ

2
i,t + E(vi, θt, θt)

)2
)1/2

≤
( n∑
i=2

λ̃2
i θ

4
i,t

)1/2

+

( n∑
i=2

E(vi, θt, θt)
2

)1/2

≤ max
i 6=1

λ̃i|θi,t|
( n∑
i=2

θ2
i,t

)1/2

+ ε̃

= (1− θ2
1,t)

1/2 ·
(

max
i 6=1

λ̃i|θi,t|+ ε̃/(1− θ2
1,t)

1/2
)
. (19)

Combining (17) and (19) gives

|θ1,t+1|
(1− θ2

1,t+1)1/2
=

|θ̌1,t+1|(∑n
i=2[θ̌i,t+1]2

)1/2
≥ |θ1,t|

(1− θ2
1,t)

1/2
· λ̃1|θ1,t| − ε̃/|θ1,t|

maxi 6=1 λ̃i|θi,t|+ ε̃/(1− θ2
1,t)

1/2
.

In terms of Rt+1, Rt, γt, and δt, this reads

Rt+1 ≥
1− δt

(1− γt)
(

1−θ21,t
θ21,t

)1/2
+ δt

= Rt ·
1− δt

1− γt + δtRt
=

1− δt
1−γt
Rt

+ δt
≥ 1− δt

κ
R2
t

+ δt

where the last inequality follows from Proposition B.1.

Lemma B.2 Fix any ρ > 1. Assume

0 ≤ δt < min
{ 1

2(1 + 2κρ2)
,

1− 1/ρ

1 + κρ

}
and γt > 2(1 + 2κρ2)δt.

1. If r2
i,t ≤ 2ρ2, then ri,t+1 ≥ |ri,t|

(
1 + γt

2

)
.
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2. If ρ2 < r2
i,t, then ri,t+1 ≥ min{r2

i,t/ρ,
1−δt−1/ρ

κδt
}.

3. γt+1 ≥ min{γt, 1− 1/ρ}.

4. If mini 6=1 r
2
i,t > (ρ(1− δt)− 1)/(κδt), then Rt+1 >

1−δt−1/ρ
κδt

· λ̃min

λ̃1
· 1√

k
.

5. If Rt ≤ 1 + 2κρ2, then Rt+1 ≥ Rt
(
1 + γt

3

)
, θ2

1,t+1 ≥ θ2
1,t, and δt+1 ≤ δt.

Proof Consider two (overlapping) cases depending on r2
i,t.

• Case 1: r2
i,t ≤ 2ρ2. By (15) from Proposition B.2,

ri,t+1 ≥ r2
i,t ·

1− δt
1 + κδtr2

i,t

≥ |ri,t| ·
1

1− γt
· 1− δt

1 + 2κρ2δt
≥ |ri,t|

(
1 +

γt
2

)
where the last inequality uses the assumption γt > 2(1+2κρ2)δt. This proves the first
claim.

• Case 2: ρ2 < r2
i,t. We split into two sub-cases. Suppose r2

i,t ≤ (ρ(1 − δt) − 1)/(κδt).
Then, by (15),

ri,t+1 ≥ r2
i,t ·

1− δt
1 + κδtr2

i,t

≥ r2
i,t ·

1− δt
1 + κδt

ρ(1−δt)−1
κδt

=
r2
i,t

ρ
.

Now suppose instead r2
i,t > (ρ(1− δt)− 1)/(κδt). Then

ri,t+1 ≥
1− δt

κδt
ρ(1−δt)−1 + κδt

=
1− δt − 1/ρ

κδt
. (20)

Observe that if mini 6=1 r
2
i,t ≤ (ρ(1 − δt) − 1)/(κδt), then ri,t+1 ≥ |ri,t| for all i ∈ [k], and

hence γt+1 ≥ γt. Otherwise we have γt+1 > 1 − κδt
1−δt−1/ρ > 1 − 1/ρ. This proves the third

claim.
If mini 6=1 r

2
i,t > (ρ(1 − δt) − 1)/(κδt), then we may apply the inequality (20) from the

second sub-case of Case 2 above to get

Rt+1 =
1(∑

i 6=1(λ̃1/λ̃i)2/r2
i,t+1

)1/2
>

(
1− δt − 1/ρ

κδt

)
· λ̃min

λ̃1

· 1√
k
.

This proves the fourth claim.
Finally, for the last claim, if Rt ≤ 1 + 2κρ2, then by (16) from Proposition B.2 and the

assumption γt > 2(1 + 2κρ2)δt,

Rt+1 ≥ Rt ·
1− δt

1− γt + δtRt
≥ Rt ·

1− γt
2(1+2κρ2)

1− γt/2
≥ Rt

(
1 + γt ·

κρ2

1 + 2κρ2

)
≥ Rt

(
1 +

γt
3

)
.

This in turn implies that θ2
1,t+1 ≥ θ2

1,t via Proposition B.1, and thus δt+1 ≤ δt.
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Lemma B.3 Assume 0 ≤ δt < 1/2 and γt > 0. Pick any β > α > 0 such that

α

(1 + α)(1 + α2)
≥ ε̃

γtλ̃1

,
α

2(1 + α)(1 + β2)
≥ ε̃

λ̃1

.

1. If Rt ≥ 1/α, then Rt+1 ≥ 1/α.

2. If 1/α > Rt ≥ 1/β, then Rt+1 ≥ min{R2
t /(2κ), 1/α}.

Proof Observe that for any c > 0,

Rt ≥
1

c
⇔ θ2

1,t ≥
1

1 + c2
⇔ δt ≤

(1 + c2)ε̃

λ̃1

. (21)

Now consider the following cases depending on Rt.

• Case 1: Rt ≥ 1/α. In this case, we have

δt ≤
(1 + α2)ε̃

λ̃1

≤ αγt
1 + α

by (21) (with c = α) and the condition on α. Combining this with (16) from Propo-
sition B.2 gives

Rt+1 ≥
1− δt

1−γt
Rt

+ δt
≥

1− αγt
1+α

(1− γt)α+ αγt
1+α

=
1

α
.

• Case 2: 1/β ≤ Rt < 1/α. In this case, we have

δt ≤
(1 + β2)ε̃

λ̃1

≤ α

2(1 + α)

by (21) (with c = β) and the conditions on α and β. If δt ≥ 1/(2 +R2
t /κ), then (16)

implies

Rt+1 ≥
1− δt
κ
R2
t

+ δt
≥ 1− 2δt

2δt
≥

1− α
1+α
α

1+α

=
1

α
.

If instead δt < 1/(2 +R2
t /κ), then (16) implies

Rt+1 ≥
1− δt
κ
R2
t

+ δt
>

1− 1
2+R2

t /κ

κ
R2
t

+ 1
2+R2

t /κ

=
R2
t

2κ
.
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B.2.1 Approximate Recovery of a Single Eigenvector

We now state the main result regarding the approximate recovery of a single eigenvector
using the tensor power method on T̃ . Here, we exploit the special properties of the error
Ẽ—both (12) and (13).

Lemma B.4 There exists a universal constant C > 0 such that the following holds. Let
i∗ := arg maxi∈[k] λ̃i|θi,0|. If

ε̃ <
γ0

2(1 + 8κ)
· λ̃min · θ2

i∗,0 and N ≥ C ·
(

log(kκ)

γ0
+ log log

pλ̃i∗

ε̃

)
,

then after t ≥ N iterations of the tensor power method on tensor T̃ as defined in (11) and
satisfying (12) and (13), the final vector θt satisfies

θi∗,t ≥

√
1−

(
3ε̃

pλ̃i∗

)2

, ‖θt − vi∗‖ ≤
4ε̃

pλ̃i∗
, |T̃ (θt, θt, θt)− λ̃i∗ | ≤

(
27κ
( ε̃

pλi∗

)2
+ 2

)
ε̃

p
.

Proof Assume without loss of generality that i∗ = 1. We consider three phases: (i)
iterations before the first time t such that Rt > 1 + 2κρ2 = 1 + 8κ (using ρ := 2), (ii) the
subsequent iterations before the first time t such that Rt ≥ 1/α (where α will be defined
below), and finally (iii) the remaining iterations.

We begin by analyzing the first phase, i.e., the iterates in T1 := {t ≥ 0 : Rt ≤ 1+2κρ2 =
1 + 8κ}. Observe that the condition on ε̃ implies

δ0 =
ε̃

λ̃1θ2
1,0

<
γ0

2(1 + 8κ)
· λ̃min

λ̃1

≤ min

{
γ0

2(1 + 2κρ2)
,

1− 1/ρ

2(1 + 2κρ2)

}
,

and hence the preconditions on δt and γt of Lemma B.2 hold for t = 0. For all t ∈ T1

satisfying the preconditions, Lemma B.2 implies that δt+1 ≤ δt and γt+1 ≥ min{γt, 1−1/ρ},
so the next iteration also satisfies the preconditions. Hence by induction, the preconditions
hold for all iterations in T1. Moreover, for all i ∈ [k], we have

|ri,0| ≥
1

1− γ0
;

and while t ∈ T1: (i) |ri,t| increases at a linear rate while r2
i,t ≤ 2ρ2, and (ii) |ri,t| increases

at a quadratic rate while ρ2 ≤ r2
i,t ≤

1−δt−1/ρ
κδt

. (The specific rates are given, respectively,

in Lemma B.2, claims 1 and 2.) Since 1−δt−1/ρ
κδt

≤ λ̃1
2κε̃ , it follows that mini 6=1 r

2
i,t ≤

1−δt−1/ρ
κδt

for at most
2

γ0
ln

(√
2ρ2

1
1−γ0

)
+ ln

(
ln λ̃1

2κε̃

ln
√

2

)
= O

(
1

γ0
+ log log

λ̃1

ε̃

)
(22)

iterations in T1. As soon as mini 6=1 r
2
i,t >

1−δt−1/ρ
κδt

, we have that in the next iteration,

Rt+1 >
1− δt − 1/ρ

κδt
· λ̃min

λ̃1

· 1√
k
≥ 7√

k
;
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and all the while Rt is growing at a linear rate (given in Lemma B.2, claim 5). Therefore,
there are at most an additional

1 +
3

γ0
ln

(
1 + 8κ

7/
√
k

)
= O

(
log(kκ)

γ0

)
(23)

iterations in T1 over that counted in (22). Therefore, by combining the counts in (22)
and (23), we have that the number of iterations in the first phase satisfies

|T1| = O

(
log log

λ̃1

ε̃
+

log(kκ)

γ0

)
.

We now analyze the second phase, i.e., the iterates in T2 := {t ≥ 0 : t /∈ T1, Rt < 1/α}.
Define

α :=
3ε̃

λ̃1

, β :=
1

1 + 2κρ2
=

1

1 + 8κ
.

Note that for the initial iteration t′ := minT2, we have that Rt′ ≥ 1 + 2κρ2 = 1 + 8κ = 1/β,
and by Proposition B.1, γt′ ≥ 1 − κ/(1 + 8κ) > 7/8. It can be checked that δt, γt, α,
and β satisfy the preconditions of Lemma B.3 for this initial iteration t′. For all t ∈ T2

satisfying these preconditions, Lemma B.3 implies that Rt+1 ≥ min{Rt, 1/α}, θ2
1,t+1 ≥

min{θ2
1,t, 1/(1+α2)} (via Proposition B.1), δt+1 ≤ max{δt, (1+α)2ε̃/λ̃1} (using the definition

of δt), and γt+1 ≥ min{γt, 1 − ακ} (via Proposition B.1). Hence the next iteration t + 1
also satisfies the preconditions, and by induction, so do all iterations in T2. To bound the
number of iterations in T2, observe that Rt increases at a quadratic rate until Rt ≥ 1/α, so

|T2| ≤ ln

(
ln(1/α)

ln((1/β)/(2κ))

)
< ln

(
ln λ̃1

3ε̃

ln 4

)
= O

(
log log

λ̃1

ε̃

)
. (24)

Therefore the total number of iterations before Rt ≥ 1/α is

O

(
log(kκ)

γ0
+ log log

λ̃1

ε̃

)
.

After Rt′′ ≥ 1/α (for t′′ := max(T1 ∪ T2) + 1), we have

θ2
1,t′′ ≥

1/α2

1 + 1/α2
≥ 1− α2 ≥ 1−

(
3ε̃

λ̃1

)2

.

Therefore, the vector θt′′ satisfies the condition for property (13) of Ẽ to hold. Now we
apply Lemma B.3 using ε̃/p in place of ε̃, including in the definition of δt (which we call δt):

δt :=
ε̃

pλ̃1θ2
1,t

;

we also replace α and β with α and β, which we set to

α :=
3ε̃

pλ̃1

, β :=
3ε̃

λ̃1

.
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It can be checked that δt′′ ∈ (0, 1/2), γt′′ ≥ 1− 3ε̃κ/λ1 > 0,

α

(1 + α)(1 + α2)
≥ ε̃

p(1− 3ε̃κ/λ1)λ̃1

≥ ε̃

pγt′′ λ̃1

,
α

2(1 + α)(1 + β
2
)
≥ ε̃

pλ̃1

.

Therefore, the preconditions of Lemma B.3 are satisfied for the initial iteration t′′ in this
final phase, and by the same arguments as before, the preconditions hold for all subsequent
iterations t ≥ t′′. Initially, we have Rt′′ ≥ 1/α ≥ 1/β, and by Lemma B.3, we have that Rt
increases at a quadratic rate in this final phase until Rt ≥ 1/α. So the number of iterations
before Rt ≥ 1/α can be bounded as

ln

(
ln(1/α)

ln((1/β)/(2κ))

)
= ln

(
ln pλ̃1

3ε̃

ln
(
λ1
3ε̃ ·

1
2κ

)) ≤ ln ln
pλ̃1

3ε̃
= O

(
log log

pλ̃1

ε̃

)
.

Once Rt ≥ 1/α, we have

θ2
1,t ≥ 1−

(
3ε̃

pλ̃1

)2

.

Since sign(θ1,t) = r1,t ≥ r2
1,t−1 · (1− δt−1)/(1 + κδt−1r

2
1,t−1) = (1− δt−1)/(1 + κδt−1) > 0 by

Proposition B.2, we have θ1,t > 0. Therefore we can conclude that

‖θt − v1‖ =
√

2(1− θ1,t) ≤

√
2

(
1−

√
1− (3ε̃/(pλ̃1))2

)
≤ 4ε̃/(pλ̃1).

Finally,

|T̃ (θt, θt, θt)− λ̃1| =
∣∣∣∣λ̃1(θ3

1,t − 1) +

k∑
i=2

λ̃iθ
3
i,t + Ẽ(θt, θt, θt)

∣∣∣∣
≤ λ̃1|θ3

1,t − 1|+
k∑
i=2

λ̃i|θi,t|θ2
i,t + ‖Ẽ(I, θt, θt)‖

≤ λ̃1

(
1− θ1,t + |θ1,t(1− θ2

1,t)|
)

+ max
i 6=1

λ̃i|θi,t|
k∑
i=2

θ2
i,t + ‖Ẽ(I, θt, θt)‖

≤ λ̃1

(
1− θ1,t + |θ1,t(1− θ2

1,t)|
)

+ max
i 6=1

λ̃i

√
1− θ2

1,t

k∑
i=2

θ2
i,t + ‖Ẽ(I, θt, θt)‖

= λ̃1

(
1− θ1,t + |θ1,t(1− θ2

1,t)|
)

+ max
i 6=1

λ̃i(1− θ2
1,t)

3/2 + ‖Ẽ(I, θt, θt)‖

≤ λ̃1 · 3
(

3ε̃

pλ̃1

)2

+ κλ̃1 ·
(

3ε̃

pλ̃1

)3

+
ε̃

p

≤ (27κ · (ε̃/pλ̃1)2 + 2)ε̃

p
.

2812



Tensor Decompositions for Learning Latent Variable Models

B.3 Deflation

Lemma B.5 Fix some ε̃ ≥ 0. Let {v1, v2, . . . , vk} be an orthonormal basis for Rk, and
λ1, λ2, . . . , λk ≥ 0 with λmin := mini∈[k] λi. Also, let {v̂1, v̂2, . . . , v̂k} be a set of unit vectors

in Rk (not necessarily orthogonal), λ̂1, λ̂2, . . . , λ̂k ≥ 0 be non-negative scalars, and define

Ei := λiv
⊗3
i − λ̂iv̂

⊗3
i , i ∈ [k].

Pick any t ∈ [k]. If

|λ̂i − λi| ≤ ε̃,
‖v̂i − vi‖ ≤ min{

√
2, 2ε̃/λi}

for all i ∈ [t], then for any unit vector u ∈ Sk−1,

∥∥∥∥ t∑
i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

4(5 + 11ε̃/λmin)2 + 128(1 + ε̃/λmin)2(ε̃/λmin)2

)
ε̃2

t∑
i=1

(u>vi)
2

+ 64(1 + ε̃/λmin)2ε̃2
t∑
i=1

(ε̃/λi)
2 + 2048(1 + ε̃/λmin)2ε̃2

( t∑
i=1

(ε̃/λi)
3

)2

.

In particular, for any ∆ ∈ (0, 1), there exists a constant ∆′ > 0 (depending only on ∆) such
that ε̃ ≤ ∆′λmin/

√
k implies∥∥∥∥ t∑

i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

∆ + 100

t∑
i=1

(u>vi)
2

)
ε̃2.

Proof For any unit vector u and i ∈ [t], the error term

Ei(I, u, u) = λi(u
>vi)

2vi − λ̂i(u>v̂i)2v̂i

lives in span{vi, v̂i}; this space is the same as span{vi, v̂⊥i }, where

v̂⊥i := v̂i − (v>i v̂i)vi

is the projection of v̂i onto the subspace orthogonal to vi. Since ‖v̂i− vi‖2 = 2(1− v>i v̂i), it
follows that

ci := v>i v̂i = 1− ‖v̂i − vi‖2/2 ≥ 0

(the inequality follows from the assumption ‖v̂i−vi‖ ≤
√

2, which in turn implies 0 ≤ ci ≤ 1).
By the Pythagorean theorem and the above inequality for ci,

‖v̂⊥i ‖2 = 1− c2
i ≤ ‖v̂i − vi‖2.

Later, we will also need the following bound, which is easily derived from the above inequal-
ities and the triangle inequality:

|1− c3
i | = |1− ci + ci(1− c2

i )| ≤ 1− ci + |ci(1− c2
i )| ≤ 1.5‖v̂i − vi‖2.
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We now express Ei(I, u, u) in terms of the coordinate system defined by vi and v̂⊥i ,
depicted below. Define

ai := u>vi and bi := u>
(
v̂⊥i /‖v̂⊥i ‖

)
.

(Note that the part of u living in span{vi, v̂⊥i }⊥ is irrelevant for analyzing Ei(I, u, u).) We
have

Ei(I, u, u) = λi(u
>vi)

2vi − λ̂i(u>v̂i)2v̂i

= λia
2
i vi − λ̂i

(
aici + ‖v̂⊥i ‖bi

)2(
civi + v̂⊥i

)
= λia

2
i vi − λ̂i

(
a2
i c

2
i + 2‖v̂⊥i ‖aibici + ‖v̂⊥i ‖2b2i

)
civi − λ̂i

(
aici + ‖v̂⊥i ‖bi

)2
v̂⊥i

=
(

(λi − λ̂ic3
i )a

2
i − 2λ̂i‖v̂⊥i ‖aibic2

i − λ̂i‖v̂⊥i ‖2b2i ci
)

︸ ︷︷ ︸
=:Ai

vi − λ̂i‖v̂⊥i ‖
(
aici + ‖v̂⊥i ‖bi

)2︸ ︷︷ ︸
=:Bi

(
v̂⊥i /‖v̂⊥i ‖

)
= Aivi −Bi

(
v̂⊥i /‖v̂⊥i ‖

)
.

The overall error can also be expressed in terms of the Ai and Bi:∥∥∥∥ t∑
i=1

Ei(I, u, u)

∥∥∥∥2

2

=

∥∥∥∥ t∑
i=1

Aivi −
t∑
i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖)

∥∥∥∥2

2

≤ 2

∥∥∥∥ t∑
i=1

Aivi

∥∥∥∥2

+ 2

∥∥∥∥ t∑
i=1

Bi(v̂
⊥
i /‖v̂⊥i ‖)

∥∥∥∥2

2

≤ 2

t∑
i=1

A2
i + 2

( t∑
i=1

|Bi|
)2

(25)

where the first inequality uses the fact (x + y)2 ≤ 2(x2 + y2) and the triangle inequality,
and the second inequality uses the orthonormality of the vi and the triangle inequality.

It remains to bound A2
i and |Bi| in terms of |ai|, λi, and ε̃. The first term, A2

i , can be
bounded using the triangle inequality and the various bounds on |λi − λ̂i|, ‖v̂i − vi‖, ‖v̂⊥i ‖,
and ci:

|Ai| ≤ (|λi − λ̂i|c3
i + λi|c3

i − 1|)a2
i + 2(λi + |λi − λ̂i|)‖v̂⊥i ‖|aibi|c2

i + (λi + |λi − λ̂i|)‖v̂⊥i ‖2b2i ci
≤ (|λi − λ̂i|+ 1.5λi‖v̂i − vi‖2 + 2(λi + |λi − λ̂i|)‖v̂i − vi‖)|ai|+ (λi + |λi − λ̂i|)‖v̂i − vi‖2

≤ (ε̃+ 7ε̃2/λi + 4ε̃+ 4ε̃2/λi)|ai|+ 4ε̃2/λi + ε̃3/λ2
i

= (5 + 11ε̃/λi)ε̃|ai|+ 4(1 + ε̃/λi)ε̃
2/λi,

and therefore (via (x+ y)2 ≤ 2(x2 + y2))

A2
i ≤ 2(5 + 11ε̃/λi)

2ε̃2a2
i + 32(1 + ε̃/λi)

2ε̃4/λ2
i .

The second term, |Bi|, is bounded similarly:

|Bi| ≤ 2(λi + |λi − λ̂i|)‖v̂⊥i ‖2(a2
i + ‖v̂⊥i ‖2)

≤ 2(λi + |λi − λ̂i|)‖v̂i − vi‖2(a2
i + ‖v̂i − vi‖2)

≤ 8(1 + ε̃/λi)(ε̃
2/λi)a

2
i + 32(1 + ε̃/λi)ε̃

4/λ3
i .
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Therefore, using the inequality from (25) and again (x+ y)2 ≤ 2(x2 + y2),∥∥∥∥ t∑
i=1

Ei(I, u, u)

∥∥∥∥2

2

≤ 2

t∑
i=1

A2
i + 2

( t∑
i=1

|Bi|
)2

≤ 4(5 + 11ε̃/λmin)2ε̃2
t∑
i=1

a2
i + 64(1 + ε̃/λmin)2ε̃2

t∑
i=1

(ε̃/λi)
2

+ 2

(
8(1 + ε̃/λmin)(ε̃2/λmin)

t∑
i=1

a2
i + 32(1 + ε̃/λmin)ε̃

t∑
i=1

(ε̃/λi)
3

)2

≤ 4(5 + 11ε̃/λmin)2ε̃2
t∑
i=1

a2
i + 64(1 + ε̃/λmin)2ε̃2

t∑
i=1

(ε̃/λi)
2

+ 128(1 + ε̃/λmin)2(ε̃/λmin)2ε̃2
t∑
i=1

a2
i

+ 2048(1 + ε̃/λmin)2ε̃2
( t∑
i=1

(ε̃/λi)
3

)2

=

(
4(5 + 11ε̃/λmin)2 + 128(1 + ε̃/λmin)2(ε̃/λmin)2

)
ε̃2

t∑
i=1

a2
i

+ 64(1 + ε̃/λmin)2ε̃2
t∑
i=1

(ε̃/λi)
2 + 2048(1 + ε̃/λmin)2ε̃2

( t∑
i=1

(ε̃/λi)
3

)2

.

B.4 Proof of the Main Theorem

Theorem B.1 Let T̂ = T + E ∈ Rk×k×k, where T is a symmetric tensor with orthogonal
decomposition T =

∑k
i=1 λiv

⊗3
i where each λi > 0, {v1, v2, . . . , vk} is an orthonormal basis,

and E has operator norm ε := ‖E‖. Define λmin := min{λi : i ∈ [k]}, and λmax := max{λi :
i ∈ [k]}. There exists universal constants C1, C2, C3 > 0 such that the following holds. Pick
any η ∈ (0, 1), and suppose

ε ≤ C1 ·
λmin

k
, N ≥ C2 ·

(
log(k) + log log

(λmax

ε

))
,

and√
ln(L/ log2(k/η))

ln(k)
·

(
1− ln(ln(L/ log2(k/η))) + C3

4 ln(L/ log2(k/η))
−

√
ln(8)

ln(L/ log2(k/η))

)

≥ 1.02

(
1 +

√
ln(4)

ln(k)

)
.
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(Note that the condition on L holds with L = poly(k) log(1/η).) Suppose that Algorithm 1
is iteratively called k times, where the input tensor is T̂ in the first call, and in each
subsequent call, the input tensor is the deflated tensor returned by the previous call. Let
(v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k) be the sequence of estimated eigenvector/eigenvalue pairs re-
turned in these k calls. With probability at least 1− η, there exists a permutation π on [k]
such that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j | ≤ 5ε, ∀j ∈ [k],

and ∥∥∥∥T − k∑
j=1

λ̂j v̂
⊗3
j

∥∥∥∥ ≤ 55ε.

Proof We prove by induction that for each i ∈ [k] (corresponding to the i-th call to
Algorithm 1), with probability at least 1 − iη/k, there exists a permutation π on [k] such
that the following assertions hold.

1. For all j ≤ i, ‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j) and |λπ(j) − λ̂j | ≤ 12ε.

2. The error tensor

Ẽi+1 :=

(
T̂ −

∑
j≤i

λ̂j v̂
⊗3
j

)
−
∑
j≥i+1

λπ(j)v
⊗3
π(j) = E +

∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

)
satisfies

‖Ẽi+1(I, u, u)‖ ≤ 56ε, ∀u ∈ Sk−1; (26)

‖Ẽi+1(I, u, u)‖ ≤ 2ε, ∀u ∈ Sk−1 s.t. ∃j ≥ i+ 1 � (u>vπ(j))
2 ≥ 1− (168ε/λπ(j))

2.

(27)

We actually take i = 0 as the base case, so we can ignore the first assertion, and just observe
that for i = 0,

Ẽ1 = T̂ −
k∑
j=1

λiv
⊗3
i = E.

We have ‖Ẽ1‖ = ‖E‖ = ε, and therefore the second assertion holds.

Now fix some i ∈ [k], and assume as the inductive hypothesis that, with probability at
least 1 − (i − 1)η/k, there exists a permutation π such that two assertions above hold for
i− 1 (call this Eventi−1). The i-th call to Algorithm 1 takes as input

T̃i := T̂ −
∑
j≤i−1

λ̂j v̂
⊗3
j ,

which is intended to be an approximation to

Ti :=
∑
j≥i

λπ(j)v
⊗3
π(j).
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Observe that
T̃i − Ti = Ẽi,

which satisfies the second assertion in the inductive hypothesis. We may write Ti =∑k
l=1 λ̃lv

⊗3
l where λ̃l = λl whenever π−1(l) ≥ i, and λ̃l = 0 whenever π−1(l) ≤ i − 1. This

form is used when referring to T̃ or the λ̃i in preceding lemmas (in particular, Lemma B.1
and Lemma B.4).

By Lemma B.1, with conditional probability at least 1−η/k given Eventi−1, at least one

of θ
(τ)
0 for τ ∈ [L] is γ-separated relative to π(jmax), where jmax := arg maxj≥i λπ(j), (for

γ = 0.01; call this Event′i; note that the application of Lemma B.1 determines C3). Therefore
Pr[Eventi−1 ∩ Event′i] = Pr[Event′i|Eventi−1] Pr[Eventi−1] ≥ (1 − η/k)(1 − (i − 1)η/k) ≥
1 − iη/k. It remains to show that Eventi−1 ∩ Event′i ⊆ Eventi; so henceforth we condition
on Eventi−1 ∩ Event′i.

Set

C1 := min
{

(56 · 9 · 102)−1, (100 · 168)−1,∆′ from Lemma B.5 with ∆ = 1/50
}
. (28)

For all τ ∈ [L] such that θ
(τ)
0 is γ-separated relative to π(jmax), we have (i) |θ(τ)

jmax,0
| ≥ 1/

√
k,

and (ii) that by Lemma B.4 (using ε̃/p := 2ε, κ := 1, and i∗ := π(jmax), and providing C2),

|T̃i(θ(τ)
N , θ

(τ)
N , θ

(τ)
N )− λπ(jmax)| ≤ 5ε

(notice by definition that γ ≥ 1/100 implies γ0 ≥ 1 − /(1 + γ) ≥ 1/101, thus it follows
from the bounds on the other quantities that ε̃ = 2pε ≤ 56C1 · λmin

k < γ0
2(1+8κ) · λ̃min · θ2

i∗,0 as

necessary). Therefore θN := θ
(τ∗)
N must satisfy

T̃i(θN , θN , θN ) = max
τ∈[L]

T̃i(θ
(τ)
N , θ

(τ)
N , θ

(τ)
N ) ≥ max

j≥i
λπ(j) − 5ε = λπ(jmax) − 5ε.

On the other hand, by the triangle inequality,

T̃i(θN , θN , θN ) ≤
∑
j≥i

λπ(j)θ
3
π(j),N + |Ẽi(θN , θN , θN )|

≤
∑
j≥i

λπ(j)|θπ(j),N |θ2
π(j),N + 56ε

≤ λπ(j∗)|θπ(j∗),N |+ 56ε

where j∗ := arg maxj≥i λπ(j)|θπ(j),N |. Therefore

λπ(j∗)|θπ(j∗),N | ≥ λπ(jmax) − 5ε− 56ε ≥ 4

5
λπ(jmax).

Squaring both sides and using the fact that θ2
π(j∗),N + θ2

π(j),N ≤ 1 for any j 6= j∗,

(
λπ(j∗)θπ(j∗),N

)2 ≥ 16

25

(
λπ(jmax)θπ(j∗),N

)2
+

16

25

(
λπ(jmax)θπ(j),N

)2
≥ 16

25

(
λπ(j∗)θπ(j∗),N

)2
+

16

25

(
λπ(j)θπ(j),N

)2
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which in turn implies

λπ(j)|θπ(j),N | ≤
3

4
λπ(j∗)|θπ(j∗),N |, j 6= j∗.

This means that θN is (1/4)-separated relative to π(j∗). Also, observe that

|θπ(j∗),N | ≥
4

5
·
λπ(jmax)

λπ(j∗)
≥ 4

5
,

λπ(jmax)

λπ(j∗)
≤ 5

4
.

Therefore by Lemma B.4 (using ε̃/p := 2ε, γ := 1/4, and κ := 5/4), executing another N
power iterations starting from θN gives a vector θ̂ that satisfies

‖θ̂ − vπ(j∗)‖ ≤
8ε

λπ(j∗)
, |λ̂− λπ(j∗)| ≤ 5ε.

Since v̂i = θ̂ and λ̂i = λ̂, the first assertion of the inductive hypothesis is satisfied, as we
can modify the permutation π by swapping π(i) and π(j∗) without affecting the values of
{π(j) : j ≤ i− 1} (recall j∗ ≥ i).

We now argue that Ẽi+1 has the required properties to complete the inductive step. By
Lemma B.5 (using ε̃ := 5ε and ∆ := 1/50, the latter providing one upper bound on C1 as
per (28)), we have for any unit vector u ∈ Sk−1,∥∥∥∥∥

(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤
(

1/50 + 100
i∑

j=1

(u>vπ(j))
2

)1/2

5ε ≤ 55ε. (29)

Therefore by the triangle inequality,

‖Ẽi+1(I, u, u)‖ ≤ ‖E(I, u, u)‖+

∥∥∥∥∥
(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤ 56ε.

Thus the bound (26) holds.
To prove that (27) holds, pick any unit vector u ∈ Sk−1 such that there exists j′ ≥ i+ 1

with (u>vπ(j′))
2 ≥ 1− (168ε/λπ(j′))

2. We have, via the second bound on C1 in (28) and the

corresponding assumed bound ε ≤ C1 · λmin
k ,

100

i∑
j=1

(u>vπ(j))
2 ≤ 100

(
1− (u>vπ(j′))

2
)
≤ 100

(
168ε

λπ(j′)

)2

≤ 1

50
,

and therefore (
1/50 + 100

i∑
j=1

(u>vπ(j))
2

)1/2

5ε ≤ (1/50 + 1/50)1/25ε ≤ ε.

By the triangle inequality, we have ‖Ẽi+1(I, u, u)‖ ≤ 2ε. Therefore (27) holds, so the
second assertion of the inductive hypothesis holds. Thus Eventi−1 ∩ Event′i ⊆ Eventi, and
Pr[Eventi] ≥ Pr[Eventi−1 ∩Event′i] ≥ 1− iη/k. We conclude that by the induction principle,
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there exists a permutation π such that two assertions hold for i = k, with probability at
least 1− η.

From the last induction step (i = k), it is also clear from (29) that ‖T −
∑k

j=1 λ̂j v̂
⊗3
j ‖ ≤

55ε (in Eventk−1 ∩ Event′k). This completes the proof of the theorem.

Appendix C. Variant of Robust Power Method that uses a Stopping
Condition

In this section we analyze a variant of Algorithm 1 that uses a stopping condition. The
variant is described in Algorithm 2. The key difference is that the inner for-loop is repeated
until a stopping condition is satisfied (rather than explicitly L times). The stopping condi-
tion ensures that the power iteration is converging to an eigenvector, and it will be satisfied
within poly(k) random restarts with high probability. The condition depends on one new
quantity, r, which should be set to r := k − # deflation steps so far (i.e., the first call to
Algorithm 2 uses r = k, the second call uses r = k − 1, and so on).

Algorithm 2 Robust tensor power method with stopping condition

input symmetric tensor T̃ ∈ Rk×k×k, number of iterations N , expected rank r.
output the estimated eigenvector/eigenvalue pair; the deflated tensor.

1: repeat
2: Draw θ0 uniformly at random from the unit sphere in Rk.
3: for t = 1 to N do
4: Compute power iteration update

θt :=
T̃ (I, θt−1, θt−1)

‖T̃ (I, θt−1, θt−1)‖
(30)

5: end for
6: until the following stopping condition is satisfied:

|T̃ (θN , θN , θN )| ≥ max

{
1

2
√
r
‖T̃‖F ,

1

1.05
‖T̃ (I, I, θN )‖F

}
.

7: Do N power iteration updates (30) starting from θN to obtain θ̂, and set λ̂ := T̃ (θ̂, θ̂, θ̂).
8: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the deflated tensor T̃ − λ̂ θ̂⊗3.

C.1 Stopping Condition Analysis

For a matrix A, we use ‖A‖F := (
∑

i,j A
2
i,j)

1/2 to denote its Frobenius norm. For a third-

order tensor A, we use ‖A‖F := (
∑

i ‖A(I, I, ei)‖2F )1/2 = (
∑

i ‖A(I, I, vi)‖2F )1/2.

Define T̃ as before in (11):

T̃ :=

k∑
i=1

λ̃iv
⊗3
i + Ẽ.
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We assume Ẽ is a symmetric tensor such that, for some constant p > 1,

‖Ẽ(I, u, u)‖ ≤ ε̃, ∀u ∈ Sk−1;

‖Ẽ(I, u, u)‖ ≤ ε̃/p, ∀u ∈ Sk−1 s.t. (u>v1)2 ≥ 1− (3ε̃/λ̃1)2;

‖Ẽ‖F ≤ ε̃F .

Assume that not all λ̃i are zero, and define

λ̃min := min{λ̃i : i ∈ [k], λ̃i > 0}, λ̃max := max{λ̃i : i ∈ [k]},

` := |{i ∈ [k] : λ̃i > 0}|, λ̃avg :=

(
1

`

k∑
i=1

λ̃2
i

)1/2

.

We show in Lemma C.1 that if the stopping condition is satisfied by a vector θ, then
it must be close to an eigenvector of T̃ . Then in Lemma C.2, we show that the stopping
condition is satisfied by θN when θ0 is a good starting point (as per the conditions of
Lemma B.4).

Lemma C.1 Fix any vector θ =
∑k

i=1 θivi, and let i∗ := arg maxi∈[k] λ̃i|θi|. Assume that

` ≥ 1 and that for some α ∈ (0, 1/20) and β ≥ 2α/
√
k,

ε̃ ≤ α · λ̃min√
k
, ε̃F ≤

√
`
(1

2
− α

β
√
k

)
· λ̃avg.

If the stopping condition

|T̃ (θ, θ, θ)| ≥ max

{
β√
`
‖T̃‖F ,

1

1 + α
‖T̃ (I, I, θ)‖F

}
(31)

holds, then

1. λ̃i∗ ≥ βλ̃avg/2 and λ̃i∗ |θi∗ | > 0;

2. maxi 6=i∗ λ̃i|θi| ≤
√

7α · λ̃i∗ |θi∗ |;

3. θi∗ ≥ 1− 2α.

Proof Without loss of generality, assume i∗ = 1. First, we claim that λ̃1|θ1| > 0. By the
triangle inequality,

|T̃ (θ, θ, θ)| ≤
k∑
i=1

λ̃iθ
3
i + |Ẽ(θ, θ, θ)| ≤

k∑
i=1

λ̃i|θi|θ2
i + ε̃ ≤ λ̃1|θ1|+ ε̃.
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Moreover,

‖T̃‖F ≥
∥∥∥∥ k∑
i=1

λ̃iv
⊗3
i

∥∥∥∥
F

− ‖Ẽ‖F

=

( k∑
j=1

∥∥∥∥ k∑
i=1

λ̃iviv
>
i (v>i vj)

∥∥∥∥2

F

)1/2

− ‖Ẽ‖F

=

( k∑
j=1

∥∥∥∥λ̃jvjv>j ∥∥∥∥2

F

)1/2

− ‖Ẽ‖F

=

( k∑
j=1

λ̃2
j

)1/2

− ‖Ẽ‖F

≥
√
`λ̃avg − ε̃F .

By assumption, |T̃ (θ, θ, θ)| ≥ (β/
√
`)‖T̃‖F , so

λ̃1|θ1| ≥ βλ̃avg −
β√
`
ε̃F − ε̃ ≥ βλ̃avg − β

(1

2
− α

β
√
k

)
λ̃avg −

α√
k
λ̃min ≥

β

2
λ̃avg

where the second inequality follows from the assumptions on ε̃ and ε̃F . Since β > 0, λ̃avg > 0,
and |θ1| ≤ 1, it follows that

λ̃1 ≥
β

2
λ̃avg, λ̃1|θ1| > 0.

This proves the first claim.

Now we prove the second claim. Define M̃ := T̃ (I, I, θ) =
∑k

i=1 λ̃iθiviv
>
i + Ẽ(I, I, θ) (a

symmetric k × k matrix), and consider its eigenvalue decomposition

M̃ =
k∑
i=1

φiuiu
>
i

where, without loss of generality, |φ1| ≥ |φ2| ≥ · · · ≥ |φk| and {u1, u2, . . . , uk} is an or-
thonormal basis. Let M :=

∑k
i=1 λ̃iθiviv

>
i , so M̃ = M + Ẽ(I, I, θ). Note that the λ̃i|θi| and

|φi| are the singular values of M and M̃ , respectively. We now show that the assumption
on |T̃ (θ, θ, θ)| implies that almost all of the energy in M is contained in its top singular
component.

By Weyl’s theorem,

|φ1| ≤ λ̃1|θ1|+ ‖M̃ −M‖ ≤ λ̃1|θ1|+ ε̃.

Next, observe that the assumption ‖T̃ (I, I, θ)‖F ≤ (1 + α)T̃ (θ, θ, θ) is equivalent to (1 +
α)θ>M̃θ ≥ ‖M̃‖F . Therefore, using the fact that |φ1| = maxu∈Sk−1 |u>M̃u|, the triangle
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inequality, and the fact ‖A‖F ≤
√
k‖A‖ for any matrix A ∈ Rk×k,

(1 + α)|φ1| ≥ (1 + α)θ>M̃θ ≥ ‖M̃‖F (32)

≥
∥∥∥∥ k∑
i=1

λ̃iθiviv
>
i

∥∥∥∥
F

−
∥∥Ẽ(I, I, θ)

∥∥
F

≥
( k∑
i=1

λ̃2
i θ

2
i

)1/2

−
√
k‖Ẽ(I, I, θ)‖

≥
( k∑
i=1

λ̃2
i θ

2
i

)1/2

−
√
kε̃.

Combining these bounds on |φ1| gives

λ̃1|θ1|+ ε̃ ≥ 1

1 + α

[( k∑
i=1

λ̃2
i θ

2
i

)1/2

−
√
kε̃

]
. (33)

The assumption ε̃ ≤ αλ̃min/
√
k implies that

√
kε̃ ≤ αλ̃min ≤ α

( k∑
i=1

λ̃2
i θ

2
i

)1/2

.

Moreover, since λ̃1|θ1| > 0 (by the first claim) and λ̃1|θ1| = maxi∈[k] λ̃i|θi|, it follows that

λ̃1|θ1| ≥ λ̃min max
i∈[k]
|θi| ≥

λ̃min√
k
, (34)

so we also have
ε̃ ≤ αλ̃1|θ1|.

Applying these bounds on ε̃ to (33), we obtain

λ̃1|θ1| ≥
1− α

(1 + α)2

( k∑
i=1

λ̃2
i θ

2
i

)1/2

≥ 1− α
(1 + α)2

(
λ̃2

1θ
2
1 + max

i 6=1
λ̃2
i θ

2
i

)1/2

which in turn implies (for α ∈ (0, 1/20))

max
i 6=1

λ̃2
i θ

2
i ≤

(
(1 + α)4

(1− α)2
− 1

)
· λ̃2

1θ
2
1 ≤ 7α · λ̃2

1θ
2
1.

Therefore maxi 6=1 λ̃i|θi| ≤
√

7α · λ̃1|θ1|, proving the second claim.
Now we prove the final claim. This is done by (i) showing that θ has a large projection

onto u1, (ii) using an SVD perturbation argument to show that ±u1 is close to v1, and (iii)
concluding that θ has a large projection onto v1.

We begin by showing that (u>1 θ)
2 is large. Observe that from (32), we have (1+α)2φ2

1 ≥
‖M̃‖2F ≥ φ2

1 + maxi 6=1 φ
2
i , and therefore

max
i 6=1
|φi| ≤

√
2α+ α2 · |φ1|.
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Moreover, by the triangle inequality,

|θ>M̃θ| ≤
k∑
i=1

|φi|(u>i θ)2

≤ |φ1|(u>1 θ)2 + max
i 6=1
|φi|
(
1− (u>1 θ)

2
)

= (u>1 θ)
2
(
|φ1| −max

i 6=1
|φi|
)

+ max
i 6=1
|φi|.

Using (32) once more, we have |θ>M̃θ| ≥ ‖M̃‖F /(1 + α) ≥ |φ1|/(1 + α), so

(u>1 θ)
2 ≥

1
1+α −maxi 6=1

|φi|
|φ1|

1−maxi 6=1
|φi|
|φ1|

= 1− α

(1 + α)
(

1−maxi 6=1
|φi|
|φ1|

) ≤ 1− α

(1 + α)(1−
√

2α+ α2)
.

Now we show that (u>1 v1)2 is also large. By the second claim, the assumption on ε̃, and (34),

λ̃1|θ1| −max
i 6=1

λ̃i|θi| > (1−
√

7α) · λ̃1|θ1| ≥ (1−
√

7α) · λ̃min/
√
k.

Combining this with Weyl’s theorem gives

|φ1| −max
i 6=1

λ̃i|θi| ≥ λ̃1|θ1| − ε̃−max
i 6=1

λ̃i|θi| ≥ (1− (α+
√

7α)) · λ̃min/
√
k,

so we may apply Wedin’s theorem to obtain

(u>1 v1)2 ≥ 1−
(

‖Ẽ(I, I, θ)‖
|φ1| −maxi 6=1 λ̃i|θi|

)2

≥ 1−
(

α

1− (α+
√

7α)

)2

.

It remains to show that θ1 = v>1 θ is large. Indeed, by the triangle inequality, Cauchy-
Schwarz, and the above inequalities on (u>1 v1)2 and (u>1 θ)

2,

|v>1 θ| =
∣∣∣∣ k∑
i=1

(u>i v1)(u>i θ)

∣∣∣∣
≥ |u>1 v1||u>1 θ| −

k∑
i=2

|u>i v1||u>i θ|

≥ |u>1 v1||u>1 θ| −
( k∑
i=2

(u>i v1)2

)1/2( k∑
i=2

(u>i θ)
2

)1/2

= |u>1 v1||u>1 θ| −
((

1− (u>i v1)2
)(

1− (u>i θ)
2
))1/2

≥

((
1− α

(1 + α)(1−
√

2α+ α2)

)(
1−

(
α

1− (α+
√

7α)

)2))1/2

−

(
α

(1 + α)(1−
√

2α+ α2)
·
(

α

1− (α+
√

7α)

)2
)1/2

≥ 1− 2α
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for α ∈ (0, 1/20). Moreover, by assumption we have T̃ (θ, θ, θ) ≥ 0, and

T̃ (θ, θ, θ) =

k∑
i=1

λ̃iθ
3
i + Ẽ(θ, θ, θ)

= λ̃1θ
3
1 +

k∑
i=2

λ̃iθ
3
i + Ẽ(θ, θ, θ)

≤ λ̃1θ
3
1 + max

i 6=1
λ̃i|θi|

k∑
i=2

θ2
i + ε̃

≤ λ̃1θ
3
1 +
√

7αλ̃1|θ1|(1− θ2
1) + ε̃ (by the second claim)

≤ λ̃1|θ1|3
(

sign(θ1) +

√
7α

(1− 2α)2
−
√

7α+
α

(1− 2α)3

)
(since |θ1| ≥ 1− 2α)

< λ̃1|θ1|3
(

sign(θ1) + 1
)

so sign(θ1) > −1, meaning θ1 > 0. Therefore θ1 = |θ1| ≥ 1 − 2α. This proves the final
claim.

Lemma C.2 Fix α, β ∈ (0, 1). Assume λ̃i∗ = maxi∈[k] λ̃i and

ε̃ ≤ min

{
α

5
√
k + 7

,
1− β

7

}
· λ̃i∗ , ε̃F ≤

√
` · 1− β

2β
· λ̃i∗ .

To the conclusion of Lemma B.4, it can be added that the stopping condition (31) is satisfied
by θ = θt.

Proof Without loss of generality, assume i∗ = 1. By the triangle inequality and Cauchy-
Schwarz,

‖T̃ (I, I, θt)‖F ≤ λ̃1|θ1,t|+
∑
i 6=1

λi|θi,t|+ ‖Ẽ(I, I, θt)‖F ≤ λ̃1|θ1,t|+ λ̃1

√
k

(∑
i 6=1

θ2
i,t

)1/2

+
√
kε̃

≤ λ̃1|θ1,t|+
3
√
kε̃

p
+
√
kε̃.

where the last step uses the fact that θ2
1,t ≥ 1− (3ε̃/(pλ̃1))2. Moreover,

T̃ (θt, θt, θt) ≥ λ̃1 −
(

27
( ε̃

pλ1

)2
+ 2

)
ε̃

p
.

Combining these two inequalities with the assumption on ε̃ implies that

T̃ (θt, θt, θt) ≥
1

1 + α
‖T̃ (I, I, θt)‖F .
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Using the definition of the tensor Frobenius norm, we have

1√
`
‖T̃‖F ≤

1√
`

∥∥∥∥ k∑
i=1

λ̃iv
⊗3
i

∥∥∥∥
F

+
1√
`
‖Ẽ‖F = λ̃avg +

1√
`
‖Ẽ‖F ≤ λ̃avg +

1√
`
ε̃F .

Combining this with the above inequality implies

T̃ (I, I, θt) ≥
β√
`
‖T̃‖F .

Therefore the stopping condition (31) is satisfied.

C.2 Sketch of Analysis of Algorithm 2

The analysis of Algorithm 2 is very similar to the proof of Theorem 5.1 for Algorithm 1, so
here we just sketch the essential differences.

First, the guarantee afforded to Algorithm 2 is somewhat different than Theorem 5.1.
Specifically, it is of the following form: (i) under appropriate conditions, upon termination,
the algorithm returns an accurate decomposition, and (ii) the algorithm terminates after
poly(k) random restarts with high probability.

The conditions on ε and N are the same (but for possibly different universal constants
C1, C2). In Lemma C.1 and Lemma C.2, there is reference to a condition on the Frobenius
norm of E, but we may use the inequality ‖E‖F ≤ k‖E‖ ≤ kε so that the condition is
subsumed by the ε condition.

Now we outline the differences relative to the proof of Theorem 5.1. The basic structure
of the induction argument is the same. In the induction step, we argue that (i) if the
stopping condition is satisfied, then by Lemma C.1 (with α = 0.05 and β = 1/2), we have
a vector θN such that, for some j∗ ≥ i,

1. λπ(j∗) ≥ λπ(jmax)/(4
√
k);

2. θN is (1/4)-separated relative to π(j∗);

3. θπ(j∗),N ≥ 4/5;

and (ii) the stopping condition is satisfied within poly(k) random restarts (via Lemma B.1
and Lemma C.2) with high probability. We now invoke Lemma B.4 to argue that executing
another N power iterations starting from θN gives a vector θ̂ that satisfies

‖θ̂ − vπ(j∗)‖ ≤
8ε

λπ(j∗)
, |λ̂− λπ(j∗)| ≤ 5ε.

The main difference here, relative to the proof of Theorem 5.1, is that we use κ := 4
√
k

(rather than κ = O(1)), but this ultimately leads to the same guarantee after taking into
consideration the condition ε ≤ C1λmin/k. The remainder of the analysis is essentially the
same as the proof of Theorem 5.1.
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Appendix D. Simultaneous Diagonalization for Tensor Decomposition

As discussed in the introduction, another standard approach to certain tensor decomposition
problems is to simultaneously diagonalize a collection of similar matrices obtained from the
given tensor. We now examine this approach in the context of our latent variable models,
where

M2 =
k∑
i=1

wi µi ⊗ µi

M3 =

k∑
i=1

wi µi ⊗ µi ⊗ µi.

Let V := [µ1|µ2| · · · |µk] and D(η) := diag(µ>1 η, µ
>
2 η, . . . , µ

>
k η), so

M2 = V diag(w1, w2, . . . wk)V
>

M3(I, I, η) = V diag(w1, w2, . . . wk)D(η)V >

Thus, the problem of determining the µi can be cast as a simultaneous diagonalization
problem: find a matrix X such that X>M2X and X>M3(I, I, η)X (for all η) are diagonal.
It is easy to see that if the µi are linearly independent, then the solution X> = V † is unique
up to permutation and rescaling of the columns.

With exact moments, a simple approach is as follows. Assume for simplicity that d = k,
and define

M(η) := M3(I, I, η)M−1
2 = V D(η)V −1.

Observe that if the diagonal entries of D(η) are distinct, then the eigenvectors of M(η) are
the columns of V (up to permutation and scaling). This criterion is satisfied almost surely
when η is chosen randomly from a continuous distribution over Rk.

The above technique (or some variant thereof) was previously used to give the efficient
learnability results, where the computational and sample complexity bounds were polyno-
mial in relevant parameters of the problem, including the rank parameter k (Mossel and
Roch, 2006; Anandkumar et al., 2012c,a; Hsu and Kakade, 2013). However, the specific
polynomial dependence on k was rather large due to the need for the diagonal entries of
D(η) to be well-separated. This is because with finite samples, M(η) is only known up
to some perturbation, and thus the sample complexity bound depends inversely in (some
polynomial of) the separation of the diagonal entries of D(η). With η drawn uniformly
at random from the unit sphere in Rk, the separation was only guaranteed to be roughly
1/k2.5 (Anandkumar et al., 2012c) (while this may be a loose estimate, the instability is ob-
served in practice). In contrast, using the tensor power method to approximately recover V
(and hence the model parameters µi and wi) requires only a mild, lower-order dependence
on k.

It should be noted, however, that the use of a single random choice of η is quite restric-
tive, and it is easy to see that a simultaneous diagonalization of M(η) for several choices
of η can be beneficial. While the uniqueness of the eigendecomposition of M(η) is only
guaranteed when the diagonal entries of D(η) are distinct, the simultaneous diagonaliza-
tion of M(η(1)),M(η(2)), . . . ,M(η(m)) for vectors η(1), η(2), . . . , η(m) is unique as long as the
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columns of 
µ>1 η

(1) µ>2 η
(1) · · · µ>k η

(1)

µ>1 η
(2) µ>2 η

(2) · · · µ>k η
(2)

...
...

. . .
...

µ>1 η
(m) µ>2 η

(m) · · · µ>k η
(m)


are distinct (i.e., for each pair of column indices i, j, there exists a row index r such that
the (r, i)-th and (r, j)-th entries are distinct). This is a much weaker requirement for
uniqueness, and therefore may translate to an improved perturbation analysis. In fact, using
the techniques discussed in Section 4.3, we may even reduce the problem to an orthogonal
simultaneous diagonalization, which may be easier to obtain. Furthermore, a number of
robust numerical methods for (approximately) simultaneously diagonalizing collections of
matrices have been proposed and used successfully in the literature (e.g., Bunse-Gerstner
et al., 1993; Cardoso and Souloumiac, 1993; Cardoso, 1994; Cardoso and Comon, 1996;
Ziehe et al., 2004). Another alternative and a more stable approach compared to full
diagonalization is a Schur-like method which finds a unitary matrix U which simultaneously
triangularizes the respective matrices (Corless et al., 1997). It is an interesting open question
whether these techniques can yield similar improved learnability results and also enjoy the
attractive computational properties of the tensor power method.
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Abstract
We consider the problem of estimating Shannon’s entropy H from discrete data, in cases where
the number of possible symbols is unknown or even countably infinite. The Pitman-Yor process, a
generalization of Dirichlet process, provides a tractable prior distribution over the space of countably
infinite discrete distributions, and has found major applications in Bayesian non-parametric statistics
and machine learning. Here we show that it provides a natural family of priors for Bayesian entropy
estimation, due to the fact that moments of the induced posterior distribution over H can be
computed analytically. We derive formulas for the posterior mean (Bayes’ least squares estimate)
and variance under Dirichlet and Pitman-Yor process priors. Moreover, we show that a fixed
Dirichlet or Pitman-Yor process prior implies a narrow prior distribution over H, meaning the
prior strongly determines the entropy estimate in the under-sampled regime. We derive a family of
continuous measures for mixing Pitman-Yor processes to produce an approximately flat prior over
H. We show that the resulting “Pitman-Yor Mixture” (PYM) entropy estimator is consistent for a
large class of distributions. Finally, we explore the theoretical properties of the resulting estimator,
and show that it performs well both in simulation and in application to real data.

Keywords: entropy, information theory, Bayesian estimation, Bayesian nonparametrics, Dirichlet
process, Pitman–Yor process, neural coding

1. Introduction

Shannon’s discrete entropy appears as an important quantity in many fields, from probability theory
to engineering, ecology, and neuroscience. While entropy may be best known for its role in information
theory, the practical problem of estimating entropy from samples arises in many applied settings.
For example, entropy provides an important tool for quantifying the information carried by neural
signals, and there is an extensive literature in neuroscience devoted to estimating the entropy of
neural spike trains (Strong et al., 1998; Barbieri et al., 2004; Shlens et al., 2007; Rolls et al., 1999;
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Knudson and Pillow, 2013). Entropy is also used for estimating dependency structure and inferring
causal relations in statistics and machine learning (Chow and Liu, 1968; Schindler et al., 2007),
as well as in molecular biology (Hausser and Strimmer, 2009). Entropy also arises in the study of
complexity and dynamics in physics (Letellier, 2006), and as a measure of diversity in ecology (Chao
and Shen, 2003) and genetics (Farach et al., 1995).

In these settings, researchers are confronted with data arising from an unknown discrete dis-
tribution, and seek to estimate its entropy. One reason for estimating the entropy, as opposed to
estimating the full distribution, is that it may be infeasible to collect enough data to estimate the
full distribution reliably. The problem is not just that we may not have enough data to estimate
the probability of an event accurately. In the so-called “undersampled regime” we may not even
observe all events that have non-zero probability. In general, estimating a distribution in this setting
is a hopeless endeavor. Estimating the entropy, by contrast, is much easier. In fact, in many cases,
entropy can be accurately estimated with fewer samples than the number of distinct

Nonetheless, entropy estimation remains a difficult problem. There is no unbiased estimator for
entropy, and the maximum likelihood estimator is severely biased for small data sets (Paninski, 2003).
Many previous studies have taken a frequentist approach and focused on methods for computing
and reducing this bias (Miller, 1955; Panzeri and Treves, 1996; Strong et al., 1998; Paninski, 2003;
Grassberger, 2008). Here, we instead take a Bayesian approach to entropy estimation, building upon
an approach introduced by Nemenman and colleagues (Nemenman et al., 2002). Our basic strategy
is to place a prior over the space of discrete probability distributions and then perform inference
using the induced posterior distribution over entropy. Figure 1 shows a graphical model illustrating
the dependencies between the basic quantities of interest.

When there are few samples relative to the total number of symbols, entropy estimation is
especially difficult. We refer to this informally as the “under-sampled” regime. In this regime, it
is common for many symbols with non-zero probability to remain unobserved, and often we can
only bound or estimate the support of the distribution (i.e., the number of symbols with non-zero
probability). Previous Bayesian approaches to entropy estimation (Nemenman et al., 2002) required
a priori knowledge of the support. Here we overcome this limitation by formulating a prior over
the space of countably-infinite discrete distributions. As we will show, the resulting estimator is
consistent even when the support of the true distribution is finite.

Our approach relies on Pitman-Yor process (PYP), a two-parameter generalization of the Dirichlet
process (DP) (Pitman and Yor, 1997; Ishwaran and James, 2003; Goldwater et al., 2006), which
provides a prior distribution over the space of countably infinite discrete distributions. The PYP
provides an attractive family of priors in this setting because: (1) the induced posterior distribution
over entropy given data has analytically tractable moments; and (2) distributions sampled from a
PYP can exhibit power-law tails, a feature commonly observed in data from social, biological and
physical systems (Zipf, 1949; Dudok de Wit, 1999; Newman, 2005).

However, we show that a PYP prior with fixed hyperparameters imposes a narrow prior distribution
over entropy, leading to severe bias and overly narrow posterior credible intervals given a small data
set. Our approach, inspired by Nemenman and colleagues (Nemenman et al., 2002), is to introduce a
family of mixing measures over Pitman-Yor processes such that the resulting Pitman-Yor Mixture
(PYM) prior provides an approximately non-informative (i.e., flat) prior over entropy.

The remainder of the paper is organized as follows. In Section 2, we introduce the entropy
estimation problem and review prior work. In Section 3, we introduce the Dirichlet and Pitman-Yor
processes and discuss key mathematical properties relating to entropy. In Section 4, we introduce
a novel entropy estimator based on PYM priors and derive several of its theoretical properties. In
Section 5, we compare various estimators with applications to data.
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Figure 1: Graphical model illustrating the ingredients for Bayesian entropy estimation. Arrows
indicate conditional dependencies between variables, and the gray “plate” denotes multiple
copies of a random variable (with the number of copies N indicated at bottom). For entropy
estimation, the joint probability distribution over entropy H, data x = {xj}, discrete distri-
bution π = {πi}, and parameter θ factorizes as: p(H,x,π, θ) = p(H|π)p(x|π)p(π|θ)p(θ).
Entropy is a deterministic function of π, so p(H|π) = δ(H −

∑
i πi log πi). The Bayes least

squares estimator corresponds to the posterior mean: E[H|x] =
∫∫

p(H|π)p(π, θ|x)dπ dθ.

2. Entropy Estimation

Consider samples x := {xj}Nj=1 drawn iid from an unknown discrete distribution π := {πi}Ai=1,

p(xj = i) = πi, on a finite or (countably) infinite alphabet X with cardinality A. We wish to estimate
the entropy of π

H(π) = −
A∑
i=1

πi log πi. (1)

We are interested in the so-called “under-sampled regime,” N � A, where many of the symbols remain
unobserved. We will see that a naive approach to entropy estimation in this regime results in severely
biased estimators and briefly review approaches for correcting this bias. We then consider Bayesian
techniques for entropy estimation in general before introducing the Nemenman–Shafee–Bialek (NSB)
method upon which the remainder of the article will build.

2.1 Plugin Estimator and Bias-Correction Methods

Perhaps the most straightforward entropy estimation technique is to estimate the distribution π and
then use the plugin formula (1) to evaluate its entropy. The empirical distribution π̂ = (π̂1, . . . , π̂A)
is computed by normalizing the observed counts n := (n1, . . . , nA) of each symbol

π̂k = nk/N, nk =

N∑
i=1

1{xi=k}, (2)

for each k ∈ X. Plugging this estimate for π into (1), we obtain the so-called “plugin” estimator

Ĥplugin = −
∑

π̂i log π̂i, (3)

which is also the maximum-likelihood estimator under categorical (or multinomial) likelihood.
Despite its simplicity and desirable asymptotic properties, Ĥplugin exhibits substantial negative

bias in the under-sampled regime. There exists a large literature on methods for removing this bias,
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much of which considers the setting in which A is known and finite. One popular and well-studied
method involves taking a series expansion of the bias (Miller, 1955; Treves and Panzeri, 1995; Panzeri
and Treves, 1996; Grassberger, 2008) and then subtracting it from the plugin estimate. Other recent
proposals include minimizing an upper bound over a class of linear estimators (Paninski, 2003),
and a James-Stein estimator (Hausser and Strimmer, 2009). Recently, Wolpert and colleagues have
considered entropy estimation in the case of unknown alphabet size (Wolpert and DeDeo, 2013). In
that paper, the authors infer entropy under a (finite) Dirichlet prior, but treat the alphabet size itself
as a random variable that can be either inferred from the data or integrated out.

Other recent work considers countably infinite alphabets. The coverage-adjusted estimator
(CAE) (Chao and Shen, 2003; Vu et al., 2007) addresses bias by combining the Horvitz-Thompson
estimator with a nonparametric estimate of the proportion of total probability mass (the “coverage”)
accounted for by the observed data x. In a similar spirit, Zhang proposed an estimator based on the
Good-Turing estimate of population size (Zhang, 2012).

2.2 Bayesian Entropy Estimation

The Bayesian approach to entropy estimation involves formulating a prior over distributions π, and
then turning the crank of Bayesian inference to infer H using the posterior distribution. Bayes’ least
squares (BLS) estimators take the form

Ĥ(x) = E[H|x] =

∫
H(π)p(H|π)p(π|x) dπ,

where p(π|x) is the posterior over π under some prior p(π) and discrete likelihood p(x|π), and

p(H|π) = δ(H +
∑
i

πi log πi),

since H is deterministically related to π. To the extent that p(π) expresses our true prior uncertainty
over the unknown distribution that generated the data, this estimate is optimal (in a least-squares
sense), and the corresponding credible intervals capture our uncertainty about H given the data.

For distributions with known finite alphabet size A, the Dirichlet distribution provides an obvious
choice of prior due to its conjugacy with the categorical distribution. It takes the form

pDir(π) ∝
A∏
i=1

πa−1
i ,

for π on the A-dimensional simplex (πi ≥ 1,
∑
πi = 1), where a > 0 is a “concentration” parameter

(Hutter, 2002). Many previously proposed estimators can be viewed as Bayesian under a Dirichlet
prior with particular fixed choice of a (Hausser and Strimmer, 2009).

2.3 Nemenman-Shafee-Bialek (NSB) Estimator

In a seminal paper, Nemenman and colleagues showed that for finite distributions with known A,
Dirichlet priors with fixed a impose a narrow prior distribution over entropy (Nemenman et al.,
2002). In the under-sampled regime, Bayesian estimates based on such highly informative priors
are essentially determined by the value of a. Moreover, they have undesirably narrow posterior
credible intervals, reflecting narrow prior uncertainty rather than strong evidence from the data.
(These estimators generally give incorrect answers with high confidence!). To address this problem,
Nemenman and colleagues suggested a mixture-of-Dirichlets prior

p(π) =

∫
pDir(π|a)p(a) da, (4)
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where pDir(π|a) denotes a Dir(a) prior on π, and p(a) denotes a set of mixing weights, given by

p(a) ∝ d

da
E[H|a] = Aψ1(Aa+ 1)− ψ1(a+ 1), (5)

where E[H|a] denotes the expected value of H under a Dir(a) prior, and ψ1(·) denotes the tri-gamma
function. To the extent that p(H|a) resembles a delta function, (4) and (5) imply a uniform prior for
H on [0, logA]. The BLS estimator under the NSB prior can be written

Ĥnsb = E[H|x] =

∫∫
H(π)p(π|x, a) p(a|x) dπ da

=

∫
E[H|x, a]

p(x|a)p(a)

p(x)
da,

where E[H|x, a] is the posterior mean under a Dir(a) prior, and p(x|a) denotes the evidence, which
has a Pólya distribution (Minka, 2003)

p(x|a) =

∫
p(x|π)p(π|a) dπ

=
(N !)Γ(Aa)

Γ(a)AΓ(N + Aa)

A∏
i=1

Γ(ni + a)

ni!
.

The NSB estimate Ĥnsb and its posterior variance are easily computable via 1D numerical
integration in a using closed-form expressions for the first two moments of the posterior distribution
of H given a. The forms for these moments are discussed in previous work (Wolpert and Wolf, 1995;
Nemenman et al., 2002), but the full formulae have to our knowledge never been explicitly shown.
Here we state the results,

E[H|x, a] = ψ0(Ñ + 1)−
∑
i

ñi

Ñ
ψ0(ñi + 1) (6)

E[H2|x, a] =
∑
i 6=k

ñiñk

(Ñ + 1)Ñ
Ii,k +

∑
i

(ñi + 1)ñi

(Ñ + 1)Ñ
Ji (7)

Ii,k =
(
ψ0(ñk + 1)− ψ0(Ñ + 2)

)(
ψ0(ñi + 1)− ψ0(Ñ + 2)

)
− ψ1(Ñ + 2)

Ji = (ψ0(ñi + 2)− ψ0(Ñ + 2))2 + ψ1(ñi + 2)− ψ1(Ñ + 2),

where ñi = ni + a are counts plus prior “pseudocount” a, Ñ =
∑
ñi is the total of counts plus

pseudocounts, and ψn is the polygamma of n-th order (i.e., ψ0 is the digamma function). Finally,
var[H|n, a] = E[H2|n, a]− E[H|n, a]2. We derive these formulae in the Appendix, and in addition
provide an alternative derivation using a size-biased sampling formulae discussed in Section 3.

2.4 Asymptotic NSB Estimator

Nemenman and colleagues have proposed an extension of the NSB estimator to countably infinite
distributions (or distributions with unknown cardinality), using a zeroth order approximation to
Ĥnsb in the limit A → ∞ which we refer to as asymptotic-NSB (ANSB) (Nemenman et al., 2004;
Nemenman, 2011),

Ĥansb = 2 log(N) + ψ0(N −K)− ψ0(1)− log(2), (8)

where K is the number of distinct symbols in the sample. Note that the ANSB estimator is designed
specifically for an extremely under-sampled regime (K ∼ N), which we refer to as the “ANSB
approximation regime”. The fact that ANSB diverges with N in the well-sampled regime (Vu et al.,
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2007) is therefore consistent with its design. In our experiments with ANSB in subsequent sections,
we follow the work of Nemenman (2011) to define the ANSB approximation regime to be that region
such that E[KN ]/N > 0.9, where KN is the number of unique symbols appearing in a sample of size
N .

3. Dirichlet and Pitman-Yor Process Priors

To construct a prior over unknown or countably-infinite discrete distributions, we borrow tools from
nonparametric Bayesian statistics. The Dirichlet Process (DP) and Pitman-Yor process (PYP) define
stochastic processes whose samples are countably infinite discrete distributions (Ferguson, 1973;
Pitman and Yor, 1997). A sample from a DP or PYP may be written as

∑∞
i=1 πiδφi

, where now
π = {πi} denotes a countably infinite set of ‘weights’ on a set of atoms {φi} drawn from some base
probability measure, where δφi

is a delta function on the atom φi.
1 We use DP and PYP to define a

prior distribution on the infinite-dimensional simplex. The prior distribution over π under the DP or
PYP is technically called the GEM2 distribution or the two-parameter Poisson-Dirichlet distribution,
but we will abuse terminology by referring to both the process and its associated weight distribution
by the same symbol, DP or PY (Ishwaran and Zarepour, 2002).

The DP distribution over π results from a limit of the (finite) Dirichlet distribution where
alphabet size grows and concentration parameter shrinks: A → ∞ and a → 0 s.t. aA → α. The
PYP distribution over π generalizes the DP to allow power-law tails, and includes DP as a special
case (Kingman, 1975; Pitman and Yor, 1997). For PY(d, α) with d 6= 0, the tails approximately

follow a power-law: πi ∝ (i)
− 1

d (pp. 867, Pitman and Yor (1997)).3 Many natural phenomena such
as city size, language, spike responses, etc., also exhibit power-law tails (Zipf, 1949; Newman, 2005).
Figure 2 shows two such examples, along with a sample drawn from the best-fitting DP and PYP
distributions.

Let PY(d, α) denote the PYP with discount parameter d and concentration parameter α (also
called the “Dirichlet parameter”), for d ∈ [0, 1), α > −d. When d = 0, this reduces to the Dirichlet
process, DP(α). To gain intuition for the DP and PYP, it is useful to consider typical samples π with
weights {πi} sorted in decreasing order of probability, so that π(1) > π(2) > · · · . The concentration
parameter α controls how much of the probability mass is concentrated in the first few samples, that
is, in the head instead of the tail of the sorted distribution. For small α the first few weights carry
most of the probability mass whereas, for large α, the probability mass is more spread out so that π
is more uniform. As noted above the discount parameter d controls the shape of the tail. Larger d
gives heavier power-law tails, while d = 0 yields exponential tails.

We can draw samples π ∼ PY(d, α) using an infinite sequence of independent Beta random
variables in a process known as “stick-breaking” (Ishwaran and James, 2001)

βi ∼ Beta(1− d, α+ id), π̃i =

i−1∏
j=1

(1− βj)βi, (9)

where π̃i is known as the i’th size-biased permutation from π (Pitman, 1996). The π̃i sampled in this
manner are not strictly decreasing, but decrease on average such that

∑∞
i=1 π̃i = 1 with probability 1

(Pitman and Yor, 1997).

1. Here, we will assume the base measure is non-atomic, so that the atoms φi’s are distinct with probability one.
This allows us to ignore the base measure, making entropy of the distribution equal to the entropy of the weights
π.

2. GEM stands for “Griffiths, Engen and McCloskey”, after three researchers who considered these ideas early on
(Ewens, 1990).

3. The power-law exponent has been given incorrectly in previous work (Goldwater et al., 2006; Teh, 2006).
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Figure 2: Empirical cumulative distribution functions of words in natural language (left) and neural
spike patterns (right). We compare samples from the DP (red) and PYP (blue) priors
for two data sets with heavy tails (black). In both cases, we compare the empirical
CDF estimated from data to distributions drawn from DP and PYP using the ML values
of α and (d, α) respectively. For both data sets, PYP better captures the heavy-tailed
behavior of the data. (left) Frequency of N = 217826 words in the novel Moby Dick by
Herman Melville. (right) Frequencies among N = 1.2× 106 neural spike words from 27
simultaneously-recorded retinal ganglion cells, binarized and binned at 10ms.

3.1 Expectations over DP and PYP Priors

For our purposes, a key virtue of PYP priors is a mathematical property called invariance under size-
biased sampling. This property allows us to convert expectations over π on the infinite-dimensional
simplex (which are required for computing the mean and variance of H given data) into one- or
two-dimensional integrals with respect to the distribution of the first two size-biased samples (Perman
et al., 1992; Pitman, 1996).

Proposition 1 (Expectations with first two size-biased samples) For π ∼ PY(d, α),

E(π|d,α)

[ ∞∑
i=1

f(πi)

]
= E(π̃1|d,α)

[
f(π̃1)

π̃1

]
, (10)

E(π|d,α)

∑
i,j 6=i

g(πi, πj)

 = E(π̃1,π̃2|d,α)

[
g(π̃1, π̃2)

π̃1π̃2
(1− π̃1)

]
, (11)

where π̃1 and π̃2 are the first two size-biased samples from π.

The first result (10) appears in (Pitman and Yor, 1997), and an analogous proof can be constructed
for (11) (see Appendix).

The direct consequence of this proposition is that the first two moments of H(π) under the PYP
and DP priors have closed forms4

E[H|d, α] = ψ0(α+ 1)− ψ0(1− d), (12)

var[H|d, α] =
α+ d

(α+ 1)2(1− d)
+

1− d
α+ 1

ψ1(2− d)− ψ1(2 + α). (13)

4. Note that (12) and (13) follow from (6) and (7), respectively, under the PY limit.
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The derivation can be found in the Appendix.

3.2 Expectations over DP and PYP Posteriors

A useful property of PYP priors (for multinomial observations) is that the posterior p(π|x, d, α)
takes the form of a mixture of a Dirichlet distribution (over the observed symbols) and a Pitman-Yor
process (over the unobserved symbols) (Ishwaran and James, 2003). This makes the integrals over
the infinite-dimensional simplex tractable and, as a result, we obtain closed-form solutions for the
posterior mean and variance of H. Let K be the number of unique symbols observed in N samples,
i.e., K =

∑A
i=1 1{ni>0}.

5 Further, let αi = ni−d, N =
∑
ni, and A =

∑
αi =

∑
i ni−Kd = N−Kd.

Now, following Ishwaran and colleagues (Ishwaran and Zarepour, 2002), we write the posterior as an
infinite random vector π|x, d, α = (p1, p2, p3, . . . , pK , p∗π

′), where

(p1, p2, . . . , pK , p∗) ∼ Dir(n1 − d, . . . , nK − d, α+Kd) (14)

π′ := (π1, π2, π3, . . . ) ∼ PY(d, α+Kd).

The posterior mean E[H|x, d, α] is given by

E[H|α, d,x] = ψ0(α+N + 1)− α+Kd

α+N
ψ0(1− d)− 1

α+N

[
K∑
i=1

(ni − d)ψ0(ni − d+ 1)

]
. (15)

The variance, var[H|x, d, α], may also be expressed in an easily-computable closed-form. As we
discuss in detail in Appendix A.4, var[H|x, d, α] may be expressed in terms of the first two moments
of p∗, π, and p = (p1, . . . , pK) appearing in the posterior (14). Applying the law of total variance
and using the independence properties of the posterior, we find

var[H|d, α] = Ep∗ [(1− p∗)2] var
p

[H(p)] + Ep∗ [p2
∗] var

π
[H(π)]

+ Ep∗ [Ω2(p∗)]− Ep∗ [Ω(p∗)]
2,

where Ω(p∗) = (1−p∗)Ep [H(p)]+p∗Eπ [H(π)]+H(p∗), and H(p∗) = −p∗ log(p∗)−(1−p∗) log(1−p∗).
To specify Ω(p∗), we let A = Ep [H(p)], B = Eπ [H(π)] so that

E[Ω] = Ep∗ [1− p∗]Ep [H(p)] + Ep∗ [p∗]Eπ [H(π)] +H(p∗),

E[Ω2] = 2Ep∗ [p∗H(p∗)][B−A] + 2AEp∗ [H(p∗)] + Ep∗ [h2(p∗)]

+ Ep∗ [p2
∗]
[
B2 − 2AB

]
+ 2Ep∗ [p∗]AB + Ep∗ [(1− p∗)2]A2.

4. Entropy Inference under DP and PYP priors

The posterior expectations computed in Section 3.2 provide a class of entropy estimators for distribu-
tions with countably-infinite support. For each choice of (d, α), E[H|α, d,x] is the posterior mean
under a PY (d, α) prior, analogous to the fixed-α Dirichlet priors discussed in Section 2.2. Unfortu-
nately, fixed PY (d, α) priors carry the same difficulties as fixed Dirichlet priors. A fixed-parameter
PY(d, α) prior on π results in a highly concentrated prior distribution on entropy (Figure 3).

We address this problem by introducing a mixture prior p(d, α) on PY(d, α) under which the
implied prior on entropy is flat.6 We then define the BLS entropy estimator under this mixture prior,

5. We note that the quantity K has been studied in Bayesian nonparametrics in its own right, for instance to study
species diversity in ecological applications (Favaro et al., 2009).

6. Notice, however, that by constructing a flat prior on entropy, we do not obtain an objective prior. Here, we are
not interested in estimating the underlying high-dimensional probabilities {πi}, but rather in estimating a single
statistic. An objective prior on the model parameters is not necessarily optimal for estimating entropy: entropy is
not a parameter in our model. In fact, Jeffreys’ prior for multinomial observations is exactly a Dirichlet distribution
with a fixed α = 1/2. As mentioned in the text, such Bayesian priors are highly informative about the entropy.
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Figure 3: Prior entropy mean and variance (12) and 13 as a function of α and d. Note that entropy
is approximately linear in logα. For large values of α, p(H(π)|d, α) is highly concentrated
around the mean.

the Pitman-Yor Mixture (PYM) estimator, and discuss some of its theoretical properties. Finally,
we turn to the computation of PYM, discussing methods for sampling, and numerical quadrature
integration.

4.1 Pitman-Yor Process Mixture (PYM) Prior

One way of constructing a flat mixture prior is to follow the approach of Nemenman and colleagues
(Nemenman et al., 2002), setting p(d, α) proportional to the derivative of the expected entropy (12).
Unlike NSB, we have two parameters through which to control the prior expected entropy. For
instance, large prior (expected) entropies can arise either from large values of α (as in the DP) or
from values of d near 1 (see Figure 3A). We can explicitly control this trade-off by reparameterizing
PYP as follows

h = ψ0(α+ 1)− ψ0(1− d), γ =
ψ0(1)− ψ0(1− d)

ψ0(α+ 1)− ψ0(1− d)
,

where h > 0 is equal to the expected prior entropy (12), and γ ∈ [0,∞) captures prior beliefs about
tail behavior (Figure 4A). For γ = 0, we have the DP (i.e., d = 0, giving π with exponential tails),
while for γ = 1 we have a PY(d, 0) process (i.e., α = 0, yielding π with power-law tails). In the
limit where α→ −1 and d→ 1, γ →∞. Where required, the inverse transformation to standard PY
parameters is given by: α = ψ0

−1 (h(1− γ) + ψ0(1))− 1, d = 1− ψ0
−1 (ψ0(1)− hγ) , where ψ0

−1(·)
denotes the inverse digamma function.

We can construct an approximately flat improper distribution over H on [0,∞] by setting
p(h, γ) = q(γ) for all h, where q is any density on [0,∞). We call this the Pitman-Yor process mixture
(PYM) prior. The induced prior on entropy is thus

p(H) =

∫∫
p(H|π)p(π|γ, h)p(γ, h) dγ dh,

where p(π|γ, h) denotes a PYP on π with parameters γ, h. We compare only three choices of q(γ)
here. However, the prior q(γ) is not fixed but may be adapted to reflect prior beliefs about the
data set at hand. A q(γ) that places probability mass on larger γ (near 1) results in a prior that
prefers heavy-tailed behavior and high entropy, whereas weight on small γ prefers exponential-tailed
distributions. As a result, priors with more mass on large γ will also tend to yield wider credible
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Figure 4: Prior over expected entropy under Pitman-Yor process prior. (A) Left: expected entropy
as a function of the natural parameters (d, α). Right: expected entropy as a function
of transformed parameters (h, γ). The dotted red and blue lines indicate the contours
on which the PY(d, 0) and DP(α) priors are defined, respectively. (B) Sampled prior
distributions (N = 5e3) over entropy implied by three different PYM priors, each with
a different mixing density over α and d. We formulate each prior in the transformed
parameters γ and h. We place a uniform prior on h and show three different choices of
prior q(γ). Each resulting PYM prior is a mixture of Pitman-Yor processes: PY(d, 0)
(red) uses a mixing density over d: q(γ) = δγ−1; PY(0, α) = DP(α) (blue) uses a mixing
density over α: q(γ) = δγ ; and PY(d, α) (grey) uses a mixture over both hyperparameters:
q(γ) = exp(− 10

1−γ )1{γ<1}. Note that for all of these examples, the “true” p(H) is an

improper prior supported on [0,∞). We visualize the sampled distributions only on the
range from 0 to 5 nats, since sampling from PY becomes prohibitively expensive with
increasing expected entropy (especially as d→ 1).

intervals and higher estimates of entropy. PYM mixture priors resulting from different choices of
q(γ) are all approximately flat on H, but each favors distributions with different tail behavior; the
ability to select q(γ) greatly enhances the flexibility of PYM, allowing the practitioner to adapt it to
her own data.

Figure 4B shows samples from this prior under three different choices of q(γ), for h uniform
on [0, 3]. For the experiments, we use q(γ) = exp(− 10

1−γ )1{γ<1} which yields good results by

weighting less on extremely heavy-tailed distributions.7 Combined with the likelihood, the posterior
p(d, α|x) ∝ p(x|d, α)p(d, α) quickly concentrates as more data are given (see Figure 5).

4.2 The Pitman-Yor Mixture Entropy Estimator

Now that we have determined a prior on the infinite simplex, we turn to the problem of inference
given observations x. The Bayes least squares entropy estimator under the mixture prior p(d, α), the

7. In particular, the restriction γ < 1 omits the corner d→ 1 and α→ −d. In this region, one can obtain arbitrarily
large prior variance over H for a given mean. However, such priors have very heavy tails and seem poorly-suited
to data with finite or exponential tails, and we therefore do not explore them further here.
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are shown. Data are simulated from a PY(0.25, 40) whose parameters are indicated by the
red dot.

Pitman-Yor Mixture (PYM) estimator, takes the form

ĤPYM = E[H|x] =

∫
E[H|x, d, α]

p(x|d, α)p(d, α)

p(x)
d(d, α), (16)

where E[H|x, d, α] is the expected posterior entropy for a fixed (d, α) (see Section 3.2). The quantity
p(x|d, α) is the evidence, given by

p(x|d, α) =

(∏K−1
l=1 (α+ ld)

)(∏K
i=1 Γ(ni − d)

)
Γ(1 + α)

Γ(1− d)KΓ(α+N)
. (17)

We can obtain posterior credible intervals for ĤPYM by estimating the posterior variance E[(H −
ĤPYM)2|x]. The estimate takes the same form as (16), except that we replace E[H|x, d, α] with
var[H|x, d, α] in the integrand.

4.3 Computation

Because of the improper prior p(d, α), and because by (16) it must be integrated over all α > 0, it is
not obvious that the PYM estimate ĤPYM is computationally tractable. In this section we discuss
techniques for efficient and accurate computation of ĤPYM. First, we outline a compressed data
representation we call the “multiplicities” representation, which substantially reduces computational
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cost. Then, we outline a fast method for performing the numerical integration over a suitable range
of α and d.

4.3.1 Multiplicities

We can compute the expected entropy E[H|x, d, α] more efficiently by using a representation in
terms of multiplicities, a compressed statistic often used under other names (e.g., the empirical
histogram distribution function as discussed by Paninski 2003). Multiplicities are the number of
symbols that have occurred with a given frequency in the sample. Letting mk = |{i : ni = k}| denote
the total number of symbols with exactly k observations in the sample gives the compressed statistic
m = [m0,m1, . . . ,mM ]

>
, where M is the largest number of samples for any symbol. Note that the

dot product [0, 1, . . . ,M ]>m = N , is the total number of samples.
The multiplicities representation significantly reduces the time and space complexity of our

computations for most data sets as we need only compute sums and products involving the number
of symbols with distinct frequencies (at most M), rather than the total number of symbols K. In
practice we compute all expressions not explicitly involving π using the multiplicities representation.
For instance, when expressed in terms of the multiplicities the evidence takes the compressed form

p(x|d, α) = p(m1, . . . ,mM |d, α)

=
Γ(1 + α)

∏K−1
l=1 (α+ ld)

Γ(α+N)

M∏
i=1

(
Γ(i− d)

i!Γ(1− d)

)mi M !

mi!
.

4.3.2 Heuristic for Integral Computation

In principle the PYM integral over α is supported on the range [0,∞). In practice, however, the
posterior concentrates on a relatively small region of parameter space. It is generally unnecessary to
consider the full integral over a semi-infinite domain. Instead, we select a subregion of [0, 1]× [0,∞)
which supports the posterior up to ε probability mass. The posterior is unimodal in each variable
α and d separately (see Appendix D); however, we do not have a proof for the unimodality of the
evidence. Nevertheless, if there are multiple modes, they must lie on a strictly decreasing line of d as
a function of α and, in practice, we find the posterior to be unimodal. We illustrate the concentration
of the evidence visually in Figure 5.

We compute the hessian at the MAP parameter value, (dMAP, αMAP). Using the inverse hessian
as the covariance of a Gaussian approximation to the posterior, we select a grid spanning ±6 std. We
use numerical integration (Gauss-Legendre quadrature) on this region to compute the integral. When
the hessian is rank-deficient (which may occur, for instance, when the αMAP = 0 or dMAP = 0), we use
Gauss-Legendre quadrature to perform the integral in d over [0, 1), but employ a Fourier-Chebyshev
numerical quadrature routine to integrate α over [0,∞) (Boyd, 1987).

4.4 Sampling the Full Posterior Over H

The closed-form expressions for the conditional moments derived in the previous section allow us to
compute PYM and its variance by 2-dimensional numerical integration. PYM’s posterior mean and
variance provide, essentially, a Gaussian approximation to the posterior, and corresponding credible
regions. However, in some situations (see Figure 6), variance-based credible intervals are a poor
approximation to the true posterior credible intervals. In these cases we may wish to examine the
full posterior distribution over H.

Stick-breaking, as described by (9), provides a straightforward algorithm for sampling distributions
π ∼ PY(d, α). With enough stick-breaking samples, it is always possible to approximate π to arbitrary
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approximation is a much closer approximation to the true distribution.

accuracy.8 Even so, sampling π ∼ PY(d, α) for d near 1, where π is likely to be heavy-tailed, may
require intractably large number of samples to obtain a good approximation.

We address this problem by directly estimating the entropy of the tail, PY(d, α+Nsd), using (12).
As shown in Figure 3, the prior variance of PY becomes arbitrarily small as for large α. We need only
enough samples to assure that the variance of the tail entropy is small. The resulting final sample is
the entropy of the (finite) samples plus the expected entropy of the tail, H(π∗) + E[H|d, α+Kd].9

Sampling entropy is most useful for very small amounts of data drawn from distributions with low
expected entropy. In Figure 5 we illustrate the posterior distributions of entropy in two simulated
experiments. In general, as the expected entropy and sample size increase, the posterior becomes
more approximately Gaussian.

5. Theoretical Properties of PYM

Having defined PYM and discussed its practical computation, we now establish conditions under
which (16) is defined (i.e., the right–hand of the equation is finite), and also prove some basic facts
about its asymptotic properties. While ĤPYM is a Bayesian estimator, we wish to build connections
to the literature by showing frequentist properties.

Note that the prior expectation E[H] does not exist for the improper prior defined above, since
p(h = E[H]) ∝ 1 on [0,∞]. It is therefore reasonable to ask what conditions on the data are sufficient
to obtain finite posterior expectation ĤPYM = E[H|x]. We give an answer to this question in the
following short proposition (proofs of all statements may be found in the appendix),

8. Bounds on the number of samples necessary to reach ε on average have been considered by Ishwaran and James
(2001).

9. Due to the generality of the expectation formula (10), this method may be applied to sample the distributions of
other additive functionals of PY.
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Theorem 2 Given a fixed data set x of N samples, ĤPYM <∞ for any prior distribution p(d, α) if
N −K ≥ 2.

In other words, we require 2 coincidences in the data for ĤPYM to be finite. When no coincidences
have occurred in x, we have no evidence regarding the support of the π and our resulting entropy
estimate is unbounded. In fact, in the absence of coincidences, no entropy estimator can give a
reasonable estimate without prior knowledge or assumptions about A.

Concerns about inadequate numbers of coincidences are peculiar to the under-sampled regime;
as N →∞, we will almost surely observe each letter infinitely often. We now turn to asymptotic
considerations, establishing consistency of ĤPYM in the limit of large N for a broad class of distri-
butions. It is known that the plugin is consistent for any distribution (finite or countably infinite),
although the rate of convergence can be arbitrarily slow (Antos and Kontoyiannis, 2001). Therefore,
we establish consistency by showing asymptotic convergence to the plugin estimator.

For clarity, we explicitly denote a quantity’s dependence upon sample size N by introducing a
subscript. Thus x and K become xN and KN respectively. As a first step we show that E[H|xN , d, α]
converges to the plugin estimator.

Theorem 3 Assuming xN drawn from a fixed, finite or countably infinite discrete distribution π

such that KN

N

P−→ 0

|E[H|xN , d, α]− E[Hplugin|xN ]| P−→ 0

The assumption KN/N → 0 is more general than it may seem. For any infinite discrete distribution
it holds that KN → E[KN ] a.s. and E[KN ]/N → 0 a.s. (Gnedin et al., 2007). Hence, KN/N → 0 in
probability for an arbitrary distribution. As a result, the right–hand–side of (15) shares its asymptotic
behavior, in particular consistency, with Ĥplugin. As (15) is consistent for each value of α and d, it is

intuitively plausible that ĤPYM, as a mixture of such values, should be consistent as well. However,
while (15) alone is well-behaved, it is not clear that ĤPYM should be. Since E[H|x, d, α] → ∞ as
α→∞, care must be taken when integrating over p(d, α|x). Our main consistency result is,

Theorem 4 For any proper prior or bounded improper prior p(d, α), if data xN are drawn from a
fixed, countably infinite discrete distribution π such that for some constant C > 0 KN = o(N1−1/C)
in probability, then

|E[H|xN ]− E[Hplugin|xN ]| P−→ 0

Intuitively, the asymptotic behavior of KN/N is tightly related to the tail behavior of the

distribution (Gnedin et al., 2007). In particular, KN ∼ cN b with 0 < b < 1 if and only if πi ∼ c′i
1
b

where c and c′ are constants, and we assume πi is non-increasing (Gnedin et al., 2007). The class
of distributions such that KN = o(N1−1/C) a.s. includes the class of power-law or thinner tailed
distributions, i.e., πi = O(ib) for some b > 1 (again πi is assumed non-increasing).

While consistency is an important property for any estimator, we emphasize that PYM is designed
to address the under-sampled regime. Indeed, since Ĥplugin is consistent and has an optimal rate of
convergence for a large class of distributions (Vu et al., 2007; Antos and Kontoyiannis, 2001; Zhang,
2012), asymptotic properties provide little reason to use ĤPYM. Nevertheless, notice that Theorem 4
makes very weak assumptions about p(d, α). In particular, the result is not dependent upon the form
of the PYM prior introduced in the previous section; it holds for any probability distribution p(d, α),
or even a bounded improper prior. Thus, we can view Theorem 4 as a statement about a class of
PYM estimators. Almost any prior we choose on (d, α) results in a consistent estimator of entropy.

6. Simulation Results

We compare ĤPYM to other proposed entropy estimators using several example data sets. Each plot
in Figures 7, 8, 9, and 10 shows convergence as well as small sample performance. We compare
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Figure 7: Comparison of estimators on stick-breaking distributions. Poisson-Dirichlet distribution
with (d = 0, α = 1000) (A), (d = 0.1, α = 1000) (B), (d = 0.4, α = 100) (C). Recall that
the Dirichlet Process is the Pitman-Yor Process with d = 0. We compare our estimators
(DPM, PYM) with other enumerable support estimators (CAE, ANSB, Zhang, GR08),
and finite support estimators (plugin, MiMa). Note that in these examples, the DPM
estimator performs indistinguishably from NSB with alphabet size A fixed to a large
value (A = 105). For the experiments, we first sample a single π ∼ PY(d, α) using the
stick-breaking procedure of (9). For each N (x-axis), we apply all estimators to each of 10
sample data sets drawn randomly from π. Solid lines are averages over all 10 realizations.
Colored shaded area represent 95% credible intervals averaged over all 10 realizations.
Gray shaded area represents the ANSB approximation regime defined as expected number
of unique symbols being more than 90% the total number of samples.

our estimators, DPM (d = 0 only) and PYM (ĤPYM), with other enumerable-support estimators:
coverage-adjusted estimator (CAE) (Chao and Shen, 2003; Vu et al., 2007), asymptotic NSB (ANSB,
Section 2.4) (Nemenman, 2011), Grassberger’s asymptotic bias correction (GR08) (Grassberger,
2008), and Good-Turing estimator (Zhang, 2012). Note that similar to ANSB, DPM is an asymptotic
(Poisson-Dirichlet) limit of NSB, and hence in practice behaves identically to NSB with large but finite
K. We also compare with plugin (3) and a standard Miller-Maddow (MiMa) bias correction method
with a conservative assumption that the number of uniquely observed symbols is K (Miller, 1955).
To make comparisons more straightforward, we do not apply additional bias correction methods (e.g.,
jackknife) to any of the estimators.

In each simulation, we draw 10 sample distributions π. From each π we draw a data set of N iid
samples. In each figure we show the performance of all estimators averaged across the 10 sampled
data sets.
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Figure 8: Comparison of estimators on power-law distributions. The highest probabilities in these
power-law distributions were large enough that they were never effectively under-sampled.

The experiments of Figure 7 show performance on a single π ∼ PY(d, α) drawn using the stick-
breaking procedure of (9). We draw πi according to (9) in blocks of size 103 until 1−

∑
Ns
πi < 10−3,

where Ns is the number of sticks. Unsurprisingly, PYM performs well when the data are truly
generated by a Pitman-Yor process (Figure 7). Credible intervals for DPM tend to be smaller than
PYM, although both shrink quickly (indicating high confidence). When the tail of the distribution
is exponentially decaying, (d = 0 case; Figure 7 top), DPM shows slightly improved performance.
When the tail has a strong power-law decay, (Figure 7 bottom), PYM performs better than DPM.
Most of the other estimators are consistently biased down, with the exception of ANSB.

The shaded gray area indicates the ANSB approximation regime, where the approximation used
to define the ANSB estimator is approximately valid. Although this region has no definitive boundary,
it corresponds to a regime where where the average number of coincidences is small relative to the
number of samples. Following Nemenman (2011), we define the under-sampled regime to be the
region where E[KN ]/N > 0.9, where KN is the number of unique symbols appearing in a sample
of size N . Note that only 3 out of 10 results in Figures. 7, 8, 9, 10 have shaded area; the ANSB
approximation regime is not large enough to appear in the plots. This regime appears to be designed
for a relatively broad distribution (close to uniform distribution). In cases where a single symbol
has high probability, the ANSB approximation regime is essentially never valid. In our example
distributions, this is the case with for power-law distributions and PY distributions with large d. For
example, Figure 8 is already outside of the ANSB approximation regime with only 4 samples.

Although Pitman-Yor process PY(d, α) has a power-law tail controlled by d, the high probability
portion is modulated by α and does not strictly follow a power-law distribution as a whole. In
Figure 8, we evaluate the performance for pi ∝ i−2 and pi ∝ i−1.5. PYM and DPM have slight
negative biases, but the credible interval covers the true entropy for all sample sizes. For small sample
sizes, most estimators are negatively biased, again except for ANSB (which does not show up in the
plot since it is severely biased upwards). Notably, CAE performs very well in moderate sample sizes.

In Figure 9 we compute the entropy per word of in the novel Moby Dick by Herman Melville
and entropy per time bin of a population of retinal ganglion cells from monkey retina (Pillow et al.,
2005). We tokenized the novel into individual words using the Python library NLTK.10 Punctuation
is disregarded. These real-world data sets have heavy, approximately power-law tails11 as pointed out

10. Further information about the Natural Language Toolkit (NLTK) may be obtained at the project’s website,
http://www.nltk.org/.

11. We emphasize that we use the term “power-law” in a heuristic, descriptive sense only. We did not fit explicit
power-law models to the data sets in questions, and neither do we rely upon the properties of power-law distributions
in our analyses.

2848

http://www.nltk.org/.


Bayesian Entropy Estimation for Countable Discrete Distributions

4.5
5

5.5
6

6.5
7

7.5

MobyDick words (shuffled)
En

tro
py

 (n
at

s)

101 102 103 104 105

# of samples
101 102 103 104 105

1.5
2

2.5

3
3.5

4

4.5

Neural data (retinal ganglion cells)

# of samples

En
tro

py
 (n

at
s)

DPM/NSB
PYM

CAE
ANSB
Zhang

plugin
MiMa

GR08

Figure 9: Comparison of estimators on real data sets.

earlier in Figure 2. For Moby Dick, PYM slightly overestimates, while DPM slightly underestimates,
yet both methods are closer to the entropy estimated by the full data available than other estimators.
DPM is overly confident (its credible interval is too narrow), while PYM becomes overly confident
with more data. The neural data were preprocessed to be a binarized response (10 ms time bins)
of 8 simultaneously recorded off-response retinal ganglion cells. PYM, DPM, and CAE all perform
well on this data set with both PYM and DPM bracketing the asymptotic value with their credible
intervals.

Finally, we applied the denumerable-support estimators to finite-support distributions (Figure 10).
The power-law pn ∝ n−1 has the heaviest tail among the simulations we consider but notice that
it does not define a proper distribution (the probability mass does not integrate), and so we use a
truncated 1/n distribution with the first 1000 symbols (Figure 10 top). Initially PYM shows the least
bias, but DPM provides a better estimate for increasing sample size. However, notice that for both
estimates the credible intervals consistently cover the true entropy. Interestingly, the finite support
estimators perform poorly compared to DPM, CAE and PYM. For the uniform distribution over 1000
symbols, both DPM and PYM have slight upward bias, while CAE shows almost perfect performance
(Figure 10 middle). For Poisson distribution, a theoretically enumerable-support distribution on the
natural numbers, the tail decays so quickly that the effective support (due to machine precision) is
very small (26 in this case). All the estimators, with the exception of ANSB, work quite well.

The novel Moby Dick provides the most challenging data: no estimator seems to have converged,
even with the full data. Surprisingly, the Good-Turing estimator (Zhang, 2012) tends to perform
similarly to the Grassberger and Miller-Maddow bias-correction methods. Among such the bias-
correction methods, Grassberger’s method tended to show the best performance, outperforming
Zhang’s method.

The computation time for our estimators is O(LG), where L number symbols with distinct
frequencies (bounded above by the quantity M defined in Section 4.3.1) and G is the number of grid
points used to compute the numerical integral. Hence, computation time as a function of sample
size depends upon how L scales with samples size N , always sublinearly, and O(N1/2) in the worse
case. In our examples, computation times for 105 samples are in the order of 0.1 seconds (Figure 11).
Hence in practice, for the examples we have shown, more time is spent building the histogram from
the data than computing the entropy estimate.
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Figure 10: Comparison of estimators on finite support distributions. Black solid line indicates the
true entropy. Poisson distribution (λ = e) has a countably infinite (but very thin) tail.
All probability mass was concentrated on 26 symbols, within machine precision.

7. Conclusion

In this paper we introduced PYM, a new entropy estimator for distributions with unknown support.
We derived analytic forms for the conditional mean and variance of entropy under a DP and PY
prior for fixed parameters. Inspired by the work of Nemenman et al. (2002), we defined a novel
PY mixture prior, PYM, which implies an approximately flat prior on entropy. PYM addresses
two major issues with NSB: its dependence on knowledge of A and its inability (inherited from the
Dirichlet distribution) to account for the heavy-tailed distributions which abound in biological and
other natural data.

Further experiments on diverse data sets might reveal ways to improve PYM, such as new tactics
or theory for selecting the prior on tail behavior, q(γ). It may also prove fruitful to investigate ways
to tailor PYM to a specific application, for instance by combining it with with more structured priors
such as those employed by Archer et al. (2013). Further, while we have shown that PYM is consistent
for any prior, an expanded theory might investigate the convergence rate, perhaps in relation to the
choice of prior.

We have shown that PYM performs well in comparison to other entropy estimators, and indicated
its practicality in example applications to data. A MATLAB implementation of the PYM estimator
is available at https://github.com/pillowlab/PYMentropy.
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Figure 11: Median computation time to estimate entropy for the neural data. The computation time
excludes the preprocessing required to build the histogram and convert to multiplicity
representation. Note that for DPM and PYM this time also includes estimating the
posterior variance.
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Appendix A. Derivations of Dirichlet and PY Moments

In this Appendix we present as propositions a number of technical moment derivations used in the
text.

A.1 Mean Entropy of Finite Dirichlet

Proposition 5 (Replica trick for entropy [Wolpert and Wolf, 1995])

For π ∼ Dir(α1, α2, . . . , αA), such that
∑A
i=1 αi = A, and letting ~α = (α1, α2, . . . , αA), we have

E[H(π)|~α] = ψ0(A+ 1)−
A∑
i=1

αi
A
ψ0(αi + 1) (18)

Proof First, let c be the normalizer of Dirichlet, c =
∏

j Γ(αj)

Γ(A) and let L denote the Laplace transform

(on π to s). Now we have that

cE[H|~α] =

∫ (
−
∑
i

πi log2 πi

)
δ(

∑
iπi − 1)

∏
j

π
αj−1
j dπ

= −
∑
i

∫
(παi
i log2 πi) δ(

∑
iπi − 1)

∏
j 6=i

π
αj−1
j dπ
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= −
∑
i

∫ (
d

d(αi)
παi
i

)
δ(

∑
iπi − 1)

∏
j 6=i

π
αj−1
j dπ

= −
∑
i

d

d(αi)

∫
παi
i δ(

∑
iπi − 1)

∏
j 6=i

π
αj−1
j dπ

= −
∑
i

d

d(αi)
L−1

L(παi
i )
∏
j 6=i

L(π
αj−1
j )

 (1)

= −
∑
i

d

d(αi)
L−1

[
Γ(αi + 1)

∏
j 6=i Γ(αj)

s
∑

k(αk)+1

]
(1)

= −
∑
i

d

d(αi)

[
Γ(αi + 1)

Γ(
∑
k(αk) + 1)

]∏
j 6=i

Γ(αj)

= −
∑
i

Γ(αi + 1)

Γ(
∑
k αk + 1)

[ψ0(αi + 1)− ψ0(A+ 1)]
∏
j 6=i

Γ(αj)

=

[
ψ0(A+ 1)−

A∑
i=1

αi
A
ψ0(αi + 1)

] ∏
j Γ(αj)

Γ(A)
.

A.2 Variance of Entropy for Finite Dirichlet

We derive E[H2(π)|~α]. In practice we compute var[H(π)|~α] = E[H2(π)|~α]− E[H(π)|~α]2.

Proposition 6 For π ∼ Dir(α1, α2, . . . , αA), such that
∑A
i=1 αi = A, and letting ~α = (α1, α2, . . . , αA),

we have

E[H2(π)|~α] =
∑
i 6=k

αiαk
(A+ 1)(A)

Iik +
∑
i

αi(αi + 1)

(A+ 1)(A)
Ji (19)

Iik = (ψ0(αk + 1)− ψ0(A+ 2)) (ψ0(αi + 1)

−ψ0(A+ 2))− ψ1(A+ 2)

Ji = (ψ0(αi + 2)− ψ0(A+ 2))2 + ψ1(αi + 2)

− ψ1(A+ 2)

Proof We can evaluate the second moment in a manner similar to the mean entropy above. First,
we split the second moment into square and cross terms. To evaluate the integral over the cross

terms, we apply the “replica trick” twice. Letting c be the normalizer of Dirichlet, c =
∏

j Γ(αj)

Γ(A) we

have

cE[H2|~α] =

∫ (
−
∑
i

πi log2 πi

)2

δ(
∑

iπi − 1)
∏
j

π
αj−1
j dπ

=
∑
i

∫ (
π2
i log2

2πi
)
δ(

∑
iπi − 1)

∏
j

π
αj−1
j dπ

+
∑
i 6=k

∫
(πi log2 πi) (πk log2 πk) δ(

∑
iπi − 1)

∏
j

π
αj−1
j dπ
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=
∑
i

∫
παi+1
i log2

2πiδ(
∑

iπi − 1)
∏
j 6=i

π
αj−1
j dπ

+
∑
i 6=k

∫
(παi
i log2 πi) (παk

k log2 πk) δ(
∑

iπi − 1)
∏

j 6∈{i,k}

π
αj−1
j dπ

=
∑
i

d2

d(αi + 1)2

∫
παi+1
i δ(

∑
iπi − 1)

∏
j 6=i

π
αj−1
j dπ

+
∑
i 6=k

d

dαi

d

dαk

∫
(παi
i ) (παk

k ) δ(
∑

iπi − 1)
∏

j 6∈{i,k}

π
αj−1
j dπ

Assuming i 6= k, these will be the cross terms.

∫
(πi log2 πi)(πk log2 πk)δ(

∑
iπi − 1)

∏
j

π
αj−1
j dπ

=
d

dαi

d

dαk

∫
(παi
i )(παk

k )δ(
∑

iπi − 1)
∏

j 6∈{i,k}

π
αj−1
j dπ

=
d

dαi

d

dαk

[
Γ(αi + 1)Γ(αk + 1)

Γ(A+ 2)

] ∏
j 6∈{i,k}

Γ(αj)

=
d

dαk

[
αiΓ(αk + 1)

Γ(A+ 2)
ψ0(αi + 1)

−αiΓ(αk + 1)

Γ(A+ 2)
ψ0(A+ 2)

]∏
j 6=k

Γ(αj)

=
d

dαk

[
αiψ0(αk + 1)

Γ(A+ 2)
ψ0(αi + 1)

−αiΓ(αk + 1)

Γ(A+ 2)
ψ0(A+ 2)

]∏
j 6=k

Γ(αj)

=
αiαk

Γ(A+ 2)
[(ψ0(αk + 1)− ψ0(A+ 2))

(ψ0(αi + 1)− ψ0(A+ 2))− ψ1(A+ 2)]
∏
j

Γ(αj)

=
αiαk

(A+ 1)(A)
[(ψ0(αk + 1)− ψ0(A+ 2))

(ψ0(αi + 1)− ψ0(A+ 2))− ψ1(A+ 2)]

∏
j Γ(αj)

Γ(A)

d2

d(αi + 1)2

∫
παi+1
i δ(

∑
iπi − 1)

∏
j 6=i

π
αj−1
j dπ

=
d2

d(αi + 1)2

[
Γ(αi + 2)

Γ(A+ 2)

]∏
j 6=i

Γ(αj)

=
d2

dz2

[
Γ(z + 1)

Γ(z + c)

]∏
j 6=i

Γ(αj), {c = A+ 2− (αi + 1)}
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=
Γ(1 + z)

Γ(c+ z)
[(ψ0(1 + z)−

ψ0(c+ z))2 + ψ1(1 + z)− ψ1(c+ z)
]∏
j 6=i

Γ(αj)

=
z(z − 1)

(c+ z − 1)(c+ z − 2)

[
(ψ0(1 + z)− ψ0(c+ z))2

+ψ1(1 + z)− ψ1(c+ z)]

∏
j Γ(αj)

Γ(A)

=
(αi + 1)(αi)

(A+ 1)(A)

[
(ψ0(αi + 2)− ψ0(A+ 2))2 + ψ1(αi + 2)

−ψ1(A+ 2)]

∏
j Γ(αj)

Γ(A)

Summing over all terms and adding the cross and square terms, we recover the desired expression
for E[H2(π)|~α].

A.3 Prior Entropy Mean and Variance Under PY

We derive the prior entropy mean and variance of a PY distribution with fixed parameters α and d,
Eπ[H(π)|d, α] and varπ[H(π)|d, α]. We first prove our Proposition 1 (mentioned in (Pitman and

Yor, 1997)). This proposition establishes the identity E
[∑∞

i=1 f(πi)
∣∣∣α] =

∫ 1

0
f(π̃1)
π̃1

p(π̃1|α)dπ̃1 which

will allow us to compute expectations over PY using only the distribution of the first size biased
sample, π̃1.
Proof [Proof of Proposition 1]

First we validate (10). Writing out the general form of the size-biased sample

p(π̃1 = x|π) =

∞∑
i=1

πiδ(x− πi),

we see that

Eπ̃1

[
f(π̃1)

π̃1

]
=

∫ 1

0

f(x)

x
p(π̃1 = x)dx

=

∫ 1

0

Eπ

[
f(x)

x
p(π̃1 = x|π)

]
dx

=

∫ 1

0

Eπ

[ ∞∑
i=1

f(x)

x
πiδ(x− πi)

]
dx

= Eπ

[∫ 1

0

∞∑
i=1

f(x)

x
πiδ(x− πi)dx

]

= Eπ

[ ∞∑
i=1

∫ 1

0

f(x)

x
πiδ(x− πi)dx

]

= Eπ

[ ∞∑
i=1

f(πi)

]
,

where the interchange of sums and integrals is justified by Fubini’s theorem.
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A similar method validates (11). We will need the second size-biased sample in addition to the
first. We begin with the sum inside the expectation on the left–hand side of (11)∑

i

∑
j 6=i

g(πi, πj) (20)

=

∑
i

∑
j 6=i g(πi, πj)

p(π̃1 = πi, π̃2 = πj)
p(π̃1 = πi, π̃2 = πj) (21)

=
∑
i

∑
j 6=i

g(πi, πj)

πiπj
(1− πi)p(π̃1 = πi, π̃2 = πj) (22)

= Eπ̃1,π̃2

[
g(π̃1, π̃2)

π̃1π̃2
(1− π̃1)

∣∣∣π] (23)

where the joint distribution of size biased samples is given by

p(π̃1 = πi, π̃2 = πj) = p(π̃1 = πi)p(π̃2 = πj |π̃1 = πi)

= πi ·
πj

1− πi

As this identity is defined for any additive functional f of π, we can employ it to compute the first
two moments of entropy. For PYP (and DP when d = 0), the first size-biased sample is distributed
according to

π̃1 ∼ Beta(1− d, α+ d) (24)

Proposition 1 gives the mean entropy directly. Taking f(x) = −x log(x) we have

E[H(π)|d, α] = −Eα[log(π1)] = ψ0(α+ 1)− ψ0(1− d),

The same method may be used to obtain the prior variance, although the computation is more
involved. For the variance, we will need the second size-biased sample in addition to the first. The
second size-biased sample is given by,

π̃2 = (1− π̃1)v2, v2 ∼ Beta(1− d, α+ 2d) (25)

We will compute the second moment explicitly, splitting H(π)2 into square and cross terms,

E[(H(π))
2 |d, α] = E

(−∑
i

πi log(πi)

)2
∣∣∣∣∣∣ d, α


= E

[∑
i

(πi log(πi))
2

∣∣∣∣∣ d, α
]

(26)

+ E

∑
i

∑
j 6=i

πiπj log(πi) log(πj)

∣∣∣∣∣∣ d, α
 (27)
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The first term follows directly from (10)

E

[∑
i

(πi log(πi))
2

∣∣∣∣∣ d, α
]

=

∫ 1

0

x(− log(x))2p(x|d, α) dx

= B−1(1− d, α+ d)

∫ 1

0

x log2(x)x1−d(1− x)α+d−1 dx

=
1− d
α+ 1

[
(ψ0(2− d)− ψ0(2 + α))2 + ψ1(2− d)− ψ1(2 + α)

]
(28)

The second term of (27), requires the first two size biased samples, and follows from (11) with
g(x, y) = log(x) log(y). For the PYP prior, it is easier to integrate on V1 and V2, rather than the size
biased samples. Letting γ = B−1(1− d, α+ 2d) and ζ = B−1(1− d, α+ d), the second term is then,

E [E [log(π̃1) log(π̃2)(1− π1)|π] |α]

= E [E [log(V1) log((1− V1)V2)(1− V1)|π] |α]

= ζγ

∫ 1

0

∫ 1

0

log(v1) log((1− v1)v2)(1− v1)v1−d
1 (1− v1)α+d−1

× v1−d
2 (1− v2)α+2d−1 dv1 dv2

= ζ

[∫ 1

0

log(v1) log(1− v1)(1− v1)v1−d
1 (1− v1)α+d−1 dv1

+ γ

∫ 1

0

log(v1)(1− v1)v1−d
1 (1− v1)α+d−1

×
∫ 1

0

log(v2)v1−d
2 (1− v2)α+2d−1 dv1 dv2

]
=
α+ d

α+ 1

[
(ψ0(1− d)− ψ0(2 + α))2 − ψ1(2 + α)

]
Finally combining the terms, the variance of the entropy under PYP prior is

var[H(π)|d, α] = (29)

1− d
α+ 1

[
(ψ0(2− d)− ψ0(2 + α))2 + ψ1(2− d)− ψ1(2 + α)

]
+
α+ d

α+ 1

[
(ψ0(1− d)− ψ0(2 + α))2 − ψ1(2 + α)

]
− (ψ0(1 + α)− ψ0(1− d))2

=
α+ d

(α+ 1)2(1− d)
+

1− d
α+ 1

ψ1(2− d)− ψ1(2 + α) (30)

We note that the expectations over the finite Dirichlet may also be derived using this formula by
letting the π̃ be the first size-biased sample of a finite Dirichlet on ∆A.

A.4 Posterior Moments of PYP

First, we discuss the form of the PYP posterior, and introduce independence properties that will be
important in our derivation of the mean. We recall that the PYP posterior, πpost, of (14) has three
stochastically independent components: Bernoulli p∗, PY π, and Dirichlet p.

Component expectations: From the above derivations for expectations under the PYP and
Dirichlet distributions as well as the Beta integral identities (see, e.g., Archer et al., 2012), we find
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expressions for Ep [H(p)|d, α], Eπ [H(π)|d, α], and Ep∗ [H(p∗)].

E[H(π)|d, α] = ψ0(α+ 1)− ψ0(1− d)

Ep∗ [H(p∗)] = ψ0(α+N + 1)− α+Kd

α+N
ψ0(α+Kd+ 1)

− N −Kd
α+N

ψ0(N −Kd+ 1)

Ep[H(p)|d, α] = ψ0(N −Kd+ 1)−
K∑
i=1

ni − d
N −Kd

ψ0(ni − d+ 1)

where by a slight abuse of notation we define the entropy of p∗ as H(p∗) = −(1− p∗) log(1− p∗)−
p∗ log p∗. We use these expectations below in our computation of the final posterior integral.

Derivation of posterior mean: We now derive the analytic form of the posterior mean, (15).

E[H(πpost)|d, α] = E

[
−

K∑
i=1

pi log pi − p∗
∞∑
i=1

πi log p∗πi

∣∣∣d, α]

= E

[
−(1− p∗)

K∑
i=1

pi
1− p∗

log

(
pi

1− p∗

)

−(1− p∗) log(1− p∗)− p∗
∞∑
i=1

πi log πi − p∗ log p∗

∣∣∣d, α]

= E

[
−(1− p∗)

K∑
i=1

pi
1− p∗

log

(
pi

1− p∗

)

−p∗
∞∑
i=1

πi log πi +H(p∗)
∣∣∣d, α]

= E

[
E

[
−(1− p∗)

K∑
i=1

pi
1− p∗

log

(
pi

1− p∗

)

−p∗
∞∑
i=1

πi log πi +H(p∗)
∣∣∣ p∗] ∣∣∣d, α]

= E
[
E
[
(1− p∗)H(p) + p∗H(π) +H(p∗)

∣∣∣ p∗] ∣∣∣d, α]
= Ep∗ [(1− p∗)Ep [H(p)|d, α] + p∗Eπ [H(π)|d, α] +H(p∗)]

Using the formulae for Ep [H(p)|d, α], Eπ [H(π)|d, α], and Ep∗ [H(p∗)] and rearranging terms, we
obtain (15)

E[H(πpost)|d, α] =
A

α+N
Ep[H(p)]

+
α+Kd

α+N
Eπ[H(π)] + Ep∗ [H(p∗)]

=
A

α+N

[
ψ0(A+ 1)−

K∑
i=1

αi
A
ψ0(αi + 1)

]

+
α+Kd

α+N
[ψ0(α+Kd+ 1)− ψ0(1− d)] +

ψ0(α+N + 1)− α+Kd

α+N
ψ0(α+Kd+ 1)− A

α+N
ψ0(A+ 1)
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= ψ0(α+N + 1)− α+Kd

α+N
ψ0(1− d)−

A

α+N

[
K∑
i=1

αi
A
ψ0(αi + 1)

]

= ψ0(α+N + 1)− α+Kd

α+N
ψ0(1− d)−

1

α+N

[
K∑
i=1

(ni − d)ψ0(ni − d+ 1)

]
.

Derivation of posterior variance: We continue the notation from the subsection above. In
order to exploit the independence properties of πpost we first apply the law of total variance to obtain
(31)

var[H(πpost)|d, α] = var
p∗

[
Eπ,p[H(πpost)]

∣∣∣d, α]
+ Ep∗

[
var
π,p

[H(πpost)]
∣∣∣d, α] (31)

We now seek expressions for each term in (31) in terms of the expectations already derived.
Step 1: For the right-hand term of (31), we use the independence properties of πpost to express

the variance in terms of PYP, Dirichlet, and Beta variances

Ep∗
[
var
π,p

[H(πpost)|p∗]
∣∣∣d, α] (32)

= Ep∗
[
(1− p∗)2 var

p
[H(p)] + p2

∗ var
π

[H(π)]
∣∣∣d, α]

=
(N −Kd)(N −Kd+ 1)

(α+N)(α+N + 1)
var
p

[H(p)]

+
(α+Kd)(α+Kd+ 1)

(α+N)(α+N + 1)
var
π

[H(π)] (33)

Step 2: In the left-hand term of (31) the variance is with respect to the Beta distribution, while the
inner expectation is precisely the posterior mean we derived above. Expanding, we obtain

var
p∗

[
Eπ,p[H(πpost)|p∗]

∣∣∣d, α]
= var

p∗

[
(1− p∗)Ep [H(p)] + p∗Eπ [H(π)|p∗] +H(p∗)

∣∣∣d, α] (34)

To evaluate this integral, we introduce some new notation

A = Ep [H(p)]

B = Eπ [H(π)]

Ω(p∗) = (1− p∗)Ep [H(p)] + p∗Eπ [H(π)] +H(p∗)

= (1− p∗)A + p∗B +H(p∗)

so that

Ω2(p∗) = 2p∗H(p∗)[B−A] + 2AH(p∗) + h2(p∗)

+ p2
∗[B

2 − 2AB] + 2p∗AB + (1− p∗)2A2 (35)
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and we note that

var
p∗

[
Eπ,p[H(πpost)|p∗]

∣∣∣d, α] = Ep∗ [Ω2(p∗)]− Ep∗ [Ω(p∗)]
2 (36)

The components composing Ep∗ [Ω(p∗)], as well as each term of (35) are derived by Archer et al.
(2012). Although less elegant than the posterior mean, the expressions derived above permit us to
compute (31) numerically from its component expectations, without sampling.

Appendix B. Proof of Proposition 2

In this Appendix we give a proof for Proposition 2.
Proof PYM is given by

ĤPYM =
1

p(x)

∫ ∞
0

∫ 1

0

H(d,α)p(x|d, α)p(d, α) dα dd

where we have written H(d,α) = E[H|d, α,x]. Note that p(x|d, α) is the evidence, given by (17). We
will assume p(d, α) = 1 for all α and d to show conditions under which H(d,α) is integrable for any

prior. Using the identity Γ(x+n)
Γ(x) =

∏n
i=1(x+ i− 1) and the log convexity of the Gamma function we

have

p(x|d, α) ≤
K∏
i=1

Γ(ni − d)

Γ(1− d)

Γ(α+K)

Γ(α+N)

≤ Γ(ni − d)

Γ(1− d)

1

αN−K

Since d ∈ [0, 1), we have from the properties of the digamma function

ψ0(1− d) = ψ0(2− d)− 1

1− d
≥ ψ0(1)− 1

1− d
= −γ − 1

1− d
,

and thus the upper bound

H(d,α) ≤ ψ0(α+N + 1) +
α+Kd

α+N

(
γ +

1

1− d

)
(37)

− 1

α+N

[
K∑
i=1

(ni − d)ψ0(ni − d+ 1)

]
. (38)

Although second term is unbounded in d notice that Γ(ni−d)
Γ(1−d) =

∏ni

i=1(i − d); thus, so long as

N −K ≥ 1, H(α,d)p(x|d, α) is integrable in d.

For the integral over α, it suffices to choose α0 � N. Consider the tail
∫∞
α0
H(d,α)p(x|d, α)p(d, α) dα.

From (37) and the asymptotic expansion ψ(x) = log(x)− 1
2x −

1
12x2 +O( 1

x4 ) as x→∞ we see that
in the limit of α� N

H(d,α) ≤ log(α+N + 2) +
c

α
,

where c is a constant depending on K, N , and d. Thus, we have∫ ∞
α0

H(d,α)p(x|d, α)p(d, α) dα

≤
∏K
i=1 Γ(ni − d)

Γ(1− d)

∫ ∞
α0

(
log(α+N + 2) +

c

α

) 1

αN−K
dα

and so H(d,α) is integrable in α so long as N −K ≥ 2.
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Appendix C. Proofs of Consistency Results

Proof [proof of Theorem 3] We have

lim
N→∞

E[H|α, d,xN ]

= lim
N→∞

[
ψ0(α+N + 1)− α+KNd

α+N
ψ0(1− d)−

1

α+N

[
KN∑
i=1

(ni − d)ψ0(ni − d+ 1)

]]

= lim
N→∞

[
ψ0(α+N + 1)−

KN∑
i=1

ni
N
ψ0(ni − d+ 1)

]

= − lim
N→∞

KN∑
i=1

ni
N

[ψ0(ni − d+ 1)− ψ0(α+N + 1)]

although we have made no assumptions about the tail behavior of π, so long as πk > 0, E[nk] =
E[
∑∞
i=1 1{xi=k}] =

∑∞
i=1 P{xi = k} = limN→∞Nπk → ∞, and we may apply the asymptotic

expansion ψ(x) = log(x)− 1
2x −

1
12x2 +O( 1

x4 ) as x→∞ to find

lim
N→∞

E[H|α, d,xN ] = Hplugin

We now turn to the proof of consistency for PYM. Although consistency is an intuitively plausible
property for PYM, due to the form of the estimator our proof involves a rather detailed technical
argument. Because of this, we break the proof of Theorem 4 into two parts. First, we prove a
supporting Lemma.

Lemma 7 If the data xN have at least two coincidences, and are sampled from a distribution such
that, for some constant c > 0, KN = o(N1−1/c) in probability, the following sequence of integrals
converge. ∫ KN+c

0

∫ 1

0

E[H|α, d,xN ]
p(xN |α, d)p(α, d)

p(xN )
dαdd

P−→ E[Ĥplugin|xN ]

where c > 0 is an arbitrary constant.

Proof
Notice first that E[H|α, d,xN ] is monotonically increasing in α, and so

∫ KN+c

α=0

∫ 1

d=0

E[H|α, d,xN ]
p(xN |α, d)

p(xN )
dα dd

≤
∫ KN+c

α=0

∫ 1

d=0

E[H|KN + c, d,xN ]
p(xN |α, d)

p(xN )
dα dd.

As a result we have that
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E[H|KN + c, d,xN ] = ψ0(KN + c+N + 1) (39)

− (1 + d)KN + c

KN +N + c
ψ0(1− d)

− 1

KN + c+N

(
KN∑
i=1

(ni − d)ψ0(ni − d+ 1)

)

As a consequence of Proposition 2,
∫ 1

d=0
(1 + d)ψ(1− d)p(x|α,d)

p(xN ) dd <∞, and so the second term is

bounded and controlled by KN/N . We let

A(d,N) = − (1 + d)KN + c

KN +N + c
ψ0(1− d)

and, since limN→∞
∫ 1

d=0
A(d,N)p(x|α,d)

p(xN ) dd = 0, we focus on the remaining terms of (39). We also

let B(n) =
∑KN

i=1

(
ni−1
N log

(
ni

N

))
, and note that limN→∞B = Ĥplugin. We find that

E[H|KN + c, d,xN ]

≤ log(N +KN + c+ 1) +A(d,N)

−
KN∑
i=1

(
ni − 1

KN +N + c
log(ni)

)
= log(N +KN + c+ 1) +A(d,N)−

N

KN +N + c

[
KN∑
i=1

(
ni − 1

N
log
(ni
N

))
+
N −KN

N
log(N)

]

= log

(
1 +

KN + c+ 1

N

)
+A(d,N)

+ log(N)

[
2KN + c

N +KN + c

]
+

N

KN +N + c
B

= log

(
1 +

KN + c+ 1

N

)
+A(d,N)

+
1

1 + (KN + c)/N

2KN + c

N1−1/C

log(N)

N1/C
+

N

KN +N + c
B

→ Ĥplugin + o(1)

As a result ∫ KN+c

α=0

∫ 1

d=0

E[H|α, d,xN ]
p(xN |α, d)

p(xN )
dddα

≤

[
Ĥplugin

∫ KN+c

α=0

∫ 1

d=0

p(xN |α, d)

p(xN )
dddα+ o(1)

]
→ Ĥplugin

For the lower bound, we let H(α,d,N) = E[H|α, d,xN ]1[0,KN+c](α). Notice that exp(−H(α,d,N)) ≤
1, so by dominated convergence limN→∞ E[exp(−H(α,d,N))] = exp(−Ĥplugin) by Proposition 2. And
so by Jensen’s inequality
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exp(− lim
N→∞

E[H(α,d,N)]) ≤ lim
N→∞

E[exp(−H(α,d,N))] = exp(−Ĥplugin)

=⇒ lim
N→∞

E[H(α,d,N)] ≥ Ĥplugin,

and the lemma follows.

We now turn to the proof of our primary consistency result.

Proof [proof of Theorem 4]

∫∫
E[H|α, d,xN ]

p(xN |α, d)p(α, d)

p(xN )
dαdd

=

∫ α0

0

∫ 1

0

E[H|α, d,xN ]
p(xN |α, d)p(α, d)

p(xN )
dαdd

+

∫ ∞
α0

∫ 1

0

E[H|α, d,xN ]
p(xN |α, d)p(α, d)

p(xN )
dαdd

If we let α0 = KN + 1, by Lemma 7∫ α0

0

∫ 1

0

E[H|α, d,xN ]
p(xN |α, d)p(α, d)

p(xN )
dαdd→ E[Hplugin|xN ].

Therefore, it remains to show that∫ ∞
α0

∫ 1

0

E[H|α, d,xN ]
p(xN |α, d)p(α, d)

p(xN )
dαdd→ 0

For finite support distributions where KN → K <∞, this is trivial. Hence, we only consider infinite
support distributions where KN → ∞. In this case, there exists N0 such that for all N ≥ N0,
p([0,KN + 1], [0, 1)) 6= 0.

Since p(α, d) has a decaying tail as α→∞, ∃N0∀N ≥ N0, p(KN + 1, d) ≤ 1, thus, it is sufficient
demonstrate convergence under an improper prior p(α, d) = 1.

Using

E[H|α, d,xN ] ≤ ψ0(N + α+ 1) ≤ N + α

we bound ∫ ∞
α0

∫ 1

0

E[H|α, d,xN ]
p(xN |α, d)

p(xN )
dαdd

≤
∫∞
α0

∫ 1

0
(N + α− 1)p(xN |α, d)dαdd

p(xN )

+

∫∞
α0

∫ 1

0
p(xN |α, d)dαdd

p(xN )
.

We focus upon the first term on the RHS since its boundedness implies that of the smaller second

term. Recall, that p(x) =
∫∞
α=0

∫ 1

d=0
p(x|α, d) dd dα. We seek an upper bound for the numerator and

a lower bound for p(xN ).
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Upper Bound: First we integrate over d to find the upper bound of the numerator. (For the

following display only we let γ(d) =
∏KN

i=1 Γ(ni − d)).∫ ∞
α0

∫ 1

0

(N + α− 1)p(xN |α, d)dαdd

=

∫ ∞
α0

∫ 1

d=0

(∏KN−1
l=1 (α+ ld)

)
γ(d)Γ(1 + α)(N + α− 1)

Γ(1− d)KN Γ(α+N)
dddα

≤
∫ 1

d=0

γ(d)

Γ(1− d)KN
dd

∫ ∞
α0

Γ(α+KN )(N + α− 1)

Γ(α+N)
dα

Fortunately, the first integral on d will cancel with a term from the lower bound of p(xN ). Using12

(N+α−1)Γ(α+KN )
Γ(α+N) = Beta(α+KN ,N−K−1)

Γ(N−K−1) ,∫ ∞
α0

(N + α− 1)Γ(α+K)

Γ(α+N)
dα

=
1

Γ(N −K − 1)

∫ ∞
α0

Beta(α+K,N −K − 1) dα

=
1

Γ(N −K − 1)

∫ ∞
α0

∫ 1

0

tα+K−1(1− t)N−K−2 dtdα

=
1

Γ(N −K − 1)

∫ 1

t=0

tα0+K−1

log( 1
t )

(1− t)N−K−2 dt

≤ 1

Γ(N −K − 1)

∫ 1

t=0

tα0+K−1

(1− t)
(1− t)N−K−2 dt

=
1

Γ(N −K − 1)
Beta(α0 +K,N −K − 2)

=
1

Γ(N −K − 1)

Γ(α0 +K)Γ(N −K − 2)

Γ(N + α0 − 2)

=
Γ(α0 +K)

Γ(N + α0 − 2)(N −K − 2)

Lower Bound: Again, we first integrate d∫ ∞
α=0

∫ 1

d=0

p(x|α, d) dddα

=

∫ ∞
α=0

∫ 1

d=0

(∏K−1
l=1 (α+ ld)

)(∏K
i=1 Γ(ni − d)

)
Γ(1 + α)

Γ(1− d)KΓ(α+N)
dddα

=

∫ 1

d=0

(∏K
i=1 Γ(ni − d)

)
Γ(1− d)K

dd

∫ ∞
α=0

αK−1Γ(1 + α)

Γ(α+N)
dα

So, since Γ(1+α)
Γ(α+N) = Beta(1+α,N−1)

Γ(N−1) , then

12. Note that in the argument for the inequalities we use K rather than KN for clarity of notation.
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Γ(N − 1)

∫ ∞
α=0

αK−1Γ(1 + α)

Γ(α+N)
dα

≥
∫ ∞
α=0

αK−1Beta(1 + α,N − 1) dα

=

∫ ∞
α=0

αK−1

∫ 1

t=0

tα(1− t)N−2 dtdα

=

∫ 1

t=0

(1− t)N−2

∫ ∞
α=0

αK−1tα dα dt

= Γ(K)

∫ 1

t=0

(1− t)N−2 log

(
1

t

)−K
dt

≥ Γ(K)

∫ 1

t=0

(1− t)N−K−2tK dt

= Γ(K)Beta(N −K − 1,K + 1)

where we’ve used the fact that log( 1
t )
−1 ≥ t

1−t . Finally, we obtain the bound∫ ∞
α=0

αKN−1Γ(1 + α)

Γ(α+N)
dα ≥ Γ(K)Γ(N −K − 1)Γ(K + 1)

Γ(N − 1)Γ(N)
.

Now, we apply the upper and lower bounds to bound PYM. We have∫∞
α0

∫ 1

0
(N + α− 1)p(xN |α, d)dαdd

p(xN )

≤ Γ(α0 +KN )

(N −KN − 2)Γ(N + α0 − 2)

Γ(N − 1)Γ(N)

Γ(KN )Γ(N −KN − 1)Γ(KN + 1)

=
1

(N −KN − 2)

Γ(α0 +KN )

Γ(KN )

Γ(N − 1)

Γ(N + α0 − 2)

× Γ(N)

Γ(N −KN − 1)Γ(KN + 1)

→ N

(N −KN − 2)

(
KN

N

)α0 NN−1/2

(N −KN − 1)N−KN−3/2(KN + 1)KN+1/2

=
N2

(KN + 1)1/2(N −KN − 2)

(
KN

N

)α0
(

N

N −KN − 1

)N−3/2

×
(
N −KN − 1

KN + 1

)KN

→ N

(KN + 1)1/2

(
KN

N

)α0
(
N

KN

)KN

Where we have applied the asymptotic expansion for the Beta function

Beta(x, y) ∼
√

2π
xx−

1
2 yy−

1
2

(x+ y)
x+y− 1

2

,
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a consequence of Stirling’s formula. Finally, we take α0 = KN + (C + 1)/2 so that the limit becomes

→ N

K
1/2
N

(
KN

N

)(C+1)/2

=
K
C/2
N

NC/2−1/2

which tends to 0 with increasing N since, by assumption, KN = o(N1−1/C).

Appendix D. Results on Unimodality of Evidence

Theorem 8 (Unimodal evidence on d) The evidence p(x|d, α) given by (17) has only one local
maximum (unimodal) for a fixed α > 0.

Proof Equivalently, we show that the log evidence is unimodal.

L = log p(x|d, α)

=

K−1∑
l=1

log(α+ ld) +

K∑
i=1

log Γ(ni − d) + log Γ(1 + α)−K log Γ(1− d)− log Γ(α+N)

It is sufficient to show that the partial derivative w.r.t. d has at most one positive root.

∂L

∂d
=

K−1∑
l=1

l

α+ ld
−

K∑
i=1

(ψ0(ni − d)− ψ0(1− d))

=

K−1∑
l=1

l

α+ ld
+

K∑
i=1

ni−1∑
j=1

1

d− j

Note that as d→ 1, the derivative tends to −∞. Combined with the observation that it is a linear
combination of convex functions, there is at most one root for ∂L

∂d = 0.

Theorem 9 (Unimodal evidence on α) The evidence p(x|d, α) given by (17) has only one local
maximum (unimodal), on the region α > 0, for a fixed d.

Proof Similar to Theorem 8, it is sufficient to show that the partial derivative w.r.t. α has at most
one positive root.

∂L

∂α
=

K−1∑
l=1

1

α+ ld
+ ψ0(1 + α)− ψ0(α+N)

=

K−1∑
l=1

1

α+ ld
−
N−1∑
j=1

1

j + α

Let α = 1
x be a root, then,

K−1∑
i=1

1

1 + xid
=

N−1∑
j=1

1

1 + xj
. (40)
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Note that since xid < xi, 1
1+xid >

1
1+xi for 1 ≤ i ≤ K − 1. Therefore, we can split the equality as

follows:

fi(x) = ai
1

1 + xid
=

1

1 + xj
= gi(x) for i ≤ K − 1 (41)

fij(x) = bij
1

1 + xid
= cij

1

1 + xj
= gij(x) for i ≤ K − 1 and K < j < N (42)

where 0 ≤ ai, bij , cij ≤ 1, ∀i < K, ai +
∑
j bij = 1, and ∀j < N,

∑
i cij = 1. Fix ai, bij , cij ’s, and

now suppose 1
y >

1
x > 0 is another positive root. Then, we observe the following strict inequalities

due to 0 ≤ d < 1,

fi(x)

fi(y)
=

1 + yid

1 + xid
<

1 + yj

1 + xj
=
gi(x)

gi(y)
for i ≤ K − 1 (43)

fij(x)

fij(y)
=

1 + yid

1 + xid
<

1 + yj

1 + xj
=
gij(x)

gij(y)
for i ≤ K − 1 and K < j < N (44)

Using Lemma 10 to put the sum back together, we obtain,

K−1∑
i=1

1

1 + yid
>

N−1∑
j=1

1

1 + yj
. (45)

which is a contradiction to our assumption that 1
y is a positive root.

Lemma 10 If fj , gj > 0, fj(x) = gj(x) and
fj(y)
fj(x) >

gj(y)
gj(x) for all j, then

∑
j fj(y) >

∑
j gj(y).
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Abstract

Fitting high-dimensional statistical models often requires the use of non-linear parameter
estimation procedures. As a consequence, it is generally impossible to obtain an exact
characterization of the probability distribution of the parameter estimates. This in turn
implies that it is extremely challenging to quantify the uncertainty associated with a certain
parameter estimate. Concretely, no commonly accepted procedure exists for computing
classical measures of uncertainty and statistical significance as confidence intervals or p-
values for these models.

We consider here high-dimensional linear regression problem, and propose an efficient
algorithm for constructing confidence intervals and p-values. The resulting confidence inter-
vals have nearly optimal size. When testing for the null hypothesis that a certain parameter
is vanishing, our method has nearly optimal power.

Our approach is based on constructing a ‘de-biased’ version of regularized M-estimators.
The new construction improves over recent work in the field in that it does not assume a
special structure on the design matrix. We test our method on synthetic data and a high-
throughput genomic data set about riboflavin production rate, made publicly available
by Bühlmann et al. (2014).

Keywords: hypothesis testing, confidence intervals, LASSO, high-dimensional models,
bias of an estimator

1. Introduction

It is widely recognized that modern statistical problems are increasingly high-dimensional,
i.e., require estimation of more parameters than the number of observations/samples. Ex-
amples abound from signal processing (Lustig et al., 2008), to genomics (Peng et al., 2010),
collaborative filtering (Koren et al., 2009) and so on. A number of successful estimation
techniques have been developed over the last ten years to tackle these problems. A widely
applicable approach consists in optimizing a suitably regularized likelihood function. Such
estimators are, by necessity, non-linear and non-explicit (they are solution of certain opti-
mization problems).

c©2014 Adel Javanmard and Andrea Montanari.
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The use of non-linear parameter estimators comes at a price. In general, it is impossible
to characterize the distribution of the estimator. This situation is very different from the
one of classical statistics in which either exact characterizations are available, or asymp-
totically exact ones can be derived from large sample theory (Van der Vaart, 2000). This
has an important and very concrete consequence. In classical statistics, generic and well
accepted procedures are available for characterizing the uncertainty associated to a certain
parameter estimate in terms of confidence intervals or p-values (Wasserman, 2004; Lehmann
and Romano, 2005). However, no analogous procedures exist in high-dimensional statistics.

In this paper we develop a computationally efficient procedure for constructing confi-
dence intervals and p-values for a broad class of high-dimensional regression problems. The
salient features of our procedure are:

(i) Our approach guarantees nearly optimal confidence interval sizes and testing power.

(ii) It is the first one to achieve this goal under essentially no assumptions beyond the
standard conditions for high-dimensional consistency.

(iii) It allows for a streamlined analysis with respect to earlier work in the same area.

For the sake of clarity, we will focus our presentation on the case of linear regression, under
Gaussian noise. Section 4 provides a detailed study of the case of non-Gaussian noise. A
preliminary report on our results was presented in NIPS 2013 (Javanmard and Montanari,
2013a), which also discusses generalizations of the same approach to generalized linear
models, and regularized maximum likelihood estimation.

In a linear regression model, we are given n i.i.d. pairs (Y1, X1), (Y2, X2), . . . , (Yn, Xn),
with vectors Xi ∈ Rp and response variables Yi given by

Yi = 〈θ0, Xi〉+Wi , Wi ∼ N(0, σ2) . (1)

Here θ0 ∈ Rp and 〈 · , · 〉 is the standard scalar product in Rp. In matrix form, letting
Y = (Y1, . . . , Yn)T and denoting by X the design matrix with rows XT

1 , . . . , X
T
n , we have

Y = X θ0 +W , W ∼ N(0, σ2In×n) . (2)

The goal is to estimate the unknown (but fixed) vector of parameters θ0 ∈ Rp.
In the classic setting, n � p and the estimation method of choice is ordinary least

squares yielding θ̂OLS = (XTX)−1XTY . In particular θ̂OLS is Gaussian with mean θ0 and
covariance σ2(XTX)−1. This directly allows to construct confidence intervals.1

In the high-dimensional setting where p > n, the matrix (XTX) is rank deficient and one
has to resort to biased estimators. A particularly successful approach is the LASSO (Tib-
shirani, 1996; Chen and Donoho, 1995) which promotes sparse reconstructions through an
`1 penalty:

θ̂n(Y,X;λ) ≡ arg min
θ∈Rp

{ 1

2n
‖Y −Xθ‖22 + λ‖θ‖1

}
. (3)

1. For instance, letting Q ≡ (XTX/n)−1, θ̂OLS
i − 1.96σ

√
Qii/n, θ̂

OLS
i + 1.96σ

√
Qii/n] is a 95% confidence

interval (Wasserman, 2004).
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Algorithm 1 Unbiased estimator for θ0 in high-dimensional linear regression models

Input: Measurement vector y, design matrix X, parameters λ, µ.
Output: Unbiased estimator θ̂u.

1: Let θ̂n = θ̂n(Y,X;λ) be the LASSO estimator as per Equation (3).
2: Set Σ̂ ≡ (XTX)/n.
3: for i = 1, 2, . . . , p do
4: Let mi be a solution of the convex program:

minimize mTΣ̂m

subject to ‖Σ̂m− ei‖∞ ≤ µ ,
(4)

where ei ∈ Rp is the vector with one at the i-th position and zero everywhere else.
5: Set M = (m1, . . . ,mp)

T. If any of the above problems is not feasible, then set M = Ip×p.

6: Define the estimator θ̂u as follows:

θ̂u = θ̂n(λ) +
1

n
MXT(Y −Xθ̂n(λ)) (5)

In case the right hand side has more than one minimizer, one of them can be selected
arbitrarily for our purposes. We will often omit the arguments Y , X, as they are clear from
the context.

We denote by S ≡ supp(θ0) the support of θ0 ∈ Rp, defined as

supp(θ0) ≡ {i ∈ [p] : θ0,i 6= 0} ,

where we use the notation [p] = {1, . . . , p}. We further let s0 ≡ |S|. A copious theoretical lit-
erature (Candès and Tao, 2005; Bickel et al., 2009; Bühlmann and van de Geer, 2011) shows
that, under suitable assumptions on X, the LASSO is nearly as accurate as if the support
S was known a priori. Namely, for n = Ω(s0 log p), we have ‖θ̂n− θ0‖22 = O(s0σ

2(log p)/n).
As mentioned above, these remarkable properties come at a price. Deriving an exact

characterization for the distribution of θ̂n is not tractable in general, and hence there is no
simple procedure to construct confidence intervals and p-values. A closely related property
is that θ̂n is biased, an unavoidable property in high dimension, since a point estimate
θ̂n ∈ Rp must be produced from data in lower dimension Y ∈ Rn, n < p. We refer to
Section 2.2 for further discussion of this point.

In order to overcome this challenge, we construct a de-biased estimator from the LASSO
solution. The de-biased estimator is given by the simple formula θ̂u = θ̂n+(1/n)MXT(Y −
Xθ̂n), as in Equation (5). The basic intuition is that XT(Y −Xθ̂n)/(nλ) is a subgradient of
the `1 norm at the LASSO solution θ̂n. By adding a term proportional to this subgradient,
our procedure compensates the bias introduced by the `1 penalty in the LASSO.

We will prove in Section 2.1 that θ̂u is approximately Gaussian, with mean θ0 and covari-
ance σ2(M Σ̂M)/n, where Σ̂ = (XTX/n) is the empirical covariance of the feature vectors.
This result allows to construct confidence intervals and p-values in complete analogy with
classical statistics procedures. For instance, letting Q ≡ M Σ̂M , [θ̂ui − 1.96σ

√
Qii/n, θ̂

u
i +

1.96σ
√
Qii/n] is a 95% confidence interval. The size of this interval is of order σ/

√
n, which
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is the optimal (minimum) one, i.e., the same that would have been obtained by knowing a
priori the support of θ0. In practice the noise standard deviation is not known, but σ can
be replaced by any consistent estimator σ̂ (see Section 3 for more details on this).

A key role is played by the matrix M ∈ Rp×p whose function is to ‘decorrelate’ the
columns of X. We propose here to construct M by solving a convex program that aims at
optimizing two objectives. One one hand, we try to control |M Σ̂ − I|∞ (here and below
| · |∞ denotes the entrywise `∞ norm) which, as shown in Theorem 8, controls the non-
Gaussianity and bias of θ̂u. On the other, we minimize [M Σ̂M ]i,i, for each i ∈ [p], which

controls the variance of θ̂ui .

The idea of constructing a de-biased estimator of the form θ̂u = θ̂n + (1/n)MXT(Y −
Xθ̂n) was used by the present authors in Javanmard and Montanari (2013b), that suggested
the choice M = cΣ−1, with Σ = E{X1X

T
1 } the population covariance matrix and c a positive

constant. A simple estimator for Σ was proposed for sparse covariances, but asymptotic
validity and optimality were proven only for uncorrelated Gaussian designs (i.e., Gaussian
X with Σ = I). Van de Geer, Bülhmann, Ritov and Dezeure (van de Geer et al., 2014) used
the same construction with M an estimate of Σ−1 which is appropriate for sparse inverse
covariances. These authors prove semi-parametric optimality in a non-asymptotic setting,
provided the sample size is at least n = Ω((s0 log p)2).

From a technical point of view, our proof starts from a simple decomposition of the
de-biased estimator θ̂u into a Gaussian part and an error term, already used in van de Geer
et al. (2014). However, departing radically from earlier work, we realize that M need not
be a good estimator of Σ−1 in order for the de-biasing procedure to work. We instead set
M as to minimize the error term and the variance of the Gaussian term. As a consequence
of this choice, our approach applies to general covariance structures Σ. By contrast, earlier
approaches applied only to sparse Σ, as in Javanmard and Montanari (2013b), or sparse
Σ−1 as in van de Geer et al. (2014). The only assumptions we make on Σ are the standard
compatibility conditions required for high-dimensional consistency (Bühlmann and van de
Geer, 2011). A detailed comparison of our results with the ones of van de Geer et al. (2014)
can be found in Section 2.3.

1.1 Organization of the Paper

Our presentation is organized as follows.

Section 2 considers a general debiased estimator of the form θ̂u = θ̂n + (1/n)MXT(Y −
Xθ̂n). We introduce a figure of merit of the pair M,X, termed the generalized coherence
parameter µ∗(X;M). We show that, if the generalized coherence is small, then the debiasing
procedure is effective (for a given deterministic design), see Theorem 6. We then turn to
random designs, and show that the generalized coherence parameter can be made as small
as
√

(log p)/n, though a convex optimization procedure for computing M . This results in a

bound on the bias of θ̂u, cf. Theorem 8: the largest entry of the bias is of order (s0 log p)/n.
This must be compared with the standard deviation of θ̂ui , which is of order σ/

√
n. The

conclusion is that, for s0 = o(
√
n/ log p), the bias of θ̂u is negligible.

Section 3 applies these distributional results to deriving confidence intervals and hypoth-
esis testing procedures for low-dimensional marginals of θ0. The basic intuition is that θ̂u

is approximately Gaussian with mean θ0, and known covariance structure. Hence standard
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optimal tests can be applied. We prove a general lower bound on the power of our testing
procedure, in Theorem 16. In the special case of Gaussian random designs with i.i.d. rows,
we can compare this with the upper bound proved in Javanmard and Montanari (2013b),
cf. Theorem 17. As a consequence, the asymptotic efficiency of our approach is constant-
optimal. Namely, it is lower bounded by a constant 1/ηΣ,s0 which is bounded away from 0,
cf. Theorem 18. (For instance ηI,s0 = 1, and ηΣ,s0 is always upper bounded by the condition
number of Σ.)

Section 4 uses the central limit theorem for triangular arrays to generalize the above
results to non-Gaussian noise.

Section 5 illustrates the above results through numerical simulations both on synthetic
and on real data. In the interest of reproducibility, an R implementation of our algorithm
is available at http://www.stanford.edu/~montanar/sslasso/.

Note that our proofs require stricter sparsity s0 (or larger sample size n) than required
for consistent estimation. We assume s0 = o(

√
n/ log p) instead of s0 = o(n/ log p) (Candès

and Tao, 2007; Bickel et al., 2009; Bühlmann and van de Geer, 2011). The same assumption
is made in van de Geer et al. (2014), on top of additional assumptions on the sparsity of
Σ−1.

It is currently an open question whether successful hypothesis testing can be performed
under the weaker assumption s0 = o(n/ log p). We refer to Javanmard and Montanari
(2013c) for preliminary work in that direction. The barrier at s0 = o(

√
n/ log p) is possibly

related to an analogous assumption that arises in Gaussian graphical models selection (Ren
et al., 2013).

1.2 Further Related Work

The theoretical literature on high-dimensional statistical models is vast and rapidly growing.
Estimating sparse linear regression models is the most studied problem in this area, and
a source of many fruitful ideas. Limiting ourselves to linear regression, earlier work inves-
tigated prediction error (Greenshtein and Ritov, 2004), model selection properties (Mein-
shausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2009; Candès and Plan,
2009), `2 consistency (Candès and Tao, 2005; Bickel et al., 2009). . Of necessity, we do not
provide a complete set of references, and instead refer the reader to Bühlmann and van de
Geer (2011) for an in-depth introduction to this area.

The problem of quantifying statistical significance in high-dimensional parameter esti-
mation is, by comparison, far less understood. Zhang and Zhang (2014) and Bühlmann
(2013) proposed hypothesis testing procedures under restricted eigenvalue or compatibil-
ity conditions (Bühlmann and van de Geer, 2011). These papers provide deterministic
guarantees but, in order to achieve a certain target significance level α and power 1 − β,
they require |θ0,i| ≥ c max{σs0 log p/ n, σ/

√
n}. The best lower bound (Javanmard and

Montanari, 2013b) shows that any such test requires instead |θ0,i| ≥ c(α, β)σ/
√
n. (The

lower bound of Javanmard and Montanari 2013b is reproduced as Theorem 17 here, for the
reader’s convenience.)

In other words, the guarantees of Zhang and Zhang (2014); Bühlmann (2013) can be
suboptimal by a factor as large as

√
s0. Equivalently, in order for the coefficient θ0,i to be

detectable with appreciable probability, it needs to be larger than the overall `2 error. Here
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we will propose a test that, for random designs, achieves significance level α and power 1−β
for |θ0,i| ≥ c′(α, β)σ/

√
n.

Lockhart et al. (2014) develop a test for the hypothesis that a newly added coefficient
along the LASSO regularization path is irrelevant. This however does not allow to test
arbitrary coefficients at a given value of λ, which is instead the problem addressed in this
paper. These authors further assume that the current LASSO support contains the actual
support supp(θ0) and that the latter has bounded size.

Belloni et al. (2014, 2013) consider inference in a regression model with high-dimensional
data. In this model the response variable relates to a scalar main regressor and a p-
dimensional control vector. The main regressor is of primary interest and the control vector
is treated as nuisance component. Assuming that the control vector is s0-sparse, the au-
thors propose a method to construct confidence regions for the parameter of interest under
the sample size requirement (s2

0 log p)/n→ 0. The proposed method is shown to attain the
semi-parametric efficiency bounds for this class of models. The key modeling assumption
in this paper is that the scalar regressor of interest is random, and depends linearly on the
p-dimensional control vector, with a sparse coefficient vector (with sparsity again of order
o(
√
n/ log p). This assumption is closely related to the sparse inverse covariance assumption

of van de Geer et al. (2014) (with the difference that only one regressor is tested).

Finally, resampling methods for hypothesis testing were studied in Meinshausen and
Bühlmann (2010); Minnier et al. (2011). These methods are perturbation-based procedures
to approximate the distribution of a general class of penalized parameter estimates for the
case n > p. The idea is to consider the minimizer of a stochastically perturbed version
of the regularized objective function, call it θ̃, and characterize the limiting distribution
of the regularized estimator θ̂ in terms of the distribution of θ̃. In order to estimate the
latter, a large number of random samples of the perturbed objective function are generated,
and for each sample the minimizer is computed. Finally the theoretical distribution of θ̃ is
approximated by the empirical distribution of these minimizers.

After the present paper was submitted for publication, we became aware that Dezeure
and Bühlmann (2013) had independently worked on similar ideas.

1.3 Preliminaries and Notations

In this section we introduce some basic definitions used throughout the paper, starting with
simple notations.

For a matrix A and set of indices I, J , we let AI,J denote the submatrix formed by
the rows in I and columns in J . Also, AI,· (resp. A·,I) denotes the submatrix containing
just the rows (reps. columns) in I. Likewise, for a vector v, vI is the restriction of v to
indices in I. We use the shorthand A−1

I,J = (A−1)I,J . In particular, A−1
i,i = (A−1)i,i. The

maximum and the minimum singular values of A are respectively denoted by σmax(A) and
σmin(A). We write ‖v‖p for the standard `p norm of a vector v, i.e., ‖v‖p = (

∑
i |vi|p)1/p.

and ‖v‖0 for the number of nonzero entries of v. For a matrix A, ‖A‖p is the `p operator
norm, and |A|p is the elementwise `p norm. For a vector v, supp(v) represents the positions

of nonzero entries of v. Throughout, Φ(x) ≡
∫ x
−∞ e

−t2/2dt/
√

2π denotes the CDF of the
standard normal distribution. Finally, with high probability (w.h.p) means with probability
converging to one as n→∞.
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We let Σ̂ ≡ XTX/n be the sample covariance matrix. For p > n, Σ̂ is always singular.
However, we may require Σ̂ to be nonsingular for a restricted set of directions.

Definition 1 Given a symmetric matrix Σ̂ ∈ Rp×p and a set S ⊆ [p], the corresponding
compatibility constant is defined as

φ2(Σ̂, S) ≡ min
θ∈Rp

{ |S| 〈θ, Σ̂ θ〉
‖θS‖21

: θ ∈ Rp, ‖θSc‖1 ≤ 3‖θS‖1
}
. (6)

We say that Σ̂ ∈ Rp×p satisfies the compatibility condition for the set S ⊆ [p], with constant
φ0 if φ(Σ̂, S) ≥ φ0. We say that it holds for the design matrix X, if it holds for Σ̂ = XTX/n.

In the following, we shall drop the argument Σ̂ if clear from the context. Note that a slightly
more general definition is used normally (Bühlmann and van de Geer, 2011, Section 6.13),
whereby the condition ‖θSc‖1 ≤ 3‖θS‖1, is replaced by ‖θSc‖1 ≤ L‖θS‖1. The resulting
constant φ(Σ̂, S, L) depends on L. For the sake of simplicity, we restrict ourselves to the
case L = 3.

Definition 2 The sub-Gaussian norm of a random variable X, denoted by ‖X‖ψ2, is de-
fined as

‖X‖ψ2 = sup
q≥1

q−1/2(E|X|q)1/q .

For a random vector X ∈ Rn, its sub-Gaussian norm is defined as

‖X‖ψ2 = sup
x∈Sn−1

‖〈X,x〉‖ψ2 ,

where Sn−1 denotes the unit sphere in Rn.

Definition 3 The sub-exponential norm of a random variable X, denoted by ‖X‖ψ1, is
defined as

‖X‖ψ1 = sup
q≥1

q−1(E|X|q)1/q .

For a random vector X ∈ Rn, its sub-exponential norm is defined as

‖X‖ψ1 = sup
x∈Sn−1

‖〈X,x〉‖ψ1 ,

where Sn−1 denotes the unit sphere in Rn.

2. Compensating the Bias of the LASSO

In this section we present our characterization of the de-biased estimator θ̂u (Subsection
2.1). This characterization also clarifies in what sense the LASSO estimator is biased. We
discuss this point in Subsection 2.2.
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2.1 A De-biased Estimator for θ0

As emphasized above, our approach is based on a de-biased estimator defined in Equa-
tion (5), and on its distributional properties. In order to clarify the latter, it is convenient
to begin with a slightly broader setting and consider a general debiasing procedure that
makes use of a an arbitrary M ∈ Rp×p. Namely, we define

θ̂∗(Y,X;M,λ) = θ̂n(λ) +
1

n
MXT(Y −Xθ̂n(λ)) . (7)

For notational simplicity, we shall omit the arguments Y,X,M, λ unless they are required
for clarity. The quality of this debiasing procedure depends of course on the choice of M , as
well as on the design X. We characterize the pair (X,M) by the following figure of merit.

Definition 4 Given the pair X ∈ Rn×p and M ∈ Rp×p, let Σ̂ = XTX/n denote the
associated sample covariance. Then, the generalized coherence parameter of X,M , denoted
by µ∗(X;M), is

µ∗(X;M) ≡
∣∣M Σ̂− I

∣∣
∞ . (8)

The minimum (generalized) coherence of X is µmin(X) = minM∈Rp×p µ∗(X;M). We denote
by Mmin(X) any minimizer of µ∗(X;M).

Note that the minimum coherence can be computed efficiently since M 7→ µ∗(X;M) is a
convex function (even more, the optimization problem is a linear program).

The motivation for our terminology can be grasped by considering the following special
case.

Remark 5 Assume that the columns of X are normalized to have `2 norm equal to
√
n

(i.e., ‖Xei‖2 =
√
n for all i ∈ [p]), and M = I. Then (M Σ̂ − I)i,i = 0, and the maximum

|M Σ̂ − I|∞ = maxi 6=j |(Σ̂)ij |. In other words µ(X; I) is the maximum normalized scalar
product between distinct columns of X:

µ∗(X; I) =
1

n
max
i 6=j

∣∣〈Xei,Xej〉∣∣ . (9)

The quantity (9) is known as the coherence parameter of the matrix X/
√
n and was first

defined in the context of approximation theory by Mallat and Zhang (1993), and by Donoho
and Huo (2001).

Assuming, for the sake of simplicity, that the columns of X are normalized so that
‖Xei‖2 =

√
n, a small value of the coherence parameter µ∗(X; I) means that the columns

of X are roughly orthogonal. We emphasize however that µ∗(X;M) can be much smaller
than its classical coherence parameter µ∗(X; I). For instance, µ∗(X; I) = 0 if and only if
X/
√
n is an orthogonal matrix. On the other hand, µmin(X) = 0 if and only if X has rank

p.2

The following theorem is a slight generalization of a result of van de Geer et al. (2014).
Let us emphasize that it applies to deterministic design matrices X.

2. Of course this example requires n ≥ p. It is the simplest example that illustrates the difference between
coherence and generalized coherence, and it is not hard to find related examples with n < p.
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Theorem 6 Let X ∈ Rn×p be any (deterministic) design matrix, and θ̂∗ = θ̂∗(Y,X;M,λ)
be a general debiased estimator as per Equation (7). Then, setting Z = MXTW/

√
n, we

have

√
n(θ̂∗ − θ0) = Z + ∆ , Z ∼ N(0, σ2M Σ̂MT) , ∆ =

√
n(M Σ̂− I)(θ0 − θ̂n) . (10)

Further, assume that X satisfies the compatibility condition for the set S = supp(θ0), |S| ≤
s0, with constant φ0, and has generalized coherence parameter µ∗ = µ∗(X;M), and let
K ≡ maxi∈[p] Σ̂i,i. Then, letting λ = σ

√
(c2 log p)/n, we have

P
(
‖∆‖∞ ≥

4cµ∗σs0

φ2
0

√
log p

)
≤ 2p−c0 , c0 =

c2

32K
− 1 . (11)

Further, if M = Mmin(X) minimizes the convex cost function |M Σ̂ − I|∞, then µ∗ can be
replaced by µmin(X) in Equation (11).

The above theorem decomposes the estimation error (θ̂∗−θ0) into a zero mean Gaussian
term Z/

√
n and a bias term ∆/

√
n whose maximum entry is bounded as per Equation (11).

This estimate on ‖∆‖∞ depends on the design matrix through two constants: the com-
patibility constant φ0 and the generalized coherence parameter µ∗(X;M). The former is a
well studied property of the design matrix (Bühlmann and van de Geer, 2011; van de Geer
and Bühlmann, 2009), and assuming φ0 of order one is nearly necessary for the LASSO
to achieve optimal estimation rate in high dimension. On the contrary, the definition of
µ∗(X;M) is a new contribution of the present paper.

The next theorem establishes that, for a natural probabilistic model of the design matrix
X, both φ0 and µ∗(X;M) can be bounded with probability converging rapidly to one as
n, p → ∞. Further, the bound on µ∗(X,M) hold for the special choice of M that is
constructed by Algorithm 1.

Theorem 7 Let Σ ∈ Rp×p be such that σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤ Cmax < ∞,
and maxi∈[p] Σii ≤ 1. Assume XΣ−1/2 to have independent sub-Gaussian rows, with zero

mean and sub-Gaussian norm ‖Σ−1/2X1‖ψ2 = κ, for some constant κ ∈ (0,∞).

(a) For φ0, s0,K ∈ R>0, let En = En(φ0, s0,K) be the event that the compatibility condition
holds for Σ̂ = (XTX/n), for all sets S ⊆ [p], |S| ≤ s0 with constant φ0 > 0, and that
maxi∈[p] Σ̂i,i ≤ K. Explicitly

En(φ0, s0,K) ≡
{

X ∈ Rn×p : min
S: |S|≤s0

φ(Σ̂, S) ≥ φ0, max
i∈[p]

Σ̂i,i ≤ K, Σ̂ = (XTX/n)
}
.

(12)

Then there exists c∗ ≤ 2000 such that the following happens. If n ≥ ν0 s0 log(p/s0),
ν0 ≡ 5× 104c∗(Cmax/Cmin)2κ4, φ0 =

√
Cmin/2, and K ≥ 1 + 20κ2

√
(log p)/n, then

P
(
X ∈ En(φ0, s0,K)

)
≥ 1− 4 e−c1n , c1 ≡

1

4c∗κ4
. (13)
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(b) For a > 0, let Gn = Gn(a) be the event that the problem (4) is feasible for µ =
a
√

(log p)/n, or equivalently

Gn(a) ≡
{

X ∈ Rn×p : µmin(X) < a

√
log p

n

}
. (14)

Then, for n ≥ a2Cmin log p/(4e2Cmaxκ
4)

P
(
X ∈ Gn(a)

)
≥ 1− 2 p−c2 , c2 ≡

a2Cmin

24e2κ4Cmax
− 2 . (15)

The proof of this theorem is given in Section 6.2 (for part (a)) and Section 6.3 (part (b)).
The proof that event En holds with high probability relies crucially on a theorem by

Rudelson and Shuheng (2013, Theorem 6). Simplifying somewhat, the latter states that, if
the restricted eigenvalue condition of Bickel et al. (2009) holds for the population covariance
Σ, then it holds with high probability for the sample covariance Σ̂. (Recall that the restricted
eigenvalue condition is implied by a lower bound on the minimum singular value,3 and that
it implies the compatibility condition van de Geer and Bühlmann, 2009.)

Finally, by putting together Theorem 6 and Theorem 7, we obtain the following conclu-
sion. We refer to Section 6.4 for the proof of Theorem 8.

Theorem 8 Consider the linear model (1) and let θ̂u be defined as per Equation (5) in
Algorithm 1, with µ = a

√
(log p)/n. Then, setting Z = MXTW/

√
n, we have

√
n(θ̂u − θ0) = Z + ∆ , Z|X ∼ N(0, σ2M Σ̂MT) , ∆ =

√
n(M Σ̂− I)(θ0 − θ̂n) . (16)

Further, under the assumptions of Theorem 7, and for n ≥ max(ν0s0 log(p/s0), ν1 log p),
ν1 = max(1600κ4, a2/(4e2κ4)), and λ = σ

√
(c2 log p)/n, we have

P
{
‖∆‖∞ ≥

(16ac σ

Cmin

)s0 log p√
n

}
≤ 4 e−c1n + 4 p−c̃0∧c2 . (17)

where c̃0 = (c2/48)− 1 and c1, c2 are given by Equations (13) and (15).
Finally, the tail bound (17) holds for any choice of M that is only function of the design

matrix X, and satisfies the feasibility condition in Equation (4), i.e., |M Σ̂− I|∞ ≤ µ.

Assuming σ,Cmin of order one, the last theorem establishes that, for random designs, the
maximum size of the ‘bias term’ ∆i over i ∈ [p] is:

‖∆‖∞ = O
(s0 log p√

n

)
(18)

On the other hand, the ‘noise term’ Zi is roughly of order

√
[M Σ̂MT]ii. Bounds on the

variances [M Σ̂MT]ii will be given in Section 3.3 (cf. Equation 82 in the proof of Theorem 16)
showing that, if M is computed through Algorithm 1, [M Σ̂MT]ii is of order one for a
broad family of random designs. As a consequence |∆i| is much smaller than |Zi| whenever
s0 = o(

√
n/ log p). We summarize these remarks below.

3. Note, in particular, at the cost of further complicating the last statement, the condition σmin(Σ) = Ω(1)
can be further weakened.
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Remark 9 Theorem 8 only requires that the support size satisfies s0 = O(n/ log p). If we
further assume s0 = o(

√
n/ log p), then we have ‖∆‖∞ = o(1) with high probability. Hence,

θ̂u is an asymptotically unbiased estimator for θ0.

A more formal comparison of the bias of θ̂u, and of the one of the LASSO estimator θ̂n can
be found in Section 2.2 below. Section 2.3 compares our approach with the related one in
van de Geer et al. (2014).

As it can be seen from the statement of Theorem 6 and Theorem 7, the claim of The-
orem 8 does not rely on the specific choice of the objective function in optimization prob-
lem (4) and only uses the constraint on ‖Σ̂m− ei‖∞. In particular it holds for any matrix
M that is feasible. On the other hand, the specific objective function problem (4) minimizes
the variance of the noise term Var(Zi).

2.2 Discussion: Bias of the LASSO

Theorems 6 and 7 provide a quantitative framework to discuss in what sense the LASSO
estimator θ̂n is asymptotically biased, while the de-biased estimator θ̂u is asymptotically
unbiased.

Given an estimator θ̂n of the parameter vector θ0, we define its bias to be the vector

Bias(θ̂n) ≡ E{θ̂n − θ0|X} . (19)

Note that, if the design is random, Bias(θ̂n) is a measurable function of X. If the design is
deterministic, Bias(θ̂n) is a deterministic quantity as well, and the conditioning is redundant.

It follows from Equation (10) that

Bias(θ̂u) =
1√
n
E{∆|X} . (20)

Applying Theorem 8 with high probability, ‖∆‖∞ = O(s0 log p/
√
n). The next corollary

establishes that this translates into a bound on Bias(θ̂u) for all X in a set that has probability
rapidly converging to one as n, p get large.

Corollary 10 Under the assumptions of Theorem 8, let c1, c2 be defined as per Equa-
tions (13), (15). Then we have

X ∈ En(
√
Cmin/2, s0, 3/2) ∩ Gn(a) ⇒ ‖Bias(θ̂u)‖∞ ≤

160a

Cmin
· σs0 log p

n
, (21)

P
(
X ∈ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
≥ 1− 4e−c1n − 2 p−c2 . (22)

The proof of this corollary can be found in Appendix B.1.
This result can be contrasted with a converse result for the LASSO estimator. Namely,

as stated below, there are choices of the vector θ0, and of the design covariance Σ, such that
Bias(θ̂n) is the sum of two terms. One is of order order λ = cσ

√
(log p)/n and the second

is of order ‖Bias(θ̂u)‖∞. If s0 is significantly smaller than
√
n/ log p (which is the main

regime studied in the rest of the paper), the first term dominates and ‖Bias(θ̂n)‖∞ is much
larger than ‖Bias(θ̂u)‖∞. On the other hand, if s0 is significantly larger than

√
n/ log p

2879



Javanmard and Montanari

then ‖Bias(θ̂n)‖∞ is of the same order as ‖Bias(θ̂u)‖∞. This justifies referring to θ̂u as an
unbiased estimator.

Notice that, since we want to establish a negative result about the LASSO, it is suffi-
cient to exhibit a specific covariance structure Σ satisfying the assumptions of the previous
corollary. Remarkably it is sufficient to consider standard designs, i.e., Σ = Ip×p.

Corollary 11 Under the assumptions of Theorem 8, further consider the case Σ = I. Then,
there exist a set of design matrices Bn ⊆ Rn×p, and coefficient vectors θ0 ∈ Rp, ‖θ0‖0 ≤ s0,
such that

X ∈ Bn ⇒ ‖Bias(θ̂n)‖∞ ≥
∣∣∣∣23λ− ‖Bias(θ̂∗)‖∞

∣∣∣∣ , (23)

P(Bn) ≥ 1− 4 e−c1n − 2 p−3 , (24)

where θ̂∗ = θ̂∗(Y,X; I, λ), with λ = cσ
√

(log p)/n. In particular, there exists c∗∗ ≤ 4800

such that if n ≥ (3c∗∗s0/c)
2 log p and p ≥ 1348/(c2−48), then the following hold true:

‖Bias(θ̂∗)‖∞ ≤ λ/3 , (25)

‖Bias(θ̂n)‖∞ ≥
cσ

3

√
log p

n
� ‖Bias(θ̂u)‖∞ , (26)

where θ̂u is given by Equation (5) in Algorithm 1, with µ = 30
√

(log p)/n.

A formal proof of this statement is deferred to Appendix B.2, but the underlying mathemat-
ical mechanism is quite simple. Recall that the KKT condition for the LASSO estimator
(3) reads

1

n
XT(Y −Xθ̂n) = λ v(θ̂n) , (27)

with v(θ̂n) ∈ Rp being a vector in the subgradient of the `1 norm at θ̂n. Adding θ̂n − θ0 to
both sides, and taking expectation over the noise, we get

Bias(θ̂∗) = Bias(θ̂n) + λE{v(θ̂n)|X} , (28)

where θ̂∗ is a debiased estimator of the general form (7), for M = I. As shown formally in
Appendix B.2, ‖E{v(θ̂n)|X}‖∞ ≥ 2/3, which directly implies Equation (23) using triangle
inequality.

2.3 Comparison with Earlier Results

In this Section we briefly compare the above debiasing procedure and in particular Theorems
6, 7 and 8 to the results of van de Geer et al. (2014). In the case of linear statistical models
considered here, the authors of van de Geer et al. (2014) construct a debiased estimator of
the form (7). However, instead of solving the optimization problem (4), they follow Zhang
and Zhang (2014) and use the regression coefficients of the i-th column of X on the other
columns to construct the i-th row of M . These regression coefficients are computed, once
again, using the LASSO (node-wise LASSO).

It useful to spell out the most important differences between our contribution and the
ones of van de Geer et al. (2014):
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1. The case of fixed non-random designs is covered by van de Geer et al. (2014, Theorem
2.1), which should be compared to our Theorem 6. While in our case the bias is
controlled by the generalized coherence parameter, a similar role is played in van de
Geer et al. (2014) by the regularization parameters of the nodewise LASSO.

2. The case of random designs is covered by van de Geer et al. (2014, Theorem 2.2,
Theorem 2.4), which should be compared with our Theorem 8. In this case, the
assumptions underlying our result are less restrictive. More precisely:

(a) van de Geer et al. (2014, Theorem 2.2, Theorem 2.4) assume X has i.i.d. rows,
while we only assume the rows are independent.

(b) van de Geer et al. (2014, Theorem 2.2, Theorem 2.4) assumes the rows of the
inverse covariance matrix Σ−1 are sparse. More precisely, letting sj be the num-
ber of non-zero entries of the j-th row of Σ−1, van de Geer et al. (2014) assumes
maxj∈[p] sj = o(n/ log p), that is much smaller than p. We do not make any
sparsity assumption on Σ−1, and sj can be as large as p.

van de Geer et al. (2014, Theorem 2.4) also considers a slightly different setting,
where X has bounded entries, under analogous sparsity assumptions.

It is currently unknown whether the sparsity assumption in van de Geer et al. (2014)
is required for that approach to work, or it is rather an artifact of the specific analysis.
Indeed van de Geer et al. (2014, Theorem 2.1) can in principle be used to weaken this
condition.

In addition our Theorem 8 provides the specific dependence on the maximum and minimum
singular value of Σ̂.

Note that solving the convex problem (4) is not more burdensome than solving the
nodewise LASSO as in Zhang and Zhang (2014); van de Geer et al. (2014), This can be
confirmed by checking that the dual of problem (4) is an `1-regularized quadratic opti-
mization problem. It has therefore the same complexity as the nodewise LASSO (but it is
different from the nodewise LASSO).

3. Statistical Inference

A direct application of Theorem 8 is to derive confidence intervals and statistical hypothesis
tests for high-dimensional models. Throughout, we make the sparsity assumption s0 =
o(
√
n/ log p) and omit explicit constants that can be readily derived from Theorem 8.

3.1 Preliminary Lemmas

As discussed above, the bias term ∆ is negligible with respect to the random term Z in
the decomposition (16), provided the latter has variance of order one. Our first lemma
establishes that this is indeed the case.

Lemma 12 Let M = (m1, . . . ,mp)
T be the matrix with rows mT

i obtained by solving convex
program (4) in Algorithm 1. Then for all i ∈ [p],

[M Σ̂MT]i,i ≥
(1− µ)2

Σ̂i,i

.
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Lemma 12 is proved in Appendix A.1.
Using this fact, we can then characterize the asymptotic distribution of the residu-

als (θ̂u − θ0,i). Theorem 8 naturally suggests to consider the scaled residual
√
n(θ̂ui −

θ0,i)/(σ[M Σ̂MT]
1/2
i,i ). In the next lemma we consider a slightly more general scaling, replac-

ing σ by a consistent estimator σ̂.

Lemma 13 Consider a sequence of design matrices X ∈ Rn×p, with dimensions n → ∞,
p = p(n) → ∞ satisfying the following assumptions, for constants Cmin, Cmax, κ ∈ (0,∞)
independent of n. For each n, Σ ∈ Rp×p is such that σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤
Cmax <∞, and maxi∈[p] Σii ≤ 1. Assume XΣ−1/2 to have independent sub-Gaussian rows,

with zero mean and sub-Gaussian norm ‖Σ−1/2X1‖ψ2 ≤ κ,

Consider the linear model (1) and let θ̂u be defined as per Equation (5) in Algorithm 1,
with µ = a

√
(log p)/n and λ = σ

√
(c2 log p)/n, with a, c large enough constants. Finally,

let σ̂ = σ̂(y,X) be an estimator of the noise level satisfying, for any ε > 0,

lim
n→∞

sup
θ0∈Rp; ‖θ0‖0≤s0

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) = 0 . (29)

If s0 = o(
√
n/ log p) (s0 ≥ 1), then, for all x ∈ R, we have

lim
n→∞

sup
θ0∈Rp; ‖θ0‖0≤s0

∣∣∣∣∣P
{√

n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

}
− Φ(x)

∣∣∣∣∣ = 0 . (30)

The proof of this lemma can be found in Section 6.5. We also note that the dependence of
a, c on Cmin, Cmax, κ can be easily reconstructed from Theorem 7.

The last lemma requires a consistent estimator of σ, in the sense of Equation (29).
Several proposals have been made to estimate the noise level in high-dimensional linear
regression. A short list of references includes Fan and Li (2001); Fan and Lv (2008); Städler
et al. (2010); Zhang (2010); Sun and Zhang (2012); Belloni and Chernozhukov (2013); Fan
et al. (2012); Reid et al. (2013); Dicker (2012); Fan et al. (2009); Bayati et al. (2013).
Consistency results have been proved or can be proved for several of these estimators.

In order to demonstrate that the consistency criterion (29) can be achieved, we use the
scaled LASSO (Sun and Zhang, 2012) given by

{θ̂n(λ̃), σ̂(λ̃)} ≡ arg min
θ∈Rp,σ>0

{ 1

2σn
‖Y −Xθ‖22 +

σ

2
+ λ̃‖θ‖1

}
. (31)

This is a joint convex optimization problem which provides an estimate of the noise level
in addition to an estimate of θ0.

The following lemma uses the analysis of Sun and Zhang (2012) to show that σ̂ satisfies
the consistency criterion (29).

Lemma 14 Under the assumptions of Lemma 13, let σ̂ = σ̂(λ̃) be the scaled LASSO es-
timator of the noise level, see Equation (31), with λ̃ = 10

√
(2 log p)/n. Then σ̂ satisfies

Equation (29).

The proof of this lemma is fairly straightforward and can be found in Appendix C.
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3.2 Confidence Intervals

In view of Lemma 13, it is quite straightforward to construct asymptotically valid confidence
intervals. Namely, for i ∈ [p] and significance level α ∈ (0, 1), we let

Ji(α) ≡ [θ̂ui − δ(α, n), θ̂ui + δ(α, n)] ,

δ(α, n) ≡ Φ−1(1− α/2)
σ̂√
n

[M Σ̂MT]
1/2
i,i .

(32)

Theorem 15 Consider a sequence of design matrices X ∈ Rn×p, with dimensions n→∞,
p = p(n)→∞ satisfying the assumptions of Lemma 13.

Consider the linear model (1) and let θ̂u be defined as per Equation (5) in Algorithm 1,
with µ = a

√
(log p)/n and λ = σ

√
(c2 log p)/n, with a, c large enough constants. Finally,

let σ̂ = σ̂(y,X) a consistent estimator of the noise level in the sense of Equation (29). Then
the confidence interval Ji(α) is asymptotically valid, namely

lim
n→∞

P
(
θ0,i ∈ Ji(α)

)
= 1− α . (33)

Proof The proof is an immediate consequence of Lemma 13 since

lim
n→∞

P
(
θ0,i ∈ Ji(α)

)
= lim
n→∞

P

{√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ Φ−1(1− α/2)

}

− lim
n→∞

P

{√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ −Φ−1(1− α/2)

}
=1− α . (34)

3.3 Hypothesis Testing

An important advantage of sparse linear regression models is that they provide parsimonious
explanations of the data in terms of a small number of covariates. The easiest way to select
the ‘active’ covariates is to choose the indexes i for which θ̂ni 6= 0. This approach however
does not provide a measure of statistical significance for the finding that the coefficient is
non-zero.

More precisely, we are interested in testing an individual null hypothesis H0,i : θ0,i = 0
versus the alternative HA,i : θ0,i 6= 0, and assigning p-values for these tests. We construct a
p-value Pi for the test H0,i as follows:

Pi = 2

(
1− Φ

( √
n |θ̂ui |

σ̂[M Σ̂MT]
1/2
i,i

))
. (35)

The decision rule is then based on the p-value Pi:

T̂i,X(y) =

{
1 if Pi ≤ α (reject H0,i) ,

0 otherwise (accept H0,i) ,
(36)
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where α is the fixed target Type I error probability. We measure the quality of the test
T̂i,X(y) in terms of its significance level αi and statistical power 1 − βi. Here αi is the
probability of type I error (i.e., of a false positive at i) and βi is the probability of type II
error (i.e., of a false negative at i).

Note that it is important to consider the tradeoff between statistical significance and
power. Indeed any significance level α can be achieved by randomly rejecting H0,i with
probability α. This test achieves power 1 − β = α. Further note that, without further
assumption, no nontrivial power can be achieved. In fact, choosing θ0,i 6= 0 arbitrarily close
to zero, H0,i becomes indistinguishable from its alternative. We will therefore assume that,
whenever θ0,i 6= 0, we have |θ0,i| > γ as well. We take a minimax perspective and require
the test to behave uniformly well over s0-sparse vectors. Formally, given a family of tests
Ti,X : Rn → {0, 1}, indexed by i ∈ [p], X ∈ Rn×p, we define, for γ > 0 a lower bound on the
non-zero entries:

αi,n(T ) ≡ sup
{
Pθ0(Ti,X(y) = 1) : θ0 ∈ Rp, ‖θ0‖0 ≤ s0(n), θ0,i = 0

}
. (37)

βi,n(T ; γ) ≡ sup
{
Pθ0(Ti,X(y) = 0) : θ0 ∈ Rp, ‖θ0‖0 ≤ s0(n), |θ0,i| ≥ γ

}
. (38)

Here, we made dependence on n explicit. Also, Pθ( · ) denotes the induced probability for
random design X and noise realization w, given the fixed parameter vector θ. Our next
theorem establishes bounds on αi,n(T̂ ) and βi,n(T̂ ; γ) for our decision rule (36).

Theorem 16 Consider a sequence of design matrices X ∈ Rn×p, with dimensions n→∞,
p = p(n)→∞ satisfying the assumptions of Lemma 13.

Consider the linear model (1) and let θ̂u be defined as per Equation (5) in Algorithm 1,
with µ = a

√
(log p)/n and λ = σ

√
(c2 log p)/n, with a, c large enough constants. Finally,

let σ̂ = σ̂(y,X) a consistent estimator of the noise level in the sense of Equation (29), and
T̂ be the test defined in Equation (36).

Then the following holds true for any fixed sequence of integers i = i(n):

lim
n→∞

αi,n(T̂ ) ≤ α . (39)

lim inf
n→∞

1− βi,n(T̂ ; γ)

1− β∗i,n(γ)
≥ 1 , 1− β∗i,n(γ) ≡ G

(
α,

√
nγ

σ[Σ−1
i,i ]1/2

)
, (40)

where, for α ∈ [0, 1] and u ∈ R+, the function G(α, u) is defined as follows:

G(α, u) = 2− Φ(Φ−1(1− α

2
) + u)− Φ(Φ−1(1− α

2
)− u) .

Theorem 16 is proved in Section 6.6. It is easy to see that, for any α > 0, u 7→ G(α, u)
is continuous and monotone increasing. Moreover, G(α, 0) = α which is the trivial power
obtained by randomly rejecting H0,i with probability α. As γ deviates from zero, we obtain
nontrivial power. Notice that in order to achieve a specific power β > α, our scheme
requires γ ≥ cβ(σ/

√
n), for some constant cβ that depends on β. This is because Σ−1

i,i ≤
σmax(Σ−1) ≤ (σmin(Σ))−1 = O(1).
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3.3.1 Near optimality of the hypothesis testing procedure

The authors of Javanmard and Montanari (2013b) prove an upper bound for the minimax
power of tests with a given significance level α, under random designs. For the reader’s
convenience, we recall this result here. (The following is a restatement of Javanmard and
Montanari (2013b, Theorem 2.3), together with a standard estimate on the tail of chi-
squared random variables.)

Theorem 17 ((Javanmard and Montanari, 2013b)) Assume X ∈ Rn×p to be a ran-
dom design matrix with i.i.d. Gaussian rows with zero mean and covariance Σ. For i ∈ [p],
let Ti,X : Rn → Rn be a hypothesis testing procedure for testing H0,i : θ0,i = 0, and denote
by αi(T ) and βi,n(T ; γ) its fraction of type I and type II errors, cf. Equations (37) and
(38). Finally, for S ⊆ [p] \ {i}, define Σi|S ≡ Σii − Σi,SΣ−1

S,SΣS,i ∈ R.
For any ` ∈ R and |S| < s0 < n, if αi,n(T ) ≤ α, then

1− βi,n(T ; γ) ≤ G
(
α,

γ

σeff(ξ)

)
+ e−ξ

2/8 , (41)

σeff(ξ) ≡ σ

Σ
1/2
i|S (
√
n− s0 + 1 + ξ)

, (42)

for any ξ ∈ [0, (3/2)
√
n− s0 + 1].

The intuition behind this bound is straightforward: the power of any test for H0,i : θ0,i = 0
is upper bounded by the power of an oracle test that is given access to supp(θ0) \ {i} and
outputs a test for H0,i. Computing the minimax power of such oracle reduces to a classical
hypothesis testing problem.

Let us emphasize that the last theorem applies to Gaussian random designs. Since this
theorem establishes a negative result (an upper bound on power), it makes sense to consider
this somewhat more specialized setting.

Using this upper bound, we can restate Theorem 16 as follows.

Corollary 18 Consider a Gaussian random design model that satisfies the conditions of
Theorem 16, and let T̂ be the testing procedure defined in Equation (36), with θ̂u as in
Algorithm 1. Further, let

ηΣ,s0 ≡ min
i∈[p];S

{
Σi|S Σ−1

ii : S ⊆ [p]\{i}, |S| < s0

}
. (43)

Under the sparsity assumption s0 = o(
√
n/ log p), the following holds true. If {Ti,X} is

any sequence of tests with lim supn→∞ αi,n(T ) ≤ α, then

lim inf
n→∞

1− βi,n(T̂ ; γ)

1− βi,n/ηΣ,s0
(T ; γ)

≥ 1 . (44)

In other words, the asymptotic efficiency of the test T̂ is at least 1/ηΣ,s0.

Hence, our test T̂ has nearly optimal power in the following sense. It has power at least
as large as the power of any other test T , provided the latter is applied to a sample size
decreased by a factor ηΣ,s0 .
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Further, under the assumptions of Theorem 8, the factor ηΣ,s0 is a bounded constant.
Indeed

ηΣ,s0 ≤ Σ−1
i,i Σi,i ≤

σmax(Σ)

σmin(Σ)
≤ Cmax

Cmin
, (45)

since Σ−1
ii ≤ (σmin(Σ))−1, and Σi|S ≤ Σi,i ≤ σmax(Σ) due to ΣS,S � 0.

Note that n, γ and σ appears in our upper bound (41) in the combination γ
√
n/σ,

which is the natural measure of the signal-to-noise ratio (where, for simplicity, we neglected
s0 = o(

√
n/ log p) with respect to n). Hence, the above result can be restated as follows.

The test T̂ has power at least as large as the power of any other test T , provided the latter
is applied at a noise level augmented by a factor

√
ηΣ,s0 .

3.4 Generalization to Simultaneous Confidence Intervals

In many situations, it is necessary to perform statistical inference on more than one of the
parameters simultaneously. For instance, we might be interested in performing inference
about θ0,R ≡ (θ0,i)i∈R for some set R ⊆ [p].

The simplest generalization of our method is to the case in which |R| stays finite as
n, p→∞. In this case we have the following generalization of Lemma 13. (The proof is the
same as for Lemma 13, and hence we omit it.)

Lemma 19 Under the assumptions of Lemma 13, define

Q(n) ≡ σ̂2

n
[M Σ̂MT] . (46)

Let R = R(n) be a sequence of sets R(n) ⊆ [p], with |R(n)| = k fixed as n, p → ∞, and
further assume s0 = o(

√
n/ log p), with s0 ≥ 1. Then, for all x = (x1, . . . , xk) ∈ Rk, we

have

lim
n→∞

sup
θ0∈Rp; ‖θ0‖0≤s0

∣∣∣P{(Q
(n)
R,R)−1/2(θ̂uR − θ0,R) ≤ x

}
− Φk(x)

∣∣∣ = 0 , (47)

where (a1, . . . , ak) ≤ (b1, . . . , bk) indicates that a1 ≤ b1,. . .ak ≤ bk, and Φk(x) = Φ(x1) ×
· · · × Φ(xk).

This lemma allows to construct confidence regions for low-dimensional projections of θ0,
much in the same way as we used Lemma 13 to compute confidence intervals for one-
dimensional projections in Section 3.2.

Explicitly, let Ck,α ⊆ Rk be any Borel set such that
∫
Ck,α φk(x) dx ≥ 1− α , where

φk(x) =
1

(2π)k/2
exp

(
− ‖x‖

2

2

)
,

is the k-dimensional Gaussian density. Then, for R ⊆ [p], we define JR(α) ⊆ Rk as follows

JR(α) ≡ θ̂uR + (Q
(n)
R,R)1/2Ck,α . (48)
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Then Lemma 19 implies (under the assumptions stated there) that JR(α) is a valid confi-
dence region

lim
n→∞

P
(
θ0,R ∈ JR(α)

)
= 1− α . (49)

A more challenging regime is the one of large-scale inference, that corresponds to
|R(n)| → ∞ with n. Even in the seemingly simple case in which a correct p-value is given
for each individual coordinate, the problem of aggregating them has attracted considerable
amount of work, see e.g., Efron (2010) for an overview.

Here we limit ourselves to designing a testing procedure for the family of hypotheses
{H0,i : θ0,i = 0}i∈[p] that controls the familywise error rate (FWER). Namely we want to
define Ti,X : Rn → {0, 1}, for each i ∈ [p], X ∈ Rn×p such that

FWER(T, n) ≡ sup
θ0∈Rp,‖θ0‖0≤s0

P
{
∃i ∈ [p] : θ0,i = 0, Ti,X(y) = 1

}
, (50)

Here T = {Ti,X}i∈[p] represents the family of tests.

In order to achieve familywise error control, we adopt a standard trick based on Bon-
ferroni inequality. Given p-values defined as per Equation (35), we let

T̂F
i,X(y) =

{
1 if Pi ≤ α/p (reject H0,i) ,

0 otherwise (accept H0,i) .
(51)

Then we have the following error control guarantee.

Theorem 20 Consider a sequence of design matrices X ∈ Rn×p, with dimensions n→∞,
p = p(n)→∞ satisfying the assumptions of Lemma 13.

Consider the linear model (1) and let θ̂u be defined as per Equation (5) in Algorithm 1,
with µ = a

√
(log p)/n and λ = σ

√
(c2 log p)/n, with a, c large enough constants. Finally,

let σ̂ = σ̂(y,X) be a consistent estimator of the noise level in the sense of Equation (29),
and T̂ be the test defined in Equation (51). Then:

lim sup
n→∞

FWER(T̂F, n) ≤ α . (52)

The proof of this theorem is similar to the one of Lemma 13 and Theorem 16, and is deferred
to Appendix D.

4. Non-Gaussian Noise

As can be seen from the proof of Theorem 8, Z = MXTW/
√
n, and since the noise is Gaus-

sian, i.e., W ∼ N(0, σ2I), we have Z|X ∼ N(0, σ2M Σ̂MT). We claim that the distribution
of the coordinates of Z is asymptotically Gaussian, even if W is non-Gaussian, provided the
definition of M is modified slightly. As a consequence, the definition of confidence intervals
and p-values in Corollary 15 and (35) remain valid in this broader setting.
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In case of non-Gaussian noise, we write

√
n(θ̂ui − θ0,i)

σ[M Σ̂MT]
1/2
i,i

=
1√
n

mT
i XTW

σ[mT
i Σ̂mi]1/2

+ o(1)

=
1√
n

n∑
j=1

mT
i XjWj

σ[mT
i Σ̂mi]1/2

+ o(1) .

Conditional on X, the summands ξj = mT
i XjWj/(σ[mT

i Σ̂mi]
1/2) are independent and zero

mean. Further,
∑n

j=1 E(ξ2
j |X) = 1. Therefore, if Lindeberg condition holds, namely for

every ε > 0, almost surely

lim
n→∞

1

n

n∑
j=1

E(ξ2
j I{|ξj |>ε√n}|X) = 0 , (53)

then
∑n

j=1 ξj/
√
n|X d−→ N(0, 1), from which we can build the valid p-values as in (35).

In order to ensure that the Lindeberg condition holds, we modify the optimization
problem (54) as follows:

minimize mTΣ̂m

subject to ‖Σ̂m− ei‖∞ ≤ µ
‖Xm‖∞ ≤ nβ for arbitrary fixed 1/4 < β < 1/2

(54)

Next theorem shows the validity of the proposed p-values in the non-Gaussian noise setting.

Theorem 21 Suppose that the noise variables Wi are independent with E(Wi) = 0, E(W 2
i ) =

σ2, and E(|Wi|2+a) ≤ C σ2+a for some a > 0.
Let M = (m1, . . . ,mp)

T be the matrix with rows mT
i obtained by solving optimization

problem (54). Then under the assumptions of Theorem 8, and for sparsity level s0 =
o(
√
n/ log p), an asymptotic two-sided confidence interval for θ0,i with significance α is given

by Ii = [θ̂ui − δ(α, n), θ̂ui + δ(α, n)] where

δ(α, n) = Φ−1(1− α/2)σ̂ n−1/2
√

[M Σ̂MT]i,i . (55)

Further, an asymptotically valid p-value Pi for testing null hypothesis H0,i is constructed
as:

Pi = 2

(
1− Φ

( √
n|θ̂ui |

[M Σ̂MT]
1/2
i,i

))
.

Theorem 21 is proved in Section 6.7.

5. Numerical Experiments

We corroborate our theoretical results with numerical experiments on both synthetic and
real data examples. We further compare performance of our approach with the previous
proposals.
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5.1 Synthetic Data

We consider linear model (2), where the rows of design matrix X are fixed i.i.d. realizations
from N(0,Σ), where Σ ∈ Rp×p is a circulant symmetric matrix with entries Σjk given as
follows for j ≤ k:

Σjk =


1 if k = j ,

0.1 if k ∈ {j + 1, . . . , j + 5}
or k ∈ {j + p− 5, . . . , j + p− 1} ,

0 for all other j ≤ k .

(56)

Regarding the regression coefficient, we consider a uniformly random support S ⊆ [p], with
|S| = s0 and let θ0,i = b for i ∈ S and θ0,i = 0 otherwise. The measurement errors are
Wi ∼ N(0, 1), for i ∈ [n]. We consider several configurations of (n, p, s0, b) and for each
configuration report our results based on 20 independent realizations of the model with
fixed design and fixed regression coefficients. In other words, we repeat experiments over
20 independent realization of the measurement errors.

We use the regularization parameter λ = 4σ̂
√

(2 log p)/n, where σ̂ is given by the scaled

LASSO as per equation (31) with λ̃ = 10
√

(2 log p)/n. Furthermore, parameter µ (cf.
Equation 4) is set to

µ = 2

√
log p

n
.

This choice of µ is guided by Theorem 7 (b).
Throughout, we set the significance level α = 0.05.

Confidence intervals. For each configuration, we consider 20 independent realizations
of measurement noise and for each parameter θ0,i, we compute the average length of the
corresponding confidence interval, denoted by Avglength(Ji(α)) where Ji(α) is given by
equation (32) and the average is taken over the realizations. We then define

` ≡ p−1
∑
i∈[p]

Avglength(Ji(α)) . (57)

We also consider the average length of intervals for the active and inactive parameters, as
follows:

`S ≡ s−1
0

∑
i∈S

Avglength(Ji(α)) , `Sc ≡ (p− s0)−1
∑
i∈Sc

Avglength(Ji(α)) . (58)

Similarly, we consider average coverage for individual parameters. We define the follow-
ing three metrics:

Ĉov ≡ p−1
∑
i∈[p]

P̂[θ0,i ∈ Ji(α)] , (59)

ĈovS ≡ s−1
0

∑
i∈S

P̂[θ0,i ∈ Ji(α)] , (60)

ĈovSc ≡ (p− s0)−1
∑
i∈Sc

P̂[0 ∈ Ji(α)] , (61)
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Figure 1: 95% confidence intervals for one realization of configuration (n, p, s0, b) =
(1000, 600, 10, 1). For clarity, we plot the confidence intervals for only 100 of
the 1000 parameters. The true parameters θ0,i are in red and the coordinates of

the debiased estimator θ̂u are in black.

where P̂ denotes the empirical probability computed based on the 20 realizations for each
configuration. The results are reported in Table 1. In Figure 1, we plot the constructed
95%-confidence intervals for one realization of configuration (n, p, s0, b) = (1000, 600, 10, 1).
For sake of clarity, we plot the confidence intervals for only 100 of the 1000 parameters.

False positive rates and statistical powers. Table 2 summarizes the false positive
rates and the statistical powers achieved by our proposed method, the multisample-splitting
method (Meinshausen et al., 2009), and the ridge-type projection estimator (Bühlmann,
2013) for several configurations. The results are obtained by taking average over 20 indepen-
dent realizations of measurement errors for each configuration. As we see the multisample-
splitting achieves false positive rate 0 on all of the configurations considered here, making
no type I error. However, the true positive rate is always smaller than that of our proposed
method. By contrast, our method achieves false positive rate close to the pre-assigned
significance level α = 0.05 and obtains much higher true positive rate. Similar to the
multisample-splitting, the ridge-type projection estimator is conservative and achieves false
positive rate smaller than α. This, however, comes at the cost of a smaller true positive
rate than our method. It is worth noting that an ideal testing procedure should allow to
control the level of statistical significance α, and obtain the maximum true positive rate at
that level.

Here, we used the R-package hdi to test multisample-splitting and the ridge-type pro-
jection estimator.
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Configuration

Measure

` `S `Sc Ĉov ĈovS ĈovSc

(1000, 600, 10, 0.5) 0.1870 0.1834 0.1870 0.9766 0.9600 0.9767
(1000, 600, 10, 0.25) 0.1757 0.1780 0.1757 0.9810 0.9000 0.9818
(1000, 600, 10, 0.1) 0.1809 0.1823 0.1809 0.9760 1 0.9757
(1000, 600, 30, 0.5) 0.2107 0.2108 0.2107 0.9780 0.9866 0.9777
(1000, 600, 30, 0.25) 0.1956 0.1961 0.1956 0.9660 0.9660 0.9659
(1000, 600, 30, 0.1) 0.2023 0.2043 0.2023 0.9720 0.9333 0.9732
(2000, 1500, 50, 0.5) 0.1383 0.1391 0.1383 0.9754 0.9800 0.9752
(2000, 1500, 50, 0.25) 0.1356 0.1363 0.1355 0.9720 0.9600 0.9723
(2000, 1500, 50, 0.1) 0.1361 0.1361 0.1361 0.9805 1 0.9800
(2000, 1500, 25, 0.5) 0.1233 0.1233 0.1233 0.9731 0.9680 0.9731
(2000, 1500, 25, 0.25) 0.1208 0.1208 0.1208 0.9735 1 0.9731
(2000, 1500, 25, 0.1) 0.1242 0.1237 0.1242 0.9670 0.9200 0.9676

Table 1: Simulation results for the synthetic data described in Section 5.1. The results
corresponds to 95% confidence intervals.

Let Z = (zi)
p
i=1 denote the vector with zi ≡

√
n(θ̂ui −θ0,i)/σ̂

√
[M Σ̂MT]i,i. Figure 2 shows

the sample quantiles of Z versus the quantiles of the standard normal distribution for one
realization of the configuration (n, p, s0, b) = (1000, 600, 10, 1). The scattered points are
close to the line with unit slope and zero intercept. This confirms the result of Theorem 13
regarding the Gaussianity of the entries zi.

For the same problem, in Figure 3 we plot the empirical CDF of the computed p-values
restricted to the variables outside the support. Clearly, the p-values for these entries are
uniformly distributed as expected.

5.2 Real Data

As a real data example, we consider a high-throughput genomic data set concerning ri-
boflavin (vitaminB2) production rate. This data set is made publicly available by Bühlmann
et al. (2014) and contains n = 71 samples and p = 4, 088 covariates corresponding to
p = 4, 088 genes. For each sample, there is a real-valued response variable indicating the
logarithm of the riboflavin production rate along with the logarithm of the expression level
of the p = 4, 088 genes as the covariates.

Following Bühlmann et al. (2014), we model the riboflavin production rate as a linear
model with p = 4, 088 covariates and n = 71 samples, as in Equation (1). We use the R
package glmnet (Friedman et al., 2010) to fit the LASSO estimator. Similar to the previous
section, we use the regularization parameter λ = 4σ̂

√
(2 log p)/n, where σ̂ is given by the

scaled LASSO as per equation (31) with λ̃ = 10
√

(2 log p)/n. This leads to the choice
λ = 0.036. The resulting model contains 30 genes (plus an intercept term) corresponding
to the nonzero parameters of the lasso estimator.
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Figure 2: Q-Q plot of Z for one realization of configuration (n, p, s0, b) = (1000, 600, 10, 1).
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Figure 3: Empirical CDF of the computed p-values (restricted to entries outside the sup-
port) for one realization of configuration (n, p, s0, b) = (1000, 600, 10, 1). Clearly
the plot confirms that the p-values are distributed according to uniform distribu-
tion.
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Our method Multisample-splitting Ridge projection estimator
Configuration FP TP FP TP FP TP

(1000, 600, 10, 0.5) 0.0452 1 0 1 0.0284 0.8531
(1000, 600, 10, 0.25) 0.0393 1 0 0.4 0.02691 0.7506
(1000, 600, 10, 0.1) 0.0383 0.8 0 0 0.2638 0.6523
(1000, 600, 30, 0.5) 0.0433 1 0 1 0.0263 0.8700
(1000, 600, 30, 0.25) 0.0525 1 0 0.4 0.2844 0.8403
(1000, 600, 30, 0.1) 0.0402 0.7330 0 0 0.2238 0.6180
(2000, 1500, 50, 0.5) 0.0421 1 0 1 0.0301 0.9013
(2000, 1500, 50, 0.25) 0.0415 1 0 1 0.0292 0.8835
(2000, 1500, 50, 0.1) 0.0384 0.9400 0 0 0.02655 0.7603
(2000, 1500, 25, 0.5) 0.0509 1 0 1 0.0361 0.9101
(2000, 1500, 25, 0.25) 0.0481 1 0 1 0.3470 0.8904
(2000, 1500, 25, 0.1) 0.0551 1 0 0.16 0.0401 0.8203

Table 2: Simulation results for the synthetic data described in Section 5.1. The false positive
rates (FP) and the true positive rates (TP) are computed at significance level
α = 0.05.

We use Equation (35) to construct p-values for different genes. Adjusting FWER to 5%
significance level, we find two significant genes, namely genes YXLD-at and YXLE-at. By
contrast, the multisample-splitting method proposed in Meinshausen et al. (2009) finds only
the gene YXLD-at at the FWER-adjusted 5% significance level. Also the Ridge-type projec-
tion estimator, proposed in Bühlmann (2013), returns no significance gene. (See Bühlmann
et al. 2014 for further discussion on these methods.) This indicates that these methods are
more conservative and produce typically larger p-values.

In Figure 4 we plot the empirical CDF of the computed p-values for riboflavin example.
Clearly the plot confirms that the p-values are distributed according to uniform distribution.

6. Proofs

This section is devoted to the proofs of theorems and main lemmas.

6.1 Proof of Theorem 6

Substituting Y = Xθ0 +W in the definition (7), we get

θ̂∗ = θ̂n +
1

n
MXTX(θ0 − θ̂n) +

1

n
MXTW

= θ0 +
1√
n
Z +

1√
n

∆ ,
(62)

with Z,∆ defined as per the theorem statement. Further Z is Gaussian with the stated
covariance because it is a linear function of the Gaussian vector W ∼ N(0, σ2 Ip×p).
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Figure 4: Empirical CDF of the computed p-values for riboflavin example. Clearly the plot
confirms that the p-values are distributed according to uniform distribution.

We are left with the task of proving the bound (11) on ∆. Note that by definition (4),
we have

‖∆‖∞ ≤
√
n |M Σ̂− I|∞ ‖θ̂n − θ0‖1 =

√
nµ∗‖θ̂n − θ0‖1 . (63)

By Bühlmann and van de Geer (2011, Theorem 6.1, Lemma 6.2), we have, for any λ ≥
4σ
√

2K log(pet2/2)/n

P
(
‖θ̂n − θ0‖1 ≥

4λs0

φ2
0

)
≤ 2 e−t

2/2 . (64)

(More precisely, we consider the trivial generalization of Bühlmann and van de Geer 2011,
Lemma 6.2 to the case (XTX/n)ii ≤ K, instead of (XTX/n)ii = 1 for all i ∈ [p].)

Substituting Equation (63) in the last bound, we get

P
(
‖∆‖∞ ≥

4λµ∗s0
√
n

φ2
0

)
≤ 2 e−t

2/2 . (65)

Finally, the claim follows by selecting t so that et
2/2 = pc0 .

6.2 Proof of Theorem 7.(a)

Note that the event En requires two conditions. Hence, its complement is given by

En(φ0, s0,K)c = B1,n(φ0, s0) ∪ B2,n(K) , (66)

B1,n(φ0, s0) ≡
{

X ∈ Rn×p : min
S: |S|≤s0

φ(Σ̂, S) < φ0, Σ̂ = (XTX/n)
}
, (67)

B2,n(K) ≡
{

X ∈ Rn×p : max
i∈[p]

Σ̂i,i > K, Σ̂ = (XTX/n)
}
. (68)

2894



Confidence Intervals and Hypothesis Testing for High-Dimensional Regression

We will bound separately the probability of B1,n and the probability of B2,n. The claim of
Theorem 7.(a) follows by union bound.

6.2.1 Controlling B1,n(φ0, s0)

It is also useful to recall the notion of restricted eigenvalue, introduced by Bickel, Ritov and
Tsybakov (Bickel et al., 2009).

Definition 22 Given a symmetric matrix Q ∈ Rp×p an integer s0 ≥ 1, and L > 0, the
restricted eigenvalue of Q is defined as

φ2
RE(Q, s0, L) ≡ min

S⊆[p],|S|≤s0
min
θ∈Rp

{〈θ,Q θ〉
‖θS‖22

: θ ∈ Rp, ‖θSc‖1 ≤ L‖θS‖1
}
. (69)

Rudelson and Shuheng (2013) prove that, if the population covariance satisfies the re-
stricted eigenvalue condition, then the sample covariance satisfies it as well, with high
probability. More precisely, by Rudelson and Shuheng (2013, Theorem 6) we have

P
(
φRE(Σ̂, s0, 3) ≥ 1

2
φRE(Σ, s0, 9)

)
≥ 1− 2e−n/(4c∗κ

4) , (70)

for some c∗ ≤ 2000, m ≡ 6×104s0C
2
max/φ

2
RE(Σ, s0, 9), and every n ≥ 4c∗mκ

4 log(120ep/m).

Note that φRE(Σ, s0, 9) ≥ σmin(Σ)1/2 ≥
√
Cmin, and by Cauchy-Schwartz,

min
S:|S|≤s0

φ(Σ̂, S) ≥ φRE(Σ̂, s0, 3) .

With the definitions in the statement (cf. Equation 13), we therefore have

P
(

min
S:|S|≤s0

φ(Σ̂, S) ≥ 1

2

√
Cmin

)
≥ 1− 2e−c1n . (71)

Equivalently, P(B1,n(φ0, s0)) ≤ 2 e−c1n.

6.2.2 Controlling B2,n(K)

By definition

Σ̂ii − 1 =
1

n

n∑
`=1

(〈X`, ei〉2 − 1) =
1

n

n∑
`=1

u`, . (72)

Note that u` are independent centered random variables. Further, (recalling that, for any
random variables U, V , ‖U + V ‖ψ1 ≤ ‖U‖ψ1 + ‖V ‖ψ1 , and ‖U2‖ψ1 ≤ 2‖U‖2ψ2

) they are
subexponential with subexponential norm

‖u`‖ψ1 ≤ 2‖〈X`, ei〉2‖ψ1 ≤ 4‖〈X`, ei〉‖2ψ1

≤ 4‖〈Σ−1/2X`,Σ
1/2ei〉‖2ψ1

≤ 4κ2‖Σ1/2ei‖22 = 4κ2Σii = 4κ2 .
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By Bernstein-type inequality for centered subexponential random variables, cf. Vershynin
(2012), we get

P
{ 1

n

∣∣∣ n∑
`=1

u`

∣∣∣ ≥ ε} ≤ 2 exp
[
− n

6
min

(
(
ε

4eκ2
)2,

ε

4eκ2

)]
. (73)

Hence, for all ε such that ε/(eκ2) ∈ [
√

(48 log p)/n, 4],

P
(

max
i∈[p]

Σ̂ii ≥ 1 + ε
)
≤ 2p exp

(
− nε2

24e2κ4

)
≤ 2e−c1n , (74)

which implies P(X ∈ B2,n(K)) ≤ 2 e−c1n for allK−1 ≥ 20κ2
√

(log p)/n ≥
√

(48e2κ4 log p)/n.

6.3 Proof of Theorem 7.(b)

Obviously, we have

µmin(X) ≤
∣∣Σ−1Σ̂− I

∣∣ , (75)

and hence the statement follows immediately from the following estimate.

Lemma 23 Consider a random design matrix X ∈ Rp×p, with i.i.d. rows having mean
zero and population covariance Σ. Assume that

(i) We have σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤ Cmax <∞.

(ii) The rows of XΣ−1/2 are sub-Gaussian with κ = ‖Σ−1/2X1‖ψ2.

Let Σ̂ = (XTX)/n be the empirical covariance. Then, for any constant C > 0, the following
holds true.

P
{∣∣∣Σ−1Σ̂− I

∣∣∣
∞
≥ a

√
log p

n

}
≤ 2p−c2 , (76)

with c2 = (a2Cmin)/(24e2κ4Cmax)− 2.

Proof [Proof of Lemma 23] The proof is based on Bernstein-type inequality for sub-
exponential random variables (Vershynin, 2012). Let X̃` = Σ−1/2X`, for ` ∈ [n], and
write

Z ≡ Σ−1Σ̂− I =
1

n

n∑
`=1

{
Σ−1X`X

T
` − I

}
=

1

n

n∑
`=1

{
Σ−1/2X̃`X̃

T
` Σ1/2 − I

}
.

Fix i, j ∈ [p], and for ` ∈ [n], let v
(ij)
` = 〈Σ−1/2

i,· , X̃`〉〈Σ
1/2
j,· , X̃`〉−δi,j , where δi,j = 1{i=j}. No-

tice that E(v
(ij)
` ) = 0, and the v

(ij)
` are independent for ` ∈ [n]. Also, Zi,j = (1/n)

∑n
`=1 v

(ij)
` .

By Vershynin (2012, Remark 5.18), we have

‖v(ij)
` ‖ψ1 ≤ 2‖〈Σ−1/2

i,· , X̃`〉〈Σ
1/2
j,· , X̃`〉‖ψ1 .
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Moreover, for any two random variables X and Y , we have

‖XY ‖ψ1 = sup
p≥1

p−1E(|XY |p)1/p

≤ sup
p≥1

p−1E(|X|2p)1/2p E(|Y |2p)1/2p

≤ 2
(

sup
q≥2

q−1/2E(|X|q)1/q
)(

sup
q≥2

q−1/2E(|Y |q)1/q
)

≤ 2‖X‖ψ2 ‖Y ‖ψ2 .

Hence, by assumption (ii), we obtain

‖v(ij)
` ‖ψ1 ≤ 2‖〈Σ−1/2

i,· , X̃`〉‖ψ2‖〈Σ
1/2
j,· , X̃`〉‖ψ2

≤ 2‖Σ−1/2
i,· ‖2‖Σ

1/2
j,· ‖2κ

2 ≤ 2
√
Cmax/Cmin κ

2 .

Let κ′ = 2
√
Cmax/Cminκ

2. Applying Bernstein-type inequality for centered sub-exponential
random variables (Vershynin, 2012), we get

P
{ 1

n

∣∣∣ n∑
`=1

v
(ij)
`

∣∣∣ ≥ ε} ≤ 2 exp
[
− n

6
min

(
(
ε

eκ′
)2,

ε

eκ′

)]
.

Choosing ε = a
√

(log p)/n, and assuming n ≥ [a/(eκ′)]2 log p, we arrive at

P
{

1

n

∣∣∣ n∑
`=1

v
(ij)
`

∣∣∣ ≥ a√ log p

n

}
≤ 2p−a

2/(6e2κ′2) .

The result follows by union bounding over all possible pairs i, j ∈ [p].

6.4 Proof of Theorem 8

Let

∆0 ≡
(16ac σ

Cmin

)s0 log p√
n

(77)

be a shorthand for the bound on ‖∆‖∞ appearing in Equation (17). Then we have

P
(
‖∆‖∞ ≥ ∆0

)
≤P
({
‖∆‖∞ ≥ ∆0

}
∩ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
+ P

(
En(
√
Cmin/2, s0, 3/2)

)
+ P

(
Gcn(a)

)
≤P
({
‖∆‖∞ ≥ ∆0

}
∩ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
+ 4 e−c1n + 2 p−c2 ,

where, in the first equation Ac denotes the complement of event A and the second inequality
follows from Theorem 7. Notice, in particular, that the bound (13) can be applied for
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K = 3/2 since, under the present assumptions 20κ2
√

(log p)/n ≤ 1/2. Finally

P
({
‖∆‖∞ ≥ ∆0

}
∩ En(

√
Cmin/2, s0, 3/2) ∩ Gn(a)

)
≤ sup

X∈En(
√
Cmin/2,s0,3/2)∩Gn(a)

P
(
‖∆‖∞ ≥ ∆0

∣∣∣X) ≤ 2 p−c̃0 . (78)

Here the last inequality follows from Theorem 6 applied per given X ∈ En(
√
Cmin/2, s0, 3/2)∩

Gn(a) and hence using the bound (11) with φ0 =
√
Cmin/2, K = 3/2, µ∗ = a

√
(log p)/n.

6.5 Proof of Lemma 13

We will prove that, under the stated assumptions

lim sup
n→∞

sup
‖θ0‖0≤s0

P

{√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

}
≤ Φ(x) . (79)

A matching lower bound follows by a completely analogous argument.
Notice that by Equation (16), we have

√
n(θ̂ui − θ0,i)

σ[M Σ̂MT]
1/2
ii

=
eTi MXTW

σ[M Σ̂MT]
1/2
ii

+
∆i

σ[M Σ̂MT]
1/2
ii

. (80)

Let V = XMTei/(σ[M Σ̂MT]
1/2
ii ) and Z̃ ≡ V TW . We claim that Z̃ ∼ N(0, 1). To see this,

note that ‖V ‖2 = 1, and V and W are independent. Hence,

P(Z̃ ≤ x) = E{P(V TW ≤ x|V )} = E{Φ(x)|V } = Φ(x) , (81)

which proves our claim. In order to prove Equation (79), fix ε > 0 and write

P

(√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

)
= P

(
σ

σ̂
Z̃ +

∆i

σ̂[M Σ̂MT]
1/2
i,i

≤ x

)

≤ P
(σ
σ̂
Z̃ ≤ x+ ε

)
+ P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)

≤ P
(
Z̃ ≤ x+ 2ε+ ε|x|

)
+ P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)

+ P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) .

By taking the limit and using assumption (29), we obtain

lim sup
n→∞

sup
‖θ0‖0≤s0

P

(√
n(θ̂ui − θ0,i)

σ̂[M Σ̂MT]
1/2
i,i

≤ x

)
≤

Φ(x+ 2ε+ ε|x|) + lim sup
n→∞

sup
‖θ0‖0≤s0

P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)
.
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Since ε > 0 is arbitrary, it is therefore sufficient to show that the limit on the right hand
side vanishes for any ε > 0.

Note that [M Σ̂MT]i,i ≥ 1/(4Σ̂ii) for all n large enough, by Lemma 12, and since µ =
a
√

(log p)/n→ 0 as n, p→∞. We have therefore

P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)
≤ P

( 2

σ̂
Σ̂

1/2
ii |∆i| ≥ ε

)
≤ P

( 5

σ
|∆i| ≥ ε

)
+ P

( σ̂
σ
≤ 1

2

)
+ P(Σ̂ii ≥

√
2) .

Note that P
(
(σ̂/σ) ≤ 1/2

)
→ 0 by assumption (29), and P(Σ̂ii ≥

√
2) → 0 by Theorem

7.(b). Hence

lim sup
n→∞

sup
‖θ0‖0≤s0

P

(
|∆i|

σ̂[M Σ̂MT]
1/2
i,i

≥ ε

)
≤ lim sup

n→∞
sup

‖θ0‖0≤s0
P
(
‖∆‖∞ ≥

εσ

5

)
≤ lim sup

n→∞

(
4 e−c1n + 4 p−(c̃0∧c2)

)
= 0 ,

where the last inequality follows from Equation (17), recalling that s0 = o(
√
n/ log p) and

hence (16acs0 log p)/(Cmin
√
n) ≤ ε/5 for all n large enough.

This completes the proof of Equation (79). The matching lower bound follows by the
same argument.

6.6 Proof of Theorem 16

We begin with proving Equation (39). Defining Zi ≡
√
n(θ̂ui −θ0,i)/(σ̂[M Σ̂MT]

1/2
i,i ), we have

lim
n→∞

αi,n(T̂ ) = lim
n→∞

sup
θ0

{
P(Pi ≤ α) : i ∈ [p], ‖θ0‖0 ≤ s0, θ0,i = 0

}
= lim

n→∞
sup
θ0

{
P
(

Φ−1(1− α

2
) ≤

√
n|θ̂ui |

σ̂[M Σ̂MT]
1/2
i,i

)
: i ∈ [p], ‖θ0‖0 ≤ s0, θ0,i = 0

}
= lim

n→∞
sup
θ0

{
P
(

Φ−1(1− α

2
) ≤ |Zi|

)
: i ∈ [p], ‖θ0‖0 ≤ s0

}
≤ α ,

where the last inequality follows from Lemma 13.

We next prove Equation (40). Recall that Σ−1
·,i is a feasible solution of (4), for 1 ≤ i ≤ p

with probability at least 1 − 2p−c2 , as per Lemma 23). On this event, letting mi be the
solution of the optimization problem (4), we have

mT
i Σ̂mi ≤ Σ−1

i,· Σ̂Σ−1
·,i

= (Σ−1
i,· Σ̂Σ−1

·,i − Σ−1
ii ) + Σ−1

i,i

=
1

n

N∑
j=1

(V 2
j − Σ−1

ii ) + Σ−1
i,i ,
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where Vj = Σ−1
i,· Xj are i.i.d. random variables with E(V 2

j ) = Σ−1
ii and sub-Gaussian norm

‖Vj‖ψ2 ≤ ‖Σ
−1/2
i,· ‖2‖Σ

−1/2Xj‖ψ2 ≤ κ
√

Σ−1
i,i .

Letting Uj = V 2
j −Σ−1

ii , we have that Uj is zero mean and sub-exponential with ‖Uj‖ψ1 ≤
2‖V 2

j ‖ψ1 ≤ 4‖Vj‖2ψ2
≤ 4κ2Σ−1

ii ≤ 4κ2σmin(Σ)−1 ≤ 4κ2C−1
min ≡ κ′. Hence, by applying

Bernstein inequality (as, for instance, in the proof of Lemma 23), we have, for ε ≤ eκ′,

P
(
mT
i Σ̂mi ≥ Σ−1

i,i + ε
)
≤ 2 e−(n/6)(ε/eκ′)2

+ 2 p−c2 .

We can make c2 ≥ 2 by a suitable choice of a and therefore, by Borel-Cantelli we have the
following almost surely

lim sup
n→∞

[mT
i Σ̂mi − Σ−1

i,i ] ≤ 0 . (82)

Now we are ready to prove the lower bound for the power. Let z∗ ≡ Φ−1(1 − α/2).
Then,

lim inf
n→∞

1− βi,n(T̂ ; γ)

1− β∗i,n(γ)

= lim inf
n→∞

1

1− β∗i (γ;n)
inf
θ0

{
P(Pi ≤ α) : ‖θ0‖0 ≤ s0, |θ0,i| ≥ γ

}
= lim inf

n→∞

1

1− β∗i,n(γ)
inf
θ0

{
P
(
z∗ ≤

√
n|θ̂ui |

σ̂[M Σ̂MT]
1/2
i,i

)
: ‖θ0‖0 ≤ s0, |θ0,i| ≥ γ

}
= lim inf

n→∞

1

1− β∗i,n(γ)
inf
θ0

{
P
(
z∗ ≤

∣∣∣Zi +

√
nθ0,i

σ̂[M Σ̂MT]
1/2
i,i

∣∣∣) : ‖θ0‖0 ≤ s0, |θ0,i| ≥ γ
}

(a)

≥ lim inf
n→∞

1

1− β∗i,n(γ)
inf
θ0

{
P
(
z∗ ≤

∣∣∣Zi +

√
nγ

σ[Σ−1
i,i ]1/2

∣∣∣) : ‖θ0‖0 ≤ s0

}
= lim inf

n→∞

1

1− β∗i,n(γ)

{
1− Φ

(
z∗ −

√
nγ

σ[Σ−1
i,i ]1/2

)
+ Φ

(
− z∗ −

√
nγ

σ[Σ−1
i,i ]1/2

)}
= lim inf

n→∞

1

1− β∗i,n(γ)
G
(
α,

√
nγ

σ[Σ−1
i,i ]1/2

)
= 1 .

Here (a) follows from Equation (82) and the fact |θ0,i| ≥ γ.

6.7 Proof of Theorem 21

Under the assumptions of Theorem 8 and assuming s0 = o(
√
n/ log p), we have

√
n(θ̂u − θ0) =

1√
n
MXTW + ∆ ,
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with ‖∆‖∞ = o(1). Using Lemma 12, we have

√
n(θ̂ui − θ0,i)

σ[M Σ̂MT]
1/2
i,i

= Zi + o(1) , with Zi ≡
1√
n

mT
i XTW

σ[mT
i Σ̂mi]1/2

.

The following lemma characterizes the limiting distribution of Zi|X which implies the
validity of the proposed p-value Pi and confidence intervals.

Lemma 24 Suppose that the noise variables Wi are independent with E(Wi) = 0, and
E(W 2

i ) = σ2, and E(|Wi|2+a) ≤ C σ2+a for some a > 0. Let M = (m1, . . . ,mp)
T be the

matrix with rows mT
i obtained by solving optimization problem (54). For i ∈ [p], define

Zi =
1√
n

mT
i XTW

σ[mT
i Σ̂mi]1/2

.

Under the assumptions of Theorem 8, for any sequence i = i(n) ∈ [p], and any x ∈ R, we
have

lim
n→∞

P(Zi ≤ x|X) = Φ(x) .

Lemma 24 is proved in Appendix A.2.
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Appendix A. Proof of Technical Lemmas

This appendix contains the proofs of several technical steps needed in establishing our
theoretical results.

A.1 Proof of Lemma 12

Let Ci(µ) be the optimal value of the optimization problem (4). We claim that

Ci(µ) ≥ (1− µ)2

Σ̂ii

. (83)

To prove this claim notice that the constraint implies (by considering its i-th component):

1− 〈ei, Σ̂m〉 ≤ µ .

Therefore if m̃ is feasible and c ≥ 0, then

〈m̃, Σ̂m̃〉 ≥ 〈m̃, Σ̂m̃〉+ c(1− µ)− c〈ei, Σ̂m̃〉 ≥ min
m

{
〈m, Σ̂m〉+ c(1− µ)− c〈ei, Σ̂m〉

}
.
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Minimizing over all feasible m̃ gives

Ci(µ) ≥ min
m

{
〈m, Σ̂m〉+ c(1− µ)− c〈ei, Σ̂m〉

}
. (84)

The minimum over m is achieved at m = cei/2. Plugging in for m, we get

Ci(µ) ≥ c(1− µ)− c2

4
Σ̂ii (85)

Optimizing this bound over c, we obtain the claim (83), with the optimal choice being
c = 2(1− µ)/Σ̂ii.

A.2 Proof of Lemma 24

Write

Zi =
1√
n

n∑
j=1

ξj with ξj ≡
mT
i XjWj

σ[mT
i Σ̂mi]1/2

.

Conditional on X, the summands ξj are zero mean and independent. Further,
∑n

j=1 E(ξ2
j |X)

= n. We next prove the Lindeberg condition as per Equation (53). Let cn ≡ (mT
i Σ̂mi)

1/2.
By Lemma 12, we have lim infn→∞ cn ≥ c∞ > 0, almost surely. If all the optimization
problems in (54) are feasible, then |ξj | ≤ c−1

n ‖Xmi‖∞‖W‖∞/σ ≤ c−1
n nβ(‖W‖∞/σ). Hence,

lim
n→∞

1

n

n∑
j=1

E
(
ξ2
j I{|ξj |>ε√n}|X

)
≤ lim

n→∞

1

n

n∑
j=1

E
(
ξ2
j I{‖W‖∞/σ>εcnn1/2−β}|X

)
= lim

n→∞

1

n

n∑
j=1

mT
i XjX

T
j mi

mT
i Σ̂mi

E(W̃ 2
j I{‖W̃‖∞>εc∞n1/2−β}

)
≤ lim

n→∞
E(W̃ 2

1 I{|W̃1|>εc∞n1/2−β}

)
≤ c′(ε) lim

n→∞
n−a(1/2−β)E{|W̃1|2+a} = 0 .

where W̃j = Wj/σ and the last limit follows since β < 1/2 and a > 0.
Using Lindeberg central limit theorem, we obtain Zi|X converges weakly to standard

normal distribution, and hence, X-almost surely

lim
n→∞

P(Zi ≤ x|X) = Φ(x) .

What remains is to show that with high probability all the p optimization problems
in (54) are feasible. In particular, we show that Σ−1

i,· is a feasible solution to the i-th

optimization problem, for i ∈ [p]. By Lemma 23, |Σ−1Σ̂ − I|∞ ≤ µ, with high probability.
Moreover,

sup
j∈[p]
‖Σ−1

i,· Xj‖ψ2 = sup
j∈[p]
‖Σ−1/2

i,· Σ−1/2Xj‖ψ2

= ‖Σ−1/2
i,· ‖2 sup

j∈[p]
‖Σ−1/2Xj‖ψ2

= [Σ−1
i,i ]1/2 sup

j∈[p]
‖Σ−1/2Xj‖ψ2 = O(1) .
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Using tail bound for sub-Gaussian variables Σ−1
i,· Xj and union bounding over j ∈ [n], we

get

P(‖XΣ−1
·,i ‖∞ > nβ) ≤ ne−cn2β

,

for some constant c > 0. Note that s0 = o(
√
n/ log p) and β > 1/4 imply p = eo(n

2β).
Hence, almost surely, Σ−1

i,· is a feasible solution to optimization problem (54), for all i ∈ [p].

Appendix B. Corollaries of Theorem 8

In this appendix, we prove Corollary 10 and Corollary 11.

B.1 Proof of Corollary 10

By Theorem 6, for any X ∈ En(
√
Cmin/2, s0, 3/2) ∩ Gn(a), we have

P
{
‖∆‖∞ ≥ Lc

∣∣∣X} ≤ 2 p1−(c2/48) , L ≡ 16aσ

Cmin

s0 log p√
n

. (86)

This is obtained by setting φ0 =
√
Cmin/2, K = 3/2, µ∗ = a

√
(log p)/n in Equation (11).

Hence

‖Bias(θ̂u)‖∞ ≤
1√
n
E
{
‖∆‖∞

∣∣X}
=

L√
n

∫ ∞
0

P
{
‖∆‖∞ ≥ Lc

∣∣∣X} dc

≤ 2L√
n

∫ ∞
0

min(1, p1−(c2/48)) dc ≤ 10L√
n
, (87)

which coincides with Equation (21). The probability estimate (22) simply follows from
Theorem 7 using union bound.

B.2 Proof of Corollary 11

By Theorem 7.(a), we have

P
(
X ∈ En(1/2, s0, 3/2)

)
≥ 1− 4 e−c1n . (88)

Further, by Lemma 23, with Σ̂ ≡ XTX/n, we have

P
(
µ∗(X; I) ≤ 30

√
log p

n

)
≥ 1− 2 p−3 . (89)

Hence, defining

Bn ≡ En(1/2, s0, 3/2) ∩
{

X ∈ Rn×p : µ∗(X; I) ≤ 30

√
log p

n

}
(90)
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we have the desired probability bound (24). Let θ̂n = θ̂n(Y,X; I, λ). By Theorem 6, we
have, for any X ∈ Bn

θ̂∗ = θ0 +
1√
n
Z +

1√
n

∆ , Z|X ∼ N(0, σ2Σ̂) , (91)

and further

P
{
‖∆‖∞ ≥

480cσs0 log p√
n

∣∣∣X} ≤ 2p1−(c2/48) , (92)

whence, proceeding as in the proof in the last section, we get, for some universal numerical
constant c∗∗ ≤ 4800,

‖Bias(θ̂∗)‖∞ ≤
1√
n
E
{
‖∆‖∞

∣∣∣X} ≤ c∗∗σs0 log p

n
. (93)

Next by Equation (28) we have∥∥Bias(θ̂n)
∥∥
∞ ≥

∣∣∣λ∥∥E{v(θ̂n)|X}
∥∥
∞ −

∥∥Bias(θ̂∗)∥∥∞∣∣∣ . (94)

Hence, in order to prove Equation (23), it is sufficient to prove that ‖E{v(θ̂n)|X}‖∞ ≥ 2/3.
Note that v(θ̂n)i = 1 whenever θ̂ni > 0, and |v(θ̂n)i| ≤ 1 for all coordinates i. Therefore,

letting b0 ≡ 480cσ(s0 log p)/n we have

1− E{v(θ̂n)i|X} ≤ 2P
(
θ̂ni ≤ 0

∣∣∣X) ≤ 2P
(
θ̂ui ≤ λ

∣∣∣X) (95)

≤ 2P
(
θ0,i +

1√
n
Zi +

1√
n

∆i ≤ λ
∣∣∣X)

≤ 2P
( 1√

n
Zi ≤ λ+ b0 − θ0,i

∣∣∣X)+ 2P
(
‖∆‖∞ >

√
nb0

)
= 2Φ

(
(λ+ b0 − θ0,i)

√
n/(σ2Σ̂ii)

)
+ 4p1−(c2/48)

≤ 2Φ
(

(λ+ b0 − θ0,i)
√

2n/(3σ2)
)

+ 4p1−(c2/48) (96)

with Φ(x) the standard normal distribution function. Here, we used the relation θ̂u =
θ̂ + λv(θ̂) in Equation (95) and Equation (96) holds because maxi∈[p] Σ̂ii ≤ 3/2 on Bn. We

then choose θ0 so that θ0,i ≥ b0 +λ+
√

30σ2/n, for i ∈ [p] in the support of θ0. We therefore
obtain

E{v(θ̂n)i|X} ≥ 1− 2Φ(−
√

20)− 4p1−(c2/48) ≥ 2

3
, (97)

where in the last step we used the assumption p ≥ 1348/(c2−48). This finishes the proof of
Equation (23).

Equation (25) follows readily from Equation (93), substituting λ = cσ
√

(log p)/n and
recalling the assumption n ≥ (3c∗∗s0/c)

2 log p.
Finally, combining Equation (25) and Equation (23), we get

‖Bias(θ̂n)‖∞ ≥
λ

3
. (98)

Therefore, Equation (26) is derived by substituting λ = cσ
√

(log p)/n and using Corol-
lary 10, Equation (21) with a = 30.
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Appendix C. Proof of Lemma 14

Let En = En(φ0, s0,K) be the event defined as per Theorem 7.(a). In particular, we take
φ0 =

√
Cmin/2, and K ≥ 1 + 20κ2

√
(log p)/n.4 Further note that we can assume without

loss of generality n ≥ ν0 s0 log(p/s0), since s0 = o(
√
n/ log p). Fixing ε > 0, we have

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) ≤ sup

X∈En
P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε ∣∣∣X)+ P

(
X 6∈ En

)
≤ sup

X∈En
P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε ∣∣∣X)+ 4 e−c1n ,

where c1 > 0 is a constant defined as per Theorem 7.(a).
We are therefore left with the task of bounding the first term in the last expression

above, uniformly over θ0 ∈ Rp, ‖θ0‖0 ≤ s0. For X ∈ En, we apply the result of Sun and
Zhang (2012, Theorem 1). More precisely, using the notations of Sun and Zhang (2012),
with λ0 = λ̃, ξ = 3, T = supp(θ0), κ(ξ, T ) ≥ φ0, we have η∗(λ̃, ξ) ≤ 4s0λ̃

2/φ2
0. Further,

let σ∗ be the oracle estimator of σ introduced there. If ‖XTW/(nσ∗)‖∞ ≤ λ̃/4, using
Equation (13) in Sun and Zhang (2012), we obtain∣∣∣ σ̂

σ∗
− 1
∣∣∣ ≤ 2

√
s0λ̃

σ∗φ0
≤ ε

2
, (99)

where the last inequality follows for all n large enough since s0 = o(
√
n/ log p).

Hence

sup
X∈En

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε ∣∣∣X) ≤ sup

X∈En
P
(
‖XTW/n‖∞ > λ̃/4

∣∣∣X)+ sup
X∈En

P
(∣∣∣σ∗
σ
− 1
∣∣∣ ≥ ε

10

∣∣∣X) ,
(100)

where we note that the right hand side is independent of θ0. The first term vanishes as
n → ∞ by a standard tail bound on the supremum of p Gaussian random variables. The
second term also vanishes because it is controlled by the tail of a chi-squared random variable
(see Sun and Zhang, 2012).

Appendix D. Proof of Theorem 20

Let Fp,s0 ≡ {x ∈ Rp : ‖x‖0 ≤ s0}, and fix ε ∈ (0, 1/10). By definition,

FWER(T̂F, n) = sup
θ0∈Fp,s0

P

{
∃i ∈ [p] \ supp(θ0), s.t.

√
n |θ̂ui − θ0,i|

σ̂[M Σ̂MT]
1/2
i,i

≥ Φ−1
(

1− α

2p

)}

≤ sup
θ0∈Fp,s0

P

{
∃i ∈ [p] \ supp(θ0), s.t.

√
n |θ̂ui − θ0,i|

σ[M Σ̂MT]
1/2
i,i

≥ (1− ε)Φ−1
(

1− α

2p

)}

+ sup
θ0∈Fp,s0

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) .

4. For instance K = 1.1 will work for all n large enough since (s0 log p)2/n→ 0, with s0 ≥ 1, by assumption.
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Since the second term vanishes as n→∞ by Equation (29). Using Bonferroni inequality,
letting zα(ε) ≡ (1− ε)Φ−1

(
1− α

2p

)
, we have

lim sup
n→∞

FWER(T̂F, n) ≤ lim sup
n→∞

p∑
i=1

sup
θ0∈Fp,s0 ,θ0,i=0

P

{√
n |θ̂ui − θ0,i|

σ[M Σ̂MT]
1/2
i,i

≥ zα(ε)

}

= lim sup
n→∞

p∑
i=1

sup
θ0∈Fp,s0 ,θ0,i=0

P

{∣∣∣∣∣Z̃i +
∆i

σ[M Σ̂MT]
1/2
ii

∣∣∣∣∣ ≥ zα(ε)

}
,

where, by Theorem 8, Z̃i ∼ N(0, 1) and ∆i is given by Equation (16). We then have

lim sup
n→∞

FWER(T̂F, n) ≤ lim sup
n→∞

p∑
i=1

P
{
|Z̃i| ≥ zα(ε)− ε

}
+ lim sup

n→∞

p∑
i=1

sup
θ0∈Fp,s0 ,θ0,i=0

P

{
‖∆‖∞ ≥

εσ

2Σ̂
1/2
ii

}
≤ 2p

(
1− Φ(zα(ε)− ε)

)
+ lim sup

n→∞
pmax
i∈[p]

P(Σ̂ii ≥ 2)

+ lim sup
n→∞

sup
θ0∈Fp,s0 ,θ0,i=0

pP
{
‖∆‖∞ ≥

εσ

4

}
, (101)

where in the first inequality, we used [M Σ̂MT]i,i ≥ 1/(4Σ̂ii) for all n large enough, by
Lemma 12, and since µ = a

√
(log p)/n → 0 as n, p → ∞. Now, the second term in the

right hand side of Equation (101) vanishes by Theorem 7.(a), and the last term is zero by
Theorem 8, since s0 = o(

√
n/ log p). Therefore

lim sup
n→∞

FWER(T̂F, n) ≤ 2p
(
1− Φ(zα(ε)− ε)

)
. (102)

The claim follows by letting ε→ 0.
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N. Städler, P. Bühlmann, and S. van de Geer. `1-penalization for mixture regression models
(with discussion). Test, 19(2):209–256, 2010.

T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898, 2012.

R. Tibshirani. Regression shrinkage and selection with the Lasso. J. Royal. Statist. Soc B,
58:267–288, 1996.
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Abstract

The `1-regularized Gaussian maximum likelihood estimator (MLE) has been shown to have
strong statistical guarantees in recovering a sparse inverse covariance matrix, or alterna-
tively the underlying graph structure of a Gaussian Markov Random Field, from very
limited samples. We propose a novel algorithm for solving the resulting optimization prob-
lem which is a regularized log-determinant program. In contrast to recent state-of-the-art
methods that largely use first order gradient information, our algorithm is based on New-
ton’s method and employs a quadratic approximation, but with some modifications that
leverage the structure of the sparse Gaussian MLE problem. We show that our method is
superlinearly convergent, and present experimental results using synthetic and real-world
application data that demonstrate the considerable improvements in performance of our
method when compared to previous methods.

Keywords: covariance, graphical model, regularization, optimization, Gaussian Markov
random field

1. Introduction

Statistical problems under modern data settings are increasingly high-dimensional, so that
the number of parameters is very large, potentially outnumbering even the number of obser-
vations. An important class of such problems involves estimating the graph structure of a
Gaussian Markov random field (GMRF), with applications ranging from biological inference
in gene networks, analysis of fMRI brain connectivity data and analysis of interactions in
social networks. Specifically, given n independently drawn samples {y1,y2, . . . ,yn} from a
p-variate Gaussian distribution, so that yi ∼ N (µ,Σ), the task is to estimate its inverse co-
variance matrix Σ−1, also referred to as the precision or concentration matrix. The non-zero
pattern of this inverse covariance matrix Σ−1 can be shown to correspond to the underlying
graph structure of the GMRF. An active line of work in high-dimensional settings, where
p� n, is based on imposing constraints on the model space; in the GMRF case a common
structured constraint is that of sparsity of the inverse covariance matrix. Accordingly, re-
cent papers by Banerjee et al. (2008); Friedman et al. (2008); Yuan and Lin (2007) have
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proposed an estimator that minimizes the Gaussian negative log-likelihood regularized by
the `1 norm of the entries (typically restricted to those on the off-diagonal) of the inverse co-
variance matrix, which encourages sparsity in its entries. This estimator has been shown to
have very strong statistical guarantees even under very high-dimensional settings, including
convergence in Frobenius and spectral norms (Rothman et al., 2008; Lam and Fan, 2009;
Ravikumar et al., 2011), as well as in recovering the non-zero pattern of the inverse co-
variance matrix, or alternatively the graph structure of the underlying GMRF (Ravikumar
et al., 2011). Moreover, the resulting optimization problem is a log-determinant program,
which is convex, and can be solved in polynomial time.

For such large-scale optimization problems arising from high-dimensional statistical es-
timation however, standard optimization methods typically suffer sub-linear rates of conver-
gence (Agarwal et al., 2010). This would be too expensive for the Gaussian MLE problem,
since the number of matrix entries scales quadratically with the number of nodes. Luckily,
the log-determinant problem has special structure; the log-determinant function is strongly
convex and one can thus obtain linear (i.e., geometric) rates of convergence via the state-
of-the-art methods. However, even linear rates in turn become infeasible when the problem
size is very large, with the number of nodes in the thousands and the number of matrix
entries to be estimated in the millions. Here we ask the question: can we obtain superlinear
rates of convergence for the optimization problem underlying the `1-regularized Gaussian
MLE?

For superlinear rates, one has to consider second-order methods which at least in part
use the Hessian of the objective function. There are however some caveats to the use of such
second-order methods in high-dimensional settings. First, a straightforward implementation
of each second-order step would be very expensive for high-dimensional problems. Secondly,
the log-determinant function in the Gaussian MLE objective acts as a barrier function for the
positive definite cone. This barrier property would be lost under quadratic approximations
so there is a danger that Newton-like updates will not yield positive-definite matrices, unless
one explicitly enforces such a constraint in some manner.

In this paper, we present QUIC (QUadratic approximation of Inverse Covariance ma-
trices), a second-order algorithm, that solves the `1-regularized Gaussian MLE. We perform
Newton steps that use iterative quadratic approximations of the Gaussian negative log-
likelihood. The computation of the Newton direction is a Lasso problem (Meier et al.,
2008; Friedman et al., 2010), which we then solve using coordinate descent. A key facet of
our method is that we are able to reduce the computational cost of a coordinate descent
update from the naive O(p2) to O(p) complexity by exploiting the structure present in the
problem, and by a careful arrangement and caching of the computations. Furthermore, an
Armijo-rule based step size selection rule ensures sufficient descent and positive definiteness
of the intermediate iterates. Finally, we use the form of the stationary condition character-
izing the optimal solution to focus the Newton direction computation on a small subset of
free variables, but in a manner that preserves the strong convergence guarantees of second-
order descent. We note that when the solution has a block-diagonal structure as described in
Mazumder and Hastie (2012); Witten et al. (2011), the fixed/free set selection in QUIC can
automatically identify this block diagonal structure and avoid updates to the off-diagonal
block elements. A preliminary version of this paper appeared in Hsieh et al. (2011). In this
paper, we provide a more detailed analysis along with proofs of our algorithm, and cover a
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more general weighted regularization case of the regularized inverse covariance estimation
problem. We show that QUIC can automatically identify the sparsity structure under the
block-diagonal case. We also conduct more experiments on both synthetic and real data
sets to compare QUIC with other solvers. Our software package QUIC with MATLAB
and R interface1 is public available at http://www.cs.utexas.edu/~sustik/QUIC/.

The outline of the paper is as follows. We start with a review of related work and the
problem setup in Section 2. In Section 3, we present our algorithm that combines quadratic
approximation, Newton’s method and coordinate descent. In Section 4, we show superlinear
convergence of our method. We summarize the experimental results in Section 5, where
we compare the algorithm using both real data and synthetic examples from Li and Toh
(2010). We observe that our algorithm performs overwhelmingly better (quadratic instead
of linear convergence) than existing solutions described in the literature.

Notation. In this paper, boldfaced lowercase letters denote vectors and uppercase
letters denote p×p real matrices. Sp++ denotes the space of p×p symmetric positive definite
matrices while X � 0 and X � 0 means that X is positive definite and positive semidefinite,
respectively. The vectorized listing of the elements of a p × p matrix X is denoted by
vec(X) ∈ Rp2 and the Kronecker product of the matrices X and Y is denoted by X⊗Y . For
a real-valued function f(X), ∇f(X) is a p× p matrix with (i, j) element equal to ∂

∂Xij
f(X)

and denoted by ∇ijf(X), while ∇2f(X) is the p2 × p2 Hessian matrix. We will use the `1
and `∞ norms defined on the vectorized form of matrix X: ‖X‖1 :=

∑
i,j |Xij | and ‖X‖∞ :=

maxi,j |Xij |. We also employ elementwise `1-regularization, ‖X‖1,Λ :=
∑

i,j λij |Xij |, where
Λ = [λij ] with λij > 0 for off-diagonal elements, and λii ≥ 0 for diagonal elements.

2. Background and Related Work

Let y be a p-variate Gaussian random vector, with distribution N (µ,Σ). Given n inde-
pendently drawn samples {y1, . . . ,yn} of this random vector, the sample covariance matrix
can be written as

S =
1

n− 1

n∑
k=1

(yk − µ̂)(yk − µ̂)T , where µ̂ =
1

n

n∑
k=1

yk. (1)

Given a regularization penalty λ > 0, the `1-regularized Gaussian MLE for the inverse
covariance matrix can be written as the solution of the following regularized log-determinant
program:

arg min
X�0

{
− log detX + tr(SX) + λ

p∑
i,j=1

|Xij |
}
. (2)

The `1 regularization promotes sparsity in the inverse covariance matrix, and thus en-
courages a sparse graphical model structure. We consider a generalized weighted `1 reg-
ularization, where given a symmetric nonnegative weight matrix Λ = [λij ], we can as-
sign different nonnegative weights to different entries, obtaining the regularization term
‖X‖1,Λ =

∑p
i,j=1 λij |Xij |. In this paper we will focus on solving the following generalized

1. The QUIC R package is also available from CRAN.
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sparse inverse covariance estimation problem:

X∗ = arg min
X�0

{
− log detX + tr(SX) + ‖X‖1,Λ

}
= arg min

X�0
f(X), (3)

where X∗ = (Σ∗)−1. In order to ensure that problem (3) has a unique minimizer, as we show
later, it is sufficient to require that λij > 0 for off-diagonal entries, and λii ≥ 0 for diagonal
entries. The standard off-diagonal `1 regularization variant λ

∑
i 6=j |Xij | is a special case

of this weighted regularization function. For further details on the background and utility
of `1 regularization in the context of GMRFs, we refer the reader to Yuan and Lin (2007);
Banerjee et al. (2008); Friedman et al. (2008); Duchi et al. (2008); Ravikumar et al. (2011).

Due in part to its importance, there has been an active line of work on efficient opti-
mization methods for solving (2) and (3). Since the regularization term is non-smooth and
hard to solve, many methods aim to solve the dual problem of (3):

Σ∗ = argmax
|Wij−Sij |≤λij

log detW, (4)

which has a smooth objective function with bound constraints. Banerjee et al. (2008)
propose a block-coordinate descent method to solve the dual problem (4), by updating
one row and column of W at a time. They show that the dual of the corresponding
row subproblem can be written as a standard Lasso problem, which they then solve by
Nesterov’s first order method. Friedman et al. (2008) follow the same strategy, but propose
to use a coordinate descent method to solve the row subproblems instead; their method is
implemented in the widely used R package called glasso. In other approaches, the dual
problem (4) is treated as a constrained optimization problem, for which Duchi et al. (2008)
apply a projected subgradient method called PSM, while Lu (2009) proposes an accelerated
gradient descent method called VSM.

Other first-order methods have been pursued to solve the primal optimization problem
(2). d’Aspremont et al. (2008) apply Nesterov’s first order method to (2) after smoothing
the objective function; Scheinberg et al. (2010) apply an augmented Lagrangian method to
handle the smooth and nonsmooth parts separately; the resulting algorithm is implemented
in the ALM software package. In Scheinberg and Rish (2010), the authors propose to
directly solve the primal problem by a greedy coordinate descent method called SINCO.
However, each coordinate update of SINCO has a time complexity of O(p2), which becomes
computationally prohibitive when handling large problems. We will show in this paper
that after forming the quadratic approximation, each coordinate descent update can be
performed in O(p) operations. This trick is one of the key advantages of our proposed
method, QUIC.

One common characteristic of the above methods is that they are first-order iterative
methods that mainly use gradient information at each step. Such first-order methods have
become increasingly popular in recent years for high-dimensional problems in part due to
their ease of implementation, and because they require very little computation and memory
at each step. The caveat is that they have at most linear rates of convergence (Bertsekas,
1995). To achieve superlinear convergence rates, one has to consider second-order methods,
which have only recently attracted some attention for the sparse inverse covariance estima-
tion problem. Li and Toh (2010) handle the non-smoothness of the `1 regularization in the
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objective function by doubling the number of variables, and solving the resulting constrained
optimization problem by an inexact interior point method. Schmidt et al. (2009) propose
a second order Projected Quasi-Newton method (PQN) that solves the dual problem (4),
since the dual objective function is smooth. The key difference of our method when com-
pared to these recent second order solvers is that we directly solve the `1-regularized primal
objective using a second-order method. As we show, this allows us to leverage structure in
the problem, and efficiently approximate the generalized Newton direction using coordinate
descent. Subsequent to the preliminary version of this paper (Hsieh et al., 2011), Olsen et al.
(2012) have proposed generalizations to our framework to allow various inner solvers such as
FISTA, conjugate gradient (CG), and LBFGS to be used, in addition to our proposed coor-
dinate descent scheme. Also, Lee et al. (2012) have extended the quadratic approximation
algorithm to solve general composite functions and analyze the convergence properties.

3. Quadratic Approximation Method

We first note that the objective f(X) in the non-differentiable optimization problem (3),
can be written as the sum of two parts, f(X) = g(X) + h(X), where

g(X) = − log detX + tr(SX) and h(X) = ‖X‖1,Λ. (5)

The first component g(X) is twice differentiable, and strictly convex. The second part,
h(X), is convex but non-differentiable. Following the approach of Tseng and Yun (2007)
and Yun and Toh (2011), we build a quadratic approximation around any iterate Xt for this
composite function by first considering the second-order Taylor expansion of the smooth
component g(X):

ḡXt(∆) ≡ g(Xt) + vec(∇g(Xt))
T vec(∆) +

1

2
vec(∆)T∇2g(Xt) vec(∆). (6)

The Newton direction D∗t for the entire objective f(X) can then be written as the solution
of the regularized quadratic program:

D∗t = arg min
∆

{
ḡXt(∆) + h(Xt + ∆)

}
. (7)

We use this Newton direction to compute our iterative estimates {Xt} for the solution of
the optimization problem (3). This variant of Newton method for such composite objec-
tives is also referred to as a “proximal Newton-type method,” and was empirically studied
in Schmidt (2010). Tseng and Yun (2007) considered the more general case where the Hes-
sian ∇2g(Xt) is replaced by any positive definite matrix. See also the recent paper by Lee
et al. (2012), where convergence properties of such general proximal Newton-type methods
are discussed. We note that a key caveat to applying such second-order methods in high-
dimensional settings is that the computation of the Newton direction appears to have a
large time complexity, which is one reason why first-order methods have been so popular
for solving the high-dimensional `1-regularized Gaussian MLE.

Let us delve into the Newton direction computation in (7). Note that it can be rewritten
as a standard Lasso regression problem (Tibshirani, 1996):

arg min
∆

1

2
‖H

1
2 vec(∆) +H−

1
2b‖22 + ‖Xt + ∆‖1,Λ, (8)
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where H = ∇2g(Xt) and b = vec(∇g(Xt)). Many efficient optimization methods exist
that solve Lasso regression problems, such as the coordinate descent method (Friedman
et al., 2007), the gradient projection method (Polyak, 1969), and iterative shrinking meth-
ods (Daubechies et al., 2004; Beck and Teboulle, 2009). When applied to the Lasso problem
of (7), most of these optimization methods would require the computation of the gradient
of ḡXt(∆):

∇ḡXt(∆) = H vec(∆) + b. (9)

The straightforward approach for computing (9) for a general p2 × p2 Hessian matrix H
would take O(p4) time, making it impractical for large problems. Fortunately, for the sparse
inverse covariance problem (3), the Hessian matrix H has the following special form (see
for instance Boyd and Vandenberghe, 2009, Chapter A.4.3):

H = ∇2g(Xt) = X−1
t ⊗X

−1
t ,

where ⊗ denotes the Kronecker product. In Section 3.1, we show how to exploit this special
form of the Hessian matrix to perform one coordinate descent step that updates one element
of ∆ in O(p) time. Hence a full sweep of coordinate descent steps over all the variables
requires O(p3) time. This key observation is one of the reasons that makes our Newton-like
method viable for solving the inverse covariance estimation problem.

There exist other functions which allow efficient Hessian times vector multiplication.
As an example, we consider the case of `1-regularized logistic regression. Suppose we are
given n samples with feature vectors x1, . . . ,xn ∈ Rp and labels y1, . . . , yn, and we solve
the following `1-regularized logistic regression problem to compute the model parameter w:

arg min
w∈Rp

n∑
i=1

log(1 + e−yiw
Txi) + λ‖w‖1.

Following our earlier approach, we can decompose this objective function into smooth and
non-smooth parts, g(w) + h(w), where

g(w) =
n∑
i=1

log(1 + e−yiw
Txi) and h(w) = λ‖w‖1.

In order to apply coordinate descent to solve the quadratic approximation, we have to
compute the gradient as in (9). The Hessian matrix ∇2g(w) is a p × p matrix, so direct
computation of this gradient costs O(p2) flops. However, the Hessian matrix for logistic
regression has the following simple form

H = ∇2g(w) = XDXT ,

where D is a diagonal matrix with Dii = e−yiw
T xi

(1+e−yiw
T xi )2

and X = [x1, x2, . . . , xn]. Therefore

we can write

∇g(w + ∆) = (∇2g(w)) vec(∆) + b = XD(XT vec(∆)) + b. (10)

The time complexity to compute (10) is only proportional to the number of nonzero elements
in the data matrix X, which can be much smaller than O(p2) for high-dimensional sparse
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data sets. Therefore similar quadratic approximation approaches are also efficient for solving
the `1-regularized logistic regression problem as shown by Friedman et al. (2010); Yuan et al.
(2012).

In the following three subsections, we detail three innovations which make our quadratic
approximation algorithm feasible for solving (3). In Section 3.1, we show how to compute the
Newton direction using an efficient coordinate descent method that exploits the structure
of Hessian matrix, so that we reduce the time complexity of each coordinate descent update
step from O(p2) to O(p). In Section 3.2, we employ an Armijo-rule based step size selection
to ensure sufficient descent and positive-definiteness of the next iterate. Finally, in Section
3.3 we use the form of the stationary condition characterizing the optimal solution, to focus
the Newton direction computation to a small subset of free variables, in a manner that
preserves the strong convergence guarantees of second-order descent. A high level overview
of our method is presented in Algorithm 1. Note that the initial point X0 has to be a
feasible solution, thus X0 � 0, and the positive definiteness of all the following iterates Xt

will be guaranteed by the step size selection procedure (step 6 in Algorithm 1).

Algorithm 1: QUadratic approximation for sparse Inverse Covariance estimation
(QUIC overview)

Input : Empirical covariance matrix S (positive semi-definite, p× p), regularization
parameter matrix Λ, initial iterate X0 � 0.

Output: Sequence {Xt} that converges to arg minX�0 f(X), where
f(X) = g(X) + h(X), where g(X) = − log detX + tr(SX), h(X) = ‖X‖1,Λ.

1 for t = 0, 1, . . . do

2 Compute Wt = X−1
t .

3 Form the second order approximation f̄Xt(∆) := ḡXt(∆) + h(Xt + ∆) to
f(Xt + ∆).

4 Partition the variables into free and fixed sets based on the gradient, see
Section 3.3.

5 Use coordinate descent to find the Newton direction D∗t = arg min∆ f̄Xt(Xt + ∆)
over the set of free variables, see (13) and (16) in Section 3.1. (A Lasso problem.)

6 Use an Armijo-rule based step-size selection to get α such that Xt+1 = Xt + αD∗t
is positive definite and there is sufficient decrease in the objective function,
see (21) in Section 3.2.

7 end

3.1 Computing the Newton Direction

In order to compute the Newton direction, we have to solve the Lasso problem (7). The
gradient and Hessian for g(X) = − log detX + tr(SX) are (see, for instance, Boyd and
Vandenberghe, 2009, Chapter A.4.3)

∇g(X) = S −X−1 and ∇2g(X) = X−1 ⊗X−1. (11)

In order to formulate our problem accordingly, we can verify that for a symmetric matrix
∆ we have tr(X−1

t ∆X−1
t ∆) = vec(∆)T (X−1

t ⊗X
−1
t ) vec(∆), so that ḡXt(∆) in (7) can be
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rewritten as

ḡXt(∆) = − log detXt + tr(SXt) + tr((S −Wt)
T∆) +

1

2
tr(Wt∆Wt∆), (12)

where Wt = X−1
t .

In Friedman et al. (2007), Wu and Lange (2008), the authors show that coordinate
descent methods are very efficient for solving Lasso type problems. An obvious way to
update each element of ∆ in (7) requires O(p2) floating point operations since Wt⊗Wt is a
p2 × p2 matrix, thus yielding an O(p4) procedure for computing the Newton direction. As
we show below, our implementation reduces the cost of updating one variable to O(p) by
exploiting the structure of the second order term tr(Wt∆Wt∆).

For notational simplicity, we will omit the iteration index t in the derivations below
where we only discuss a single Newton iteration; this applies to the rest of the this section
and Section 3.2 as well. (Hence, the notation for ḡXt is also simplified to ḡ.) Furthermore,
we omit the use of a separate index for the coordinate descent updates. Thus, we simply
use D to denote the current iterate approximating the Newton direction and use D′ for
the updated direction. Consider the coordinate descent update for the variable Xij , with
i < j that preserves symmetry: D′ = D+ µ(eie

T
j + eje

T
i ). The solution of the one-variable

problem corresponding to (7) is:

arg min
µ

ḡ(D + µ(eie
T
j + eje

T
i )) + 2λij |Xij +Dij + µ|. (13)

We expand the terms appearing in the definition of ḡ after substituting D′ = D+µ(eie
T
j +

eje
T
i ) for ∆ in (12) and omit the terms not dependent on µ. The contribution of tr(SD′)−

tr(WD′) yields 2µ(Sij−Wij), while the regularization term contributes 2λij |Xij+Dij+µ|, as
seen from (13). The quadratic term can be rewritten (using the fact that tr(AB) = tr(BA)
and the symmetry of D and W ) to yield:

tr(WD′WD′) = tr(WDWD) + 4µwT
i Dwj + 2µ2(W 2

ij +WiiWjj), (14)

where wi refers to the i-th column of W . In order to compute the single variable update
we seek the minimum of the following quadratic function of µ:

1

2
(W 2

ij +WiiWjj)µ
2 + (Sij −Wij + wT

i Dwj)µ+ λij |Xij +Dij + µ|. (15)

Letting a = W 2
ij + WiiWjj , b = Sij −Wij + wT

i Dwj , and c = Xij + Dij the minimum is
achieved for:

µ = −c+ S(c− b/a, λij/a), (16)

where

S(z, r) = sign(z) max{|z| − r, 0} (17)

is the soft-thresholding function. Similarly, when i = j, for D′ = D + µeie
T
i , we get

tr(WD′WD′) = tr(WDWD) + 2µwT
i Dwi + µ2(W 2

ii). (18)
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Therefore the update rule for Dii can be computed by (16) with a = W 2
ii, b = Sii −Wii +

wT
i Dwi, and c = Xii +Dii.

Since a and c are easy to compute, the main computational cost arises while evaluating
wT
i Dwj , the third term contributing to coefficient b above. Direct computation requires

O(p2) time. Instead, we maintain a p× p matrix U = DW , and then compute wT
i Dwj by

wT
i uj using O(p) flops, where uj is the j-th column of matrix U. In order to maintain the

matrix U , we also need to update 2p elements, namely two coordinates of each uk when
Dij is modified. We can compactly write the row updates of U as follows: ui· ← ui·+ µwj·
and uj· ← uj· + µwi·, where ui· refers to the i-th row vector of U .

3.1.1 Update Rule when X is Diagonal

The calculation of the Newton direction can be simplified if X is also a diagonal matrix.
For example, this occurs in the first Newton iteration when we initialize QUIC using the
identity (or diagonal) matrix. When X is diagonal, the Hessian ∇2g(X) = X−1 ⊗X−1 is
also a diagonal matrix, which indicates that all one variable sub-problems are independent
of each other. Therefore, we only need to update each variable once to reach the optimum
of (7). In particular, by examining (16), the optimal solution D∗ij is

D∗ij =

S
(
− Sij

WiiWjj
,

λij
WiiWjj

)
if i 6= j,

−Xii + S
(
Xii − Sii−Wii

W 2
ii

, λii
W 2

ii

)
if i = j,

(19)

where, as a reminder, Wii = 1/Xii. Thus, in this case, the closed form solution for each
variable can be computed in O(1) time, so the time complexity for the first Newton direction
is further reduced from O(p3) to O(p2).

3.1.2 Updating Only a Subset of Variables

In our QUIC algorithm we compute the Newton direction using only a subset of the vari-
ables we call the free set. We identify these variables in each Newton iteration based on
the value of the gradient (we will discuss the details of the selection in Section 3.3). In the
following, we define the Newton direction restricted to a subset J of the variables.

Definition 1 Let J denote a (symmetric) subset of variables. The Newton direction re-
stricted to J is defined as:

D∗J(X) ≡ arg min
D:Dij=0
∀(i,j)/∈J

tr(∇g(X)TD) +
1

2
vec(D)T∇2g(X) vec(D) + ‖X +D‖1,Λ. (20)

The cost to compute the Newton direction is thus substantially reduced when the free set
J is small, which as we will show in Section 3.3, occurs when the optimal solution of the
`1-regularized Gaussian MLE is sparse.

3.2 Computing the Step Size

Following the computation of the Newton direction D∗ = D∗J(X) (restricted to the subset
of variables J), we need to find a step size α ∈ (0, 1] that ensures positive definiteness of
the next iterate X + αD∗ and leads to a sufficient decrease of the objective function.
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We adopt Armijo’s rule (Bertsekas, 1995; Tseng and Yun, 2007) and try step-sizes α ∈
{β0, β1, β2, . . . } with a constant decrease rate 0 < β < 1 (typically β = 0.5), until we find
the smallest k ∈ N with α = βk such that X +αD∗ is (a) positive-definite, and (b) satisfies
the following sufficient decrease condition:

f(X + αD∗) ≤ f(X) + ασδ, δ = tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ, (21)

where 0 < σ < 0.5. Notice that Condition (21) is a generalized version of Armijo line search
rule for `1-regularized problems (see (Tseng and Yun, 2007; Yun and Toh, 2011) for the
detail). We can verify positive definiteness while we compute the Cholesky factorization
(costs O(p3) flops) needed for the objective function evaluation that requires the compu-
tation of log det(X + αD∗). The Cholesky factorization dominates the computational cost
in the step-size computations. We use the standard convention in convex analysis that
f(X) = +∞ when X is not in the effective domain of f , i.e., X is not positive definite.
Using this convention, (21) enforces positive definiteness of X + αD∗. Condition (21) has
been proposed in Tseng and Yun (2007); Yun and Toh (2011) to ensure that the objective
function value not only decreases but decreases by a certain amount ασδ, where δ mea-
sures the closeness of the current solution to the global optimal. Our convergence proofs
presented in Section 4 rely on this sufficient decrease condition.

In the rest of this section we present several lemmas about the step size computation.
The reader mostly interested in the algorithm description may skip forward to Section 3.3
and revisit the details afterwards.

We start out by proving three important properties that we call (P1–P3) regarding the
line search procedure governed by (21):

P1. The condition (21) is satisfied for some (sufficiently small) α, establishing that the
algorithm does not enter into an infinite line search step. We note that in Proposition 3
below we show that the line search condition (21) can be satisfied for any symmetric
matrix D (even one which is not the Newton direction).

P2. For the Newton direction D∗, the quantity δ in (21) is negative, which ensures that
the objective function decreases. Moreover, to guarantee that Xt converges to the
global optimum, |δ| should be large enough when the current iterate Xt is far from
the optimal solution. In Proposition 4 we will prove the stronger condition that
δ ≤ −(1/M2)‖D∗‖2F for some constant M . ‖D∗‖2F can be viewed as a measure of the
distance from optimality of the current iterate Xt, and this bound ensures that the
objective function decrease is proportional to ‖D∗‖2F .

P3. When X is close enough to the global optimum, the step size α = 1 will satisfy the
line search condition (21). We will show this property in Proposition 5. Moreover,
combined with the global convergence of QUIC proved in Theorem 12, this property
suggests that after a finite number of iterations α will always be 1; this also implies
that eventually only one Cholesky factorization is needed per iteration (to evaluate
log det(X + αD∗) for computing f(X + αD)).
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3.2.1 Detailed Proofs for P1-3

We first show the following useful property. For any matrices X,D, real number 0 ≤ α ≤ 1
and Λ ≥ 0 that generates the norm ‖·‖1,Λ, we have

‖X + αD‖1,Λ = ‖α(X +D) + (1− α)X‖1,Λ ≤ α‖X +D‖1,Λ + (1− α)‖X‖1,Λ. (22)

The above inequality can be proved by the convexity of ‖·‖1,Λ, and will be used repeatedly
in this paper. Next we show an important property that all the iterates Xt will have
eigenvalues bounded away from zero. Since the updates in our algorithm satisfy the line
search condition (21), and δ is always a negative number (see Proposition 4), the function
value is always decreasing. It also follows that all the iterates {Xt}t=0,1,... belong to the
level set U defined by:

U = {X | f(X) ≤ f(X0) and X ∈ Sp++}. (23)

Lemma 2 The level set U defined in (23) is contained in the set {X | mI � X � MI}
for some constants m,M > 0, if we assume that the off-diagonal elements of Λ and the
diagonal elements of S are positive.

Proof We begin the proof by showing that the largest eigenvalue of any X ∈ U is bounded
by M , a constant that depends only on Λ, f(X0) and the matrix S. We note that S � 0
and X � 0 implies tr(SX) ≥ 0 and therefore:

f(X0) ≥ f(X) ≥ − log detX + ‖X‖1,Λ. (24)

Since ‖X‖2 is the largest eigenvalue of the p×p matrix X, we have log detX ≤ p log(‖X‖2).
Combine with (24) and the fact that the off-diagonal elements of Λ are no smaller than some
λ > 0:

λ
∑
i 6=j
|Xij | < ‖X‖1,Λ ≤ f(X0) + p log(‖X‖2). (25)

Similarly, ‖X‖1,Λ ≥ 0 implies that:

tr(SX) < f(X0) + p log(‖X‖2). (26)

Next, we introduce γ = mini Sii and β = maxi 6=j |Sij | and split tr(SX) into diagonal and
off-diagonal terms in order to bound it:

tr(SX) =
∑
i

SiiXii +
∑
i 6=j

SijXij ≥ γ tr(X)− β
∑
i 6=j
|Xij |.

Since ‖X‖2 ≤ tr(X),

γ‖X‖2 ≤ γ tr(X) ≤ tr(SX) + β
∑
i 6=j
|Xij |.

Combine with (25) and (26) to get:

γ‖X‖2 ≤ (1 + β/λ)(f(X0) + p log(‖X‖2)). (27)
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The left hand side of inequality (27), as a function of ‖X‖2, grows much faster than the
right hand side (note γ > 0), and therefore ‖X‖2 can be upper bounded by M , where M
depends on the values of f(X0), S and Λ.

In order to prove the lower bound, we consider the smallest eigenvalue of X denoted by
a and use the upper bound on the other eigenvalues to get:

f(X0) > f(X) > − log detX ≥ − log a− (p− 1) logM, (28)

which shows that m = e−f(X0)M−(p−1) is a lower bound for a.

We note that the conclusion of the lemma also holds if the conditions on Λ and S are
replaced by only the requirement that the diagonal elements of Λ are positive, see Banerjee
et al. (2008). We emphasize that Lemma 2 allows the extension of the convergence results
to the practically important case when the regularization does not penalize the diagonal,
i.e., Λii = 0 ∀i. In subsequent arguments we will continue to refer to the minimum and
maximum eigenvalues m and M established in Lemma 2.

Proposition 3 (corresponds to Property P1) For any X � 0 and symmetric D, there
exists an ᾱ > 0 such that for all α < ᾱ, the matrix X + αD satisfies the line search
condition (21).

Proof When α < σn(X)/‖D‖2 (where σn(X) stands for the smallest eigenvalue of X and
‖D‖2 is the induced 2-norm of D, i.e., the largest eigenvalue in magnitude of D), we have
‖αD‖2 < σn(X), which implies that X + αD � 0. So we can write:

f(X + αD)− f(X) = g(X + αD)− g(X) + ‖X + αD‖1,Λ − ‖X‖1,Λ
≤ g(X + αD)− g(X) + α(‖X +D‖1,Λ − ‖X‖1,Λ), by (22)

= α tr((∇g(X))TD) +O(α2) + α(‖X +D‖1,Λ − ‖X‖1,Λ)

= αδ +O(α2).

Therefore for any fixed 0 < σ < 1 and sufficiently small α, the line search condition (21)
must hold.

Proposition 4 (corresponds to Property P2) δ = δJ(X) as defined in the line search
condition (21) satisfies

δ ≤ −(1/‖X‖22)‖D∗‖2F ≤ −(1/M2)‖D∗‖2F , (29)

where M is as in Lemma 2.

Proof We first show that δ = δJ(X) in the line search condition (21) satisfies

δ = tr((∇g(X))TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ ≤ − vec(D∗)T∇2g(X) vec(D∗), (30)

where D∗ = D∗J(X) is the minimizer of the `1-regularized quadratic approximation defined
in (20).
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According to the definition of D∗ ≡ D∗J(X) in (20), for all 0 < α < 1 we have:

tr(∇g(X)TD∗) +
1

2
vec(D∗)T∇2g(X) vec(D∗) + ‖X +D∗‖1,Λ ≤

tr(∇g(X)TαD∗) +
1

2
vec(αD∗)T∇2g(X) vec(αD∗) + ‖X + αD∗‖1,Λ. (31)

We combine (31) and 22 to yield:

tr(∇g(X)TD∗) +
1

2
vec(D∗)T∇2g(X) vec(D∗) + ‖X +D∗‖1,Λ ≤

α tr(∇g(X)TD∗) +
1

2
α2 vec(D∗)T∇2g(X) vec(D∗) + α‖X +D∗‖1,Λ + (1− α)‖X‖1,Λ.

Therefore

(1−α)[tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ−‖X‖1,Λ] +
1

2
(1−α2) vec(D∗)T∇2g(X) vec(D∗) ≤ 0.

Divide both sides by 1− α > 0 to get:

tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ +
1

2
(1 + α) vec(D∗)T∇2g(X) vec(D∗) ≤ 0.

By taking the limit as α ↑ 1, we get:

tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ ≤ − vec(D∗)T∇2g(X) vec(D∗),

which proves (30).

Since ∇2g(X) = X−1 ⊗X−1 is positive definite, (30) ensures that δ < 0 for all X � 0.
Since the updates in our algorithm satisfy the line search condition (21), we have established
that the function value is decreasing. It also follows that all the iterates {Xt}t=0,1,... belong
to the level set U defined by (23). Since ∇2g(X) = X−1 ⊗X−1, the smallest eigenvalue of
∇2g(X) is 1/‖X‖22, and we combine with Lemma 2 to get (29).

The eigenvalues of any iterate X are bounded by Lemma 2, and therefore ∇2g(X) =
X−1 ⊗ X−1 is Lipschitz continuous. Next, we prove that α = 1 satisfies the line search
condition in a neighborhood of the global optimum X∗.

Proposition 5 (corresponds to Property P3) Assume that ∇2g is Lipschitz continu-
ous, i.e., ∃L > 0 such that ∀t > 0 and any symmetric matrix D,

‖∇2g(X + tD)−∇2g(X)‖F ≤ L‖tD‖F = tL‖D‖F . (32)

Then, if X is close enough to X∗, the line search condition (21) will be satisfied with step
size α = 1.

Proof We need to derive a bound for the decrease in the objective function value. We
define g̃(t) = g(X+tD), which yields g̃′′(t) = vec(D)T∇2g(X+tD) vec(D). First, we bound
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|g̃′′(t)− g̃′′(0)|:

|g̃′′(t)− g̃′′(0)| = | vec(D)T (∇2g(X + tD)−∇2g(X)) vec(D)|
≤ ‖ vec(D)T (∇2g(X + tD)−∇2g(X))‖2‖ vec(D)‖2 (by Cauchy-Schwartz)

≤ ‖ vec(D)‖22‖∇2g(X + tD)−∇2g(X)‖2 (by definition of ‖ · ‖2 norm)

≤ ‖D‖2F ‖∇2g(X + tD)−∇2g(X)‖F (since ‖ · ‖2 ≤ ‖ · ‖F for any matrix)

≤ ‖D‖2F tL‖D‖F by (32)

= tL‖D‖3F .

Therefore, an upper bound for g̃′′(t):

g̃′′(t) ≤ g̃′′(0) + tL‖D‖3F = vec(D)T∇2g(X) vec(D) + tL‖D‖3F .

Integrate both sides to get

g̃′(t) ≤ g̃′(0) + t vec(D)T∇2g(X) vec(D) +
1

2
t2L‖D‖3F

= tr((∇g(X))TD) + t vec(D)T∇2g(X) vec(D) +
1

2
t2L‖D‖3F .

Integrate both sides again:

g̃(t) ≤ g̃(0) + t tr((∇g(X))TD) +
1

2
t2 vec(D)T∇2g(X) vec(D) +

1

6
t3L‖D‖3F .

Taking t = 1 we have

g(X +D) ≤ g(X) + tr(∇g(X)TD) +
1

2
vec(D)T∇2g(X) vec(D) +

1

6
L‖D‖3F

f(X +D) ≤ g(X) + ‖X‖1,Λ + (tr(∇g(X)TD) + ‖X +D‖1,Λ − ‖X‖1,Λ)

+
1

2
vec(D)T∇2g(X) vec(D) +

1

6
L‖D‖3F

≤f(X) + δ +
1

2
vec(D)T∇2g(X) vec(D) +

1

6
L‖D‖3F

≤f(X) +
δ

2
+

1

6
L‖D‖3F by (30)

≤f(X) + (
1

2
− 1

6
LM2‖D‖F )δ (by Proposition 4)

≤f(X) + σδ (assuming D is close to 0).

The last inequality holds if 1/2−LM2‖D‖F /6 > σ which is guaranteed if X is close enough
to X∗ and consequently D is close to 0 and σ < 0.5. (Note δ < 0 as well.) In this case the
line search condition (21) holds with α = 1.
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3.3 Identifying Which Variables to Update

In this section, we use the stationary condition of the Gaussian MLE problem to select
a subset of variables to update in any Newton direction computation. Specifically, we
partition the variables into free and fixed sets based on the value of the gradient at the start
of the outer loop that computes the Newton direction. We define the free set Sfree and
fixed set Sfixed as:

Xij ∈ Sfixed if |∇ijg(X)| ≤ λij , and Xij = 0,

Xij ∈ Sfree otherwise. (33)

We will now show that a Newton update restricted to the fixed set of variables would not
change any of the coordinates in that set. In brief, the gradient condition |∇ijg(X)| ≤ λij
entails that the inner coordinate descent steps, according to the update in (16), would set
these coordinates to zero, so they would not change since they were zero to begin with.

To derive the optimality condition, we begin by introducing the minimum-norm subgra-
dient of f and relate it to the optimal solution X∗ of (3).

Definition 6 The minimum-norm subgradient gradSij f(X) is defined as follows:

gradSij f(X) =


∇ijg(X) + λij if Xij > 0,

∇ijg(X)− λij if Xij < 0,

sign(∇ijg(X)) max(|∇ijg(X)| − λij , 0) if Xij = 0.

Lemma 7 For any index set J , gradSijf(X) = 0 ∀(i, j) ∈ J if and only if ∆∗ = 0 is a
solution of the following optimization problem:

arg min
∆

f(X + ∆) such that ∆ij = 0 ∀(i, j) /∈ J. (34)

Proof Any optimal solution ∆∗ for (34) must satisfy the following, for all (i, j) ∈ J ,

∇ijg(X + ∆∗)


= −λij if Xij + ∆∗ij > 0,

= λij if Xij + ∆∗ij < 0,

∈ [−λij λij ] if Xij + ∆∗ij = 0.

(35)

It can be seen immediately that ∆∗ = 0 satisfies (35) if and only if gradSij f(X) = 0 for all
(i, j) ∈ J .

In our case, ∇g(X) = S −X−1 and therefore

gradSijf(X) =


(S −X−1)ij + λij if Xij > 0,

(S −X−1)ij − λij if Xij < 0,

sign((S −X−1)ij) max(|(S −X−1)ij | − λij , 0) if Xij = 0.

Our definition of the fixed and free sets is clearly motivated by the minimum norm subgra-
dient. A variable Xij belongs to the fixed set if and only if Xij = 0 and gradSijf(X) = 0.
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Therefore, taking J = Sfixed in Lemma 7, we can show that for any Xt and corresponding
fixed and free sets Sfixed and Sfree as defined by (33), ∆∗ = 0 is the solution of the following
optimization problem:

arg min
∆

f(Xt + ∆) such that ∆ij = 0 ∀(i, j) ∈ Sfree.

Based on the above property, if we perform block coordinate descent restricted to the
fixed set, then no updates would occur. We then perform the coordinate descent updates
restricted to only the free set to find the Newton direction. With this modification, the
number of variables over which we perform the coordinate descent update (16) can be
potentially reduced from p2 to the number of non-zeros in Xt. When the solution is sparse
(depending on the value of Λ) the number of free variables can be much smaller than p2 and
we can obtain huge computational gains as a result. In essence, we very efficiently select a
subset of the coordinates that need to be updated.

The attractive facet of this modification is that it leverages sparsity of the solution and
intermediate iterates in a manner that falls within the block coordinate descent framework
of Tseng and Yun (2007). The index sets J0, J1, . . . corresponding to the block coordinate
descent steps in the general setting of Tseng and Yun (2007)[p. 392] need to satisfy a
Gauss-Seidel type of condition: ⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . (36)

for some fixed T , where N denotes the full index set. In our framework J0, J2, . . . denote
the fixed sets at various iterations, and J1, J3, . . . denote the free sets. Since J2i and J2i+1

is a partitioning of N the choice T = 3 will suffice. But will the size of the free set be
small? We initialize X0 to a diagonal matrix, which is sparse. The following lemma shows
that after a finite number of iterations, the iterates Xt will have a similar sparsity pattern
as the limit X∗. Lemma 8 is actually an immediate consequence of Lemma 14 in Section 4.

Lemma 8 Assume that {Xt} converges to X∗, the optimal solution of (3). If for some
index pair (i, j), |∇ijg(X∗)| < λij (so that X∗ij = 0), then there exists a constant t̄ > 0 such
that for all t > t̄, the iterates Xt satisfy

|∇ijg(Xt)| < λij and (Xt)ij = 0. (37)

Note that |∇ijg(X∗)| < λij implies X∗ij = 0 from the optimality condition of (3). This
theorem shows that after t̄-th iteration we can ignore all the indexes that satisfies (37), and
in practice we can use (37) as a criterion for identifying the fixed set. A similar variable
selection strategy is used in SVM (so called shrinking) and `1-regularized logistic regression
problems as mentioned in Yuan et al. (2010). In our experiments, we demonstrate that this
strategy reduces the size of the free set very quickly.

Lemma 8 suggests that QUIC can identify the zero pattern in finite steps. As we will
prove later, QUIC has an asymptotic quadratic convergence rate and therefore once the zero
pattern is correctly recognized, the algorithm often converges in a few additional iterations.
Hence, the time needed to converge to the global optimum is not much more than the time
needed to arrive at the zero pattern of the inverse covariance matrix.
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3.4 The Block-Diagonal Structure of X∗

It has been shown recently (Mazumder and Hastie, 2012; Witten et al., 2011) that when
the thresholded covariance matrix E defined by Eij = S(Sij , λ) = sign(Sij) max(|Sij |−λ, 0)
has the following block-diagonal structure:

E =


E1 0 . . . 0
0 E2 . . . 0
...

...
...

...
0 0 0 Ek

 , (38)

then the solution X∗ of the inverse covariance estimation problem (2) also has the same
block-diagonal structure:

X∗ =


X∗1 0 . . . 0
0 X∗2 . . . 0
...

...
...

...
0 0 0 X∗k

 .
This result can be extended to the case when the elements are penalized differently, i.e.,
λij ’s are different. Then, if Eij = S(Sij , λij) is block diagonal, so is the solution X∗ of
(3), see Hsieh et al. (2012). Thus each X∗i can be computed independently. Based on this
observation one can decompose the problem into sub-problems of smaller sizes, which can
be solved much faster. In the following, we show that our updating rule and fixed/free set
selection technique can automatically detect this block-diagonal structure for free.

Recall that we have a closed form solution in the first iteration when the input is a
diagonal matrix. Based on (19), since Xij = 0 for all i 6= j in this step, we have

Dij = XiiXjjS(−Sij , λij) = −XiiXjjS(Sij , λij) for all i 6= j.

We see that after the first iteration the nonzero pattern of X will be exactly the same as
the nonzero pattern of the thresholded covariance matrix E as depicted in (38). In order
to establish that the same is true at each subsequent step, we complete our argument using
induction, by showing that the non-zero structure is preserved.

More precisely, we show that the off-diagonal blocks always belong to the fixed set
if |Sij | ≤ λij . Recall the definition of the fixed set in (33). We need to check whether
|∇ijg(X)| ≤ λij for all (i, j) in the off-diagonal blocks of E, whenever X has the same
block-diagonal structure as E. Taking the inverse preserves the diagonal structure, and
therefore ∇ijg(X) = Sij −X−1

ij = Sij for all such (i, j). We conclude noting that Eij = 0
implies that |∇ijg(X)| ≤ λij , meaning that (i, j) will belong to the fixed set.

We decompose the matrix into smaller blocks prior to running Cholesky factorization
to avoid the O(p3) time complexity on the whole problem. The connected components of
X can be detected in O(‖X‖0) time, which is very efficient when X is sparse. A detailed
description of QUIC is presented in Algorithm 2.

4. Convergence Analysis

In Section 3, we introduced the main ideas behind our QUIC algorithm. In this section, we
first prove that QUIC converges to the global optimum, and then show that the convergence
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Algorithm 2: QUadratic approximation for sparse Inverse Covariance estimation
(QUIC)

Input : Empirical covariance matrix S (positive semi-definite p× p), regularization
parameter matrix Λ, initial X0 � 0, parameters 0 < σ < 0.5, 0 < β < 1

Output: Sequence of Xt converging to arg minX�0 f(X), where
f(X) = g(X) + h(X), where g(X) = − log detX + tr(SX), h(X) = ‖X‖1,Λ.

1 Compute W0 = X−1
0 .

2 for t = 0, 1, . . . do
3 D = 0, U = 0
4 while not converged do
5 Partition the variables into fixed and free sets:
6 Sfixed := {(i, j) | |∇ijg(Xt)| ≤ λij and (Xt)ij = 0},

Sfree := {(i, j) | |∇ijg(Xt)| > λij or (Xt)ij 6= 0}.
7 for (i, j) ∈ Sfree do
8 a = w2

ij + wiiwjj , b = sij − wij + wT
·iu·j , c = xij + dij

9 µ = −c+ S(c− b/a, λij/a)
10 dij ← dij + µ, ui· ← ui· + µwj·, uj· ← uj· + µwi·
11 end

12 end
13 for α = 1, β, β2, . . . do
14 Compute the Cholesky factorization LLT = Xt + αD.
15 if Xt + αD � 0 then
16 Compute f(Xt + αD) from L and Xt + αD
17 if f(Xt + αD) ≤ f(Xt) + ασ [tr(∇g(Xt)D) + ‖Xt +D‖1,Λ − ‖X‖1,Λ] then
18 break
19 end

20 end

21 end
22 Xt+1 = Xt + αD

23 Compute Wt+1 = X−1
t+1 reusing the Cholesky factor.

24 end

rate is quadratic. Banerjee et al. (2008) showed that for the special case where Λij = λ
the optimization problem (2) has a unique global optimum and that the eigenvalues of the
primal optimal solution X∗ are bounded. In the following, we show this result for more
general Λ where only the off-diagonal elements need to be positive.

Theorem 9 There exists a unique minimizer X∗ for the optimization problem (3), where
λij > 0 for i 6= j, and λij ≥ 0.

Proof According to Lemma 2, the level set U defined in (23) contains all the iterates, and
it is in turn contained in the compact set S ≡ {X | mI � X � MI}. According to the
Weierstrass extreme value theorem (Apostol, 1974), any continuous function in a compact
set attains its minimum. Furthermore, ∇2g(X) = X−1 ⊗ X−1 implies ∇2g(X) � M−2I.
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Since ‖X‖1,Λ is convex and − log det(X) is strongly convex, we have that f(X) is strongly
convex on the compact set S, and therefore the minimizer X∗ is unique (Apostol, 1974).

4.1 Convergence Guarantee

In order to show that QUIC converges to the optimal solution, we consider a more general
setting of the quadratic approximation algorithm: at each iteration, the iterate Yt is updated
by Yt+1 = Yt + αtD

∗
Jt

(Yt) where Jt is a subset of variables chosen to update at iteration
t, D∗Jt(Yt) is the Newton direction restricted to Jt defined by (20), and αt is the step size
selected by the Armijo rule given in Section 3.2. The algorithm is summarized in Algorithm
3. Similar to the block coordinate descent framework of Tseng and Yun (2007), we assume
the index set Jt satisfies a Gauss-Seidel type of condition:⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . . (39)

Algorithm 3: General Block Quadratic Approximation method for Sparse Inverse
Covariance Estimation

Input : Empirical covariance matrix S (positive semi-definite p× p), regularization
parameter matrix Λ, initial Y0, inner stopping tolerance ε

Output: Sequence of Yt.
1 for t = 0, 1, . . . do
2 Generate a variable subset Jt.
3 Compute the Newton direction D∗t ≡ D∗Jt(Yt) by (20).

4 Compute the step-size αt using the Armijo-rule based step-size selection in (21).
5 Update Yt+1 = Yt + αtD

∗
t .

6 end

In QUIC, J0, J2, . . . denote the fixed sets and J1, J3, . . . denote the free sets. If
{Xt}t=0,1,2,... denotes the sequence generated by QUIC, then

Y0 = Y1 = X0, Y2 = Y3 = X1, . . . , Y2i = Y2i+1 = Xi.

Moreover, since each J2i and J2i+1 is a partitioning of N , the choice T = 3 will satisfy (39).
In the rest of this section, we show that {Yt}t=0,1,2,... converges to the global optimum, thus
{Xt}t=0,1,2,... generated by QUIC also converges to the global optimum.

Our first step towards the convergence proof is a lemma on convergent subsequences.

Lemma 10 For any convergent subsequence Yst → Ȳ where Ȳ is a limit point, we have
D∗st ≡ D

∗
Jst

(Yst)→ 0.

Proof The objective value decreases according to the line search condition (21) and
Proposition 4. According to Lemma 2, f(Yst) cannot converge to negative infinity, so
f(Yst)− f(Yst+1)→ 0. The line search condition (21) implies that αstδst → 0.
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We proceed to prove the statement by contradiction. If D∗st does not converge to 0,
then there exists an infinite index set T ⊆ {s1, s2, . . .} and η > 0 such that ‖D∗t ‖F > η
for all t ∈ T . According to Proposition 4, δst is bounded away from 0, therefore δst 6→ 0,
while αst → 0. We can assume without loss of generality that αst < 1 ∀t, that is the line
search condition is not satisfied in the first attempt. We will work in this index set T in
the derivations that follow.

The line search step size αt < 1 (t ∈ T ) satisfies (21), but αt = αt/β does not satisfy (21)
by the minimality of our line search procedure. So we have:

f(Yt + αtD
∗
t )− f(Yt) > σαtδt. (40)

If Yt + αtD
∗
t is not positive definite, then as is standard, f(Yt + αtD

∗
t ) = ∞, so (40) still

holds. We expand (40) and apply 22 to get

σαtδt ≤ g(Yt + αtD
∗
t )− g(Yt) + ‖Yt + αtD

∗
t ‖1,Λ − ‖Yt‖1,Λ

≤ g(Yt + αtD
∗
t )− g(Yt) + αt(‖Yt +D∗t ‖1,Λ − ‖Yt‖1,Λ), ∀t ∈ T .

By the definition of δt, we have:

σδt ≤
g(Yt + αtD

∗
t )− g(Yt)

αt
+ δt − tr(∇g(Yt)

TD∗t ),

(1− σ)(−δt) ≤
g(Yt + αtD

∗
t )− g(Yt)

αt
− tr(∇g(Yt)

TD∗t ).

By Proposition 4 we have δt ≤ −(1/M2)‖D∗t ‖2F , so using ‖D∗t ‖ to denote ‖D∗t ‖F for the rest
of the proof, we get

(1− σ)M−2‖D∗t ‖2 ≤
g(Yt + αtD

∗
t )− g(Yt)

αt
− tr(∇g(Yt)

TD∗t )

(1− σ)M−2‖D∗t ‖ ≤
g
(
Yt + αt‖D∗t ‖

D∗t
‖D∗t ‖

)
− g(Yt)

αt‖D∗t ‖
− tr

(
∇g(Yt)

T D∗t
‖D∗t ‖

)
.

We set α̂t = αt‖D∗t ‖. Since ‖D∗t ‖ > η for all t ∈ T we have:

(1− σ)M−2η <
g
(
Yt + α̂t

D∗t
‖D∗t ‖

)
− g(Yt)

α̂t
− tr

(
∇g(Yt)

T D∗t
‖D∗t ‖

)

=
α̂t tr

(
∇g(Yt)

D∗t
‖D∗t ‖

)
+O(α̂2

t )

α̂t
− tr

(
∇g(Yt)

T D∗t
‖D∗t ‖

)
= O(α̂t). (41)

Again, by Proposition 4,

−αtδt ≥ αtM−2‖D∗t ‖2 > M−2αt‖D∗t ‖η.

Since {αtδt}t → 0, it follows that {αt‖D∗t ‖}t → 0 and {α̂t}t → 0. Taking limit of (41) as
t ∈ T and t→∞, we have

(1− σ)M−2η ≤ 0,
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a contradiction, finishing the proof.

Now that we have proved that D∗Jt converges to zero for the converging subsequence,

we next show that D∗J is closely related to the minimum-norm subgradient gradSf(Y ) (see
Definition 6), which in turn is an indicator of optimality as proved in Lemma 7.

Lemma 11 For any index set J and positive definite Y , D∗J(Y ) = 0 if and only if gradSij f(Y ) =
0 for all (i, j) ∈ J .

Proof The optimality condition of (20) can be written as

∇ijg(X) + (∇2g(X) vec(D))ij


= −λ if Xij +Dij > 0

= λ if Xij +Dij < 0

∈ [−λ, λ] if Xij +Dij = 0,

∀(i, j) ∈ J. (42)

D∗J(Y ) = 0 if and only if D∗ = 0 satisfies (42), and this condition is equivalent to (35)
restricted to (i, j) ∈ J , which in turn is equivalent to the optimality condition of f . Therefore
D∗J(Y ) = 0 iff gradSij f(Y ) = 0 for all (i, j) ∈ J .

Based on these lemmas, we are now able to prove our main convergence theorem.

Theorem 12 Algorithm 3 converges to the unique global optimum Y ∗.

Proof Since all the iterates Yt are in a compact set (as shown in Lemma 2), there exists
a subsequence {Yt}T that converges to a limit point Ȳ . Since the cardinality of each index
set Jt selected is finite, we can further assume that Jt = J̄0 for all t ∈ T̄ , where T̄ is a
subsequence of T . From Lemma 10, D∗

J̄0
(Yt)→ 0. By continuity of ∇g(Y ) and ∇2g(Y ), it

is easy to show that D∗
J̄0

(Yt) → D∗
J̄0

(Ȳ ). Therefore D∗
J̄0

(Ȳ ) = 0. Based on Lemma 11, we
have

gradSijf(Y ) = 0 for all (i, j) ∈ J̄0.

Furthermore, {D∗
J̄0

(Yt)}T → 0 and ‖Yt−Yt+1‖F ≤ ‖D∗J̄0(Yt)‖F , so {Yt+1}t∈T also converges

to Ȳ . By considering a subsequence of T if necessary, we can further assume that Jt+1 = J̄1

for all t ∈ T . By the same argument, we can show that {D∗Jt+1
(Yt)}T → 0, so D∗

J̄1
(Ȳ ) = 0.

Similarly, we can show that D∗
J̄t

(Ȳ ) = 0 ∀t = 0, . . . , T−1 can be assumed for an appropriate

subset of T . With assumption (39) and Lemma 11 we have

gradSij f(Ȳ ) = 0 ∀i, j. (43)

Using Lemma 7 with J as the set of all variables, we can show that (43) implies that Ȳ is
the global optimum.

It is straightforward to generalize Theorem 12 to prove the convergence of block coordi-
nate descent when the Hessian ∇2g(X) is replaced by another positive definite matrix. The
proof strategies are similar to Tseng and Yun (2007) and we omit the detailed derivation
in this paper.
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4.2 Asymptotic Convergence Rate

Newton methods on constrained minimization problems:
The convergence rate of the Newton method on bounded constrained minimization has
been studied in Levitin and Polyak (1966) and Dunn (1980). Here, we briefly mention their
results.

Assume we want to solve a constrained minimization problem

min
x∈Ω

F (x),

where Ω is a nonempty subset of Rn denoting the constraint set and F : Rn → R has a
second derivative ∇2F (x). Then beginning from x0, the natural Newton updates entail
computing the (k + 1)-st iterate xk+1 as

xk+1 = arg min
x∈Ω
∇F (xk)

T (x− xk) +
1

2
(x− xk)

T∇2F (xk)(x− xk). (44)

For simplicity, we assume that F is strictly convex, and has a unique minimizer x∗ in Ω.
Then the following theorem holds.

Theorem 13 (Theorem 3.1 in Dunn, 1980) Assume F is strictly convex, has a unique
minimizer x∗ in Ω, and that ∇2F (x) is Lipschitz continuous. Then for all x0 sufficiently
close to x∗, the sequence {xk} generated by (44) converges quadratically to x∗.

This theorem is proved in Dunn (1980). In our case, the objective function f(X) is non-
smooth so Theorem 13 does not directly apply. Instead, we will first show that after a finite
number of iterations the sign of the iterates {Xt} generated by QUIC will not change, so
that we can then use Theorem 13 to establish asymptotic quadratic convergence.

Quadratic convergence rate for QUIC:
Unlike as in (44), our Algorithm 3 does not perform an unrestricted Newton update: it iter-
atively selects subsets of variables {Jt}t=1,... (fixed and free sets), and computes the Newton
direction restricted to the free sets. In the following, we show that the sequence {Xt}t=1,2,...

generated by QUIC does ultimately converge quadratically to the global optimum.
Assume X∗ is the optimal solution, then we can divide the index set with λij 6= 0 into

three subsets:

P = {(i, j) | X∗ij > 0}, N = {(i, j) | X∗ij < 0}, Z = {(i, j) | X∗ij = 0}. (45)

From the optimality condition for X∗,

∇ijg(X∗)


= −λij if (i, j) ∈ P,
= λij if (i, j) ∈ N,
∈ [−λij , λij ] if (i, j) ∈ Z.

(46)

Lemma 14 Assume that the sequence {Xt} converges to the global optimum X∗. Then
there exists a t̄ such that for all t > t̄,

(Xt)ij


≥ 0 if (i, j) ∈ P,
≤ 0 if (i, j) ∈ N,
= 0 if (i, j) ∈ Z.

(47)
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Proof We prove the case for (i, j) ∈ P by contradiction, the other two cases can be
handled similarly. If we cannot find a t̄ satisfying the first condition in (47), then there
exists an infinite subsequence {Xat} such that for each at there exists a (i, j) ∈ P such that
(Xat)ij < 0. Since the cardinality of P is finite, we can further find a specific pair (i, j) ∈ P
such that (Xst)ij < 0 for all st, where st is a subsequence of at. We consider the update
from Xst−1 to Xst . From Lemma 5, we can assume that st is large enough so that the step
size equals 1, therefore Xst = Xst−1 +D∗(Xst−1) where D∗(Xst−1) is defined in (20). Since
(Xst)ij = (Xst−1)ij + (D∗(Xst−1))ij < 0, from the optimality condition of (20) we have(

∇g(Xst−1) +∇2g(Xst−1) vec(D∗(Xst−1))
)
ij

= λij . (48)

Since D∗(Xst−1) converges to 0, (48) implies that {∇ijg(Xst−1)} will converge to λij . How-
ever, (46) implies ∇ijg(X∗) = −λij , and by the continuity of ∇g we get that {∇ijg(Xt)}
converges to ∇ijg(X∗) = −λij , a contradiction, finishing the proof.

The following lemma shows that the coordinates from the fixed set remain zero after a finite
number of iterations.

Lemma 15 Assume Xt → X∗. There exists a t̄ > 0 such that variables in P or N will not
be selected to be in the fixed set Sfixed, when t > t̄. That is,

Sfixed ⊆ Z.

Proof Since Xt converges to X∗, (Xt)ij converges to X∗ij > 0 if (i, j) ∈ P and to X∗ij < 0
if (i, j) ∈ N . Recall that (i, j) belongs to the fixed set only if (Xt)ij = 0. When t is large
enough, (Xt)ij 6= 0 when Xt ∈ P ∪ N , therefore P and N will be disjoint from the fixed
set. Moreover, by the definition of the fixed set (33), indexes with λij = 0 will never be
selected. We proved that the fixed set will be a subset of Z when t is large enough.

Theorem 16 The sequence {Xt} generated by the QUIC algorithm converges quadratically
to X∗, that is for some constant κ > 0,

lim
t→∞

‖Xt+1 −X∗‖F
‖Xt −X∗‖2F

= κ.

Proof First, if the index sets P,N and Z (related to the optimal solution) are given,
the optimum of (2) is the same as the optimum of the following constrained minimization
problem:

min
X

− log det(X) + tr(SX) +
∑

(i,j)∈P

λijXij −
∑

(i,j)∈N

λijXij

s.t. Xij ≥ 0 ∀(i, j) ∈ P, Xij ≤ 0 ∀(i, j) ∈ N, Xij = 0 ∀(i, j) ∈ Z. (49)

In the following, we show that when t is large enough, QUIC solves the minimization
problem described by (49).
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1. The constraints in (49) are satisfied by QUIC iterates after a finite number of steps,
as shown in Lemma 14. Thus, the `1-regularized Gaussian MLE (3) is equivalent to
the smooth constrained objective (49), since the constraints in (49) are satisfied when
solving (3).

2. Since the optimization problem in (49) is smooth, it can be solved using constrained
Newton updates as in (44). The QUIC update direction D∗J(Xt) is restricted to a
set of free variables in J . This is exactly equal to the unrestricted Newton update as
in (44), after a finite number of steps, as established by Lemma 15. In particular, at
each iteration the fixed set is contained in Z, which is the set which always satisfies
(D∗t )Z = 0 for large enough t.

3. Moreover, by Lemma 5 the step size is α = 1 when t is large enough.

Therefore our algorithm is equivalent to the constrained Newton method in (44), which
in turn converges quadratically to the optimal solution of (49). Since the revised prob-
lem (49) and our original problem (3) has the same minimum, we have shown that QUIC
converges quadratically to the optimum of (3).

Note that the constant κ is an increasing function of the Lipschitz constant of ∇2g(X)
(as shown in Dunn, 1980), which is related to the quality of quadratic approximation.
We have shown in Lemma 2 that mI � X � MI, therefore the Lipschitz constant of
∇2g(X) = X−1 ⊗X−1 is also upper bounded.

In the next section, we show that this asymptotic convergence behavior of QUIC is
corroborated empirically as well.

5. Experimental Results

We begin this section by comparing QUIC to other methods on synthetic and real data
sets. Then, we present some empirical analysis of QUIC regarding the use of approximate
Newton directions and effects of parameterization.

5.1 Comparisons with Other Methods

We now compare the performance of QUIC on both synthetic and real data sets to other
state-of-the-art methods. We have implemented QUIC in C++ with MATLAB interface,
and all experiments were executed on 2.83GHz Xeon X5440 machines with 32G RAM and
Linux OS.

We include the following algorithms in our comparisons:

• ALM: the Alternating Linearization Method proposed by Scheinberg et al. (2010).
We use their MATLAB source code for the experiments.

• ADMM: another implementation of the alternating linearization method implemented
by Boyd et al. (2012). The MATLAB code can be downloaded from http://www.

stanford.edu/~boyd/papers/admm/. We found that the default parameters (which
we note are independent of the regularization penalty) yielded slow convergence; we
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set the augmented Lagrangian parameter to ρ = 50 and the over-relaxation parameter
to α = 1.5. These parameters achieved the best speed on the ER data set.

• glasso: the block coordinate descent method proposed by Friedman et al. (2008).
We use the latest version glasso 1.7 downloaded from http://www-stat.stanford.

edu/~tibs/glasso/. We directly call their Fortran procedure using a MATLAB
interface.

• PSM: the Projected Subgradient Method proposed by Duchi et al. (2008). We use
the MATLAB source code provided in the PQN package (available at http://www.

cs.ubc.ca/~schmidtm/Software/PQN.html).

• SINCO: the greedy coordinate descent method proposed by Scheinberg and Rish
(2010). The code can be downloaded from https://projects.coin-or.org/OptiML/

browser/trunk/sinco.

• IPM: An inexact interior point method proposed by Li and Toh (2010). The source
code can be downloaded from http://www.math.nus.edu.sg/~mattohkc/Covsel-0.

zip.

• PQN: the projected quasi-Newton method proposed by Schmidt et al. (2009). The
source code can be downloaded from http://www.di.ens.fr/~mschmidt/Software/

PQN.html.

In the following, we compare QUIC and the above state-of-the-art methods on synthetic
and real data sets with various settings of λ. Note that we use the identity matrix as the
initial point for QUIC, ADMM, SINCO, and IPM. Since the identity matrix is not a dual
feasible point for dual methods (including glasso, PSM and PQN), we use S + λI as the
dual initial point, which is the default setting in their original package.

5.1.1 Experiments on Synthetic Data Sets

We first compare the run times of the different methods on synthetic data. We generate
the two following types of graph structures for the underlying Gaussian Markov Random
Fields:

• Chain Graphs: The ground truth inverse covariance matrix Σ−1 is set to be Σ−1
i,i−1 =

−0.5 and Σ−1
i,i = 1.25.

• Graphs with Random Sparsity Structures: We use the procedure given in Example 1
in Li and Toh (2010) to generate inverse covariance matrices with random non-zero
patterns. Specifically, we first generate a sparse matrix U with nonzero elements
equal to ±1, set Σ−1 to be UTU and then add a diagonal term to ensure Σ−1 is
positive definite. We control the number of nonzeros in U so that the resulting Σ−1

has approximately 10p nonzero elements.

Given the inverse covariance matrix Σ−1, we draw a limited number, n = p/2 i.i.d. sam-
ples from the corresponding GMRF distribution, in order to simulate the high-dimensional
setting.
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Data set Parameter Properties of the solution

pattern p ‖Σ−1‖0 λ ‖X∗‖0 TPR FPR

chain 1000 2998 0.4 3028 1 3× 10−5

chain 4000 11998 0.4 11998 1 0

chain 10000 29998 0.4 29998 1 0

random
1000 10758

0.12 10414 0.69 4× 10−3

0.075 55830 0.86 0.05

random 4000 41112
0.08 41936 0.83 6× 10−3

0.05 234888 0.97 0.05

random 10000 91410
0.08 89652 0.90 4× 10−6

0.04 392786 1 3× 10−3

Table 1: The parameters and properties of the solution for the synthetic data sets. p stands
for dimension, ‖Σ−1‖0 indicates the number of nonzeros in ground truth inverse
covariance matrix, ‖X∗‖0 is the number of nonzeros in the solution. TPR and
FPR denote the true and false recovery rates, respectively, defined in (50).

Table 1 shows the attributes of the synthetic data sets that we used in the timing
comparisons. The dimensionality varies from {1000, 4000, 10000}. For chain graphs, we
select λ so that the solution has (approximately) the correct number of nonzero elements.
In order to test the performance of the algorithms under different values of λ, for the
case of random-structured graphs we considered two λ values; one of which resulted in the
discovery of the correct number of non-zeros and one which resulted in five-times thereof.
We measured the accuracy of the graph structure recovered by the true positive rate (TPR)
and false positive rate (FPR) defined as

TPR =
|{(i, j) | (X∗)ij > 0 and Qij > 0}|

|{(i, j) | Qij > 0}|
,FPR =

|{(i, j) | (X∗)ij > 0 and Qij = 0}|
|{(i, j) | Qij = 0}|

,

(50)

where Q is the ground truth sparse inverse covariance.

Since QUIC does not natively compute a dual solution, the duality gap cannot be used
as a stopping condition.2 In practice, we can use the minimum-norm sub-gradient (see
Definition 6) as the stopping condition. There is no additional computational cost to this
approach because X−1 is computed as part of the QUIC algorithm. In the experiments, we
report the time for each algorithm to achieve ε-accurate solution defined by f(Xk)−f(X∗) <
εf(X∗). The global optimum X∗ is computed by running QUIC until it converges to a
solution with ‖ gradS f(Xt)‖ < 10−13.

Table 2 shows the results for ε = 10−2 and 10−6, where ε = 10−2 tests the ability of the
algorithm to get a good initial guess (the nonzero structure), and ε = 10−6 tests whether the
algorithm can achieve an accurate solution. Table 2 shows that QUIC is consistently and

2. Note that W = X−1 cannot be expected to satisfy the dual constraints |Wij − Sij | ≤ λij . One could
project X−1 in order to enforce the constraints and use the resulting matrix to compute the duality gap.
Our implementation provides this computation only if the user requests it.
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(a) Objective value versus time on
chain1000
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(b) Objective value versus time on ran-
dom1000

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

QUIC

Glasso

ALM

PQN

SINCO

PSM

IPM

ADMM

(c) True positive rate versus time on
chain1000
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(d) True positive rate versus time on ran-
dom1000
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(e) False positive rate versus time on
chain1000
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dom1000

Figure 1: Comparison of algorithms on two synthetic data sets: chain1000 and random1000.
The regularization parameter λ is chosen to recover (approximately) correct num-
ber of nonzero elements (see Table 1). We can see that QUIC achieves a solution
with better objective function value as well as better true positive and false pos-
itive rates in both data sets. Notice that each marker in the figures indicates one
iteration. Note that all results are averaged over 5 replicated runs.

overwhelmingly faster than other methods, both initially with ε = 10−2, and at ε = 10−6.
Moreover, for the p = 10000 random pattern, there are p2 = 100 million variables and the
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Parameters Time (in seconds)

pattern p λ ε QUIC ALM Glasso PSM IPM SINCO PQN ADMM

chain 1000 0.4
10−2 < 1 19 9 16 86 120 110 62
10−6 2 42 20 35 151 521 210 281

chain 4000 0.4
10−2 11 922 460 568 3458 5246 672 1028
10−6 54 1734 1371 1258 5754 * 10525 2584

chain 10000 0.4
10−2 217 13820 10250 8450 * * * *
10−6 987 28190 * 19251 * * * *

random 1000
0.12

10−2 < 1 42 7 20 72 61 33 35
10−6 1 28250 15 60 117 683 158 252

0.075
10−2 1 66 14 24 78 576 15 56
10−6 7 * 43 92 146 4449 83 *

random 4000
0.08

10−2 23 1429 864 1479 4928 7375 2052 1025
10−6 160 * 1743 4232 8097 * 4387 *

0.05
10−2 66 * 2514 2963 5621 * 2746 *
10−6 479 * 5712 9541 13650 * 8718 *

random 10000
0.08

10−2 338 26270 14296 * * * * *
10−6 1125 * * * * * * *

0.04
10−2 804 * * * * * * *
10−6 2951 * * * * * * *

Table 2: Running time comparisons on synthetic data sets. See also Table 1 regarding the
data set properties. We use ∗ to indicate that the run time exceeds 30,000 seconds
(8.3 hours). The results show that QUIC is overwhelmingly faster than other
methods, and is the only one which is able to scale up to solve problems with
p = 10000.

selection of fixed/free sets helps QUIC to focus on a small subset of the variables. We
converge to the solution in about 15 minutes, while other methods fail to obtain even an
initial guess within 8 hours.

In some applications, researchers are primarily interested in just the graph structure
represented by the solution. Therefore, in addition to the objective function value, we fur-
ther compare the true positive and false positive rates of the nonzero pattern of the iterates
Xt obtained by each algorithm. In Figure 1, we use two synthetic data sets, chain1000 and
random1000, as examples. For each algorithm, we plot the objective function value, true
positive rate, and false positive rate of the iterates Xt versus run time. For both ground
truth pattern we generate 5 data sets and report the average results in Figure 1. For the
methods that solve the dual problem, the sparse inverse covariance matrix Xt = W−1

t is
usually dense, so we consider elements with absolute value larger than 10−6 as nonzero
elements. We can see that QUIC not only obtains lower objective function value efficiently,
but also recovers the ground truth structure of GMRF faster than other methods.
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5.1.2 Experiments on Real Data sets

We use the real world biology data sets preprocessed by Li and Toh (2010) to compare
the performance of our method with other state-of-the-art methods. In the first set of
experiments, we set the regularization parameter λ to be 0.5, which achieves reasonable
sparsity for the following data sets: Estrogen (p = 692), Arabidopsis (p = 834), Leukemia
(p = 1, 225), Hereditary (p = 1, 869). In Figure 2 we plot the relative error (f(Xt) −
f(X∗))/f(X∗) (on a log scale) against time in seconds. We can observe from Figure 2 that
under the setting of large λ and sparse solution, QUIC can be seen to achieve super-linear
convergence while other methods exhibit at most a linear convergence. Overall, we see that
QUIC can be five times faster than other methods, and can be expected to be even faster
if a higher accuracy is desired.
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(b) Time taken on Arabidopsis data set, p = 834,
‖X∗‖0
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(c) Time taken on Leukemia data set, p = 1, 255,
‖X∗‖0
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Figure 2: Comparison of algorithms on real data sets with λ = 0.5. The results show that
QUIC converges faster than the other methods. Notice that each marker in the
figures indicates one iteration. All the results are averaged over five runs.
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In the second set of experiments, we compare the algorithms under different values of
the regularization parameter λ on the ER data set. In Figure 2(a) we show the results for
λ = 0.5. We then decrease λ to 0.1, 0.05, 0.01 using the same data sets and show the results
in Figure 6. A smaller λ yields a denser solution, and we list the density of the converged
solution X∗ in Figure 6. From Figure 6 we can see that QUIC is the most efficient method
when λ is large (solution is sparse), but IPM and PSM outperform QUIC when λ is small
(solution is dense). However, such cases are usually not so useful in practice because when
solving the `1-regularized MLE problem one usually wants a sparse graph structure for the
GMRF. The main reason that QUIC is so efficient for large λ is that with fixed/free set
selection, the coordinate descent method can focus on a small portion of variables, while in
PSM and IPM the whole matrix is updated at each iteration.

5.2 Empirical Analysis of QUIC

Next we present some empirical analysis of QUIC regarding the effects of several param-
eters. We also demonstrate that the fixed/free set selection in QUIC significantly reduce
the computational complexity.

5.2.1 Effect of Approximate Newton Directions

In the convergence analysis of Section 4, we assumed that each Newton direction D∗t is
computed exactly by solving the Lasso subproblem (20). In our implementation we use an
iterative (coordinate descent) solver to compute D∗t , which after a finite set of iterations
only solves the problem approximately. In the first experiment we explore how varying
the accuracy to which we compute the Newton direction affects overall performance. In
Figure 3 we plot the total run times for the ER biology data set from Li and Toh (2010)
corresponding to different numbers of inner iterations used in the coordinate descent solver.

We can observe that QUIC with one inner iteration converges faster in the beginning,
but eventually achieves just a linear convergence rate, while QUIC with 20 inner iterations
converges more slowly in the beginning, but eventually achieves quadratic convergence.
Based on this observation, we propose an adaptive stopping condition: we set the number
of coordinate descent steps to be dαte for the t-th outer iteration, where α is a constant;
we use α = 1/3 in our experiments. Figure 3(b) shows that by using this adaptive stop-
ping condition, QUIC is not only efficient in the beginning, but also achieves quadratic
convergence.

5.2.2 Line Search Parameters

We demonstrate the robustness of QUIC to line search parameters σ and β. The results
are shown in Figure 4.

5.2.3 Fixed/free Set Selection

To further demonstrate the power of fixed/free set selection, we use Hereditarybc data set
as an example. In Figure 5, we plot the size of the free set versus the number of Newton
iterations. Starting from a total of 18692 = 3, 493, 161 variables, the size of the free set
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Figure 3: The behavior of QUIC when varying the number of inner iterations. Figure 3(a)
show that QUIC with one inner iteration converges faster in the beginning but
eventually achieves just linear convergence, while QUIC with 20 inner iterations
converges slower in the beginning, but has quadratic convergence. Figure 3(b)
shows that by adaptively setting the number of iterations in QUIC, we get the
advantages of both cases. Notice that each marker in the figures indicates one
iteration.
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Figure 4: Comparison of different line search parameters on the Leukemia data set. Figure
4(a) shows that QUIC is robust to a wide range of β values, but becomes slower
when β is too small. Figure 4(b) demonstrates that QUIC is robust with respect
to σ.
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Figure 5: Size of free sets and objective value versus iterations. For both data sets, the
sizes of free sets are always less than 6‖X∗‖0 when running QUIC algorithm.

progressively drops, in fact to less than 120, 000 in the very first iteration. We can see the
super-linear convergence of QUIC even more clearly when we plot it against the number of
iterations.

We further analyze the proportion of time taken by the two main steps of QUIC:
coordinate descent updates and line search procedure (in line search, the most time intensive
computation is the Cholesky factorization). We have looked at the ratio of time consumed
by those two steps on different data sets. We found that when the size of the free set
is large, QUIC will spend most of its time on coordinate updates. For example, in the
Hereditarybc data set with λ = 0.5, where the size of free set is 0.11p2 in the beginning,
coordinate descent takes 85.1% of the total run time, while line search only takes 14.9% of
the total run time. In contrast, for data sets with small size of free set, coordinate descent
updates will take noticeable less time. For example, when running on the ER data set with
λ = 0.5, where the size of free set is 0.033p2 in the beginning, 59.6% of the total time is
spent on coordinate descent.

5.2.4 Block-diagonal Structure

As discussed earlier, Mazumder and Hastie (2012); Witten et al. (2011) showed that when
the thresholded covariance matrix E = max(|S| − λ, 0) is block-diagonal, then the problem
can be naturally decomposed into sub-problems. This observation has been implemented
in the latest version of glasso. In the end of Section 3, we showed that the fixed/free
set selection can automatically identify the block-diagonal structure of the thresholded
matrix, and thus QUIC can benefit from block-diagonal structure even when we do not
explicitly decompose the matrix in the beginning. In the following experiment we show
that with input sample covariance S with block-diagonal structure represented by E (see
Section 3.4), QUIC still outperforms glasso. Moreover, we show that when some off-
diagonal elements are added into the problem, while QUIC is still efficient because of its
fixed/free set selection, glasso on the other hand suddenly becomes much slower.
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Figure 6: Comparison of algorithms on the ER data set (p = 692) under different λ. The
results show that QUIC converges faster for larger λ where solutions are sparse,
while IPM and PSM are faster for smaller λ which produces denser solutions.
Note that each marker in the figures indicates one iteration, and that all the
results are averaged over 5 replicated runs.

We generate synthetic data with block-diagonal structure as follows. We generate a
sparse 150×150 inverse covariance matrix Θ̄ as discussed in Section 5.1.1, and then replicate
Θ̄ eight times on the diagonal blocks to form a 1200 × 1200 block-diagonal matrix. Using
this inverse covariance matrix to generate samples, we compare the following methods:

• QUIC: our proposed algorithm.

• glasso: In the latest version of glasso, the matrix is first decomposed into connected
components based on the thresholded covariance matrix max(|S| − λ), and then each
sub-problem is solved individually.
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We then test the two algorithms for regularization parameter λ taking values from the set
{0.017, . . . , 0.011}. When λ = 0.017, the thresholded covariance matrix E has eight blocks,
while when λ = 0.011 the block structure reduces to a single block. For each single λ trial, we
compare the time taken by QUIC and glasso to achieve (f(Xt)− f(X∗))/f(X∗) < 10−5.
Figure 7 shows the experimental results. We can see that both methods are very fast for
the case where the problem can be decomposed into 8 sub-problems (large λ); however,
when we slightly increase λ so that there is only 1 connected component, QUIC is much
faster than glasso. This is because even for the non-decomposable case, QUIC can still
keep most of the elements of the very sparse off-diagonal blocks in the fixed set to speed up
the process, while glasso cannot benefit from this sparse structure.
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Figure 7: In this figure, we show the performance of QUIC and glasso for a sparse syn-
thetic data with clustered structure. Using the same input covariance matrix S,
we test the time for each algorithm to achieve (f(Xt) − f(X∗))/f(X∗) < 10−5

under various values of λ. When λ = 0.017, the problem can be decomposed into
8 sub-problems, while when λ = 0.011 there is only one connected component.
We can see that for the smaller values of λ, QUIC’s approach of free/fixed set
selection is able to exploit the sparsity structure of the solution, while glasso’s
training time increases dramatically.
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Abstract

Data often consists of multiple diverse modalities. For example, images are tagged with
textual information and videos are accompanied by audio. Each modality is characterized
by having distinct statistical properties. We propose a Deep Boltzmann Machine for learn-
ing a generative model of such multimodal data. We show that the model can be used to
create fused representations by combining features across modalities. These learned rep-
resentations are useful for classification and information retrieval. By sampling from the
conditional distributions over each data modality, it is possible to create these representa-
tions even when some data modalities are missing. We conduct experiments on bi-modal
image-text and audio-video data. The fused representation achieves good classification
results on the MIR-Flickr data set matching or outperforming other deep models as well
as SVM based models that use Multiple Kernel Learning. We further demonstrate that
this multimodal model helps classification and retrieval even when only unimodal data is
available at test time.

Keywords: Boltzmann machines, unsupervised learning, multimodal learning, neural
networks, deep learning

1. Introduction

Information in the real world comes through multiple input channels. Images are associated
with captions and tags, videos contain visual and audio signals, sensory perception includes
simultaneous inputs from visual, auditory, motor and haptic pathways. Each modality is
characterized by very distinct statistical properties which makes it difficult to disregard the
fact that they come from different input channels. Useful representations can potentially
be learned for such data by combining the modalities into a joint representation that cap-
tures the real-world concept that the data corresponds to. For example, we would like a
probabilistic model to correlate the occurrence of the words ‘oak tree’ and the visual prop-
erties of an image of an oak tree and represent them jointly, so that the model assigns high
probability to one conditioned on the other.

c©2014 Nitish Srivastava and Ruslan Salakhutdinov.
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Before we describe our model in detail, it is useful to understand why building such
models is important. Different modalities can act like soft labels for each other. For example,
consider bi-modal image-text data. If the same uncommon word was used in the context of
several images, then there is some chance that all those images represent the same object.
Conversely, if different words are used to describe similar looking images, then those words
might mean the same thing. In other words, one modality might be somewhat invariant to
large changes in another modality. This provides a rich learning signal. Moreover, different
modalities typically carry different kinds of information. For example, people often caption
an image to say things that may not be obvious from the image itself, such as the name of
the person, place, or a particular object in the picture. Unless we do multimodal learning,
it would not be possible to discover a lot of useful information about the world. We cannot
afford to have discriminative models for every single concept. It would be useful, or at least
elegant, to extract this information from unlabelled data.

In a multimodal setting, data consists of multiple modes, each modality having a dif-
ferent kind of representation and correlational structure. For example, text is usually rep-
resented as discrete sparse word count vectors, whereas an image is represented using pixel
intensities or outputs of feature extractors which are real-valued and dense. Having very
different statistical properties makes it much harder to discover relationships across modal-
ities than relationships among features in the same modality. There is a lot of structure in
the data but it is difficult to discover the highly non-linear relationships that exist between
low-level features across different modalities. Moreover, the data is typically very noisy and
there may be missing values.

A good multimodal learning model must satisfy certain properties. The joint repre-
sentation must be such that similarity in the representation space implies similarity of the
corresponding concepts so that the representation is useful for classification and retrieval.
It is also desirable that the joint representation be easy to obtain even in the absence of
some modalities. It should also be possible to fill-in missing modalities given the observed
ones.

Our proposed multimodal Deep Boltzmann Machine (DBM) model satisfies the above
desiderata. DBMs (Salakhutdinov and Hinton, 2009b) are undirected graphical models
with bipartite connections between adjacent layers of hidden units. The key idea is to learn
a joint density model over the space of multimodal inputs. Missing modalities can then
be filled-in by sampling from the conditional distributions over them given the observed
ones. For example, we use a large collection of user-tagged images to learn a joint distri-
bution over images and text P (vimg,vtxt; θ). By drawing samples from P (vtxt|vimg; θ) and
from P (vimg|vtxt; θ) we can fill-in missing data, thereby doing image annotation and image
retrieval respectively, some of examples of which are shown in Figure 1.

There have been several approaches to learning from multimodal data. In particular,
Huiskes et al. (2010) showed that using captions or tags, in addition to standard low-level
image features significantly improves classification accuracy of Support Vector Machines
(SVM) and Linear Discriminant Analysis (LDA) models. A similar approach of Guillaumin
et al. (2010) based on the multiple kernel learning framework further demonstrated that an
additional text modality can improve the accuracy of SVMs on various object recognition
tasks. However, all of these approaches are discriminative by nature and cannot make use
of large amounts of unlabelled data or deal easily with missing input modalities.
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Image Given Tags
Generated
Tags

Input Tags
Nearest neighbors to
generated image features

pentax, k10d,
kangarooisland,
southaustralia,
sa, 300mm,
australia, aus-
traliansealion

beach, sea, surf,
strand, shore,
wave, seascape,
sand, ocean,
waves

nature, hill,
scenery, green,
clouds

< no text >

night, lights,
christmas,
nightshot,
nacht, nuit,
notte,
longexposure,
noche, nocturna

flower, nature,
green, flowers,
petal, petals,
bud

aheram, 0505,
sarahc, moo

portrait, bw,
balckandwhite,
people, faces,
girl, blackwhite,
person, man

blue, red, art,
artwork,
painted, paint,
artistic, surreal,
gallery, bleu

unseulpixel,
naturey crap

fall, autumn,
trees, leaves,
foliage, forest,
woods,
branches, path

bw,
blackandwhite,
noiretblanc,
bianconero,
blancoynegro

Figure 1: Left: Examples of text generated from a Deep Boltzmann Machine by sampling from
P (vtxt|vimg; θ). Right: Examples of images retrieved using features generated from a
Deep Boltzmann Machine by sampling from P (vimg|vtxt; θ).

On the generative side, Xing et al. (2005) used dual-wing harmoniums to build a joint
model of images and text, which can be viewed as a linear Restricted Boltzmann Machine
(RBM) model with Gaussian hidden units together with Gaussian and Poisson visible units.
However, various data modalities will typically have very different statistical properties
which makes it difficult to model them using shallow models. Most similar to our work is
the recent approach of Ngiam et al. (2011) that used a deep autoencoder for speech and
vision fusion. There are, however, several crucial differences. First, in this work we focus on
jointly modelling very different data modalities: sparse word count vectors and real-valued
dense image features. Second, we use a Deep Boltzmann Machine which is a probabilistic
generative model as opposed to a feed-forward autoencoder. While both approaches have
led to interesting results in several domains, using a generative model is important for
applications we consider in this paper, as it allows our model to naturally handle missing
and noisy data modalities.

2. Background: RBMs and Their Generalizations

Restricted Boltzmann Machines (RBMs) have been used effectively in modeling distribu-
tions over binary-valued data. Boltzmann machine models and their generalizations to
exponential family distributions (Welling et al., 2005) have been successfully used in many
application domains. For example, the Replicated Softmax model (Salakhutdinov and Hin-
ton, 2009a) has been shown to be effective in modeling sparse word count vectors, whereas
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Gaussian RBMs have been used for modeling real-valued inputs for image classification,
video action recognition, and speech recognition (Lee et al., 2009; Taylor et al., 2010; Mo-
hamed et al., 2011). In this section we briefly review these models, as they will serve as
building blocks for our multimodal model.

2.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (Smolensky, 1986) is an undirected graphical model with
stochastic visible variables v ∈ {0, 1}D and stochastic hidden variables h ∈ {0, 1}F , with
each visible variable connected to each hidden variable. The model defines the following
energy function E : {0, 1}D × {0, 1}F → R

E(v,h; θ) = −
D∑
i=1

F∑
j=1

Wijvihj −
D∑
i=1

bivi −
F∑
j=1

ajhj , (1)

where θ = {a,b,W} are the model parameters: Wij represents the symmetric interac-
tion term between visible unit i and hidden unit j; bi and aj are bias terms. The joint
distribution over the visible and hidden units is defined by

P (v,h; θ) =
1

Z(θ)
exp (−E(v,h; θ)), Z(θ) =

∑
v

∑
h

exp (−E(v,h; θ)), (2)

where Z(θ) is the normalizing constant. The conditional distributions over hidden h and
visible v vectors factorize and can be easily derived from Equations 1, 2 as

P (h|v; θ) =

F∏
j=1

p(hj |v), with p(hj = 1|v) = g

(
D∑
i=1

Wijvi + aj

)
,

P (v|h; θ) =
D∏
i=1

p(vi|h), with p(vi = 1|h) = g

 F∑
j=1

Wijhj + bi

 ,

where g(x) = 1/(1 + exp(−x)) is the logistic function. Given a set of observations {vn}Nn=1,
the derivative of the log-likelihood with respect to the model parameters can be obtained
from Equation 2 as

1

N

N∑
n=1

∂ logP (vn; θ)

∂Wij
= EPdata

[vihj ]− EPmodel
[vihj ] ,

where EPdata
[·] denotes an expectation with respect to the data distribution Pdata(h,v; θ) =

P (h|v; θ)Pdata(v), with Pdata(v) = 1
N

∑
n δ(v−vn) representing the empirical distribution,

and EPmodel
[·] is an expectation with respect to the distribution defined by the model, as

in Equation 2. We will sometimes refer to EPdata
[·] as the data-dependent expectation, and

EPmodel
[·] as the model’s expectation.
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2.2 Gaussian-Bernoulli RBM

RBMs were originally developed for modeling binary vectors. Gaussian-Bernoulli RBMs
(Freund and Haussler, 1994; Hinton and Salakhutdinov, 2006) are a variant that can be
used for modeling real-valued vectors such as pixel intensities and filter responses. Consider
modeling visible real-valued units v ∈ RD, and let h ∈ {0, 1}F be binary stochastic hidden
units. The energy of the state {v,h} of the Gaussian-Bernoulli RBM is defined as

E(v,h; θ) =
D∑
i=1

(vi − bi)2

2σ2
i

−
D∑
i=1

F∑
j=1

vi
σi
Wijhj −

F∑
j=1

ajhj ,

where θ = {a,b,W,σ} are the model parameters. The density that the model assigns to a
visible vector v is given by

P (v; θ) =
1

Z(θ)

∑
h

exp (−E(v,h; θ)), Z(θ) =

∫
v

∑
h

exp (−E(v,h; θ))dv.

Similar to the standard RBMs, the conditional distributions factorize as

P (h|v; θ) =

F∏
j=1

p(hj |v), with p(hj = 1|v) = g

(
D∑
i=1

Wij
vi
σi

+ aj

)
,

P (v|h; θ) =
D∏
i=1

p(vi|h), with vi|h ∼ N

bi + σi

F∑
j=1

Wijhj , σ
2
i

 , (3)

where N (µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2. Observe that
conditioned on the states of the hidden units (Equation 3), each visible unit is modeled by
a Gaussian distribution, whose mean is shifted by the weighted combination of the hidden
unit activations.

Given a set of observations {vn}Nn=1, the derivative of the log-likelihood with respect to
the model parameters takes a very similar form when compared to binary RBMs.

1

N

N∑
n=1

∂ logP (vn; θ)

∂Wij
= EPData

[
vi
σi
hj

]
− EPmodel

[
vi
σi
hj

]
.

2.3 Replicated Softmax Model

The Replicated Softmax Model is useful for modeling sparse count data, such as word
count vectors in a document (Salakhutdinov and Hinton, 2009a). This model is a type of
Restricted Boltzmann Machine in which the visible variables, that are usually binary, have
been replaced by multinomial one of a number of different states. Specifically, let K be the
dictionary size, M be the number of words appearing in a document, and h ∈ {0, 1}F be
binary stochastic hidden topic features. Let V be a M ×K observed binary matrix with
vik = 1 iff the multinomial visible unit i takes on kth value (meaning the ith word in the
document is the kth dictionary word). The energy of the state {V,h} can be defined as
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W1

W1 W2

W2

h

v

W1
W1

W1
W2

W2

W2

W1 W2

Latent Topics

Observed Softmax Visibles

Latent Topics

Multinomial Visible

Figure 2: Replicated Softmax model. The top layer represents a vector h of stochastic, binary topic
features and and the bottom layer represents softmax visible units v. All visible units
share the same set of weights, connecting them to binary hidden units. Left: The model
for a document containing two and three words. Right: A different interpretation of the
Replicated Softmax model, in which M softmax units with identical weights are replaced
by a single multinomial unit which is sampled M times.

E(V,h) = −
M∑
i=1

F∑
j=1

K∑
k=1

Wijkvikhj −
M∑
i=1

K∑
k=1

bikvik −
F∑
j=1

ajhj ,

where {W,a,b} are the model parameters: Wijk is a symmetric interaction term between
visible unit i that takes on value k, and hidden feature j, bik is the bias of unit i that takes
on value k, and aj is the bias of hidden feature j. The probability that the model assigns
to a visible binary matrix V is

P (V,h; θ) =
1

Z(θ)
exp (−E(V,h; θ)), Z(θ) =

∑
V

∑
h

exp (−E(V,h; θ)).

The key assumption of the Replicated Softmax model is that for each document we
create a separate RBM with as many softmax units as there are words in the document,
as shown in Figure 2. Assuming that the order of the words can be ignored, all of these
softmax units can share the same set of weights, connecting them to binary hidden units.
In this case, the energy of the state {V,h} for a document that contains M words is defined
as

E(V,h) = −
F∑
j=1

K∑
k=1

Wjkv̂khj −
K∑
k=1

bkv̂k −M
F∑
j=1

ajhj ,

where v̂k =
∑M

i=1 vik denotes the count for the kth word. Observe that the bias terms of the
hidden variables are scaled up by the length of the document. This scaling is important as
it allows hidden units to behave sensibly when dealing with documents of different lengths.
In the absence of bias scaling, the scale of the weights would get adjusted to work optimally
for a typical document length. Documents longer than this would tend to saturate the units
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Input Reconstruction

chocolate, cake cake, chocolate, sweets, dessert, cupcake, food, sugar, cream, birthday
nyc nyc, newyork, brooklyn, queens, gothamist, manhattan, subway, streetart
dog dog, puppy, perro, dogs, pet, filmshots, tongue, pets, nose, animal
flower, high, 花 flower, 花, high, japan, sakura, 日本, blossom, tokyo, lily, cherry
girl, rain, station, norway norway, station, rain, girl, oslo, train, umbrella, wet, railway, weather
fun, life, children children, fun, life, kids, child, playing, boys, kid, play, love
forest, blur forest, blur, woods, motion, trees, movement, path, trail, green, focus
españa, agua, granada españa, agua, spain, granada, water, andalućıa, naturaleza, galicia, nieve

Table 1: Some examples of one-step reconstruction from the Replicated Softmax Model.

and shorter than this would lead to vague activations of the hidden units. The conditional
distributions are given by

p(hj = 1|V) = g

(
Maj +

K∑
k=1

v̂kWjk

)
, (4)

p(vik = 1|h) =
exp (bk +

∑F
j=1 hjWjk)∑K

q=1 exp
(
bq +

∑F
j=1 hjWjq

) . (5)

A pleasing property of using softmax units is that the mathematics underlying the
learning algorithm for binary RBMs remains the same. Given a collection of N documents
{Vn}Nn=1, the derivative of the log-likelihood with respect to parameters W is

1

N

N∑
n=1

∂ logP (Vn)

∂Wjk
= EPdata

[v̂khj ]− EPmodel
[v̂khj ] .

The Replicated Softmax model can also be interpreted as an RBM model that uses a single
visible multinomial unit with support {1, ...,K} which is sampled M times (see Figure 2,
right panel).

For all of the above models, exact maximum likelihood learning is intractable because
exact computation of the expectation EPmodel

[·] takes time that is exponential in min{D,F},
i.e the number of visible or hidden units. In practice, efficient learning is performed by
following an approximation to the gradient of a different objective function, called the
“Contrastive Divergence” (CD) (Hinton, 2002).

One way to illustrate the working of the model is to look at one-step reconstructions
of some bags of words. Table 1 shows some examples. The words in the left column were
given as input to the model. Then Equation 4 was used to compute a distribution over
hidden units. Using these probabilities as states of the units, Equation 5 was used to obtain
a distribution over words. The second column shows the words with the highest probability
in that distribution. This model was trained using text from the MIR-Flickr data set
which we use later in our experiments. We can see that the model has learned a basic
understanding of which words are probable given the input words. For example, chocolate,
cake generalizes to sweets, desserts, food, etc. The model often makes interesting inferences.
For example, girl, rain, station, norway extends to oslo, train, wet, umbrella, railway, which
are very plausible in that context. The model also captures regularities about language,
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discovers synonyms across multiple languages and learns about geographical relationships.
This shows that the hidden units can capture these regularities and represent them as binary
features.

3. Deep Boltzmann Machines (DBMs)

A Deep Boltzmann Machine (Salakhutdinov and Hinton, 2009b) is a network of symmetri-
cally coupled stochastic binary units. It contains a set of visible units v ∈ {0, 1}D, and a
sequence of layers of hidden units h(1) ∈ {0, 1}F1 , h(2) ∈ {0, 1}F2 ,..., h(L) ∈ {0, 1}FL . There
are connections only between hidden units in adjacent layers, as well as between visible
and hidden units in the first hidden layer. Consider a DBM with three hidden layers1 (i.e.,
L = 3). The energy of the joint configuration {v,h} is defined as

E(v,h; θ) = −
D∑
i=1

F1∑
j=1

W
(1)
ij vih

(1)
j −

F1∑
j=1

F2∑
l=1

W
(2)
jl h

(1)
j h

(2)
l −

F2∑
l=1

F3∑
p=1

W
(3)
lp h

(2)
l h(3)

p

−
D∑
i=1

bivi −
F1∑
j=1

b
(1)
j h

(1)
j −

F2∑
l=1

b
(2)
l h

(2)
l −

F3∑
p=1

b(3)
p h(3)

p ,

where h = {h(1),h(2),h(3)} is the set of hidden units and θ = {W(1),W(2),W(3),b,b(1),
b(2),b(3)} is the set of model parameters, representing visible-to-hidden and hidden-to-
hidden symmetric interaction terms, as well as bias terms. Biases are equivalent to weights
on a connection to a unit whose state is fixed at 1. The probability that the model assigns
to a visible vector v is given by the Boltzmann distribution

P (v; θ) =
1

Z(θ)

∑
h

exp (−E(v,h(1),h(2),h(3); θ)).

Observe that setting both W(2)=0 and W(3)=0 recovers the simpler Restricted Boltzmann
Machine (RBM) model. The derivative of the log-likelihood with respect to the model
parameters takes the form

∂ logP (v; θ)

∂W(1)
= EPdata

[vh(1)>]− EPmodel
[vh(1)>]. (6)

The derivatives with respect to parameters W(2) and W(3) take similar forms but in-

stead involve the cross-products h(1)h(2)> and h(2)h(3)> respectively. Unlike RBMs, the
conditional distribution over the states of the hidden variables conditioned on the data is
no longer factorial. The exact computation of the data-dependent expectation takes time
that is exponential in the number of hidden units, whereas the exact computation of the
model’s expectation takes time that is exponential in the number of hidden and visible
units.

1. For clarity, we use three hidden layers. Extensions to models with more than three layers is straightfor-
ward.
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Deep Boltzmann Machines (DBMs) are interesting for several reasons. Firstly, like Deep
Belief Networks (Hinton et al., 2006), DBMs can discover several layers of increasingly
complex representations of the input, use an efficient layer-by-layer pretraining procedure
(Salakhutdinov and Hinton, 2009b), can be trained on unlabelled data and can be fine-
tuned for a specific task using (possibly limited) labelled data. Secondly, unlike other
models with deep architectures, the approximate inference procedure for DBMs incorporates
a top-down feedback in addition to the usual bottom-up pass, allowing Deep Boltzmann
Machines to better incorporate uncertainty about missing or noisy inputs. Thirdly, and
perhaps most importantly, parameters of all layers can be optimized jointly by following
the approximate gradient of a variational lower-bound on the likelihood objective. As we
show in our experimental results, this greatly facilitates learning better generative models,
particularly when modeling the multimodal data.

4. Multimodal Deep Boltzmann Machines

Let us first consider constructing a multimodal DBM using an image-text bi-modal DBM
as our running example. Let vm ∈ RD denote a real-valued image input and vt ∈ {1, ...,K}
denote an associated text input containing M words, with vtk denoting the count for the kth

word.
We start by modeling each data modality using a separate two-layer DBM. (see Figure 3).

Let h(1m) ∈ {0, 1}Fm
1 and h(2m) ∈ {0, 1}Fm

2 denote the two layers of hidden units. The
probability that the image-specific two-layer DBM assigns to a visible vector vm is given by

P (vm; θm) =
∑

h(1m),h(2m)

P (vm,h(2m),h(1m); θm)

=
1

Z(θm)

∑
h(1m),h(2m)

exp

(
−
∑
i

(vmi − bmi )2

2σ2
i

+
∑
ij

vmi
σi
W

(1m)
ij h

(1m)
j +

∑
jl

W
(2m)
jl h

(1m)
j h

(2m)
l +

∑
j

b
(1m)
j h

(1m)
j +

∑
l

b
(2m)
l h

(2m)
l

)
.

Note that conditioned on the states of h(1m), the image-specific DBM uses Gaussian
distribution to model the distribution over real-valued image features. Similarly, text-
specific DBM uses Replicated Softmax to model the distribution over word count vectors.
The corresponding probability that the text-specific two-layer DBM assigns to vt is given
by

P (vt; θt) =
∑

h(1t),h(2t)

P (vt,h(2t),h(1t); θt)

=
1

ZM (θt)

∑
h(1t),h(2t)

exp

(∑
jk

W
(1t)
k,j h

(1t)
j vtk +

∑
jl

W
(2t)
jl h

(1t)
j h

(2t)
l +

∑
k

btkv
t
k +M

∑
j

b
(1t)
j h

(1t)
j +

∑
l

b
(2t)
l h

(2t)
l

)
,
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h(2m)

h(1m)

vm

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(2t)

W(1t)

h(3)

h(2m)

h(1m)

vm

W(3m)

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(3t)

W(2t)

W(1t)

Image-specific DBM Text-specific DBM

Multimodal DBM
Joint Representation

Figure 3: Left: Image-specific two-layer DBM that uses a Gaussian model to model the distribu-
tion over real-valued image features. Middle: Text-specific two-layer DBM that uses a
Replicated Softmax model to model its distribution over the word count vectors. Right:
A Multimodal DBM that models the joint distribution over image and text inputs. All
layers but the first (bottom) layer use standard binary units.

where h(1t) ∈ {0, 1}F t
1 , h(2t) ∈ {0, 1}F t

2 represent the two layers of hidden units.

To form a multimodal DBM, we combine the two models by adding an additional layer
on top of them. The resulting graphical model is shown in Figure 3, right panel. The joint
distribution over the multi-modal input, where h = {h(1m),h(2m),h(1t),h(2t),h(3)} denotes
all hidden variables, can be written as

P (vm,vt; θ) =
∑

h(2m),h(2t),h(3)

P (h(2m),h(2t),h(3))

( ∑
h(1m)

P (vm,h
(1m)|h(2m))

)(∑
h(1t)

P (vt,h(1t)|h(2t))

)

=
1

ZM (θ)

∑
h

exp

(∑
kj

W
(1t)
kj vtkh

(1t)
j +

∑
jl

W
(2t)
jl h

(1t)
j h

(2t)
l +

∑
k

btkv
t
k +M

∑
j

b
(1t)
j h

(1t)
j +

∑
l

b
(2t)
l h

(2t)
l︸ ︷︷ ︸

Replicated Softmax Text Pathway

−
∑
i

(vmi − bmi )2

2σ2
i

+
∑
ij

vmi
σi
W

(1m)
ij h

(1m)
j +

∑
jl

W
(2m)
jl h

(1m)
j h

(2m)
l +

∑
j

b
(1m)
j h

(1m)
j +

∑
l

b
(2m)
l h

(2m)
l︸ ︷︷ ︸

Gaussian Image Pathway

+
∑
lp

W (3t)h
(2t)
l h(3)p +

∑
lp

W (3m)h
(2m)
l h(3)p +

∑
p

b(3)p h(3)p︸ ︷︷ ︸
Joint 3rd Layer

)
. (7)

The normalizing constant depends on the number of words M in the corresponding doc-
ument, since the low-level part of the text pathway contains as many softmax units as
there are words in the document. Similar to the Replicated Softmax model, the multimodal
DBM can be viewed as a family of different-sized DBMs that are created for documents of
different lengths that share parameters.
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The conditional distributions over the visible and the five sets of hidden units are given
by

p(h
(1m)
j = 1|vm,h(2m)) = g

 D∑
i=1

W
(1m)
ij

vmi
σi

+

Fm
2∑
l=1

W
(2m)
jl h

(2m)
l + b

(1m)
j

 , (8)

p(h
(2m)
l = 1|h(1m),h(3)) = g

Fm
1∑

j=1

W
(2m)
jl h

(1m)
j +

F3∑
p=1

W
(3m)
lp h(3)p + b

(2m)
l

 ,

p(h
(1t)
j = 1|vt,h(2t)) = g

 K∑
k=1

W
(1t)
kj vtk +

F t
2∑

l=1

W
(2t)
jl h

(2t)
l +Mb

(1t)
j

 ,

p(h
(2t)
l = 1|h(1t),h(3)) = g

 F t
1∑

j=1

W
(2t)
jl h

(1t)
j +

F3∑
p=1

W
(3t)
lp h(3)p + b

(2t)
l

 ,

p(h(3)p = 1|h(2)) = g

Fm
2∑
l=1

W
(3m)
lp h

(2m)
l +

F t
2∑

l=1

W
(3t)
lp h

(2t)
l + b(3)p

 ,

p(vtik = 1|h(1t)) =
exp (

∑F t
1
j=1 h

(1t)
j W

(1t)
jk + btk)∑K

q=1 exp
(∑F t

1
j=1 h

(1t)
j W

(1t)
jq + btk

) ,
vmi |h(1m) ∼ N

σi Fm
1∑

j=1

W
(1m)
ij h

(1m)
j + bmi , σ

2
i

 .

Extending multimodal DBMs to other data modalities requires a simple modification of
the first-layer modules. For example, consider modelling video-audio bi-modal data. Unlike
image-text data, video-audio data can be represented as a sequence of real-valued vector
pairs. Let vm ∈ RD denote a real-valued input from the video stream (e.g., several consec-
utive image frames), and va ∈ RD denote an associated audio input (e.g., corresponding
consecutive audio frames). We can easily construct the corresponding multimodal DBM
with both pathways using Gaussian RBMs as the first layer. Compared to Equation 7, the
the joint distribution over the multi-modal input variables, can be written as2

P (vm,va; θ) =
1

Z(θ)

∑
h

exp

(
−
∑
i

(vmi )2

2σ2
i

+
∑
ij

vmi
σi
W

(1m)
ij h

(1m)
j +

∑
jl

W
(2m)
jl h

(1m)
j h

(2m)
l︸ ︷︷ ︸

Gaussian Video Pathway

(9)

−
∑
i

(vai )2

2σ2
i

+
∑
ij

vai
σi
W

(1a)
ij h

(1a)
j +

∑
jl

W
(2a)
jl h

(1a)
j h

(2a)
l︸ ︷︷ ︸

Gaussian Audio Pathway

+
∑
lp

W (3t)h
(2t)
l h(3)p +

∑
lp

W (3m)h
(2m)
l h(3)p︸ ︷︷ ︸

Joint 3rd Layer

)
.

2. We omit the bias terms for the hidden layers for clarity of presentation.
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4.1 Approximate Inference and Learning

Exact maximum likelihood learning in this model is intractable, but efficient approximate
learning of DBMs can be carried out by using a variational approach, where mean-field
inference is used to estimate data-dependent expectations and an MCMC based stochastic
approximation procedure is used to approximate the model’s expected sufficient statistics.

4.1.1 Estimating the Data-dependent Statistics

Consider any approximating distribution Q(h|v;µ), parameterized by a vector of param-
eters µ, for the posterior P (h|v; θ). Then the log-likelihood of the DBM model has the
following variational lower bound,

logP (v; θ) ≥
∑
h

Q(h|v; θ) logP (v,h; θ) +H(Q) (10)

≥ logP (v; θ)−KL(Q(h|v;µ)||P (h|v; θ)),

where KL(Q||P ) is the Kullback-–Leibler divergence between the two distributions, andH(·)
is the entropy functional. The bound becomes tight if and only if Q(h|v;µ) = P (h|v; θ).

We approximate the true posterior P (h|v; θ), where v = {vm,vt}, with a fully factorized
approximating distribution over the five sets of hidden units {h(1m),h(2m),h(1t),h(2t),h(3)}:

Q(h|v;µ) =

Fm
1∏

j=1

q(h
(1m)
j |v)

Fm
2∏
l=1

q(h
(2m)
l |v)

 F t
1∏

j=1

q(h
(1t)
j |v)

F t
2∏

l=1

q(h
(2t)
l |v)

 F3∏
p=1

q(h(3)p |v), (11)

where µ = {µ(1m),µ(1t),µ(2m),µ(2t),µ(3)} are the mean-field parameters with q(h
(l)
i =

1|v) = µ
(l)
i for l = 1, 2, 3.

For each training example, the variational bound of Equation 10 is maximized with
respect to the variational parameters µ for fixed parameters θ. This results in the following
mean-field fixed-point equations

µ
(1m)
j ← g

( D∑
i=1

W
(1m)
ij

vmi
σi

+

Fm
2∑
l=1

W
(2m)
jl µ

(2m)
l

)
, µ

(2m)
l ← g

( Fm
1∑

j=1

W
(2m)
jl µ

(1m)
j +

F3∑
k=1

W
(3m)
lk µ

(3)
k

)
,

µ
(1t)
j ← g

( K∑
k=1

W
(1t)
kj vtk +

F t
2∑

l=1

W
(2t)
jl µ

(2t)
l

)
, µ

(2t)
l ← g

( F t
1∑

j=1

W
(2t)
jl µ

(1t)
j +

F3∑
k=1

W
(3t)
lk µ

(3)
k

)
,

µ(3)
p ← g

( Fm
2∑
l=1

W
(3m)
lp µ

(2m)
l +

F t
2∑

l=1

W
(3t)
lp µ

(2t)
l

)
, (12)

where g(x) = 1/(1 + exp(−x)) is the logistic function. To solve these fixed-point equations,
we simply cycle through layers, updating the mean-field parameters within a single layer.
The variational parameters µ are then used to compute the data-dependent statistics in
Equation 6. For example,
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EPdata
[vmh(1m)>] =

1

N

N∑
n=1

vmn µ
(1m)
n

>

EPdata
[h(1m)h(2m)>] =

1

N

N∑
n=1

µ(1m)
n µ(2m)

n

>
,

where the average on the RHS is over training cases. Note the close connection between
the form of the mean-field fixed point updates and the form of the conditional distribution
defined by Equation 8. In fact, implementing the mean-field updates requires no extra work
beyond implementing the Gibbs sampler.

4.1.2 Estimating the Data-independent Statistics

Given the variational parameters µ, the model parameters θ are then updated to maximize
the variational bound using an MCMC-based stochastic approximation (Salakhutdinov and
Hinton, 2009b; Tieleman, 2008; Younes, 1998). Remember that in out setting, we are
learning a whole family of different-sized DBMs that depend on the number of words, or
the number of replicated softmax variables (see Equation 7). Let us first assume that the
text input only contains a set of M words. Learning with stochastic approximation proceeds

as follows. Let θt and xt = {vmt ,vt,h(1m)
t ,h

(1t)
t ,h

(2m)
t ,h

(2t)
t ,h

(3)
t } be the current parameters

and the state. Then xt and θt are updated sequentially as follows:

• Given xt, sample a new state xt+1 from the transition operator Tθt(xt+1← xt) that
leaves P (·; θt) invariant. This can be accomplished by using Gibbs sampling (see
Equation 8).

• A new parameter θt+1 is then obtained by making a gradient step, where the in-
tractable model’s expectation EPmodel

[·] in the gradient is replaced by a point estimate
at sample xt+1.

In practice, we typically maintain a set of S “persistent” Markov chainsXt = {xt,1, ....,xt,S},
and use an average over those particles.

The overall learning procedure for DBMs is summarized in Algorithm 1. Extensions to
the variable text input is trivial. For each m = 1, ...,Mmax, where Mmax is the maximum
number of words across all documents, we can create a corresponding multimodal DBM
with m replicated softmax variables and shared parameters. For each model m, we simply
maintain a set of Sm persistent Markov chains.3 Learning then proceeds as discussed before.

Stochastic approximation provides asymptotic convergence guarantees and belongs to
the general class of Robbins–Monro approximation algorithms (Robbins and Monro, 1951;
Younes, 1998). Sufficient conditions that ensure almost sure convergence to an asymptoti-
cally stable point are given in Younes (1989, 1998); Yuille (2004). One necessary condition
requires the learning rate to decrease with time, so that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞.

3. Ideally, we would have each Sm be as large as computationally feasible. However, given a fixed budget
for the total number of chains, we could choose Sm to be proportional to the number of documents
containing m words.
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Algorithm 1 Learning Procedure for a Multimodal Deep Boltzmann Machine.

1: Given: a training set of N data vectors vn = {vmn ,vtn}, n = 1, ..., N , and S, the number of
persistent Markov chains. Let Λ be a diagonal D ×D matrix with Λii = 1/σi.

2: Randomly initialize parameter vector θ0 and S samples: {ṽ0,1, h̃0,1}, ..., {ṽ0,S , h̃0,S}, where we

define h̃ = {h̃(1m), h̃(1t), h̃(2m), h̃(2t), h̃(3)}.
3: for t = 0 to T (number of iterations) do

4: // Variational Inference:
5: for each training example vn, n = 1 to N do
6: Run the mean-field fixed-point updates until convergence using Equation 12.

7: Set µn = µ.
8: end for

9: // Stochastic Approximation:
10: for each sample s = 1 to S (number of persistent Markov chains) do
11: Sample (ṽt+1,s, h̃t+1,s) given (ṽt,s, h̃t,s) by running a Gibbs sampler for one step using

Equation 8.
12: end for

13: // Parameter Update:

14: // Image Pathway:

15: W
(1m)
t+1 = W

(1m)
t + αt

(
1
N

∑N
n=1 vmn Λ(µ

(1m)
n )> − 1

S

∑S
s=1 ṽmt+1,sΛ(h̃

(1m)
t+1,s)

>
)
.

16: W
(2m)
t+1 = W

(2m)
t + αt

(
1
N

∑N
n=1 µ

(1m)
n (µ

(2m)
n )> − 1

S

∑S
s=1 h̃

(1m)
t+1,s(h̃

(2m)
t+1,s)

>
)
.

17: // Text Pathway:

18: W
(1t)
t+1 = W

(1t)
t + αt

(
1
N

∑N
n=1 vtn(µ

(1t)
n )> − 1

S

∑S
s=1 ṽtt+1,s(h̃

(1t)
t+1,s)

>
)
.

19: W
(2t)
t+1 = W

(2t)
t + αt

(
1
N

∑N
n=1 µ

(1t)
n (µ

(2t)
n )> − 1

S

∑S
s=1 h̃

(1t)
t+1,s(h̃

(2t)
t+1,s)

>
)
.

20: // Joint Layer:

21: W
(3m)
t+1 = W

(3m)
t + αt

(
1
N

∑N
n=1 µ

(2m)
n (µ

(3)
n )> − 1

S

∑S
s=1 h̃

(2m)
t+1,s(h̃

(3)
t+1,s)

>
)
.

22: W
(3t)
t+1 = W

(3t)
t + αt

(
1
N

∑N
n=1 µ

(2t)
n (µ

(3)
n )> − 1

S

∑S
s=1 h̃

(2t)
t+1,s(h̃

(3)
t+1,s)

>
)
.

23: Decrease αt.
24: end for

This condition can, for example, be satisfied simply by setting αt = a/(b + t), for posi-
tive constants a > 0, b > 0. Typically, in practice, the sequence |θt| is bounded, and the
Markov chain, governed by the transition kernel Tθ, is ergodic. Together with the condition
on the learning rate, this ensures almost sure convergence of the stochastic approximation
algorithm to an asymptotically stable point (Younes, 1998; Yuille, 2004).
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vm h vt

(a) RBM

vm h(1m) h(2m) h(3) h(2t) h(1t) vt

(b) Multimodal DBN

vm h(1m) h(2m) h(3) h(2t) h(1t) vt

(c) Multimodal DBM

Figure 4: Different ways of modeling multimodal inputs.

4.1.3 Greedy Layer-wise Pretraining

The learning procedure for Deep Boltzmann Machines described above can be used by
initializing model parameters at random. However, the model performs much better if
parameters are initialized sensibly. We therefore use a greedy layer-wise pretraining strat-
egy by learning a stack of modified Restricted Boltzmann Machines (RBMs) (for details
see Salakhutdinov and Hinton, 2009b). The pretraining procedure is quite similar to the
pretraining procedure of Deep Belief Networks (Hinton et al., 2006), and it allows us to
perform approximate inference by a single bottom-up pass. This fast approximate infer-
ence can also be used to initialize the mean-field, which then converges much faster than
mean-field initialized at random.

5. Applying Multimodal DBMs to Different Tasks

There are several tasks that are of interest when working with multimodal data, such as
generating missing modalities, inferring a joint representation or discriminative tasks that
require classifying the multimodal input. In this section, we describe how DBMs can be
used to solve these tasks. We also highlight the motivation behind the use of this approach.

5.1 Motivation

A Multimodal DBM can be viewed as a composition of unimodal undirected pathways.
Each pathway can be pretrained separately in a completely unsupervised fashion, which
allows us to leverage a large supply of unlabelled unimodal data. Any number of pathways
each with any number of layers could potentially be used. The type of the lower-level RBMs
in each pathway could be different, accounting for different input distributions. However,
the hidden representations at the end of each pathway can be made to be of the same type
(binary). Moreover, they can be encouraged to have nice statistical properties which we
can control, such as having the same level of sparsity. These hidden representations are
now much easier to combine than the low-level input representations.

The intuition behind our model is as follows. Each data modality has very different
statistical properties which make it difficult for a single-layer model to directly find correla-
tions in features across modalities. In our model, this difference is bridged by putting layers
of hidden units between the modalities. The idea is illustrated in Figure 4c, which is just a
different way of displaying Figure 3. Compared to the simple RBM (see Figure 4a), where
the hidden layer h directly models the distribution over vm and vt, the first layer of hidden
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units h(1m) in a DBM has an easier task to perform — that of modeling the distribution
over vm and h(2m). Each layer of hidden units in the DBM makes a small contribution
towards bridging vm and vt. In the process, each layer learns successively higher-level rep-
resentations and removes modality-specific correlations. Therefore, the middle layer in the
network can be seen as a (relatively) “modality-free” representation of the input as opposed
to the input layers which were “modality-full”.

Another way of using a deep model to combine multimodal inputs is to use a Multimodal
Deep Belief Network (DBN) (Figure 4b) which consists of an RBM at the center followed
by directed belief networks leading out to the input layers. We emphasize that there is an
important distinction between this model and the DBM model of Figure 4c. In a DBN
model, and related autoencoder models, the responsibility for multimodal modeling falls
entirely on the joint layer (h(2m) ↔ h(3) ↔ h(2t)). In the DBM, on the other hand, this
responsibility is spread out over the entire network. From the generative perspective, states
of low-level hidden units in one pathway can influence the states of hidden units in other
pathways through the higher-level layers, which is not the case for DBNs.

5.2 Generating Missing Modalities

As argued in the introduction, many real-world applications will often have one or more
modalities missing. The Multimodal DBM can be used to generate such missing data
modalities by clamping the observed modalities at the inputs and sampling the hidden
modalities by running the standard Gibbs sampler.

For example, consider generating text conditioned on a given image4 vm. The observed
modality vm is clamped at the inputs and all hidden units are initialized randomly. Alter-
nating Gibbs sampling is used to draw samples from P (vt|vm) by updating each hidden
layer given the states of the adjacent layers (see Equation 8). A sample drawn from this
distribution describes a multinomial distribution over the text vocabulary. This distribu-
tion can then be used to sample words. This process is illustrated for a test image in
Figure 5, showing the generated text after every 50 Gibbs steps. We see that not only does
the sampler generate meaningful text, it shows evidence of jumping across different modes.
For example, it generates tropical, caribbean and resort together, then moves on to canada,
bc, quebec lake, ice, and then italia, venizia and mare. Each of these groups of words are
plausible descriptions of the image. Moreover, each group is consistent within itself. This
suggests that the model has been able to associate clusters of consistent descriptions with
the same image. In other words, the model can capture multiple modes in the conditional
distribution and access them by a Gibbs sampler.

The model can also be used to generate image features conditioned on text. Figure 6
shows examples of two such runs.

5.3 Inferring Joint Representations

The model can also be used to generate a joint representation of data by combining multiple
data modalities. For inferring the joint representation, conditioned on the observed modal-
ities, the observed modalities are clamped and Gibbs sampling is performed to sample from

4. Generating image features conditioned on text can be done in a similar way.

2964



Multimodal Learning with DBMs

Step 50 Step 100 Step 150 Step 200 Step 250

travel beach sea water italy
trip ocean beach canada water

vacation waves island bc sea
africa sea vacation britishcolumbia boat

earthasia sand travel reflection italia
asia nikon ocean alberta mare
men surf caribbean lake venizia
2007 rocks tropical quebec acqua
india coast resort ontario ocean

tourism shore trip ice venice

Figure 5: Text generated by the DBM conditioned on an image by running a Gibbs sampler. Ten
words with the highest probability are shown at the end of every 50 sampling steps.

Input
tags

Step 50 Step 100 Step 150 Step 200 Step 250

purple,
flowers

car, auto-
mobile

Figure 6: Images retrieved by running a Gibbs sampler conditioned on the input tags. The images
shown are those which are closest to the sampled image features. Samples were taken
after every 50 steps.

P (h(3)|vm,vt) (if both modalities are present) or from P (h(3)|vm) (if text is missing). A
faster alternative, which we adopt in our experimental results, is to use variational inference
to approximate posterior Q(h(3)|vm,vt) or Q(h(3)|vm) (see Section 4.1). The marginals of
the approximate posterior over h(3) (variational parameters µ(3)) constitute the joint rep-
resentation of the inputs.

This representation can then be used to do information retrieval for multimodal or
unimodal queries. Each data point in the database (whether missing some modalities or
not) can be mapped to this latent space. Queries can also be mapped to this space and an
appropriate distance metric can be used to retrieve results that are close to the query.

5.4 Discriminative Tasks

After learning, the Multimodal Deep Boltzmann Machine can be used to initialize a mul-
tilayer neural network by partially unrolling the lower layers (Salakhutdinov and Hinton,
2009b). We can then use the standard backpropagation algorithm to discriminatively fine-
tune the model. For each multimodal input vector v = {vm,vt}, mean-field inference is
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(a) DBM

h(1t)

h(2t)

h(1m)

h(2m)

h(3)

y

vm vtQ(h(2m)|v) Q(h(2t)|v)

Q(h(3)|v) Q(h(3)|v)

W(3t)⊤

W(3t)

W(3m)⊤

W(3m)

W(1m)

W(2m)

W(1t)

W(2t)

W(4)

(b) Unrolled DBM

Figure 7: After learning, the DBM model as shown in (a) is used to initialize a multilayer neural
network (b), where the marginals of approximate posterior Q(hi = 1|v) are used as
additional inputs. The network is fine-tuned by backpropagation.

used to obtain an approximate posterior distribution Q(h|v). The marginals of this approx-
imate posterior (variational parameters µ), together with the data, can be used to create an
augmented input for this multimodal deep multilayer neural network, as shown in Figure 7.
This augmented input is important because it helps maintain the scale of inputs that each
hidden unit is expecting. For example, in Figure 7a, the conditional distribution over h(2m),
as defined by the DBM model (see Equation 8), takes the following form:

p(h
(2m)
l = 1|h(1m),h(3)) = g

∑
j

W
(2m)
jl h

(1m)
j +

∑
p

W
(3m)
lp h(3)

p + b
(2m)
l

 .

Hence layer h(2m) receives inputs from h(1m) as well as h(3). When this DBM is used
to initialize a feed-forward network (Figure 7b), the augmented inputs Q(h(3)|v) serve
as a proxy for h(3). This ensures that when the feed-forward network is fine-tuned, the
hidden units in h(2m) start off with receiving the same input as they would have received
in a mean-field update during unsupervised pretraining. However, once the weights start
changing during fine-tuning, the augmented inputs are no longer fixed points of the mean-
field update equations and the model is free to use those inputs as it likes. The weights
from Q(h(3)|v) to h(2m) are only initialized to W(3m)> and are not tied to the weights from
h(2m) to h(3). This initialization scheme makes sure that the model starts fine-tuning from
the same place where pretraining left off.
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Note that the gradient-based fine-tuning may choose to ignore the marginals of the
approximate posterior Q(h|v) by driving the corresponding weights to zero. This will
result in a standard neural network, much like the neural network that is obtained from a
Deep Belief Network or an autoencoder model. In practice, however, the network typically
uses the entire augmented input for making predictions.

When using this model at test time, we first have to run the mean-field updates in the
DBM to get the additional inputs and then use the fine-tuned feed-forward network to get
the model’s predictions. This creates an overhead in the running time. For all of the data
sets in our experimental results, we typically used 5 mean-field updates, which was sufficient
for the mean-field to settle down.

6. Experimental Results with Image-Text data

Our first data set consists of image-text pairs. Bi-modal data of this kind exemplifies a com-
mon real-world scenario where we have some image and a few words describing that image.
There is a need to build representations that fuse this information into a homogeneous
space, so that each data point can be represented as a single vector. This representation
would be convenient for classification and retrieval problems.

6.1 Data Set and Feature Extraction

We used the MIR Flickr Data set (Huiskes and Lew, 2008) in our experiments. The data
set consists of 1 million images retrieved from the social photography website Flickr along
with their user assigned tags. The collection includes images released under the Creative
Commons License. An example is shown in Figure 8. Among the 1 million images, 25,000
have been annotated using 24 labels including object categories such as, bird, tree, people
and scene categories, such as indoor, sky and night. A stricter labeling was done for 14
of these classes where an image was annotated with a category only if that category was
salient. This leads to a total of 38 classes where each image may belong to several classes.
The data set also consists of an additional 975,000 unannotated images. From the 25,000
annotated images we use 10,000 images for training, 5,000 for validation and 10,000 for
testing, following Huiskes et al. (2010). Mean Average Precision (MAP) is used as the
performance metric. Results are averaged over 5 random splits of the 25,000 examples into
train, validation and test sets.

There are more than 800,000 distinct tags in the data set. In order to keep the text
representation manageable, each text input was represented using a vocabulary of the 2000
most frequent tags in the 1 million collection. After restricting to this vocabulary, the
average number of tags associated with an image is 5.15 with a standard deviation of 5.13.
There are 128,501 images which do not have any tags, out of which 4,551 are in the labelled
25K subset. Hence about 18% of the labelled data has images but is missing text.

Images were represented by 3857-dimensional features, that were extracted by concate-
nating Pyramid Histogram of Words (PHOW) features (Bosch et al., 2007), Gist (Oliva
and Torralba, 2001) and MPEG-7 descriptors (EHD, HTD, CSD, CLD, SCD) (Manjunath
et al., 2001). Each dimension was mean-centered and normalized to unit variance. PHOW
features are bags of image words obtained by extracting dense SIFT features over multiple
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Classes
baby, female,

people, portrait
plant life, river,

water
clouds, sea, sky,
transport, water

animals, dog,
food

clouds, sky,
structures

Images

Tags claudia 〈 no text 〉
barco, pesca,
boattosail,
navegaçāo

watermelon,
hilarious,

chihuahua, dog

colors, cores,
centro,

comercial,
building

Figure 8: Some examples from the MIR-Flickr data set. Each instance in the data set is an image
along with textual tags. Each image has multiple classes.

scales and clustering them. We used publicly available code (Vedaldi and Fulkerson, 2008;
Bastan et al., 2010) for extracting these features.5

6.2 Model Architecture and Implementation Details

The image pathway consists of a Gaussian RBM with 3857 linear visible units and 1024
hidden units. This is followed by a layer of 1024 binary hidden units. The text pathway
consists of a Replicated Softmax Model with 2000 visible units and 1024 hidden units,
followed by another layer of 1024 hidden units. The joint layer contains 2048 hidden units.
All hidden units are binary. Each Gaussian visible unit was set to have unit variance
(σi = 1) which was kept fixed and not learned.6 Each layer of weights was pretrained
using CD-n where n was gradually increased from 1 to 20. All word count vectors were
normalized so that they sum to one. This way we avoid running separate Markov chains
for each document length to get the model distribution’s sufficient statistics, which makes
it possible to have a fast GPU implementation.

We also experimented with training a proper generative model, that is, without nor-
malizing the data. Remember, the image-text bimodal DBM can be viewed as a family
of different-sized DBMs that are created for documents of different lengths that share pa-
rameters. In this setting, we used separate MCMC chains for different sized documents.
However, the results were statistically indistinct from the case when we made the simplify-
ing assumptions. This is probably because this data set does not have a huge variance in
the number of words per image (5-15 tags per image).

After training the DBM model generatively, we applied it for classification and retrieval
tasks. We compared different ways of using the model for classification. The simplest
method is to extract the representation at the joint hidden layer and perform 1-vs-all classi-
fication using logistic regression. We compare this to fine-tuning the model discriminatively
as described in Section 5.4. We also used dropout (Hinton et al., 2012; Srivastava et al.,
2014) during fine-tuning to further improve the classification performance. For dropout, we
retained each unit with probability p = 0.8.

5. The extracted features are publicly available at http://www.cs.toronto.edu/~nitish/multimodal.
6. We found that learning the variance made the training unstable.
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Model MAP Prec@50

Random 0.124 0.124
SVM (Huiskes et al., 2010) 0.475 0.758
LDA (Huiskes et al., 2010) 0.492 0.754
DBM 0.526 ± 0.007 0.791 ± 0.008
DBM (using unlabelled data) 0.585 ± 0.004 0.836 ± 0.004

Table 2: Multimodal Classification Results. Mean Average Precision (MAP) and precision@50
obtained by different models. A similar set of input features is used across all models.

6.3 Classification Tasks

We run two classification experiments to highlight two distinct capabilities of the proposed
DBM model. In the first experiment, we train and test the model on multimodal inputs.
This experiment is designed to evaluate the DBM’s ability to represent multimodal data in
a way that is useful for classification. In the second experiment, we train on multimodal
inputs, but at test time we are only given images. This experiment is designed to evaluate
the DBM’s ability to generate useful text and use it as a substitute for real data.

Since examples in the data set may have multiple labels, classification accuracy is not
very meaningful. Instead, we evaluate our models using Mean Average Precision (MAP) and
precision at top-50 predictions (Prec@50). These are standard metrics used for multi-label
classification and have been previously used to report results on this data set.

6.3.1 Multimodal Inputs

In out first experiment, the task is to assign labels to image-text pairs. Huiskes et al.
(2010) provided baselines for this data set with Linear Discriminant Analysis (LDA) and
RBF-kernel Support Vector Machines (SVMs) using the labelled 25K subset of the data.
They represent the multimodal input as a concatenation of image features and word counts.
Table 2 shows the performance of these models. The image features did not include SIFT-
based features. Therefore, to make a fair comparison, our model was first trained using the
same amount of data and a similar set of features (i.e., excluding our SIFT-based features).
Table 2 shows that the DBM model outperforms its competitor SVM and LDA models in
terms of MAP and Prec@50. The DBM achieves a MAP of 0.526, compared to 0.475 and
0.492, achieved by SVM and LDA models.

Next, we tried to see how much gain can be obtained by using the 975,000 unlabelled
examples. We trained a DBM using these examples and, not surprisingly, this improved
the DBM’s MAP to 0.585.

Having established that DBMs outperform simple linear models, we now compare DBMs
to two other deep models—Deep Belief Nets (DBNs) (Hinton et al., 2006) and Denoising
Autoencoders (DAEs) (Vincent et al., 2008). We found that further improvements can be
obtained by using more image features. We added PHOW features, which use dense SIFT
descriptors, to learn a feature dictionary. Table 3 shows results using this extended feature
set. We use unlabelled data to pretrain these models. We also closely explore the benefits of
full discriminative fine-tuning, regularizers that encourage sparse activations and dropout.
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Model No Pretraining DBN DAE DBM

Logistic regression on joint
layer features

- 0.599 ± 0.004 0.600 ± 0.004 0.609 ± 0.004

Sparsity + Logistic regression
on joint layer features

- 0.626 ± 0.003 0.628 ± 0.004 0.631 ± 0.004

Sparsity + discriminative
fine-tuning

0.482 ± 0.003 0.630 ± 0.004 0.630 ± 0.003 0.634 ± 0.004

Sparsity + discriminative
fine-tuning + dropout

0.575 ± 0.004 0.638 ± 0.004 0.638 ± 0.004 0.641 ± 0.004

Table 3: Comparison of MAP across different deep models. Sparsity, full discriminative fine-tuning
and dropout lead to improvements across all models. More input features were used
compared to Table 2.

First, we apply simple logistic regression on the high-level joint representation learned
by each of the three models. As shown in Table 3, the DBN and DAE obtain a MAP of
0.599 and 0.600 respectively, whereas the DBM gets 0.609. The error bars indicate that
this improvement is statistically significant. The DBNs and DAEs give very similar results.
Next we added a KL-sparsity regularizer (Olshausen and Field, 1996) during unsupervised
pretraining of all the three models. This improved the performance across all models.
In particular, the DBM achieved a MAP of 0.631. Full discriminative training further
improved the DBM’s MAP to 0.634. Next, we fine-tuned the model using the dropout
technique proposed by Hinton et al. (2012). Using this we achieved the a MAP of 0.641.
The DBN and DAE also produce very close results. The Multiple Kernel Learning approach
proposed by Guillaumin et al. (2010) obtained a MAP of 0.623 where they used a much
larger set of image features (37,152 dimensions). TagProp (Verbeek et al., 2010) obtained
a MAP of 0.640 which is comparable to DBMs again using a much larger set of features.

In terms of Prec@50, the DBM achieves a score of 0.888 ± 0.004. The DBN and DAE
score 0.887± 0.003 and 0.888± 0.004 respectively. Therefore, all the deep models do about
the same in terms of this metric.

Learning a deep hierarchy of features is widely believed to be the reason why deep
models have been successful in a number of machine learning tasks. In order to better
understand the properties of different layers in the network, we evaluate the quality of
representation at each layer of the network. We do this by measuring MAP obtained
by logistic regression classifiers on the representation at different layers of the network.
We choose a simple classifier so that the MAP results represent a good measure of the
representation’s discriminative ability. Figure 9a compares different deep models. In all
the models, MAP increases as we go from the input layer towards the joint hidden layer
from either side. This shows that higher level representations become increasingly good
at discovering useful features. It is interesting to note that the performance of the DBM’s
hidden layers increases rapidly with depth whereas that for the DBN seems to stagnate at
the second layer. At the middle (joint) layer, the performance of both models increases
tremendously. This behavior points to an important property of DBMs. Intuitively, the
joint generative training of all the layers allows information to flow more readily between

2970



Multimodal Learning with DBMs

image input
image hidden1

image hidden2
joint hidden

text hidden2
text hidden1

text input
0.40

0.45

0.50

0.55

0.60

0.65

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

DBN

DAE

DBM

(a)

image input
image hidden1

image hidden2
joint hidden

text hidden2
text hidden1

text input
0.40

0.45

0.50

0.55

0.60

0.65

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

DBM finetuned with dropout

Multiple Kernel Learning

SVM on concatenated

input features

RBM

2-layer DBM

3-layer DBM

(b)

Figure 9: Mean Average Precision (MAP) obtained by applying logistic regression to representa-
tions learned at different layers. Left : Comparison of different deep models - Deep Belief
Nets, Denoising Autoencoders and Deep Boltzmann Machines. All model have the same
architecture and same number of parameters. Right: Comparison of DBMs of different
depths with SVMs and MKL models. Observe that adding depth improves performance.

the image and text pathways. This comparison empirically verifies the intuition behind
having undirected connections throughout the model as mentioned in Section 5.1.

Next, we investigate the effect of depth more closely on DBMs. The question that we try
to answer here is how many intervening layers of hidden units should we put between the
image and text modalities. It is useful to think of intervening layers as shown in Figure 4c.
We could just have one intervening layer, creating an RBM (image input—joint hidden
layer—text input). A two-layered DBM would have 3 intervening layers (image input—
image hidden 1—joint hidden—text hidden 1—text input), and so on. Figure 9b compares
the layer-wise performance of these models (RBM, 2-layer DBM and 3-layer DBM). The
performance of other models is also indicated with horizontal lines. Comparing the per-
formance of the joint hidden layer across the three models, we can see that having more
intervening layers leads to better performance. The incremental utility of adding more
layers seems to decrease.

6.3.2 Unimodal Inputs

In a multimodal data setting, it is very common for some data points to be missing some
data modalities. For example, there may be images which do not have captions or tags.
This raises interesting questions—Can we use a model that was trained on images and
text, when we only have images at test time? Can this model do better than one that was
trained on images alone? For multimodal DBMs the answer is affirmative. In this section,
we describe an experiment to demonstrate this.

The task is the same as in the previous experiment. We trained a DBM using the
unlabelled data and fine-tuned it for discrimination as before. The only difference is that
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Model MAP Prec@50

Image LDA (Huiskes et al., 2010) 0.315 -
Image SVM (Huiskes et al., 2010) 0.375 -
Image DBN 0.463 ± 0.004 0.801 ± 0.005
Image DBM 0.469 ± 0.005 0.803 ± 0.005
Multimodal DBM (generated text) 0.531 ± 0.005 0.832 ± 0.004

Table 4: Unimodal Classification Results. Mean Average Precision (MAP) and precision@50 ob-
tained by different models. A similar set of input features is used across all models.

at test time, the model was given only image inputs and used the DBM to generate and fill
in missing data. This was done by mean-field updates. We also tried Gibbs sampling and
found that it work just as well but with more variance.

We compare the Multimodal DBM with models that were trained using only images.
We compare with baseline (RBF-kernel) SVM and LDA results, using a restricted feature
set which is similar to that used in Huiskes et al. (2010). Table 4 shows that the LDA
and SVM models achieve a MAP of 0.315 and 0.375, respectively. A DBN trained on the
similar image features improves this to 0.463. A DBM further improves this to 0.469. In
both these cases, pretraining was done using images from the unlabelled set. Both models
had the same number of layers and same number of hidden units in each layer. Next, we used
a Multimodal DBM to infer the text input and hidden representations at each layer (using
mean-field updates). At test time, these representations along with the image features were
given as input to the discriminatively fine-tuned DBM. This achieved a significantly higher
MAP of 0.531.

This result shows that the DBM can generate meaningful text that serves as a plausible
proxy for missing data. This further suggests that learning multimodal features helps even
when some modalities are absent at test time. The model learns much better features when
it has access to multiple modalities because it is being asked to discover features that explain
both modalities simultaneously. This can be interpreted as a regularization effect, where
instead of the asking the model to be simple or sparse, we ask it to explain an alternative
“view” of the data which lies on a very different manifold but shares essential discriminative
characteristics with the original view.

6.4 Retrieval Tasks

The next set of experiments was designed to evaluate the quality of the learned joint rep-
resentation for retrieval purposes. A database of images was created by randomly selecting
5000 image-text pairs from the test set. We also randomly selected a disjoint set of 1000
images to be used as queries. Each query contained both image and text modalities. Each
data point has 38 labels. Using these, binary relevance labels were created by assuming
that if any of the 38 labels overlapped between a query and a data point, then that data
point is relevant to the query.
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Figure 10: Precision-Recall curves for Retrieval Tasks.

Multimodal
Query

Top 4 retrieved results

hongkong,
causewaybay,

shoppingcentre,
building, mall

howell, bridge,
genesee, river,

rochester,
downtown, building

london, uk, night,
skyline, river,
thames, lights,

bridge

edinburgh,
scotland, dusk,

bank

arcoiris,
fincadehierro, lluvia,
sannicolas, valencia

me, myself, eyes,
blue, hair

urban, me, abigfave,
fiveflickrfavs,

trisha,
mynewcamera, lake,

field, girl

me, ofme, self,
selfportrait

pink, prettyinpink,
explored

Figure 11: Retrieval Results for Multimodal Queries from the DBM model.

6.4.1 Multimodal Queries

Figure 10a shows the precision-recall curves for the DBM, DBN, and DAE models (averaged
over all queries). For each model, all queries and all points in the database were mapped
to the joint hidden representation under that model. Cosine similarity function was used
to match queries to data points.

The DBM model performs the best among the compared models achieving a MAP of
0.622. This is slightly better than the performance of the autoencoder and DBN models
which achieve a MAP of 0.612 and 0.609 respectively. Figure 11 shows some examples of
multimodal queries and the top 4 retrieved results. Note that even though there is little
overlap in terms of text, the model is able to perform well.
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change

Figure 12: Examples where the DBM does not work well.

6.4.2 Unimodal Queries

The DBM model can also be used to query for images alone. Figure 10b shows the precision-
recall curves for the DBM model along with other unimodal models. Each model received
the same set of test image queries as input. The joint hidden representation was inferred
keeping the text input layer unclamped. Using this representation, the DBM model was
able to achieve far better results than any unimodal method (MAP of 0.614 as compared
to 0.587 for an Image-DBM and 0.578 for an Image-DBN).

6.5 When Does the Model Not Work?

In this section, we analyze the DBM model to understand when it fails to work and what
exactly goes wrong. Figure 12 shows some examples where the model fails to generate
meaningful text. To diagnose the problem, we looked at the Markov chains that lead to
these results. By visual observation, it was clear that some of these chains got stuck in a
region of space and never came out. This happened often when the text sampler reached
the space of frequently occurring tags, such as those which refer to camera brands or lens
specifications. These tags occur across all kinds of images and seem to take up a huge
probability mass under the model independent of the image. There could be other more
subtle causes of failure but they were hard to diagnose by visual inspection.

7. Experimental Results with Video-Audio Data

We next demonstrate our approach on video-audio bimodal data. We use data sets that
consist of videos of lip movements along with the sound recordings of the words being spoken.
This setting has been previously explored in the context of deep multimodal learning by
Ngiam et al. (2011) using sparse denoising autoencoders.

7.1 Preprocessing and Data Sets

We represent the auditory information using 40 dimensional log-filter banks along with
temporal derivatives to create a 120-d frame for 20 ms speech windows with a stride of
10 ms. Similar to Ngiam et al. (2011) we extract 60 × 80 mouth regions from the video
using a simple object detector (Dalal and Triggs, 2005). The detections were cleaned by
median filtering. The extracted mouth regions were compressed to 32 dimensions with
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Figure 13: An example of audio-video data extracted from the CUAVE data set.

PCA. Temporal derivatives were then added to create a 96 dimensional representation for
each frame. We combined several data sets in this experiment.

CUAVE (Patterson et al., 2002): This data set consists of 36 speakers speaking the
digits 0 to 9. The data set has each speaker speaking with different facial orientations (front
and sideways) and speaking speeds. We exclude the sideways oriented portions of the data
set for simplicity. We use half the speakers for testing and the other half for training.

AVLetters (Matthews et al., 2002): This data set consists of 10 speakers speaking
letters A-Z three times each. This data set does not come with raw audio and was used for
unsupervised pretraining of the video pathway. We treat this data set as if it were missing
audio and evaluate the DBM’s ability of fill in the missing data and use it for classification.

AVLetters 2 (Cox et al., 2008): This data set consists of high resolution recordings
from 5 speakers speaking letters A-Z. The videos were down-sampled. This data set was
used for unsupervised training of the entire model.

TIMIT (Fisher et al., 1986): This data set consists of recordings from 680 speakers
covering 8 major dialects of American English reading ten phonetically-rich sentences in
a controlled environment. We used this for the unsupervised pretraining of the auditory
pathway.

In addition to these, Ngiam et al. (2011) use the Stanford Data Set which consists of
23 speakers speaking the letters A-Z and digits 0-9. However, this data set is not publicly
available yet and we were unable to use it. Since all of the above data sets differ in terms
of video recording environments, we use PCA in the hope to ameliorate some of these
difference. In all the experiments, all available data was used for unsupervised pretraining.

7.2 Model Description

A Multimodal DBM was trained with 4 consecutive image frames and 10 consecutive audio
frames since they roughly correspond to same amount of time. Both pathways used Gaussian
RBMs as the first layer, as defined in Equation 9. The auditory pathway consisted of 1200
input units followed by 2 layers of 1024 hidden units. The visual pathway had 384 input
units followed by 2 layers of 1024 hidden units. The joint layer had 2048 hidden units.

The task was to label each utterance with the digit or letter that was being uttered.
Different utterances had different lengths. We obtained a fixed length representation by
applying average pooling on the features obtained from the joint layer. In addition, we di-
vided each utterance into 3 equal splits and average pooled the features over those separately.
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Method Classification accuracy %

Concatenated video and audio features 63.5
Video RBM (Ngiam et al., 2011) 65.4 ± 0.6
Multimodal DAE (Ngiam et al., 2011) 66.7
Multimodal DBN 67.2 ± 0.9
Video DBM 67.8 ± 1.1
Video DAE (Ngiam et al., 2011) 68.7 ± 1.8
Multimodal DBM 69.0 ± 1.5

Discrete Cosine Transform (Gurban and Thiran, 2009) 64
Active Appearance Model (AAM) (Papandreou et al., 2007) 75.7
Fused Holistic + Patch (Lucey and Sridharan, 2006) 77.08
Visemic AAM (Papandreou et al., 2009) 83

Table 5: Classification results on the CUAVE data set.

These 4 sets of pooled features were concatenated to form the multimodal representation
of the input. We then used a linear SVM to classify based on these representations. This is
the same as the method used in Ngiam et al. (2011). No discriminative fine-tuning of the
DBM was performed.

7.3 Classification Results
We report the results of two classification experiments. In the first experiment, we classify
utterances from the CUAVE data set into 10 digit classes. We use the DBM to extract
features using both video and audio inputs. We compare this to a DBN, DAE (Ngiam
et al., 2011) and various other methods. The results are shown in Table 5. Linear SVM on
concatenated video and audio features serves as a baseline, which achieves 63.5% accuracy.
A video-only RBM achieves 65.4%, which can be improved to 67.2% with a 3-layer DBN
and to 67.8% with a 3-layer DBM. The denoising autoencoder achieves an even better
performance of 68.7%. Ngiam et al. (2011) showed that adding audio features seems to
hurt the performance of DAEs, reducing it down to 66.7%. The Multimodal DBM does not
suffer from adding audio features and improves the performance slightly to 69.0%. However,
this is not a significant improvement over the Video DAE. Note that the DBM was trained
on less data compared to the Video DAE of Ngiam et al. (2011). The Multimodal DBM does
improve significantly on the performance of the Video DBM trained on the same amount
of data.

The performance of the deep models is much worse than that of Active Appearance Mod-
els (Papandreou et al., 2007, 2009) and Patch-based methods (Lucey and Sridharan, 2006).
However, these models use a different train-test split and specialized image preprocessing
techniques that are specifically designed for visual speech recognition tasks.

In our second experiment, we try to classify utterances from the AVLetters data set into
26 letter classes. In this case the audio input is considered missing and we use the DBM to
infer the joint hidden representation keeping the audio input unclamped. We do the same
for a DBN as well as compare to DAEs and other methods. Table 6 shows the results.

The baseline model which uses the preprocessed video features achieves 46.2% accuracy.
An RBM on the same features achieves 54.2%, whereas a 3-layer DBM gets 61.8% and a
DAE gets 64.4%. However, the Multimodal DAE again suffers from adding audio features at
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Method Classification accuracy

Video features (Ngiam et al., 2011) 46.2
Video RBM (Ngiam et al., 2011) 54.2 ± 3.3
Multimodal DAE (Ngiam et al., 2011) 59.2
Video DBM 61.8 ± 2.5
Multimodal DBN 63.2 ± 2.1
Video DAE (Ngiam et al., 2011) 64.4 ± 2.4
Multimodal DBM 64.7 ± 2.5

Multiscale Spatial Analysis (Matthews et al., 2002) 44.6
Local Binary Pattern (Zhao et al., 2009) 58.85

Table 6: Classification results on the AVLetters data set.

test time compared to a Video DAE, getting an accuracy of 59.2%. The Multimodal DBM,
on the other hand, improves over the Video DBM and gets 64.7%, essentially matching the
performance of the Video DAE (even though it used less data).

These experiments show that the Multimodal DBM model can effectively combine fea-
tures across modalities. It consistently shows improvements over training on unimodal data,
even when only unimodal inputs are given at test time.

8. Conclusion

We proposed a Deep Boltzmann Machine model for learning multimodal data representa-
tions. Large amounts of unlabelled data can be effectively utilized by the model. Pathways
for each modality can be pretrained independently and “plugged in” together for performing
joint learning. The model fuses multiple data modalities into a unified representation, which
captures features that are useful for classification and retrieval. It also performs well when
some modalities are absent and improves upon models trained on only the observed modal-
ities. Our model performs well in terms of classification results on the bi-modal MIR-Flickr
data set as well as on the CUAVE and AVLetters video-audio data sets, demonstrating the
usefulness of this approach.
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Abstract

Given a graph where vertices represent alternatives and arcs represent pairwise comparison
data, the statistical ranking problem is to find a potential function, defined on the vertices,
such that the gradient of the potential function agrees with the pairwise comparisons.
Our goal in this paper is to develop a method for collecting data for which the least
squares estimator for the ranking problem has maximal Fisher information. Our approach,
based on experimental design, is to view data collection as a bi-level optimization problem
where the inner problem is the ranking problem and the outer problem is to identify data
which maximizes the informativeness of the ranking. Under certain assumptions, the data
collection problem decouples, reducing to a problem of finding multigraphs with large
algebraic connectivity. This reduction of the data collection problem to graph-theoretic
questions is one of the primary contributions of this work. As an application, we study the
Yahoo! Movie user rating data set and demonstrate that the addition of a small number of
well-chosen pairwise comparisons can significantly increase the Fisher informativeness of the
ranking. As another application, we study the 2011-12 NCAA football schedule and propose
schedules with the same number of games which are significantly more informative. Using
spectral clustering methods to identify highly-connected communities within the division,
we argue that the NCAA could improve its notoriously poor rankings by simply scheduling
more out-of-conference games.

Keywords: ranking, active learning, scheduling, optimal experimental design, graph
synthesis, algebraic connectivity
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1. Introduction

The problem of statistical ranking1 arises in a variety of applications, where a collection of
alternatives is ranked based on pairwise comparisons. Methods for ranking must address
a number of inherent difficulties including incomplete, inconsistent, and imbalanced data.
Despite and possibly as a consequence of these difficulties, although ranking from pairwise
comparison data is an old problem (David, 1963), there have been several recent contribu-
tions to the subject with applications in social networking, game theory, e-commerce, and
logistics (Langville and Meyer, 2012; Osting et al., 2013b; Hirani et al., 2011; Jiang et al.,
2010; Callaghan et al., 2007).

The statistical ranking problem can be generally posed as finding an estimate for a
ranking, φ, for a set of alternatives from a data set which consists of (i) a set of alternative
pairs which have been queried, w, and (ii) noisy, cardinal2 pairwise comparisons for those
alternative pairs, y. We symbolically express an estimator for the ranking problem,

φ̂w = R(y, w), (1)

where the dependence of the ranking, φ̂w, on the queried pairs (data collected), w, is
emphasized by the subscript.

Consider the dependence of a ranking, φ̂w, satisfying (1), on the collected data, w.
Generally speaking, for a fixed number of alternatives, the more alternative pairs which
have been queried, the more informative we expect the ranking, φ̂w. That is, there is
a tradeoff between the amount of pairwise data collected and the informativeness of the
ranking. In this paper, we consider the following question: Given a pairwise comparison
data set, (w0, y0), and the opportunity to collect ξ additional pairwise comparisons, which
pairs should be targeted to maximally improve the informativeness of a statistical ranking,
φ̂w, satisfying (1)?

We propose a learning algorithm for ranking from cardinal pairwise comparisons. To
accomplish this, we follow the methodology of the optimal design community (Haber et al.,
2008; Pukelsheim, 2006; Melas, 2006; Fedorov, 1972), and consider the Fisher information
for the ranking estimate, φ̂w, denoted F.I.(φ̂w). We are thus led to the following bilevel
optimization problem:

max
w

f
(

F.I.(φ̂w)
)

(2a)

such that φ̂w = R(y, w) (2b)

w ∈ ZN+ , w � w0, ‖w − w0‖1 ≤ ξ. (2c)

1. We use the term ranking to indicate a numerical score for each item in a collection, which is also
sometimes referred to as a rating.

2. A cardinal pairwise comparison data set refers to quantitative (real-valued) comparisons between items,
as opposed to an ordinal pairwise comparison data set, where only pairwise preferences are specified.
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where N :=
(
n
2

)
= n(n−1)

2 and f : Sn+ → R is a convex function. For general optimal design
problems, common choices for the scalar function f(A) include

f(A) = min
i

λi(A) E-optimal (3a)

f(A) = −trA−1 = −
∑
i

λi(A
−1) A-optimal (3b)

f(A) = detA =
∏
i

λi(A) D-optimal, (3c)

where {λi(A)}ni=1 denote the eigenvalues of A. The constraint in (2c) specifies that only a
limited amount of additional data is collected.

The ranking problem can be represented on a complete directed graph, G = (V,A), with
vertices representing the alternatives and the pairwise comparison data, y, is a function
on the arcs. The queried pairs, w, can be viewed as an integer valued function on the
arcs representing the number of times a pairwise comparison has been queried for that
particular pair. In Section 4, we show that for the least squares ranking estimate, φ̂w =
arg min〈φ,1〉=0 ‖Bφ − y‖2,w, where B is defined in Section 3, the constraint (2b) in the
optimization problem (2) decouples, yielding a graph synthesis problem of finding the graph
whose w-weighted graph Laplacian has desired spectral properties. For example, an E-
optimal design (3a) corresponds to finding edge weights w for which the w-weighted graph
Laplacian has maximal second eigenvalue (algebraic connectivity). This reduction of the
data collection problem to graph-theoretic questions is one of the primary contributions of
this and previous work (Osting et al., 2013a).

For the active learning problem for ranking from ordinal pairwise data, there has been a
large amount of recent work, which we briefly discuss in Section 2. However, the analogous
cardinal problem considered here has received less attention. Several recent papers have
proposed using iid random sampling (corresponding to an Erdös-Rényi graph) for quality
assessment algorithms and crowdsourcing experiments, see, e.g., Eichhorn et al. (2010) and
Xu et al. (2012). These algorithms collect pairwise comparisons from a large number of
distributed sources without considering the informativeness of the resulting rankings. Like
random sampling, the data collection methodology advocated here does not depend on the
previous pairwise preferences to select new pairwise queries; our proposed learning algorithm
is parallelizable.

In Section 5, we consider several applications of the methodology developed in Section 4
for the optimal data collection problem (2). We begin with a few constructed examples and
show that graphs can be generated which have larger algebraic connectivity than Erdös-
Rényi randomly generated graphs. The rankings of the data sets represented by these
well-connected graphs are more informative then those represented by Erdös-Rényi graphs.
We then consider the data collection problem for ranking Yahoo! movies and for the 2011-
2012 NCAA Division 1 football season.

1.1 Application: Improving The Informativeness Of Yahoo! Movie Rankings

The Yahoo! Movie user rating data set consists of an incomplete user-movie matrix where
entries represent a score given to the movie by the user. By considering the differences in
movie reviews by each user, a pairwise comparison data set (w0, y0) can be constructed.
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For this data set, we empirically demonstrate that the assumptions made in Section 4 are
reasonable. By applying the methodology developed in Section 4, we show that the addition
of a small number of well-chosen pairwise comparisons can significantly increase the Fisher
informativeness of the ranking. The same number of randomly chosen additional pairs has
no appreciable impact on the Fisher information.

1.2 Application: Sports Scheduling

The statistical ranking problem arises in competitive sports. Here, teams (alternatives) are
ranked based on the schedule (queried alternative pairs) and the game results (pairwise
comparisons). The data set is incomplete if not all teams play all other teams; inconsistent
if there are teams A, B, and C, such that team A beats team B, team B beats team C, and
team C beats team A; and imbalanced if the “strength of schedule” varies among the teams.
In this setting, the tradeoff between the amount of data collected (number of games) and the
informativeness of the ranking is especially transparent. In a single elimination tournament
with n teams, there are only n−1 games played. Here, we expect that the “best team” wins
the tournament, but it is difficult to rank the remaining teams in any reasonable way. At
the other extreme, a round-robin tournament among n teams requires

(
n
2

)
games which may

not be possible if n is large. The optimal data collection problem (2) can be interpreted as
designing the schedule so that the rankings are the most informative, and thus we refer to the
optimal design problem in this context as schedule design. In Section 5.8, we study the 2011-
12 NCAA football schedule and, using the methodology developed in Section 4, propose
schedules with the same number of games which are significantly more informative. Using
spectral clustering methods to identify highly-connected communities within the division,
we argue that the NCAA could improve its notoriously poor rankings by simply scheduling
more out-of-conference games. In Section 5.11, we continue with the graph constructed in
Section 5.8 and demonstrate using synthetic data that ranking estimates obtained via active
sampling are more accurate (in the sense of both the L2-distance and the Kendall-τ rank
distance) than via random sampling.

1.3 Outline

In Section 2, we review related work. In Section 3, we review properties of the eigenvalues
of the graph Laplacian and establish notation used in subsequent sections. In Section
4 we study the optimal data collection problem (2) and show the reduction of (2) to a
graph synthesis problem. In Section 5, we conduct a number of numerical experiments to
demonstrate how the optimal data collection methodology developed in Section 4 can be
employed. Finally, we conclude in Section 6 with a discussion of further directions.

2. Related Work

Our work is related to several subject areas, which we discuss in turn: active learning
methods for ordinal ranking, statistics and experimental design, sports scheduling, and
graph theory. This work is an extension of the conference proceeding, Osting et al. (2013a).
In particular, the present article includes a more extended survey of related work, provides
a comparison of Erdös-Rényi graphs and those with maximal algebraic connectivity and
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a discussion of the implications of this for the optimal data collection problem, a more
complete discussion of the scalarizing criterion for the Fisher information (3), and additional
examples.

2.1 Active Learning Methods For Ordinal Ranking

Ailon et al. (2014) and Ailon (2012) study the problem of optimally sampling preference
labels for the minimum feedback arc-set in weighted tournaments (MFAST) also known as
Kemeny-Young ranking. In this work, the data set considered is ordinal, i.e., only pair-
wise preference labels are specified, whereas in the present work, the data set is cardinal,
i.e., the preferences are represented as quantitative (real valued) differences between items.
Jamieson and Nowak (2011b) and Jamieson and Nowak (2011a) consider the problem of ac-
tively learning the optimal permutation for a collection of alternatives under the assumption
that the alternatives have additional geometric structure, namely a Euclidean embedding
in a low dimensional space. Wauthier et al. (2013) propose ranking methods based on in-
dependent random sampling, which have worse theoretical complexity, but are relatively
simple and easily parallelizable.

2.2 Statistics And Experimental Design

Excellent surveys of the optimal experiment design literature can be found in Haber et al.
(2008); Pukelsheim (2006); Melas (2006); Fedorov (1972). Methods of optimal experiment
design have been applied to ill-posed inverse problems, e.g., in geophysical (Haber et al.,
2008) or biomedical imaging (Horesh et al., 2011, ch. 13, p. 273-290), (Chung and Haber,
2012; Quinn and Keough, 2002; DiStefano 3rd, 1976). It is instructive to consider the
analogy between these applications and the optimal data collection problem considered
here. In imaging systems, there is a tradeoff between the amount of collected data and the
accuracy of the reconstruction, or equivalently, the sparsity of the measurement and the
uncertainty in the solution to the inverse problem. For application dependent reasons (e.g.,
high radiation dose to a patient or the cost of collecting data), it is often desirable to place as
few sensors as possible while still maintaining an acceptable accuracy in the reconstruction.
In the current work, the goal is to construct the best ranking possible from a small number
of pairwise comparisons. In both situations, it is desirable to take “measurements” which
are maximally informative.

2.3 Methods For Scheduling From Sports

As discussed in the introduction, in the context of sports ranking, (2) is equivalent to
optimal schedule design. There are large variations in the methods currently used for sports
scheduling. It is convenient to distinguish between static and dynamic scheduling. In static
scheduling, the schedule is determined prior to the season, independent of the performance
of teams throughout the season. Examples of leagues employing static schedules include
NCAA football and Major League Baseball (MLB). In dynamic scheduling, the schedule is
determined by past score results. For example, in a single elimination tournament, a team
advances to the next round only if they win in the current round. Leagues which partially
rely on single elimination tournaments include ATP tennis and FIFA World Cup soccer.
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Glickman (2005) proposes a dynamic scheduling method where games are scheduled which
maximize the expected gain in information and thus one can view the resulting schedules
as a greedy algorithm to learn as much as possible about the rankings. This active learning
algorithm is similar to several in the machine learning community, where past observations
are used to control the process of gathering future observations, see, for example, Krause
et al. (2008); Seeger and Nickisch (2011); Silva and Carin (2012). While dynamic schedules
utilize the results of previous games and can thus be more informative than static schedules,
they have the disadvantage that they may not be completely determined prior to the season.
The algorithm developed in this paper is a static scheduling method.

Another type of scheduling in sports focuses on the seeding policy of single-elimination
tournaments with the objective of arranging the teams so that the outcome of the tourna-
ment agrees with a preexisting ranking (Glickman, 2008; D’Souza, 2010; Scarf and Yusof,
2011) or an arrangement which favors a particular team (Vu et al., 2009). These objectives
depend on a preexisting ranking of the teams, which we do not assume to know in this
paper. Another type of tournament scheme is investigated by Ben-Naim and Hengartner
(2007), where a sequence of rounds of diminishing size are used to determine the best team.

2.4 Graph Theory

In this paper, we reduce the schedule design problem (2) to a graph synthesis problem.
We focus on the optimality condition given in (3a), which reduces to finding graphs with
maximal algebraic connectivity. There is a tremendous amount of work on the algebraic
connectivity of graphs, originating with studies by Fiedler (1973). Many properties of
algebraic connectivity are reviewed in (Mohar, 1991; Biyikoglu et al., 2007) and we also
review some of these results in Section 3. The problems arising from the other optimality
conditions, (3b) and (3c), are less well studied (Grimmett, 2010; Ghosh and Boyd, 2006a;
Ghosh et al., 2008).

The robustness of a network to node/edge failures is highly dependent on the algebraic
connectivity of the graph. Also, the rate of convergence of a Markov process on a graph to
the uniform distribution is determined by the algebraic connectivity (Boyd et al., 2004; Sun
et al., 2004). In the “chip-firing game” of Björner et al. (1991), the algebraic connectivity
dictates the length of a terminating game. Consequently, algebraic connectivity is a measure
of performance for the convergence rate in sensor networks, data fusion, load balancing, and
consensus problems (Olfati-Saber et al., 2007).

Finally, we mention recent work of Boumal et al. (2014) on a problem of estimating a
set of rotations from a set of noisy measurements. Here, bounds on synchronization are
connected to the algebraic connectivity of a measurement graph, where the edge weights
are proportional to the measurement quality.

3. Eigenvalues Of The Graph Laplacian And Algebraic Connectivity

In this section, we briefly survey relevant results on the eigenvalues of the graph Laplacian
and algebraic connectivity. More extensive treatments are given in Fiedler (1973); Biyikoglu
et al. (2007); Mohar (1991); Chung (1997). In Section 3.1, we recall algorithms for comput-
ing graphs with large algebraic connectivity (Ghosh and Boyd, 2006b; Wang and Mieghem,
2008).
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Let B ∈ RN×n where N :=
(
n
2

)
be the arc-vertex incidence matrix for the complete

directed graph G = (V,E) on |V | = n nodes,

Bk,j =


1 j = head(k)

−1 j = tail(k)

0 otherwise.

(4)

Here, we have used the terminology that if an arc k = (i, j) is directed from node i to node
j then i is the tail and j is the head of arc k. The arc orientations (heads and tails of arcs)
can be chosen arbitrarily. The matrix B as defined in (4) is also sometimes referred to as
the graph gradient (Hirani et al., 2011; Jiang et al., 2010). Given an edge-weight w ∈ ZN+ ,
the w-weighted graph Laplacian is defined

∆w := BtWB where W = diag(w).

If we consider a subset of the edges, Ẽ ⊂ E, and let w be the indicator function on Ẽ, then
∆w is referred to as the un-normalized (symmetric) graph Laplacian for (G, Ẽ). One may
interpret the triple (G,E,w) for w ∈ ZN+ as a directed multigraph where wk for k = (i, j)
is the number of arcs connecting vertices i and j. The w-weighted degree vector d ∈ Rn is
defined by di =

∑
j wij . Let M := ‖w‖1 = 1

2‖d‖1 and d+ and d− denote the maximum and
minimum w-weighted degrees in the graph.

Let λi(w) for i = 1, . . . , n denote the eigenvalues of the w-weighted graph Laplacian,
∆w. The eigenvalues are contained in the interval [0, d+]. The first eigenvalue of ∆w, λ1,
is zero with corresponding eigenvector v1 = 1. The second eigenvalue, λ2, is nonzero if and
only if the graph is connected. The second eigenvalue is characterized by

λ2(w) = min
‖v‖=1
〈v,1〉=0

‖Bv‖2,w. (5)

In the case where w is the indicator function for an edge set Ẽ, λ2(w) is referred to as the
algebraic connectivity of the graph G = (V, Ẽ). The eigenvector v2 corresponding to λ2 is
sometimes called the Fiedler vector after Miroslav Fiedler for his contribution to the subject
(Fiedler, 1973). For w ∈ ZN+ , λ2(w) is the algebraic connectivity for the multigraph with
wij edges between nodes i and j.

Let wi ∈ ZN+ for i = 1, 2 be edge weights on G. It follows from (5) that w1 ≤ w2

implies λ2(w1) ≤ λ2(w2). That is, the function λ2(w) is non-decreasing in w. In particular,
if wi ∈ {0, 1}N are the indicator functions for two edge sets Ei, i = 1, 2 and w1 ≤ w2

(component-wise), then E1 ⊆ E2 and the more connected graph has greater algebraic
connectivity.

Let U ⊂ V and cut(U,U c) :=
∑

i∈U,j∈Uc wij measure the set of edges connecting U and
U c := V \ U . Then the algebraic connectivity is bounded by the normalized graph cut,

λ2(w) ≤ min
U⊆V

n|cut(U,U c)|
|U ||U c|

. (6)

In particular, if U = {v} where v ∈ V is the node with smallest degree, i.e., dv = d−, then
dv ≤ 2M

n where M = ‖w‖1 and we obtain

λ2(w) ≤ nd−
n− 1

≤ 2M

n− 1
. (7)
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Properties of graphs for which the bound in (7) is tight have been studied (Fallat et al.,
2003).

If w ∈ {0, 1}N is the indicator function for an incomplete edge set Ẽ and G̃ := (V, Ẽ),
then the edge connectivity of a G̃, Ce(G̃), is the minimal number of edges whose removal
would result in a disconnected graph,

Ce(G̃) = min
A⊂V

∑
i∈A,j∈Ac

wij .

The vertex connectivity of G̃, Cv(G̃) is the minimal number of vertices (together with
adjacent edges) whose removal would result in a disconnected graph. In this case, the
algebraic connectivity is bounded above by both the edge and vertex connectivities,

λ2(w) ≤ Cv(G̃) ≤ Ce(G̃),

(Fiedler, 1973). The algebraic connectivity can also be bounded in terms of Cheeger’s
inequality, Buser’s inequality, and the diameter of the graph (Biyikoglu et al., 2007; Mohar,
1991; Chung, 1997).

There are also a number of results for the perturbation of the eigenvalues of ∆w under
changes to the weights w. Let ∆wv = λv, λ > 0, w0 = mink wk and w′ = w − w0. Then

∆w′v = (λ− w0n)v. (8)

This follows from the fact that BtB = n Id − 1n1tn. Thus, adding weight w0 to w simply
increases all of the eigenvalues of ∆w by w0.

Consider the weight w′ = w + δk where δk is the indicator function for edge k. Then
using Weyl’s theorem (Horn and Johnson, 1990), we obtain

λ2(w′) ≤ λ2(w) + ‖Btdiag(δk)B‖ = λ2(w) + 2. (9)

Consider the weight w′ = w + δk where δk is the indicator function for edge k. Denote
the eigenvalues of the w and w′-weighted graph Laplacians by λj and λ′j respectively. Then
the eigenvalues λ and λ′ interlace (Mohar, 1991), i.e.,

0 = λ1 = λ′1 ≤ λ2 ≤ λ′2 ≤ λ3 ≤ . . . ≤ λn ≤ λ′n. (10)

3.1 Finding Graphs With Large Algebraic Connectivity

In several applications, it is useful to compute graphs with large algebraic connectivity, (5).
The problem of finding weights w ∈ RN which maximize λ2(w) is a convex optimization
problem and can be formulated as a semidefinite program (SDP) (Ghosh and Boyd, 2006b).
However, if w ∈ ZN+ , the problem is NP-hard (Mosk-Aoyama, 2008). This is the case arising
in the optimal data collection problem.

The integer constrained problem may be solved by relaxing to the unconstrained problem
and then rounding the solution. This is clearly a lower bound on the optimal solution and,
if the values w are large, a reasonable approximation. Another approach, advocated by
Ghosh and Boyd (2006b); Wang and Mieghem (2008), is to use the greedy algorithm based
on the Fiedler vector described in Algorithm 1. This algorithm adds a specified number of
edges to an input graph to maximize the algebraic connectivity of the resulting augmented
graph. In this work, we refer to graphs produced via this method as nearly-optimal.
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Algorithm 1 A greedy heuristic for finding integer-valued edge weights w for which the
w-weighted graph Laplacian has large second eigenvalue (Ghosh and Boyd, 2006b; Wang
and Mieghem, 2008). See Section 3.1.

Input: An initial edge weight w0 ∈ ZN+ defined on the complete graph of n nodes and
an integer, ξ.

Output: An edge weight, w � w0, such that ‖w − w0‖1 = ξ, and ∆w has large second
eigenvalue.

Set w = w0 (current edge weight)
for ` = 1 to ξ, do

Compute the second eigenvector, F = arg min
‖v‖=1
〈v,1〉=0

‖Bv‖w

Find the edge (i, j) which maximizes (Fi − Fj)2

Set w = w + δij
end for

4. Optimal Scheduling Using A Least Squares Ranking

We assume that each alternative j = 1, . . . , n has a ranking (measure of strength) given by
φj . We consider a complete graph with n nodes representing the alternatives. The edges
of the graph are given an arbitrary orientation and enumerated k = 1, . . . ,

(
n
2

)
≡ N . Let

B ∈ RN×n denote the arc-vertex incidence matrix (4) for the complete graph. For each
ordered pair k = (i, j), we assume that the pairwise comparison data collected is of the
form

yk = (Bφ)k + εk, (11)

where εk is a random variable with zero mean, i.e., Eε = 0. Let wk ∈ Z+ denote the number
of pairwise comparisons between alternatives i and j. We assume that the variance of εk
is given by σ2/wk for some constant σ. More comparisons between alternatives i and j,
reduce the variance in the observed pairwise comparisons.

4.1 Ranking

There are several choices for the ranking R(y, w) in (1). The Gauss-Markov theorem states
that the least squares estimator,

φ̂w = arg min
〈φ,1〉=0

‖Bφ− y‖2,w (12a)

= (BtWB)†BtWy, (12b)

is the linear, unbiased (E[φ̂w] = φ) estimator with smallest covariance. In (12b), W :=
diag(w) is the diagonal matrix with entries Wkk = wk. Equation (12a) can be interpreted
as finding a potential function, φ, defined on the vertices, such that the gradient of the
potential function agrees with the pairwise comparisons in the least squares sense. The
least-squares estimate (12) is also sometimes referred to as HodgeRank (Jiang et al., 2010)
and is related to the Massey and Colley methods used in sports rankings (Langville and
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Meyer, 2012). The least squares estimator has proven to have relatively good predictive
power when empirically compared against a number of other ranking methods on sports
data sets (Barrow et al., 2013) and is the ranking method considered in the present work.

Proposition 4.1 Consider the data model (11) where ε is a random vector with Eε = 0
and Var(ε) = σ2W−1 where W = diag(w) and w ∈ ZN+ . The Fisher information of the least

squares estimator φ̂w, as defined in (12), is given by

F.I.(φ̂w) = σ−2(BtWB) = σ−2∆w, (13)

where ∆w is the w-weighted graph Laplacian.

Proof Let φ̂w be the least squares estimator (12) for φ in (11). We first compute

φ̂w = (BtWB)†BtWy = (BtWB)†BtW (Bφ+ ε) = φ+ (BtWB)†BtWε.

Thus,

Var(φ̂w) = E
[
(φ̂w − φ)(φ̂w − φ)t

]
= (BtWB)†BtWE

[
εεt
]
WB(BtWB)†.

Assuming that E
[
εεt
]

= σ2W−1, we obtain

Var(φ̂w) = σ2(BtWB)† = σ2∆†w, (14)

which is the Moore-Penrose pseudoinverse of the w-weighted graph Laplacian. Since the
least squares ranking is unbiased, i.e., Eφ̂w = φ, the Fisher information is the pseudoinverse
of the covariance matrix, Var(φ̂w).

4.2 Optimal Data Collection

The optimal data collection problem (2) is a scalarization of maximizing F.I.(φ̂w) in the
sense of the semi-definite ordering (i.e., A ≥ B if A − B � 0). Traditional optimality
criteria are functions of the eigenvalues of F.I.(φ̂w) such as given in (3) (Haber et al., 2008;
Pukelsheim, 2006; Melas, 2006; Fedorov, 1972).

Proposition 4.2 Consider the data model (11) with ε as in Prop. 4.1 and let φ̂w be the
least squares estimator (12). The three optimality criteria (3) for the bi-level optimization
problem (2) are given by

f
(

F.I.(φ̂w)
)

= λ2(w) E-optimal (15a)

f
(

F.I.(φ̂w)
)

= −
∑
i≥2

λ−1
i (w) A-optimal (15b)

f
(

F.I.(φ̂w)
)

=
∏
i≥2

λi(w) D-optimal, (15c)

where λi(w) for i = 1, . . . , n denote the eigenvalues of the w-weighted graph Laplacian, ∆w.
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Proof For a connected graph, the only zero eigenvalue of the graph Laplacian is the first
one. The expressions in (15) then follow directly from F.I.(φ̂w) = ∆w, as shown in Prop.
4.1, and the optimal criteria definitions in (3).

Proposition 4.1 shows that F.I.(φ̂w) doesn’t depend on the scores, y. Consequently, the con-
straint in the optimal data collection problem (2b) decouples. Using the E-optimal criteria
(15a), the bilevel optimization problem (2) reduces to the following eigenvalue optimization
problem

max
w

λ2(w) (16)

such that w ∈ ZN+ , w � w0, ‖w − w0‖1 ≤ ξ.

Equation (16) can be interpreted as the graph synthesis problem of adding ξ edges to the
multigraph representing the data set to maximize the algebraic connectivity.

Remark 1 The A- and D-optimal conditions given in Proposition 4.2 also have interesting
interpretations in terms of the graph. By Kirchhoff’s matrix-tree theorem, the D-optimal
condition can be interpreted as the number of spanning trees within the graph (Ghosh and
Boyd, 2006a). The A-optimal condition is the total effective resistance of a electric circuit
constructed by identifying each edge of the graph with a resistor of equal resistance (Ghosh
and Boyd, 2006a; Ghosh et al., 2008) and is related to the return time for a reversible
Markov chain (Grimmett, 2010).

We also comment that the T-optimality condition, tr
(

F.I.(φ̂w)
)

, which is another cri-

teria commonly used in optimal design, simplifies in this setting to tr(∆w) = ‖w‖1, which
is simply the total number of pairwise comparisons.

5. Numerical Experiments

In this section, we study graphs corresponding to data sets which have informative rankings,
which, by Proposition 4.2, are those with large algebraic connectivity. In Section 5.1, we
consider structured graphs for which the eigenvalues of the Laplacian can be analytically
computed and small graphs with ≤ 5 edges. In Section 5.2, we compare the expected
algebraic connectivity of Erdös-Rényi random graphs with graphs obtained using the greedy
algorithm described in Section 3.1. In Section 5.3, we consider the informativeness of the
ranking for the Yahoo! Movie user ratings data set. In Section 5.8, we discuss the algebraic
connectivity for the graph corresponding to the 2011-12 NCAA Division I football schedule.
In Section 5.11, we continue with the graph constructed in Section 5.8 and demonstrate
using synthetic data that ranking estimates obtained via active sampling are more accurate
(in an L2 sense) than via random sampling.

5.1 Algebraic Connectivity For Example Graphs

In this section, we give results on the algebraic connectivity for graphs with easily com-
putable spectra and graphs with a small number of nodes. In Table 1, we tabulate the
eigenvalues, algebraic connectivity (5), edge connectivity, vertex connectivity, and diameter
for 4 well-known graphs.
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complete
path, Pn cycle, Cn complete, Kn bipartite, Kn,`

diagram 1 2 3 4

1 2

34

1 2

34

1

2

3

4

5

eigenvalues 2− 2 cos(πk/n) 2− 2 cos(2πk/n) 01 , nn−1 01 , n`−1,
k = 0, . . . n− 1 k = 0, . . . n− 1 `n−1, (`+ n)1

alg. conn. (5) 2− 2 cos(π/n) 2− 2 cos(2π/n) n min(n, `)
edge conn. 1 2 n− 1 min(n, `)
diameter n− 1 bn/2c 1 2

Table 1: A comparison of several measures of connectivity for 4 well-known graphs. We
assume n ≥ 3. Subscripts on the eigenvalues denote multiplicity and b·c indicates
the floor function. See Section 5.1.

The number of distinct n-node, connected, unlabeled graphs for n =1, 2, 3, . . . are 1,
1, 2, 6, 21, 112, 853, 11117, 261080,. . . .3 In Figure 1 we plot, for n = 4 and n = 5,
each of these graphs together with the algebraic connectivity, λ2. In Figure 1, we observe
that as the number of edges, m, is increased, the algebraic connectivity, λ2, generally
increases. Furthermore, for a fixed number of edges, m, the algebraic connectivity can vary
significantly. For m = 5, 6, and 7, the value of λ2 varies by a factor ≥ 2. For m = 5, the
graph with smallest λ2 has small edge connectivity (and hence small algebraic connectivity)
and the graph with largest λ2 has nodes with equal degree. These small graphs beautifully
illustrate the bounds given in Section 3.

In Figure 2, we illustrate the effect of adding edges on the algebraic connectivity of
a graph by studying (16) where ‖w0‖1 = 6 and ξ = 1. Although the graphs in Figure
2 are small in size, it is already nontrivial to determine which edge should be added to
maximally increase the algebraic connectivity. We observe that for graphs with low algebraic
connectivity, a significant gain can be achieved, while the results for graphs with relatively
high algebraic connectivity are modest. In the lowermost panel in Figure 2, the algebraic
connectivity remains constant as an edge is added. This follows from the fact that the
second eigenvalue for the graph on the left has multiplicity 2 and the interlacing property
described in (10).

Further consideration of the algebraic connectivity for certain families of graphs is con-
sidered in Kolokolnikov (2014). Here, it is observed that the greedy algorithm (Algorithm 1)
is unable to discover certain small, structured graphs with maximal algebraic connectivity.

3. This is sequence number A001349 in the The On-Line Encyclopedia of Integer Sequences, published
electronically at http://oeis.org.

2992

http://oeis.org


Optimal Data Collection For Informative Rankings

m=3, λ2=0.586 m=3, λ2=1 m=4, λ2=1

m=4, λ2=2 m=5, λ2=2 m=6, λ2=4

m=4, λ2=0.382 m=4, λ2=0.519 m=4, λ2=1

m=5, λ2=0.519 m=5, λ2=0.697 m=5, λ2=0.83

m=5, λ2=1 m=5, λ2=1.38 m=6, λ2=0.83

m=6, λ2=1 m=6, λ2=1 m=6, λ2=1.38

m=6, λ2=2 m=7, λ2=1 m=7, λ2=1.59

m=7, λ2=2 m=7, λ2=2 m=8, λ2=2

m=8, λ2=3 m=9, λ2=3 m=10, λ2=5

Figure 1: The 4- and 5-node connected graphs and their algebraic connectivity, λ2. Graphs
with large algebraic connectivity represent data sets with informative rankings.
See Section 5.1.
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λ2=0.83 λ2=2

λ2=1 λ2=1.59

λ2=1 λ2=1.59

λ2=1.38 λ2=2

λ2=2 λ2=2

Figure 2: Targeted data collection for small graphs. (left) The five topologically distinct
connected graphs with n = 5 nodes and m = 6 edges. (right) For each edgeset on
the left, we select one additional edge (blue dashes) so that λ2 for the perturbed
graph is maximal. The algebraic connectivity of each graph is indicated. By
Prop. 4.2, a ranking on a data set represented by a graph on the right is more
informative than one from a graph on the left. See Section 5.1.

5.2 Algebraic Connectivity Of Erdös-Rényi Random Graphs And Computed
Nearly-Optimal Graphs

We consider the Erdös-Rényi random graph model G(n, p) containing graphs with n nodes
and edges included with probability p, independent from every other edge. The expected
number of edges for a graph in G(n, p) is p

(
n
2

)
and the threshold for connectedness is

pc = logn
n .

There are several results on the spectrum of the graph Laplacian for Erdös-Rényi graphs,
especially in the limit n ↑ ∞; see, for example, Juhász (1991); Chung et al. (2003); Feige and
Ofek (2005); Coja-Oghlan (2007); Jamakovic and Mieghem (2008); Oliveira (2009); Chung
and Radcliffe (2011); Kolokolnikov et al. (2014). The algebraic connectivity of Erdös-
Rényi, Watts-Strogatz, and Barabási-Albert random graphs has been studied numerically
in Jamakovic and Uhlig (2007). The algebraic connectivity of a Watts-Strogatz graph is
known to have a phase transition (Olfati-Saber et al., 2007).

We will utilize the following elementary upper bound on the algebraic connectivity,
analogous to (7), derived using a concentration inequality.
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Proposition 5.1 Let ε > 0 and assume n to be even. With probability at least 1 − ε, the
algebraic connectivity, λ2, of an Erdös-Rényi graph G(n, p) satisfies

λ2 ≤ np+ 4n−2
√

2 log(1/ε). (17)

Proof Choose any subset U ⊂ V with |U | = n
2 . Equation (6) implies that λ2 ≤ 4C

n where

C ∼ B(n
2

4 , p). For a > 0, we compute

pr (λ2 ≥ np+ a) ≤ pr (4C/n ≥ np+ a) = pr
(
C − pn2/4 ≥ +an/4

)
≤ exp

(
−a2n4/32

)
,

where the last inequality is due to Hoeffding. Setting a = 4n−2
√

2 log(1/ε), we find that
pr (λ2 ≥ np+ a) ≤ ε as desired.

For a random graph G(n, p), the number of edges m ∼ B(N, p) where N := n(n − 1)/2.
Thus, E[m] = pN and we may restate (17) as: with probability at least 1− ε,

λ2 ≤
2E[m]

n− 1
+ 4n−2

√
2 log(1/ε). (18)

Indeed, the first term on the right hand side of (18) matches the right hand side of (7).
In Figure 3, we plot, for n = 50 (left) and n = 100 (right) and p = .4 (blue), p = .6

(red), and p = .8 (green) the value of m vs. λ2 for 5,000 randomly generated Erdös-Rényi
graphs. The mean values obtained are indicated by circles. We use the greedy algorithm
described in Section 3.1 (see Algorithm 1) with initial graph taken to be the path with n
vertices, Pn, to compute nearly-optimal graphs with n-nodes and m-edges. The solid black
line in Figure 3 represents the value of λ2 for these graphs. Finally, the dashed blue line in
Figure 3 represents the upper bound on λ2 given in (7) (compare also to Equation 18).

We observe in Figure 3 that nearly-optimal graphs have values which are indeed close to
the upper bound on the algebraic connectivity, indicating (i) the upper bound is nearly-tight
and (ii) the greedy heuristic (Algorithm 1) produces graphs which are nearly-optimal. We
also observe that the algebraic connectivity of nearly-optimal graphs is significantly better
than the values for an average Erdös-Rényi random graph.

5.3 Informativeness Of The Ranking For The Yahoo! Movie User Ratings
Data Set

In this section, we apply the methodology formulated in Section 4, to study the Fisher
informativeness of the Yahoo! Movie user rating data set. We show that the addition of
targeted edges can significantly improve the informativeness of the movie rating system.

5.4 The Data Set

The Yahoo! Movie user rating data set consists of a 7, 642×11, 915 user-movie matrix where
each of the 211, 197 nonzero entries (0.23% sparsity density) is a 1 to 13 rating (yah).4 Each
movie was rated by between 1 and 4,238 users (the average number of reviews per movie
is 17.7). Each user rated between 10 and 1,632 movies (the average number of reviews
made by each reviewer is 27.6). Of the 70,977,655 (movie) pairs (i, j) where i > j, there

4. 34 entries reviewing Yahoo! movie id 0 were discarded due to absence in movie content description file.
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Figure 3: Algebraic connectivity, λ2 as a function of m for 50- and 100-node graphs. The
dashed blue line represents the upper bound on λ2 given in (7). The solid black
line represents the nearly-optimal value of λ2. Finally, for p = .4 (blue), .6 (red),
and .8 (green) we give a scatter plot of (m,λ2) for 5,000 randomly generated
Erdös-Rényi graphs. The mean values obtained are indicated by circles. See
Section 5.2.

# times movie reviewed 1 2 3 4 5 6 7 8 9 ≥ 10
occurrences 4,901 1,882 897 548 398 316 237 202 167 2,367

Table 2: Frequency of reviews for items in the Yahoo! Movie user rating data set. See
Section 5.2.

are 5,742,557 for which a user has given a rating to both movies i and j implying that the
pairwise comparisons for the raw data set are 8.1% complete. The majority of movies in the
data set received relatively few reviews, as reported in Table 2. The movies which received
less than 10 rankings were discarded from the data set, leaving 2,367 movies, each of which
were reviewed by an average of 79.8 users. We then removed 11 users who did not review
any of the remaining movies. The remaining 7,631 reviewers reviewed between 1 and 1,220
movies (on average they reviewed 24.8 movies).

5.5 Construction Of Pairwise Comparison Data From Movie-User Rating Data

Let Σ be the set of Yahoo! users, V be the set of all Yahoo! movies and rσi be the rating
given to movie i ∈ V by user σ ∈ Σ. For each unordered movie pair {i, j} ∈ V 2, we define

Σij = {σ ∈ Σ who rated both movies i and j}.

For each movie pair {i, j} ∈ V 2, we define wij to be the number of users who have viewed
both movies i and j, i.e., wij = |Σij |, and yk to be the average difference in movie reviews,
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φ̂w Movie Name
4.46 It’s a Wonderful Life (1946)
4.45 Singin’ in the Rain (1952)
4.34 Rear Window (1954)
4.11 24: Season 1 (2002)
3.96 The Longest Day (1962)
3.94 The Man Who Shot Liberty Valance (1962)
3.92 Rebecca (1940)
3.87 Friends - The Complete Fourth Season (1997)
3.79 Lady and the Tramp (1955)
3.79 It Happened One Night (1934)

Figure 4: (top left) A log-histogram of the w-weighted degree distribution for the graph
representing the Yahoo! movie pairwise comparison data. (top right) A his-
togram of the residual, y−Bφ̂w, where φ̂w is the least squares ranking. (bottom)
Top 10 movies and ranking, φ̂w. See Section 5.3.

written

yij =
1

|Σij |
∑
σ∈Σij

(rσj − rσi ), where {i, j} ∈ V 2 and i < j. (19)

Note that the expression in parenthesis is anti-symmetric in the indices i and j and lies in
the interval [−12, 12]. The choice i < j corresponds to the choice in arc direction in (4). For
the Yahoo! Movie user rating data set, we have n := |V | = 2, 367, N :=

(
n
2

)
= 2, 800, 161,

m := ‖w‖0 = 1, 884, 504, and M := ‖w‖1 = 8, 322, 538. Thus, there exists at least one
comparison for m/N = 67% of the movie pairs. The mean w-weighted degree of each node
is given by 2 ·M/n = 3, 516. A log-histogram of the w-weighted degree distribution of the
graph representing the pairwise comparison data is given in Figure 4 (top left).

5.6 The Least Squares Ranking

A ranking is obtained by solving the least squares problem, (1), using Matlab’s lsqr func-
tion. The top ten movies found are given in Figure 4. The relative residual norm of the

least squares estimator, φ̂w, is ‖Bφ̂w−y‖w‖y‖w = 0.53. In Figure 4 (top right), we plot a histogram
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optimal 154.38 298.44 332.78

upper bound (7) 7,035 7,035 7,036

Figure 5: (left) The informativeness of the ranking, λ2(w), as a small number (.01% ·M)
of targeted pairwise comparisons (black) and randomly selected pairwise com-
parisons (blue) are added. (right) The value of λ2(w) for this augmented data
set and the upper bound on λ2 given in (7). The change in informativeness for
randomly added data is inappreciable compared to a 2.2 fold increase for targeted
data. See Section 5.3.

of the residual, y −Bφ̂w. For this pairwise comparison data set, the normality assumption
in Prop. 4.2 is reasonable.

The informativeness of the ranking is λ2(w) = [Var(φ̂w)]−1 = 154.38. This value is small
compared to the upper bound given in (7), λ2(w) ≤ 2M

n−1 = 7, 036. We next demonstrate
that the Fisher information can be significantly improved by the addition of a small number
of targeted pairwise comparisons.

5.7 Targeted Data Collection

We apply the optimal experimental design approach developed in Section 4 to improve the
Fisher information of the least squares ranking. To approximate the solution of (16), we
use the greedy algorithm described in Algorithm 1. The second eigenpair of the graph
Laplacian is computed using Matlab’s eigs function, initialized using the eigenvector from
the previous iteration. We choose a very modest value of pairwise comparison edges to add,
ξ = .01% ·M = 832 edges. The results are given in Figure 5. The addition of the targeted
pairwise comparisons leads to an increase in the second eigenvalue of the w-weighted graph
Laplacian by a factor of 2.2. The maximum increase for the addition of a single pairwise
comparison is ≈ 1, less than the upper bound given in (9). We observe in Figure 5, that
the rate of information increase slows as more pairwise comparisons are added. For a
comparison, we also consider the addition of randomly chosen movie pairs. For this modest
value of additional edges, ξ, the effect of the informativeness of the ranking is inappreciable.

Finally, we use graph visualization via spectral clustering to illustrate the pairwise com-
parison and targeted data. In Figure 6(top) we plot the pairwise movie comparisons ob-
tained from the Yahoo! user-movie database. In Figure 6(bottom) we plot the proposed
pairwise comparisons, targeted to improve the informativeness of the rating system. To
enhance the readability of the graph representation, we plot only 15% randomly selected
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1 7

 

 

Figure 6: Yahoo! Movie ratings and targeted data collection. (top) A (15% ran-
domly chosen) subset of the pairwise comparison graph for the Yahoo! user-
movie database. Nodes represent movies, node size reflects weighted degree (i.e.,
number of comparisons with other movies), and node color indicates genre (see
legend). Edges represent weighted pairwise comparisons colored by edge weights
(i.e., number of comparisons). (bottom) Pairwise comparisons targeted for col-
lection to improve the informativeness of the least squares ranking. Targeted
comparisons are colored by weight (multiplicity). See Section 5.3.
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nodes (356 of n = 2367) and the interconnecting edges (45, 327 of m = 1, 884, 504). Figure
6(top) was generated as follows. First normalized spectral clustering (based on k-means)
was used to detect clusters of movies. Next, the Fruchterman-Reingold algorithm was used
to generate reasonable positions for the movie clusters and the Kamada-Kawai algorithm
was used to place movies within the clusters (Traud et al., 2009). The node placement was
obtained using the full data set. Finally, the weighted graphs were plotted using wgPlot

(Wu, 2009). Figure 6(bottom) was then generated using the same node placements as in
Figure 6(top).

A comparison of the top and bottom panels of Figure 6 shows that the primary improve-
ment to informativeness arises from the addition of edges which connects two relatively
weakly connected components of the graph. With 4 exceptions, each targeted movie pair is
only incremented once; it isn’t generally advantageous to add an edge multiple times.

5.8 2011-12 NCAA Division I Football Schedule

Recall from Section 1 that in sports the optimal pairwise data collection problem in equiv-
alent to designing the schedule. In this section, we study the 2011-12 NCAA Division
1 football schedule, downloaded from Massey Ratings.5 The NCAA Division 1 Football
League is divided into the Football Bowl Subdivision (FBS) and Football Championship
Subdivision (FCS).6 The FBS is further decomposed into 12 conferences and the FCS into
15. Of the 246 teams in Division 1, 120 belong to FBS and 126 belong to FCS. Lafayette
College is a member of FBS, however every opponent of Lafayette during the 2011-12 season
was a member of the FCS. For our purposes, it is more convenient to reclassify Lafayette as
a member of FCS and thus, in what follows, FBS has 119 teams and FCS has 127. There
were m = 1430 games among the Division 1 teams and m = 693 games among the FBS
teams.

For static schedules, an important statistic is the the ratio of the total number of games
played to the total number of teams. For example, in Major League Baseball (MLB), there
are 30 teams, divided into two leagues: the American League (14 teams) and the National
League (16 teams). During the regular season, each team plays approximately 160 games,
primarily against teams within the same division. Thus, within each league, teams play
an average of 160/15 ≈ 10 times. With so many games and equal strength of schedule
among teams, it is intuitive that the scheduling has little effect on the rankings. And, in
fact, MLB simply uses win/loss percentages for ranking purposes. In the NCAA football
considered here however, there are 120 teams in the NCAA Football Bowl Subdivision
(FBS) and each team plays approximately 6 games per year within FBS. Thus each team
only plays roughly 5% of the other teams. There are several rankings for NCAA football
which are generated either mathematically or by expert opinion and then aggregated to
determine official rankings and select teams to compete in the prestigious end-of-season
“bowl games”. The fact that these rankings generally disagree and that none of them is
more reliable than the others suggest that none of them are very informative. It is this

5. These were obtained from http://masseyratings.com/scores.php?t=11590&s=107811&all=1&mode=2&

format=0

6. These were formally known as Division 1-A and 1-AA respectively.
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situation, where there are relatively few games compared to the number of teams, that the
schedule has a large effect on the rankings.

5.9 Data Visualization Via Spectral Clustering

We use the data visualization method described below to demonstrate that NCAA Division
1 teams primarily play against other teams within their own conference. We then show that
this clustering of teams by conference results in the graph having poor algebraic connectivity.

We first use normalized spectral clustering to detect communities within the teams (Shi
and Malik, 2000). This, in turn, relies on the k-means algorithm where k is the desired
number of communities (27 for Division 1 and 12 for Division 1 FBS). Then, using the
Matlab toolbox described in Traud et al. (2009), the Fruchterman-Reingold algorithm finds
an optimal placement of the communities and the Kamada-Kawai algorithm is used for
the placement of nodes within each community. The mean within-cluster sum of point-to-
centroid distances for the k-means clustering obtained for the Division 1 and Division 1
FBS data is 0.147 and 0.133 respectively.

In Figures 7 and 8, we plot the 2011-12 NCAA Division 1 and Division 1 FBS football
schedules respectively. In 7(top) and 8(top), the vertices represent teams, the edges rep-
resent games, and each vertex (team) is colored by conference membership. In 7(bottom)
and 8(bottom), the vertices represent the spectrally clustered communities and the edges
represent the community interactions. We observe from Figures 7 and 8 that the teams
primarily play within their own conference, which has implications discussed below.

We next compare the value of the algebraic connectivity for these schedules with sched-
ules from Erdös-Rényi random graphs and proposed nearly-optimal schedules.

5.10 Comparison Of NCAA Division 1, Erdös-Rényi Random And
Nearly-Optimal Schedules

In the introduction, we noted that there are several common scalar measures of Var(φ̂w),
three of which are given in (3). In this section, we compare these various measures for the
NCAA Division 1, Erdös-Rényi random, and nearly-optimal schedules.

More concretely, let w be a given schedule (defining a graph on n vertices) and define
the graph Laplacian: ∆w := Bt[diag(w)]B. Define the following three functions of w:

JE(w) := λ2(w) (20a)

JA(w) :=

[
1

n
tr(∆†w)

]−1

=

 1

n

∑
i≥2

1

λi(w)

−1

(20b)

JD(w) := log[det(∆w)]
1
n =

1

n

∑
i≥2

log[λi(w)]. (20c)

To obtain quantities more comparable to those for the E-optimality condition, for JA(w)
we have used the harmonic mean of the eigenvalues rather than the negative of the inverses
as in (15b) and for JD(w), we have taken the logarithm of the determinant in (15c). An
interpretation of the three quantities defined in (20) in terms of the graph is given in Remark
1.
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Figure 7: 2011-12 NCAA Division 1 (FBS and FCS) football schedule. Graph
representation of schedule via spectral clustering by games, top: vertices represent
teams, edges represent games, coloring indicates conference membership. bottom:
community detection of teams (represented using pie-graphs) reveals that teams
primarily play within their own conference. The dashed lines indicate an edge
cut which is discussed in the text. See Section 5.8.
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Figure 8: 2011-12 NCAA Division 1 (only FBS) football schedule. Graph repre-
sentation of schedule via spectral clustering by games, top: vertices represent
teams, edges represent games, coloring indicates conference membership. bottom:
community detection of teams (represented using pie-graphs) reveals that teams
primarily play within their own conference. See Section 5.8.
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For the Division 1 and Division 1 FBS schedules, we compute the various measures of
the quality of schedule given in (20) and record them in Table 3. We also plot JE(w) given
in (20a) in Figure 9 by a red diamond. We next discuss schedules for which we compare
the Division 1 and Division 1 FBS schedules in Table 3 and Figure 9.

The expected number of edges for a G(n, p) Erdös-Rényi random graph is pN where
N :=

(
n
2

)
. To compare to the football schedules, we take p = m/N and consider the family

of random graphs, G(n,m/N). For n = 119 and m = 693, we choose p = m/N ≈ 0.0987
which is approximately 2.5 times the threshold for connectivity, pc = log(n)/n ≈ 0.0402.
For n = 246 and m = 1430, we choose p = m/N ≈ 0.0475 which is approximately 2.1
times the threshold for connectivity, pc = log(n)/n ≈ 0.0224. In Table 3, we tabulate the
expected values of the three quantities given in (20) for G(n,m/N) graphs, obtained by
averaging over a sample size of 1000. Similar to Section 5.2, in Figure 9, we give a scatter
plot of (m,λ2) for G(n,m/N) graphs and indicate the mean values with a blue circle.

As in Section 5.2 and Section 5.3, we again use the greedy algorithm described in Section
3.1 (see Algorithm 1) to compute graphs with n nodes and m edges which nearly-maximize
JE = λ2. We then evaluate all three quantities given in (20) for these graphs and tabulate
these values in Table 3. The solid black line in Figure 9 is the best value of JE = λ2

obtained. Finally, the dashed blue line in Figure 9 represents the upper bound on λ2 given
in (7).

We observe in Figure 9 and Table 3 that the schedules which nearly-maximize JE(w) =
λ2 have significantly larger values of JE than the NCAA Division 1 and Division 1 FBS
schedules. In fact, the NCAA schedules have worse values than schedules associated with
Erdös-Rényi random graphs of the same size. Furthermore, we show in Table 3 that sched-
ules which maximize JE also have larger values of JA and JD. That is, the schedules
which are good in the sense of E-optimality are also good schedules in the sense of D- and
E-optimality as defined in (3).

The reason for the relatively poor value of JE(w) = λ2 for the NCAA Division 1 and
Division 1 FBS schedules can be understood from Figures 7 and 8. Figures 7 and 8 reveal
that teams primarily play within their own conference. This results in a small edge cut
between a conference (or set of conferences) and its vertex complement, which, by (6),
implies a small algebraic connectivity. For example, the edge cut indicated by the dashed
line in Figure 7 (entire NCAA Division 1 schedule) results in an upper bound on the algebraic
connectivity of 1.297. The edge cut obtained by considering the set consisting of teams in
the SWAC conference yields an upper bound equal to 1.043. Both of these bounds are
already less than the expected value of λ2 for Erdös-Rényi random graphs of comparable
size (compare with the top part of the first column in Table 3). To summarize, the NCAA
primarily schedules games among teams within the same conferences and this reduces the
informativeness of the rankings.

The schedule design methodology advocated in (16) is flexible in the following two senses:
(i) The optimal schedules contain symmetry with respect to permutations in the seeding of
the teams. This problem has been studied previously for tournaments; see the discussion in
Section 2. (ii) The optimal schedule is not time dependent and thus the scheduling of future
games does not depend on past game performances, i.e., the schedule is completely known
before the season begins and the games may be played in any order. These properties can
be exploited in the further design of the schedule.
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Figure 9: A comparison of JE(w) = λ2 defined in (20a) for the Division 1 and Division
1 FBS schedules, Erdös-Rényi random schedules, and schedules which nearly-
maximize λ2. The red diamonds represents the 2011 NCAA Division 1 (right)
and Division 1 FBS (left) football schedule. The solid black lines represent the
nearly-optimal values of λ2 obtained for n = 119 (left) and n = 246 (right).
The dashed blue lines represent the upper bound on λ2 given in (7). The blue
dots represent a scatter plot of (m,λ2) for 1,000 randomly generated Erdös-Rényi
graphs, G(n,m/N). The mean values are indicated by blue circles. See Section
5.8.

JE(w) in (20a) JA(w) in (20b) JD(w) in (20c)

Div. 1 FBS and FCS 0.7015 8.780 2.363
Erdös-Rényi, n = 246 2.892 9.681 2.358
E-optimal design, n = 246 6.630 10.71 2.403

Div. 1 FBS 1.725 9.634 2.372
Erdös-Rényi, n = 119 3.497 9.911 2.361
E-optimal design, n = 119 7.142 10.92 2.402

Table 3: A comparison of the three objective functions defined in (20) for the Division 1
and Division 1 FBS schedules, Erdös-Rényi random schedules, and schedules which
nearly-maximize JE(w) = λ2. Schedules which nearly-maximize JE(w) = λ2 also
have larger values of JA and JD than the comparison schedules. See Section 5.8

5.11 Synthetic Data Experiment On The 2011-2012 NCAA Division 1 FBS
Graph

To further illustrate and test our proposed active learning method, we again consider the
graph generated in Section 5.8 from the 2011-12 NCAA Division I Football Bowl Subdivision
(FBS) schedule with n = 119 nodes and m = 693 edges, as shown in Figure 8. We take as
ground truth rating, φ, a normally distributed vector with mean zero and variance, σ2 = 1.
The ground truth rating, φ, is used to generate new data according to the normal model
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Figure 10: A comparison of ranking errors and algebraic connectivity, a measure of the
informativeness of the ranking, for two data collection strategies: the proposed
active sampling method (black and green) and random sampling (red and blue).
(left) The L2-error, ‖φ̂ξ−φ‖2 between the estimated and ground truth rankings.
(center) The Kendall-τ rank distance, (21), between the estimated and ground
truth rankings. (right) The algebraic connectivity of the graph representing
the data set. See Section 5.11.

(11) with σ2 = 5. With this data, we solve (12) to obtain a least squares estimate, φ̂w0 .
We compute ‖φ̂w0 − φ‖2 = 17.31 and K(φw0 , φ) = 0.35. Here, the Kendall-τ rank distance
between two rankings φ1 and φ2 is defined as the fraction of pairwise disagreements between
the rankings,

K(φ1, φ2) :=
#{(i, j) : i > j, φ1(i) < φ1(j), and φ2(i) > φ2(j)}

n(n− 1)/2
. (21)

We then consider enhancing the data set by adding ξ more pairwise comparisons. Using
the enhanced data set, we compute an estimate of the ranking, φ̂ξ, and, as φ̂ξ is an unbiased

estimate of φ, expect ‖φ̂ξ−φ‖2 to diminish as ξ →∞. We choose ξ = 693, so that the num-
ber of pairwise comparisons (games played) is doubled. As in Section 5.3, we add pairwise
comparisons either by the greedy algorithm (Algorithm 1) or by random selection. As with
the data collected on the initial graph, the new data are collected according to the normal
model (11) with σ2 = 5. In Figure 10(left), we plot the number of additional pairwise
comparisons vs. the L2-error, ‖φ̂ξ − φ‖2, for an ensemble of ranking estimates determined
using the two data collection strategies. The (thin) blue and green lines represent the error
for 100 instances of data collection using the random and greedy methods respectively. The
(thick) red and black lines represent the mean and mean plus/minus one standard deviation
for each of the two data collection strategies. For ξ = 693, the mean L2-error for the pro-
posed data collection strategy is 11.38 while the mean error for the random data collection
strategy is 13.32, representing a reduction in error of 34% and 23% respectively. In Figure
10(center), we plot the number of additional pairwise comparisons vs. the Kendall-τ rank
distance, K(φ, φξ), for these two data collection strategies. For ξ = 693, the mean distance
for the proposed data collection strategy is .27 while the mean error for the random data
collection strategy is 0.30, representing a reduction in distance of 22% and 14% respectively.
In Figure 10(right), we plot the algebraic connectivity, a measure of the informativeness of
the ranking, vs. the number of additional pairwise comparisons. The black (red) line is the
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algebraic connectivity for the graph representing the data set where edges are added using
the greedy algorithm (random sampling). Supported by Propositions 4.1 and 4.2, the data
set represented by a graph with larger algebraic connectivity is more informative and thus
produces a ranking estimate with greater fidelity to the ground truth estimate.

6. Discussion And Future Directions

We have applied methods from optimal experiment design to provide a new framework for
data collection for more informative statistical rankings. At the heart of this framework is
a bi-level optimization problem (2) where the inner problem is to determine the unbiased
ranking for a given schedule and the outer problem is to identify data which maximizes
the Fisher information of the ranking. For the least-squares estimate, the outer problem
decouples from the inner problem and reduces to an eigenvalue optimization problem. For
the E-optimality criterion for the Fisher information, this is the problem of finding an edge
weight w ∈ ZN+ , such that the w-weighted graph Laplacian has large second eigenvalue (16).
This can be interpreted as finding a multigraph with large algebraic connectivity, a problem
which has been well-studied in graph theory. In the case of NCAA Division 1 football, we
demonstrated in Section 5.8 and Table 3 that the nearly-optimal data collection strategy in
the sense of E-optimality is also a good strategy in the sense of D- and A-optimality; the
choice of scalar function f : Sn+ → R as defined in (2) does not strongly effect the optimal
data collection strategy (see Remark 1 for a further discussion of these optimality criteria).
Furthermore, in Section 5.11, we demonstrate using a synthetically constructed data set on
this graph that the ranking estimate obtained via active sampling has greater fidelity to
ground truth than the ranking estimate obtained via random sampling.

There are several applications in, e.g., social networking, game theory, and e-commerce,
where improved data collection could potentially benefit ranking. In particular, for the
Yahoo! Movie user ratings data set (considered in Section 5.3), we have shown that the
informativeness of ranking can be increased by a factor of 2.2 if just .01% of additional
optimally-targeted pairwise comparisons are added to the data set. In contrast, if the same
amount of random data is added, there is an inappreciable effect on the informativeness
of the ranking. For this application, the data collection problem could be more carefully
modeled. Here, the pairwise comparison data is constructed from user rating data and thus
any targeted pairwise comparison addition must be solicited from a user. Since the number
of pairwise comparisons for which a particular reviewer adds when a new movie is reviewed
is equal to the number of previous reviews that user has contributed, it may make sense to
solicit additional reviews from users with many previous reviews. That is, the propagation
of information from the user reviews to the pairwise comparison data in (19) should also be
considered.

We have focused on optimal data collection for improved rankings, neglecting several im-
portant factors including the cost of data collection and potential constraints on what data
may be collected. There are two simple extensions to our method which may be employed
to accommodate these additional factors. The cost of data collection could be incorporated
by either adding a penalization term in (16) or by incorporating additional weights into the
norm used to compute λ2 in (16). Data collection constraints may be handled by explicitly
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forbidding certain edge weights to be incremented in the greedy Algorithm 1 for targeting
data collection.

The least-squares ranking estimate (1) is referred to as HodgeRank by some authors
(Jiang et al., 2010; Xu et al., 2011), since the Hodge decomposition implies that the residual
in (1), r = Bφ − y, can be further decomposed into two orthogonal components: (1) a
divergence-free component which consists of 3-cycles and (2) a harmonic component which
consists of longer cycles (Jiang et al., 2010; Hirani et al., 2011). In fact, Jiang et al. (2010)
argues that a data set which has a large harmonic component is inherently inconsistent
and does not have a reasonable ranking. The harmonic component lies in the kernel of
the graph Helmholtzian with dimension given by the first Betti number of the associated
simplical complex. Optimal reduction of the first Betti number may provide an alternative
approach to improving the informativeness of the least squares ranking.

Recently, Masuda et al. (2013) developed an algorithm for removing nodes from a graph
to increase the algebraic connectivity. This algorithm could be used to prune the alternatives
in a data set to increase the informativeness of a ranking.

Finally, we are interested in extending this work to nonlinear ranking methods, including
robust estimators (Osting et al., 2013b), random walker methods (Callaghan et al., 2007),
Perron-Frobenius eigenvalue methods (Keener, 1993; Langville and Meyer, 2012), and Elo
methods (Elo, 1978; Glickman, 1995; Langville and Meyer, 2012).
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Abstract

With the development of data acquisition equipment, more and more modalities become
available for gesture recognition. However, there still exist two critical issues for multi-
modal gesture recognition: how to select discriminative features for recognition and how
to fuse features from different modalities. In this paper, we propose a novel Bayesian
Co-Boosting framework for multi-modal gesture recognition. Inspired by boosting learning
and co-training method, our proposed framework combines multiple collaboratively trained
weak classifiers to construct the final strong classifier for the recognition task. During each
iteration round, we randomly sample a number of feature subsets and estimate weak classi-
fier’s parameters for each subset. The optimal weak classifier and its corresponding feature
subset are retained for strong classifier construction. Furthermore, we define an upper
bound of training error and derive the update rule of instance’s weight, which guarantees
the error upper bound to be minimized through iterations. For demonstration, we present
an implementation of our framework using hidden Markov models as weak classifiers. We
perform extensive experiments using the ChaLearn MMGR and ChAirGest data sets, in
which our approach achieves 97.63% and 96.53% accuracy respectively on each publicly
available data set.

Keywords: gesture recognition, Bayesian co-boosting, hidden Markov model, multi-
modal fusion, feature selection

1. Introduction

As one of the most natural and intuitive ways for human computer interaction, gesture
recognition has been attracting more and more attention from academe and industry. With
automatic gesture recognition techniques, one can use his/her hands to freely interact with
computers. It has been widely applied to sign language recognition (Zafrulla et al., 2011;
Oz and Leu, 2011), robot control (Raheja et al., 2010), games (Roccetti et al., 2011),
etc. In the early days, accelerometer-based approaches were especially popular for gesture
recognition, due to their simpleness and accuracy in data acquirement (Mantyla et al.,
2000; Chambers et al., 2002; Pylva̋na̋inen, 2005; Liu et al., 2009). As an extension to
the accelerometer, the inertial measurement unit (IMU) can be adopted to collect more
information, such as linear acceleration and angular acceleration. There are also several
IMU-based gesture recognition methods proposed recently (Zhang et al., 2013; Yin and

∗. Corresponding author.
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Davis, 2013). Nevertheless, the requirement of wearing accelerometers or IMUs limits the
applicability of the above approaches. Vision-based approaches, which do not need to wear
any extra devices, offer an appealing approach to gesture recognition. However, vision-
based approaches are vulnerable to illumination, self-occlusion, and variation of gesture.
Moreover, visual feature representation is still an open problem.

As an alternative, depth-aware camera (e.g., Microsoft R© Kinect
TM

) can capture RGB
image, depth image, and audio, which makes gesture recognition less sensitive to illumina-
tion changes, self-occlusion, and can offer strong information for background removal, object
detection, and localization in 3D space. With the prevalence of depth-aware camera, the
study of gesture recognition is extremely stimulated and multi-modal based approaches are
becoming a hot topic. Recently, there are many research works to utilize multiple modal-
ities acquired by depth-aware camera for gesture recognition (Wu et al., 2012; Lui, 2012a;
Malgireddy et al., 2012; Bayer and Silbermann, 2013; Nandakumar et al., 2013; Chen and
Koskela, 2013). Since 2011, ChaLearn has organized a series of competitions based on the

multi-modal gesture data captured by Kinect
TM

. The tasks include one-shot-learning of
gestures (Guyon et al., 2012) and continuous gesture spotting and recognition (Escalera
et al., 2013). Many of participants achieved satisfactory performances on gesture recogni-
tion. However, for multi-modal based approaches, there still exist two critical issues for
gesture recognition: how to select discriminative features for recognition, and how to fuse
features from different modalities.

In the context of dynamic gesture recognition, an instance is represented by a time series
sequence. Most of existing feature extraction methods for time series are mainly based on the
self-defined criterion functions to evaluate each feature dimension’s contribution (Kashyap,
1978; Mörchen, 2003; Yoon et al., 2005). For face detection, Viola and Jones (2001, 2004)
constructed a strong classifier by selecting a small number of important features using
AdaBoost. Foo et al. (2004) and Zhang et al. (2005) employed boosting learning for the
single-modal gesture recognition task. However, boosting learning could be prone to be
overfitting in practice when training data is rather small. As a late fusion strategy, co-
training alternately uses the most confident unlabeled data instance(s) in one modality
to assist the model training of another modality, to overcome the problem of insufficient
training samples (Blum and Mitchell, 1998). Furthermore, Yu et al. (2008, 2011) proposed
a Bayesian undirected graphical model interpretation for co-training methods in the context
of semi-supervised multi-view learning. These two publications clarified several fundamental
assumptions underlying these models and can automatically estimate how much trust should
be given to each view so as to accommodate noisy views.

Inspired by boosting and Bayesian co-training methods, we present a novel Bayesian
Co-Boosting training framework to realize effectively the multi-modal fusion for gesture
recognition task.1 In our framework, weak classifiers are trained with weighted data in-
stances through multiple iterations. In each iteration round, several feature subsets are
randomly generated and weak classifiers are trained on different feature groups. Only the
weak classifier, which achieves the minimal training error, together with the correspond-
ing feature subset is retained. Instance’s weight is updated according to the classification
result given by the weak classifiers of two modalities, so that the difficult instances will

1. Our preliminary work of multi-modal fusion on ChaLearn MMGR challenge 2013 achieved the 1st prize
on gesture recognition (Wu et al., 2013).
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gain more focus in the subsequent iterations. The strong classifier is constructed with all
retained weak classifiers, and the classification decision is determined by the voting result
of all weak classifiers. The weak classifier’s voting weight is related to its prediction error
on the training set.

The main contributions of this paper are concluded as follows:

1. The proposed framework is illuminated in a Bayesian perspective, and its error upper
bound is minimized through iterations, which is guaranteed in theory.

2. Feature selection and multi-modal fusion are naturally embedded into the training
process of weak classifiers in each Co-Boosting iteration round and bring significant
improvement to the recognition performance.

3. A novel parameter estimation method is presented to address the training problem of
hidden Markov model on the weighted data set.

This paper is organized as follows. In Section 2, commonly used approaches for gesture
recognition is reviewed. We describe our proposed approach and related theoretical deriva-
tion in Section 3. Section 4 presents the experimental result of our method, comparing with
several state-of-the-art methods. Finally, we conclude our work in Section 5.

2. Related Work

Gesture recognition has been an important research topic in human computer interaction
and computer vision field. There already exist a few published surveys in this area, such as
Gavrila (1999), Mitra and Acharya (2007), Weinland et al. (2011), and Suarez and Murphy
(2012). As concluded in these literatures, classifiers commonly used in gesture recognition
include k-nearest neighbours (Malassiotis et al., 2002), hidden Markov model (Eickeler et al.,
1998), finite state machine (Yeasin and Chaudhuri, 2000), neural network (Yang and Ahuja,
2001), and support vector machine (Biswas and Basu, 2011).

Gesture recognition based on accelerometers has been investigated by many researchers
(Mantyla et al., 2000; Chambers et al., 2002; Pylva̋na̋inen, 2005; Liu et al., 2009). As an
extension to the accelerometer sensors, the applications of inertial measurement unit (IMU)
have also been explored recently. Ruffieux et al. (2013) collected a benchmark data set with

Kinect
TM

and XSens IMU sensors for the development and evaluation of multi-modal gesture
spotting and recognition algorithms. With this data set, Yin and Davis (2013) presented a
hand tracking method based on gesture salience, and concatenated hidden Markov models
were applied to perform gesture spotting and recognition.

Considering the inconvenience of wearing accelerometers or IMUs while performing ges-
tures, it is more natural to develop vision-based gesture recognition systems. Single or
stereo camera is mostly widely used in research, but Kinect

TM
sensor has been attracting

increasing interest, due to its ability to capture both color and depth images simultane-
ously. ChaLearn has organized several competitions focused on the Kinect

TM
-based gesture

recognition ever since 2011 (Guyon et al., 2012; Escalera et al., 2013).

Approaches based on hidden Markov model (HMM) are widely adopted in vision-based
gesture recognition. Elmezain et al. (2008) applied HMM to recognize isolated and con-
tinuous gestures in real-time. Spatio-temporal trajectories were converted to orientation
dynamic features and then quantized to one of the codewords. The quantized observation
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sequence was then used to inference the hidden gesture label. Gaus et al. (2013) compared
the recognition performance given by both fixed state HMM and variable state HMM. In
Nandakumar et al. (2013), gesture instances in the continuous data stream were segmented
using both audio and hand joint information. Three modalities were used for classification:
HMM classifier for MFCC feature extracted from audio signal, and SVM (support vector
machine) classifier for both RGB (STIP feature) and skeleton (covariance descriptor).2 Wu
et al. (2013) performed automatic gesture detection based on the endpoint detection result
in the audio data stream. HMM classifiers were then applied to both audio and skeleton
features, and a late fusion strategy was employed to make the final classification decision.

In order to enhance the recognition performance of HMM-based approaches, ensem-
ble learning, especially AdaBoost, has been embedded into the training process of hidden
Markov models in a few researches. Adaptive boosting (Freund and Schapire, 1995; F.
and E.S., 1997) is a training framework to generate multiple weak classifiers with different
training instances’ weight distribution, and construct a strong classifier with these weak
classifiers to achieve a better classification performance. Foo et al. (2004) proposed a novel
AdaBoost-HMM classifier to boost the recognition of visual speech elements. Weak classi-
fiers were trained using biased Baum-Welch algorithm under the AdaBoost framework to
cover different groups of training instances. Their decisions on the unlabeled instance were
combined following a novel probability synthesis rule to obtain the final decision. In Zhang
et al. (2005), a similar approach was applied in the application of sign language recognition.
However, both researches neglected the potential noisy dimensions in the feature space,
which could cause the deterioration of recognition performance.

Besides HMM-based approaches, there are also many other methods proposed in the
context of vision-based gesture recognition. In Lui et al. (2010) and Lui (2012b), action
videos were factorized using higher order singular value decomposition (HOSVD) and the
classification was performed based on the geodesic distance on the product manifold. Boyali
and Kavakli (2012) proposed a variant version of sparse representation based classification
(innovated by Wright et al., 2009; Wagner et al., 2009) for gesture recognition. For a more
complete overview of commonly used approaches in gesture recognition, we recommend the
survey papers mentioned at the beginning of this section.

3. Bayesian Co-Boosting with Hidden Markov Model

For multi-modal gesture recognition task, fusion of features from different modalities is
one of the most vital problems. Many existing approaches use a simple weighted-based
fusion strategy (Bayer and Silbermann, 2013; Nandakumar et al., 2013). However, this
weight coefficient usually needs to be empirically tuned, which is rather difficult if not
impossible on large-scale data set. As we mentioned before, Bayesian co-training (Yu et al.,
2008, 2011) can automatically determine each view’s confidence score, which inspired us to
adopt a similar approach to fuse multiple modalities. Boosting learning can perform feature

2. MFCC: Mel-Frequency Cepstral Coefficients (Zheng et al., 2001), a common used audio feature for
speech recognition. The feature extraction process is as follows: a) the signal segment is turned into
frequency domain using Discrete Fourier Transform; b) the short-term power spectrum is warped into
the Mel-frequency; c) the warped power spectrum is convolved with the triangular band-pass filter; d)
the MFCC feature is the Discrete Cosine Transform result of the convolved power spectrum.
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selection through training multiple weak classifiers, and can be used in gesture recognition
to select optimal feature dimensions for the classification problem.

In this section, we introduce a novel Bayesian Co-Boosting training framework for com-
bining multiple hidden Markov model classifiers for multi-modal gesture recognition. Based
on the proposed Bayesian Co-Boosting framework, different modalities are naturally com-
bined together and can provide complementary information for each other. We also analyze
the minimization of the error upper bound so as to derive the update rule of instance’s
weight in Co-Boosting process.

3.1 Model Learning

In the task of multi-modal gesture recognition, two or more modalities (in this paper, we
constraint the amount of modalities to be two) are simultaneously available for describing
gesture instances. Based on the raw data of each modality, a time series sequence of feature
vectors can be extracted according to certain feature extraction procedures. This time series
sequence data is then used as the input to the pre-trained classifier for model training and
evaluation.

The most straightforward approach to this problem is to separately train a classifier for
each modality, and then combine their classification results in a late fusion style. However,
this approach will bring the following issues. First, feature vectors may contain noisy
data dimensions, which will lead to deterioration of classification performance. Second, one
classifier for one modality may not be sufficient to achieve a satisfying classification accuracy
level. Third, the fusion weights of different classifiers, which have significant impact on the
final classification result, are difficult to be tuned manually.

In this paper, we propose an approach to solve all these problems together. Under
the Co-Boosting framework, multiple weak classifiers of each modality are trained through
a number of iterations. The final strong classifier is a linear combination of these weak
classifiers, and each classifier’s weight is determined by its prediction error on the training
data set. Figure 1 depicts the work flow of our proposed method, and Algorithm 1 describes
the detailed procedures in the model training process.

The aim of our proposed Bayesian Co-Boosting framework is to generate a strong clas-
sifier for the multi-modal gesture recognition task. As we can see in Figure 1, the resulting
strong classifier H (xi) is the combination of multiple weak classifiers trained on V different
modalities through T iterations. In each iteration round, Mv candidate weak classifiers
are trained on the v-th modality using different feature dimension subsets, and the best
candidate among them is selected as the optimal weak classifier h∗t,v (xi). The optimal weak
classifier is the one which achieves the minimal training error among all candidate weak
classifiers for modality v. Then we use all these selected weak classifiers (one weak classifier
per modality) obtained at this iteration round to update each training instance’s weight.

In the rest of this section, we firstly introduce the training process of a single weak
classifier with weighted instances. Secondly, we derive the update rule of the instance’s
weight to minimize the training error’s upper bound from a Bayesian perspective. The
construction of the strong classifier H (xi) is described at the end of this section.
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Boosting Learner
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Bayesian Co-

Boosting Learner

Figure 1: Work flow of Bayesian Co-Boosting training framework.
xi: training instance; wi,t: training instance xi’s weight at the t-th iteration;
ht,v (xi): weak classifier learnt from modality v at the t-th iteration; H (xi): final
strong classifier.

Algorithm 1 Bayesian Co-Boosting Training Framework.3

Input: training instances {xi}
Output: strong classifier H (xi)

1: initialize data weight distribution {wi}
2: for t = 1, . . . , T do
3: for v = 1, . . . , V do
4: for m = 1, . . . ,Mv do
5: randomly generate feature subset F̃t,v,m ⊂ Fv, |F̃t,v,m| = λv · |Fv|
6: generate training data set {(x̃i, wi)} with feature dimensions in F̃t,v,m

7: train candidate weak classifier ht,v,m (xi) (refer to Algorithm 2)
8: calculate classifier’s training error εt,v,m
9: end for

10: select optimal candidate weak classifier h∗t,v (xi) and feature subset F̃ ∗t,v
11: calculate weak classifier’s voting weight α∗t,v
12: end for
13: update instances’ weights {wi} (refer to Algorithm 3)
14: end for
15: construct strong classifier H (xi)

3. T : the number of Co-Boosting iteration rounds; V : the number of modalities; Mv: the number of
candidate weak classifiers for modality v; Fv: all available feature dimensions for modality v; λv: the
feature dimension selection ratio for modality v.
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3.1.1 Weak Classifier Training

As we concluded in Section 2, hidden Markov model is one of the most commonly used
classifiers in gesture recognition. Therefore, in this paper, we implement the Bayesian Co-
Boosting training framework with HMM-based weak classifiers embedded. However, other
weak classifiers can also be easily adopted in our framework.

Hidden Markov model is a statistical model based on Markov process, in which the
generation of an observation sequence is modeled as the result of a series of unobserved
state transitions (Rabiner, 1989). In order to deal with continuous observation vectors, a
multi-variate Gaussian distribution is adopted to determine the observation probability of
each observation-state pair. To simplify the subsequent analysis, we define the following
symbols:

xi,1:Ti : observation sequence of length Ti, composed of feature vectors xi,t.

zi,1:Ti : state transition sequence; zi,t ∈ {1, . . . ,K}, K is the number of states.

D: the training data set consists of N observation sequences xi,1:Ti .

πk: initial state probability, πk = P (zi,1 = k).

Aj,k: state transition probability, Aj,k = P (zi,t+1 = k|zi,t = j).

µk,Σk: mean vector and covariance matrix, P (xi,t|zi,t = k) = N (xi,t|µk,Σk).

For multiple-class classification problem in gesture recognition, a hidden Markov model
is trained for each gesture class, with its parameters denoted as θc. The resulting classifier
is denoted as

ŷi = arg max
c
P (xi|θc) ,

where xi = xi,1:Ti is the unlabeled gesture instance. P (xi|θc) measures the probability for
model θc generating observation sequence xi and can be rewritten as

P (xi|θc) =
∑
zi

P (xi, zi|θc) ,

where the full data probability P (xi, zi|θc) is given by

P (xi, zi|θc) = P (zi|θc)P (xi|zi, θc)

= πzi,1

T−1∏
t=1

Azi,t,zi,t+1

T∏
t=1

N
(
xi,t|µzi,t ,Σzi,t

)
.

For the parameter estimation problem of HMM, commonly used Baum-Welch algorithm
(a variation of EM algorithm) can only deal with unweighted training instances. In boosting
learning, however, instances are assigned with different weights, which are adjusted at the
end of each iteration round to guide the subsequent weak classifiers focus on more difficult
instances. Hence, we need to extend the standard Baum-Welch algorithm (Murphy, 2012)
to accommodate the weighted instances’ training problem in our approach. Our proposed
parameter estimation method is also based on the EM algorithm.
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Given the weighted training data set {(xi, wi)}, parameter estimation problem is to find
the optimal parameters that maximize the log likelihood of the observed data, which is
defined as

` (θ) =
N∑
i=1

wi logP (xi|θ) =
N∑
i=1

wi log

[∑
zi

P (xi, zi|θ)

]
.

But this is difficult to optimize, since the log cannot be pushed inside the sum. To get
around this problem, we define the complete data log likelihood as

`c (θ) =
N∑
i=1

wi logP (xi, z
∗
i |θ) ,

where z∗i is the optimal state transition sequence, and is inferred with Viterbi algorithm.

Therefore, the expected complete data log likelihood for data set D is given by

Q (θ, θold) = E [`c (θ) |D, θold] , (1)

and the optimal parameters are estimated by maximizing this.

On the basis of the definition of P (xi, zi|θc), Equation (1) can be rewritten as

Q (θ, θold) = E

[
N∑
i=1

wi logP (xi, z
∗
i |θ)

]

=
N∑
i=1

wiE

[
log
∏
zi

P (xi, zi|θ)I(z
∗
i =zi)

]

=
N∑
i=1

wi

∑
zi

E [I (z∗i = zi)] logP (xi, zi|θ)

=
N∑
i=1

K∑
k=1

wiP
(
z∗i,1 = k|xi, θt−1

)
log πk

+
N∑
i=1

K∑
j=1

K∑
k=1

Ti−1∑
t=1

wiP
(
z∗i,t = j, z∗i,t+1 = k|xi, θt−1

)
logAj,k

+

N∑
i=1

K∑
k=1

Ti∑
t=1

wiP
(
z∗i,t = k|xi, θt−1

)
logP (xi,t|zi,t = k) .

In the E step of EM algorithm, we firstly compute two groups of probabilities with
forward-backward algorithm, as describe in Murphy (2012)

γi,t (k) = P (zi,t = k|xi, θt−1)
ξi,t (j, k) = P (zi,t = j, zi,t+1 = k|xi, θt−1) ,

(2)

where γi,t (k) indicates the probability of the hidden state at time t being state k, and
ξi,t (j, k) represents the probability of the hidden state being state j at time t and state k
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at time (t+ 1). Based on these probabilities, we compute the following expectation items

E
[
N1

k

]
=

N∑
i=1

wiγi,1 (k)

E [Nj,k] =
N∑
i=1

Ti−1∑
t=1

wiξi,t (j, k)

E [Nk] =
N∑
i=1

Ti∑
t=1

wiγi,t (k)

E [x̄k] =
N∑
i=1

Ti∑
t=1

wiγi,t (k)xi,t

E
[
x̄kx̄

T
k

]
=

N∑
i=1

Ti∑
t=1

wiγi,t (k)xi,tx
T
i,t.

(3)

In the M step, parameters are updated so that Q (θ, θold) is maximized. Here, we only
present the final update rule for each parameter, due to the limitation of space

π̂k =
E
[
N1

k

]∑K
k′=1E

[
N1

k′
]

Âj,k =
E [Nj,k]∑K

k′=1E
[
Nj,k′

]
µ̂k =

E [x̄k]

E [Nk]

Σ̂k =
E
[
x̄kx̄

T
k

]
E [Nk]

− µ̂kµ̂Tk .

(4)

The training procedure of weak classifier is demonstrated in Algorithm 2.

3.1.2 Instance’s Weight Updating

In this sub-section, we define the training error for instances in each class, together with its
upper bound to simplify the error minimization formulation. Based on this formulation, we
derive the update rule for instance’s weight in our proposed framework.

In the t-th iteration round of Bayesian Co-Boosting training process, the training error
for class c is denoted by Et,c, and the corresponding error upper bound is denoted by Bt,c.

We define the random variable zi ∈ {1, . . . , C} to represent the hidden label for obser-
vation xi. The binary prediction value for each candidate class of the strong classifier is
determined by

Ht,c (xi) = sgn
(
Pt,c,i > P̄t,c,i

)
=

{
+1, Pt,c,i > P̄t,c,i

−1, Pt,c,i ≤ P̄t,c,i
,

where

Pt,c,i = P (zi = c|h1,1 (xi) , h1,2 (xi) , . . . , ht,1 (xi) , ht,2 (xi))

P̄t,c,i = P (zi 6= c|h1,1 (xi) , h1,2 (xi) , . . . , ht,1 (xi) , ht,2 (xi)) ,
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Algorithm 2 Weak Classifier Training

Input: weighted training instances {(xi, wi)}
Output: weak classifier h (xi)

1: for c = 1, . . . , C do
2: initialize model parameters θc
3: for t = 1, . . . , T do
4: initialize expectation items
5: for i = 1, . . . , N do
6: compute γi,t (k) , ξi,t (j, k) according to Equation (2)
7: update expectation items according to Equation (3)
8: end for
9: compute θc =

{
π̂k, Âj,k, µ̂k, Σ̂k

}
according to Equation (4)

10: end for
11: end for
12: construct weak classifier h (xi) = arg maxc P (xi|θc)

and h∗,∗ (xi) ∈ {1, . . . , C} represents the predicted class label of weak classifier.

The training error Et,c is defined as the sum of 0−1 loss of classifier’s binary predictions
for the c-th class, which is

Et,c =
∑
i:yi=c

1 (Ht,c (xi) 6= 1) +
∑
i:yi 6=c

1 (Ht,c (xi) = 1) , (5)

where function 1 (·) equals to 1 when the inner expression is true; otherwise, its value is 0.

The error upper bound Bt,c is given by

Bt,c =

N∑
i=1

(
P̄t,c,i

Pt,c,i

)sgn(yi=c)

=
∑
i:yi=c

P̄t,c,i

Pt,c,i
+
∑
i:yi 6=c

Pt,c,i

P̄t,c,i
. (6)

Theorem 1 Et,c ≤ Bt,c always holds with definitions in Equation (5) and (6).

Proof For each training instance xi, we consider its training error Et,c,i and the corre-
sponding upper bound Bt,c,i. It surely falls into one of the following conditions:

(1) Ht,c (xi) = 1, yi = c:
Based on the definition of Ht,c (xi), we have Pt,i,c > P̄t,i,c.
Since Et,c,i = 0, Bt,c,i = P̄t,i,c/Pt,i,c ∈ [0, 1), thus Et,c,i ≤ Bt,c,i.

(2) Ht,c (xi) = 1, yi 6= c:
Based on the definition of Ht,c (xi), we have Pt,i,c > P̄t,i,c.
Since Et,c,i = 1, Bt,c,i = Pt,i,c/P̄t,i,c ∈ [1,+∞), thus Et,c,i ≤ Bt,c,i.

(3) Ht,c (xi) 6= 1, yi = c:
Based on the definition of Ht,c (xi), we have Pt,i,c ≤ P̄t,i,c.
Since Et,c,i = 1, Bt,c,i = P̄t,i,c/Pt,i,c ∈ [1,+∞), thus Et,c,i ≤ Bt,c,i.
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(4) Ht,c (xi) 6= 1, yi 6= c:
Based on the definition of Ht,c (xi), we have Pt,i,c ≤ P̄t,i,c.
Since Et,c,i = 0, Bt,c,i = Pt,i,c/P̄t,i,c ∈ [0, 1), thus Et,c,i ≤ Bt,c,i.

Therefore, Et,c,i ≤ Bt,c,i holds for every instance xi; hence, Et,c ≤ Bt,c is proved.

In the Co-Boosting training process, the weight of each training instance should reflect
the difficulty for current weak classifiers to correctly classify it. Hence, instance’s weight
can be determined by

wi =
P̄t,yi,i

Pt,yi,i
. (7)

Now we derive the update rule of training instance’s weight so as to minimize the error
upper bound Bt,c through iterations, from a Bayesian perspective.

Based on the definition of Pt,c,i, we have

Pt,c,i = P (zi = c|h1,1, h1,2, . . . , ht,1, ht,2)

=
P (zi = c, h1,1, h1,2, . . . , ht,1, ht,2)

P (h1,1, h1,2, . . . , ht,1, ht,2)

=
P (zi = c, h1,1, h1,2, . . . , ht−1,1, ht−1,2)

P (h1,1, h1,2, . . . , ht−1,1, ht−1,2)

P (ht,1|zi = c)P (ht,2|zi = c)

P (ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2)

= Pt−1,c,i ·
P (ht,1|zi = c)P (ht,2|zi = c)

P (ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2)
,

in which h∗,∗ = h∗,∗ (xi) is the predicted class label given by the weak classifier.
Similarly, we can derive the update equation for P̄t,c,i

P̄t,c,i = P̄t−1,c,i ·
P (ht,1|zi 6= c)P (ht,2|zi 6= c)

P (ht,1, ht,2|h1,1, h1,2, . . . , ht−1,1, ht−1,2)
.

Therefore, the ratio between P̄t,c,i and Pt,c,i can be rewritten as

P̄t,c,i

Pt,c,i
=
P̄t−1,c,i · P (ht,1|zi 6= c)P (ht,2|zi 6= c)

Pt−1,c,i · P (ht,1|zi = c)P (ht,2|zi = c)
. (8)

In order to simplify the following theoretical derivation, we define these symbols

Pc,1 = P (ht,1 = c|zi = c) , Pc,2 = P (ht,1 = c|zi 6= c)

Pc,3 = P (ht,1 6= c|zi = c) , Pc,4 = P (ht,1 6= c|zi 6= c)

Qc,1 = P (ht,2 = c|zi = c) , Qc,2 = P (ht,2 = c|zi 6= c)

Qc,3 = P (ht,2 6= c|zi = c) , Qc,4 = P (ht,2 6= c|zi 6= c) .

(9)

For each instance xi, considering whether its ground-truth label yi and predicted label
ht,1, ht,2 is equal to c or not, we can assign it into one of the following subsets

D1 = {xi|ht,1 = c, ht,2 = c, yi = c} , D2 = {xi|ht,1 = c, ht,2 = c, yi 6= c}
D3 = {xi|ht,1 = c, ht,2 6= c, yi = c} , D4 = {xi|ht,1 = c, ht,2 6= c, yi 6= c}
D5 = {xi|ht,1 6= c, ht,2 = c, yi = c} , D6 = {xi|ht,1 6= c, ht,2 = c, yi 6= c}
D7 = {xi|ht,1 6= c, ht,2 6= c, yi = c} , D8 = {xi|ht,1 6= c, ht,2 6= c, yi 6= c} .

(10)
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On the basis of the above data partitioning, Bt,c can be expanded as

Bt,c =
∑
i:yi=c

P̄t,c,i

Pt,c,i
+
∑
i:yi 6=c

Pt,c,i

P̄t,c,i

=
∑

i:xi∈D1

P̄t−1,c,iPc,2Qc,2

Pt−1,c,iPc,1Qc,1
+

∑
i:xi∈D2

Pt−1,c,iPc,1Qc,1

P̄t−1,c,iPc,2Qc,2

+
∑

i:xi∈D3

P̄t−1,c,iPc,2Qc,4

Pt−1,c,iPc,1Qc,3
+

∑
i:xi∈D4

Pt−1,c,iPc,1Qc,3

P̄t−1,c,iPc,2Qc,4

+
∑

i:xi∈D5

P̄t−1,c,iPc,4Qc,2

Pt−1,c,iPc,3Qc,1
+

∑
i:xi∈D6

Pt−1,c,iPc,3Qc,1

P̄t−1,c,iPc,4Qc,2

+
∑

i:xi∈D7

P̄t−1,c,iPc,4Qc,4

Pt−1,c,iPc,3Qc,3
+

∑
i:xi∈D8

Pt−1,c,iPc,3Qc,3

P̄t−1,c,iPc,4Qc,4
.

To simplify the expression, we define

α1 =
Pc,1

Pc,2
, α2 =

Pc,3

Pc,4
, α3 =

Qc,1

Qc,2
, α4 =

Qc,3

Qc,4
, (11)

S1 =
∑

i:xi∈D1

P̄t−1,c,i
Pt−1,c,i

, S2 =
∑

i:xi∈D2

Pt−1,c,i
P̄t−1,c,i

, S3 =
∑

i:xi∈D3

P̄t−1,c,i
Pt−1,c,i

, S4 =
∑

i:xi∈D4

Pt−1,c,i
P̄t−1,c,i

S5 =
∑

i:xi∈D5

P̄t−1,c,i
Pt−1,c,i

, S6 =
∑

i:xi∈D6

Pt−1,c,i
P̄t−1,c,i

, S7 =
∑

i:xi∈D7

P̄t−1,c,i
Pt−1,c,i

, S8 =
∑

i:xi∈D8

Pt−1,c,i
P̄t−1,c,i

.

(12)

where αk, k = 1, . . . 4 are unknown variables and Sk, k = 1, . . . , 8 can be computed with
weak classifier’s prediction. Then we rewrite Bt,c as

Bt,c =
S1
α1α3

+ S2 · α1α3 +
S3
α1α4

+ S4 · α1α4

+
S5
α2α3

+ S6 · α2α3 +
S7
α2α4

+ S8 · α2α4.

The partial derivatives of Bt,c for the unknown variables α1:4 are

∂Bt,c

∂α1
= − S1

α2
1α3

+ S2 · α3 −
S3
α2
1α4

+ S4 · α4

∂Bt,c

∂α2
= − S5

α2
2α3

+ S6 · α3 −
S7
α2
2α4

+ S8 · α4

∂Bt,c

∂α3
= − S1

α1α2
3

+ S2 · α1 −
S5
α2α2

3

+ S6 · α2

∂Bt,c

∂α4
= − S3

α1α2
4

+ S4 · α1 −
S7
α2α2

4

+ S8 · α2.

(13)
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The optimal values of αk should ensure that all partial derivatives in Equation (13) are
equal to 0. Therefore, we obtain the following equations

α1 =

√
S1/α3 + S3/α4

S2 · α3 + S4 · α4
, α2 =

√
S5/α3 + S7/α4

S6 · α3 + S8 · α4

α3 =

√
S1/α1 + S5/α2

S2 · α1 + S6 · α2
, α4 =

√
S3/α1 + S7/α2

S4 · α1 + S8 · α2
,

(14)

and αk can be solved within a few iterations (less than 10 rounds for most conditions,
according to our experimental results).

Based on the definitions in Equation (9), it is obvious that

Pc,1 + Pc,3 = 1, Pc,2 + Pc,4 = 1

Qc,1 +Qc,3 = 1, Qc,2 +Qc,4 = 1,
(15)

and these eight variables can be solved after all αk are obtained.

Based on the above analysis for training error minimization, the detailed algorithm for
multiple weak classifiers training is concluded in Algorithm 3.

Algorithm 3 Instance’s Weight Updating

Input: training instances {xi}
Input: instances’ weight {wi,t−1}
Input: weak classifiers ht,1 (xi) , ht,2 (xi)
Output: updated instances’ weight {wi,t}

1: for c = 1, . . . , C do
2: assign instances into Dk according to Equation (10)
3: compute Sk according to Equation (12)
4: compute αk according to Equation (14)
5: compute Pc,k, Qc,k according to Equation (11) and (15)
6: for instance xi in the c-th class do
7: compute Pt,c,i, P̄t,c,i according to Equation (8)
8: compute wi,t according to Equation (7)
9: end for

10: end for

3.2 Class Label Inference

In our multi-modal gesture recognition system, the predicted class label of unclassified
instance is determined by the voting result of all weak classifiers.

For the optimal weak classifier h∗t,v (xi) with training error ε∗t,v, the classifier weight is
defined as

α∗t,v = log
1− ε∗t,v
ε∗t,v

,
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where the training error is calculated by

ε∗t,v =
C∑
c=1

∑
i:yi=c

wi · 1
{
h∗t,v (xi) 6= c

}
.

The final prediction of instance’s class label is determined by

H (xi) = arg max
c

T∑
t=1

2∑
v=1

α∗t,v1{h∗t,v (xi) = c}.

4. Experimental Results

In this section, experiments are carried out on two multi-modal gesture recognition data
sets, to prove the effectiveness of our proposed Bayesian Co-Boosting training framework.
On the basis of comparative results of different training algorithms, the main contributing
elements to our improvement on classification accuracy are also analyzed.

4.1 Baseline Methods Description

The training framework we propose in this paper is a general model, and some state-of-the-
art methods can be considered as the special cases of our framework. The key parameters
controlling the complexity of training process are T (number of iterations), V (number of
modalities), and Mv (number of feature subset candidates). Various approaches can be
obtained with different combinations of these three parameters.

If we set T = 1, then model is trained without boosting learning. Many approaches
using a single HMM to model instances from one gesture class can be categorized into this
case.

If we set V = 1, then the classifier is actually trained with only one feature modality.
During iterations, feature selection procedure remains unchanged, but the update rule of
instance’s weight no longer applies. In this case, an instance’s weight can be updated in a
similar way as described in Viola and Jones (2004).

If we set Mv = 1 for each modality, the feature selection procedure is removed from
training process. In this case, there is no need to generate feature subset, since it may cause
unnecessary information loss. All feature dimensions are used during training.

Now we define 7 baseline approaches listed as follows, each of which is a special case of
our framework. Through this comparison, we can discover which part of the framework is
really contributing to the improvement in classification accuracy.

(1) M1: training a classifier with the 1st modality:
Parameters setup: T = 1, V = 1,M1 = 1.
Classifier: H (xi) = arg maxc P (xi|θ1,c).
xi is the unlabeled instance, and θ1,c are the parameters of hidden Markov model for
instances in the c-th class, trained on the 1st modality.

(2) M2: training a classifier with the 2nd modality:
Parameters setup: T = 1, V = 1,M2 = 1.
Classifier: H (xi) = arg maxc P (xi|θ2,c).
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xi is the unlabeled instance, and θ2,c are the parameters of hidden Markov model for
instances in the c-th class, trained on the 2nd modality.

(3) M1+M2: training classifiers with the 1st and 2nd modality:
Parameters setup: T = 1, V = 2,M1 = M2 = 1.
Classifier: H (xi) = arg maxc [αP (xi|θ1,c) + (1− α)P (xi|θ2,c)].
xi is the unlabeled instance, and θ1,c and θ2,c are respectively the parameters of hidden
Markov model for instances in the c-th class, trained on the 1st and 2nd modality.

(4) Boost.M1: training boosted classifiers with the 1st modality:
Parameters setup: T > 1, V = 1,M1 = 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,11{ht,1 (xi) = c}.

ht,1 (xi) = arg maxc P (xi|θt,1,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,1 is the corresponding classifier’s weight.

(5) Boost.M2: training boosted classifiers with the 2nd modality:
Parameters setup: T > 1, V = 1,M2 = 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,21{ht,2 (xi) = c}.

ht,2 (xi) = arg maxc P (xi|θt,2,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,2 is the corresponding classifier’s weight.

(6) Boost.Sel.M1: training boosted classifiers with selected features of the 1st modality:
Parameters setup: T > 1, V = 1,M1 > 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,11{ht,1 (xi) = c}.

ht,1 (xi) = arg maxc P (xi|θt,1,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,1 is the corresponding classifier’s weight. Unlike “Boost.M1”, feature selection
is performed in the training process of weak classifier ht,1 (xi).

(7) Boost.Sel.M2: training boosted classifiers with selected features of the 2nd modality:
Parameters setup: T > 1, V = 1,M2 > 1.
Classifier: H (xi) = arg maxc

∑T
t=1 αt,21{ht,2 (xi) = c}.

ht,2 (xi) = arg maxc P (xi|θt,2,c) is the weak classifier learnt at the t-th boosting iteration,
and αt,2 is the corresponding classifier’s weight. Unlike “Boost.M2”, feature selection
is performed in the training process of weak classifier ht,2 (xi).

For convenience, we denote our proposed approach as “BayCoBoost”. Its corresponding
parameter setup is T > 1, V = 2,M1 > 1,M2 > 1.

“M1” and “M2” are two naive methods for single-modal gesture recognition, and many
HMM-based recognizers can be categorized into one of these. “M1+M2” is the late fusion
result of “M1” and “M2”. Considering the weight coefficient α, we evaluate 11 candidate
values from 0 to 1 with equal step length on the training set using cross validation, and
select the optimal α which reaches the minimal error. The approach used in Wu et al.
(2013) can be regarded as a variation of the “M1+M2” method.

In “Boost.M1” and “Boost.M2”, boosting learning is applied to enhance the recognition
performance. Multiple HMM-based weak classifiers are trained through iterations. Foo
et al. (2004); Zhang et al. (2005) respectively used this type of approach for the recognition
of visual speech element and sign language. “Boost.Sel.M1” and “Boost.Sel.M2” are similar
to them, but feature selection is embedded into the training process of each weak classifier.
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Finally, our proposed method “BayCoBoost” integrates both modalities under the Bayesian
Co-Boosting framework.

4.2 Experiment 1: ChaLearn MMGR data set

In 2013, ChaLearn organized a challenge on multi-modal gesture recognition with motion
data captured by the Kinect

TM
sensor. This challenge provides a benchmark data set on the

topic of multi-modal gesture recognition. Detailed information about this data set can be
found in Escalera et al. (2013).

This data set contains 20 gesture categories, each of which is an Italian cultural or
anthropological sign. Gestures in the data set are performed with one or two hands by 27
users, along with the corresponding word/phase spoken out. Data modalities provided in
this data set include color image, depth image, skeletal model, user mask, and audio data.

The data set has been divided into three subsets already, namely Development, Vali-
dation, and Evaluation. In our experiment, Development and Validation subsets are used
respectively for model training and testing. Based on the labeled data, we can segment
out 7, 205 gesture instances from Development subset and 3, 280 instances from Validation.
These two numbers are slightly smaller than the amount (7, 754 and 3, 362) announced
in Escalera et al. (2013), since we filter out those gesture instances which contain invalid

skeleton data (when Kinect
TM

fails to track the skeleton and outputs all-zero skeleton data).

Among all feature modalities offered in this data set, we choose audio and skeleton
feature to perform our proposed Bayesian Co-Boosting training process. We extract 39-
dimension MFCC feature (Martin et al., 2001) from audio data stream and denote it as the
first feature modality. The second modality is the 138-dimension skeleton feature extracted
from 3D coordinates of 20 tracked joint points. The detailed extraction process of skeleton
feature is described in the appendix.

In this experiment, parameters in Algorithm 1 are chosen as follows: T = 20, V =
2,M1 = 5, and M2 = 10. For MFCC feature, the size of feature subset is set to be 50%
of all feature dimensions. The skeleton feature subset consists of 15% dimensions from the
original feature space. Therefore, the number of feature dimensions used to train weak
classifiers is respectively 20 for audio and 21 for skeleton. The number of iterations to
estimate parameters of hidden Markov models for weak classifiers is set to 20. All these
parameters are selected roughly using a grid search based on the cross validation result on
the training subset.

We report the recognition accuracy of each gesture category in Figure 2. Also, several
statistics are computed to provide a quantitative comparison between different methods’
average recognition performance across all categories, which are reported in Table 1. The
recognition accuracy is defined as the ratio of the number of correctly classified gestures
against the number of all existing gestures in each class.

4.3 Experiment 2: ChAirGest data set

In Ruffieux et al. (2013), a multi-modal data set was collected to provide a benchmark for the
development and evaluation of gesture recognition methods. This data set is captured with
a Kinect

TM
sensor and four Xsens inertial motion units. Three data streams are provided by

the Kinect
TM

sensor: color image, depth image, and 3D positions of upper-body joint points.
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Figure 2: Recognition accuracy of each gesture category on ChaLearn MMGR data sets.

Method Mean Std Conf [Mean-Conf, Mean+Conf]

M1 0.9326 0.0584 0.0273 [0.9052, 0.9599]

M2 0.6749 0.2223 0.1040 [0.5709, 0.7790]

M1+M2 0.9666 0.0345 0.0162 [0.9504, 0.9827]

Boost.M1 0.9364 0.0366 0.0171 [0.9192, 0.9535]

Boost.M2 0.6705 0.2276 0.1065 [0.5640, 0.7770]

Boost.Sel.M1 0.9432 0.0334 0.0156 [0.9275, 0.9588]

Boost.Sel.M2 0.6793 0.2219 0.1038 [0.5754, 0.7831]

BayCoBoost 0.9763 0.0173 0.0081 [0.9682, 0.9844]

Table 1: Recognition accuracy on ChaLearn MMGR data sets.

Each Xsens IMU sensor can provide linear acceleration, angular acceleration, magnetometer,
Euler orientation, orientation quaternion, and barometer data with a frequency of 50Hz.

This data set contains a vocabulary of 10 one-hand gestures commonly used in close
human-computer interaction. Gestures are performed by 10 subjects, and each gesture is
repeated 12 times, including 2 lighting conditions and 3 resting postures. The total number
of gesture instances is 1200.

Similar to the previous experiment, two feature modalities are chosen to perform our
Bayesian Co-Boosting training process. The first feature modality is based on the data
captured by Xsens sensors. We use the raw data collected by four Xsens sensors as feature
vector, which is of 68-dimension. Skeleton data captured by the Kinect

TM
is used as the sec-

ond modality, and a 120-dimension feature vector is extracted per frame (see the appendix
for details). The number of skeleton feature dimensions is smaller than the previous one,
because the position of two joint points (hip-center and spine) cannot be tracked since all
users were performing gestures while sitting.

The parameters in this experiment are almost identical with previous experiment. In
Algorithm 1, parameters are: T = 20, V = 2, and M1 = M2 = 10. The feature selection
ratio of Xsens and skeleton are respectively 20% and 15%. Under this setup, the feature
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dimension of Xsens data for weak classifier training is 14, and this number is 18 for skeleton
feature. The number of iterations for weak classifier training is also set to 20. Similar to
the previous experiment, these parameters are also determined by cross-validation.

Since no division of training and testing subset is specified in this data set, we perform
leave-one-out cross validation. In each round, gesture instances of one subject are used for
model evaluation, and other instances are used to train the model. We compute the average
recognition accuracy for each gesture class and report them in Figure 3 and Table 2.
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Figure 3: Recognition accuracy of each gesture category on ChAirGest data sets.

Method Mean Std Conf [Mean-Conf, Mean+Conf]

M1 0.8782 0.0598 0.0427 [0.8355, 0.9210]

M2 0.6884 0.1283 0.0918 [0.5966, 0.7801]

M1+M2 0.8940 0.0685 0.0490 [0.8450, 0.9430]

Boost.M1 0.8728 0.0623 0.0445 [0.8283, 0.9174]

Boost.M2 0.7003 0.1501 0.1074 [0.5929, 0.8077]

Boost.Sel.M1 0.9522 0.0564 0.0403 [0.9119, 0.9925]

Boost.Sel.M2 0.7958 0.1242 0.0889 [0.7070, 0.8847]

BayCoBoost 0.9653 0.0420 0.0300 [0.9353, 0.9953]

Table 2: Recognition accuracy on ChAirGest data sets.

4.4 Result Analysis

From the above experimental results, it is obvious that our proposed Bayesian Co-Boosting
training algorithm achieves the best recognition accuracy in both data sets. Our approach’s
recognition accuracy ranks first in 14 out of 20 classes on ChaLearn MMGR data set and 9
out of 10 classes on ChAirGest data set. The average recognition accuracy of our method
is also superior to any other baseline methods, as shown in Table 1 and Table 2. This
improvement of our method mainly benefits from two aspects: multi-modal fusion under
Bayesian Co-Boosting framework, and boosting learning with feature selection.
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The improvement brought by multi-modal fusion is inevitable, since different modalities
surely can provide complementary information for each other. “M1+M2” implements late
fusion using a weight coefficient α, which requires more training time to determine its
optimal value through cross-validation. On the other hand, in our approach, each classifier’s
weight is determined during boosting process, which avoids extra parameter tuning and is
more reasonable and explainable based on the above theoretical analysis.

Comparing the result of “M1”, “M2”, “Boost.M1”, and “Boost.M2”, we can see that
boosting learning could not necessarily improve the recognition accuracy. This may due to
the overfitting caused by the small amount of available training instances. The overfitting
problem of boosting methods has been discussed in several literatures (Zhang and Yu,
2005; Reyzin and Schapire, 2006; Vezhnevets and Barinova, 2007; Yao and Doretto, 2010).
Considering the high feature dimension of instances, the weak classifier may be too complex
to be well trained on such few instances.

Based on the above observation, we tackle the overfitting problem from two aspects.
Firstly, feature selection is used to reduce the number of feature dimensions while preserv-
ing enough discriminative information, which alleviates overfitting brought by the small
size sample problem. Secondly, Bayesian Co-Boosting is employed to combine two weak
classifiers together with collaborative training strategy, and each modality can provide com-
plementary information for the other modality. Therefore, the amount of available training
information for classifiers is actually increased to avoid overfitting problem to some extent.

As demonstrated in Table 1 and Table 2, “Boost.Sel.M1” and “Boost.Sel.M2” outper-
form their corresponding training methods without feature selection. On this basis, after
applying Co-Boosting method to fuse two modalities, our proposed “BayCoBoost” achieves
superior recognition accuracy than all baseline methods.

As for the computation complexity, we compare the average classification time for each
method. It takes around 0.31s/0.11s for our proposed “BayCoBoost” method to label an
instance in ChaLearn MMGR and ChAirGest data set, respectively. Although non-boosting
methods can operate at higher speed (for “M1+M2”, the time is about 0.037s/0.013s), we
think it is worthy to spend more time since our method’s performance is superior to these
methods, especially for the second data set. Another remarkable comparison is that by
using feature selection strategy, “Boost.Sel.M1” and “Boost.Sel.M2” not only run twice
as fast as “Boost.M1” and “Boost.M2”, due to the lower classifier’s complexity, but also
outperform them in the classification performance. This also proves that the effectiveness
of the feature selection strategy in our “BayCoBoost” method.

5. Conclusion

In this paper, a novel Bayesian Co-Boosting training framework for multi-modal gesture
recognition is proposed. The merits of our work are three-fold: first, the collaborative
training between multiple modalities provides complementary information for each modal-
ity; second, the boosting learning combines weak classifiers to construct a strong classifier
of higher accuracy; third, the Bayesian perspective theoretically ensures that the training
error of our method is minimized through iterations. Feature selection and multi-modal fu-
sion are naturally embedded into the training process, which bring significant improvement
to the recognition accuracy. Experimental results on two multi-modal gesture recognition
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data sets prove the effectiveness of our proposed approach. Moreover, our proposed frame-
work can be easily extended to other related tasks in multi-modal scenarios, such as object
detection and tracking.
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Appendix A. Skeleton Feature Extraction

The Kinect
TM

sensor is able to provide 3D position information for 20 joint points of human
body. We denote the original 3D coordinates of these joints as (xi, yi, zi) , i = 1, . . . , 20.

In order to extract the skeleton feature which is invariant to user’s position, orientation,
and body size, we perform the following transformations:

1. Select one joint point as the origin of the normalized coordinate system.
Translate all joint points to move the selected point to the origin.

2. Select three joint points to construct the reference plane.
Rotate the reference plane so that it is orthogonal to the z-axis.

3. Calculate the distance sum of 19 directly connected joint pairs.
Normalize all coordinates so that the sum is equal to 1.

After above transformations, we can obtain the normalized 3D coordinates (x∗i , y
∗
i , z
∗
i ),

which are invariant to the user’s position, orientation, and body size.
Since most gestures are performed with upper body, and the lower body’s movement

may interfere the recognition of gestures, we only select joint points in the upper body for
feature extraction. The final feature vector consists of four parts:

1. Absolute 3D position of joint points.
2. Relative 3D position of joint points, defined on directly connected joint pairs.
3. First order difference in time of part 1 in the feature vector.
4. First order difference in time of part 2 in the feature vector.
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Abstract

Track 2 of KDD Cup 2013 aims at determining duplicated authors in a data set from Mi-
crosoft Academic Search. This type of problems appears in many large-scale applications
that compile information from different sources. This paper describes our solution devel-
oped at National Taiwan University to win the first prize of the competition. We propose
an effective name matching framework and realize two implementations. An important
strategy in our approach is to consider Chinese and non-Chinese names separately because
of their different naming conventions. Post-processing including merging results of two
predictions further boosts the performance. Our approach achieves F1-score 0.99202 on
the private leader board, while 0.99195 on the public leader board.

c©2014 Wei-Sheng Chin et al..
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1. Introduction

Track 2 in KDD Cup 2013 is a task of name disambiguation. Ideally, a name uniquely
identifies an entity (e.g., an author), but practically an entity may correspond to different
names. For example, once two data sets assigning an entity two or more names are inte-
grated, the entity may become associated with different names. In this article, we call these
names as duplicates of the original entity.

The data set is offered by Microsoft Academic Search (MAS). As a search engine, MAS
integrates information of authors and their publications from different sources. We have
mentioned that duplicates more frequently occur when data sets are integrated to a larger
one, so MAS naturally suffers from this issue. The aim of this competition is to find which
of around 250,000 authors are duplicates. We are given seven files, Author.csv, Paper.csv,
PaperAuthor.csv, Conference.csv, Journal.csv, Train.csv, and Valid.csv. The two
more important ones are Author.csv and PaperAuthor.csv, where the former stores au-
thor information (e.g., names and identifiers), and the latter gives authorships for around
two million publications. Each line, a record, in both Author.csv and PaperAuthor.csv

includes an author identifier and a name. The task is to upload duplicated identifiers in
Author.csv. Other details of data sets and the competition can be found in Roy et al.
(2013). Because no training information is given, the problem is an unsupervised learning
task. The evaluation measure is the average of F1-scores over all authors in Author.csv.
The definition of F1-score is

F1-score =
2× precision× recall

precision + recall
,

where

precision =
true positives

true positives + false positives
and

recall =
true positives

true positives + false negative
.

For example, to find author A’s duplicates, if our algorithm returns A, B, C, F, and the
true duplicates are A, B, C, D, E, then

precision =
| {A,B,C} |

| {A,B,C} |+ | {F} |
=

3

4
, and

recall =
| {A,B,C} |

| {A,B,C} |+ | {D,E} |
=

3

5
.

In the competition, 20% of authors in Author.csv are used to evaluate duplicates submitted
by participants. We refer to them as results on the public leader board. For the final
evaluation, the remaining 80% authors in Author.csv are used and the F1-scores are called
results on the private leader board. The baseline F1-score on the public leader board is
0.94411 by assuming no duplicates (i.e., all author names are considered as different entities).
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Author disambiguation is a difficult problem that is also known as entity resolution
(Whang et al., 2013; Köpcke and Rahm, 2010), duplication elimination/detection (Anan-
thakrishna et al., 2002), object matching (Köpcke et al., 2010), and record linkage (Brizan
and Tansel, 2006). Generally speaking, this problem includes two fundamental phases, sim-
ilarity measurement and record grouping; if the similarity is high enough, then two records
should be assigned to a group corresponding to one real entity. Note that a record in a
data set refers to a real-world object; for example, in the case of author disambiguation, a
record refers to an author of a paper. It has been pointed out by, for example, Köpcke et al.
(2010) and Bilenko et al. (2003), that algorithms well-tuned for some data sets may not
perform well on other data sets. Thus, we should carefully design suitable measurements
and tune parameters for distinct applications. Some data sets intrinsically have a hierar-
chical structure; for example, customer data sets may contain detailed addresses so selling
records can be divided into several subsets according to the countries, states, and cities.
Ananthakrishna et al. (2002) proposed a disambiguation method to find duplicates by using
hierarchical information. That is, two records are referred to one real-world object if they
are considered as duplicates at each level of the hierarchy. In Bhattacharya and Getoor
(2004), the authors iteratively merge a pair of highly similar records to be duplicates for
reducing the false positive rate using more conservative strategies (e.g., two records are
merged if their similarity is larger than a threshold). In each iteration, the duplicates found
are used to evaluate the distance between two entries; i.e., the distance between entries de-
pends on the overlap between duplicates found in previous iterations of the two entries. In
Bilenko et al. (2003), support vector machine (SVM) is used to integrate measurements on
multiple attributes. For example, similarity between two authors can be the weighting sum
of Jaro distances between their first names, middle names, last names, and addresses, where
the weights correspond to the coefficients of SVM. They report that with the existence of
typos the string-based distances (e.g., Levenshtein distance and Jaro distances) are superior
to the token-based distances (e.g., Jaccard similarity and cosine distance with TF-IDF). Be-
cause typos and other types of noise exist in KDD Cup 2013 track 2 (see Section 2.2), we
can expect the difficulty of using token-based techniques. Whang and Garcia-Molina (2012)
proposed an iterative framework to solve disambiguation problems when there are different
types of entries in the data set. Their framework allows users to set the logical relations
between these types, and automatically find the best order to conduct disambiguation for
different types. Note that different types of disambiguation can be handled in parallel if
they are logically independent (i.e., the result of one type of disambiguation does not pro-
vide additional information for the disambiguation of another type). Take the KDD Cup
2013 as an example. The types of entries include author, publication, conference, journal,
etc. Obviously, a parallel disambiguation for conferences and journals is possible, but the
disambiguation of publications and conferences should be ordered. Treeratpituk and Giles
(2009) provide rich measurements on many attributes (e.g., the last name of authors, au-
thors’ affiliation and coauthorship) to judge whether two authors correspond to one entity.
In KDD Cup 2013, due to missing values, noises, and insufficient information we can not di-
rectly generate reliable features using their measurements. Consequently, similar to Torvik
and Smalheiser (2009); Bilenko et al. (2003), we consider author-name strings as the major
sources to measure the similarity between two authors. Thus all strategies in our algorithm
are highly related to string processing. Furthermore, our approach is related to the iterative
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Filename Fields in each line #Entries

Author.csv AuthorID, Name, Affiliation 247,203
PaperAuthor.csv PaperID, AuthorID, AuthorName, AuthorAffiliation 12,776,670
Paper.csv PaperID, Title, ConferenceID, JournalID, Keyword 2,267,542
Conference.csv ConferenceID, ShortName, FullName, Homepage 4,544
Journal.csv JournalID, ShortName, FullName, Homepage 15,150

Table 1: Brief description of each file.

scheme proposed by Bhattacharya and Getoor (2004) because we also iteratively identify
reliable duplicates and then refine results.

The next section summarizes the noise sources so that we can further understand the
difficulties in the competition. We describe our approach in Section 3. It is realized in our
two implementations described in Sections 4 and 5, respectively. Section 6 proposes a strat-
egy to ensemble the predictions from these two implementations. We handle typographical
errors (typos) in Section 7. Our results are summarized in Section 8, and the last section
provides a detailed comparison on several successful approaches in this competition. Section
10 concludes this paper and gives some possible directions. Besides, our implementations
are available at

https://github.com/kdd-cup-2013-ntu/track2.

A preliminary version of this work appears in a conference paper (Chin et al., 2013). The
main extensions include three new sections, Section 2, Section 9, and Section 10, and the
provision of more details in many places.

2. An Overview of Data sets

In this section, we firstly give a brief introduction about the content in the data set. Then
we discuss various types of noise observed in the competition data.

2.1 Data Set Description

The organizers of KDD Cup 2013 release seven files, Author.csv, PaperAuthor.csv, Conference.csv,
Journal.csv, Paper.csv, Train.csv, and Valid.csv. We do not use Train.csv and
Valid.csv because they are for Track 1. Details of other files are shown in Table 1.

2.2 Noisy Patterns in the Competition Data

A search engine like MAS integrates relationships between authors and papers from different
sources. What MAS must do is parsing and merging, but this process of integration results
in some unexpected errors. By careful analysis, we observe the following types of noisy data
from the sets given by MAS.

• Alleviation: Two entries in Author.csv are “2071403, Yuri Gurevichy” and “926979,
Yuri Gurevichyand.” At first glance, they are different persons. However, if we eliminate
the last 3 characters “and” from the second author, the resulting author “Yuri Gurevichy”
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may be the same as the first one. It is hard to decide because the two may actually be
different.
• Unusual Name: The entry “894651, 560263, A Case Study,” may provide incorrect

author information because “A Case Study” is not a common name. However, we can
not rule out the possibility that it is someone’s name. Besides, in Author.csv, an entry
“1813899, Ming-Wei Chang Dan Roth” appears. Apparently, this entry concatenates two
author names.
• Inconsistent Information: In Author.csv, we get an entry “1791054, Steven L. Salzberg,”

which means the 1791054th author is “Steven L. Salzberg.” However, in PaperAuthor.csv,
the entry “310678, 1791054, David Saunders” indicates that the 1791054th author is
“David Saunders.” Therefore, the information in Author.csv and
PaperAuthor.csv is not consistent.
• Typo: Some names in Author may contain typos. For example, “Chih-Jen Lin” becomes

“Chi-Jen Lin.”
• Incomplete Name: For the names “Michael Jordan,” “M. I. Jordan,” and “Michael I.

Jordan,” some authors have middle names, while others do not. Besides, for the name
“M. I. Jordan,” all words except the last name are abbreviated. Then it is difficult to
decide if “Michael Jordan” and “Michael I. Jordan” correspond to the same author.
• Empty Entry: For example, the 14143th and 56473th entries in Author.csv are empty,

so we cannot obtain any information.
• Missing Value: Some information of an entry is missing. In PaperAuthor.csv, each

entry contains “PaperID, AuthorID, AuthorName, AuthorAffiliation.” However, for the
entry “127675, 1360414, Chih-Jen Lin” in PaperAuthor.csv, it only tells us that the
1360414th author named Chih-Jen Lin writes the 127675th paper. The affiliation of the
author is missing.
• Nickname: Instead of using real names, some authors use nicknames in their publica-

tions. For example, “532490, 1060199, William R. Gates” and “717206, 1060199, Bill
Gates” may be the same author, although the latter uses the nickname “Bill.”
• Wrong matching between authors and papers: Errors of matching authors and

papers exist in PaperAuthor.csv. From the entry “1360414, Chih-Jen Lin, National
Taiwan University” in Author.csv, we check papers written by him in PaperAuthor.csv.
Although most obtained entries are his papers, some are not. For example, a record
“674977, 1360414, Chih-jen Lin” indicates that “Chih-jen Lin” writes the 674977th paper.
However, the 674977th paper has the title “Built-In Current Sensor for IDDQ Test in
CMOS,” and is not written by the “Chih-Jen Lin” from National Taiwan University.
• Non-English characters: Some non-English characters like “43416, J. Jürjens” cause

difficulties to compare names.

We carefully take these noisy patterns into consideration in designing our approach.

3. Our Approach

In this section, we discuss three key strategies of our approach, and then introduce a frame-
work based on these strategies. Two implementations of the framework were finished by
two groups within the team. They are respectively described in Sections 4 and 5.

3041



Chin et al.

3.1 The Main Strategies

The first strategy is that we identify duplicates mainly based on string matching; in par-
ticular, name matching. Academic authors often use their real names. If two authors are
duplicates, then their name strings are similar. Therefore, name matching is very effective
for this problem.

The second strategy is that if an author in Author.csv has no publication records
in PaperAuthor.csv, then we assume that this author has no duplicates. In our earlier
experiments, this strategy significantly improves the F1-score by around 0.02. Apparently
MAS implements this rule internally, so we admit that this strategy may not be useful for
other data sets.

The third strategy is to classify an author as Chinese or non-Chinese before any string
matching. This strategy is useful because Chinese and non-Chinese names have some crucial
differences. First, a western name may be written without the middle name. For example,
“Vladimir Naumovich Vapnik” may write his name as “Vladimir Vapnik.” In contrast,
Chinese generally do not omit any part of their name. For instance, “Chih Lin” and “Chih
Jen Lin” are almost surely different authors. Second, Chinese last names provide much
less information than non-Chinese ones because some Chinese last names are very common
(e.g., “Wang” and “Lin”) and the romanization process may map different last names to
the same English word (e.g., “林” and “藺” are romanized to “Lin”). The common last
names cause difficulties to analyze a shortened Chinese name. For example, there are much
more names that can be shortened as “C. J. Lin” than those as “E. W. Dijkstra.” Besides,
Korean, Vietnamese, and Singaporean names have a similar structure (i.e., two-word first
name and a shortened last name), so we include them along with Chinese names. Examples
include “Chi Minh Ho” (Vietnamese), “Yong Jun Bae” (Korean), and “Hsien Loong Lee”
(Singaporean). Interestingly, we do not consider Japanese names because they often have
a longer last name and a one-word first name (e.g., “Ichiro Suzuki”).

For easy description, in this paper, we categorize words to two classes, shortened words
and full words. A word is considered shortened if it is one single character or includes a
period. For example, “C” and “Chris.” are shortened words. A word is a full word if it
is not a shortened word. Similarly, we consider two types of names. A name should be a
shortened name if it consists of at least one shortened word; otherwise, the name is a full
name.

3.2 The Framework

Our framework can be divided into six stages. Here we briefly introduce each stage, but
leave details in Sections 4 and 5. Note that if not specified, in the sequel “an author” refers
to an unique identifier (rather than a name and a human).

1. Chinese-or-not. We classify each author as Chinese or non-Chinese.
2. Cleaning. To efficiently compare author names, we remove redundant information. For

example, “CHIH JEN LIN” is likely to be a duplicate of “chih jen lin,” so we lowercase
all strings.

3. Selection. For each author we select some candidates of possible duplicates. Naively, an
author should be compared with all other authors, but the computational cost is high.
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Therefore, we select only some candidates for subsequent analysis. At this stage, recall
is the main concern because any missed names cannot be recovered in a later stage.

4. Identification. For each author, we check if those in the candidate set are duplicates
or not.

5. Splitting. Because some names are wrongly grouped together after the identification
stage, we make corrections by splitting some of them.

6. Linking. This stage maps author names back to author identifiers. This step is needed
only for our second implementation; see more explanation below.
We illustrate an important difference between our two approaches by the following

example.

Author identifier 1001

Name in Author.csv “Chih Jen Lin”

“C. J. Lin”
Names in PaperAuthor.csv “Chih Jen Peter Lin”

“C. J. P. Lin”

This table shows that, in the given data, one identifier may correspond to different
names. Following the competition requirement to find duplicates of each author identifier,
in the first implementation, each author is referred to as an author identifier. However, the
second implementation treats each name string as an author. That is, the four names in the
above examples are considered different. The algorithm must group them together among
all name strings. Therefore, the second implementation needs a linking stage in the end.

4. The First Implementation

In this section, we discuss details of the first implementation. Each sub-section corresponds
to a stage of the framework. Note that the linking stage is not performed in this implemen-
tation.

4.1 Chinese-or-not

An author is classified to be either Chinese or non-Chinese by the flowchart in Figure 1.
The process relies on information including the romanization of common Chinese last names
and Chinese syllables. We build two dictionaries, which differ in the coverage of Chinese
words. The first dictionary contains 2,381 English words that are the romanization of top
100 Chinese last names and 410 syllables. Each Chinese last name is romanized to four
English words because there are four different romanization systems in Taiwan,1 and the
list of Chinese syllables is publicly available on Wikipedia.2 Note that romanization of
several Chinese words can be the same. The second dictionary extends from the first by
including 853 additional words of the romanization of 406 Chinese last names and 20 Korean
last names.3 Moreover, each dictionary consists of two sub-dictionaries storing last names

1. The romanization tool we used can be found at http://www.boca.gov.tw/content?CuItem=5609&mp=1.
2. These Chinese syllables can be found at http://en.wikipedia.org/wiki/Comparison_of_Chinese_

romanization_systems and http://www.pinyin.info/romanization/compare/gwoyeu_romatzyh.html.
3. The additional Chinese last names and the Korea last names are available at https://en.wikipedia.

org/wiki/List_of_common_Chinese_surnames and http://mirror.enha.kr/wiki, respectively
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and syllables respectively. Some words in our Chinese dictionary also commonly appear
in non-Chinese names (e.g., “van,” “den,” and “ben”), so we construct a “banned list”
according our own knowledge.

The flow to determine if an input name is Chinese or not is in Figure 1. In this fig-
ure, hexagons are the final decision of Chinese or non-Chinese, ellipses stand for variables,
and rectangles are operations. Every counter directly counts the number of inputs. For
example, Counter2 gives the total number of Chinese words in a name after checking the
dictionary. To begin, a name is cleaned and then tokenized. Note that this cleaning step
only removes non-alphabet characters and lowercase all remaining letters because we as-
sume that punctuation provides no useful information and the matching between two words
should be case-insensitive. Next, we consider three cases according to the number of full
words (0, 1, or more) in an author name.

1. If there is no full word in a name (upper sub-tree in Figure 1), words in our Chinese
dictionary cannot be used and hence the author is classified as non-Chinese. For example,
“C J L” is considered as non-Chinese.

2. If an author has only one full word (right sub-tree in Figure 1), then we consider the
author as Chinese if the full word is one of the last names in our dictionary but not in
the banned list. This case is mainly for detecting Chinese authors with abbreviated first
name such as “C. J. Lin,” “C.-J. Lin,” and “C. J. P. Lin.”

3. For a name with more than one full word (left sub-tree in Figure 1), if it has more than
one full word not in our Chinese dictionary, then the name is considered as non-Chinese.
For example, “Chih J. Peter Lin” is Chinese if “Peter” is the only full word not in
our dictionary. In contrast, if our dictionary does not contain “Chih,” then the name
becomes non-Chinese because of having two non-Chinese full words. The banned list
plays a similar role as in the previous rule; if a word is on the list, then the word is not
considered as a Chinese word. However, an exception of not applying the banned list is
when the name contains a full Chinese word. This exception helps to recognize “Dan
Wang” as a Chinese name and “Dan Roth” as non-Chinese. In detail, “Dan” is regarded
as a Chinese word because “Wang” is a Chinese word. However, the other “Dan” is not a
Chinese word because “Roth” is not. This idea can be found in the blocking mechanism
of Counter3; that is, if there is at least one Chinese word, the output of Counter3 is the
number of banned words. Otherwise, the output of Counter3 is 0.

We illustrate our Chinese classification using an author with four full words. Given “Chih
Jen Dean H. Lin,” “H.” is removed first, and then four words “Chih,” “Jen,” “Dean,” and
“Lin” are obtained. Counter1 in Figure 1 returns 4 because of four full words. Then we use
the left sub-tree in Figure 1. Assume that

1. our Chinese dictionary contains common last names {lin, wang} and common Chinese
words {wang, chih, dean, and jen}, and

2. the banned list is {dean}.
Counter2 returns 3 for one match of the last name “lin” and two matches of syllables “chih”
and “jen.” Because the output of Counter2 is larger than 0 (some Chinese full words are
found), Counter3 is activated and returns 1 for the match of “dean.” Then the adder returns
4. Finally, the subtracter, which subtracts the total number of full words from the result
returned by the adder, returns 0 to be the number of non-Chinese full words, so “Chih Jen
Dean H. Lin” is classified as Chinese.
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Figure 1: Flow of finding if a name is Chinese or not.

4.2 Cleaning

The purpose of data cleaning is to make name comparisons more accurate.4 This process
consists of the following steps.

1. Split two consecutive uppercase characters because we suspect that each character is an
abbreviation of a word. For instance, we replace “CJ” with “C J.”

2. Remove English honorifics (e.g., “Mr.” and “Dr.”), and some suffixes such as “Jr.” and
“III.”

3. Transform uppercase to lowercase.

4. Note that in Section 4.1 a simpler cleaning step was conducted before identifying Chinese names.
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4. Remove apostrophes and replace punctuation. For example, “o’relly” becomes “orelly.”
We then replace punctuation except periods with blanks. For example, “Chih-Jen”
becomes “Chih Jen.” We keep the period because it is useful to determine if a word is
shortened or not.

5. Replace European alphabets with similar English alphabets. For example, we replace
“ä” with “a.”

6. Replace common English nicknames.5 For example, we replace “bill” with “william.”

4.3 Selection

In this stage, for each author, a set of possible duplicates are obtained. The purpose is
to reduce the quadratic complexity of subsequent string matchings to linear. Our method
includes two phases. In the first phase, we build a dictionary of (key, value) pairs. Each
key is a set of words, while each value is a set of authors containing the key. To generate
keys, we consider all word combinations of an author name. For example, “Chih Jen Lin”
leads to the following keys.

“Chih” “Jen” “Lin”
“Chih Jen” “Jen Lin” “Chih Lin”

“Chih Jen Lin”

Note that the order does not matter, so “Chih Lin” is considered the same as “Lin Chih.”
To avoid too many keys, we do not consider the combination of more than four words.
In the second phase, for each given author, we examine his/her (key, value) pairs. If the
“value” contains no more than 17 authors, then they are included as possible duplicates.
The reason to discard a “value” with too many authors is because the corresponding key is
too common. For example, two authors shall not be suspected as duplicates merely because
their first name is “Lin.” Including these names does not improve the recall much, but
significantly increases the running time. In our experience, changing the threshold from 17
to 100 results in a three-fold increase of the running time. Moreover, a higher recall may
not lead to a better final result.

4.4 Identification

Because the criteria to select candidates in the previous stage is loose, many authors were
wrongly selected. In this stage, we find a subset as duplicates by applying a main procedure
and two additional procedures. The main procedure, described in Section 4.4.1, uses many
matching functions listed in Section 4.4.2. The two additional procedures are described in
Section 4.4.3.

4.4.1 The Main Procedure for Identification

We iteratively apply matching functions to identify duplicates from the candidate set. Each
matching function checks if two given authors are similar to each other. Criteria used in
matching functions here should be stricter than those in the previous stage because the aim

5. The list of all nicknames we considered is available at http://www.cc.kyoto-su.ac.jp/~trobb/

nicklist.html and http://mentalfloss.com/article/24761/origins-10-nicknames.
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is to remove authors that were wrongly selected. However, although a strict criterion gives
a high precision, it many cause a low recall. Therefore, we sequentially apply matching
functions (listed in Section 4.4.2) from the strictest to the loosest.

Each iteration consists of two steps. First, between an author and any member of its
candidate set, a matching function returns if the two names are duplicates or not. For a
name “Chih Jen Lin,” if his candidate set includes

“Chih Jen Lin,” “Lin Chih Jen,” “Chih Jen M. Lin,” and “Chih Jen K. Lin,”

and the matching function requires that two names have the same word set, then “Chih
Jen Lin” and “Lin Chih Jen” are considered as duplicates.

In the second step of an iteration, we make some corrections because duplicates ob-
tained after applying matching functions may be wrong. For example, assume the following
duplicates have been identified.

“C. J. Lin,” “Chih Jen Lin,” and “Chen Ju Lin.”

Obviously they are not the same author because “Chih Jen Lin” and “Chen Ju Lin” are very
different. We design a dry-run procedure to detect if a set of selected duplicates contains
some very different names. If such names exist, then the set is discarded. For describing the
dry-run function, we say that two author names are loosely identical if one of the following
conditions holds.

1. One author has at least a shortened word and one author’s first-character set of words
is a subset of the other.

2. Both authors contain full words only and one author’s first-three-character set of words
is a subset of the other.

For example, “C J Lin” and “Chih Jen Lion” are loosely identical, while “Chih Jen Lin”
and “Chen Ju Lin” are not.

In the dry-run procedure, we divide the selected set of duplicates to two sets: the
longest-name set and the shorter-name set, where the former contains names with the largest
number of words, while the latter contains the rest. The dry-run procedure is passed if the
following conditions hold.

1. In the longest-name set, any two names are loosely identical.
2. In the shorter-name set, any name is loosely identical to at least one name in the longest-

name set.

The identification procedure is shown in Algorithm 1.

4.4.2 Matching Functions

For easy description, we define the following relationship between two author names.

1. The same name: Two names share the same set of words.
Example: “Chih Jen Lin” and “Lin Chih Jen.”

2. A shortened name: The first author is a shortened name of the second one if the
following conditions hold.
• The full-word set of the first is a subset of the second.
• Each shortened word in the first name is the prefix of a word in the second.
Example: “Ch. J. Lin” and “Chih Jen Lin.”
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Data: Each author has a set of candidates.
Result: All authors are split to groups of duplicates.
begin

for a ∈ all authors do
set {a} as a’s set of duplicates

end
for f ∈ matching functions do

for a ∈ all authors do
P ← {duplicates already identified for a}
for c ∈ {candidates of a} do

if f(a, c) then
P ← P ∪ {c’s identified duplicates}

end

end
if P passes the dry-run procedure then

all authors in P are considered as duplicates
end

end

end

end

Algorithm 1: The main procedure in the identification stage of the first implemen-
tation.

3. A partially shortened name: The first author is a shortened name of the second and
each word in the first name is the prefix of a word in the second.
Example: “C. J. Lin” and “C. J. Lint.”

4. Alias: Name A in PaperAuthor.csv is an alias of name B in Author.csv if A and B
have the same author identifiers, and B is a shortened name of A.
Example: “C. J. Lin” is in Author.csv, while “C. Jen Lin” and “Chih Jen Lin” are
in PaperAuthor.csv. If they have the same author identifiers, then “C. Jen Lin” and
“Chih Jen Lin” are aliases of “C. J. Lin.”

Now we introduce the following matching functions, each of which checks two input names.

1. Two authors have the same words in their names.
Example: “Chih Jen Lin,” and “Lin Chih Jen.”

2. One is a shortened name of the other and both have the same initial-character set of
words. However, this rule is not applied if
• both authors are Chinese and each has at least one shortened word, or
• one of the authors is Chinese and contains no more than two words.
Example: “John S. Nash” and “John Smith Nash.”

3. (Non-Chinese only) One author name is a shortened name of the other.
Example: “Michael Jordan” and “Michael I. Jordan.”

4. (Non-Chinese only) One author name is a partially shortened name of the other.
Example: “Marek J. Druzdze” and “Marek J. Druzduzel.”
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5. Two authors have at least one identical alias.
Example: Suppose that the name “1273890, Thomas J. Webb” in PaperAuthor.csv is
an alias of the author “1273890, Thomas Webb” in Author.csv, while “207564, Thomas
J. Webb” is an alias of the author “207564, Thomas J. Webb.” Then “207564, Thomas
J. Webb” and “1273890, Thomas Webb” are considered as duplicates.

6. (Non-Chinese only) Two author names are loosely identical and both have at least one
identical paper or affiliation.
Example: “571595, Alex Pentland” and “993869, Alex Pentland Perceptual” are loosely
identical and both have the same affiliation “MIT Media Laboratory.”

7. The two authors satisfy the following conditions.
• Each author name has at least three words.
• Two author names are the same after removing their respective last word.
• The last word of each name should be the same after removing the last character of

the longer word.
Example: “Chih Jen Linu” and “Chih Jen Lin.”

8. (Non-Chinese only) Only one author name has middle name and their last names differ
in the last two characters.
Example: “Michael I. Jordan” and “Michael Jordann.”

9. (Chinese only) Two authors have at least one identical alias and one identical affiliation.
Example: Assume “Chih Jen Lin” in Author.csv has the same identifier with “Chih
Jen Lin” and “C. J. Lin” in PaperAuthor.csv. Similarly, “Chih J. Lin” has “Chih Jen
Lin” and “C. J. Lin” in PaperAuthor.csv.
The two authors have the same alias “C. J. Lin.” If both have the same affiliation, then
they are considered as duplicates.

10. (Chinese only) Each author has at least three words, but has no shortened words.
Moreover, one author’s word set is a subset of the other.
Example: “Michael Chih Jen Lin” and “Chih Jen Lin.”

11. (Chinese only) Both author names have more than three words and their lists of initial
characters are the same.
Example: “Michael Chih Jen Lin” and “M. Chih Jen Lin.” Their lists of initial char-
acters are both “m c j l.”

12. (Chinese only) Both author names have more than three words, neither has a shortened
word, and the full-word set of one’s name is a subset of the other.
Example: “Michael Chih Jen Lin” and “Michael Jackson Chih Jen Lin.”

13. (Chinese only) The two authors satisfy one of the following conditions.
• Each has three words and both have the same list of initial characters.
• Neither has a shortened word and one author’s full-word set is a subset of the other.
Example: “Lin Chih Jen” and “C. Jen Lin.”

4.4.3 Additional Procedures for Identification

We conduct two additional procedures to improve the identification of duplicates. Instead
of fitting them to the main procedure, we find that separately considering them is more
suitable.
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Same paper title: Because data are collected from different sources, some papers have
an identical title after removing non-alphabet characters. For any two such papers, if an
author of one paper is a partially shortened name of an author of the other paper, then
the two authors are considered as duplicates. For example, assume two papers are shown
in Table 2. “C. C. Chang” is a partially shortened name of “Chih-Chung Chang,” while
“C. J. Lin” is that of “Chih J. Lin” and “Chih Jen Lin.” Therefore, authors 1 and 2 are
regarded as duplicates, and so are authors 3 and 5.

Paper IDs 1 2

PaperName LIBSVM lib-svm

1, C. C. Chang 2, Chih-Chung Chang
AuthorList 3, Chih Jen Lin 3, Chih J. Lin

5, C. J. Lin

Table 2: An example of using papers with the same title to identify duplicates.

Parsing alleviation: Because of incorrect string parsing, some names such as “Chih
JenLin,” and “Chih Jen LinAN” may appear although the correct one is “Chih Jen Lin.”
To find duplicates for these ill-formed names, we map each name to some keys and group
names with the same key as duplicates.

To obtain keys and identify duplicates, we run two separate steps. The first one uses
two keys. After some duplicates have been identified, the second uses three keys to get more
duplicates.

The step of using two keys generates keys for each author. Words in a name are con-
catenated and lowercased to get the first key. By removing the last character of this key,
we generate the second key if one of the following conditions holds.

1. The name has one shortened and two full words.
2. The name has more than two full words and the length of the name is greater than 12.
3. The length of each word in the name is greater than four.

For example, “Chih Jen Lin” has a key “chihjenlin,” while “Chih J. Lint” has keys
“chihjlint” and “chihjlin.”

In the step of using three keys, the first key is the same as that in the previous step. The
second key is also by removing the last character of the first key, but it is generated if one
of the four conditions holds. These four conditions are similar to the three conditions used
in generating the second key in the case of using two keys except that the first condition is
modified to the following two rules:

1. The name has one shortened and two full words. Moreover, the length of the last word
is greater than four.

2. The name has more than two full words and the length of the last name is greater than
four.

Then we remove the last two characters of the first key to get a new key if one of two
conditions holds.

1. The length of the name is greater than 15 and that of the last word is greater than five.
2. The number of full word in one’s name is greater than two and the length of the last

word is greater than five.
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For example, “Petra QuillfeldtA” has keys “petraquillfeldta,” “petraquillfeldt,” and
“petraquillfeld.”

4.5 Splitting

In some groups of duplicates that have been identified, we still observe very different author
names. For example, the following authors are considered as duplicates after the identifica-
tion stage.

“k. kobayashi” ”keven w. kobayashi”
“kazuo kobayashi” “kunikazu kobayashi”

When the third matching function mentioned in Section 4.4.2 is applied to the author “k.
kobayashi,” the above four authors are considered as duplicates. Then because “keven w.
kobayashi” is the longest name in the set, and “kazuo kobayashi” and “kunikazu kobayashi”
are loosely identical to “keven w. kobayashi,” they pass the dry-run function. Obviously the
grouping is incorrect. Therefore, in this splitting stage, we check the number of incorrectly
identified pairs (details described below) in every set of duplicates. If the number exceeds
three, then we dissolve the group and each element goes back to be an individual. We say
two authors are incorrectly identified if they satisfy that

1. Each author name is a full name with two words.
2. Neither author name is a partially shortened name of the other.

For example, “kazuo kobayashi” and “kunikazu kobayashi” satisfy the above criteria because
“kazno” is not a prefix of “kunikazu” and vice versa. We do not consider names with more
than two words because “Alex Pentland Perceptual” and “Alexander Pentland” may be
unexpectedly treated as incorrect duplicates.

5. The Second Implementation

In this section, we introduce the second implementation following the framework in Section
3. As mentioned in Section 3.2, we treat all names in PaperAuthor.csv and Author.csv

as individuals and find groups of duplicates. Only in the end we obtain groups of author
identifiers as requested by the competition.

5.1 Chinese-or-not

In contrast to Section 4.1, the implementation is simpler here. We build a Chinese dictionary
that consists of 694 words of romanized Chinese syllables6 and a banned list including some
manually-selected words such as “ben”, “dan”, and “long.”7 For each author name after
tokenization, we check if any word is on the Chinese list but not on the banned list. If
such a word exists, we classify the name as Chinese. Our Chinese-or-not techniques were
developed by two groups independently, so the dictionaries and the banned lists are slightly
different while their designing spirits are identical. Note that the dictionary in the second

6. Related information can be found at http://www.chineseinla.com/lastname/key_ng.html and http:

//irw.ncut.edu.tw/general/chen813.
7. For the full list, see https://github.com/kdd-cup-2013-ntu/track2/blob/master/main2/chinese_

name_list_v4.py.
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implementation collects less Chinese words. Because of using less Chinese information
and simpler rules, results here may be worse than those obtained by the Chinese-or-not
procedure in the first implementation.

5.2 Cleaning

This stage goes through three phases: character-based filtering, word-based filtering, and
parsing alleviation.

1. Character-based filtering: This phase replaces European alphabets to English alpha-
bets and we remove all punctuation except the blank.

2. Word-based filtering: This phase splits two consecutive uppercase characters (e.g.,
“CJ” → “C J”), removes English titles and some suffixes, transforms uppercase to low-
ercase, and replaces common English nicknames with formal names.8 In addition, the
nobility particles (e.g., “von” and “de”) are removed, and we split each two-Chinese-
character word to two words (e.g., “ChihJen” → “Chih Jen”).

3. Parsing alleviation: This phase addresses incorrect string parsing by going through
two steps. First, among names that are the same after blank removal, we keep only the
longest one. For instance, if “Joseph Douglas Horton,” “Josephdouglas Horton,” and
“JosephDouglasHorton” appear in the database, we keep only “Joseph Douglas Horton.”
The second step handles typos caused by incorrect string parsing; see examples in Section
4.4.3. For any pair of two names, if the longer one differs from the shorter one in less
than four characters, then we remove the longer one. The threshold four is chosen by
the scores on the leader board.

5.3 Selection

Recall that in this stage for each author name we obtain a candidate set. One author name
is a candidate of another (and vice versa) if one of the following conditions holds.

1. Both names are exactly the same regardless of the order of words. Example: “Chih
Jen Lin” and “Lin Chih Jen.”

2. Both names are Chinese with more than two words or neither is Chinese. Further, the
set of initial characters of words in a name is a subset of the other and so is the set of
full words. Example: “Chih Jen Lin” and “Chih Jen K. Lin.”

3. The set of initial characters of words in a name is a subset of the other. The shorter
name has only one full word not in the longer, but the word is the prefix of a word in
the longer name.
Example: “Ch Jen Lin” and “Chih Jen Lin.”

5.4 Identification

In contrast to the first implementation, we believe that the candidates selected in Section
5.3 are of high credibility, so this stage is not performed. That is, the candidates selected
in Section 5.3 are identified as duplicates.

8. The nickname list is available at https://code.google.com/p/author-dedupe/.
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Chih Jen Lin

Chih Jen Bob Lin

Chih Jen Bob T. Lin

Chih Jen Bob Tom Lin

Chih Jen Bob K. Lin

Chih Jen Bob Ken Lin

Figure 2: An example to illustrate the splitting procedure. Dashed edges are removed from
the figure. In the end, the graph is split to three sub-graphs, each of which is
considered as a set of duplicates.

5.5 Splitting

After Section 5.4, some names are still wrongly grouped as duplicates (e.g., “Chih Jen Lin,”
“Chih K. Lin,” and “Chih H. Lin”). In this stage, we split such groups to improve precision.
For easy explanation, we define the following terms.

1. An extended/abbreviated name: For two names satisfying the conditions in Section
5.3, if A is not shorter (not longer) than B, then A is an extended (abbreviated) name
of B.
Example: “Chih Jen Lin” is an abbreviated name of “Chih Jen Bob Lin,” while “Chih
Jen Bob Lin” is an extended name of “Chih Jen Lin.”

2. Common extended names (CEN): In a set of duplicates, B is a CEN of A if B is an
extended name of A and every A’s extended name is either B’s abbreviated or extended
name. Note that any name is a common extended name of itself.
Example: In Figure 2, assume “Chih Jen Bob Lin” and five other names are grouped
as duplicates. All names except “Chih Jen Lin” are its extended names because of equal
or longer length. We see that “Chih Jen Bob T. Lin” is not a CEN of “Chih Jen Bob
Lin” because “Chih Jen Bob K. Lin” is an extended name of the latter, but is neither
an extended nor abbreviated name of the former. Therefore, “Chih Jen Bob Lin” is the
only CEN of “Chih Jen Bob Lin.” Another example is in Figure 3. Further, Table 3 and
Table 4 respectively list CENs of some authors in Figures 2 and 3.

3. Longest common extended name (LCEN): A name B is an LCEN of A if B is a
CEN of A and has the largest number of abbreviated names among A’s CENs.
Example: In Figure 3, assume “Chih Jen Bob Lin” and five other names are grouped
as duplicates. For “Chih Jen Lin,” whose CENs include “Chih Jen Lin,” “Chih Jen Bob
Lin,” and “Chih Jen Bob Tom Ken Lin.” In these CENs, “Chih Jen Bob Ken Lin” has
three abbreviated names, more than the other two CENs. Therefore, “Chih Jen Bob
Tom Ken Lin” is an LCEN of “Chih Jen Lin.”
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Chih Jen Lin

Chih Jen Bob Lin

Chih Jen Bob T. Lin Chih Jen Bob Ken Lin

Chih Jen Bob Tom Ken Lin

Figure 3: An example to illustrate the splitting procedure. All edges are preserved, so all
names in this figure are considered as duplicates.

Author Name CEN LCEN

Chih Jen Bob Lin Chih Jen Bob Lin !

Chih Jen Bob T. Lin
Chih Jen Bob T. Lin

Chih Jen Bob Tom Lin !

Table 3: An part of examples for CEN and LCEN for Figure 2.

With the above definition, we describe the splitting procedure. For each group of du-
plicates, we construct an undirected graph so that nodes are names and any two names are
connected by an edge. For each name, we get the corresponding LCEN. We then split any
edge whose two nodes have different LCENs. Next, names in each connected sub-graph are
considered as a set of duplicates.

Consider an example in Figure 2, where six names are considered as duplicates after the
procedure in Section 5.4. The following example shows how we split edges. The LCEN of
“Chih Jen Bob T. Lin” is “Chih Jen Bob Tom Lin,” which differs from “Chih Jen Bob Lin”
of “Chih Jen Bob Lin.” Therefore, the link between “Chih Jen Bob T. Lin” and “Chih Jen
Bob Lin” is removed. We remove many other edges by the similar reason. In the end only
three edges remain.

We give another example in Figure 3, in which any two names have the same LCEN
“Chih Jen Bob Tom Ken Lin.” Therefore, we keep all edges. All names in this figure are
then considered as duplicates.

5.6 Linking

As mentioned in Section 3.2, previous stages group duplicated names rather than identifiers.
However, the competition task is to group duplicated identifiers, so some transformation is
needed. Recall that each record in Author.csv and PaperAuthor.csv is a (name, identifier)
pair. Our procedure starts from removing pair in PaperAuthor.csv that conflict with pairs
in Author.csv. For example if “C J Lin” in PaperAuthor.csv and “C C Lin” in Author.csv
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Author Name CEN LCEN

Chih Jen Lin
Chih Jen Lin Chih Jen Bob Lin

Chih Jen Bob Tom Ken Lin !

Chih Jen Bob T. Lin
Chih Jen Bob T. Lin

Chih Jen Bob Tom Ken Lin !

Table 4: An part of examples for CEN and LCEN for Figure 3.

have the same identifier, we remove “C J Lin” because of the name mismatching. Next, for
any group of names considered as duplicates, we construct an undirected graph so that each
node is a name. For any node, we link it to all nodes satisfying that their (name, identifier)
pairs appear in either Author.csv and or PaperAuthor.csv. In the end, if one identifier
appears in two connected components of the graph, then the two groups are put together
as duplicates. We consider the following example

Group1 Group2

name identifier name identifier

“C J Lin” 9A, 41A “Chih Lin” 9A, 41A
“Chihjen Lin” 75A “C Lin” 8PA, 10PA

“Chih Jen Lin” 12PA, 28PA

Assume that each group corresponds to a connected component of the constructed undi-
rected graph. The subscript of an identifier indicates the source of the (name, identifier)
pair, where “A” and “PA” denotes Author.csv and PaperAuthor.csv, respectively. Be-
cause the two groups share identifiers 9 and 41, all author identifiers in this table are
considered as duplicates.

6. Ensemble

Because the two implementations in Sections 4 and 5 detect different sets of duplicates,
an ensemble of their results may improve the performance. In this section, we propose a
conservative setting to accurately find more duplicates by using background information
such as an author’s affiliation and field of study. The main idea is that if two authors have
a similar background, then we are more confident in saying that they are duplicates.

For the two predictions generated by our implementations, we denote the prediction by
the first implementation as the major prediction, while the other as the auxiliary prediction.
This naming comes from the fact that the first implementation generally gives a better
prediction; see Table 6. Given an author a, we say a′ is an additional duplicate if a and a′

are considered as duplicates only in the auxiliary prediction. We use a filter to check if a
and a′ have a similar background. If they pass the filter, then we consider a′ as a possible
duplicate of a. By an approach similar to that in Section 4.4.1, we choose duplicates from
these possible duplicates by a dry-run function. That is, possible duplicates becomes real
duplicates only if they pass the dry-run function. Moreover, in our practical experience, if
a high-frequency word such as “Lin” exists in names considered as duplicates, the precision
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file author identifier duplicates

major 10 10,11
auxiliary 10 10,11,12,13,14

ensembled 10 10,11,12,14

Table 5: An example of ensembling duplicates.

is often low. The reason is that people with a common last name are in general different.
Therefore, we discard names having high-frequency words.9

Table 5 shows an example, where the additional duplicates of author 10 are 12, 13, and
14. Therefore, we apply the filter to pairs (10, 12), (10, 13), and (10, 14). Assume 12 and
14 pass the filtering. We then check if 10, 11, 12, and 14 could be duplicates by the dry-run
function, and examine if high-frequency words exist in the names of these authors. In this
example, we assume that the two checks are passed, so 12 and 14 are added as duplicates
of 10.

In Section 6.1, we discuss the collection of background information, while in Section 6.2,
we describe the filter. The ensemble procedure is summarized in Algorithm 2.

6.1 Collection of Background Information

For each author, we collect two sets of words: the affiliation-word set and the field-
word set. The affiliation-word set is collected from affiliation information in Author.csv

and PaperAuthor.csv; the field-word set is collected from paper titles and keywords in
Paper.csv. The procedure can be divided into three stages: cleaning, stop-word removal,
and collection.

In the cleaning stage, we remove common punctuation and handle several synonyms in
the sources. From our statistics, some frequent words in affiliation sources are synonyms.
For example, “univ” and “universidade” frequently appear in the data set, but they are
equivalent to “university.” For each set of synonyms, we replace all words with the most
frequent one. Totally we consider three sets of synonyms, which are respectively transformed
to words “university,” “center,” and “department.”

In the stop-word removal stage, we generate two stop-word lists for affiliation and fields,
respectively. Each includes a stop-word list and some high-frequency words (words occurred
more than 1,704 and 32,000 in affiliation and field sources, respectively). In addition, for
affiliation, we include several common country names. For fields, we include words that
appear only once because such words are not very informative. After the two lists are
generated, we remove all stop words.

Finally, in the collection stage, for each author all collected strings are split by space.
The resulting two sets of words on affiliations and fields are then used by the filter in the
ensemble process.

9. We call a word as a high-frequency one if it appears in Author.csv more than 1,200 times.
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Data: A major prediction and an auxiliary prediction denoted by Pm and Ps,
respectively.

Result: Pm and Ps are ensembled.
begin

background information collection
for a ∈ all authors do

Dm ← duplicates of a from Pm

Ds ← duplicates of a from Ps

P ← Dm

for a′ ∈ Ds −Dm do
if filter (a,a′) then

P ← P ∪ {a′ and its duplicates in Pm}
end

end
if any author in P has high-frequency words in its name then

continue
end
if P passes the dry-run procedure then

authors in P are duplicates
end

end

end

Algorithm 2: Ensemble of two results.

6.2 Filter

The filter considers that two authors have a similar background if the following conditions
hold.

1. Two authors have at least two common words in their affiliation-word sets and at least
one common word in their field-word sets, or they have at least one empty affiliation-word
set and at least two common field words.

2. The two authors’ field-word sets have no more than 75 common words.

The first condition implies that authors must share some words on affiliations or fields for
having a similar background. The second condition addresses some special situations where
two authors have papers in various fields. For such cases data tend to be more noisy.

7. Typo Correction

In this competition, typos occur in many places such as author names and paper titles. We
focus on typos in author names because they are directly related to author disambiguation.
From our observation, names in PaperAuthor.csv are too noisy, so we only handle typos in
author names of Author.csv. To begin, we pre-process data by replacing all non-word char-
acters with blanks and converting strings to lowercase. We also remove 11 manually selected
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F1-score on leader board
method public private submitted

baseline 0.94411 0.94352 yes
implementation 1 0.99186 0.99198 yes
implementation 2 0.99071 0.99083 no
ensemble 0.99192 0.99201 no
ensemble + typo correction 0.99195 0.99202 yes

Table 6: F1-scores by our approach. Baseline means that we assume no duplicates at all.
A submitted result means that it was uploaded during the competition. For un-
submitted results, we obtain F1-scores through the help of the competition orga-
nizers.

common words of author affiliations in Author.csv such as “department,” “university,” and
“institute.”

Because typos rarely occur, we assume that a word which appears at least twice in all
author names is not a typo. Based on this principle, we split all words of author names
in Author.csv to two sets. The first one includes words that appear only once as typo
candidates, while the second includes all others. Next, for any typo candidate in the first
set, we find their corrections from the second set. Specifically, a word in the second set
is called a correction of a typo candidate if they differ in only one character. Note that a
typo may have several corrections. For example, corrections of “cocn” may include “coin,”
“corn,” and “conn.”

After obtaining (typo, correction) pairs, the remaining task is to find duplicates. Two
author names are considered as duplicates if

1. their word sets are the same after treating each typo the same as after its correction,
and

2. their affiliations share at least one common word.

The first rule identifies “Lin Chih Jen” and “Litn Chih Jen” as duplicates if (“lint”, “lin”)
is a (typo, correction) pair. However, the same rule also identifies “Lin C J” and “Litn C J”
as duplicates, though the two names are likely different. Therefore, we impose the second
rule. In the end, about 10 pairs of duplicates are obtained.

Finally, we merge the newly founded duplicates with results obtained in Section 6. Two
author groups are combined if they share at least one author name.

8. Results

In our experiments, the used platform includes 96GB memory and two Intel Xeon E5-2620
2.0 Hz processors of which each has 6 physical cores. The running time of the first and
the second implementations is around 15 minutes and 3 hours, respectively. The significant
time gap is caused by the difference between the selection steps in the two implementations.
The first implementation restricts the maximum number of authors in a group of possible
duplicates to be less than a constant 17, but the other implementation does not put any
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F1-score on leader board
method public private submitted

implementation 1 0.99186 0.99198 yes
without Chinese-or-not 0.99109 0.99125 no
without dry-run 0.99097 0.99112 no
without both 0.98891 0.98934 no

Table 7: Evaluations of the first implementation with/without Chinese-or-not and/or dry-
run.

limitation. The ensemble of the two implementations takes about 10 minutes, while the
typo correction discussed in Section 7 needs about 7 minutes.

Table 6 presents the results (F1-score) on both public and private leader boards. Our
first implementation gives slightly higher F1-scores than the second. After the post-processing
procedure in Sections 6 and 7, the result is further boosted. Our approach gives the best
F1-score in this competition, while the first implementation gives the second best (see the
submitted results in Table 6). In Table 6 we see that some results were not uploaded dur-
ing the competition because each team is not allowed to make more than two submissions
per day. Therefore, we carefully submit results that may lead to the largest improvement.
Several factors attribute to the success of our approach. Important ones include the iden-
tification of Chinese/non-Chinese names and effective string matching procedures to find
duplicates with few of ad hoc parameters. Taking Chinese-or-not and dry-run procedure as
examples, Table 7 shows the degeneration of implementation 1 if we do not include them
into our approach. The degeneration is significant because the rank is lowered to the third
if either the Chinese-or-not or the dry-run procedure is not applied. The rank is further
lowered to the fourth if neither is applied.

9. Comparison on Approaches in KDD Cup 2013

At the KDD Cup workshop, four of the top 10 teams presented their work. These teams
are

• 1st place: Algorithm @ National Taiwan University (Chin et al., 2013)
• 2nd place: SmallData @ UIUC (Liu et al., 2013)
• 4rd place: BS Man&Dmitry&Leustagos (Solecki et al., 2013)
• 7th place: SEU WIP AD (Zhao et al., 2013)

In this section, we conduct a comparison on them. Results are summarized in Table 9.
Except the 7th that uses a semi-supervised strategy, all others are unsupervised and con-
sider many heuristic rules. Compared with other approaches, ours highly relies on the
information provided by Author.csv; in other words, we believe that Author.csv is trust-
worthy. The three unsupervised approaches can be described by the following four stages:
pre-processing, finding candidates of duplicates for all authors, determining if the candi-
dates are trustworthy, and post-processing. Based on Table 9, subsequently we highlight
important differences between the four teams.
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Aspect Considered 1st 2nd 4th 7th

Use Author.csv
√ √ √ √

Use Paper.csv
√ √ √ √

Use PaperAuthor.csv
√ √ √ √

Use Conference.csv and Journal.csv
√ √

Remove English honorifics
√ √ √

Consider stop words
√ √ √ √

Split two consecutive uppercase characters
√ √

Treat different types of punctuation using different
strategies

√ √

Transform European alphabets into English
√ √ √

Remove nobility particles
√ √ √

Replace nicknames using a public list
√ √ √

Correct typos and accidentally added letters within
every name

√ √ √

Identify the last and the first name in a name
√ √

Identify Asian authors
√ √

Perform name disambiguation on authors’ IDs (i.e.,
identify duplicated IDs)

√ √ √ √

Perform name disambiguation on authors’ names (i.e.,
identify duplicated names)

√

Consider name frequencies
√ √ √ √

Calculate similarity between authors using string
distances

√ √ √

Use topic model
√

Calculate similarity between authors using an
bibliographic graph

√ √

Compare authors using heuristic rules
√ √

Consider different naming conventions
√ √

Use support vector machine/logistic regression
√

Select possible duplicates to reduce computational
complexity

√ √ √ √

Check conflict names after duplicates are selected
√ √

Use duplicated papers
√ √

Refine result iteratively
√ √

Ensemble results generated by different algorithms
√ √

Table 8: Comparison on four of the top 10 teams

The pre-processing stage includes tasks such as cleaning data and correcting strings.
This step is not directly related to author disambiguation but significantly improves the
final results. However, some pre-processing procedures may bring additional noise into the
data set or remove useful information. Therefore, in our approach we merely applied few
conservative rules, so the data is changed in only a minor way. The most risky rule we
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Figure 4: An example of bibliographic graph.

used is the nickname replacement. The 2nd-place team used more aggressive strategies
than us because they tried to replace a name unit with a similar word which appears more
frequently in the data set. The most aggressive pre-processing was conducted by the 4th-
place team. They consider 16 steps including reversing the order of name units, replacing
nickname, removing single letters within a name, etc. Therefore, ours is the most restrictive
one among the three teams using purely unsupervised strategies. For the 7th-place team,
they do not conduct any cleaning technique for pre-processing.

In the second stage, all teams select some possible candidates of duplicates. The aim
is to reduce the computational complexity. The O(n2) cost of pairwise comparisons for n
authors is prohibitively expensive. The selection stage begins with binning authors in the
data set into different groups using some keys generated from their names. Similar to our
strategies shown in Section 4.3, the 2nd-place team assign the authors with same keys (e.g.,
initial letters and identical name units) to the same bin. Furthermore, these two teams
consider set comparisons, so a name’s order of tokens does not effect the comparison result.
The other two teams generate keys of an author using its first name and its last name. If
we permute the tokens in a name, different results may be generated. The reason is that
they generate keys in according to the location of the first name and the last name of an
author. In addition, all these approaches find candidates for every author ID except our
2nd implementation that searches for possible candidates for every author name.

After we collect possible candidates for every author, the next step is to determine if
these candidates are duplicates. In general, all proposed methods compare an author with
all its candidates. The 4th place team’s comparison and ours are purely string match-
ing. In contrast, a bibliographic graph is often used to describe the complicated rela-
tion between authors, publications, and other information; see an illustration in Figure 4.
Interestingly, these two teams did not build any bibliographic graph probably because data
in PaperAuthor.csv are too noisy. That is, the links between authors and publications are
unreliable. Note that Figure 2 and Figure 3 are not bibliographic graphs because they are
built using our name comparison rules for checking conflict names. The other two teams
measure differences between authors using meta-paths in their bibliographic graphs. If two
authors are considered as duplicates then all their duplicates are merged. The operation
is risky because the merge of two groups is determined by only a pair of authors without
considering their duplicates. A simple remedy is to check the similarities between authors
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in the merged group. If they are not similar enough, then the merged group would be split.
Only the 2nd-place team and our approach conduct such a check. See the dry-run proce-
dure in our 1st implementation, the splitting procedure in our 2nd implementation, and
the ranking-based merging stage in the 2nd place team’s solution for details. As mentioned
before, semi-supervised learning techniques only appear in the 4th-place team’s solution.
They generate training data using some heuristic rules, and train SVM to decide if two
authors are duplicates. Unfortunately, it seems that the data set is too noisy to provide
reliable training data. A possible solution is to refine the result generated by SVM using
hand-made heuristics (e.g., rules in Section 4.4).

Post-processing techniques mainly include identifying confident information and ensem-
bling models. The 2nd-place team identifies confident information to avoid error propaga-
tion in their iterative framework. Ensemble is naturally considered by teams which have
multiple approaches. We carefully designed rules to merge our two implementations and
conduct typo corrections, while the 4th-place team applied a rule, called transient assump-
tion, to aggressively merge their results.

10. Conclusion and Future Works

We can make the following observations and conclusions following the description of our
approaches in this paper and the comparison in Section 9. First, we try our best to keep all
information and delay the modification on the data set because the provided data set is noisy
and incomplete. For instance, our typo correction is the last step of the whole procedure.
In contrast, the 4th-place team conducts a similar process in their pre-processing stage.
Second, an important advantage of using rule-based approaches is that we can easily trace
the change of results after a rule is added. We can check the effectiveness of rules and
identify useful information. For example, we find that different name conventions play an
important role in author disambiguation when we add the matching function “one is a
shortened name of the other and both have the same initial-character set of words.” In
contrast, some complicated methods like LDA are hard to analyze. Furthermore, human
brain is still very powerful to analyze large-scale data sets if we have systematic schemes to
filter out redundant information.

Overall, our experiments show that proposed techniques may be useful for other ap-
plications of author disambiguation. For example, others can apply our Chinese-or-not
procedure when the separation of Chinese and non-Chinese authors is needed. Further,
they can employ our rules designed for each of the two groups. Outputs of rules can then
be used to train a binary classifier for determining whether two authors are duplicates.
The parallelization of our algorithm is another interesting issue because the sizes of avail-
able data sets are growing. Besides, we are also interested in the behavior of graph-based
approaches on noisy bibliographic data sets.
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Abstract

We establish a new framework for statistical estimation of directed acyclic graphs (DAGs)
when data are generated from a linear, possibly non-Gaussian structural equation model.
Our framework consists of two parts: (1) inferring the moralized graph from the support
of the inverse covariance matrix; and (2) selecting the best-scoring graph amongst DAGs
that are consistent with the moralized graph. We show that when the error variances are
known or estimated to close enough precision, the true DAG is the unique minimizer of
the score computed using the reweighted squared `2-loss. Our population-level results have
implications for the identifiability of linear SEMs when the error covariances are specified
up to a constant multiple. On the statistical side, we establish rigorous conditions for high-
dimensional consistency of our two-part algorithm, defined in terms of a “gap” between the
true DAG and the next best candidate. Finally, we demonstrate that dynamic programming
may be used to select the optimal DAG in linear time when the treewidth of the moralized
graph is bounded.

Keywords: causal inference, dynamic programming, identifiability, inverse covariance
matrix estimation, linear structural equation models

1. Introduction

Causal networks arise naturally in a wide variety of application domains, including genetics,
epidemiology, and time series analysis (Hughes et al., 2000; Stekhoven et al., 2012; Aalen
et al., 2012). However, inferring the graph structure of a causal network from joint obser-
vations is a rather challenging problem. Whereas undirected graphical structures may be
estimated via pairwise conditional independence testing, with worst-case time scaling as
the square of the number of nodes, estimation methods for directed acyclic graphs (DAGs)
first require learning an appropriate permutation order of the vertices, leading to computa-
tional complexity that scales exponentially in the graph size. Greedy algorithms present an
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attractive computationally efficient alternative, but such methods are not generally guar-
anteed to produce the correct graph (Chickering, 2002). In contrast, exact methods for
causal inference that search exhaustively over the entire DAG space may only be tractable
for relatively small graphs (Silander and Myllymaki, 2006).

1.1 Restricted Search Space

In practice, knowing prior information about the structure of the underlying DAG may lead
to vast computational savings. For example, if a natural ordering of the nodes is known,
inference may be performed by regressing each node upon its predecessors and selecting
the best functional fit for each node. This yields an algorithm with runtime linear in the
number of nodes and overall quadratic complexity. In the linear high-dimensional Gaussian
setting, one could apply a version of the graphical Lasso, where the feasible set is restricted
to matrices that are upper-triangular with respect to the known ordering (Shojaie and
Michailidis, 2010). However, knowing the node order is unrealistic for many applications. If
instead a conditional independence graph or superset of the skeleton is specified a priori, the
number of required conditional independence tests may also be reduced dramatically. This
appears to be a more reasonable assumption, and various authors have devised algorithms to
compute the optimal DAG efficiently in settings where the input graph has bounded degree
and/or bounded treewidth (Perrier et al., 2008; Ordyniak and Szeider, 2012; Korhonen and
Parviainen, 2013).

Unfortunately, appropriate tools for inferring such superstructures are rather limited,
and the usual method of using the graphical Lasso to estimate a conditional independence
graph is rigorously justified only in the linear Gaussian setting (Yuan and Lin, 2007).
Recent results have established that a version of the graphical Lasso may also be used
to learn a conditional independence graph for variables taking values in a discrete alphabet
when the graph has bounded treewidth (Loh and Wainwright, 2013), but results for more
general distributions are absent from the literature. Bühlmann et al. (2014) isolate sufficient
conditions under which Lasso-based linear regression could be used to recover a conditional
independence graph for general distributions, and use the Lasso as a prescreening step
for nonparametric causal inference in additive noise models; however, it is unclear which
non-Gaussian distributions satisfy the prescribed conditions.

1.2 Our Contributions

We propose a new algorithmic strategy for inferring the DAG structure of a linear, poten-
tially non-Gaussian structural equation model (SEM). Deviating slightly from the literature,
we use the term non-Gaussian to refer to the fact that the variables are not jointly Gaussian;
however, we do not require non-Gaussianity of all exogenous noise variables, as assumed
by Shimizu et al. (2011). We proceed in two steps, where each step is of independent in-
terest: First, we infer the moralized graph by estimating the inverse covariance matrix of
the joint distribution. The novelty is that we justify this approach for non-Gaussian linear
SEMs. Second, we find the optimal causal network structure by searching over the space of
DAGs that are consistent with the moralized graph and selecting the DAG that minimizes
an appropriate score function. When the score function is decomposable and the moralized
graph has bounded treewidth, the second step may be performed via dynamic program-
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ming in time linear in the number of nodes (Ordyniak and Szeider, 2012). Our algorithm is
also applicable in a high-dimensional setting when the moralized graph is sparse, where we
estimate the support of the inverse covariance matrix using a method such as the graphical
Lasso (Ravikumar et al., 2011). Our algorithmic framework is summarized in Algorithm 1:

Algorithm 1 Framework for DAG estimation

1: Input: Data samples {xi}ni=1 from a linear SEM

2: Obtain estimate Θ̂ of inverse covariance matrix (e.g., using graphical Lasso)

3: Construct moralized graph M̂ with edge set defined by supp(Θ̂)

4: Compute scores for DAGs that are consistent with M̂ (e.g., using squared `2-error)
5: Find minimal-scoring Ĝ (using dynamic programming when score is decomposable

and M̂ has bounded treewidth)

6: Output: Estimated DAG Ĝ

We prove the correctness of our graph estimation algorithm by deriving new results
about the theory of linear SEMs. We present a novel result showing that for almost ev-
ery choice of linear coefficients, the support of the inverse covariance matrix of the joint
distribution is identical to the edge structure of the moralized graph. Although a similar re-
lationship between the support of the inverse covariance matrix and the edge structure of an
undirected conditional independence graph has long been established for multivariate Gaus-
sian models (Lauritzen, 1996), our core result in Theorem 2 does not exploit Gaussianity,
and the proof technique is entirely new.

Since we do not impose constraints on the error distribution of our SEM, standard
parametric maximum likelihood methods are not applicable to score and compare candidate
DAGs. Consequently, we use the squared `2-error to score DAGs, and prove that in the case
of homoscedastic errors, the true DAG uniquely minimizes this score function. As a side
corollary, we establish that the DAG structure of a linear SEM is identifiable whenever the
additive errors are homoscedastic, which generalizes a recent result derived only for Gaussian
variables (Peters and Bühlmann, 2013). In addition, our result covers cases with Gaussian
and non-Gaussian errors, whereas Shimizu et al. (2011) require all errors to be non-Gaussian
(see Section 4.2). A similar result is implicitly contained under some assumptions in van de
Geer and Bühlmann (2013), but we provide a more general statement and additionally
quantify a regime where the errors may exhibit a certain degree of heteroscedasticity. Thus,
when errors are not too heteroscedastic, the much more complicated ICA algorithm (Shimizu
et al., 2006, 2011) may be replaced by a simple scoring method using squared `2-loss.

On the statistical side, we show that our method produces consistent estimates of the
true DAG by invoking results from high-dimensional statistics. We note that our theoretical
results only require a condition on the gap between squared `2-scores for various DAGs
in the restricted search space and eigenvalue conditions on the true covariance matrix,
which is a much weaker assumption than the restrictive beta-min condition from previous
work (van de Geer and Bühlmann, 2013). Furthermore, the size of the gap is not required
to scale linearly with the number of nodes in the graph, unlike similar conditions in van de
Geer and Bühlmann (2013) and Peters and Bühlmann (2013), leading to genuinely high-
dimensional results. Although the precise size of the gap relies heavily on the structure
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of the true DAG, we include several examples providing intuition for when our condition
could be expected to hold (see Sections 4.4 and 5.2 below). Finally, since inverse covariance
matrix estimation and computing scores based on linear regression are both easily modified
to deal with systematically corrupted data (Loh and Wainwright, 2012), we show that our
methods are also applicable for learning the DAG structure of a linear SEM when data are
observed subject to corruptions such as missing data and additive noise.

The remainder of the paper is organized as follows: In Section 2, we review the general
theory of probabilistic graphical models and linear SEMs. Section 3 describes our results on
the relationship between the inverse covariance matrix and conditional independence graph
of a linear SEM. In Section 4, we discuss the use of the squared `2-loss for scoring candidate
DAGs. Section 5 establishes results for the statistical consistency of our proposed inference
algorithms and explores the gap condition for various graphs. Finally, Section 6 describes
how dynamic programming may be used to identify the optimal DAG in linear time, when
the moralized graph has bounded treewidth. Proofs of supporting results are contained in
the Appendix.

2. Background

We begin by reviewing some basic background material and introducing notation for the
graph estimation problems studied in this paper.

2.1 Graphical Models

In this section, we briefly review the theory of directed and undirected graphical models,
also known as conditional independence graphs (CIGs). For a more in-depth exposition,
see Lauritzen (1996) or Koller and Friedman (2009) and the references cited therein.

2.1.1 Undirected Graphs

Consider a probability distribution q(x1, . . . , xp) and an undirected graph G = (V,E), where
V = {1, . . . , p} and E ⊆ V × V . We say that G is a conditional independence graph (CIG)
for q if the following Markov condition holds: For all disjoint triples (A,B, S) ⊆ V such
that S separates A from B in G, we have XA ⊥⊥ XB | XS . Here, XC := {Xj : j ∈ C} for
any subset C ⊆ V . We also say that G represents the distribution q.

By the well-known Hammersley-Clifford theorem, if q is a strictly positive distribution
(i.e., q(x1, . . . , xp) > 0 for all (x1, . . . , xp)), then G is a CIG for q if and only if we may write

q(x1, . . . , xp) =
∏
C∈C

ψC(xC), (1)

for some potential functions {ψC : C ∈ C} defined over the set of cliques C of G. In
particular, note that the complete graph on p nodes is always a CIG for q, but CIGs with
fewer edges may exist.

2.1.2 Directed Acyclic Graphs (DAGs)

Changing notation slightly, consider a directed graph G = (V,E), where we now distinguish
between edges (j, k) and (k, j). We say that G is a directed acyclic graph (DAG) if there
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are no directed paths starting and ending at the same node. For each node j ∈ V , let
Pa(j) := {k ∈ V : (k, j) ∈ E} denote the parent set of j, where we sometimes write PaG(j)
to emphasize the dependence on G. A DAG G represents a distribution q(x1, . . . , xp) if q
factorizes as

q(x1, . . . , xp) ∝
p∏
j=1

q(xj | xPa(j)). (2)

Finally, a permutation π of the vertex set V = {1, . . . , p} is a topological order for G if
π(j) < π(k) whenever (j, k) ∈ E. Such a topological order exists for any DAG, but it may
not be unique. The factorization (2) implies that Xj ⊥⊥ Xν(j) | XPa(j) for all j, where ν(j)
is the set of all nondescendants of j (nodes that cannot be reached via a directed path from
j) excluding Pa(j).

Given a DAG G, we may form the moralized graph M(G) by fully connecting all nodes
within each parent set Pa(j) and dropping the orientations of directed edges. Note that
moralization is a purely graph-theoretic operation that transforms a directed graph into an
undirected graph. However, if the DAG G represents a distribution q, then M(G) is also
a CIG for q. This is because each set {j} ∪ Pa(j) forms a clique Cj in M(G), and we may
define the potential functions ψCj (xCj ) := q(xj | xPa(j)) to obtain the factorization (1) from
the factorization (2).

Finally, we define the skeleton of a DAG G to be the undirected graph formed by
dropping orientations of edges in G. Note that the edge set of the skeleton is a subset of the
edge set of the moralized graph, but the latter set is generally much larger. The skeleton is
not in general a CIG.

2.2 Linear Structural Equation Models

We now specialize to the framework of linear structural equation models.

We say that a random vector X = (X1, . . . , Xp) ∈ Rp follows a linear structural equation
model (SEM) if

X = BTX + ε, (3)

where B is a strictly upper triangular matrix known as the autoregression matrix. We
assume E[X] = E[ε] = 0 and εj ⊥⊥ (X1, . . . , Xj−1) for all j.

In particular, observe that the DAG G with vertex set V = {1, . . . , p} and edge set
E = {(j, k) : Bjk 6= 0} represents the joint distribution q on X. Indeed, Equation (3)
implies that

q(Xj | X1, . . . , Xj−1) = q(Xj | XPaG(j)),

so we may factorize

q(X1, . . . , Xp) =

p∏
j=1

q(Xj | X1, . . . , Xj−1) =

p∏
j=1

q(Xj | XPaG(j)).

Given samples {Xi}ni=1, our goal is to infer the unknown matrix B, from which we may
recover G (or vice versa).
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3. Moralized Graphs and Inverse Covariance Matrices

In this section, we describe our main result concerning inverse covariance matrices of linear
SEMs. It generalizes a result for multivariate Gaussians, and states that the inverse covari-
ance matrix of the joint distribution of a linear SEM reflects the structure of a conditional
independence graph.

We begin by noting that

E[Xj | X1, . . . , Xj−1] = bTj X,

where bj is the jth column of B, and

bj =
(

Σj,1:(j−1)

(
Σ1:(j−1),1:(j−1)

)−1
, 0, . . . , 0

)T
.

Here, Σ := cov[X]. We call bTj X the best linear predictor forXj amongst linear combinations

of {X1, . . . , Xj−1}. Defining Ω := cov[ε] and Θ := Σ−1, we see from Equation (3) that

Σ = (I −B)−TΩ(I −B)−1. (4)

(Note that (I−B) is always invertible because B is strictly upper triangular.) Furthermore,
we have the following lemma, proved in Appendix C.1:

Lemma 1 The matrix of error covariances is diagonal: Ω = diag(σ2
1, . . . , σ

2
p) for some

σi > 0. The entries of Θ are given by

Θjk = −σ−2
k Bjk +

∑
`>k

σ−2
` Bj`Bk`, ∀j < k, (5)

Θjj = σ−2
j +

∑
`>j

σ−2
` B2

j`, ∀j. (6)

In particular, Equation (5) has an important implication for causal inference, which we
state in the following theorem. Recalling the notation of Section 2.1.2, the graph M(G)
denotes the moralized DAG.

Theorem 2 Suppose X is generated from the linear structural equation model (3). Then
Θ reflects the graph structure of the moralized DAG; i.e., for j 6= k, we have Θjk = 0 if
(j, k) is not an edge in M(G).

Proof Suppose j 6= k and (j, k) is not an edge in M(G), and assume without loss of
generality that j < k. Certainly, (j, k) 6∈ E, implying that Bjk = 0. Furthermore, j and k
cannot share a common child, or else (j, k) would be an edge inM(G). This implies that ei-
ther Bj` = 0 or Bk` = 0 for each ` > k. The desired result then follows from Equation (5).

Note that Theorem 2 may be viewed as an extension of the canonical result for Gaussian
graphical models, although we do not require ε to follow a Gaussian distribution, so the
class of linear SEMs covered by Theorem 2 is much broader. A multivariate Gaussian
distribution may be written as a linear SEM with respect to any permutation order π of the
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variables, giving rise to a DAG Gπ. In that case, Theorem 2 states that supp(Θ) is always
a subset of the edge set of M(Gπ).

In the results to follow, we will assume that the converse of Theorem 2 holds, as well.
This is stated in the following Assumption:

Assumption 1 Let (B,Ω) be the matrices of the underlying linear SEM. For every j < k,
we have

−σ−2
k Bjk +

∑
`>k

σ−2
` Bj`Bk` = 0

only if Bjk = 0 and Bj`Bk` = 0 for all ` > k.

Combined with Theorem 2, Assumption 1 implies that Θjk = 0 if and only if (j, k) is not
an edge in M(G). (Since Θ � 0, the diagonal entries of Θ are always strictly positive.)
Note that when the nonzero entries of B are independently sampled continuous random
variables, Assumption 1 holds for all choices of B except on a set of Lebesgue measure zero.

Remark 3 Assumption 1 is a type of faithfulness assumption (Koller and Friedman, 2009;
Spirtes et al., 2000). By selecting different topological orders π, one may then derive the
familiar result that Xj ⊥⊥ Xk | X\{j,k} if and only if Θjk = 0, in the Gaussian setting.
Note that this conditional independence assertion may not always hold for linear SEMs,
however, since non-Gaussian distributions are not necessarily expressible as a linear SEM
with respect to an arbitrary permutation order. Indeed, we only require Assumption 1 to
hold with respect to a single (fixed) order.

4. Score Functions for DAGs

Having established a method for reducing the search space of DAGs based on estimating
the moralized graph, we now move to the more general problem of scoring candidate DAGs.
As before, we assume the setting of a linear SEM.

Parametric maximum likelihood is often used as a score function for statistical estimation
of DAG structure, since the likelihood enjoys the nice property that the population-level
version is maximized only under a correct parameterization of the model class. This follows
from the relationship between maximum likelihood and KL divergence:

arg max
θ

Eθ0 [log pθ(X)] = arg min
θ

Eθ0

[
log

(
pθ0(X)

pθ(X)

)]
= arg min

θ
DKL(pθ0‖pθ),

and the latter quantity is minimized exactly when pθ0 ≡ pθ, almost everywhere. If the
model is identifiable, this happens if and only if θ = θ0.

However, such maximum likelihood methods presuppose a fixed parameterization for
the model class. In the case of linear SEMs, this translates into an appropriate parameter-
ization of the error vector ε. For comparison, note that minimizing the squared `2-error for
ordinary linear regression may be viewed as a maximum likelihood approach when errors are
Gaussian, but the `2-minimizer is still statistically consistent for estimation of the regres-
sion vector when errors are not Gaussian. When our goal is recovery of the autoregression
matrix B of the DAG, it is therefore natural to ask whether squared `2-error could be used
in place of maximum likelihood as an appropriate metric for evaluating DAGs.
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We will show that in settings where the noise variances {σj}pj=1 are specified up to a
constant (e.g., homoscedastic error), the answer is affirmative. In such cases, the true DAG
uniquely minimizes the `2-loss. As a side result, we will also show that the true linear SEM
is identifiable.

Remark 4 Nowzohour and Bühlmann (2014) study the use of nonparametric maximum
likelihood methods for scoring candidate DAGs. We remark that such methods could also
be combined with the framework of Sections 3 and 6 to select the optimal DAG for linear
SEMs with nonparametric error distributions: First, estimate the moralized graph via the
inverse covariance matrix, and then find the DAG with minimal score using a method such
as dynamic programming. Similar statistical guarantees would hold in that case, with para-
metric rates replaced by nonparametric rates. However, our results in this section imply that
in settings where the error variances are known or may be estimated accurately, the much
simpler method of squared `2-loss may be used in place of a more complicated nonparametric
approach.

4.1 Weighted Squared `2-Loss

Suppose X is drawn from a linear SEM (3), where we now use B0 to denote the true
autoregression matrix and Ω0 to denote the true error covariance matrix. For a fixed
diagonal matrix Ω = diag(σ2

1, . . . , σ
2
p) and a candidate matrix B with columns {bj}pj=1,

define the score of B with respect to Ω according to

scoreΩ(B) = E
[
‖Ω−1/2(I −B)TX‖22

]
=

p∑
j=1

1

σ2
j

· E[(Xj − bTj X)2]. (7)

This is a weighted squared `2-loss, where the prediction error for the jth coordinate is
weighted by the diagonal entry σ2

j coming from Ω, and expectations are taken with respect
to the true distribution on X.

It is instructive to compare the score function (7) to the usual parametric maximum
likelihood when X ∼ N(0,Σ). For a distribution parameterized by the pair (B,Ω), the
inverse covariance matrix is Θ = (I −B)Ω−1(I −B)T , using Equation (4), so the expected
log likelihood is

EX∼N(0,Σ)[log pB,Ω(X)] = − tr[(I −B)Ω−1(I −B)TΣ] + log det[(I −B)Ω−1(I −B)T ]

= − tr[(I −B)Ω−1(I −B)TΣ] + log det(Ω−1)

= − scoreΩ(B) + log det(Ω−1).

Hence, minimizing the score over B for a fixed Ω is identical to maximizing the likelihood.
For non-Gaussians, however, the convenient relationship between minimum score and max-
imum likelihood no longer holds.

Now let D denote the class of DAGs. For G ∈ D, define the score of G to be

scoreΩ(G) := min
B∈UG

{scoreΩ(B)} , (8)

where
UG := {B ∈ Rp×p : Bjk = 0 when (j, k) 6∈ E(G)}
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is the set of matrices that are consistent with the structure of G.

Remark 5 Examining the form of the score function (7), we see that if {PaG(j)}pj=1 de-
notes the parent sets of nodes in G, then the matrix

BG := arg min
B∈UG

{scoreΩ(B)}

is unique, and the columns of BG are equal to the coefficients of the best linear predictor
of Xj regressed upon XPaG(j). Furthermore, the value of BG does not depend on Ω, since
the minimizing value of bj in the argument of Equation (7) is unaffected by the weighting
factor σ2

j .

The following lemma relates the score of the underlying DAG G0 to the score of the
true autoregression matrix B0. In fact, the score of any DAG containing G0 has the same
score. The proof is contained in Appendix C.2.

Lemma 6 Suppose X follows a linear SEM with autoregression matrix B0, and let G0

denote the underlying DAG. Consider any G ∈ D such that G0 ⊆ G. Then for any diagonal
weight matrix Ω, we have

scoreΩ(G) = scoreΩ(B0),

and B0 is the unique minimizer of scoreΩ(B) over UG.

We now turn to the main theorem of this section, in which we consider the problem of
minimizing scoreΩ(B) with respect to all matrices B that are permutation similar to upper
triangular matrices. Such a result is needed to validate our choice of score function, since
when the DAG structure is not known a priori, the space of possible autoregression matrices
must include all U :=

⋃
G∈D UG. Note that U may be equivalently defined as the set of all

matrices that are permutation similar to upper triangular matrices. We have the following
vital result:

Theorem 7 Given a linear SEM (3) with error covariance matrix αΩ0 and autoregression
matrix B0, where α > 0, we have

scoreΩ0(B) ≥ scoreΩ0(B0) = αp, ∀B ∈ U , (9)

with equality if and only if B = B0.

The proof of Theorem 7, which is based on matrix algebra, is contained in Section 4.5. In
particular, Theorem 7 implies that the squared `2-loss function (7) is indeed an appropriate
measure of model fit when the components are correctly weighted by the diagonal entries
of Ω0.

Note, however, that Theorem 7 requires the score to be taken with respect to (a multiple
of) the true error covariance matrix Ω0. The following example gives a cautionary message
that if the weights Ω are chosen incorrectly, minimizing scoreΩ(B) may produce a structure
that is inconsistent with the true model:
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Example 1 Suppose (X1, X2) is distributed according to the following linear SEM:

X1 = ε1, and X2 = −X1

2
+ ε2,

so the autoregression matrix is given by B0 =

(
0 −1

2
0 0

)
. Let Ω0 =

(
1 0
0 1

4

)
. Consider

B1 =

(
0 0
−1 0

)
. Then

scoreI(B1) < scoreI(B0), (10)

so using squared `2-loss weighted by the identity will select an inappropriate model.

Proof To verify Equation (10), we first compute

Σ = (I −B0)−TΩ0(I −B0) =

(
1 −1

2
−1

2
1
2

)
.

Then

E[‖X −BT
1 X‖22] = tr

[
(I −B1)TΣ(I −B1)

]
= tr

[(
1/2 0
0 1/2

)]
= 1,

E[‖X −BT
0 X‖22] = tr

[
(I −B0)TΣ(I −B0)

]
= tr

[(
1 0
0 1/4

)]
=

5

4
,

implying Inequality (10).

4.2 Identifiability of Linear SEMs

Theorem 7 also has a useful consequence in terms of identifiability of a linear SEM, which
we state in the following corollary:

Corollary 8 Consider a fixed diagonal covariance matrix Ω0, and consider the class of
linear SEMs parameterized by the pair (B,αΩ0), where B ∈ U and α > 0 is a scale factor.
Then the true model (B0, α0Ω0) is identifiable. In particular, the class of homoscedastic
linear SEMs is identifiable.

Proof By Theorem 7, the matrix B0 is the unique minimizer of scoreΩ0(B). Since
α0 · (Ω0)11 = var[X1], the scale factor α0 is also uniquely identifiable. The statement
about homoscedasticity follows by taking Ω0 = I.

Corollary 8 should be viewed in comparison to previous results in the literature regarding
identifiability of linear SEMs. Theorem 1 of Peters and Bühlmann (2013) states that when
X is Gaussian and ε is an i.i.d. Gaussian vector with cov[ε] = αΩ0, the model is identifiable.
Indeed, our Corollary 8 implies that result as a special case, but it does not impose any
additional conditions concerning Gaussianity. Shimizu et al. (2006) establish identifiability
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of a linear SEM when ε is a vector of independent, non-Gaussian errors, by reducing to
ICA, but our result does not require errors to be non-Gaussian.

The significance of Corollary 8 is that it supplies an elegant proof showing that the model
is still identifiable even in the presence of both Gaussian and non-Gaussian components,
provided the error variances are specified up to a scalar multiple. Since any multivariate
Gaussian distribution may be written as a linear SEM with respect to an arbitrary order-
ing, some constraint such as variance scaling or non-Gaussianity is necessary in order to
guarantee identifiability.

4.3 Misspecification of Variances

Theorem 7 implies that when the diagonal variances of Ω0 are known up to a scalar factor,
the weighted `2-loss (7) may be used as a score function for linear SEMs. Example 1 shows
that when Ω is misspecified, we may have B0 6∈ arg minB∈U {scoreΩ(B)}. In this section,
we further study the effect when Ω is misspecified. Intuitively, provided Ω is close enough
to Ω0 (or a multiple thereof), minimizing scoreΩ(B) with respect to B should still yield the
correct B0.

Consider an arbitrary diagonal weight matrix Ω1. We first provide bounds on the ratio
between entries of Ω0 and Ω1 which ensure that B0 = arg minB∈U {scoreΩ1(B)}, even though
the model is misspecified. Let

amax := λmax(Ω0Ω−1
1 ) and amin := λmin(Ω0Ω−1

1 )

denote the maximum and minimum ratios between corresponding diagonal entries of Ω1

and Ω0. Now define the additive gap between the score of G0 and the next best DAG, given
by

ξ := min
G∈D, G 6⊇G0

{scoreΩ0(G)− scoreΩ0(G0)} = min
G∈D,G 6⊇G0

{scoreΩ0(G)} − p. (11)

By Theorem 7, we know that ξ > 0. The following theorem provides a sufficient condition
for correct model selection in terms of the gap ξ and the ratio amax

amin
, which are both invariant

to the scale factor α. It is a measure of robustness for how roughly the entries of Ω0 may
be approximated and still produce B0 as the unique minimizer. The proof of the theorem
is contained in Appendix C.3.

Theorem 9 Suppose
amax

amin
≤ 1 +

ξ

p
. (12)

Then B0 ∈ arg minB∈U {scoreΩ1(B)}. If Inequality (12) is strict, then B0 is the unique
minimizer of scoreΩ1(B).

Remark 10 Theorem 9 provides an error allowance concerning the accuracy to which we
may specify the error covariances and still recover the correct autoregression matrix B0 from
an improperly weighted score function. In the case Ω1 = αΩ0, we have amax = amin = 1, so
the condition (12) is always strictly satisfied, which is consistent with our earlier result in
Theorem 7 that B0 = arg minB∈U {scoreαΩ0(B)}.
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b0 b

(a) (b)

Figure 1: Two-variable DAG. (a) The forward model. (b) The backward model.

Naturally, the error tolerance specified by Theorem 9 is a function of the gap ξ between
the true DAG G0 and the next best candidate: If ξ is larger, the score is more robust to
misspecification of the weights Ω. Note that if we restrict our search space from the full set
of DAGs D to some smaller space D′, so B ∈

⋃
G∈D′ UG, we may restate the condition in

Theorem 9 in terms of the gap

ξ(D′) := min
G∈D′, G 6⊇G0

{scoreΩ0(G)− scoreΩ0(G0)}, (13)

which may be considerably larger than ξ when D′ is much smaller than D. See Equation (22)
and Section 5.2 on weakening the gap condition below.

Specializing to the case when Ω1 = I, we may interpret Theorem 9 as providing a window
of variances around which we may treat a heteroscedastic model as homoscedastic, and use
the simple (unweighted) squared `2-score to recover the correct model. See Lemma 11 in
the next section for a concrete example.

4.4 Example: 2- and 3-Variable Models

In this section, we develop examples illustrating the gap ξ introduced in Section 4.3. We
study two cases, involving two and three variables, respectively.

4.4.1 Two Variables

We first consider the simplest example with a two-variable directed graph. Suppose the
forward model is defined by

B0 =

(
0 b0
0 0

)
, Ω0 =

(
d2

1 0
0 d2

2

)
,

and consider the backward matrix defined by the autoregression matrix

B =

(
0 0
b 0

)
. (14)

The forward and backward models are illustrated in Figure 1.

A straightforward calculation shows that

scoreΩ0(B) = 2 + b2b20 +

(
b
d2

d1
− b0

d1

d2

)2

,
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which is minimized for b = b0

b20+
d2
2

d2
1

, implying that

ξ = min
b
{scoreΩ0(B)− scoreΩ0(B0)} =

b40
d4

2

d4
1

+ b20
d2

2

d2
1

. (15)

We see that the gap ξ grows with the strength of the true edge b0, when |b0| > 1, and is
symmetric with respect to the sign of b0. The gap also grows with the magnitude of the
ratio d1

d2
.

To gain intuition for the interplay between b0 and d1
d2

, we derive the following lemma, a
corollary of Theorem 9 specialized to the case of the two-variable DAG:

Lemma 11 Consider the two-variable DAG defined by Equation (14). Let Ω1 = I2 and
define r := d2

d1
. Suppose the following conditions hold:

b20 ≥

{
r2
(

(r2 − 1) +
√
r4 − 1

)
, if r ≥ 1,

(1− r2) +
√

1− r4, if r ≤ 1.
(16)

Then B0 = arg minB∈U{scoreΩ1(B)}; i.e., B0 is the unique minimizer of the score function
under the unweighted squared-`2 loss.

Lemma 11 is proved in Appendix C.4.

Remark 12 Note that the two right-hand expressions in Inequality (16) are similar, al-
though the expression in the case r2 ≥ 1 contains an extra factor of r2, so the sufficient
condition is stronger. Both lower bounds in Equation (16) increase with |r−1|, which agrees
with intuition: If the true model is more non-homoscedastic, the strength of the true edge
must be stronger in order for the unweighted squared-`2 score to correctly identify the model.
When r = 1, we have the vacuous condition b20 ≥ 0, since Ω1 = αΩ0 and the variances are
correctly specified, so Theorem 7 implies B0 = arg minB∈U{scoreΩ1(B)} for any choice of
b0.

4.4.2 v-Structure

We now examine a three-variable graph. Suppose the actual graph involves a v-structure,
as depicted in Figure 2, and is parameterized by the matrices

B0 =

 0 0 b13

0 0 b23

0 0 0

 , Ω =

 d2
1 0 0

0 d2
2 0

0 0 d2
3

 . (17)

We have the following lemma, proved in Appendix C.5:

Lemma 13 Consider the three-variable DAG characterized by Figure 2 and Equations (17).
The gap ξ defined by Equation (11) is given by

ξ = min

 b423
d4

3

d4
2

+ b223
d2

3

d2
2

,
b413

d4
3

d4
1

+ b213
d2

3

d2
1

 .
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1 2

3

b13 b23

Figure 2: Three-variable DAG with v-structure.

A key reduction in the proof of Lemma 13 is to note that we only need to consider a
relatively small number of DAGs, given by Figure 3 in Appendix C.5. Indeed, for G1 ⊆ G2,
we have scoreΩ0(G2) ≤ scoreΩ0(G1), so it suffices to consider maximal elements in the poset
of DAGs not containing the true DAG G0.

Remark 14 Note that the form of the gap in Lemma 13 is very similar to the form for
the two-variable model, and the individual ratios scale with the strength of the edge and the
ratio of the corresponding error variances. Indeed, we could derive a version of Lemma 11
for the three-variable model, giving lower bounds on the edge strengths b223 and b213 that
guarantee the accuracy of the unweighted squared `2-loss; however, the conditions would
be more complicated. It is interesting to note from our calculations in Appendix C.5 that
the gap between models accumulates according to the number of edge reversals from the
misspecified model: Reversing the directions of edges (2, 3) and (1, 3) in succession leads to
an additional term in the expressions for ξ1 and ξ2 in Equations (43) and (44) below. We
will revisit these observations in Section 5.2, where we define a version of the gap function
rescaled by the number of nodes that differ in their parents sets.

4.5 Proof of Theorem 7

First note that for a constant α > 0, we have

scoreαΩ(B) =
1

α
· scoreΩ(B),

so minimizing scoreαΩ(B) is equivalent to minimizing scoreΩ(B). Furthermore, it suffices
to prove the statement for α = 1; the statement for general α > 0 follows by a simple
rescaling.

Recalling Equation (4), we may write

scoreΩ0(B) = EB0 [‖Ω−1/2
0 (I −B)TX‖22]

= tr
[
Ω
−1/2
0 (I −B)T · covB0 [X] · (I −B)Ω

−1/2
0

]
= tr

[
Ω
−1/2
0 (I −B)T · (I −B0)−TΩ0(I −B0)−1 · (I −B)Ω

−1/2
0

]
.

Now note that

(I −B)Ω
−1/2
0 = Ω

−1/2
0 (I − Ω

1/2
0 BΩ

−1/2
0 ) := Ω

−1/2
0 (I − B̃),

Ω
1/2
0 (I −B0)−1 = (I − Ω

1/2
0 B0Ω

−1/2
0 )−1Ω

1/2
0 := (I − B̃0)−1Ω

1/2
0 ,
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where B̃, B̃0 ∈ U . Hence, we may rewrite

scoreΩ0(B) = tr
[
(I − B̃)TΩ

−1/2
0 · Ω1/2

0 (I − B̃0)−T · (I − B̃0)−1Ω
1/2
0 · Ω−1/2

0 (I − B̃)
]

= tr
[
(I − B̃)T (I − B̃0)−T (I − B̃0)−1(I − B̃)

]
= tr

[
(I − B̃)(I − B̃)T (I − B̃0)−T (I − B̃0)−1

]
.

Since B̃, B̃0 ∈ U , the matrices I − B̃ and I − B̃0 are both permutation similar to lower
triangular matrices with 1’s on the diagonal. Hence, Lemma 27 in Appendix B implies

scoreΩ0(B) ≥ p,

with equality if and only if

I − B̃ = I − B̃0,

or equivalently, B = B0, as claimed.

5. Consequences for Statistical Estimation

The population-level results in Theorems 2 and 7 provide a natural avenue for estimating
the DAG of a linear SEM from data. In this section, we outline how the true DAG may be
estimated in the presence of fully-observed or systematically corrupted data. Our method is
applicable also in the high-dimensional setting, assuming the moralized DAG is sufficiently
sparse.

Our inference algorithm consists of two main components:

1. Estimate the moralized DAG M(G0) using the inverse covariance matrix of X.

2. Search through the space of DAGs consistent with M(G0), and find the DAG that
minimizes scoreΩ(B).

Theorem 2 and Assumption 1 ensure that for almost every choice of autoregression
matrix B0, the support of the true inverse covariance matrix Θ0 exactly corresponds to
the edge set of the moralized graph. Theorem 7 ensures that when the weight matrix Ω is
chosen appropriately, B0 will be the unique minimizer of scoreΩ(B).

5.1 Fully-Observed Data

We now present concrete statistical guarantees for the correctness of our algorithm in the
usual setting when {xi}ni=1 are fully-observed and i.i.d. Recall that a random variable X is
sub-Gaussian with parameter σ2 if

E[exp(λ(X − E[X]))] ≤ exp

(
σ2λ2

2

)
, ∀λ ∈ R.

If X ∈ Rp is a random vector, it is sub-Gaussian with parameter σ2 if vTX is a sub-Gaussian
random variable with parameter σ2 for all unit vectors v ∈ Rp.
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5.1.1 Estimating the Inverse Covariance Matrix

We first consider the problem of inferring Θ0. Let

Θmin
0 := min

j,k

{
|(Θ0)jk| : (Θ0)jk 6= 0

}
denote the magnitude of the minimum nonzero element of Θ0. We consider the following
two scenarios:

Low-dimensional setting. If n ≥ p, the sample covariance matrix Σ̂ = 1
n

∑n
i=1 xix

T
i is

invertible with high probability, and we use the estimator

Θ̂ = (Σ̂)−1.

We have the following lemma, which follows from standard bounds in random matrix theory:

Lemma 15 Suppose the xi’s are i.i.d. sub-Gaussian vectors with parameter σ2. With prob-
ability at least 1− c1 exp(−c2p), we have

‖Θ̂−Θ0‖max ≤ c0σ
2

√
p

n
,

and thresholding Θ̂ at level τ = c0σ
2
√

p
n succeeds in recovering supp(Θ0), if Θmin

0 > 2τ .

For the proof, see Appendix D.1. Here, we use to ‖ · ‖max denote the elementwise `∞-norm
of a matrix.

High-dimensional setting. If p > n, we assume each row of the true inverse covariance
matrix Θ0 is d-sparse. Then we use the graphical Lasso:

Θ̂ ∈ arg min
Θ�0

tr(ΘΣ̂)− log det(Θ) + λ
∑
j 6=k
|Θjk|

 . (18)

Standard results (Ravikumar et al., 2011) establish the statistical consistency of the graphi-
cal Lasso (18) as an estimator for the inverse covariance matrix in the setting of sub-Gaussian
observations; consequently, we omit the proof of the following lemma.

Lemma 16 Suppose the xi’s are i.i.d. sub-Gaussian vectors with parameter σ2. Suppose
the sample size satisfies n ≥ Cd log p. With probability at least 1 − c1 exp(−c2 log p), we
have

‖Θ̂−Θ0‖max ≤ c0σ
2

√
log p

n
,

and thresholding Θ̂ at level τ = c0σ
2
√

log p
n succeeds in recovering supp(Θ0), if Θmin

0 > 2τ .

Alternatively, we may perform nodewise regression with the ordinary Lasso (Meinshausen
and Bühlmann, 2006) to recover the support of Θ0, with similar rates for statistical consis-
tency.
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5.1.2 Scoring Candidate DAGs

Moving on to the second step of the algorithm, we need to estimate the score functions
scoreΩ(B) of candidate DAGs and choose the minimally scoring candidate. In this section,
we focus on methods for estimating an empirical version of the score function and derive
rates for statistical estimation under certain models. If the space of candidate DAGs is
sufficiently small, we may evaluate the empirical score function for every candidate DAG
and select the optimum. In Section 6, we describe computationally efficient procedures
based on dynamic programming to choose the optimal DAG when the candidate space is
too large for naive search.

The input of our algorithm is the sparsely estimated inverse covariance matrix Θ̂ from
Section 5.1.1. For a matrix Θ, define the candidate neighborhood sets

NΘ(j) := {k : k 6= j and Θjk 6= 0}, ∀j,

and let

DΘ := {G ∈ D : PaG(j) ⊆ NΘ(j), ∀j}

denote the set of DAGs with skeleton contained in the graph defined by supp(Θ). By
Theorem 2 and Assumption 1, we have G0 ∈ DΘ0 , so if supp(Θ̂) ⊇ supp(Θ0), which occurs
with high probability under the conditions of Section 5.1.1, it suffices to search over the
reduced DAG space D

Θ̂
.

Remark 17 In fact, we could reduce the search space even further to only include DAGs
with moralized graph equal to the undirected graph defined by supp(Θ). The dynamic pro-
gramming algorithm to be described in Section 6 only requires as input a superset of the
skeleton; for alternative versions of the dynamic programming algorithm taking as input a
superset of the moralized graph, we would indeed restrict DΘ to DAGs with the correct moral
structure.

We now consider an arbitrary d-sparse matrix Θ, with d ≤ n, and take G ∈ DΘ. By
Remark 5, we have

scoreΩ(G) =

p∑
j=1

fσj (PaG(j)), (19)

where

fσj (S) :=
1

σ2
j

· E[(xj − bTj xS)2],

and bTj xS is the best linear predictor for xj regressed upon xS . In order to estimate
scoreΩ(G), we use the empirical functions

f̂σj (S) :=
1

σ2
j

· 1

n

n∑
i=1

(xij − xTi,S b̂j)2 =
1

σ2
j

· 1

n
‖Xj −XS b̂j‖22, (20)

where

b̂j := (XT
SXS)−1XT

SXj
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is the usual ordinary least squares solution for linear regression of Xj upon XS . We will
take S ⊆ NΘ(j), so since |NΘ(j)| ≤ d ≤ n, the matrix XT

SXS is invertible with high
probability. The following lemma, proved in Appendix D.2, provides rates of convergence
for the empirical score function:

Lemma 18 Suppose the xi’s are i.i.d. sub-Gaussian vectors with parameter σ2. Suppose
d ≤ n is a parameter such that |NΘ(j)| ≤ d for all j. Then

|f̂σj (S)− fσj (S)| ≤ c0σ
2

σ2
j

√
log p

n
, ∀j and S ⊆ NΘ(j), (21)

with probability at least 1− c1 exp(−c2 log p).

In particular, we have the following result, proved in Appendix D.3, which provides a
sufficient condition for the empirical score functions to succeed in selecting the true DAG.
Here,

ξΩ(DΘ) := min
G∈DΘ,G 6⊇G0

{scoreΩ(G)− scoreΩ(G0)} (22)

is the gap between G0 and the next best DAG in DΘ. Note that the expression in Equa-
tion (22) is reminiscent of Equation (13) in Section 4.3, but we now allow Ω to be arbitrary.

Lemma 19 Suppose Inequality (21) holds, and suppose

c0σ
2

√
log p

n
·

p∑
j=1

1

σ2
j

<
ξΩ(DΘ)

2
. (23)

Then
ŝcoreΩ(G0) < ŝcoreΩ(G), ∀G ∈ DΘ : G 6⊇ G0. (24)

Remark 20 Lemma 19 does not explicitly assume that Ω is equal to Ω0, the true ma-
trix of error variances. However, Inequality (23) can only be satisfied when ξΩ(DG) > 0;
hence, Ω should be chosen such that G0 = arg minG∈DΘ,G 6⊇G0 {scoreΩ(G)}. As discussed in
Section 4.3, this condition holds for a wider range of choices for Ω.

Note that the conclusion (24) in Lemma 19 is not quite the same as the condition

G0 = arg min
G∈DΘ,G 6⊇G0

{
ŝcoreΩ(G)

}
, (25)

which is what we would need for exact recovery of our score-minimizing algorithm. The
issue is that scoreΩ(G) is equal for all G ⊇ G0; however the empirical scores ŝcoreΩ(G) may
differ among this class, so Equation (25) may not be satisfied. However, it is easily seen
from the proof of Lemma 19 that in fact,

arg min
G∈DΘ

{
ŝcoreΩ(G)

}
⊆ {G ∈ DΘ : G ⊇ G0}. (26)

By applying a thresholding procedure to the empirical score minimizer Ĝ ⊇ G0 selected by
our algorithm, we could then recover the true G0. In other words, since PaG0(j) ⊆ Pa

Ĝ
(j)
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for each j, we could use standard sparse regression techniques to recover the parent set of
each node in the true DAG.

To gain some intuition for the condition (23), consider the case when σ2
j = 1 for all j.

Then the condition becomes

c0σ
2

√
log p

n
<
ξ(DΘ)

2p
. (27)

If ξ(DΘ) = Ω(1), which might be expected based on our calculations in Section 4.4, we
require n ≥ Cp2 log p in order to guarantee statistical consistency, which is not a truly
high-dimensional result. On the other hand, if ξ(DΘ) = Ω(p), as is assumed in similar work
on score-based DAG learning (van de Geer and Bühlmann, 2013; Bühlmann et al., 2014),
our method is consistent provided log p

n → 0. In Section 5.2, we relax the condition (27) to
a slightly weaker condition that is more likely to hold in settings of interest.

5.2 Weakening the Gap Condition

Motivated by our comments from the previous section, we establish a sufficient condition for
statistical consistency that is slightly weaker than the condition (23), which still guarantees
that Equation (26) holds.

For two DAGs G,G′ ∈ D, define

H(G,G′) := {j : PaG(j) 6= PaG′(j)}

to be the set of nodes on which the parent sets differ between graphs G and G′, and define
the ratio

γΩ(G,G′) :=
scoreΩ(G)− scoreΩ(G′)

|H(G,G′)|
,

a rescaled version of the gap between the score functions. Consider the following condition:

Assumption 2 There exists ξ′ > 0 such that

γΩ(G0) := min
G∈DΘ,G 6⊇G0

{
max
G1⊇G0

{γΩ(G,G1)}
}
≥ ξ′. (28)

Note that in addition to minimizing over DAGs in the class DΘ, the expression (28) defined
in Assumption 2 takes an inner maximization over DAGs containing G0. As established in
Lemma 6, we have scoreΩ(G1) = scoreΩ(G0) whenever G0 ⊆ G1. However, |H(G,G1)| may
be appreciably different from |H(G,G0)|, and we are only interested in computing the gap
ratio between a DAG G 6⊇ G0 and the closest DAG containing G0.

We then have the following result, proved in Appendix D.4:

Lemma 21 Under Assumption 2, suppose

|f̂σj (S)− fσj (S)| ≤ ξ′

2
, ∀j and S ⊆ NΘ(j). (29)

Then the containment (26) holds.

Combining with Lemma 18, we have the following corollary:
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Corollary 22 Suppose the xi’s are i.i.d. sub-Gaussian with parameter σ2, and |NΘ(j)| ≤ d
for all j. Also suppose Assumption 2 holds. Then with probability at least 1−c1 exp(−c2 log p),
the condition (26) is satisfied.

We now turn to the question of what values of ξ′ might be expected to give condition (28)
for various DAGs. Certainly, we have

γΩ(G,G′) ≥ scoreΩ(G)− scoreΩ(G′)

p
,

so the condition holds when

p · ξ′ < ξ(DΘ).

However, for ξ′ = O(ξ(DΘ)/p), Corollary 22 yields a scaling condition similar to Inequal-
ity (27), which we wish to avoid. As motivated by our computations of the score functions
for small DAGs (see Remark 14 in Section 4.4), the difference {scoreΩ(G)− scoreΩ(G0)}
seems to increase linearly with the number of edge reversals needed to transform G0 to
G. Hence, we might expect γΩ(G,G0) to remain roughly constant, rather than decreasing
linearly with p. The following lemma verifies this intuition in a special case. For a review
of junction tree terminology, see Appendix A.1.

Lemma 23 Suppose the moralized graphM(G0) admits a junction tree representation with
only singleton separator sets. Let C1, . . . , Ck denote the maximal cliques in M(G0), and let
{G`0}k`=1 denote the corresponding restrictions of G0 to the cliques. Then

γΩ(G0) ≥ min
1≤`≤k

γΩ(G`0),

where

γΩ(G`0) := min
G`∈DΘ|C`

,G` 6⊇G`
0

{
max
G`

1⊇G`
0

{
scoreΩ(G`)− scoreΩ(G`1)

|H(G`, G`1)|

}}

is the gap ratio computed over DAGs restricted to clique C` that are consistent with the
moralized graph.

The proof is contained in Appendix D.5.

We might expect the gap ratio γΩ(G`0) to be a function of the size of the clique. In
particular, if the treewidth of M(G0) is bounded by w and we have γΩ(G`0) ≥ ξw for all `,
Lemma 23 implies that

γΩ(G0) ≥ ξw,

and we only need the parameter ξ′ appearing in Assumption 2 to be larger than ξw, rather
than scaling as the inverse of p. We expect a version of Lemma 23 to hold for graphs
with bounded treewidth even when the separator sets have larger cardinality, but a full
generalization of Lemma 23 and a more accurate characterization of γΩ(G0) for arbitrary
graphs is beyond the scope of this paper.
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5.3 Systematically Corrupted Data

We now describe how our algorithm for DAG structure estimation in linear SEMs may be
extended easily to accommodate systematically corrupted data. This refers to the setting
where we observe noisy surrogates {zi}ni=1 in place of {xi}ni=1. Two common examples
include the following:

(a) Additive noise. We have zi = xi + wi, where wi ⊥⊥ xi is additive noise with known
covariance Σw.

(b) Missing data. This is one instance of the more general setting of multiplicative noise.
For each 1 ≤ j ≤ p, and independently over coordinates, we have

zij =

{
xij , with probability 1− α,
?, with probability α,

where the missing data probability α is either estimated or known.

We again divide our discussion into two parts: estimating Θ0 and computing score
functions based on corrupted data.

5.3.1 Inverse Covariance Estimation

Following the observation of Loh and Wainwright (2013), the graphical Lasso (18) may
still be used to estimate the inverse covariance matrix Θ0 in the high-dimensional setting,
where we plug in a suitable estimator Γ̂ for the covariance matrix Σ = cov[xi], based on the
corrupted observations {zi}ni=1. For instance, in the additive noise scenario, we may take

Γ̂ =
ZTZ

n
− Σw, (30)

and in the missing data setting, we may take

Γ̂ =
ZTZ

n
�M, (31)

where � denotes the Hadamard product and M is the matrix with diagonal entries equal
to 1

1−α and off-diagonal entries equal to 1
(1−α)2 .

Assuming conditions such as sub-Gaussianity, the output Θ̂ of the modified graphical
Lasso (18) is statistically consistent under similar scaling as in the uncorrupted setting (Loh
and Wainwright, 2013). For instance, in the additive noise setting, where the zi’s are sub-
Gaussian with parameter σ2

z , Lemma 16 holds with σ2 replaced by σ2
z . Analogous results

hold in the low-dimensional setting, when the expressions for Γ̂ in Equations (30) and (31)
are invertible with high probability, and we may simply use Θ̂ = (Γ̂)−1.

5.3.2 Computing DAG Scores

We now describe how to estimate score functions for DAGs based on corrupted data. By
Equation (19), this reduces to estimating

fσj (S) =
1

σ2
j

· E[(xj − bTj xS)2],
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for a subset S ⊆ {1, . . . , p}\{j}, with |S| ≤ n. Note that

σ2
j · fσj (S) = Σjj − 2bTj ΣS,j + bTj ΣSSbj = Σjj − Σj,SΣ−1

SSΣS,j ,

since bj = Σ−1
SSΣS,j .

Let Γ̂ be the estimator for Σ based on corrupted data used in the graphical Lasso; e.g.,
Equations (30) and (31). We then use the estimator

f̃σj (S) =
1

σ2
j

·
(

Γ̂jj − Γ̂j,SΓ̂−1
SSΓ̂S,j

)
. (32)

Note in particular that Equation (32) reduces to the expression in Equation (20) in the
fully-observed setting. We establish consistency of the estimator in Equation (32), under
the following deviation condition on Γ̂:

P

(∣∣∣∣∣∣∣∣∣Γ̂SS − ΣSS

∣∣∣∣∣∣∣∣∣
2
≥ σ2

(√
d

n
+ t

))
≤ c1 exp(−c2nt

2), for any |S| ≤ d. (33)

For instance, such a condition holds in the case of the sub-Gaussian additive noise model
(cf. Lemma 29 in Appendix E), with Γ̂ given by Equation (30), where σ2 = σ2

z .
We have the following result, an extension of Lemma 18 applicable also for corrupted

variables:

Lemma 24 Suppose Γ̂ satisfies the deviation condition (33). Suppose |NΘ(j)| ≤ d for all
j. Then

|f̃σj (S)− fσj (S)| ≤ c0σ
2

σ2
j

√
log p

n
, ∀j and S ⊆ NΘ(j),

with probability at least 1− c1 exp(−c2 log p).

The proof is contained in Appendix D.6. In particular, Corollary 22, providing guarantees
for statistical consistency, also holds.

6. Computational Considerations

In practice, the main computational bottleneck in inferring the DAG structure comes from
having to compute score functions over a large number of DAGs. The simplest approach
of searching over all possible permutation orderings of indices gives rise to p! candidate
DAGs, which scales exponentially with p. In this section, we describe how the result of
Theorem 2 provides a general framework for achieving vast computational savings for finding
the best-scoring DAG when data are generated from a linear SEM. We begin by reviewing
existing methods, and describe how our results may be used in conjunction with dynamic
programming to produce accurate and efficient DAG learning.

6.1 Decomposable Score Functions

Following the literature, we call a score function over DAGs decomposable if it may be
written as a sum of score functions over individual nodes, each of which is a function of
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only the node and its parents:

score(G) =

p∑
j=1

scorej(PaG(j)).

Note that we allow the score functions to differ across nodes. Consistent with our earlier
notation, the goal is to find the DAG G ∈ D that minimizes score(G).

Some common examples of decomposable scores that are used for DAG inference include
maximum likelihood, BDe, BIC, and AIC (Chickering, 1995). By Equation (19), the squared
`2-score is clearly decomposable, and it gives an example where scorej differs over nodes.
Another interesting example is the nonparametric maximum likelihood, which extends the
ordinary likelihood method for scoring DAGs (Nowzohour and Bühlmann, 2014).

Various recent results have focused on methods for optimizing a decomposable score
function over the space of candidate DAGs in an efficient manner. Some methods include
exhaustive search (Silander and Myllymaki, 2006), greedy methods (Chickering, 2002), and
dynamic programming (Ordyniak and Szeider, 2012; Korhonen and Parviainen, 2013). We
will focus here on a dynamic programming method that takes as input an undirected graph
and outputs the best-scoring DAG with skeleton contained in the input graph.

6.2 Dynamic Programming

In this section, we detail a method due to Ordyniak and Szeider (2012) that will be useful
for our purposes. Given an input undirected graph GI and a decomposable score function,
the dynamic programming algorithm finds a DAG with minimal score that has skeleton
contained in GI . Let {NI(j)}pj=1 denote the neighborhood sets of GI . The runtime of
the dynamic programming algorithm is exponential in the treewidth w of GI ; hence, the
algorithm is only tractable for bounded-treewidth graphs. For further characterizations of
graphs with bounded treewidth, including some relevant examples, see Bodlaender (1998).

The main steps of the dynamic programming algorithm are as follows. For a review
of basic terminology of graph theory, including treewidth and tree decompositions, see
Appendix A; for further details and a proof of correctness, see Ordyniak and Szeider (2012).

1. Construct a tree decomposition of GI with minimal treewidth.

2. Construct a nice tree decomposition of the graph. Let χ(t) denote the subset of
{1, . . . , p} associated to a node t in the nice tree decomposition.

3. Starting from the leaves of the nice tree decomposition up to the root, compute the
record for each node t. The record R(t) is the set of tuples (a, p, s) corresponding to
minimal-scoring DAGs defined on the vertices χ∗(t) in the subtree attached to t, with
skeleton contained in GI . For each such DAG, s is the score, a lists the parent sets
of vertices in χ(t), such that a(v) ⊆ NI(v) for each v ∈ χ(t), and a(v) restricted to
χ∗(t) agrees with the partial DAG; and p lists the directed paths between vertices in
χ(t). The records R(t) may computed recursively over the nice tree decomposition as
follows:

• Join node: Suppose t has children t1 and t2. Then R(t) is the union of tuples
(a, p, s) formed by tuples (a1, p1, s1) ∈ R(t1) and (a2, p2, s2) ∈ R(t2), where (1)

3087



Loh and Bühlmann

a = a1 = a2; (2) p is the transitive closure of p1 ∪ p2; (3) p contains no cycles;
and (4) s = s1 + s2.

• Introduce node: Suppose t is an introduce node with child t′, such that χ(t) =
χ(t′) ∪ {v0}. Then R(t) is the set of tuples (a, p, s) formed by pairs P ⊆ NI(v0)
and (a′, p′, s′) ∈ R(t′), such that (1) a(v0) = P ; (2) for every v ∈ χ(t′), we have
a(v) = a′(v); (3) p is the transitive closure of p′ ∪ {(u, v0) : u ∈ P} ∪ {(v0, u) :
v0 ∈ a′(u), u ∈ χ(t′)}; (4) p contains no cycles; and (5) s = s′.

• Forget node: Suppose t is a forget node with child t′, such that χ(t′) = χ(t) ∪
{v0}. ThenR(t) is the set of tuples (a, p, s) formed from tuples (a′, p′, s′) ∈ R(t′),
such that (1) a(u) = a′(u), ∀u ∈ χ(t); (2) p = {(u, v) ∈ p′ : u, v ∈ χ(t)}; and (3)
s = s′ + scorev0(a′(v0)).

Note that Korhonen and Parviainen (2013) present a variant of this dynamic program-
ming method, also using a nice tree decomposition, which is applicable even for graphs
with unbounded degree but bounded treewidth. They assume that the starting undirected
graph GI is a superset of the moralized DAG. Their algorithm runs in time linear in p
and exponential in w. Since supp(Θ0) exactly corresponds to the edge set of M(G0), the
alternative method will also lead to correct recovery. In practice, the relative efficiency of
the two dynamic programming algorithms will rely heavily on the structure ofM(G0), and
it is an interesting direction of future work to investigate the behavior of the two dynamic
programming algorithms for different graph structures.

6.3 Runtime

We first review the runtime of various components of the dynamic programming algorithm
described in Section 6.2. This is mentioned briefly in Ordyniak and Szeider (2012), but
we include details for completeness before comparing the runtime of our overall procedure
with other causal inference methods. In our calculations, we assume the treewidth w of G
is bounded and treat w as a constant.

The first step involves constructing a tree decomposition of minimal treewidth w, which
may be done in time O(p). The second step involves constructing a nice tree decomposition.
Given a tree decomposition of width w, a nice tree decomposition with O(p) nodes and
treewidth w may be constructed in O(p) time (see Appendix A.2). Finally, the third step
involves computing records for nodes in the nice tree decomposition. We consider the three
different types of nodes in succession. Note that

|R(t)| ≤ 2(w+1)(w+d), ∀t, (34)

where d = maxj |NI(j)|. This is because the number of choices of parent sets of any vertex
in χ(t) is bounded by 2d, leading to a factor of 2d(w+1), and the number of possible pairs
that are connected by a path is bounded by 2(w+1)w.

• If t is a join node with children t1 and t2, we may compute R(t) by comparing
pairs of records in R(t1) and R(t2); by Inequality (34), this may be done in time
O(22(w+1)(w+d)).
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• If t is an introduce node with child t′, we may compute R(t) by considering records
in R(t′) and parent sets of the introduced node v0. Since the number of choices
for the latter is bounded by 2d, we conclude that R(t) may be computed in time
O(2(w+1)(w+d)+d).

• Clearly, if t is a forget node, then R(t) may be computed in time O(2(w+1)(w+d)).

Altogether, we conclude that all records of nodes in the nice tree decomposition may
be computed in time O(p · 22(w+1)(w+d)). Combined with the graphical Lasso preprocessing
step for estimating M(G0), this leads to an overall complexity of O(p2). This may be
compared to the runtime of other standard methods for causal inference, including the PC
algorithm (Spirtes et al., 2000), which has computational complexity O(pw), and (direct)
LiNGAM (Shimizu et al., 2006, 2011), which requires time O(p4). It has been noted that
both the PC and LiNGAM algorithms may be expedited when prior knowledge about the
DAG space is available, further highlighting the power of Theorem 2 as a preprocessing step
for any causal inference algorithm.

7. Discussion

We have provided a new framework for estimating the DAG corresponding to a linear SEM.
We have shown that the inverse covariance matrix of linear SEMs always reflects the edge
structure of the moralized graph, even in non-Gaussian settings, and the reverse statement
also holds under a mild faithfulness assumption. Furthermore, we have shown that when
the error variances are known up to close precision, a simple weighted squared `2-loss may
be used to select the correct DAG. As a corollary, we have established identifiability for
the class of linear SEMs with error variances specified up to a constant multiple. We have
proved that our methods are statistically consistent, under reasonable assumptions on the
gap between the score of the true DAG and the next best DAG in the model class. A
characterization of this gap parameter for various graphical structures is the topic of future
work.

We have also shown how dynamic programming may be used to select the best-scoring
DAG in an efficient manner, assuming the treewidth of the moralized graph is small. Our
results relating the inverse covariance matrix to the moralized DAG provide a powerful
method for reducing the DAG search space as a preprocessing step for dynamic program-
ming, and are the first to provide rigorous guarantees for when the graphical Lasso may be
used in non-Gaussian settings. Note that the dynamic programming algorithm discussed
in this paper only uses the information that the true DAG has skeleton lying in the input
graph, and does not incorporate any information about (a) the fact that the data comes
from a linear SEM; or (b) the fact that the input graph exactly equals the moralized DAG.
Intuitively, both types of information should place significant constraints on the restricted
DAG space, leading to further speedups in the dynamic programming algorithm. Perhaps
these restrictions would make it possible to establish a version of dynamic programming for
DAGs where the moralized graph has bounded degree but large treewidth.

An important open question concerns scoring candidate DAGs when the diagonal matrix
Ω0 of error variances is unknown. As we have seen, using the weighted squared `2-loss to
score DAGs may produce a graph that is far from the true DAG when Ω0 is misspecified.
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Alternatively, it would be useful to have a checkable condition that would allow us to verify
whether a given matrix Ω will correctly select the true DAG, or to be able to select the true
Ω0 from among a finite collection of candidate matrices.

Acknowledgments

We acknowledge all the members of the Seminar für Statistik for providing an immensely
hospitable and fruitful environment when PL was visiting ETH, and the Forschungsinstitut
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Appendix A. Graph-Theoretic Concepts

In this Appendix, we review some fundamental concepts in graph theory that we use in
our exposition. We begin by discussing junction trees, and then move to the related notion
of tree decompositions. Note that these are purely graph-theoretic operations that may be
performed on an arbitrary undirected graph.

A.1 Junction Trees

We begin with the basic junction tree framework. For more details, see Lauritzen (1996)
or Koller and Friedman (2009).

For an undirected graph G = (V,E), a triangulation is an augmented graph G̃ = (V, Ẽ)
that contains no chordless cycles of length greater than three. By classical graph theory,
any triangulation G̃ gives rise to a junction tree representation of G, where nodes in the
junction tree are subsets of V corresponding to maximal cliques of G̃, and the intersection
of any two adjacent cliques C1 and C2 in the junction tree is referred to as a separator set
S = C1∩C2. Furthermore, any junction tree must satisfy the running intersection property,
meaning that for any two nodes in the junction tree, say corresponding to cliques Cj and
Ck, the intersection Cj ∩Ck must belong to every separator set on the unique path between
Cj and Ck in the junction tree. The treewidth of G is defined to be one less than the size

of the largest clique in any triangulation G̃ of G, minimized over all triangulations.

As a classic example, note that if G is a tree, then G is already triangulated, and the
junction tree parallels the tree structure of G. The maximal cliques in the junction tree
are equal to the edges of G and the separator sets correspond to singleton vertices. The
treewidth of G is consequently equal to 1.

A.2 Tree Decompositions

We now highlight some basic concepts of tree decompositions and nice tree decompositions
used in our dynamic programming framework. Our exposition follows Kloks (1994).

Let G = (V,E) be an undirected graph. A tree decomposition of G is a tree T with node
set W such that each node t ∈ W is associated with a subset Vt ⊆ V , and the following
properties are satisfied:
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(a)
⋃
t∈T Vt = V ;

(b) for all (u, v) ∈ E, there exists a node t ∈W such that u, v ∈ Vt;

(c) for each v ∈ V , the set of nodes {t : v ∈ Vt} forms a subtree of T .

The width of the tree decomposition is maxt∈T |Vt| − 1. The treewidth of G is the minimal
width of any tree decomposition of G; this quantity agrees with the treewidth defined
in terms of junction trees in the previous section. If G has bounded treewidth, a tree
decomposition with minimum width may be constructed in time O(|V |) (cf. Chapter 15
of Kloks 1994).

A nice tree decomposition is rooted tree decomposition satisfying the following proper-
ties:

(a) every node has at most two children;

(b) if a node t has two children r and s, then Vt = Vr = Vs;

(c) if a node t has one child s, then either

(i) |Vt| = |Vs|+ 1 and Vs ⊆ Vt, or

(ii) |Vs| = |Vt|+ 1 and Vt ⊆ Vs.

Nodes of the form (b), (c)(i), and (c)(ii) are called join nodes, introduce nodes, and forget
nodes, respectively. Given a tree decomposition of G with width w, a nice tree decompo-
sition with width w and at most 4|V | nodes may be computed in time O(|V |) (cf. Lemma
13.1.3 of Kloks 1994).

Appendix B. Matrix Derivations

In this section, we present a few matrix results that are used to prove Theorem 7.

Define a unit lower triangular (LT) matrix to be a lower triangular matrix with 1’s
on the diagonal. Recall that matrices A and B are permutation similar if there exists a
permutation matrix P such that A = PBP T . Call a matrix permutation unit LT if it is
permutation similar to a unit lower triangular matrix. We have the following lemma:

Lemma 25 Suppose A and B are permutation unit LT matrices, and suppose AAT = BBT .
Then A = B.

Proof Under the appropriate relabeling, we assume without loss of generality that A is
unit LT. There exists a permutation matrix P such that C := PBP T is also unit LT. We
have

PAATP T = CCT . (35)

Let π be the permutation on {1, . . . , n} such that Pi,π(i) = 1 for all i, and P has 0’s
everywhere else. Define the notation

ãij := (PA)ij , and mij := (CCT )ij ,
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and let {cij} denote the entries of C. We will make use of the following equalities, which
follow from Equation (35) and the fact that C is unit LT:∑

k

ãikãjk = mij =
∑
k<j

cikcjk + cij , ∀i > j, (36)

and ∑
k

ã2
ik = mii = 1 +

∑
k<i

c2
ik. (37)

We now derive the following equality:

ãi,π(j) = cij , ∀i, j. (38)

Note that Equation (38) implies (PA)P T = C, from which it follows that A = B.
If j = i, we have ãi,π(i) = 1 trivially, since A has 1’s on the diagonal. For the remaining

cases, we induct on i. When i = 1, we need to show that ã1,π(1) = 1 and all other entries in
the first row are 0. By Equation (37), we have∑

k

ã2
1k = m11 = 1.

Since ã1,π(1) = 1, it is clear that ã1k = 0 for all k 6= π(1), establishing the base case.
For the induction step, consider i > 1. We first show that ãi,π(j) = cij for all j < i by a

sub-induction on j. For j = 1, we have by Equation (36) and the base result for i = 1 that

ãi,π(1) = mi,1 = ci,1,

which is exactly what we want. For the sub-induction step, consider 1 < j < i, and suppose
ãi,π(`) = ci` for all ` < j. Note that ãj,π(`) = 0 for all ` > j by the outer induction hypothesis.
Hence, Equation (36) and the fact that ãj,π(j) = 1 gives∑

`<j

ãi,π(`)ãj,π(`) + ãi,π(j) = mij =
∑
k<j

cikcjk + cij . (39)

Since also ãj,π(`) = cj` for ` < j by the outer induction hypothesis, Equation (39) condenses
to ∑

`<j

ci`cj` + ãi,π(j) =
∑
k<j

cikcjk + cij ,

from which it follows that ãi,π(j) = cij , as wanted. This completes the inner induction and
shows that ãi,π(j) = cij , for all j < i. Finally, note that by Equation (37), we have

mii =
∑
k

ã2
ik = 1 +

∑
j 6=i

ã2
i,π(j) ≥ 1 +

∑
j<i

ã2
i,π(j) = 1 +

∑
j<i

c2
ij = mii,

implying that we must have ãi,π(j) = 0, for all j > i. This establishes Equation (38).

We also need the following known result (cf. Exercise 7.8.19 in Horn and Johnson 1990).
We include a proof for completeness.
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Lemma 26 Suppose A ∈ Rn×n is positive definite with det(A) = 1. Then

min{tr(AB) : B � 0 and det(B) = 1} = n.

Proof Consider the singular value decomposition A = UΛU∗, and note that tr(AB) =
tr(Λ(U∗BU)). Denote bij := (U∗BU)ij and λi := Λii. Then by the AM-GM inequality and
Hadamard’s inequality, we have

1

n
· tr(Λ(U∗BU)) ≥

(∏
i

λibii

)1/n

=

(
det(A) ·

∏
i

bii

)1/n

≥ (det(U∗BU))1/n = 1,

implying the result.

Building upon Lemmas 25 and 26, we obtain the following result:

Lemma 27 Suppose A and B are n× n permutation unit LT matrices. Then

min
B

tr(AATBTB) ≥ n, (40)

with equality achieved if and only if B = A−1.

Proof Write A′ = AAT and B′ = BTB, and note that since det(A) = det(B) = 1, we also
have det(A′) = det(B′) = 1. Then Inequality (40) holds by Lemma 26.

To recover the conditions for equality, note that equality holds in Hadamard’s inequality
if and only if some bii = 0 or the matrix U∗BU is diagonal. Note that the first case is not
possible, since U∗BU � 0. In the second case, we see that in addition, we need bii = 1

λi
for

all i in order to achieve equality in the AM-GM inequality. It follows that U∗BU = Λ−1,
so AAT = B−1B−T .

Since A and B are permutation unit LT, Lemma 25 implies that the last equality can
only hold when B = A−1.

Appendix C. Proofs for Population-Level Results

In this section, we provide proofs for the remaining results in Sections 3 and 4.

C.1 Proof of Lemma 1

We first show that Ω is a diagonal matrix. Consider j < k; we will show that εj ⊥⊥ εk, from
which we conclude that

E[εjεk] = E[εj ] · E[εk] = 0.

Indeed, we have εk ⊥⊥ (X1, . . . , Xk−1) by assumption. Since εj = Xj−bTj X is a deterministic
function of (X1, . . . , Xj), it follows that εk ⊥⊥ εj , as claimed.

Turning to Equations (5) and (6), note that Equation (4) implies

Θ = Σ−1 = (I −B)Ω−1(I −B)T .

Then expanding and using the fact that B is upper triangular and Ω is diagonal, we obtain
Equations (5) and (6).
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C.2 Proof of Lemma 6

Since G0 ⊆ G, we have PaG0(j) ⊆ PaG(j), for each j. Furthermore, no element of PaG(j)
may be a descendant of j in G0, since this would contradict the fact that G contains no
cycles. By the Markov property of G0, we therefore have

Xj ⊥⊥ XPaG(j)\PaG0
(j) | XPaG0

(j).

Thus, the linear regression coefficients for Xj regressed upon XPaG(j) are simply the linear
regression coefficients for Xj regressed upon XPaG0

(j) (and the remaining coefficients for
XPaG(j)\PaG0

(j) are zero). By Remark 5, we conclude that

B0 = BG = arg min
B∈UG

{scoreΩ(B)},

and the uniqueness of B0 follows from the uniqueness of BG.

C.3 Proof of Theorem 9

From the decomposition (7), it is easy to see that for any B ∈ U , we have

amin ≤
scoreΩ1(B)

scoreΩ0(B)
≤ amax, (41)

simply by comparing individual terms; e.g.,

1

(Ω1)jj
· E[(Xj − bTj X)2] ≤ max

j

{
1/(Ω1)jj
1/(Ω0)jj

}
· 1

(Ω0)jj
· E[(Xj − bTj X)2]

= amax

(
1

(Ω0)jj
· E[(Xj −BT

j X)2]

)
.

Note that if G ⊇ G0, then by Lemma 6, the matrix B0 is the unique minimizer of
scoreΩ1(B) among the class UG. Now consider G 6⊇ G0 and B ∈ UG. We have(

1 +
ξ

p

)
· scoreΩ0(B0) = min

G′∈D, G′ 6⊇G0

{scoreΩ0(G′)} ≤ scoreΩ0(G) ≤ scoreΩ0(B), (42)

where we have used the definition of the gap (11) and the fact that scoreΩ0(B0) = p by
Theorem 7 in the first inequality. Hence,

scoreΩ1(B0) ≤ amax · scoreΩ0(B0) ≤ amax

1 + ξ/p
· scoreΩ0(B) ≤ amax

amin(1 + ξ/p)
· scoreΩ1(B),

where the first and third inequalities use Inequality (41), and the second inequality uses
Inequality (42). By the assumption (12), it follows that

scoreΩ1(B0) ≤ scoreΩ1(B),

as wanted. The statement regarding strict inequality is clear.
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Figure 3: Alternative DAGs.

C.4 Proof of Lemma 11

We first consider the case when r ≥ 1. Then amax
amin

= r2, so combining Theorem 9 with the
expression (15), we have the sufficient condition

r2 ≤ 1 +
b40

2(r4 + b20r
2)
.

Rearranging gives

b40 − 2r2(r2 − 1)b20 − 2r4(r2 − 1) ≥ 0,

which is equivalent to

b20 ≥
2r2(r2 − 1) +

√
(4r4(r2 − 1)2 + 8r4(r2 − 1))

2
.

Simplifying yields the desired expression.

If instead r ≤ 1, we have amax
amin

= 1
r2 , so the sufficient condition becomes

1

r2
≤ 1 +

b40
2(r4 + b20r

2)
,

which is equivalent to

b40 − 2(1− r2)b20 − 2r2(1− r2) ≥ 0,

or

b20 ≥
2(1− r)2 +

√
4(1− r2)2 + 8r2(1− r2)

2
.

Simplifying further yields the expression.

C.5 Proof of Lemma 13

To compute the gap ξ, it is sufficient to consider the graphs in Figure 3. Indeed, we have
scoreΩ0(G) ≤ scoreΩ0(G′) whenever G′ ⊆ G, so we only need to consider maximal elements
in the poset of DAGs not containing G0. Consider the graphs given by autoregression
matrices

C =

 0 c12 0
0 0 0
c31 c32 0

 , E =

 0 e12 e13

0 0 0
0 e32 0

 ,
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corresponding to the DAGs in panels (a) and (c) of Figure 3. A simple calculation shows
that

scoreΩ0(C) = 3 + c2
31b

2
13 + c2

32b
2
23 + c2

31b
2
23

d2
2

d2
1

+

(
c12

d1

d2
+ c32b13

d1

d2

)2

+

(
c31

d3

d1
− b13

d1

d3

)2

+

(
c32

d3

d2
− b23

d2

d3

)2

,

which is minimized for

c12 = −b13c32, c31 =
b13

d2
3

d2
1

+ b223
d2

2

d2
1

+ b213

, c32 =
b23

d2
3

d2
2

+ b223

,

leading to

ξ1 = min
c12,c31,c32

{scoreΩ0(C)− scoreΩ0(B0)} =
b423

d4
3

d4
2

+ b223
d2

3

d2
2

+
b413 + b213b

2
23
d2

2

d2
1

d4
3

d4
1

+ b213
d2

3

d2
1

+ b223
d2

2d
2
3

d4
1

. (43)

Similarly, we may compute

scoreΩ0(E) = 3 +

(
e12

d1

d2
+ e32b13

d1

d2

)2

+

(
e13

d1

d3
− b13

d1

d3

)2

+

(
e32

d3

d2
− b23

d2

d3

)2

,

which is minimized for

e12 = −b13, e13 = b13, e32 =
b23

d2
3

d2
2

+ b223

,

leading to

ξ2 = min
e12,e13,e32

{scoreΩ0(E)− scoreΩ0(B0)} =
b423

d4
3

d4
2

+ b223
d2

3

d2
2

. (44)

Finally, note that the graphs in panels (b) and (d) of Figure 3 are mirror images of the
graphs in panels (a) and (c), respectively. Hence, we obtain

ξ3 = min
d21,d31,d32

{scoreΩ0(D)− scoreΩ0(B0)} =
b413

d4
3

d4
1

+ b213
d2

3

d2
1

+
b423 + b213b

2
23
d2

1

d2
2

d4
3

d4
2

+ b223
d2

3

d2
2

+ b213
d2

1d
2
3

d4
2

,

ξ4 = min
f21,f23,f31

{scoreΩ0(F )− scoreΩ0(B0)} =
b413

d4
3

d4
1

+ b213
d2

3

d2
1

,

simply by swapping the roles of nodes 1 and 2. Taking ξ = min{ξ1, ξ2, ξ3, ξ4} then yields
the desired result.

Appendix D. Proofs for Statistical Consistency

In this Appendix, we provide the proofs for the lemmas on statistical consistency stated in
Section 5.
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D.1 Proof of Lemma 15

This result follows from the fact that

‖Θ̂−Θ0‖max ≤
∣∣∣∣∣∣∣∣∣Θ̂−Θ0

∣∣∣∣∣∣∣∣∣
2
,

together with results on the spectral norm of sub-Gaussian covariances and their inverses
(see Lemma 29 in Appendix E).

D.2 Proof of Lemma 18

First consider a fixed pair (j, S) such that S ⊆ NΘ(j). We may write

xj = bTj xS + ej , (45)

where ej has zero mean and is uncorrelated with xS (and also depends on the choice of S).
In matrix notation, we have

b̂j = (XT
SXS)−1(XT

SXj) = (XT
SXS)−1XT

S (XSbj + Ej) = bj + (XT
SXS)−1XT

SEj ,

where the second equality follows from Equation (45). Hence,

σ2
j · f̂σj (S) =

1

n
‖Xj −XS b̂j‖22

=
1

n
‖XS(bj − b̂j) + Ej‖22

=
1

n
‖(I − (XT

SXS)−1XT
S )Ej‖22. (46)

By the triangle inequality, we have∣∣∣‖(I − (XT
SXS)−1XT

S )Ej‖2 − ‖Ej‖2
∣∣∣ ≤ ‖(XT

SXS)−1XT
SEj‖2 ≤

∣∣∣∣∣∣(XT
SXS)−1XT

S

∣∣∣∣∣∣
2
· ‖Ej‖2.

(47)
Furthermore,∣∣∣∣∣∣(XT

SXS)−1XT
S

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣XS(XT

SXS)−1
∣∣∣∣∣∣

2

= sup
‖v‖2≤1

{
vT (XT

SXS)−1XT
SXS(XT

SXS)−1v
}1/2

= sup
‖v‖2≤1

{
vT (XT

SXS)−1v
}1/2

=
1√
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
XT
SXS

n

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/2

2

≤ C√
n

(∣∣∣∣∣∣Σ−1
SS

∣∣∣∣∣∣
2

+ 2σ2
∣∣∣∣∣∣Σ−1

SS

∣∣∣∣∣∣2
2
·max{δ, δ2}

)1/2
,

with probability at least 1 − 2 exp(−cnt2), where δ = c′
√
|S|
n + c′′t, by Lemma 29. Taking

a union bound over all 2d choices for S and p choices for j, and setting t = c
√

d+log p
n , we

have ∣∣∣∣∣∣(XT
SXS)−1XT

S

∣∣∣∣∣∣
2
≤ C ′√

n
, ∀S s.t. S ⊆ NΘ(j) for some j, (48)
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with probability at least

1− c1 exp(−c2nt
2) = 1− c1 exp(−c2nt

2 + d log 2 + log p) ≥ 1− c1 exp(−c′2(d+ log p)).

Combining Inequalities (47) and (48), we have the uniform bound(
1− C ′√

n

)2

‖Ej‖22 ≤ ‖I − (XT
SXS)−1XT

S )Ej‖22 ≤
(

1 +
C ′√
n

)2

‖Ej‖22,

with high probability, which together with Equation (46) implies that∣∣∣∣σ2
j · f̂σj (S)− 1

n
‖Ej‖22

∣∣∣∣ ≤ 3C ′√
n
· 1

n
‖Ej‖22, (49)

using the fact that

max{1− (1− a)2, (1 + a)2 − 1} = max{2a− a2, 2a+ a2} = 2a+ a2 ≤ 3a,

for a = C′
√
n

sufficiently small. Furthermore,

1

n
E[‖Ej‖22] = σ2

j · fσj (S).

Note that the ej ’s are i.i.d. sub-Gaussians with parameter at most cσ2, since we may write

ej = b̃Tj x for the appropriate b̃j ∈ Rp, and ‖b̃‖2 is bounded in terms of the eigenvalues of Σ.
Applying the usual sub-Gaussian tail bounds, we then have

P
(∣∣∣∣ 1n‖Ej‖22 − 1

n
E[‖Ej‖22]

∣∣∣∣ ≥ cσ2t

)
≤ c1 exp(−c2nt

2), ∀j,

and taking a union bound over j and setting t = c′
√

log p
n gives

max
j

∣∣∣∣ 1n‖Ej‖22 − 1

n
E[‖Ej‖22]

∣∣∣∣ ≤ c0σ
2

√
log p

n
, (50)

with probability at least 1 − c1 exp(−c2 log p). Combining Inequalities (49) and (50), it
follows that

σ2
j |f̂σj (S)− fσj (S)| ≤

∣∣∣∣σ2
j · f̂σj (S)− 1

n
‖Ej‖22

∣∣∣∣+

∣∣∣∣ 1n‖Ej‖22 − 1

n
E[‖Ej‖22]

∣∣∣∣
≤ 3C ′√

n

(
1

n
E[‖Ej‖22] + c0σ

2

√
log p

n

)
+ c0σ

2

√
log p

n

≤ c′0σ2

√
log p

n
,

with probability at least 1− c1 exp(−c2 log p).
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D.3 Proof of Lemma 19

Combining Inequalities (21) and (23) and using the triangle inequality, we have

∣∣ŝcoreΩ(G)− scoreΩ(G)
∣∣ ≤ p∑

j=1

∣∣ŝcoreσj (PaG(j))− scoreσj (PaG(j))
∣∣ < ξ(DΘ)

2
, (51)

for all G ∈ DΘ. In particular, for G1 ∈ DΘ such that G1 6⊇ G0, we have

ŝcoreΩ(G0) < scoreΩ(G0) +
ξ(DΘ)

2

≤ (scoreΩ(G1)− ξ(DΘ)) +
ξ(DΘ)

2
< ŝcoreΩ(G1),

where the first and third inequalities use Inequality (51) and the second inequality uses the
definition of the gap ξ(DΘ). This implies Inequality (24).

D.4 Proof of Lemma 21

Consider G ∈ DΘ with G 6⊇ G0, and consider G1 ⊇ G0 such that γΩ(G,G1) is maximized.
Note that if PaG(j) = PaG1(j), then certainly,

f̂σj (PaG(j))− f̂σj (PaG1(j)) = 0 = fσj (PaG(j))− fσj (PaG1(j)).

Hence,

∣∣(ŝcoreΩ(G)− ŝcoreΩ(G1)
)
−
(

scoreΩ(G)− scoreΩ(G1)
)∣∣ ≤ |H(G,G1)| · ξ

′

2
, (52)

using Inequality (29) and the triangle inequality. Furthermore, by Inequality (28),

|H(G,G1)| · ξ
′

2
≤ scoreΩ(G)− scoreΩ(G1)

ξ′
· ξ
′

2
=

scoreΩ(G)− scoreΩ(G1)

2
. (53)

Combining Inequalities (52) and (53) gives

ŝcoreΩ(G)− ŝcoreΩ(G1) ≥ scoreΩ(G)− scoreΩ(G1)

2
=

scoreΩ(G)− scoreΩ(G0)

2
> 0,

where the last inequality holds because of the assumption ξ′ > 0. Hence,

G 6∈ arg min
G∈DΘ

{ŝcoreΩ(G)},

implying the desired result.
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D.5 Proof of Lemma 23

We begin with a simple lemma:

Lemma 28 Suppose M(G) admits a junction tree representation with only singleton sep-
arators, and let C1, . . . , Ck denote the maximal cliques. If X follows a linear SEM over G,
then the marginal distribution of X over the nodes in any clique C` also follows a linear
SEM over C`, with DAG structure specified by G`, the restriction of G to C`. In addition,
the autoregression matrix for the marginal SEM is simply the autoregression matrix for the
full SEM restricted to the nodes in C`.

Proof We relabel the nodes of G so that the natural ordering on {1, . . . , p} is a topological
order. Clearly, this induces a topological order over the nodes of G`, as well. Recall that
we have Equation (3); i.e., for each j,

Xj = bTj X1:j−1 + εj , where εj ⊥⊥ (X1, . . . , Xj−1). (54)

For each j ∈ C`, we define

ε′j := εj +
∑

k<j, k 6∈PaG`
(j)

bkjXk,

and note that
Xj = bTj XPaG`

(j) + ε′j ,

where we have abused notation slightly and used bj to denote the same vector restricted to
PaG`

(j). We claim that
ε′j ⊥⊥ XPaG`

(j), (55)

for each j, implying that the marginal distribution of X over C` follows a linear SEM with
the desired properties.

First consider the case when j is not contained in a separator set of the junction tree.
Then all neighbors of j must be contained in C`, implying that PaG`

(j) = PaG(j). Since
bkj 6= 0 only when k < j and k ∈ PaG(j), this means ε′j = εj . The desired indepen-
dence (55) follows from Equation (54) and the simple fact that PaG`

(j) ⊆ {1, . . . , j − 1}.
If instead j is a separator node, then either PaG(j) ⊆ C` or PaG(j) ∩ C` = ∅. In the first
case, we again have PaG`

(j) = PaG(j), so the argument proceeds as before. In the second
case, we have PaG`

(j) = ∅, so the independence relation (55) is vacuous; indeed, we have
ε′j = εj + bTj XPaG(j) = Xj . Hence, condition (55) holds in every case.

Now consider any G ∈ DΘ such that G 6⊇ G0. Let {G`}k`=1 denote the restrictions of G
to the cliques. By Lemma 28, X follows a linear SEM when restricted to the nodes of C`;
hence, by Lemma 6 and Theorem 7, we have

scoreΩ(G`0) ≤ scoreΩ(G`), (56)

with equality if and only if G`0 ⊆ G`. Consider the graph G1 constructed such that G`1 = G`

on cliques C` such that Inequality (56) holds with equality, and G`1 = G`0 otherwise. In
particular, we have G`0 ⊆ G`1, for each `, and

scoreΩ(G`1) = scoreΩ(G`0), ∀`, (57)
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by construction. Note that G1 is always a DAG, but possibly M(G1) 6=M(G0). However,
since G0 ⊆ G1, we have

scoreΩ(G0) = scoreΩ(G1). (58)

We also have

scoreΩ(G) =

k∑
`=1

scoreΩ(G`)−
k′∑
r=1

(mr − 1)fσsr (∅), (59)

scoreΩ(G0) =

k∑
`=1

scoreΩ(G`0)−
k′∑
r=1

(mr − 1)fσsr (∅), (60)

where {sr}k
′
r=1 denote the indices of the k′ < k separator nodes, and mr := |{` : sr ∈ C`}|.

This is because both G and G0 have the property that separator nodes only have parents
contained in a single clique, so we include an extra term fσsr (∅) from each adjacent clique
not containing Pa(sr) in computing the sum. Combining Equation (60) with Equations (57)
and (58), we must also have

scoreΩ(G1) =
k∑
`=1

scoreΩ(G`1)−
k′∑
r=1

(mr − 1)fσsr (∅). (61)

Together with Equation (59), this implies

max
G1⊇G0

{γΩ(G,G1)} =

∑k
`=1

(
scoreΩ(G`)− scoreΩ(G`1)

)
|H(G,G1)|

. (62)

Also note that by Lemma 28 and Theorem 7, we have

scoreΩ(G`1) ≤ scoreΩ(G`), ∀`,

and by assumption,

scoreΩ(G`)− scoreΩ(G`1)

|H(G`, G`1)|
≥ γΩ(G`0), ∀`. (63)

Finally, reindexing the cliques so that {C1, . . . , Ck′′} are the cliques such that G` 6= G`1,
we have

H(G,G1) ⊆
k′′⋃
`=1

H(G`, G`1),

implying that

|H(G,G1)| ≤
k′′∑
`=1

|H(G`, G`1)|. (64)

Using the simple fact that a`
b`
≥ ξ for all `, with a`, b` > 0, implies

∑
` a`∑
` b`

> ξ, we conclude

from Equation (62) and Inequalities (63) and (64) that

max
G1⊇G0

{γΩ(G,G1)} ≥
∑k′′

`=1

(
scoreΩ(G`)− scoreΩ(G`1)

)∑k′′

`=1 |H(G`, G`1)|
≥ min

1≤`≤k
γΩ(G`0).

Since this result holds uniformly over all G, we have γΩ(G0) ≥ min1≤`≤k γΩ(G`0), as well.
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D.6 Proof of Lemma 24

This proof is quite similar to the proof for the fully-observed case, so we only mention the
high-level details here.

We write

σ2
j |f̃σj (S)− fσj (S)| =

∣∣∣(Γ̂jj − Γ̂j,SΓ̂−1
SSΓ̂−1

S,j

)
−
(
Σjj − Σj,SΣ−1

SSΣS,j

)∣∣∣
≤
∣∣∣Γ̂jj − Σjj

∣∣∣+
∣∣∣Γ̂j,SΓ̂−1

SSΓ̂S,j − Σj,SΣ−1
SSΣS,j

∣∣∣︸ ︷︷ ︸
A

. (65)

The first term may be bounded directly using Inequality (33) and a union bound over j:

P

(
max
j

∣∣∣Γ̂jj − Σjj

∣∣∣ ≥ cσ2

√
log p

n

)
≤ c′1 exp(−c′2 log p). (66)

To bound the second term, we use the following expansion:

A ≤
∣∣∣Γ̂j,S (Γ̂−1

SS − Σ−1
SS

)
Γ̂S,j

∣∣∣+
∣∣∣Γ̂j,SΣ−1

SS

(
Γ̂S,j − ΣS,j

)∣∣∣+
∣∣∣(Γ̂j,S − Σj,S

)
Σ−1
SSΣS,j

∣∣∣
≤
∣∣∣∣∣∣∣∣∣Γ̂−1

SS − Σ−1
SS

∣∣∣∣∣∣∣∣∣
2
‖Γ̂S,j‖22 +

∣∣∣∣∣∣Σ−1
SS

∣∣∣∣∣∣
2

(
‖Γ̂S,j‖2‖Γ̂S,j − ΣS,j‖2 + ‖Γ̂S,j − ΣS,j‖2‖ΣS,j‖2

)
.

As in the proof of Lemma 29 in Appendix E, we may obtain a bound of the form

P

(∣∣∣∣∣∣∣∣∣Γ̂−1
SS − Σ−1

SS

∣∣∣∣∣∣∣∣∣
2
≤ cσ2

(√
d

n
+ t

))
≤ c1 exp(−c2nt

2),

by inverting the deviation condition (33). Furthermore,

‖Γ̂S,j − ΣS,j‖2 ≤
∣∣∣∣∣∣∣∣∣Γ̂S′S′ − ΣS′S′

∣∣∣∣∣∣∣∣∣
2
,

where S′ := S ∪{j}, which may in turn be bounded using the deviation condition (33). We
also have

‖Γ̂S,j‖2 ≤ ‖ΣS,j‖2 +
∣∣∣∣∣∣∣∣∣Γ̂S′S′ − ΣS′S′

∣∣∣∣∣∣∣∣∣
2
.

Combining these results and taking a union bound over the 2d choices for S and p choices
for j, we arrive at a uniform bound of the form

P

(
A ≤ c′σ2

√
log p

n

)
≥ 1− c′1 exp(−c′2 log p).

Together with Inequality (66) and the expansion (65), we then obtain the desired result.

Appendix E. Matrix Concentration Results

This Appendix contains matrix concentration results that are used to prove our technical
lemmas. We use |||·|||2 to denote the spectral norm of a matrix.
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Lemma 29 Suppose {xi}ni=1 ⊆ Rp are i.i.d. sub-Gaussian vectors with parameter σ2 and
covariance Σ. Then for all t ≥ 0, we have

P
(∣∣∣∣∣∣∣∣∣∣∣∣XTX

n
− Σ

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ σ2 ·max{δ, δ2}
)
≥ 1− 2 exp(−cnt2), (67)

where δ = c′
√

p
n + c′′t. Furthermore, if XTX

n is invertible and

σ2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣
2
·max{δ, δ2} ≤ 1

2
,

we have

P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
XTX

n

)−1

− Σ−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ 2σ2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣2
2
·max{δ, δ2}

)
≥ 1− 2 exp(−cnt2). (68)

Proof For Inequality (67), see Remark 5.40 of Vershynin (2012). For Inequality (68), we
use the matrix expansion

(A+ ∆)−1 = (A(I +A−1∆))−1 = (I +A−1∆)−1A−1 = A−1 +

∞∑
k=1

(−1)k(A−1∆)kA−1,

valid for any matrices A and ∆ such that A and A + ∆ are both invertible and the series
converges. By the triangle inequality and multiplicativity of the spectral norm, we then
have

∣∣∣∣∣∣(A+ ∆)−1 −A−1
∣∣∣∣∣∣

2
≤
∞∑
k=1

∣∣∣∣∣∣∣∣∣(A−1∆)kA−1
∣∣∣∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2
·
∞∑
k=1

∣∣∣∣∣∣A−1∆
∣∣∣∣∣∣k

2

=

∣∣∣∣∣∣A−1
∣∣∣∣∣∣

2
·
∣∣∣∣∣∣A−1∆

∣∣∣∣∣∣
2

1− |||A−1∆|||2

≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣2
2
· |||∆|||2

1− |||A−1∆|||2
.

We now take A = Σ and ∆ = XTX
n − Σ. By the assumption and Inequality (67), we have

∣∣∣∣∣∣A−1∆
∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2
· |||∆|||2 ≤

1

2
,

implying that ∣∣∣∣∣∣(A+ ∆)−1 −A−1
∣∣∣∣∣∣

2
≤ 2

∣∣∣∣∣∣A−1
∣∣∣∣∣∣2

2
· |||∆|||2 .

This gives the result.
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Abstract
This paper is concerned with various combinatorial parameters of classes that can be learned
from a small set of examples. We show that the recursive teaching dimension, recently
introduced by Zilles et al. (2008), is strongly connected to known complexity notions in
machine learning, e.g., the self-directed learning complexity and the VC-dimension. To the
best of our knowledge these are the first results unveiling such relations between teaching
and query learning as well as between teaching and the VC-dimension. It will turn out
that for many natural classes the RTD is upper-bounded by the VCD, e.g., classes of VC-
dimension 1, intersection-closed classes and finite maximum classes. However, we will also
show that there are certain (but rare) classes for which the recursive teaching dimension
exceeds the VC-dimension. Moreover, for maximum classes, the combinatorial structure
induced by the RTD, called teaching plan, is highly similar to the structure of sample
compression schemes. Indeed one can transform any repetition-free teaching plan for a
maximum class C into an unlabeled sample compression scheme for C and vice versa, while
the latter is produced by (i) the corner-peeling algorithm of Rubinstein and Rubinstein
(2012) and (ii) the tail matching algorithm of Kuzmin and Warmuth (2007).
Keywords: recursive teaching, combinatorial parameters, Vapnik-Chervonenkis dimen-
sion, upper bounds, compression schemes, tail matching algorithm

1. Introduction

In the design and analysis of machine learning algorithms, the amount of training data
that needs to be provided for the learning algorithm to be successful is an aspect of central
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importance. In many applications, training data is expensive or difficult to obtain, and
thus input-efficient learning algorithms are desirable. In computational learning theory
therefore, one way of measuring the complexity of a concept class is to determine the worst-
case number of input examples required by the best valid learning algorithm. What is a
valid learning algorithm depends on the underlying model of learning. We refer to this kind
of complexity measure as information complexity. For example, in PAC-learning (Valiant,
1984), the information complexity of a concept class C is the worst-case sample complexity a
best possible PAC learner for C can achieve on all concepts in C. In query learning (Angluin,
1988), it is the best worst-case number of queries a learner would have to ask to identify
an arbitrary concept in C. In the classical model of teaching (Goldman and Kearns, 1995;
Shinohara and Miyano, 1991), the information complexity of C is given by its teaching
dimension, i.e., the largest number of labeled examples that would have to be provided for
distinguishing any concept in C from all other concepts in C.

Besides the practical need to limit the required amount of training data, there are a
number of reasons for formally studying information complexity. Firstly, a theoretical study
of information complexity yields formal guarantees concerning the amount of data that needs
to be processed to solve a learning problem. Secondly, analyzing information complexity
often helps to understand the structural properties of concept classes that are particularly
hard to learn or particularly easy to learn. Thirdly, the theoretical study of information
complexity helps to identify connections between various formal models of learning, for
example if it turns out that, for a certain type of concept class, the information complexity
under learning model A is in some relationship with the information complexity under model
B. This third aspect is the main motivation of our study.

In the past two decades, several learning models were defined with the aim of under-
standing in which way a low information complexity can be achieved. One such model is
learning from partial equivalence queries (Maass and Turán, 1992), which subsume all types
of queries for which negative answers are witnessed by counterexamples, e.g., membership,
equivalence, subset, superset, and disjointness queries (Angluin, 1988). As lower bounds on
the information complexity in this query model (here called query complexity) hold for nu-
merous other query learning models, they are particularly interesting objects of study. Even
more powerful are self-directed learners (Goldman et al., 1993). Each query of a self-directed
learner is a prediction of a label for an instance of the learner’s choice, and the learner gets
charged only for wrong predictions. The query complexity in this model lower-bounds the
one obtained from partial equivalence queries (Goldman and Sloan, 1994).

Dual to the models of query learning, in which the learner actively chooses the instances
it wants information on, the literature proposes models of teaching (Goldman and Kearns,
1995; Shinohara and Miyano, 1991), in which a helpful teacher selects a set of examples and
presents it to the learner, again aiming at a low information complexity. A recent model
of teaching with low information complexity is recursive teaching, where a teacher chooses
a sample based on a sequence of nested subclasses of the underlying concept class C (Zilles
et al., 2008). The nesting is defined as follows. The outermost “layer” consists of all concepts
in C that are easiest to teach, i.e., that have the smallest sets of examples distinguishing
them from all other concepts in C. The next layers are formed by recursively repeating
this process with the remaining concepts. The largest number of examples required for
teaching at any layer is the recursive teaching dimension (RTD) of C. The RTD substantially
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reduces the information complexity bounds obtained in previous teaching models. It lower
bounds not only the teaching dimension—the measure of information complexity in the
“classical” teaching model (Goldman and Kearns, 1995; Shinohara and Miyano, 1991)—but
also the information complexity of iterated optimal teaching (Balbach, 2008), which is often
substantially smaller than the classical teaching dimension.

A combinatorial parameter of central importance in learning theory is the VC-dimen-
sion (Vapnik and Chervonenkis, 1971). Among many relevant properties, it provides bounds
on the sample complexity of PAC-learning (Blumer et al., 1989). Since the VC-dimension
is the best-studied quantity related to information complexity in learning, it is a natural
first parameter to compare to when it comes to identifying connections between informa-
tion complexity notions across various models of learning. For example, even though the
self-directed learning complexity can exceed the VC-dimension, existing results show some
connection between these two complexity measures (Goldman and Sloan, 1994). However,
the teaching dimension, i.e., the information complexity of the classical teaching model,
does not exhibit any general relationship to the VC-dimension—the two parameters can be
arbitrarily far apart in either direction (Goldman and Kearns, 1995). Similarly, there is no
known connection between teaching dimension and query complexity.

In this paper, we establish the first known relationships between the information com-
plexity of teaching and query complexity, as well as between the information complexity of
teaching and the VC-dimension. All these relationships are exhibited by the RTD. Two of
the main contributions of this work are the following:

• We show that the RTD is never higher (and often considerably lower) than the com-
plexity of self-directed learning. Hence all lower bounds on the RTD hold likewise for
self-directed learning, for learning from partial equivalence queries, and for a variety
of other query learning models.

• We reveal a strong connection between the RTD and the VC-dimension. Though
there are classes for which the RTD exceeds the VC-dimension, we present a number
of quite general and natural cases in which the RTD is upper-bounded by the VC-
dimension. These include classes of VC-dimension 1, intersection-closed classes, a
variety of naturally structured Boolean function classes, and finite maximum classes
in general (i.e., classes of maximum possible cardinality for a given VC-dimension and
domain size). Many natural concept classes are maximum, e.g., the class of unions
of up to k intervals, for any k ∈ N, or the class of simple arrangements of positive
halfspaces. It remains open whether every class of VC-dimension d has an RTD linear
in d.

In proving that the RTD of a finite maximum class equals its VC-dimension, we also make
a third contribution:

• We reveal a relationship between the RTD and sample compression schemes (Little-
stone and Warmuth, 1996).

Sample compression schemes are schemes for “encoding” a set of examples in a small subset
of examples. For instance, from the set of examples they process, learning algorithms often
extract a subset of particularly “significant” examples in order to represent their hypotheses.
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This way sample bounds for PAC-learning of a class C can be obtained from the size of
a smallest sample compression scheme for C (Littlestone and Warmuth, 1996; Floyd and
Warmuth, 1995). Here the size of a scheme is the size of the largest subset resulting from
compression of any sample consistent with some concept in C.

The relationship between RTD and unlabeled sample compression schemes (in which
the compression sets consist only of instances without labels) is established via a recent
result by Rubinstein and Rubinstein (2012). They show that, for any maximum class of VC-
dimension d, a technique called corner-peeling defines unlabeled compression schemes of size
d. Like the RTD, corner-peeling is associated with a nesting of subclasses of the underlying
concept class. A crucial observation we make in this paper is that every maximum class
of VC-dimension d allows corner-peeling with an additional property, which ensures that
the resulting unlabeled samples contain exactly those instances a teacher following the RTD
model would use. Similarly, we show that the unlabeled compression schemes constructed
by Kuzmin and Warmuth’s Tail Matching algorithm (Kuzmin and Warmuth, 2007) exactly
coincide with the teaching sets used in the RTD model, all of which have size at most d.

This remarkable relationship between the RTD and sample compression suggests that
the open question of whether or not the RTD is linear in the VC-dimension might be related
to the long-standing open question of whether or not the best possible size of sample com-
pression schemes is linear in the VC-dimension, cf. (Littlestone and Warmuth, 1996; Floyd
and Warmuth, 1995). To this end, we observe that a negative answer to the former ques-
tion would have implications on potential approaches to settling the second. In particular,
if the RTD is not linear in the VC-dimension, then there is no mapping that maps every
concept class of VC-dimension d to a superclass that is maximum of VC-dimension O(d).
Constructing such a mapping would be one way of proving that the best possible size of
sample compression schemes is linear in the VC-dimension.

Note that sample compression schemes are not bound to any constraints as to how
the compression sets have to be formed, other than that they be subsets of the set to
be compressed. In particular, any kind of agreement on, say, an order over the instance
space or an order over the concept class, can be exploited for creating the smallest possible
compression scheme. As opposed to that, the RTD is defined following a strict “recipe”
in which teaching sets are independent of orderings of the instance space or the concept
class. These differences between the models make the relationship revealed in this paper
even more remarkable. Further connections between teaching and sample compression can
in fact be obtained when considering a variant of the RTD introduced by Darnstädt et al.
(2013). This new teaching complexity parameter upper-bounds not only the RTD and the
VC-dimension, but also the smallest possible size of a sample compression scheme for the
underlying concept class. Darnstädt et al. (2013) dubbed this parameter order compression
number, as it corresponds to the smallest possible size of a special form of compression
scheme called order compression scheme of the class.

This paper is an extension of an earlier publication (Doliwa et al., 2010).

2. Definitions, Notation and Facts

Throughout this paper, X denotes a finite set and C denotes a concept class over domain
X. For X ′ ⊆ X, we define C|X′ := {C ∩ X ′| C ∈ C}. We treat concepts interchangeably
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as subsets of X and as 0, 1-valued functions on X. A labeled example is a pair (x, l) with
x ∈ X and l ∈ {0, 1}. If S is a set of labeled examples, we define X(S) = {x ∈ X | (x, 0) ∈
S or (x, 1) ∈ S}. For brevity, [n] := {1, . . . , n}. VCD(C) denotes the VC-dimension of a
concept class C.

Definition 1 Let K be a function that assigns a “complexity” K(C) ∈ N to each concept
class C. We say that K is monotonic if C′ ⊆ C implies that K(C′) ≤ K(C). We say that
K is twofold monotonic if K is monotonic and, for every concept class C over X and every
X ′ ⊆ X, it holds that K(C|X′) ≤ K(C).

2.1 Learning Complexity

A partial equivalence query (Maass and Turán, 1992) of a learner is given by a function
h : X → {0, 1, ∗} that is passed to an oracle. The latter returns “YES” if the target
concept C∗ coincides with h on all x ∈ X for which h(x) ∈ {0, 1}; it returns a “witness of
inequivalence” (i.e., an x ∈ X such that C∗(x) 6= h(x) ∈ {0, 1}) otherwise. LC-PARTIAL(C)
denotes the smallest number q such that there is some learning algorithm which can exactly
identify any concept C∗ ∈ C with up to q partial equivalence queries (regardless of the
oracle’s answering strategy).

A query in the model of self-directed learning (Goldman et al., 1993; Goldman and Sloan,
1994) consists of an instance x ∈ X and a label b ∈ {0, 1}, passed to an oracle. The latter
returns the true label C∗(x) assigned to x by the target concept C∗. We say the learner
made a mistake if C∗(x) 6= b. The self-directed learning complexity of C, denoted SDC(C),
is defined as the smallest number q such that there is some self-directed learning algorithm
which can exactly identify any concept C∗ ∈ C without making more than q mistakes.

In the model of online-learning, the learner A makes a prediction bi ∈ {0, 1} for a given
instance xi but, in contrast to self-directed learning, the sequence of instances x1, x2, . . .
is chosen by an adversary of A that aims at maximizing A’s number of mistakes. The
optimal mistake bound for a concept class C, denoted Mopt(C), is the smallest number q
such that there exists an online-learning algorithm which which can exactly identify any
concept C∗ ∈ C without making more than q mistakes (regardless of the ordering in which
the instances are presented to A).

Clearly, LC-PARTIAL and SDC are monotonic, and Mopt is twofold monotonic. The
following chain of inequalities is well-known (Goldman and Sloan, 1994; Maass and Turán,
1992; Littlestone, 1988):

SDC(C) ≤ LC-PARTIAL(C) ≤Mopt(C) ≤ log |C| . (1)

2.2 Teaching Complexity

A teaching set for a concept C ∈ C is a set S of labeled examples such that C, but no
other concept in C, is consistent with S. Let T S(C, C) denote the family of teaching sets for

3111



Doliwa, Fan, Simon and Zilles

C ∈ C, let TS(C; C) denote the size of the smallest teaching set for C ∈ C, and let

TSmin(C) := min
C∈C

TS(C; C) ,

TSmax(C) := max
C∈C

TS(C; C) ,

TSavg(C) :=
1

|C|
∑
C∈C

TS(C; C) .

The quantity TD(C) := TSmax(C) is called the teaching dimension of C (Goldman and
Kearns, 1995). It refers to the concept in C that is hardest to teach. In the sequel, TSmin(C)
is called the best-case teaching dimension of C, and TSavg(C) is called the average-case
teaching dimension of C. Obviously, TSmin(C) ≤ TSavg(C) ≤ TSmax(C) = TD(C).

We briefly note that TD is monotonic, and that a concept class C consisting of exactly
one concept C has teaching dimension 0 because ∅ ∈ T S(C, {C}).

Definition 2 (Zilles et al. 2011) A teaching plan for C is a sequence

P = ((C1, S1), . . . , (CN , SN )) (2)

with the following properties:

• N = |C| and C = {C1, . . . , CN}.

• For all t = 1, . . . , N , St ∈ T S(Ct, {Ct, . . . , CN}).

The quantity ord(P ) := maxt=1,...,N |St| is called the order of the teaching plan P . Finally,
we define

RTD(C) := min{ord(P ) | P is a teaching plan for C} ,
RTD∗(C) := max

X′⊆X
RTD(C|X′) .

The quantity RTD(C) is called the recursive teaching dimension of C.

A teaching plan (2) is said to be repetition-free if the sets X(S1), . . . , X(SN ) are pairwise
distinct. (Clearly, the corresponding labeled sets, S1, . . . , SN , are always pairwise distinct.)
Similar to the recursive teaching dimension we define

rfRTD(C) := min{ord(P ) | P is a repetition-free teaching plan for C} .

One can show that every concept class possesses a repetition-free teaching plan. First,
by induction on |X| = m, the full cube 2X has a repetition-free teaching plan of order m:
It results from a repetition-free plan for the (m − 1)-dimensional subcube of concepts for
which a fixed instance x is labeled 1, where each teaching set is supplemented by the example
(x, 1), followed by a repetition-free teaching plan for the (m − 1)-dimensional subcube of
concepts with x = 0. Second, “projecting” a (repetition-free) teaching plan for a concept
class C onto the concepts in a subclass C′ ⊆ C yields a (repetition-free) teaching plan for C′.
Putting these two observations together, it follows that every class over instance set X has
a repetition-free teaching plan of order |X|.
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x1 x2 x3 x4 x5 TSmin TSmin(Ci,C\{C1}) TSmin(Ci,C\{C2}) TSmin(Ci,C\{C1/2})

C1 0 0 0 0 0 2 - 2 -
C2 1 1 0 0 0 2 2 - -
C3 0 1 0 0 0 4 3 3 2
C4 0 1 0 1 0 4 4 4 4
C5 0 1 0 1 1 3 3 3 3
C6 0 1 1 1 0 3 3 3 3
C7 0 1 1 0 1 3 3 3 3
C8 0 1 1 1 1 3 3 3 3
C9 1 0 1 0 0 3 3 3 3
C10 1 0 0 1 0 4 3 3 3
C11 1 0 0 1 1 3 3 3 3
C12 1 0 1 1 0 3 3 3 3
C13 1 0 1 0 1 3 3 3 3

Table 1: A class with RTD(C) = 2 but rfRTD(C) = 3.

It should be noted though that rfRTD(C) may exceed RTD(C). For example, consider
the class in Table 1, which is of RTD 2. In any teaching plan of order 2, both C1 and C2

have to be taught first with the same teaching set {x1, x2} augmented by the appropriate
labels. The best repetition free teaching plan for this class is of order 3.

As observed by Zilles et al. (2011), the following holds:

• RTD is monotonic.

• The recursive teaching dimension coincides with the order of any teaching plan that
is in canonical form, i.e., a teaching plan ((C1, S1), . . . , (CN , SN )) such that for all
t = 1, . . . , N it holds that |St| = TSmin({Ct, . . . , CN}).

Intuitively, a canonical teaching plan is a sequence that is recursively built by always picking
an easiest-to-teach concept Ct in the class C \ {C1, . . . , Ct−1} together with an appropriate
teaching set St.

The definition of teaching plans immediately yields the following result:

Lemma 3 1. If K is monotonic and TSmin(C) ≤ K(C) for every concept class C, then
RTD(C) ≤ K(C) for every concept class C.

2. If K is twofold monotonic and TSmin(C) ≤ K(C) for every concept class C, then
RTD∗(C) ≤ K(C) for every concept class C.

RTD and TSmin are related as follows:

Lemma 4 RTD(C) = maxC′⊆C TSmin(C′).

Proof Let C1 be the first concept in a canonical teaching plan P for C so that TS(C1; C) =
TSmin(C) and the order of P equals RTD(C). It follows that

RTD(C) = max{TS(C1; C),RTD(C \ {C1})} = max{TSmin(C),RTD(C \ {C1})} ,
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and RTD(C) ≤ maxC′⊆C TSmin(C′) follows inductively. As for the reverse direction, let
C′0 ⊆ C be a maximizer of TSmin. Since RTD is monotonic, we get RTD(C) ≥ RTD(C′0) ≥
TSmin(C′0) = maxC′⊆C TSmin(C′).

2.3 Intersection-closed Classes and Nested Differences

A concept class C is called intersection-closed if C ∩ C ′ ∈ C for all C,C ′ ∈ C. Among the
standard examples of intersection-closed classes are the d-dimensional boxes over domain
[n]d:

BOXd
n := {[a1 : b1]× · · · × [ad : bd] | ∀i = 1, . . . , d : 1 ≤ ai, bi ≤ n}

Here, [a : b] is an abbreviation for {a, a + 1, . . . , b}, where [a : b] is the empty set if a > b.
For the remainder of this section, C is assumed to be intersection-closed.

For T ⊆ X, we define 〈T 〉C as the smallest concept in C containing T , i.e.,

〈T 〉C :=
⋂

T⊆C∈C
C .

A spanning set for T ⊆ X w.r.t. C is a set S ⊆ T such that 〈S〉C = 〈T 〉C . S is called a
minimal spanning set w.r.t. C if, for every proper subset S′ of S, 〈S′〉C 6= 〈S〉C . I(C) denotes
the size of the largest minimal spanning set w.r.t. C. It is well-known (Natarajan, 1987;
Helmbold et al., 1990) that every minimal spanning set w.r.t. C is shattered by C. Thus,
I(C) ≤ VCD(C). Note that, for every C◦ ∈ C, I(C|C◦) ≤ I(C), because every spanning set
for a set T ⊆ C◦ w.r.t. C is also a spanning set for T w.r.t. C|C◦ .

The class of nested differences of depth d (at most d) with concepts from C, denoted
DIFFd(C) (DIFF≤d(C), resp.), is defined inductively as follows:

DIFF1(C) := C ,
DIFFd(C) := {C \D | C ∈ C, D ∈ DIFFd−1(C)} ,

DIFF≤d(C) :=
d⋃

i=1

DIFFi(C) .

Expanding the recursive definition of DIFFd(C) shows that, e.g., a set in DIFF4(C) has the
form C1\(C2\(C3\C4)) where C1, C2, C3, C4 ∈ C. We may assume without loss of generality
that C1 ⊇ C2 ⊇ · · · because C is intersection-closed.

Nested differences of intersection-closed classes were studied in depth at the early stages
of research in computational learning theory (Helmbold et al., 1990).

2.4 Maximum Classes and Unlabeled Compression Schemes

Let Φd(n) :=
∑d

i=0

(
n
i

)
. For d = VCD(C) and for any subset X ′ of X, we have

∣∣C|X′∣∣ ≤
Φd(|X ′|), according to Sauer’s Lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972). The
concept class C is called a maximum class if Sauer’s inequality holds with equality for every
subset X ′ of X. It is well-known (Welzl, 1987; Floyd and Warmuth, 1995) that a class over
a finite domain X is maximum iff Sauer’s inequality holds with equality for X ′ = X.

The following definition was introduced by Kuzmin and Warmuth (2007):
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Definition 5 An unlabeled compression scheme for a maximum class of VC-dimension d is
given by an injective mapping r that assigns to every concept C a set r(C) ⊆ X of size at
most d such that the following condition is satisfied:

∀C,C ′ ∈ C (C 6= C ′),∃x ∈ r(C) ∪ r(C ′) : C(x) 6= C ′(x) . (3)

(3) is referred to as the non-clashing property. In order to ease notation, we add the following
technical definitions. A representation mapping of order k for a (not necessarily maximum)
class C is any injective mapping r that assigns to every concept C a set r(C) ⊆ X of
size at most k such that (3) holds. A representation-mapping r is said to have the acyclic
non-clashing property if there is an ordering C1, . . . , CN of the concepts in C such that

∀1 ≤ i < j ≤ N, ∃x ∈ r(Ci) : Ci(x) 6= Cj(x) . (4)

Considering maximum classes, it was shown by Kuzmin and Warmuth (2007) that a
representation mapping with the non-clashing property guarantees that, for every sample S
labeled according to a concept in C, there is exactly one concept C ∈ C that is consistent
with S and satisfies r(C) ⊆ X(S). This allows to encode (compress) a labeled sample S by
r(C) and, since r is injective, to decode (decompress) r(C) by C (so that the labels in S
can be reconstructed). This coined the term “unlabeled compression scheme”.

A concept class C over a domain X of size n is identified with a subset of {0, 1}n. The
one-inclusion-graph G(C) associated with C is defined as follows:

• The nodes are the concepts from C.

• Two concepts are connected by an edge if and only if they differ in exactly one coor-
dinate (when viewed as nodes in the Boolean cube).

A cube C′ in C is a subcube of {0, 1}n such that every node in C′ represents a concept from C.
In the context of the one-inclusion graph, the instances (corresponding to the dimensions in
the Boolean cube) are usually called “colors” (and an edge along dimension i is said to have
color i). For a concept C ∈ C, I(C;G(C)) denotes the union of the instances associated with
the colors of the incident edges of C in G(C), called incident instances of C. Recall that the
density of a graph with m edges and n nodes is defined as m/n. As shown by Haussler et al.
(1994, Lemma 2.4), the density of the 1-inclusion graph lower-bounds the VC-dimension,
i.e., dens(G(C)) < VCD(C).

The following definitions were introduced by Rubinstein and Rubinstein (2012); we re-
formulate the notation in order to stress the similarities to the definition of teaching plans.

Definition 6 A corner-peeling plan for C is a sequence

P = ((C1, C′1), . . . , (CN , C′N )) (5)

with the following properties:

1. N = |C| and C = {C1, . . . , CN}.

2. For all t = 1, . . . , N , C′t is a cube in {Ct, . . . , CN} which contains Ct and all its
neighbors in G({Ct, . . . , CN}). (Note that this uniquely specifies C′t.)
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The nodes Ct are called the corners of the cubes C′t, respectively. The dimension of the
largest cube among C′1, . . . , C′N is called the order of the corner-peeling plan P . C can be
d-corner-peeled if there exists a corner-peeling plan of order d.

A concept class C is called shortest-path closed if, for every pair of distinct concepts
C,C ′ ∈ C, G(C) contains a path of length |C 4 C ′| (known as the Hamming distance) that
connects C and C ′, where 4 denotes the symmetric difference. Note that every maximum
class is shortest-path closed, but not vice versa. Rubinstein and Rubinstein (2012) showed
the following:

1. If a maximum class C has a corner-peeling plan (5) of order VCD(C), then an unlabeled
compression scheme for C is obtained by defining r(Ct) to be the set of colors in cube
C′t for t = 1, . . . , N .

2. Every maximum class C can be VCD(C)-corner-peeled.

Although it had previously been proved (Kuzmin and Warmuth, 2007) that any maximum
class of VC-dimension d has an unlabeled compression scheme of size d, the corner-peeling
technique still provides very useful insights. We will see an application in Section 4.3, where
we show that RTD(C) = VCD(C) for every maximum class C.

3. Recursive Teaching Dimension and Query Learning

Kuhlmann proved the following result:

Lemma 7 (Kuhlmann 1999) For every concept class C: TSmin(C) ≤ SDC(C).

In view of (1), the monotonicity of LC-PARTIAL and SDC, the twofold monotonicity of
Mopt, and in view of Lemma 3, we obtain:

Corollary 8 For every concept class C, the following holds:

1. RTD(C) ≤ SDC(C) ≤ LC-PARTIAL(C) ≤Mopt(C).

2. RTD∗(C) ≤Mopt(C).

As demonstrated by Goldman and Sloan (1994), the model of self-directed learning is
extremely powerful. According to Corollary 8, recursive teaching is an even more powerful
model so that upper bounds on SDC apply to RTD as well, and lower bounds on RTD apply
to SDC and LC-PARTIAL as well. The following result, which is partially known from the
work by Goldman and Sloan (1994) and Zilles et al. (2011), illustrates this:

Corollary 9 1. If VCD(C) = 1, then RTD(C) = SDC(C) = 1.

2. RTD(Monotone Monomials) = SDC(Monotone Monomials) = 1.

3. RTD(Monomials) = SDC(Monomials) = 2.

4. RTD(BOXd
n) = SDC(BOXd

n) = 2.

5. RTD(m-Term Monotone DNF) ≤ SDC(m-Term Monotone DNF) ≤ m.
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6. SDC(m-Term Monotone DNF) ≥ RTD(m-Term Monotone DNF) ≥ m provided that
the number of Boolean variables is at least m2 + 1.

Proof All upper bounds on SDC were proved by Goldman and Sloan (1994) and, as
mentioned above, they apply to RTD as well. The lower bound 1 on RTD (for concept classes
with at most two distinct concepts) is trivial. RTD(Monomials) = 2 was shown by Zilles
et al. (2011). As a lower bound, this carries over to BOXd

n which contains Monomials as a
subclass. Thus the first five assertions are obvious from known results in combination with
Corollary 8.

As for the last assertion, we have to show that RTD(m-Term Monotone DNF) ≥ m. To
this end assume that there are n ≥ m2 + 1 Boolean variables. According to Lemma 4, it
suffices to find a subclass C′ of m-Term Monotone DNF such that TSmin(C′) ≥ m. Let C′
be the class of all DNF formulas that contain precisely m pairwise variable-disjoint terms of
length m each. Let F be an arbitrary but fixed formula in C′. Without loss of generality,
the teacher always picks either a minimal positive example (such that flipping any 1-bit to
0 turns it negative) or a maximal negative example (such that flipping any 0-bit to 1 turns
it positive). By construction of C′, the former example has precisely m ones (and reveals
one of the m terms in F ) and the latter example has precisely m zeroes (and reveals one
variable in each term). We may assume that the teacher consistently uses a numbering of
the m terms from 1 to m and augments any 0-component (component i say) of a negative
example by the number of the term that contains the corresponding Boolean variable (the
term containing variable xi). Since adding information is to the advantage of the learner,
this will not corrupt the lower-bound argument. We can measure the knowledge that is still
missing after having seen a collection of labeled instances by the following parameters:

• m′, the number of still unknown terms

• l1, . . . , lm, where lk is the number of still unknown variables in term k

The effect of a teaching set on these parameters is as follows: a positive example decre-
ments m′, and a negative example decrements some of l1, . . . , lm. Note that n was chosen
sufficiently large1 so that the formula F is not uniquely specified as long as none of the
parameters has reached level 0. Since all parameters are initially of value m, the size of any
teaching set for F must be at least m.

In powerful learning models, techniques for proving lower bounds become an issue. One
technique for proving a lower bound on RTD was applied already in the proof of Corollary 9:
select a subclass C′ ⊆ C and derive a lower bound on TSmin(C′). We now turn to the question
whether known lower bounds for LC-PARTIAL or SDC remain valid for RTD. Maass and
Turán (1992) showed that LC-PARTIAL is lower-bounded by the logarithm of the length
of a longest inclusion chain in C. This bound does not even apply to SDC, which follows
from an inspection of the class of half-intervals over domain [n]. The longest inclusion chain
in this class, ∅ ⊂ {1} ⊂ {1, 2} ⊂ · · · ⊂ {1, 2, . . . , n}, has length n + 1, but its self-directed
learning complexity is 1. Theorem 8 in the paper by Ben-David and Eiron (1998) implies

1. A slightly refined argument shows that requiring n ≥ (m− 1)2 + 1 would be sufficient. But we made no
serious attempt to make this assumption as weak as possible.
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that SDC is lower-bounded by log |C|/ log |X| if SDC(C) ≥ 2. We next show that the same
bound applies to RTD:

Lemma 10 Suppose RTD(C) ≥ 2. Then, RTD(C) ≥ log |C|
log |X| .

Proof Samei et al. (2012) have shown that Sauer’s bound holds with RTD(C) in the role
of VCD(C), i.e., for k = RTD(C), the following holds:

|C| ≤
k∑

i=1

(
|X|
i

)
= Φk(|X|) ≤ |X|k

Solving for k yields the desired lower bound on RTD(C).

A subset X ′ ⊆ X is called C-distinguishing if, for each pair of distinct concepts C,C ′ ∈ C,
there is some x ∈ X ′ such that C(x) 6= C ′(x). The matrix associated with a concept class
C over domain X is given by M(x,C) = C(x) ∈ {0, 1}. We call two concept classes C, C′
equivalent if their matrices are equal up to permutation of rows or columns, and up to
flipping all bits of a subset of the rows.2 The following result characterizes the classes of
recursive teaching dimension 1:

Theorem 11 The following statements are equivalent:

1. SDC(C) = 1.

2. RTD(C) = 1.

3. There exists a C-distinguishing set X ′ ⊆ X such that C|X′ is equivalent to a concept
class whose matrix M is of the form M = [M ′|~0] where M ′ is a lower-triangular
square-matrix with ones on the main-diagonal and ~0 denotes the all-zeroes vector.

Proof 1 implies 2. If SDC(C) = 1, C contains at least two distinct concepts. Thus,
RTD(C) ≥ 1. According to Corollary 8, RTD(C) ≤ SDC(C) = 1.

2 implies 3. Let P be a teaching plan of order 1 for C, and let X ′ be the set of instances
occurring in P (which clearly is C-distinguishing). Let (C1, {(x1, b1)}) be the first item of P .
Let M be the matrix associated with C (up to equivalence). We make C1 the first column
and x1 the first row of M . We may assume that b1 = 1. (Otherwise flip all bits in row 1.)
Since {(x1, 1)} is a teaching set for C1, the first row of M is of the form (1, 0, . . . , 0). We may
repeat this argument for every item in P so that the resulting matrix M is of the desired
form. (The last zero-column represents the final concept in P with the empty teaching set.)

3 implies 1. Since X ′ is C-distinguishing, exact identification of a concept C ∈ C is the
same as exact identification of C restricted to X ′. Let x1, . . . , xN−1 denote the instances
corresponding to the rows of M . Let C1, . . . , CN denote the concepts corresponding to
the columns of M . A self-directed learner passes (x1, 0), (x2, 0), . . . to the oracle until it
makes the first mistake (if any). If the first mistake (if any) happens for (xk, 0), the tar-
get concept must be Ck (because of the form of M). If no mistake has occurred on items

2. Reasonable complexity measures (including RTD,SDC,VCD) are invariant under these operations.
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(x1, 0), . . . , (xN−1, 0), there is only one possible target concept left, namely CN . Thus the
self-directed learner exactly identifies the target concept at the expense of at most one mis-
take.

As we have seen in this section, the gap between SDC(C) and LC-PARTIAL(C) can be
arbitrarily large (e.g., the class of half-intervals over domain [n]). We will see below, that
a similar statement applies to RTD(C) and SDC(C) (despite the fact that both measures
assign value 1 to the same family of concept classes).

4. Recursive Teaching Dimension and VC-Dimension

The main open question that we pursue in this section is whether there is a universal constant
k such that, for all concept classes C, RTD(C) ≤ k ·VCD(C). Clearly, TSmin(C) ≤ RTD(C) ≤
RTD∗(C), so that the implications from left to right in

∀C : RTD∗(C) ≤ k ·VCD(C) ⇔ ∀C : RTD(C) ≤ k ·VCD(C)
⇔ ∀C : TSmin(C) ≤ k ·VCD(C) (6)

are obvious. But the implications from right to left hold as well as can be seen from the
following calculations based on the assumption that TSmin(·) ≤ k ·VCD(·):

RTD∗(C) = max
X′⊆X

max
C′⊆C

TSmin(C′|X′) ≤ k · max
X′⊆X

max
C′⊆C

VCD(C′|X′) ≤ k ·VCD(C)

Here, the first equation expands the definition of RTD∗ and applies Lemma 4. The final
inequality makes use of the fact that VCD is twofold monotonic. As a consequence, the
question of whether RTD(·) ≤ k · VCD(·) for a universal constant k remains equivalent if
RTD is replaced by TSmin or RTD∗.

4.1 Classes with RTD Exceeding VCD

In general the recursive teaching dimension can exceed the VC-dimension. Kuhlmann
(1999) presents a family (Cm)m≥1 of concept classes for which VCD(Cm) = 2m but RTD(Cm)
≥ TSmin(Cm) = 3m. The smallest class in Kuhlmann’s family, C1, consists of 24 concepts
over a domain of size 16.

A smaller class CW with RTD(CW ) = TSmin(CW ) = 3 and VCD(CW ) = 2 was commu-
nicated to us by Manfred Warmuth. It is shown in Figure 1.

Brute-force enumeration shows that RTD(CW ) = TSmin(CW ) = 3 and VCD(CW ) = 2.
Warmuth’s class CW is remarkable in the sense that it is the smallest concept class for which
RTD exceeds VCD. In order to prove this, the following lemmas will be helpful.

Lemma 12 RTD(C) ≤ |X| − 1 unless C = 2X .

Proof If C 6= 2X , then C must contain a concept C such that C4{x} /∈ C for some instance
x ∈ X. Then, C can be uniquely identified within C using the instances from X \ {x} and
the corresponding labels. Iterative application of this argument leads to a teaching plan for
C of order at most |X| − 1.
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x1 x2 x3 x4 x5
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
0 1 0 1 1
0 1 1 0 1
1 0 1 1 0
1 0 1 0 1
1 1 0 1 0

(a)

x1

x2 x5

x3 x4

(b)

Figure 1: The smallest concept class CW with RTD(CW ) > VCD(CW ). The function table
to the left can be extracted from the graph to the right by picking concept {xi, xj}
for every solid line and X \ {xi, xj} for every dashed line.

Note that Lemma 12 transfers to rfRTD, using an argument very similar to the one that
implies the existence of a repetition-free teaching plan for every class (see the discussion just
below Definition 2.)

For x ∈ X and ` ∈ {0, 1}, C[x, `] is defined as the following subclass of C:

C[x, `] = {C ∈ C : C(x) = `}

An instance x is called redundant if C[x, `] = ∅ for some ` ∈ {0, 1}. Note that the label of a
redundant instance does not contain any information about the underlying target concept
from C. With this notation, the following holds:

Lemma 13 Let C be a concept class over domain X such that TSmin(C) ≥ 3, and X does
not contain redundant instances. Then, VCD(C[x, `]) ≥ 2 for all x ∈ X and ` ∈ {0, 1}.

Proof By way of contradiction. Assume that VCD(C[x, `]) ≤ 1 for some choice of x and `.
We will show that TSmin(C) ≤ 2. According to Corollary 9, VCD(C[x, `]) ≤ 1 implies that
TSmin(C[x, `]) ≤ RTD(C[x, `]) ≤ 1. Now it can be seen that TSmin(C) ≤ 2: choose (x, `) as
the first element in a teaching set and proceed with a teaching set of size VCD(C[x, `]) ≤ 1
for the (non-empty) subclass C[x, `].

Lemma 14 Let C be a concept class over domain X such that VCD(C) = 2, TSmin(C) = 3,
and X does not contain redundant instances. Then |X| ≥ 5 and, for all x ∈ X and ` ∈ {0, 1},
|C[x, `]| ≥ 5.

Proof Let x ∈ X and ` ∈ {0, 1} be arbitrary but fixed. We first show that |C[x, `]| ≥
5. According to Lemma 13, VCD(C[x, `]) ≥ 2. Since VCD(C) = 2, this implies that
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VCD(C[x, `]) = 2. Let C1, C2, C3, C4 ∈ C[x, `] be concepts that shatter two points x′, x′′

in X \ {x}. For at least one of these four concepts, say for C1, the neighboring concept
C14{x} does not belong to C (because otherwise the VC-dimension of C would be at least
3). If C1, . . . , C4 were the only concepts in C[x, `], then (x′, C1(x

′)) and (x′′, C1(x
′′)) would

form a teaching set for C1 in contradiction to TSmin(C) = 3. We conclude that C1, C2, C3, C4

are not the only concepts in C[x, `] so that |C[x, `]| ≥ 5.
We still have to show that |X| ≥ 5. Clearly, |X| ≥ TSmin(C) = 3. Let us assume by way

of contradiction that |X| = 4, say X = {x, y, z, u}. We write concepts over X as 4-tuples
(C(x), C(y), C(z), C(u)). The following considerations are illustrated in Figure 2. From
Lemma 13 and from the assumption VCD(C) = 2, we may conclude that VCD(C[u, 0]) =
2 = VCD(C[u, 1]). The set of size 2 shattered by C[u, 0] cannot coincide with the set of
size 2 shattered by C[u, 1] because, otherwise, the VC-dimension of C would be at least 3.
Let’s say, C[u, 0] shatters {x, y} but not {x, z} and C[u, 1] shatters {x, z} but not {x, y}. By
symmetry, we may assume that C[u, 1] does not contain a concept that assigns label 1 to
both x and y, i.e., the concepts (1, 1, 0, 1) and (1, 1, 1, 1) are missing in C[u, 1]. Since {x, z} is
shattered, C[u, 1] must contain the concepts (1, 0, 0, 1) and (1, 0, 1, 1) so as to realize the label
assignments (1, 0), (1, 1) for (x, z). Recall from the first part of the proof that |C[u, `]| ≥ 5
for ` = 0, 1. Note that |C[u, `]| = 6 would imply that {y, z} is also shattered by C[u, `].
Since VCD(C) = 2, this cannot occur for both subclasses C[u, 1] and C[u, 0] simultaneously.
By symmetry, we may assume that |C[u, 1]| = 5. Thus, besides (1, 1, 0, 1) and (1, 1, 1, 1),
exactly one more concept is missing in C[u, 1]. We proceed by case analysis:

Case 1: The additional missing concept in C[u, 1], say C ′, has Hamming-distance 1 from
one of (1, 1, 0, 1) and (1, 1, 1, 1). For reasons of symmetry, we may assume that C ′ =
(0, 1, 1, 1). It follows that the concept (0, 1, 0, 1) belongs to C[u, 1] and has the teaching
set {(u, 1), (y, 1)}. This is a contradiction to TSmin(C) = 3.

Case 2: The additional missing concept in C[u, 1] has Hamming-distance 2 from both of
(1, 1, 0, 1) and (1, 1, 1, 1). Then C[u, 1] contains (0, 1, 1, 1), (0, 1, 0, 1), (1, 0, 1, 1), and
(1, 0, 0, 1). In particular, C[u, 1] shatters {y, z}. In this case, it cannot happen that
{y, z} is shattered by C[u, 0] too. Thus, |C[u, 0]| = 5. We may now expose C[u, 0] to
the same case analysis that we already applied to C[u, 1]. Since C[u, 0] does not shatter
{y, z}, Case 2 is excluded. As described above, Case 1 leads to a contradiction.

We are now ready to prove the minimality of Warmuth’s class:

Theorem 15 Let C be a concept class over domain X such that RTD(C) > VCD(C). Then
|C| ≥ 10 and |X| ≥ 5.

Proof Obviously VCD(C) = 0 implies that RTD(C) = 0. According to Corollary 9,
VCD(C) = 1 implies that RTD(C) = 1. So we may safely assume that VCD(C) ≥ 2 and
RTD(C) ≥ 3. According to Lemma 4, we may assume that RTD(C) = TSmin(C) because,
otherwise, our proof could proceed with the class C′ ⊆ C such that RTD(C′) = TSmin(C′).
We may furthermore assume that C[x, `] 6= ∅ for all x ∈ X and ` ∈ {0, 1} because, otherwise,
x is a redundant instance and the proof could proceed with the subdomain X \{x}. We may
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x,y shattered
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Figure 2: As indicated by circles, the concepts 1101 and 1111 are missing in C[u, 1].
There is exactly one additional concept C ′ which is missing. If C ′ ∈
{0101, 0111, 1001, 1011}, then C ′ has a teaching set of size 2. Otherwise, C[u, 1]
shatters y, z.

therefore apply Lemma 13 and conclude that VCD(C[x, `]) ≥ 2 for all x ∈ X and ` ∈ {0, 1}.
Clearly |X| ≥ RTD(C) ≥ 3. We claim that |X| ≥ 5, which can be seen as follows. First,
note that C 6= 2X , because RTD(C) > VCD(C). Thus RTD(C) ≤ |X| − 1 by Lemma 12
so that |X| ≥ RTD(C) + 1 ≥ 4. Assume |X| = 4 by way of contradiction. It follows that
RTD(C) ≤ 3 and VCD(C) ≤ 2. Thus, RTD(C) = 3 and VCD(C) = 2. But then |X| ≥ 5 by
Lemma 14. Having established |X| ≥ 5, it remains to prove that |C| ≥ 10. According to (1),
RTD(C) ≤ log |C|. RTD(C) ≥ 4 would imply that |C| ≥ 16 > 10. We may therefore focus
on the case RTD(C) = 3, which implies that VCD(C) = 2. But now it is immediate from
Lemma 14 that |C| ≥ 10, as desired.

We close this section by showing that RTD(C)− VCD(C) can become arbitrarily large.
This can be shown by a class whose concepts are disjoint unions of concepts taken from
Warmuth’s class CW . Details follow. Suppose that C1 and C2 are concept classes over
domains X1 and X2, respectively, such that X1 ∩X2 = ∅. Then

C1 ] C2 := {A ∪B| A ∈ C1, B ∈ C2} .

We apply the same operation to arbitrary pairs of concept classes with the understanding
that, after renaming instances if necessary, the underlying domains are disjoint. We claim
that VCD, TSmin and RTD behave additively with respect to “]”, i.e., the following holds:

Lemma 16 For all K ∈ {VCD,TSmin,RTD}: K(C1 ] C2) = K(C1) + K(C2).

Proof The lemma is fairly obvious for K = VCD and K = TSmin. Suppose that we
have an optimal teaching plan that teaches the concepts from C1 in the order A1, . . . , AM

(resp. the concepts from C2 in the order B1, . . . , BN ). Then, the teaching plan that proceeds
in rounds and teaches Ai∪B1, . . . , Ai∪BN in round i ∈ [M ] witnesses that RTD(C1]C2) ≤
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RTD(C1) + RTD(C2). The reverse direction is an easy application of Lemma 4. Choose
C′1 ⊆ C1 and C′2 ⊆ C2 so that RTD(C1) = TSmin(C′1) and RTD(C2) = TSmin(C′2). Now it
follows that

RTD(C1 ] C2) ≥ TSmin(C′1 ] C′2) = TSmin(C′1) + TSmin(C′2) = RTD(C1) + RTD(C2) .

Setting CnW = CW ] . . . ] CW with n duplicates of CW on the right-hand side, we now
obtain the following result as an immediate application of Lemma 16:

Theorem 17 VCD(CnW ) = 2n and RTD(CnW ) = 3n.

We remark here that the same kind of reasoning cannot be applied to blow up rfRTD,
because rfRTD(C]C) can in general be smaller than 2·rfRTD(C): considering again the class
C with rfRTD(C) = 3 from Table 1, simple brute-force computations show that rfRTD(C ×
C) = 5.

4.2 Intersection-closed Classes

As shown by Kuhlmann (1999), TSmin(C) ≤ I(C) holds for every intersection-closed concept
class C. Kuhlmann’s central argument (which occurred first in a proof of a related result
by Goldman and Sloan (1994)) can be applied recursively so that the following is obtained:

Lemma 18 For every intersection-closed class C, RTD(C) ≤ I(C).

Proof Let k := I(C). We present a teaching plan for C of order at most k. Let C1, . . . , CN

be the concepts in C in topological order such that Ci ⊃ Cj implies i < j. It follows that,
for every i ∈ [N ], Ci is an inclusion-maximal concept in Ci := {Ci, . . . , CN}. Let Si denote
a minimal spanning set for Ci w.r.t. C. Then:

• |Si| ≤ k and Ci is the unique minimal concept in C that contains Si.

• As Ci is inclusion-maximal in Ci, Ci is the only concept in Ci that contains Si.

Thus {(x, 1) | x ∈ Si} is a teaching set of size at most k for Ci in Ci.

Since I(C) ≤ VCD(C), we get

Corollary 19 For every intersection-closed class C, RTD(C) ≤ VCD(C).

This implies RTD∗(C) ≤ VCD(C) for every intersection-closed class C, since the property
“intersection-closed” is preserved when reducing a class C to C|X′ for X ′ ⊆ X.

For every fixed constant d (e.g., d = 2), Kuhlmann (1999) presents a family (Cm)m≥1 of
intersection-closed concept classes such that the following holds:3

∀m ≥ 1 : VCD(Cm) = d and SDC(Cm) ≥ m. (7)

3. A family satisfying (7) but not being intersection-closed was presented previously by Ben-David and
Eiron (1998).
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This shows that SDC(C) can in general not be upper-bounded by I(C) or VCD(C). It shows
furthermore that the gap between RTD(C) and SDC(C) can be arbitrarily large (even for
intersection-closed classes).

Lemma 18 generalizes to nested differences:

Theorem 20 If C is intersection-closed then RTD(DIFF≤d(C)) ≤ d · I(C).

Proof Any concept C ∈ DIFF≤d(C) can be written in the form

C = C1 \
=:D1︷ ︸︸ ︷

(C2 \ (· · · (Cd−1 \ Cd) · · · )) (8)

such that, for every j, Cj ∈ C ∪ {∅}, Cj ⊇ Cj+1, and this inclusion is proper unless Cj =
∅. Let Dj = Cj+1 \ (Cj+2 \ (· · · (Cd−1 \ Cd) · · · )). We may obviously assume that the
representation (8) of C is minimal in the following sense:

∀j = 1, . . . , d : Cj = 〈Cj \Dj〉C (9)

We define a lexicographic ordering, A, on concepts from DIFF≤d(C) as follows. Let C be a
concept with a minimal representation of the form (8), and let the minimal representation
of C ′ be given similarly in terms of C ′j , D

′
j . Then, by definition, C A C ′ if C1 ⊃ C ′1 or

C1 = C ′1 ∧D1 A D′1.
Let k := I(C). We present a teaching plan of order at most dk for DIFF≤d(C). Therein,

the concepts are in lexicographic order so that, when teaching concept C with minimal rep-
resentation (8), the concepts preceding C w.r.t. A have been discarded already. A teaching
set T for C is then obtained as follows:

• For every j = 1, . . . , d, include in T a minimal spanning set for Cj \ Dj w.r.t. C.
Augment its instances by label 1 if j is odd, and by label 0 otherwise.

By construction, C as given by (8) and (9) is the lexicographically smallest concept in
DIFF≤d(C) that is consistent with T . Since concepts being lexicographically larger than C
have been discarded already, T is a teaching set for C.

Corollary 21 Let C1, . . . , Cr be intersection-closed classes over the domain X. Assume that
the “universal concept” X belongs to each of these classes.4 Then,

RTD
(

DIFF≤d(C1 ∪ · · · ∪ Cr)
)
≤ d ·

r∑
i=1

I(Ci) .

Proof Consider the concept class C := C1∧· · ·∧Cr := {C1∩· · ·∩Cr | Ci ∈ Ci for i = 1, . . . , r}.
According to Helmbold et al. (1990), we have:

1. C1 ∪ · · · ∪ Cr is a subclass of C.

4. This assumption is not restrictive: adding the universal concept to an intersection-closed class does not
destroy the property of being intersection-closed.
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2. C is intersection-closed.

3. Let C = C1 ∩ · · · ∩ Cr ∈ C. For all i, let Si be a spanning set for C w.r.t. Ci, i.e.,
Si ⊆ C and 〈Si〉Ci = 〈C〉Ci . Then S1 ∪ · · · ∪ Sr is a spanning set for C w.r.t. C.

Thus I(C) ≤ I(C1) + · · ·+ I(Cr). The corollary follows from Theorem 20.

4.3 Maximum Classes

In this section, we show that the recursive teaching dimension coincides with the VC-
dimension on the family of maximum classes. In a maximum class C, every set of k ≤ VCD(C)
instances is shattered, which implies RTD(C) ≥ TSmin(C) ≥ VCD(C). Thus, we can focus
on the reverse direction and pursue the question whether RTD(C) ≤ VCD(C). We shall an-
swer this question in the affirmative by establishing a connection between “teaching plans”
and “corner-peeling plans”.

We say that a corner-peeling plan (5) is strong if Condition 2 in Definition 6 is replaced
as follows:

2’. For all t = 1, . . . , N , C′t is a cube in {Ct, . . . , CN} which contains Ct and whose colors
(augmented by their labels according to Ct) form a teaching set for Ct ∈ {Ct, . . . , CN}.

We denote the set of colors of C′t as Xt and its augmentation by labels according to Ct as
St in what follows. The following result is obvious:

Lemma 22 A strong corner-peeling plan of the form (5) induces a teaching plan of the
form (2) of the same order.

The following result justifies the attribute “strong” of corner-peeling plans:

Lemma 23 Every strong corner-peeling plan is a corner-peeling plan.

Proof Assume that Condition 2 is violated. Then there is a color x ∈ X \Xt and a concept
C ∈ {Ct+1, . . . , CN} such that C coincides with Ct on all instances except x. But then C is
consistent with set St so that St is not a teaching set for Ct ∈ {Ct, . . . , CN}, and Condition
2’ is violated as well.

Lemma 24 Let C be a shortest-path closed concept class. Then, every corner-peeling plan
for C is strong.

Proof Assume that Condition 2’ is violated. Then some C ∈ {Ct+1, . . . , CN} is consistent
with St. Thus, the shortest path between C and Ct in G({Ct, . . . , CN}) does not enter the
cube C′t. Hence there is a concept C ′ ∈ {Ct+1, . . . , CN} \ C′t that is a neighbor of Ct in
G({Ct, . . . , CN}), and Condition 2 is violated.

As maximum classes are shortest-path closed (Kuzmin and Warmuth, 2007), we obtain:
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Corollary 25 Every corner-peeling plan for a maximum class is strong, and therefore in-
duces a teaching plan of the same order.

Since Rubinstein and Rubinstein (2012) showed that every maximum class C can be
VCD(C)-corner-peeled, we may conclude that RTD(C) ≤ VCD(C). As mentioned above,
RTD(C) ≥ TSmin(C) ≥ VCD(C) for every maximum class C. Thus the following holds:

Theorem 26 For every maximum class C, RTD(C) = TSmin(C) = VCD(C).

The fact that, for every maximum class C and every X ′ ⊆ X, the class C|X′ is still
maximum implies that RTD∗(C) = VCD(C) for every maximum class C.

We establish a connection between repetition-free teaching plans and representations
having the acyclic non-clashing property:

Lemma 27 Let C be an arbitrary concept class. Then the following holds:

1. Every repetition-free teaching plan (2) of order d for C induces a representation map-
ping r of order d for C given by r(Ct) = X(St) for t = 1, . . . , N . Moreover, r has the
acyclic non-clashing property.

2. Every representation mapping r of order d for C that has the acyclic non-clashing
property (4) induces a teaching plan (2) given by St = {(x,Ct(x)) | x ∈ r(Ct)} for
t = 1, . . . , N . Moreover, this plan is repetition-free.

Proof

1. A clash between Ct and Ct′ , t < t′, on X(St) would contradict the fact that St is a
teaching set for Ct ∈ {Ct, . . . , CN}.

2. Conversely, if St = {(x,Ct(x)) | x ∈ r(Ct)} is not a teaching set for Ct ∈ {Ct, . . . , CN},
then there must be a clash on X(St) between Ct and a concept from {Ct+1, . . . , CN}.
The teaching plan induced by r is obviously repetition-free since r is injective.

Corollary 28 Let C be maximum of VC-dimension d. Then, there is a one-one mapping
between repetition-free teaching plans of order d for C and unlabeled compression schemes
with the acyclic non-clashing property.

A closer look at the work by Rubinstein and Rubinstein (2012) reveals that corner-
peeling leads to an unlabeled compression scheme with the acyclic non-clashing property
(again implying that RTD(C) ≤ VCD(C) for maximum classes C). Similarly, an inspection
of the work by Kuzmin and Warmuth (2007) reveals that the unlabeled compression scheme
obtained by the Tail Matching Algorithm has the acyclic non-clashing property, too. Thus,
this algorithm too can be used to generate a recursive teaching plan of order VCD(C) for
any maximum class C.

It is not known to date whether every concept class C of VC-dimension d can be embed-
ded into a maximum concept class C′ ⊇ C of VC-dimension O(d). Indeed, finding such an
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embedding is considered as a promising method for settling the sample compression conjec-
ture. It is easy to see that a negative answer to our question "Is RTD(C) ∈ O(VCD(C))?"
would deem this approach fruitless:

Theorem 29 If RTD(C) is not linearly bounded in VCD(C), then there is no mapping
C 7→ C′ ⊇ C such that C′ is maximum and VCD(C′) is linearly bounded in VCD(C).

Proof Suppose there is a universal constant k and a mapping MAXIMIZE that maps every
concept class C to a concept class C′ ⊇ C such that C′ is maximum and VCD(C′) ≤ k·VCD(C).
It follows that, for any concept class C, the following holds:

RTD(C) ≤ RTD(MAXIMIZE(C)) = VCD(MAXIMIZE(C)) ≤ k ·VCD(C))

where the equation RTD(MAXIMIZE(C)) = VCD(MAXIMIZE(C)) follows from Theo-
rem 26.

According to (6), this theorem still holds if RTD is replaced by RTD∗.

4.4 Shortest-Path Closed Classes

In this section, we study the best-case teaching dimension, TSmin(C), and the average-case
teaching-dimension, TSavg(C), of a shortest-path closed concept class C.

It is known that the instances of I(C;G(C)), augmented by their C-labels, form a unique
minimal teaching set for C in C provided that C is a maximum class (Kuzmin and Warmuth,
2007). Lemma 30 slightly generalizes this observation.

Lemma 30 Let C be any concept class. Then the following two statements are equivalent:

1. C is shortest-path closed.

2. Every C ∈ C has a unique minimum teaching set S, namely the set S such that
X(S) = I(C;G(C)).

Proof 1 ⇒ 2 is easy to see. Let C be shortest-path closed, and let C be any concept in
C. Clearly, any teaching set S for C must satisfy I(C;G(C)) ⊆ X(S) because C must be
distinguished from all its neighbors in G(C). Let C ′ 6= C be any other concept in C. Since
C and C ′ are connected by a path P of length |C 4 C ′|, C and C ′ are distinguished by
the color of the first edge in P , say by the color x ∈ I(C;G(C)). Thus, no other instances
(=colors) besides I(C;G(C)) are needed to distinguish C from any other concept in C.

To show 2 ⇒ 1, we suppose 2 and prove by induction on k that any two concepts
C,C ′ ∈ C with k = |C4C ′| are connected by a path of length k in G(C). The case k = 1 is
trivial. For a fixed k, assume all pairs of concepts of Hamming distance k are connected by a
path of length k in G(C). Let C,C ′ ∈ C with |C4C ′| = k+1 ≥ 2. Since I(C;G(C)) = X(S),
there is an x ∈ I(C;G(C)) such that C(x) 6= C ′(x). Let C ′′ be the x-neighbor of C in G(C).
Note that C ′′(x) = C ′(x) so that C ′′ and C ′ have Hamming-distance k. According to the
inductive hypothesis, there is a path of length k from C ′′ to C ′ in G(C). It follows that C
and C ′ are connected by a path of length k + 1.
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Theorem 31 Let C be a shortest-path closed concept class. Then, TSavg(C) < 2VCD(C).

Proof According to Lemma 30, the average-case teaching dimension of C coincides with
the average vertex-degree in G(C), which is twice the density of G(C). As mentioned in
Section 2.4 already, dens(G(C)) < VCD(C).

Theorem 31 generalizes a result by Kuhlmann (1999) who showed that the average-case
teaching dimension of “d-balls” (sets of concepts of Hamming distance at most d from a
center concept) is smaller than 2d. It also simplifies Kuhlmann’s proof substantially. In
Theorem 4 of the same paper, Kuhlmann (1999) stated furthermore that TSavg(C) < 2 if
VCD(C) = 1, but his proof is flawed.5 Despite the flawed proof, the claim itself is correct
as we show now:

Theorem 32 Let C be any concept class. If VCD(C) = 1 then TSavg(C) < 2.

Proof By Theorem 31, the average-case teaching dimension of a maximum class of VC-
dimension 1 is less than 2. It thus suffices to show that any class C of VC-dimension 1 can be
transformed into a maximum class C′ of VC-dimension 1 without decreasing the average-case
teaching dimension. Let X ′ ⊆ X be a minimal set that is C-distinguishing, i.e., for every pair
of distinct concepts C,C ′ ∈ C, there is some x ∈ X ′ such that C(x) 6= C(x′). Let m = |X|
and C′ = C|X′ . Obviously, |C′| = |C| and VCD(C′) = 1 so that |C′| ≤

(
m
0

)
+
(
m
1

)
= m + 1.

Now we prove that C′ is maximum. Note that every x ∈ X ′ occurs as a color in G(C′)
because, otherwise, X ′ \ {x} would still be C-distinguishing (which would contradict the
minimality of X ′). As VCD(C′) = 1, no color can occur twice. Thus |E(G(C′))| = m.
Moreover, there is no cycle in G(C′) since a cycle would require at least one repeated color.
As G(C′) is an acyclic graph of m edges, it has at least m + 1 vertices, i.e. |C′| ≥ m + 1.
Thus, |C′| = m + 1 and C′ is maximum. This implies that TSavg(C′) < 2VCD(C′). Since
X ′ ⊆ X but X ′ is still C-distinguishing, we obtain TS(C; C) ≤ TS(C|X′ , C′) for all C ∈ C.
Thus, TSavg(C) ≤ TSavg(C′) < 2VCD(C′) = 2, which concludes the proof.

We briefly note that TSavg(C) cannot in general be bounded by O(VCD(C)). Kushilevitz
et al. (1996) present a family (Cn) of concept classes such that TSavg(Cn) = Ω(

√
|Cn|) but

VCD(Cn) ≤ log |Cn|.
We conclude this section by showing that there are shortest-path closed classes for which

RTD exceeds VCD.

Lemma 33 If degG(C)(C) ≥ |X| − 1 for all C ∈ C, then C is shortest-path closed.

Proof Assume by way of contradiction that C is not shortest-path closed. Pick two con-
cepts C,C ′ ∈ C of minimal Hamming-distance, say d, subject to the constraint of not being
connected by a path of length d in G(C). It follows that d ≥ 2. By the minimality of d, any

5. His Claim 2 states the following. If VCD(C) = 1, C1, C2 ∈ C, x ∈ X, x /∈ C1, C2 = C1 ∪ {x},
then, for either (i, j) = (1, 2) or (i, j) = (2, 1), one obtains TS(Ci; C) = TS(Ci − x; C − x) + 1 and
TS(Cj ; C) = 1. This is not correct, as can be shown by the class C = {{xz : 1 ≤ z ≤ k} : 0 ≤ k ≤ 5} over
X = {xk : 1 ≤ k ≤ 5}, which has VC-dimension 1. For C1 = {x1, x2}, C2 = {x1, x2, x3}, and x = x3, we
get TS(C1; C) = TS(C2; C) = TS(C1 − x; C − x) = 2.
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neighbor of C with Hamming-distance d − 1 to C ′ does not belong to C. Since there are
d such missing neighbors, the degree of C in G(C) is bounded by |X| − d ≤ |X| − 2. This
yields a contradiction.

Rubinstein et al. (2009) present a concept class C with TSmin(C) > VCD(C). An in-
spection of this class shows that the minimum vertex degree in its 1-inclusion graph is
|X|−1. According to Lemma 33, this class must be shortest-path closed. Thus, the inequal-
ity TSmin(C) ≤ VCD(C) does not generalize from maximum classes to shortest-path closed
classes.

5. Conclusions

This paper relates the RTD, a recently introduced teaching complexity notion, to information
complexity parameters of various classical learning models.

One of these parameters is SDC, the information complexity of self-directed learning,
which constitutes the most information-efficient query learning model known to date. Our
main result in this context, namely lower-bounding the SDC by the RTD, has implications
for the analysis of information complexity in teaching and learning. In particular, every
upper bound on SDC holds for RTD; every lower bound on RTD holds for SDC.

The central parameter in our comparison is the VC-dimension. Although the VC-
dimension can be arbitrarily large for classes of recursive teaching dimension 1 (which is
well-known and also evident from Theorem 11) and arbitrarily smaller than SDC (Ben-David
and Eiron, 1998; Kuhlmann, 1999), it does not generally lie in between the two. However,
while the SDC cannot be upper-bounded by any linear function of the VC-dimension, it
is still open whether such a bound exists for the RTD. The existence of the latter would
mean that the combinatorial properties that determine the information complexity of PAC-
learning (i.e., of learning from randomly drawn examples) are essentially the same as those
that determine the information complexity of teaching (i.e., of learning from helpfully se-
lected examples), at least when using the recursive teaching model.

As a partial solution to this open question, we showed that the VC-dimension coincides
with the RTD in the special case of maximum classes. Our results, and in particular the re-
markable correspondence to unlabeled compression schemes, suggest that the RTD is based
on a combinatorial structure that is of high relevance for the complexity of information-
efficient learning and sample compression. Analyzing the circumstances under which teach-
ing plans defining the RTD can be used to construct compression schemes (and to bound
their size) seems to be a promising step towards new insights into the theory of sample
compression.
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Abstract

We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian,
neural networks, support vector machines, decision trees, rule-based classifiers, boosting,
bagging, stacking, random forests and other ensembles, generalized linear models, nearest-
neighbors, partial least squares and principal component regression, logistic and multino-
mial regression, multiple adaptive regression splines and other methods), implemented in
Weka, R (with and without the caret package), C and Matlab, including all the relevant
classifiers available today. We use 121 data sets, which represent the whole UCI data
base (excluding the large-scale problems) and other own real problems, in order to achieve
significant conclusions about the classifier behavior, not dependent on the data set col-
lection. The classifiers most likely to be the bests are the random forest (RF)
versions, the best of which (implemented in R and accessed via caret) achieves 94.1% of
the maximum accuracy overcoming 90% in the 84.3% of the data sets. However, the dif-
ference is not statistically significant with the second best, the SVM with Gaussian kernel
implemented in C using LibSVM, which achieves 92.3% of the maximum accuracy. A few
models are clearly better than the remaining ones: random forest, SVM with Gaussian
and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet
(a committee of multi-layer perceptrons implemented in R with the caret package). The
random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF),
followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5
and 3 members in the top-20, respectively).

Keywords: classification, UCI data base, random forest, support vector machine, neural
networks, decision trees, ensembles, rule-based classifiers, discriminant analysis, Bayesian
classifiers, generalized linear models, partial least squares and principal component re-
gression, multiple adaptive regression splines, nearest-neighbors, logistic and multinomial
regression
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1. Introduction

When a researcher or data analyzer faces to the classification of a data set, he/she usually
applies the classifier which he/she expects to be “the best one”. This expectation is condi-
tioned by the (often partial) researcher knowledge about the available classifiers. One reason
is that they arise from different fields within computer science and mathematics, i.e., they
belong to different “classifier families”. For example, some classifiers (linear discriminant
analysis or generalized linear models) come from statistics, while others come from symbolic
artificial intelligence and data mining (rule-based classifiers or decision-trees), some others
are connectionist approaches (neural networks), and others are ensembles, use regression or
clustering approaches, etc. A researcher may not be able to use classifiers arising from areas
in which he/she is not an expert (for example, to develop parameter tuning), being often
limited to use the methods within his/her domain of expertise. However, there is no certainty
that they work better, for a given data set, than other classifiers, which seem more “exotic”
to him/her. The lack of available implementation for many classifiers is a major drawback,
although it has been partially reduced due to the large amount of classifiers implemented
in R1 (mainly from Statistics), Weka2 (from the data mining field) and, in a lesser extend,
in Matlab using the Neural Network Toolbox3. Besides, the R package caret (Kuhn, 2008)
provides a very easy interface for the execution of many classifiers, allowing automatic pa-
rameter tuning and reducing the requirements on the researcher’s knowledge (about the
tunable parameter values, among other issues). Of course, the researcher can review the
literature to know about classifiers in families outside his/her domain of expertise and, if
they work better, to use them instead of his/her preferred classifier. However, usually the
papers which propose a new classifier compare it only to classifiers within the same family,
excluding families outside the author’s area of expertise. Thus, the researcher does not know
whether these classifiers work better or not than the ones that he/she already knows. On the
other hand, these comparisons are usually developed over a few, although expectedly rele-
vant, data sets. Given that all the classifiers (even the “good” ones) show strong variations
in their results among data sets, the average accuracy (over all the data sets) might be of
limited significance if a reduced collection of data sets is used (Macià and Bernadó-Mansilla,
2014). Specifically, some classifiers with a good average performance over a reduced data
set collection could achieve significantly worse results when the collection is extended, and
conversely classifiers with sub-optimal performance on the reduced data collection could be
not so bad when more data sets are included. There are useful guidelines (Hothorn et al.,
2005; Eugster et al., 2014) to analyze and design benchmark exploratory and inferential
experiments, giving also a very useful framework to inspect the relationship between data
sets and classifiers.

Each time we find a new classifier or family of classifiers from areas outside our domain
of expertise, we ask ourselves whether that classifier will work better than the ones that we
use routinely. In order to have a clear idea of the capabilities of each classifier and family, it
would be useful to develop a comparison of a high number of classifiers arising from many
different families and areas of knowledge over a large collection of data sets. The objective

1. See http://www.r-project.org.
2. See http://www.cs.waikato.ac.nz/ml/weka.
3. See http://www.mathworks.es/products/neural-network.
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is to select the classifier which more probably achieves the best performance for any data
set. In the current paper we use a large collection of classifiers with publicly available
implementations (in order to allow future comparisons), arising from a wide variety of
classifier families, in order to achieve significant conclusions not conditioned by the number
and variety of the classifiers considered. Using a high number of classifiers it is probable that
some of them will achieve the “highest” possible performance for each data set, which can
be used as reference (maximum accuracy) to evaluate the remaining classifiers. However,
according to the No-Free-Lunch theorem (Wolpert, 1996), the best classifier will not be the
same for all the data sets. Using classifiers from many families, we are not restricting the
significance of our comparison to one specific family among many available methods. Using
a high number of data sets, it is probable that each classifier will work well in some data
sets and not so well in others, increasing the evaluation significance. Finally, considering
the availability of several alternative implementations for the most popular classifiers, their
comparison may also be interesting. The current work pursues: 1) to select the globally
best classifier for the selected data set collection; 2) to rank each classifier and family
according to its accuracy; 3) to determine, for each classifier, its probability of achieving
the best accuracy, and the difference between its accuracy and the best one; 4) to evaluate
the classifier behavior varying the data set properties (complexity, #patterns, #classes and
#inputs).

Some recent papers have analyzed the comparison of classifiers over large collection of
data sets. OpenML (Vanschoren et al., 2012), is a complete web interface4 to anonymously
access an experiment data base including 86 data sets from the UCI machine learning data
base (Bache and Lichman, 2013) and 93 classifiers implemented in Weka. Although plug-
ins for R, Knime and RapidMiner are under development, currently it only allows to use
Weka classifiers. This environment allows to send queries about the classifier behavior with
respect to tunable parameters, considering several common performance measures, feature
selection techniques and bias-variance analysis. There is also an interesting analysis (Macià
and Bernadó-Mansilla, 2014) about the use of the UCI repository launching several inter-
esting criticisms about the usual practice in experimental comparisons. In the following,
we synthesize these criticisms (the italicized sentences are literal cites) and describe how we
tried to avoid them in our paper:

1. The criterion used to select the data set collection (which is usually reduced) may
bias the comparison results. The same authors stated (Macià et al., 2013) that the
superiority of a classifier may be restricted to a given domain characterized by some
complexity measures, studying why and how the data set selection may change the
results of classifier comparisons. Following these suggestions, we use all the data sets
in the UCI classification repository, in order to avoid that a small data collection
invalidate the conclusions of the comparison. This paper also emphasizes that the
UCI repository was not designed to be a complete, reliable framework composed of
standardized real samples.

2. The issue about (1) whether the selection of learners is representative enough and (2)
whether the selected learners are properly configured to work at their best performance

4. See http://expdb.cs.kuleuven.be/expdb.
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suggests that proposals of new classifiers usually design and tune them carefully, while
the reference classifiers are run using a baseline configuration. This issue is also related
to the lack of deep knowledge and experience about the details of all the classifiers with
available implementations, so that the researchers usually do not pay much attention
about the selected reference algorithms, which may consequently bias the results in
favour of the proposed algorithm. With respect to this criticism, in the current paper
we do not propose any new classifier nor changes on existing approaches, so we are not
interested in favour any specific classifier, although we are more experienced with some
classifier than others (for example, with respect to the tunable parameter values). We
develop in this work a parameter tuning in the majority of the classifiers used (see
below), selecting the best available configuration over a training set. Specifically, the
classifiers implemented in R using caret automatically tune these parameters and,
even more important, using pre-defined (and supposedly meaningful) values. This
fact should compensate our lack of experience about some classifiers, and reduce its
relevance on the results.

3. It is still impossible to determine the maximum attainable accuracy for a data set,
so that it is difficult to evaluate the true quality of each classifier. In our paper, we
use a large amount of classifiers (179) from many different families, so we hypothesize
that the maximum accuracy achieved by some classifier is the maximum attainable
accuracy for that data set: i.e., we suppose that if no classifier in our collection is
able to reach higher accuracy, no one will reach. We can not test the validity of this
hypothesis, but it seems reasonable that, when the number of classifiers increases,
some of them will achieve the largest possible accuracy.

4. Since the data set complexity (measured somehow by the maximum attainable ac-
curacy) is unknown, we do not know if the classification error is caused by unfitted
classifier design (learner’s limitation) or by intrinsic difficulties of the problem (data
limitation). In our work, since we consider that the attainable accuracy is the maxi-
mum accuracy achieved by some classifier in our collection, we can consider that low
accuracies (with respect to this maximum accuracy) achieved by other classifiers are
always caused by classifier limitations.

5. The lack of standard data partitioning, defining training and testing data for cross-
validation trials. Simply the use of different data partitionings will eventually bias the
results, and make the comparison between experiments impossible, something which is
also emphasized by other researchers (Vanschoren et al., 2012). In the current paper,
each data set uses the same partitioning for all the classifiers, so that this issue can not
bias the results favouring any classifier. Besides, the partitions are publicly available
(see Section 2.1), in order to make possible the experiment replication.

The paper is organized as follows: the Section 2 describes the collection of data sets and
classifiers considered in this work; the Section 3 discusses the results of the experiments,
and the Section 4 compiles the conclusions of the research developed.
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2. Materials and Methods

In the following paragraphs we describe the materials (data sets) and methods (classifiers)
used to develop this comparison.

Data set #pat. #inp. #cl. %Maj. Data set #pat. #inp. #cl. %Maj.

abalone 4177 8 3 34.6 energy-y1 768 8 3 46.9

ac-inflam 120 6 2 50.8 energy-y2 768 8 3 49.9

acute-nephritis 120 6 2 58.3 fertility 100 9 2 88.0

adult 48842 14 2 75.9 flags 194 28 8 30.9

annealing 798 38 6 76.2 glass 214 9 6 35.5

arrhythmia 452 262 13 54.2 haberman-survival 306 3 2 73.5

audiology-std 226 59 18 26.3 hayes-roth 132 3 3 38.6

balance-scale 625 4 3 46.1 heart-cleveland 303 13 5 54.1

balloons 16 4 2 56.2 heart-hungarian 294 12 2 63.9

bank 45211 17 2 88.5 heart-switzerland 123 12 2 39.0

blood 748 4 2 76.2 heart-va 200 12 5 28.0

breast-cancer 286 9 2 70.3 hepatitis 155 19 2 79.3

bc-wisc 699 9 2 65.5 hill-valley 606 100 2 50.7

bc-wisc-diag 569 30 2 62.7 horse-colic 300 25 2 63.7

bc-wisc-prog 198 33 2 76.3 ilpd-indian-liver 583 9 2 71.4

breast-tissue 106 9 6 20.7 image-segmentation 210 19 7 14.3

car 1728 6 4 70.0 ionosphere 351 33 2 64.1

ctg-10classes 2126 21 10 27.2 iris 150 4 3 33.3

ctg-3classes 2126 21 3 77.8 led-display 1000 7 10 11.1

chess-krvk 28056 6 18 16.2 lenses 24 4 3 62.5

chess-krvkp 3196 36 2 52.2 letter 20000 16 26 4.1

congress-voting 435 16 2 61.4 libras 360 90 15 6.7

conn-bench-sonar 208 60 2 53.4 low-res-spect 531 100 9 51.9

conn-bench-vowel 528 11 11 9.1 lung-cancer 32 56 3 40.6

connect-4 67557 42 2 75.4 lymphography 148 18 4 54.7

contrac 1473 9 3 42.7 magic 19020 10 2 64.8

credit-approval 690 15 2 55.5 mammographic 961 5 2 53.7

cylinder-bands 512 35 2 60.9 miniboone 130064 50 2 71.9

dermatology 366 34 6 30.6 molec-biol-promoter 106 57 2 50.0

echocardiogram 131 10 2 67.2 molec-biol-splice 3190 60 3 51.9

ecoli 336 7 8 42.6 monks-1 124 6 2 50.0

Table 1: Collection of 121 data sets from the UCI data base and our real prob-
lems. It shows the number of patterns (#pat.), inputs (#inp.), classes
(#cl.) and percentage of majority class (%Maj.) for each data set. Con-
tinued in Table 2. Some keys are: ac-inflam=acute-inflammation, bc=breast-
cancer, congress-vot= congressional-voting, ctg=cardiotocography, conn-bench-
sonar/vowel= connectionist-benchmark-sonar-mines-rocks/vowel-deterding, pb=
pittsburg-bridges, st=statlog, vc=vertebral-column.
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2.1 Data Sets

We use the whole UCI machine learning repository, the most widely used data base in the
classification literature, to develop the classifier comparison. The UCI website5 specifies
a list of 165 data sets which can be used for classification tasks (March, 2013). We
discarded 57 data sets due to several reasons: 25 large-scale data sets (with very high
#patterns and/or #inputs, for which our classifier implementations are not designed), 27
data sets which are not in the “common UCI format”, and 5 data sets due to diverse
reasons (just one input, classes without patterns, classes with only one pattern and sets
not available). We also used 4 real-world data sets (González-Rufino et al., 2013) not
included in the UCI repository, about fecundity estimation for fisheries: they are denoted
as oocMerl4D (2-class classification according to the presence/absence of oocyte nucleus),
oocMerl2F (3-class classification according to the stage of development of the oocyte) for
fish species Merluccius; and oocTris2F (nucleus) and oocTris5B (stages) for fish species
Trisopterus. The inputs are texture features extracted from oocytes (cells) in histological
images of fish gonads, and its calculation is described in the page 2400 (Table 4) of the cited
paper.

Overall, we have 165 - 57 + 4 = 112 data sets. However, some UCI data sets provide
several “class” columns, so that actually they can be considered several classification prob-
lems. This is the case of data set cardiotocography, where the inputs can be classified into 3
or 10 classes, giving two classification problems (one additional data set); energy, where the
classes can be given by columns y1 or y2 (one additional data set); pittsburg-bridges, where
the classes can be material, rel-l, span, t-or-d and type (4 additional data sets); plant (whose
complete UCI name is One-hundred plant species), with inputs margin, shape or texture (2
extra data sets); and vertebral-column, with 2 or 3 classes (1 extra data set). Therefore, we
achieve a total of 112 + 1 + 1 + 4 + 2 + 1 = 121 data sets6, listed in the Tables 1 and 2
by alphabetic order (some data set names are reduced but significant versions of the UCI
official names, which are often too long). OpenML (Vanschoren et al., 2012) includes only
86 data sets, of which seven do not belong to the UCI database: baseball, braziltourism,
CoEPrA-2006 Classification 001/2/3, eucalyptus, labor, sick and solar-flare. In our work,
the #patterns range from 10 (data set trains) to 130,064 (miniboone), with #inputs ranging
from 3 (data set hayes-roth) to 262 (data set arrhythmia), and #classes between 2 and 100.
We used even tiny data sets (such as trains or balloons), in order to assess that each clas-
sifier is able to learn these (expected to be “easy”) data sets. In some data sets the classes
with only two patterns were removed because they are not enough for training/test sets.
The same data files were used for all the classifiers, excepting the ones provided by Weka,
which require the ARFF format. We converted the nominal (or discrete) inputs to numeric
values using a simple quantization: if an input x may take discrete values {v1, . . . , vn}, when
it takes the discrete value vi it is converted to the numeric value i ∈ {1, . . . , n}. We are
conscious that this change in the representation may have a high impact in the results of
distance-based classifiers (Macià and Bernadó-Mansilla, 2014), because contiguous discrete
values (vi and vi+1) might not be nearer than non-contiguous values (v1 and vn). Each input

5. See http://archive.ics.uci.edu/ml/datasets.html?task=cla.
6. The whole data set and partitions are available from:

http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz.
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Data set #pat. #inp. #cl. %Maj. Data set #pat. #inp. #cl. %Maj.

monks-2 169 6 2 62.1 soybean 307 35 18 13.0

monks-3 3190 6 2 50.8 spambase 4601 57 2 60.6

mushroom 8124 21 2 51.8 spect 80 22 2 67.1

musk-1 476 166 2 56.5 spectf 80 44 2 50.0

musk-2 6598 166 2 84.6 st-australian-credit 690 14 2 67.8

nursery 12960 8 5 33.3 st-german-credit 1000 24 2 70.0

oocMerl2F 1022 25 3 67.0 st-heart 270 13 2 55.6

oocMerl4D 1022 41 2 68.7 st-image 2310 18 7 14.3

oocTris2F 912 25 2 57.8 st-landsat 4435 36 6 24.2

oocTris5B 912 32 3 57.6 st-shuttle 43500 9 7 78.4

optical 3823 62 10 10.2 st-vehicle 846 18 4 25.8

ozone 2536 72 2 97.1 steel-plates 1941 27 7 34.7

page-blocks 5473 10 5 89.8 synthetic-control 600 60 6 16.7

parkinsons 195 22 2 75.4 teaching 151 5 3 34.4

pendigits 7494 16 10 10.4 thyroid 3772 21 3 92.5

pima 768 8 2 65.1 tic-tac-toe 958 9 2 65.3

pb-MATERIAL 106 4 3 74.5 titanic 2201 3 2 67.7

pb-REL-L 103 4 3 51.5 trains 10 28 2 50.0

pb-SPAN 92 4 3 52.2 twonorm 7400 20 2 50.0

pb-T-OR-D 102 4 2 86.3 vc-2classes 310 6 2 67.7

pb-TYPE 105 4 6 41.9 vc-3classes 310 6 3 48.4

planning 182 12 2 71.4 wall-following 5456 24 4 40.4

plant-margin 1600 64 100 1.0 waveform 5000 21 3 33.9

plant-shape 1600 64 100 1.0 waveform-noise 5000 40 3 33.8

plant-texture 1600 64 100 1.0 wine 179 13 3 39.9

post-operative 90 8 3 71.1 wine-quality-red 1599 11 6 42.6

primary-tumor 330 17 15 25.4 wine-quality-white 4898 11 7 44.9

ringnorm 7400 20 2 50.5 yeast 1484 8 10 31.2

seeds 210 7 3 33.3 zoo 101 16 7 40.6

semeion 1593 256 10 10.2

Table 2: Continuation of Table 1 (data set collection).

is pre-processed to have zero mean and standard deviation one, as is usual in the classifier
literature. We do not use further pre-processing, data transformation or feature selection.
The reasons are: 1) the impact of these transforms can be expected to be similar for all the
classifiers; however, our objective is not to achieve the best possible performance for each
data set (which eventually might require further pre-processing), but to compare classifiers
on each set; 2) if pre-processing favours some classifier(s) with respect to others, this impact
should be random, and therefore not statistically significant for the comparison; 3) in order
to avoid comparison bias due to pre-processing, it seems advisable to use the original data;
4) in order to enhance the classification results, further pre-processing eventually should be
specific to each data set, which would increase largely the present work; and 5) additional
transformations would require a knowledge which is outside the scope of this paper, and
should be explored in a different study. In those data sets with different training and test
sets (annealing or audiology-std, among others), both files were not merged to follow the
practice recommended by the data set creators, and to achieve “significant” accuracies on
the right test data, using the right training data. In those data sets where the class attribute
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must be defined grouping several values (in data set abalone) we follow the instructions in
the data set description (file data.names). Given that our classifiers are not oriented to
data with missing features, the missing inputs are treated as zero, which should not bias the
comparison results. For each data set (abalone) two data files are created: abalone R.dat,
designed to be read by the R, C and Matlab classifiers, and abalone.arff, designed to be
read by the Weka classifiers.

2.2 Classifiers

We use 179 classifiers implemented in C/C++, Matlab, R and Weka. Excepting the
Matlab classifiers, all of them are free software. We only developed own versions in C for
the classifiers proposed by us (see below). Some of the R programs use directly the package
that provides the classifier, but others use the classifier through the interface train provided
by the caret7 package. This function develops the parameter tuning, selecting the values
which maximize the accuracy according to the validation selected (leave-one-out, k-fold,
etc.). The caret package also allows to define the number of values used for each tunable
parameter, although the specific values can not be selected. We used all the classifiers
provided by Weka, running the command-line version of the java class for each classifier.

OpenML uses 93 Weka classifiers, from which we included 84. We could not include
in our collection the remaining 9 classifiers: ADTree, alternating decision tree (Freund
and Mason, 1999); AODE, aggregating one-dependence estimators (Webb et al., 2005);
Id3 (Quinlan, 1986); LBR, lazy Bayesian rules (Zheng and Webb, 2000); M5Rules (Holmes
et al., 1999); Prism (Cendrowska, 1987); ThresholdSelector; VotedPerceptron (Freund and
Schapire, 1998) and Winnow (Littlestone, 1988). The reason is that they only accept
nominal (not numerical) inputs, while we converted all the inputs to numeric values. Be-
sides, we did not use classifiers ThresholdSelector, VotedPerceptron and Winnow, included
in openML, because they accept only two-class problems. Note that classifiers Locally-
WeightedLearning and RippleDownRuleLearner (Vanschoren et al., 2012) are included in
our collection as LWL and Ridor respectively. Furthermore, we also included other 36 clas-
sifiers implemented in R, 48 classifiers in R using the caret package, as well as 6 classifiers
implemented in C and other 5 in Matlab, summing up to 179 classifiers.

In the following, we briefly describe the 179 classifiers of the different families identi-
fied by acronyms (DA, BY, etc., see below), their names and implementations, coded as
name implementation, where implementation can be C, m (Matlab), R, t (in R using
caret) and w (Weka), and their tunable parameter values (the notation A:B:C means from
A to C step B). We found errors using several classifiers accessed via caret, but we used
the corresponding R packages directly. This is the case of lvq, bdk, gaussprLinear, glm-
net, kernelpls, widekernelpls, simpls, obliqueTree, spls, gpls, mars, multinom, lssvmRadial,
partDSA, PenalizedLDA, qda, QdaCov, mda, rda, rpart, rrlda, sddaLDA, sddaQDA and
sparseLDA. Some other classifiers as Linda, smda and xyf (not listed below) gave errors
(both with and without caret) and could not be included in this work. In the R and caret
implementations, we specify the function and, in typewriter font, the package which provide
that classifier (the function name is absent when it is is equal to the classifier).

7. See http://caret.r-forge.r-project.org.
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Discriminant analysis (DA): 20 classifiers.

1. lda R, linear discriminant analysis, with the function lda in the MASS package.

2. lda2 t, from the MASS package, which develops LDA tuning the number of components
to retain up to #classes− 1.

3. rrlda R, robust regularized LDA, from the rrlda package, tunes the parameters
lambda (which controls the sparseness of the covariance matrix estimation) and alpha
(robustness, it controls the number of outliers) with values {0.1, 0.01, 0.001} and {0.5,
0.75, 1.0} respectively.

4. sda t, shrinkage discriminant analysis and CAT score variable selection (Ahdesmäki
and Strimmer, 2010) from the sda package. It performs LDA or diagonal discriminant
analysis (DDA) with variable selection using CAT (Correlation-Adjusted T) scores.
The best classifier (LDA or DDA) is selected. The James-Stein method is used for
shrinkage estimation.

5. slda t with function slda from the ipred package, which develops LDA based on
left-spherically distributed linear scores (Glimm et al., 1998).

6. stepLDA t uses the function train in the caret package as interface to the function
stepclass in the klaR package with method=lda. It develops classification by means of
forward/backward feature selection, without upper bounds in the number of features.

7. sddaLDA R, stepwise diagonal discriminant analysis, with function sdda in the SDDA
package with method=lda. It creates a diagonal discriminant rule adding one input
at a time using a forward stepwise strategy and LDA.

8. PenalizedLDA t from the penalizedLDA package: it solves the high-dimensional
discriminant problem using a diagonal covariance matrix and penalizing the discrimi-
nant vectors with lasso or fussed coefficients (Witten and Tibshirani, 2011). The lasso
penalty parameter (lambda) is tuned with values {0.1, 0.0031, 10−4}.

9. sparseLDA R, with function sda in the sparseLDA package, minimizing the SDA
criterion using an alternating method (Clemensen et al., 2011). The parameter
lambda is tuned with values 0,{10i}4−1. The number of components is tuned from
2 to #classes− 1.

10. qda t, quadratic discriminant analysis (Venables and Ripley, 2002), with function
qda in the MASS package.

11. QdaCov t in the rrcov package, which develops Robust QDA (Todorov and Filz-
moser, 2009).

12. sddaQDA R uses the function sdda in the SDDA package with method=qda.

13. stepQDA t uses function stepclass in the klaR package with method=qda, forward
/ backward variable selection (parameter direction=both) and without limit in the
number of selected variables (maxvar=Inf).
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14. fda R, flexible discriminant analysis (Hastie et al., 1993), with function fda in the
mda package and the default linear regression method.

15. fda t is the same FDA, also with linear regression but tuning the parameter nprune
with values 2:3:15 (5 values).

16. mda R, mixture discriminant analysis (Hastie and Tibshirani, 1996), with function
mda in the mda package.

17. mda t uses the caret package as interface to function mda, tuning the parameter
subclasses between 2 and 11.

18. pda t, penalized discriminant analysis, uses the function gen.rigde in the mda package,
which develops PDA tuning the shrinkage penalty coefficient lambda with values from
1 to 10.

19. rda R, regularized discriminant analysis (Friedman, 1989), uses the function rda in
the klaR package. This method uses regularized group covariance matrix to avoid
the problems in LDA derived from collinearity in the data. The parameters lambda
and gamma (used in the calculation of the robust covariance matrices) are tuned with
values 0:0.25:1.

20. hdda R, high-dimensional discriminant analysis (Bergé et al., 2012), assumes that
each class lives in a different Gaussian subspace much smaller than the input space,
calculating the subspace parameters in order to classify the test patterns. It uses the
hdda function in the HDclassif package, selecting the best of the 14 available models.

Bayesian (BY) approaches: 6 classifiers.

21. naiveBayes R uses the function NaiveBayes in R the klaR package, with Gaussian
kernel, bandwidth 1 and Laplace correction 2.

22. vbmpRadial t, variational Bayesian multinomial probit regression with Gaussian
process priors (Girolami and Rogers, 2006), uses the function vbmp from the vbmp

package, which fits a multinomial probit regression model with radial basis function
kernel and covariance parameters estimated from the training patterns.

23. NaiveBayes w (John and Langley, 1995) uses estimator precision values chosen from
the analysis of the training data.

24. NaiveBayesUpdateable w uses estimator precision values updated iteratively using
the training patterns and starting from the scratch.

25. BayesNet w is an ensemble of Bayes classifiers. It uses the K2 search method, which
develops hill climbing restricted by the input order, using one parent and scores of
type Bayes. It also uses the simpleEstimator method, which uses the training patterns
to estimate the conditional probability tables in a Bayesian network once it has been
learnt, which α = 0.5 (initial count).

26. NaiveBayesSimple w is a simple naive Bayes classifier (Duda et al., 2001) which
uses a normal distribution to model numeric features.
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Neural networks (NNET): 21 classifiers.

27. rbf m, radial basis functions (RBF) neural network, uses the function newrb in the
Matlab Neural Network Toolbox, tuning the spread of the Gaussian basis function
with 19 values between 0.1 and 70. The network is created empty and new hidden
neurons are added incrementally.

28. rbf t uses caret as interface to the RSNNS package, tuning the size of the RBF network
(number of hidden neurons) with values in the range 11:2:29.

29. RBFNetwork w uses K-means to select the RBF centers and linear regression to
learn the classification function, with symmetric multivariate Gaussians and normal-
ized inputs. We use a number of clusters (or hidden neurons) equal to half the training
patterns, ridge=10−8 for the linear regression and Gaussian minimum spread 0.1.

30. rbfDDA t (Berthold and Diamond, 1995) creates incrementally from the scratch a
RBF network with dynamic decay adjustment (DDA), using the RSNNS package and
tuning the negativeThreshold parameter with values {10−i}10

1 . The network grows
incrementally adding new hidden neurons, avoiding the tuning of the network size.

31. mlp m: multi-layer perceptron (MLP) implemented in Matlab (function newpr) tun-
ing the number of hidden neurons with 11 values from 3 to 30.

32. mlp C: MLP implemented in C using the fast artificial neural network (FANN) li-
brary8, tuning the training algorithm (resilient, batch and incremental backpropaga-
tion, and quickprop), and the number of hidden neurons with 11 values between 3
and 30.

33. mlp t uses the function mlp in the RSNNS package, tuning the network size with values
1:2:19.

34. avNNet t, from the caret package, creates a committee of 5 MLPs (the number of
MLPs is given by parameter repeat) trained with different random weight initializa-
tions and bag=false. The tunable parameters are the #hidden neurons (size) in {1, 3,
5} and the weight decay (values {0, 0.1, 10−4}). This low number of hidden neurons
is to reduce the computational cost of the ensemble.

35. mlpWeightDecay t uses caret to access the RSNNS package tuning the parameters
size and weight decay of the MLP network with values 1:2:9 and {0, 0.1, 0.01, 0.001,
0.0001} respectively.

36. nnet t uses caret as interface to function nnet in the nnet package, training a MLP
network with the same parameter tuning as in mlpWeightDecay t.

37. pcaNNet t trains the MLP using caret and the nnet package, but running principal
component analysis (PCA) previously on the data set.

8. See http://leenissen.dk/fann/wp.
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38. MultilayerPerceptron w is a MLP network with sigmoid hidden neurons, unthresh-
olded linear output neurons, learning rate 0.3, momentum 0.2, 500 training epochs,
and #hidden neurons equal (#inputs and #classes)/2.

39. pnn m: probabilistic neural network (Specht, 1990) in Matlab (function newpnn),
tuning the Gaussian spread with 19 values in the range 0.01-10.

40. elm m, extreme learning machine (Huang et al., 2012) implemented in Matlab using
the code freely available9. We try 6 activation functions (sine, sign, sigmoid, hardlimit,
triangular basis and radial basis) and 20 values for #hidden neurons between 3 and
200. As recommended, the inputs are scaled between [-1,1].

41. elm kernel m is the ELM with Gaussian kernel, which uses the code available from
the previous site, tuning the regularization parameter and the kernel spread with
values 2−5..214 and 2−16..28 respectively.

42. cascor C, cascade correlation neural network (Fahlman, 1988) implemented in C
using the FANN library (see classifier #32).

43. lvq R is the learning vector quantization (Ripley, 1996) implemented using the func-
tion lvq in the class package, with codebook of size 50, and k=5 nearest neighbors.
We selected the best results achieved using the functions lvq1, olvq2, lvq2 and lvq3.

44. lvq t uses caret as interface to function lvq1 in the class package tuning the pa-
rameters size and k (the values are specific for each data set).

45. bdk R, bi-directional Kohonen map (Melssen et al., 2006), with function bdk in the
kohonen package, a kind of supervised Self Organized Map for classification, which
maps high-dimensional patterns to 2D.

46. dkp C (direct kernel perceptron) is a very simple and fast kernel-based classifier
proposed by us (Fernández-Delgado et al., 2014) which achieves competitive results
compared to SVM. The DKP requires the tuning of the kernel spread in the same
range 2−16..28 as the SVM.

47. dpp C (direct parallel perceptron) is a small and efficient Parallel Perceptron net-
work proposed by us (Fernández-Delgado et al., 2011), based in the parallel-delta
rule (Auer et al., 2008) with n = 3 perceptrons. The codes for DKP and DPP are
freely available10.

Support vector machines (SVM): 10 classifiers.

48. svm C is the support vector machine, implemented in C using LibSVM (Chang and
Lin, 2008) with Gaussian kernel. The regularization parameter C and kernel spread
gamma are tuned in the ranges 2−5..214 and 2−16..28 respectively. LibSVM uses the
one-vs.-one approach for multi-class data sets.

9. See http://www.extreme-learning-machines.org.
10. See http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr.
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49. svmlight C (Joachims, 1999) is a very popular implementation of the SVM in C. It
can only be used from the command-line and not as a library, so we could not use
it so efficiently as LibSVM, and this fact leads us to errors for some large data sets
(which are not taken into account in the calculation of the average accuracy). The
parameters C and gamma (spread of the Gaussian kernel) are tuned with the same
values as svm C.

50. LibSVM w uses the library LibSVM (Chang and Lin, 2008), calls from Weka for
classification with Gaussian kernel, using the values of C and gamma selected for
svm C and tolerance=0.001.

51. LibLINEAR w uses the library LibLinear (Fan et al., 2008) for large-scale linear
high-dimensional classification, with L2-loss (dual) solver and parameters C=1, toler-
ance=0.01 and bias=1.

52. svmRadial t is the SVM with Gaussian kernel (in the kernlab package), tuning C
and kernel spread with values 2−2..22 and 10−2..102 respectively.

53. svmRadialCost t (kernlab package) only tunes the cost C, while the spread of the
Gaussian kernel is calculated automatically.

54. svmLinear t uses the function ksvm (kernlab package) with linear kernel tuning C
in the range 2−2..27.

55. svmPoly t uses the kernlab package with linear, quadratic and cubic kernels (sxTy+
o)d, using scale s = {0.001, 0.01, 0.1}, offset o = 1, degree d = {1, 2, 3} and C =
{0.25, 0.5, 1}.

56. lssvmRadial t implements the least squares SVM (Suykens and Vandewalle, 1999),
using the function lssvm in the kernlab package, with Gaussian kernel tuning the
kernel spread with values 10−2..107.

57. SMO w is a SVM trained using sequential minimal optimization (Platt, 1998) with
one-against-one approach for multi-class classification, C=1, tolerance L=0.001, round-
off error 10−12, data normalization and quadratic kernel.

Decision trees (DT): 14 classifiers.

58. rpart R uses the function rpart in the rpart package, which develops recursive par-
titioning (Breiman et al., 1984).

59. rpart t uses the same function tuning the complexity parameter (threshold on the
accuracy increasing achieved by a tentative split in order to be accepted) with 10
values from 0.18 to 0.01.

60. rpart2 t uses the function rpart tuning the tree depth with values up to 10.

61. obliqueTree R uses the function obliqueTree in the oblique.tree package (Truong,
2009), with binary recursive partitioning, only oblique splits and linear combinations
of the inputs.
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62. C5.0Tree t creates a single C5.0 decision tree (Quinlan, 1993) using the function
C5.0 in the homonymous package without parameter tuning.

63. ctree t uses the function ctree in the party package, which creates conditional infer-
ence trees by recursively making binary splittings on the variables with the highest as-
sociation to the class (measured by a statistical test). The threshold in the association
measure is given by the parameter mincriterion, tuned with the values 0.1:0.11:0.99
(10 values).

64. ctree2 t uses the function ctree tuning the maximum tree depth with values up to
10.

65. J48 w is a pruned C4.5 decision tree (Quinlan, 1993) with pruning confidence thresh-
old C=0.25 and at least 2 training patterns per leaf.

66. J48 t uses the function J48 in the RWeka package, which learns pruned or unpruned
C5.0 trees with C=0.25.

67. RandomSubSpace w (Ho, 1998) trains multiple REPTrees classifiers selecting ran-
domly subsets of inputs (random subspaces). Each REPTree is learnt using informa-
tion gain/variance and error-based pruning with backfitting. Each subspace includes
the 50% of the inputs. The minimum variance for splitting is 10−3, with at least 2
pattern per leaf.

68. NBTree w (Kohavi, 1996) is a decision tree with naive Bayes classifiers at the leafs.

69. RandomTree w is a non-pruned tree where each leaf tests blog2(#inputs+ 1)c ran-
domly chosen inputs, with at least 2 instances per leaf, unlimited tree depth, without
backfitting and allowing unclassified patterns.

70. REPTree w learns a pruned decision tree using information gain and reduced error
pruning (REP). It uses at least 2 training patterns per leaf, 3 folds for reduced error
pruning and unbounded tree depth. A split is executed when the class variance is
more than 0.001 times the train variance.

71. DecisionStump w is a one-node decision tree which develops classification or re-
gression based on just one input using entropy.

Rule-based methods (RL): 12 classifiers.

72. PART w builds a pruned partial C4.5 decision tree (Frank and Witten, 1999) in each
iteration, converting the best leaf into a rule. It uses at least 2 objects per leaf, 3-fold
REP (see classifier #70) and C=0.5.

73. PART t uses the function PART in the RWeka package, which learns a pruned PART
with C=0.25.

74. C5.0Rules t uses the same function C5.0 (in the C50 package) as classifiers C5.0Tree t,
but creating a collection of rules instead of a classification tree.
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75. JRip t uses the function JRip in the RWeka package, which learns a “repeated in-
cremental pruning to produce error reduction” (RIPPER) classifier (Cohen, 1995),
tuning the number of optimization runs (numOpt) from 1 to 5.

76. JRip w learns a RIPPER classifier with 2 optimization runs and minimal weights of
instances equal to 2.

77. OneR t (Holte, 1993) uses function OneR in the RWeka package, which classifies using
1-rules applied on the input with the lowest error.

78. OneR w creates a OneR classifier in Weka with at least 6 objects in a bucket.

79. DTNB w learns a decision table/naive-Bayes hybrid classifier (Hall and Frank, 2008),
using simultaneously both decision table and naive Bayes classifiers.

80. Ridor w implements the ripple-down rule learner (Gaines and Compton, 1995) with
at least 2 instance weights.

81. ZeroR w predicts the mean class (i.e., the most populated class in the training data)
for all the test patterns. Obviously, this classifier gives low accuracies, but it serves
to give a lower limit on the accuracy.

82. DecisionTable w (Kohavi, 1995) is a simple decision table majority classifier which
uses BestFirst as search method.

83. ConjunctiveRule w uses a single rule whose antecendent is the AND of several
antecedents, and whose consequent is the distribution of available classes. It uses
the antecedent information gain to classify each test pattern, and 3-fold REP (see
classifier #70) to remove unnecessary rule antecedents.

Boosting (BST): 20 classifiers.

84. adaboost R uses the function boosting in the adabag package (Alfaro et al., 2007),
which implements the adaboost.M1 method (Freund and Schapire, 1996) to create an
adaboost ensemble of classification trees.

85. logitboost R is an ensemble of DecisionStump base classifiers (see classifier #71),
using the function LogitBoost (Friedman et al., 1998) in the caTools package with
200 iterations.

86. LogitBoost w uses additive logistic regressors (DecisionStump) base learners, the
100% of weight mass to base training on, without cross-validation, one run for internal
cross-validation, threshold 1.79 on likelihood improvement, shrinkage parameter 1,
and 10 iterations.

87. RacedIncrementalLogitBoost w is a raced Logitboost committee (Frank et al.,
2002) with incremental learning and DecisionStump base classifiers, chunks of size
between 500 and 2000, validation set of size 1000 and log-likelihood pruning.

88. AdaBoostM1 DecisionStump w implements the same Adaboost.M1 method with
DecisionStump base classifiers.
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89. AdaBoostM1 J48 w is an Adaboost.M1 ensemble which combines J48 base classi-
fiers.

90. C5.0 t creates a Boosting ensemble of C5.0 decision trees and rule models (func-
tion C5.0 in the hononymous package), with and without winnow (feature selection),
tuning the number of boosting trials in {1, 10, 20}.

91. MultiBoostAB DecisionStump w (Webb, 2000) is a MultiBoost ensemble, which
combines Adaboost and Wagging using DecisionStump base classifiers, 3 sub-committees,
10 training iterations and 100% of the weight mass to base training on. The same
options are used in the following MultiBoostAB ensembles.

92. MultiBoostAB DecisionTable w combines MultiBoost and DecisionTable, both
with the same options as above.

93. MultiBoostAB IBk w uses MultiBoostAB with IBk base classifiers (see classifier
#157).

94. MultiBoostAB J48 w trains an ensemble of J48 decision trees, using pruning con-
fidence C=0.25 and 2 training patterns per leaf.

95. MultiBoostAB LibSVM w uses LibSVM base classifiers with the optimal C and
Gaussian kernel spread selected by the svm C classifier (see classifier #48). We in-
cluded it for comparison with previous papers (Vanschoren et al., 2012), although a
strong classifier as LibSVM is in principle not recommended to use as base classifier.

96. MultiBoostAB Logistic w combines Logistic base classifiers (see classifier #86).

97. MultiBoostAB MultilayerPerceptron w uses MLP base classifiers with the same
options as MultilayerPerceptron w (which is another strong classifier).

98. MultiBoostAB NaiveBayes w uses NaiveBayes base classifiers.

99. MultiBoostAB OneR w uses OneR base classifiers.

100. MultiBoostAB PART w combines PART base classifiers.

101. MultiBoostAB RandomForest w combines RandomForest base classifiers. We
tried this classifier for comparison with previous papers (Vanschoren et al., 2012),
despite of RandomForest is itself an ensemble, so it seems not very useful to learn a
MultiBoostAB ensemble of RandomForest ensembles.

102. MultiBoostAB RandomTree w uses RandomTrees with the same options as above.

103. MultiBoostAB REPTree w uses REPTree base classifiers.

Bagging (BAG): 24 classifiers.

104. bagging R is a bagging (Breiman, 1996) ensemble of decision trees using the function
bagging (in the ipred package).
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105. treebag t trains a bagging ensemble of classification trees using the caret interface
to function bagging in the ipred package.

106. ldaBag R creates a bagging ensemble of LDAs, using the function bag of the caret

package (instead of the function train) with option bagControl=ldaBag.

107. plsBag R is the previous one with bagControl=plsBag.

108. nbBag R creates a bagging of naive Bayes classifiers using the previous bag function
with bagControl=nbBag.

109. ctreeBag R uses the same function bag with bagControl=ctreeBag (conditional in-
ference tree base classifiers).

110. svmBag R trains a bagging of SVMs, with bagControl=svmBag.

111. nnetBag R learns a bagging of MLPs with bagControl=nnetBag.

112. MetaCost w (Domingos, 1999) is based on bagging but using cost-sensitive ZeroR
base classifiers and bags of the same size as the training set (the following bagging
ensembles use the same configuration). The diagonal of the cost matrix is null and
the remaining elements are one, so that each type of error is equally weighted.

113. Bagging DecisionStump w uses DecisionStump base classifiers with 10 bagging
iterations.

114. Bagging DecisionTable w uses DecisionTable with BestFirst and forward search,
leave-one-out validation and accuracy maximization for the input selection.

115. Bagging HyperPipes w with HyperPipes base classifiers.

116. Bagging IBk w uses IBk base classifiers, which develop KNN classification tuning
K using cross-validation with linear neighbor search and Euclidean distance.

117. Bagging J48 w with J48 base classifiers.

118. Bagging LibSVM w, with Gaussian kernel for LibSVM and the same options as
the single LibSVM w classifier.

119. Bagging Logistic w, with unlimited iterations and log-likelihood ridge 10−8 in the
Logistic base classifier.

120. Bagging LWL w uses LocallyWeightedLearning base classifiers (see classifier #148)
with linear weighted kernel shape and DecisionStump base classifiers.

121. Bagging MultilayerPerceptron w with the same configuration as the single Mul-
tilayerPerceptron w.

122. Bagging NaiveBayes w with NaiveBayes classifiers.

123. Bagging OneR w uses OneR base classifiers with at least 6 objects per bucket.
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124. Bagging PART w with at least 2 training patterns per leaf and pruning confidence
C=0.25.

125. Bagging RandomForest w with forests of 500 trees, unlimited tree depth and
blog(#inputs+ 1)c inputs.

126. Bagging RandomTree w with RandomTree base classifiers without backfitting, in-
vestigating blog2(#inputs)+1c random inputs, with unlimited tree depth and 2 train-
ing patterns per leaf.

127. Bagging REPTree w use REPTree with 2 patterns per leaf, minimum class variance
0.001, 3-fold for reduced error pruning and unlimited tree depth.

Stacking (STC): 2 classifiers.

128. Stacking w is a stacking ensemble (Wolpert, 1992) using ZeroR as meta and base
classifiers.

129. StackingC w implements a more efficient stacking ensemble following (Seewald,
2002), with linear regression as meta-classifier.

Random Forests (RF): 8 classifiers.

130. rforest R creates a random forest (Breiman, 2001) ensemble, using the R function
randomForest in the randomForest package, with parameters ntree = 500 (number
of trees in the forest) and mtry=

√
#inputs.

131. rf t creates a random forest using the caret interface to the function randomForest
in the randomForest package, with ntree = 500 and tuning the parameter mtry with
values 2:3:29.

132. RRF t learns a regularized random forest (Deng and Runger, 2012) using caret as
interface to the function RRF in the RRF package, with mtry=2 and tuning parameters
coefReg={0.01, 0.5, 1} and coefImp={0, 0.5, 1}.

133. cforest t is a random forest and bagging ensemble of conditional inference trees
(ctrees) aggregated by averaging observation weights extracted from each ctree. The
parameter mtry takes the values 2:2:8. It uses the caret package to access the party

package.

134. parRF t uses a parallel implementation of random forest using the randomForest

package with mtry=2:2:8.

135. RRFglobal t creates a RRF using the hononymous package with parameters mtry=2
and coefReg=0.01:0.12:1.

136. RandomForest w implements a forest of RandomTree base classifiers with 500 trees,
using blog(#inputs+ 1)c inputs and unlimited depth trees.
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137. RotationForest w (Rodŕıguez et al., 2006) uses J48 as base classifier, principal com-
ponent analysis filter, groups of 3 inputs, pruning confidence C=0.25 and 2 patterns
per leaf.

Other ensembles (OEN): 11 classifiers.

138. RandomCommittee w is an ensemble of RandomTrees (each one built using a
different seed) whose output is the average of the base classifier outputs.

139. OrdinalClassClassifier w is an ensemble method designed for ordinal classification
problems (Frank and Hall, 2001) with J48 base classifiers, confidence threshold C=0.25
and 2 training patterns per leaf.

140. MultiScheme w selects a classifier among several ZeroR classifiers using cross vali-
dation on the training set.

141. MultiClassClassifier w solves multi-class problems with two-class Logistic w base
classifiers, combined with the One-Against-All approach, using multinomial logistic
regression.

142. CostSensitiveClassifier w combines ZeroR base classifiers on a training set where
each pattern is weighted depending on the cost assigned to each error type. Similarly
to MetaCost w (see classifier #112), all the error types are equally weighted.

143. Grading w is Grading ensemble (Seewald and Fuernkranz, 2001) with “graded” Ze-
roR base classifiers.

144. END w is an Ensemble of Nested Dichotomies (Frank and Kramer, 2004) which
classifies multi-class data sets with two-class J48 tree classifiers.

145. Decorate w learns an ensemble of fifteen J48 tree classifiers with high diversity
trained with specially constructed artificial training patterns (Melville and Mooney,
2004).

146. Vote w (Kittler et al., 1998) trains an ensemble of ZeroR base classifiers combined
using the average rule.

147. Dagging w (Ting and Witten, 1997) is an ensemble of SMO w (see classifier #57),
with the same configuration as the single SMO classifier, trained on 4 different folds
of the training data. The output is decided using the previous Vote w meta-classifier.

148. LWL w, Local Weighted Learning (Frank et al., 2003), is an ensemble of Decision-
Stump base classifiers. Each training pattern is weighted with a linear weighting
kernel, using the Euclidean distance for a linear search of the nearest neighbor.

Generalized Linear Models (GLM): 5 classifiers.

149. glm R (Dobson, 1990) uses the function glm in the stats package, with binomial
and Poisson families for two-class and multi-class problems respectively.
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150. glmnet R trains a GLM via penalized maximum likelihood, with Lasso or elasticnet
regularization parameter (Friedman et al., 2010) (function glmnet in the glmnet pack-
age). We use the binomial and multinomial distribution for two-class and multi-class
problems respectively.

151. mlm R (Multi-Log Linear Model) uses the function multinom in the nnet package,
fitting the multi-log model with MLP neural networks.

152. bayesglm t, Bayesian GLM (Gelman et al., 2009), with function bayesglm in the arm
package. It creates a GLM using Bayesian functions, an approximated expectation-
maximization method, and augmented regression to represent the prior probabilities.

153. glmStepAIC t performs model selection by Akaike information criterion (Venables
and Ripley, 2002) using the function stepAIC in the MASS package.

Nearest neighbor methods (NN): 5 classifiers.

154. knn R uses the function knn in the class package, tuning the number of neighbors
with values 1:2:37 (13 values).

155. knn t uses function knn in the caret package with 10 number of neighbors in the
range 5:2:23.

156. NNge w is a NN classifier with non-nested generalized exemplars (Martin, 1995), us-
ing one folder for mutual information computation and 5 attempts for generalization.

157. IBk w (Aha et al., 1991) is a KNN classifier which tunes K using cross-validation
with linear neighbor search and Euclidean distance.

158. IB1 w is a simple 1-NN classifier.

Partial least squares and principal component regression (PLSR): 6
classifiers.

159. pls t uses the function mvr in the pls package to fit a PLSR (Martens, 1989) model
tuning the number of components from 1 to 10.

160. gpls R trains a generalized PLS (Ding and Gentleman, 2005) model using the function
gpls in the gpls package.

161. spls R uses the function spls in the spls package to fit a sparse partial least squares
(Chun and Keles, 2010) regression model tuning the parameters K and eta with values
{1, 2, 3} and {0.1, 0.5, 0.9} respectively.

162. simpls R fits a PLSR model using the SIMPLS (Jong, 1993) method, with the func-
tion plsr (in the pls package) and method=simpls.

163. kernelpls R (Dayal and MacGregor, 1997) uses the same function plsr with method
= kernelpls, with up to 8 principal components (always lower than #inputs−1). This
method is faster when #patterns is much larger than #inputs.
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164. widekernelpls R fits a PLSR model with the function plsr and method = wideker-
nelpls, faster when #inputs is larger than #patterns.

Logistic and multinomial regression (LMR): 3 classifiers.

165. SimpleLogistic w learns linear logistic regression models (Landwehr et al., 2005) for
classification. The logistic models are fitted using LogitBoost with simple regression
functions as base classifiers.

166. Logistic w learns a multinomial logistic regression model (Cessie and Houwelingen,
1992) with a ridge estimator, using ridge in the log-likelihood R=10−8.

167. multinom t uses the function multinom in the nnet package, which trains a MLP
to learn a multinomial log-linear model. The parameter decay of the MLP is tuned
with 10 values between 0 and 0.1.

Multivariate adaptive regression splines (MARS): 2 classifiers.

168. mars R fits a MARS (Friedman, 1991) model using the function mars in the mda

package.

169. gcvEarth t uses the function earth in the earth package. It builds an additive MARS
model without interaction terms using the fast MARS (Hastie et al., 2009) method.

Other Methods (OM): 10 classifiers.

170. pam t (nearest shrunken centroids) uses the function pamr in the pamr package (Tib-
shirani et al., 2002).

171. VFI w develops classification by voting feature intervals (Demiroz and Guvenir,
1997), with B=0.6 (exponential bias towards confident intervals).

172. HyperPipes w classifies each test pattern to the class which most contains the pat-
tern. Each class is defined by the bounds of each input in the patterns which belong
to that class.

173. FilteredClassifier w trains a J48 tree classifier on data filtered using the Discretize
filter, which discretizes numerical into nominal attributes.

174. CVParameterSelection w (Kohavi, 1995) selects the best parameters of classifier
ZeroR using 10-fold cross-validation.

175. ClassificationViaClustering w uses SimpleKmeans and EuclideanDistance to clus-
ter the data. Following the Weka documentation, the number of clusters is set to
#classes.

176. AttributeSelectedClassifier w uses J48 trees to classify patterns reduced by at-
tribute selection. The CfsSubsetEval method (Hall, 1998) selects the best group of
attributes weighting their individual predictive ability and their degree of redundancy,
preferring groups with high correlation within classes and low inter-class correlation.
The BestFirst forward search method is used, stopping the search when five non-
improving nodes are found.
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177. ClassificationViaRegression w (Frank et al., 1998) binarizes each class and learns
its corresponding M5P tree/rule regression model (Quinlan, 1992), with at least 4
training patterns per leaf.

178. KStar w (Cleary and Trigg, 1995) is an instance-based classifier which uses entropy-
based similarity to assign a test pattern to the class of its nearest training patterns.

179. gaussprRadial t uses the function gausspr in the kernlab package, which trains a
Gaussian process-based classifier, with kernel= rbfdot and kernel spread (parameter
sigma) tuned with values {10i}7−2.

3. Results and Discussion

In the experimental work we evaluate 179 classifiers over 121 data sets, giving 21,659 com-
binations classifier-data set. We use Weka v. 3.6.8, R v. 2.15.3 with caret v. 5.16-04,
Matlab v. 7.9.0 (R2009b) with Neural Network Toolbox v. 6.0.3, the C/C++ compiler v.
gcc/g++ 4.7.2 and fast artificial neural networks (FANN) library v. 2.2.0 on a computer
with Debian GNU/Linux v. 3.2.46-1 (64 bits). We found errors with some classifiers and
data sets caused by a variety of reasons. Some classifiers (lda R, qda t, QdaCov t, among
others) give errors in some data sets due to collinearity of data, singular covariance matrices,
and equal inputs for all the training patterns in some classes; rrlda R requires that all the
inputs must have different values in more than 50% of the training patterns; other errors
are caused by discrete inputs, classes with low populations (specially in data sets with many
classes), or too few classes (vbmpRadial requires 3 classes). Large data sets (miniboone and
connect-4) give some lack of memory errors, and few small data sets (trains and balloons)
give errors for some Weka classifiers requiring a minimum #patterns per class. Overall, we
found 449 errors, which represent 2.1% of the 21,659 cases. These error cases are excluded
from the average accuracy calculation for each classifier.

The validation methodology is the following. One training and one test set are generated
randomly (each with 50% of the available patterns), but imposing that each class has the
same number of training and test patterns (in order to have enough training and test
patterns of every class). This couple of sets is used only for parameter tuning (in those
classifiers which have tunable parameters), selecting the parameter values which provide
the best accuracy on the test set. The indexes of the training and test patterns (i.e., the
data partitioning) are given by the file conxuntos.dat for each data set, and are the same
for all the classifiers. Then, using the selected values for the tunable parameters, a 4-fold
cross validation is developed using the whole available data. The indexes of the training
and test patterns for each fold are the same for all the classifiers, and they are listed in
the file conxuntos kfold.dat for each data set. The test results is the average over the 4
test sets. However, for some data sets, which provide separate data for training and
testing (data sets annealing and audiology-std, among others), the classifier (with the
tuned parameter values) is trained and tested on the respective data sets. In this case,
the test result is calculated on the test set. We used this methodology in order to keep
low the computational cost of the experimental work. However, we are aware of that this
methodology may lead to poor bias and variance, and that the classifier results for each data
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Rank Acc. κ Classifier Rank Acc. κ Classifier

32.9 82.0 63.5 parRF t (RF) 67.3 77.7 55.6 pda t (DA)

33.1 82.3 63.6 rf t (RF) 67.6 78.7 55.2 elm m (NNET)

36.8 81.8 62.2 svm C (SVM) 67.6 77.8 54.2 SimpleLogistic w (LMR)

38.0 81.2 60.1 svmPoly t (SVM) 69.2 78.3 57.4 MAB J48 w (BST)

39.4 81.9 62.5 rforest R (RF) 69.8 78.8 56.7 BG REPTree w (BAG)

39.6 82.0 62.0 elm kernel m (NNET) 69.8 78.1 55.4 SMO w (SVM)

40.3 81.4 61.1 svmRadialCost t (SVM) 70.6 78.3 58.0 MLP w (NNET)

42.5 81.0 60.0 svmRadial t (SVM) 71.0 78.8 58.23 BG RandomTree w (BAG)

42.9 80.6 61.0 C5.0 t (BST) 71.0 77.1 55.1 mlm R (GLM)

44.1 79.4 60.5 avNNet t (NNET) 71.0 77.8 56.2 BG J48 w (BAG)

45.5 79.5 61.0 nnet t (NNET) 72.0 75.7 52.6 rbf t (NNET)

47.0 78.7 59.4 pcaNNet t (NNET) 72.1 77.1 54.8 fda R (DA)

47.1 80.8 53.0 BG LibSVM w (BAG) 72.4 77.0 54.7 lda R (DA)

47.3 80.3 62.0 mlp t (NNET) 72.4 79.1 55.6 svmlight C (NNET)

47.6 80.6 60.0 RotationForest w (RF) 72.6 78.4 57.9 AdaBoostM1 J48 w (BST)

50.1 80.9 61.6 RRF t (RF) 72.7 78.4 56.2 BG IBk w (BAG)

51.6 80.7 61.4 RRFglobal t (RF) 72.9 77.1 54.6 ldaBag R (BAG)

52.5 80.6 58.0 MAB LibSVM w (BST) 73.2 78.3 56.2 BG LWL w (BAG)

52.6 79.9 56.9 LibSVM w (SVM) 73.7 77.9 56.0 MAB REPTree w (BST)

57.6 79.1 59.3 adaboost R (BST) 74.0 77.4 52.6 RandomSubSpace w (DT)

58.5 79.7 57.2 pnn m (NNET) 74.4 76.9 54.2 lda2 t (DA)

58.9 78.5 54.7 cforest t (RF) 74.6 74.1 51.8 svmBag R (BAG)

59.9 79.7 42.6 dkp C (NNET) 74.6 77.5 55.2 LibLINEAR w (SVM)

60.4 80.1 55.8 gaussprRadial R (OM) 75.9 77.2 55.6 rbfDDA t (NNET)

60.5 80.0 57.4 RandomForest w (RF) 76.5 76.9 53.8 sda t (DA)

62.1 78.7 56.0 svmLinear t (SVM) 76.6 78.1 56.5 END w (OEN)

62.5 78.4 57.5 fda t (DA) 76.6 77.3 54.8 LogitBoost w (BST)

62.6 78.6 56.0 knn t (NN) 76.6 78.2 57.3 MAB RandomTree w (BST)

62.8 78.5 58.1 mlp C (NNET) 77.1 78.4 54.0 BG RandomForest w (BAG)

63.0 79.9 59.4 RandomCommittee w (OEN) 78.5 76.5 53.7 Logistic w (LMR)

63.4 78.7 58.4 Decorate w (OEN) 78.7 76.6 50.5 ctreeBag R (BAG)

63.6 76.9 56.0 mlpWeightDecay t (NNET) 79.0 76.8 53.5 BG Logistic w (BAG)

63.8 78.7 56.7 rda R (DA) 79.1 77.4 53.0 lvq t (NNET)

64.0 79.0 58.6 MAB MLP w (BST) 79.1 74.4 50.7 pls t (PLSR)

64.1 79.9 56.9 MAB RandomForest w (BST) 79.8 76.9 54.7 hdda R (DA)

65.0 79.0 56.8 knn R (NN) 80.6 75.9 53.3 MCC w (OEN)

65.2 77.9 56.2 multinom t (LMR) 80.9 76.9 54.5 mda R (DA)

65.5 77.4 56.6 gcvEarth t (MARS) 81.4 76.7 55.2 C5.0Rules t (RL)

65.5 77.8 55.7 glmnet R (GLM) 81.6 78.3 55.8 lssvmRadial t (SVM)

65.6 78.6 58.4 MAB PART w (BST) 81.7 75.6 50.9 JRip t (RL)

66.0 78.5 56.5 CVR w (OM) 82.0 76.1 53.3 MAB Logistic w (BST)

66.4 79.2 58.9 treebag t (BAG) 84.2 75.8 53.9 C5.0Tree t (DT)

66.6 78.2 56.8 BG PART w (BAG) 84.6 75.7 50.8 BG DecisionTable w (BAG)

66.7 75.5 55.2 mda t (DA) 84.9 76.5 53.4 NBTree w (DT)

Table 3: Friedman ranking, average accuracy and Cohen κ (both in %) for each classifier,
ordered by increasing Friedman ranking. Continued in the Table 4. BG = Bagging,
MAB=MultiBoostAB.
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Rank Acc. κ Classifier Rank Acc. κ Classifier

86.4 76.3 52.6 ASC w (OM) 110.4 71.6 46.5 BG NaiveBayes w (BAG)
87.2 77.1 54.2 KStar w (OM) 111.3 62.5 38.4 widekernelpls R (PLSR)
87.2 74.6 50.3 MAB DecisionTable w (BST) 111.9 63.3 43.7 mars R (MARS)
87.6 76.4 51.3 J48 t (DT) 111.9 62.2 39.6 simpls R (PLSR)
87.9 76.2 55.0 J48 w (DT) 112.6 70.1 38.0 sddaLDA R (DA)
88.0 76.0 51.7 PART t (DT) 113.1 61.0 38.2 kernelpls R (PLSR)
89.0 76.1 52.4 DTNB w (RL) 113.3 68.2 39.5 sparseLDA R (DA)
89.5 75.8 54.8 PART w (DT) 113.5 70.1 46.5 NBUpdateable w (BY)
90.2 76.6 48.5 RBFNetwork w (NNET) 113.5 70.7 39.9 stepLDA t (DA)
90.5 67.5 45.8 bagging R (BAG) 114.8 58.1 32.4 bayesglm t (GLM)
91.2 74.0 50.9 rpart t (DT) 115.8 70.6 46.4 QdaCov t (DA)
91.5 74.0 48.9 ctree t (DT) 116.0 69.5 39.6 stepQDA t (DA)
91.7 76.6 54.1 NNge w (NN) 118.3 67.5 34.3 sddaQDA R (DA)
92.4 72.8 48.5 ctree2 t (DT) 118.9 72.0 45.9 NaiveBayesSimple w (BY)
93.0 74.7 50.1 FilteredClassifier w (OM) 120.1 55.3 33.3 gpls R (PLSR)
93.1 74.8 51.4 JRip w (RL) 120.8 57.6 32.5 glmStepAIC t (GLM)
93.6 75.3 51.1 REPTree w (DT) 122.2 63.5 35.1 AdaBoostM1 w (BST)
93.6 74.7 52.3 rpart2 t (DT) 122.7 68.3 39.4 LWL w (OEN)
94.3 75.1 50.7 BayesNet w (BY) 126.1 50.8 30.5 glm R (GLM)
94.4 73.5 49.5 rpart R (DT) 126.2 65.7 44.7 dpp C (NNET)
94.5 76.4 54.5 IB1 w (NN) 129.6 62.3 31.8 MAB w (BST)
94.6 76.5 51.6 Ridor w (RL) 130.9 64.2 33.2 BG OneR w (BAG)
95.1 71.8 48.7 lvq R (NNET) 130.9 62.1 29.6 MAB IBk w (BST)
95.3 76.0 53.9 IBk w (NN) 132.1 63.3 36.2 OneR t (RL)
95.3 73.9 45.8 Dagging w (OEN) 133.2 64.2 34.3 MAB OneR w (BST)
96.0 74.4 50.7 qda t (DA) 133.4 63.3 33.3 OneR w (RL)
96.5 71.9 48.1 obliqueTree R (DT) 133.7 61.8 28.3 BG DecisionStump w (BAG)
97.0 68.9 42.0 plsBag R (BAG) 135.5 64.9 42.4 VFI w (OM)
97.2 73.9 52.1 OCC w (OEN) 136.6 60.4 27.7 ConjunctiveRule w (RL)
99.5 71.3 44.9 mlp m (NNET) 137.5 60.3 26.5 DecisionStump w (DT)
99.6 74.4 51.6 cascor C (NNET) 138.0 56.6 15.1 RILB w (BST)
99.8 75.3 52.7 bdk R (NNET) 138.6 60.3 26.1 BG HyperPipes w (BAG)
100.8 73.8 48.9 nbBag R (BAG) 143.3 53.2 17.9 spls R (PLSR)
101.6 73.6 49.3 naiveBayes R (BY) 143.8 57.8 24.3 HyperPipes w (OM)
103.2 72.2 44.5 slda t (DA) 145.8 53.9 15.3 BG MLP w (BAG)
103.6 72.8 41.3 pam t (OM) 154.0 49.3 3.2 Stacking w (STC)
104.5 62.6 33.1 nnetBag R (BAG) 154.0 49.3 3.2 Grading w (OEN)
105.5 72.1 46.7 DecisionTable w (RL) 154.0 49.3 3.2 CVPS w (OM)
106.2 72.7 48.0 MAB NaiveBayes w (BST) 154.1 49.3 3.2 StackingC w (STC)
106.6 59.3 71.7 logitboost R (BST) 154.5 49.2 7.6 MetaCost w (BAG)
106.8 68.1 41.5 PenalizedLDA R (DA) 154.6 49.2 2.7 ZeroR w (RL)
107.5 72.5 48.3 NaiveBayes w (BY) 154.6 49.2 2.7 MultiScheme w (OEN)
108.1 69.4 44.6 rbf m (NNET) 154.6 49.2 5.6 CSC w (OEN)
108.2 71.5 49.8 rrlda R (DA) 154.6 49.2 2.7 Vote w (OEN)
109.4 65.2 46.5 vbmpRadial t (BY) 157.4 52.1 25.13 CVC w (OM)
110.0 73.9 51.0 RandomTree w (DT)

Table 4: Continuation of Table 3. ASC = AttributeSelectedClassifier, BG = Bagging, CSC
= CostSensitiveClassifier, CVPS = CVParameterSelection, CVC = Classification-
ViaClustering, CVR = ClassificationViaRegression, MAB = MultiBoostAB, MCC
= MultiClassClassifier, MLP = MultilayerPerceptron, NBUpdeatable = Naive-
BayesUpdateable, OCC = OrdinalClassClassifier, RILB = RacedIncrementalLo-
gitBoost.

set may vary with respect to previous papers in the literature due to resampling differences.
Although a leave-one-out validation might be more adequate (because it does not depend
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Figure 1: Left: Maximum accuracy (blue) and majority class (red), both in % ordered by
increasing %Maj. for each data set. Right: Histogram of the accuracy achieved
by parRF t (measured as percentage of the best accuracy for each data set).

on the data partitioning), specially for the small data sets, it would not be feasible for some
other larger data sets included in this study.

3.1 Average Accuracy and Friedman Ranking

Given its huge size (21,659 entries), the table with the complete results11 is not included
in the paper. Taking into account all the trials developed for parameter tuning in many
classifiers (number of tunable parameters and number of values used for tuning), the total
number of experiments is 241,637. The average accuracy for each classifier is calculated
excluding the data sets in which that classifier found errors (denoted as -- in the complete
table). The Figure 1 (left panel) plots, for each data set, the percentage of majority class
(see columns %Maj. in Tables 1 and 2) and the maximum accuracy achieved by some
classifier, ordered by increasing %Maj. Except for very few unbalanced data sets (with very
populated majority classes), the best accuracy is much higher than the %Maj. (which is
the accuracy achieved by classifier ZeroR w). The Friedman ranking (Sheskin, 2006) was
also computed to statistically sort the classifiers (this rank is increasing with the classifier
error) taking into account the whole data set collection. Given that this test requires the
same number of accuracy values for all the classifiers, in the error cases we use (only for
this test) the average accuracy for that data set over all the classifiers.

The Tables 3 and 4 report the Friedman ranking, the average accuracy and the Cohen
κ (Carletta, 1996), which excludes the probability of classifier success by chance, for the
179 classifiers, ordered following the Friedman ranking. The best classifier is parRF t
(parallel random forest implemented in R using the randomForest and caret
packages), with rank 32.9, average accuracy 82.0%(±16.3) and κ=63.5%(±30.6), followed
by rf t (random forest using the randomForest package and tuned with caret),
with rank 33.1 and the highest accuracy 82.3%(±15.3) and κ=63.6(±30.0). This result is

11. See http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/results.txt.
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Figure 2: Left: for each % of the maximum accuracy in the horizontal axis, the vertical
axis shows the percentage of data sets for which parRF t overcomes that % of the
maximum accuracy. Right: Accuracy (in %) achieved by parRF t (in red) and
maximum accuracy (in blue) for each data set (ordered by increasing maximum
accuracies).

somehow surprising, because Random Forest is an old method, but it works better than
other newer classifiers. The high deviations in accuracies and κ are expected, due to the
large amount and variability of data sets. Since parRF t is a parallel version of rf t, us-
ing different random seeds, the difference between both can be considered not significant:
parRF t achieves better Friedman ranking, while rf t achieves better accuracy and κ. Simi-
lar situations arise with other couples of classifiers within the same family, which are slightly
different versions of the same classifier or versions with/without parameter tuning (svmRa-
dial t and svmRadialCost t, lda R and lda2 t, among others), with similar results, being
the difference between them caused by noise, random initializations, etc. The parRF t is
the best classifier in 12 out of 121 data sets, and its average accuracy is 4.9% below the
maximum average accuracy (i.e., the maximum accuracy over all the classifiers for each
data set, averaged over all the data sets), which is 86.9%. It is very significant (and it can
not be casual) that, among so many classifiers (179), the two bests ones (parRF t and rf t,
according both to average accuracy and Friedman rank) are random forests implemented
with the randomForest package and tuned with caret: this fact shows a clear superiority
with respect to the remaining classifiers. It is also interesting that an “old” classifier as RF
works better than many other, more recent, approaches. The Figure 1 (right panel) shows
that for the majority of the data sets (specifically for 102 out of 121, which represents the
84.3%), the parRF t achieves more than 90% of the maximum accuracy, being very near
to the best accuracy for almost all the data sets. The Figure 2 (left panel) plots, for each
% of the maximum accuracy in the horizontal axis, the % of data sets for which parRF
overcomes that percentage: for the 93% (resp. for 84.3%) of the data sets parRF achieves
more than 80% (resp. 90%) of the maximum accuracy. In this figure, the area under
curve (AUC) of the three bests classifiers (parRF t, rf t and svm C) are 0.9349, 0.9382 and
0.9312 respectively, being rf t slightly better than parRF t (as the accuracy in Table 3) and
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svm C slightly worse. As we commented in the introduction, given the large number of
classifiers used in this work, it is reasonable to estimate the maximum attainable accuracy
for a data set as the maximum accuracy achieved by some classifier. Therefore, although
the No-Free-Lunch theorem states that no classifier can be always the best, in the practice,
parRF t is very near to the best attainable accuracy for almost all the data sets. Specifi-
cally, the Figure 2 (right panel) shows that parRF is very near to the maximum accuracy
for almost all the data sets, excepting three data sets: #41 (image-segmentation, 33.6%),
#70 (audiology-std, 13.0%) and #114 (balloons, 66.7%).

The third best classifier is svm C (LibSVM with Gaussian kernel), with rank (36.8, two
points above parRT t) and average accuracy 81.8%(±16.2). The following classifiers are:
svmPoly t (SVM with polynomial kernel, rank 38.0), rforest R (random forest without mtry
tuning, rank 39.4), elm kernel m (extreme learning machine, rank 39.6), svmRadialCost t
(40.3), svmRadial t (42.5), C5.0 t (42.9) and avNNet t (44.1). It may not be a casuality the
presence of three RF and two SVM among the five best classifiers, identifying both classifier
families as the best ones. Besides, there are also two neural networks and one boosting
ensemble (C5.0 t) among the top-10. The Figure 3 shows the 25 classifiers with the lowest
Friedman ranks (upper panel) and the classifiers with the highest average accuracies (lower
panel): parRF t and rf t have ranks clearly lower than svm C and the following classifiers.
In fact, the highest increment (3.7) between two classifier ranks is between rf t and svm C,
which shows that parRF t and rf t are clearly better than the remaining classifiers in the
plot. Besides, rf t, parRF, svm C, rforest R and elm kernel m have higher accuracies than
the others (the largest accuracy reduction, 0.37, is between svm C and svmRadialCost t).
Our proposal dkp C is in the 23th (resp. 21th) position according to the Friedman ranking
(resp. to the accuracy, 79.7%), but this apparently good result is somehow obscured by the
low value of κ (42.6%). It is caused by some data sets where dkp C assigns all the patterns
to the most populated class: for these data sets, κ = 0, which reduces the average κ over
all the data sets.

We developed paired T-tests comparing the accuracies of parRF t and the following
9 classifiers in Table 3 (the null hypothesis is that the two accuracies compared are not
significantly different, so that, within a tolerance α = 0.05, when p < 0.05 parRF t is
significantly better than the other classifier. The Figure 4 (left panel) plots the T-statistic,
95%-limits and p-values, showing that parRF t is only significantly better (high T-statistic,
p < 0.05) than with C5.0 t and avNNet t. Although parRF t is better than svm C in 56
of 121 data sets, worse than svm C in 55 sets, and equal in 10 sets, the Figure 4 (right
panel) compares their percentages of the maximum accuracy for each data set (ordered
by increasing percentages): for the majority of the data sets they are almost 100% (i.e.,
parRF t and svm C are near to the maximum accuracy). Besides, svm C is never much
better than parRF t: when svm C outperforms parRF t, the difference is small, but when
parRF t outperforms svm C, the difference is higher (data sets 1-20). In fact, calculating
for each data set the difference between the accuracies of parRF t and svm C, the sum of
positive differences (parRF is better) is 193.8, while the negative ones (svm C better) sum
139.8.

All the classifiers of the random forest and SVM families are included among the 25
best classifiers, with accuracies above 79% (while the best is 82.3%), which identify both
families as the best ones. Other classifiers included among the top-20, not belonging to RF
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Figure 3: Friedman rank (upper panel, increasing order) and average accuracies (lower
panel, decreasing order) for the 25 best classifiers.

and SVM families, are nnet t (MLP network, rank 45.5), pcaNNet t (MLP + PCA net-
work, rank 47.0), Bagging LibSVM w (ensemble of Gaussian LibSVMs, rank 47.1), mlp t
(RSNNS MLP with tunable network size, rank 38.0), MultiBoostAB LibSVM w (Multi-
BoostAB ensemble of Gaussian LibSVMs, rank 52.5) and adaboost R (Adaboost.M1 en-
semble of decision trees, rank 57.6). Beyond the 20th position are pnn m (Probabilistic
Neural Network with tunable Gaussian spread, rank 58.5), and our proposal dkp C (rank
59.9). Besides, note that 12 classifiers in the top-20 use caret, which might be due to the
automatic parameter tuning (only rforest R and adaboost R have no tunable parameter).
We must emphasize that, since parameter tuning and testing use different data sets, the fi-
nal result can not be biased by parameter optimization, because the set of parameter values
selected in the tuning stage is not necessarily the best on the test set. In some cases, the
tuning is not relevant: for C5.0 t the differences among the performances using different
parameter values are low, so it would work similarly without parameter tuning.

OpenML Vanschoren et al. (2012) uses only 86 data sets and 93 classifiers, while our
work is much wider (121 and 179, respectively), including Weka classifiers in a later version
(3.6.9), for example openML uses Bagging 1.31.2.2, while we use Bagging version 6502. Be-
sides, as we commented above, we do not use 9 of 93 classifiers included in the previous refer-
ence. The results in Figure 17 of that paper rank Bagging-NBayesTree as the best classifier,
followed by Bagging-PART, SVM-Polynomial, MultilayerPerceptron, Boosting-NBayesTree,
RandomForest, Boosting-PART, Bagging-C45, Boosting-C45 and SVM-RBF. However, in
our results the best Weka classifiers (in the top-20) are Baggging LibSVM w, RotationFor-
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Figure 4: Left panel: T-statistics (point), confidence intervals and p-values (above upper
interval limits) of the T-tests comparing parRF T and the remaining 9 best clas-
sifiers. Right panel: Percentage of the maximum accuracy achieved by parRF t
(blue) and svm C (red) for the 121 data sets (ordered by increasing percentage)

est w, MultiBoostAB LibSVM w and LibSVM w, i.e., a Random Forest, a SVM and two
ensembles of SVMs. This is expected, because it is known that ensembles of strong classi-
fiers do not work better than the single classifier. Therefore, Bagging and MultiBoostAB of
LibSVM do not work better than LibSVM w, although the three are worse than svm C (the
same Gaussian LibSVM in C) and the caret SVM versions (svmPoly t, svmRadialCost t
and svmRadial t). Besides, similarly to openML, in our work svmPoly t (polynomial ker-
nel) is near to svm C (Gaussian kernel). However, in our results Bagging NaiveBayes w
works very bad (rank 110.4, Table 4), while other Baggging ensembles are better: Bag-
ging PART w (66.6), MultilayerPerceptron w (70.6), MultiBoostAB NaiveBayes w (equiv-
alent to Boosting-NaiveBayes in openML, rank 106.2) and MultiBoostAB PART w (65.6).
Therefore, in our experiments the bagging and multiBoostAB ensembles (except of Lib-
SVM w) do not work well. We use the same configurations for bagging (10 bagging iter-
ations, 100% of the training set for bag size, changing only the base learner) and Multi-
BoostAB (3 sub-committees, 10 boost iterations and 100% of build mass used to build
classifiers) as openML, so these bad results can not be caused by improper configuration
(or parameter tuning) of the ensemble or base classifier. Therefore, they might be caused
by the larger number of data sets, or by the inclusion in our collection of other classifiers
and implementations (in R, caret, C and Matlab), with better accuracies, not considered
by OpenML.
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No. Classifier PAMA No. Classifier PAMA

1 elm kernel m 13.2 11 mlp t 5.0

2 svm C 10.7 12 pnn m 5.0

3 parRF t 9.9 13 dkp C 5.0

4 C5.0 t 9.1 14 LibSVM w 5.0

5 adaboost R 9.1 15 svmPoly t 5.0

6 rforest R 8.3 16 treebag t 5.0

7 nnet t 6.6 17 RRFglobal t 5.0

8 svmRadialCost t 6.6 18 svmlight C 5.0

9 rf t 5.8 19 Bagging RandomForest w 4.1

10 RRF t 5.8 20 mda t 4.1

No. Classifier P95 No. Classifier P95

1 parRF t 71.1 11 elm kernel m 60.3

2 svm C 70.2 12 MAB-LibSVM w 60.3

3 rf t 68.6 13 RandomForest w 57.0

4 rforest R 65.3 14 RRF t 56.2

5 Bagging-LibSVM w 63.6 15 pcaNNet t 55.4

6 svmRadialCost t 63.6 16 RotationForest w 54.5

7 svmRadial t 62.8 17 avNNet t 53.7

8 svmPoly t 62.8 18 nnet t 53.7

9 LibSVM w 62.0 19 RRFglobal t 53.7

10 C5.0 t 61.2 20 mlp t 52.1

No. Classifier PMA No. Classifier PMA

1 parRF t 94.1 11 RandomCommittee w 91.4

2 rf t 93.6 12 nnet t 91.3

3 rforest R 93.3 13 avNNet t 91.1

4 C5.0 t 92.5 14 RRFglobal t 91.0

5 RotationForest w 92.5 15 knn R 90.5

6 svm C 92.3 16 Bagging-LibSVM w 90.5

7 mlp t 92.1 17 Bagging REPTree w 90.4

8 LibSVM w 91.7 18 MAB MLP w 90.4

9 RRF t 91.4 19 elm m 90.3

10 dkp C 91.4 20 rda R 90.3

Table 5: Up: list of the 20 classifiers with the highest Probabilities of Achieving the Max-
imum Accuracies (PAMA, in %). Middle: List of the 20 classifiers with the
highest probabilities of achieving 95% (P95) of the maximum accuracy over all
the data sets. Down: Classifiers sorted by its Percentage of the Maximum Ac-
curacy (PMA) for each data set, averaged over all the data sets. MAB means
MultiBoostAB.

3.2 Probability of Achieving the Best Accuracy

One of the objectives of this paper (Section 1) is to estimate, for each classifier, the Prob-
ability of Achieving the Maximum Accuracy (PAMA) for a given data set, as the
number of data sets for which it achieves the highest accuracy, divided by the number of
data sets. The Table 5 (upper part) shows the 20 classifiers with the highest values for
these probabilities (in %), being elm kernel m the best (for 13.2% of the data sets) followed
by svm C (10.7%) and parRF (9.9%). These values are very far from 100%, which confirms
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that no classifier is the best for most data sets (following the No-Free-Lunch theorem). The
C5.0 t and adaboost R have about 9%. The remaining classifiers are about 4-8%, so that
many classifiers are the best for only few data sets. There are 5 classifiers of family RF, 5
SVM, 5 NNET and 4 ensembles among the 20 classifiers with the highest probabilities of
being the best. Our proposal dkp C achieves the 13th position.

The PAMA does not take into account that a classifier may be very near from the
best accuracy without being the best one. Therefore, an alternative, more significant,
measure is the probability of achieving more than 95% of the maximum accuracy
(P95) (middle part of Table 5 for the best 20 values). This probability (in %), for a given
classifier, is estimated dividing the number of data sets in which it achieves 95% or more of
the maximum accuracy (achieved by any other classifier on that data set), by the number of
data sets. The ten classifiers with the highest P95 are almost the same as in the Friedman
rank, with a different order. In this table, ParRF t achieves more than 95% of the maximum
accuracy for 71.1% of the data sets (again far from the 100%), followed by svm C (70.2%)
and rf t (68.6). The other classifiers have P95 below 65%. The low P95 of elm kernel w
(60.3%, 11th position), being the best for a highest number of data sets, shows a behavior
less stable than rf t, parRF t and svm C, because its accuracy in the other data sets is
lower in average.

Another interesting measurement is the Percentage of the Maximum Accuracy
(PMA) achieved by each classifier, averaged over the whole collection of data sets (the
20 first are shown in the lower part of the Table 5). Again, parRF t is the best achieving
94.1%(±11.3) of the maximum accuracy, followed by other two Random Forests: rf t and
rforest R (93.6% and 93.3% respectively). The svm C is in the 6th position, with PMA
92.3%(±15.9). Note that six out of eight Random Forest classifiers are in the top-20. The
PMA values are high, very near to, but below, the threshold of 95% used in the middle part
of Table 5. This explains the low values of P95: the bests classifiers have PMA about 94%,
so their probability of achieving 95% or more of the maximum accuracy is low (about 70%).
Setting the threshold in 90% of the maximum accuracies, the corresponding probabilities
would be much higher. The elm kernel m is not included in this table: this confirms its
unstable behavior, because in average it does not achieve PAM above 90.3% (even elm m,
without kernels, has better PMA). The mlp t (92.2%) has also a good value. The dkp C is
the 10th position, achieving in average the 91.4%, only 2.7 below the best. The 20 classifiers
are in a narrow margin between 90%-94% of the maximum accuracy, so that there are many
classifiers which a high percentage of the maximum accuracy. The Figure 5 shows that the
three Random Forests (parRT t, rf t and rforest R ) achieve PMAs clearly higher than the
remaining classifiers (including svm C), being the greatest gap (0.8) between rforest R and
C5.0 t.

3.3 Discussion by Classifier Family

The Figure 6 compares the classifier families showing in the upper panel the error bars with
the mean (blue square), minimum and maximum values of the Friedman ranks for each
family. The lower panel shows the minimum rank (corresponding to the best classifier) for
each family, by ascending order. The family RF has the lowest minimum rank (32.9) and
mean (46.7), and also a narrow interval (up to 60.5), which means that all the RF classifiers
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Figure 5: Twenty classifiers with the highest percentages of the maximum accuracy. MAB
means MultiBoostAB, BG means Bagging.

work very well. The SVM has the following minimum (36.8), but the mean is much higher
(55.4), and the interval is also much wider (up to 81.6). The third best type is NNET, whose
minimum and mean rank are 39.6 (elm kernel m) and 73.8 respectively. The DTs have
the following minimum (42.9), followed by BAG (47.1), BST (52.5), OM (other methods,
specifically gaussprRadial, 60.4), DA (62.5), NN (62.6), OEN (other ensembles, specifically
RandomCommittee w, 63.0), LMR (65.2), MARS and GLM (65.5), PLSR (79.1), RL (81.4),
BY (94.3) and STC (154.0). We can make three family groups in the lower panel of Figure 6:
a) the best ones (RF, SVM, NNET, DT, BAG and BST), with the lowest ranks (about 30-
50); b) the intermediate families (OM, DA, NN, OEN, LMR, MARS and GLM), about
60-70; and c) the worst families (PLSR, RL, BY and STC), with ranks above 80.

Now, we discuss the results for each classifier family (see Tables 6 and 7). The discrim-
inant analysis (DA) classifiers work relatively well, being fda t the best one, followed
by rda R, mda t and pda t. The lda R works better than the caret version lda2 t (74.4),
which however tunes of the number of retained components. In other DA classifiers (fda
and mda) the parameter tuning developed in the caret versions allows to achieve better
accuracies than their R counterparts (without tuning). It is surprising that sophisticated
versions of LDA are worse: slda t, PenalizedLDA t, rrlda R, sddaLDA R, sparseLDA R and
stepLDA t. Finally, the QDA classifiers are very bad, achieving again the classical qda t the
best results compared to more advanced versions (QdaCov t, stepQDA t and sddaQDA R).
The Bayesian methods (BY) are clearly worse than DA, and they are not competitive
at all to the globally best classifiers, achieving the best (BayesNet w) a high rank (94.3).

Among the neural networks (NNET), the elm kernel m is the best one, followed by
several caret MLP implementations (avNNet t, nnet t, pcaNNet t and mlp t), included in
the top-20, better than other MLP implementations: mlp C (LibFANN), MultilayerPercep-
tron w (Weka) and mlp m (Matlab). The good result of avNNet (an ensemble of 4 small
MLPs with up to 9 hidden neurons whose weights are randomly initialized), compared to
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Figure 6: Friedman rank interval for the classifiers of each family (upper panel) and mini-
mum rank (by ascending order) for each family (lower panel).

greater MLPs, as mlp C and mlp m (up to 30 hidden neurons), is due to its ensemble na-
ture, because mlpWeightDecay t also has up to 9 hidden neurons, with worse results. The
rule used for size selection by MultilayerPerceptron w (#inputs + #classes)/2 does not
achieve good results. The pnn m (probabilistic neural network) and our proposal dkp C
(direct kernel perceptron) are very near to the top-20. The bad results of elm m (67.6)
are surprising taking into account the good behavior of the Gaussian elm kernel w. Simi-
larly, the LVQ versions are not good: lvq t, which tunes the size and k, works much better
than lvq R, being bdk R (99.8) the worst one. The cascor C (cascade correlation), which
uses LibFANN, is also worse (99.6) than the best MLP version (avNNet t). Finally, the
RBF networks are also bad, although the caret versions outperform the Weka and Matlab
versions. The dpp C is not competitive at all with the other networks.

The svm C, with Gaussian kernel using LibSVM is the best Support vector machine
(SVM), followed by the caret versions svmPoly t (polynomial kernel), svmRadialCost t and
svmRadial t (Gaussian kernel), better than the Weka versions LibSVM w and SMO w and
that svmlight C. The linear kernel versions (svmLinear t and LibLINEAR w) are clearly
worse, and lssvmRadial t is the worst one. Overall, the ten SVM classifiers achieve very
good results, with ranks in the (relatively narrow) interval 36.8—72.4 (excluding linear
kernels).

RandomSubSpace w is the best decision tree (DT), with a bad rank (74.0); both
J48 t and J48 w achieve similar results (the former runs the latter in the RWeka package
tuned with caret). The best Rule-based (RL) classifiers are C5.0Rules t and JRip t,
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Discriminant analysis (DA)

1 fda t 62.5 11 qda t 96.0

2 rda R 63.8 12 slda t 103.2

3 mda t 66.7 13 PenalizedLDA t 106.8

4 pda t 67.3 14 rrlda R 108.2

5 fda R 72.1 15 sddaLDA R 112.6

6 lda R 72.4 16 sparseLDA R 113.3

7 lda2 t 74.4 17 stepLDA t 113.5

8 sda t 76.5 18 QdaCov t 115.8

9 hdda R 79.8 19 stepQDA t 116.0

10 mda R 80.9 20 sddaQDA R 118.3

Bayesian methods (BY)

1 BayesNet w 94.3 4 vbmpRadial t 109.4

2 naiveBayes R 101.6 5 NBUpdateable w 113.5

3 NaiveBayes w 107.5

Neural networks (NNET)

1 elm kernel m 39.6 12 rbf t 72.0

2 avNNet t 44.1 13 rbfDDA t 75.9

3 nnet t 45.5 14 lvq t 79.1

4 pcaNNet t 47.0 15 RBFNetwork w 90.2

5 mlp t 47.3 16 lvq R 95.1

6 pnn m 58.5 17 mlp m 99.5

7 dkp C 59.9 18 cascor C 99.6

8 mlp C 62.8 19 bdk R 99.8

9 mlpWeightDecay 63.6 20 rbf m 108.1

10 elm m 67.6 21 dpp C 126.2

11 MultilayerPerceptron w 70.6

Support vector machines (SVM)

1 svm C 36.8 6 svmLinear t 62.1

2 svmPoly t 38.0 7 SMO w 62.8

3 svmRadialCost t 40.3 8 svmlight C 72.4

4 svmRadial t 42.5 9 LibLINEAR w 74.6

5 LibSVM w 52.6 19 lssvmRadial t 81.6

Table 6: Friedman ranks of the classifiers in each family (continued in Table 7).

slightly worse than the best DT. The difference between JRip t and JRip w suggests that
the tuning of the number of optimization runs developed in the caret version, but not with
Weka, is important. ZeroR w is among the worst ones, because it only predicts the same
mean class for every test pattern: we included it to define the “zero-level” for the accuracy
(49.2%, there is no classifier with lower accuracy).

Among the boosting (BST) ensembles, C5.0 t is the best (position 9), followed by
MultiBoostAB LibSVM (position 18), adaboost R (position 19) and other MultiBoostAB
ensembles with strong base classifiers (MultilayerPerceptron, RandomForest, PART and
J48), while the ones with weak classifiers (OneR, IBk, DecisionStump, NaiveBayes, among
others) are worse. The Figure 7 (upper panel, only Weka ensembles and base classifiers
are plotted) shows that MultiBoostAB ensembles achieves much lower ranks than their
corresponding base classifiers, excepting LibSVM, RandomForest and Logistic, where both
are similar, and IBk, where the base classifier works much better. The same happens with
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Decision trees (DT)

1 RandomSubSpace w 74.0 9 ctree2 t 92.4

2 C5.0Tree t 84.2 10 REPTree w 93.6

3 11 rpart2 t 93.6

4 NBTree w 84.6 12 rpart R 94.4

5 J48 t 87.6 13 obliqueTree R 96.5

6 J48 w 87.9 14 RandomTree w 110.0

7 rpart t 91.2 15 DecisionStump w 137.5

8 ctree t 91.5

Rule-based classifiers (RL)

1 C5.0Rules t 81.4 7 Ridor w 94.6

2 JRip t 81.7 8 DecisionTable w 105.5

3 PART t 88.0 9 OneR t 132.1

4 DTNB w 89.0 10 OneR w 133.4

5 PART w 89.5 11 ConjunctiveRule w 136.6

6 JRip w 93.1 12 ZeroR w 154.6

Boosting (BST)

1 C5.0 t 42.9 11 MAB RandomTree w 76.6

2 MAB LibSVM w 52.5 12 MAB Logistic w 82.0

3 adaboost R 57.9 13 MAB DecisionTable w 87.2

4 MAB MultilayerPerceptron w 64.0 14 MAB NaiveBayes w 106.2

5 MAB RandomForest w 64.1 15 logitboost R 106.6

6 MAB PART w 65.6 16 AdaBoostM1 DecisionStump w 122.2

7 MAB J48 w 69.2 17 MAB DecisionStump w 129.6

8 AdaBoostM1 J48 w 72.6 18 MAB IBk w 130.9

9 MAB REPTree w 73.7 19 MAB OneR w 133.2

10 LogitBoost w 76.6 20 RILB w 138.0

Bagging (BAG)

1 BG LibSVM w 47.1 13 BG Logistic w 79.0

2 treebag t 66.4 14 BG DecisionTable w 84.6

3 BG PART w 66.6 15 bagging R 90.5

4 Bagging REPTree w 69.8 16 plsBag R 97.0

5 BG RandomTree w 71.0 17 nbBag R 100.8

6 BG J48 w 71.0 18 nnetBag R 104.5

7 BG IBk w 72.7 19 BG NaiveBayes w 110.4

8 ldaBag R 72.9 20 BG OneR w 130.9

9 BG LWL w 73.2 21 BG DecisionStump w 133.7

10 svmBag R 74.6 22 BG HyperPipes w 143.8

11 BG RandomForest w 77.1 23 BG MLP w 145.8

12 ctreeBag R 78.7 24 MetaCost w 154.5

Table 7: Continuation of Table 6. MAB means MultiBoostAB. RILB means RacedIncre-
mentalLogitBoost. BG means Bagging. Continued in Table 8.

AdaBoostM1 (J48 much better than DecisionStump). The adaboost R (AdaboostM1 with
classification trees) works very well (included in the top-20), while AdaBoostM1 J48 w
and AdaBoostM1 DecisionStump w work much worse: this big difference might be in the
AdaboostM1 implementation or in the base classifiers. There is also difference between
LogitBoost w and logitboost R, despite of using the same base classifier (DecisionStump):
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Figure 7: Upper panel: Friedman rank (ordered increasingly) of each Weka MultiBoostAB
ensemble (blue squares) and its corresponding Weka base classifier (red circles).
Lower panel: the same for Weka bagging ensembles (blue squares) and base
classifiers (red circles).

the Weka implementation is clearly better. The RacedIncrementalLogitBoost w is the worst
one, despite of being a committee of LogitBoost.

The best bagging (BG) ensemble is also the Baggging LibSVM w (included in the
top-20), although the svmBag R is not so good, revealing big differences between imple-
mentations. The Figure 7 (lower panel) compares 15 Bagging ensembles to their respective
base classifiers (both implemented in Weka), being the ensembles better except for Random-
Forest, NaiveBayes and MultilayerPerceptron. This means that RandomForest works bet-
ter than in MultiBoostAB and Baggging ensembles. The remaining Bagging classifiers are
not good: The ldaBag R, ctreeBag R, nbBag R and nnetBag R work also bad, similarly to
their Weka correspondents (Bagging NaiveBayes w and Baggging MultilayerPerceptron w).
Both stacking classifiers Stacking w and StackingC w work equally bad. The eight ran-
dom forest classifiers are included among the 25 best classifiers having all of them low
ranks, so this is clearly the best family of classifiers. Although one could think that there
is a redundancy in RF models that might over-emphasize some results (parRF t and rf t
are very similar classifiers), we must note that RRF t (Regularized RF), RRFglobal t (for
which the caret documentation does not give differences with RRF t, except in the tunable
parameters) and cforest t are different classifiers. Besides, the Weka RF implementations
(RandomForest w and RotationForest w) are also among the 25 best classifiers, confirming
that good positions of RF classifiers are not due to redundancy. Finally, none of the other
ensembles (OEN) achieves good results, being RandomCommittee w and Decorate w the
bests, but many of them are at the end of the list (rank 154.0).
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Stacking (STC)

1 Stacking w 154.0 2 StackingC w 154.1

Random forests (RF)

1 parRF t 32.9 5 RRF t 50.1

2 rf t 33.1 6 RRFglobal t 51.6

3 rforest R 39.4 7 cforest t 58.9

4 RotationForest w 47.6 8 RandomForest w 60.5

Other ensembles (OEN)

1 RandomCommittee w 63.0 7 LWL w 122.7

2 Decorate w 63.4 8 Grading w 154.0

3 END w 76.6 9 MultiScheme w 154.6

4 MultiClassClassifier w 80.6 10 CostSensitiveClassifier w 154.6

5 Dagging w 95.3 11 Vote w 154.6

6 OrdinalClassClassifier w 97.2

Generalized linear models (GLM)

1 gmlnet R 65.5 4 glmStepAIC t 120.8

2 mlm R 71.0 5 glm R 126.1

3 bayesglm t 114.8

Nearest neighbors (NN)

1 knn t 62.6 4 IBk w 94.5

2 knn R 65.0 5 IB1 w 95.3

3 NNge w 91.7

Partial least squares and principal component regression (PLSR)

1 pls t 79.1 4 kernelpls R 113.1

2 widekernelpls R 111.3 5 gpls R 120.1

3 simpls R 111.9 6 spls R 143.3

Logistic and multinomial regression(LMR)

1 multinom t 65.2 3 Logistic w 78.5

2 SimpleLogistic w 67.6

Multivariate adaptive regression splines (MARS)

1 gcvEarth t 65.5 2 mars R 111.9

Other methods (OM)

1 gaussprRadial 60.4 6 pam t 103.6

2 ClassificationViaRegression w 66.0 7 VFI w 135.5

3 AttributeSelectedClassifier w 86.4 8 HyperPipes w 143.8

4 KStar w 87.2 9 CVParameterSelection 154.0

5 FilteredClassifier w 93.0 10 ClassificationViaClustering w 157.4

Table 8: Continuation of Tables 6 and 7.

The GLM classifiers are divided in two groups: gmlnet R and mlm R, with relatively
good ranks (60-70), and the others, with much worse results. Something similar happens
with NN, where the R and caret versions (knn t and knn R) are about 70, while the Weka
variants NNge w, IBk w and IB1 w are much worse (about 90). With respect to the PLSR
classifiers, the simplest one (pls t) is the best, while the remaining, more sophisticated,
versions are much worse. The three LMR classifiers achieve ranks about 65-75, being
multinom t the best one. The original MARS classifier (mars R) is very bad, while the
fast MARS version (gcvEarth t) works much better. Finally, only the gaussprRadial R and
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ClassificationViaRegression w achieve good results among the Other methods, while the
remaining ones have ranks about 90 (AttributeSelectedClassifier w, KStar w and Filtered-
Classifier w), and more, being some of the worse classifiers in the collection (Classification-
ViaClustering w).

Rank Classifier Acc. (%) Rank Classifier Acc (%)

36.2 avNNet t 83.0 50.0 mlp t 82.2

39.9 svmPoly t 79.9 51.4 elm kernel m 77.5

41.0 pcaNNet t 82.9 54.1 RotationForest w 82.0

42.2 svmRadialCost t 80.0 54.9 rforest R 80.9

44.2 parRF t 82.6 57.6 mlpWeightDecay t 79.7

44.7 rf t 81.2 57.7 svmBag R 78.8

47.1 C5.0 t 82.0 59.7 fda t 81.0

47.2 svm C 79.0 60.8 cforest t 74.7

47.5 nnet t 82.1 61.5 Bagging LibSVM w 77.9

48.0 svmRadial t 79.4 62.9 knn t 80.4

No. Classifier P95 No. Classifier P95

1 svmRadialCost t 78.2 11 MultiBoostAB LibSVM w 65.5

2 svm C 74.5 12 pcaNNet t 63.6

3 svmPoly t 74.5 13 svmBag R 63.6

4 svmRadial t 72.7 14 elm kernel m 61.8

5 Bagging LibSVM w 70.9 15 nnet t 61.8

6 avNNet t 69.1 16 RotationForest w 61.8

7 parRF t 69.1 17 fda t 60.0

8 LibSVM w 67.3 18 mlp t 60.0

9 C5.0 t 67.3 19 MultiBoostAB REPTree w 58.2

10 rf t 67.3 20 RandomForest w 58.2

No. Classifier PMA No. Classifier PMA

1 avNNet t 95.0 11 pda t 92.8

2 pcaNNet t 94.9 12 mlm R 92.7

3 parRF t 94.3 13 fda t 92.7

4 nnet t 94.1 14 MAB MLP w 92.7

5 mlp t 94.1 15 bayesglm t 92.6

6 C5.0 t 93.8 16 simpls R 92.5

7 RotationForest w 93.7 17 rforest R 92.5

8 glmnet R 93.5 18 MultiBoostAB PART w 92.5

9 rda R 93.2 19 fda R 92.3

10 rf t 92.8 20 nnetBag R 92.2

Table 9: Results for two class data sets. Up: Friedman rank and average accuracies
for the 20 best classifiers. RF w = RotationForest w. MWD t = mlpWeightDe-
cay t. Middle: Probability (in %) of achieving 95% or more of the maximum
accuracy. Down: 20 classifiers with the highest average Percentage of the Maxi-
mum Accuracy (PMA) over the two-class data sets. MAB MLP w means Multi-
BoostAB MultilayerPerceptron w.
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3.4 Two-Class Data Sets

Since 45.4% of the data sets (55 out of 121) have only two classes, it is interesting to see
what happens when only 2-class data sets are considered. We repeated our analysis of the
Subsections 3.1 and 3.2, calculating the Friedman rank and the average accuracy, alongside
with the P95 and PMA, for all the classifiers and two-class data sets. Although it should be
recommendable, we did not use the area under ROC curve as quality measure, nor develop
cutoff tuning (Kuhn and Johnson, 2013), because some classifiers do not give probabilistic
output. The Table 9 reports the results:

• The upper part shows the 20 classifiers with the best Friedman rank (calculated
using only 2-class data sets), alongside with their average accuracies. The classifiers
in this new list are approximately the same as in the top-20 of Table 3, but the order
is different: avNNet t (rank 36.2) is now the best, while the parRF t, rf t and svm C
(the three bests ones in Table 3) are now the 5th, 6th and 8th respectively. Besides,
the best average accuracy (83.0%) is almost the same as in Table 3 (82.3%), so the
classification results are not globally better for two class problems. Except the C5.0 t,
all the classifiers in the top-10 are NMP neural networks, SVMs and Random Forests.
As well, these families occupy 6 places in positions 11-20. Besides, 14 of 20 classifiers
use caret. The elm kernel m is worse than in Table 3.

• The middle part reports the probabilities (in %) of achieving 95% or more of the
maximum accuracy (P95). The best one is 78.2% (svmRadialCost), higher than in
Table 3 (71.1%, parRF t). The first four classifiers are SVMs, while parRF t and rf t
are in 7th and 10th positions. The avNNet t, Baggging LibSVM w, LibSVM w and
C5.0 t also are in the top-10. In positions 11-20 there are two MultiBoostAB ensembles
(LibSVM and REPTree), svmBag R and fda t, alongside with several neural networks
(pcaNNet t, elm kernel m, nnet t and mlp t) and Random Forests (RotationForest w
and RandomForest w).

• The lower part shows the 20 classifiers with the highest average Percentage of the
Maximum Accuracy (PMA). The maximum value (95.0%, avNNet t) is similar to the
multi-class value (94.1%, lower part of Table 5), being parRF t in the 3th position
(94.3%). Other NNET classifiers also achieve good PMAs: pcaNNet t, nnet t and
mlp t. The C5.0 t keeps its good results, while rf t falls to the 10th position. The
table also includes some classifiers with bad multi-class results: glmnet R, rda R,
pda t, fda t, bayesglm t and simpls R (both with bad multi-class rank), belonging to
families GLM, DA and PLSR, which behave well for two-class problems. The best
ensembles, apart from Random Forests, are MultiBoostAB MultilayerPerceptron w,
MultiBoostAB PART w and nnetBag R. Overall, the 20 classifiers are in a narrow
range between 92.2%-95% of accuracy.

3.5 Discussion by Data Set Properties

In this section we study the classifier behavior in function of five data set properties: its
“complexity”, increasing and decreasing #patterns, #inputs and #classes. This study will
be developed by calculating a modified average accuracy µj (in %) for each classifier j, in
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which each data set is “weighted” according to each property as µj = 1
Nd

∑Nd
i=1wiAij , j =

1, . . . , Nc, being wi is the weight measuring the property for data set i (0 ≤ wi ≤ Nd),
defined in the following subsections; Nd = 121 is the number of data sets; Aij is the
accuracy (in %) achieved by classifier j in data set i; and Nc = 179 is the number of
classifiers. The classifier behavior with the data complexity is difficult to evaluate,
because the own data set complexity is hard to define (Ho and Basu, 2002), and it may be
relative to the classifier used. In our case, since we are trying a large number of classifiers,
we can suppose that some of them achieves the highest possible accuracy for each data
set. Since this maximum accuracy is higher for some data sets than for others, we can
believe that some data sets are harder, independently of the classifier used. Therefore, we
can calculate the weighted average accuracy µCj (the C superscript denotes “complexity”)

of classifier j using the weights wCi (which evaluate the complexity of data set i) defined

as wCi = Nd(1−Mi)

Nd−
∑Nd

k=1Mk

, i = 1, . . . , Nd, being Mi = maxj=1,...,Nc{Aij/100}, the maximum

accuracy for data set i divided by 100. Note that
∑Nd

i=1w
C
i = Nd. The weighted accuracy

µCj (see below) with wCi defined above weights more the data sets i with maximum accuracy
Mi low, which are expected to be more complex. The Table 10 (upper panel) shows the
20 classifiers with the highest µC , which exhibit the best behavior when the hardest data
sets have stronger weight (data sets with maximum accuracy Mi low). The parRF t is
the best one, and the three best classifiers (5 in the top-10) belong to the family RF.
Other two classifiers are neural networks (mlp t and avNNet t), C5.0 t is the 4th, and two
SVMs (svm C and LibSVM w) are 6th and 9th respectively. Our proposal dkp C exhibits
a good behavior (12th position), while other classifiers in the top-20 of Table 3 as nnet t,
Bagging LibSVM w and RRFglobal t are also included. The 20 classifiers are in a narrow
range between 70.0% and 66.9% (3.1 points), so the differences among them are not too high.
In order to study the classifier behavior increasing #patterns, the weighted accuracy
µP uses the following weights wPi = NdNi∑Nd

k=1Nk

, i = 1, . . . , Nd, where Ni is the #patterns

(population) of data set i. The middle part of the Table 10 shows the weighted accuracy µP

(the two largest data sets, connect-4 and miniboone, give errors for some classifiers which
disturb this measure, so that they are excluded). Although the range is narrow (89.4%-
91.1%), again the rf t and parRF t are the bests, and svm C is the 3rd. There are six
random forests in the top-10. The and treebag t are also in the top-10. The positions 11-20
are completely filled by ensembles: Bagging, MultiBoostAB and AdaboostM1.

The classifier behavior decreasing #patterns in the data set can be analyzed cal-
culating the weighted accuracy using weights wDi decreasing with the #patterns (Nm is

the maximum #patterns for all the data sets) wDi = Nd(Nm−Ni)

Nm−
∑Nd

k=1Nk

, i = 1, . . . , Nd;Nm =

maxj=1,...,Nd
{Nj}, i = 1, . . . , Nd. The lower part of Table 10 shows the accuracies µD

weighting each data set decreasingly with the #patterns. The rf t is the best, followed
by rforest R, svm C and parRF t, which are only slightly worse than rf t. Again, there
are 6 random forests in the top-10. The positions 11-20 include dkp C, elm kernel m, and
MultiBoostAB ensembles of LibSVM and MultilayerPerceptron. The dependence of the
results with the #classes N c

i of the data set i can be analyzed calculating the weighted

accuracy µL with data set weights wLi given by wLi =
NdN

c
i∑Nd

k=1N
c
k

, i = 1, . . . , Nd. The Table 11
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No. Classifier µC No. Classifier µC

1 parRF t 69.9 11 nnet t 67.7

2 rf t 69.6 12 dkp C 67.6

3 rforest R 69.3 13 RRFglobal t 67.4

4 C5.0 t 69.0 14 Bagging LibSVM w 67.3

5 RotationForest w 68.6 15 Decorate w 67.1

6 svm C 68.4 16 knn t 67.1

7 mlp t 68.4 17 Bagging REPTree w 67.0

8 RRF t 68.1 18 elm m 67.0

9 LibSVM w 67.8 19 pda t 67.0

10 avNNet t 67.8 20 RandomCommittee w 66.9

No. Classifier µP No. Classifier µP

1 rf t 91.1 11 Bagging LibSVM w 89.9

2 parRF t 91.1 12 RandomCommittee w 89.9

3 svm C 90.7 13 Bagging RandomTree w 89.8

4 RRF t 90.6 14 MultiBoostAB RandomTree w 89.8

5 RRFglobal t 90.6 15 MultiBoostAB LibSVM w 89.8

6 LibSVM w 90.6 16 MultiBoostAB PART w 89.7

7 RotationForest w 90.5 17 Bagging PART w 89.7

8 C5.0 t 90.5 18 AdaBoostM1 J48 w 89.5

9 rforest R 90.3 19 Bagging REPTree w 89.5

10 treebag t 90.2 20 MultiBoostAB J48 w 89.4

No. Classifier µD No. Classifier µD

1 rf t 82.1 11 MultiBoostAB LibSVM w 79.7

2 rforest R 81.8 12 LibSVM w 79.6

3 svm C 81.6 13 RandomCommittee w 79.5

4 parRF t 81.6 14 dkp C 79.5

5 RRF t 80.8 15 nnet t 79.3

6 RotationForest w 80.3 16 elm kernel m 79.2

7 C5.0 t 80.2 17 avNNet t 79.2

8 mlp t 80.0 18 treebag t 79.0

9 Bagging LibSVM w 80.0 19 MAB MLP w 78.8

10 RRFglobal t 79.8 20 knn R 78.7

Table 10: Twenty best classifiers depending on the data set complexity and population.
Up: average accuracy µC (in %) weighting each data set decreasingly with its
complexity. Middle: accuracy µP weighting the data sets increasingly with
#patterns. Down: average accuracy µD weighted decreasingly with #patterns.

(upper part) shows the accuracy µL for the 20 best classifiers. The best classifiers are svm C
and rf t (with the same accuracy), followed by rforest t, Bagging LibSVM w, parRF t and
others, only 1% below the bests. There are 4 Random Forests and 2 SVMs in the top-10.
The Bagging LibSVM w, MultiBoostAB LibSVM w and MultiBoostAB Multilayer Percep-
tron w ensembles are also included in the top-10. The best neural networks are dkp C (9th
position), MultilayerPerceptron w and elm m. Two DA classifiers (rda R and hdda R) and
two NN classifiers (knn R and IBk w) are included. With respect to the number of in-
puts, the weighted average accuracy µI according to the #inputs N I

i can be calculated
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No. Classifier µL No. Classifier µL

1 svm C 80.5 11 RotationForest w 76.6

2 rf t 80.5 12 RRFglobal t 76.1

3 rforest R 79.8 13 MultilayerPerceptron w 76.1

4 Bagging LibSVM w 79.7 14 rda R 76.0

5 parRF t 79.5 15 knn R 75.9

6 MultiBoostAB LibSVM w 79.5 16 SMO w 75.6

7 LibSVM w 79.5 17 hdda R 75.4

8 RRF t 77.9 18 KStar w 75.3

9 dkp C 77.7 19 elm m 75.1

10 MAB MLP w 76.9 20 RandomCommittee w 75.1

No. Classifier µI No. Classifier µI

1 parRF t 84.0 11 mlp t 81.5

2 rf t 83.3 12 SMO w 81.3

3 rforest R 82.9 13 Bagging RandomTree w 81.3

4 RotationForest w 82.8 14 elm kernel m 81.1

5 MAB MLP w 82.5 15 mlp C 81.0

6 LibSVM w 82.4 16 dkp C 80.8

7 MultilayerPerceptron w 82.0 17 fda t 80.8

8 svm C 82.0 18 rda R 80.8

9 RandomCommittee w 81.8 19 SimpleLogistic w 80.7

10 C5.0 t 81.6 20 RRF t 80.4

Table 11: Up: average accuracy µL weighted using the #classes wL (only 20 first classi-
fiers). Down: average accuracy µI weighted with the #inputs wI .

defining the weights wI as wIi =
NdN

I
i∑Nd

k=1N
I
k

, i = 1, . . . , Nd. The lower part of the Table 11

shows µI for the 20 best classifiers: parRF t and rf t are the bests, with 4 random forests
among the top-5 (the other is MultiBoostAB Multilayer Perceptron w), while the svm C
falls to the 8th position, below LibSVM w (6th). The MultilayerPerceptron w and mlp t are
also included in the top-10. The dkp C is again in the top-20. Considering jointly the
four dependencies (complexity, population, #classes and #inputs), parRF t and rf t are
always in the first positions, while the svm C is not so regular: good behavior with #classes
and #patterns, but not so good with complexity and #inputs (6th and 8th positions). The
svm C and parRF t are worse than rf t with decreasing #patterns. Besides, the averages
of µC , µP , µD, µL, µI are 81.3%, 81.2% and 80.8% for rf t, parRF t and svm C respectively,
which shows the similarity between rf t and parRF t, and their difference to svm C. Most
of the random forest versions (rforest R, RotationForest w, RRF t and RRFglobal t), and
LibSVM w, are in the five tables. Apart from the RF and SVM classifiers, which fill most
of the 10 best positions in the five tables, it is remarkable the good behavior of C5.0 t
(family DT), included in the four tables and three times in the top-10. Among the neural
networks, the dkp C appears more often (in four of five tables): in fact, the µP table does
not include any neural network, showing a bad behavior for populated data sets. The Bag-
ging LibSVM w is also the first bagging classifier in four tables, while MultiBoostAB of
LibSVM or MLP is the best boosting classifier, appearing in four tables. The Random-
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Committee w (the best classifier of family OEN) is also included in five tables, and in the
top-10 for µI . On the other hand, three of five tables include a classifier of family NN
(knn t or knn R). The DA classifiers show bad behavior with population, being included
only pda t in µC ; rda R and hdda R in µL; fda t and rda R in µI .

4. Conclusion

This paper presents an exhaustive evaluation of 179 classifiers belonging to a wide collection
of 17 families over the whole UCI machine learning classification database, discarding the
large-scale data sets due to technical reasons, plus 4 own real sets, summing up to 121 data
sets from 10 to 130,064 patterns, from 3 to 262 inputs and from 2 to 100 classes. The
best results are achieved by the parallel random forest (parRF t), implemented in
R with caret, tuning the parameter mtry. The parRF t achieves in average 94.1% of the
maximum accuracy over all the data sets (Table 5, lower part), and overcomes the 90% of
the maximum accuracy in 102 out of 121 data sets. Its average accuracy over all the data
sets is 82.0%, while the maximum average accuracy (achieved by the best classifier for each
data set) is 86.9%. The random forest in R and tuned with caret (rf t) is slightly worse
(93.6% of the maximum accuracy), although it achieves slightly better average accuracy
(82.3%) than parRF t. The LibSVM implementation of SVM in C with Gaussian kernel
(svm C), tuning the regularization and kernel spread, achieves 92.3% of the maximum
accuracy. Six RFs and five SVMs are included among the 20 best classifiers, which are the
bests families. The parRF t may be considered as a reference (“gold-standard”) to compare
with new classifier proposals in order to assess their performance for general classification in
general (not requiring special features as large-scale, on-line learning, non-stationary data,
etc.). Other classifiers with good results are the extreme learning machine with Gaussian
kernel, the C5.0 decision tree and the multi-layer perceptron (avNNet t, a committee of
5 multi-layer perceptrons randomly initialized tuning the size and decay rate). The best
boosting and bagging ensembles use LibSVM as base classifiers (in Weka), being slightly
better than the single LibSVM classifier, and adaboost R (ensemble of decision trees trained
using Adaboost.M1). For two-class data sets, avNNet t is the best (95% of the maximum
accuracy), being the parRF t also very good (94.3%). It is also the best when the complexity,
#patterns and #inputs of the data set increase, being also good when #patterns decrease
(rf t is the best) and #classes increase (svm C is the best). The probabilistic neural network
in Matlab, tuning the Gaussian kernel spread (pnn m), and the direct kernel perceptron in C
(dkp C), a very simple and fast neural network proposed by us (Fernández-Delgado et al.,
2014), are also very near to the top-20. The remaining families of classifiers, including
other neural networks (radial basis functions, learning vector quantization and cascade
correlation), discriminant analysis, decision trees other than C5.0, rule-based classifiers,
other bagging and boosting ensembles, nearest neighbors, Bayesian, GLM, PLSR, MARS,
etc., are not competitive at all. Most of the best classifiers are implemented in R and tuned
using caret, which seems the best alternative to select a classifier implementation.
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Abstract

When analyzing data from computationally expensive simulation codes, surrogate model-
ing methods are firmly established as facilitators for design space exploration, sensitivity
analysis, visualization and optimization. Kriging is a popular surrogate modeling tech-
nique used for the Design and Analysis of Computer Experiments (DACE). Hence, the
past decade Kriging has been the subject of extensive research and many extensions have
been proposed, e.g., co-Kriging, stochastic Kriging, blind Kriging, etc. However, few Krig-
ing implementations are publicly available and tailored towards scientists and engineers.
Furthermore, no Kriging toolbox exists that unifies several Kriging flavors. This paper
addresses this need by presenting an efficient object-oriented Kriging implementation and
several Kriging extensions, providing a flexible and easily extendable framework to test and
implement new Kriging flavors while reusing as much code as possible.

Keywords: Kriging, Gaussian process, co-Kriging, blind Kriging, surrogate modeling,
metamodeling, DACE

1. Introduction

This paper is concerned with efficiently solving complex, computational expensive problems
using surrogate modeling techniques (Gorissen et al., 2010). Surrogate models, also known
as metamodels, are cheap approximation models for computational expensive (black-box)
simulations. Surrogate modeling techniques are well-suited to handle, for example, expen-
sive finite element (FE) simulations and computational fluid dynamic (CFD) simulations.

Kriging is a popular surrogate model type to approximate deterministic noise-free data.
First conceived by Danie Krige in geostatistics and later introduced for the Design and
Analysis of Computer Experiments (DACE) by Sacks et al. (1989), these Gaussian pro-
cess (Rasmussen and Williams, 2006) based surrogate models are compact and cheap to
evaluate, and have proven to be very useful for tasks such as optimization, design space
exploration, visualization, prototyping, and sensitivity analysis (Viana et al., 2014). Note
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that Kriging surrogate models are primarily known as Gaussian processes in the machine
learning community. Except for the utilized terminology there is no difference between the
terms and associated methodologies.

While Kriging is a popular surrogate model type, not many publicly available, easy-
to-use Kriging implementations exist. Many Kriging implementations are outdated and
often limited to one specific type of Kriging. Perhaps the most well-known Kriging toolbox
is the DACE toolbox1 of Lophaven et al. (2002), but, unfortunately, the toolbox has not
been updated for some time and only the standard Kriging model is provided. Other
freely available Kriging codes include: stochastic Kriging (Staum, 2009),2 DiceKriging,3

Gaussian processes for Machine Learning (Rasmussen and Nickisch, 2010) (GPML),4 demo
code provided with Forrester et al. (2008),5 and the Matlab Krigeage toolbox.6

This paper addresses this need by presenting an object-oriented Kriging implementation
and several Kriging extensions, providing a flexible and easily extendable framework to test
and implement new Kriging flavors while reusing as much code as possible.

2. ooDACE Toolbox

The ooDACE toolbox is an object-oriented Matlab toolbox implementing a variety of Krig-
ing flavors and extensions. The most important features and Kriging flavors include:

• Simple Kriging, ordinary Kriging, universal Kriging, stochastic Kriging (regression
Kriging), blind- and co-Kriging.

• Derivatives of the prediction and prediction variance.
• Flexible hyperparameter optimization.
• Useful utilities include: cross-validation, integrated mean squared error, empirical

variogram plot, debug plot of the likelihood surface, robustness-criterion value, etc.
• Proper object-oriented design (compatible interface with the DACE toolbox1 is avail-

able).
Documentation of the ooDACE toolbox is provided in the form of a getting started guide
(for users), a wiki7 and doxygen documentation8 (for developers and more advanced users).
In addition, the code is well-documented, providing references to research papers where
appropriate. A quick-start demo script is provided with five surrogate modeling use cases,
as well as script to run a suite of regression tests.

A simplified UML class diagram, showing only the most important public operations,
of the toolbox is shown in Figure 1. The toolbox is designed with efficiency and flexibil-
ity in mind. The process of constructing (and predicting) a Kriging model is decomposed
in several smaller, logical steps, e.g., constructing the correlation matrix, constructing the

1. The DACE toolbox can be downloaded at http://www2.imm.dtu.dk/~hbn/dace/.
2. The stochastic Kriging toolbox can be downloaded at http://stochasticKriging.net/.
3. The DiceKriging toolbox can be downloaded at http://cran.r-project.org/web/packages/

DiceKriging/index.html.
4. The GPML toolbox can be downloaded at http://mloss.org/software/view/263/.
5. Demo code of Kriging can be downloaded at http://www.wiley.com//legacy/wileychi/forrester/.
6. The Krigeage toolbox can be downloaded at http://globec.whoi.edu/software/kriging/.
7. The wiki documentation of the ooDACE toolbox is found at http://sumowiki.intec.ugent.be/index.

php/ooDACE:ooDACE_toolbox.
8. The doxygen documentation of the ooDACE toolbox is found at http://sumo.intec.ugent.be/

buildbot/ooDACE/doc/.
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ooDACE Toolbox

BasicGaussianProcess

fit()

predict()

predict_derivatives()
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correlationFunction()

regressionFunction()
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getRho()

Optimizer

optimize()
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setInitialPopulation()
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getBounds()

getInitialPopulation()
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Kriging

setData()

predict()

predict_derivatives()

regressionFunction()

cvpe()

CoKriging

fit()

getSamples()

getValues()

BlindKriging

fit()

getStatistics()
11

Figure 1: Class diagram of the ooDACE toolbox.

regression matrix, updating the model, optimizing the parameters, etc. These steps are
linked together by higher-level steps, e.g., fitting the Kriging model and making predic-
tions. The basic steps needed for Kriging are implemented as (protected) operations in
the BasicGaussianProcess superclass. Implementing a new Kriging type, or extending
an existing one, is now done by subclassing the Kriging class of your choice and inheriting
the (protected) methods that need to be reimplemented. Similarly, to implement a new
hyperparameter optimization strategy it suffices to create a new class inherited from the
Optimizer class.

To assess the performance of the ooDACE toolbox a comparison between the ooDACE
toolbox and the DACE toolbox1 is performed using the 2D Branin function. To that
end, 20 data sets of increasing size are constructed, each drawn from an uniform random
distribution. The number of observations ranges from 10 to 200 samples with steps of 10
samples. For each data set, a DACE toolbox1 model, a ooDACE ordinary Kriging and a
ooDACE blind Kriging model have been constructed and the accuracy is measured on a
dense test set using the Average Euclidean Error (AEE). Moreover, each test is repeated
1000 times to remove any random factor, hence the average accuracy of all repetitions is
used. Results are shown in Figure 2a. Clearly, the ordinary Kriging model of the ooDACE
toolbox consistently outperforms the DACE toolbox for any given sample size, mostly due
to a better hyperparameter optimization, while the blind Kriging model is able improve the
accuracy even more.

3. Applications

The ooDACE Toolbox has already been applied successfully to a wide range of problems,
e.g., optimization of a textile antenna (Couckuyt et al., 2010), identification of the elasticity
of the middle-ear drum (Aernouts et al., 2010), etc.

In sum, the ooDACE toolbox aims to provide a modern, up to date Kriging framework
catered to scientists and engineers. Usage instructions, design documentation, and stable
releases can be found at http://sumo.intec.ugent.be/?q=ooDACE.
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Abstract

Crowdsourcing is a promising way to reduce the effort of collecting annotations for training
gesture recognition systems. Crowdsourced annotations suffer from ”noise” such as mis-
labeling, or inaccurate identification of start and end time of gesture instances. In this
paper we present SegmentedLCSS and WarpingLCSS, two template-matching methods of-
fering robustness when trained with noisy crowdsourced annotations to spot gestures from
wearable motion sensors. The methods quantize signals into strings of characters and then
apply variations of the longest common subsequence algorithm (LCSS) to spot gestures.
We compare the noise robustness of our methods against baselines which use dynamic time
warping (DTW) and support vector machines (SVM). The experiments are performed on
data sets with various gesture classes (10-17 classes) recorded from accelerometers on arms,
with both real and synthetic crowdsourced annotations. WarpingLCSS has similar or better
performance than baselines in absence of noisy annotations. In presence of 60% mislabeled
instances, WarpingLCSS outperformed SVM by 22% F1-score and outperformed DTW-
based methods by 36% F1-score on average. SegmentedLCSS yields similar performance as
WarpingLCSS, however it performs one order of magnitude slower. Additionally, we show
to use our methods to filter out the noise in the crowdsourced annotation before training
a traditional classifier. The filtering increases the performance of SVM by 20% F1-score
and of DTW-based methods by 8% F1-score on average in the noisy real crowdsourced
annotations.

Keywords: gesture spotting, crowdsourced annotation, longest common subsequence,
template matching methods, accelerometer sensors

1. Introduction

Wearable computing is gaining momentum through the availability of an increasing choice
of devices, like smart watches, glasses and sensor-equipped garments. A core component
to allow these devices to understand our context is online gesture recognition (spotting) in
which types of gestures and their temporal boundaries must be recognized in the incoming
streaming sensor data. This is carried out using machine learning approaches on different
sensing modalities, like acceleration (Bao and Intille, 2004) and video (Elmezain et al., 2009;
Yoon et al., 2001).

c©2014 Long-Van Nguyen-Dinh, Alberto Calatroni and Gerhard Tröster.
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Training a gesture recognition system requires an annotated training data set that is
used to perform supervised learning (Bao and Intille, 2004; Ravi et al., 2005; Aggarwal
and Ryoo, 2011; Chen et al., 2012). Specifically, the annotations comprise the start and
end times (i.e., temporal boundaries) of gestures of interest and their corresponding labels.
Reference data sets are usually annotated by a small number of experts to be as accurate
as possible. However, the labeling process is extremely time-consuming: it may take up to
7-10 hours to annotate gestures in a 30-min video (Roggen et al., 2010). Moreover, it is
also costly to hire experts to annotate data corpora.

Crowdsourcing has been emerged recently to address these issues (Howe, 2006; Doan
et al., 2011). Crowdsourcing is defined as a model that outsources tasks which are tradition-
ally performed by experts to a crowd of ordinary people. Thus, crowdsourcing is promising
to reduce the cost and time of labeling. Recently, crowdsourcing has been exploited to get
labeling for training data sets for gesture recognition (Nguyen-Dinh et al., 2013c). However,
labels obtained from crowdsourcing are provided by low-commitment anonymous workers,
thus they are commonly unreliable and noisy (Sheng et al., 2008). In gesture annotation
from crowdsourcing, the challenge is to obtain labels matching ground truth, attaining both
correct labels and correct temporal boundaries.

Using multiple annotators for the same annotation task by watching videos or audios is a
popular strategy to get a good annotation from crowdsourcing (Yuen et al., 2011; Nguyen-
Dinh et al., 2013c). However, multiple annotators may not be applicable in some cases,
either due to the higher cost or because of some privacy concerns. This latter case occurs
when the annotation involves some personal context information, including for example
location or other sensitive data. Hence, the annotation is often provided and relied on the
crowdsourced user for his recorded data. Moreover, it is very difficult to ask the anonymous
low-commitment user to clean his annotation because it is time consuming and he may
not remember exactly what he has done. In these cases, the large presence of noise in the
training data annotation can degrade significantly the performance.

While other research is focusing on how to improve the quality of crowdsourced annota-
tions, we here point out the need for algorithms that can cope with the kinds of annotation
errors that will anyway remain. In this work, we show that our proposed template matching
methods (TMMs) based on the longest common subsequence algorithm (known as LCSS or
LCS in the literature) are suitable for online gesture recognition in a setting where training
data are affected significantly by labeling noise. Additionally, the work targets the recogni-
tion of gestures based on acceleration data recorded from only one accelerometer mounted
on the user’s arm. The reason to just use one sensor is that this setting will be the most
common one with smart watches in the close future. Recognizing gestures with just motion
data from one sensor is challenging due to the ambiguities in the sensor data, especially
with high percentage of null class (no gesture of interest).

1.1 Contributions

In this paper, we make the following contributions:

1. We discuss how gesture recognition systems can leverage crowdsourcing to collect
annotated data. We address the challenges that arise and then propose a taxonomy
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of annotation noise which occur in a crowdsourcing setting. We also give analysis on
annotation noise in the real crowdsourced annotated data set.

2. We propose SegmentedLCSS and WarpingLCSS as TMMs for online gesture recogni-
tion. These methods were first presented in our previous work (Nguyen-Dinh et al.,
2012) and have been shown to perform well in clean annotated gesture data sets both
in terms of computational complexity and accuracy. In this work, we show their
robustness to the labeling noise from crowdsourcing.

3. We compare the robustness of our gesture recognition methods against three base-
lines using two variations of dynamic time warping and support vector machines. The
algorithms are tested with annotations collected in real crowdsourcing scenarios as
well as the synthetic crowdsourced annotations in three data sets recorded from ac-
celerometers on arms. We also investigate the impact of different kinds of noises in
crowdsourced annotation on the performance of the gesture recognition methods.

4. We investigate the property of LCSS of being able to select clean templates, which
makes it suitable also as a filtering component to select good training examples despite
noisy annotations. This filter can be used in combination with other classifiers. We
show how inserting this filtering step improves the performance of SVMs and TMMs
based on dynamic time warping.

The rest of the paper is organized as follows. In Section 2, we first review existing work
in online gesture recognition and crowdsourcing. In Section 3, we discuss crowdsourcing
in gesture recognition and propose a taxonomy of annotation noise in gesture labeling by
crowdsourcing. Then, in Section 4, we present our proposed SegmentedLCSS and Warp-
ingLCSS methods. The experiments are described in Section 5. We present quantitative
results evaluating the robustness of our proposed methods against the baselines in Section
6. Finally, Section 7 concludes our work and gives some potential research directions.

2. Related Work

In this section we discuss related work in the fields of gesture recognition and crowdsourcing,
pointing out the lack of an analysis of how noise present in typical crowdsourced annotations
impacts gesture recognition algorithms.

2.1 Annotation Techniques

Supervised learning techniques require a set of annotated training samples to build gesture
models. Therefore, many annotation techniques have been proposed to collect annotated
data. There are offline annotation techniques which rely on video and audio recordings
(Roggen et al., 2010), subject self-report of activities at the end of the day (Van Laerhoven
et al., 2008). Online annotation (i.e., real-time) techniques perform the annotation during
execution of the activities, like experience sampling (Froehlich et al., 2007) which prompts
periodically to a user to ask information about his current activities, or direct annotation
in which users responsibly provide a label before an activity begins and indicate when the
activity ends (Rossi et al., 2012). There is a trade-off between accuracy of an annotation
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technique and the amount of time required for annotation (Stikic et al., 2011). For example,
offline annotation on video recordings by experts can provide accurate annotations, however
it is extremely time consuming (Roggen et al., 2010), and non-scalable to large number of
users. In contrast, the self-report of the subject may require less time but the accuracy
depends on the subject’s ability to recall activities. Therefore, most of the existing works
require video annotation by experts to obtain clean and correct annotated data sets (Roggen
et al., 2010) or provide a course to teach subjects carefully how they should record and
annotate their data correctly (Bao and Intille, 2004).

2.2 Crowdsourcing

Crowdsourcing services, like Amazon Mechanical Turk (AMT)1 and Crowdflower2, have
emerged recently as a new cheap labor pool to distribute annotation tasks to a large number
of workers (Yuen et al., 2011). Crowdsourcing tasks are performed by low-commitment
anonymous workers, thus acquired data is commonly unreliable and noisy (Sheng et al.,
2008). Therefore, the same task is often redundantly performed by multiple workers and
majority voting is a popular decision making method used to identify the correct answers
(Yuen et al., 2011). Moreover, in crowdsourcing, malicious workers often take advantage of
the verification difficulty (the ground truth is unknown) and submit low-quality answers.

Due to the error-prone nature of crowdsourcing, several strategies were proposed to
estimate the quality of workers, in order to reject low-performing and malicious workers.
Verifiable questions or pilot tasks for which the requester knows the correct answers is
a common empirical strategy to screen workers from crowdsourcing (Kittur et al., 2008;
Yuen et al., 2011). Another way to ensure quality is to check the agreement in annotations
among workers to detect non-serious workers (Nguyen-Dinh et al., 2013c). Dawid and
Skene (1979) proposed a theoretical model that used the redundancy in acquiring answers
(i.e., the same task is completed by multiple workers) to measure the labeling quality of
the workers. Recently, Raykar et al. (2010) proposed Bayesian versions of worker quality
inference. Ipeirotis et al. (2010) improved the method by separating spammers who provide
low-quality answers intentionally from biased workers who are careful but biased.

Recently, crowdsourcing has been exploited also in the field of activity recognition to
collect annotated training data sets (Rossi et al., 2012; Nguyen-Dinh et al., 2013a,b,c;
Lasecki et al., 2013). These works showed that crowdsourced data is erroneous, therefore,
filtering strategies such as multiple labelers and outlier removal should be used to reduce
labeling noise.

Although many strategies are used to reduce noise in crowdsourced data annotation,
there is no guarantee to have a perfect annotation, especially when using multiple labelers
can not be applied. Until now, the impact of the noisy annotations in crowdsourcing on
the training of gesture recognition methods was not investigated. Furthermore, the nature
of the noise that affects the annotations in a crowdsourcing scenario for gesture recognition
has not been analyzed yet. These two latter topics are subject of the present paper.

1. The home page for AMT is http://www.mturk.com.
2. The home page for Crowdflower is http://crowdflower.com.
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2.3 Online Gesture Recognition Methods

Signals from body-worn sensors belong to the category of time series data. Suitable machine
learning and pattern recognition techniques for online gesture recognition include Hidden
Markov Models (HMM) (Lee and Kim, 1999; Deng and Tsui, 2000; Junker et al., 2008;
Schlömer et al., 2008), template matching methods (TMM) using mostly dynamic time
warping—in short DTW (Ko et al., 2005; Stiefmeier et al., 2008; Hartmann and Link, 2010)
and support vector machines (Ravi et al., 2005; He et al., 2008; Wu et al., 2009).

HMMs are not appealing since a large amount of training data is required to get results
comparable to other TMMs and SVM. In Vogler and Metaxas (1999) for example, about
1300 instances for 22 classes (i.e., about 60 instances per class) are used to train the HMM,
whereas TMMs can work with as little as one training instance per class. The issue of
the amount of training data is mentioned also in Cooper et al. (2012), where the authors
state, referring to HMMs: “While they have been employed for sign recognition, they
have issues due to the large training requirements”. In Alon et al. (2009), a variation of
HMMs is selected but the parameters could not be learnt because of the scarcity of training
data: “We fix the transition probabilities to simplify the learning task, because we do not
have sufficient training data to learn more parameters”. HMMs remain nevertheless an
interesting approach for cases where a large data corpus is available, which is often the case
in the field of video-based gesture or sign language recognition, see for example Wilson and
Bobick (1999); Lee and Kim (1999); Keskin et al. (2011).

Segmented DTW (Ko et al., 2005; Hartmann and Link, 2010) performs online gesture
recognition by first buffering the streaming signals into an observation window. A test
segment is a sequence that is examined to classify whether it is an instance of a gesture
class. The start and end boundaries of a test segment can vary inside the window. A DTW
distance is computed between all templates which represents gesture classes and the test
segment, and the class of the closest template is eventually selected as label for the test
segment if the distance falls below a certain rejection threshold. As the sensor delivers a
new reading, the window is shifted by one sample and the process is repeated. Segmented
DTW is time consuming since DTW is recomputed to find the best boundaries for the test
segment inside the window and it is also recomputed every time the window shifts by one
sample. A nonsegmented DTW variation was proposed by Stiefmeier et al. (2008) to reuse
the computation of previous readings, recognize gestures and determine their boundaries
without segmenting the stream.

Along with DTW, the other commonly used similarity measure for matching two time
series is LCSS (Fu, 2011). In previous work (Nguyen-Dinh et al., 2012), we introduced two
variations of LCSS-based template matching for online gesture spotting and recognition.
We applied the methods to accelerometer data. These LCSS-based classifiers (Segment-
edLCSS and WarpingLCSS) proved to outperform DTW-based TMMs, both in terms of
computational complexity and accuracy (especially for data sets containing high variability
in gesture execution as shown in Nguyen-Dinh et al., 2012). Furthermore, our methods
were designed with the goal of being robust in case of noisy annotations. The validation of
this aspect is the main topic of the present article. The impact of the various kinds of noise
occurring in crowdsourced annotations on TMMs has not been investigated in previous
literature, to the best of our knowledge.
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In sign language recognition literature, we find two other works proposing the use of
LCSS as a classifier, applied to video data (Frolova et al., 2013; Stern et al., 2013). In
both cases, the methods use a sliding window to set temporal boundaries of a gesture inside
the window, similarly to our SegmentedLCSS. With our WarpingLCSS, this need of using
a window is removed, reducing the computational complexity. It is interesting to note
how Stern et al. (2013) states that “It can then be said that the MDSLCS algorithm can
outperform the HMM classifier for both pre-cut and streaming gestures”, which supports
the idea of using TMMs instead of HMMs to make best use of the available training data.
TMMs are competitive with HMMs also with respect to null-class rejection, meaning the
ability to spot a gesture within a continuous stream.

Some algorithms present in the literature rely on k-means or spatio-temporal clustering
to transform the raw signals into so-called “fenemes”, or subunits (Bauer and Karl-Friedrich,
2002; Fang et al., 2004), which allows to reduce the amount of training data, due to the fact
that more gestures can contain the same feneme, so that a critical mass can be achieved in
terms of amount of training data. We use a similar approach based on k-means clustering
to find a quantization of the signals which gives good results.

A large body of literature focuses on a recognition performed on video data, for example
for the recognition of sign language (see for example Wilson and Bobick, 1999; Bowden et al.,
2004; Alon et al., 2009; Keskin et al., 2011). However, gesture recognition from wearable
sensors, e.g., one accelerometer at the wrist, would allow to scale up the recognition system
to many users immediately because the system can be deployed easily wherever a user goes
with the motion sensor mounted on hand. It does not need any other infrastructure like
cameras, which do not follow us everywhere in practice. Of the video-based approaches,
the one of Hao and Shibata (2009) captures the videos directly by a moving camera, which
could be easily wearable. However, from the practical point of view, such an option has
some limitations: first, such a device would be quite costly; second, processing signals from
a camera is more computationally intensive than processing those from a motion sensor;
third, capturing video data is much more intrusive due to privacy concerns.

2.4 Robustness against Annotation Noise

The impact of noise in annotations on the performance of classifiers has been investigated
in the literature (Angluin and Laird, 1988; Amini and Gallinari, 2005; Gayar et al., 2006;
Lawrence and Schölkopf, 2001; Stikic et al., 2011). The above cited studies do not concern
template matching methods. Moreover, they conducted experiments on synthetic noisy
data. Additionally, under “annotation noise”, or “class noise”, only the case of having
wrong labels (i.e., labels are substituted as other classes) was considered. Noise in gestures
annotation can nevertheless also mean having labelings with temporal boundaries differing
from the ground truth, e.g., a gesture marked as starting earlier and ending later than the
ground truth. These other kinds of noise were neglected until now, and they are investigated
in this paper in both synthetic and real crowdsourced annotated data.

3. Crowdsourcing in Gesture Recognition

In this section we discuss how gesture recognition systems can leverage crowdsourcing. We
outline the challenges that arise and provide a taxonomy of the annotation noises, i.e., the
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mistakes that affect crowdsourced annotations. We then measure these annotation noises
in a real crowdsourced data set.

Gesture recognition systems can take advantages of crowdsourcing in three ways:

1. Crowdsourcing can be used to acquire annotations for an existing gesture data set
by asking crowdsourced workers to watch video footage synchronized with the sensor
data (Nguyen-Dinh et al., 2013c; Lasecki et al., 2013).

2. Berchtold et al. (2010) proposed a system that asks users to both record and anno-
tate activities. This system can be deployed in a crowdsourcing manner. Users can
sporadically select gestures they want to perform and record them with a device (e.g,
smart watch, smart phone, etc.). This way, multiple annotated gestures provided by
a large user base could contribute to a central repository which grows in time. The
data set would capture the variability in gesture execution due to the different people
contributing.

3. A more obtrusive crowdsourcing task would ask users to record and annotate as many
activities and gestures as possible over a long time span (e.g., weeks). This type of
crowdsourced data collection would be useful to gather data for long-term health care
monitoring systems.

In any of the previous scenarios, the outcome would be an annotated training data set,
with which algorithms can be trained. The benefit of the crowdsourcing setting is that a
large data set can be collected quickly, if the crowdsourced user base is large enough.

3.1 Taxonomy of Sources of Annotation Noises

The major challenge in any of the settings outlined above is the quality of the labels ob-
tained, which are unreliable for many reasons. We define the following taxonomy of anno-
tation noises along with examples:

• Some gestures or activities can be understood differently with respect to when they
actually start and end. The temporal boundaries of the gesture drink can be set from
the time when the user picks up a glass to when he or she puts it back to the table.
Another variation is that the gesture is annotated only when the person is actually
drinking. Both annotations are valid, but this uncertainty of temporal boundaries has
an impact on the algorithms that will be trained with the collected annotated data.
However, even when we assume the definition of gesture boundary is given, the errors
in gesture boundary still happen due to the carelessness of crowdsourced labelers. We
call this form of noise boundary jitter. We define boundary jitter as the presence of a
shift in the annotation boundaries, while the label matches the actual gesture (ground
truth).

• Some instances of gestures can be wrongly annotated or missed altogether. This can
occur for example if the video footage does not have enough resolution to spot subtle
manipulative gestures, or more simply if the labeler does not annotate all gestures
that are occurring. We use the term label noise to denote instances where gestures
are associated to wrong labels or to no label at all.
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We further categorize boundary jitter into four error types, namely extend, shrink, shift
left and shift right according to how the temporal boundary of a gesture is shifted compared
to the ground truth. Figure 1a illustrates the subclasses of boundary jitter.

Drink

Drink

Drink

Drink

Drink

Correct start Correct end

GT

Extend

Shrink

Shift left

Shift right

N

Drink

Null

Open Door

Drink

GT

Delete

Substitute

Insert

Null

esioN lebaL )brettiJ yradnuoB )a

∆s ∆e

Figure 1: Illustrations of boundary jitter and label noise in crowdsourcing annotation. GT
stands for ground truth. The blue dash-dotted lines indicate the correct boundary
of a gesture.

• Extend : The starting boundary is set earlier and the ending boundary is set later. The
information of the gesture instance is preserved, but noise is attached to the gesture
instance in the form of samples which belong actually to another gesture class or to
no class of interest at all (i.e., null class).

• Shrink : The starting boundary is set later and the ending boundary is set earlier. In
this case, some information of the gesture instance is missed.

• Shift left : Both starting and ending boundaries are set earlier. In this case, some
information of the gesture instance is missed and noise is added at the end of the
gesture.

• Shift right : Both starting and ending boundaries are set later. In this case, some
information of the gesture instance is missed and noise is added at the beginning of
the gesture.

We also categorize label noise into three error types, namely delete, substitute and insert.

• Delete: A gesture instance is not annotated. It is automatically marked as null class.
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• Substitute: A gesture instance is labeled as another gesture class.

• Insert : A gesture instance is labeled where no gesture of interest actually occurs.

Figure 1b illustrates the subclasses of label noise. The subclasses of label noise are similar
to the definition of classification errors evaluated in performance metrics proposed by Ward
et al. (2011). However, in this work, we consider those errors existing in annotations of
training data set.

3.2 Annotation Noise Parameters

Along with the taxonomy provided in the previous section, we here list the parameters that
quantify the amount of noise in the annotation. Given a gesture instance, let start and
end be the start time and end time of the crowdsourced annotation. Let GT start and
GT end be the corresponding ground truth boundaries. Let N denote the time length of
the gesture (N = |GT end−GT start|). We define ∆s as the time difference between the
crowdsourced start time and the correct start time (∆s = |start−GT start|). Similarly,
we define ∆e as the time difference between the crowdsourced end time and the correct
end time (∆e = |end−GT end|). ∆s and ∆e are illustrated in Figure 1a for the different
boundary jitter noises.

For boundary jitter and for the corresponding subclasses, we define a jitter level to
quantify the proportion of time that is wrongly annotated in a gesture due to the jitter.
The jitter level also indicates how much the boundaries stray from the correct annotation.
These jitter parameters are calculated as follows:

extend level = proportion of time noisy samples added

= ∆s+∆e
N .

shrink level = proportion of time good samples missed

= ∆s+∆e
N .

shift-left level = proportion of time noisy samples added and good samples missed / 2

= ∆s+∆e
2∗N .

shift-right level = proportion of time noisy samples added and good samples missed / 2

= ∆s+∆e
2∗N .

3.3 Annotation Noise Statistics from A Real Crowdsourcing Experiment

To give a flavor of typical values encountered for the annotation noise levels, we report
these levels measured in a real crowdsourcing experiment that we conducted in a previous
study (Nguyen-Dinh et al., 2013c). In the crowdsourcing experiment we used video footage
belonging to the Opportunity data set (Roggen et al., 2010), which contains gestures of
normal daily routines (e.g., drink, open or close doors). We showed each short video to
ten workers in Amazon Mechanical Turk (AMT), described the task and collected their

3195



Nguyen-Dinh, Calatroni and Tröster

annotations. The AMT labelers must annotate the start, end boundaries and the label of
all occurrences of gestures of interest in the videos. We applied two strategies to detect and
filter non-serious labelers and erroneous labeling (Nguyen-Dinh et al., 2013c). Individual
filtering checks the correctness in the answers of each labeler for qualification questions
whose answers are known in advance. Collaborative filtering checks the agreement in anno-
tations among workers to detect non-serious labelers. Specifically, the labeler X who has a
disagreement score d(X) = Annotation times of X disagree with majority

Total annotation times of X > threshold is a spammer.
We chose a threshold = 0.3, it means if the disagreement score d ≥ 0.3 (i.e., less than
70% of annotation of a labeler agrees with the majority), the labeler is a spammer and
his annotations are removed. The collaborative filtering is illustrated in Figure 2. After
filtering, the majority voting among qualified annotations is performed to generate a final
crowdsourced gesture annotation. A more detail on the crowdsourcing experiment is given
in Nguyen-Dinh et al. (2013c).

Drink (D)

Drink

Drink

Eat (E)

Close Door (CD)

D D D E EMajority Voting

0%

Disagreement Score d

5%

1%

100%

90%

Eat

Eat

Drink

D E D DE

snoitatonnAsrelebaL

Time

Figure 2: An illustration of the collaborative filtering technique to calculate the disagree-
ment score of each labeler against the majority. The last two labelers are spam-
mers and then their annotations will be removed.

Each video footage of the Opportunity data set was already examined and annotated
carefully by one expert (Roggen et al., 2010) and the expert’s annotations are used as a
ground truth to evaluate our crowdsourced annotation. Here we report the sample-based
accuracy (i.e., fraction of correctly labeled samples compared to expert’s annotation) for
a one-labeler annotation scenario where only one crowdsourced labeler is selected, and for
a multiple-labeler scenario where the filterings and majority voting are applied for the ten
workers. For a one-labeler annotation, the sample-based accuracy gets as low as 55%. In
the multiple-labeler annotation, the accuracy reaches 80%. A breakdown of the types of
annotation mistakes, according to the taxonomy introduced in Section 3.1, is shown in
Figure 3a. The values for label noise and for the boundary jitter are shown for one and
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for multiple labelers. In the scenario of only one labeler, about 52% of the instances are
affected by label noises, comprising mostly substitute and delete errors. In the multiple-
labeler scenario, label noise decreases to 18%. In Figure 3b, we give the average, the min
and the max values of jitter level of boundary jitters for one and for multiple labelers. On
average, jitter levels ranges from 27% to 60%. However, there are good annotated instances
with very low jitter levels (only 2%).
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Figure 3: Analysis of crowdsourcing annotation from AMT. Blue lines in the figure a sep-
arate boundary jitter part and label noise part. Black lines in the figure b show
the minimum and maximum level of jitter in each type of noise.

It can be seen that requesting multiple labelers for an annotation task can reduce labeling
errors. However, the result from a one-labeler annotation represents for the scenarios where
multiple labelers cannot be applied. Our experiment belongs to the first crowdsourcing
category described at the beginning of the present section, i.e., crowdsourcing labeling of
data which were previously recorded. The amount and distribution of annotation noises
will change depending on the crowdsourcing scenario and on the kind of gesture data, but
there is no reason to think that some scenarios will achieve much lower noise levels. On the
contrary, in real-time annotation (i.e., providing labels while recording data) , it is more
likely that the level of noise increases: more gestures could be forgotten and others would be
labeled only after they really occurred, leading to imprecise time boundaries. We therefore
argue that annotation noise is a fact that cannot be completely removed and that calls the
attention of robust methods when designing gesture recognition systems which use noisy
crowdsourced annotations.
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In the next sections we present our SegmentedLCSS and WarpingLCSS TMMs which
are designed with the aim of being robust to annotation noise for gesture recognition.

4. SegmentedLCSS and WarpingLCSS Gesture Recognition Methods

In this section, we describe in details our proposed methods, Segmented LCSS and Warp-
ingLCSS for online gesture recognition using signals obtained from body-worn sensors.

The methods proposed to recognize gestures are based on template matching (TM). The
training phase uses a set of labeled signals to train the gesture recognition algorithm. In the
training phase, the sensor signals are quantized and converted into sequences of symbols
(strings); furthermore, one template is created for each gesture of interest. When deploying
the recognition algorithm, the quantization scheme is again applied to the streaming signals.
The strings obtained are then compared with the learned templates by either using the
longest common subsequence (LCSS) algorithm in segmented windows (SegmentedLCSS)
or using our faster variant of LCSS (namely WarpingLCSS). Figure 4 shows the data flow
through different processing components in the training phase and the recognition phase of
our proposed system.

The rationale using LCSS is that it gives a measure of similarity between templates
and signals to be recognized. Moreover, LCSS is robust to the high variability in gesture
execution as shown in our previous work (Nguyen-Dinh et al., 2012) because LCSS can
ignore the dissimilarity and accumulate the similarity between two gesture instances.

In the following, we first briefly review LCSS, then we describe the different processing
components of the recognition system in Figure 4.

4.1 The Longest Common Subsequence Algorithm (LCSS)

Let sA and sB be two strings comprising lA and lB symbols respectively. Let s(i) denote
the i-th symbol within a string s. For each pair of positions 0 ≤ i ≤ lA and 0 ≤ j ≤ lB
within the strings, we call LCSS(A,B)(i, j) the length of the longest symbol subsequence
in common between the first i symbols of sA and the first j symbols of sB. The LCSS
between the complete strings is then denoted as L(A,B) or, when the strings are clear from
the context, just with L.

L(A,B)(i, j) =



0 , if i = 0 or j = 0

L(A,B)(i− 1, j − 1) + 1 , if sA(i) = sB(j)

max

{
L(A,B)(i− 1, j)

L(A,B)(i, j − 1)
, otherwise.

(1)

Let ΩA and ΩB be the sets of indices corresponding to the longest subsequences of sA and

sB that are matching. The sets ΩA = ω
(0)
A . . . ω

(L−1)
A and ΩB = ω

(0)
B . . . ω

(L−1)
B contain then

L(A,B) indices. L(A,B) and the corresponding matching subsequences, hence the sets ΩA

and ΩB, can be found using dynamic programming (see Cormen et al., 2001).
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Figure 4: Data processing flow of the proposed LCSS-based template matching methods
for gesture recognition.

4.2 Training Phase: Quantization Step

Let n denote the number of signal channels provided by the body-worn sensors (e.g., n = 3
for one triaxial accelerometer). Let N be the number of available samples. Let xi be
the time series corresponding to the i-th signal channel, with 1 ≤ i ≤ n and xi(t) be
the value of the time series xi at time t, with 1 ≤ t ≤ N . Let the n-dimensional vector
x(t) = [x1(t) . . . xn(t)] denote one sample from all channels at time t.

The quantization step converts the vectors x(t) into a sequence of symbols (string) s(t).
This is done by performing k-means clustering on the set of n-dimensional vectors x(t),
∀t, 1 ≤ t ≤ N . The choice of k is performed through cross-validation or empirically. For the
gesture data sets used in this paper, k = 20 provided a good tradeoff between complexity (k-
means’ complexity scales linearly with k) and performance. The output of k-means is a set
of k n-dimensional cluster centers, ζ0 . . . ζk−1, to which k symbols α0 . . . αk−1 are assigned.
The quantization procedure then operates on each sample x(t) to obtain the symbols s(t)
as follows:

s(t) = αi|i = argmin
i
||x(t)− ζi||2 .

Let us denote with d(αl, αm) the distance between two symbols, given by the corre-
spondent distance between their assigned cluster centers, normalized to fall in the interval
[0, 1].
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d(αi, αj) =
||ζi − ζj||2

maxi,j ||ζi − ζj||2
. (2)

4.3 Training Phase: Template Construction

For each labeled gesture in the training data set, a corresponding string is derived used the

quantization described in Section 4.2. Denote with s
(c)
i the i-th string belonging to class c.

The template s̄(c) that represents a gesture class c is then chosen as the string that has the
highest average LCSS to all other strings of the same class.

s̄(c) = argmax
s
(c)
i

∑
j 6=i

L
(s

(c)
i ,s

(c)
j )

.

4.4 Training Phase: Calculation of Rejection Thresholds

In order to be able to reject signals not belonging to a gesture class upon deployment, a
threshold needs to be calculated in the training phase. We define one rejection threshold εc
for each class c. Let µ(c) and and σ(c) be the mean and the standard deviation, respectively,
of LCSS values between the template of a class c and any string belonging to the same class.
We calculate the rejection threshold to be below µ(c) by some standard deviations.

εc = µ(c) − h ∗ σ(c),

with h = 0,1,2,...
The rationale is that the good instances belonging to a class should have the similarity

with the template around the mean value. εc is also chosen to be robust with the existence
of noisy training instances in gesture class. In our experiments, h = 1 provided a good
performance.

4.5 Recognition Phase: Quantization Step

In the online recognition, streaming data from a body-worn sensor are quantized to the k-
means centroids (i.e., symbols) identified during training, then come to template matching
module (TM) which uses either Segmented LCSS or WarpingLCSS to recognize gestures.

4.6 Recognition Phase: SegmentedLCSS

In the SegmentedLCSS approach, the sensor readings x(t) are first quantized into a string s
through the quantization step described in Section 4.5. For each gesture class c, the string s
is then segmented into a sliding observation window OWc. The length of OWc is chosen as
the length of the template s̄(c). A substring of s in OWc is denoted as scOW . Each substring
is compared to the template s̄(c) for class c.

The LCSS algorithm is used to calculate L(scOW ,s̄(c)) and the set Ωs of reference indices
of the symbols of scOW in the string s matching with symbols in the template. Because
the LCSS algorithm can find matching points, the boundaries of the detected gesture can

be decided easily. Specifically, if L(scOW ,s̄(c)) ≥ εc, the symbols ranging from s(ω
(0)
s ) and

sc(ω
(L−1)
s ) are marked as belonging to class c.
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In order to reduce the computational complexity, the next observation window is started

at the index ω
(0)
s of the first matching symbol of the previous observation window. In case

the set Ωs is empty, the next observation window is shifted quickly by the window length.
Figure 5 illustrates the SegmentedLCSS.

Template

Motion 
Sequence

BCAABBD

...CADBCDDDABDDD...

LCSS = 4

BCAABBD

...CADBCDDDABDDD...

LCSS = 5

OWFirst
Match

New OW, starting at first match

(a) (b)

Figure 5: The SegmentedLCSS recognition process. The shaded part represents the obser-
vation window OWc. For each class c, the LCSS is computed between the gesture
template s̄(c) and the quantized signal in the window. If the LCSS exceeds the
rejection threshold, the samples between the first and the last matching sym-
bols are assigned to class c. The next observation window will start at the first
matched point of the previous calculation as illustrated in Figure b.

4.6.1 Computational Complexity of SegmentedLCSS

Let Tc denote the length of a gesture template of class c (|OWc| = Tc). The worst case
computational complexity of SegmentedLCSS occurs when new observation windows are
shifted by just one sample compared to the preceding ones. In this case, for each class
c, the time complexity of SegmentedLCSS is O(T 2

c ). The overall time complexity is then

O(C ∗ T 2
), where C is the number of classes and T stands for the average template length

across the classes. The memory usage in SegmentedLCSS is at most O(T 2), where T is the
length of the longest template.

4.7 Recognition Phase: WarpingLCSS

In the SegmentedLCSS, the LCSS must be recomputed every time the observation window
shifts, in order to find the beginning and end of each gesture. WarpingLCSS is our variant
of LCSS that can find the gesture boundaries without the need of sliding windows, thereby
reducing the computational complexity.

In WarpingLCSS, after each new sample of x(t) is available, the string s is updated by
appending the symbol obtained through the quantization of the sample and the LCSS value
is recomputed accordingly, relying on the previous values.

Given the gesture template for class c, s̄(c), the WarpingLCSS scoreW(s̄(c),s)(i, j) between

the first i symbols of the template s̄(c) and the first j symbols of the string s is obtained
through a modified version of Equation 1 as follows.
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W(s̄(c),s)(i, j) =



0 , if i = 0 or j = 0

W(s̄(c),s)(i− 1, j − 1) + 1 , if s̄(c)(i) = s(j)

max


W(s̄(c),s)(i− 1, j − 1)− p ∗ d(s̄(c)(i), s(j))

W(s̄(c),s)(i− 1, j)− p ∗ d(s̄(c)(i), s̄(c)(i− 1))

W(s̄(c),s)(i, j − 1)− p ∗ d(s(j), s(j − 1))

, otherwise,

(3)

where p is a penalty parameter of the dissimilarity and d(·, ·) is the distance between two
symbols as defined in Equation 2. The rationale of the WarpingLCSS is the following: if
the WarpingLCSS algorithm encounters the same symbol in a template and in the current
string, W is increased by a reward of 1. Otherwise, W is decreased by a penalty which
depends on the parameter p and on the distance between the symbols. Furthermore, if the
string s is “warped”, that is, it contains contiguous repetitions of a symbol due to a slower
execution of a gesture, the penalty is counted only once.

The algorithm starts with an empty string s and W (0, 0) = 0. As new symbols are
appended, W is updated according to Equation 3. If a gesture of a class is performed, it
symbols matching the corresponding template are found and W grows, until reaching a local
maximum and eventually decreasing again, as soon as the gesture is over. A gesture of class
c is recognized for each local maximum of W that also exceeds the rejection threshold εc.
The end point of the gesture is set to the local maximum itself. The start point is found by
tracing back the matching path. The LCSS between the template and the matched gesture
is accumulated during the trace-back process if necessary (i.e., when a gesture is spotted as
belonging to multiple classes) to make a decision (discussed in next section).

When gestures differ from those encoded by the stored templates, W drops significantly
due to the penalty terms. The value of the penalty parameter p depends on the application
and can be chosen by cross-validation to maximize the recognition accuracy.

Figure 6 illustrates an example of behavior of W . Figure 7 shows a close-up of W where
a gesture was matched to a template. It also shows how the WarpingLCSS detects the
temporal boundaries of matched gestures.

4.7.1 Computational Complexity of WarpingLCSS

WarpingLCSS only needs to update the value of W for each new sample. Thus, the time
complexity of WarpingLCSS is O(T ). WarpingLCSS has a linear complexity in T compared
to SegmentedLCSS, whose complexity grows quadratically in T . The WarpingLCSS main-
tains at most O(T 2) memory for the need to trace back the starting boundary of detected
gestures.

4.8 Decision Making and Solving Conflicts

The incoming streaming string is concurrently ”compared” with templates of all concerned
gesture classes in TM module. If a gesture is spotted as belonging to multiple classes (i.e.,
boundaries of spotted instances are overlapping), the decision making module (DM) will
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Figure 6: WarpingLCSS between a template of the gesture “open door” (OD) and a stream-
ing string s, p = 3. The value W is updated for each new sample. The line on the
top shows the ground truth. The small circles show gesture detection at spotting
time.
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Figure 7: Close-up of the first detected “open door” gesture (OD) in the string s (see Figure
6). The local maximum (LM) marks the end of the gesture, while the start is
traced back through the matching symbols.

resolve conflicts (as discussed below) by deciding which class is the best match. If a gesture
is classified into only one gesture class, the DM will output the class. Otherwise, if no
gesture class is spotted, the DM will output null.
Resolving spotting conflicts: We define the normalized similarity between two strings A and
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B as NormSim(A,B) = LCSS(A,B)/max(‖A‖, ‖B‖), with ‖A‖ and ‖B‖ are the lengths of
the strings A and B, respectively. The NormSim between the template and the matched
gesture is output to the decision making module (DM). The class with highest NormSim is
chosen as the best match. This process is the same for both SegmentedLCSS and Warp-
ingLCSS.

5. Experiments

To analyze the effect of annotation noise in terms of performance of gesture recognition
algorithms, we compare our SegmentedLCSS and WarpingLCSS TMMs against state-of-
the-art recognition methods to assess their robustness. We first present three gesture data
sets used to evaluate the recognition systems. We then describe how synthetic crowdsourced
annotations are obtained. Finally, we discuss baseline methods and evaluation metrics.

5.1 Description of Data Sets

We used three data sets including various gestures which have been labeled manually by
experts. The experts’ annotation is the ground truth of the data sets. The data sets used
also include null class, data which do not correspond to any of the gestures of interest.
The list of gestures of these data sets are shown in Table 1. In each data set, we use a 3D
accelerometer at a subject’ dominant (right) lower arm for the evaluations (30Hz sampling
rate). Following, we describe briefly each data set3.

HCI Gestures

Circle Triangle Square Infinity Slider

Their Speculars Null

Opportunity Gestures

Null clean Table open Drawer 1-2-3

close Drawer 1-2-3 open Door 1-2 close Door 1-2

open Fridge close Fridge open Dishwasher

close Dishwasher drink Cup toggle Switch

Skoda Gestures

write on notepad check gaps on the front door open hood close hood

open left front door close left front door close both left door check trunk gaps

check steering wheel open and close trunk Null

Table 1: Gestures in Opportunity, Skoda, and HCI data sets.

5.1.1 Skoda

The Skoda data set (Zappi et al., 2008) contains 10 manipulative gestures performed in a
car maintenance scenario by one subject. The null class takes 23%. Each gesture class has
about 70 instances. This data set is characterized as low variant in execution because the
subject performed carefully each manipulative gesture in the same manner.

3. Skoda and Opportunity data sets can be downloaded from http://www.wearable.ethz.ch/resources/

Dataset.
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5.1.2 HCI

The HCI data set (Banos et al., 2012) contains 10 gestures executed by a single person.
The gestures are geometric shapes executed with the arm in the vertical plane. This data
set has a low variability in the execution of gestures and well-defined labeling. The null
class takes 57% and each gesture class has about 50 instances.

5.1.3 Opportunity

The Opportunity data set (Roggen et al., 2010) is a rich multi-modal data set collected in a
naturalistic environment akin to an apartment, where users execute 16 daily gestures. The
data set is characterized by a predominance of null class (37%) and a large variability in
the execution of the daily activities. Each gesture class has 20 instances excepts ”Drink
Cup” and ”Toggle Switch” each having 40 instances. Note that in Opportunity data set,
there are three drawers at different heights which makes the recognition more challenging.

5.2 Experiments on Synthesized Crowdsourced Annotation

To analyze how much noise in annotation the gesture recognition methods can tolerate, we
conduct experiments with synthesized annotations. We modify clean annotations from the
three data sets described above by emulating label noise and boundary jitter as discussed in
the taxonomy in Section 3.1. In order to evaluate the effect of the different types of noise,
we run simulations for each type of noise separately.

5.2.1 Label Noise Simulation

In the label noise simulation, we assume the label boundaries are perfect. Let α be the label
noise percentage in each class. This means that α percent of the instances are selected and
their labels are randomly flipped to other classes (including null class). Consequently, each
gesture class will have (1− α) percent of clean instances.

5.2.2 Boundary Jitter Simulation

We run different simulations for different error types in boundary jitter. We assume that
all gesture instances get affected from boundary jitter. Let β be the jitter level defined in
Section 3.2. In the extend simulation, each gesture instance will have an extend level of
β, with boundaries extended at both ends equally (β/2 per side). Similarly, in the shrink
simulation, each gesture instance will be shrunk at both ends equally by β/2. In the shift
left and shift right simulations, each gesture instance is shifted to the left or to the right
respectively by β compared to the correct starting point.

We assume that all gesture instances have the same jitter level β. This assumption is
not realistic however it can show how much jitter level in the training data set the spotting
methods can tolerate given the same style of annotation (for example, a labeler always
extends all his annotation 20% level). For a more realistic scenario where jitter levels vary
from one instance to another instance, the experiment on the real crowdsourced annotation
is presented in Section 6.2.
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5.3 Evaluation with Baseline Methods

To investigate the effect of noisy crowdsourced data sets on gesture recognition, we compare
the performance of recognition methods trained with ground truth annotations against
those trained with crowdsourced annotations. With crowdsourcing-based experiments, the
recognition system is trained on crowdsourced annotations and tested on clean data (i.e.,
annotated by experts). For each data set, we perform a 5-fold cross-validation.

We compare our proposed LCSS-based TMMs with three baselines approaches: the Seg-
mented DTW (Ko et al., 2005; Hartmann and Link, 2010), Nonsegmented DTW (Stiefmeier
et al., 2008) and support vector machines (SVM). For all TMM methods, we use the same
strategy to select templates, i.e., the maximum similarity average for our LCSS-based meth-
ods and the minimum distance average for DTW-based ones. They all have the same quan-
tization preprocessing step as presented in Section 4.2. The rejection thresholds are selected
as discussed in Section 4.4. For SegmentedLCSS and Segmented DTW, the window length
is chosen as the template length.

For SVM, the signals are passed through a sliding window, with 50% overlap. For each
window, mean and variance of the signals are calculated and the obtained feature vectors
are fed into a SVM classifier. We use RBF kernels and the two RBF parameters are selected
by using cross-validation. In this work, we use the LIBSVM library (Chang and Lin, 2011)
for training SVM.

5.3.1 Complexity of Baseline Methods

Segmented DTW belongs, like Segmented LCSS, to the category of sliding window based
template matching algorithms. Therefore, roughly, they have the same computational cost.
However, unlike SegmentedLCSS, in SegmentedDTW the boundaries of the gestures must
be swept exhaustively in the observation window and DTW must be recomputed for each
choice to find the best match (Ko et al., 2005; Hartmann and Link, 2010). Therefore, when
one new sample arrives, the complexity of the SegmentedDTW is O(T 3) in the worst case.
Meanwhile, in SegmentedLCSS the boundary of gesture inside the window can be found
easily via matching points and the observation window is shifted to the first matched point
in the previous recognition process instead of being shifted forward by only one sample.
Thus, SegmentedLCSS has one order of magnitude lower than SegmentedDTW.

Nonsegmented DTW and WarpingLCSS determine gesture occurrences without seg-
menting the stream. Therefore, they achieve the same computational cost and they are
faster than SegmentedLCSS by one order of magnitude.

In the recognition phase, the running time of SVM grows linearly with the length of
the window. Hence, SVM has roughly the same computation cost as WarpingLCSS in the
recognition phase.

5.4 Evaluation Metrics

The distribution of the gesture classes may be highly unbalanced in real-life data sets.
Especially, in our data sets, null class is predominant. Therefore, we assess the performance
of gesture recognition with the weighted average F1 score. The weighted average F1 score is
the sum of the F1 scores of all classes, each weighted according to the proportion of samples
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of that particular class. Specifically,

F1score =
∑
c

2 ∗ wc
precisionc ∗ recallc
precisionc + recallc

,

where c is the class index and wc is the proportion of samples of class c; precisionc is the
proportion of samples of class c predicted correctly over the total samples predicted as class
c; recallc is the proportion of samples of class c predicted correctly over the total samples
of class c.

We present two ways of computing the F1 score, either including (F1-Null) or excluding
the null class (F1-NoNull). F1-NoNull does not consider the null class, but still takes into
account false predictions of gesture samples or instances misclassified as null class. The
recognition system that has high values of both F1-Null and F1-NoNull predicts well both
gesture classes and null class.

6. Results and Discussion

In this section we present and discuss the results of the experiments conducted with syn-
thesized and real crowdsourced annotations.

6.1 Results on Synthesized Crowdsourced Annotations

We first present the results with synthesized crowdsourced annotations, sweeping the noise
levels as described in Section 5. The results show that F1-Null and F1-NoNull have a similar
trend of performance as the noise levels increase, therefore we report F1-Null score only.

6.1.1 Label Noise Simulation

Figure 8 shows the results of label noise simulations on the three data sets. WarpingLCSS
and SegmentedLCSS are more robust against label noise compared to SVM and DTW-
based methods. The performance of LCSS-based methods is stable until a label noise
percentage (α) in each class exceeding 70% in Opportunity and HCI data sets and 50%
in the Skoda data set. On average, WarpingLCSS outperforms SVM by 22% F1-Null and
outperforms DTW-based methods by 36% F1-Null in presence of 60% mislabeled instances.
SegmentedLCSS yields similar performance as WarpingLCSS.

SVM performs worse than our LCSS-based methods when α increases. As more label
substitutions are added to each class, SVM gets more confused and its performance decreases
quickly. The degradation of SVM in performance is expected, since each instance contributes
equally to the model building. Hence, wrongly labeled instances can induce the model to
choose incorrect support vectors, which severely degrades the performance. Moreover, since
the SVM method models null class explicitly, it is very sensitive to delete noise. Meanwhile,
TMMs examine patterns of gesture classes and ignore null class in the training phase, thus,
TMMs are not influenced with the delete noise at all.

The reason why LCSS-based TMMs outperform the ones based on DTW lies in the
distance metrics used when selecting the template for each class. Each template is chosen
as the one with the highest average similarity to the other instances belonging to the same
class. This translates into choosing respectively highest average LCSS and lowest average
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DTW distance. While LCSS values between a template and an instance of the same class
are bounded between 0 and the length of the template, DTW can grow indefinitely. For
this reason, when calculating average DTW distances, mislabeled instances bias the average
towards high values, regardless whether correctly labeled instances have a low DTW dis-
tance. Consequently, DTW-based TMMs are more likely to pick wrong templates, leading
to poor performance when α increases.

The difference between LCSS and DTW in choosing templates can be illustrated with a
toy-example. Consider three instances A1, A2 and B which are all labeled as belonging to
class cA but let B be mislabeled, that is, B actually belongs to class cB. To simplify matters,
let us assume LCSS(A1, A2) = 1, LCSS(A1, B) = 0 and LCSS(A2, B) = 0. Similarly, let
us assume DTW (A1, A2) = 0, DTW (A1, B) =∞ and DTW (A2, B) =∞. With LCSS, A1

would have an average similarity of .5 to A2 and B; A2 would have an average similarity of
.5 to A1 and B; B would have an average similarity of 0 to A1 and A2. Thus, LCSS would
pick either A1 or A2 as template for the class cA: both choices would be reasonable. With
DTW, A1 would have an average distance of ∞ to A2 and B; A2 would have an average
distance of ∞ to A1 and B; B would have an average distance of ∞ to A1 and A2. In
this case, the algorithm would not prefer A1 or A2 over B, which can lead to choosing as
template the mislabeled instance B to represent class cA. Of course in practice the values
of the DTW distance are not infinity, in fact the degradation of DTW-based approaches is
not occurring already for a small amount of label noise.

The illustration explains the capability of our LCSS-based methods to pick a good
template among noisy instances for a gesture class as long as the number of good instances
in a gesture class is still predominant.
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Figure 8: Performance of label noise simulation for the three data sets.

By analyzing the starting points of the curves of Figure 8, obtained with α = 0 (no
noise), we can conclude that our LCSS-based methods have a similar or better performance
compared to the baselines also for the case of clean training data sets.

6.1.2 Extend Jitter Simulation

When temporal boundaries are extended, data belonging to the null class (before and after
the gesture) are labeled as belonging to the gesture class. This impacts SVM and TMMs
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differently. In the case of SVM, the null class is modeled explicitly. The noisy feature
vectors extracted from extended parts are added into the feature space of each gesture
class. Besides that, the data really belonging to the gesture are preserved, thus the models
of gesture classes maintain good feature spaces correctly. Therefore, the performance of
SVM depends on how much the noisy feature vectors added into the model of each gesture
class. Accordingly, it relies on the levels of variability of the signals belonging to the null
class. If the variability of the signals belong to the null class is low, even when the extend
level is large, the noisy feature vectors in each gesture class does not grow, leading to the
stable of SVM performance. In the converse case, the noisy feature vectors in each gesture
class will explode as the extend level increases, causing the decrease in the performance of
SVM.

For TMMs instead the null class is recognized in the test data by means of the rejection
threshold εc and no template is built for it. Thus, if symbols belonging to the null class are
present in a test sequence, these will be matched to the symbols present in the extended
gesture instances, inducing the TMMs to recognize gestures instead of null class.

This is confirmed by an analysis of the results, as shown in Figure 9. TMMs can tolerate
up to about 40% extend level in the Opportunity and HCI data sets and about 10% extend
level in the Skoda data set. As the extend level is high, the performance of SVM is stable
in HCI and Skoda data sets, but degrades quickly in Opportunity data set. As explained
above, the reason of the differences among data sets lie in the different levels of variability
of the signals belonging to the null class in the different data sets.
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Figure 9: Performance of extend jitter simulation.

6.1.3 Shrink Jitter Simulation

When having a shrink jitter noise, the effect is that the methods lose information about the
gesture data, since only parts of the gestures are labeled. This has a stronger effect in SVM,
since the model is corrupted. For TMMs, subsequences are matched, with the effect that
shrunk instances still contain information in form of shorter subsequences that can still be
matched to the test data. This is confirmed by the results, shown in Figure 10.

Our proposed LCSS-based methods achieve the best performance in the three data sets.
All methods can tolerate about 30% shrink level before a degradation compared to training
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Figure 10: Performance of shrink jitter simulation.

with clean data occurs. The Segmented DTW has a similar results as LCSS-based methods
in low-variability data sets (HCI and Skoda). However, Segmented DTW takes a higher
computational cost. Moreover, in our experiments, all gesture instances have the same
shrink level, i.e., after shrinking, instances of a gesture class are still aligned well and DTW
can still achieve a reasonable performance. In a real crowdsourcing annotation setting,
different instances may have different shrink levels (see Figure 3b). In that case, DTW
will accumulate higher distances due to data misalignment at the beginning and the end of
instances (see Nguyen-Dinh et al., 2012 for a more thorough discussion of the weakness of
DTW with misalignment in temporal boundaries).

6.1.4 Shift-Left and Shift-Right Jitter Simulation

When annotations are shifted, a mixture of the effects described in Sections 6.1.2 and 6.1.3
are present. Some samples belonging to gestures are lost and some null class samples are
labeled as belonging to a gesture. Figure 11 shows the results of shift-right jitter simulations
(the shift-left simulations yield similar results). All methods can sustain about 20% shift
level before the performance degrades compared to a clean training data set. LCSS-based
methods perform often better, or as good as DTW-based methods on the data sets that we
examined. TMMs outperform SVM with up to 30% shift level.

6.2 Results on Real Crowdsourced Annotation

To further validate the outcome of the previous experiments, we use the real crowdsourced
annotations discussed in Section 3.3. The annotations were performed by AMT workers on
the Opportunity data set. We use both the annotations obtained in the one-labeler and in
the multiple-labeler scenarios. In these annotations, mixtures of all kinds of the errors listed
in the taxonomy (Section 3.1) are present and jitter levels are varied from one instance to
another instance (see Figure 3).

Figure 12 reports the performance of the different recognition methods on our real
crowdsourced annotation. In the clean annotated Opportunity data set, the performance
of SVM is slightly lower than that of LCSS-based TMMs (only lower by 3% for F1-Null
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Figure 11: Performance of shift-right jitter simulation.

and by 7% for F1-NoNull). Two DTW approaches underperform the others. The reason
is that DTW is very sensitive to high variation in gesture execution (Nguyen-Dinh et al.,
2012) and the Opportunity data set contains large variability in the executions of the daily
activities.

In the multiple-labeler annotation, labels of 80% of the data samples match the ground
truth. Moreover, only 18% of gesture instances are labeled incorrectly and the remainder
are correctly labeled with a jitter level of at least 2% (see Figure 3). The results show
that the performances of all recognition methods are slightly decreased by up to 4% for
F1-Null and 6% for F1-NoNull compared to the training with clean training sets. Our
LCSS-based TMMs yield the best performance. As stated also in Section 6.1.1, the reason
for the robustness of LCSS-based methods lies in their ability to select clean templates also
in presence of annotation noise.

In the AMT one-labeler annotation, only 55% samples are annotated correctly. Addi-
tionally, about 50% of gesture instances are affected by label noise, with many deletions
and substitutions. In each gesture class, instances which are labeled correctly are still the
majority. The result shows that our LCSS-based TMMs still achieve the best performance.
The F1-Null measure decreases by 10% and the F1-NoNull by 16% compared to training
with clean annotations.

In the one-labeler annotation, there is a significant difference in performance between
TMMs and SVM. The performance of SVM decreases dramatically, down to a F1-NoNull
of 5%, which is less than random guessing (which would be around 6% in a 16-class data
set like Opportunity). This result confirms what was already measured with the synthetic
annotations and discussed in Section 6.1.1.

Additionally, we conduct a 2-sided hypothesis test at the 0.01 level of significance as
in Guyon et al. (1998) among the performance of the methods in the three scenarios. The
tests showed that the performance differences among the methods are statistically significant
except the comparison of the F1-Null between SVM and WarpingLCSS and the compari-
son of the F1-NoNull between WarpingLCSS and SegmentedLCSS in the multiple-labeler
annotation.
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The results on the real crowdsourcing annotation confirm that our proposed Warp-
ingLCSS and SegmentedLCSS are robust to noise and yield better performance on crowd-
sourcing data set. WarpingLCSS is preferable in online recognition, since it has a lower
computational cost.
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Figure 12: Performance of real crowdsourcing annotation on Opportunity data set.

6.3 A LCSS-based Filtering Component

The results have shown that SVM is very sensitive to the high label noise in the training
data set. Therefore, a preprocessing component to clean the noisy annotation would be
beneficial before using SVM. Given the robustness of our LCSS approaches in selecting
templates among noisy instances, as well as in spotting, we further propose a LCSS-based
filtering component to filter out noise in crowdsourced annotations before training a SVM.
We call this approach FSVM. For each gesture class, the LCSS-based filtering component
first computes a LCSS similarity matrix among all pairs of instances in the class. It then
keeps only the instances that have an average similarity to other instances of the same
class exceeding the average of all the average similarities of all instances in the class. To
clean noise inside the null instances (e.g., delete noise), the filtering component runs the
WarpingLCSS on the data annotated as null and discards any parts which get classified as
any gestures of interest.

For DTW-based TMMs, the performance degrades quickly when the label noise per-
centage in the training data set increases (see Figure 8) because DTW cannot pick a good
template among noisy instances. It is interesting to know how templates selected by LCSS
perform in the DTW spotting methods. Therefore, we conduct experiments for Segmented
DTW and Nonsegmented DTW with templates trained by LCSS. We call these approaches
LCSS-SegDTW and LCSS-NonSegDTW respectively. Note that the algorithm running time
when the system is deployed remains unchanged: only the training phase is affected.
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The performances of FSVM, LCSS-SegDTW and LCSS-NonSegDTW are shown in Fig-
ure 13 for the real crowdsourced annotation and in Figure 14 for the synthetic label noise
simulation. We present again the performances of the other methods that we discuss above
for the sake of comparison.

In the real crowdsourced annotation, the filtering increases the performance of SVM by
20% F1-score and of DTW-based methods by 8% F1-score on average in the one-labeler
annotation scenario where high label noise exists (see Figure 3). In the clean annotation and
multiple-labeler annotation, FSVM performs just slightly worse than SVM (only 2%). This
slight decrease can be explained with the fact that the FSVM method decreases the amount
training data compared to pure SVM, because the LCSS-based filtering component in the
FSVM removes some part of training data, considered noisy. Our proposed LCSS-based
methods still outperform FSVM.

The LCSS-NonSegDTW outperforms Nonsegmented DTW in all three scenarios (ex-
pert’s annotation, AMT multiple-labeler annotation and AMT one-labeler annotation).
Similarly, LCSS-SegDTW outperforms SegmentedDTW. The result clarifies that LCSS is
capable of picking a better template among noisy instances, compared to DTW. However,
LCSS-NonSegDTW and LCSS-SegDTW still underperform compared to our LCSS-based
TMMs. The rationale is the same as discussed before. LCSS is more robust to high vari-
ation in daily gesture execution, therefore LCSS-based spotting approaches have a better
performance than DTW-based ones even with the same templates.
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Figure 13: Performance of real crowdsourcing annotation on Opportunity data set for the
methods with and without filtering. SegLCSS, NonSegDTW, and SegDTW
stand for Segmented LCSS, Nonsegmented DTW and Segmented DTW respec-
tively.

In the synthetic label noise simulation, the FSVM, LCSS-NonSegDTW and LCSS-
SegDTW methods outperform SVM, Nonsegmented DTW and Segmented DTW respec-
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tively and keep the performance stable much longer when α increases. Our proposed LCSS-
based TMMs have similar or better performance than the other methods. Interestingly,
with the same templates picked by LCSS, LCSS-SegDTW and LCSS-NonSegDTW have
a performance which is similar to our LCSS-based methods in the HCI and Skoda data
sets. In the Opportunity data set, the LCSS-NonSegDTW still performs worse than our
SegmentedLCSS and WarpingLCSS methods because LCSS is more robust than DTW to
high variability in daily gestures (Nguyen-Dinh et al., 2012).

The results show that our LCSS approaches can be used in a preprocessing step for
cleaning noisy annotation in the training data for SVM or for selecting templates for DTW-
based TMMs.
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Figure 14: Performance of label noise simulation for the methods with and without filtering.

6.4 Wrapping up

Our LCSS-based TMMs are robust to labeling noise in crowdsourced gesture data sets.
Moreover, the LCSS-based TMMs also offer other advantages. (1) They are easy to de-
ploy in online gesture recognition system due to low time complexity. (2) In our systems,
signals are converted into symbols, thus SegmentedLCSS lends itself even to embedded
implementations. Specifically, string matching in the deployment phase does not involve
floating-point operations, thus it can be deployed easily in cheap entry-level microcontroller
units. (3) The deployed TMM-based systems are scalable to new gesture classes of interest.
After collecting a training data set for a new class, the training phase only works with this
class to find a template and the rejection threshold for the class. The template is then
integrated directly into the deployed system. Thus, the whole process works smoothly with
the new class without interfering with other existing gesture classes.

Our LCSS-based TMMs have been investigated in online gesture recognition with ac-
celerometer data only. Their ability to work with other sensor modalities (e.g., gyroscopes,
sound) has been investigated and it has shown promising preliminary results in Nguyen-
Dinh et al. (2014).
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7. Conclusion and Future Work

In this paper, we investigated the robustness of our proposed LCSS-based TMMs for online
gesture recognition on crowdsourced annotated data sets. The results show that Segment-
edLCSS and WarpingLCSS are robust to crowdsourced annotation noise and yield better
performance than DTW-based methods and SVM. We also introduced a taxonomy of an-
notation noise in crowdsourcing settings and analyzed the distribution of that noise in real
crowdsourced scenarios. Our LCSS-based methods are very robust to label noise because
they are capable of selecting a good template among noisy instances for a class. In presence
of 60% mislabeled instances, LCSS-based methods outperform SVM by 22% F1-score and
outperform DTW-based methods by 36% F1-score on average.

With boundary jitter, the performance of the proposed approaches is comparable to
that on clean data sets if annotations can keep most of the information indicating gestures
(at most 30%-40% jitter level). In extreme cases when jitter levels go beyond that limit,
our LCSS-based TMMS and the other machine learning techniques fail to recognize the
complete segment of gestures. This can be the case for example in real-time labeling, where
labelers tend to indicate quickly when a gesture occurs with only one time point, without
providing the start and end time of the gesture (e.g., the boundary shrinks to a point).
Other techniques (e.g., active learning) are necessary to acquire more labels and improve
label quality in such cases.

We showed that our LCSS-based methods can be also used as a preprocessing filtering
component to clean crowdsourced training data set with severe label noise before feeding
the training sets into other learning techniques such as SVM or select templates for DTW.
The filtering increases the performance of SVM by 20% F1-score and DTW-based methods
by 8% F1-score on average in the noisy real crowdsourced annotations.

In future work, we plan to deploy the system that crowdsources annotated data to a
large number of users who record and contribute gestures. Our methods will then be tested
on such real large crowdsourced data sets, with the ultimate goal of having a collaborative
database of gestures and associated models with direct applications with wearable sensors.
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Abstract

The paper investigates the acceleration of t-SNE—an embedding technique that is com-
monly used for the visualization of high-dimensional data in scatter plots—using two tree-
based algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm
and of the dual-tree algorithm that approximate the gradient used for learning t-SNE em-
beddings in O(N logN). Our experiments show that the resulting algorithms substantially
accelerate t-SNE, and that they make it possible to learn embeddings of data sets with
millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears
to outperform the dual-tree variant.

Keywords: embedding, multidimensional scaling, t-SNE, space-partitioning trees,
Barnes-Hut algorithm, dual-tree algorithm.

1. Introduction

Visual exploration is an essential component of data analysis, as it allows for the devel-
opment of intuitions and hypotheses for the processes that generated the data. Visual
analytics provides and develops approaches to obtain such understanding from complex
data: it aims to develop methods that allow analysts to examine the processes underly-
ing the data (Keim et al., 2010). Unfortunately, modern visual-analytics approaches are
still largely based on traditional visualization techniques such as histograms, scatter plots,
and parallel coordinate plots; see, e.g., Heer et al. (2010) for an overview of visualization
techniques. The drawback of these visualization techniques is that they only facilitate the
visualization of one or a few data variables at a time, which prohibits their use on large,
high-dimensional data sets. In order to develop hypotheses about processes that generate a
large number of variables, it is therefore necessary to perform an automatic analysis of the
data before making visualizations. A popular way to perform such an automatic analysis
is by learning a low-dimensional embedding of the data. In a low-dimensional embedding,
each (high-dimensional) object is represented by a low-dimensional point in such a way, that
nearby points correspond to similar objects and that distant points correspond to dissimilar
objects. The low-dimensional embedding can readily be visualized in, e.g., a scatter plot or
a parallel coordinate plot, or it can be used as the basis for the construction of more ad-
vanced visualizations, such as class-conditional density maps (van Eck and Waltman, 2010)
or hierarchical visualizations (Tiño and Nabney, 2002).

c©2014 Laurens van der Maaten.
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A plethora of embedding techniques have been proposed over the last decade, e.g.,
by Carreira-Perpiñán (2010); Lawrence (2011); Roweis and Saul (2000); Tenenbaum et al.
(2000); Saul et al. (2006); and van der Maaten and Hinton (2008). Reviews of these meth-
ods are given by, e.g., van der Maaten et al. (2009) and Burges (2010). Because in high-
dimensional spaces, only small pairwise distances are reliable, most of these techniques only
try to accurately model such small pairwise distances in the low-dimensional embedding.
In particular, a family of techniques that preserves small pairwise distances via stochas-
tic neighbor embedding (SNE; Hinton and Roweis, 2003) has recently gained popularity
(Carreira-Perpiñán, 2010; van der Maaten and Hinton, 2008; Venna et al., 2010). Stochas-
tic neighbor embedding techniques compute an N×N similarity matrix in both the original
data space and in the low-dimensional embedding space in such a way, that the similarities
form a probability distribution over pairs of objects. The distribution over pairs of objects
is defined such that pairs of similar objects have a high probability under the distribution,
whilst pairs of dissimilar points have a low probability. Specifically, the probabilities are
generally given by a normalized Gaussian or Student-t kernel computed from the input
data or from the embedding. The low-dimensional embedding is learned by minimizing the
Kullback-Leibler divergence between the two probability distributions (computed in the
original data space and the embedding space) with respect to the locations of the points
in the embedding. Because of the asymmetry of the Kullback-Leibler divergence, stochas-
tic neighbor embedding focuses on accurately modeling small pairwise distances, i.e., on
preserving local data structure in the low-dimensional embedding.

Because the objective functions of most stochastic neighbor embedding techniques are
non-convex,1 the minimization of the objective is typically performed using first-order or
second-order gradient-descent techniques (Carreira-Perpiñán, 2010; Hinton and Roweis,
2003; Vladymyrov and Carreira-Perpiñán, 2012). The gradient of the Kullback-Leibler
divergence that is minimized has a very natural interpretation as an N -body system in
which all of the N points in the low-dimensional embedding exert forces on each other, and
the resultant force on each of the points needs to be computed.

Because the computation of stochastic neighbor embedding gradients involves the eval-
uation of forces between all N ×N pairs of points, one of the main limitations of stochastic
neighbor embedding is that its computational complexity scales quadratically in the num-
ber of input objects N . In practice, this limits the applicability of stochastic neighbor
embedding to data sets with only a few thousand points. To visualize larger data sets,
landmark implementations of stochastic neighbor embedding may be used (van der Maaten
and Hinton, 2008), but this is hardly a satisfactory solution because it does not facilitate
visualization of all available data. Alternatively, computational problems may be circum-
vented by learning a parametric function between the input space and the embedding using
a type of stochastic gradient descent (van der Maaten, 2009), but such an approach sub-
stantially complicates learning and is only applicable when the input data takes the form
of high-dimensional data vectors.

In this paper, we explore tree-based approaches for stochastic neighbor embedding that
require only O(N logN) computation and O(N) memory. Our approaches compute a sparse

1. We note that it is possible to define a convex variant of traditional stochastic neighbor embedding
(Hinton and Roweis, 2003) by performing the minimization with respect to the Gram matrix of the
low-dimensional embedding instead of with respect to the low-dimensional embedding itself.
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approximation of the similarities between the input objects using vantage-point trees (Yian-
ilos, 1993), and subsequently, they approximate the forces between the points in the embed-
ding with the help of either a Barnes-Hut algorithm (Barnes and Hut, 1986) or a dual-tree al-
gorithm (Gray and Moore, 2001, 2003). The Barnes-Hut and dual-tree algorithms reduce the
number of pairwise forces that needs to be computed by exploiting the fact that the forces
exerted between two small groups of points are all very similar whenever these two groups are
relatively far away. We will study the performance of the tree-based algorithms in the con-
text of the successful t-distributed stochastic neighbor embedding (t-SNE; van der Maaten
and Hinton, 2008) algorithm, but similar computational approaches may be used to speed
up, e.g., standard stochastic neighbor embedding (Hinton and Roweis, 2003), the neigh-
borhood retrieval visualizer (NeRV; Venna et al., 2010), and elastic embedding (Carreira-
Perpiñán, 2010; Vladymyrov and Carreira-Perpiñán, 2014). Source code of our tree-based
t-SNE algorithms is publicly available on http://homepage.tudelft.nl/19j49/tsne; this
software has recently been successfully used to create large-scale embeddings of, among
others, mouse brain data (Ji, 2013), metagenomic data (Laczny et al., 2014), and word
embeddings (Cho et al., 2014). This paper is an extended version of an earlier conference
publication (van der Maaten, 2013) on a Barnes-Hut approximation to t-SNE, which was
recently independently investigated by Yang et al. (2013). Compared to these prior papers,
this paper: (1) investigates a second tree-based algorithm to speed up t-SNE, viz. the
dual-tree algorithm, whereas van der Maaten (2013) and Yang et al. (2013) only considered
the Barnes-Hut algorithm; (2) contains more detailed explanations of the techniques and
experiments; and (3) contains additional experimental results on a number of large data
sets.

The outline of the remainder of this paper is as follows. In Section 2, we discuss related
work on accelerating algorithms that scale quadratically in the data set size. Section 3
reviews the t-SNE algorithm of van der Maaten and Hinton (2008). In Section 4, we
present accelerated variants of t-SNE that are based on the Barnes-Hut and on the dual-
tree algorithm. Our experimental results are presented in Section 5. Section 6 concludes
the paper and presents directions for future work.

2. Related Work

This work fits in a larger body of prior work that has focused on decreasing the com-
putational complexity of algorithms that scale quadratically in the amount of data when
implemented naively, such as nearest neighbor search and Parzen density estimation.

In nearest-neighbor search problems, substantial speed-ups are generally obtained using
space-partitioning (metric) trees such as kd-trees (Freidman et al., 1977; Silpa-Anan and
Hartley, 2008), b-trees (Bayer and McCreight, 1972), cover trees (Beygelzimer et al., 2006),
vantage-point trees (Yianilos, 1993), and trees constructed using hierarchical clustering
(Fukunaga and Narendra, 1975; Brin, 1995; Nister and Stewenius, 2006). An approach that
automatically selects the best-performing tree-based algorithm for a particular data set was
presented by Muja and Lowe (2009). Alternative approaches to speed up nearest-neighbor
search use approximate search algorithms based on locality sensitive hashing (Indyk and
Motwani, 1998; Weiss et al., 2008; Salakhutdinov and Hinton, 2007). Motivated by their
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strong performance reported in earlier work by Liu et al. (2004), we opt to use metric trees
to approximate the similarities of the input objects in our algorithms.

Prior work on accelerating N -body computations, e.g., to perform fast Parzen density
estimation, is generally based on O(N logN) tree-based algorithms such as the Barnes-Hut
algorithm (Barnes and Hut, 1986) and the dual-tree algorithm (Gray and Moore, 2001,
2003), or on O(N) fast multipole methods (Rokhlin, 1985). We explain the Barnes-Hut
and dual-tree algorithms in more detail in Section 4. Fast multipole methods perform ex-
pansions of the forces that points exert on each other that are specific to the functional form
of those forces, and use these expansions to speed up the computations (Rokhlin, 1985).
For instance, if the strength of the interactions is governed by a Gaussian function, the
interactions may be approximated by a weighted sum of Hermite polynomials: the interac-
tion I(·, ·) between objects x and y then factorizes as I(x,y) = f(x)g(y), which facilitates
the computation of all resultant forces in O(N). For Gaussian forces, the fast multipole
approach is generally referred to as the fast Gauss transform (Greengard and Rokhlin,
1987; Yang et al., 2003). The aforementioned algorithms for fast N -body computations
are commonly used in astronomy, e.g., for simulating large galaxies (Springel et al., 2001;
Croton et al., 2006), and in information visualization, e.g., for constructing force-directed
layouts and for graph drawing (Fruchterman and Reingold, 1991; Chalmers, 1996; Quigley
and Eades, 2000; Hu, 2005). Lang et al. (2005) presents an experimental comparison of
many of the algorithms.

In machine learning, dual-tree algorithms have been used for, among others, density
estimation (Gray and Moore, 2001, 2003) and Gaussian process regression (Gray, 2004).
Raykar and Duraiswami (2006) have used fast multipole methods to speed up Parzen density
estimators. de Freitas et al. (2006) also used fast multipole approaches to speed up the
computation of GaussianN -body interactions, in particular, in order to speed up generalized
eigenvalue solvers based on Krylov subspace iteration as well as to speed up active learning
(Mahdaviani et al., 2005) and stochastic neighbor embedding. Recently, Vladymyrov and
Carreira-Perpiñán (2014) have also explored a fast multipole approach for constructing
embeddings, focusing on the elastic-embedding algorithm. Unfortunately, the fast multipole
approach cannot be readily applied to t-SNE because, to the best of our knowledge, there
exists no appropriate expansion for forces governed by Student-t interactions: using fast
multipole methods for t-SNE would thus require further approximations that, for instance,
replace the Student-t interactions in the learning gradient by Gaussian interactions.

3. t-Distributed Stochastic Neighbor Embedding

t-Distributed stochastic neighbor embedding (t-SNE) minimizes the divergence between
two distributions: a distribution that measures pairwise similarities of the input objects
and a distribution that measures pairwise similarities of the corresponding low-dimensional
points in the embedding. Assume we are given a data set of (high-dimensional) input
objects D = {x1,x2, . . . ,xN} and a function d(xi,xj) that computes a distance between a
pair of objects, e.g., the Euclidean distance d(xi,xj) = ‖xi−xj‖. Our aim is to learn an s-
dimensional embedding in which each object is represented by a point, E = {y1,y2, . . . ,yN}
with yi ∈ Rs (typical values for s are 2 or 3). To this end, t-SNE defines joint probabilities
pij that measure the pairwise similarity between objects xi and xj by symmetrizing two
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conditional probabilities

pj|i =
exp(−d(xi,xj)

2/2σ2i )∑
k 6=i exp(−d(xi,xk)2/2σ

2
i )
, pi|i = 0,

pij =
pj|i + pi|j

2N
.

In the above equation, the bandwidth of the Gaussian kernels, σi, is set in such a way
that the perplexity of the conditional distribution Pi equals a predefined perplexity u. As
a result, the optimal value of σi varies per object: in regions of the data space with a
higher data density, σi tends to be smaller than in regions of the data space with lower
density. The optimal value of σi for each input object can be found using a simple binary
search (Hinton and Roweis, 2003) or using a robust root-finding method (Vladymyrov and
Carreira-Perpiñán, 2013).

In the s-dimensional embedding E , the similarities between two points yi and yj (i.e., the
low-dimensional models of xi and xj) are measured using a normalized heavy-tailed kernel.
Specifically, the embedding similarity qij between the two points yi and yj is computed as
a normalized Student-t kernel with a single degree of freedom

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

, qii = 0.

The heavy tails of the normalized Student-t kernel allow dissimilar input objects xi and
xj to be modeled by low-dimensional counterparts yi and yj that are too far apart. This
is desirable because it creates more space to accurately model the small pairwise distances
(i.e., the local data structure) in the low-dimensional embedding.

The locations of the embedding points yi are determined by minimizing the Kullback-
Leibler divergence between the joint distributions P and Q:

C(E) = KL(P ||Q) =
∑
i 6=j

pij log
pij
qij
.

Due to the asymmetry of the Kullback-Leibler divergence, the objective function focuses
on modeling high values of pij (similar objects) by high values of qij (nearby points in the
embedding space). The objective function is non-convex in the embedding E . It is typically
minimized by descending along the gradient

∂C

∂yi
= 4

∑
j 6=i

(pij − qij)qijZ(yi − yj),

where we defined the normalization term Z =
∑

k 6=l(1 + ‖yk − yl‖2)−1.
It is straightforward to see that the evaluation of the joint distributions P and Q is

O(N2), because both distributions involve a normalization term that sum over all N(N−1)
pairs of unique objects. Since t-SNE scales quadratically in the number of objects N , its
applicability is limited to data sets with only a few thousand input objects; beyond that,
learning becomes too slow to be practical (and the memory requirements become too large).
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4. Tree-Based Algorithms for t-SNE

We explore two fast algorithms to approximate the t-SNE gradient ∂C
∂yi

: (1) an algorithm
based on the Barnes-Hut approximation and (2) an algorithm based on the dual-tree approx-
imation. Both variants use the same algorithm to approximate the similarities computed
between the input data, viz. they use a metric tree to approximate P by a sparse distribu-
tion in which only O(uN) values are non-zero. This approximation of the input similarities
is described in detail in Section 4.1. The Barnes-Hut and dual-tree approximations are
presented in Section 4.2 and 4.3, respectively.

4.1 Approximating Input Similarities

The input similarities in t-SNE are defined as normalized Gaussian kernel values. As a
result, probabilities pij that correspond to dissimilar input objects i and j are nearly in-
finitesimal. Therefore, we can develop a sparse approximation for the probabilities pij
without negatively affecting the quality of the final embeddings. In particular, we compute
the sparse approximation by finding the b3uc nearest neighbors of each of the N input
objects (recall that u is the perplexity of the conditional distributions), and we redefine the
pairwise similarities between the input objects, pij , as

pj|i =

{
exp(−d(xi,xj)

2/2σ2
i )∑

k∈Ni
exp(−d(xi,xk)2/2σ

2
i )
, if j ∈ Ni

0, otherwise
(1)

pij =
pj|i + pi|j

2N
. (2)

Herein, Ni represents the set of the b3uc nearest neighbors of xi, and the bandwidth σi is
set such that the perplexity of the conditional distribution equals a predefined perplexity u
via a binary search over σi. The nearest neighbor sets Ni are found in O(uN logN) time by
building a vantage-point tree on the input data and performing an exact nearest-neighbor
search with the help of the resulting tree.

In a vantage-point tree, each node stores an input object and the radius of a (hyper)ball
that is centered on this object (Yianilos, 1993). All non-leaf nodes in the tree have two
children: objects that are located inside the ball are stored under the left child of the node,
whereas objects that are located outside the ball are stored under the right child. The tree is
constructed by presenting the objects one-by-one, traversing the tree based on whether the
current object lies inside or outside a ball, and creating a new leaf node in which the object
is stored. The radius of the new leaf node is set to the median distance between its object
and all other objects that lie inside the ball represented by its parent node. To construct a
vantage-point tree, the objects need not necessarily be points in a high-dimensional feature
space; the availability of a metric d(xi,xj) suffices. Therefore, the use of vantage-point trees
facilitates the application of our algorithms even on complex data types, provided a metric
d(xi,xj) is available. In all our experiments, the input data comprises high-dimensional
vectors, xi ∈ RD, and we use the metric d(xi,xj) = ‖xi − xj‖.

A nearest-neighbor search to construct the set Ni is performed using a depth-first search
on the vantage-point tree that computes the distance of the objects stored in the nodes to
the target object, whilst maintaining: (1) a list of the current nearest neighbors and (2)
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the distance τ to the furthest nearest neighbor in the current neighbor list. The value of
τ determines whether or not a node should be explored: if there can still be objects inside
the ball whose distance to the target object is smaller than τ , the left node is searched, and
if there can still be objects outside the ball whose distance to the target object is smaller
than τ , the right node is searched. The order in which children are explored depends on
whether or not the target object lies inside or outside the current node ball: the left child
is examined first if the object lies inside the ball, because the odds are that the nearest
neighbors of the target object are also located inside the ball. Conversely, the right child is
examined first whenever the target object lies outside of the ball.

The nearest-neighbor search is performed for all N input objects in D in order to ob-
tain the nearest-neighbor sets Ni. Afterwards, it is straightforward to compute the input
similarities via Equation 1 and 2.

4.2 Barnes-Hut Approximation

To approximate the t-SNE gradient, we start by splitting the gradient into two parts

∂C

∂yi
= 4(Fattr + Frep) = 4

∑
j 6=i

pijqijZ(yi − yj)−
∑
j 6=i

q2ijZ(yi − yj)

 , (3)

where Fattr denotes the sum of all attractive forces (the left sum), whereas Frep denotes
the sum of all repulsive forces (the right sum). Computing the sum of all attractive forces,
Fattr, is computationally efficient; it can be done by summing over all non-zero elements
of the sparse distribution P that was constructed using the procedure described in the
previous subsection in O(uN).2 However, a naive computation of the sum of all repulsive
forces, Frep, is still O(N2). We now develop a Barnes-Hut algorithm to approximate Frep
efficiently in O(N logN).

Consider three points yi, yj , and yk with ‖yi − yj‖≈ ‖yi − yk‖�‖yj − yk‖. In this
situation, the contributions of yj and yk to Frep will be roughly equal. The Barnes-Hut
algorithm (Barnes and Hut, 1986) exploits this by (1) constructing a quadtree or octtree
on the current embedding,3 (2) traversing the quadtree using a depth-first search, and (3)
at every node in the quadtree, deciding whether the corresponding cell can be used as a
“summary” for the contributions to Frep of all points in that cell.

A quadtree is a tree in which each node represents a rectangular cell with a particular
center, width, and height. Non-leaf nodes have four children that split up the cell into four
smaller cells (quadrants) that lie “northwest”, “northeast”, “southwest”, and “southeast”
of the center of the parent node; see Figure 1 for an illustration of a quadtree. Leaf nodes
represent cells that contain at most one point of the embedding; the root node represents
the cell that contains the complete embedding. In each node, we store the center-of-mass
of the embedding points that are located inside the corresponding cell, ycell, and the total
number of points that lie inside the cell, Ncell. A quadtree has O(N) nodes and can be
constructed in O(N) time by inserting the points one-by-one, splitting a leaf node whenever

2. Note that the term qijZ = (1 + ‖yi − yj‖2)−1 can be computed in O(1).
3. Throughout the paper, we assume the data is embedded in a two-dimensional space, prompting the use

of a quadtree. When embedding the data in three dimensions, an octtree is used instead.
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Figure 1: Illustration of a quadtree that was constructed on a data set of nine two-
dimensional data points. The top half of the figure illustrates the structure of the
tree that represents the partitioning of the two-dimensional space shown in the
lower half of the figure. Corresponding colors are used to highlight corresponding
elements of the graph and the space partitioning. Nodes in the graph correspond
to square cells in the space (deeper nodes correspond to smaller cells). In each
node, we store: (1) the number of points that are located in the corresponding
cell and (2) the center-of-mass of those points (the centers-of-mass of the three
highlighted cells are illustrated by the opaque circles in the space partitioning).
The opaque parts of the tree are not actually created, because the corresponding
parts of the space do not contain any data points. Leaf nodes represent cells that
contain at most one data point. As a result, denser areas of the space correspond
to parts of the tree that are deeper.

a second point is inserted in its cell, and updating ycell and Ncell of all visited nodes. Note
that the in denser regions of the embedding, the quadtree is deeper than in regions with
sparse data.

To approximate the repulsive part of the gradient, Frep, we note that if a cell is suffi-
ciently small and sufficiently far away from point yi, the contributions −q2ijZ(yi − yj) to
Frep will be roughly similar for all points yj inside that cell. We can, therefore, approxi-
mate these contributions by −Ncellq

2
i,cellZ(yi − ycell), where Ncell represents the number of
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points inside the cell, ycell represents the center-of-mass of the cell, and where we define
qi,cellZ = (1 + ‖yi − ycell‖2)−1. This approximation is illustrated in Figure 2. We first
approximate FrepZ = −q2ijZ2(yi − yj) by performing a depth-first search on the quadtree,
assessing at each node whether or not that node may be used as a “summary” for all the
embedding points that are located in the corresponding cell. During this search, we also con-
struct an estimate of Z =

∑
i 6=j(1+‖yi−yj‖2)−1 in the same way. The two approximations

thus obtained are then used to compute Frep via Frep =
FrepZ
Z .

We use the condition proposed by Barnes and Hut (1986) to decide whether a cell may
be used as a “summary” for all points in that cell. The condition compares the distance
between the cell and the target point with the size of that cell by evaluating

rcell
‖yi − ycell‖2

< θ, (4)

where rcell represents the length of the diagonal of the cell under consideration and θ
is a threshold that trades off speed and accuracy (higher values of θ lead to faster but
coarser approximations). Note that when θ = 0, all pairwise interactions are computed,
and the Barnes-Hut approximation reduces to naive computation of the t-SNE gradient. In
preliminary experiments, we also explored various other conditions that take into account
the rapid decay of the Student-t tail, but we did not find these alternative conditions to
lead to a better accuracy-speed trade-off. The problem of more complex conditions is that
they require expensive computations at each cell. By contrast, the condition in Equation 4
can be evaluated very rapidly.

4.3 Dual-tree Approximation

Whilst the Barnes-Hut algorithm considers point-cell interactions, further speed-ups may
be obtained by computing only cell-cell interactions. This can be done using a dual-tree
algorithm of Gray and Moore (2001). The dual-tree algorithm simultaneously traverses the
same quadtree twice in a depth-first manner. For every pair of nodes, the dual-tree algorithm
decides whether or not the interaction between the cells of quadtree A and quadtree B
can be used as “summary” for the interactions between all points inside these two cells
(note that quadtree A and B are identical trees). If the summary condition is passed, the
corresponding force is computed. Subsequently, we perform the following additions: (1) we
add to all children of the node under consideration in tree A the product of the force and
the number of children in the relevant node of tree B; and (2) we add to all children of the
node under consideration in tree B the product of the force and the number of children in
the node of tree A. Subsequently, all children of the cells in quadtree A and B are pruned.
In the dual-tree approximation, we check whether the interaction between a pair of nodes
may be used as a “summary” interaction using the condition

max(rcell−A, rcell−B)

‖ycell−A − ycell−B‖2
< θ,

where ycell−A and ycell−B represent the center-of-mass of the two cells from quadtree A
and B under consideration and where rcell−A and rcell−B represent the diameter of these
two cells. As before, we compute the attractive part of the t-SNE gradient in Equation 3
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Figure 2: Illustration of the Barnes-Hut approximation. To evaluate the t-SNE gradient for
point I, the Barnes-Hut algorithm performs a depth-first search on the embedding
quadtree, checking at every node whether or not the node may be used as a
“summary”. In the illustration, the cell containing points A, B, and C satisfies
the summary-condition: the force between the center-of-mass of the three points
(which is stored in the quadtree node) and point I is computed, multiplied by the
number of points in the cell (i.e., by three), and added to the gradient for point
I. All children of the summary node are pruned from the depth-first search.

exactly in dual-tree t-SNE. However, in dual-tree t-SNE, the dual-tree algorithm is used to
compute the repulsive part, Frep, of the t-SNE gradient. Note that the optimal value for
θ generally differs between Barnes-Hut and dual-tree algorithms, because both algorithms
summarize interactions differently.

Whilst the dual-tree algorithm may lead to significant reductions in the number of
pairwise forces that needs to be computed compared to the Barnes-Hut algorithm, the
computational advantages of the dual-tree algorithm are smaller than one might initially
expect when the dual-tree algorithm is used to approximate the t-SNE gradient. Specifically,
the problem is that after computing an interaction between two cells, one still needs to
determine to which set of points the interaction applies. That is, we need to perform
an additional search to determine which points are located in the cell corresponding to the
nodes under consideration (in both tree A and B), because the force needs to be added to all
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those points (after multiplication with the appropriate number of children). Alternatively,
we could construct and store a list of all children for each node during tree construction,
but this is computationally equally costly and requires substantial additional memory.4

5. Experiments

We performed experiments on five large data sets to evaluate the performance of the
Barnes-Hut and dual-tree variants of t-SNE. An implementation of the two algorithms
(as well as an implementation of the original t-SNE algorithm) is available from http:

//homepage.tudelft.nl/19j49/tsne. We describe the data sets we used in our experi-
ments in Section 5.1. The setup of our experiments is presented in Section 5.2, and the
results of our experiments are presented in Section 5.3.

5.1 Data Sets

We performed experiments on five data sets: (1) the MNIST data set, (2) the CIFAR-10
data set, (3) the NORB data set, (4) the street view house numbers data set, and (5) the
TIMIT data set. We briefly describe each of the five data sets as well as the preprocessing
we applied on the data below.

MNIST. The MNIST data set contains N=70, 000 gray scale handwritten digit images
of size D=28×28=784 pixels (real-valued between 0 and 1), each of which corresponds to
one of ten classes. We directly use the pixel values as input into our embedding algorithms
without any further preprocessing.

CIFAR-10. The CIFAR-10 data set (Krizhevsky, 2009) is an annotated subset of the
80 million tiny images data set of Torralba et al. (2008) that contains N = 70, 000 RGB
images of size 32×32 pixels. Each image corresponds to one of ten classes. To extract
features from the images, we trained a convolutional network with three convolutional
layers on the training images using Caffe (Jia, 2013). We used a network with the following
structure: (1) two convolutional layers that contain 32 filters of size 5×5, compute rectified
linear unit (ReLU) activations, perform max-pooling over 3× 3 patches, and perform local
response normalization over 3 × 3 patches; (2) one convolutional layer with 64 filters of
size 5 × 5, ReLU activations, and average pooling over 3 × 3 patches; and (3) a final fully
connected layer followed by a softmax activation function. The weights of the network
were randomly initialized by sampling from a Gaussian distribution with a small variance;
all biases were initialized to zero. The network was trained to minimize cross-entropy
loss with hundred full sweeps through the data using mini-batches of size 100, a slowly
decaying learning rate, and a momentum term of 0.9. The network was regularized using
standard (L2) weight decay, using λ = 0.004. The resulting network obtained a training
error of 0.1087 and a test error of 0.1870 on the CIFAR-10 data set, which is on par with
the performance of convolutional networks (without data augmentation) on this data set
reported in prior studies (Krizhevsky, 2009; Hinton et al., 2012). We used the activations
in the last convolutional layer (after the average pooling) as D=1, 024-dimensional features
for the images. Please note that supervised information was used to obtain these features.

4. Note that the problem sketched does not come into play when approximating the value of the t-SNE cost
function, as in that computation, the interaction sums are summed over all N points anyway. Therefore,
evaluation of the t-SNE cost function is indeed much faster via a dual-tree algorithm.
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Figure 3: Computation time (in seconds) required to embed 70, 000 MNIST digits using
two accelerated variants of t-SNE (left) and the 1-nearest neighbor errors of the
corresponding embeddings (right) as a function of the trade-off parameter θ. The
green lines represent the performance of the Barnes-Hut approximation, whereas
the red lines represent the performance of the dual-tree approximation. Note that
the special case θ = 0 corresponds to standard t-SNE.

NORB. The (small) NORB data set (LeCun et al., 2004) contains gray scale images
of toys from five different classes, rendered on a uniform background under 6 lighting con-
ditions, 9 elevations (30 to 70 degrees every 5 degrees), and 18 azimuths (0 to 340 every 20
degrees). All N = 48, 600 images contain 96×96 = 9, 216 pixels. We preprocess the images
using a simple high-pass filter (specifically, a Laplacian-of-Gaussian filter with σ2 = 1 pix-
els) in order to remove low-frequency information such as the intensity value of the image
background. This leads to feature representations of dimensionality D=9, 216, which were
used as input into the embedding algorithms.

Street View House Numbers. The street view house numbers (SVHN) data set
contains N = 630, 420 labeled color images of house numbers from Google Street View
(Netzer et al., 2011). The images are cropped to a size of 32×32 pixels. To extract features
from these images, we trained a convolutional network with the following architecture: (1)
a convolutional layer with 32 filters of size 5× 5, max-pooling over 3× 3-pixel regions, and
ReLU activations; (2) a convolutional layer with 32 filters of size 5 × 5, ReLU activations,
and average-pooling over 3 × 3-pixel regions; (3) a convolutional layer with 64 filters of
size 5× 5, ReLU activations, and average-pooling over 3× 3-pixel regions; and (4) a fully-
connected layer with softmax units. We trained the network to minimize the cross-entropy
loss using Caffe (Jia, 2013) with one full sweep through the training data using mini-batches
of size 100, a fixed learning rate of 0.001, and a momentum term of 0.9. The network was
regularized using weight decay with λ=0.004. The resulting network has a training error of
5.06% and a test error of 10.28%, which is roughly on par with the performance of vanilla
convolutional networks reported by Sermanet et al. (2012). We used the D=64 activations
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Figure 4: Computation time (in seconds) required to embed MNIST digits (left) and the
1-nearest neighbor errors of the corresponding embeddings (right) as a function
of data set size N for standard t-SNE (in blue), Barnes-Hut t-SNE (in green),
and dual-tree t-SNE (in red). Note that the required computation time, which is
shown on the y-axis of the left figure, is plotted on a logarithmic scale.

in the last convolutional layer as features for the house number images. Please note that
supervised information was used to obtain these features.

TIMIT. The TIMIT data set contains 3, 696 spoken utterances (with a total of N =
1, 105, 455 frames) by both male and female speakers.5 Each frame of the utterances is
labeled according to one of 39 phones. The features that we used in our experiments are 13
mel-frequency cepstral coefficients (MFCC features) computed on sliding windows of speech
with 25 ms windows at a 10 ms frame rate. In addition, we employ the corresponding delta
features and delta-delta features (Sha and Saul, 2006), which leads to a 39-dimensional
feature representation. For each frame, all MFCC features within a window of width 7 are
concatenated, leading to D = 273-dimensional feature vectors that are used as input data.

5.2 Experimental Setup

In all experiments, we follow the experimental setup of van der Maaten and Hinton (2008)
as closely as possible. In particular, we initialize the embedding E by sampling the points
yi from a Gaussian with a variance of 10−4, and we run a gradient-descent optimizer for
1, 000 iterations, setting the initial step size to 200. We update the step size during the
optimization using the scheme of Jacobs (1988). We use an additional momentum term
that has weight 0.5 during the first 250 iterations, and 0.8 afterwards. In all experiments,
the perplexity u used to compute the input similarities is fixed to 50. All data sets were
preprocessed using PCA to reduce their dimensionality to 50 before t-SNE was performed.

5. We only used the TIMIT training set in our experiments.
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During the first 250 learning iterations, we multiplied all pij-values by a user-defined
constant α > 1. As explained by van der Maaten and Hinton (2008), this trick enables
t-SNE to find a better global structure in the early stages of the optimization by creating
very tight clusters of points that can easily move around in the embedding space. In
preliminary experiments, we found that this trick becomes increasingly important to obtain
good embeddings when the data set size increases, as it becomes harder for the optimization
to find a good global structure when there are more points in the embedding because there
is less space for clusters to move around. In our experiments, we fix α= 12 (by contrast,
van der Maaten and Hinton, 2008 used α=4).

5.3 Results

We present the results of three sets of experiments. In the first experiment, we investigate
the effect of the trade-off parameter θ on the speed and the quality of embeddings produced
by Barnes-Hut t-SNE and dual-tree t-SNE on the MNIST data set. In the second exper-
iment, we investigate the computation time required by both approaches as a function of
the number of input objects N (also on the MNIST data set). In the third experiment,
we construct and visualize embeddings of all five data sets. All computation times were
measured on a laptop computer with an Intel Core i5 4258U CPU running at 2.6GHz.

Experiment 1. Figure 3 presents the results of experiments with Barnes-Hut t-SNE
and dual-tree t-SNE in which we varied the speed-accuracy trade-off parameter θ used to
construct the embedding. The figure shows the computation time required to construct
embeddings of all 70, 000 MNIST digit images, as well as the 1-nearest neighbor error (com-
puted based on the digit labels) of the corresponding embeddings. The nearest-neighbor
error of an embedding is a measure for the quality of an embedding. Note that the special
case θ = 0 corresponds to standard t-SNE of van der Maaten and Hinton (2008); we did not
perform an experiment with θ = 0 because standard t-SNE would take too long to complete
on the full MNIST data set.

The results presented in the figure highlight the merits of using tree-based t-SNE algo-
rithms. In particular, the results show that Barnes-Hut t-SNE with θ = 0.5 and dual-tree
t-SNE with θ = 0.2 lead to embeddings that are of the same quality as those obtained
with standard t-SNE (when quality is measured in terms of nearest-neighbor errors in the
embedding). At the same time, increasing the value of θ to these values leads to very
substantial improvements in terms of the amount of computation required to construct the
embedding: for example, Barnes-Hut t-SNE requires only 751 seconds to embed all 70, 000
MNIST digits when θ = 0.5, whereas the original t-SNE algorithm would have taken many
days to complete. The results presented in the figure also suggest that dual-tree t-SNE has
a slightly worse speed-accuracy trade-off than Barnes-Hut t-SNE: Barnes-Hut t-SNE with
θ = 0.5 leads to an embedding of slightly higher quality than dual-tree t-SNE with θ = 0.2,
whilst at the same time requiring fewer computational resources.

Experiment 2. In Figure 4, we compare standard t-SNE, Barnes-Hut t-SNE, and dual-
tree t-SNE in terms of: (1) the computation time required for the embedding of MNIST
digit images as a function of the data set size N and (2) the 1-nearest neighbor errors of
the corresponding embeddings. Note that the y-axis of the left figure, which represents the
required computation time in seconds, uses a logarithmic scale. Based on the results of the
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MNIST: 12m 31s 

CIFAR-10: 13m 20s 

Figure 5: Barnes-Hut t-SNE visualizations obtained with θ = 0.5 of two data sets: MNIST
handwritten digits (top) and CIFAR-10 tiny images (bottom). The colors of the
points indicate the classes of the corresponding objects. The titles of the fig-
ures indicate the computation time that was used to construct the corresponding
embeddings. Figure best viewed in color.
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NORB: 6m 30s 

SVHN: 2h 57m 15s 

Figure 6: Barnes-Hut t-SNE visualizations obtained with θ = 0.5 of two data sets: NORB
object images (top), and street view house numbers (SVHN) data set (bottom).
The colors of the points indicate the classes of the corresponding objects. The
titles of the figures indicate the computation time that was used to construct the
corresponding embeddings. Figure best viewed in color.
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TIMIT: 3h 48m 12s 

Figure 7: Barnes-Hut t-SNE visualization obtained with θ = 0.5 of the TIMIT speech
frames data set. The left figure shows a scatter plot in which the colors of the
points indicate the classes of the corresponding objects. The right figure shows a
Parzen density estimate of the two-dimensional embedding. The title of the figure
indicates the computation time that was used to construct the corresponding
embeddings. Figure best viewed in color.

previous experiment 1, we fixed the parameter θ to 0.5 in the experiments with Barnes-Hut
t-SNE; in the experiments with dual-tree t-SNE, we fixed θ to 0.2.

The results presented in Figure 4 show that both Barnes-Hut t-SNE and dual-tree t-
SNE are indeed orders of magnitude faster than standard t-SNE, whilst the difference in
quality of the constructed embeddings (which is measured by the nearest-neighbor errors)
is negligible. Most prominently, the computational advantages of Barnes-Hut t-SNE and
dual-tree t-SNE rapidly increase as the number of objects in the data set N increases.
The results also suggest that a fixed value of θ = 0.5 for Barnes-Hut t-SNE and θ = 0.2
for dual-tree t-SNE appears to work well across a range of data set sizes N . As in the
first experiment, the results of this experiment also suggest that Barnes-Hut t-SNE slightly
outperforms dual-tree t-SNE in terms of the trade-off between quality of the embedding
and the associated computational costs.

Experiment 3. Figure 5, 6, and 7 present embeddings of all five data sets constructed
by Barnes-Hut t-SNE with θ = 0.5. The colors of the points indicate the classes of the
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corresponding objects; the titles of the plots indicate the computation time that was used
to construct the corresponding embeddings.

The visualization in the top part of Figure 5 shows that Barnes-Hut t-SNE can effi-
ciently construct high-quality embeddings of the 70, 000 MNIST handwritten digit images:
although no supervised information was used, all ten digit classes are clearly separated in an
embedding that was constructed in just over 12 minutes. Although our MNIST embedding
contains many more points, it may be compared with that presented by van der Maaten
and Hinton (2008). Visually, the structure of the two embeddings is very similar.

The results on the CIFAR-10 data set (in the bottom part of Figure 5) show a reasonably
good separation of classes; in particular, classes such as truck and ship are clearly separated
from the other classes. To evaluate the quality of the CIFAR-10 embedding, we measured
the generalization error of an 11-nearest neighbor classifier that was trained on the 2D
representation of the training instances and evaluated on the 2D representation of the test
instances (note that the figure shows a joint embedding of training and test data): the
generalization error of this classifier 0.2467, which is not much worse than the performance
of a logistic regressor trained on the original D=1, 024-dimensional features.

The results obtained on the NORB data set are presented in the top part of Figure 6,
and reveal a clear separation of the five classes even though supervised information was
not used in the construction of the embedding. In addition, the embedding of the NORB
images accurately reveals the rotation manifolds that are present in the NORB data set. The
different rotation manifolds that belong to the same class correspond to different elevations
and lighting conditions.

The results obtained on the street view house numbers (SVHN) data set in the bottom
part of Figure 6 show that Barnes-Hut SNE can also model the global structure of the data
correctly when the data set becomes very large (recall that there are 630, 420 images in
the SVHN data set): all classes are quite well separated in the embedding of the SVHN
data set, with the exception of a group of images in which the house numbers are difficult
to recognize and that are grouped in the center of the embedding. Further analysis of
the SVHN embedding revealed that the majority of misclassifications by the convolutional
network are indeed located in this central region of the embedding.

The results presented in the Figure 7 show that tree-based variants of t-SNE make it
practical to embed data sets with more than a million data points: the TIMIT embed-
ding shows all 1, 105, 455 speech segments, and was constructed in less than four hours.
It should be noted here that scatter plots depicting embeddings of millions of instances
may not accurately visualize the underlying (class-conditional) densities. To illustrate this
problem, the right part of Figure 7 shows a Parzen density estimate of the two-dimensional
embedding. This density estimate clearly shows that the density of points is not nearly
uniform over the embedding space, even though the scatter plot does suggest this. In fact,
inspection of the density estimates of the individual classes reveals that most classes are in
fact modeled by small, dense clusters in the two-dimensional embedding. This suggests the
use of class-conditional density maps (van Eck and Waltman, 2010) for the visualization of
such large-scale embeddings.

A version of the MNIST embedding in which the original digit images are shown is
presented in Figure 8. The insets in this figure reveal that, like standard t-SNE, Barnes-
Hut t-SNE is very good at preserving local structure of the data in the embedding: for
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instance, the visualization clearly shows that orientation is one of the main sources of
variation within the cluster of ones. Embeddings in which the original CIFAR-10, NORB,
and SVHN images are presented in the online supplemental material.

6. Conclusion

We investigated two tree-based implementations of t-SNE (van der Maaten and Hinton,
2008), called Barnes-Hut t-SNE and dual-tree t-SNE, that: (1) construct a sparse approxi-
mation of the similarities between input objects using vantage-point trees and (2) approx-
imate the t-SNE gradient by computing interactions between groups of points instead of
between pairs of points. The new t-SNE variants run in O(N logN) rather than O(N2),
and require only O(N) memory. Our experimental evaluation of Barnes-Hut t-SNE and
dual-tree t-SNE shows that both algorithms are substantially faster than standard t-SNE,
and that both facilitate the visualization of data sets with millions of input objects in scatter
plots. The results of our experiments suggest that Barnes-Hut t-SNE slightly outperforms
dual-tree t-SNE (in terms of the trade-off between accuracy and speed) due to the additional
bookkeeping that is required in dual-tree t-SNE.

A drawback of the Barnes-Hut variant of t-SNE is that the gradient approximations do
not provide any error bounds and can in fact be unbounded (Salmon and Warren, 1994). By
contrast, dual-tree and fast multipole methods do provide such error bounds (e.g., Warren
and Salmon, 1993; Gray and Moore, 2001; Baxter and Roussos, 2002; Wan and Karniadakis,
2006). None of these bounds, however, takes into account the iterative nature of t-SNE,
i.e., the fact that errors may propagate during learning. Vladymyrov and Carreira-Perpiñán
(2014) present an error bound that incorporates the iterative nature of SNE-like embedding
techniques, but makes strong assumptions on the error per iteration to achieve this bound.
de Freitas et al. (2006) present stability results for Krylov subspace iteration, but it is
unclear how these results extend to Barnes-Hut and dual-tree t-SNE. In general, we believe
the lack of formal error bounds is acceptable because the t-SNE objective function is non-
convex anyway: as long as the inner product between the gradient estimate and the true
gradient remains positive, we are still guaranteed to converge to a local minimum of the
objective function (assuming the step size is set properly; Zoutendijk, 1960).

Another limitation of Barnes-Hut t-SNE and dual-tree t-SNE is that the algorithms can
only be used to embed data in two or three dimensions. Generalizations to higher dimensions
are impractical because the size of the tree grows exponentially in the dimensionality of the
embedding space. Having said that, this limitation is not very severe since t-SNE is mainly
used for visualization of data in scatter plots (i.e., for embedding in two or three dimensions).
Moreover, it is straightforward to replace the quadtrees used in this paper by metric trees
that scale better to high-dimensional embedding spaces.
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(1) (2)

(3)

(4)

(5)

(6)

Figure 8: Barnes-Hut t-SNE visualization of all 70, 000 MNIST handwritten digit images
(constructed in 10 minutes and 45 seconds using θ = 0.5). The insets (from the
top left, clockwise) show (1) twos in a curl style grouped together, (2) similarly
oriented ones ranging from fat to thin, (3) continental sevens grouped separately
from other sevens, (4) similar fours, (5) round zeros ranging from thin to fat, and
(6) similar threes. Zoom in on the visualization for more detailed views.
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Abstract

Approachability has become a standard tool in analyzing learning algorithms in the ad-
versarial online learning setup. We develop a variant of approachability for games where
there is ambiguity in the obtained reward: it belongs to a set rather than being a single
vector. Using this variant we tackle the problem of approachability in games with par-
tial monitoring and develop a simple and generally efficient strategy (i.e., with constant
per-step complexity) for this setup. As an important example, we instantiate our general
strategy to the case when external regret or internal regret is to be minimized under partial
monitoring.

Keywords: online learning, approachability, regret, partial monitoring

1. Introduction

Blackwell’s approachability theory and its variants have become a standard and useful tool
in analyzing online learning algorithms (Cesa-Bianchi and Lugosi, 2006) and algorithms for
learning in games (Hart and Mas-Colell, 2000, 2001). The first application of Blackwell’s
approachability to learning in the online setup is due to Blackwell (1956b) himself. Nu-
merous other contributions are summarized in the monograph by Cesa-Bianchi and Lugosi
(2006). Blackwell’s approachability theory enjoys a natural geometric interpretation that
allows it to be used in situations where other learning methods (online convex optimization
or exponential weights) do not seem to be easily applicable. In some sense, it can be used to
go beyond the minimization of the regret to control quantities of a different flavor. Exam-
ples of such uses can be found in Mannor et al. (2009), which minimizes the regret together
with path constraints, and in Mannor and Shimkin (2008), which minimizes the regret in
games whose stage duration is not fixed. Recently, it has been shown by Abernethy et al.
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(2011) that approachability and low regret learning are equivalent in the sense that efficient
reductions exist from one problem to the other. Another recent paper by Rakhlin et al.
(2011) showed that approachability can be analyzed from the perspective of learnability
using tools from learning theory.

In this paper we consider approachability and online learning with partial monitoring
in games against an arbitrary opponent. That is, we will obtain worst-case performance
guarantees: guarantees that are valid for all strategies of the opponent. In partial monitoring
the decision maker does not know how much reward was obtained and only gets a (random)
signal whose distribution depends on the pair of actions taken by the decision maker and
the opponent. There are two extremes of this setup that are well studied. On the one
extreme we have the case where the signal includes the reward itself (or a signal that can be
used to unbiasedly estimate the reward), which is essentially the celebrated bandits setup.
The other extreme is the case where the signal is not informative (i.e., it tells the decision
maker nothing about the actual reward obtained); this setting then essentially consists of
repeating the same situation over and over again, as no information is gained over time. We
consider a setup encompassing these situations and more general ones, in which the signal
is indicative of the actual reward, but is not necessarily a sufficient statistic thereof. The
difficulty is that the decision maker cannot compute the actual reward obtained nor the
actions of the opponent.

Regret minimization with partial monitoring (defined in the general sense of Rustichini,
1999) has been studied in several papers in the learning theory community. Piccolboni and
Schindelhauer (2001), Mannor and Shimkin (2003), Cesa-Bianchi et al. (2006), Bartók et al.
(2010, 2011), Foster and Rakhlin (2012) study games in which an accurate estimation of the
rewards (or worst-case rewards) of the decision maker is possible thanks to some statistically
sufficient monitoring; in this case, the notion of regret with partial monitoring reduces to
the classical notion of regret with full monitoring. A general policy with vanishing external
regret with partial monitoring is presented by Lugosi et al. (2008). This policy is based
on exponential weights and a specific estimation procedure for the (worst-case) obtained
rewards.

In contrast, we devise a general (efficient) algorithm for the problem of approachabil-
ity under partial monitoring. We then apply it to the more restricted problem of regret
minimization. More precisely, we first define a new type of approachability setup, for set-
valued functions, which enables to re-derive the extension of approachability to the partial
monitoring vector-valued setting proposed by Perchet (2011a). More importantly, we pro-
vide concrete algorithms for this approachability problem that are more efficient in the
sense that, unlike previous works in the domain, their complexity is constant over all steps.
Moreover, their rates of convergence are independent of the game at hand, as in the seminal
paper by Blackwell (1956b) but for the first time in this general framework. For exam-
ple, the recent theoretical study of approachability by Perchet and Quincampoix (2011),
which is based on somehow related arguments, does neither provide rates of convergence
nor concrete algorithms.
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1.1 Outline and Comparison to Known Results

The paper is organized in three main parts. The first part consists of Section 2, where
we recall basic facts from approachability theory, when a decision maker faces an arbitrary
opponent in the standard vector-valued games setting.

The second part deals with our first contribution, a novel setup for approachability
termed “set-valued approachability”, where instead of obtaining a vector-valued reward,
the decision maker obtains a set, that represents the ambiguity concerning his reward. In
Section 3, we provide a simple characterization of approachable convex sets and an algorithm
for the set-valued reward setup under the assumption that the set-valued reward functions
are linear. In Section 4 we extend the set-valued approachability setup to problems where
the set-valued reward functions are not linear, but rather concave in the mixed action of
the decision maker and convex in the mixed action of the opponent. This new concept of
set-valued approachability is interesting on its own, as it cannot be directly encompassed
into classical vector-valued approachability; yet we retrieve several familiar results (char-
acterization of approachable convex sets, rates of convergence that are independent of the
dimension, and so on). More importantly, these results are the key tools for our second
series of contributions, which we describe now.

The third part studies approachability in repeated games with partial monitoring. Pre-
vious general results in this setup suffered from at least one of the following drawbacks.
They were either non-constructive (Rustichini, 1999) or were highly inefficient. The latter
drawback refers to strategies that relied on some sort of lifting to the space of probability
measures on mixed actions (see e.g., Lehrer and Solan, 2007 and Perchet, 2009, 2011a).
They then typically required a fine grid of elements in this lifted space, which had to be
progressively refined over time. This construction leads to two main issues: on the one hand,
the step complexity continuously increases and becomes prohibitive in the number T of past
steps. On the other hand, rates of convergence deteriorate and depend on the dimension.
Our aim is therefore to devise algorithms that are efficient (as long as the projection onto
some convex set can be done efficiently), with a constant step complexity (although it may
depend on parameters of the problem at hand), and with rates of convergence independent
of the ambient dimension. Our strategies are the first, to our knowledge, satisfying all of
these properties in the general approachability framework. They do so because they do not
rely on finer and finer grids; as a byproduct, they can also be considered more natural.
Section 5 discusses in greater detail all the points mentioned in this paragraph.

More precisely, we state in Section 5.1 the necessary and sufficient condition for ap-
proachability in games with partial monitoring and show in Section 5.2 how to apply set-
valued approachability framework to the repeated vector-valued games with partial moni-
toring. In Section 5.3 we then consider a specific type of games where the signaling structure
possesses a special property, called bi-piecewise linearity, that can be exploited to derive
simple, constructive and efficient strategies. This type of games is rich enough as it en-
compasses several useful special cases discussed in the later sections. In Section 5.4, we
mention the general signaling case and explain how it is possible to approach certain special
sets such as polytopes efficiently (thanks to a reduction to bi-piecewise linearity) with the
same dimension-independent rates of convergence—and even general convex sets, although
inefficiently in the latter case.
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As an important other example of a setting where bi-piecewise linearity holds, we apply
in Section 6 the results of Section 5.3 to both external-regret and internal-regret minimiza-
tion in repeated games with partial monitoring. In this specific case, our algorithms have
rates similar to the ones obtained by Lugosi et al. (2008) but slower than Perchet (2011b);
however our proof is direct and simpler and the strategy is efficient.

1.2 Mixed Actions versus Pure Actions

Most of Sections 2–4 (classical approachability and set-valued approachability) is concerned
with mixed actions, while Sections 5–6 (approachability in games with partial monitoring)
are focused on pure actions. The explanation for this is as follows. Even though pure
actions are inherent to the model of partial monitoring, the reduction from approachability
in games with partial monitoring to set-valued approachability, as described in Section 5.2,
is to set-valued approachability with mixed actions.

2. Some Basic Facts from Approachability Theory

In this section we recall the most basic version of Blackwell’s approachability theorem for
vector-valued payoff functions.

We consider a vector-valued game between two players, a decision maker (first player)
and an opponent (second player), with respective finite action sets A and B, whose cardi-
nalities are referred to as NA and NB. We denote by d the dimension of the reward vectors
and equip Rd with the `2–norm ‖ · ‖2. The payoff function of the first player is given by
a mapping m : A × B → Rd, which is multi-linearly extended to ∆(A) ×∆(B), the set of
product-distributions over A× B.

We consider a framework in which mixed actions are taken. We denote by x1, x2, . . .
and y1, y2, . . . the actions in ∆(A) and ∆(B) sequentially taken by each player. We assume
a full or bandit monitoring for the first player: at the end of round t, when receiving the
payoff m(xt,yt), either the mixed action yt (full monitoring) or only the indicated payoff
(bandit monitoring) is revealed to him.

Strategies of the players are defined as mappings associating the information available
at the beginning of each round t > 1 with a mixed action. In particular, strategies of the
first player in the case of full monitoring associate with x1, . . . , xt−1 and y1, . . . , yt−1 a
mixed action xt ∈ ∆(A), while in the case of bandit monitoring, they do this association
based on x1, . . . , xt−1 and m(x1,y1), . . . , m(xt−1,yt−1). We do not restrict the oppo-
nent and assume a full monitoring for him: his strategies associate with x1, . . . , xt−1 and
y1, . . . , yt−1 a mixed action yt ∈ ∆(B).

2.1 Necessary and Sufficient Condition for Approachability

Given a set C, the aim of the first player is to ensure that his average payoff converges to C,
while the second player wants to prevent it. This gives rise to Blackwell’s classical definition
of approachability. (Here, we state it as m–approachability to remind the reader, in the
notation, that the underlying payoff function is m.)

3250



Approachability in Games with Partial Monitoring

Definition 1 Given a function m : A × B → Rd, a set C ⊆ Rd is m–approachable by the
first player if he has a strategy such that, for all ε > 0, there exists an integer Tε such that
for all strategies of the second player,

P

{
∀T > Tε, inf

c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6 ε

}
> 1− ε .

In particular, the first player has a strategy that ensures that the average of his vector-valued
payoffs converges almost surely to the set C, uniformly with respect to the strategies of the
second player.

As will be recalled below in Theorem 3, even stronger approachability guarantees can be
achieved. Indeed, the first player has deterministic strategies such that, for all (deterministic
or randomized) strategies of the second player, with probability 1, for all T > 1,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6 β(T ) ,

where β(·) is some decreasing mapping to 0 to be determined later.
For closed convex sets there is a simple characterization of approachability that is a

direct consequence of von Neumann’s minimax theorem.

Theorem 2 (see Blackwell, 1956a, Theorem 3) A closed convex set C ⊆ Rd is ap-
proachable if and only if

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ∈ C .

2.2 An Associated Strategy (whose Efficiency Depends on the Geometry of C)

Blackwell suggested a simple strategy with a geometric flavor; it only requires bandit mon-
itoring.

Play an arbitrary x1. For t > 1, given the vector-valued quantity

m̂t =
1

t

t∑
s=1

m(xs,ys) ,

compute the projection ct (in `2–norm) of m̂t on C. Find a mixed action xt+1 that solves
the minimax equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂t − ct, m(x,y)− ct

〉
, (1)

where 〈 · , · 〉 is the Euclidean inner product in Rd.
The stated minimax problem for determining xt+1 can be solved efficiently using, e.g.,

linear programming: the associated complexity is polynomial in NA and NB. This strat-
egy is efficient if computing the required projections onto C in `2–norm can be performed
efficiently.

The strategy presented above enjoys the following rates of convergence for approacha-
bility, which can be derived as a special case of the results stated and proved in Theorem 25
later in this paper.
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Theorem 3 (see Blackwell, 1956a, Theorems 1 and 3) We consider an approachable
closed convex set C ⊆ Rd and we denote by M a bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6M .

The above strategy ensures that for all strategies of the second player, with probability 1, for
all T > 1,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6
2M√
T
.

3. Set-Valued Approachability for Finite Games

In this section we extend the results from the previous section to set-valued payoff functions
in the case of full monitoring. We denote by S

(
Rd
)

the set of all subsets of Rd and consider
a set-valued payoff function m : A × B → S

(
Rd
)
. When the players choose respective

actions a ∈ A and b ∈ B, the first player gets the subset m(a, b) as a payoff. This models
the ambiguity or uncertainty associated with some true underlying payoff.

3.1 Mixed Actions Taken and Observed

For the moment, we only consider the case of mixed actions taken and observed, keeping
the same definition of a strategy as in the previous section. (The next subsection will briefly
explain, for the sake of completeness, how to deal with the case of pure actions taken and
observed.)

We extend m multi-linearly to ∆(A) × ∆(B) and even to ∆(A × B), the set of joint
probability distributions on A× B, as follows. Let

µ =
(
µa,b

)
(a,b)∈A×B

be such a joint probability distribution; then m(µ) is defined as a finite convex combination1

of subsets of Rd,
m(µ) =

∑
a∈A

∑
b∈B

µa,bm(a, b) .

The product-distribution of two elements x = (xa)a∈A ∈ ∆(A) and y = (yb)b∈B ∈ ∆(B)
will be denoted by x ⊗ y; it gives a probability mass of xayb to each pair (a, b) ∈ A × B.
When µ is such a product-distribution, we use the notation m(µ) = m(x,y).

We can now describe how the game proceeds. At each round t, the players choose
simultaneously respective mixed actions xt ∈ ∆(A) and yt ∈ ∆(B). Full monitoring takes
place for the first player: he observes yt at the end of round t and he gets the subset
m(xt,yt) as a payoff (which, again, accounts for the uncertainty).

1. For two sets S, T and α ∈ [0, 1], the convex combination αS + (1− α)T is defined as{
αs+ (1− α)t, s ∈ S and t ∈ T

}
.
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3.1.1 Definition of Set-Valued Approachability

We are interested in the behavior of

1

T

T∑
t=1

m(xt,yt) = m(νT ) , where νT :=
1

T

T∑
t=1

xt ⊗ yt

is the empirical joint distribution of mixed actions taken during the first T rounds.

The distance of this set m(νT ) to the target set C will be measured in a worst-case sense
(à la Hausdorff): we denote by

εT = sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2

the smallest value such that m(νT ) is included in an εT –neighborhood of C. Approachability
of a set C with the set-valued payoff function m then simply means that the sequence of
εT tends almost-surely to 0, uniformly with respect to the strategies of the second player.
This is made formal in the following definition.

Definition 4 Given a set-valued payoff function m : A × B → S
(
Rd
)
, a set C ⊆ Rd is

m–approachable by the first player if he has a strategy such that, for all ε > 0, there exists
an integer Tε such that for all strategies of the second player,

P

{
∀T > Tε, sup

ξ∈m(νT )
inf
c∈C
‖c− ξ‖2 6 ε

}
> 1− ε .

When the set-valued function m is clear from the context, we will simply say that C
is set-valued approachable. Actually, just as in the classical case of approachability, the
bounds exhibited below in Theorem 8 will be for deterministic strategies of the first player
and will read as follows: for all (deterministic or randomized) strategies of the second player,
with probability 1, for all T > 1,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 6 β(T ) ,

where β(·) is a mapping decreasing to 0 to be determined.

3.1.2 A Useful Continuity Lemma

Before proceeding we provide a continuity lemma. It can be reformulated as indicating that
for all joint distributions µ and ν over A×B, the set m(µ) is contained in an M ‖µ− ν‖1–
neighborhood of m(ν), where M is a bound in `2–norm on m. This is a result that we will
use repeatedly.

Definition 5 The set-valued function m : A× B → S
(
Rd
)

is bounded in `2–norm by M if

∀(a, b) ∈ A× B, sup
ξ∈m(a,b)

‖ξ‖2 6M .
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Lemma 6 Let µ and ν be two probability distributions over A × B. We assume that the
set-valued function m is bounded in `2–norm by M . Then

sup
ξ∈m(µ)

inf
c∈m(ν)

‖ξ − c‖2 6M ‖µ− ν‖1 6M
√
NANB ‖µ− ν‖2 ,

where the norms in the right-hand side are respectively the `1 and `2–norms between proba-
bility distributions.

Proof Let ξ be an element of m(µ); it can be written as

ξ =
∑
a∈A

∑
b∈B

µa,b ζa,b

for some elements ζa,b ∈ m(a, b). We consider

c =
∑
a∈A

∑
b∈B

νa,b ζa,b ,

which is an element of m(ν). Then by the triangle inequality,

‖ξ − c‖2 =

wwwww∑
a∈A

∑
b∈B

(
µa,b − νa,b

)
ζa,b

wwwww
2

6
∑
a∈A

∑
b∈B

∣∣µa,b−νa,b∣∣ ‖ζa,b‖2 6M
∑
a∈A

∑
b∈B

∣∣µa,b−νa,b∣∣ .
This entails the first claimed inequality. The second one follows from an application of the
Cauchy-Schwarz inequality.

Corollary 7 If the set-valued function m is bounded in norm, then for all y ∈ ∆(B), the
mappings Dy : ∆(A)→ R defined, for all x ∈ ∆(A), by

Dy(x) = sup
ξ∈m(x,y)

inf
c∈C
‖c− ξ‖2

are continuous.

Proof We show that for all x, x′ ∈ ∆(A), the condition ‖x′ − x‖1 6 ε implies that
Dy(x) −Dy(x′) 6 Mε, where M is the bound in `2–norm over m. Indeed, fix δ > 0 and
let ξδ,x ∈ m(x,y) be such that

Dy(x) 6 inf
c∈C

wwc− ξδ,xww2
+ δ . (2)

By Lemma 6 (with the choices µ = x⊗ y and ν = x′ ⊗ y),

inf
ξ′∈m(x′,y)

‖ξδ,x − ξ′‖ 6Mε ,

and therefore, there exists ξδ,x′ ∈ m(x′,y) such that
wwξδ,x−ξδ,x′ww2

6Mε+δ. The triangle
inequality entails that

inf
c∈C

wwc− ξδ,xww2
6 inf

c∈C

wwc− ξδ,x′ww2
+Mε+ δ .
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Substituting in (2), we get that

Dy(x) 6Mε+ 2δ + inf
c∈C

wwc− ξδ,x′ww2
6Mε+ 2δ +Dy(x′) ,

which, letting δ → 0, proves our continuity claim.

3.1.3 Necessary and Sufficient Condition for Set-Valued Approachability

This condition will be referred to as (SVAC), an acronym that stands for “set-valued ap-
proachability condition.”

Theorem 8 Suppose that the set-valued function m is bounded in norm. A closed convex
set C ⊆ Rd is m–approachable if and only if the following set-valued approachability condition
is satisfied,

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ⊆ C . (SVAC)

In this case, an m–approaching strategy for C is an m–approaching strategy of C̃ defined
below at (3) and (4). It satisfies, for all T > 1,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 6 2M

√
NANB
T

,

where M is a bound in `2–norm on m.

Proof [of the necessity of Condition (SVAC)] If the condition does not hold, then
there exists y0 ∈ ∆(B) such that for every x ∈ A, the set m(x,y0) is not included in C,
i.e., it contains at least one point not in C. We consider the mapping Dy0

defined in the
statement of Corollary 7. Since C is closed, distances of given individual points to C are
achieved; therefore, by the choice of y0, we get that Dy0

(x) > 0 for all x ∈ ∆(A). Now,
since Dy0

is continuous on the compact set ∆(A), as asserted by the indicated corollary, it
attains its minimum, whose value we denote by Dmin > 0.

Assume now that the second player chooses at each round yt = y0 as his mixed action.
Then, denoting

xT =
1

T

T∑
t=1

xt ,

we get that νT = xT ⊗ y0, and hence, for all strategies of the first player and for all T > 1,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 = Dy0

(xT ) > Dmin > 0 ,

which shows that C is not approachable.

We now prove in a constructive way, by exhibiting a suitable strategy (the one alluded at
in the statement of the theorem), that (SVAC) is sufficient for set-valued approachability.
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We identify probability distributions over A × B with vectors in RA×B and consider the
vector-valued payoff function

m : (a, b) ∈ A× B 7−→ δ(a,b) ∈ RA×B , (3)

where δ(a,b) is the point mass on (a, b). We extend m to ∆(A) × ∆(B) in a multi-linear
fashion. The target set will be

C̃ =
{
µ ∈ ∆(A× B) : m(µ) ⊆ C

}
. (4)

The linearity of the function m on ∆(A× B) entails that if C is a convex set (respectively,
a closed set, or a polyhedron), then C̃ is a convex set as well (respectively, a closed set, or
a polyhedron). In the case where C̃ is a polyhedron, it is actually a polytope (that is, a
compact polyhedron).

We then consider the m–approaching strategy of C̃ described in (1) and now prove that
it enjoys the convergence guarantees stated in Theorem 8.

Lemma 9 Condition (SVAC) is equivalent to the m–approachability of C̃.

Proof Since C and thus C̃ are closed and convex sets, we can resort to Theorem 2. The
latter states that the m–approachability of C̃ is equivalent to the fact that for all y ∈ ∆(B),
there exists some x ∈ ∆(A) such that µ = m(x,y) = x ⊗ y, the product-distribution
between x and y, belongs to C̃, i.e., satisfies m(µ) = m(x,y) ⊆ C.

The definition (3) of m entails the rewriting

νT =
1

T

T∑
t=1

xt ⊗ yt =
1

T

T∑
t=1

m(xt,yt) .

Let PC̃ denote the projection operator onto C̃; the quantities at hand in the definition of

m–approachability of C̃ are given by

εT =
wwwνT − PC̃(νT )

www
2

= inf
µ∈C̃
‖νT − µ‖2 .

We now relate them to the ones arising in the definition of m–approachability of C.

Lemma 10 The following upper bound holds,

sup
ξ∈m(νT )

inf
c∈C
‖c− ξ‖2 6M

√
NANB εT .

Proof Lemma 6 entails that the sets m(νT ) are included in M
√
NANB εT –neighborhoods

of m
(
PC̃(νT )

)
. Since by definition of C̃, one has m

(
PC̃(νT )

)
⊆ C, we get in particular

that the sets m(νT ) are included in M
√
NANB εT –neighborhoods of C, which is exactly the

statement of the lemma.
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Proof [of the sufficiency of Condition (SVAC)] First, Lemma 9 and Condition (SVAC)
entail, via Theorem 3, that the considered strategy m–approaches C̃, at the following rate:
εT 6 2/

√
T , with probability 1. Second, Lemma 10 indicates that this strategy also m–

approaches C, at the stated rate of 2M
√
NANB/T , with probability 1.

3.1.4 Remarks: on Efficiency; on Full versus Bandit Monitorings

Note that, as explained around (1), the considered strategy for m–approaching C̃, or equiva-
lently m–approaching C, is efficient as long as projections in `2–norm onto the set C̃ defined
in (4) can be computed efficiently. The latter depends on the respective geometries of m and
C. We will provide examples of favorable cases (see, e.g., Section 6.1 about minimization
of external regret under partial monitoring). In the sequel the notion of “efficiency up to a
projection oracle” will refer to this efficiency depending solely on the efficient computation
of the needed projections.

The proposed strategy does not require full monitoring, although it seems to rely on
the observation of the pair of played mixed actions m(xt,yt). With bandit monitoring,
only the played sets m(xt,yt) would be available, not the yt themselves; in that case, the
player can act as if the other player chose any y′t that generates this set, i.e., such that
m(xt,y

′
t) = m(xt,yt).

3.2 Pure Actions Taken and Observed

It is well-known that the basic results recalled in Section 2 extend to the case of pure
actions. We briefly explain here how the developed theory of set-valued approachability for
games with mixed actions extends as well to the case of pure actions taken (still under full
monitoring).

The game goes as follows. At each round t, the players choose simultaneously respective
pure actions At ∈ A and Bt ∈ B, possibly at random according to distributions xt and yt.
As a result, the first player gets the subset m(At, Bt) as a payoff and observes Bt. Strategies
for the players now associate with A1, . . . , At−1 and B1, . . . , Bt−1 mixed actions xt and
yt, according to which At and Bt are drawn independently.

We are interested in the behavior of

1

T

T∑
t=1

m(At, Bt) = m(πT ) , where πT :=
1

T

T∑
t=1

δ(At,Bt)

is the empirical distribution of the pairs (At, Bt) of actions taken during the first T rounds.
The definition of set-valued approachability extends as follows.

Definition 11 A set C ⊆ Rd is m–approachable by the first player with pure actions if he
has a strategy such that, for all ε > 0, there exists an integer Tε such that for all strategies
of the second player,

P

{
∀T > Tε, sup

ξ∈m(πT )
inf
c∈C
‖c− ξ‖2 6 ε

}
> 1− ε .
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The fact that Condition (SVAC) is still a necessary and sufficient condition for m–
approachability with pure actions of a closed convex set C ⊆ Rd (where m is bounded) can
be seen as follows.

Concerning the proof of the sufficiency of this condition, first recall that Lemma 9
indicates that Condition (SVAC) is equivalent to the m–approachability of C̃. In view of
a version of Theorem 3 for pure actions (e.g., Theorem II.4.3 of Mertens et al., 1994) the
strategy described around (3) and (4), with the replacement of the νT by the πT and extra
random draws of the pure actions At according to the mixed distributions xt thus computed,
is such that the quantities

ε′T =
wwwπT − PC̃(πT )

www
2

= inf
µ∈C̃
‖πT − µ‖2

satisfy the following convergence guarantees. For all δ ∈ (0, 1), there exists an integer Tδ
such that for all strategies of the second player,

P
{
∀T > Tδ, ε′T 6 δ

}
> 1− δ .

This shows that this strategy also m–approaches C since Lemma 10 is valid with the re-
spective replacements of νT and εT by πT and ε′T .

The proof of the necessity of the condition is the same as for mixed actions taken, with
the addition of a concentration argument. Indeed, by martingale convergence (e.g., repeated
uses of the Hoeffding-Azuma inequality together with an application of the Borel-Cantelli
lemma), δT = ‖πT − νT ‖1 converges to zero almost surely as T goes to infinity. By applying
Lemma 6 and by using the notation of the proof of Theorem 8, we get

sup
ξ∈m(πT )

inf
c∈C
‖c− ξ‖2 > sup

ξ∈m(νT )
inf
c∈C
‖c− ξ‖2 −MδT > Dmin −MδT ,

and we simply take the lim inf in the above inequalities to conclude the argument.

4. Set-Valued Approachability for Concave–Convex Set-Valued Games

We consider in this section the same setting of mixed actions taken and observed as in
Section 3.1, that is, we deal with set-valued payoff functions m : ∆(A) × ∆(B) → S

(
Rd
)

under full monitoring. However, in the previous section m was linear on ∆(A) × ∆(B),
an assumption that we now weaken while still having that (SVAC) is the necessary and
sufficient condition for set-valued approachability. The price to pay for this is the loss of
the exhibited efficiency (up to a projection oracle) of the approaching strategies and an
inferior convergence rate.

Formally, the functions m : ∆(A)×∆(B)→ S
(
Rd
)

that we will consider will satisfy one
or several of the following properties.

Definition 12 The set-valued function m : ∆(A)×∆(B)→ S
(
Rd
)

is bounded in `2–norm
by M if

∀(x,y) ∈ ∆(A)×∆(B), sup
ξ∈m(x,y)

‖ξ‖2 6M .
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Definition 13 A function m : ∆(A)×∆(B)→ S
(
Rd
)

is uniformly continuous in its first
argument if for every ε > 0, there exists η > 0 such that for all x,x′ ∈ ∆(A) satisfying
‖x− x′‖1 6 η and for all y ∈ ∆(B), the set m(x′,y) is included in an ε–neighborhood of
m(x,y) in the Euclidean norm. Put differently,

sup
ξ∈m(x′,y)

inf
c∈m(x,y)

‖ξ − c‖2 6 ε or m(x′,y) ⊆ m(x,y) + εB ,

where B is the unit Euclidean ball in Rd.

Uniform continuity in the second argument is defined symmetrically.

Definition 14 A function m : ∆(A) × ∆(B) → S
(
Rd
)

is concave in its first argument if
for all x,x′ ∈ ∆(A), all y ∈ ∆(B), and all α ∈ [0, 1],

m
(
αx+ (1− α)x′, y

)
⊆ αm(x,y) + (1− α)m(x′,y) .

A function m : ∆(A)×∆(B)→ S
(
Rd
)

is convex in its second argument if for all x ∈ ∆(A),
all y,y′ ∈ ∆(B), and all α ∈ [0, 1],

αm(x,y) + (1− α)m(x,y′) ⊆ m
(
x, αy + (1− α)y′

)
.

An example of such a concave–convex function m is discussed in Lemma 17.

The following theorem indicates that (SVAC) is the necessary and sufficient condition
for the m–approachability of a closed convex set C when the payoff function m satisfies all
four properties stated in Definitions 13 and 14. (Boundedness of m indeed follows from the
continuity of m in each variable.)

Theorem 15 If m is bounded, convex, and uniformly continuous in its second argument,
then (SVAC) entails that a closed convex set C is m–approachable.

If m is concave and uniformly continuous in its first argument, then a closed convex set
C is m–approachable only if (SVAC) is satisfied.

The proof of the necessity statement follows closely the arguments used in the proof
of Theorem 8. The sufficiency statement relies on the use of what is called a calibrated
strategy, where we define calibration in a (slightly) stronger way than Foster and Vohra
(1998) did. All the details, including the definition of the stronger notion of calibration and
the construction of an algorithm controlling it, can be found in Appendix A.

5. Approachability in Games with Partial Monitoring

A repeated vector-valued game with partial monitoring is described as follows (see, e.g.,
Mertens et al., 1994, Rustichini, 1999, and references therein). The players have respective
finite action sets I and J . We denote by r : I ×J → Rd the vector-valued payoff function
of the first player and extend it multi-linearly to ∆(I) × ∆(J ). At each round, players
simultaneously choose their actions It ∈ I and Jt ∈ J , possibly at random according to
probability distributions denoted by pt ∈ ∆(I) and qt ∈ ∆(J ). At the end of a round, the
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first player does not observe Jt nor r(It, Jt) but only receives a signal. There is a finite set
H of possible signals; the feedback St that is given to the first player is drawn at random
according to the distribution H(It, Jt), where the mapping H : I ×J → ∆(H) is known by
the first player. We will refer to H as the signaling structure.

Formally, strategies of the first player now associate with I1, . . . , It−1 and S1, . . . , St−1

a mixed action pt ∈ ∆(I), according to which It is drawn independently. We do not
impose any restriction on the opponent player, who enjoys a full monitoring: strategies of
his associate with I1, . . . , It−1, with J1, . . . , Jt−1 and with S1, . . . , St−1 a mixed action
qt ∈ ∆(I), according to which Jt is drawn independently.

Example 1 Examples of such partial monitoring games are provided by, e.g., Cesa-Bianchi
et al. (2006), among which we can cite the apple tasting problem, the label-efficient prediction
constraint, and the multi-armed bandit settings.

Some additional notation will be useful. We denote by R a bound on the norm of (the
linear extension of) r,

R = max
(i,j)∈I×J

wwr(i, j)ww
2
. (5)

The cardinalities of the finite sets I, J , and H will be referred to as NI , NJ , and NH.
The definition of approachability can be extended from the setting of full information

to the setting of partial monitoring as follows. The only new ingredient is the signaling
structure H, the aim is unchanged.

Definition 16 Let C ⊆ Rd be some set; C is r–approachable by the first player for the
signaling structure H if he has a strategy such that, for all ε > 0, there exists an integer Tε
such that for all strategies of the second player,

P

{
∀T > Tε, inf

c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 ε

}
> 1− ε .

In particular, the first player has a strategy that ensures that the sequence of his average
vector-valued payoffs converges almost surely to the set C (uniformly with respect to the
strategies of the second player), even if he only observes the random signals St as a feedback.

Here again, more precise approachability guarantees than the ones required by the def-
inition will be obtained. Indeed, Corollary 27 exhibits bounds of the following form, for a
suitable strategy of the first player. For all strategies of the second player and for all T > 1,
with probability at least 1− PT ,

sup
τ>T

inf
c∈C

wwwwwc− 1

τ

τ∑
t=1

r(It, Jt)

wwwww
2

6 RT ,

where PT = O(1/T ) and RT = O
(
T−1/5 lnT

)
.

Our contributions to approachability in games with partial monitoring : A necessary and
sufficient condition for r–approachability with the signaling structure H was already stated
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and proved by Perchet (2011a), together with an approaching strategy. We therefore need
to detail where our contribution lies.

First, our strategy is efficient (as long as some projection operator can be computed
efficiently, e.g., in the case when the target set is a polytope, see Sections 5.4.1–5.4.2 as well
as in the cases of external and internal regret minimization described below in Section 6).
In contrast, the one of Perchet (2011a) relies on auxiliary strategies that are calibrated
and that require a grid that is progressively refined (leading to a step complexity that is
prohibitive in the number T of past steps and to rates of convergence that become dependent
on the dimension). The latter construction is in essence the one used in Section 4.

Second, we are able, for the first time, to exhibit convergence rates that are independent
of the dimension (as is the case with full monitoring). A somehow related result appeared
in Perchet (2011b), but only for the special case of regret minimization. The proof tech-
niques used therein are involved and hold only for regret minimization, not for general
approachability.

Third, as far as elegance is concerned, our proof of the sufficiency of the condition for
r–approachability with the signaling structure H is short, compact, and more direct than
the one of Perchet (2011a) or even of Perchet (2011b), which relied on several layers of
concepts (for example, calibration or internal regret in games with partial monitoring).

5.1 Statement of the Necessary and Sufficient Condition for Approachability

To recall the mentioned approachability condition of Perchet (2011a) we need some addi-
tional notation. For all q ∈ ∆(J ), we denote by H̃(q) the element in ∆(H)I defined as
follows. For all i ∈ I, its i–th component is given by the convex combination of probability
distributions over H

H̃(q)i = H(i, q) =
∑
j∈J

qjH(i, j) .

Also, we denote by F the convex set of feasible vectors of probability distributions over H:

F =
{
H̃(q) : q ∈ ∆(J )

}
.

A generic element of F will be denoted by σ ∈ F and we define the set-valued function m,
for all p ∈ ∆(I) and σ ∈ F , by

m(p, σ) =
{
r(p, qeqv) : qeqv ∈ ∆(J ) such that H̃(qeqv) = σ

}
.

We use in qeqv the subscript “eqv” (standing for “equivalent”) as all considered qeqv vectors
induce the same distributions of signals σ and are thus equivalent from the monitoring
perspective.

The necessary and sufficient condition exhibited by Perchet (2011a) for the r–approacha-
bility of C with the signaling structure H can now be recalled. In the sequel we will refer
to this condition as Condition (APM), an acronym that stands for “approachability with
partial monitoring.”

Condition 1 [referred to as Condition (APM)] The signaling structure H, the vector-
payoff function r, and the set C satisfy

∀ q ∈ ∆(J ), ∃p ∈ ∆(I), ∀ q′ ∈ ∆(J ), H̃(q) = H̃(q′) ⇒ r(p, q′) ∈ C .
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The condition can be equivalently reformulated as

∀σ ∈ F , ∃p ∈ ∆(I), m(p, σ) ⊆ C . (APM)

The subsequent sections show (in a constructive way, with a strategy efficient up to a
projection oracle) that Condition (APM) is sufficient for r–approachability of closed convex
sets C given the signaling structure H. That this condition is necessary was already proved
in Section 3.1 of Perchet (2011a).

5.2 Links with Set-Valued Approachability

As will become clear in the proof of Theorem 24, the key in our problem will be to ensure
the set-valued approachability of C with the following non-linear set-valued payoff function,
that is however concave–convex in the sense of Definition 14.

Lemma 17 The function

(p, q) ∈ ∆(I)×∆(J ) 7−→ m
(
p, H̃(q)

)
is concave in its first argument and convex in its second argument.

Proof For the concavity part, we consider some pair p,p′ ∈ ∆(I), some q ∈ ∆(J ) and
some α ∈ [0, 1]. By the linearity of r, the elements of the set of interest can be written as

m
(
αp+ (1− α)p′, H̃(q)

)
=
{
α r(p, qeqv) + (1− α)r(p′, qeqv) : qeqv ∈ ∆(J ) such that H̃(qeqv) = H̃(q)

}
.

This set is therefore indeed included in (but in general, not equal to)

αm
(
p, H̃(q)

)
+ (1− α)αm

(
p, H̃(q)

)
= α

{
r(p, qeqv) : qeqv ∈ ∆(J ) such that H̃(qeqv) = H̃(q)

}
+ (1− α)

{
r(p, q′eqv) : q′eqv ∈ ∆(J ) such that H̃(q′eqv) = H̃(q)

}
.

Similarly, for the convexity part, we consider some pair q, q′ ∈ ∆(J ), some p ∈ ∆(I) and
some α ∈ [0, 1]. Elements of the convex combination of sets

αm
(
p, H̃

(
q
))

+ (1− α)m
(
p, H̃

(
q′
))

are of the form

α r(p, qeqv) + (1− α) r(p, q′eqv) = r
(
p, αqeqv + (1− α)q′eqv

)
,

where qeqv and q′eqv are such that

H̃(qeqv) = H̃(q) and H̃(q′eqv) = H̃(q′) . (6)
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In particular, by linearity of H̃, we have

H̃
(
αqeqv + (1− α)q′eqv

)
= H̃

(
αq + (1− α)q′

)
,

which shows that

r
(
p, αqeqv + (1− α)q′eqv

)
∈ m

(
p, H̃

(
αq + (1− α)q′

))
.

The desired inclusion

αm
(
p, H̃

(
q
))

+ (1− α)m
(
p, H̃

(
q′
))
⊆ m

(
p, H̃

(
αq + (1− α)q′

))
follows. Note that this inclusion is not an equality in general, as it cannot be guaranteed
that any q′′eqv such that

H̃
(
αq + (1− α)q′

)
= H̃(q′′eqv)

can be decomposed under the form αqeqv + (1− α)q′eqv, where qeqv and q′eqv satisfy (6).

Unfortunately, efficient strategies for set-valued approachability were only proposed in
the linear case (Section 3), not in the concave–convex case (Section 4), and the proof of
Lemma 17 shows that linearity cannot be guaranteed per se. However, we illustrate in the
next example (and provide a general theory in the next section) how working in lifted spaces
can lead to linearity and hence to efficiency.

Example 2 We consider a game in which the second player (the column player) can force
the first player (the row player) to play a game of matching pennies in the dark by choosing
actions L or M . More formally, in the matrix below, the real numbers denote the payoff
while ♣ and ♥ denote the two possible signals. The respective sets of actions are I = {T, B}
and J = {L, M, R}.

L M R

T 1 / ♣ −1 / ♣ 2 / ♥
B −1 / ♣ 1 / ♣ 3 / ♥

In this example we only study the mapping p 7→ m(p,♣) and show that it is piecewise
linear on ∆(I), thus, is induced by a linear mapping defined on a lifted space.

We introduce a set A = {pT , pB, p1/2} of possibly mixed actions extending the set
I = {T, B} of pure actions; the set A is composed of

pT = δT , pB = δB, and p1/2 =
1

2
δT +

1

2
δB .

Each mixed action in ∆(I) can be uniquely written as pλ = λ δB + (1 − λ) δT for some
λ ∈ [0, 1]. Now, for λ > 1/2, first,

pλ = (2λ− 1) δB +
(
1− (2λ− 1)

)
p1/2 ;
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second, by definition of m,

m
(
pλ, ♣

)
= [1− 2λ, 2λ− 1] ;

since in particular m
(
p1/2, ♣

)
= {0} and m(δB,♣) = [−1, 1], we have the convex decom-

position

m
(
pλ, ♣

)
= (2λ− 1)m(δB,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) ,

that can be restated as

m
(

(2λ− 1) δB +
(
1− (2λ− 1)

)
p1/2, ♣

)
= (2λ− 1)m(δB,♣) +

(
1− (2λ− 1)

)
m(p1/2,♣) .

That is, m( · , ♣) is linear on the subset of ∆(I) corresponding to mixed actions pλ with
λ > 1/2.

A similar property holds on the subset of distributions with λ 6 1/2, so that we proved
that m( · , ♣) is piecewise linear on ∆(I).

The linearity on a lifted space comes from the following observation: m is induced by
the linear extension to ∆(A) of the restriction of m to A (see Definition 21 for a more
formal statement).

5.3 A Particular Class of Games, Encompassing Regret Minimization

In this section we consider the case where the payoff function and the signaling structure
have some special properties described below (linked to linearity properties on lifted spaces
and called “bi-piecewise linearity”) and that can be exploited to get efficient strategies. The
case of general games with partial monitoring is then considered in Section 5.4 but the par-
ticular class of games considered here is already rich enough to encompass the minimization
of external and internal regret, as will be seen in Section 6.

To define bi-piecewise linearity of a game with partial monitoring, we start from a
technical lemma that shows that m(p, σ) can be written as a finite convex combination of
sets of the form m(p, b), where b belongs to some finite set B ⊆ F that depends on the
game. Under the additional assumption of the so-called piecewise linearity of the thus-
defined mappings m( · , b), we then describe an efficient strategy for approachability (up to
a projection oracle) followed by convergence rate guarantees.

Definition 18 Let P be a polytope and let X be a convex set. A mapping f : P → X is
piecewise linear if f is continuous and

– there exist finitely many sub-polytopes P1, . . . , PK covering P and such that two dif-
ferent sub-polytopes Pk, Pk′ have an intersection with empty interior; we call these
sub-polytopes a decomposition of P ;

– f is linear on each sub-polytope Pk.
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5.3.1 Bi-Piecewise Linearity of a Game — a Preliminary Technical Result

Lemma 19 For any game with partial monitoring, there exists a finite set B ⊂ F and a
piecewise-linear (injective) mapping Φ : F → ∆(B) such that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑
b∈B

Φb(σ)m(p, b) ,

where we denoted the convex weight vector Φ(σ) ∈ ∆(B) by
(
Φb(σ)

)
b∈B.

Proof H̃ is linear on the polytope ∆(J ); Proposition 2.4 in Rambau and Ziegler (1996)
thus implies that its inverse mapping H̃−1 is a piecewise linear mapping of F into the
set of the subsets of ∆(J ). (Note that the latter set has a structure of a convex set, see
Footnote 1.) This means by definition that there exists a finite decomposition of F into
polytopes P1, . . . , PK each on which H̃−1 is linear. Up to a triangulation (see, e.g., Goodman
and O’Rourke, 2004, Chapter 14), we can assume that each Pk is a simplex. Denote by
Bk ⊆ F the set of vertices of Pk; then, the finite subset stated in the lemma is

B =
K⋃
k=1

Bk ,

the set of all vertices of all the simplices.
Fix any σ ∈ F . It belongs to some simplex Pk, so that there exists a convex decompo-

sition σ =
∑

b∈Bk λb b; this decomposition is unique within the simplex Pk. If σ belongs to
two different simplices, then it actually belongs to their common face and the two possible
decompositions coincide (some coefficients λb in the above decomposition are null). All in
all, with each σ ∈ F , we can associate a unique decomposition in B,

σ =
∑
b∈B

Φb(σ) b ,

where the coefficients
(
Φb(σ)

)
b∈B form a convex weight vector over B, i.e., belong to ∆(B);

in addition, Φb(σ) > 0 only if b ∈ Bk, where k is such that σ ∈ Pk.
Since H̃−1 is linear on each simplex P1, . . . , PK , we therefore get

H̃−1(σ) =
∑
b∈B

Φb(σ) H̃−1(b) .

Finally, the result is a consequence of the fact that

m(p, σ) = r
(
p, H̃−1(σ)

)
= r

(
p,
∑
b∈B

Φb(σ) H̃−1(b)

)
,

that implies, by the linearity of r, that

m(p, σ) =
∑
b∈B

Φb(σ) r
(
p, H̃−1(b)

)
=
∑
b∈B

Φb(σ)m(p, b) ,

which concludes the proof.
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Remark 20 The proof shows that Φ is piecewise linear on a finite decomposition of F ;
it is therefore Lipschitz on F . We denote by κΦ its Lipschitz constant with respect to the
`2–norms.

The main contribution of this subsection (Definition 21) relies on the following additional
assumption.

Assumption 1 We assume that m( · , b) is piecewise linear on ∆(I) for every b ∈ B. We
then call the corresponding game (r,H) a bi-piecewise linear game.

Assumption 1 means that for each b ∈ B there exists a decomposition of ∆(I) into
polytopes each on which m( · , b) is linear. Since B is finite, there exist finitely many such
decompositions to consider, and thus there exists a decomposition to polytopes that refines
all of them. (The latter is generated by the intersection of all considered polytopes as b
varies.) By construction, every m( · , b) is linear on any of the polytopes of this common
decomposition. We denote byA ⊂ ∆(I) the finite subset of all their vertices. A construction
similar to the one used in the proof of Lemma 19 leads to a piecewise linear (injective)
mapping Θ : ∆(I) → ∆(A), where Θ(p) is the decomposition of p on the vertices of the
polytope(s) of the decomposition to which it belongs, satisfying

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) =
∑
a∈A

Θa(p)m(a, b) ,

where we denoted the convex weight vector Θ(p) ∈ ∆(A) by
(
Θa(p)

)
a∈A. This, Lemma 19,

and Assumption 1 show that on a lifted space, m coincides with a bi-linear mapping m, as
is made formal in the next definition.

Definition 21 For a bi-piecewise linear game, we denote by m the linear extension to
∆(A× B) of the restriction of m to A× B, so that for all p ∈ ∆(I) and σ ∈ F ,

m(p, σ) = m
(
Θ(p), Φ(σ)

)
.

5.3.2 Construction of a Strategy to Approach C

The approaching strategy for the original problem is based on a strategy Ψ form–approachability
of C, provided by Theorem 8; we therefore first need to prove the existence of such a Ψ.

Lemma 22 Under Condition (APM), the closed convex set C is m–approachable.

Proof We show that Condition (SVAC) in Theorem 8 is satisfied, that is, that for all
y ∈ ∆(B), there exists some x ∈ ∆(A) such that m(x,y) ⊆ C. With such a given y ∈ ∆(B),
we associate2 the feasible vector of signals σ =

∑
b∈B yb b ∈ F and let p be given by

Condition (APM), so that m(p, σ) ⊆ C. By linearity of m (for the first equality), by

2. Note, however, that we do not necessarily have that Φ(σ) and y are equal, as Φ is not a one-to-one
mapping (it is injective but not surjective).
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Approaching Strategy in Games with Partial Monitoring

Parameters: an integer block length L > 1, an exploration parameter γ ∈ [0, 1], a strategy Ψ for
m–approachability of C
Notation: u ∈ ∆(I) is the uniform distribution over I, PF denotes the projection operator in `2–
norm of RH×I onto F
Initialization: compute the finite set B and the mapping Φ : F → ∆(B) of Lemma 19, compute the
finite set A and the mapping Θ : ∆(I) → ∆(A) defined based on Assumption 1, pick an arbitrary
θ1 ∈ ∆(A)

For all blocks n = 1, 2, . . .,

1. define xn =
∑

a∈A θn,a a and pn = (1 − γ)xn + γ u; refer to the components of pn as
(pi,n)i∈I ;

2. for rounds t = (n− 1)L+ 1, . . . , nL,

2.1 draw an action It ∈ I at random according to pn;

2.2 get the signal St;

3. form the estimated vector of probability distributions over signals,

σ̃n =

 1

L

nL∑
t=(n−1)L+1

I{St=s}I{It=i}

pIt,n


(i,s)∈I×H

;

4. compute the projection σ̂n = PF
(
σ̃n
)
;

5. choose θn+1 = Ψ
(
θ1, Φ

(
σ̂1
)
, . . . , θn, Φ

(
σ̂n
))
.

Figure 1: The proposed strategy, which plays in blocks.

convexity of m in its second argument (for the first inclusion), by Lemma 19 (for the second
and fourth equalities), by construction of A (for the third equality),

m
(
Θ(p),y

)
=
∑
a∈A

Θa(p)
∑
b∈B

ybm(a, b) ⊆
∑
a∈A

Θa(p)m(a, σ) =
∑
a∈A

Θa(p)
∑
b∈B

Φb(σ)m(a, b)

=
∑
b∈B

Φb(σ)m(p, b) = m(p, σ) ⊆ C ,

which concludes the proof.

We consider the strategy described in Figure 1 (and the notation introduced therein).
It forces exploration at a γ rate, as is usual in situations with partial monitoring. One of
its key ingredients, that conditionally unbiased estimators are available, is extracted from
Lugosi et al. (2008, Section 6): in block n we consider sums of elements of the form

Ĥt =

(I{St=s}I{It=i}
pIt,n

)
(i,s)∈I×H

∈ RH×I .
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Averaging over the respective random draws of It and St according to pn and H(It, Jt), i.e.,
taking the conditional expectation Et with respect to pn and Jt, we get

Et
[
Ĥt

]
= H̃

(
δJt
)
. (7)

Indeed, the conditional expectation of the component i of Ĥt equals

Et
[(I{St=s}I{It=i}

pIt,n

)
s∈H

]
= Et

[
H(It, Jt) I{It=i}

pIt,n

]
=
H(i, Jt)

pi,n
Et
[
I{It=i}

]
= H(i, Jt) ,

where we first took the expectation over the random draw of St (conditionally on pn, Jt,
and It) and then over the one of It. Consequently, concentration arguments show that for
L large enough,

σ̃n =
1

L

nL∑
t=(n−1)L+1

Ĥt is close to H̃
(
q̂n
)
, where q̂n =

1

L

nL∑
t=(n−1)L+1

δJt . (8)

Actually, since F ⊆ ∆(H)I , we have a natural embedding of F into RH×I and we can define
PF , the convex projection operator onto F (in `2–norm). Instead of using directly σ̃n, we
consider in our strategy σ̂n = PF

(
σ̃n
)
, which is even closer to H̃

(
q̂n
)
.

More precisely, the following result can be extracted from the proof of Theorem 6.1
in Lugosi et al. (2008). For the convenience of the reader, a self-contained proof is provided
in Appendix C.

Lemma 23 For all δ ∈ (0, 1), for all blocks n > 1, with probability at least 1− δ,wwwσ̂n − H̃(q̂n)www
2
6
√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

)
.

5.3.3 A Performance Guarantee for the Strategy of Figure 1

For the sake of simplicity, we provide first a performance bound for fixed parameters γ and
L tuned as functions of a known horizon T . We then obtain a bound holding only for the
specific round T . Adaptation to T → ∞ (and the obtention of bounds for all T > 1) are
then described in the next section. We recall that R was defined in (5) as a bound in norm
on r.

Theorem 24 Consider a closed convex set C and a game (r,H) for which Condition (APM)
is satisfied and that is bi-piecewise linear in the sense of Assumption 1. Then, for all
strategies of the second player, the strategy of Figure 1, run with parameters γ ∈ [0, 1] and
L > 1 and fed with a strategy Ψ for m–approachability of C (provided by Lemma 22) is such
that, for all T > L+ 1, for all δ ∈ (0, 1), with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6
2L

T
R+4R

√
ln
(
2(T + L)/(Lδ)

)
T − L

+2γR+
2R√

T/L− 1

√
NANB

+RκΦ

√
NINHNA

(√
2NI
γL

ln
2NINH(T + L)

Lδ
+

1

3

NI
γL

ln
2NINH(T + L)

Lδ

)
.

3268



Approachability in Games with Partial Monitoring

In particular, for all T > 1, the choices of L =
⌈
T 3/5

⌉
and γ = T−1/5 imply that for all

strategies of the second player, for all δ ∈ (0, 1), with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)

for some constant Ξ depending only on C and on the game (r, H) at hand.

The efficiency of the strategy of Figure 1 depends on whether it can be fed with an
efficient approaching strategy Ψ, which in turn depends on the respective geometries of m
and C, as was indicated at the end of Section 3.1. (Note that the projection onto F can be
performed in polynomial time, as the latter closed convex set is defined by finitely many
linear constraints, and that the computation of A, B, and m can be performed beforehand.)
In any case, the per-round complexity is constant (though possibly large).

Proof We write T as T = NL+ k where N is an integer and 0 6 k 6 L− 1 and will show
successively that (possibly with overwhelming probability only) the following statements
hold.

1

T

T∑
t=1

r(It, Jt) is close to
1

NL

NL∑
t=1

r(It, Jt) ; (9)

1

NL

NL∑
t=1

r(It, Jt) is close to
1

N

N∑
n=1

r
(
pn, q̂n

)
; (10)

1

N

N∑
n=1

r
(
pn, q̂n

)
is close to

1

N

N∑
n=1

r
(
xn, q̂n

)
; (11)

1

N

N∑
n=1

r
(
xn, q̂n

)
=

1

N

N∑
n=1

∑
a∈A

θn,a r
(
a, q̂n

)
belongs to the set

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))

;

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))

is equal to the set
1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

;

1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

is close to the set
1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))

; (12)

1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))

is close to the set C ; (13)

where we recall that the notation q̂n was defined in (8) and is referring to the empirical dis-
tribution of the Jt in the n–th block. Actually, we will show below the numbered statements
only. The first unnumbered statement is immediate by the definition of xn, the linearity of
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r, and the very definition of m; while the second one follows from Definition 21:

1

N

N∑
n=1

∑
a∈A

θn,am
(
a, H̃

(
q̂n
))

=
1

N

N∑
n=1

∑
(a,b)∈A×B

θn,a Φb

(
H̃
(
q̂n
))
m(a, b)

=
1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

.

Step 1: Assertion (9). A direct calculation decomposing the sum over T elements
into a sum over the NL first elements and the k remaining ones shows thatwwwww 1

T

T∑
t=1

r(It, Jt)−
1

NL

NL∑
t=1

r(It, Jt)

wwwww
2

6 R

(
k

T
+

(
1

NL
− 1

T

)
NL

)
=

2k

T
R 6

2L

T
R .

Step 2: Assertion (10). We note that by defining Et as the conditional expecta-
tion with respect to (I1, S1, J1), . . ., (It−1, St−1, Jt−1) and Jt, which fixes the values of the
distribution p′t of It and the value of Jt, we have

Et
[
r(It, Jt)

]
= r(p′t, Jt) .

We note that by definition of the forecaster, p′t = pn if t belongs to the n–th block. By
a version of the Hoeffding-Azuma inequality for sums of Hilbert space-valued martingale
differences stated as3 Lemma 3.2 in Chen and White (1996), we therefore get that with
probability at least 1− δ,wwwww 1

NL

NL∑
t=1

r(It, Jt)−
1

N

N∑
n=1

r
(
pn, q̂n

)wwwww
2

6 4R

√
ln(2/δ)

NL
6 4R

√
ln(2/δ)

T − L
.

The second inequality comes from NL = T − k > T − L.
Step 3: Assertion (11). Since by definition pn = (1− γ)xn + γ u, we getwwwww 1

N

N∑
n=1

r
(
pn, q̂n

)
− 1

N

N∑
n=1

r
(
xn, q̂n

)wwwww
2

6 2γR .

Step 4: Assertion (12). We fix a given block n. Lemma 23 indicates that with
probability 1− δ,wwwσ̂n − H̃(q̂n)www

2
6
√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

)
. (14)

Since Φ is Lipschitz (see Remark 20), with a Lipschitz constant in `2–norms denoted by κΦ,
we get that with probability 1− δ,wwwΦ

(
σ̂n
)
− Φ

(
H̃
(
q̂n
))www

2
6 κΦ

√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

)
.

3. Note that the martingale increments are bounded in norm by 2R in our framework and that
√
u e−u 6

e−u/2 for all u > 0.
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By a union bound, the above bound holds for all blocks n = 1, . . . , N with probability at
least 1−Nδ. Finally, an application of Lemma 6 shows that

1

N

N∑
n=1

m

(
θn, Φ

(
H̃
(
q̂n
)))

is in a εT –neighborhood (in `2–norm) of

1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))
,

where

εT = R
√
NB

(
κΦ

√
NINH

(√
2NI
γL

ln
2NINH

δ
+

1

3

NI
γL

ln
2NINH

δ

))
.

Step 5: Assertion (13). Since C is m–approachable and by definition of the choices
of the θn in Figure 1, we get by Theorem 8, with probability 1,

inf
c∈C

wwwwwc− 1

N

N∑
n=1

m
(
θn, Φ

(
σ̂n
))wwwww

2

6
2R√
N

√
NANB 6

2R√
T/L− 1

√
NANB ,

since, as used already at the end of step 2, N > T/L− 1.
Conclusion of the proof. The proof is concluded by putting the pieces together,

thanks to a triangle inequality. By a union bound, the obtained bound holds however only
with probability at least 1− (N + 1)δ > 1−

(
(T + L)/L

)
δ, where we used N 6 T/L. The

stated bound follows by replacing all occurrences of δ in the previous steps by δL/(T+L).

5.3.4 Uniform Guarantees over Time

We present here a variant of the strategy of Figure 1 that r–approaches C for the signaling
structure H. This is achieved by making the strategy independent of the horizon T . (The
strategy of the previous section depended on the knowledge of T , via suitable choices for
L and γ.) Two options could have been worked out: resorting to some “doubling trick”
or having the parameters L and γ vary over time. In the latter option, the lengths Ln of
blocks n and the exploration rates γn used therein are no longer constant but of lengths
polynomial in n. We chose the latter option for the sake of elegance and because it relies
on a result of independent interest, namely a generalization of Theorem 3 to polynomial
averages. We only state this generalization for mixed actions taken and observed, but the
adaptation for pure actions follows easily.

Consider the setting of Theorem 3. The studied strategy relies on a parameter α > 0.
It plays an arbitrary x1. For t > 1, it forms at stage t + 1 the vector-valued polynomial
average

m̂α
t =

1

Tαt

t∑
s=1

sαm(xs,ys) where Tαt =

t∑
s=1

sα ,
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computes its projection cαt onto C, and resorts to a mixed action xt+1 solving the minimax
equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂α
t − cαt , m(x,y)− cαt

〉
.

Theorem 25 We denote by M a bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6M .

For all α > 0, when C is an approachable closed convex set, the above strategy ensures that
for all strategies of the second player, with probability 1, for all T > 1,

inf
c∈C

wwwwwc− 1∑T
t=1 t

α

T∑
t=1

tαm(xt,yt)

wwwww
2

6 2M

√∑T
t=1 t

2α∑T
t=1 t

α
6

2M(α+ 1)√
T

. (15)

It is interesting to note that the convergence rate is independent of α and is the same
as standard approachability (1/

√
T ). The proof of this theorem is a slight modification of

the proof of Theorem 3 and is hence deferred to Appendix D.

The extension to polynomially weighted averages can also be obtained in the context
of set-valued approachability. This is because the key to Theorem 8 is Lemma 10, which
indicates that to get set-valued approachability, it suffices to approach, in the usual sense,
C̃. Both can thus be performed with polynomially weighted averages.

Consider now the variant of the strategy of Figure 1 for which the length of the n-
th block, denoted by Ln, is equal to nα, the exploration rate on this block comes at a
rate γn = n−α/3, and Ψ is an m–approaching strategy of C with respect to polynomially
weighted averages with parameter α = 3/2. We call it a time-adaptive version of the
strategy of Figure 1; indeed, this choice of α ensures that there are roughly T 2/5 blocks
and that the length of the last one is of the order of T 3/5. Note that it does not depend
anymore on any time horizon T , hence guarantees can be obtained for all T .

Theorem 26 In the same setting and under the same assumptions as in Theorem 24, the
time-adaptive version of the strategy described in Figure 1 (with Ln = nα and γn = n−α/3

for α = 3/2) ensures that, for all strategies of the second player, for all T > 1 and all
δ ∈ (0, 1), with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)

for some constant Ξ depending only on C and on the game (r, H) at hand.

The proof follows closely the one of Theorem 24 and is presented in Appendix E.

Corollary 27 In the same setting and under the same assumptions as in Theorem 24, the
time-adaptive version of the strategy described in Figure 1 (with Ln = nα and γn = n−α/3

for α = 3/2) indeed r–approaches C for the signalling structure H.

3272



Approachability in Games with Partial Monitoring

Proof The strategy at hand is such that for all T > 1, with probability at least 1− 1/T 2,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 Ξ
(
T−1/5 lnT 3 + T−2/5 lnT 3

)
.

In particular, a union bound shows that for all T > 2,

sup
τ>T

inf
c∈C

wwwwwc− 1

τ

τ∑
t=1

r(It, Jt)

wwwww
2

6 RT
def
= sup

τ>T
Ξ
(
τ−1/5 ln τ3 + τ−2/5 ln τ3

)
,

with probability at least 1−PT , where PT =
∑

τ>T 1/τ2. We note that PT → 0 and RT → 0
as T →∞. To see that the definition of approachability is satisfied, given ε > 0, it suffices
to define Tε as the minimal T such that RT 6 ε and PT 6 ε.

5.4 Approachability in the Case of General Games with Partial Monitoring

Unfortunately, as is illustrated in the example below, there exist games with partial mon-
itoring that are not bi-piecewise linear. However, we will show that if Condition (APM)
holds there exist strategies with a constant per-round complexity that approach polytopes
even when the game is not bi-piecewise linear. That is, by considering simpler closed convex
sets C, no assumption is needed on the pair (r,H).

We will conclude this main part of the paper by re-proving, using a doubling trick, that
Condition (APM) is still sufficient for approachability in the most general case when no
assumption is made neither on (r,H) nor on C, at the cost of inefficiency.

Example 3 The following game (with the same action and signal sets as in Example 2) is
not bi-piecewise linear.

L M R

T (1, 0, 0, 0) / ♣ (0, 0, 1, 0) / ♣ (2, 0, 4, 0) / ♥
B (0, 1, 0, 0) / ♣ (0, 0, 0, 1) / ♣ (0, 3, 0, 5) / ♥

Proof We denote mixed actions of the first player by (p, 1 − p), where p ∈ [0, 1] denotes
the probability of playing T and 1− p is the probability of playing B. It is immediate that
m
(
(p, 1−p), ♣

)
can be identified with the set of all product distributions on 2×2 elements

with first marginal distribution (p, 1 − p). The proof of Lemma 19 shows that the set B
associated with any game always contains the Dirac masses on each signal; that is, δ♣ ∈ B.
But for p 6= p′ and λ ∈ (0, 1), denoting p = λ p+ (1− λ)p′, one necessarily has that

m
(
(p, 1− p), ♣

)
 λm

(
(p, 1− p), ♣

)
+ (1− λ)m

(
(p′, 1− p′), ♣

)
;

the inclusion ⊆ holds by concavity of m in its first argument (Lemma 17) but this inclusion
is always strict here since the left-hand side is formed by product distributions while the
right-hand side also contains distributions with correlations. Hence, bi-piecewise linearity
cannot hold for this game.
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5.4.1 Approachability of the Negative Orthant in General Games

For the sake of simplicity, we start with the case of the negative orthant Rd− and prove
the following result. Note that for the first time in this general framework, the rates for
approachability of polytopes are independent of the dimension (as is the case with full
monitoring).

Theorem 28 If Condition (APM) is satisfied for m and Rd−, then there exists a strategy for
(r,H)–approaching Rd− at a rate of the order of T−1/5, with a constant per-round complexity.

Our argument is based on Lemma 19; we use in the sequel the objects and notation
introduced therein. We denote by r = (rk)16k6d the components of the d–dimensional
payoff function r and introduce, for all k ∈ {1, . . . , d}, the set-valued mapping m̃k defined
by

m̃k : (p, b) ∈ ∆(I)× B 7−→ m̃k(p, b) =
{
rk(p, q) : q ∈ ∆(J ) such that H̃(q) = b

}
.

The mapping m̃ is then defined as the Cartesian product of the m̃k; formally, for all p ∈ ∆(I)
and b ∈ B,

m̃(p, b) =
{

(z1, . . . , zd) : ∀k ∈ {1, . . . , d}, zk ∈ m̃k(p, b)
}
.

We then linearly extend this mapping to a set-valued mapping m̃ defined on ∆(I)×∆(B)
and finally consider the set-valued mapping m̆ defined on ∆(I)×F by

∀σ ∈ F , ∀p ∈ ∆(I), m̆(p, σ) = m̃
(
p,Φ(σ)

)
=
∑
b∈B

Φb(σ) m̃(p, b) ,

where Φ refers to the mapping defined in Lemma 19 (based on m). The lemma below
indicates why m̆ is an excellent substitute to m in the case of the approachability of the
orthant Rd−.

Lemma 29 The set-valued mappings m̆ and m satisfy that for all p ∈ ∆(I) and σ ∈ F ,

1. the inclusion m(p, σ) ⊆ m̆(p, σ) holds;

2. if m(p, σ) ⊆ Rd−, then one also has m̆(p, σ) ⊆ Rd−.

The interpretation of these two properties is: 1. m̆–approaching a set C is more difficult
than m–approaching it; and 2. that if Condition (APM) holds for m and Rd−, it also holds
for m̆ and Rd−.

Proof For the first property, note that by the component-wise construction of m̃,

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) ⊆ m̃(p, b) .

Lemma 19, the linear extension of m̃, and the definition of m̆ then show that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑
b∈B

Φb(σ)m(p, b) ⊆ m̃
(
p, Φ(σ)

)
= m̆(p, σ) .

3274



Approachability in Games with Partial Monitoring

As for the second property, it suffices to work component-wise. Note that (by Lemma 19
again) the stated assumption exactly means that

∑
b∈B Φb(σ)m(p, b) ⊂ Rd−. In particular,

rewriting the non-positivity constraint for each of the d components of the payoff vectors,
we get ∑

b∈B
Φb(σ) m̃k(p, b) ⊆ R− ,

for all k ∈ {1, . . . , d}; thus, in particular,
∑

b∈B Φb(σ) m̃(p, b) = m̆(p, σ) ⊆ Rd−.

We can then extend the result of the previous section without the bi-piecewise linearity
assumption.

Proof [of Theorem 28] The assumption of the theorem and the second property of
Lemma 29 imply that Condition (APM) holds for Rd− and m̆. Furthermore, the latter
corresponds to a bi-piecewise linear game, i.e., Assumption 1 is satisfied. Indeed, we show
below that each m̃k( · , b) is a piecewise linear function. As a consequence, each m̆( · , b) is
also a piecewise linear function.

Each m̃k( · , b) is piecewise linear since m̃k is based on the scalar payoff function rk.
Indeed, since H̃ is linear, the set{

q ∈ ∆(J ) such that H̃(q) = b
}

is a polytope, thus, the convex hull of some finite set {qb,1, . . . , qb,M} ⊂ ∆(J ). Therefore,
for every p ∈ ∆(I), by linearity of rk (and by the fact that it takes one-dimensional values),

m̃k(p, b) =
{
rk(p, q) : q ∈ ∆(J ) such that H̃(q) = b

}
= co

{
rk(p, qb,1), . . . , r(p, qb,M )

}
=

[
min

k∈{1,...,M}
rk(p, qb,k) , max

k′∈{1,...,M}
rk(p, qb,k′)

]
, (16)

where co stands for the convex hull. Since all mappings rk( · , qb,k) are linear, their minimum
and their maximum are piecewise linear functions, therefore m̃k( · , b) is also piecewise linear.

Therefore, the steps between Equations (11)–(13) of the proof of Theorem 24 (or the
corresponding statements in the proof of Theorem 26) can be adapted by replacing m and
m by, respectively, m̃, m̆, and its extension corresponding to Definition 21. The result about
approachability rates follows.

We now prove that the strategy constructed here is efficient. Indeed, recall that this is
always the case as long as the projection onto the associated convex set C̃ defined by (4)
with the linear function m is also efficient. But this follows from the fact that as Rd− is a

polyhedron, the set C̃ is a polytope.

We now generalize the above ideas to more complex sets.
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5.4.2 Approachability of Polytopes for General Games

If the target set C is a polytope, then C can be written as the intersection of a finite number
of half-planes, i.e., there exists a finite family

{
(ek, fk) ∈ Rd × R, k ∈ K

}
such that

C =
{
z ∈ Rd : 〈z, ek〉 6 fk, ∀ k ∈ K

}
.

Given the original (not necessarily bi-piecewise linear) game (r,H), we introduce another
game (rC , H), whose payoff function rC : I × J → RK is defined as

∀ i ∈ I, ∀ j ∈ J , rC(i, j) =
[
〈r(i, j), ek〉 − fk

]
k∈K

.

The following lemma is a mere exercise of rewriting.

Lemma 30 Given a polytope C, the (r,H)–approachability of C and the
(
rC , H

)
–approacha-

bility of Rd− are equivalent in the sense that every strategy for solving one problem translates
to a strategy for solving the other problem. In addition, Condition (APM) holds for (r,H)
and C if and only if it holds for

(
rC , H

)
and Rd−.

Via the lemma above, Theorem 28 indicates that Condition (APM) for (r,H) and C is a
sufficient condition for the (r,H)–approachability of C and provides an efficient strategy to
do so. (The per-round complexity of this strategy depends in particular at least linearly on
the cardinality of K.) Again, rates of convergence are also, for the first time, independent
of the dimensions (yet the question of their optimality remains open).

5.4.3 Approachability of General Convex Sets in the Case of General
Games

In the above, we provided efficient strategies in the following cases:

– Up to projection oracles, when the games (r,H) are bi-piecewise linear, with no as-
sumption on the target set C; see Section 5.3. This includes at least the minimization
of external and internal regret, for which the projections can indeed be performed
efficiently; see the upcoming Section 6.

– When the target set C is a polytope, with no assumption on the game (r,H); see
Sections 5.4.1 and 5.4.2.

We only mention the case of general games (r,H) and general closed convex target sets C
in this section to have a complete, self-contained, and constructive proof of the sufficiency
of Condition (APM) for (r,H)–approachability. (Perchet, 2011a already proved the latter.)

Theorem 15 and Lemma 17 show that Condition (APM) is indeed sufficient to (r,H)–
approach any general closed convex set C. However, the computational complexity of the
resulting strategy is much larger as the per-round complexity increases over time. Another
way to deal with a general closed convex set is based on the fact that it can be approximated
arbitrarily well by a polytope (where the number of vertices of the latter increases as the
quality of the approximation does). Playing in regimes approachability strategies of such
a sequence of approximations also gives an approachability strategy of the original set C.
However, the per-round complexity increases over time (as the numbers of vertices of the
approximating polytopes do).
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6. Application to Regret Minimization

In this section we analyze external and internal regret minimization in repeated games with
partial monitoring from the perspective of approachability. We show how to efficiently
minimize regret in both setups using the results developed for vector-valued games with
partial monitoring. To do so, we indicate why the assumption of bi-piecewise linearity
(Assumption 1) is satisfied.

The results instantiated below are not necessarily new in terms of efficiency or conver-
gence rates, and some are even slightly suboptimal. However, our point is that all previous
good strategies were specifically designed for the problem of regret minimization, while we
introduced above a general strategy for all approachability problems, including regret min-
imization. And what we gained in generality (the wider range of problems that we can deal
with) has no impact (or little impact only) on the efficiency or on the rates, which we think
is an important contribution.

6.1 External Regret

We consider in this section the framework and aim introduced by Rustichini (1999) and
studied, sometimes for restricted classes of games, by Piccolboni and Schindelhauer (2001),
Mannor and Shimkin (2003), Cesa-Bianchi et al. (2006), Lugosi et al. (2008), Bartók et al.
(2010, 2011), Foster and Rakhlin (2012). We show that our general strategy can be used
for regret minimization.

Scalar payoffs are obtained (but not observed) by the first player, i.e., d = 1: the payoff
function r is a mapping I ×J → R. We still denote by R a bound on |r|. We define in this
section

q̂T =
1

T

T∑
t=1

δJT

as the empirical distribution of the actions taken by the second player during the first T
rounds. (This is in slight contrast with the notation q̂n used in Section 5.3 to denote such
an empirical distribution, but only taken within regime n.)

The external regret of the first player at round T equals by definition

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt) ,

where ρ : ∆(I)×F is defined as follows: for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min
{
r(p, q) : q such that H̃(q) = σ

}
. (17)

The function ρ is continuous in its first argument and therefore the supremum in the defining
expression of Rext

T is a maximum.
We recall briefly why, intuitively, this is the natural notion of external regret to consider

in this case (more formal arguments are given in Rustichini, 1999). Indeed, the first term in
the definition of Rext

T is (close to) the worst-case average payoff obtained by the first player
when playing consistently a mixed action p against a sequence of mixed actions inducing
on average the same laws on the signals as the sequence of actions actually played.
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Rustichini (1999) calls the partial monitoring in the game (r,H) statistically sufficient
when

max
p∈∆(I)

r
(
p, q̂T

)
= max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
.

In general, only an inequality > holds between the two quantities. A line of research initiated
by Piccolboni and Schindelhauer (2001) first studied efficient strategies to minimize the
regret in the said case of a statistically sufficient monitoring.

6.1.1 A Strategy Minimizing External Regret

The following result is a consequence of Theorem 26, as its proof shows; it corresponds to
the main result of Lugosi et al. (2008), with the same convergence rate but with a different
strategy. (However, Perchet, 2011b, Section 2.3 exhibited an efficient strategy achieving a
convergence rate of order T−1/3, which is optimal; this strategy was an ad hoc strategy for
regret minimization. Nonetheless, a question that remains open is thus whether the rates
exhibited in Theorem 26 could be improved.)

Corollary 31 The first player can apply the strategy of Theorem 25 such that for all strate-
gies of the second player, for all T and all δ ∈ (0, 1), with probability at least 1− δ,

Rext
T 6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant Ξ depending only on the game (r, H) at hand.

The discussion about the efficiency of the strategy is postponed to the end of this section,
as it relies on some objects that will be introduced in the proof of the corollary. The latter
proof is an extension to the setting of partial monitoring of the original proof and strategy
of Blackwell (1956b) for the case of external regret under full monitoring: in the latter case
the vector-payoff function r and the set C considered in our proof are equal to the ones
considered by Blackwell.

Proof We embed F into RI×H so that in this proof we will be working in the vector space
Rd = R×RI×H. We consider the closed convex set C and the vector-valued payoff function
r respectively defined by

C =

{
(z, σ) ∈ R×F : z > max

p∈∆(I)
ρ(p, σ)

}
and r(i, j) =

[
r(i, j)

H̃(δj)

]
,

for all (i, j) ∈ I × J .
We first show that Condition (APM) is satisfied for the considered convex set C and

game (r,H). To do so, by continuity of ρ in its first argument, we associate with each
q ∈ ∆(J ) an element φ(q) ∈ ∆(I) such that

φ(q) ∈ argmax
p∈∆(I)

ρ
(
p, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), we have by
definition of ρ,

r
(
φ(q), q′

)
> ρ
(
φ(q), H̃(q′)

)
= max

p∈∆(I)
ρ
(
p, H̃(q′)

)
,

3278



Approachability in Games with Partial Monitoring

which shows that r
(
φ(q), q′

)
∈ C. The required condition is thus satisfied.

We then show that Assumption 1 is satisfied. To do so, we will use the same arguments
as around (16) and actually prove the stronger property that the mappings m( · , σ) are
piecewise linear for all σ ∈ F ; we fix such a σ in the sequel. Only the first coordinate r of
r depends on p, so the desired property is true if and only if the mapping m1( · , σ) defined
by

p ∈ ∆(I) 7−→ m1(p, σ) =
{
r(p, q) : q ∈ ∆(J ) such that H̃(q) = σ

}
is piecewise linear. But this is true because r takes scalar values, as indicated around (16).

Theorem 26 can then be applied to exhibit the convergence rates; we simply need to
relate the quantity of interest here to the one considered therein. To that end we use the
fact that the mapping

σ ∈ F 7−→ max
p∈∆(I)

ρ(p, σ)

is Lipschitz, with Lipschitz constant in `2–norm denoted by Lρ; the proof of this fact is
detailed in the last paragraph of this proof.

Now, the regret is non-positive if
∑T

t=1 r(It, Jt)/T belongs to C; we therefore only need
to consider the case when this average is not in C. In the latter case, we denote by (r̃T , σ̃T )
its projection in `2–norm onto C. We have first that the defining inequality of C is an
equality on its border, so that

r̃T = max
p∈∆(I)

ρ
(
p, σ̃T

)
;

and second, that

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt)

6

∣∣∣∣ max
p∈∆(I)

ρ
(
p, H̃

(
q̂T
))
− max

p∈∆(I)
ρ
(
p, σ̃T

)∣∣∣∣+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6 Lρ

wwwσ̃T − H̃(q̂T )www
2

+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6
√

2 max
{
Lρ, 1

} wwwww
[
r̃T
σ̃T

]
− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

=
√

2 max
{
Lρ, 1

}
inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

.

The claimed rates are now seen to follow from the ones indicated in Theorem 26.
It only remains to prove the indicated Lipschitz continuity. (All Lipschitz continuity

statements that follow will be with respect to the `2–norms.) We have by Definition 21 that
for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min m1

(
p,Φ(σ)

)
,
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where the linear m1 indifferently either is relative to m1 or is the projection onto the first
component of the function m relative to m. By Remark 20 the mapping σ ∈ F 7→ Φ(σ) is
κΦ–Lipschitz; this entails, by Lemma 6, that for all p ∈ ∆(I), the mapping σ ∈ F 7→ ρ(p, σ)
is R
√
NB κΦ–Lipschitz. In particular, since the latter Lipschitz constant is independent of

p, the mapping
σ ∈ F 7−→ max

p∈∆(I)
ρ(p, σ)

is R
√
NB κΦ–Lipschitz as well, which concludes the proof.

6.1.2 Discussion about Efficiency

An argument similar to the one in Perchet (2011b) shows that the convex set C is de-
fined by a finite number of piecewise linear equations, it is therefore a polyhedron; so that
the projection onto it, as well as the computation of the strategy, can be done efficiently.
We only sketch here the argument. The argument used when referring to (16) indicates a
priori that for each σ ∈ F , there exist a finite number Kσ (depending on σ) of mixed actions
qσ,1, . . . , qσ,Mσ

such that for all p ∈ ∆(I), we have ρ(p, σ) = min
{
r(p, qσ,1), . . . , r(p, qσ,Mσ

)
}

.
But by an argument stated in Perchet (2011b),

σ 7−→
{
q ∈ ∆(J ) such that H̃(q) = σ

}
evolves in a piecewise linear way and thus there exist a finite number K of piecewise linear
functions σ 7→ q′σ,k, with k = 1, . . . ,K, such that, for all σ ∈ F ,{

qσ,1, . . . , qσ,Kσ
}

=
{
q′σ,1, . . . , q

′
σ,K

}
.

(There can be some redundancies between the q′σ,k.) Because of this, we have that for all
p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min
{
r(p, q′σ,1), . . . , r(p, q′σ,K)

}
.

Each function σ 7→ q′σ,k being piecewise linear, one can construct a finite set {p1, . . . ,pK̃} ⊂
∆(I) such that, for any σ ∈ F , the mapping p 7→ ρ(p, σ) is maximized at one of these pk.
The convex set C is therefore defined by a finite number of piecewise linear equations, it is
a polyhedron. Its lifted image C̃ is a then a polytope: thus, the projection onto it, hence
the computation of the proposed strategy, can be done efficiently.

6.2 Internal / Swap Regret

Foster and Vohra (1999) defined internal regret with full monitoring as follows. A player
has no internal regret if, for every action i ∈ I, he has no external regret on the stages when
this specific action i was played (if there are enough such stages). In other words, i is the
best response to the empirical distribution of actions of the other player on these stages.

With partial monitoring, the first player evaluates his payoffs in a pessimistic way
through the function ρ defined in (17). This function is not linear over ∆(I) in general
(it is concave), so that the best responses are not necessarily pure actions i ∈ I but mixed
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actions, i.e., elements of ∆(I). Following Lehrer and Solan (2007) one therefore can parti-
tion the stages not depending on the pure actions actually played but on the mixed actions
pt ∈ ∆(I) used to draw them. To this end, it is convenient to assume that the strategies of
the first player need to pick these mixed actions in a finite grid of ∆(I), which we denote
by
{
pg, g ∈ G

}
, where G is a finite set. At each round t, the first player picks an index

Gt ∈ G and uses the distribution pGt to draw his action It. A discussion about the choice of
G is provided below. For now, we define formally G–internal regret as internal regret with
respect to the set of mixed actions G.

Up to a standard concentration-of-the-measure argument, we will measure the payoff at
round t with r

(
pGt , Jt

)
rather than with r(It, Jt). For each g ∈ G, we denote by NT (g) the

number of stages in {1, . . . , T} for which we had Gt = g and, whenever NT (g) > 0,

q̂T,g =
1

NT (g)

∑
t:Gt=g

δJt .

We define q̂T,g in an arbitrary way when NT (g) = 0. The G–internal regret of the first
player at round T is measured as

Rint
T = max

g,g′∈G

NT (g)

T

(
ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Actually, our proof technique rather leads to the minimization of some G–swap regret (see
Blum and Mansour, 2007, for the definition of swap regret in full monitoring):

Rswap
T =

∑
g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
+

.

At first sight, to handle all possible alternatives one should take G as a thin grid in
∆(I), i.e., some ε–discretization of the latter. This is what Lehrer and Solan (2007) do.
However, Perchet (2011b) showed that there exists a finite subset G0 of ∆(I) such that G0

contains a best response to any mixed action of the second player: for all q ∈ ∆(J ),(
argmin
p∈∆(I)

ρ
(
p, H̃(q)

))
∩ G0 6= ∅ .

The strategy we discuss below will have a complexity polynomial in the size of G. We thus
advise to take G = G0 for the sake of efficiency.

Again, the following bound on the swap regret easily follows from Theorem 24. The
latter constructs a simple and direct strategy to control the swap regret, thus also the
internal regret. It therefore improves on the results of Lehrer and Solan (2007) and Perchet
(2009, 2011b), three papers that presented more involved and less efficient strategies to do
so. These strategies were indeed based on auxiliary strategies using thin grids that need
to be refined over time; this resulted in complexities that were at least exponential in the
number of rounds. (The ideas used therein bear some resemblance with what is done in
calibration, see the references provided in Section 4.) In contrast, our strategy can have a
constant per-round complexity (when used with the grid G0). This is a major improvement
in efficiency. However, as far as convergence rates are concerned, we must note that again,
as in the case of external regret, Perchet (2011b) obtained rates of the faster order T−1/3,
for an ad hoc (inefficient) strategy. We thus sacrifice efficiency for rates.
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Corollary 32 The first player has an explicit strategy such that for all strategies of the
second player, for all T and all δ ∈ (0, 1), with probability at least 1− δ,

Rswap
T 6 Ξ

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant Ξ depending only on the game (r, H) at hand and on the size of the finite
grid G.

Proof The proof of this corollary is based on ideas similar to the ones used in the proof
of Corollary 31; G will play the role of the action set of the first player. The proof pro-
ceeds in four steps. In the first step, we construct an approachability setup and show that
Condition (APM) applies. In the second step, we show that Assumption 1 is satisfied. In
the third step we analyze the convergence rates of the swap regret. In the fourth and final
step, we show that the set we are approaching possesses some smoothness properties by
providing a uniform Lipschitz bound on certain functions.

Step 1: We denote by

Fcone =
{
λσ, σ ∈ F , λ ∈ R+

}
the cone generated by F and extend linearly ρ : ∆(I) × F → R into a mapping ρ :
∆(I)×Fcone → R as follows: for all p ∈ ∆(I), for all λ > 0 with λ 6= 1, and all σ ∈ F ,

ρ(p, λσ) =

{
0 if λ = 0,
λ ρ(p, σ) if λ > 0.

In the sequel, we embed Fcone into RI×H.
The closed convex set C and the vector-valued payoff function r are then respectively

defined by

C =

{
(zg,vg)g∈G ∈

(
R×Fcone

)G
: ∀ g ∈ G, zg > max

g′∈G
ρ
(
pg′ ,vg

)}
and, for all (g, j) ∈ G × J ,

r(g, j) =

[
r
(
pg, j

)
I{g′=g}

H̃(δj) I{g′=g}

]
g′∈G

.

To show that C is r–approachable, we associate with each q ∈ ∆(J ) an element g?(q) ∈ G
such that

g?(q) ∈ argmax
g∈G

ρ
(
pg, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), the components
of the vector r

(
g?(q), q′

)
are all null but the ones corresponding to g?(q), for which we have

r
(
pg?(q), q

′)
> ρ
(
pg?(q), H̃

(
q′
))

= ρ
(
pg?(q), H̃

(
q
))

= max
g′∈G

ρ
(
pg′ , H̃

(
q
))

= max
g′∈G

ρ
(
pg′ , H̃

(
q′
))
,
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where the first inequality is by definition of ρ. Therefore, r
(
g?(q), q′

)
∈ C. Condition (APM)

in Lemma 22 and Theorem 24 is thus satisfied, so that we have approachability.
Step 2: We then show that Assumption 1 is satisfied. It suffices to show that for all

σ ∈ F , the mapping

π = (πg)g∈G ∈ ∆(G) 7−→ m1(π, σ) =
{(
πg r(pg, q)

)
g∈G : q ∈ ∆(J ) such that H̃(q) = σ

}
is piecewise linear (as the other components in the definition of m are linear in π). This is
the case since for each g, the mapping

π ∈ ∆(G) 7−→
{
πg r(pg, q) : q ∈ ∆(J ) such that H̃(q) = σ

}
is seen to be piecewise linear, by using the same one-dimensional argument as the one stated
around (16) and also used in the proof of Corollary 31.

Step 3: We now exhibit the convergence rates. In view of the form of the defining
set of constraints for C, the coordinates of the elements in C can be grouped according to
each g ∈ G and projections onto C can therefore be done separately for each such subset of
coordinates. The subset of coordinates of

∑T
t=1 r(Gt, Jt)/T corresponding to a given g is

formed by
NT (g)

T
r
(
pg, q̂T,g

)
and

NT (g)

T
H̃
(
q̂T,g

)
.

When
NT (g)

T
r
(
pg, q̂T,g

)
> max

g′∈G
ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
,

we denote these quantities by r̃T,g and ṽT,g. Otherwise, we project this pair on the set

Cg =

{
(zg,vg) ∈ R×Fcone : zg > max

g′∈G
ρ
(
pg′ ,vg

)}
and denote by r̃T,g and ṽT,g the coordinates of the projection; they satisfy the defining
inequality of Cg with equality,

r̃T,g = max
g′∈G

ρ
(
pg′ , ṽT,g

)
.

By distinguishing for each g according to which of the two cases above arose (for the
first inequality), we may decompose and upper bound the swap regret as follows,

Rswap
T

=
∑
g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
+

=
∑
g∈G

(
max
g′∈G

ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
− NT (g)

T
r
(
pg, q̂T,g

))
+

6
∑
g∈G

∣∣∣∣max
g′∈G

ρ

(
pg′ ,

NT (g)

T
H̃
(
q̂T,g

))
−max

g′∈G
ρ
(
pg′ , ṽg,T

)∣∣∣∣+
∑
g∈G

∣∣∣∣r̃T,g − NT (g)

T
r
(
pg, q̂T,g

)∣∣∣∣
6

∑
g∈G

Lρ

wwwwNT (g)

T
H̃
(
q̂T,g

)
− ṽg,T

wwww
2

+
∑
g∈G

∣∣∣∣r̃T,g − NT (g)

T
r
(
pg, q̂T,g

)∣∣∣∣ ,
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where we used a fact proved in step 4, that the mapping

v ∈ Fcone 7−→ max
g′∈G

ρ
(
pg′ ,v

)
(18)

is Lρ–Lipschitz. In the last inequality we had a sum of `2–norms, which can be bounded by
a single `2–norm,

Rswap
T 6 max

{
Lρ, 1

}√
2NG

wwwwww
[
r̃T,g

ṽT,g

]
g∈G

− 1

T

T∑
t=1

r(It, Jt)

wwwwww
2

6 max
{
Lρ, 1

}√
2NG inf

c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

,

where we denoted by NG the cardinality of G. Resorting to the convergence rate stated in
Theorem 26 concludes the proof.

Step 4: It only remains to prove the claimed Lipschitzness of the mapping (18). (All
Lipschitzness statements that follow will be with respect to the `2–norms.) To do so, it
suffices to show that for all fixed elements p ∈ ∆(I), the functions v ∈ Fcone 7→ ρ(p,v)
are Lipschitz, with a Lipschitz constant Lρ that is independent of p. Note that we already
proved at the end of the proof of Corollary 31 that σ ∈ F 7→ ρ(p, σ) is Lipschitz, with a
Lipschitz constant Lρ independent of p. Consider now two elements v, v′ ∈ Fcone, which we
write as v = λσ and v′ = λ′σ′, with σ, σ′ ∈ F and λ, λ′ ∈ R+. Using triangle inequalities,
the Lipschitzness of ρ on F , and the fact that r thus ρ are bounded by R,∣∣ρ(p, λσ)− ρ(p, λ′σ′)

∣∣ 6
∣∣λ(ρ(p, σ)− ρ(p, σ′)

)∣∣+
∣∣(λ− λ′)ρ(p, σ′)

∣∣
6 λLρ

wwσ − σ′ww
2

+R
∣∣λ− λ′∣∣

6 Lρ
wwλσ − λ′σ′ + (λ′ − λ)σ′

ww
2

+R
∣∣λ− λ′∣∣

6 Lρ
wwλσ − λ′σ′ww

2
+
(
R+ LρNI

) ∣∣λ− λ′∣∣ ,
where we used also for the last inequality that since σ is a vector of NI probability distri-
butions over the signals, ‖σ‖2 6 ‖σ‖1 = NI . To conclude the argument, we simply need to
show that

∣∣λ− λ′∣∣ can be bounded by
wwλσ − λ′σ′ww

2
up to some universal constant, which

we do now. We resort again to the fact that ‖σ‖1 = ‖σ′‖1 = NI and can thus write, thanks
to a triangle inequality and assuming with no loss of generality that λ′ < λ, that

∣∣λ− λ′∣∣ =
1

NI

(
λ ‖σ‖1 − λ

′wwσ′ww
1

)
6

1

NI

wwλσ − λ′σ′ww
1
6

√
NHNI
NI

wwλσ − λ′σ′ww
2
,

where we used the Cauchy-Schwarz inequality for the final step. One can thus take, for
instance,

Lρ = Lρ +
(
R+ LρNI

)√NH
NI

.

This concludes the proof.
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7. Summary of the Results

This paper extended Blackwell’s classical approachability theory to the case where set-
valued functions are considered, which models ambiguity in the obtained reward. In the
case of mixed actions taken, this extension was provided in the case of linear (Section 3) and
concave–convex (Section 4) set-valued functions; only in the former case efficient strategies
(up to a projection oracle) could be constructed.

The second part of this paper (Section 5) applies this theory of set-valued approachability
to approachability with partial monitoring. The necessary and sufficient Condition (APM)
for this was exhibited by Perchet (2011a) and was recalled in Section 5.1; its link with the
necessary and sufficient condition for set-valued approachability was discussed in Section 5.2.
Then, under a so-called assumption of bi-piecewise linearity of the game (r,H) at hand,
an efficient strategy (up to a projection oracle) was constructed and studied in Section 5.3,
for the approachability of any closed convex set C. Alternatively, Section 5.4 showed that
for any game (r,H) at hand but under the constraint that the target set C is a polytope,
the above efficient construction could still be used. In both cases, the novelty also relies
not only the gained efficiency with respect to the construction by Perchet (2011a) but
also on getting for the first time rates of convergence that are independent of the ambient
dimension. The case of any game (r,H) and any closed target set C was discussed, for
the sake of completeness, at then end of Section 5.4, so that the present article contains a
complete and self-contained constructive proof of the sufficiency of Condition (APM).

Finally, Section 6 showed that the well-studied case of regret minimization, a special
case of approachability, could fall under the umbrella of bi-piecewise linearity, and hence be
performed efficiently, as was already known.
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Appendix A. Proof of Theorem 15

Proof [of the second statement of Theorem 15] The proof of Corollary 7 extends to
the case considered here and shows, thanks to the ad hoc consideration of the result stated
in Lemma 6 as following from Definition 13, that for all y ∈ ∆(B), the mapping Dy is still
continuous over ∆(A). We now proceed by contradiction and assume that (SVAC) is not
satisfied. The first part of the proof of the necessity of (SVAC) in Theorem 8 also applies
to the present case: there exists y0 such that Dy0

> Dmin > 0 over ∆(A). It then suffices
to note that whenever the second player resorts to yt = y0 at all rounds t > 1, then for all
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strategies of the first player, the quantity of interest in the set-valued approachability can
be lower bounded as follows. Thanks to the concavity in the first argument,

sup

{
inf
c∈C
‖ξ − c‖2 : ξ ∈ 1

T

T∑
t=1

m(xt,y0)

}

> sup

{
inf
c∈C
‖ξ − c‖2 : ξ ∈ m

(
1

T

T∑
t=1

xt, y0

)}
= Dy0

(
1

T

T∑
t=1

xt

)
> Dmin > 0 .

Therefore, C is m–approachable by no strategy of the first player.

The proof of the first statement of Theorem 15 relies on the use of approximately
calibrated strategies of the first player, as introduced and studied (among others) by Dawid
(1982), Foster and Vohra (1998), Mannor and Stoltz (2010). Formally, given η > 0, an
η–calibrated strategy of the first player considers some finite covering of ∆(B) by Nη balls
of radius η and abides by the following constraints. Denoting by y1, . . . ,yNη the centers of
the balls in the covering (they form what will be referred to later on as an η–grid), such a
strategy chooses only forecasts in

{
y1, . . . ,yNη

}
. We thus denote by Lt the index chosen

in
{

1, . . . , Nη

}
at round t and by

NT (`) =
T∑
t=1

I{Lt=`}

the total number of rounds within the first T ones when the element ` of the grid was
chosen. We denote by ( · )+ the function that gives the nonnegative part of a real number.
The final condition to be satisfied is that for all δ ∈ (0, 1), there exists an integer Tδ such
that for all strategies of the second player, with probability at least 1− δ, for all T > Tδ,

Nη∑
`=1

NT (`)

T

(wwwwwy` − 1

NT (`)

T∑
t=1

ytI{Lt=`}

wwwww
1

− η

)
+

6 δ . (19)

This calibration criterion is slightly stronger than the classical η–calibration score usually
considered in the literature, which consists of omitting nonnegative parts in the criterion
above and ensuring that for all strategies of the second player, with probability at least
1− δ, for all T > Tδ,

Nη∑
`=1

NT (`)

T

wwwwwy` − 1

NT (`)

T∑
t=1

ytI{Lt=`}

wwwww
1

6 η + δ . (20)

The existence of a calibrated strategy in the sense of (19) however follows from the same
approachability-based construction studied in Mannor and Stoltz (2010) to get (20) and
is detailed below in Section B. In the sequel we will only use the following consequence of
calibration: that for all strategies of the second player, with probability at least 1 − δ, for
all T > Tδ,

max
`=1,...,Nη

NT (`)

T

(wwwwwy` − 1

NT (`)

T∑
t=1

ytI{Lt=`}

wwwww
1

− η

)
+

6 δ . (21)
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Proof [of the first statement of Theorem 15] The insight of this proof is similar to the
one illustrated in Perchet (2009). We first note that it suffices to prove that for all ε > 0, the
set Cε defined as the ε–neighborhood of C is m–approachable. This is so up to proceeding
in regimes r = 1, 2, . . . each corresponding to a dyadic value εr = 2−r and lasting for a
number of rounds carefully chosen in terms of the length of the previous regimes.

Therefore, we fix ε > 0 and associate with it a modulus of continuity η > 0 given by the
uniform continuity of m in its second argument. We consider an η/2–calibrated strategy of
the first player, which we will use as an auxiliary strategy. Since (SVAC) is satisfied, we
may associate with each element y` of the underlying η/2–grid a mixed action x` ∈ ∆(A)
such that m

(
x`,y`

)
⊆ C. The main strategy of the first player then prescribes the use

of xt = xLt at each round t > 1. The intuition behind this definition is that if yLt is
forecasted by the auxiliary strategy, then since the latter is calibrated, one should play as
good as possible against yLt . In view of the aim at hand, which is approaching C, such a
good reply is given by xLt .

To assess the constructed strategy, we group rounds according to the values ` taken by
the Lt. To that end, we recall that NT (`) denotes the number of rounds in which y` was
forecasted and x` was played. The average payoff up to round T is then rewritten as

1

T

T∑
t=1

m(xt,yt) =

Nη/2∑
`=1

NT (`)

T

(
1

NT (`)

T∑
t=1

m
(
x`,yt

)
I{Lt=`}

)
.

We denote for all ` such that NT (`) > 0 the average of their corresponding mixed actions
yt by

y`T =
1

NT (`)

T∑
t=1

ytI{Lt=`} .

The convexity of m in its second argument leads to the inclusion

1

T

T∑
t=1

m(xt,yt) =

Nη/2∑
`=1

NT (`)

T

(
1

NT (`)

T∑
t=1

m
(
x`,yt

)
I{Lt=`}

)
⊆

Nη/2∑
`=1

NT (`)

T
m
(
x`,y`T

)
.

We recall that B denotes the unit Euclidean ball in Rd. To show that the above-defined
strategy m–approaches Cε = C + εB, it suffices to show that for all δ ∈ (0, 1), there exists
an integer T ′δ such that for all strategies of the second player,

P

∀T > T ′δ,

Nη/2∑
`=1

NT (`)

T
m
(
x`,y`T

)
⊆ C + (ε+ δ)B

 > 1− δ .

We denote by M a bound in `2–norm on m, i.e., for all x ∈ ∆(A) and y ∈ ∆(B), the
inclusion m(x,y) ⊆ MB holds. We let δ′ = δ(η/2)

/(
M Nη/2

)
and define T ′δ as the time

Tδ′ corresponding to (21). All statements that follow will be for all strategies of the second
player and with probability at least 1−δ′ > 1−δ, for all T > T ′δ, as required. For each index
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` of the grid, either δ′T/NT (`) 6 η/2 or δ′T/NT (`) > η/2. In the first case, following (21),wwy` − y`Tww 6 η/2 + δ′T/NT (`) 6 η; since η is the modulus of continuity for ε, we get that

NT (`)

T
m
(
x`,y`T

)
⊆ NT (`)

T

(
m
(
x`,y`

)
+ εB

)
⊆ NT (`)

T

(
C + εB

)
,

where we used the definition of x` to get the second inclusion. In the second case, using
the boundedness of m, we simply write

NT (`)

T
m
(
x`,y`T

)
⊆ NT (`)

T
MB ⊆ δ′

η/2
MB .

Summing these bounds over ` yields

Nη/2∑
`=1

NT (`)

T
m
(
x`,y`T

)
⊆ C + εB +

Nη/2δ
′

η/2
M B = C + (ε+ δ)B ,

where we used the definition of δ′ in terms of δ. This concludes the proof.

Appendix B. An Auxiliary Result of Calibration

We prove here (19) for a given η > 0 and do so by following closely the methodology
of Mannor and Stoltz (2010). (Note that this result is of independent interest.)

We actually assume that the covering y1, . . . ,yNη is slightly finer than what was required
around (19) and that it forms an η/NB–grid of ∆(B), i.e., that for all y ∈ ∆(B), there exists
` ∈ {1, . . . , Nη} such that

wwy − y`ww
1
6 η/NB.

We recall that elements y ∈ B are denoted by y = (yb)b∈B and we identify ∆(B) with a
subset of RNB . In particular, Ib, the Dirac mass on a given b ∈ B, is a binary vector whose
only non-null component is the one indexed by b. Finally, we denote by

0 = (0, . . . , 0) and 1 = (1, . . . , 1)

the elements of RB respectively formed by zeros and ones only.
We consider a vector-valued payoff function C : {1, . . . , Nη} × B → R2NηNB defined as

follows; for all ` ∈ {1, . . . , Nη} and for all b ∈ B,

C(`, b) =

(
0, . . . , 0, y` − Ib −

η

NB
1, Ib − y` −

η

NB
1, 0, . . . , 0

)
,

which is a vector of 2Nη elements of RB composed by 2(Nη − 1) occurrences of the zero
element 0 ∈ RB and two non-zero elements, located in the positions indexed by 2`− 1 and
2`.

We now show that the closed convex set (R−)2NηNB is C–approachable; to do so, we
resort to the characterization stated in Theorem 2. To each y ∈ ∆(B) we will associate
a pure action `y in {1, . . . , Nη} so that C

(
`y,y

)
∈ (R−)2NηNB ; note that to satisfy the

necessary and sufficient condition, it is not necessary here to resort to mixed actions of the
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first player. The index `y is any index ` such that
wwy − y`ww

1
6 η/NB; such an index always

exists as noted at the beginning of this proof. Indeed, one then has in particular that for
each component b ∈ B, ∣∣y`yb − yb∣∣ 6 wwwy`y − ywww

1
6 η/NB .

A straightforward adaptation of the proof of Theorem 3 (see, e.g., Mertens et al., 1994)
then yields a strategy such that for all δ ∈ (0, 1) and for all strategies of the second player,
with probability at least 1− δ,

sup
τ>T

inf
c∈(R−)2NηNB

wwwwwc− 1

τ

τ∑
t=1

C(Lt,yt)

wwwww
2

6 2M

√
2

δT
, (22)

where M is a bound in Euclidean norm over C, e.g., M = 4 + 2η. The quantities of interest
can be rewritten as

1

τ

τ∑
t=1

C(Lt,yt) =

(
Nτ (`)

τ

(
y` − y`τ

)
− Nτ (`)

τ

η

NB
1,

Nτ (`)

τ

(
y`τ − y`

)
− Nτ (`)

τ

η

NB
1

)
`∈{1,...,Nη}

,

where we recall that we denoted for all ` such that Nτ (`) > 0 the average of their corre-
sponding mixed actions yt by

y`τ =
1

Nτ (`)

τ∑
t=1

ytI{Lt=`} .

The projection in `2–norm of quantity of interest onto (R−)2NηNB is formed by its non-
positive components, so that its square distance to (R−)2NηNB equals

inf
c∈(R−)2NηNB

wwwwwc− 1

τ

τ∑
t=1

C(Lt,yt)

wwwww
2

2

=

Nη∑
`=1

(
Nτ (`)

τ

)2∑
b∈B

((
y`b − y`τ,b −

η

NB

)2

+

+

(
y`τ,b − y`b −

η

NB

)2

+

)
︸ ︷︷ ︸

=
(
|y`τ,b−y

`
b|−η/NB

)2
+

.

Therefore, our target is achieved: using the fact that ( · )+ is subadditive first, and then
applying the Cauchy-Schwarz inequality,

Nη∑
`=1

Nτ (`)

τ

(wwwy` − yτwww
1
− η
)
+

6
Nη∑
`=1

Nτ (`)

τ

∑
b∈B

(∣∣y`b − y`τ,b∣∣− η

NB

)
+

6
√
NηNB

√√√√ Nη∑
`=1

(
Nτ (`)

τ

)2∑
b∈B

(∣∣y`b − y`τ,b∣∣− η

NB

)2

+

6 2M
√
NηNB

√
2

δT
,
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where the last inequality holds, by (22), for all τ > T with probability at least 1 − δ.
Choosing an integer Tδ sufficiently large so that

2M
√
NηNB

√
2

δ Tδ
6 δ

concludes the proof of the property stated in (19).

Appendix C. Proof of Lemma 23

Proof For all (i, j) ∈ I ×J , the quantity H(i, j) is a probability distribution over the set
of signals H; we denote by Hs(i, j) the probability mass that it puts on some signal s ∈ H.

Equation (7) indicates that for each pair (i, s) ∈ I ×H,

nL∑
t=(n−1)L+1

(I{St=s}I{It=i}
pIt,n

−Hs(i, Jt)

)
is a sum of L elements of a martingale difference sequence, with respect to the filtration
whose t-th element is generated by pn, the pairs (Is, Ss) for s 6 t, and Js for s 6 t + 1.
The conditional variances of the increments are bounded by

Et

[(I{St=s}I{It=i}
pIt,n

)2
]
6

1

p2
i,n

Et
[
I{It=i}

]
=

1

pi,n
;

since by definition of the strategy, pn = (1− γ)xn + γ u, we have that pi,n > γ/NI , which
shows that the sum of the conditional variances is bounded by

nL∑
t=(n−1)L+1

Vart

(I{St=s}I{It=i}
pIt,n

)
6
LNI
γ

.

The Bernstein-Freedman inequality (see Freedman, 1975 or Cesa-Bianchi et al., 2006, Lemma
A.1) therefore indicates that with probability at least 1− δ,∣∣∣∣∣ 1L

nL∑
t=(n−1)L+1

I{St=s}I{It=i}
pIt,n

− 1

L

nL∑
t=(n−1)L+1

Hs(i, Jt)︸ ︷︷ ︸
= Hs(i, q̂n)

∣∣∣∣∣ 6
√

2
NI
γL

ln
2

δ
+

1

3

NI
γL

ln
2

δ
.

Therefore, by summing the above inequalities over i ∈ I and s ∈ H, we get (after a union
bound) that with probability at least 1−NINHδ,wwwσ̃n − H̃(q̂n)www

2
6
√
NINH

(√
2NI
γL

ln
2

δ
+

1

3

NI
γL

ln
2

δ

)
.

Finally, since σ̂n is the projection in the `2–norm of σ̃n onto the convex set F , to which
H̃
(
q̂n
)

belongs, we have thatwwwσ̂n − H̃(q̂n)www
2
6
wwwσ̃n − H̃(q̂n)www

2
,

and this concludes the proof.
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Appendix D. Proof of Theorem 25

Proof We denote by dαt the squared distance of m̂α
t to C,

dαt = inf
c∈C

wwc− m̂α
t

ww2
=
wwcαt − m̂α

t

ww2

and use the shortcut notation mt = m(xt,yt) for all t > 1. Then,

dαt+1 6
wwm̂α

t+1 − cαt
ww2

=

wwwwm̂α
t − cαt +

(t+ 1)α

Tαt+1

(
mt+1 − m̂α

t

)wwww2

6
wwm̂α

t − cαt
ww2

+
2(t+ 1)α

Tαt+1

〈
m̂α
t − cαt , mt+1 −mα

t

〉
+

(
(t+ 1)α

Tαt+1

)2wwmt+1 − m̂α
t

ww2

6 dαt +
2(t+ 1)α

Tαt+1

( 〈
m̂α
t − cαt , mt+1 − cαt

〉︸ ︷︷ ︸
60

+
〈
m̂α
t − cαt , cαt −mα

t

〉)
+

(
(t+ 1)α

Tαt+1

)2

4M2

6 dαt

(
1− 2(t+ 1)α

Tαt+1

)
+

(
(t+ 1)α

Tαt+1

)2

4M2,

where we used in the third inequality the same convex projection inequality as in the proof
of Theorem 3.

The first inequality in (15) then follows by induction: the bound 2M for t = 1 is by
boundedness of m. If the stated bound holds for dαt , then

dαt+1 6

2M

√∑t
s=1 s

2α∑t
s=1 s

α

2(
1− 2(t+ 1)α

Tαt+1

)
+

(
(t+ 1)α

Tαt+1

)2

4M2 6 4M2

∑t+1
s=1 s

2α(
Tαt+1

)2 ,

as desired, since

1(
Tαt
)2 (1− 2(t+ 1)α

Tαt+1

)
=
Tαt − (t+ 1)α

Tαt+1

(
Tαt
)2 =

1

Tαt+1

(
Tαt
)2
(
Tαt
)2 − (t+ 1)2α

Tαt + (t+ 1)α
6

1(
Tαt+1

)2 .
The second inequality in (15) is straightforward for α = 0 and is proved for α > 0 as

follows. First, by comparing sums and integrals, we get that for all t > 1,

tα+1

α+ 1
=

∫ t

0
sα ds 6

t∑
s=1

sα 6 t× tα = tα+1 .

Therefore, √∑t
s=1 s

2α∑t
s=1 s

α
6 (α+ 1)

√
t2α+1

tα+1
=
α+ 1√

t
.

This concludes the proof. Note for later purposes that upper bounding above the sum of
the sα as

t∑
s=1

sα 6 tα +

∫ t

1
sα ds 6 tα +

tα+1

α+ 1
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shows that
t∑

s=1

sα ∼ tα+1

α+ 1
.

Appendix E. Proof of Theorem 26

Proof The proof follows closely the proof of Theorem 24. We choose N so as to write
T = TαN + k where 0 6 k 6 LN+1 − 1. We adapt step 1 as follows,wwwwww 1

T

T∑
t=1

r(It, Jt)−
1

TαN

TαN∑
t=1

r(It, Jt)

wwwwww
2

6 R

(
k

T
+

(
1

TαN
− 1

T

)
TαN

)
=

2k

T
R 6

2LN+1

T
R .

Second, as in step 2, we resort again to the Hoeffding-Azuma inequality for sums of Hilbert
space-valued martingale differences; with probability at least 1− δ,wwwwww 1

TαN

TαN∑
t=1

r(It, Jt)−
1

TαN

N∑
n=1

nα r
(
pn, q̂n

)wwwwww
2

6 4R

√
ln(2/δ)

TαN
.

In view of the choice γn = n−α/3, step 3 translates here towwwww 1

TαN

N∑
n=1

nα r
(
pn, q̂n

)
− 1

TαN

N∑
n=1

nα r
(
xn, q̂n

)wwwww
2

6 2R

∑N
n=1 n

αγn
TαN

= 2R

∑N
n=1 n

2α/3

TαN
= 2R

T
(2α/3)
N

TαN
.

The same argument as the one at the beginning of the proof of Theorem 24 shows that

1

TαN

N∑
n=1

nα r
(
xn, q̂n

)
∈ 1

TαN

N∑
n=1

nαm

(
θn, Φ

(
H̃
(
q̂n
)))

.

Step 4 starts also by an application of Lemma 23 together with the Lipschitzness of Φ to
get that for all regimes n = 1, . . . , N , with probability at least 1− δ,

wwwΦ
(
σ̂n
)
− Φ

(
H̃
(
q̂n
))www

2
6 κΦ

√
NINH

(√
2NI
γnLn

ln
2NINH

δ
+

1

3

NI
γnLn

ln
2NINH

δ

)
.

By a union bound, the above bound holds for all regimes n = 1, . . . , N with probability at
least 1−Nδ. Then, an application of Lemma 6 shows that

1

TαN

N∑
n=1

nαm

(
θn, Φ

(
H̃
(
q̂n
)))

is in a εN–neighborhood of
1

TαN

N∑
n=1

nαm
(
θn, Φ

(
σ̂n
))
,
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where, substituting the values of Ln = nα and γn = n−α/3,

εN = R
√
NB

(
κΦ

√
NINH

1

TαN

N∑
n=1

nα

(√
2NI
γnLn

ln
2NINH

δ
+

1

3

NI
γnLn

ln
2NINH

δ

))

= R
√
NB

(
κΦ

√
NINH

(
T

(2α/3)
N

TαN

√
2NI ln

2NINH
δ

+
T

(α/3)
N

TαN

NI
3

ln
2NINH

δ

))
.

It then suffices, as in step 5 of the original proof, to write the convergence rates for set-
valued approachability guaranteed by the strategy Ψ. By combining the result of Lemma 10
with Theorem 25 and Lemma 6, we get

inf
c∈C

wwwwwc− 1

Tαn

N∑
n=1

nαm
(
θn, Φ

(
σ̂n
))wwwww

2

6
2R (α+ 1)√

N

√
NANB .

Putting all things together and applying a union bound, we obtain that with probability at
least 1− (N + 1)δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

= O

(
(N + 1)α

T
+

√
ln(1/δ)

TαN
+
T

(2α/3)
N

TαN
+
T

(2α/3)
N

TαN

√
ln

1

δ
+
T

(α/3)
N

TαN
ln

1

δ
+

1√
N

)
.

Since (as proved at the end of the proof of Theorem 25) T βN ∼ Nβ+1/(β + 1) for all β > 0,
we get that

N ∼
(
(α+ 1)T

)1/(α+1)
and T βN ∼

Nβ+1

β + 1
∼ κα,β T (β+1)/(α+1) ,

where κα,β is a constant that only depends on α and β. Replacing δ by δ/(N + 1) as we did
in step 5 of the proof of Theorem 24, choosing α = 3/2 and substituting the equivalences
above ensures the result.
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Abstract

We consider the problem of learning a high-dimensional graphical model in which there
are a few hub nodes that are densely-connected to many other nodes. Many authors have
studied the use of an `1 penalty in order to learn a sparse graph in the high-dimensional
setting. However, the `1 penalty implicitly assumes that each edge is equally likely and
independent of all other edges. We propose a general framework to accommodate more
realistic networks with hub nodes, using a convex formulation that involves a row-column
overlap norm penalty. We apply this general framework to three widely-used probabilistic
graphical models: the Gaussian graphical model, the covariance graph model, and the
binary Ising model. An alternating direction method of multipliers algorithm is used to
solve the corresponding convex optimization problems. On synthetic data, we demonstrate
that our proposed framework outperforms competitors that do not explicitly model hub
nodes. We illustrate our proposal on a webpage data set and a gene expression data set.
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1. Introduction

Graphical models are used to model a wide variety of systems, such as gene regulatory
networks and social interaction networks. A graph consists of a set of p nodes, each rep-
resenting a variable, and a set of edges between pairs of nodes. The presence of an edge
between two nodes indicates a relationship between the two variables. In this manuscript,
we consider two types of graphs: conditional independence graphs and marginal indepen-
dence graphs. In a conditional independence graph, an edge connects a pair of variables if
and only if they are conditionally dependent—dependent conditional upon the other vari-
ables. In a marginal independence graph, two nodes are joined by an edge if and only if
they are marginally dependent—dependent without conditioning on the other variables.

In recent years, many authors have studied the problem of learning a graphical model in
the high-dimensional setting, in which the number of variables p is larger than the number
of observations n. Let X be a n× p matrix, with rows x1, . . . ,xn. Throughout the rest of
the text, we will focus on three specific types of graphical models:

1. A Gaussian graphical model, where x1, . . . ,xn
i.i.d.∼ N(0,Σ). In this setting, (Σ−1)jj′ =

0 for some j 6= j′ if and only if the jth and j′th variables are conditionally independent
(Mardia et al., 1979); therefore, the sparsity pattern of Σ−1 determines the conditional
independence graph.

2. A Gaussian covariance graph model, where x1, . . . ,xn
i.i.d.∼ N(0,Σ). Then Σjj′ = 0

for some j 6= j′ if and only if the jth and j′th variables are marginally independent.
Therefore, the sparsity pattern of Σ determines the marginal independence graph.

3. A binary Ising graphical model, where x1, . . . ,xn are i.i.d. with density function

p(x,Θ) =
1

Z(Θ)
exp

 p∑
j=1

θjjxj +
∑

1≤j<j′≤p
θjj′xjxj′

 ,
where Θ is a p × p symmetric matrix, and Z(Θ) is the partition function, which
ensures that the density sums to one. Here, x is a binary vector, and θjj′ = 0 if and
only if the jth and j′th variables are conditionally independent. The sparsity pattern
of Θ determines the conditional independence graph.

To construct an interpretable graph when p > n, many authors have proposed applying
an `1 penalty to the parameter encoding each edge, in order to encourage sparsity. For
instance, such an approach is taken by Yuan and Lin (2007a), Friedman et al. (2007),
Rothman et al. (2008), and Yuan (2008) in the Gaussian graphical model; El Karoui (2008),
Bickel and Levina (2008), Rothman et al. (2009), Bien and Tibshirani (2011), Cai and Liu
(2011), and Xue et al. (2012) in the covariance graph model; and Lee et al. (2007), Höfling
and Tibshirani (2009), and Ravikumar et al. (2010) in the binary model.

However, applying an `1 penalty to each edge can be interpreted as placing an inde-
pendent double-exponential prior on each edge. Consequently, such an approach implicitly
assumes that each edge is equally likely and independent of all other edges; this corre-
sponds to an Erdős-Rényi graph in which most nodes have approximately the same number
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of edges (Erdős and Rényi, 1959). This is unrealistic in many real-world networks, in which
we believe that certain nodes (which, unfortunately, are not known a priori) have a lot
more edges than other nodes. An example is the network of webpages in the World Wide
Web, where a relatively small number of webpages are connected to many other webpages
(Barabási and Albert, 1999). A number of authors have shown that real-world networks
are scale-free, in the sense that the number of edges for each node follows a power-law
distribution; examples include gene-regulatory networks, social networks, and networks of
collaborations among scientists (among others, Barabási and Albert, 1999; Barabási, 2009;
Liljeros et al., 2001; Jeong et al., 2001; Newman, 2000; Li et al., 2005). More recently, Hao
et al. (2012) have shown that certain genes, referred to as super hubs, regulate hundreds of
downstream genes in a gene regulatory network, resulting in far denser connections than
are typically seen in a scale-free network.

In this paper, we refer to very densely-connected nodes, such as the “super hubs” con-
sidered in Hao et al. (2012), as hubs. When we refer to hubs, we have in mind nodes that
are connected to a very substantial number of other nodes in the network—and in partic-
ular, we are referring to nodes that are much more densely-connected than even the most
highly-connected node in a scale-free network. An example of a network containing hub
nodes is shown in Figure 1.

Here we propose a convex penalty function for estimating graphs containing hubs. Our
formulation simultaneously identifies the hubs and estimates the entire graph. The penalty
function yields a convex optimization problem when combined with a convex loss function.
We consider the application of this hub penalty function in modeling Gaussian graphical
models, covariance graph models, and binary Ising models. Our formulation does not require
that we know a priori which nodes in the network are hubs.

In related work, several authors have proposed methods to estimate a scale-free Gaussian
graphical model (Liu and Ihler, 2011; Defazio and Caetano, 2012). However, those methods
do not model hub nodes—the most highly-connected nodes that arise in a scale-free network
are far less connected than the hubs that we consider in our formulation. Under a different
framework, some authors proposed a screening-based procedure to identify hub nodes in the
context of Gaussian graphical models (Hero and Rajaratnam, 2012; Firouzi and Hero, 2013).
Our proposal outperforms such approaches when hub nodes are present (see discussion in
Section 3.5.4).

In Figure 1, the performance of our proposed approach is shown in a toy example in the
context of a Gaussian graphical model. We see that when the true network contains hub
nodes (Figure 1(a)), our proposed approach (Figure 1(b)) is much better able to recover
the network than is the graphical lasso (Figure 1(c)), a well-studied approach that applies
an `1 penalty to each edge in the graph (Friedman et al., 2007).

We present the hub penalty function in Section 2. We then apply it to the Gaussian
graphical model, the covariance graph model, and the binary Ising model in Sections 3, 4,
and 5, respectively. In Section 6, we apply our approach to a webpage data set and a gene
expression data set. We close with a discussion in Section 7.

2. The General Formulation

In this section, we present a general framework to accommodate network with hub nodes.
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Figure 1: (a): Heatmap of the inverse covariance matrix in a toy example of a Gaussian
graphical model with four hub nodes. White elements are zero and colored el-
ements are non-zero in the inverse covariance matrix. Thus, colored elements
correspond to edges in the graph. (b): Estimate from the hub graphical lasso,
proposed in this paper. (c): Graphical lasso estimate.

2.1 The Hub Penalty Function

Let X be a n × p data matrix, Θ a p × p symmetric matrix containing the parameters of
interest, and `(X,Θ) a loss function (assumed to be convex in Θ). In order to obtain a
sparse and interpretable graph estimate, many authors have considered the problem

minimize
Θ∈S

{`(X,Θ) + λ‖Θ− diag(Θ)‖1} , (1)

where λ is a non-negative tuning parameter, S is some set depending on the loss function,
and ‖ · ‖1 is the sum of the absolute values of the matrix elements. For instance, in the
case of a Gaussian graphical model, we could take `(X,Θ) = − log det Θ + trace(SΘ), the
negative log-likelihood of the data, where S is the empirical covariance matrix and S is the
set of p × p positive definite matrices. The solution to (1) can then be interpreted as an
estimate of the inverse covariance matrix. The `1 penalty in (1) encourages zeros in the
solution. But it typically does not yield an estimate that contains hubs.

In order to explicitly model hub nodes in a graph, we wish to replace the `1 penalty in
(1) with a convex penalty that encourages a solution that can be decomposed as Z+V+VT ,
where Z is a sparse symmetric matrix, and V is a matrix whose columns are either entirely
zero or almost entirely non-zero (see Figure 2). The sparse elements of Z represent edges
between non-hub nodes, and the non-zero columns of V correspond to hub nodes. We
achieve this goal via the hub penalty function, which takes the form

P(Θ) = min
V,Z: Θ=V+VT+Z

{
λ1‖Z− diag(Z)‖1 + λ2‖V − diag(V)‖1 + λ3

p∑
j=1

‖(V − diag(V))j‖q

}
. (2)

Here λ1, λ2, and λ3 are nonnegative tuning parameters. Sparsity in Z is encouraged via the
`1 penalty on its off-diagonal elements, and is controlled by the value of λ1. The `1 and
`1/`q norms on the columns of V induce group sparsity when q = 2 (Yuan and Lin, 2007b;
Simon et al., 2013); λ3 controls the selection of hub nodes, and λ2 controls the sparsity of
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= + +

⇥ Z V VT

Figure 2: Decomposition of a symmetric matrix Θ into Z + V + VT , where Z is sparse, and
most columns of V are entirely zero. Blue, white, green, and red elements are
diagonal, zero, non-zero in Z, and non-zero due to two hubs in V, respectively.

each hub node’s connections to other nodes. The convex penalty (2) can be combined with
`(X,Θ) to yield the convex optimization problem

minimize
Θ∈S,V,Z

{
`(X,Θ) + λ1‖Z− diag(Z)‖1 + λ2‖V − diag(V)‖1

+λ3

p∑
j=1

‖(V − diag(V))j‖q

}
subject to Θ = V + VT + Z, (3)

where the set S depends on the loss function `(X,Θ).

Note that when λ2 → ∞ or λ3 → ∞, then (3) reduces to (1). In this paper, we take
q = 2, which leads to estimation of a network containing dense hub nodes. Other values
of q such as q = ∞ are also possible (see, e.g., Mohan et al., 2014). We note that the hub
penalty function is closely related to recent work on overlapping group lasso penalties in
the context of learning multiple sparse precision matrices (Mohan et al., 2014).

2.2 Algorithm

In order to solve (3) with q = 2, we use an alternating direction method of multipliers
(ADMM) algorithm (see, e.g., Eckstein and Bertsekas, 1992; Boyd et al., 2010; Eckstein,
2012). ADMM is an attractive algorithm for this problem, as it allows us to decouple some
of the terms in (3) that are difficult to optimize jointly. In order to develop an ADMM
algorithm for (3) with guaranteed convergence, we reformulate it as a consensus problem,
as in Ma et al. (2013). The convergence of the algorithm to the optimal solution follows
from classical results (see, e.g., the review papers Boyd et al., 2010; Eckstein, 2012).

In greater detail, we let B = (Θ,V,Z), B̃ = (Θ̃, Ṽ, Z̃),

f(B) = `(X,Θ) + λ1‖Z− diag(Z)‖1 + λ2‖V − diag(V)‖1 + λ3

p∑
j=1

‖(V − diag(V))‖2,
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Algorithm 1 ADMM Algorithm for Solving (3).

1. Initialize the parameters:

(a) primal variables Θ,V,Z, Θ̃, Ṽ, and Z̃ to the p× p identity matrix.

(b) dual variables W1,W2, and W3 to the p× p zero matrix.

(c) constants ρ > 0 and τ > 0.

2. Iterate until the stopping criterion
‖Θt−Θt−1‖2F
‖Θt−1‖2F

≤ τ is met, where Θt is the value of Θ

obtained at the tth iteration:

(a) Update Θ,V,Z:

i. Θ = arg min
Θ∈S

{
`(X,Θ) + ρ

2‖Θ− Θ̃ + W1‖2F
}

.

ii. Z = S(Z̃−W3,
λ1

ρ ), diag(Z) = diag(Z̃−W3). Here S denotes the soft-thresholding

operator, applied element-wise to a matrix: S(Aij , b) = sign(Aij) max(|Aij | − b, 0).

iii. C = Ṽ −W2 − diag(Ṽ −W2).

iv. Vj = max
(

1− λ3

ρ‖S(Cj ,λ2/ρ)‖2 , 0
)
· S(Cj , λ2/ρ) for j = 1, . . . , p.

v. diag(V) = diag(Ṽ −W2).

(b) Update Θ̃, Ṽ, Z̃:

i. Γ = ρ
6

[
(Θ + W1)− (V + W2)− (V + W2)T − (Z + W3)

]
.

ii. Θ̃ = Θ + W1 − 1
ρΓ; iii. Ṽ = 1

ρ (Γ + ΓT ) + V + W2; iv. Z̃ = 1
ρΓ + Z + W3.

(c) Update W1,W2,W3:

i. W1 = W1 + Θ− Θ̃; ii. W2 = W2 + V − Ṽ; iii. W3 = W3 + Z− Z̃.
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and

g(B̃) =

{
0 if Θ̃ = Ṽ + ṼT + Z̃

∞ otherwise.

Then, we can rewrite (3) as

minimize
B,B̃

{
f(B) + g(B̃)

}
subject to B = B̃. (4)

The scaled augmented Lagrangian for (4) takes the form

L(B, B̃,W) = `(X,Θ) + λ1‖Z− diag(Z)‖1 + λ2‖V − diag(V)‖1

+ λ3

p∑
j=1

‖(V − diag(V))j‖2 + g(B̃) +
ρ

2
‖B− B̃ + W‖2F ,

where B and B̃ are the primal variables, and W = (W1,W2,W3) is the dual variable.
Note that the scaled augmented Lagrangian can be derived from the usual Lagrangian by
adding a quadratic term and completing the square (Boyd et al., 2010).

A general algorithm for solving (3) is provided in Algorithm 1. The derivation is in
Appendix A. Note that only the update for Θ (Step 2(a)i) depends on the form of the
convex loss function `(X,Θ). In the following sections, we consider special cases of (3)
that lead to estimation of Gaussian graphical models, covariance graph models, and binary
networks with hub nodes.

3. The Hub Graphical Lasso

Assume that x1, . . . ,xn
i.i.d.∼ N(0,Σ). The well-known graphical lasso problem (see, e.g.,

Friedman et al., 2007) takes the form of (1) with `(X,Θ) = − log det Θ + trace(SΘ), and
S the empirical covariance matrix of X:

minimize
Θ∈S

− log det Θ + trace(SΘ) + λ
∑
j 6=j′
|Θjj′ |

 , (5)

where S = {Θ : Θ � 0 and Θ = ΘT }. The solution to this optimization problem serves as
an estimate for Σ−1. We now use the hub penalty function to extend the graphical lasso in
order to accommodate hub nodes.

3.1 Formulation and Algorithm

We propose the hub graphical lasso (HGL) optimization problem, which takes the form

minimize
Θ∈S

{− log det Θ + trace(SΘ) + P(Θ)} . (6)

Again, S = {Θ : Θ � 0 and Θ = ΘT }. It encourages a solution that contains hub nodes, as
well as edges that connect non-hubs (Figure 1). Problem (6) can be solved using Algorithm
1. The update for Θ in Algorithm 1 (Step 2(a)i) can be derived by minimizing

− log det Θ + trace(SΘ) +
ρ

2
‖Θ− Θ̃ + W1‖2F (7)
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with respect to Θ (note that the constraint Θ ∈ S in (6) is treated as an implicit constraint,
due to the domain of definition of the log det function). This can be shown to have the
solution

Θ =
1

2
U

(
D +

√
D2 +

4

ρ
I

)
UT ,

where UDUT denotes the eigen-decomposition of Θ̃−W1 − 1
ρS.

The complexity of the ADMM algorithm for HGL is O(p3) per iteration; this is the
complexity of the eigen-decomposition for updating Θ. We now briefly compare the com-
putational time for the ADMM algorithm for solving (6) to that of an interior point method
(using the solver Sedumi called from cvx). On a 1.86 GHz Intel Core 2 Duo machine, the
interior point method takes ∼ 3 minutes, while ADMM takes only 1 second, on a data set
with p = 30. We present a more extensive run time study for the ADMM algorithm for
HGL in Appendix E.

3.2 Conditions for HGL Solution to be Block Diagonal

In order to reduce computations for solving the HGL problem, we now present a necessary
condition and a sufficient condition for the HGL solution to be block diagonal, subject to
some permutation of the rows and columns. The conditions depend only on the tuning
parameters λ1, λ2, and λ3. These conditions build upon similar results in the context
of Gaussian graphical models from the recent literature (see, e.g., Witten et al., 2011;
Mazumder and Hastie, 2012; Yang et al., 2012b; Danaher et al., 2014; Mohan et al., 2014).
Let C1, C2, . . . , CK denote a partition of the p features.

Theorem 1 A sufficient condition for the HGL solution to be block diagonal with blocks

given by C1, C2, . . . , CK is that min
{
λ1,

λ2
2

}
> |Sjj′ | for all j ∈ Ck, j′ ∈ Ck′ , k 6= k′.

Theorem 2 A necessary condition for the HGL solution to be block diagonal with blocks

given by C1, C2, . . . , CK is that min
{
λ1,

λ2+λ3
2

}
> |Sjj′ | for all j ∈ Ck, j′ ∈ Ck′ , k 6= k′.

Theorem 1 implies that one can screen the empirical covariance matrix S to check if
the HGL solution is block diagonal (using standard algorithms for identifying the connected
components of an undirected graph; see, e.g., Tarjan, 1972). Suppose that the HGL solution
is block diagonal with K blocks, containing p1, . . . , pK features, and

∑K
k=1 pk = p. Then,

one can simply solve the HGL problem on the features within each block separately. Recall
that the bottleneck of the HGL algorithm is the eigen-decomposition for updating Θ. The
block diagonal condition leads to massive computational speed-ups for implementing the
HGL algorithm: instead of computing an eigen-decomposition for a p × p matrix in each
iteration of the HGL algorithm, we compute the eigen-decomposition of K matrices of
dimensions p1 × p1, . . . , pK × pK . The computational complexity per-iteration is reduced
from O(p3) to

∑K
k=1O(p3

k).
We illustrate the reduction in computational time due to these results in an example with

p = 500. Without exploiting Theorem 1, the ADMM algorithm for HGL (with a particular
value of λ) takes 159 seconds; in contrast, it takes only 22 seconds when Theorem 1 is
applied. The estimated precision matrix has 107 connected components, the largest of
which contains 212 nodes.

3304



Learning Graphical Models With Hubs

3.3 Some Properties of HGL

We now present several properties of the HGL optimization problem (6), which can be used
to provide guidance on the suitable range for the tuning parameters λ1, λ2, and λ3. In what
follows, Z∗ and V∗ denote the optimal solutions for Z and V in (6). Let 1

s + 1
q = 1 (recall

that q appears in Equation 2).

Lemma 3 A sufficient condition for Z∗ to be a diagonal matrix is that λ1 >
λ2+λ3

2 .

Lemma 4 A sufficient condition for V∗ to be a diagonal matrix is that λ1 <
λ2
2 + λ3

2(p−1)1/s
.

Corollary 5 A necessary condition for both V∗ and Z∗ to be non-diagonal matrices is that
λ2
2 + λ3

2(p−1)1/s
≤ λ1 ≤ λ2+λ3

2 .

Furthermore, (6) reduces to the graphical lasso problem (5) under a simple condition.

Lemma 6 If q = 1, then (6) reduces to (5) with tuning parameter min
{
λ1,

λ2+λ3
2

}
.

Note also that when λ2 → ∞ or λ3 → ∞, (6) reduces to (5) with tuning parameter λ1.
However, throughout the rest of this paper, we assume that q = 2, and λ2 and λ3 are finite.

The solution Θ̂ of (6) is unique, since (6) is a strictly convex problem. We now consider
the question of whether the decomposition Θ̂ = V̂ + V̂T + Ẑ is unique. We see that
the decomposition is unique in a certain regime of the tuning parameters. For instance,
according to Lemma 3, when λ1 >

λ2+λ3
2 , Ẑ is a diagonal matrix and hence V̂ is unique.

Similarly, according to Lemma 4, when λ1 <
λ2
2 + λ3

2(p−1)1/s
, V̂ is a diagonal matrix and

hence Ẑ is unique. Studying more general conditions on S and on λ1, λ2, and λ3 such that
the decomposition is guaranteed to be unique is a challenging problem and is outside of the
scope of this paper.

3.4 Tuning Parameter Selection

In this section, we propose a Bayesian information criterion (BIC)-type quantity for tun-
ing parameter selection in (6). Recall from Section 2 that the hub penalty function (2)
decomposes the parameter of interest into the sum of three matrices, Θ = Z + V + VT ,
and places an `1 penalty on Z, and an `1/`2 penalty on V.

For the graphical lasso problem in (5), many authors have proposed to select the tuning
parameter λ such that Θ̂ minimizes the following quantity:

−n · log det(Θ̂) + n · trace(SΘ̂) + log(n) · |Θ̂|,

where |Θ̂| is the cardinality of Θ̂, that is, the number of unique non-zeros in Θ̂ (see, e.g.,
Yuan and Lin, 2007a).1

1. The term log(n) · |Θ̂| is motivated by the fact that the degrees of freedom for an estimate involving the
`1 penalty can be approximated by the cardinality of the estimated parameter (Zou et al., 2007).
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Using a similar idea, we propose the following BIC-type quantity for selecting the set of
tuning parameters (λ1, λ2, λ3) for (6):

BIC(Θ̂, V̂, Ẑ) = −n · log det(Θ̂) + n · trace(SΘ̂) + log(n) · |Ẑ|+ log(n) ·
(
ν + c · [|V̂| − ν]

)
,

where ν is the number of estimated hub nodes, that is, ν =
∑p

j=1 1{‖V̂j‖0>0}, c is a constant

between zero and one, and |Ẑ| and |V̂| are the cardinalities (the number of unique non-
zeros) of Ẑ and V̂, respectively.2 We select the set of tuning parameters (λ1, λ2, λ3) for
which the quantity BIC(Θ̂, V̂, Ẑ) is minimized. Note that when the constant c is small,
BIC(Θ̂, V̂, Ẑ) will favor more hub nodes in V̂. In this manuscript, we take c = 0.2.

3.5 Simulation Study

In this section, we compare HGL to two sets of proposals: proposals that learn an Erdős-
Rényi Gaussian graphical model, and proposals that learn a Gaussian graphical model in
which some nodes are highly-connected.

3.5.1 Notation and Measures of Performance

We start by defining some notation. Let Θ̂ be the estimate of Θ = Σ−1 from a given
proposal, and let Θ̂j be its jth column. Let H denote the set of indices of the hub nodes in
Θ (that is, this is the set of true hub nodes in the graph), and let |H| denote the cardinality
of the set. In addition, let Ĥr be the set of estimated hub nodes: the set of nodes in Θ̂
that are among the |H| most highly-connected nodes, and that have at least r edges. The
values chosen for |H| and r depend on the simulation set-up, and will be specified in each
simulation study.

We now define several measures of performance that will be used to evaluate the various
methods.

• Number of correctly estimated edges:
∑

j<j′

(
1{|Θ̂jj′ |>10−5 and |Θjj′ |6=0}

)
.

• Proportion of correctly estimated hub edges:

∑
j∈H,j′ 6=j

(
1{|Θ̂jj′ |>10−5 and |Θjj′ |6=0}

)
∑

j∈H,j′ 6=j

(
1{|Θjj′ |6=0}

) .

• Proportion of correctly estimated hub nodes: |Ĥr∩H|
|H| .

• Sum of squared errors:
∑

j<j′

(
Θ̂jj′ −Θjj′

)2
.

2. The term log(n) · |Ẑ| is motivated by the degrees of freedom from the `1 penalty, and the term log(n) ·(
ν + c · [|V̂| − ν]

)
is motivated by an approximation of the degrees of freedom of the `2 penalty proposed

in Yuan and Lin (2007b).
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3.5.2 Data Generation

We consider three set-ups for generating a p× p adjacency matrix A.

I - Network with hub nodes: for all i < j, we set Aij = 1 with probability 0.02, and zero
otherwise. We then set Aji equal to Aij . Next, we randomly select |H| hub nodes
and set the elements of the corresponding rows and columns of A to equal one with
probability 0.7 and zero otherwise.

II - Network with two connected components and hub nodes: the adjacency matrix is

generated as A =

(
A1 0
0 A2

)
, with A1 and A2 as in Set-up I, each with |H|/2 hub

nodes.

III - Scale-free network:3 the probability that a given node has k edges is proportional
to k−α. Barabási and Albert (1999) observed that many real-world networks have
α ∈ [2.1, 4]; we took α = 2.5. Note that there is no natural notion of hub nodes
in a scale-free network. While some nodes in a scale-free network have more edges
than one would expect in an Erdős-Rényi graph, there is no clear distinction between
“hub” and “non-hub” nodes, unlike in Set-ups I and II. In our simulation settings,
we consider any node that is connected to more than 5% of all other nodes to be a
hub node.4

We then use the adjacency matrix A to create a matrix E, as

Eij
i.i.d.∼

{
0 if Aij = 0

Unif([−0.75,−0.25] ∪ [0.25, 0.75]) otherwise,

and set Ē = 1
2(E + ET ). Given the matrix Ē, we set Σ−1 equal to Ē + (0.1 − Λmin(Ē))I,

where Λmin(Ē) is the smallest eigenvalue of Ē. We generate the data matrix X according to

x1, . . . ,xn
i.i.d.∼ N(0,Σ). Then, variables are standardized to have standard deviation one.

3.5.3 Comparison to Graphical Lasso and Neighbourhood Selection

In this subsection, we compare the performance of HGL to two proposals that learn a sparse
Gaussian graphical model.

• The graphical lasso (5), implemented using the R package glasso.

• The neighborhood selection approach of Meinshausen and Bühlmann (2006), imple-
mented using the R package glasso. This approach involves performing p `1-penalized
regression problems, each of which involves regressing one feature onto the others.

3. Recall that our proposal is not intended for estimating a scale-free network.
4. The cutoff threshold of 5% is chosen in order to capture the most highly-connected nodes in the scale-free

network. In our simulation study, around three nodes are connected to at least 0.05× p other nodes in
the network. The precise choice of cut-off threshold has little effect on the results obtained in the figures
that follow.
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We consider the three simulation set-ups described in the previous section with n = 1000,
p = 1500, and |H| = 30 hub nodes in Set-ups I and II. Figure 3 displays the results, averaged
over 100 simulated data sets. Note that the sum of squared errors is not computed for
Meinshausen and Bühlmann (2006), since it does not directly yield an estimate of Θ = Σ−1.

HGL has three tuning parameters. To obtain the curves shown in Figure 3, we fixed
λ1 = 0.4, considered three values of λ3 (each shown in a different color in Figure 3), and
used a fine grid of values of λ2. The solid black circle in Figure 3 corresponds to the set of
tuning parameters (λ1, λ2, λ3) for which the BIC as defined in Section 3.4 is minimized. The
graphical lasso and Meinshausen and Bühlmann (2006) each involves one tuning parameter;
we applied them using a fine grid of the tuning parameter to obtain the curves shown in
Figure 3.

Results for Set-up I are displayed in Figures 3-I(a) through 3-I(d), where we calculate
the proportion of correctly estimated hub nodes as defined in Section 3.5.1 with r = 300.
Since this simulation set-up exactly matches the assumptions of HGL, it is not surprising
that HGL outperforms the other methods. In particular, HGL is able to identify most of the
hub nodes when the number of estimated edges is approximately equal to the true number
of edges. We see similar results for Set-up II in Figures 3-II(a) through 3-II(d), where the
proportion of correctly estimated hub nodes is as defined in Section 3.5.1 with r = 150.

In Set-up III, recall that we define a node that is connected to at least 5% of all nodes to
be a hub. The proportion of correctly estimated hub nodes is then as defined in Section 3.5.1
with r = 0.05 × p. The results are presented in Figures 3-III(a) through 3-III(d). In this
set-up, only approximately three of the nodes (on average) have more than 50 edges, and
the hub nodes are not as highly-connected as in Set-up I or Set-up II. Nonetheless, HGL
outperforms the graphical lasso and Meinshausen and Bühlmann (2006).

Finally, we see from Figure 3 that the set of tuning parameters (λ1, λ2, λ3) selected using
BIC performs reasonably well. In particular, the graphical lasso solution always has BIC
larger than HGL, and hence, is not selected.

3.5.4 Comparison to Additional Proposals

In this subsection, we compare the performance of HGL to three additional proposals:

• The partial correlation screening procedure of Hero and Rajaratnam (2012). The
elements of the partial correlation matrix (computed using a pseudo-inverse when
p > n) are thresholded based on their absolute value, and a hub node is declared
if the number of nonzero elements in the corresponding column of the thresholded
partial correlation matrix is sufficiently large. Note that the purpose of Hero and
Rajaratnam (2012) is to screen for hub nodes, rather than to estimate the individual
edges in the network.

• The scale-free network estimation procedure of Liu and Ihler (2011). This is the
solution to the non-convex optimization problem

minimize
Θ∈S

− log det Θ + trace(SΘ) + α

p∑
j=1

log(‖θ\j‖1 + εj) +

p∑
j=1

βj |θjj |

 , (8)
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Figure 3: Simulation for Gaussian graphical model. Row I: Results for Set-up I. Row II:
Results for Set-up II. Row III: Results for Set-up III. The results are for n = 1000
and p = 1500. In each panel, the x-axis displays the number of estimated edges,
and the vertical gray line is the number of edges in the true network. The y-axes
are as follows: Column (a): Number of correctly estimated edges; Column (b):
Proportion of correctly estimated hub edges; Column (c): Proportion of correctly
estimated hub nodes; Column (d): Sum of squared errors. The black solid circles
are the results for HGL based on tuning parameters selected using the BIC-type
criterion defined in Section 3.4. Colored lines correspond to the graphical lasso
(Friedman et al., 2007) ( ); HGL with λ3 = 0.5 ( ), λ3 = 1 ( ), and λ3 = 2
( ); neighborhood selection (Meinshausen and Bühlmann, 2006) ( ).
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where θ\j = {θjj′ |j′ 6= j}, and εj , βj , and α are tuning parameters. Here, S = {Θ :

Θ � 0 and Θ = ΘT }.

• Sparse partial correlation estimation procedure of Peng et al. (2009), implemented
using the R package space. This is an extension of the neighborhood selection ap-
proach of Meinshausen and Bühlmann (2006) that combines p `1-penalized regression
problems in order to obtain a symmetric estimator. The authors claimed that the
proposal performs well in estimating a scale-free network.

We generated data under Set-ups I and III (described in Section 3.5.2) with n = 250
and p = 500,5 and with |H| = 10 for Set-up I. The results, averaged over 100 data sets, are
displayed in Figures 4 and 5.

To obtain Figures 4 and 5, we applied Liu and Ihler (2011) using a fine grid of α values,
and using the choices for βj and εj specified by the authors: βj = 2α/εj , where εj is a small
constant specified in Liu and Ihler (2011). There are two tuning parameters in Hero and
Rajaratnam (2012): (1) ρ, the value used to threshold the partial correlation matrix, and
(2) d, the number of non-zero elements required for a column of the thresholded matrix to
be declared a hub node. We used d = {10, 20} in Figures 4 and 5, and used a fine grid of
values for ρ. Note that the value of d has no effect on the results for Figures 4(a)-(b) and
Figures 5(a)-(b), and that larger values of d tend to yield worse results in Figures 4(c) and
5(c). For Peng et al. (2009), we used a fine grid of tuning parameter values to obtain the
curves shown in Figures 4 and 5. The sum of squared errors was not reported for Peng et al.
(2009) and Hero and Rajaratnam (2012) since they do not directly yield an estimate of the
precision matrix. As a baseline reference, the graphical lasso is included in the comparison.

We see from Figure 4 that HGL outperforms the competitors when the underlying
network contains hub nodes. It is not surprising that Liu and Ihler (2011) yields better
results than the graphical lasso, since the former approach is implemented via an iterative
procedure: in each iteration, the graphical lasso is performed with an updated tuning
parameter based on the estimate obtained in the previous iteration. Hero and Rajaratnam
(2012) has the worst results in Figures 4(a)-(b); this is not surprising, since the purpose
of Hero and Rajaratnam (2012) is to screen for hub nodes, rather than to estimate the
individual edges in the network.

From Figure 5, we see that the performance of HGL is comparable to that of Liu and
Ihler (2011) and Peng et al. (2009) under the assumption of a scale-free network; note that
this is the precise setting for which Liu and Ihler (2011)’s proposal is intended, and Peng
et al. (2009) reported that their proposal performs well in this setting. In contrast, HGL
is not intended for the scale-free network setting (as mentioned in the Introduction, it is
intended for a setting with hub nodes). Again, Liu and Ihler (2011) and Peng et al. (2009)
outperform the graphical lasso, and Hero and Rajaratnam (2012) has the worst results in
Figures 5(a)-(b). Finally, we see from Figures 4 and 5 that the BIC-type criterion for HGL
proposed in Section 3.4 yields good results.

5. In this subsection, a small value of p was used due to the computations required to run the R package
space, as well as computational demands of the Liu and Ihler (2011) algorithm.
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Figure 4: Simulation for the Gaussian graphical model. Set-up I was applied with n = 250
and p = 500. Details of the axis labels and the solid black circles are as in
Figure 3. The colored lines correspond to the graphical lasso (Friedman et al.,
2007) ( ); HGL with λ3 = 1 ( ), λ3 = 2 ( ), and λ3 = 3 ( ); the
hub screening procedure (Hero and Rajaratnam, 2012) with d = 10 ( ) and
d = 20 ( ); the scale-free network approach (Liu and Ihler, 2011) ( ); sparse
partial correlation estimation (Peng et al., 2009) ( ).
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Figure 5: Simulation for the Gaussian graphical model. Set-up III was applied with n = 250
and p = 500. Details of the axis labels and the solid black circles are as in
Figure 3. The colored lines correspond to the graphical lasso (Friedman et al.,
2007) ( ); HGL with λ3 = 1 ( ), λ3 = 2 ( ), and λ3 = 3 ( ); the
hub screening procedure (Hero and Rajaratnam, 2012) with d = 10 ( ) and
d = 20 ( ); the scale-free network approach (Liu and Ihler, 2011) ( ); sparse
partial correlation estimation (Peng et al., 2009) ( ).
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4. The Hub Covariance Graph

In this section, we consider estimation of a covariance matrix under the assumption that

x1, . . . ,xn
i.i.d.∼ N(0,Σ); this is of interest because the sparsity pattern of Σ specifies

the structure of the marginal independence graph (see, e.g., Drton and Richardson, 2003;
Chaudhuri et al., 2007; Drton and Richardson, 2008). We extend the covariance estimator
of Xue et al. (2012) to accommodate hub nodes.

4.1 Formulation and Algorithm

Xue et al. (2012) proposed to estimate Σ using

Σ̂ = arg min
Σ∈S

{
1

2
‖Σ− S‖2F + λ‖Σ‖1

}
, (9)

where S is the empirical covariance matrix, S = {Σ : Σ � εI and Σ = ΣT }, and ε is a small
positive constant; we take ε = 10−4. We extend (9) to accommodate hubs by imposing the
hub penalty function (2) on Σ. This results in the hub covariance graph (HCG) optimization
problem,

minimize
Σ∈S

{
1

2
‖Σ− S‖2F + P(Σ)

}
,

which can be solved via Algorithm 1. To update Θ = Σ in Step 2(a)i, we note that

arg min
Σ∈S

{
1

2
‖Σ− S‖2F +

ρ

2
‖Σ− Σ̃ + W1‖2F

}
=

1

1 + ρ
(S + ρΣ̃− ρW1)+,

where (A)+ is the projection of a matrix A onto the convex cone {Σ � εI}. That is, if∑p
j=1 djuju

T
j denotes the eigen-decomposition of the matrix A, then (A)+ is defined as∑p

j=1 max(dj , ε)uju
T
j . The complexity of the ADMM algorithm is O(p3) per iteration, due

to the complexity of the eigen-decomposition for updating Σ.

4.2 Simulation Study

We compare HCG to two competitors for obtaining a sparse estimate of Σ:

1. The non-convex `1-penalized log-likelihood approach of Bien and Tibshirani (2011),
using the R package spcov. This approach solves

minimize
Σ�0

{
log det Σ + trace(Σ−1S) + λ‖Σ‖1

}
.

2. The convex `1-penalized approach of Xue et al. (2012), given in (9).

We first generated an adjacency matrix A as in Set-up I in Section 3.5.2, modified to
have |H| = 20 hub nodes. Then Ē was generated as described in Section 3.5.2, and we set

Σ equal to Ē + (0.1 − Λmin(Ē))I. Next, we generated x1, . . . ,xn
i.i.d.∼ N(0,Σ). Finally, we

standardized the variables to have standard deviation one. In this simulation study, we set
n = 500 and p = 1000.
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Figure 6 displays the results, averaged over 100 simulated data sets. We calculated the
proportion of correctly estimated hub nodes as defined in Section 3.3.1 with r = 200. We
used a fine grid of tuning parameters for Xue et al. (2012) in order to obtain the curves
shown in each panel of Figure 6. HCG involves three tuning parameters, λ1, λ2, and λ3. We
fixed λ1 = 0.2, considered three values of λ3 (each shown in a different color), and varied
λ2 in order to obtain the curves shown in Figure 6.

Figure 6 does not display the results for the proposal of Bien and Tibshirani (2011), due
to computational constraints in the spcov R package. Instead, we compared our proposal to
that of Bien and Tibshirani (2011) using n = 100 and p = 200; those results are presented
in Figure 10 in Appendix D.
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Figure 6: Covariance graph simulation with n = 500 and p = 1000. Details of the axis
labels are as in Figure 3. The colored lines correspond to the proposal of Xue
et al. (2012) ( ); HCG with λ3 = 1 ( ), λ3 = 1.5 ( ), and λ3 = 2 ( ).

We see that HCG outperforms the proposals of Xue et al. (2012) (Figures 6 and 10) and
Bien and Tibshirani (2011) (Figure 10). These results are not surprising, since those other
methods do not explicitly model the hub nodes.

5. The Hub Binary Network

In this section, we focus on estimating a binary Ising Markov random field, which we refer
to as a binary network. We refer the reader to Ravikumar et al. (2010) for an in-depth
discussion of this type of graphical model and its applications.

In this set-up, each entry of the n × p data matrix X takes on a value of zero or one.
We assume that the observations x1, . . . ,xn are i.i.d. with density

p(x,Θ) =
1

Z(Θ)
exp

 p∑
j=1

θjjxj +
∑

1≤j<j′≤p
θjj′xjxj′

 , (10)

where Z(Θ) is the partition function, which ensures that the density sums to one. Here Θ
is a p× p symmetric matrix that specifies the network structure: θjj′ = 0 implies that the
jth and j′th variables are conditionally independent.

In order to obtain a sparse graph, Lee et al. (2007) considered maximizing an `1-
penalized log-likelihood under this model. Due to the difficulty in computing the log-
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partition function, several authors have considered alternative approaches. For instance,
Ravikumar et al. (2010) proposed a neighborhood selection approach. The proposal of
Ravikumar et al. (2010) involves solving p logistic regression separately, and hence, the
estimated parameter matrix is not symmetric. In contrast, several authors considered max-
imizing an `1-penalized pseudo-likelihood with a symmetric constraint on Θ (see, e.g.,
Höfling and Tibshirani, 2009; Guo et al., 2010, 2011).

5.1 Formulation and Algorithm

Under the model (10), the log-pseudo-likelihood for n observations takes the form

p∑
j=1

p∑
j′=1

θjj′(X
TX)jj′ −

n∑
i=1

p∑
j=1

log

1 + exp

θjj +
∑
j′ 6=j

θjj′xij′

 , (11)

where xi is the ith row of the n×p matrix X. The proposal of Höfling and Tibshirani (2009)
involves maximizing (11) subject to an `1 penalty on Θ. We propose to instead impose the
hub penalty function (2) on Θ in (11) in order to estimate a sparse binary network with
hub nodes. This leads to the optimization problem

minimize
Θ∈S

−
p∑
j=1

p∑
j′=1

θjj′(X
TX)jj′ +

n∑
i=1

p∑
j=1

log

1 + exp

θjj +
∑
j′ 6=j

θjj′xij′

+ P(Θ)

 , (12)

where S = {Θ : Θ = ΘT }. We refer to the solution to (12) as the hub binary network
(HBN). The ADMM algorithm for solving (12) is given in Algorithm 1. We solve the update
for Θ in Step 2(a)i using the Barzilai-Borwein method (Barzilai and Borwein, 1988). The
details are given in Appendix F.

5.2 Simulation Study

Here we compare the performance of HBN to the proposal of Höfling and Tibshirani (2009),
implemented using the R package BMN.

We simulated a binary network with p = 50 and |H| = 5 hub nodes. To generate the
parameter matrix Θ, we created an adjacency matrix A as in Set-up I of Section 3.5.2 with
five hub nodes. Then Ē was generated as in Section 3.5.2, and we set Θ = Ē.

Each of n = 100 observations was generated using Gibbs sampling (Ravikumar et al.,

2010; Guo et al., 2010). Suppose that x
(t)
1 , . . . , x

(t)
p is obtained at the tth iteration of the

Gibbs sampler. Then, the (t+ 1)th iteration is obtained according to

x
(t+1)
j ∼ Bernoulli

 exp(θjj +
∑

j 6=j′ θjj′x
(t)
j′ )

1 + exp(θjj +
∑

j 6=j′ θjj′x
(t)
j′ )

 for j = 1, . . . , p.

We took the first 105 iterations as our burn-in period, and then collected an observation
every 104 iterations, such that the observations were nearly independent (Guo et al., 2010).

The results, averaged over 100 data sets, are shown in Figure 7. We used a fine grid
of values for the `1 tuning parameter for Höfling and Tibshirani (2009), resulting in curves
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shown in each panel of the figure. For HBN, we fixed λ1 = 5, considered λ3 = {15, 25, 30},
and used a fine grid of values of λ2. The proportion of correctly estimated hub nodes was
calculated using the definition in Section 3.5.1 with r = 20. Figure 7 indicates that HBN
consistently outperforms the proposal of Höfling and Tibshirani (2009).
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Figure 7: Binary network simulation with n = 100 and p = 50. Details of the axis labels are
as in Figure 3. The colored lines correspond to the `1-penalized pseudo-likelihood
proposal of Höfling and Tibshirani (2009) ( ); and HBN with λ3 = 15 ( ),
λ3 = 25 ( ), and λ3 = 30 ( ).

6. Real Data Application

We now apply HGL to a university webpage data set, and a brain cancer data set.

6.1 Application to University Webpage Data

We applied HGL to the university webpage data set from the “World Wide Knowledge Base”
project at Carnegie Mellon University. This data set was pre-processed by Cardoso-Cachopo
(2009). The data set consists of the occurrences of various terms (words) on webpages from
four computer science departments at Cornell, Texas, Washington and Wisconsin. We
consider only the 544 student webpages, and select 100 terms with the largest entropy for
our analysis. In what follows, we model these 100 terms as the nodes in a Gaussian graphical
model.

The goal of the analysis is to understand the relationships among the terms that appear
on the student webpages. In particular, we wish to identify terms that are hubs. We are
not interested in identifying edges between non-hub nodes. For this reason, we fix the
tuning parameter that controls the sparsity of Z at λ1 = 0.45 such that the matrix Z is
sparse. In the interest of a graph that is interpretable, we fix λ3 = 1.5 to obtain only a
few hub nodes, and then select a value of λ2 ranging from 0.1 to 0.5 using the BIC-type
criterion presented in Section 3.4. We performed HGL with the selected tuning parameters
λ1 = 0.45, λ2 = 0.25, and λ3 = 1.5.6 The estimated matrices are shown in Figure 8.

Figure 8(a) indicates that six hub nodes are detected: comput, research, scienc, software,
system, and work. For instance, the fact that comput is a hub indicates that many terms’

6. The results are qualitatively similar for different values of λ1.
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occurrences are explained by the occurrence of the word comput. From Figure 8(b), we see
that several pairs of terms take on non-zero values in the matrix (Z−diag(Z)). These include
(depart, univers); (home, page); (institut, technolog); (graduat, student); (univers, scienc),
and (languag,program). These results provide an intuitive explanation of the relationships
among the terms in the webpages.
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●
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Figure 8: Results for HGL on the webpage data with tuning parameters selected using BIC:
λ1 = 0.45, λ2 = 0.25, λ3 = 1.5. Non-zero estimated values are shown, for (a):
(V − diag(V)), and (b): (Z− diag(Z)).

6.2 Application to Gene Expression Data

We applied HGL to a publicly available cancer gene expression data set (Verhaak et al.,
2010). The data set consists of mRNA expression levels for 17,814 genes in 401 patients
with glioblastoma multiforme (GBM), an extremely aggressive cancer with very poor patient
prognosis. Among 7,462 genes known to be associated with cancer (Rappaport et al., 2013),
we selected 500 genes with the highest variance.

We aim to reconstruct the gene regulatory network that represents the interactions
among the genes, as well as to identify hub genes that tend to have many interactions with
other genes. Such genes likely play an important role in regulating many other genes in
the network. Identifying such regulatory genes will lead to a better understanding of brain
cancer, and eventually may lead to new therapeutic targets. Since we are interested in
identifying hub genes, and not as interested in identifying edges between non-hub nodes,
we fix λ1 = 0.6 such that the matrix Z is sparse. We fix λ3 = 6.5 to obtain a few hub
nodes, and we select λ2 ranging from 0.1 to 0.7 using the BIC-type criterion presented in
Section 3.4.
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We applied HGL with this set of tuning parameters to the empirical covariance matrix
corresponding to the 401× 500 data matrix, after standardizing each gene to have variance
one. In Figure 9, we plotted the resulting network (for simplicity, only the 438 genes with
at least two neighbors are displayed). We found that five genes are identified as hubs.
These genes are TRIM48, TBC1D2B, PTPN2, ACRC, and ZNF763, in decreasing order of
estimated edges.

Interestingly, some of these genes have known regulatory roles. PTPN2 is known to
be a signaling molecule that regulates a variety of cellular processes including cell growth,
differentiation, mitotic cycle, and oncogenic transformation (Maglott et al., 2004). ZNF763
is a DNA-binding protein that regulates the transcription of other genes (Maglott et al.,
2004). These genes do not appear to be highly-connected to many other genes in the
estimate that results from applying the graphical lasso (5) to this same data set (results
not shown). These results indicate that HGL can be used to recover known regulators, as
well as to suggest other potential regulators that may be targets for follow-up analysis.

1
3 5

42

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

1 - TRIM48
2 - TBC1D2B
3 - PTPN2
4 - ACRC
5 - ZNF763

Figure 9: Results for HGL on the GBM data with tuning parameters selected using BIC:
λ1 = 0.6, λ2 = 0.4, λ3 = 6.5. Only nodes with at least two edges in the estimated
network are displayed. Nodes displayed in pink were found to be hubs by the
HGL algorithm.

7. Discussion

We have proposed a general framework for estimating a network with hubs by way of a
convex penalty function. The proposed framework has three tuning parameters, so that
it can flexibly accommodate different numbers of hubs, sparsity levels within a hub, and
connectivity levels among non-hubs. We have proposed a BIC-type quantity to select tuning
parameters for our proposal. We note that tuning parameter selection in unsupervised
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settings remains a challenging open problem (see, e.g., Foygel and Drton, 2010; Meinshausen
and Bühlmann, 2010). In practice, tuning parameters could also be set based on domain
knowledge or a desire for interpretability of the resulting estimates.

The framework proposed in this paper assumes an underlying model involving a set of
edges between non-hub nodes, as well as a set of hub nodes. For instance, it is believed
that such hub nodes arise in biology, in which “super hubs” in transcriptional regulatory
networks may play important roles (Hao et al., 2012). We note here that the underlying
model of hub nodes assumed in this paper differs fundamentally from a scale-free network
in which the degree of connectivity of the nodes follows a power law distribution—scale-free
networks simply do not have such very highly-connected hub nodes. In fact, we have shown
that existing techniques for estimating a scale-free network, such as Liu and Ihler (2011)
and Defazio and Caetano (2012), cannot accommodate the very dense hubs for which our
proposal is intended.

As discussed in Section 2, the hub penalty function involves decomposing a parameter
matrix Θ into Z + V + VT , where Z is a sparse matrix, and V is a matrix whose columns
are entirely zero or (almost) entirely non-zero. In this paper, we used an `1 penalty on Z
in order to encourage it to be sparse. In effect, this amounts to assuming that the non-
hub nodes obey an Erdős-Rényi network. But our formulation could be easily modified
to accommodate a different network prior for the non-hub nodes. For instance, we could
assume that the non-hub nodes obey a scale-free network, using the ideas developed in
Liu and Ihler (2011) and Defazio and Caetano (2012). This would amount to modeling a
scale-free network with hub nodes.

In this paper, we applied the proposed framework to the tasks of estimating a Gaussian
graphical model, a covariance graph model, and a binary network. The proposed framework
can also be applied to other types of graphical models, such as the Poisson graphical model
(Allen and Liu, 2012) or the exponential family graphical model (Yang et al., 2012a).

In future work, we will study the theoretical statistical properties of the HGL formula-
tion. For instance, in the context of the graphical lasso, it is known that the rate of statistical
convergence depends upon the maximal degree of any node in the network (Ravikumar et al.,
2011). It would be interesting to see whether HGL theoretically outperforms the graphical
lasso in the setting in which the true underlying network contains hubs. Furthermore, it
will be of interest to study HGL’s hub recovery properties from a theoretical perspective.

An R package hglasso is publicly available on the authors’ websites and on CRAN.
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Appendix A. Derivation of Algorithm 1

Recall that the scaled augmented Lagrangian for (4) takes the form

L(B, B̃,W) = `(X,Θ) + λ1‖Z− diag(Z)‖1 + λ2‖V − diag(V)‖1

+ λ3

p∑
j=1

‖(V − diag(V))j‖2 + g(B̃) +
ρ

2
‖B− B̃ + W‖2F .

(13)

The proposed ADMM algorithm requires the following updates:

1. B(t+1) ← argmin
B

L(B, B̃t,Wt),

2. B̃(t+1) ← argmin
B̃

L(B(t+1), B̃,Wt),

3. W(t+1) ←Wt + B(t+1) − B̃(t+1).

We now proceed to derive the updates for B and B̃.

Updates for B

To obtain updates for B = (Θ,V,Z), we exploit the fact that (13) is separable in Θ,V, and
Z. Therefore, we can simply update with respect to Θ,V, and Z one-at-a-time. Update
for Θ depends on the form of the convex loss function, and is addressed in the main text.
Updates for V and Z can be easily seen to take the form given in Algorithm 1.

Updates for B̃

Minimizing the function in (13) with respect to B̃ is equivalent to

minimize
Θ̃,Ṽ,Z̃

{ρ
2
‖Θ− Θ̃ + W1‖2F +

ρ

2
‖V − Ṽ + W2‖2F +

ρ

2
‖Z− Z̃ + W3‖2F

}
subject to Θ̃ = Z̃ + Ṽ + ṼT .

(14)

Let Γ be the p × p Lagrange multiplier matrix for the equality constraint. Then, the
Lagrangian for (14) is

ρ

2
‖Θ− Θ̃ + W1‖2F +

ρ

2
‖V − Ṽ + W2‖2F +

ρ

2
‖Z− Z̃ + W3‖2F + 〈Γ, Θ̃− Z̃− Ṽ − ṼT 〉.

A little bit of algebra yields

Θ̃ = Θ + W1 −
1

ρ
Γ,

Ṽ =
1

ρ
(Γ + ΓT ) + V + W2,

Z̃ =
1

ρ
Γ + Z + W3,

where Γ = ρ
6 [(Θ + W1)− (V + W2)− (V + W2)T − (Z + W3)].
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Appendix B. Conditions for HGL Solution to be Block-Diagonal

We begin by introducing some notation. Let ‖V‖u,v be the `u/`v norm of a matrix V.
For instance, ‖V‖1,q =

∑p
j=1 ‖Vj‖q. We define the support of a matrix Θ as follows:

supp(Θ) = {(i, j) : Θij 6= 0}. We say that Θ is supported on a set G if supp(Θ) ⊆ G. Let
{C1, . . . , CK} be a partition of the index set {1, . . . , p}, and let T = ∪Kk=1{Ck×Ck}. We let
AT denote the restriction of the matrix A to the set T : that is, (AT )ij = 0 if (i, j) /∈ T and
(AT )ij = Aij if (i, j) ∈ T . Note that any matrix supported on T is block-diagonal with K
blocks, subject to some permutation of its rows and columns. Also, let Smax = max

(i,j)∈T c
|Sij |.

Define

P̃(Θ) = min
V,Z

‖Z− diag(Z)‖1 + λ̂2‖V − diag(V)‖1 + λ̂3‖V − diag(V)‖1,q
subject to Θ = Z + V + VT ,

(15)

where λ̂2 = λ2
λ1

and λ̂3 = λ3
λ1

. Then, optimization problem (6) is equivalent to

minimize
Θ∈S

− log det(Θ) + 〈Θ,S〉+ λ1P̃(Θ), (16)

where S = {Θ : Θ � 0,Θ = ΘT }.

Proof of Theorem 1 (Sufficient Condition)

Proof First, we note that if (Θ,V,Z) is a feasible solution to (6), then (ΘT ,VT ,ZT ) is
also a feasible solution to (6). Assume that (Θ,V,Z) is not supported on T . We want to
show that the objective value of (6) evaluated at (ΘT ,VT ,ZT ) is smaller than the objective
value of (6) evaluated at (Θ,V,Z). By Fischer’s inequality (Horn and Johnson, 1985),

− log det(Θ) ≥ − log det(ΘT ).

Therefore, it remains to show that

〈Θ,S〉+ λ1‖Z− diag(Z)‖1 + λ2‖V − diag(V)‖1 + λ3‖V − diag(V)‖1,q >
〈ΘT ,S〉+ λ1‖ZT − diag(ZT )‖1 + λ2‖VT − diag(VT )‖1 + λ3‖VT − diag(VT )‖1,q,

or equivalently, that

〈ΘT c ,S〉+ λ1‖ZT c‖1 + λ2‖VT c‖1 + λ3(‖V − diag(V)‖1,q − ‖VT − diag(VT )‖1,q) > 0.

Since ‖V − diag(V)‖1,q ≥ ‖VT − diag(VT )‖1,q, it suffices to show that

〈ΘT c ,S〉+ λ1‖ZT c‖1 + λ2‖VT c‖1 > 0. (17)

Note that 〈ΘT c ,S〉 = 〈ΘT c ,ST c〉. By the sufficient condition, Smax < λ1 and 2Smax < λ2.
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In addition, we have that

|〈ΘT c ,S〉| = |〈ΘT c ,ST c〉|
= |〈VT c + VT

T c + ZT c ,ST c〉|
= |〈2VT c + ZT c ,ST c〉|
≤ (2‖VT c‖1 + ‖ZT c‖1)Smax

< λ2‖VT c‖1 + λ1‖ZT c‖1,

where the last inequality follows from the sufficient condition. We have shown (17) as
desired.

Proof of Theorem 2 (Necessary Condition)

We first present a simple lemma for proving Theorem 2. Throughout the proof of Theorem
2, ‖ · ‖∞ indicates the maximal absolute element of a matrix and ‖ · ‖∞,s indicates the dual
norm of ‖ · ‖1,q.

Lemma 7 The dual representation of P̃(Θ) in (15) is

P̃∗(Θ) = max
X,Y,Λ

〈Λ,Θ〉

subject to Λ + ΛT = λ̂2X + λ̂3Y
‖X‖∞ ≤ 1, ‖Λ‖∞ ≤ 1, ‖Y‖∞,s ≤ 1
Xii = 0, Yii = 0,Λii = 0 for i = 1, . . . , p,

(18)

where 1
s + 1

q = 1.

Proof We first state the dual representations for the norms in (15):

‖Z− diag(Z)‖1 = max
Λ

〈Λ,Z〉
subject to ‖Λ‖∞ ≤ 1,Λii = 0 for i = 1, . . . , p,

‖V − diag(V)‖1 = max
X

〈X,V〉
subject to ‖X‖∞ ≤ 1, Xii = 0 for i = 1, . . . , p,

‖V − diag(V)‖1,q = max
Y

〈Y,V〉
subject to ‖Y‖∞,s ≤ 1, Yii = 0 for i = 1, . . . , p.
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Then,

P̃(Θ) = min
V,Z

‖Z− diag(Z)‖1 + λ̂2‖V − diag(V)‖1 + λ̂3‖V − diag(V)‖1,q
subject to Θ = Z + V + VT

= min
V,Z

max
Λ,X,Y

〈Λ,Z〉+ λ̂2〈X,V〉+ λ̂3〈Y,V〉

subject to ‖Λ‖∞ ≤ 1, ‖X‖∞ ≤ 1, ‖Y‖∞,s ≤ 1
Λii = 0, Xii = 0, Yii = 0 for i = 1, . . . , p

Θ = Z + V + VT

= max
Λ,X,Y

min
V,Z
〈Λ,Z〉+ λ̂2〈X,V〉+ λ̂3〈Y,V〉

subject to ‖Λ‖∞ ≤ 1, ‖X‖∞ ≤ 1, ‖Y‖∞,s ≤ 1
Λii = 0, Xii = 0, Yii = 0 for i = 1, . . . , p

Θ = Z + V + VT

= max
Λ,X,Y

〈Λ,Θ〉

subject to Λ + ΛT = λ̂2X + λ̂3Y
‖X‖∞ ≤ 1, ‖Λ‖∞ ≤ 1, ‖Y‖∞,s ≤ 1
Xii = 0, Yii = 0,Λii = 0 for i = 1, . . . , p.

The third equality holds since the constraints on (V,Z) and on (Λ,X,Y) are both compact
convex sets and so by the minimax theorem, we can swap max and min. The last equality
follows from the fact that

min
V,Z

〈Λ,Z〉+ λ̂2〈X,V〉+ λ̂3〈Y,V〉

subject to Θ = Z + V + VT

=

{
〈Λ,Θ〉 if Λ + ΛT = λ̂2X + λ̂3Y
−∞ otherwise.

We now present the proof of Theorem 2.
Proof The optimality condition for (16) is given by

0 = −Θ−1 + S + λ1Λ, (19)

where Λ is a subgradient of P̃(Θ) in (15) and the left-hand side of the above equation is a
zero matrix of size p× p.

Now suppose that Θ∗ that solves (19) is supported on T , i.e., Θ∗T c = 0. Then for any
(i, j) ∈ T c, we have that

0 = Sij + λ1Λ∗ij , (20)

where Λ∗ is a subgradient of P̃(Θ∗). Note that Λ∗ must be an optimal solution to the
optimization problem (18). Therefore, it is also a feasible solution to (18), implying that

|Λ∗ij + Λ∗ji| ≤ λ̂2 + λ̂3,

|Λ∗ij | ≤ 1.
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From (20), we have that Λ∗ij = −Sij

λ1
and thus,

λ1 ≥ λ1 max
(i,j)∈T c

|Λ∗ij |

= λ1 max
(i,j)∈T c

|Sij |
λ1

= Smax.

Also, recall that λ̂2 = λ2
λ1

and λ̂3 = λ3
λ1

. We have that

λ2 + λ3 ≥ λ1 max
(i,j)∈T c

|Λ∗ij + Λ∗ji|

= λ1 max
(i,j)∈T c

2|Sij |
λ1

= 2Smax.

Hence, we obtain the desired result.

Appendix C. Some Properties of HGL

Proof of Lemma 3

Proof Let (Θ∗,Z∗,V∗) be the solution to (6) and suppose that Z∗ is not a diagonal matrix.
Note that Z∗ is symmetric since Θ ∈ S ≡ {Θ : Θ � 0 and Θ = ΘT }. Let Ẑ = diag(Z∗), a
matrix that contains the diagonal elements of the matrix Z∗. Also, construct V̂ as follows,

V̂ij =

{
V∗ij +

Z∗ij
2 if i 6= j

V∗jj otherwise.

Then, we have that Θ∗ = Ẑ + V̂ + V̂T . Thus, (Θ∗, Ẑ, V̂) is a feasible solution to (6).
We now show that (Θ∗, Ẑ, V̂) has a smaller objective than (Θ∗,Z∗,V∗) in (6), giving us a
contradiction. Note that

λ1‖Ẑ− diag(Ẑ)‖1 + λ2‖V̂ − diag(V̂)‖1 = λ2‖V̂ − diag(V̂)‖1
= λ2

∑
i 6=j |V∗ij +

Z∗ij
2 |

≤ λ2‖V∗ − diag(V∗)‖1 + λ2
2 ‖Z

∗ − diag(Z∗)‖1,

and

λ3
∑p

j=1 ‖(V̂ − diag(V̂))j‖q
≤ λ3

∑p
j=1 ‖(V∗ − diag(V∗))j‖q + λ3

2

∑p
j=1 ‖(Z∗ − diag(Z∗))j‖q

≤ λ3
∑p

j=1 ‖(V∗ − diag(V∗))j‖q + λ3
2 ‖Z

∗ − diag(Z∗)‖1,
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where the last inequality follows from the fact that for any vector x ∈ Rp and q ≥ 1, ‖x‖q
is a nonincreasing function of q (Gentle, 2007).

Summing up the above inequalities, we get that

λ1‖Ẑ− diag(Ẑ)‖1 + λ2‖V̂ − diag(V̂)‖1 + λ3
∑p

j=1 ‖(V̂ − diag(V̂))j‖q ≤
λ2+λ3

2 ‖Z∗ − diag(Z∗)‖1 + λ2‖V∗ − diag(V∗)‖1 + λ3
∑p

j=1 ‖(V∗ − diag(V∗))j‖q <

λ1‖Z∗ − diag(Z∗)‖1 + λ2‖V∗ − diag(V∗)‖1 + λ3
∑p

j=1 ‖(V∗ − diag(V∗))j‖q,

where the last inequality uses the assumption that λ1 >
λ2+λ3

2 . We arrive at a contradiction
and therefore the result holds.

Proof of Lemma 4

Proof Let (Θ∗,Z∗,V∗) be the solution to (6) and suppose V∗ is not a diagonal matrix.
Let V̂ = diag(V∗), a diagonal matrix that contains the diagonal elements of V∗. Also
construct Ẑ as follows,

Ẑij =

{
Z∗ij + V∗ij + V∗ji if i 6= j

Z∗ij otherwise.

Then, we have that Θ∗ = V̂+V̂T +Ẑ. We now show that (Θ∗, Ẑ, V̂) has a smaller objective
value than (Θ∗,Z∗,V∗) in (6), giving us a contradiction. We start by noting that

λ1‖Ẑ− diag(Ẑ)‖1 + λ2‖V̂ − diag(V̂)‖1 = λ1‖Ẑ− diag(Ẑ)‖1
≤ λ1‖Z∗ − diag(Z∗)‖1 + 2λ1‖V∗ − diag(V∗)‖1.

By Holder’s Inequality, we know that xTy ≤ ‖x‖q‖y‖s where 1
s + 1

q = 1 and x,y ∈ Rp−1.

Setting y = sign(x), we have that ‖x‖1 ≤ (p− 1)
1
s ‖x‖q. Consequently,

λ3

(p− 1)
1
s

‖V∗ − diag(V∗)‖1 ≤ λ3

p∑
j=1

‖(V∗ − diag(V∗))j‖q.

Combining these results, we have that

λ1‖Ẑ− diag(Ẑ)‖1 + λ2‖V̂ − diag(V̂)‖1 + λ3

p∑
j=1

‖(V̂ − diag(V̂))j‖q

≤ λ1‖Z∗ − diag(Z∗)‖1 + 2λ1‖V∗ − diag(V∗)‖1

< λ1‖Z∗ − diag(Z∗)‖1 +

(
λ2 +

λ3

(p− 1)
1
s

)
‖V∗ − diag(V∗)‖1

≤ λ1‖Z∗ − diag(Z∗)‖1 + λ2‖V∗ − diag(V∗)‖1 + λ3

p∑
j=1

‖(V∗ − diag(V∗))j‖q,

where we use the assumption that λ1 <
λ2
2 + λ3

2(p−1)
1
s

. This leads to a contradiction.
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Proof of Lemma 6

In this proof, we consider the case when λ1 >
λ2+λ3

2 . A similar proof technique can be used

to prove the case when λ1 <
λ2+λ3

2 .

Proof Let f(Θ,V,Z) denote the objective of (6) with q = 1, and (Θ∗,V∗,Z∗) the optimal
solution. By Lemma 3, the assumption that λ1 > λ2+λ3

2 implies that Z∗ is a diagonal

matrix. Now let V̂ = 1
2

(
V∗ + (V∗)T

)
. Then

f(Θ∗, V̂,Z∗)

= − log det Θ∗ + 〈Θ∗,S〉+ λ1‖Z∗ − diag(Z∗)‖1 + (λ2 + λ3)‖V̂ − diag(V̂)‖1

= − log det Θ∗ + 〈Θ∗,S〉+
λ2 + λ3

2
‖V∗ + V∗T − diag(V∗ + V∗T )‖1

≤ − log det Θ∗ + 〈Θ∗,S〉+ (λ2 + λ3)‖V∗ − diag(V∗)‖1
= f(Θ∗,V∗,Z∗)

≤ f(Θ∗, V̂,Z∗),

where the last inequality follows from the assumption that (Θ∗,V∗,Z∗) solves (6). By strict
convexity of f , this means that V∗ = V̂, i.e., V∗ is symmetric. This implies that

f(Θ∗,V∗,Z∗) = − log det Θ∗ + 〈Θ∗,S〉+
λ2 + λ3

2
‖V∗ + V∗T − diag(V∗ + V∗T )‖1

= − log det Θ∗ + 〈Θ∗,S〉+
λ2 + λ3

2
‖Θ∗ − diag(Θ∗)‖1 (21)

= g(Θ∗),

where g(Θ) is the objective of the graphical lasso optimization problem, evaluated at Θ,
with tuning parameter λ2+λ3

2 . Suppose that Θ̃ minimizes g(Θ), and Θ∗ 6= Θ̃. Then, by

(21) and strict convexity of g, g(Θ∗) = f(Θ∗,V∗,Z∗) ≤ f(Θ̃, Θ̃/2,0) = g(Θ̃) < g(Θ∗),
giving us a contradiction. Thus it must be that Θ̃ = Θ∗.

Appendix D. Simulation Study for Hub Covariance Graph

In this section, we present the results for the simulation study described in Section 4.2 with
n = 100, p = 200, and |H| = 4. We calculate the proportion of correctly estimated hub nodes
with r = 40. The results are shown in Figure 10. As we can see from Figure 10, our proposal
outperforms Bien and Tibshirani (2011). In particular, we can see from Figure 10(c) that
Bien and Tibshirani (2011) fails to identify hub nodes.

Appendix E. Run Time Study for the ADMM algorithm for HGL

In this section, we present a more extensive run time study for the ADMM algorithm for
HGL. We ran experiments with p = 100, 200, 300 and with n = p/2 on a 2.26GHz Intel Core
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Figure 10: Covariance graph simulation with n = 100 and p = 200. Details of the axis
labels are as in Figure 3. The colored lines correspond to the proposal of Xue
et al. (2012) ( ); HCG with λ3 = 1 ( ), λ3 = 1.5 ( ), and λ3 = 2
( ); and the proposal of Bien and Tibshirani (2011) ( ).

2 Duo machine. Results averaged over 10 replications are displayed in Figures 11(a)-(b),
where the panels depict the run time and number of iterations required for the algorithm
to converge, as a function of λ1, with λ2 = 0.5 and λ3 = 2 fixed. The number of iterations
required for the algorithm to converge is computed as the total number of iterations in Step
2 of Algorithm 1. We see from Figure 11(a) that as p increases from 100 to 300, the run
times increase substantially, but never exceed several minutes. Note that these results are
without using the block diagonal condition in Theorem 1.
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Figure 11: (a): Run time (in seconds) of the ADMM algorithm for HGL, as a function of
λ1, for fixed values of λ2 and λ3. (b): The total number of iterations required
for the ADMM algorithm for HGL to converge, as a function of λ1. All results
are averaged over 10 simulated data sets. These results are without using the
block diagonal condition in Theorem 1.
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Appendix F. Update for Θ in Step 2(a)i for Binary Ising Model using
Barzilai-Borwein Method

We consider updating Θ in Step 2(a)i of Algorithm 1 for binary Ising model. Let

h(Θ) = −
p∑
j=1

p∑
j′=1

θjj′(X
TX)jj′ +

p∑
i=1

p∑
j=1

log

1 + exp

θjj +
∑
j′ 6=j

θjj′xij′


+
ρ

2
‖Θ− Θ̃ + W1‖2F .

Then, the optimization problem for Step 2(a)i of Algorithm 1 is

minimize
Θ∈S

h(Θ), (22)

where S = {Θ : Θ = ΘT }. In solving (22), we will treat Θ ∈ S as an implicit constraint.
The Barzilai-Borwein method is a gradient descent method with the step-size chosen to

mimic the secant condition of the BFGS method (see, e.g., Barzilai and Borwein, 1988; No-
cedal and Wright, 2006). The convergence of the Barzilai-Borwein method for unconstrained
minimization using a non-monotone line search was shown in Raydan (1997). Recent con-
vergence results for a quadratic cost function can be found in Dai (2013). To implement
the Barzilai-Borwein method, we need to evaluate the gradient of h(Θ). Let ∇h(Θ) be a
p× p matrix, where the (j, j′) entry is the gradient of h(Θ) with respect to θjj′ , computed
under the constraint Θ ∈ S, that is, θjj′ = θj′j . Then,

(∇h(Θ))jj = −(XTX)jj +

n∑
i=1

[
exp(θjj +

∑
j′ 6=j θjj′xij′)

1 + exp(θjj +
∑

j′ 6=j θjj′xij′)

]
+ ρ(θjj − θ̃jj + (W1)jj),

and

(∇h(Θ))jj′ = −2(XTX)jj + 2ρ(θjj′ − θ̃jj′ + (W1)jj′)

+
n∑
i=1

[
xij′ exp(θjj +

∑
j′ 6=j θjj′xij′)

1 + exp(θjj +
∑

j′ 6=j θjj′xij′)
+
xij exp(θj′j′ +

∑
j 6=j′ θjj′xij)

1 + exp(θj′j′ +
∑

j 6=j′ θjj′xij)

]
.

A simple implementation of the Barzilai-Borwein algorithm for solving (22) is detailed
in Algorithm 2. We note that the Barzilai-Borwein algorithm can be improved (see, e.g.,
Barzilai and Borwein, 1988; Wright et al., 2009). We leave such improvement for future
work.
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Algorithm 2 Barzilai-Borwein Algorithm for Solving (22).

1. Initialize the parameters:

(a) Θ1 = I and Θ0 = 2I.

(b) constant τ > 0.

2. Iterate until the stopping criterion
‖Θt−Θt−1‖2F
‖Θt−1‖2F

≤ τ is met, where Θt is the value of Θ

obtained at the tth iteration:

(a) αt = trace
[
(Θt −Θt−1)T (Θt −Θt−1)

]
/trace

[
(Θt −Θt−1)T (∇h(Θt)−∇h(Θt−1))

]
.

(b) Θt+1 = Θt − αt∇h(Θt).
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Abstract

In many applications, a finite mixture is a natural model, but it can be difficult to choose an
appropriate number of components. To circumvent this choice, investigators are increas-
ingly turning to Dirichlet process mixtures (DPMs), and Pitman–Yor process mixtures
(PYMs), more generally. While these models may be well-suited for Bayesian density esti-
mation, many investigators are using them for inferences about the number of components,
by considering the posterior on the number of components represented in the observed data.
We show that this posterior is not consistent—that is, on data from a finite mixture, it
does not concentrate at the true number of components. This result applies to a large class
of nonparametric mixtures, including DPMs and PYMs, over a wide variety of families of
component distributions, including essentially all discrete families, as well as continuous
exponential families satisfying mild regularity conditions (such as multivariate Gaussians).

Keywords: consistency, Dirichlet process mixture, number of components, finite mixture,
Bayesian nonparametrics

1. Introduction

We begin with a motivating example. In population genetics, determining the “population
structure” is an important step in the analysis of sampled data. To illustrate, consider the
impala, a species of antelope in southern Africa. Impalas are divided into two subspecies: the
common impala occupying much of the eastern half of the region, and the black-faced impala
inhabiting a small area in the west. While common impalas are abundant, the number of
black-faced impalas has been decimated by drought, poaching, and declining resources due
to human and livestock expansion. To assist conservation efforts, Lorenzen et al. (2006)
collected samples from 216 impalas, and analyzed the genetic variation between/within the
two subspecies.

A key part of their analysis consisted of inferring the population structure—that is, par-
titioning the data into distinct populations, and in particular, determining how many such
populations there are. To infer the impala population structure, Lorenzen et al. employed a
widely-used tool called Structure (Pritchard et al., 2000) which, in the simplest version,
models the data as a finite mixture, with each component in the mixture corresponding

c©2014 Jeffrey W. Miller and Matthew T. Harrison.
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(a) Posterior for impala data (b) Posterior for Gaussian mixture data

Figure 1: Estimated DPM posterior distributions of the number of clusters, with concentration
parameter 1: (a) For the impala data of Lorenzen et al. (n = 216 data points); we use
the same base measure as Huelsenbeck and Andolfatto, and our empirical results, shown
here, agree with theirs. (b) For data from the three-component univariate Gaussian

mixture
∑3

i=1 πiN (x|µi, σ
2
i ) with π = (0.45, 0.3, 0.25), µ = (4, 6, 8), and σ = (1, 0.2, 0.6);

we use a base measure with the same parameters as Richardson and Green (1997); each
plot is the average over 10 independently-drawn data sets. For both (a) and (b), estimates
were made via Gibbs sampling (MacEachern, 1994; Neal, 2000), with 105 burn-in sweeps
and 2× 105 sample sweeps.

to a distinct population. Structure uses an ad hoc method to choose the number of
components, but this comes with no guarantees.

Seeking a more principled approach, Pella and Masuda (2006) proposed using a Dirich-
let process mixture (DPM). Now, in a DPM, the number of components is infinite with
probability 1, and thus the posterior on the number of components is always, trivially, a
point mass at infinity. Consequently, Pella and Masuda instead employed the posterior on
the number of clusters (that is, the number of components used in generating the data
observed so far) for inferences about the number of components. (The terms “component”
and “cluster” are often used interchangeably, but we make the following crucial distinction:
a component is part of a mixture distribution, while a cluster is the set of indices of data
points coming from a given component.) This DPM approach was implemented in a soft-
ware tool called Structurama (Huelsenbeck and Andolfatto, 2007), and demonstrated on
the impala data of Lorenzen et al.; see Figure 1(a).

Structurama has gained acceptance within the population genetics community, and
has been used in studies of a variety of organisms, from apples and avocados, to sardines
and geckos (Richards et al., 2009; Chen et al., 2009; Gonzalez and Zardoya, 2007; Leaché
and Fujita, 2010). Studies such as these can carry significant weight, since they may be
used by officials to make informed policy decisions regarding agriculture, conservation, and
public health.

More generally, in a number of applications the same scenario has played out: a fi-
nite mixture seems to be a natural model, but requires the user to choose the number of
components, while a Dirichlet process mixture offers a convenient way to avoid this choice.
For nonparametric Bayesian density estimation, DPMs are indeed attractive, since the pos-
terior on the density exhibits nice convergence properties; see Section 1.2. However, in
several applications, investigators have drawn inferences from the posterior on the number
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Figure 2: A typical partition sampled from the posterior of a Dirichlet process mixture of bivariate
Gaussians, on simulated data from a four-component mixture. Different clusters have
different marker shapes (+,×,O,M,◦,2) and different colors. Note the tiny “extra”
clusters (◦ and 2), in addition to the four dominant clusters.

of clusters—not just the density—on the assumption that this is informative about the
number of components. Further examples include gene expression profiling (Medvedovic
and Sivaganesan, 2002), haplotype inference (Xing et al., 2006), survival analysis (Argiento
et al., 2009), econometrics (Otranto and Gallo, 2002), and evaluation of inference algo-
rithms (Fearnhead, 2004). Of course, if the data-generating process is well-modeled by a
DPM, then it is sensible to use this posterior for inference about the number of components
represented so far in the data—but that does not seem to be the perspective of these in-
vestigators, since they measure performance on simulated data coming from finitely many
components or populations.

Therefore, it is important to understand the properties of this procedure. Simulation
results give some cause for concern; for instance, Figure 1(b) displays results on data from
a mixture of univariate Gaussians with three components. The posterior on the number
of clusters does not appear to be concentrating as the number of data points n increases.
Empirically, it seems that this is because partitions sampled from the posterior often have
tiny, transient “extra” clusters (as has been noted before, see Section 1.2); for instance, see
Figure 2, showing a typical posterior sample on data from a four-component mixture of
bivariate Gaussians. This raises a fundamental question that has not been addressed in the
literature: With enough data, will this posterior eventually concentrate at the true number
of components? In other words, is it consistent?

It is well-known that under the prior, the number of clusters goes to infinity as n→∞,
with probability 1. However, this does not necessarily imply that the same is true under the
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posterior—it may be that the likelihood is strong enough to overcome this prior tendency.
Of course, in a typical Bayesian setting, the prior is fixed, and as n increases the likelihood
overwhelms it. In the present situation, though, both the prior (on the number of clusters)
and the likelihood (given the number of clusters) are changing with n, and the resulting
behavior of the posterior is far from obvious.

1.1 Overview of Results

In this manuscript, we prove that under fairly general conditions, when using a Dirichlet
process mixture, the posterior on the number of clusters will not concentrate at any finite
value, and therefore will not be consistent for the number of components in a finite mixture.
In fact, our results apply to a large class of nonparametric mixtures including DPMs, and
Pitman–Yor process mixtures (PYMs) more generally, over a wide variety of families of
component distributions.

Before treating our general results and their prerequisite technicalities, we would like
to highlight a few interesting special cases that can be succinctly stated. The terminology
and notation used below will be made precise in later sections. To reiterate, our results are
considerably more general than the following corollary, which is simply presented for the
reader’s convenience.

Corollary 1 Consider a Pitman–Yor process mixture with component distributions from
one of the following families:

(a) Normal(µ,Σ) (multivariate Gaussian),

(b) Exponential(θ),

(c) Gamma(a, b),

(d) Log-Normal(µ, σ2), or

(e) Weibull(a, b) with fixed shape a > 0,

along with a base measure that is a conjugate prior of the form in Section 5.2, or

(f) any discrete family {Pθ} such that
⋂
θ{x : Pθ(x) > 0} 6= ∅ (e.g., Poisson, Geometric,

Negative Binomial, Binomial, Multinomial, etc.),

along with any continuous base measure. Consider any t ∈ {1, 2, . . . }, except for t = N in
the case of a Pitman–Yor process with parameters σ < 0 and ϑ = N |σ|. If X1, X2, . . . are
i.i.d. from a mixture with t components from the family used in the model, then the posterior
on the number of clusters Tn is not consistent for t, and in fact,

lim sup
n→∞

p(Tn = t | X1:n) < 1

with probability 1.
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This is implied by Theorems 6, 7, and 11. These more general theorems apply to a
broad class of partition distributions, handling Pitman–Yor processes as a special case, and
they apply to many other families of component distributions: Theorem 11 covers a large
class of exponential families, and Theorem 7 covers families satisfying a certain boundedness
condition on the densities (including any case in which the model and data distributions
have one or more point masses in common, as well as many location–scale families with
scale bounded away from zero). Dirichlet processes are subsumed as a further special case,
being Pitman–Yor processes with parameters σ = 0 and ϑ > 0. Also, the assumption of
i.i.d. data from a finite mixture is much stronger than what is required by these results.

For PYMs with σ ∈ [0, 1) (including DPMs), our results show that p(Tn = t | X1:n) does
not concentrate at any finite value, however, we have not been able to determine the precise
limiting behavior of this posterior; the two most plausible outcomes are that it diverges, or
stabilizes at some limiting distribution.

Regarding the exception of t = N when σ < 0 in Corollary 1: posterior consistency at
t = N is possible, however, this could only occur if the chosen parameter N just happens to
be equal to the actual number of components, t. On the other hand, consistency at any t
can (in principle) be obtained by putting a prior on N ; see Section 1.2.1 below. In a similar
vein, some investigators place a prior on the concentration parameter ϑ in a DPM, or allow
ϑ to depend on n; we conjecture that inconsistency can still occur in these cases, but in this
paper, we examine only the case of fixed σ and ϑ.

Truncated stick-breaking processes (Ishwaran and James, 2001) are sometimes used to
approximate nonparametric models. In a very limited case—see Section 2.1—our results
show that on data from a one-component mixture, such a process truncated at two com-
ponents will be inconsistent for the number of components. It seems likely that this will
extend to truncations at any number of components.

1.2 Discussion / Related Work

We would like to emphasize that this inconsistency should not be viewed as a deficiency
of DPMs and PYMs, but is simply due to a misapplication of them. As flexible priors
on densities, DPMs are superb, and there are strong results showing that in many cases
the posterior on the density converges in L1 to the true density at the minimax-optimal
rate, up to logarithmic factors (Ghosal et al., 1999; Ghosal and Van der Vaart, 2001; Lijoi
et al., 2005; Tokdar, 2006; Ghosh and Ghosal, 2006; Tang and Ghosal, 2007; Ghosal and
Van der Vaart, 2007; Walker et al., 2007; James, 2008; Wu and Ghosal, 2010; Bhattacharya
and Dunson, 2010; Khazaei et al., 2012; Scricciolo, 2012; Pati et al., 2013); for a general
overview, see Ghosal (2010).

We would also like to stress that we do not intend to discourage the use of DPMs and
PYMs for clustering—provided that the model is indeed well-suited to the application. In
some situations, however, it may be that a finite mixture model with an unknown number
of components is more appropriate—in particular, for cluster sizes that are all the same
order of magnitude—and in such cases, one would expect to get better clustering results by
using a variable-dimension mixture model (see Section 1.2.1 below) rather than a DPM or
PYM.
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Existing work on posterior consistency of nonparametric mixtures has been primarily
focused on the density estimation problem (as mentioned above), although recently, Nguyen
(2013) has shown that the DPM posterior on the mixing distribution converges in the
Wasserstein metric to the true mixing distribution. These existing results do not necessarily
imply consistency for the number of components, since any mixture can be approximated
arbitrarily well in these metrics by another mixture with a larger number of components
(for instance, by making the weights of the extra components infinitesimally small). There
seems to be no prior work on consistency of DPMs or PYMs for the number of components
in a finite mixture (aside from Miller and Harrison, 2013, in which we discuss the very
special case of a DPM on data from a univariate Gaussian “mixture” with one component
of known variance).

In the context of “species sampling”, several authors have studied the Pitman–Yor
process posterior (Pitman, 1996; Hansen and Pitman, 2000; James, 2008; Jang et al., 2010;
Lijoi et al., 2007, 2008), and interestingly, James (2008) and Jang et al. (2010) have shown
that on data from a continuous distribution, the posterior of a Pitman–Yor process with
σ > 0 is inconsistent in the sense that it does not converge weakly to the true distribution.
(In contrast, the Dirichlet process is consistent in this sense.) However, this is very different
from our situation—in a species sampling model, the observed data is drawn directly from
a discrete measure with a Pitman–Yor process prior, while in a PYM model, the observed
data is drawn from a mixture with such a measure as the mixing distribution.

Rousseau and Mengersen (2011) proved an interesting result on “overfitted” mixtures, in
which data from a finite mixture is modeled by a finite mixture with too many components.
In cases where this approximates a DPM, their result implies that the posterior weight of
the extra components goes to zero. In a rough sense, this is complementary to our results,
which involve showing that there are always some nonempty (but perhaps small) extra
clusters.

Empirically, many investigators have noticed that the DPM posterior tends to overes-
timate the number of components (e.g., West et al., 1994; Ji et al., 2010; Argiento et al.,
2009; Lartillot and Philippe, 2004; Onogi et al., 2011, and others), and such observations are
consistent with our theoretical results. This overestimation seems to occur because there
are typically a few tiny “extra” clusters, and among researchers using DPMs for clustering,
this is an annoyance that is sometimes dealt with by pruning such clusters—that is, by
removing them before calculating statistics such as the number of clusters (e.g., West et al.,
1994; Fox et al., 2007). It may be possible to obtain consistent estimators in this way, but
this remains an open question; Rousseau and Mengersen’s (2011) results may be applicable
here. Other possibilities are using a maximum a posteriori (MAP) partition or posterior
“mean” partition (Dahl, 2006; Huelsenbeck and Andolfatto, 2007; Onogi et al., 2011) to
estimate the number of components; again, the consistency of such approaches remains an
open question to our knowledge.

1.2.1 Estimating the Number of Components

A variety of methods for estimating the number of components in a finite mixture have been
developed, and many of them come with guarantees of consistency (Henna, 1985; Keribin,
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(a) Posterior for impala data (b) Posterior for Gaussian mixture data

Figure 3: Estimated posterior distributions of the number of components for variable-dimension
mixture models applied to the same data sets as in Figure 1. The same priors on com-
ponent parameters (base measures) were used as in the DPM models.

2000; Nobile, 1994; Leroux, 1992; Ishwaran et al., 2001; James et al., 2001; Henna, 2005;
Woo and Sriram, 2006, 2007).

From the Bayesian perspective, perhaps the most natural approach is simply to take a
finite mixture model and put a prior on the number of components. For instance, draw the
number of components k from a prior which is positive on all positive integers (so there
is no a priori upper bound), draw mixture weights (π1, . . . , πk) from, say, a k-dimensional
Dirichlet distribution, draw component parameters θ1, . . . , θk, and draw the data X1, . . . , Xn

from the resulting mixture. (Interestingly, it turns out that putting a prior on N in a
PYM with σ < 0 and ϑ = N |σ| is a special case of this; see Gnedin and Pitman, 2006.)
Such variable-dimension mixture models have been widely used (Nobile, 1994; Phillips and
Smith, 1996; Richardson and Green, 1997; Stephens, 2000; Green and Richardson, 2001;
Nobile and Fearnside, 2007), and for density estimation, they have been shown to have
posterior rates of concentration similar to Dirichlet process mixtures (Kruijer, 2008; Kruijer
et al., 2010). Under the (strong) assumption that the family of component distributions is
correctly specified, it has been proven that such models exhibit posterior consistency for
the number of components (as well as for the mixing measure and the density) under very
general conditions (Nobile, 1994).

Figure 3 shows the posterior on the number of components k for variable-dimension
mixture models applied to the same impala data and Gaussian mixture data as in Figure 1.
In Figure 3(b), the posterior on k seems to be concentrating at the true number of compo-
nents (as expected, due to Nobile, 1994), while in Figure 1(b) the DPM posterior does not
appear to be concentrating (as expected, due to our results). There is enough information
in the data to make the posterior concentrate at the true value; the problem with the DPM
posterior is not that estimating the number of components is inherently difficult, but that
the DPM posterior is simply the wrong tool for this job.

However, it should be emphasized that this guarantee of posterior consistency for the
number of components is contingent upon correct specification of the family of component
distributions. In most applications, it seems unreasonable to expect that the data would
come from a mixture over a known parametric family, and unfortunately, the posterior on the
number of components can be highly sensitive to this type of misspecification—for instance,
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since any sufficiently regular density can be approximated arbitrarily well by a mixture of
Gaussians, if the data distribution is close to but not exactly a finite mixture of Gaussians,
a Gaussian mixture model will introduce more and more components as the amount of
data increases. It seems that in order to obtain reliable assessments of heterogeneity using
mixture models, one needs to carefully consider the effects of potential misspecification.
Steps toward addressing this robustness issue have been taken by Woo and Sriram (2006,
2007).

1.3 Idea of the Proof

Roughly speaking, the reason why the posterior on the number of clusters does not con-
centrate for PYMs with σ ∈ [0, 1) (the σ < 0 case is somewhat different) is that under the
prior, the partition distribution strongly prefers that some of the clusters be very small, and
the likelihood is not significantly decreased by splitting off such small clusters. Handling
the likelihood—in a general setting—is the challenging part of the proof.

The proof involves showing that p(Tn = t + 1 | X1:n) is at least the same order of
magnitude (asymptotically with respect to n) as p(Tn = t | X1:n). To get the basic idea of
why this occurs, write

p(Tn = t | X1:n) =
p(X1:n, Tn = t)

p(X1:n)
=

1

p(X1:n)

∑
A∈At(n)

p(X1:n|A)p(A), (1)

where the sum is over all partitions A of {1, . . . , n} into t parts.

Now, given some t-part partition A, suppose B is a (t+1)-part partition obtained from A
by splitting off a single element j to be in its own cluster. For Pitman–Yor processes, p(B) is
at least the same order of magnitude as p(A)/n. In Section 3, this property is encapsulated
in Condition 3, which is simple to check for any closed-form partition distribution.

Similarly, it turns out that typically, for a non-negligible fraction of the elements j, the
likelihood p(X1:n|B) is at least the same order of magnitude as p(X1:n|A); in Section 3, this
is made precise in Condition 4. This is trivial in discrete cases (see Section 4), and often is
easy to show in any particular continuous case, but establishing this condition in a general
setting requires some work, and it is this that occupies the bulk of the proof (Section 8 and
the appendices).

When both of these conditions are satisfied, we show that in the expression for p(Tn =
t | X1:n) in Equation 1, for each term p(X1:n|A)p(A) there are on the order of n terms
p(X1:n|B)p(B) in the corresponding expression for p(Tn = t+ 1 | X1:n) that collectively are
at least the same order of magnitude as p(X1:n|A)p(A).

1.4 Organization of the Paper

In Section 2, we define the family of partition-based mixture models under consideration,
which includes Pitman–Yor and Dirichlet process mixtures as special cases. In Section 3,
we state a general inconsistency theorem for partition-based mixtures satisfying certain
conditions. In Section 4, we apply the theorem to cases satisfying a certain boundedness
condition on the densities, including discrete families as a special case. In Section 5, we
introduce notation for exponential families and conjugate priors, and in Section 6, we apply

3340



Inconsistency for the Number of Components

the theorem to cases in which the mixture is over an exponential family satisfying some
regularity conditions. The rest of the paper contains proofs of the results described in the
previous sections: Section 7 contains the proof of the general theorem and its application
to discrete or bounded cases, Section 8 contains the proof of the application to exponential
families, and the appendices contain a number of supporting results for the exponential
family case.

2. Model Distribution

Our analysis involves two probability distributions: one which is defined by the model, and
another which gives rise to the data. In this section, we describe the model distribution.

Building upon the Dirichlet process (Ferguson, 1973; Blackwell and MacQueen, 1973;
Antoniak, 1974), Dirichlet process mixtures were first studied by Antoniak (1974), Berry and
Christensen (1979), Ferguson (1983), and Lo (1984), and were later made practical through
the efforts of a number of authors (Escobar, 1988; MacEachern, 1994; Escobar and West,
1995; West, 1992; West et al., 1994; Neal, 1992; Liu, 1994; Bush and MacEachern, 1996;
MacEachern and Müller, 1998; MacEachern, 1998; Escobar and West, 1998; MacEachern,
1999; Neal, 2000). Pitman–Yor process mixtures (Ishwaran and James, 2001, 2003) are a
generalization of DPMs based on the Pitman–Yor process (Perman et al., 1992; Pitman
and Yor, 1997), also known as the two-parameter Poisson–Dirichlet process. We consider a
general class of partition-based mixture models that includes DPMs and PYMs.

2.1 Partition Distribution

We will use p(·) to denote probabilities and probability densities under the model. Our
model specification begins with a distribution on partitions, or more precisely, on ordered
partitions. Given n ∈ {1, 2, . . . } and t ∈ {1, . . . , n}, let At(n) denote the set of all ordered
partitions A = (A1, . . . , At) of {1, . . . , n} into t nonempty sets (or “parts”). In other words,

At(n) =
{

(A1, . . . , At) : A1, . . . , At are disjoint,
t⋃
i=1

Ai = {1, . . . , n}, |Ai| ≥ 1 ∀i
}
.

For each n ∈ {1, 2, . . . }, consider a probability mass function (p.m.f.) p(A) on
⋃n
t=1At(n).

This induces a distribution on t in the natural way, via p(t | A) = I(A ∈ At(n)). (Through-
out, we use I to denote the indicator function: I(E) is 1 if E is true, and 0 otherwise.) It
follows that p(A) = p(A, t) when A ∈ At(n).

Although it is more common to use a distribution on unordered partitions {A1, . . . , At},
for our purposes it is more convenient to work with the corresponding distribution on ordered
partitions (A1, . . . , At) obtained by uniformly permuting the parts. This does not affect the
distribution of t. Thus, often, p(A) is invariant under permutations of the parts, but we
do not require this. (Also, we do not assume that, as n varies, the sequence of partition
distributions necessarily satisfies the marginalization property referred to as “consistency
in distribution”; Pitman, 2006.)
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For example, the partition distribution for the Dirichlet process is

p(A) =
ϑt

ϑn↑1 t!

t∏
i=1

(|Ai| − 1)! (2)

for A ∈ At(n), where ϑ > 0 and xn↑δ = x(x+ δ)(x+ 2δ) · · · (x+ (n− 1)δ), with x0↑δ = 1 by
convention. The t! in the denominator appears since we are working with ordered partitions.
More generally, the partition distribution for the Pitman–Yor process is

p(A) =
(ϑ+ σ)t−1↑σ

(ϑ+ 1)n−1↑1 t!

t∏
i=1

(1− σ)|Ai|−1↑1 (3)

for A ∈ At(n), where either σ ∈ [0, 1) and ϑ ∈ (−σ,∞), or σ ∈ (−∞, 0) and ϑ = N |σ| for
some N ∈ {1, 2, . . . }. When σ = 0, this reduces to the partition distribution of the Dirichlet
process. When σ < 0 and ϑ = N |σ|, it is the partition distribution obtained by drawing
q = (q1, . . . , qN ) from a symmetric N -dimensional Dirichlet with parameters |σ|, . . . , |σ|,
sampling assignments Z1, . . . , Zn i.i.d. from q, and removing any empty parts (Gnedin and
Pitman, 2006). Thus, in this latter case, t is always in {1, . . . , N}.

Stick-breaking processes truncated at N components are sometimes used to approximate
nonparametric models (Ishwaran and James, 2001). This approach gives rise to a partition
distribution as follows: let Vi ∼ Beta(ai, bi) independently for i = 1, . . . , N−1, and VN = 1,
set qi = Vi

∏
j<i(1− Vj) for i = 1, . . . , N , sample assignments Z1, . . . , Zn i.i.d. from q, and

remove any empty parts. In general, it seems that this partition distribution takes a slightly
complicated form, however, in the very special case when N = 2 and a1 = b1, it is simply
a Pitman–Yor process with σ = −a1 = −b1 and ϑ = 2|σ|.

2.2 Partition-based Mixture Model

Consider the hierarchical model

p(A, t) = p(A)

p(θ1:t | A, t) =
t∏
i=1

π(θi) (4)

p(x1:n | θ1:t, A, t) =

t∏
i=1

∏
j∈Ai

pθi(xj)

where π is a prior density on component parameters θ ∈ Θ ⊂ Rk for some k, and {pθ : θ ∈ Θ}
is a parameterized family of densities on x ∈ X ⊂ Rd for some d. Here, x1:n = (x1, . . . , xn)
with xi ∈ X , θ1:t = (θ1, . . . , θt) with θi ∈ Θ, and A ∈ At(n). Assume that π is a density
with respect to Lebesgue measure, and that {pθ : θ ∈ Θ} are densities with respect to
some sigma-finite Borel measure λ on X , such that (θ, x) 7→ pθ(x) is measurable. (The
distribution of x under pθ(x) may be discrete, continuous, or neither, depending on λ.)

For x1, . . . , xn ∈ X and J ⊂ {1, . . . , n}, define the single-cluster marginal,

m(xJ) =

∫
Θ

(∏
j∈J

pθ(xj)
)
π(θ) dθ, (5)
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where xJ = (xj : j ∈ J), and assume m(xJ) <∞. By convention, m(xJ) = 1 when J = ∅.
Note that m(xJ) is a density with respect to the product measure λ` on X `, where ` = |J |,
and that m(xJ) can (and often will) be positive outside the support of λ`.

Definition 2 We refer to such a hierarchical model as a partition-based mixture model.

In particular, it is a Dirichlet process mixture model when p(A) is as in Equation 2, or more
generally, a Pitman–Yor process mixture model when p(A) is as in Equation 3.

The prior on the number of clusters under such a model is p(Tn = t) =
∑

A∈At(n) p(A).
We use Tn, rather than T , to denote the random variable representing the number of clusters,
as a reminder that its distribution depends on n.

Since we are concerned with the posterior p(Tn = t | x1:n) on the number of clusters, we
will be especially interested in the marginal density of (x1:n, t), given by p(x1:n, Tn = t) =∑

A∈At(n) p(x1:n, A). Observe that

p(x1:n, A) = p(A)
t∏
i=1

∫ ( ∏
j∈Ai

pθi(xj)
)
π(θi) dθi = p(A)

t∏
i=1

m(xAi). (6)

For definiteness, we employ the usual version of the posterior of Tn,

p(Tn = t | x1:n) =
p(x1:n, Tn = t)

p(x1:n)
=

p(x1:n, Tn = t)∑∞
t′=1 p(x1:n, Tn = t′)

whenever the denominator is nonzero, and p(Tn = t | x1:n) = 0 otherwise (for notational
convenience).

3. General Theorem

The essential ingredients in the main theorem are Conditions 3 and 4 below. For A ∈ At(n),
define RA =

⋃
i:|Ai|≥2Ai, and for j ∈ RA, define B(A, j) to be the element B of At+1(n)

such that Bi = Ai r j for i = 1, . . . , t, and Bt+1 = {j} (that is, remove j from whatever
part it belongs to, and make {j} the (t + 1)th part). Let ZA = {B(A, j) : j ∈ RA}. For
n > t ≥ 1, define

cn(t) =
1

n
max

A∈At(n)
max
B∈ZA

p(A)

p(B)
, (7)

with the convention that 0/0 = 0 and y/0 =∞ for y > 0.

Condition 3 Assume lim supn→∞ cn(t) <∞, given some particular t ∈ {1, 2, . . . }.

For Pitman–Yor processes, Condition 3 holds for all relevant values of t; see Proposition 5
below. Now, given n ≥ t ≥ 1, x1, . . . , xn ∈ X , and c ∈ [0,∞), define

ϕt(x1:n, c) = min
A∈At(n)

1

n
|SA(x1:n, c)|

where SA(x1:n, c) is the set of indices j ∈ {1, . . . , n} such that the part A` containing j
satisfies m(xA`) ≤ cm(xA`rj)m(xj).

3343



Miller and Harrison

Condition 4 Given a sequence of random variables X1, X2, . . . ∈ X , and t ∈ {1, 2, . . . },
assume

sup
c∈[0,∞)

lim inf
n→∞

ϕt(X1:n, c) > 0 with probability 1.

Note that Condition 3 involves only the partition distributions, while Condition 4 in-
volves only the data distribution and the single-cluster marginals.

Proposition 5 Consider a Pitman–Yor process. If σ ∈ [0, 1) and ϑ ∈ (−σ,∞) then Con-
dition 3 holds for any t ∈ {1, 2, . . . }. If σ ∈ (−∞, 0) and ϑ = N |σ|, then it holds for any
t ∈ {1, 2, . . . } except N .

Proof See Section 7.

Theorem 6 Let X1, X2, . . . ∈ X be a sequence of random variables (not necessarily i.i.d.).
Consider a partition-based mixture model. For any t ∈ {1, 2, . . . }, if Conditions 3 and 4
hold, then

lim sup
n→∞

p(Tn = t | X1:n) < 1 with probability 1.

If, further, the sequence X1, X2, . . . is i.i.d. from a mixture with t components, then with
probability 1, the posterior of Tn (under the model) is not consistent for t.

Proof See Section 7.

4. Application to Discrete or Bounded Cases

By Theorem 6, the following result implies inconsistency in a large class of PYM models,
including essentially all discrete cases (or more generally anything with at least one point
mass) and a number of continuous cases as well.

Theorem 7 Let X1, X2, . . . ∈ X be a sequence of random variables (not necessarily i.i.d.).
If there exists U ⊂ X such that

(1) lim inf
n→∞

1

n

n∑
j=1

I(Xj ∈ U) > 0 with probability 1, and

(2) sup
{pθ(x)

m(x)
: x ∈ U, θ ∈ Θ

}
<∞ (where 0/0 = 0, y/0 =∞ for y > 0),

then Condition 4 holds for all t ∈ {1, 2, . . . }.

Proof See Section 7.

The preceding theorem covers a fairly wide range of cases; here are some examples.
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(i) Finite sample space. Suppose X is a finite set, λ is counting measure, and m(x) > 0
for all x ∈ X . Then choosing U = X , Conditions 7(1) and 7(2) of Theorem 7 are
trivially satisfied, regardless of the distribution of X1, X2, . . . . (Note that when λ is
counting measure, pθ(x) and m(x) are p.m.f.s on X .) It is often easy to check that
m(x) > 0 by using the fact that this is true whenever {θ ∈ Θ : pθ(x) > 0} has
nonzero probability under π. This case covers, for instance, Multinomials (including
Binomials), and the population genetics model from Section 1.

We should mention a subtle point here: when X is finite, mixture identifiability
might only hold up to a certain maximum number of components (e.g., Teicher, 1963,
Proposition 4, showed this for Binomials), making consistency impossible in general—
however, consistency might still be possible within that identifiable range. Regardless,
our result shows that PYMs are not consistent anyway.

Now, suppose P is a probability measure on X , and X1, X2, . . .
iid∼ P . Let us abuse

notation and write P (x) = P ({x}) and λ(x) = λ({x}) for x ∈ X .

(ii) One or more point masses in common. If there exists x0 ∈ X such that P (x0) >
0, λ(x0) > 0, and m(x0) > 0, then it is easy to verify that Conditions 7(1) and 7(2)
are satisfied with U = {x0}. (Note that λ(x0) > 0 implies pθ(x0) ≤ 1/λ(x0) for any
θ ∈ Θ.)

(iii) Discrete families. Case (ii) essentially covers all discrete families—e.g., Poisson,
Geometric, Negative Binomial, or any power-series distribution (see Sapatinas, 1995,
for mixture identifiability of these)—provided that the data is i.i.d.. For, suppose X
is a countable set and λ is counting measure. By case (ii), the theorem applies if there
is any x0 ∈ X such that m(x0) > 0 and P (x0) > 0. If this is not so, the model is
extremely misspecified, since then the model distribution and the data distribution
are mutually singular.

(iv) Continuous densities bounded on some non-null compact set. Suppose there
exists c ∈ (0,∞) and U ⊂ X compact such that

(a) P (U) > 0,

(b) x 7→ pθ(x) is continuous on U for all θ ∈ Θ, and

(c) pθ(x) ∈ (0, c] for all x ∈ U , θ ∈ Θ.

Then Condition 7(1) is satisfied due to item (a), and Condition 7(2) follows easily
from (b) and (c) since m(x) is continuous (by the dominated convergence theorem)
and positive on the compact set U , so infx∈U m(x) > 0. This case covers, for example,
the following families (with any P ):

(a) Exponential(θ), X = (0,∞),

(b) Gamma(a, b), X = (0,∞), with variance a/b2 bounded away from zero,

(c) Normal(µ,Σ), X = Rd, (multivariate Gaussian) with det(Σ) bounded away from
zero, and
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(d) many location–scale families with scale bounded away from zero (for instance,
Laplace(µ, σ) or Cauchy(µ, σ), with σ ≥ ε > 0).

The examples listed in item (iv) are indicative of a deficiency in Theorem 7: Condi-
tion 7(2) is not satisfied in some important cases, such as multivariate Gaussians with
unrestricted covariance. Nonetheless, it turns out that Condition 4 still holds for many
exponential families; we turn to this next.

5. Exponential Families and Conjugate Priors

In this section, we state the usual definitions for exponential families and list the regularity
conditions to be assumed.

5.1 Exponential Families

Consider an exponential family of the following form. Fix a sigma-finite Borel measure λ
on X ⊂ Rd such that λ(X ) 6= 0, let s : X → Rk be Borel measurable, and for θ ∈ Θ ⊂ Rk,
define a density pθ with respect to λ by setting

pθ(x) = exp(θTs(x)− κ(θ))

where

κ(θ) = log

∫
X

exp(θTs(x)) dλ(x).

Let Pθ be the probability measure on X corresponding to pθ, that is, Pθ(E) =
∫
E pθ(x) dλ(x)

for E ⊂ X measurable. Any exponential family on Rd can be written in the form above by
reparameterizing if necessary, and choosing λ appropriately. We will assume the following
(very mild) regularity conditions.

Condition 8 Assume the family {Pθ : θ ∈ Θ} is:

(1) full, that is, Θ = {θ ∈ Rk : κ(θ) <∞},

(2) nonempty, that is, Θ 6= ∅,

(3) regular, that is, Θ is an open subset of Rk, and

(4) identifiable, that is, if θ 6= θ′ then Pθ 6= Pθ′.

Most commonly-used exponential families satisfy Condition 8, including multivariate
Gaussian, Exponential, Gamma, Poisson, Geometric, and others. (A notable exception is
the Inverse Gaussian, for which Θ is not open.) Let M denote the moment space, that is,

M = {Eθs(X) : θ ∈ Θ}

where Eθ denotes expectation under Pθ. Finiteness of these expectations is guaranteed,
thus M⊂ Rk; see Appendix A for this and other well-known properties that we will use.
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5.2 Conjugate Priors

Given an exponential family {Pθ} as above, let

Ξ =
{

(ξ, ν) : ξ ∈ Rk, ν > 0 s.t. ξ/ν ∈M
}
,

and consider the family {πξ,ν : (ξ, ν) ∈ Ξ} where

πξ,ν(θ) = exp
(
ξTθ − νκ(θ)− ψ(ξ, ν)

)
I(θ ∈ Θ)

is a density with respect to Lebesgue measure on Rk. Here,

ψ(ξ, ν) = log

∫
Θ

exp
(
ξTθ − νκ(θ)

)
dθ.

In Appendix A, we note a few basic properties of this family—in particular, it is a conjugate
prior for {Pθ}.

Definition 9 We will say that an exponential family with conjugate prior is well-behaved
if it takes the form above, satisfies Condition 8, and has (ξ, ν) ∈ Ξ.

6. Application to Exponential Families

In this section, we apply Theorem 6 to prove that in many cases, a PYM model using
a well-behaved exponential family with conjugate prior will exhibit inconsistency for the
number of components.

Condition 10 Consider an exponential family with sufficient statistics function s : X →
Rk and moment space M. Given a probability measure P on X , let X ∼ P and assume:

(1) E|s(X)| <∞,

(2) P(s(X) ∈M) = 1, and

(3) P(s(X) ∈ L) = 0 for any hyperplane L that does not intersect M.

Throughout, we use | · | to denote the Euclidean norm. Here, a hyperplane refers to a set
L = {x ∈ Rk : xTy = b} for some y ∈ Rk r {0}, b ∈ R. In Theorem 11 below, it is assumed
that the data comes from a distribution P satisfying Condition 10. In Proposition 12, we
give some simple conditions under which, if P is a finite mixture from the exponential family
under consideration, then Condition 10 holds.

Theorem 11 Consider a well-behaved exponential family with conjugate prior (as in Def-
inition 9), along with the resulting collection of single-cluster marginals m(·). Let P be a
probability measure on X satisfying Condition 10 (for the s and M from the exponential

family under consideration), and let X1, X2, . . .
iid∼ P . Then Condition 4 holds for any

t ∈ {1, 2, . . . }.
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Proof See Section 7.

This theorem implies inconsistency in several important cases. In particular, it can be
verified that each of the following is well-behaved (when put in canonical form and given
the conjugate prior in Section 5.2) and, using Proposition 12 below, that if P is a finite
mixture from the same family then P satisfies Condition 10:

(a) Normal(µ,Σ) (multivariate Gaussian),

(b) Exponential(θ),

(c) Gamma(a, b),

(d) Log-Normal(µ, σ2), and

(e) Weibull(a, b) with fixed shape a > 0.

Combined with the cases covered by Theorem 7, these results are fairly comprehensive.

Proposition 12 Consider an exponential family {Pθ : θ ∈ Θ} satisfying Condition 8. If
X ∼ P =

∑t
i=1 πiPθ(i) for some θ(1), . . . , θ(t) ∈ Θ and some π1, . . . , πt ≥ 0 such that∑t

i=1 πi = 1, then

(1) E|s(X)| <∞, and

(2) P(s(X) ∈M) = 1.

If, further, the underlying measure λ is absolutely continuous with respect to Lebesgue mea-
sure on X , X ⊂ Rd is open and connected, and the sufficient statistics function s : X → Rk
is real analytic (that is, each coordinate function s1, . . . , sk is real analytic), then

(3) P(s(X) ∈ L) = 0 for any hyperplane L ⊂ Rk.

Proof See Appendix A.

Sometimes, Condition 10(3) will be satisfied even when Proposition 12 is not applica-
ble. In any particular case, it may be a simple matter to check this condition by using
the characterization of M as the interior of the closed convex hull of support(λs−1) (see
Proposition 19(8) in the Appendix).

7. Proof of the General Theorem

The remainder of the paper consists of proofs of the results described in the preceding
sections. In this section, we prove Theorem 6, as well as Proposition 5 and the application
to discrete or bounded cases in Theorem 7; these proofs do not depend on anything in
Section 8 or the appendices.

Proof of Proposition 5 There are two cases: (I) σ ∈ [0, 1) and ϑ > −σ, or (II) σ < 0
and ϑ = N |σ|. In either case, we have 1 − σ > 0 and ϑ + 1 > 0; further, ϑ + tσ > 0 for
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(case I) t ∈ {1, 2, . . . }, (case II) t ∈ {1, . . . , N − 1}. Let (case I) t ∈ {1, 2, . . . }, (case II)
t ∈ {1, . . . , N − 1}. Let n > t, A ∈ At(n), and B ∈ ZA, and suppose B = B(A, j), j ∈ A`.
Note that |A`| ≥ 2.

By the preceding observations, all the factors in the expressions for p(A) and p(B)
(Equation 3) are strictly positive, hence

1

n

p(A)

p(B)
=

1

n

t+ 1

ϑ+ tσ
(1− σ + |A`| − 2) ≤ t+ 1

ϑ+ tσ

1− σ + n− 2

n
,

which is bounded above for n ∈ {1, 2, . . . }. If t > N in case II, then p(A)/p(B) = 0/0 = 0
by convention. (If t = N in case II, then p(A)/p(B) = ∞.) Therefore, lim supn cn(t) < ∞
in either case, for any t ∈ {1, 2, . . . } except t = N in case II.

Proof of Theorem 6 The central part of the argument is Lemma 13 below, from which
the result follows easily. Let t ∈ {1, 2, . . . }, and assume Conditions 3 and 4 hold. Let
x1, x2, . . . ∈ X , and suppose supc∈[0,∞) lim infn ϕt(x1:n, c) > 0 (which occurs with probability
1). We show that this implies lim supn p(Tn = t | x1:n) < 1, proving the theorem.

Let α ∈ (0,∞) such that lim supn cn(t) < α. Choose c ∈ [0,∞) and ε ∈ (0, 1) such
that lim infn ϕt(x1:n, c) > ε. Choose N > 2t/ε large enough that for any n > N we have
cn(t) < α and ϕt(x1:n, c) > ε. Then by Lemma 13, for any n > N ,

p(Tn = t | x1:n) ≤ Ct(x1:n, c)

1 + Ct(x1:n, c)
≤ 2tcα/ε

1 + 2tcα/ε
,

since ϕt(x1:n, c) − t/n > ε − ε/2 = ε/2 (and y 7→ y/(1 + y) is monotone increas-
ing on [0,∞)). Since this upper bound does not depend on n (and is less than 1),
lim supn p(Tn = t | x1:n) < 1.

Lemma 13 Consider a partition-based mixture model. Let n > t ≥ 1, x1, . . . , xn ∈ X , and
c ∈ [0,∞). If cn(t) <∞ and ϕt(x1:n, c) > t/n, then

p(Tn = t | x1:n) ≤ Ct(x1:n, c)

1 + Ct(x1:n, c)
,

where Ct(x1:n, c) = t c cn(t)/(ϕt(x1:n, c)− t/n).

Proof To simplify notation, let us denote ϕ = ϕt(x1:n, c), C = Ct(x1:n, c), and SA =
SA(x1:n, c). Recall the definitions of RA and B(A, j) from the beginning of Section 3. For
A ∈ At(n), note that

|RA ∩ SA| ≥ |SA| − t ≥ nϕ− t > 0. (8)

Further, for any j ∈ RA ∩ SA, we have p(A) ≤ n cn(t) p(B(A, j)) (by the definition of cn(t),
in Equation 7), and m(xA`) ≤ cm(xA`rj)m(xj) where A` is the part containing j (by the
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definition of SA = SA(x1:n, c), in Section 3). Thus, for any A ∈ At(n), j ∈ RA ∩ SA, we
have (by Equation 6)

p(x1:n, A) = p(A)
t∏
i=1

m(xAi)

≤ n cn(t) p(B(A, j)) c

t+1∏
i=1

m(xBi(A,j)) = c n cn(t) p(x1:n, B(A, j)),

and hence, combining this with Equation 8,

p(x1:n, A) ≤ c n cn(t)

|RA ∩ SA|
∑

j∈RA∩SA

p(x1:n, B(A, j))

≤ c cn(t)

ϕ− t/n
∑

B∈At+1(n)

p(x1:n, B) I(B ∈ YA), (9)

where YA =
{
B(A, j) : j ∈ RA ∩ SA

}
. For any B ∈ At+1(n),

#
{
A ∈ At(n) : B ∈ YA

}
≤ t, (10)

since there are only t parts that Bt+1 could have come from. Therefore,

p(x1:n, Tn = t) =
∑

A∈At(n)

p(x1:n, A)

(a)

≤ c cn(t)

ϕ− t/n
∑

A∈At(n)

∑
B∈At+1(n)

p(x1:n, B) I(B ∈ YA)

=
c cn(t)

ϕ− t/n
∑

B∈At+1(n)

p(x1:n, B) #
{
A ∈ At(n) : B ∈ YA

}
(b)

≤ t c cn(t)

ϕ− t/n
∑

B∈At+1(n)

p(x1:n, B)

= C p(x1:n, Tn = t+ 1),

where (a) is by Equation 9, and (b) is by Equation 10.
If p(Tn = t | x1:n) = 0, then trivially p(Tn = t | x1:n) ≤ C/(C + 1). On the other hand,

if p(Tn = t | x1:n) > 0, then p(x1:n, Tn = t) > 0, and therefore

p(Tn = t | x1:n) =
p(x1:n, Tn = t)∑∞
t′=1 p(x1:n, Tn = t′)

≤ p(x1:n, Tn = t)

p(x1:n, Tn = t) + p(x1:n, Tn = t+ 1)
≤ C

C + 1
.
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Proof of Theorem 7 Suppose U ⊂ X satisfies (1) and (2), and let t ∈ {1, 2, . . . }. Define

c = sup
{pθ(x)
m(x) : x ∈ U, θ ∈ Θ

}
. Let n > t and x1, . . . , xn ∈ X . Now, for any x ∈ U and

θ ∈ Θ, we have pθ(x) ≤ cm(x). Hence, for any J ⊂ {1, . . . , n}, if j ∈ J and xj ∈ U then

m(xJ) =

∫
Θ
pθ(xj)

[ ∏
i∈Jrj

pθ(xi)
]
π(θ) dθ ≤ cm(xj)m(xJrj). (11)

Thus, letting R(x1:n) =
{
j ∈ {1, . . . , n} : xj ∈ U

}
, we have R(x1:n) ⊂ SA(x1:n, c) for any

A ∈ At(n), and hence, ϕt(x1:n, c) ≥ 1
n |R(x1:n)|.

Therefore, by (1), with probability 1,

lim inf
n→∞

ϕt(X1:n, c) ≥ lim inf
n→∞

1

n
|R(X1:n)| > 0.

8. Proof of the Application to Exponential Families

In this section, we prove Theorem 11. First, we need a few supporting results. Given
y1, . . . , yn ∈ R` (for some ` > 0), β ∈ (0, 1], and U ⊂ R`, define

Iβ(y1:n, U) =
∏

A⊂{1,...,n}:
|A|≥βn

I
( 1

|A|
∑
j∈A

yj ∈ U
)
, (12)

where as usual, I(E) is 1 if E is true, and 0 otherwise.

Lemma 14 (Capture lemma) Let V ⊂ Rk be open and convex. Let Q be a probability
measure on Rk such that:

(1) E|Y | <∞ when Y ∼ Q,

(2) Q(V ) = 1, and

(3) Q(L) = 0 for any hyperplane L that does not intersect V .

If Y1, Y2, . . .
iid∼ Q, then for any β ∈ (0, 1] there exists U ⊂ V compact such that

Iβ(Y1:n, U)
a.s.−−→ 1 as n→∞.

Proof The proof is rather long, but not terribly difficult. See Appendix D.

Proposition 15 Let Z1, Z2, . . . ∈ Rk be i.i.d.. If β ∈ (0, 1] and U ⊂ Rk such that P(Zj 6∈
U) < β/2, then Iβ(Y1:n, [

1
2 , 1])

a.s.−−→ 1 as n→∞, where Yj = I(Zj ∈ U).
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Proof By the law of large numbers, 1
n

∑n
j=1 I(Zj 6∈ U)

a.s.−−→ P(Zj 6∈ U) < β/2. Hence, with

probability 1, for all n sufficiently large, 1
n

∑n
j=1 I(Zj 6∈ U) ≤ β/2 holds. When it holds, we

have that for any A ⊂ {1, . . . , n} such that |A| ≥ βn,

1

|A|
∑
j∈A

I(Zj ∈ U) = 1− 1

|A|
∑
j∈A

I(Zj 6∈ U) ≥ 1− 1

βn

n∑
j=1

I(Zj 6∈ U) ≥ 1/2,

i.e., when it holds, we have Iβ(Y1:n, [
1
2 , 1]) = 1. Hence, Iβ(Y1:n, [

1
2 , 1])

a.s.−−→ 1.

Given a well-behaved exponential family with conjugate prior, define

µxA =
ξ +

∑
j∈A s(xj)

ν + |A|
(13)

(cf. Equation 14), where xA = (xj : j ∈ A), xj ∈ X . In particular, µx = (ξ + s(x))/(ν + 1)
for x ∈ X .

Proposition 16 Consider a well-behaved exponential family with conjugate prior. Let P be

a probability measure on X such that P(s(X) ∈M) = 1 when X ∼ P . Let X1, X2, . . .
iid∼ P .

Then for any β ∈ (0, 1] there exists U ⊂ M compact such that Iβ(Y1:n, [
1
2 , 1])

a.s.−−→ 1 as
n→∞, where Yj = I(µXj ∈ U).

Proof Since M is open and convex, then for any y ∈M, z ∈ M, and ρ ∈ (0, 1), we have
ρy + (1 − ρ)z ∈ M (by e.g., Rockafellar, 1970, 6.1). Taking z = ξ/ν and ρ = 1/(ν + 1),
this implies that the set U0 = {(ξ + y)/(ν + 1) : y ∈M} is contained in M. Note that U0

is closed and P(µX ∈ U0) = P(s(X) ∈M) = 1. Let β ∈ (0, 1], and choose r ∈ (0,∞) such
that P(|µX | > r) < β/2. Letting U = {y ∈ U0 : |y| ≤ r}, we have that U ⊂ M, and U
is compact. Further, P(µX 6∈ U) < β/2, so by applying Proposition 15 with Zj = µXj , we

have Iβ(Y1:n, [
1
2 , 1])

a.s.−−→ 1.

Proposition 17 (Splitting inequality) Consider a well-behaved exponential family with
conjugate prior. For any U ⊂ M compact there exists C ∈ (0,∞) such that we have the
following:

For any n ∈ {1, 2, . . . }, if A ⊂ {1, . . . , n} and B = {1, . . . , n} r A are nonempty, and
x1, . . . , xn ∈ X satisfy 1

|A|
∑

j∈A s(xj) ∈ U and µxB ∈ U , then

m(x1:n)

m(xA)m(xB)
≤ C

( ab

ν + n

)k/2
where a = ν + |A| and b = ν + |B|. (Recall that k is the dimension of s : X → Rk.)

Proof See Appendix B.
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Lemma 18 Consider a well-behaved exponential family with conjugate prior, and the re-
sulting collection of single-cluster marginals m(·). Let P be a probability measure on X
satisfying Condition 10 (for the s and M from the exponential family under consideration),

and let X1, X2, . . .
iid∼ P . Then for any β ∈ (0, 1] there exists c ∈ (0,∞) such that with proba-

bility 1, for all n sufficiently large, the following event holds: for every subset J ⊂ {1, . . . , n}
such that |J | ≥ βn, there exists K ⊂ J such that |K| ≥ 1

2 |J | and for any j ∈ K,

m(XJ) ≤ cm(XJrj)m(Xj).

Proof Let β ∈ (0, 1]. Since M is open and convex, and Condition 10 holds by as-
sumption, then by Lemma 14 (with V = M) there exists U1 ⊂ M compact such that
Iβ/2(s(X1:n), U1)

a.s.−−→ 1 as n→∞, where s(X1:n) = (s(X1), . . . , s(Xn)). By Proposition 16

above, there exists U2 ⊂ M compact such that Iβ(Y1:n, [
1
2 , 1])

a.s.−−→ 1 as n → ∞, where
Yj = I(µXj ∈ U2). Hence,

Iβ/2(s(X1:n), U1) Iβ(Y1:n, [
1
2 , 1])

a.s.−−−→
n→∞

1.

Choose C ∈ (0,∞) according to Proposition 17 applied to U := U1 ∪U2. We will prove the
result with c = (ν + 1)k/2C. (Recall that k is the dimension of s : X → Rk.)

Let n large enough that βn ≥ 2, and suppose that Iβ/2(s(X1:n), U1) = 1 and

Iβ(Y1:n, [
1
2 , 1]) = 1. Let J ⊂ {1, . . . , n} such that |J | ≥ βn. Then for any j ∈ J ,

1

|J r j|
∑
i∈Jrj

s(Xi) ∈ U1 ⊂ U

since Iβ/2(s(X1:n), U1) = 1 and |J r j| ≥ |J |/2 ≥ (β/2)n. Hence, for any j ∈ K, where
K = {j ∈ J : µXj ∈ U}, we have

m(XJ)

m(XJrj)m(Xj)
≤ C

((ν + |J | − 1)(ν + 1)

ν + |J |

)k/2
≤ C (ν + 1)k/2 = c

by our choice of C above, and

|K|
|J |
≥ 1

|J |
∑
j∈J

I(µXj ∈ U2) =
1

|J |
∑
j∈J

Yj ≥ 1/2

since Iβ(Y1:n, [
1
2 , 1]) = 1 and |J | ≥ βn.

Proof of Theorem 11 Let t ∈ {1, 2, . . . } and choose c according to Lemma 18 with
β = 1/t. We will show that for any n > t, if the event of Lemma 18 holds, then ϕt(X1:n, c) ≥
1/(2t). Since with probability 1, this event holds for all n sufficiently large, it will follow
that with probability 1, lim infn ϕt(X1:n, c) ≥ 1/(2t) > 0.

So, let n > t and x1, . . . , xn ∈ X , and assume the event of Lemma 18 holds. Let A ∈
At(n). There is at least one part A` such that |A`| ≥ n/t = βn. Then, by assumption there
exists KA ⊂ A` such that |KA| ≥ 1

2 |A`| and for any j ∈ KA, m(xA`) ≤ cm(xA`rj)m(xj).
Thus, KA ⊂ SA(x1:n, c), hence |SA(x1:n, c)| ≥ |KA| ≥ 1

2 |A`| ≥ n/(2t). Since A ∈ At(n) was
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arbitrary, ϕt(x1:n, c) ≥ 1/(2t).
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Appendix A. Exponential Family Properties

We note some well-known properties of exponential families satisfying Condition 8. For
a general reference on this material, see Hoffmann-Jørgensen (1994). Let Sλ(s) =
support(λs−1), that is,

Sλ(s) =
{
z ∈ Rk : λ(s−1(U)) 6= 0 for every neighborhood U of z

}
.

Let Cλ(s) be the closed convex hull of Sλ(s) (that is, the intersection of all closed convex
sets containing it). Given U ⊂ Rk, let U◦ denote its interior. Given a (sufficiently smooth)
function f : Rk → R, we use f ′ to denote its gradient, that is, f ′(x)i = ∂f

∂xi
(x), and f ′′(x)

to denote its Hessian matrix, that is, f ′′(x)ij = ∂2f
∂xi∂xj

(x).

Proposition 19 If Condition 8 is satisfied, then:

(1) κ is C∞ smooth and strictly convex on Θ,

(2) κ′(θ) = Es(X) and κ′′(θ) = Cov s(X) when θ ∈ Θ and X ∼ Pθ,

(3) κ′′(θ) is symmetric positive definite for all θ ∈ Θ,

(4) κ′ : Θ→M is a C∞ smooth bijection,

(5) κ′−1 :M→ Θ is C∞ smooth,

(6) Θ is open and convex,

(7) M is open and convex,

(8) M = Cλ(s)◦ andM = Cλ(s), and

(9) κ′−1(µ) = argmaxθ∈Θ(θTµ−κ(θ)) for all µ ∈M. The maximizing θ ∈ Θ always exists
and is unique.
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Proof These properties are all well-known. Let us abbreviate Hoffmann-Jørgensen (1994)
as HJ. For (1), see HJ 8.36(1) and HJ 12.7.5. For (6),(2),(3), and (4), see HJ 8.36, 8.36.2-3,
12.7(2), and 12.7.11, respectively. Item (5) and openness in (7) follow, using the inverse
function theorem (Knapp, 2005, 3.21). Item (8) and convexity in (7) follow, using HJ
8.36.15 and Rockafellar (1970) 6.2-3. Item (9) follows from HJ 8.36.15 and item (4).

Given an exponential family with conjugate prior as in Section 5.2, the joint density of
x1, . . . , xn ∈ X and θ ∈ Rk is

pθ(x1) · · · pθ(xn)πξ,ν(θ) (14)

= exp
(

(ν + n)
(
θTµx1:n − κ(θ)

))
exp(−ψ(ξ, ν)) I(θ ∈ Θ)

where µx1:n = (ξ +
∑n

j=1 s(xj))/(ν + n). The marginal density, defined as in Equation 5, is

m(x1:n) = exp
(
ψ
(
ξ +

∑
s(xj), ν + n

)
− ψ(ξ, ν)

)
(15)

when this quantity is well-defined.

Proposition 20 If Condition 8 is satisfied, then:

(1) ψ(ξ, ν) is finite and C∞ smooth on Ξ,

(2) if s(x1), . . . , s(xn) ∈ Sλ(s) and (ξ, ν) ∈ Ξ, then (ξ +
∑
s(xj), ν + n) ∈ Ξ,

(3) {πξ,ν : (ξ, ν) ∈ Ξ} is a conjugate family for {pθ : θ ∈ Θ}, and

(4) if s : X → Rk is continuous, (ξ, ν) ∈ Ξ, and λ(U) 6= 0 for any nonempty U ⊂ X that
is open in X , then m(x1:n) <∞ for any x1, . . . , xn ∈ X .

Proof (1) For finiteness, see Diaconis and Ylvisaker (1979), Theorem 1. Smoothness holds
for the same reason that κ is smooth; see Hoffmann-Jørgensen (1994, 8.36(1)). (Note that
Ξ is open in Rk+1, since M is open in Rk.)

(2) Since Cλ(s) is convex, 1
n

∑
s(xj) ∈ Cλ(s). Since Cλ(s) = M and M is open and

convex by 19(7) and (8), then (ξ+
∑
s(xj))/(ν+n) ∈M, as a (strict) convex combination

of 1
n

∑
s(xj) ∈M and ξ/ν ∈M (Rockafellar, 1970, 6.1).

(3) Let (ξ, ν) ∈ Ξ, θ ∈ Θ. If X1, . . . , Xn
iid∼ Pθ then s(X1), . . . , s(Xn) ∈ Sλ(s) almost

surely, and thus (ξ +
∑
s(Xj), ν + n) ∈ Ξ (a.s.) by (2). By Equations 14 and 15, the

posterior is πξ+
∑
s(Xj), ν+n.

(4) The assumptions imply {s(x) : x ∈ X} ⊂ Sλ(s), and therefore, for any x1, . . . , xn ∈
X , we have (ξ +

∑
s(xj), ν + n) ∈ Ξ by (2). Thus, by (1) and Equation 15, m(x1:n) <∞.

It is worth mentioning that while Ξ ⊂
{

(ξ, ν) ∈ Rk+1 : ψ(ξ, ν) <∞
}

, it may be a strict
subset—often, Ξ is not quite the full set of parameters on which πξ,ν can be defined.
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Proof of Proposition 12 (1) For any θ ∈ Θ and any j ∈ {1, . . . , k},∫
X
sj(x)2pθ(x) dλ(x) = exp(−κ(θ))

∂2

∂θ2
j

∫
X

exp(θTs(x)) dλ(x) <∞

(Hoffmann-Jørgensen, 1994, 8.36.1). Since P has density f =
∑
πipθ(i) with respect to λ,

then

Esj(X)2 =

∫
X
sj(x)2f(x) dλ(x) =

t∑
i=1

πi

∫
X
sj(x)2pθ(i)(x) dλ(x) <∞,

and hence
(E|s(X)|)2 ≤ E|s(X)|2 = Es1(X)2 + · · ·+ Esk(X)2 <∞.

(2) Note that SP (s) ⊂ Sλ(s) (in fact, they are equal since Pθ and λ are mutually
absolutely continuous for any θ ∈ Θ), and therefore

SP (s) ⊂ Sλ(s) ⊂ Cλ(s) =M

by Proposition 19(8). Hence,

P(s(X) ∈M) ≥ P(s(X) ∈ SP (s)) = Ps−1(support(Ps−1)) = 1.

(3) Suppose λ is absolutely continuous with respect to Lebesgue measure, X is open
and connected, and s is real analytic. Let L ⊂ Rk be a hyperplane, and write L = {z ∈
Rk : zTy = b} where y ∈ Rk r {0}, b ∈ R. Define g : X → R by g(x) = s(x)Ty − b. Then g
is real analytic on X , since a finite sum of real analytic functions is real analytic. Since X
is connected, it follows that either g is identically zero, or the set V = {x ∈ X : g(x) = 0}
has Lebesgue measure zero (Krantz, 1992). Now, g cannot be identically zero, since for any
θ ∈ Θ, letting Z ∼ Pθ, we have

0 < yTκ′′(θ)y = yT(Cov s(Z))y = Var(yTs(Z)) = Var g(Z)

by Proposition 19(2) and (3). Consequently, V must have Lebesgue measure zero. Hence,
P (V ) = 0, since P is absolutely continuous with respect to λ, and thus, with respect to
Lebesgue measure. Therefore,

P(s(X) ∈ L) = P(g(X) = 0) = P (V ) = 0.

Appendix B. Marginal Inequalities

In this section, we prove Proposition 17, which was used in the key lemma for the exponential
family case (Lemma 18).

Consider a well-behaved exponential family with conjugate prior (as in Definition 9).
The proof uses some simple bounds on the Laplace approximation (see Appendix C) to
obtain inequalities involving the marginal density m(x1:n) (cf. Equations 5 and 15) of
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x1:n = (x1, . . . , xn), where xj ∈ X . Of course, it is commonplace to apply the Laplace
approximation to m(X1:n) when X1, . . . , Xn are i.i.d. random variables and n is sufficiently
large. In contrast, our application of it is considerably more subtle. For our purposes, it is
necessary to show that for every n, even without assuming i.i.d. data, the approximation is
good enough as long as the sufficient statistics are not too extreme.

We make extensive use of the exponential family properties in Appendix A, often without
mention. We use f ′ to denote the gradient and f ′′ to denote the Hessian of a (sufficiently
smooth) function f : Rk → R. For µ ∈M, define

fµ(θ) = θTµ− κ(θ),

L(µ) = sup
θ∈Θ

(
θTµ− κ(θ)

)
,

θµ = argmax
θ∈Θ

(
θTµ− κ(θ)

)
,

and note that θµ = κ′−1(µ) (Proposition 19). L is known as the Legendre transform of
κ. Note that L(µ) = fµ(θµ), and L is C∞ smooth on M (since L(µ) = θTµµ − κ(θµ),
θµ = κ′−1(µ), and both κ and κ′−1 are C∞ smooth). As in Equation 13, define

µx1:n =
ξ +

∑n
j=1 s(xj)

ν + n
(16)

and given x1:n such that µx1:n ∈M, define

m̃(x1:n) = (ν + n)−k/2 exp
(
(ν + n)L(µx1:n)

)
,

where k is the dimension of the sufficient statistics function s : X → Rk. Proposition 21
below provides uniform bounds on m(x1:n)/m̃(x1:n). Here, m̃(x1:n) is only intended to
approximate m(x1:n) up to a multiplicative constant—a better approximation could always
be obtained via the usual asymptotic form of the Laplace approximation.

Proposition 21 Consider a well-behaved exponential family with conjugate prior. For any
U ⊂ M compact, there exist C1, C2 ∈ (0,∞) such that for any n ∈ {1, 2, . . . } and any
x1, . . . , xn ∈ X satisfying µx1:n ∈ U , we have

C1 ≤
m(x1:n)

m̃(x1:n)
≤ C2.

Proof Assume U 6= ∅, since otherwise the result is trivial. Let

V = κ′−1(U) = {θµ : µ ∈ U}.

It is straightforward to show that there exists ε ∈ (0, 1) such that Vε ⊂ Θ where

Vε = {θ ∈ Rk : d(θ, V ) ≤ ε}.

(Here, d(θ, V ) = infθ′∈V |θ − θ′|.) Note that Vε is compact, since κ′−1 is continuous. Given
a symmetric matrix A, define λ∗(A) and λ∗(A) to be the minimal and maximal eigenvalues,
respectively, and recall that λ∗, λ

∗ are continuous functions of the entries of A. Letting

α = min
θ∈Vε

λ∗(κ
′′(θ)) and β = max

θ∈Vε
λ∗(κ′′(θ)),
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we have 0 < α ≤ β < ∞ since Vε is compact and λ∗(κ
′′(·)), λ∗(κ′′(·)) are continuous and

positive on Θ. Letting

γ = sup
µ∈U

e−fµ(θµ)

∫
Θ

exp(fµ(θ))dθ = sup
µ∈U

e−L(µ)eψ(µ,1)

we have 0 < γ < ∞ since U is compact, and both L (as noted above) and ψ(µ, 1) (by
Proposition 20) are continuous on M. Define

h(µ, θ) = fµ(θµ)− fµ(θ) = L(µ)− θTµ+ κ(θ)

for µ ∈ M, θ ∈ Θ. For any µ ∈ M, we have that h(µ, θ) > 0 whenever θ ∈ Θ r {θµ}, and
that h(µ, θ) is strictly convex in θ. Letting Bε(θµ) = {θ ∈ Rk : |θ− θµ| ≤ ε}, it follows that

δ := inf
µ∈U

inf
θ∈ΘrBε(θµ)

h(µ, θ) = inf
µ∈U

inf
u∈Rk:|u|=1

h(µ, θµ + εu)

is positive, as the minimum of a positive continuous function on a compact set.
Now, applying the Laplace approximation bounds in Corollary 24 with α, β, γ, δ, ε as

just defined, we obtain c1, c2 ∈ (0,∞) such that for any µ ∈ U we have (taking E = Θ,
f = −fµ, x0 = θµ, A = αIk×k, B = βIk×k)

c1 ≤
∫

Θ exp(tfµ(θ))dθ

t−k/2 exp(tfµ(θµ))
≤ c2

for any t ≥ 1. We prove the result with Ci = ci e
−ψ(ξ,ν) for i = 1, 2.

Let n ∈ {1, 2, . . . } and x1, . . . , xn ∈ X such that µx1:n ∈ U . Choose t = ν + n. By
integrating Equation 14, we have

m(x1:n) = e−ψ(ξ,ν)

∫
Θ

exp
(
tfµx1:n (θ)

)
dθ,

and meanwhile,
m̃(x1:n) = t−k/2 exp

(
tfµx1:n (θµx1:n )

)
.

Thus, combining the preceding three displayed equations,

0 < C1 = c1e
−ψ(ξ,ν) ≤ m(x1:n)

m̃(x1:n)
≤ c2e

−ψ(ξ,ν) = C2 <∞.

Proof of Proposition 17 Let U ′ be the convex hull of U ∪ {ξ/ν}. Then U ′ is compact
(as the convex hull of a compact set in Rk) and U ′ ⊂M (since U ∪ {ξ/ν} ⊂ M and M is
convex). We show that the result holds with C = C2 exp(C0)/C2

1 , where C1, C2 ∈ (0,∞)
are obtained by applying Proposition 21 to U ′, and

C0 = ν sup
y∈U ′
|(ξ/ν − y)TL′(y)|+ ν sup

y∈U ′
|L(y)| <∞. (17)
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Since L is convex (being a Legendre transform) and smooth, then for any y, z ∈M we
have

inf
ρ∈(0,1)

1

ρ

(
L(y + ρ(z − y))− L(y)

)
= (z − y)TL′(y)

(by e.g., Rockafellar, 1970, 23.1) and therefore for any ρ ∈ (0, 1),

L(y) ≤ L((1− ρ)y + ρz)− ρ(z − y)TL′(y). (18)

Choosing y = µx1:n , z = ξ/ν, and ρ = ν/(n+ 2ν), we have

(1− ρ)y + ρz =
2ξ +

∑n
j=1 s(xj)

2ν + n
=
aµxA + bµxB

a+ b
. (19)

Note that µxA , µxB , µx1:n ∈ U ′, by taking various convex combinations of ξ/ν, 1
|A|
∑

j∈A s(xj),

µxB ∈ U ′. Thus,

(ν + n)L(µx1:n) = (a+ b)L(y)− νL(y)

(a)

≤ (a+ b)L((1− ρ)y + ρz)− (a+ b)ρ(z − y)TL′(y)− νL(y)

(b)

≤ (a+ b)L
(aµxA + bµxB

a+ b

)
+ C0

(c)

≤ aL(µxA) + bL(µxB ) + C0,

where (a) is by Equation 18, (b) is by Equations 17 and 19, and (c) is by the convexity of
L. Hence, (ν+n)k/2m̃(x1:n) ≤ (ab)k/2m̃(xA)m̃(xB) exp(C0), so by our choice of C1 and C2,

m(x1:n)

m(xA)m(xB)
≤ C2m̃(x1:n)

C2
1m̃(xA)m̃(xB)

≤ C2 exp(C0)

C2
1

( ab

n+ ν

)k/2
.

Appendix C. Bounds on the Laplace Approximation

Our proof uses the following simple bounds on the Laplace approximation. These bounds
are not fundamentally new, but the precise formulation we require does not seem to appear
in the literature, so we have included it for the reader’s convenience. Lemma 22 is simply
a multivariate version of the bounds given by De Bruijn (1970), and Corollary 24 is a
straightforward consequence, putting the lemma in a form most convenient for our purposes.

Given symmetric matrices A and B, let us write A�B to mean that B −A is positive
semidefinite. Given A ∈ Rk×k symmetric positive definite and ε, t ∈ (0,∞), define

C(t, ε, A) = P(|A−1/2Z| ≤ ε
√
t)

where Z ∼ Normal(0, Ik×k). Note that C(t, ε, A) → 1 as t → ∞. Let Bε(x0) = {x ∈ Rk :
|x− x0| ≤ ε} denote the closed ball of radius ε > 0 at x0 ∈ Rk.
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Lemma 22 Let E ⊂ Rk be open. Let f : E → R be C2 smooth with f ′(x0) = 0 for some
x0 ∈ E. Define

g(t) =

∫
E

exp(−tf(x)) dx

for t ∈ (0,∞). Suppose ε ∈ (0,∞) such that Bε(x0) ⊂ E, 0 < δ ≤ inf{f(x) − f(x0) : x ∈
E r Bε(x0)}, and A,B are symmetric positive definite matrices such that A � f ′′(x) � B
for all x ∈ Bε(x0). Then for any 0 < s ≤ t we have

C(t, ε, B)

|B|1/2
≤ g(t)

(2π/t)k/2e−tf(x0)
≤ C(t, ε, A)

|A|1/2
+
( t

2π

)k/2
e−(t−s)δesf(x0)g(s)

where |A| = |detA|.

Remark 23 In particular, these assumptions imply f is strictly convex on Bε(x0) with
unique global minimum at x0. Note that the upper bound is trivial unless g(s) <∞.

Proof By Taylor’s theorem, for any x ∈ Bε(x0) there exists zx on the line between x0 and
x such that, letting y = x− x0,

f(x) = f(x0) + yTf ′(x0) + 1
2y

Tf ′′(zx)y = f(x0) + 1
2y

Tf ′′(zx)y.

Since zx ∈ Bε(x0), and thus A� f ′′(zx) �B,

1
2y

TAy ≤ f(x)− f(x0) ≤ 1
2y

TBy.

Hence,

etf(x0)

∫
Bε(x0)

exp(−tf(x)) dx ≤
∫
Bε(x0)

exp(−1
2(x− x0)T(tA)(x− x0)) dx

= (2π)k/2|(tA)−1|1/2 P
(
|(tA)−1/2Z| ≤ ε

)
.

Along with a similar argument for the lower bound, this implies(2π

t

)k/2C(t, ε, B)

|B|1/2
≤ etf(x0)

∫
Bε(x0)

exp(−tf(x)) dx ≤
(2π

t

)k/2C(t, ε, A)

|A|1/2
.

Considering the rest of the integral, outside of Bε(x0), we have

0 ≤
∫
ErBε(x0)

exp(−tf(x)) dx ≤ exp
(
− (t− s)(f(x0) + δ)

)
g(s).

Combining the preceding four inequalities yields the result.

The following corollary tailors the lemma to our purposes. Given a symmetric positive
definite matrix A ∈ Rk×k, let λ∗(A) and λ∗(A) be the minimal and maximal eigenvalues,
respectively. By diagonalizing A, it is easy to check that λ∗(A)Ik×k � A � λ∗(A)Ik×k and
λ∗(A)k ≤ |A| ≤ λ∗(A)k.
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Corollary 24 For any α, β, γ, δ, ε ∈ (0,∞) there exist c1 = c1(β, ε) ∈ (0,∞) and c2 =
c2(α, γ, δ) ∈ (0,∞) such that if E, f, x0, A,B satisfy all the conditions of Lemma 22 (for
this choice of δ, ε) and additionally, α ≤ λ∗(A), β ≥ λ∗(B), and γ ≥ ef(x0)g(1), then

c1 ≤
∫
E exp(−tf(x)) dx

t−k/2 exp(−tf(x0))
≤ c2

for all t ≥ 1.

Proof The first term in the upper bound of the lemma is C(t, ε, A)/|A|1/2 ≤ 1/αk/2, and
with s = 1 the second term is less or equal to (t/2π)k/2e−(t−1)δγ, which is bounded above for
t ∈ [1,∞). For the lower bound, a straightforward calculation (using zTBz ≤ λ∗(B)zTz ≤
βzTz in the exponent inside the integral) shows that C(t, ε, B)/|B|1/2 ≥ P(|Z| ≤ ε

√
β)/βk/2

for t ≥ 1.

Although we do not need it (and thus, we omit the proof), the following corollary gives
the well-known asymptotic form of the Laplace approximation. (As usual, g(t) ∼ h(t) as
t→∞ means that g(t)/h(t)→ 1.)

Corollary 25 Let E ⊂ Rk be open. Let f : E → R be C2 smooth such that for some x0 ∈ E
we have that f ′(x0) = 0, f ′′(x0) is positive definite, and f(x) > f(x0) for all x ∈ E r {x0}.
Suppose there exists ε > 0 such that Bε(x0) ⊂ E and inf{f(x)− f(x0) : x ∈ E rBε(x0)} is
positive, and suppose there is some s > 0 such that

∫
E e
−sf(x) dx <∞. Then∫

E
exp(−tf(x)) dx ∼

(2π

t

)k/2 exp(−tf(x0))

|f ′′(x0)|1/2

as t→∞.

Appendix D. Capture Lemma

In this section, we prove Lemma 14, which is restated here for the reader’s convenience.
The following definitions are standard. Let S denote the unit sphere in Rk, that is,

S = {x ∈ Rk : |x| = 1}. We say that H ⊂ Rk is a halfspace if H = {x ∈ Rk : xTu ≺ b},
where ≺ is either < or ≤, for some u ∈ S, b ∈ R. We say that L ⊂ Rk is a hyperplane if
L = {x ∈ Rk : xTu = b} for some u ∈ S, b ∈ R. Given U ⊂ Rk, let ∂U denote the boundary
of U , that is, ∂U = U rU◦. So, for example, if H is a halfspace, then ∂H is a hyperplane.
The following notation is also useful: given x ∈ Rk, we call the set Rx = {ax : a > 0} the
ray through x.

We give the central part of the proof first, postponing some plausible intermediate results
for the moment. Recall the definition of Iβ(x1:n, U) from Equation 12.

Lemma 26 (Capture lemma) Let V ⊂ Rk be open and convex. Let P be a probability
measure on Rk such that:

(1) E|X| <∞ when X ∼ P ,

(2) P (V ) = 1, and
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(3) P (L) = 0 for any hyperplane L that does not intersect V .

If X1, X2, . . .
iid∼ P , then for any β ∈ (0, 1] there exists U ⊂ V compact such that

Iβ(X1:n, U)
a.s.−−→ 1 as n→∞.

Proof Without loss of generality, we may assume 0 ∈ V (since otherwise we can translate
to make it so, obtain U , and translate back). Let β ∈ (0, 1]. By Proposition 28 below, for
each u ∈ S there is a closed halfspace Hu such that 0 ∈ H◦u, Ru intersects V ∩ ∂Hu, and
Iβ(X1:n, Hu)

a.s.−−→ 1 as n → ∞. By Proposition 30 below, there exist u1, . . . , ur ∈ S (for
some r > 0) such that the set U =

⋂r
i=1Hui is compact and U ⊂ V . Finally,

Iβ(X1:n, U) =
r∏
i=1

Iβ(X1:n, Hui)
a.s.−−−→
n→∞

1.

The main idea of the lemma is exhibited in the following simpler case, which we will use
to prove Proposition 28.

Proposition 27 Let V = (−∞, c), where −∞ < c ≤ ∞. Let P be a probability measure
on R such that:

(1) E|X| <∞ when X ∼ P , and

(2) P (V ) = 1.

If X1, X2, . . .
iid∼ P , then for any β ∈ (0, 1] there exists b < c such that Iβ(X1:n, (−∞, b])

a.s.−−→
1 as n→∞.

Proof Let β ∈ (0, 1]. By continuity from above, there exists a < c such that P(X > a) < β.
If P(X > a) = 0 then the result is trivial, taking b = a. Suppose P(X > a) > 0. Let b such
that E(X | X > a) < b < c, which is always possible, by a straightforward argument (using
E|X| < ∞ in the c = ∞ case). Let Bn = Bn(X1, . . . , Xn) = {i ∈ {1, . . . , n} : Xi > a}.
Then

1

|Bn|
∑
i∈Bn

Xi =
1

1
n |Bn|

1

n

n∑
i=1

Xi I(Xi > a)

a.s.−−−→
n→∞

E(X I(X > a))

P(X > a)
= E(X | X > a) < b.

Now, fix n ∈ {1, 2, . . . }, and suppose 0 < |Bn| < βn and 1
|Bn|

∑
i∈Bn Xi < b, noting that

with probability 1, this happens for all n sufficiently large. We show that this implies
Iβ(X1:n, (−∞, b]) = 1. This will prove the result.

Let A ⊂ {1, . . . , n} such that |A| ≥ βn. Let M = {π1, . . . , π|A|} where π is a permutation
of {1, . . . , n} such that Xπ1 ≥ · · · ≥ Xπn (that is, M ⊂ {1, . . . , n} consists of the indices of
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|A| of the largest entries of (X1, . . . , Xn)). Then |M | = |A| ≥ βn ≥ |Bn|, and it follows that
Bn ⊂M . Therefore,

1

|A|
∑
i∈A

Xi ≤
1

|M |
∑
i∈M

Xi ≤
1

|Bn|
∑
i∈Bn

Xi ≤ b,

as desired.

The first of the two propositions used in Lemma 26 is the following.

Proposition 28 Let V and P satisfy the conditions of Lemma 26, and also assume 0 ∈ V .

If X1, X2, . . .
iid∼ P then for any β ∈ (0, 1] and any u ∈ S there is a closed halfspace H ⊂ Rk

such that

(1) 0 ∈ H◦,

(2) Ru intersects V ∩ ∂H, and

(3) Iβ(X1:n, H)
a.s.−−→ 1 as n→∞.

Proof Let β ∈ (0, 1] and u ∈ S. Either (a) Ru ⊂ V , or (b) Ru intersects ∂V .
Case (a): Suppose Ru ⊂ V . Let Yi = XT

i u for i = 1, 2, . . . . Then E|Yi| ≤ E|Xi||u| =
E|Xi| < ∞, and thus, by Proposition 27 (with c = ∞) there exists b ∈ R such that
Iβ(Y1:n, (−∞, b])

a.s.−−→ 1. Let us choose this b to be positive, which is always possible since
Iβ(Y1:n, (−∞, b]) is nondecreasing as a function of b. Let H = {x ∈ Rk : xTu ≤ b}. Then
0 ∈ H◦, since b > 0, and Ru intersects V ∩ ∂H at bu, since Ru ⊂ V and buTu = b. And
since 1

|A|
∑

i∈A Yi ≤ b if and only if 1
|A|
∑

i∈AXi ∈ H, we have Iβ(X1:n, H)
a.s.−−→ 1.

Case (b): Suppose Ru intersects ∂V at some point z ∈ Rk. Note that z 6= 0 since
0 6∈ Ru. Since V is convex, it has a supporting hyperplane at z, and thus, there exist v ∈ S
and c ∈ R such that G = {x ∈ Rk : xTv ≤ c} satisfies V ⊂ G and z ∈ ∂G (Rockafellar,
1970, 11.2). Note that c > 0 and V ∩∂G = ∅ since 0 ∈ V and V is open. Letting Yi = XT

i v
for i = 1, 2, . . . , we have

P(Yi ≤ c) = P(XT
i v ≤ c) = P(Xi ∈ G) ≥ P(Xi ∈ V ) = P (V ) = 1,

and hence,

P(Yi ≥ c) = P(Yi = c) = P(XT
i v = c) = P(Xi ∈ ∂G) = P (∂G) = 0,

by our assumptions on P , since ∂G is a hyperplane that does not intersect V . Consequently,
P(Yi < c) = 1. Also, as before, E|Yi| <∞. Thus, by Proposition 27, there exists b < c such
that Iβ(Y1:n, (−∞, b])

a.s.−−→ 1. Since c > 0, we may choose this b to be positive (as before).

Letting H = {x ∈ Rk : xTv ≤ b}, we have Iβ(X1:n, H)
a.s.−−→ 1. Also, 0 ∈ H◦ since b > 0.

Now, we must show that Ru intersects V ∩ ∂H. First, since z ∈ Ru means z = au for
some a > 0, and since z ∈ ∂G means zTv = c > 0, we find that uTv > 0 and z = cu/uTv.
Therefore, letting y = bu/uTv, we have y ∈ Ru ∩ V ∩ ∂H, since

(i) b/uTv > 0, and thus y ∈ Ru,
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(ii) yTv = b, and thus y ∈ ∂H,

(iii) 0 < b/uTv < c/uTv, and thus y is a (strict) convex combination of 0 ∈ V and z ∈ V ,
hence y ∈ V (Rockafellar, 1970, 6.1).

To prove Proposition 30, we need the following geometrically intuitive facts.

Proposition 29 Let V ⊂ Rk be open and convex, with 0 ∈ V . Let H be a closed halfspace
such that 0 ∈ H◦. Let T = {x/|x| : x ∈ V ∩ ∂H}. Then

(1) T is open in S,

(2) T = {u ∈ S : Ru intersects V ∩ ∂H}, and

(3) if x ∈ H, x 6= 0, and x/|x| ∈ T , then x ∈ V .

Proof Write H = {x ∈ Rk : xTv ≤ b}, with v ∈ S, b > 0. Let S+ = {u ∈ S : uTv > 0}.
(1) Define f : ∂H → S+ by f(x) = x/|x|, noting that 0 6∈ ∂H. It is easy to see that f is a
homeomorphism. Since V is open in Rk, then V ∩∂H is open in ∂H. Hence, T = f(V ∩∂H)
is open in S+, and since S+ is open in S, then T is also open in S. Items (2) and (3) are
easily checked.

Proposition 30 Let V ⊂ Rk be open and convex, with 0 ∈ V . If (Hu : u ∈ S) is a
collection of closed halfspaces such that for all u ∈ S,

(1) 0 ∈ H◦u and

(2) Ru intersects V ∩ ∂Hu,

then there exist u1, . . . , ur ∈ S (for some r > 0) such that the set U =
⋂r
i=1Hui is compact

and U ⊂ V .

Proof For u ∈ S, define Tu = {x/|x| : x ∈ V ∩ ∂Hu}. By part (1) of Proposition 29, Tu is
open in S, and by part (2), u ∈ Tu, since Ru intersects V ∩ ∂Hu. Thus, (Tu : u ∈ S) is an
open cover of S. Since S is compact, there is a finite subcover: there exist u1, . . . , ur ∈ S
(for some r > 0) such that

⋃r
i=1 Tui ⊃ S, and in fact,

⋃r
i=1 Tui = S. Let U =

⋂r
i=1Hui .

Then U is closed and convex (as an intersection of closed, convex sets). Further, U ⊂ V
since for any x ∈ U , if x = 0 then x ∈ V by assumption, while if x 6= 0 then x/|x| ∈ Tui for
some i ∈ {1, . . . , r} and x ∈ U ⊂ Hui , so x ∈ V by Proposition 29(3).

In order to show that U is compact, we just need to show it is bounded, since we already
know it is closed. Suppose not, and let x1, x2, . . . ∈ U r {0} such that |xn| → ∞ as n→∞.
Let vn = xn/|xn|. Since S is compact, then (vn) has a convergent subsequence such that
vni → u for some u ∈ S. Then for any a > 0, we have avni ∈ U for all i sufficiently large
(since avni is a convex combination of 0 ∈ U and |xni |vni = xni ∈ U whenever |xni | ≥ a).
Since avni → au, and U is closed, then au ∈ U . Thus, au ∈ U for all a > 0, i.e., Ru ⊂ U .
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But u ∈ Tuj for some j ∈ {1, . . . , r}, so Ru intersects ∂Huj (by Proposition 29(2)), and
thus au 6∈ Huj ⊃ U for all a > 0 sufficiently large. This is a contradiction. Therefore, U is
bounded.
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Abstract

We consider the problem of learning skills that are versatilely applicable. One popular
approach for learning such skills is contextual policy search in which the individual tasks
are represented as context vectors. We are interested in settings in which the agent is
able to actively select the tasks that it examines during the learning process. We argue
that there is a better way than selecting each task equally often because some tasks might
be easier to learn at the beginning and the knowledge that the agent can extract from
these tasks can be transferred to similar but more difficult tasks. The methods that we
propose for addressing the task-selection problem model the learning process as a non-
stationary multi-armed bandit problem with custom intrinsic reward heuristics so that
the estimated learning progress will be maximized. This approach does neither make any
assumptions about the underlying contextual policy search algorithm nor about the policy
representation. We present empirical results on an artificial benchmark problem and a ball
throwing problem with a simulated Mitsubishi PA-10 robot arm which show that active
context selection can improve the learning of skills considerably.

Keywords: reinforcement learning, policy search, movement primitives, active learning,
multi-task learning

1. Introduction

Artificial agents like robots are deployed in increasingly complex environments where they
have to fulfill a range of different tasks. Hard-coding the full set of behaviors required
by an agent in such an environment before deployment becomes increasingly difficult. An
alternative approach is to provide the agent with means for learning of novel behavior. By
this, the agent might acquire additional behaviors when required. However, learning every
behavior from scratch is cumbersome and impractical for real robots, where it is important
to learn novel behavior within a small amount of trials. Learning a set of versatilely appli-
cable skills is one way to make an agent competent (White, 1959) in an environment, which
means that the agent can efficiently learn behaviors for a multitude of tasks imposed on
him by building on top of the set of skills.

One means for acquiring reusable skills is reinforcement learning (RL). In RL, a skill is
represented by a policy π, which selects actions based on the current state.1 One popular
means for learning such a policy in a robotic setting is policy search (Deisenroth et al., 2013).

1. A policy can be stochastic, that is, define a conditional probability distribution over the actions given
the state, or be deterministic, that is, a function that maps from states to actions.

c©2014 Alexander Fabisch and Jan Hendrik Metzen.
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In policy search, policies are parameterized by a parameter vector θ and the objective is to
find θ such that the expected return of the policy πθ is maximized. A problem with this
formulation is that it is not easily extended to settings in which different tasks are imposed
onto the agent, which result in different returns for the same policy πθ. For instance, when
an agent tries to throw a ball to different target positions (the tasks), the same policy might
obtain very different returns depending on whether the respective target object is hit or
not.

To address such multi-task settings, we consider the problem of learning policies for con-
textual RL problems. That is, we assume that similar tasks are distinguished by context
vectors s ∈ S ⊆ Rns ; that is, contexts are described by ns-dimensional real vectors. We
use the terms task and context mostly interchangeable in this paper. Instead of searching
directly for θ in the space of control policies πθ, one can introduce an upper-level policy
πω(θ|s), which is parameterized by ω and defines a probability distribution over the param-
eters θ of the actual control policy. The expected return of an upper-level policy πω(θ|s)
in a parameterized RL problem is defined as

J(ω) =

∫
s
p(s)

∫
θ
πω(θ|s)Rs,θ dθds,

where Rs,θ is the expected return of policy πθ in context s and p(s) is the probability
density function of the context distribution. Searching for parameters ω that maximize
J(ω) is denoted as contextual policy search (Deisenroth et al., 2013). We do not make any
further restricting assumptions about the upper-level policy, the control policy or the policy
search algorithm in this paper.

Different methods have been proposed for contextual policy search: one class of methods
learns first policies πθ for a set of tasks separately and uses thereupon regression algorithms
to infer a deterministic function which generalizes the learned policy parameters over the
entire context space (da Silva et al., 2012; Metzen et al., 2013). A second class of methods
learns an upper-level policy πω(θ|s) directly without separating learning in an RL and a
regression part (Peters and Schaal, 2007; Kober et al., 2012; Kupcsik et al., 2013).

A restriction of both class of methods is that they typically assume that p(s) cannot
be controlled by the agent. This is appropriate when the environment or a user imposes
tasks onto the agent externally. However, an agent might set its goals by itself or select
tasks in which it would like to increase its performance autonomously. For instance, when
learning target-oriented throwing (Wirkus et al., 2012), the agent might self-select certain
target positions which it cannot hit yet reliably and where it would like to improve its
performance. Moreover, there might be certain problem domains, for example grasping
a cup in environments with obstacles and many different but similar task configurations,
where some configurations might be harder to learn than others. For example, grasping
a cup is more difficult when it is surrounded by other cups or when the handle is on the
far side. One way to approach such situations is to start learning with easy tasks and
progress to more and more complex tasks over time, where knowledge acquired in prior
tasks is transferred and reused. Thus, by autonomously selecting learning tasks (contexts),
for example based on intrinsic motivation (Barto et al., 2004), an agent might increase its
competence in an environment in a self-controlled manner.
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In this paper, we consider how an agent can actively select contexts to make the best
progress in learning πω(θ|s), that is in increasing its competence. We propose considering
this active task-selection problem as a non-stationary bandit problem and using algorithms
like D-UCB (Kocsis and Szepesvári, 2006), which are suited for this setting, as task-selection
heuristic. Moreover, we examine different intrinsic motivation heuristics for rewarding the
agent for selecting contexts during the learning process which are considered to increase
the learning progress, that is, to reduce the number of trials that are required to master
a given contextual problem. This is important on real robots where the number of trials
required for learning a behavior needs to be as small as possible to reduce wear and tear of
the robot.

The paper is structured as follows: in Section 2, we present related work in the fields
of skill learning, active learning, and multi-armed bandits. Thereupon, we formalize the
problem and present the proposed method and the intrinsic reward heuristics for active con-
textual policy search in Section 3 and demonstrate the underlying model of the contextual
learning process in Section 4. We compare the heuristics empirically on two benchmarks,
the first being a toy problem in which advantages and disadvantages of different heuristics
are systematically studied (see Section 5.1) and the second being a robotic control problem
based on a simulated Mitsubishi PA-10 robot. In this setting, an agent learns to throw
balls at targets on the ground with two different reward functions which results in the “grid
problem” and the “dartboard problem” (see Section 5.2). We conclude and provide an
outlook in Section 6.

2. Related Work

Our work is closely connected to two different fields of machine learning: learning general
and broadly applicable skills with reinforcement learning or imitation learning and active
learning for task selection. We summarize the related work of both fields in this section. In
addition, we will briefly introduce the non-stationary multi-armed bandit problem which is
related to our proposed method.

2.1 Skill Learning and Skill Transfer

In our setup, low-level policies are typically represented by dynamical movement primitives
(DMPs; Ijspeert et al., 2013), although the proposed approaches are in no way restricted
to this setting. DMPs encode arbitrarily shapeable, goal-directed trajectories. There are
different variants of DMPs, which have in common that they use an internal time variable
z (called phase) which replaces explicit timing and allows arbitrary temporal scaling of the
movement. Furthermore, the transformation system of a DMP is a spring-damper system
that generates a goal-directed movement which is controlled by the phase variable z and
modified by a forcing term f . The shape can be adjusted by learning the weights wi of the
forcing term through imitation or reinforcement learning. We use a variant of DMPs that
has been developed by Mülling et al. (2011, 2013), which allows additionally specifying a
target velocity at the end of the movement. In summary, we use a low-level policy

xt+1 = πv,w(xt, t), v = (x0, g, ġ, τ) ,
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where xt is the state (position, velocity, and acceleration) at time t, w are the weights
of the forcing term and v are the following meta-parameters: x0 is the initial state, g is
the final state, ġ the desired final velocity, and τ is the duration of the movement. Note
that this kind of policy defines a state trajectory and thus requires a low-level controller
that generates the appropriate actions such that the state transition from xt to xt+1 is
performed, see Peters et al. (2012) for a discussion of this in a robotic setting.

The problem of learning broadly applicable skills has been approached from different per-
spectives. DMPs themselves have been designed to generalize over some meta-parameters
such as the duration of the movement, the start position, and the final position. Addition-
ally, some DMP variants are able to generalize over velocities at the end of the movement
(Mülling et al., 2011, 2013). However, designing skills that generalize over more complex
task parameterization is not straightforward. This is why machine learning techniques from
the fields of imitation learning and reinforcement learning have been used to automatically
infer upper-level policies.

Ude et al. (2010) used a form of self-imitation to generalize the task of throwing a ball at
a desired target position. First, a number of throws with different policy parameterizations
are generated and the final ball position is measured. That is, DMPs with different values of
τ , g,w, and release times of the ball have been executed. Then, a mixture of locally weighted
regression (Cleveland and Devlin, 1988) and Gaussian process regression (Rasmussen and
Williams, 2005) has been used to find mappings from the position that has been hit on the
ground to the corresponding values of the meta-parameters that generated the throw. Thus,
the problem has been reduced to a regression problem. The same approach has been used
for reaching tasks and drumming. Kronander et al. (2011) proposed a similar method to
play mini-golf. As underlying policy representation, stable estimators of dynamical systems
(Khansari-Zadeh and Billard, 2011) have been used and another set of meta-parameters is
learned with Gaussian process regression and Gaussian mixture regression. Both methods
can be regarded as generalizing imitation learning algorithms.

The idea of da Silva et al. (2012) was to use the reinforcement learning algorithm pol-
icy learning by weighting exploration with the returns (PoWER; Kober and Peters, 2011)
to generate a training set for the regression algorithm, which consists of nearly optimal
parameters {θ1,θ2, . . .} for the low-level policies in different contexts {s1, s2, . . .}. There-
upon, a regression algorithm is used to infer a deterministic policy πω(θ|s), the so-called
parameterized skill, which generalizes over the entire context space. The authors considered
the problem of dart throwing and observed that this domain has the additional challenge
of discontinuities in the mapping from task parameters to meta-parameters of the policy.
Such discontinuities are less likely when the examples have been generated by a human
operator but appear especially if there are multiple solutions for a task with similar quality
and if there are no constraints for the meta-parameters during reinforcement learning. To
address this problem, the authors use Isomap (Tenenbaum et al., 2000) to extract mani-
folds in the meta-parameter space and learn different support vector regression models for
these manifolds. An extension of parameterized skill denoted as skill templates has been
proposed by Metzen et al. (2013), which learns not only the upper-level policy πω(θ|s) from
the experience but also an estimate of the uncertainty in this generalization, which can be
useful for subsequent adaptation of the policy.
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An advantage of these approaches is that the upper level policy πω(θ|s), which maps
from contexts to parameters θ of the low-level policy can be an arbitrary function and
hence, sophisticated regression methods can be used for generalization, which can deal for
example with discontinuities. On the other hand, a functional relationship between context
and control-policy parameters θ as in a deterministic policy might not always be adequate;
for instance, there might be multiple optima in the space of θ for a single context (for
example, think of fore- and backhand strokes). In addition, the approach requires to learn
close-to-optimal parameters for the control policy in a context to generate just one training
example for the regression algorithms. Consequently, all other experience collected during
learning these close-to-optimal parameters is not being used for generalizing over the context
space.

Several reinforcement-learning algorithms have been proposed that learn the upper-
level policy πω(θ|s) without separating learning in an RL and a regression part (Peters and
Schaal, 2007; Kober et al., 2012; Kupcsik et al., 2013). These approaches allow transferring
experience between different contexts even if the behavior in these contexts is suboptimal.
Thus, these approaches can make use of all collected experience and are thus typically
more sample-efficient, that is, they can learn a close-to-optimal upper-level policy within
less trials. Furthermore, the upper-level policy πω can be stochastic, which means it can
be implemented by a conditional probability distribution. This has the advantage that
the agent’s explorative behavior is explicitly modeled and can be adapted by the learning
algorithm on the upper level. Furthermore, multiple optima in the space of the low-level
policies can be represented by a multi-modal probability distribution on the upper level
(Daniel et al., 2012).

Peters and Schaal (2007) applied reinforcement learning to learn contextual policies
directly with reward weighted regression. Here, a stochastic upper-level policy similar to
the mapping from task parameters to policy meta-parameters in the regression setting is
learned directly. Kober et al. (2012) extended this to non-parametric policies in an approach
denoted as cost-regularized kernel regression (CrKR). CrKR has been used to learn throwing
movements as well as table tennis. Another reinforcement learning algorithm that can be
used to learn the upper-level policy is contextual relative entropy policy search (C-REPS,
Kupcsik et al., 2013). REPS is an information-theoretic approach to policy search, which
aims in each iteration at maximizing the expected return of the new policy while bounding
the Kullback-Leibler divergence between the old and new policy. Bounding this divergence
enforces that the new policy is not too different from the old policy as large changes of the
policy could for instance be dangerous in a robotic setting. C-REPS is an extension of this
approach to the contextual policy search setting. We refer to Appendix A for more details
on C-REPS.

The representation of the upper-level policy πω(θ|s) in these approaches is typically
restricted: in CrKR, the upper level policy is modeled as a Gaussian process with the
outputs being assumed to be independent (Deisenroth et al., 2013). C-REPS allows any
policy which can be learned by weighted maximum likelihood. A frequently used variant
is πω(θ|s) = N

(
θ|W Tϕ(s),Σ

)
, where ϕ(s) contains the linear and quadratic terms of the

context vector s, W is a weight matrix, and Σ the covariance of the stochastic policy.

A common assumption in contextual policy search is that the selection of the task in
which the next trial will be performed is either not under the control of the agent or that
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it does not matter in which order and in which frequency tasks are selected. In this paper,
we study strategies for actively selecting the next task by means of active learning.

2.2 Active Learning and Artificial Curiosity

In machine learning it is typically desirable to require as few training examples as possible
because it is often costly to acquire examples. For instance, in supervised learning it can
be expensive to label data. Similarly, in reinforcement learning domains such as robotics,
performing a trial is typically very costly. Hence, in general one would like to perform only
those trials that maximize the learning progress. A research field that deals with selecting
data or tasks from which one can learn the most is active learning (Settles, 2010). The
goal of active learning is to label only data or examine only tasks that promise the greatest
learning progress, that is: the most informative instances. Different query strategies to find
the most informative instance are discussed by Settles (2010).

The idea to actively select tasks that accelerate the learning progress is related to cur-
riculum learning : Bengio et al. (2009) and Gulcehre and Bengio (2013) assume that learning
simple concepts first helps to learn more complex concepts that build upon those previously
learned simple concepts in the context of supervised learning. We also try to exploit this
hypothesis in our empirical evaluation. Another related work has been published by Ruvolo
and Eaton (2013) in the context of lifelong multi-task learning, which compares several
heuristics for actively selecting the task that will be learned. Among these heuristic are
the following: select the task that maximizes the expected information gain (information
maximization heuristic) and select the task on which the current model performs worst
(diversity heuristic). Once a task is selected, all labels of data instances of this task are
revealed to the agent.

It is not straightforward to transfer this approach to the reinforcement learning setting.
A problem that occurs in reinforcement learning is that one does not get the correct solution,
that is the optimal policy, of a queried task directly. Instead, one receives only an immediate
reward and needs to optimize the solution by trial-and-error in order to maximize the long-
term reward, which requires to select the same training tasks multiple times consecutively
until a close-to-optimal policy is learned. This approach is followed by da Silva et al.
(2014), where the parameterized skill approach discussed in Section 2.1 is extended to an
active learning setting. For this, the authors propose a novel criterion for skill selection.
In this criterion, the skill performance is modeled using Gaussian process regression with
a spatiotemporal kernel which addresses the inherent non-stationarity of tracking the skill
performance. Based on this estimate of the skill performance, the next task is chosen such
that the maximum expected improvement in skill performance would be obtained if the
outcome of learning this task is assumed to be an optimistic upper bound. A drawback
of this approach is that it may not be the optimal (most sample-efficient) task-selection
strategy to stick for many trials to the same task until a close-to-optimal policy for this
task is learned. In this paper, we address how active task selection can be performed if a
novel task is chosen after each trial which involves that typically no close-to-optimal policy
has been learned in the last task.

A field related to active learning with applications in reinforcement learning is artificial
curiosity (Oudeyer and Kaplan, 2004; Gottlieb et al., 2013). In particular, an architecture
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called self-adaptive goal generation - robust intelligent adaptive curiosity (SAGG-RIAC) has
been derived from the ideas of artificial curiosity by Baranes and Oudeyer (2013) and has
been applied to learning of contextual problems. The goal self-generation and self-selection
of SAGG-RIAC divides the context space into rectangular regions. These are split once the
number of contexts that have been explored in these regions exceeds a threshold. For each
region Ri, one can compute an interest value based on the derivative of the competence in
that region

interesti =
1

ζ

∣∣∣∣∣∣∣
 |Ri|− ζ2∑
j=|Ri|−ζ

r(sj ,θj)

−
 |Ri|∑
j=|Ri|− ζ2

r(sj ,θj)


∣∣∣∣∣∣∣ ,

where |Ri| is the number of contexts that have been explored in region Ri, ζ is the size
of a sliding window, and r(sj ,θj) is the return of a low-level policy with parameters θj in
context sj (not to be confused with the expected returnRs,θ = E{r(s,θ)}). Essentially, this
means regions with greater differences between recent and previous returns are considered
to be more interesting. Hence, on the one hand SAGG-RIAC focuses on regions where the
reward increases considerably over time. On the other hand, it also favors regions where the
reward decreases. The intuition for this is that such a decrease might be due to a change
in the environment in this region and, hence, it would make sense to explore this region
more strongly. SAGG-RIAC selects goals either randomly from the whole context space or
from a random region, where the probability of each region corresponds to its interest. For
a selected region, the goal is either drawn from a uniform random distribution or from the
vicinity of the context with the lowest previous return. Each of the three cases is again
selected randomly with fixed probabilities.

One advantage of SAGG-RIAC is that it naturally copes with continuous context spaces.
The method will most of the time concentrate on regions where it expects a high learning
progress but does not converge to a single region of the context space. As an alternative
to the SAGG-RIAC heuristic, we present an approach that is based on heuristic estimates
of the learning progress and multi-armed bandit algorithms, which more naturally trades
off exploration and exploitation of the noisy estimate of the learning progress. The corre-
sponding algorithms will be discussed in the next section.

2.3 Non-Stationary Multi-Armed Bandit Problems

Multi-armed bandit problems (MABP: Robbins, 1952; Bubeck and Cesa-Bianchi, 2012) are
situated between supervised and reinforcement learning. A MABP can be regarded as a
one-step or one-state Markov decision process, in which an agent has to select one out of
K possible actions and obtains a reward afterwards that is typically assumed to be drawn
independent and identically distributed for each action. The agent tries to minimize the
regret, which is defined as the expected difference between its accumulated reward and the
reward that would have been accumulated with the optimal but unknown stationary policy.
One popular algorithm in this setting is upper confidence bound (UCB: Agrawal, 1995b).
UCB learns a deterministic policy that always selects the action with the maximum upper
bound on the confidence interval of the expected reward. This upper bound is constructed
from the past rewards for the action and is based on their empirical mean and a padding
function. The padding function summarizes the uncertainty in the estimate of the expected
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reward. Since UCB always selects the action with the maximum upper bound, this results
in choosing actions where the reward is either very uncertain (large padding) or expected
to be high (large empirical mean). By this, UCB inherently trades off exploration and
exploitation.

One crucial assumption of most algorithms like UCB is that the reward distributions
do not change over time. This assumption will not be satisfied in our settings. There
exist bandit algorithms that are designed to deal with non-stationary MABPs, in which
the reward distributions might change over time, either abruptly, leading to sliding window
UCB (Garivier and Moulines, 2011), or slowly but continuously, leading to discounted UCB
(Kocsis and Szepesvári, 2006). In the next section, we show how we can use these kind
of algorithms for active task selection by modeling the task-selection problem as a non-
stationary multi-armed bandit problem.

3. Proposed Methods

In this paper, we consider contextual policy search problems. Thus, we try to learn ω which
maximizes J(ω) =

∫
s p(s)

∫
θ πω(θ|s)Rs,θ dθds by performing rollouts of the control policy

with parameters θ in contexts s. However, in contrast to prior work, we consider the context
distribution during learning not to be given by the environment but to be under the agent’s
control. While this assumption might not apply to all contextual policy search problems,
there are sufficiently many settings, like for instance ball throwing with self-selecting goal
positions, to make studying this setting worthwhile. Note that the context distribution p(s)
within J(ω) remains fixed during evaluation and cannot be modified by the agent.

We introduce the problem of active context selection and its objective, namely to max-
imize learning progress, formally in Section 3.1. We propose different intrinsic reward
functions which can be considered as proxies for the learning progress objective (see Sec-
tion 3.2). In Section 3.3, we discuss how a context selection policy can be learned using
multi-armed bandit algorithms.

3.1 Active Context Selection

Formally, we introduce a context selection policy πβ, which selects the context in which
the next trial will be performed. πβ aims at optimizing the expected learning progress of a
contextual policy search method like C-REPS and, hence, minimizing the required number
of episodes to reach a desired level of performance. In contrast, the control policy πθ and
the upper-level policy πω are learned to maximize J(ω) directly. An illustration of the
components of contextual policy search is given in Figure 1.

We define the learning progress at time t when performing a trial in context s, with the
control policy parameters θ selected according to πω, as ∆s(t) = J(ωt+k) − J(ωt), where
ωt are the parameters learned by contextual policy search at time t. Note that contextual
policy search methods like C-REPS typically do not update ω after every rollout but only
after a certain number of rollouts k. Hence, it is more appropriate to define the learning
progress over the window k than between successive values of J(ωt).

The learning task on the task-selection level can now be framed as finding πβ such
that πβ selects contexts that maximize the expected learning progress Eπω{∆s(t)}. The
learning progress ∆s(t) is stochastic because the rollouts and the upper-level policy πω are
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Figure 1: Contextual policy search (left): A context vector s is given by the environment
according to some fixed distribution p(s), the upper-level policy πω(θ|s) gener-
ates the parameters of the control policy for s, the control policy is executed in
the environment and a reward r(s,θ) is obtained. A contextual policy search
component updates the upper-level policy based on the reward with the goal to
maximize J(ω). Active contextual policy search (right): The context vector s is
selected by the context selection policy πβ which will be adjusted by an active
context selection component based on the intrinsic reward rβ. rβ is an estimate
of the learning progress based on r(s,θ). Differing parts are marked in blue.

stochastic, hence the expectation. Furthermore, the learning progress is also non-stationary
since it depends on the quality of ωt: if J(ωt) is already close to the optimum, the typical
learning progress is smaller than the learning progress at the beginning of learning when
ωt is usually far from optimal.

We restrict ourselves to cases in which πβ can only select among a finite number K
of predetermined contexts {s1, . . . , sK} during learning. These K predetermined contexts
are, however, elements of a continuous context space S over which πω shall generalize and
where J(ω) is evaluated. The restriction to a discrete set of training contexts allows to
apply well-established multi-armed bandit algorithms. Choosing the discrete set of training
contexts can be based either on domain knowledge or on simple heuristics: for instance, for
low-dimensional context spaces, an equally spaced grid over the context space can be used
for training. In high-dimensional context spaces this would become infeasible due to the
course of dimensionality. Hence, in this situation sampling the set of training contexts from
a uniform random distribution over the continuous context space is more viable.

3.2 Intrinsic Reward Functions

Since Eπω{∆s(t)} is unknown to the agent and difficult to estimate because of its non-
stationarity, we propose several heuristic but easily computable reward functions rβ which
reward the agent for certain proxy criteria. These proxy reward functions can be considered
as means for intrinsic motivation of an agent (Barto et al., 2004), which drives it to engage in
activity that increases its competence in task solving on a larger time scale. In the empirical
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experiments, we evaluate which rβ is a good proxy for the actual expected learning progress.
Note that the heuristics that we propose are not exactly comparable to any query strategy
from supervised learning since the learning process in reinforcement learning in a specific
task is iterative unlike in typical supervised learning settings.

In a generalized form, we can write the proposed proxies of the learning progress as

rβ = f(r(st,θt)− b̂st),

where r(st,θt) is the return obtained in episode t with policy πθt in context st, b̂st is a
baseline term, and f is an operator. Note that the bandit algorithm addresses the stochas-
ticity in r(st,θt) and, hence, the heuristics usually need not account for this stochasticity
themselves.

3.2.1 Best-Reward Heuristic

This heuristic directly uses the reward obtained by the control policy πθ in task s in rollout
t as the proxy for the learning progress, that is rβ = r(s,θt). Thus b̂st = 0 and the operator
f is simply the identity. This heuristic corresponds to assuming that the agent makes the
most progress when it focuses on improving its performance in tasks in which it is already
performing well. The idea behind this heuristic is that we should first learn easy tasks
perfectly because this can help us to learn similar but more difficult tasks later on.

A potential problem of this heuristic are settings in which high reward does not corre-
spond to easy tasks, for instance when the maximum achievable reward differs in different
context. Additionally, the best-reward heuristic requires that knowledge can be transferred
very well between contexts. Otherwise it converges to the context with the highest rewards.

3.2.2 Diversity Heuristic

Quite opposite to the best-reward heuristic, this heuristic encourages to select tasks in which
the agent receives the worst reward. For this, the negative actual reward rβ = −r(s,θt)
is used. Thus b̂st = 0 and the operator f is simply f(x) = −x. The intuition for this
heuristic is that one should focus on the hardest tasks in which the current performance is
worst since in these tasks the potential for large improvements is high. This heuristic bears
similarities to the heuristic proposed by Ruvolo and Eaton (2013) for supervised learning
and is hence called “diversity” heuristic.

Similar to the best-reward heuristic, this heuristic might have problems in settings in
which the maximum achievable reward differs in different context and thus, the obtained
rewards might not be comparable. Another disadvantage appears in cases with unlearnable
contexts. The diversity heuristic would then focus on these unlearnable contexts.

3.2.3 1-step Progress Heuristic

This heuristic uses the difference of the last two rewards obtained in the respective context
as proxy for the actual learning progress, that is, rβ = r(s,θt)−r(s,θt̄), where t̄ is the index
of the previous rollout in context s. Thus the baseline is simply the last obtained reward
b̂st = r(s,θt̄) and the operator f is the identity. The heuristic can be seen as the most
straight-forward proxy for the learning progress as it replaces effectively the integration over
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Algorithm 1 Discounted Upper-Confidence Bound (D-UCB) (Kocsis and Szepesvári, 2006)

Require: K: number of tasks; γ: discounting factor; ξ > 0: some parameter controlling
the strength of padding; t: number of rollouts; i1, . . . , it: previously selected tasks;
r1, . . . , rt: previous rewards

1: if t < K then
2: return t # Sample each task at least once
3: else
4: for i ∈ {1, . . . ,K} do
5: ni ←

∑t
tj=1 γ

t−tj1{itj=i} # Discounted number of rollouts in task i

6: end for
7: n←∑K

i=1 ni # Discounted total number of rollouts
8: for i ∈ {1, . . . ,K} do
9: ri ← 1

ni

∑t
tj=1 γ

t−tjrtj1{itj=i} # Discounted mean reward in task i

10: ci ← 2B
√

ξ logn
ni

# Padding function for task i

11: end for
12: return arg maxi∈{1,...,K} ri + ci # Select task in which discounted UCB is maximal
13: end if

s and θ in J(ω) by single samples and uses the reward sample r(s,θt) as estimate for Rs,θt .
As it is based solely on differences of rewards rather than absolute values, it should be able
to cope better than the best-reward and diversity heuristic with situations, in which the
maximum achievable reward differs in different contexts.

A drawback of the 1-step progress heuristic is that it generates reward signals rβ with
high variance. Variance in rβ is inevitable because of the stochasticity of both the environ-
ment and the upper-level policy πω. However, since the baseline of this heuristic is the last
obtained reward, this baseline has also a high variance, which need not be the case.

3.2.4 Monotonic Progress Heuristic

Although bandit algorithms account for the stochasticity in the 1-step progress heuristic,
it might be useful to reduce already the variance of the intrinsic reward. We can use more
stable baselines such as the maximum reward of all previous rollouts in the context s, that
is: b̂s = max

t:st=s
r(s,θt). Furthermore, since the learning progress is typically monotonically

increasing, using the operator f(x) = max(0, x) to avoid negative rβ appears to be reason-
able. The resulting heuristic is denoted as “monotonic progress heuristic” and has the form
rβ = max(0, r(s,θt)− max

t:st=s
r(s,θt)).

The heuristic considers the learning progress to be monotonic and strictly positive. In
comparison to the 1-step progress heuristic, the intrinsic reward rβ will be more often zero
and its baseline has less variance since unsuccessful explorative rollouts have no effect on
its value.
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3.3 Learning Context Selection Policies

Since the reward rβ is stochastic, we propose to use a learning algorithm for determining
πβ. As we consider only a finite number of predetermined contexts, the problem of learning
πβ can be framed as a MABP, where the contexts correspond to the “arms” and rβ to
the bandit’s reward. Due to the non-stationarity of rβ, standard UCB-like algorithms
are not sufficient as they expect the rewards to be drawn from a non-changing probability
distribution. In contrast, we propose to use D-UCB (see Algorithm 1; Kocsis and Szepesvári,
2006) for active context selection since it explicitly addresses changing reward distributions.
For this, D-UCB estimates the instantaneous expected reward by a weighted average of past
rewards where higher weight is given to recent rewards. More specifically, a discount factor
γ ≤ 1 is introduced and the reward that has been obtained at time step tj is weighted
with the factor γt−tj at time t. The central idea of D-UCB is that the discounting can
compensate for continuously but slowly changing reward distributions.

The upper confidence bound of the D-UCB algorithm for arm i takes the form ri + ci

where ri = 1
ni

∑t
tj=1 γ

t−tjrtj1{itj=i} is the discounted mean and ci = 2B
√

ξ logn
ni

is the

padding function which controls the width of the confidence intervals. In this formulas,
ni corresponds to the discounted number of draws of arm i and n to the total discounted
number of draws (see Algorithm 1). Furthermore, rtj is the reward obtained in the tj-th
rollout and itj is the arm played in this rollout. 1{itj=i} is the Kronecker delta which is one

if the equality holds and zero otherwise. B and ξ are parameters of the algorithm which
control the width of the confidence intervals, where B is an upper bound on the rewards
and ξ needs to be chosen appropriately.

4. Model of the Contextual Learning Problem

In this section, we show how contextual policy search algorithms can benefit from active
context selection by means of a simple artificial model of the contextual learning prob-
lem. The model abstracts away the contextual policy search which is possible because our
approach treats it as a black box (see Figure 1).

We assume that the context space S = {0, 1, . . . , 9} is discrete and associated to each
context s is a hidden value ls ∈ [0, 100] that indicates the agent’s competence in s, that is,
how well s has been learned. Large values of ls simulate that the current policy parameters
in context s are close to the optimal policy parameters θ∗(s). The true reward in context
s, which is given by

r(s) = (1 + exp(−0.1ls + 4))−1 + bs,

depends directly on ls. r(s) corresponds to a scaled and shifted logistic function so that
r(s) ≈ bs if ls ≈ 0 and r(s) ≈ 1 + bs if ls ≥ 100. In real learning problems, different
tasks often have a different maximum reward. To simulate this, we artificially create a
true reward baseline bs for each context. The baseline is randomly sampled from a normal
distribution with zero mean and standard deviation σb. The true reward is not observed
directly. Instead, we add Gaussian noise with zero mean and standard deviation σr to
simulate trial and error of a learning agent.

We assume that each context has an intrinsic complexity which controls how much the
agent learns in a single trial in this context. This complexity can change abruptly between
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Figure 2: Relative learning curves of several active context selection methods. The perfor-
mance of the round robin context selection baseline (JRR) is subtracted from all
learning curves. The values of the standard deviation for reward measurements
σr and of the standard deviation for the baseline σb have been varied. After 1000
episodes the monotonic progress heuristic has approximately reached the upper
bound of the performance Jopt.

neighboring contexts even in continuous domains. This model is motivated for instance
by reaching tasks, in which it might happen that a slight modification of the goal position
requires that the agent needs to avoid an obstacle that blocks the direct path. As a result,
the slightly different context corresponding to the blocked goal would have a significantly
worse expected learning progress than its neighbors and its solution cannot be transferred
well. We model this behavior of learning progress and skill transfer by assigning a different
learning progress factor ws ∈ {0.12, 0.22, . . . , 12} to each context randomly, where large ws
corresponds to a larger improvement of competence after one additional trial in s.

Each time, the reward of a context st will be queried, the values ls of each contexts s
will be updated to simulate the learning progress according to the update rule

l
(t)
s = l

(t−1)
s + wst · 0.5|s−st|,

which models that experience obtained in one context generalizes to other contexts based
on their similarity (measured here using the euclidean distance). Contexts which are easier
learnable (large ws) lead to higher overall learning progress at the beginning. However, it
does not make sense to focus at the context with maximum ws indefinitely because r(s)
saturates once ls ≥ 100. Hence, the estimate of the learning progress has to be adaptive.
Since we only have a discrete set of contexts, we can exactly compute J =

∑
s r(s) and the

upper bound of J is Jopt = 10 +
∑
s bs.

In addition to our proposed methods, we examine the context generation and selection
method from SAGG-RIAC and context selection in a fixed order (round robin). In order to
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Figure 3: Selected contexts per episode with SAGG-RIAC and monotonic progress heuristic
and D-UCB (with σr = 0). The learning progress factor ws of each context is
displayed on the right side.

show different properties of the active context selection methods, we display the number of
episodes versus the relative J in comparison to round robin selection in Figure 2. We have
used the parameters γ = 0.95 and ξ = 10−8 in all heuristics that are based on D-UCB. For
the diversity and the best-reward heuristics we have used B = 1 and for all others B = 0.25.
For SAGG-RIAC, we set the maximum size of samples per region before we split the region
to 8 and the window size which is used to compute the interest value is 10.

We can see that despite different learning progress factors, round robin context selection
is a good baseline. The best-reward heuristic that focuses on the best learnable context is a
good heuristic at the beginning. However, when the best context approaches the optimum
reward, the learning progress decreases and approaches zero. At this time it would be
better to switch to a context in which greater learning progress can be achieved. This will
be even more significant for larger context spaces because the transferability of knowledge
decreases with the size of the context space and the complexity of the different contexts.
In addition, an artificial baseline for each reward (see Figure 2 (c) and (d)) leads to severe
degradation because the context with maximum r(s) is not necessarily the context with
maximum learning progress. The diversity heuristic does not work well either. This is
because the differences of the expected learning progress are too large between contexts
and it will select the worst learnable context.

The 1-step progress heuristic and monotonic progress heuristic essentially focus on the
same context as the best-reward heuristic at the beginning. But they switch to other
contexts with greater learning progress when the learning progress in the best learnable
context decreases. Moreover, the 1-step progress and monotonic progress heuristics are
invariant under different baselines. The heuristics behave identically when the reward is
noise-free, that is σr = 0. If there is noise (which simulates the exploration of the agent),
the monotonic progress heuristic is usually better (see Figure 2 (b) and (d)).

A context selection method that differs from all others is the context generation and
selection method from SAGG-RIAC. As it has been described in Section 2.2, it is designed
for continuous context spaces. However, it has a crucial disadvantage in our model of the
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learning progress: we assume that the expected learning progress of neighboring contexts
can change abruptly. This is a a problem for SAGG-RIAC because it focuses on regions of
the context space that have a high reward derivative. Among these are not only regions
with a high learning progress but also regions with abruptly changing learning progress. In
Figure 3 we can see which contexts have been selected by SAGG-RIAC during the simulated
learning process: it focuses most of the time on the region around the contexts 3, 4 and 5
because of the greatly varying learning progress factor ws in this region, which results in a
high competence derivative. Therefore, a significant part of the explored contexts are not
informative because the context 4 has a very low learning progress.

The monotonic progress heuristic, in contrast, selects most of the time tasks with a high
learning progress as we can see in Figure 3. At the beginning, it focuses on the context
3 which has the highest ws. After some time, when the learning progress in this context
saturates, it concentrates on other contexts. At the end it concentrates on the contexts that
have not been learned perfectly yet even though they have a low intrinsic learning progress
factor.

5. Results

We provide an empirical evaluation of the proposed methods on an artificial contextual
benchmark problem in Section 5.1 and in two ball throwing tasks with a simulated Mit-
subishi PA-10 in Section 5.2.

5.1 Contextual Function Optimization

In this section, we evaluate the proposed approach on an artificial test problem, compare it
to reasonable baseline methods, and analyze the effect of different intrinsic reward heuris-
tics. The test problem is chosen such that some contexts are harder in the sense that the
parameters θ need to be chosen more precisely to reach the same level of return. By fo-
cusing on learning primarily the parameters θ for these contexts, active context selection
should be able to outperform a uniform random context selection.

5.1.1 Problem Domain

The context is denoted by s ∈ S = [−1, 1]ns . We use the objective function

f(θ, s) = −||Aθ − s||2 · ||s||22 +

ns−1∑
i=0

si,

where θ ∈ Rnθ denotes the low-level parameters and the matrix A ∈ [0, 1]nθ×ns is chosen
uniform randomly such that it has rank ns (nθ > ns). The objective function consists of
three terms: the parameter error −||Aθ−s||2 which can be influenced by the agent’s choice
of θ, the context complexity ||s||22, which controls how strongly the agent’s parameter error
deteriorates the task performance, and the baseline

∑ns−1
i=0 si, which controls the maximum

value in a context. Since A has rank ns, θ can always be chosen such that the parameter
error becomes 0 and thus the optimal value f∗(s) is equal to the baseline

∑ns−1
i=0 si. However,

if the agent chooses θ suboptimally, the same parameter error has different effects on the
value of f in different contexts: in contexts with high context complexity, the value of f will
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Figure 4: Learning Curves of Different Task Selection Heuristics. A contextual upper-level
policy has been learned using C-REPS for different active task-selection strategies.
The logarithm of the cost |f(θ, s)−f∗(s)| averaged over 100 test contexts is used
as performance measure. Shown are mean and standard error of the mean for 20
runs of 2500 rollouts.

be considerably smaller than f∗, while the difference will be less pronounced in contexts
with lower context complexity. Most extremely, for s = 0, the choice of θ is arbitrary since
f will always be equal to f∗. Thus, an agent should focus on learning θ in the contexts
with high complexity if its objective is to minimize |f(θ, s)− f∗(s)|.

5.1.2 Comparison of Task Selection Heuristics

In a first experiment, we compare task selection with D-UCB for different intrinsic reward
heuristics to two baseline methods. In this experiment, training takes place on 25 contexts
placed on an equidistant grid over a context space with ns = 2 dimensions; that is, the set of
contexts that will be used for training is Strain = [−1,−1

2 , 0,
1
2 , 1]2. The objective of learning,

however, is to generalize πω over the entire context space S, that is, to choose πω(θ|s) such
that f(θ, s) is maximized. As baseline, we use a “Random” task-selection heuristic, which
selects uniform randomly among the training contexts. Moreover, we use a “Corner” task-
selection heuristic, which selects the four contexts, where the context complexity is maximal,
that is s = (±1,±1), in a round-robin fashion.

For the D-UCB, we have used B = 1.0, γ = 0.99, and ξ = 10−8. The external reward
r(s,θ), based on which the intrinsic reward rβ is computed, is set to r(s,θ) = f(θ, s) where
θ = πω(s) is sampled from the upper-level policy for the given context s. Note that the
rewards in s have high variance because of the agent’s explorative behavior and are also
non-stationary since they depend on the current upper level policy πω. Contextual policy
search was conducted with C-REPS with ε = 2.0, N = 50, and performing an update every
25 rollouts. The evaluation criterion is the expected value of |f(πω(θ|s), s)− f∗(s)| of the
learned contextual policy πω over the context space S, where exploration of πω is disabled.
We approximate this quantity by computing the average return of πω on 100 test contexts
sampled uniform randomly from S.
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Figure 5: Task preferences of different task-selection strategies during the first 250 rollouts
of training. Shown is the logarithm of the mean selection ratio.

Figure 4 shows the learning curves for different task-selection strategies. Figure 5 shows
which contexts (tasks) are selected by the different strategies during the first 250 rollouts
of training. D-UCB with the “Best-Reward” and the “Diversity” intrinsic reward performs
significantly worse than a uniform random task selection. The reason for this is that “Best-
Reward” focuses mostly on tasks where the baseline term is large (upper-right area in Figure
5) or where the task complexity is small (central area). Conversely, “Diversity” focuses on
areas where the baseline term is small. Both strategies are too imbalanced if the baseline
term’s contribution is not negligible.

D-UCB with the “1-step Progress” intrinsic reward performs equally bad during the first
250 rollouts. The reason for the low initial progress is that the “1-step Progress” intrinsic
reward not only rewards progress but also penalizes regression. However, regression is
inevitable during the initial explorative phase. Because of this, this intrinsic reward heuristic
focuses initially on contexts with small context complexity where the parameter error and
thus the explorative behavior have only a small effect on the actual reward. After the initial
explorative phase, this intrinsic reward gets more informative and the corresponding active
task selection outperforms uniform random task selection in the long run.

D-UCB with the “Monotonic Progress” intrinsic reward performs considerably better
than both D-UCB with the other heuristics and uniform random task selection. The reason
for this is that it initially favors complex contexts (the outer areas in Figure 5 with ||s||2 �
0), where the potential reward improvement is large, without any preference for tasks with
small of large baseline value. This task-selection strategy works well and results in a large
and stable learning progress. Based on this, we have tested a second baseline denoted as
“Corners”, which selects the four contexts with maximum context complexity in a round-
robin fashion. While this resulted in a very rapid learning progress initially, it is slightly
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Figure 6: Learning Curves for Different Context Dimensionality. Shown are mean and
standard error of the mean for 20 runs of 5000 rollouts.

suboptimal and unstable in the long run since only four of the tasks are ever sampled.
Conversely, the “Monotonic Progress” intrinsic reward leads to a more balanced selection
of tasks when converging and is thus favorable in the long run. In summary, D-UCB with
the “Monotonic Progress” intrinsic reward selects tasks in a way which increased C-REPS’
learning progress considerably and proved to be stable at the same time.

5.1.3 Dimensionality of the Context Space

In a second experiment, we compare the performance of D-UCB to uniform random task
selection for different dimensionality of the context space. A discrete set Strain of 25 contexts
for training has been generated by selecting the k-the context sk uniform random from Rns
under the constraint ||sk||2 = k/25. The set of test contexts has been generated in the
same way but with an other random seed. D-UCB has been combined with the “Monotonic
Progress” heuristic. The D-UCB parameters have been set to B = 1.0, γ = 0.99, and ξ =
10−8, and the C-REPS parameters to ε = 1.0 and N = 25n2

s, and an update was performed
every 13n2

s rollouts. As baseline, two different random context selection strategies have been
tested: “Random (discrete)” chooses tasks uniform randomly from Strain while “Random
(continuous)”chooses tasks uniform randomly from Rns under the constraint ||sk||2 ≤ 1.

Figure 6 shows the learning curves for ns ∈ {1, 2, 3, 4}. For any value of ns, D-UCB
outperforms random task selection in terms of the initial learning progress (not in terms
of the final performance). One can further see that selecting a finite, discrete set of train-
ing contexts from the continuous context space does not necessarily impair performance;
conversely “Random (discrete)” typically performs slightly better than “Random (continu-
ous)”. While the general learning progress decreases considerably for higher dimensionality
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ns, this is not directly an issue of the task-selection strategy (since D-UCB still outperforms
random task selection) but rather of the underlying contextual policy search method. Thus,
the results show that active context selection with D-UCB works satisfyingly while higher
dimensional context spaces remain a general challenge for contextual policy search.

5.2 Generalize Throwing Movements

Figure 7: Visualization of the simulated
Mitsubishi PA-10 throwing a
ball.

In this section, we consider the problem of learn-
ing to throw a ball at a given target. A similar
setting has been investigated by Wirkus et al.
(2012), where the objective was to learn throw-
ing an object at a specified target based on a for-
ward model of the system. In our experiments,
the target can be located at different positions
in a predetermined area on the ground and we
do not provide any model of the system, making
it a contextual model-free policy search problem
with the target position being the context. We
consider two different reward functions for this
experiment. One reward function is continuous
(grid problem) while the other has discontinu-
ities and flat regions without a “reward gradi-
ent” (dartboard problem), resulting in a setting
with easy and more difficult tasks. We provide
an empirical evaluation on the grid problem and
apply the gained insight on the dartboard prob-
lem. In our experiments, we use a simulated
Mitsubishi PA-10 robot arm with seven joints
for throwing (see Figure 7).

5.2.1 Policy Representation

A throwing behavior in this experiment consists of a sequence of two movement primitives
(DMPs), where the first corresponds to the strike out and the second one to the actual
throwing movement. Both primitives have a duration of τ1 = τ2 = 0.5 s. The movement
primitives define joint trajectories directly for the seven joints of the Mitsubishi PA-10. The
parameters of the two DMPs include the weights of the forcing terms and the respective
meta-parameters (see Section 2.1). These parameters have been initialized such that the
resulting throw hits the ground position (−3.55,−3.55), where (0, 0) is the ground position
at which the PA-10 is mounted and the unit of the coordinate system is in meter. Some
of the meta-parameters of the initial policy are to be adapted later on such that other
ground positions are hit. These include the final state of the first movement primitive g1

and the velocities at the end of the two movement primitives ġ1, ġ2. Instead of modifying
θ = (g1, ġ1, ġ2) directly, we use the values from the initial policy θ0 as the base and we
modify the offset εt so that θt = θ0 + εt. The weights w of the forcing terms of the two
primitives and the other movement primitives remain fixed during this adaptation. Thus,
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the actual contextual learning task consists of finding a mapping for 3 · 7 = 21 parameters
such that different target positions on the ground are hit.

5.2.2 Methods

We use C-REPS for contextual policy search with the context s which contains the Cartesian
coordinates of the target position for the throw. The mapping ϕ projects the context to
polar coordinates and generates all quadratic terms of the polar coordinates. This mapping
results from the constraint of C-REPS to match feature averages instead of the actual
context distribution, which would result in an infinite number of constraints (Deisenroth
et al., 2013). A policy update is performed after every 50 trials and a memory of at most
300 trials is used for the update. This memory consists of the best 300/K trials for each of
the K tasks, which results in an update that is similar to importance sampling in PoWER
(Kober and Peters, 2011). We restricted the maximum Kullback-Leibler divergence of the
old and new policy distributions to ε = 0.5, the initial weight matrix was set to W = 0,
and the initial covariance was set to Σ = σ2

0I with σ2
0 = 0.02. For D-UCB, we use γ = 0.99,

B = 10, 000 and ξ = 10−9 in all cases.

5.2.3 Grid Problem

We define two contextual learning problems in this setting whose main difference is the
structure of the reward function. The first reward function provides the squared distance
of the position hit by the throw to the target position as reward: r(s,θ) = −||s − bθ||22,
where s is the target and bθ are the Cartesian coordinates of the ball when it hits the
ground after executing policy πθ. In this problem, we generate an equidistant grid of 25
targets for training over the area [−3,−5] × [−3,−5]. Another set of 16 targets is used to
test the generalization. These targets form an equidistant grid in the area [−3.25,−4.75]×
[−3.25,−4.75]. While different contexts share the same reward function, learning them
might differ in complexity. Some of the relative positions of the target to the PA-10 arm
are harder to hit because of the kinematic structure of the arm. In addition, the distance
to the initial policy makes some contexts easier to solve by exploration than others.

We compared our methods to three baselines: continuous random sampling of contexts
from [−3,−5] × [−3,−5] (“Random (cont.)”), selection in a fixed order (“Round Robin”)
and the best policy that we have found in all experiments (“Best Policy”). On the left side
of Figure 8 the learning curves of several intrinsic reward heuristics are shown and on the
right side the best intrinsic reward heuristic is compared to the baselines.

The “Diversity” heuristic, which prefers selecting hard tasks in which a low reward is
obtained, performs worse than round robin or random selection. Thus, selecting the more
difficult tasks first is not beneficial to speed up learning in this setting. This effect might
be even more pronounced in cases where the most difficult tasks are unsolvable. The “Best-
Reward” heuristic performs worst here. We observed that it quickly converged to nearly
always selecting the same task and hence failed to learn a generalizable upper-level policy.
The reason for this behavior is that it encourages D-UCB to focus on the simplest task
first. Because it improves quickly in this task, the reward will be considerably greater than
the reward of the other tasks. Even though it periodically samples other tasks, the reward
in these tasks will typically be smaller and thus, D-UCB sticks to the same task. Selecting
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Figure 8: Left: Learning curves of several intrinsic reward heuristics for D-UCB in the grid
problem. We measured the average distance to the test targets. The curves and
the error bars show the mean and standard error of mean over 20 runs. “Best
Policy” indicates the performance of the best policy that we have generated in all
experiments. Right: Comparison of D-UCB with intrinsic reward based on the
monotonic progress with the baselines.

the tasks in which one can make the greatest estimated learning progress gives a significant
advantage in this problem. In contrast to the results in Section 5.1, the “1-step Progress”
heuristic is on a par with the “Monotonic Progress” heuristic. A possible reason for this is
that the inherent context complexities in this task do not vary as strongly as in the problem
in Section 5.1.

In comparison to the baselines, D-UCB under the monotonic progress intrinsic reward
is on a par with round robin selection and slightly worse than continuous random selection.
Continuous random sampling learns more quickly in the beginning because the comparison
of different methods is done on a set of test contexts that are maximally dissimilar from
the discrete training context set. Methods that use only the discrete set of training con-
texts during the training phase have thus a disadvantage compared to continuous random
sampling which typically samples closer to the test contexts.

In the long-term, however, D-UCB performs better than both baselines and its aver-
age performance gets close to the best policy’s performance. This shows that active task
selection can accelerate learning considerably and improve the reliability of the result of
contextual policy search. A potential reason why continuous random sampling performs
worse in the long term is that it cannot use the strategy otherwise employed in C-REPS,
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Figure 9: Left: The dartboard is divided into 81 quadrangular fields. Bull and bull’s eye
are regarded as one field, the rest belongs to one of the four circles (inner circle,
outer circle, doubles, and trebles). The initial policy given by θ0 would throw
at the center of the dartboard, that is the bull. Right: The target regions of
the bull, inner circle, and outer circle are greater than the corresponding fields
on the dartboard and overlap neighboring fields. Shown here are 5 of the 20
target regions of the inner circle. These target regions are only used to compute
the reward. Larger target regions can be assumed to make the corresponding
learning tasks easier.

namely to keep a separate history of samples per context of identical size (300/K rollouts
per context), because it does not encounter any context twice.

5.2.4 Dartboard Problem

As second scenario with the PA-10, we consider a problem which poses tasks of more
significantly varying complexity onto the agent. The targets are designed to correspond to
the fields on a dartboard. This virtual dartboard is placed on the ground in front of the
PA-10. Placing the dartboard on the ground instead of a wall was mainly done to simplify
implementation. The diameter is set to 1.4 m (real dartboards have a diameter of 0.451 m).
Each field is approximated by quadrangles (see Figure 9) and the center of this field is the
context of the task corresponding to the field. For each target, we assign a corresponding
target area which is usually the quadrangular field. For some tasks, we enlarge each side of
the quadrangular field by the factor 3.5 to build the corresponding target region (see Figure
9 for details). This will make these tasks considerably easier than others. The reward
function gives a constant negative reward outside of this target area and only provides a
reward gradient inside of the target area. The reward function is defined as

r(s,θ) =

{
−10,000

ds
||s− bθ||2 if bθ is within the target area of s

−10, 000 otherwise
,

where ds is the respective maximum distance to the center within the target area of context
s. Providing a constant reward outside of the target area complicates the problem compared
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Figure 10: Left: Final upper-level policy. The blue circles mark the center of each field,
the red squares that are connected to the corresponding centers with a red line
show the position at which the robot arm has actually thrown the ball. Right:
Accumulated average number of selections for different task categories. Larger
target areas and target areas that are closer to the initial policy are selected
more often at the beginning. The relative size in comparison to the smallest
target region is given in brackets in the legend.

to the grid setting as no reward gradient helps the agent in improving its policy if it does
not hit the target area, within which a reward gradient guides the agent to the center of the
field. Thus, the tasks corresponding to larger fields can be considered to be easier since it is
more likely that the agent finds a reward gradient during the initial exploration. The agent
should thus focus first on these tasks and select the more difficult tasks not until it has
improved its contextual policy so far that it is able to hit the corresponding target areas.

We trained with all 81 targets for 50, 000 trials and use the monotonic progress intrinsic
reward. The result is displayed in Figure 10: the learned policy hits the “bull”, 18 of 20
fields in the inner circle, 15 of 20 trebles, 20 of 20 fields in the outer circle, and 9 of 20
doubles. The overall mean error is 4.62 cm, the median error is 3.77 cm, and the maximum
error is 15.96 cm.

Doubles are the most difficult tasks to learn for the agent because they are far away
from the initial policy, the target region is small and we cannot transfer much knowledge
from neighboring tasks, because they are on the edge of the dartboard. For this reason,
some doubles have not been learned very well. In contrast, the trebles can be learned
easily, because the solution can be obtained approximately by transferring the solutions of
neighboring fields from the inner circle and the outer circle.

In Figure 10 we display which kind of tasks have been selected in the initial learning
phase. We can see that the inner circle and the outer circle, which have the greatest target
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regions are selected most often in the beginning. The targets from the inner circle are
selected even more often than the targets from the outer circle during the first 1,000 episodes
even though they are considerably smaller. This is because they are more likely to be reached
when exploring from the initial policy which throws at the center of the dartboard. For
the same reason trebles are selected more often than doubles at the beginning. After this
initial phase, the fields of the outer circle are selected more often because they are now
much easier to learn. The bull is so rarely selected because the initial policy will already
generate a very good result for this context, hence, improvement is hardly possible.

6. Conclusion and Outlook

We have considered the problem of active task selection in contextual policy search. The
hypothesis investigated in this paper is that learning all tasks with the same priority in a
round robin or random fashion is not always optimal, in particular if the tasks have different
characteristics which make some of them more difficult than others. We have proposed an
active task-selection heuristic based on the non-stationary bandit algorithm D-UCB which
learns to select tasks that have a large intrinsic reward. These intrinsic rewards can be
considered as proxies for the actual learning progress which encourage the agent to engage
in those tasks in which its performance is increasing the most. The underlying model of the
learning process assumes that each task has a different intrinsic expected learning progress
which might change abruptly in the context space and that knowledge can be transferred
between neighboring contexts.

Our empirical results have shown that active task selection can make a considerable
difference for the learning speed of contextual policy search. In general, we found that
a task-selection method should explore in the beginning, then focus on several easy tasks
to acquire some initial procedural knowledge, thereupon transfer knowledge to similar but
more difficult tasks, and concentrate in the end on those tasks that have not been learned
yet. Some of the proposed intrinsic reward heuristics provide a considerable advantage
over round robin or uniform random selection in our empirical evaluations on a contextual
function maximization problem and a simulated robotic ball throwing experiment.

We restricted ourselves to a discrete set of context vectors for training. In the future it
would be interesting to explore not only a discrete set of tasks but a continuous range of
task parameters such as arbitrary rather than grid-based target positions for ball throwing
as in Section 5.2.3. This could be modeled as a non-stationary continuum-armed bandit
problem. However, the non-stationary version of the continuum-armed bandit problem
(Agrawal, 1995a) has not been explored thoroughly yet.

Moreover, it would also be desirable to stop sampling of tasks for which the policy has
reached an acceptable level of performance, that is, tasks that can be regarded as solved.
Since the expected learning progress becomes very small in such tasks, an active context
selection mechanism should typically learn this automatically. However, since D-UCB as-
sumes non-stationary rewards, it will continue to sample such tasks as it assumes that the
expected reward could increase again. Active context selection algorithms which take the
property of the learning progress to converge to zero in the long run into account could thus
be candidates for improving over D-UCB.
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The goal of the proposed method is to reduce the wear and tear of (possibly robotic)
agents as well as the human intervention during learning. Selecting the context actively
typically requires some mechanism that sets the environment in the requested context. To
limit the amount of human intervention, it is very desirable that the agent can set the
desired context on its own. This is typically trivial in simulation. In real-world problems,
it can often be achieved by means of previously learned or hard-coded skills. In case that a
human supervisor needs to produce the requested context, the feasibility of active context
selection depends on the amount of work imposed on the human supervisor and thus, on
the specific task.

Among the kind of tasks for which we consider active contextual policy search to be
promising are: various kind of goal-directed reaching, hitting and throwing problems like
for example ball throwing, darts and hockey. Moreover, scenarios in which an agent can
select from a small set of predefined contexts, for example grasping one object from a set of
objects with varying size and shape, are promising. Another scenario could be that a robot
has to learn how to walk on a restricted set of different terrain surfaces, where the context
consists of the properties of the surfaces.

In the future, within the research we will conduct in the context of the project “Be-
haviors for Mobile Manipulation” (BesMan),2 we plan to evaluate the proposed approach
on different robotic target platforms, among others the humanoid robot AILA. One of the
challenges for this is to bridge the simulation-reality gap: multiple executions of the same
policy often have significantly different outcomes on actual robots like AILA due to different
initial states and other unobserved properties. Thus, the learning approach needs to be able
to deal with noise in the executions.
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Appendix A. Implementation of Contextual REPS

Contextual relative entropy policy search has been explained in detail by Deisenroth et al.
(2013) and Kupcsik et al. (2013). We summarize C-REPS in Algorithm 2. A stochastic
policy πω(θ|s) is used to generate low-level controllers πθ for a context s. In this paper, we
use a Gaussian policy with linear mean (Deisenroth et al., 2013) so that ω = (W ,Σ). After
collecting N experience tuples (si,θi, r(si,θi)) (lines 2-6), C-REPS determines a weight
di for each experience based on the context-dependent baseline V (s) = vTϕ(s) (lines 7-
10). With the obtained weights, C-REPS updates the policy through weighted maximum
likelihood (lines 11-17).

Implementing C-REPS is not straightforward. In our experiments and for our reward
functions it was sometimes numerically unstable. To improve the reproducibility of the

2. See http://robotik.dfki-bremen.de/en/research/projects/besman-1.html for more information.
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Algorithm 2 Contextual relative entropy policy search (C-REPS)

Require: ε: maximum Kullback-Leibler divergence between two successive policy distri-
butions; ϕ(s): extracts features from the context s; N : number of samples per update;
W : initial weights of upper level policy; Σ: initial covariance of upper level policy
distribution

1: while not converged do
2: for i ∈ {1, . . . , N} do
3: Select context si # For example, based on some specified task-selection method
4: θi ∼ N (W Tϕ(si),Σ) # Draw policy parameters
5: Obtain r(si,θi) # Return of policy πθi in environment with context si
6: end for
7: Solve constrained optimization problem [η,v] = arg minη′,v′ g(η′,v′), s.t. η > 0

g(η,v) = ηε+ vT ϕ̂+ η log

(
N∑
i=1

1

N
exp

(
r(si,θi)− vTϕ(si)

η

))

8: for i ∈ {1, . . . , N} do

9: di ← exp
(
r(si,θi)−vTϕ(si)

η

)
# Determine weight for each experience tuple

10: end for
11: for i ∈ {1, . . . , N} do # Prepare policy update
12: Φi = ϕ(si)

T

13: Θi = θTi
14: end for

15: D =

 d1 0
. . .

0 dN


16: W new ← (ΦTDΦ)−1ΦTDΘ # Update policy mean

17: Σnew ←
∑
i di

(
∑
i di)

2−∑i d
2
i

(Θ−ΦW )T D (Θ−ΦW ) # Update exploration covariance

18: end while

results, we explain some of the modifications that we had to make in addition to the log-
sum-exp trick (in line 7) that is already mentioned by Deisenroth et al. (2013).

The weighted least squares problem is sometimes ill-conditioned. Hence, we added the
regularization term λI so that

W new ← (ΦTDΦ + λI)−1ΦTDΘ.

In our experiments, we use λ = 10−4.

At the end of the learning process, η sometimes becomes very small which causes nu-
merical problems. It is helpful to use an other lower bound ηmin, so that η > ηmin, for
example ηmin ∈ (10−6, 10−4).

For very large negative rewards the weights di are sometimes so small that they cannot
be represented properly with 64-bit floating-point numbers. But we can replace di by the
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softmax-like term

di =
di∑
j dj

=
exp

(
r(si,θi)−vTϕ(si)

η

)
∑

j exp
(
r(sj ,θj)−vTϕ(sj)

η

) ,
which does neither change the weights of the linear policy W new, nor the covariance Σnew.
Softmax can be implemented numerically stable:

di =
exp

(
r(si,θi)−vTϕ(si)

η

)
∑

j exp
(
r(sj ,θj)−vTϕ(sj)

η

) =
exp

(
r(si,θi)−vTϕ(si)

η −m
)

∑
j exp

(
r(sj ,θj)−vTϕ(sj)

η −m
) ,

where m = max
i

r(si,θi)−vTϕ(si)
η .

In addition, for the experiments in Section 5.2 we use a kind of importance sampling to
reuse experience tuples from previous rollouts: for every task we maintain a memory of the
best N/K rollouts, where N is the maximum number of samples for a policy update and
K is the number of tasks. Note that this might have a negative effect if there are multiple
local optima that are separated by regions with low return in some context s.

References

Rajeev Agrawal. The continuum-armed bandit problem. SIAM Journal on Control and
Optimization, 33(6):1926–1951, 1995a.

Rajeev Agrawal. Sample mean based index policies with O(log n) regret for the multi-armed
bandit problem. Advances in Applied Probability, 27(4):1054–1078, 1995b.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrin-
sically motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):
49–73, 2013.

Andrew G. Barto, Satinder Singh, and Nuttapong Chentanez. Intrinsically motivated learn-
ing of hierarchical collections of skills. In Proceedings of the 3rd International Conference
of Developmental Learning, pages 112–119, LaJolla, CA, USA, 2004.
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Abstract

Trace-norm regularization is a widely-used and successful approach for collaborative fil-
tering and matrix completion. However, previous learning guarantees require strong as-
sumptions, such as a uniform distribution over the matrix entries. In this paper, we bridge
this gap by providing such guarantees, under much milder assumptions which correspond
to matrix completion as performed in practice. In fact, we claim that previous difficulties
partially stemmed from a mismatch between the standard learning-theoretic modeling of
matrix completion, and its practical application. Our results also shed some light on the
issue of matrix completion with bounded models, which enforce predictions to lie within a
certain range. In particular, we provide experimental and theoretical evidence that such
models lead to a modest yet significant improvement.

Keywords: collaborative filtering, matrix completion, trace-norm regularization, trans-
ductive learning, sample complexity

1. Introduction

We consider the problem of matrix completion, where the goal is to predict entries of an
unknown matrix based on a subset of its observed entries. A popular approach to achieve
this is via trace-norm regularization, where one seeks a matrix that agrees well with the
observed entries, while constraining its complexity in terms of the trace-norm. The trace-
norm is well-known to be a convex surrogate to the matrix rank, and has repeatedly shown
good performance in practice (Srebro et al., 2004; Salakhutdinov and Mnih, 2007; Bach,
2008; Candès and Tao, 2009).

However, in terms of distribution-free guarantees, previous results on trace-norm reg-
ularization have been surprisingly weak. Most non-trivial guarantees (e.g., Srebro and
Shraibman, 2005; Candès and Tao, 2009; Candès and Recht, 2009) assume that the ob-
served entries are sampled uniformly at random. In most matrix completion tasks, this is
an extremely unrealistic assumption. For example, in the Netflix challenge data set, where
the matrix contains the ratings of users (rows) for movies (columns), the number and distri-
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bution of ratings differ drastically between users. Modeling such data as a uniform sample
is not a reasonable assumption. Another paper (Negahban and Wainwright, 2010) studied
the problem of matrix completion under a non-uniform distribution. However, the analy-
sis is still not distribution-free, and requires strong assumptions on the underlying matrix.
Moreover, the results do not apply to standard trace-norm regularization, but rather to a
carefully re-weighted version of trace-norm regularization.

In practice, we know that standard trace-norm regularization works quite well even
for data which is very non-uniform. Moreover, we know that in other learning problems,
one is able to derive distribution-free guarantees, and there is no a-priori reason why this
should not be possible here. Nevertheless, obtaining a non-trivial guarantee for trace-
norm regularization has remained elusive. This partially motivated work on alternative
complexity measures for matrix completion, such as the max-norm and weighted variants
of the trace-norm (see further discussion below).

In this paper, we bridge this gap between our theoretical understanding and practical
performance of trace-norm regularization. We show that by adding very mild assumptions,
which correspond to matrix completion as performed in practice, it is possible to learn
in a distribution-free manner by observing O(n3/2) entries from an m × n matrix (where
m ≤ n, and for a reasonable trace-norm regime). Moreover, this bound is tight. When
m = Θ(n), this corresponds to viewing a vanishingly small portion of the entries, hence we
get a non-trivial learning guarantee. In fact, we claim that the difficulties in providing such
guarantees partially stemmed from a mismatch between the standard theoretical modeling
of matrix completion, and its practical application. We emphasize that our bounds are
weaker than previous bounds in the literature, which required observing as few as Õ(n)
entries (up to log factors). However, these bounds hold only under restrictive distributional
assumptions, whereas our bounds hold under any distribution, and are provably tight in
such a distribution-free setting.

First, we show that one can obtain such guarantees, if one takes into account that the
values to be predicted are bounded. For example, in predicting movie ratings, it is known
in advance that the ratings are on a scale of (say) 1 to 5, and practitioners usually clip their
predictions to be inside this range. While this seems like an almost trivial operation, we
show that taking it into account has far-reaching implications in terms of the theoretical
guarantees. The proof relies on a decomposition technique which might also be useful for
regularizers other than the trace-norm.

Second, we argue that the standard inductive model of learning, where the training data
is assumed to be sampled i.i.d. from some distribution, may not be the best way to analyze
matrix completion. Instead, we look at the transductive model, where sampling of the data
is done without replacement. In the context of matrix completion, we show this makes a
large difference in terms of the attainable guarantees.

Our results show that a transductive model, and boundedness assumptions, play an im-
portant role in obtaining distribution-free guarantees. This relates to a line of recent works,
which suggest to incorporate prior knowledge on the range of predicted values into the
learning process, by explicitly bounding the predictions. We provide an empirical study,
which indicates that this indeed provides a modest, yet significant, improvement in per-
formance, and corroborates our theoretical findings. Finally, we discuss how recent work,
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which appeared since the preliminary version of this paper was published, relate to and
strengthen our observations.

The paper is structured as follows. We begin by describing the setting and the notation
we use in Section 2, and introduce the sample complexity issues of matrix completion with
the trace norm in Section 3. In Section 4, we show how we can non-trivially learn with the
trace-norm in an inductive i.i.d. setting, under boundedness assumptions. In Section 5, we
show how similar performance can be ensured if we switch from an inductive setting to a
transductive setting, where each entry appears only once in the data. We provide matching
lower bounds in Section 6. In Section 7, we experimentally investigate how boundedness
assumptions affect practical performance. Section 8 contains a discussion of how some
recent works relate to our paper, and Section 9 contains full proofs of our results. We end
with a discussion and some open issues in Section 10.

2. Setting

Our goal is to predict entries of an unknown m × n matrix X, based on a random subset
of observed entries of X. A common way to achieve this, following standard learning
approaches, is to find an m × n matrix W from a constrained class of matrices W, which
minimizes the discrepancy from X on the observed entries. More precisely, if we let S =
{iα, jα} denote the set of (row,column) observed entries, and ` is a loss function measuring
the discrepancy between the predicted and actual value, then we solve the optimization
problem

min
W∈W

1

|S|

|S|∑
α=1

`(Wiα,jα , Xiα,jα), (1)

An important and widely used class of matrices W are those with bounded trace-norm
(sometimes also denoted as the nuclear norm or the Ky-Fan n norm). Given a matrix W ,
its trace-norm ‖W‖tr is defined as the sum of the singular values. The class of matrices with
bounded trace-norm has several useful properties, such as it being a convex approximation
of class of rank-bounded matrices (e.g., Srebro and Shraibman, 2005). Thus, we can often
optimize Equation (1) in a computationally tractable manner, learning predictors which
are competitive with low-rank matrices. The trace-norm of any m × n matrix W is at
least ‖W‖F and at most Rank(W )‖W‖F , where ‖W‖F is the Frobenius norm (Horn and
Johnson, 1985), and therefore the trace-norm of constant-rank m×n matrices with bounded
entries is Θ(

√
mn). Therefore, we wish to attain learning guarantees which are non-trivial

when the trace norm is at least on the order of t = Θ(
√
mn). However, our theorems will

hold for any t.

For now, we will consider the inductive model of learning, which parallels the standard
agnostic-PAC learnability framework. The model is defined as follows: We assume there
exists an unknown distribution D over {1, . . . ,m} × {1, . . . , n}. Each instantiation (i, j)
provides the value Xi,j of an entry at a randomly picked row i and column j. An i.i.d.
sample S = {iα, jα} of indices is chosen, and the corresponding entries {Xiα,jα} are re-
vealed. Our goal is to find a matrix W ∈ W such that its risk (or generalization error),
E(i,j)∼D [`(Wi,j , Xi,j)], is as close as possible to the smallest possible risk over all W ∈ W.
It is well-known that this can be achieved by solving the optimization problem in Equa-
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tion (1), if we can provide a non-trivial uniform sample complexity bound, namely a bound
on

sup
W∈W

Ei,j [`(Wi,j , Xi,j)]−
1

|S|

|S|∑
α=1

`(Wiα,jα , Xiα,jα)

 . (2)

A major focus of this paper is studying the difficulties and possibilities of obtaining such
bounds.

3. Sample Complexity Bounds for the Trace-Norm

Consider the class of trace-norm constrained matrices, W = {W : ‖W‖tr ≤ t}. Although
learning with respect to this class is widely used in matrix completion, understanding its
generalization and sample-complexity properties has proven quite elusive. Sample complex-
ity bounds of the form O(

√
(m+ n)/|S|) (when t = Θ(

√
mn), and ignoring logarithmic

factors) were obtained under the strong assumption of a uniform distribution over the ma-
trix entries (Srebro and Shraibman, 2005). However, this assumption does not correspond
to real-world matrix completion data sets, where the distribution of the revealed entries
appears to be highly non-uniform. Other works, which focused on exact matrix completion
(e.g., Candès and Tao, 2009; Candès and Recht, 2009), also assume a uniform sampling
distribution.

The bounds in Srebro and Shraibman (2005) are based on the Rademacher complexity of
the class W, and will be utilized in our analysis as well. Formally, we define the (empirical)
Rademacher complexity of a hypothesis class W combined with a loss function `, with
respect to a sample S, as

RS(` ◦W) = Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σα`(Wiα,jα , Xiα,jα)

 , (3)

where σ1, . . . , σ|S| are i.i.d. random variables taking the values −1 and +1 with equal
probability.

Rademacher complexities play a key role in obtaining sample complexity bounds, ei-
ther in expectation or in high probability. The following is a typical example (based on
Boucheron and Lugosi, 2005, Theorem 3.2):

Theorem 1 The expected value of Equation (2) is at most 2RS(`◦W). Moreover, if there is
a constant b` such that supi,j,W∈W |`(Wi,j , Xi,j)| ≤ b`, then for any δ ∈ (0, 1), Equation (2)

is bounded with probability at least 1− δ by 2RS(` ◦W) + b`
√

2 log(2/δ)/|S|.

In general, the dominant term in the bound above is the Rademacher complexity RS(`◦W).
Thus, if we can upper-bound the Rademacher complexity by a quantity much smaller than 1,
we get a non-trivial upper bound on Equation (2). Such a bound implies that the empirical
risk (or average loss over the training set) is close to the true risk uniformly for all W ∈ W,
and therefore that solving Equation (1) will lead to a predictor with near-optimal risk.

Unfortunately, for the class W = {W : ‖W‖tr ≤ t} and general distributions over the
matrix entries, the Rademacher complexity can be large, leading to vacuous bounds. To see
why, suppose that the loss function ` is 1-Lipschitz in its first argument. Then the standard
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way to analyze Equation (3) (see Bartlett and Mendelson, 2003) is to use the contraction
principle to upper bound it by

Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σαWiα,jα

 ,
and then using Hölder’s inequality to upper bound it by

Eσ

[
sup
W∈W

1

|S|
‖Γ‖sp‖W‖tr

]
= t

1

|S|
E[‖Γ‖sp],

where Γ is a matrix whose (i, j)-th entry is defined as
∑

α:iα=i,jα=j σα, and ‖ · ‖sp is the
spectral norm (i.e., the largest singular value), which is well-known to be dual to the trace-
norm (Fazel et al., 2001). However, if for instance all σα are on the same entry i, j, then
E[‖Γ‖sp] equals E[|

∑
α σα|] = Θ(

√
|S|), leading to a bound of the form O(t/

√
|S|). As

discussed earlier, t is typically at least on the order of
√
mn, in which case we get a bound

on the Rademacher complexity which is O(
√
mn/|S|) — smaller than 1 only when the

sample size |S| is larger than the total number mn of matrix entries. It is a trivial bound,
since the entire goal of matrix completion is prediction based on observing just a small
subset of the matrix entries.

Unfortunately, this bound appears impossible to improve in general (see section 6.2.2 in
Srebro, 2004). Srebro and Shraibman (2005) circumvent this by imposing a strong uniform
distribution assumption, under which a tighter bound is attainable. The main drive of our
paper is that by modifying the setting in some very simple ways, which often correspond
to matrix completion as done in practice, one can obtain non-trivial learning guarantees
without any distributional assumptions.

4. Results for the Inductive Model

In this section, we show that by introducing boundedness conditions into the learning prob-
lem, one can obtain non-trivial bounds on the Rademacher complexity, and hence on the
sample complexity of learning with trace-norm constraints.

We will start with the case where we actually learn with respect to the hypothesis class
of trace-norm-constrained matrices, W = {W : ‖W‖tr ≤ t}, and the only boundedness is in
terms of the loss function:

Theorem 2 Consider the hypothesis class W = {W : ‖W‖tr ≤ t}. Suppose that for
all i, j the loss function `(·, Xi,j) is both b`-bounded and l`-Lipschitz in its first argument:

Namely, that `(Wi,j , Xi,j) ≤ b` for any W, i, j, and that
|`(Wi,j ,Xi,j)−`(W ′

i,j ,Xi,j)|
|Wi,j−W ′

i,j |
≤ l` for any

W,W ′, i, j. Then

RS(` ◦W) ≤

√
9Cl`b`

t(
√
m+

√
n)

|S|
,

where C is the universal constant appearing in Theorem 8.
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When t = Θ(
√
mn), the theorem implies that a sample of size O(n

√
m+m

√
n) is suffi-

cient to obtain good generalization performance. We note that the boundedness assumption
is non-trivial, since the trace-norm constraint does not imply entries of constant magnitude
(the entries can be as large as t for a matrix whose trace norm is t). On the other hand, as
discussed earlier, the obtainable bound on the Rademacher complexity without a bound-
edness assumption is no better than O((m + n)/

√
|S|), which leads to a trivial required

sample size of O((m+n)2). Moreover, we emphasize that the result makes no assumptions
on the underlying distribution from which the data was sampled. The proof is presented in
Subsection 9.1. We note that it relies on a decomposition technique which might also be
useful for regularizers other than the trace-norm.

An alternative way to introduce boundedness, and get a non-trivial guarantee, is by
composing the entries of a matrix W with a bounded transfer function. In particular,
rather than just learning a matrix W with bounded trace-norm, we can learn a model
φ ◦W , where W has bounded trace-norm, and φ : R 7→ I is a fixed mapping of each entry
of W into some bounded interval I ⊆ R. This model is used in practice, and is useful in the
common situation where the entries of X are known to be in a certain bounded interval. In
Section 7, we return to this model in greater depth. In terms of the theoretical guarantee,
one can provide a result similar to Theorem 2, without assuming boundedness of the loss
function.

Theorem 3 Consider the hypothesis classW = {φ◦W : ‖W‖tr ≤ t}. Let φ : R 7→ [−bφ, bφ]
be a bounded lφ-Lipschitz function, and suppose that for all i, j, `(·, Xi,j) is l`-Lipschitz on
the domain [−bφ, bφ]. Then

RS(` ◦W) ≤ l`

√
9Clφbφ

t(
√
m+

√
n)

|S|
,

where C is the universal constant appearing in Theorem 8.

The bound in this theorem scales similarly to Theorem 2, in terms of its dependence on
m,n. Another possible variant is directly learning a matrix W with both a constraint on
the trace-norm, as well as an ∞-norm constraint (i.e., maxi,j |Wi,j | ≤ c for some constant
c) which forces the matrix entries to be constant. This model has some potential benefits
which shall be further discussed in Section 10.

Theorem 4 Consider the hypothesis class W = {W : ‖W‖tr ≤ t, ‖W‖∞ ≤ b}, where
‖W‖∞ = maxi,j |Wi,j |. Suppose that for all i, j, `(·, Xi,j) is l`-Lipschitz on the domain
[−b, b]. Then

RS(` ◦W) ≤ l`

√
9Cb

t(
√
n+
√
m)

|S|
,

where C is the universal constant appearing in Theorem 8.

Assuming b is a constant (which is the reasonable assumption here), we get a similar
bound as before.

So, we see that by inserting mild boundedness assumptions on the loss function or the
matrix entries, it is possible to derive non-trivial guarantees for learning with trace norm
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constraints. These were all obtained under the standard inductive model, where we assume
that our data is an i.i.d. sample from an underlying distribution. In the next section, we
will discuss a different learning model, which we argue to more closely resemble matrix
completion as done in practice, and leads to better bounds on the Rademacher complexity,
without making boundedness assumptions.

5. Improved Results for the Transductive Model

In the inductive model we have considered so far, the goal is to predict well with respect to
an unknown distribution over matrix entries, given an i.i.d. sample from that distribution.
The transductive learning model (see for instance Vapnik, 1998) is different, in that our
goal is to predict well with respect to a specific subset of entries, whose location is known in
advance. More formally, we fix an arbitrary subset of S entries, and then split it uniformly
at random into two subsets Strain ∪ Stest. We are then given the values of the entries in
Strain, and our goal is to predict the values of the entries in Stest. For simplicity, we will
assume that |Strain| = |Stest| = |S|/2, but our results can be easily generalized to more
general partitions.

We note that this procedure is exactly the one often performed in experiments reported
in the literature: Given a data set of entries, one randomly splits it into a training set and
a test set, learns a matrix on the training set, and measures its performance on the test
set (e.g., Toh and Yun, 2009; Jaggi and Sulovský, 2010). Even for other train-test split
methods, such as holding out a certain portion of entries from each row, the transductive
model seems closer to reality than the inductive model. Moreover, the transductive model
captures another important feature of real-world matrix completion: the fact that no entry
is repeated in the training set. In contrast, in the inductive model the training set is collected
i.i.d., so the same entry might be sampled several time over. In fact, this is virtually certain
to happen whenever the sample size is at least on the order of

√
mn, due to the birthday

paradox. This does not appear to be a mere technicality, since the proofs of our theorems
in the inductive model have to rely on a careful separation of the entries according to the
number of times they were sampled. However, in reality each entry appears in the data set
only once, matching the transductive learning setting.

To analyze the transductive model, we require analogues of the tools we have for the
inductive model, such as the Rademacher complexity. Fortunately, such analogues were al-
ready obtained in the literature (El-Yaniv and Pechyoni, 2009), and we will rely on their re-
sults. In particular, based on Theorem 1 in that paper, we can use our notion of Rademacher
complexity, as defined in Equation (3), to provide sample complexity bounds in the trans-
ductive model:1

Theorem 5 Fix a hypothesis class W, and suppose that supi,j,W∈W |`(Wi,j , Xi,j)| ≤ b`. Let
a set S of ≥ 2 distinct indices be fixed, and suppose it is uniformly and randomly split to
two equal subsets Strain, Stest. Then with probability at least 1− δ over the random split, it

1. In El-Yaniv and Pechyoni (2009), a more general notion of transductive Rademacher complexity was
defined, where the σα random variables could also take 0 values. However, when |Strain| = |Stest|, that
complexity can always be upper bounded by the standard definition of Rademacher complexity — see
Lemma 1 in their paper.
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holds for any W ∈ W that

1

|Stest|
∑

(i,j)∈Stest

`(Wi,j , Xi,j)−
1

|Strain|
∑

(i,j)∈Strain

`(Wi,j , Xi,j)

≤ 4RS(` ◦W) +
b`

(
11 + 4

√
log(1/δ)

)
√
|Strain|

.

This theorem implies that if RS(` ◦ W) is effectively bounded, then the average loss over
Strain is close to the average loss over Stest, uniformly for any W , and therefore minimizing
the average loss over Strain will result in a predictor with near-optimal average loss over
Stest.

We now present our main result for the transductive model, which implies non-trivial
bounds on the Rademacher complexity of matrices with constrained trace-norm. Unlike the
inductive model, here we make no additional boundedness assumptions, yet the bound is
superior. The proof appears in Subsection 9.4.

Theorem 6 Consider the hypothesis classW = {W : ‖W‖tr ≤ t}. Then in the transductive
model, it holds that

RS(` ◦W) ≤ Cl`
3t (
√
m+

√
n)

2|S|
,

where C is the universal constant appearing in Theorem 8. Alternatively, letting N =
maxi |{j : (i, j) ∈ S}| and M = maxj |{i : (i, j) ∈ S}|, then

RS(` ◦W) ≤ Cl`
t max

{√
M,
√
N
}

|S|
4
√

log(min{m,n}),

where C is the universal constant appearing in Theorem 9.

We note that the second bound, while containing an additional logarithmic term, de-
pends on the distribution of the entries, and can be considerably tighter than the worst-
case. To see this, suppose (for simplicity) a rectangular matrix, so that m = n, and
that t = Θ(

√
mn) = Θ(n). Then in the worst-case, the bound becomes meaningful when

|S| = Ω(n3/2). However, if the entries in S are (approximately) uniformly distributed
throughout the matrix, then the maximal number of entries in each row and column is
O(|S|/n). In that case, plugging |S|/n instead of M and N , as well as t = Θ(n), we obtain
the bound

RS(` ◦W) ≤ Õ
(√

n

|S|

)
(ignoring logarithmic factors), which is already meaningful when |S| = Ω̃(n). Interestingly,
this bound is similar (up to logarithmic factors) to previous bounds in the inductive setting
(e.g., Srebro and Shraibman, 2005)), which relied on a uniform distribution assumption.
However, our Rademacher complexity bound in Theorem 6 also applies to non-uniform
distributions, and is meaningful for any distribution.

Compared to the results in Section 4, the result here is also superior in that the
Rademacher complexity does not depend on the loss magnitude bound b`. Although this
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factor does appear in a different term in the cited overall sample complexity bound (The-
orem 5), we conjecture that its true effect is modest at best. This is in light of recent
work, which imply that using particular online matrix completion algorithms, one can learn
comparatively well in a transductive setting, without explicit boundedness assumptions (see
Section 8).

Another interesting feature of Theorem 6 is that the Rademacher complexity falls off
at the rate of O(1/|S|) rather than O(1/

√
|S|). While such a “fast rate” is unusual in

the inductive setting, here it is a natural outcome of the different modeling of the training
data. This does not lead to a O(1/|S|) sample complexity bound, because the bound in
Theorem 5 contains an additional low rate term O(1/

√
|S|). However, it still leads to a

better bound because the low rate term is not explicitly multiplied by functions of m,n or
t.

6. Lower Bounds

The previous results showed that for m × n matrices (where m ≤ n), O(t
√
n) samples are

sufficient for learning. In this section, we show that such a sample size is also necessary, in
both the inductive and transductive settings, hence establishing the tightness of our bounds.
We remark that this lower bound applies in the distribution-free case (where any distribution
over the matrix entries is allowed), and hence does not contradict tighter upper-bounds,
which hold under distributional assumptions, such as in Negahban and Wainwright (2010);
Candès and Tao (2009); Srebro and Shraibman (2005). Also, this lower bound result is not
really new, and a different version of it appears in Hazan et al. (2012) for the inductive
setting. However, we reproduce it here due to its relevance, and since it resolved an open
problem posed in a preliminary version of our paper (Shamir and Shalev-Shwartz, 2011).
For simplicity, we will consider n× n matrices.

The lower bound is based on the following theorem:

Theorem 7 Fix a parameter t ∈
[
n, n3/2

]
, and consider the class of n × n matrices W =

{W : ‖W‖tr ≤ t}. Let W ′ be the set of all matrices whose entries are {−1,+1} on the first
bt
√
nc rows, and 0 everywhere else. Then W ′ ⊂ W.

Proof We need to show that any matrix W ∈ W ′ has trace-norm at most t. To see why,
note that W is non-zero on only bt/

√
nc, hence its rank is at most bt/

√
nc. Letting ‖ · ‖F

denote the Frobenius norm and using the inequality ‖A‖tr ≤
√

rank(A)‖A‖F , we have

‖W‖tr ≤
√

rank(W )‖W‖F ≤

√
t√
n

√
n ∗ t√

n
= t.

We now argue, based on this theorem, that learning is impossible unless the sample size
|S| is at least Ω(t

√
n), matching our previous upper bounds (which were smaller than 1 only

when |S| > Ω(t
√
n)). To see why, assume w.l.o.g. that S lies in the first

⌊
t

2
√
n

⌋
rows, and

let us consider first the inductive setting. Suppose we are asked to predict the values of a
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matrix X, with respect to a uniform distribution over its entries in the first bt/
√
nc rows,

and where the value of each of these entries was independently chosen from {−1,+1}. If we
are given a sample of size |S| ≤ bt

√
n/2c from this matrix, it means that most of the relevant

binary entries remain unobserved. Moreover, they were chosen uniformly at random, hence
we have no way to predict their value. For any reasonable loss function, this would imply
an expected error which is at least constant. In contrast, by the theorem above, there exists
some W ∈ W which predicts perfectly all of these entries, and its expected error would be
zero. In other words, for any algorithm returning a (possibly randomized) predicted matrix
W ,

EW
[
Ei,j [`(Wi,j , Xi,j)]− inf

W∈W
Ei,j [`(Wi,j , Xi,j)]

]
≥ c,

for some constant c > 0, and hence we are unable to learn with such a sample size. A
similar result holds in the transductive setting: If S is supported on those first bt/

√
nc

rows, and is randomly split to Strain and Stest, we have no way to predict the entries of
Stest given Stest, and would achieve constant expected error. Moreover, using standard VC
dimension techniques, even for larger sample sizes |S| the attainable error cannot be better
than Ω(

√
t
√
n/|S|).

7. Should Boundedness be Enforced?

As mentioned earlier in the paper, we often know the range of entries to be predicted
(e.g., 1 to 5 for movie rating prediction). The results of Section 4 suggest that in the
inductive model, some sort of boundedness seems essential to get non-trivial results. In
the transductive model, boundedness also plays a smaller role, by appearing in the final
sample-complexity bound (Theorem 5), although not in the Rademacher complexity bound
(Theorem 6). These results suggest the natural idea of incorporating into the learning al-
gorithm the prior knowledge we have on the range of entries. Indeed, several recent papers
have considered the possibility of directly learning a model φ ◦W , where φ is usually a sig-
moid function (Salakhutdinov and Mnih, 2007; Ma et al., 2008; Piotte and Chabbert, 2009;
Kozma et al., 2009). Another common practice (not just with trace-norm regularization)
is to clip the learned matrix entries to the known range. Our theoretical results are not
sufficiently refined to understand the precise effect of boundedness, so it is of interest to
understand experimentally how much clipping or enforcing boundedness helps the learning
process. We note that while bounded models have been tested experimentally, we could not
find in prior literature a clear empirical study of their effect, in the context of trace-norm
regularization.

We conducted experiments on two standard matrix completion data sets,2 movielens100K
and movielens1M. movielens100K contains 105 ratings of 943 users for 1770 movies, while
movielens1M contains 106 ratings of 6040 users for 3706 movies. All ratings are in the range
[1, 5]. For each data set, we performed a random 80%−20% of the data to obtain a training
set and a test set. We considered two hypothesis classes: trace-norm constrained matrices
{W : ‖W‖tr ≤ t}, and bounded trace-norm constrained matrices {φ ◦W : ‖W‖tr ≤ t},
where φ is a sigmoid function interpolating between 1 and 5. For each hypothesis class, we

2. These data sets are taken from www.grouplens.org/node/73
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trained a trace-norm regularized algorithm using the squared loss. Specifically, we used the
common approach of stochastic gradient descent on a factorized representation W = U>V :
First, we note that for any t, minimizing

∑
(i,j)∈S (Xi,j −Wi,j)

2 over all W : ‖W‖tr ≤ t is
equivalent to minimizing ∑

(i,j)∈S

(Xi,j −Wi,j)
2 + λ‖W‖tr (4)

over all matrices W , where λ is some suitable soft-regularization parameter. Second, we use
the fact that the trace norm can also be written as ‖W‖tr = minW=U>V

1
2

(
‖U‖2F + ‖V ‖2F

)
,

so minimizing Equation (4) over W is equivalent to minimizing∑
(i,j)∈S

(
Xi,j − U>i Vj

)2
+
λ

2

(
‖U‖2F + ‖V ‖2F

)
(5)

over U, V . Similarly, for learning bounded models, we can find U, V which minimize∑
(i,j)∈S

(
Xi,j − φ(U>i Vj)

)2
+
λ

2

(
‖U‖2F + ‖V ‖2F

)
. (6)

We note that both problems are non-convex, although for the formulation in Equation (5),
it is possibly to show there are any local minimum is also a global one.

Tuning of λ was performed with a validation set. Note that in practice, for computational
reasons, one often constrains U and V to have a bounded number of rows. However, this
forces W to have low rank, which is an additional complexity control. Since our goal is to
study the performance of trace-norm constrained matrices, and not matrices which are also
low-rank, we did not constrain U, V in this manner. The downside of this is that we were
unable to perform experiments on very large-scale data sets, such as Netflix, and that is
why we focused on the more modest-sized movielens100K and movielens1M data sets.

To estimate the performance of the learned matrix W on the test set, we used two
measures which are standard in the literature: the root-mean-squared-error (RMSE),√√√√ ∑

(i,j)∈Stest

(Wi,j −Xi,j)2

|Stest|
,

and the normalized-mean-absolute-error (NMAE),∑
i,j∈Stest

|Wi,j −Xi,j |
r|Stest|

,

where r is the range of possible values in X (5− 1 = 4 for our data sets).
The experiments were repeated 5 times over random train-test splits of the data, and

the results are summarized in Table 1. From the table, we see that in almost all cases,
clipping and bounding lead to a statistically significant improvement. However, note that
in absolute terms, the improvement is rather modest, especially with the NMAE measure
which is less sensitive to large mispredictions. This accords with our theoretical results:
boundedness seems to be an important and useful property, but in the transductive model
(corresponding to our experiments) it plays only a modest role.
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100K (NMAE) 100K (RMSE) 1M (NMAE) 1M (RMSE)

unclipped 0.1882± 0.0005 0.9543± 0.0019 0.1709± 0.0003 0.8670± 0.0016
clipped 0.1874± 0.0005 0.9486± 0.0018 0.1706± 0.0002 0.8666± 0.0016

bounded 0.1871± 0.0004 0.9434± 0.0023 0.1698± 0.0002 0.8618± 0.0017

∆ Clipping (∗10−3) 0.77± 0.07 5.7± 0.6 0.33± 0.01 0.48± 0.04
∆ Bounding (∗10−3) 0.3± 0.4 5.2± 1.5 0.79± 0.02 4.8± 0.1

Table 1: Error on test set (mean and standard deviation over 5 repeats of the experiment).
The columns refer to the data set (movielens100K or movielens1M) and the per-
formance measure used (NMAE or RMSE). The first two rows refer to the results
using the ‘unbounded’ model as in Equation (5), with the output used as-is or
clipped to the range [1−5]. The third row refers to the results using the ‘bounded’
model as in Equation (6). The fourth row is the improvement in test error by clip-
ping the predictions after learning (i.e., the difference between the first and second
row). The fifth row is the additional improvement achieved by using a bounded
model (i.e., the difference between the second and third row).

Empirically, one would have expected the use of bounded models to help a lot (in abso-
lute terms), if learning just trace-norm constrained matrices (without clipping/bounding)
leads to many predictions being outside the interval [1, 5], in which we know the ratings lie.
But indeed, this does not seem to be the case. Table 2 shows the prediction with largest
magnitude, over all entries in the test set, as well as the percentage of predictions which
fall outside the [1, 5] interval. It is clearly evident that such out-of-interval predictions
are relatively rare, and this explains why the bounding and clipping only leads to modest
improvements.

100K 1M

largest value 5.95± 0.35 6.13± 0.16

% outside interval 0.69± 0.05 0.79± 0.01

Table 2: Out-of-Interval Values

We emphasize that our results should only be interpreted in the context of pure trace-
norm regularization. There are many other approaches to matrix completion, and it is
quite possible that using bounded models has more or less impact in the context of other
approaches or for other application domains.

8. Follow-Up Work

Since the preliminary version of this paper appeared (Shamir and Shalev-Shwartz, 2011),
several related works have been published. In this section, we survey these results, and
discuss how they relate to the current work and the insights it provides.
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While this work focuses on a stochastic setting, a closely related problem has been
matrix completion in an online setting. In online learning (Cesa-Bianchi and Lugosi, 2006;
Shalev-Shwartz, 2012), rather than having examples sampled from a stochastic process, the
examples arrive in an online fashion and are arbitrary, possibly provided by an all-powerful
adversary. The goal in this setting is to minimize regret, namely the difference between
the learner’s loss and that of the best single hypothesis from some hypothesis class. In the
context of matrix completion, this can be modeled as a sequential game where at each round
a matrix entry is arbitrarily chosen, and the learner needs to predict its value. The actual
entry value is then revealed, and the learner suffers some loss (such as the absolute difference
between the prediction and actual value). In our case, the regret can be measured with
respect to the class of matrices with bounded trace-norm. Note that this setting is generally
harder than our stochastic setting, since the entry are chosen arbitrarily rather than in a
stochastic manner, and it is known that in general, any online learning algorithm can be
converted to a learning algorithm in a stochastic setting, with similar guarantees. Despite
the difference between the settings, regret guarantees in the online learning setting are often
strikingly similar to sample complexity guarantees in the stochastic learning setting.

The problem of online matrix completion with trace-norm bounded matrix has been
dealt with in several recent works. Interestingly, the same insights provided in our work —
the importance of entry boundedness or a transductive model — were crucial for attaining
online learning algorithms. Considering n×m matrices with bounded trace-norm t as well as
bounded entries, Hazan et al. (2012) showed that one can efficiently obtain vanishing regret
after O(t

√
n) rounds (assuming m ≤ n). Note that this parallels our sample complexity

guarantees in a stochastic setting (assuming bounded entries), which imply learnability for
sample size O(t

√
n). Alternatively, if one considers a transductive online setting (where

each entry can be chosen only once), Cesa-Bianchi and Shamir (2011) showed that one can
also efficiently obtain vanishing regret after O(t

√
n) rounds. In Rakhlin et al. (2012) this

was shown to be possible for Lipschitz-continuous losses, even if the entries are not explicitly
bounded — the transductive setting alone suffices to achieve results of this order.

Another recent related work is Shalev-Shwartz et al. (2011), which deals with a sup-
posedly different problem: Approximately solving convex optimization problems over the
(non-convex) domain of low-rank matrices. However, one of their results provides an alter-
native justification of our O(t

√
n) sample complexity guarantee, for the case of bounded

trace-norm matrices whose entries are clipped to a bounded range (Theorem 3). To sketch
the argument, Shalev-Shwartz et al. (2011, Section 4) show that if we have |S| observed
entries in our matrix, then for every matrix W with bounded trace-norm ‖W‖tr, there exists
a low-rank matrix W̄ , with rank O(‖W‖2tr/|S|), which approximates W arbitrarily well in
terms of average loss over the observed entries. Since a matrix of rank r is parameterized by
O(rn) parameters, it follows that the generalization error of clipped r-rank matrices is ar-
bitrarily small when |S| ≥ Ω̃(rn). This indirectly provides a generalization error bound for
our original matrix W . Plugging in r = ‖W‖2tr/|S|, and noting that in our case ‖W‖tr = n,
we get that learnability is possible for a sample of size |S| ≥ Ω̃(n3/2) = Ω̃(t

√
n).

Finally, we note that several recent works explored the possibility of replacing the stan-
dard trace-norm constraint by other matrix norms. These include the max-norm (Srebro
et al., 2004; Lee et al., 2010); weighted trace-norm (Salakhutdinov and Srebro, 2010) and
smoothed/empirical variants (Foygel et al., 2011); and ‘local’ max-norms (Foygel et al.,
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2012). An important motivation of these works is that they allow us to learn non-trivial
classes of matrices, with a sample complexity of O(n) — smaller than earlier trivial re-
sults for the trace-norm and the O(n3/2) results we obtain here (when the trace-norm is
Θ(n)). Essentially, this is achieved by using classes of matrices which are less rich than
trace-norm-bounded one, hence are statistically easier to learn.

9. Proofs of Upper Bounds

In our proofs, we use ‖ · ‖sp to denote the spectral norm of matrices, which is well-known
to be the dual of the trace-norm (see for instance Fazel et al., 2001).

Our proofs utilize the following two theorems, which bounds the expected spectral norm
‖ · ‖sp of random matrices.

Theorem 8 (Lata la, 2005) Let Z be a matrix composed of independent zero-mean en-
tries. Then for some fixed constant C, E[‖Z‖sp] is at most

C

max
i

√∑
j

E[Z2
i,j ] + max

j

√∑
i

E[Z2
i,j ] + 4

√∑
i,j

E[Z4
i,j ]

 .

Theorem 9 (Seginer, 2000) Let A be an arbitrary m × n matrix, such that m,n > 1.
Let Z denote a matrix composed of independent zero-mean entries, such that Zi,j = Ai,j
with probability 1/2 and Zi,j = −Ai,j with probability 1/2. Then for some fixed constant C,
E[‖A‖sp] is at most

C 4
√

log(min{m,n}) max

max
i

√∑
j

A2
i,j ,max

j

√∑
i

A2
i,j


9.1 Proof of Theorem 2

We write RS(` ◦W) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,j`(Wi,j , Xi,j)

 , (7)

where Γ is a matrix whose (i, j)-th entry is defined as
∑

α:iα=i,jα=j σα. As discussed in
Section 3, a standard analysis will proceed to reduce this to

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 , (8)

but this leads to a trivial bound. However, examining the analysis in Section 3, we see
that the problem is when a single entry is “hit” many times in the sample. This will cause
the magnitude of that entry to be very large (as much as Θ(

√
|S|)), and as a result make

Equation (8) as large as Θ(t/
√
|S|). However, recall that our original goal is to bound

Equation (7), not Equation (8), and in Equation (7) we have the loss operator, which is
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bounded by a constant b`. Therefore, even if some Γi,j has a large value, it can only be
multiplied by a factor as large as b`, and not the trace-norm bound t. This observation is
the key for our analysis.

Intuitively, instead of going directly from Equation (7) to Equation (8), we first de-
compose Γ into two matrices Y and Z, where Y contains the “heavily-hit” entries, and
Z the “lightly-hit” entries, where the two types of entries are differentiated according to
some threshold p. We perform a different type analysis for each matrix, and then tune p
appropriately to get the desired result.

More formally, given i, j, let hi,j be the number of times the sample S hits entry i, j,
or more precisely hi,j = |{α : iα = i, jα = j}|. Let p > 0 be an arbitrary parameter to be
specified later, and define

Yi,j =

{
Γi,j hi,j > p

0 hi,j ≤ p
Zi,j =

{
0 hi,j > p

Γi,j hi,j ≤ p.
(9)

Clearly, we have Γ = Y +Z. Thus, we can upper bound the Rademacher complexity by

1

|S|
Eσ

 sup
W∈W

∑
i,j

Yi,j`(Wi,j , Xi,j)

 +
1

|S|
Eσ

 sup
W∈W

∑
i,j

Zi,j`(Wi,j , Xi,j)

 . (10)

Since |`(Wi,j , Xi,j)| ≤ b`, the first term can be upper bounded by

1

|S|
Eσ

b`∑
i,j

|Yi,j |

 =
b`
|S|

Eσ[‖Y ‖1]. (11)

Using the Rademacher contraction principle,3 the second term in Equation (10) can be
upper bounded by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Zi,jWi,j

 .
Applying Hölder’s inequality, and using the fact that the spectral norm ‖ · ‖sp is the dual
to the trace norm ‖ · ‖tr, we can upper bound the above by

l`
|S|

Eσ sup
W∈W

[‖Z‖sp‖W‖tr] =
l`t

|S|
Eσ [‖Z‖sp] . (12)

Combining this with Equation (11) and substituting into Equation (10), we get an upper
bound of the form

b`
|S|

Eσ [‖Y ‖1] +
l`t

|S|
Eσ [‖Z‖sp] .

Using Lemma 10 and Lemma 11, which are given below, we can upper bound this by

b`√
p

+
2.2Cl`t

√
p(
√
m+

√
n)

|S|
,

3. Strictly speaking, we use a slight generalization of it, where the loss function is allowed to differ w.r.t.
every Wi,j — see Meir and Zhang (2003, Lemma 5).
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where p is the parameter used to define Y and Z in Equation (9). Choosing p = |S|b`
2.2Cl`t(

√
m+
√
n)

,

we get the bound in the theorem.

Lemma 10 Let Y be a random matrix defined as in Equation (9). Then

E[‖Y ‖1] ≤ E

 ∑
i,j:hi,j>p

√
hi,j

 ≤ |S|√
p

Proof E[‖Y ‖1] equals

E

 ∑
i,j:hi,j>p

|Γi,j |

 = E

E
 ∑
i,j:hi,j>p

∣∣∣∣∣∣
∑

α:(iα,jα)=(i,j)

σα

∣∣∣∣∣∣
 ∣∣∣{hi,j}


The expression inside the absolute value is the sum of hi,j i.i.d. random variables, and it
is easily seen that its expected absolute value is at most

√
hi,j . Therefore, we can upper

bound the above by E[
∑

i,j:hi,j>p

√
hi,j ]. We can further upper bound it, in a manner which

does not depend on the values of hi,j , by

max
c∈{1,...,mn}

max
h1,...,hc∈R:∀i hi>p,

∑c
i=1 hi=|S|

c∑
i=1

√
hi.

Note that the constraints imply that

|S| =
c∑
i=1

hi ≥
√
p

c∑
i=1

√
hi,

so
∑c

i=1

√
hi can be at most |S|/√p as required.

Lemma 11 Let Z be a random matrix defined as in Equation (9). Then the expected
spectral norm Eσ[‖Z‖sp] is at most

C

max
i

√ ∑
j:hi,j≤p

hi,j + max
j

√ ∑
i:hi,j≤p

hi,j + 4

√
3
∑

i,j:hi,j≤p
h2
i,j

 ,

where C is the universal constant which appears in the main theorem of Lata la (2005).
Moreover, this quantity can be upper bounded by 2.2C

√
p (
√
m+

√
n)

Proof With hi,j held fixed, Z is a random matrix composed of independent entries. By
using Theorem 8, we only need to analyze E[Z2

i,j ] and E[Z4
i,j ]. For any i, j, if hi,j ≤ p then

Zi,j is a sum of hi,j i.i.d. variables taking values in {−1,+1}. Therefore, E[Z2
i,j ] = hi,j and

E[Z4
i,j ] ≤ 3h2

i,j . Plugging into Theorem 8 yields the first part of the lemma. To get the
second part, we can upper bound the right-hand side of the first part by

C
√
p
(√

m+
√
n+

4
√

3mn
)
≤ C√p

(√
m+

√
n+ 4

√
3/2(
√
m+

√
n)
)

≤ 2.2C
√
p
(√
m+

√
n
)
.
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9.2 Proof of Theorem 3

We can rewrite the definition of RS(` ◦W) (see Equation 3) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,j`(Wi,j , Xi,j)

 ,
where Γ is a matrix defined as Γi,j =

∑
α:iα=i,jα=j σα. Using the Rademacher contraction

principle (as in Meir and Zhang, 2003, Lemma 5), this is at most

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 . (13)

Decomposing Γ = Y + Z as in Equation (9) according to a parameter p, we can upper
bound the Rademacher complexity by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Yi,jWi,j

+
l`
|S|

Eσ

 sup
W∈W

∑
i,j

Zi,jWi,j

 . (14)

By definition of W, |Wi,j | ≤ bφ, so the first term can be upper bounded by

l`
|S|

Eσ

bφ∑
i,j

|Yi,j |

 =
l`bφ
|S|

Eσ[‖Y ‖1]. (15)

The second term in Equation (14) equals

l`
|S|

Eσ

 sup
W :‖W‖tr≤t

∑
i,j

Zi,jφ(Wi,j)

 ≤ l`lφ
|S|

Eσ

 sup
W :‖W‖tr≤t

∑
i,j

Zi,jWi,j

 ,
again by the Rademacher contraction principle. Applying Hölder’s inequality, and using
the fact that the spectral norm ‖ · ‖sp is the dual to the trace norm ‖ · ‖tr, we can upper
bound the above by

l`lφ
|S|

Eσ

[
sup

W :‖W‖tr≤t
‖Z‖sp‖W‖tr

]
=
l`lφt

|S|
Eσ [‖Z‖sp] .

Combining this with Equation (15) and substituting into Equation (14), we get an upper
bound of the form

l`bφ
|S|

Eσ [‖Y ‖1] +
l`lφt

|S|
Eσ [‖Z‖sp] .

Using Lemma 10 and Lemma 11, we can upper bound this by

l`bφ√
p

+
2.2Cl`lφt

√
p(
√
m+

√
n)

|S|
,

where p is the parameter used to define Y and Z in Equation (9). Choosing p =
|S|bφ

2.2Clφt(
√
m+
√
n)

,

we get the bound in the theorem.
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9.3 Proof of Theorem 4

Before we begin, we will need the following technical result:

Lemma 12 The dual of the norm ‖W‖ = max{‖W‖tr/t, ‖W‖∞/b} equals

‖Γ‖∗ = min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp,

where ‖Y ‖1 =
∑

i,j |Yi,j | and ‖Z‖sp is the spectral norm of Z.

It is possible to prove the lemma directly using duality of infimal convolution. However, for
the sake of completeness we give below a self-contained proof.
Proof By definition of a dual norm, we have

‖Γ‖∗ = sup
W :‖W‖≤1

〈Γ,W 〉,

and our goal is to show that

sup
W :‖W‖≤1

〈Γ,W 〉 = min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

First, we recall that the dual norm of ‖W‖tr is the spectral norm ‖W‖sp, and the dual of
‖W‖∞ is the 1-norm ‖W‖1 =

∑
i,j |Wi,j |. Now, for any Y,Z such that Y +Z = Γ, we have

by Hölder’s inequality that

sup
W :‖W‖≤1

〈Γ,W 〉 = sup
W :‖W‖≤1

〈Y,W 〉+ 〈Z,W 〉

≤ sup
W :‖W‖≤1

‖Y ‖1‖W‖∞ + ‖Z‖sp‖W‖tr

≤ b‖Y ‖1 + t‖Z‖sp.

This holds for any Y, Z, and in particular

sup
W :‖W‖≤1

〈Γ,W 〉 ≤ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp. (16)

It remains to show the opposite direction, namely

sup
W :‖W‖≤1

〈Γ,W 〉 ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

To show this, let W ∗ be the matrix which maximizes the inner product above. We know
that ‖W ∗‖ ≤ 1, which means that either ‖W ∗‖∞ ≤ b, or ‖W ∗‖tr ≤ t. If ‖W ∗‖∞ ≤ b, it
follows that

sup
W :‖W‖≤1

〈Γ,W 〉 = sup
W :‖W‖∞≤b

〈Γ,W 〉 = b‖Γ‖1 ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

In the other case, if ‖W ∗‖tr ≤ t, it follows that

sup
W :‖W‖≤1

〈Γ,W 〉 = sup
W :‖W‖tr≤t

〈Γ,W 〉 = t‖Γ‖sp ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

3418



Matrix Completion with the Trace Norm: Learning, Bounding and Transducing

So in either case,

sup
W :‖W‖≤1

〈Γ,W 〉 ≥ min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp.

Combining this with Equation (16), the result follows.

We now turn to the proof of Theorem 4 itself. Since `(Wi,j , Xi,j) is assumed to be
l`-Lipschitz, we can use the Rademacher contraction principle to upper bound RS(` ◦ W)
by

l`Eσ

 sup
W∈W

1

|S|

|S|∑
α=1

σαWiα,jα

 =
l`
|S|

Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 ,
where Γ is a matrix defined as Γi,j =

∑
α:iα=i,jα=j σα.

Thinking of Γ,W as vectors, the equation above is the expected supremum of an inner
product between Γ and W . By Hölder’s inequality, we can upper bound this by

l`
|S|

Eσ

[
sup
W∈W

‖Γ‖∗‖W‖
]

(17)

for any norm ‖ · ‖ and its dual norm ‖ · ‖∗. In particular, we will choose the norm ‖W‖ =
max{‖W‖tr/t, ‖W‖∞/b}. Note that by definition of W , supW∈W ‖W‖ ≤ 1. Also, by
Lemma 12,

‖Γ‖∗ = min
Y+Z=Γ

b‖Y ‖1 + t‖Z‖sp,

where ‖Y ‖1 =
∑

i,j |Yi,j |, and ‖Z‖sp is the spectral norm of Z . Thus, we can upper bound
Equation (17) by

l`
|S|

EΓ

[
min

Y+Z=Γ
b‖Y ‖1 + t‖Z‖sp

]
. (18)

Recall that Γ is random matrix, where each entry is the sum of Rademacher variables. Let
hi,j denote the number of variables ’hitting’ entry (i, j) — formally, hi,j = |{α : (iα = i, jα =
j}|. We can upper bound Equation (18) by replacing the optimal decomposition of Γ into
Y,Z by any fixed decomposition rule. In particular, for an arbitrary parameter p, we can
decompose Γ into Y, Z as in Equation (9), and get an upper bound on Equation (18) of the
form

l`
|S|

(bEΓ[‖Y ‖1] + tEΓ[‖Z‖sp]) . (19)

Bounds for the two expectations are provided in Lemma 10 and Lemma 11. Plugging them
in, we get

bl`√
p

+
2.2l`Ct

√
p (
√
m+

√
n)

|S|
.

Choosing p = b|S|
2.2Ct(

√
m+
√
n)

and simplifying, we get the bound in the theorem.
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9.4 Proof of Theorem 6

We write RS(` ◦W) as

1

|S|
Eσ

 sup
W∈W

∑
i,j

Γi,j`(Wi,j , Xi,j)

 ,
where Γ is a matrix with σi,j in its (i,j)-th entry, if (i, j) ∈ S, and 0 otherwise. By the
Rademacher contraction property,4 we can upper bound this by

l`
|S|

Eσ

 sup
W∈W

∑
i,j

Γi,jWi,j

 .
By Hölder’s inequality, this is at most

l`
|S|

Eσ

[
sup
W∈W

‖Γ‖sp‖W‖tr
]

=
l`t

|S|
Eσ [‖Γ‖sp] . (20)

The setting so far is rather similar to the one we had in the inductive setting (see the proof
of any of the theorems in Section 4). But now, we need to bound just the expected spectral
norm of Γ, which is guaranteed to have only a single Rademacher variable in each entry.
By applying Theorem 8 on Equation (20), we get

RS(` ◦W) ≤ Cl`
t
(√

M +
√
N + 4

√
|S|
)

|S|
.

Since S can contain at most m and n indices for any single row and column respectively, and
4
√
|S| ≤ 4

√
mn ≤ 1

2 (
√
m+

√
n), we can upper bound the above by 3Cl`t (

√
m+

√
n) /(2|S|).

To get the other bound in the theorem, we apply Theorem 9 instead of Theorem 8 on
Equation (20).

10. Discussion

In this paper, we analyzed the sample complexity of matrix completion with trace-norm
regularization, obtaining the first non-trivial, distribution-free guarantees. Our results were
based on either mild boundedness assumptions, or a switch from the standard inductive
learning model to the transductive learning model. Moreover, we argue that such a trans-
ductive model may be a better way to model matrix completion as performed in practice,
as it seems more natural and leads to a substantial difference in terms of obtainable results.
We also discussed the issue of learning with bounded models, and provided an empirical
study which indicates that these lead to a modest improvement in performance, in line with
our theoretical findings. We also show that our results are essentially tight, and discuss
some recent work which relates to the results and insights provided here.

One interesting open question arises from our experiments in Section 7. In all our exper-
iments, minimizing the squared loss over the training data (with trace-norm regularization)

4. As in the inductive case, we use in fact a slight generalization where the loss function is allowed to differ
w.r.t. every Wi,j , as in Meir and Zhang (2003, Lemma 5).
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resulted in matrices whose entries have reasonably small values, even when boundedness was
not enforced. This is probably an important factor in explaining why explicitly enforcing
boundedness resulted in only a modest performance improvement. However, if boundedness
is not enforced, there is no a-priori reason why the resulting matrix shouldn’t have some
very large values (up to the trace-norm constraint) in some of the test set entries. Thus,
we may raise the following conjecture: If we minimize training loss over data, consisting of
bounded entries, over trace-norm constrained matrices, then the resulting matrix will have
bounded entries as well. If this conjecture holds, it means that enforcing boundedness will
always lead to only a modest performance improvement.
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Abstract

A metric graph is a 1-dimensional stratified metric space consisting of vertices and edges
or loops glued together. Metric graphs can be naturally used to represent and model data
that take the form of noisy filamentary structures, such as street maps, neurons, networks
of rivers and galaxies. We consider the statistical problem of reconstructing the topology
of a metric graph embedded in RD from a random sample. We derive lower and upper
bounds on the minimax risk for the noiseless case and tubular noise case. The upper bound
is based on the reconstruction algorithm given in Aanjaneya et al. (2012).

Keywords: metric graph, filament, reconstruction, manifold learning, minimax estima-
tion

1. Introduction

We are concerned with the problem of estimating the topology of filamentary data structure.
Data sets consisting of points roughly aligned along intersecting or branching filamentary
paths embedded in 2 or higher dimensional spaces have become an increasingly common type
of data in a variety of scientific areas. For instance, road reconstruction based on GPS traces,
localization of earthquakes faults, galaxy reconstruction are all instances of a more general
problem of estimating basic topological features of an underlying filamentary structure. The
recent paper by Aanjaneya et al. (2012), upon which our work is based, contains further
applications, as well as numerous references. To provide a more concrete example, consider
Figure 1. The left hand side displays raw data portraying a neuron from the hippocampus
of a rat (Gulyás et al., 1999). The data were obtained from NeuroMorpho.Org (Ascoli
et al., 2007). The right hand side of the figure shows the output of the metric graph
reconstruction obtained using the algorithm analyzed in this paper, originally proposed by
Aanjaneya et al. (2012). The reconstruction, which takes the form of a graph, captures
perfectly all the topological features of the neuron, namely, the relationship between the
edges and vertices, the number of branching points and the degree of each node.

Metric graphs provide the natural geometric framework for representing intersecting
filamentary structures. A metric graph embedded in a D-dimensional Euclidean space
(D ≥ 2) is a 1-dimensional stratified metric space. It consists of a finite number of points (0-
dimensional strata) and curves (1-dimensional strata) of finite length, where the boundary

c©2014 Fabrizio Lecci, Alessandro Rinaldo and Larry Wasserman.
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of each curve is given by a pair (of not-necessarily distinct) vertices (see the next section
for a formal definition of a metric graph).

In this paper we study the problem of reconstructing the topology of metric graphs from
possibly noisy data, from a statistical point of view. Specifically, we assume that we have a
sample of points from a distribution supported on a metric graph or in a small neighborhood
and we are interested in recovering the topology of the corresponding metric graph. To this
end, we use the metric graph reconstruction algorithm given in Aanjaneya et al. (2012).
Furthermore, in our theoretical analysis we characterize explicitly the minimal sample size
required for perfect topological reconstruction as a direct function of parameters defining
the shape of the metric graph, introduced in Section 2. This leads to an upper bound
on the risk of topological reconstruction. Finally, we obtain a lower bound on the risk of
topological reconstruction, which, in the noiseless case, almost matches the derived upper
bound, indicating that the algorithm of Aanjaneya et al. (2012) behaves nearly optimally.

Outline. In Section 2 we formally define metric graphs, the statistical models we will
consider and the assumptions we will use throughout. We will also describe several geometric
quantities that are central to our analysis. Section 3 contains detailed analysis of the
performance of algorithm of Aanjaneya et al. (2012) for metric graph reconstruction, under
modified settings and assumptions. In Section 4 we derive lower and upper bounds for the
minimax risk of metric graph reconstruction problem. In Section 5 we conclude with some
final comments.

Related Work. The work most closely related to ours is Aanjaneya et al. (2012) which
was, in fact, the motivation for our work. From the theoretical side, we replace the key
assumption in Aanjaneya et al. (2012) of the sample being a (ε,R)-approximation to the
underlying metric graph, by the milder assumption of the sample being dense in a neigh-
borhood of the metric graph. Approximation and reconstruction of metric graphs has also
been considered in Chazal and Sun (2013) and Ge et al. (2011). Metric graph reconstruction
is related to the problem of estimating stratified spaces (basically, intersecting manifolds).
Stratified spaces have been studied by a number of authors such as Bendich et al. (2010,
2012). A spectral method for estimating intersecting structures is given in Arias-Castro
et al. (2011). There are a variety of algorithms for specific problems, for example, see
Ahmed and Wenk (2012); Chen et al. (2010) for the reconstruction of road networks. Fi-
nally, Chernov and Kurlin (2013) derived an alternative algorithm that uses ideas from
homology.

2. Background and Assumptions

The assumptions in Aanjaneya et al. (2012) lead to a reconstruction process that is aimed
at capturing the intrinsic structure of the data and is somewhat oblivious to its extrinsic
embedding. The authors assume that the sample comes with a metric that is close to the
intrinsic metric of the underlying graph, by imposing a limit on the Gromov-Hausdorff
distance between the two metrics. By considering data embedded in the Euclidean space
and focusing on the topological aspect, we show that the notion of dense sample is sufficient
to guarantee a correct reconstruction.
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Figure 1: Left: Neuron cr22e from the hippocampus of a rat; NeuroMorpho.Org (Ascoli
et al., 2007). Right: A metric graph reconstruction of the neuron.

In this section we provide background on metric graph spaces and describe the assump-
tions and the geometric parameters that we will be using throughout.
Informally, a metric graph is a collection of vertices and edges glued together in some fash-
ion. Here we state the formal definitions of path metric space and metric graph. For more
details see Aanjaneya et al. (2012) and Kuchment (2004).

Definition 1 A metric space (G, dG) is a path metric space if the distance between any
pair of points is equal to the infimum of the lengths of the continuous curves joining them.
A metric graph is a path metric space (G, dG) that is homeomorphic to a 1-dimensional
stratified space. A vertex of G is a 0-dimensional stratum of G and an edge of G is a
1-dimensional stratum of G.

We will consider metric graphs embedded in RD. Note that, if one ignores the metric
structure, namely the length of edges and loops, the shape or topology of a metric graph
(G, dG) is encoded by a graph, whose vertices and edges correspond to vertices and edges of
G. Since we allow for two vertices to be connected by more than one edge we are actually
dealing with pseudographs. We recall that an undirected pseudograph (V,E) is a set of
vertices V , a multiset E of unordered pairs of (not necessarily distinct) vertices. To a given
pseudograph we can associate a function f : E → V × V , which, when applied to an edge
e ∈ E, simply extracts the vertices to which e is adjacent. Thus, if e1, e2 ∈ E are such that
f(e1) = f(e2), then e1 and e2 are parallel edges. Similarly, if e ∈ E is such that f(e) = {v, v}
for some v ∈ V , then e is a loop. For each pair (u, v) ∈ V × V , let ν(u, v) = |f−1({u, v})| if
{u, v} ∈ E and 0 otherwise. In particular, ν(u, v) is the number of edges between u and v
(or loops if u = v).
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We say that a metric graph reconstruction algorithm perfectly recovers the topology of
G if outputs a pseudograph isomorphic to the pseudograph representing the topology of G.

We now define some key quantities regarding the structure of a metric graph. We start
with the definition of reach. Let M be a 1-dimensional manifold embedded in RD. Let
TuM denote the 1-dimensional tangent space to M and let T⊥u M be the (D−1)-dimensional
normal space.

Definition 2 Define the fiber of size a at u ∈M to be La(u,M) = T⊥u M
⋂
B(u, a), where

B(u, a) is the D-dimensional ball of radius a centered at u. If M has boundary {v1, v2}, the
fiber of size a at vi is defined as the limit of La(u,M), as u approaches vi in M\{v1, v2}.
The reach of M is the largest number τ such that the fibers Lτ (u,M) never intersect.

The reach sets a limit on the curvature of a manifold. A manifold with large reach does
not come too close to be self-intersecting. For example the reach of an arc of a circle is equal
to its radius. The quantity 1/τ is called the condition number in Niyogi et al. (2008). For
more details see also Federer (1959); Chazal and Lieutier (2006); Genovese et al. (2012a).
Each edge of a metric graph (G, dG) can be seen as a 1-dimensional manifold with boundary.
Let the local reach of metric graph G be the minimum reach associated to an edge of G.

When 2 edges intersect at a vertex v they create an angle, where the angle between
two intersecting curves is formally defined as follows. Suppose that e1 and e2 intersect at
x. Let B(x, ε) be the D-dimensional ball of radius ε centered at x. Let `1(ε) be the line
segment joining the two points x and ∂B(x, ε)

⋂
e1. Let `2(ε) be the line segment joining

the two points x and ∂B(x, ε)
⋂
e2. Let αε(e1, e2) be the angle between `1(ε) and `2(ε). The

angle between e1 and e2 is α(e1, e2) = limε→0 αε(e1, e2). We assume that, for each pair of
intersecting edges e1 and e2, the angle α(e1, e2) is well-defined.

To control points far away in the graph distance, but close in the embedding space, we
define

AG = {(x, x′) ∈ G×G : dG(x, x′) ≥ min(b, τα)},

where b is the shortest edge of G, τ is the local condition number and α is the smallest
angle formed by two edges of G. We define the global reach as the infimum of the Euclidean
distances among pairs of point in AG, that is ξ = infAG

‖x− x′‖2.
Let (G, dG) be a metric graph and, for a constant σ ≥ 0, let Gσ = {y : infx∈G ||x−y||2 ≤

σ} be the σ-tube around G. If σ = 0, then, trivially, Gσ = G. Notice that Gσ is a set of
dimension D if σ > 0.

We will use the assumption that the sample Y is sufficiently dense in Gσ with respect
to the Euclidean metric, as formalized below.

Definition 3 The sample Y = {y1, . . . , yn} ⊂ Gσ ⊂ RD is δ
2 -dense in Gσ if for every

x ∈ Gσ, there exists a y ∈ Y such that ‖x− y‖2 < δ
2 .

The problem of metric graph reconstruction consists of reconstructing a metric graph
G given a dense sample {y1, . . . , yn} = Y ⊂ Gσ endowed with a distance dY, which could
be the D-dimensional Euclidean distance or some more complicate notion of distance. If
σ = 0 we say that the sample Y is noiseless, while if σ > 0, we say that Y is a noisy sample.

Throughout our analysis we restrict the attention to metric graphs embedded in RD
that satisfy the following assumptions:
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A1 The graphs have finite total length and are free of nodes of degree 2 (though they
may contain vertices of degree 1 or 3 and higher).

A2 Each edge is a smooth embedded sub-manifold of dimension 1, of length at least b > 0
and with reach at least τ > 0.

A3 Each pair of intersecting edges forms a well-defined angle of size at least α > 0.

A4 The global reach is at least ξ > 0.

Assumptions A1 and A2 allow us to consider each edge of a metric graph as a single smooth
curve. A3 and A4 are additional regularity conditions on the separation between different
edges. Assumptions similar to A1-A4 are common in the literature. For different regularity
conditions that allow for corners within an edge see, for example, Chazal et al. (2009) and
Chen et al. (2010).

Let G be the set of metric graphs embedded in RD that satisfy assumptions A1, A2, A3
and A4, involving the parameters b, α, τ , ξ. We consider two noise models:

Noiseless. We observe data Y1, . . . , Yn ∼ P , where P ∈ P, a collection of probability
distributions supported over metric graphs (G, dG) in G having densities p with respect to
the length of G bounded from below by a constant a > 0.

Tubular Noise. We observe data Y1, . . . , Yn ∼ PG,σ where PG,σ is uniform on the σ-tube
Gσ. In this case we consider the collection P = {PG,σ : G ∈ G}.

We are interested in bounding the minimax risk

Rn = inf
Ĝ

sup
P∈P

Pn
(
Ĝ 6' G

)
, (1)

where the infimum is over all estimators Ĝ of the topology of (G, dG), the supremum is over
the class of distributions P for Y and Ĝ 6' G means that Ĝ and G are not isomorphic.
In Section 4 we will find lower and upper bounds for Rn in the noiseless case and the tubular
noise case.
We conclude this section by summarizing the many parameters and symbols involved in our
analysis. See Table 1.

3. Performance Analysis for the Algorithm of Aanjaneya et al. (2012)

In this section we study the performance of the metric graph reconstruction algorithm of
Aanjaneya et al. (2012), under assumptions A1-A4 and with a choice of parameters adapted
to our setting. In Section 4 we will use these results to derive bounds on the minimax rate
for topology reconstruction. The metric graph reconstruction algorithm is presented in
Algorithm 1.

The algorithm takes a (possibly noisy) sample Y from a metric graph G and a distance
dY defined on Y and returns a graph Ĝ that approximates G. The key idea is the following:
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Symbol Meaning

(G, dG) metric graph

α smallest angle

b shortest edge

τ local reach

ξ global reach

G set of metric graphs embedded in RD, satisfying A1-A4

P set of distributions on G or Gσ

Gσ σ tube around G

Y sample, subset of Gσ
δ Y is a δ/2-dense sample

Table 1: Summary of the symbols used in our analysis.

a shell of radius r is constructed around each point in the sample, which is labeled edge
point if its shell contains 2 well separated clusters of sampled points and vertex point oth-
erwise. Several steps of the algorithm require the construction of a Rips-Vietoris graph of
parameter δ: Rδ(Sy) is a graph whose vertices are all the points of Sy and there is an edge
between two points if the Euclidean distance between them is not larger than δ. At Step
11 some of the edge points that are close to vertices are re-labeled as vertex points. This
expansion guarantees a precise borderline between clusters of vertex points and clusters of
edge points. At steps 15-17 each of these clusters is associated to a vertex or to an edge
of the reconstructed graph Ĝ. We will analyze the algorithm considering the Euclidean

Algorithm 1 Metric Graph Reconstruction Algorithm

Input: sample Y, dY, r, p11.
1: Labeling points as edge or vertex
2: for all y ∈ Y do
3: Sy ← B(y, r + δ)\B(y, r)
4: degr(y)← Number of connected components of Rips-Vietoris graph Rδ(Sy)
5: if degr(y) = 2 then
6: Label y as a edge point
7: else
8: Label y as a preliminary vertex point.
9: end if
10: end for.
11: Label all points within Euclidean distance p11 from a preliminary vertex point as vertices.
12: Let E be the point of Y labeled as edge points.
13: Let V be the point of Y labeled as vertices.
14: Reconstructing the graph structure
15: Compute the connected components of the Rips-Vietoris graphs Rδ(E) and Rδ(V).

16: Let the connected components of Rδ(V) be the vertices of of the reconstructed graph Ĝ.

17. Let there be an edge between vertices of Ĝ if their corresponding connected components in
Rδ(V) contain points at distance less than δ from the same connected component of Rδ(E).

Output: Ĝ.
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distance on the sample Y, that is, dY = ‖ · ‖2. The inner radius of the shell at Step 3 and
the width of the expansion at Step 11 are parameters the user has to specify.

Before finding how dense a sample has to be in order to guarantee a correct recon-
struction of a metric graph, we show that it is sufficient to study a particular metric graph
embedded in R2, which represents the worst case. In other words, if the metric graph algo-
rithm can reconstruct this particular planar graph, then it can reconstruct any other metric
graph that satisfies A1-A4.

3.1 The Worst Case: a Metric Graph in R2

The worst case is the one for which it is hard to distinguish two edges that intersect at a
vertex because they are too close in the embedding space.
Figure 2 (top left) shows an edge e that intersects two edges e1, e2 with reach τ , forming
an angle α at vertex x. In the plots, the embedding space is R3 (D = 3) and we show the
projections of e, e1 and e2 on the (limit) plane formed by e1 and e2, passing through x.

�

�

�

��

��

�
�

�

��

�

�

� �

��

��

�

��

��

��

Figure 2: Even in the worst case, edges e1 and e2 must lie outside of the torii constructed
on the fibers Lτ (x, e1) and Lτ (x, e2).

We focus on edge e2. The fiber Lτ (x, e2) of size τ around x is a (D − 1)-dimensional
ball centered at x and orthogonal to e2. In R3, Lτ (x, e2) is a disk of radius τ , whose
projection on the plane is the segment AB. By definition, for any y ∈ e2, the fiber Lτ (y, e2)
can not intersect the fiber Lτ (x, e2), otherwise the assumption involving the reach τ would
be violated. We represent this condition by considering a D-dimensional ball of radius τ ,
centered at each point of the boundary of Lτ (x, e2). Edge e2 must lie outside of these balls,
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in a feasible region that we denote by R2, so that its fibers do not intersect Lτ (x, e2). In
R3, this procedure forms a horn torus (a torus with no hole) around vertex x. See the top
right plot of Figure 2. The same reasoning applies to edge e1, which must lie in the region
R1, outside of the balls of radius τ centered at each point of the boundary of Lτ (x, e1). See
the bottom left plot.

At each given distance from vertex x, two points of e1 and e2 are as close as possible
when they lie on the boundaries of R1 and R2, on the same (limit) plane formed by e1
and e2, passing through x. When e1 and e2 lie on this plane, on the boundaries of the two
feasible regions, they are as close as possible in the embedding space. This worst case is
represented in the bottom right plot of Figure 2. Note that e1 and e2 are simply arcs of
circles of radius τ .
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Figure 3: Left: edges e1 and e2 with minimum reach τ forming the smallest angles α at
vertex x. Right: same metric graph with a tube of radius σ around it.

We will use basic trigonometric properties of the worst case. In Figure 3 (left), O and
O′ are the centers of the circles associated to edges e1 and e2. It is easy to see that angle
Ox̂O′ has width π − α. It can be shown that

xÔO′ = α/2, (2)

T x̂Q = α/4. (3)

Let Y be a noisy sample of G. In other words Y is a subset of Gσ, the tube of radius σ ≥ 0
around the metric graph G. See Figure 3 (right). Let Q be the midpoint of segment OO′

and let T be the intersection point of OO′ and edge e1. For 0 ≤ σ ≤ QT = τ − τ cos(α/2),
the smallest angle formed by the inner faces of the tube around the metric graph is

α′ = π − arccos
2(τ − σ)2 − 4τ2 cos2(α/2)

2(τ − σ)2
, (4)

where we applied the cosine law to the triangle OsO′ and the fact that angle OŝO′ has
width π − α′. Note that if σ = 0 then α′ = α. As in (3), it can be shown that

RŝQ = α′/4. (5)
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The few basic trigonometric equations described above will be used to determine under
which conditions on b, α, τ, ξ, σ the metric graph reconstruction algorithm can reconstruct
the worst case.

3.2 Analysis of Algorithm 1 with Euclidean Distance

In this section we analyze Algorithm 1. The Euclidean distance is used at every step of the
algorithm, which requires the specification of r, the inner radius of the shell, and p11, the
parameter governing the expansion of Step 11. We set

r =
δ

2
+ σ + τ sin(α/2)− (τ − σ) sin(α′/2) +

δ

2 sin(α′/4)
(6)

and

p11 =
δ

2
+ τ sin(α/2)− (τ − σ) sin(α′/2) +

r + δ

sin(α′/2)
(7)

This choice is justified in the proof of Proposition 4.
Define

f(b, α, τ, ξ, σ) :=

(τ − σ) sin
(
min(b,ατ)−(α−α′)τ

2τ

)
− [τ sin(α/2)− (τ − σ) sin(α′/2)]

(
1 + 2

sin(α′/2)

)
− 2σ

sin(α′/2)

1 + 3[sin(α′/2)]−1 + [sin(α′/2) sin(α′/4)]−1
,

(8)

where α′ is given in 4. Note that f(b, α, τ, ξ, σ) is a decreasing function of σ.

Proposition 4 If Y is δ
2 -dense in Gσ and

0 < r + δ < ξ − 2σ, (9)

0 < δ < f(b, α, τ, ξ, σ), (10)

then the graph Ĝ provided by Algorithm 1 (input: Y, ‖ · ‖2, r, p11) is isomorphic to G.

Proof Our objective is to use Algorithm 1 to reconstruct edges and vertices of a metric
graph G embedded in RD. Condition (9) guarantees that points of G which are far apart
in the metric graph distance dG, and close in the embedding space, do not interfere in the
construction of the shells at Steps 3-4. Therefore we can restrict the attention to adjacent
edges in a neighborhood of the vertex at which they intersect. In particular, since Algorithm
1 is based on the Euclidean distance between the edges, if we can distinguish two adjacent
edges that are as close as possible in the embedding space, then we can distinguish any other
pair of adjacent edges. As shown in Section 3.1, two adjacent edges e1 and e2, forming an
angle of width α at vertex x, are as close as possible when they lie on the same plane, on
the boundaries of the feasible regions determined by the condition on the reach (assumption
A2). We will show that under conditions (9) and (10), Algorithm 1 can reconstruct this
worst case. This will imply that the algorithm can reconstruct the topology of other vertices
and edges in the D-dimensional space.
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The rest of the proof involves condition (10). Since the sample is δ
2 -dense in the tube,

there is at least a point y ∈ Y inside the ball of radius δ
2 centered at any vertex x ∈ G.

When using Algorithm 1 we want to be sure that y is labeled as a vertex, that is, the
number of connected components of the shell around y is different than 2 (Steps 3-4). The
worst case is depicted in Figure 4 (left), where x is the vertex of minimum angle α, formed
by two edges, e1 and e2 of reach τ . First, we show that for the the value of r selected in
(6), points close to an actual vertex are labeled as vertices at Steps 3-10 and points far from
actual vertices are labeled as edges. The inner faces of the tube of radius σ around e1 and
















 





Figure 4: Left: edges e1 and e2 with minimum reach τ forming the smallest angles α at
vertex x. Right: The distance ‖F −G‖2 between the two connected components
of the shell around an edge point y′ must be greater than δ.

e2 form an angle of width α′ at vertex s, as described in Section 3.1. Let u and v be the
two points on the faces of the tube such that they are equidistant from x and ‖u− v‖2 = δ.
Since at Step 4 we construct a δ-graph to determine the number of connected components
of the shell Sy and we want y to be a vertex, we choose r, the inner radius of the shell Sy,
so that if u, v ∈ Y then r ≥ max{dY(y, u), dY(y, v)}. This guarantees that ∀t1, t2 ∈ Y with
t1 around edge e1, t2 around edge e2 such that {t1, t2} ⊂ Sy, we have dY(t1, t2) ≥ δ, that is
t1 and t2 belong to different connected components of the shell around y at Step 4.
The distance between y and u is bounded by ‖y − x‖2 + ‖x− s‖2 + ‖s− u‖2, where, using
(2),

‖x− s‖2 = ‖x−Q‖2 − ‖s−Q‖2 = τ sin(α/2)− (τ − σ) sin(α′/2)

and using (5),

‖s− u‖2 ≤
δ

2 sin(α′/4)
. (11)

Therefore we require that r, the inner radius of the shell of Step 4 satisfies

r ≥ δ

2
+ ‖x− s‖2 +

δ

2 sin(α′/4)
(12)

≥ ‖y − x‖2 + ‖x− s‖2 + ‖s− u‖2.
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Another condition on r arises when we label edge points far from actual vertices. See Figure
4 (right). If y′ ∈ Y, then it should be labeled as an edge point. That is, at Step 4, the Rips
graph Rδ(Sy′) on the shell Sy′ should have 2 connected components. Therefore the distance
‖F −G‖2 between them must be greater than δ. We require that

r ≥ 2σ + δ/
√

2 (13)

which implies ‖F −G‖2 > δ when r is small enough, as implied by (10).
Note that the value r = δ

2 + σ + ‖x− s‖2 + δ
2 sin(α′/4) satisfies both (12) and (13).

The outer radius of the shell at Steps 3-4 has length r + δ. This guarantees that when
the shell around an edge point intersects the tube around G there is at least a point y ∈ Y
in each connected component of the shell, since Y is δ

2 -dense in Gσ.

In the last part of this proof we show that condition (10) is needed to guarantee that the
sample is dense enough and the radius of the shells of Step 3 has the correct size, so that,
even in the worst case, each vertex is associated to one set of sampled points at Steps 15-17
and these connected components are correctly linked by sets of sampled points labeled as
edge points.
Let z ∈ Gσ be the point around e2 where the segment of length r + δ, orthogonal to the
face of the tube around edge e1, intersects the face of the tube around edge e2. See Figure
5. If this segment does not exist we simply consider the segment of length r + δ from s to
a point z on e2.










 





Figure 5: The shell around z is tangent to edge e2.

Suppose z ∈ Y. Among the points that might be labeled as vertices at Step 6 because
of their closeness to vertex x, z is the furthest from x, since the shell around z is tangent
to the tube around e1. At Step 11, in order to control the labeling of the points in the tube
between y and z we would like to label all the points in {y′ ∈ Y : ‖y′ − y‖2 ≤ ‖y − z‖2} as
vertices. To simplify the calculation we use the following bound

‖y − z‖2 ≤ ‖y − x‖2 + ‖x− s‖2 + ‖s− z‖2,

where, using (5),

‖s− z‖2 ≤
r + δ

sin(α′/2)
. (14)

3435



Lecci, Rinaldo and Wasserman

This justifies the choice of p11 =
δ

2
+ ‖x − s‖2 +

r + δ

sin(α′/2)
≥ ‖y − z‖2. Thus, at Step 11

we label all the points in {y′ ∈ Y : ‖y′ − y‖2 ≤ p11 and y is labeled as vertex at Step 6 } as
vertices. If z is actually labeled as a vertex at Step 6, then through the expansion of Step
11, all the points at distance not greater than p11 from z are labeled as vertices.
Finally we determine under which conditions there is at least a point in the tube around
e2 labeled as an edge point after Step 11. Consider the worst case in which e1 and e2 are
forming an angle of size α at both their extremes x and x′. See Figure 6.























 

Figure 6: Edges e1 and e2, forming an angle of size α at both their extremes x and x′.

All the points y′ ∈ Y such that ‖y′ − z‖2 ≤ p11 or ‖y′ − z′‖2 ≤ p11 might be labeled as
vertices. When we construct R(E)δ and R(V)δ at Step 15 the two sets of vertices around
x and x′ must be disconnected and there must be at least an edge point between them. A
sufficient condition is that the length of edge e2 is greater than 2(a1 + a2 + a3) + a4, where

• a1 is the length of the arc of e2 formed by the projections of lines Ox and Os on e2,

• a2 is the length of the arc of e2 formed by the projection of the chord of length ‖s−z‖2,

• a3 is the length of the arc of e2 formed by the projection of the chord of length p11,

• a4 is the length of the arc of e2 formed by the projection of the chord of length δ.

Note that, in Figure 6, e2 = 2τ arcsin
(
‖x−x′‖2

2τ

)
= ατ but in general it might be shorter, so

that e1 and e2 might not intersect in x′. However, by assumptions A2, e2 must be longer
than b. Thus we require

min(b, ατ) > 2(a1 + a2 + a3) + a4. (15)

By simple properties involving arcs and chords we have

a1 =

(
α− α′

2

)
τ, a2 = 2τ arcsin

(
‖s− z‖2
2(τ − σ)

)
,

a3 = 2τ arcsin

(
p11

2(τ − σ)

)
, a4 = 2τ arcsin

(
δ

2(τ − σ)

)
.
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Since the arcsin is superadditive in [0, 1] we require the stronger condition

min(b, ατ)− (α− α′)τ > 2τ arcsin

(
2‖s− z‖2 + 2p11 + δ

2(τ − σ)

)
,

which holds if

sin

(
min(b, ατ)− (α− α′)τ

2τ

)
>

2 r+δ
sin(α′/2) + 2p11 + δ

2(τ − σ)
.

The last condition is equivalent to (10). If this condition is satisfied then the graph is
correctly reconstructed at Steps 15-17: every connected component of Rδ(V) corresponds
to a vertex of G and every connected component of Rδ(E) corresponds to an edge of G.

Example 1 A Neuron in Three-Dimensions. We return to the neuron example and
we try to apply Propositions 4 to the 3D data of Figure 1, namely the neuron cr22e from the
hippocampus of a rat (Gulyás et al., 1999). The data were obtained from NeuroMorpho.Org
(Ascoli et al., 2007). The total length of the graph is 1750.86µm. We assume the smallest
edge has length 100µm, the smallest angle π/3, the local reach 30µm and ξ = 50µm. The
conditions of Proposition 4 are satisfied for δ = 2.00µm. Algorithm 1 reconstructs the topol-
ogy of the metric graph starting from a δ/2-dense sample. Figure 1b shows the reconstructed
graph.

4. Minimax Analysis

In this section we derive lower and upper bound for the minimax risk

Rn = inf
Ĝ

sup
P∈P

Pn
(
Ĝ 6' G

)
, (16)

where, as described in Section 2, the infimum is over all estimators Ĝ of the metric graph
G, the supremum is over the class of distributions P for Y and Ĝ 6' G means that Ĝ and
G are not isomorphic.

4.1 Lower Bounds

To derive a lower bound on the minimax risk, we make repeated use of Le Cam’s lemma. See,
e.g., Yu (1997) and Chapter 2 of Tsybakov (2008). Recall that the total variation distance
between two measures P and Q on the same probability space is defined by TV(P,Q) =
supA |P (A)−Q(A)| where the supremum is over all measurable sets. It can be shown that
TV(P,Q) = P (H)−Q(H), where H = {y : p(y) ≥ q(y)} and p and q are the densities of P
and Q with respect to any measure that dominates both P and Q.

Lemma 5 (Le Cam) Let Q be a set of distributions. Let θ(Q) take values in a metric
space with metric ρ. Let Q1, Q2 ∈ Q be any pair of distributions in Q. Let Y1, . . . , Yn be
drawn iid from some Q ∈ Q and denote the corresponding product measure by Qn. Then

inf
θ̂

sup
Q∈Q

EQn

[
ρ(θ̂, θ(Q))

]
≥ 1

8
ρ(θ(Q1), θ(Q2))(1− TV(Q1, Q2))

2n (17)

where the infimum is over all the estimators of θ(Q).
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Below we apply Le Cam’s lemma using several pairs of distributions. Any pair Q1, Q2

is associated with a pair of metric graphs G′, G′′ ∈ G. We take θ(Q1) and θ(Q2) to be the
classes of graphs that are isomorphic to G′ and G′′. We set ρ(θ(Q1), θ(Q2)) = 0 if G′ and G′′

are isomorphic and ρ(θ(Q1), θ(Q2)) = 1 otherwise. Figure 7 shows several pairs of metric
graphs that are used to derive lower bounds in the noiseless case and in the tubular noise
case. In the noiseless case we ignore the σ-tubes around the metric graphs.
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Figure 7: Pairs of metric graphs used in the derivation of lower bounds in the noiseless case
and in the tubular noise case.

Recall that, in the noiseless case, we restrict the attention to probability distributions
supported over metric graphs (G, dG) in G, having densities p with respect to the length of
G bounded from below by a constant a > 0.

Theorem 6 In the noiseless case (σ = 0), for b ≤ b0(a), α ≤ α0(a), ξ ≤ ξ0(a), τ ≤ τ0(a),
where b0(a), α0(a), ξ0(a) and τ0(a) are constants which depend on a, a lower bound on the
minimax risk for metric graph reconstruction is

Rn ≥ exp
(
−2amin{b, 2 sin(α/2), ξ, 2πτ}n

)
. (18)

Proof We consider the 4 parameters separately. See Figure 7, ignoring the red lines
representing the tubular noise that is not considered in this theorem.

Shortest edge b. Consider the metric graph G1 consisting of a single edge of length 1+b
and metric graph G2 with an edge of length 1 and an orthogonal edge of length b glued in
the middle. The density on G1 is constructed in the following way: on the set G1\G2 of
length b we set p1(x) = a and the rest of the mass is evenly distributed over the remaining
portion of G1. Similarly, for G2 we set p2(x) = a on G2\G1, which correspond to the
orthogonal edge of length b. We evenly spread the remaining mass. The two densities differ

3438



Statistical Analysis of Metric Graph Reconstruction

only on the sets G1\G2 and G2\G1. Therefore TV(p1, p2) ≤ ab and, by Le Cam’s lemma,
Rn ≥ 1

8(1− ab)2n ≥ 1
8e−2abn for all b ≤ b0(a), where b0(a) is a constant depending on a.

Smallest angle α. Now consider the metric graphs G3 and G4. G3 consists of two edges
of length 2 forming an angle α and a third edge of length 1+2 sin(α/2) glued to the first two.
G4 is similar: an edge of length 2 sin(α/2) is added to complete the triangle, while the edge
on the left has length 1. As in the previous case we set p3(x) = a on G3\G4, p4(x) = a on
G4\G3 and spread evenly the rest of the mass. The total variation distance is TV(p3, p4) ≤
2a sin

(
α
2

)
and, by Le Cam’s lemma, Rn ≥ 1

8(1 − 2a sin (α/2))2n ≥ 1
8e−4a sin(α/2)n for all

α ≤ α0(a), where α0(a) is a constant depending on a.

Global reach ξ. We defined the global reach as the shortest Euclidean distance between
two points that are far apart in the graph distance. Figure 7 shows metric graph G5 formed
by a single edge of length 1 and metric graph G6 consisting of two edges of length 0.5, ξ apart
from each other. Again, we set p5(x) = a on G5\G6, p6(x) = a on G6\G5 and evenly spread
the rest. We obtain TV(p5, p6) ≤ aξ and, by Le Cam’s lemma, Rn ≥ 1

8(1−aξ)2n ≥ 1
8e−2aξn

for all ξ ≤ ξ0(a), where ξ0(a) is a constant depending on a.

Local reach τ . The local reach τ is the smallest reach of the edges forming the metric
graph. Consider metric graphs G7 and G8. G7 consists of a loop of radius τ attached to an
edge of length 1 and metric graph G8 is a single edge of length 1 + 2πτ . As in the previous
cases p7(x) = a on G7\G8 and p8(x) = a on G8\G7. It follows that TV(p7, p8) ≤ 2aπτ and,
by Le Cam’s lemma, Rn ≥ 1

8(1 − 2aπτ)2n ≥ 1
8e−4aπτn for all τ ≤ τ0(a), where τ0(a) is a

constant depending on a.

For the tubular noise case we assume that σ is small enough to guarantee that Rn < 1,
that is, the problem is not hopeless. In particular, we require that σ satisfies conditions (9)
and (10) of Proposition 4, which can be combined into the following condition

0 < min

{
ξ − 3σ − τ sin(α/2) + (τ − σ) sin(α′/2)

3/2 + [2 sin(α′/4)]−1
, f(b, α, τ, ξ, σ)

}
. (19)

Theorem 7 Assume that σ is positive and satisfies condition (19). In the tubular noise
case, for b ≤ b0(D), α ≤ α0(D), ξ ≤ ξ0(D), τ ≤ τ0(D), where b0(D), α0(D), ξ0(D) and
τ0(D) are constants which depend on the ambient dimension D, a lower bound on the
minimax risk for metric graph reconstruction is

Rn ≥
1

8
exp
(
−2 min{CD,1b, CD,2 sin(α/2), CD,3ξ, CD,4τ}n

)
, (20)

for some constants CD,1, CD,2, CD,3, CD,4.

Proof As in the proof oh Theorem 6 we consider the 4 parameters separately. We compare
the pairs of graphs shown in Figure 7, including the tubular regions constructed around
them, from which we get samples uniformly.

Shortest edge b. Consider the metric graph G1 consisting of a single edge of length 1+b
and metric graph G2 with an edge of length 1 and an orthogonal edge of length b glued
in the middle. Since vol(G1) > vol(G2), the density q1 at a point in the tube around G1

is lower than the density q2 at a point around G2. From the definition of total variation
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TV = q1(H)− q2(H) where H is the set where q1 > q2, the shaded area in Figure 7. Note
that q2(H) = 0 and

TV (q1, q2) = q1(H) =
vol(H)

vol(G1)
≤ CD,1

bσD−1

(1 + b)σD−1
≤ CD,1b.

By Le Cam’s lemma, Rn ≥ 1
8(1 − CD,1b)2n ≥ 1

8e−2CD,1bn for all b ≤ b0(D), where b0(D) is
a constant depending on D.

Smallest angle α. Now consider the metric graphs G3 and G4. Since vol(G3) > vol(G4),
the density q3 at a point in the tube around G3 is lower than the density q4 at a point
around G4. TV = q3(H)− q4(H) where H is the set where q3 > q4, the shaded area in the
tube around G3. Note that q4(H) = 0 and

TV (q3, q4) = q3(H) =
vol(H)

vol(G3)
≤ CD,2

sin(α/2)σD−1

(1 + sin(α/2))σD−1
≤ CD,2 sin(α/2).

By Le Cam’s lemma, Rn ≥ 1
8(1 − CD,2 sin(α/2))2n ≥ 1

8e−2CD,2 sin(α/2)n for all α ≤ α0(D),
where α0(D) is a constant depending on D.

Global reach ξ. Figure 7 shows metric graph G5 formed by a single edge of length 1
and metric graph G6 consisting of two edges of length 0.5, ξ apart from each other. Since
vol(G5) > vol(G6), the density q5 at a point in the tube around G5 is lower than the density
q6 at a point around G6. TV = q5(H)−q6(H) where H is the set where q5 > q6, the shaded
area in the tube around G5. Note that q6(H) = 0 and

TV (q5, q6) = q5(H) =
vol(H)

vol(G5)
≤ CD,3

ξσD−1

σD−1
= CD,3ξ.

By Le Cam’s lemma, Rn ≥ 1
8(1 − CD,3ξ)2n ≥ 1

8e−2CD,3ξn for all ξ ≤ ξ0(D), where ξ0(D) is
a constant depending on D.

Local reach τ . The local reach τ is the smallest reach of the edges forming the metric
graph. Consider metric graphs G7 and G8 in Figure 7. Since vol(G7) > vol(G8), the
density q7 at a point in the tube around G7 is lower than the density q8 at a point around
G8. TV = q7(H) − q8(H) where H is the set where q7 > q8, the shaded area in the tube
around G7. Note that q8(H) = 0 and

TV (q7, q8) = q7(H) =
vol(H)

vol(G7)
≤ CD,4

τσD−1

(1 + τ)σD−1
≤ CD,4τ.

By Le Cam’s lemma, Rn ≥ 1
8(1− CD,4τ)2n ≥ 1

8e−2CD,4τn for all τ ≤ τ0(D), where ξ0(D) is
a constant depending on D.

Note that, up to constants, the lower bound obtained in the tubular noise case is identical
to the lower bound of Proposition 6 for the noiseless case.

4.2 Upper Bounds

In this section we use the analysis of the performance of Algorithm 1 to derive an upper
bound on the minimax risk. We will use the strategy of Niyogi et al. (2008) to find the
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sample size that guarantees a δ/2-dense sample with high probability. We will use the
following two lemmas.

Lemma 8 (5.1 in Niyogi et al. 2008) Let {Ai} for i = 1, . . . , l be a finite collection of
measurable sets and let µ be a probability measure on

⋃l
i=1Ai such that for all 1 ≤ i ≤ l,

we have µ(Ai) > γ. Let x̄ = {x1, . . . , xn} be a set of n i.i.d. draws according to µ. Then if

n ≥ 1

γ

(
log l + log

(
1

λ

))
we are guaranteed that with probability > 1− λ, the following is true:

∀i, x̄ ∩Ai 6= ∅.

Recall that the ε-covering number C(ε) of a set S is the smallest number of Euclidean balls
of radius ε required to cover the set. The ε-packing number P (ε) is the maximum number
of sets of the form B(x, ε) ∩ S, where x ∈ S, that may be packed into S without overlap.

Lemma 9 (5.2 in Niyogi et al. 2008) For every ε > 0, P (2ε) ≤ C(2ε) ≤ P (ε).

Combining Lemma 8 and Proposition 4, we obtain an upper bound on Rn for the noiseless
case.

Theorem 10 In the noiseless case (σ = 0), an upper bound on the minimax risk Rn is
given by

Rn ≤
8 length(G)

δ
exp

{
− a δ n

4 length(G)

}
,

where

δ =
1

2
min

{
ξ

2 sin(α/4)

3 sin(α/4) + 1
,

τ sin(α/2) sin(α/4)

sin(α/2) sin(α/4) + 3 sin(α/4) + 1
sin

(
min{b, ατ}

2τ

)}
.

(21)

Proof In the noiseless case, Proposition 4 implies that the graph G can be reconstructed
from a δ/2-dense sample Y if

δ < min

{
ξ

2 sin(α/4)

3 sin(α/4) + 1
, f(b, α, τ, ξ, 0)

}
. (22)

The value of δ selected in (21) satisfies condition (22), which follows from conditions (9)
and (10), with σ = 0. We look for the sample size n that guarantees a δ/2-dense sample
with high probability. Following the strategy in Niyogi et al. (2008), we consider a cover of
the metric graph G by balls of radius δ/4. Let {xi : 1 ≤ i ≤ l} be the centers of such balls

that constitute a minimal cover. We can choose A
δ/4
i = Bδ/4(xi) ∩ G. Applying Lemma 8

we find that the sample size that guarantees a correct reconstruction with probability at
least 1− λ is

1

γ

(
log l + log

1

λ

)
, (23)
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where

γ ≥ min
i

a length(A
δ/4
i )

length(G)
≥ aδ

4 length(G)
,

and we bound the covering number l in terms of the packing number, using Lemma 9:

l ≤ length(G)

mini length(A
δ/8
i )
≤ 8 length(G)

δ
.

Therefore, from (23), if

n =
4 length (G)

aδ

[
log

(
8 length(G)

δ

)
+ log

1

λ

]
(24)

we have a δ/2-dense sample with probability at least 1− λ and, by Proposition 4,
P(Ĝ 6' G) ≤ λ. Rearranging we have the result.

Note that, in the noiseless case, the upper and lower bounds are tight up to polynomial
factors in the parameters τ, b, ξ. There is a small gap with respect to α; closing this gap is
an open problem.
In the tubular noise case, we assume that σ is small enough, to guarantee that Algorithm 1
correctly reconstructs a metric graph starting from a δ/2-dense sample.

Theorem 11 Assume that σ satisfies condition (19) and 0 < σ < min{3τ/16, δ/8}, where

δ = C0 min

{
ξ − 3σ − τ sin(α/2)− (τ − σ) sin(α′/2)

3/2 + [2 sin(α′/4)]−1
, f(b, α, τ, ξ, σ)

}
, (25)

for some 0 < C0 < 1. Under the tubular noise model, an upper bound on the minimax risk
Rn is given by

Rn ≤
16length(G)

δ
exp

(
−
C ′Dδ(τ − 8σ)n

τ length(G)

)
,

where C ′D is a constant depending on the ambient dimension.

Proof Proposition 4 implies that the graph G can be reconstructed from a δ/2-dense
sample Y if

δ < min

{
ξ − 3σ − τ sin(α/2)− (τ − σ) sin(α′/2)

3/2 + [2 sin(α′/4)]−1
, f(b, α, τ, ξ, σ)

}
, (26)

which is satisfied by the value of δ selected in (25). We look for the sample size n that
guarantees a δ/2-dense sample in Gσ with high probability.
We consider a cover of the metric graph G by Euclidean balls of radius δ/8. Let {xi : 1 ≤
i ≤ l} be the centers of such balls that constitute a minimal cover. Note that D-dimensional
balls of radius δ/8+σ ≤ δ/4 centered at the same x′is constitute a cover of the tubular region

Gσ. We define A
δ/8+σ
i = Bδ/8+σ(xi)∩Gσ. Applying Lemma 8 we find that the sample size
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that guarantees a δ/2-dense sample in Gσ (and a correct topological reconstruction of G)
with probability at least 1− λ is

1

γ

(
log l + log

1

λ

)
, (27)

where

γ = min
i

vol(A
δ/8+σ
i )

vol(Gσ)
. (28)

Define Ãδi = Bδ(xi)∩G. The covering number l is bounded in terms of the packing number,
using Lemma 9,

l ≤ length(G)

mini length(Ã
δ/16
i )

≤ 16 length(G)

δ
.

We construct a lower bound on γ by deriving an upper bound on the denominator of (28)
and a lower bound on the numerator.

Upper bound on vol(Gσ). Let Nσ be the σ-covering number of G and let Cσ be the
set of centers of this cover. By Lemma 9, Nσ is bounded by the σ/2-packing number. A
simple volume argument gives Nσ ≤ Clength(G)/σ, for some constant C. Note that 2σ D-
dimensional balls around each of the centers in Cσ cover Gσ. Thus vol(Gσ) ≤ vDNσ(2σ)D ≤
CDlength(G)σD−1 for some constant CD depending on the ambient dimension.

Lower bound on vol(A
δ/8+σ
i ), for all i. Let PA(σ) be the σ-packing number of Ã

δ/8
i

and let DA be the set of centers of this packing. Then vol(A
δ/8+σ
i ) ≥ PA(σ)vDσ

D, because

the union of σ balls around DA is contained in A
δ/8+σ
i . Let CA(2σ) be the 2σ-covering

number of Ã
δ/8
i and let CA = {z1, . . . , zCA(2σ)} be the set of centers of this cover. By

Lemma 9,

PA(σ) ≥ CA(2σ) ≥
length(Ã

δ/8
i )

maxzj∈CA length(B2σ(zj) ∩ Ãδ/8i )
≥ δ/8

maxzj∈CA length(B2σ(zj) ∩ Ãδ/8i )

and, since 2σ < 3τ/8, by Corollary 1.3 in Chazal (2013),

max
zj∈CA

length(B2σ(zj) ∩ Ãδ/8i ) ≤ C2

(
τ

τ − 8σ

)
σ,

for some constant C2. Thus

γ ≥ PA(σ)vDσ
D

CDlength(G)σD−1
≥ C ′D

δ(τ − 8σ)

τ length(G)
,

where C ′D is a constant depending on the ambient dimension.

Finally, from (27), if

n =
τ length (G)

C ′Dδ(τ − 8σ)

[
log

(
16 length(G)

δ

)
+ log

1

λ

]
, (29)
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then the sample is δ/2-dense with probability at least 1−λ and P(Ĝ 6' G) ≤ λ. Rearranging
we obtain

Rn ≤ exp

(
−
C ′Dδ(τ − 8σ)n

τ length(G)
+ log

(
16length(G)

δ

))
.

5. Discussion

In this paper, we presented a statistical analysis of metric graph reconstruction. We derived
sufficient conditions on random samples from a graph metric space that guarantee topolog-
ical reconstruction and we derived lower and upper bounds on the minimax risk for this
problem. Various improvements and theoretical extensions are possible. In Proposition 4
we have analyzed Algorithm 1 using the Euclidean distance at every step. It is possible to
obtain a similar result using a different notion of distance, for example, the distance induced
by a Rips-Vietoris graph constructed on the sample.

While in our analysis we mainly relied on the assumption of a dense sample, Aanjaneya
et al. (2012) used the more refined but stronger assumption of the sample being an ap-
proximation of the metric graph, which we recall: given positive numbers ε and R, we
say that (Y, dY) is an (ε,R)-approximation of the metric space (G, dG) if there exists a
correspondence C ⊂ G× Y such that

(x, y), (x′, y′) ∈ C,min(dG(x, x′), dY(y, y′)) ≤ R =⇒
∣∣dG(x, x′)− dY(y, y′)

∣∣ ≤ ε. (30)

As shown in Aanjaneya et al. (2012), the (ε,R)-approximation assumption is sufficient, for
appropriate choice of the parameters ε and R, to recover not only the topology of a metric
graph (G, dG), but also its metric dG with high accuracy. However, when compared to
the dense sample assumption, it demands a larger sample complexity to achieve accurate
topological reconstruction. A strategy similar to the one used in this paper could be used to
determine the sample size that guarantees an (ε,R)-approximation of the underlying metric
graph with high probability. This would guarantee a correct topological reconstruction, as
well as an approximation of the metric dG.

We are also investigating the idea of combining metric graph reconstruction with the
subspace constrained mean-shift algorithm (Fukunaga and Hostetler, 1975; Comaniciu and
Meer, 2002; Genovese et al., 2012b) to provide similar guarantees. Our preliminary results
indicate that this mixed strategy works very well under more general noise assumptions and
with relatively low sample size.
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Abstract

We adapt the alternating linearization method for proximal decomposition to structured
regularization problems, in particular, to the generalized lasso problems. The method
is related to two well-known operator splitting methods, the Douglas–Rachford and the
Peaceman–Rachford method, but it has descent properties with respect to the objective
function. This is achieved by employing a special update test, which decides whether it is
beneficial to make a Peaceman–Rachford step, any of the two possible Douglas–Rachford
steps, or none. The convergence mechanism of the method is related to that of bundle meth-
ods of nonsmooth optimization. We also discuss implementation for very large problems,
with the use of specialized algorithms and sparse data structures. Finally, we present nu-
merical results for several synthetic and real-world examples, including a three-dimensional
fused lasso problem, which illustrate the scalability, efficacy, and accuracy of the method.

Keywords: lasso, fused lasso, nonsmooth optimization, operator splitting

1. Introduction

Regularization techniques that encourage sparsity in parameter estimation have gained
increasing popularity recently. The most widely used example is lasso (Tibshirani, 1996),
where the loss function f(·) is penalized by the `1-norm of the unknown coefficients β ∈ Rp,
to form a modified objective function,

L(β) = f(β) + λ‖β‖1, λ > 0,

in order to shrink irrelevant coefficients to zero. Many efficient algorithms have been pro-
posed to solve this problem; see Fu (1998); Daubechies et al. (2004); Efron et al. (2004) and
Friedman et al. (2007). Some of them are capable of handling massive data sets with tens
of thousands of variables and observations.

c©2014 Xiaodong Lin, Minh Pham and Andrzej Ruszczyński.
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For many practical applications, physical constraints and domain knowledge may man-
date additional structural constraints on the parameters. For example, in cancer research,
it may be important to consider groups of interacting genes in each pathway rather than
individual genes. In image analysis, it is natural to regulate the differences between neigh-
boring pixels in order to achieve smoothness and reduce noise. In light of these popular
demands, a variety of structured penalties have been proposed to incorporate prior infor-
mation regarding model parameters. One of the most important structural penalties is the
fused lasso proposed by Tibshirani et al. (2005). It utilizes the natural ordering of input
variables to achieve parsimonious parameter estimation on neighboring coefficients. Chen
et al. (2010) developed the graph induced fused lasso that penalizes differences between
coefficients associated with nodes in a graph that are connected. Rudin et al. (1992) pro-
posed the total variation penalty for image denoising and deblurring, in a similar fashion to
the two-dimensional fused lasso. Similar penalty functions have been successfully applied
to several neuroimaging studies (Michel et al., 2011; Grosenick et al., 2011, 2013). More
recently, Zhang et al. (2012) applied a generalized version of fused lasso to reconstruct
gene copy number variant regions. A general structural lasso framework was proposed by
Tibshirani and Taylor (2011), with the following form:

L(β) = f(β) + λ‖Rβ‖1, λ > 0, (1)

where R is an m× p matrix that defines the structural constraints one wants to impose on
the coefficients. Many regularization problems, including high dimensional fused lasso and
graph induced fused lasso, can be cast in this framework.

When the structural matrix R is relatively simple, as in the original lasso case with
R = I, traditional path algorithms and coordinate descent techniques can be used to solve
the optimization problems efficiently (Friedman et al., 2007). For more complex structural
regularization, these methods cannot be directly applied. One of the key difficulties is the
non-separability of the nonsmooth penalty function. Coordinate descent methods fail to
converge under this circumstances (Tseng, 2001). Generic solvers, such as interior point
methods, can sometimes be used; unfortunately they become increasingly inefficient for
large size problems, particularly when the design matrix is ill-conditioned (Chen et al.,
2012).

In the past decade, many efforts have been devoted to developing efficient optimization
techniques for solving regularization problems using structured penalties. Liu et al. (2010)
and Ye and Xie (2011) developed a first-order and a split Bregman scheme, respectively, for
solving similar class of problems. Chen et al. (2012) proposed a modified proximal technique
for the general structurally penalized problems. It is based on a first order approximation
of the nonsmooth penalty function, which can become unstable when dimension is high.
Meanwhile, several path algorithms have also been proposed to compute the whole regular-
ization path for the general fused lasso problem. Hoefling (2010) developed a path algorithm
for solving (1) when the matrix XTX is nonsingular, where X is the design matrix. This
technique is not applicable to cases with large dimension of β and small number of obser-
vations, such as gene expression and brain imaging analysis. Tibshirani and Taylor (2011)
extended the path algorithm to include all design matrices X, by computing the regulariza-
tion path of the dual problem. Although fairly general, this version of the path algorithm
does not scale well with data dimension, as the knots of the piecewise linear solution path
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become very dense. Many of the proposed approaches are versions of the operator splitting
methods or their dual versions, alternating direction methods (see, e.g., Boyd et al., 2010,
Combettes and Pesquet, 2011, and the references therein). Although fairly general and
universal, they frequently suffer from slow tail convergence (see He and Yuan, 2011 and the
references therein).

Thus, a need arises to develop a general approach that can solve large scale structured
regularization problem efficiently. For such an approach to be successful in practice, it
should guarantee to converge at a fast rate, be able to handle massive data sets, and should
not rely on approximating the penalty function. In this paper, we propose a framework
based on the alternating linearization algorithm of Kiwiel et al. (1999), that satisfies all
these requirements.

We consider the following generalization of (1):

L(β) = f(β) + λ‖Rβ‖♦, λ > 0, (2)

where ‖ · ‖♦ is a norm in Rm. Our considerations and techniques will apply to several
possible choices of this norm, in particular, to the `1 norm ‖ · ‖1, and to the total variation
norm ‖ · ‖TV used in image processing.

Formally, we write the objective function as a sum of two convex functions,

L(β) = f(β) + h(β), (3)

where f(β) is a loss function, which is assumed to be convex with respect to β, and h(·)
is a convex penalty function. Any of the functions (or both) may be nonsmooth, but an
essential requirement of our framework is that each of them can be easily minimized with
respect to β, when augmented by a separable linear-quadratic term

∑p
i=1

(
siβi + diβ

2
i

)
,

with some vectors s, d ∈ Rp, d > 0. Our method bears resemblance to operator splitting
and alternating direction approaches, but differs from them in the fact that it is monotonic
with respect to the values of (3). We discuss these relations and differences later in Section
2.2, but roughly speaking, a special test applied at every iteration of the method decides
which of the operator splitting iterations is the most beneficial one.

In our applications, we focus on the quadratic loss function f(·) and the penalty function
in the form of generalized lasso (2), as the most important case, where comparison with
other approaches is available. This case satisfies the requirement specified above, and
allows for substantial specialization and acceleration of the general framework of alternating
linearization. In fact, it will be clear from our presentation that any convex loss function
f(·) can be handled in exactly the same way.

An important feature of our approach is that problems with the identity design matrix
are solved exactly in one iteration, even for very large dimension.

The remainder of the paper is organized as follows. In Section 2, we introduce the al-
ternating linearization method and we discuss its relations to other approaches. Section 3
briefly discusses the application to lasso problems. In Section 4 we describe the application
to general structured regularization problems. Section 5 presents simulation results and real
data examples, which illustrate the efficacy, accuracy, and scalability of the alternating lin-
earization method. Concluding remarks are presented in Section 6. The appendix contains
details about the algorithms used to solve the subproblems of the alternating linearization
method.
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2. The Alternating Linearization Method

In this section, we describe the alternating linearization (ALIN) approach to minimize (3).

2.1 Outline of the Method

The ALIN is an iterative method, which generates a sequence of approximations {β̂k}
converging to a solution of the original problem (3), and two auxiliary sequences: {β̃kh} and
{β̃kf}, where k is the iteration number. Each iteration of the ALIN algorithm consists of
solving two subproblems: the h-subproblem and the f -subproblem, and of an update step,
applied after any of the subproblems, or after each of them.

At the beginning we set β̃0
f = β̂0, where β̂0 is the starting point of the method. In the

description below, we suppress the superscript k denoting the iteration number, to simplify
notation.

The h-subproblem

We linearize f(·) at β̃f , and approximate it by the function

f̃(β) = f(β̃f ) + sTf (β − β̃f ).

If f(·) is differentiable, then sf = ∇f(β̃f ); for a general convex f(·), we select a subgradient
sf ∈ ∂f(β̃f ). In the first iteration, this may be an arbitrary subgradient; at later iterations
special selection rules apply, as described in (2.1) below.

The approximation is used in the optimization problem

min
β

f̃(β) + h(β) + 1
2‖β − β̂‖

2
D, (4)

in which the last term is defined as follows:

‖β − β̂‖2D = (β − β̂)TD(β − β̂),

with a diagonal matrix D = diag{dj , j = 1, . . . , p}, dj > 0, j = 1, . . . , p. The solution of
the h-subproblem (4) is denoted by β̃h.

We complete this stage by calculating the subgradient of h(·) at β̃h, which features in
the optimality condition for the minimum in (4):

0 ∈ sf + ∂h(β̃h) +D(β̃h − β̂).

Elementary calculation yields the right subgradient sh ∈ ∂h(β̃h):

sh = −sf −D(β̃h − β̂). (5)

The f -subproblem

Using the subgradient sh we construct a linear minorant of the penalty function h(·) as
follows:

h̃(β) = h(β̃h) + sTh (β − β̃h).
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This approximation is employed in the optimization problem

min
β

f(β) + h̃(β) + 1
2‖β − β̂‖

2
D. (6)

The optimal solution of this problem is denoted by β̃f . It will be used in the next iteration
as the point at which the new linearization of f(·) will be constructed. The next subgradient
of f(·) to be used in the h-subproblem will be

sf = −sh −D(β̃f − β̂).

The update step

The update step can be applied after any of the subproblems, or after both of them. It
changes the current best approximation of the solution β̂, if certain improvement conditions
are satisfied. We describe it here for the case of applying the update step after the f -
subproblem; analogous operations are carried out if the update step is applied after the
h-subproblem.

At the beginning of the update step the stopping criterion is verified. If

f(β̃f ) + h̃(β̃f ) ≥ f(β̂) + h(β̂)− ε, (7)

the algorithm terminates. Here ε > 0 is the stopping test parameter.
If the the stopping test is not satisfied, we check the inequality

f(β̃f ) + h(β̃f ) ≤ (1− γ)
[
f(β̂) + h(β̂)

]
+ γ
[
f(β̃f ) + h̃(β̃f )

]
. (8)

If it is satisfied, then we update β̂ ← β̃f ; otherwise β̂ remains unchanged. Here the param-
eter γ ∈ (0, 1). In the implementation, we use γ = 0.2. The choice of this parameter does
not influence the overall performance of the algorithm.

If the update step is applied after the h-subproblem, we use β̃h instead of β̃f in the
inequalities (7) and (8).

The update step is a crucial component of the alternating linearization algorithm; it
guarantees that the sequence {L(β̂k)} is monotonic (see Lemma 2 in Section 2.3), and it
stabilizes the entire algorithm (see the remarks at the end of Section 5.2). It is a special-
ized form of the main distinction between null and serious steps in bundle methods for
nonsmooth optimization. The Reader may consult the books of Bonnans et al. (2003);
Hiriart-Urruty and Lemaréchal (1993); Kiwiel (1985); Ruszczyński (2006), and the refer-
ences therein, for the theory of bundle methods and the significance of null and serious steps
in these methods.

In Lemma 3 in Subsection 2.3 we show that under simple conditions the method is
convergence linearly between successive serious steps.

2.2 Relation to Operator Splitting and Alternating Direction Methods

Our approach is intimately related to operator splitting methods and their dual versions,
alternating direction methods, which are recently very popular in the area of signal process-
ing (see, e.g., Boyd et al., 2010; Combettes and Pesquet, 2011; Fadili and Peyré, 2011). To
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discuss these relations, it is convenient to present our method formally, and to introduce
two running proximal centers:

zf = β̂ −D−1sf ,

zh = β̂ −D−1sh.

After elementary manipulations we can absorb the linear terms into the quadratic terms
and summarize the alternating linearization method as follows.

Algorithm 1 Alternating Linearization
1: repeat
2: β̃h ← arg min

{
h(β) + 1

2‖β − zf‖
2
D

}
3: if (Update Test for β̃h) then
4: β̂ ← β̃h
5: end if
6: zh ← β̂ + β̃h − zf
7: β̃f ← arg min

{
f(β) + 1

2‖β − zh‖
2
D

}
8: if (Update Test for β̃f ) then

9: β̂ ← β̃f
10: end if
11: zf ← β̂ + β̃f − zh
12: until (Stopping Test)

The Update Test in lines 3 and 8 is the corresponding version of inequality (8). The
Stopping Test is inequality (7).

If we assume that the update steps in lines 4 and 9 are carried out after every h-
subproblem and every f -subproblem, without verifying the update test (8), then the method
becomes equivalent to a scaled version of the Peaceman–Rachford algorithm (originally
proposed by Peaceman and Rachford (1955) for PDEs and later generalized and analyzed
by Lions and Mercier (1979); see also Combettes (2009) and the references therein). If
D = ρI with ρ > 0, then we obtain an unscaled version of this algorithm.

If we assume that the update steps are carried out after every h-subproblem without
verifying inequality (8), but never after f -subproblems, then the method becomes equivalent
to a scaled version of the Douglas–Rachford algorithm (introduced by Douglas and Rachford
(1956), and generalized and analyzed by Lions and Mercier (1979); see also Bauschke and
Combettes (2011) and the references therein). As the roles of f and h can be switched,
the method in which updates are carried always after f -subproblems, but never after h-
subproblems, is also equivalent to a scaled Douglas–Rachford method.

Operator splitting methods are not monotonic with respect to the values of the objective
function L(β). Their convergence is based on monotonicity with respect to the distance to
the optimal solution of the problem (Lions and Mercier, 1979; Eckstein and Bertsekas, 1992).

In contrast, the convergence mechanism of our method is different; it draws from some
ideas of bundle methods in nonsmooth optimization (Hiriart-Urruty and Lemaréchal, 1993;
Kiwiel, 1985; Ruszczyński, 2006). Its key element is the update test employed in (8). At
every iteration we decide whether it is beneficial to make a Peaceman–Rachford step, any
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of the two possible Douglas–Rachford steps, or none. In the latter case, which we call the
null step, β̂ remains unchanged, but the trial points β̃h and β̃f are updated. These updates

continue, until β̃h or β̃f become better than β̂, or until optimality is detected (cf. the
remarks at the end of section 5.2). In may be worth noticing that the recent application
of the idea of alternating linearization by Goldfarb et al. (2013) removes the update test
from the method of Kiwiel et al. (1999), thus effectively reducing it to an operator splitting
method.

Alternating direction methods are dual versions of the operator splitting methods, ap-
plied to the following equivalent form of the problem of minimizing (3):

min f(β1) + h(β2), subject to β1 = β2.

In regularized signal processing problems, when f(β) = ϕ(Xβ) with some fixed matrix X,
the convenient problem formulation is

minϕ(v) + h(β), subject to v = Xβ.

The dual functional,

LD(λ) = min
v

{
ϕ(v)− λT v

}
+ min

β

{
h(β) + λTXβ

}
,

has the form of a sum of two functions, and the operator splitting methods apply. The
reader may consult the papers of Boyd et al. (2010) and Combettes and Pesquet (2011) for
appropriate derivations. It is also worth mentioning that the alternating direction methods
are sometimes called split Bregman methods in the signal processing literature (see, e.g.,
Goldstein and Osher, 2009; Ye and Xie, 2011, and the references therein). Recently, Qin
and Goldfarb (2012) applied alternating direction methods to some structured regularization
problems resulting from group lasso models.

However, to apply our alternating linearization method to the dual problem of maxi-
mizing LD(λ), we would have to be able to quickly compute the value of the dual functions,
in order to verify the update condition (8), as discussed in detail in Kiwiel et al. (1999).
The second dual function, minβ

{
h(β) +λTXβ

}
is rather difficult to evaluate, and it makes

the update test time consuming. Without this test, our method reduces to the alternating
direction method, which does not have descent properties, and whose tail convergence may
be slow. Our experiments reported at the end of Section 5.2 confirm these observations.

2.3 Convergence

Convergence properties of the alternating linearization method follow from the general
theory developed by Kiwiel et al. (1999). Indeed, after the change of variables ξ = D1/2β
we see that the method is identical to Algorithm 3.1 of Kiwiel et al. (1999), with ρk = 1.
The following statement is a direct consequence of (Kiwiel et al., 1999, Theorem 4.8).

Theorem 1 Suppose that the set of minima of the function (3) is nonempty. Then the
sequence {β̂k} generated by the algorithm is convergent to a minimum point β∗ of the func-
tion (3). Moreover, every accumulation point (s∗f , s

∗
h) of the sequence {(skf , skh)} satisfies the

relations: s∗f ∈ ∂f(β∗), s∗h ∈ ∂h(β∗), and s∗f + s∗h = 0.
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For structured regularization problems the assumption of the theorem is satisfied, be-
cause both the loss function f(·) and the regularizing function h(·) are bounded from below,
and one of the purposes of the regularization term is to make the set of minima of the func-
tion L(·) nonempty and bounded.

It may be of interest to look closer at the stopping test (7) employed in the update step.

Lemma 2 Suppose β∗ is the unique minimum point of L(·) = f(·) + h(·) and let α > 0 be
such that L(β) − L(β∗) ≥ α‖β − β∗‖2D for all β. Then the stopping criterion (7) implies
that

L(β̂)− L(β∗) ≤ ε

α
. (9)

Proof As h̃(·) ≤ h(·), inequality (7) implies that

min
β

{
f(β) + h(β) +

1

2
‖β − β̂‖2D

}
≥ min

β

{
f(β) + h̃(β) +

1

2
‖β − β̂‖2D

}
= f(β̃f ) + h̃(β̃f ) +

1

2
‖β̃f − β̂‖2D

≥ f(β̂) + h(β̂)− ε.

(10)

The expression on the left hand side of this inequality is the Moreau–Yosida regularization
of the function L(·) evaluated at β̂. By virtue of (Ruszczyński, 2006, Lemma 7.12), after
setting x̃ = β∗ and with the norm ‖ · ‖D, the Moreau–Yosida regularization satisfies the
following inequality:

min
β

{
L(β) +

1

2
‖β − β̂‖2D

}
≤ L(β̂)−

(
L(β̂)− L(β∗)

)2
‖β̂ − β∗‖2D

.

Combining this inequality with (10) and simplifying, we conclude that(
L(β̂)− L(β∗)

)2
‖β̂ − β∗‖2D

≤ ε.

Substitution of the denominator by the upper estimate
(
L(β)− L(β∗)

)
/α yields (9).

If β∗ is unique then L(·) grows at least quadratically in the neighborhood of β∗. This
implies that α > 0 satisfying the assumptions of Lemma 2 exists. Our use of the norm ‖·‖D
amounts to comparing the function (β − β∗)TXTX(β − β∗) to its diagonal approximation
(β − β∗)TD(β − β∗) for D = diag(XTX). The reader may also consult (Ruszczyński, 1995,
Lemma 1) for the accuracy of the diagonal approximation when the matrix X is sparse.

By employing the estimate of Lemma 2, we can now prove linear rate of convergence of
the method between serious steps.

Lemma 3 Suppose β∗ is the unique minimum point of L(·) = f(·) + h(·) and let α > 0
be such that L(β) − L(β∗) ≥ α‖β − β∗‖2D for all β. Then at every serious step, when the
update test (8) is satisfied, we have the inequality

L(β̃f )− L(β∗) ≤ (1− γα)
[
L(β̂)− L(β∗)

]
. (11)
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Proof If follows from inequality (8) that

L(β̃f ) ≤ (1− γ)L(β̂) + γ
[
f(β̃f ) + h̃(β̃f )

]
.

Using Lemma 2, we obtain

L(β̂)− L(β∗) ≤ 1

α

[
L(β̂)− f(β̃f )− h̃(β̃f )

]
.

Combining these inequalities and simplifying, we conclude that

L(β̃f ) ≤ (1− γ)L(β̂) + γ
{
αL(β∗)− αL(β̂) + L(β̂)

}
= L(β̂)− γα

[
L(β̂)− L(β∗)

]
.

Subtracting L(β∗) from both sides, we obtain the linear rate (11).

If the original problem is to minimize (3) subject to the constraint that β ∈ B for some
convex closed set B, we can formally add the indicator function of this set,

δ(β) =

{
0 if β ∈ B,
+∞ if β 6∈ B,

to f(·) or to h(·) (whichever is more convenient). This will result in including the constraint
in one of the subproblems, and changing the subgradients accordingly. The theory of Kiwiel
et al. (1999) covers this case as well, and Theorem 1 remains valid.

3. Application to Lasso Regression

First, we demonstrate the alternating linearization algorithm (ALIN) on the classical lasso
regression problem. Due to the separable nature of the penalty function, very efficient
coordinate descent methods are applicable to this problem as well (Tseng, 2001), but we
wish to illustrate our approach on the simplest case first.

In the lasso regression problem we have

f(β) = 1
2‖y −Xβ‖

2
2, h(β) = λ‖β‖1,

where X is the n × p design matrix, y ∈ Rn is the vector of response variables, β ∈ Rp is
the vector of regression coefficients, and λ > 0 is a parameter of the model.

We found it essential to use D = diag(XTX), that is, dj = XT
j Xj , j = 1, . . . , p. This

choice is related to the diagonal quadratic approximation of the function f(β) = 1
2‖y −

Xβ‖22, which was employed (for similar objectives in the context of augmented Lagrangian
minimization) by Ruszczyński (1995). Indeed, in the h-subproblem in the formula (12)
below, the quadratic regularization term is a quadratic form built on the diagonal of the
Hessian of f(·).

3455



Lin, Pham, and Ruszczyński

The h-subproblem

The problem (4), after skipping constants, simplifies to the following form

min
β

sTf β + λ‖β‖1 + 1
2‖β − β̂‖

2
D, (12)

with sf = XT (Xβ̃f − y). Writing τj = β̂ − s̃fj/dj , we obtain the following closed form
solutions of (12), which can be calculated component-wise:

β̃hj = sgn(τj) max
(

0, |τj | −
λ

dj

)
, j = 1, . . . , p.

The subgradient sh of h(·) at β̃h is calculated by (5).

The f -subproblem

The problem (6), after skipping constants, simplifies to the unconstrained quadratic pro-
gramming problem

min
β

sThβ + 1
2‖y −Xβ‖

2
2 + 1

2‖β − β̂‖
2
D.

Its solution can be obtained by solving the following symmetric linear system in δ = β − β̂:

(XTX +D)δ = XT (y −Xβ̂)− sh. (13)

This system can be efficiently solved by the preconditioned conjugate gradient method
(see, e.g., Golub and Van Loan, 1996), with the diagonal preconditioner D = diag(XTX).
Its application does not require the explicit form of the matrix XTX; only matrix-vector
multiplications with X and XT are employed, and they can be implemented with sparse
data structures.

The numerical accuracy of this approach is due to the improved condition index of the
resulting matrix, as explained in the following lemma.

Lemma 4 The application of the preconditioned conjugate gradient method with precondi-
tioner D to the system (13) is equivalent to the application of the conjugate gradient method
to a system with a symmetric positive definite matrix H̄ whose condition index is at most
p+ 1.

Proof By construction, the preconditioned conjugate gradient method with a precondi-
tioner D applied to a system with a matrix H is the standard conjugate gradient method
applied to a system with the matrix H̄ = D−

1
2HD−

1
2 . Substituting the matrix from (13),

we obtain:
H̄ = D−

1
2 (XTX +D)D−

1
2 = D−

1
2XTXD−

1
2 + I.

Define X̄ = XD−
1
2 . By the construction of D, all columns x̄j , j = 1, . . . , p, of X̄ have

Euclidean length 1.
The condition index of H̄ is equal to

cond(H̄) =
λmax(X̄T X̄) + 1

λmin(X̄T X̄) + 1
.
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As the matrix X̄T X̄ is positive semidefinite, λmin(X̄T X̄) ≥ 0. To estimate λmax(X̄T X̄)
suppose v is the corresponding eigenvector of Euclidean length 1. We obtain the chain of
relations:√

λmax(X̄T X̄) = ‖X̄v‖2 =
∥∥∥ p∑
j=1

vj x̄
j
∥∥∥

2
≤

p∑
j=1

|vj |‖x̄j‖2 = ‖v‖1 ≤
√
p‖v‖2 =

√
p.

Therefore, the condition index of H̄ is at most p+ 1.

While this universal estimate can be still very large, our experience is that the precondi-
tioned conjugate gradient method solves the system (13) in a small number of iterations
even for large p (see the discussion following Figure 4).

4. Application to General Structured Regularization Problems

In the following we apply the alternating linearization algorithm to solve more general
structured regularization problems including the generalized Lasso (2). Here we assume the
least square loss, as in the previous subsection. The objective function can be written as
follows:

L(β) = f(β) + h(β) = 1
2‖y −Xβ‖

2
2 + λ‖Rβ‖♦. (14)

For example, for the one-dimensional fused lasso, R is the following (p− 1)× p matrix:

R =


−1 1 0 . . . 0
0 −1 1 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 . . . −1 1

 ,
and the norm ‖ · ‖♦ is the `1-norm ‖ · ‖1, but our derivations are valid for any form of R,
and any norm ‖ · ‖♦.

The h-subproblem

The h-subproblem can be equivalently formulated as follows:

min
β,z

sTf β + λ‖z‖♦ + 1
2‖β − β̂‖

2
D subject to Rβ = z. (15)

Owing to the use of D = diag(XTX), and with sf = XT (Xβ̂ − y), it is a quite accurate
approximation of the original problem, especially for sparse X (Ruszczyński, 1995).

The Lagrangian of problem (15) has the form

L(β, z, µ) = sTf β + λ‖z‖♦ + µT (Rβ − z) + 1
2‖β − β̂‖

2
D,

where µ is the dual variable. Consider the dual norm ‖ · ‖∗, defined as follows:

‖µ‖∗ = max
‖z‖♦≤1

µT z, ‖z‖♦ = max
‖µ‖∗≤1

µT z.

3457



Lin, Pham, and Ruszczyński

We see that the minimum of the Lagrangian with respect to z is finite if and only if ‖µ‖∗ ≤ λ
(Ruszczyński, 2006, Example 2.94). Under this condition, the minimum value of the z-terms
is zero and we can eliminate them from the Lagrangian. We arrive to its reduced form,

L̂(β, µ) = sTf β + µTRβ + 1
2‖β − β̂‖

2
D. (16)

To calculate the dual function, we minimize L̂(β, µ) over β ∈ Rp. After elementary calcu-
lations, we obtain the solution

β̃h = β̂ −D−1(sf +RTµ). (17)

Substituting it back to (16), we arrive to the following dual problem:

max
µ
−1

2µ
TRD−1RTµ+ µTR(β̂ −D−1sf ) subject to ‖µ‖∗ ≤ λ. (18)

This is a norm-constrained optimization problem. Its objective function is quadratic, and
the specific form of the constraints depends on the norm ‖ · ‖♦ used in the regularizing term
of (2).

The case of the `1-norm

If the norm ‖ · ‖♦ is the `1-norm ‖ · ‖1, then the dual norm is the `∞-norm:

‖µ‖∗ = ‖µ‖∞ = max
1≤j≤m

|µj |.

In this case (18) becomes a box-constrained quadratic programming problem, for which
many efficient algorithms are available. One possibility is the active-set box-constrained
preconditioned conjugate gradient algorithm with spectral projected gradients, as described
by Birgin and Mart́ınez (2002); Friedlander and Mart́ınez (1994). It should be stressed that
its application does not require the explicit form of the matrix RD−1RT ; only matrix-vector
multiplications with R and RT are employed, and they can be implemented with sparse data
structures.

An even better possibility, due to the separable form of the constraints, is coordinate-
wise optimization (see, e.g., Ruszczyński, 2006, Sec. 5.8.2) in the dual problem (18). In
our experiments, the dual coordinate-wise optimization method strictly outperforms the
box-constrained algorithm, in terms of the solution time.

The solution µ̃ of the dual problem can be substituted into (17) to obtain the primal
solution.

The case of a sum of `2-norms

Another important case arises when the vector z = Rβ is split into I subvectors
z1, z2, . . . , zI , and

‖z‖♦ =

I∑
i=1

‖zi‖2. (19)

This is the group lasso model, also referred to as the `1/L2-norm regularization (see, e.g.,
Qin and Goldfarb, 2012). A special case of it is the total variation norm is discussed in
Section 5.4.
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We can directly verify that the dual norm has the following form:

‖µ‖∗ = max
1≤i≤I

‖µi‖2.

It follows that problem (18) is a block-quadratically constrained quadratic optimization
problem:

max
µ
− 1

2µ
TRD−1RTµ+ µTR(β̂ −D−1sf )

s. t. ‖µi‖22 ≤ λ2, i = 1, . . . , I.

This problem can be very efficiently solved by a cyclical block-wise optimization with respect
to the subvectors µ1, µ2, . . . , µI . At each iteration of the method, optimization with respect
to the corresponding subvector µj is performed, subject to one constraint ‖µj‖22 ≤ λ2. The
other subvectors, µi, i 6= j are kept fixed on their last values. After that, j is incremented
(if j < I) or reset to 1 (if j = I), and the iteration continues. The method stops when no
significant improvements over I steps can be observed. The dual block optimization method
performs well in the applications we are interested in. General convergence theory can be
found in Tseng (2001).

Again, the solution µ̃ of the dual problem is substituted into (17) to obtain the primal
solution.

The f -subproblem

We obtain the update β̃f by solving the linear equation system (13), exactly as in the lasso
case.

The special case of X = I

If the design matrix X = I in (14), then our method solves the problem in one iteration,
when started from β̂ = y. Indeed, in this case we have sf = 0, D = I, and the first
h-subproblem becomes equivalent to the original problem (14):

min
β,z

λ‖z‖♦ + 1
2‖β − y‖

2
2 subject to Rβ = z.

The dual problem (18) simplifies as follows:

max
µ
−1

2µ
TRRTµ+ µTRy subject to ‖µ‖∗ ≤ λ.

It can be solved by the same block-wise optimization method, as in the general case. The
optimal primal solution is then β̃h = y −RTµ.

5. Numerical Experiments

In this section, we present results of a number of studies on simulated and real data,
involving a variety of non-differentiable penalty functions. We compare the alternating
linearization algorithm (ALIN) with competing approaches in terms of iteration counts,
computation time, and estimation accuracy. All these studies were performed on an AMD
2.6 GHZ, 4 GB RAM computer using MATLAB.
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5.1 `1 Regularization

In this section, we compare ALIN with some competing methods for solving the `1 regular-
ization problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1, λ > 0.

The methods that we are comparing with are: SpaRSA, a type of iterative thresholding
method (Wright et al., 2009; Xiao and Zhang, 2013); FISTA, a variation of the Nesterov
method, considered to be state-of-the-art among the first order methods; and SPG, a spec-
tral gradient method (den Berg and Friedlander, 2008). We follow the procedure described
by Wright et al. (2009) to generate a data set for comparisons. The elements of the matrix
X are generated independently using a Gaussian distribution with mean zero and variance
10−2. The dimension of X is n = 210 by p = 212, p = 213, and p = 214. The true signal,
β, is a vector with 160 randomly placed ±1 spikes and zeros elsewhere. The dependent
variables are y = Xβ + ε, where ε is Gaussian noise with variance 10−4.

p = 212 p = 213 p = 214

λ = τ ALIN 17.99 (10.68) 36.60 (15.08) 105.14 (40.88)
FISTA 8.58 (4.00) 18.63 (9.35) 58.73 (42.01)

SPARSA 8.18 (2.34) 8.18 (3.80) 34.23 (49.55)
SPG 160.72 (27.48) 160.72 (47.82) 404.59 (79.62)

λ = 10−1τ ALIN 9.35 (2.99) 34.01 (15.18) 74.06 (34.27)
FISTA 16.91 (4.57) 36.43 (16.66) 131.91 (33.94)

SPARSA 20.55 (10.08) 36.81 (19.29) 169.88 (73.01)
SPG 136.26 (23.30) 186.94 (46.56) 460.71 (38.93)

λ = 5× 10−2τ ALIN 6.30 (2.73) 21.83 (10.17) 65.79 (39.49)
FISTA 18.88 (2.95) 48.37 (15.77) 158.73 (21.86)

SPARSA 35.56 (11.32) 74.66 (24.49) 234.75 (64.67)
SPG 140.00 (23.15) 190.43 (45.48) 473.78 (6.41)

λ = 10−2τ ALIN 4.58 (2.05) 16.96 (10.99) 28.88 (16.03)
FISTA 18.85 (3.04) 46.58 (14.91) 169.94 (19.76)

SPARSA 33.52 (16.10) 76.69 (28.18) 214.85 (124.56)
SPG 140.63 (22.43) 196.54 (43.96) 483.71 (4.51)

λ = 10−3τ ALIN 3.68 (1.20) 6.67 (2.43) 20.16 (4.31)
FISTA 18.88 (2.84) 45.40 (14.28) 162.85 (36.76)

SPARSA 19.94 (12.10) 39.55 (27.45) 92.76 (102.53)
SPG 138.73 (19.56) 201.74 (48.09) 467.91 (101.32)

Table 1: Average run time (in CPU seconds) and standard deviation (in parenthesis) com-
parison for combinations of dimension p and tuning parameter λ.

To make a fair comparison between the methods, we run FISTA on each instance of
the problem. FISTA is set to run to “tol” = 10−5 or 5, 000 iterations, whichever comes
first. Then ALIN, SpaRSA, and SPG are set to run until the objective function values
obtained are as good as that of FISTA. We set a parameter τ = 0.1‖XT y‖∞ and chose
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values of λ =τ, 10−1τ , 5×10−2τ , 10−2τ , and 10−3τ . We allow SpaRSA to run its monotone
and continuation feature. Continuation is a special feature of SpaRSA for cases when the
parameter λ is small. With this feature, SpaRSA computes the solutions for bigger values
of λ and uses them to find solutions for smaller values of λ. We did not let SpaRSA use
its special de-bias feature since it involves removing zero coefficients to reduce the size of
the data set. This feature makes it unfair for the other competing methods. In Table 1, we
report the average time elapsed (in seconds) and the standard deviation after 20 runs.

We can see that the performance of ALIN is comparable to the other methods. In terms
of running time, ALIN does better than all competing methods for all but the largest λ
considered. For the large value of λ, ALIN performs worse than FISTA and SPARSA. In
this case, the solution is fairly close to the starting point 0, therefore the overhead cost of
the update steps and the f -subproblem slow ALIN down. When the value of λ decreases,
the benefits of these steps become more evident. ALIN outperforms other methods in terms
of the running time, by factors of two to three.

p = 212 p = 213 p = 214

λ = τ ALIN 12.35 ( 0.05) 30.46 ( 0.05) 66.02 (0.05)
FISTA 6.99 (0.05) 17.25 (0.05 ) 44.07 (0.05)

SPARSA 3.16 (0.05) 6.14 (0.05 ) 12.26 (0.05)
SPG 47.43 (0.05) 74.72 (0.05) 161.54 (0.05)

λ = 10−1τ ALIN 5.45 (0.02) 19.17 (0.03) 62.13 (0.04)
FISTA 12.08 (0.02) 25.40 (0.03) 79.48 (0.04)

SPARSA 14.69 (0.02) 26.85 ( 0.03) 110.48 (0.04 )
SPG 53.54 (0.03) 93.18 (0.04) 175.77 (0.05)

λ = 5× 10−2τ ALIN 4.97 (0.02) 18.03 (0.02) 57.55 (0.03)
FISTA 15.58 (0.02) 32.26 (0.02) 94.91 (0.03)

SPARSA 20.62 (0.02) 42.67 (0.02) 168.76 ( 0.03)
SPG 55.82 (0.03) 94.13 (0.04) 177.17 (0.05)

λ = 10−2τ ALIN 5.06 ( 0.01) 12.67 (0.02) 29.10 (0.04)
FISTA 18.74 (0.01) 38.59 (0.02) 106.43 (0.04)

SPARSA 38.76 (0.01) 79.33 (0.02) 191.51 (0.04)
SPG 54.85 (0.03) 95.58 ( 0.04) 180.52 (0.05)

λ = 10−3τ ALIN 3.78 (0.03) 4.98 (0.04) 9.59 (0.05)
FISTA 21.61 (0.03) 38.50 (0.04) 106.53 (0.05)

SPARSA 32.78 (0.03) 45.69 (0.04) 98.75 (0.05)
SPG 56.90 (0.04) 96.95 ( 0.05) 183.67 (0.05)

Table 2: Average run time (in CPU seconds) and MSE (in parenthesis) comparison for
combinations of dimension p and tuning parameter λ.

We further compare the efficiency of these methods by a validation experiment. All
the features of the previous experiment remain the same, except that the noise variance
is increased from 10−4 to 10−1 (which should favor higher regularization). We generate
n = 211 samples, where half of them are used as the training set and the other half for

3461



Lin, Pham, and Ruszczyński

testing. For each of the five λ values, we apply the four algorithms to the training set. The
fitted models are then validated on the testing set to obtain out-of-sample estimation errors
(measured by mean square error). The results are reported in Table 2. All the methods
obtain similar MSE on the testing data and the smallest MSE is achieved at λ = 10−2τ and
λ = 5 × 10−2τ . In both cases, ALIN clearly performs the best among the four competing
methods. As shown in Figure 1, ALIN is also the fastest in terms of the overall computation
cost.

It’s worth noting that the implementation of FISTA was in the C programming language,
while ALIN was implemented as a MATLAB script. Moreover, SpaRSA is a very efficient
method specially designed for separable regularization. From our numerical studies, for
medium and small values of λ, FISTA makes very small improvement over 5, 000 iterations
and SPARSA has to go through many previous values of λ to reach the desired level of
objective function values.

Figure 1: Run time (in CPU seconds) comparisons on the validation experiment for ALIN,
FISTA, SPARSA and SPG. The sample size n = 211.

5.2 Fused Lasso Regularization

In this experiment, we compare the ALIN algorithm with four different approaches using
data sets generated from a linear regression model y =

∑p
j=1 xjβj + ε, with pre-specified

coefficients βj , and varying dimension p. The values of xj are drawn from the multivariate
normal distribution with zero mean and pairwise correlation of σ = 0.3. The noise ε is
generated from the normal distribution with zero mean and variance equal to 0.01. Among
the coefficients βj , 10% equal 1, 20% equal 2, and the rest are zero. For instance, with
p = 100, we may have

βj =


1 for j = 11, 12, . . . , 20,

2 for j = 21, . . . , 40,

0 otherwise.
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The regularization problem we attempt to solve is

min
β

1

2
‖y −Xβ‖22 + λ

p∑
j=2

|βj − βj−1|, λ > 0.

Table 3 reports the run times of ALIN and the four competing algorithms: the generic
quadratic programming solver (SQOPT), an implementation of Nesterov’s method, SLEP,
of Liu et al. (2011); Nesterov (2007), the Split Bregman method of Ye and Xie (2011)
(BREGMAN), and alternating direction method of multipliers (ADMM) (Eckstein, 2012).
We fix the sample size at n=1000 and vary the dimension p of the problem from 5000
to 50000. To keep the comparison fair, we first run ADMM using the stopping criteria
of Boyd et al. (2010) with tol = 1e − 6 or 30 iterations since each iteration of ADMM
can be expensive. Then, the other methods are run until they obtain the same objective
function value, or their stopping criteria are satisfied. Each method is repeated on 10
different randomly generated data sets for different values of the tuning parameter λ, and
the average running time is reported.

Judging from these results, ALIN clearly outperforms the other methods in terms of
speed for most cases. The relative improvements on run time can be as much as 8-fold,
depending on the experimental setting, and become more significant, when the data dimen-
sion grows. This is particularly significant in view of the fact that ALIN was implemented
as a MATLAB code, as opposed to the executables in the other cases. Figure 2 presents
the solutions obtained by ALIN, ADMM, SLEP and BREGMAN. The first three methods
achieve results that are very close to the original β, and their final objective function values
are similar. From our experience, BREGMAN performs well when the dimension p is not
significantly larger than the number of observations n. When p� n, although BREGMAN
has a very good running time, it tends to terminate early and does not provide accurate
results. In Figure 2, we can see that the solution obtained by BREGMAN is not as good
as those of the other three methods.

We further investigated how ALIN approaches the optimal objective function value
compared to the other methods. Using the above simulated data set with n = 1000,
p = 5000, and λ = 0.5, we run ADMM, ALIN, and SLEP until convergence. At each
iteration, we calculated the difference between the optimal value L∗ (obtained by SQOPT)
and the current function value for each method. Figure 3 displays (in a logarithmic scale)
the progress of these methods. It is clear that ALIN achieves the same accuracy as SLEP
and ADMM in a much smaller number of iterations. Furthermore, the convergence of
ALIN is monotonic, whereas that of SLEP is not. ADMM makes good improvements at the
beginning but then it takes thousands of iterations to get to the desired objective function
value.

In Figure 4 we show how the ADMM, ALIN and SLEP scale with the dimension of the
problem. From this plot, the computation cost of ALIN is consistently lower than those
of ADMM and SLEP. The efficiency of the method is due mainly to its good convergence
properties, but also to the efficiency of the preconditioned conjugate gradient method for
solving the subproblems. It employs sparse data structures and converges rapidly. Usually,
between 10 and 20 iterations of the conjugate gradient method are sufficient to find the
solution of a subproblem.
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p = 5000 p=10,000 p=20,000 p=50,000

ADMM 47.45 324.93 590.22 973.48
λ = 10−4 SQOPT 1076.00 NA NA NA

SLEP 58.93 569.40 1041.91 2759.85
ALIN 7.01 35.85 52.74 500.05

BREGMAN 92.71 129.98 172.36 92.67
ADMM 51.94 327.29 597.86 963.79

λ = 10−3 SQOPT 1025.00 NA NA NA
SLEP 59.65 570.25 1059.80 2750.72
ALIN 11.45 67.69 72.04 632.32

BREGMAN 90.86 129.08 158.72 91.88
ADMM 52.37 322.74 599.56 1274.93

λ = 10−2 SQOPT 1019.00 NA NA NA
SLEP 59.24 576.82 1053.05 2729.88
ALIN 27.68 100.29 225.30 810.70

BREGMAN 86.70 129.29 153.66 90.47
ADMM 52.03 326.55 574.75 1528.20

λ = 0.1 SQOPT 956.00 NA NA NA
SLEP 56.58 572.34 1004.90 2679.26
ALIN 31.42 292.73 466.84 597.30

BREGMAN 93.93 125.65 136.92 77.98
ADMM 51.57 317.28 565.74 1482.76

λ = 0.5 SQOPT 1015.00 NA NA NA
SLEP 53.10 541.02 983.12 2420.88
ALIN 22.74 211.35 473.82 908.08

BREGMAN 97.38 129.68 151.67 71.19
ADMM 51.45 322.37 569.20 1397.77

λ = 1 SQOPT 1029.00 NA NA NA
SLEP 46.80 470.14 879.51 2404.60
ALIN 18.15 169.31 477.02 983.31

BREGMAN 85.14 136.82 170.35 61.48

Table 3: Run time (in CPU seconds) comparison for combinations of dimension p and tuning
parameter λ for fused lasso problems
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Figure 2: Results of using fused lasso penalty on a simulated data set with n = 1000,
p = 5000, and λ = 0.5. Plots (a), (b), (c), and (d) correspond to results from
ADMM, SLEP, ALIN, and BREGMAN, respectively.

The update test (8) is an essential element of the ALIN method. For example, in the case
with n = 1000, p = 5000, and λ = 0.1, the update of β̂ occurred in about 80% of the total of
70 iterations, while other iterations consisted only of improving alternating linearizations.
If we allow updates of β̂ at every step, the algorithm takes more than 5000 iterations to
converge in this case. Similar behavior was observed in all other cases. These observations
clearly demonstrate the difference between the alternating linearization method and the
operator splitting methods.

5.3 CGH Data Example

In this study we present the results on analyzing the CGH data using fused lasso penalty.
CGH is a technique for measuring DNA copy numbers of selected genes on the genome. The
CGH array experiments return the log ratio between the number of DNA copies of the gene
in the tumor cells and the number of DNA copies in the reference cells. A value greater
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Figure 3: Simulated data set with n = 1000, p = 5000, λ = 0.1. Plots (a), (b) and (c):
ln(Error) versus number of iterations for ADMM,ALIN, and SLEP respectively.
Error is defined as the difference between the optimal value L∗ (obtained by
SQOPT) and those obtained by ADMM, ALIN, and SLEP respectively.
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Figure 4: Running time of ADMM, SLEP and ALIN as dimension changes. The vertical
axis is the run time in seconds, and the horizontal axis is the data dimension.
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Figure 5: Fused lasso applied to CGH data, λ = 3.

than zero indicates a possible gain, while a value less than zero suggests possible losses.
Tibshirani and Wang (2008) applied the fused lasso signal approximator for detecting such
copy number variations. This is a simple one-dimensional signal approximation problem
with the design matrix X being the identity matrix. Thus the advantage of ALIN over
the other three methods is not significant, due to the overhead that ALIN has during the
conjugate gradient method implemented in MATLAB. Indeed the solution time of ALIN is
comparable to that of Bregman and SLEP.

Figure 5 presents the estimation results obtained by our ALIN method. The green
dots shows the original CNV number, and the red line presents the fused lasso penalized
estimates.

In Table 4, the running time comparisons between ADMM, SLEP, ALIN, and Bregman
on the CGH data are reported. The fused lasso signal approximator problem has been solved
successfully by many methods. Although the main focus of ALIN is on a general design
matrix X, ALIN’s performance is still comparable with other methods for this example.
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SLEP ADMM Alin Bregman

λ=0.1 0.01 0.06 0.01 0.02
λ=0.5 0.01 0.05 0.01 0.02
λ=1 0.01 0.05 0.03 0.02
λ=3 0.01 0.06 0.06 0.02

Table 4: Average run time (in CPU seconds) comparison for different values of tuning
parameter λ on the CGH data example.

5.4 Total Variation Based Image Reconstruction

In image recovery literature, two classes of regularizers are well known. One is the Tikhonov
type operator, where the regularizing term is quadratic, and the other is the discrete total
variation (TV) regularizer. The resulting objective function from the first type is relatively
easy to minimize, but it tends to over-smooth the image, thus failing to preserve its sharpness
(Wang et al., 2008). In the following experiment, we demonstrate the effectiveness of ALIN
in solving TV-based image deblurring problems, with discrete TV (Rudin et al., 1992), as
well as a comparison to the Tikhonov regularizer.

Although of similar form, higher-order fused lasso models are fundamentally different
from the one-dimensional fused lasso, as the structural matrix R appearing in (2) is not
full-rank and RTR is ill-conditioned. This additional complication introduces considerable
challenges in the path type algorithms (Tibshirani and Taylor, 2011), and additional com-
putational steps need to be implemented to guarantee convergence. The ALIN algorithm
does not suffer from complications due to the singularity of R, because the dual problem
(18) is always well-defined and has a solution. Even if the solution is not unique, (17) is
still an optimal solution of the h-subproblem, and the algorithm proceeds unaffected.

Let y be an m×n observed noisy image; one attempts to minimize the following objective
function:

L(β) = 1
2‖y −A(β)‖22 + λh(β), (20)

where h(β) is an image variation penalty, and A : Rm×n → Rm×n is a linear transformation.
When A is the identity transformation, the problem is to denoise the image y, but we are
rather interested in a significantly more challenging problem of deblurring, where A replaces
each pixel with the average of its neighbors and itself (typically, a 3 by 3 block, except for
the border).

The penalty can be defined as the `1-norm of the differences between neighboring pixels
( `1-TV ),

h(β) =
m−1∑
i=1

n−1∑
j=1

(
|βi,j−βi+1,j |+|βi,j−βi,j+1|

)
+
m−1∑
i=1

|βi,n−βi+1,n|+
n−1∑
j=1

|βm,j−βm,j+1|, (21)
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or as follows (`2-TV ):

h(β) =

m−1∑
i=1

n−1∑
j=1

(
|βi,j−βi+1,j |2 + |βi,j−βi,j+1|2

)1/2
+

m−1∑
i=1

|βi,n−βi+1,n|+
n−1∑
j=1

|βm,j−βm,j+1|.

(22)
It is clear that both cases can be cast into the general form (2), with the operator R
representing the evaluation of the differences βi,j−βi+1,j and βi,j−βi,j+1. The regularizing
function (21) corresponds to the `1-norm of Rβ, while the function (22) corresponds to a
norm of form (19). In the latter case, we have mn blocks, each of dimension two, except
for the border blocks, which are one-dimensional.

In the following experiments, we apply the `1-TV to recover noisy and blurred images to
their original forms. The resulting regularization problems are rather complex. Deblurring a
256 by 256 image results in solving a very large generalized lasso problem (the matrix R has
dimensions of about 262000×66000). The f -subproblem is solved using the block coordinate
descent method and the h-subproblem is solved using the preconditioned conjugate gradient
method with “tol” = 10−5, as discussed previously. The fact that A and R are sparse
matrices makes the implementation very efficient, as demonstrated in the numerical study.

First, we blur the image, by replacing each pixel with the average of its neighbors and
itself. This operation defines the kernel operator A used in the loss function 1

2‖y−A(β)‖22.
Then we add N(0, 0.02) noise to each pixel. Clearly, for image deblurring, the design matrix
is no longer the identity matrix, thus the problem is more complicated than the image
denoising problem. The deblurring results on a standard example (“Lena”) are shown in
Figure 6; similar deblurring results from ALIN and FISTA are observed.

Next, we run the image deblurring on a 1 Megapixel image. We compare the result of
image deblurring using the `1-TV and a quadratic Tiknonov regularization approach, which
corresponds to formula (22) without the square root operations:

h(β) =

m−1∑
i=1

n−1∑
j=1

|βi,j−βi+1,j |2+|βi,j−βi,j+1|2+

m−1∑
i=1

|βi,n−βi+1,n|2+

n−1∑
j=1

|βm,j−βm,j+1|2. (23)

The results are shown in Figure 7. It is seen that the `1-TV recovers a sharper image than
the quadratic penalty. Deblurring with the two-dimensional fused lasso penalty yields an
MSE of 7.2 with respect to the original image, while that of Tikhonov regularization is 9.3.
Deblurring with the regularizer (21) has an almost identical effect as with (22).

There have been many efficient iterative methods proposed to solve this problem. Two
outstanding general frameworks are a variation of Nesterov’s gradient method (Nesterov,
2007) and the method of alternating direction (ADMM). SLEP is a variation of Nesterov
method like FISTA, although it was specifically implemented for fused-lasso penalty. It is
not directly applicable for total variation deblurring problem. We pick two algorithms to
compare with ALIN in this numerical study: FISTA of Beck and Teboulle (2009), a very
efficient first-order method for discrete total variation based image processing; and TVAL
(Li et al., 2013), a method based on Augmented Lagrangian and Alternating Direction
algorithm. TVAL solves a model equivalent to (20), but with a coefficient µ in front of the
least-squares term, instead of λ at the regularization.
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(a)
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(d)

Figure 6: Results of deblurring using fused lasso penalty. Plots (a), (b), (c), and (d) corre-
spond to the original image, the blurred image, the ALIN de-blurred image, and
the FISTA de-blurred image, respectively.
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Figure 7: Image deblurring on the “lion” data. The left plot is the result from the `1-TV
penalty; the middle plot is from the Tikhonov penalty. The rightmost plot is the
noisy and blurred image.

In the first comparison, we pick 10 random gray scale images with small size, typically
205 × 205, or approximately 40, 000 pixels. Following the same procedure as described by
Beck and Teboulle (2009), the image is blurred using a 3 × 3 kernel and a Gaussian noise
with variance 10−2 is added. The deblurring procedure is run with a few different values
for λ. We let FISTA run for 100 iterations with the monotone feature, which results in
a monotonic decrease of the objective function decrease, and the tolerance is set to 10−5.
Then we run ALIN to the same objective function value. TVAL, unfortunately, cannot
reach the same objective function value. Thus we let TVAL run 10, 000 iterations or to
“tol” = 10−5, whichever comes first. To compare the quality of the restored image, we use
the signal-to-noise (SNR) ratio defined as

SNR = 10 log 10
‖u0 − ũ‖2

‖u0 − u‖2
,

where u0 is the original image, ũ is the mean intensity of the original image, and u is
the restored image. In Table 5.4, we report the running time to produce the best quality
restored image, where the regularization parameter λ = 10−4, similar to what was suggested
by (Li et al., 2013). We also report SNR and the mean squared error (MSE).

Although TVAL has superior performance in terms of running time, when compared to
FISTA and ALIN, it produces an image of lower quality. With the same value of parameter
λ, TVAL was not able to obtain the same objective function value as FISTA and ALIN.
This makes the SNR of the TVAL-restored image lower and the error higher than those of
ALIN and FISTA. ALIN and FISTA have similar performance in terms of image quality,
but ALIN is more efficient than FISTA. In Figure 8, we plot the progression in terms of the
objective function values for all three methods. TVAL takes only 52 iterations to terminate.
In this plot, ALIN and FISTA are set to terminate in 52 iterations.

In the second comparison, we pick 10 random gray scale images with medium size,
ranging from 200, 000 to 500, 000 pixels. The experiment is carried out in the same manner
as the previous one. The results are reported in Table 6, and we observe the same pattern
as in the previous comparison.
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Method CPU time (secs) SNR MSE

FISTA 9.19 11.00 4.21
ALIN 6.85 11.03 4.18
TVAL 3.03 10.56 4.57

Table 5: Run time comparison on image deblurring: small size images.

Figure 8: Progression in terms of objective function values of ALIN, FISTA, and TVAL

Method CPU time (secs) SNR MSE

FISTA 65.41 12.14 5.98
ALIN 41.28 12.14 5.97
TVAL 7.18 8.30 14.36

Table 6: Run time comparison on image deblurring: medium size images.
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5.5 Application to a Narrative Comprehension Study for Children

With high dimensional fused lasso penalty, the constrained optimization problem with iden-
tity design matrix is already difficult to solve, and a large body of literature has been
devoted to solving this problem. When the design matrix is not full rank, the problem
becomes much more difficult. In this section, we apply the three-dimensional fused lasso
penalty to an regression problem where the design matrix X contains many more columns
than rows.

Specifically, we perform regularized regression between the measurement of children’s
language ability (the response y) and voxel level brain activity during a narrative compre-
hension task (the design matrix X). Children develop a variety of skills and strategies for
narrative comprehension during early childhood years (Karunanayaka et al., 2010). This is
a complex brain function that involves various cognitive processes in multiple brain regions.
We are not attempting to solve the challenging neurological problem of identifying all such
brain regions for this cognitive task. Instead, the goal of this study is to demonstrate ALIN’s
ability for solving constrained optimization problems of this type and magnitude.

The functional MRI data are collected from 313 children with ages 5 to 18 (Schmithorst
et al., 2006). The experimental paradigm is a 30-second block design with alternating
stimulus and control. Children are listening to a story read by adult female speaker in each
stimulus period, and pure tones of 1-second duration in each resting period. The subjects are
instructed to answer ten story-related multiple-choice questions upon the completion of the
MRI scan (two questions per story). The fMRI data were preprocessed and transformed
into the Talairach stereotaxic space by linear affine transformation. A uniform mask is
applied to all the subjects so that they have measurements on the same set of voxels.

The response variable y is the oral and written language scale (OWLS). The matrix X
records the activity level for all the 8000 voxels measured. The objective function is the
following:

L(β) = 1
2‖y −Xβ‖

2
2 + λ1h1(β) + λ2h2(β),

where

h1(β) =
m−1∑
i=1

n−1∑
j=1

p−1∑
k=1

{|βi,j,k − βi+1,j,k|+ |βi,j,k − βi,j+1,k|+ |βi,j,k − βi,j,k+1|}

+
m−1∑
i=1

p−1∑
k=1

{|βi,n,k − βi+1,n,k|+ |βi,n,k − βi,n,k+1|}+

n−1∑
j=1

{|βm,j,p − βm,j+1,p|}

+
n−1∑
j=1

p−1∑
k=1

{|βm,j,k − βn,j+1,k|+ |βm,j,k − βm,j,k+1|}+

m−1∑
i=1

{|βi,n,p − βi+1,n,p|}

+
m−1∑
i=1

n−1∑
j=1

{|βi,j,p − βi+1,j,p|+ |βi,j,p − βi,j+1,p|}+

p−1∑
k=1

{|βm,n,k − βm,n,k+1|},

h2(β) =

m∑
i=1

n∑
j=1

p∑
k=1

|βi,j,k|,

and m = 31, n = 35, and p = 15.
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Figure 9: Results of regularization regression with combined lasso and 3-d fused lasso
penalty. The tuning parameters of fused lasso is 0.2 for both figures. The tuning
parameter for lasso is 0.2 for the left and 0.6 for the right.

While the main purpose of this study is to demonstrate the capability of the ALIN
algorithm for solving penalized regression problems with 3-d fused lasso, there are also
some interesting neurological observations. One objective of this study is to identify the
voxels that are significant for explaining the performance score y. These voxels constitute
active brain regions that are closely related to the OWLS. Figure 9 presents the results of
fitted coefficients using combined lasso and fused lasso penalty. The highlighted regions
shown in the maps are areas with more than 10 voxels (representing clusters of size 10 and
above). The left plot in the figure is the optimal solution obtained using ten-fold cross
validation. The optimal tuning parameters are 0.2 for both fused lasso and lasso penalties.
Roughly speaking, five brain regions have been identified. The yellow area to the rightmost
side of the brain is situated in the wernicke area, which is one of the two parts of the cerebral
cortex linked to speech. It is involved in the understanding of written and spoken language.
The only difference between the left and right plots is the value of the tuning parameter
for the lasso penalty, which is 0.2 and 0.6 respectively. Clearly, the right plot shrinks more
coefficients to zero, which results in a reduced number of significant regions, as compared
to the left plot.

We further study this regularization problem using only lasso penalty and Tiknonov
type penalty similar to (23). Figure 10 shows the fitted maps. The left plot is the case
where only lasso penalty is applied. Comparing this with Figure 9, we see that the 3-d fused
lasso penalty imposes smoothing constraints on the neighboring coefficients, thus allowing
to identify larger areas significant for the response variable y. The simple lasso penalty
imposes shrinkage on the coefficients individually, resulting in rather disjoint significant
voxels. Such scatterness is much less informative for neurologists than larger areas identified
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Figure 10: Results of regularization regression with lasso penalty (left plot) and Tiknonov
type penalty (right plot).

by the three-dimensional fused lasso penalty. Meanwhile, the Tiknonov type regularization
generates too many significant regions as shown in the right plot. This is partially due to
the over smoothing of the image as discussed in the previous section.

For comparison, we have considered a couple of methods designed to solve this particular
problem. Genlasso is the path algorithm designed for the Generalized Lasso in the original
paper. However, it was unable to handle an instance of this magnitude.

Another method is the Augmented Lagrangian and Alternating Direction method. The
problem of interest

min
β

1

2
‖y −Xβ‖22 + λ‖Rβ‖1, λ > 0

can be reformulated as

min
β

1

2
‖y −Xβ‖22 + λ‖z‖1 s.t : Rβ − z = 0.

The Augmented Lagrangian for this problem has the form:

L(β, z, u) =
1

2
‖y −Aβ‖22 + λ‖z‖1 + µT (Rβ − z) +

ρ

2
‖Rβ − z‖22,

where µ is the vector of Lagrange multipliers, and ρ > 0 is the penalty coefficient. This
formulation can be solved by the Alternating Direction method, in which alternating min-
imization with respect to β and z are followed by an update of µ. We implemented this
method in MATLAB. The update step for β requires minimizing a quadratic function. The
iterative method of choice to solve the sub-problems is the conjugate gradient method built
in MATLAB. The performance of this method strongly depends on the choice of the penalty
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parameter ρ. As suggested by Wahlberg et al. (2012), we choose ρ = λ to keep the algorithm
stable for the implementation. It is known that the method has a nice decrease in the func-
tion values but slow tail convergence and an iteration of ADMM for this particular problem
is rather expensive. Because of these reasons, we let the method run for 30 iterations and
then let ALIN run until it reached the same objective function value. The running times
for different values of λ are reported in Table 7.

Method λ = 0.001 λ = 0.01 λ = 0.05 λ = 0.1 λ = 1

ALIN 20.68 12.19 18.58 23.45 129.81
ADMM 72.86 94.69 68.13 74.43 267.01

Table 7: Run time (in seconds) comparison on 3D fused lasso.

We also implemented FISTA for this particular problem. For each iteration k of FISTA,
the following optimization problem is solved:

min
β
QL(β, βk) = f(βk) + 〈∇f(βk), β − βk〉+

L

2
‖β − βk‖2 + g(β),

where f is Gaussian loss function and g(β) = ‖Rβ‖1. The parameter L is the Lipschitz
constant of ∇f . This problem is similar to the f -subproblem of ALIN, so we utilize our
own block-coordinate descent method to solve this problem. Since the Lipschitz constant L
cannot be computed efficiently, we use back-tracking to find the proper L. Back-tracking is
a popular method to find the right step size for FISTA iterations, however it can slow down
the algorithm significantly. We observe that in each iteration, back-tracking will have to
solve the sub-problem 20 to 30 times to find a good approximation to the Lipschitz constant
of ∇f . Normally, this quantity is approximated by the maximum eigenvalue of XTX.
However, in the p � n setting, it is not computationally efficient to estimate eigenvalues.
When FISTA is applied to this data set with 3-d fused lasso penalty, it needs around 10, 000
iterations to reach the same objective function value as ADMM, and the running time is
about one hour. This is also in line with what we observe from the implementation of
FISTA for 1-d fused lasso penalty in the package SPAMS (Jenatton et al., 2010).

6. Conclusion

The alternating linearization method is a specialized nonsmooth optimization method for
solving structured nonsmooth optimization problems. It combines the ideas of bundle meth-
ods and operator splitting methods, to define a descent algorithm in terms of the values of
the function that is minimized. We have adapted the alternating linearization method to
structured regularization problems by introducing the idea of diagonal quadratic approx-
imation and developing specialized methods for solving subproblems. As a result, a new
general method for a variety of regularization problems has been obtained, which has the
following theoretical features:
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• It deals with nonsmoothness directly, not via approximations,

• It is monotonic with respect to the values of the function that is minimized,

• Its convergence is guaranteed theoretically.

Our numerical experiments on a variety of structured regularization problems illustrate
the applicability of the alternating linearization method and indicate its practically impor-
tant virtues: speed, scalability, and accuracy. While other specialized methods compare to
ALIN in some cases, none of them exhibits equal speed and accuracy for the broad range
of problems discussed in the paper.

Its efficacy and accuracy follow from the use of the diagonal quadratic approximation
and from a special test, which chooses in an implicit way the best operator splitting step to
be performed. The current approximate solution is updated only if it leads to a significant
decrease of the value of the objective function.

Its scalability is due to the use of highly specialized algorithms for solving its two
subproblems. The algorithms do not require any explicit matrix formation or inversion, but
only matrix–vector multiplications, and can be efficiently implemented with sparse data
structures.

Our study of image denoising and deblurring in Section 5.4, as well as the narrative
comprehension for children in Section 5.5 are illustrations of broad applicability of the
alternating linearization method.
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J.M. Fadili and G. Peyré. Total variation projection with first order schemes. IEEE Trans-
actions on Image Processing, 20(3):657 –669, 2011.

A. Friedlander and J. M. Mart́ınez. On the maximization of a concave quadratic function
with box constraints. SIAM J. Optim., 4(1):177–192, 1994.

J. Friedman, T. Hastie, H. Hoefling, and R. Tibshirani. Pathwise coordinate optimization.
Annals of Applied Statistics, 1(2):302–332, 2007.

W. Fu. Penalized regressions: the bridge vs. the lasso. Journal of Computational and
Graphical Statistics, 7(3):397–416, 1998.

D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for min-
imizing the sum of two convex functions. Mathematical Programming, (141):349–382,
2013.

3478



Alternating Linearization for Structured Regularization Problems

T. Goldstein and S. Osher. The split Bregman method for L1-regularized problems. SIAM
J. Imaging Sci., 2(2):323–343, 2009.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,
1996.

L. Grosenick, B. Klingenberg, B. Knutson, and J. Taylor. A family of interpretable multi-
variate models for regression and classification of whole-brain fmri data. arXiv/1110.4139,
2011.

L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. Taylor. Interpretable whole-
brain prediction analysis with graphnet. Neuroimage, 2013.

B. He and X. Yuan. On the O(1/t) convergence rate of alternating direction method.
Technical report, 2011.
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Abstract

The Gesture Recognition Toolkit is a cross-platform open-source C++ library designed to
make real-time machine learning and gesture recognition more accessible for non-specialists.
Emphasis is placed on ease of use, with a consistent, minimalist design that promotes
accessibility while supporting flexibility and customization for advanced users. The toolkit
features a broad range of classification and regression algorithms and has extensive support
for building real-time systems. This includes algorithms for signal processing, feature
extraction and automatic gesture spotting.

Keywords: gesture recognition, machine learning, C++, open source, classification,
regression, clustering, gesture spotting, feature extraction, signal processing

1. Introduction

Gesture recognition is a powerful tool for human-computer interaction. It is increasingly
redefining how we interact with our smartphones, wearable devices, televisions and gaming
consoles. In addition to the increasing prevalence of gesture-based interactions in consumer
devices, a diverse range of individuals are gaining access to affordable sensor technology
and rapid-prototyping tools that facilitate non-specialists to build custom gesture-based
applications. Commercial sensors such as the Microsoft Kinect or easy-to-use hardware
platforms like Arduino (Mellis et al., 2007), combined with prototyping environments, such
as Processing or Openframeworks,1 are empowering professional developers, students, re-
searchers, hobbyists, creative coders, interaction designers, musicians and artists to create
novel-interactive systems that are playful, poignant and expressive.

Nevertheless, while a diverse range of individuals now have access to powerful sensors
and rapid-prototyping tools, performing real-time gesture recognition can pose a challenge,
even to accomplished developers and engineers (Patel et al., 2010). This is despite the large
number of sophisticated machine-learning applications currently available, such as MAT-
LAB, R and WEKA (Hall et al., 2009). Many of these applications are primarily designed
for offline analysis of prerecorded data sets by domain experts, and require substantial effort
to recognize real-time signals. There are accessible machine-learning libraries in Java (Abeel
et al., 2009) and Python (Pedregosa et al., 2011) that can be used to prototype real-time

1. More information on Processing and Openframeworks can be found on their respective websites: http:
//processing.org and http://www.openframeworks.cc.

c©2014 Nicholas Gillian and Joseph A. Paradiso.
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systems. However, many users need to build their systems in C++ due to the computational
overhead of the sensor data and interactive visualizations and therefore benefit from C++
tools for real-time machine learning. While there are a number of powerful C++ libraries
that can be adapted for gesture recognition (King, 2009; Sonnenburg et al., 2010; Gashler,
2011), these tools still require the user to develop the supporting infrastructure needed to
build real-time systems and can have steep learning curves for non-specialists. This leaves
C++ users with a sizable gulf of execution, specifically the gap between their goals and the
actions needed to attain those goals with the system (Hutchins et al., 1985). This gap can
significantly impede the process of building novel gesture-based interfaces for technologists,
researchers, artists and beyond.

2. Gesture Recognition Toolkit

To address this issue, we have created the Gesture Recognition Toolkit (GRT), a cross
platform open source C++ machine-learning library for real-time gesture recognition. The
toolkit was developed with the following core design principles:

Accessibility: The GRT is a general-purpose tool for facilitating non-specialists to
create their own machine-learning based systems. Emphasis is placed on ease of use, with
a clear and consistent coding convention applied throughout the toolkit. The GRT pro-
vides a minimal code footprint for the user, reducing the need for arduous and error-prone
boilerplate code to perform common functionality, such as passing data between algorithms
or to preprocess data sets. This consistent, minimalist design significantly lowers the en-
try barrier for a new user because the same subset of core functions apply throughout the
toolkit.

Flexibility: To support flexibility while maintaining consistency, the GRT uses an
object-oriented modular architecture. This architecture is built around a set of core mod-
ules and a central gesture-recognition pipeline. The input to both the modules and
pipeline consists of an N -dimensional double-precision vector, making the toolkit flexible
to the type of input signal. The algorithms in each module can be used as stand-alone
classes; alternatively a gesture-recognition pipeline can be used to chain modules together
to create a more sophisticated gesture-recognition system. The GRT includes modules for
preprocessing, feature extraction, clustering, classification, regression and post processing.

Choice: To date, there is no single machine-learning algorithm that can be used to
recognize all gestures. It is therefore crucial for a user to be able to choose from, and
quickly experiment with, a number of algorithms to see which might work best for their
particular task. The GRT features a broad range of machine-learning algorithms such as
AdaBoost, Decision Trees, Dynamic Time Warping, Hidden Markov Models, K-Nearest
Neighbor, Linear and Logistic Regression, Näıve Bayes, Multilayer Perceptrons, Random
Forests, Support Vector Machines and more.2 In addition to supporting a broad range of
algorithms, the toolkit’s architecture facilities a user to seamlessly switch between different
algorithms with minimal modifications to the user’s code.

Supporting Infrastructure: Building sophisticated machine-learning based systems
requires more than just a state-of-the-art classifier. In many real-world scenarios, the input

2. For Support Vector Machines, we provide an easy-to-use wrapper for LibSVM (Chang and Lin, 2011).
All other algorithms are custom implementations unless otherwise stated in the source documentation.
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to a classification algorithm must first be preprocessed and have salient features extracted.
Preprocessing and feature extraction are important because they can significantly improve
the predictive performance of a classifier, and also provide faster and more cost-effective pre-
dictors (Guyon and Elisseeff, 2003). The GRT therefore supports a wide range of pre/post
processing, feature extraction and feature selection algorithms, including popular prepro-
cessing filters (e.g., Moving Average Filter), embedded feature extraction algorithms (e.g.,
AdaBoost), dimensionality reduction techniques (e.g., Principal Component Analysis), and
unsupervised quantizers (e.g., K-Means Quantizer, Self-Organizing Map Quantizer). Accu-
rate labeling of data sets is also critical for building robust machine-learning based systems.
The toolkit therefore contains extensive support for recording, labeling and managing su-
pervised and unsupervised data sets for classification, regression and time series analysis.3

Customizability: In addition to using the wide range of existing GRT algorithms,
more advanced users commonly want to test or deploy their own algorithms when building
novel recognition systems, such as using a custom feature-extraction algorithm. The GRT
is therefore designed to facilitate users to easily incorporate their own algorithms within the
toolkit’s framework by inheriting from one of the GRT base classes. The toolkit leverages
advanced object-orientated concepts, such as polymorphism and abstract base-class point-
ers, facilitating custom algorithms to be used alongside any of the existing GRT algorithms.

Real-time Support: The GRT supports common techniques for performing offline
analysis on pre-recorded data sets, such as partitioning data into validation and test data
sets, running cross validation and computing accuracy metrics. In addition to these offline
techniques, the toolkit is designed to enable a user to seamlessly move from the offline
analysis phase to the real-time recognition phase. One significant challenge involved in
moving from offline analysis to real-time gesture recognition is automatically segmenting
valid gestures from a continuous stream of data (Junker et al., 2008). This is a nontrivial
task because the input data might consist of generic movements that are not valid gestures
in the model. To support real-time gesture recognition, the GRT features algorithms that
automatically perform gesture spotting. These algorithms, such as the Adaptive Näıve
Bayes Classifier (Gillian et al., 2011a) and N -Dimensional Dynamic Time Warping (Gillian
et al., 2011b), learn rejection thresholds from the training data, which are then used to
automatically recognize valid gestures from a continuous stream of real-time data.

3. Code Example

The code example below demonstrates the core design principles of the GRT. This example
shows how to setup a custom gesture-recognition system consisting of a moving-average filter
preprocessing module, a fast Fourier transform and custom feature extraction modules,
an AdaBoost classifier and a timeout-filter post processing module. The example also
illustrates how to load a training data set from a CSV file, train a classification model, and
use this model to predict the class label of a new data sample.

//Setup a custom recognition pipeline

1: GestureRecognitionPipeline pipeline;

2: pipeline.addPreProcessingModule( MovingAverageFilter( 5 ) );

3. A detailed description of the GRT data structures can be found at http://www.nickgillian.com/wiki/
pmwiki.php/GRT/Reference.
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3: pipeline.addFeatureExtractionModule( FFT( 512 ) );

4: pipeline.addFeatureExtractionModule( MyCustomFeatureAlgorithm() );

5: pipeline.setClassifier( Adaboost( DecisionStump() ) );

6: pipeline.addPostProcessingModule( ClassLabelTimeoutFilter( 1000 ) );

//Load a labeled data set from a CSV file and train a classification model

7: ClassificationData trainingData;

8: trainingData.load( "TrainingData.csv" );

9: bool success = pipeline.train( trainingData );

//The following lines would be called each time the user gets a new sample

10: vector< double > sample = getDataFromSenor(); //Custom user function

11: pipeline.predict( sample );

12: unsigned int predictedClassLabel = pipeline.getPredictedClassLabel();

13: double maxLikelihood = pipeline.getMaximumLikelihood();

Lines 1 through 6 show how a GestureRecognitionPipeline can be used to link several
modules together to build a more complex recognition system. Note that the customization
of the recognition system is achieved with a minimal code footprint, as the pipeline will auto-
matically connect the output of one module to the next module’s input; propagating signals
through the entire pipeline at both the training, testing and real-time prediction phases.
These six lines also illustrate the flexibility of the toolkit’s modular design, and demonstrate
how a user can easily experiment with different algorithms from existing modules, or insert
a custom algorithm into the pipeline as illustrated on line 4. Line 10 demonstrates how
real-time sensor data from a variety of devices can be incorporated; input can consist of
something as simple as the three-dimensional data from an accelerometer connected to an
Arduino, to more complex inputs, such as the high-dimensional skeleton data from a Kinect.

This example also demonstrates one of the key designs of the GRT that make it more
accessible: clean and consistent coding through abstraction. For instance, lines 9 and 11
show respectively how a user can train a model and then predict the class label of a new
sample using that model. These key functions are the same, regardless of which algorithms
are used. This abstraction significantly reduces the learning curve for new users, because
the same key functions are consistent across all the GRT algorithms.

4. Conclusion

The gesture recognition toolkit is open source under the MIT license and has been publicly
available since 2012, receiving over ten-thousand hits on the toolkit’s website.4 It has been
downloaded several thousand times and has built up a community of over 300 users on the
toolkit’s forum. To support a diverse range of users, we have established a number of online
resources, including detailed examples for each module and a wide range of tutorials and
references.5 Future work includes an interactive graphical user interface, in which a user
can record and label training data; configure; train and test a gesture-recognition model;
perform real-time prediction and then export their model and pipeline configuration so it
can be loaded directly into the user’s program, using the C++ API.

4. The toolkit’s website can be found at: http://www.nickgillian.com/software/grt.
5. Online tutorials, references and examples can be found at: http://www.nickgillian.com/wiki.

3486

http://www.nickgillian.com/software/grt
http://www.nickgillian.com/wiki


The Gesture Recognition Toolkit

References

T. Abeel, Y. Van de Peer, and Y. Saeys. Java-ML: A machine learning library. Journal of
Machine Learning Research, 10:931–934, 2009.

C.C. Chang and C.J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

M. Gashler. Waffles: A machine learning toolkit. Journal of Machine Learning Research,
12:2383–2387, 2011.

N. Gillian, R. B. Knapp, and S. O’Modhrain. An adaptive classification algorithm for semi-
otic musical gestures. In Proceedings of the 8th Sound and Music Computing Conference,
2011a.

N. Gillian, R. B. Knapp, and S. O’Modhrain. Recognition of multivariate temporal mu-
sical gestures using n-dimensional dynamic time warping. In Proceedings of the 2011
International Conference on New Interfaces for Musical Expression, 2011b.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The WEKA
data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18,
2009.

E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation interfaces. Human–
Computer Interaction, 1(4):311–338, 1985.
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Abstract

This work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While
this area of research has gained much attention recently, most works still rely on hand-
crafted features. In contrast, we apply a multiscale convolutional network to learn features
directly from the images and the depth information. Using a frame by frame labeling, we
obtain nearly state-of-the-art performance on the NYU-v2 depth data set with an accuracy
of 64.5%. We then show that the labeling can be further improved by exploiting the
temporal consistency in the video sequence of the scene. To that goal, we present a method
producing temporally consistent superpixels from a streaming video. Among the different
methods producing superpixel segmentations of an image, the graph-based approach of
Felzenszwalb and Huttenlocher is broadly employed. One of its interesting properties is
that the regions are computed in a greedy manner in quasi-linear time by using a minimum
spanning tree. In a framework exploiting minimum spanning trees all along, we propose
an efficient video segmentation approach that computes temporally consistent pixels in a
causal manner, filling the need for causal and real-time applications. We illustrate the
labeling of indoor scenes in video sequences that could be processed in real-time using
appropriate hardware such as an FPGA.

Keywords: deep learning, optimization, convolutional networks, superpixels, depth in-
formation
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1. Introduction

The recent release of the Kinect allowed for progress in indoor computer vision. Most
approaches have focused on object recognition (Janoch et al., 2011) or point cloud semantic
labeling (Koppula et al., 2009), finding their applications in robotics or games (Cruz et al.,
2012). The pioneering work of Silberman and Fergus (2011) was the first to deal with the
task of semantic full image labeling using depth information. This task implies the joint
detection, recognition, and delineation at once (See Figure 1), closer to what our vision
system perceives. Semantic segmentation results are still possible to improve, specifically
in indoor environments where many objects may be similar, while belonging to different
categories. Learning to segment full images in contrast to object recognition systems results
in learning a context for the objects, such as co-occurrence relationships, that may help
getting good results. Using RGB information, the deep learning approach of Farabet et al.
(2013) achieves state-of-the-art semantic labeling performances while being an order of
magnitude faster than competing approaches. In contrast with previous works employing
hand-crafted features, the feature learning and the semantic predictions are performed using
a unique model: a multiscale convolutional network, described in Section 2. The goal of
this paper is to improve the result of this feature learning approach by using depth and
temporal information, that is nowadays easily available in indoor environments.

Figure 1: From color and depth images, our goal is to predict semantic labels for the entire
image, in other words, a semantic delineation of its components.

The first contribution of our work consists in adapting Farabet et al.’s network to learn
more effective features for indoor scene labeling. Our work is, to the best of our knowledge,
the first exploitation of depth information in a feature learning approach for full scene
labeling (Couprie et al., 2013b).

Currently, training data sets containing fully labeled videos do not exist. Therefore, as
the learning takes place on 2D images, the results show flickering objects between subsequent
frames. In order to avoid this effect, in addition to the use of depth information, we en-
force spatial consistency of the final labeling using superpixels. Whereas oversegmentation
methods producing such superpixels are a rather well studied problem, video segmentation
into consistent spatio-temporal segments is largely unsolved. While there have been at-
tempts at video segmentation, most methods are non causal and non real-time. The second
contribution of this paper is to propose a fast method for real-time video segmentation,
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including semantic segmentation as an application (Couprie et al., 2013a). We employ to
that goal minimum spanning trees that are suitable to compute superpixels in quasi-linear
time, therefore well adapted to real time applications.

The paper contains two main parts, the first dealing with feature learning using depth
information, and the second dealing with the temporal smoothing approach. It is organized
as follows. After presenting the related work on each parts, we introduce the algorithms
employed in Section 2 for the two different aspects separately. We finally present in Section 3
our results using depth on images, independently from the temporal aspects, then introduce
our temporal smoothing results independently from depth information, and combine the two
aspects in the last results.

1.1 Related Work

Before detailing previous works on temporal smoothing methods, we introduce the existing
background around depth-based segmentation approaches.

1.1.1 Learning To Segment Using Depth Information

The first results of Silberman and Fergus (2011) on the NYU depth data set employ sift
features on the depth maps in addition to the RGB images. The depth is then used in
the gradient information to refine the predictions using graph cuts. Alternative MRF-like
approaches have also been explored to improve the computation time performance such as
Couprie (2012). The results on NYU data set v1 have been improved by Ren et al. (2012)
using elaborate kernel descriptors and a post-processing step that employs gPb superpixels
MRFs, involving large computation times.

A second version of the NYU depth data set was released by Silberman et al. (2012), and
improves the labels categorization into 894 different object classes. Furthermore, the size of
the data set did also increase, it now contains hundreds of video sequences (407024 frames)
acquired with depth maps. Recently, shortly after the submission of this paper, several
groups designed features adapted to the NYU depth v2 data set, and present their results
on the 4-class grouping of Silberman et al. (2012). Müller and Behnke (2014) use random
forests averaging predictions within superpixels, but also explicitly learning interactions
between neighboring superpixels using CRFs. They obtain state-of-the-art performance on
NYU depth v2. The work of Cadena and Košecka (2013) also uses handcrafted features
and a CRF framework. Despite the better performance of these methods in comparison to
our results, their computation times remain higher. Furthermore, the complexity of their
inference constrains their methods to a low number of different classes to identify. The work
of (Stückler et al., 2013), based on random decision forests and implemented on GPUs, is
achieving fine performance in terms of speed and accuracy because it combines, like our
work, depth and temporal information.

The present work aims at not only combining all available information (depth, spatial,
and temporal consistency) to answer the challenging problem of indoor scene segmentation,
but also avoiding the expense of designing data specific features.

Feature learning, or deep learning approaches are particularly adapted to the addition of
new image modalities such as depth information. Its recent success for dealing with various
types of data is manifest in speech recognition (Jaitly et al., 2012), molecular activity
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prediction, object recognition (Hinton et al., 2012), mitosis detection (Ciresan et al., 2013)
and many more applications. In computer vision, the approach of Farabet et al. (2012,
2013); Farabet (2014) has been specifically designed for full scene labeling and has proven
its efficiency for outdoor scenes. The key idea is to learn hierarchical features by the mean
of a multiscale convolutional network. Training networks using multiscale representations
appeared also the same year in Ciresan et al. (2012); Schulz and Behnke (2012).

When the depth information was not yet available, there have been attempts to use
stereo image pairs to improve the feature learning of convolutional networks as in LeCun
et al. (2004). Now that depth maps are easy to acquire, deep learning approaches started
to be considered for improving object recognition such as in Socher et al. (2012). Similarly,
the work of Lenz et al. (2013) experiments group regularization to differentiate between the
color and depth channels, treated as different modalities.

1.1.2 Temporal Smoothing

A large number of approaches in computer vision makes use of super-pixels at some point
in the process, for example, semantic segmentation (Farabet et al., 2013), geometric con-
text identification (Hoiem et al., 2005), extraction of support relations between object in
scenes (Silberman et al., 2012), etc. Among the most popular approaches for super-pixel
segmentation, two types of methods are distinguishable. Regular shape super-pixels may
be produced using normalized cuts or graph cuts, see the works of Shi and Malik (1997);
Veksler et al. (2010) for instance. More object—or part of object—shaped super-pixels can
be generated from watershed based approaches. In particular, the method of Felzenszwalb
and Huttenlocher (2004) produces such results.

It is a real challenge to obtain a decent delineation of objects from a single image. When
it comes to real-time data analysis, the problem is even more difficult. However, additional
cues may be used to constrain the solution to be temporally consistent, thus helping to
achieve better results. Since many of the underlying algorithms are in general super-linear,
there is often a need to reduce the dimensionality of the video. To this end, developing low
level vision methods for video segmentation is necessary. Currently, most video processing
approaches are non-causal, that is to say, they make use of future frames to segment a given
frame, sometimes requiring the entire video as in (Grundmann et al., 2010). This prevents
their use for real-time applications.

Some approaches have been designed to address the causal video segmentation problem
such as (Paris, 2008; Miksik et al., 2013). Paris (2008) employs the mean shift algorithm of
Comaniciu and Meer (2002). As this method works in a feature space, it does not necessary
clusters spatially consistent super-pixels. A more recent approach, specifically applied for
semantic segmentation, is the one of Miksik et al. (2013). The authors employ an optical flow
method to enforce the temporal consistency of the semantic segmentation. Our approach
is different because it aims to produce general purpose super-pixels, and possibly uses the
produced super-pixels for smoothing semantic segmentation results. Furthermore, we do not
use any optical flow pre-computation that would prevent us having real-time performance
on a CPU.
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Some works (Glasner et al., 2011; Lee et al., 2005; Joulin et al., 2012; Gomila and
Meyer, 2003; Xu et al., 2012) use the idea of enforcing some consistency between differ-
ent segmentations. Glasner et al. (2011) formulate a co-clustering problem as a Quadratic
Semi-Assignment Problem. However solving the problem for a pair of images takes about
a minute. Alternatively, Lee et al. (2005) and Gomila and Meyer (2003) identify the cor-
responding regions using graph matching techniques. Xu et al. (2012) propose like us to
exploit Felzenszwalb et al. superpixels in causal video processing. The complexity of this
approach is super-linear because of a hierarchical segmentation, preventing the current im-
plementation from real-time applications.

Our strategy to produce temporal superpixels is to perform independent segmentations
and match the produced super-pixels to define markers. The markers are then used to
produce the final segmentation by minimizing a global criterion defined on the image. We
show how Minimum Spanning Trees can be used at every step of the process, leading to
gains in speed, and real-time performance on a single core CPU.

2. Full Scene Labeling

We introduce in this section the employed feature learning approach from RGBD images, as
well as our temporal smoothing methodology to improve the segmentation results on video.

2.1 Multi-Scale Feature Extraction

Good internal representations are compact, and fast to process. Multi-scale approaches such
as hierarchies meet these requirements. In vision, pixels are assembled into edglets, edglets
into motifs, motifs into parts, parts into objects, and objects into scenes. This suggests
that recognition architectures for vision (and for other modalities such as audio and natural
language) should have multiple trainable stages stacked on top of each other, one for each
level in the feature hierarchy.

Convolutional Networks (ConvNets) provide a simple framework to learn such hierar-
chies of features. Introduced by Fukushima (1980), they became usable thanks to LeCun
et al. (1998) who proposed the first back-propagation algorithm. Riesenhuber and Poggio
(1999) replaced Fukushima’s competition layers by max-pooling layers. Since the first GPU
implementation of Ciresan et al. (2011), ConvNets have been used with GPUs in virtu-
ally all non-recurrent, feedforward, competition-winning or benchmark record-setting deep
learners (for object detection, image segmentation, traffic signs, ImageNet, Pascal).

Convolutional Networks are trainable architectures composed of multiple stages. The
input and output of each stage are sets of arrays called feature maps. In our case, the
input is a color (RGB) image plus a depth (D) image and each feature map is a 2D array
containing a color or depth channel of the input RGBD image. At the output, each feature
map represents a particular feature extracted at all locations on the input. Each stage is
composed of three layers: a filter bank layer, a non-linearity layer, and a feature pooling
layer. A typical ConvNet is composed of one, two or three such 3-layer stages, followed
by a classification module. Because they are trainable, arbitrary input modalities can be
modeled, such as the depth modality that is added to the input channel in this work.
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Figure 2: Scene parsing (frame by frame) using a multiscale network and superpixels. The
RGB channels of the image and the depth image are transformed through a
Laplacian pyramid. Each scale is fed to a 3-stage convolutional network, which
produces a set of feature maps. The feature maps of all scales are concatenated,
the coarser-scale maps being upsampled to match the size of the finest-scale map.
Each feature vector thus represents a large contextual window around each pixel.
In parallel, a single segmentation of the image into superpixels is computed to
exploit the natural contours of the image. The final labeling is obtained by the
aggregation of the classifier predictions into the superpixels.

A great gain has been achieved with the introduction of the multiscale convolutional
network described in Farabet et al. (2013). The multi-scale, dense feature extractor produces
a series of feature vectors for regions of multiple sizes centered around every pixel in the
image, covering a large context. The multi-scale convolutional net contains multiple copies
of a single network that are applied to different scales of a Laplacian pyramid version of
the RGBD input image.

The RGBD image is first pre-processed, so that local neighborhoods have zero mean
and unit standard deviation. The depth image, given in meters, is treated as an additional
channel similarly to any color channel. The overview scheme of our model appears in
Figure 2.

Beside the input image which is now including a depth channel, the parameters of
the multi-scale network (number of scales, sizes of feature maps, pooling type, etc.) are
identical to Farabet et al. (2013). The feature maps sizes are 16, 64, 256, multiplied by the
three scales. The size of convolutions kernels are set to 7 by 7 at each layer, and sizes of
subsampling kernels (max pooling) are 2 by 2. In our tests we rescaled the images to the
size 240× 320.

As in Farabet et al. (2013), the feature extractor followed by a classifier was trained
to minimize the negative log-likelihood loss function. The classifier that follows feature
extraction is a 2-layer multi-perceptron, with a hidden layer of size 1024. Once a labeling
is obtained, we use the superpixels of Felzenszwalb and Huttenlocher (2004) to smooth the
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Independent segmentations S′1, S
′
2 and S′3

Temporally consistent segmentations S1(= S′1), S2, and S3

Figure 3: Segmentation results on three consecutive frames of the NYU-Scene data set.

ConvNet predictions as a post-processing step, by aggregating the classifiers predictions in
each superpixel.

2.2 Movie Processing

While the training is performed on single images, we are able to perform scene labeling of
video sequences. In order to improve the performance of our frame-by-frame predictions,
a temporal smoothing may be applied. Instead of using the frame by frame superpixels
as in the previous section, we compute temporally consistent superpixels. Our approach
works in quasi-linear time and reduces the flickering of objects that may appear in the video
sequences.

The temporal smoothing method presented in this section is introduced for RGB images
and may trivially be extended to use depth information.

Given a segmentation St of an image at time t, we wish to compute a segmentation
St+1 of the image at time t+ 1 which is consistent with the segments of the result at time
t. For that purpose, we first compute a superpixel segmentation of the image at time t+ 1
using only this frame, and denote the resulting independent segmentation S′t+1, as detailed
in Section 2.2.1.

2.2.1 Independent Image Segmentation

The super-pixels produced by Felzenszwalb and Huttenlocher (2004) have been shown to
satisfy the global properties of being not too coarse and not too fine according to a par-
ticular region comparison function. In order to generate temporal superpixels close to the
ones produced by Felzenszwalb and Huttenlocher (2004), we first generate independent
segmentations of the 2D images using Felzenszwalb et al.’s algorithm. We name these seg-
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Figure 4: Illustration of the temporal segmentation procedure

mentations S′1, ..., S
′
T , where T denotes the index of the last frame of the video sequence.

The principle of segmentation is fairly simple. We define a graph Gt, where the nodes cor-
respond to the image pixels, and the edges link neighboring nodes in 8-connectivity. The
edge weights ωij between nodes i and j are given by a color gradient of the image, or a
color and depth gradient if depth is available.

A Minimum Spanning Tree (MST) is build on Gt, and regions are merged according to
a criterion taking into account the regions sizes and a scale parameter k.

Once an image is independently segmented, resulting in S′t+1, we then face the question
of the propagation of the temporal consistency given the non overlapping contours of St
and S′t+1. Our solution is the development of a cheap graph matching technique to obtain
correspondences between segments from St and these of S′t+1. This first step is described
in Section 2.2.2. We then mine these correspondences to create markers (also called seeds)
to compute the final labeling St+1 by solving a global optimization problem. This second
step is detailed in Section 2.2.3.

2.2.2 Graph Matching Procedure

The basic idea is to use the segmentation St and segmentation S′t+1 to produce markers
before a final segmentation of image at time t+ 1. Therefore, in the process of computing
a new segmentation St+1, a graph G is defined. The vertices of G comprise two sets of
vertices: Vt that corresponds to the set of regions of St and V ′t+1 that corresponds to the
set of regions of S′t+1. Edges link regions characterized by a small distance between their
centroids. The edges weights between vertex i ∈ Vt and j ∈ V ′t+1 are given by a similarity
measure taking into account distance and differences between shape and appearance

wij =
(|ri|+ |rj |)d(ci, cj)

|ri ∩ rj |
+ aij , (1)

where |ri| denotes the number of pixels of region ri, |ri ∩ rj | the number of pixels present
in ri and rj with aligned centroids, and aij the appearance difference of regions ri and rj .
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In our experiments aij was defined as the difference between mean color intensities of the
regions. It may also include depth information if available.

The graph matching procedure is illustrated in Figure 4 and produces the following
result: For each region of S′t+1, its best corresponding region in image St is identified.
More specifically, each node i of Vt is associated with the node j of V ′t+1 which minimizes
wij . Symmetrically, for each region of St, its best corresponding region in image S′t+1 is
identified, that is to say each node i of V ′t+1 is associated with the node j of Vt which
minimizes wij . This step may also be viewed as the construction of two minimum spanning
trees, one spanning Vt, and the other Vt+1.

2.2.3 Final Segmentation Procedure

The final segmentation St+1 is computed using a minimum spanning forest procedure. This
seeded segmentation algorithm that produces watershed cuts as shown by Cousty et al.
(2009) is strongly linked to global energy optimization methods such as graph-cuts as de-
tailed by (Allène et al., 2010; Couprie et al., 2011) and Section 2.3. In addition to theoretical
guarantees of optimality, this choice of algorithm is motivated by the opportunity to reuse
the sorting of edges that is performed in Section 2.2.1 and constitutes the main computa-
tional effort. Consequently, we reuse here the graph Gt+1(V,E) built for the production of
independent segmentation S′t+1.

Algorithm 1: Minimum Spanning Forest Algorithm

Data: A weighted graph G(V,E) and a set of labeled nodes makers L. Nodes of
V \ L have unknown labels initially.

Result: A labeling x associating a label to each vertex.
Sort the edges of E by increasing order of weight.
while any node has an unknown label do

Find the edge eij in E of minimal weight;
if vi or vj have unknown label values then

Merge vi and vj into a single node, such that when the value for this merged
node becomes known, all merged nodes are assigned the same value of x and
considered known.

The minimum spanning forest algorithm is recalled in Algorithm 1. The first appearance
of such forest in image processing dates from 1986 with the work of Morris et al. (1986). It
was later introduced in a morphological context by Meyer (1994).

The seeds, or markers, are defined using the regions correspondences computed in the
previous section, according to the procedure detailed below. For each segment s′ of S′t+1

four cases may appear:

1. s′ has one and only one matching region s in St: propagate the label ls of region s.
All nodes of s′ are labeled with the label ls of region s.

2. s′ has several corresponding regions s1, ..., sr: propagate seeds from St. The coor-
dinates of regions s1, ..., sr are centered on region s′. The labels of regions s1, ..., sr
whose coordinates are in the range of s′ are propagated to the nodes of s′.
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3. s′ has no matching region : The region is labeled by the label l′s itself.

4. If none of the previous cases is fulfilled, it means that s′ is part of a larger region
s in St. If the size of s′ is small, a new label is created. Otherwise, the label ls is
propagated in s′ as in case 1.

Before applying the minimum spanning forest algorithm, a safety test is performed to
check that the map of produced markers does not differ two much from the segmentation
S′t+1. If the test shows large differences, an eroded map of S′t+1 is used to correct the
markers. The eroded regions in the conflict areas are added as markers.

2.3 Global Optimization Guarantees

The minimum spanning forest computation offers by definition a global optimality guaran-
tee, the sum of the edges weights of the forest being maximal. In addition, less commonly
known, there is a probabilistic interpretation (as continuous Markov random fields) of the
labeling of a particular case of such forests.

Several graph-based segmentation problems, including minimum spanning forests, graph
cuts, random walks and shortest paths have recently been shown to belong to a common
energy minimization framework, see the work of (Allène et al., 2010; Sinop and Grady, 2007;
Couprie et al., 2011). The considered problem is to find a labeling x∗ ∈ R|V | defined on the
nodes of a graph that minimizes

E(x) =
∑
eij∈E

wp
ij |xj − xi|

q +
∑
vi∈V

wp
i |li − xi|

q, (2)

where l represents a given configuration and x represents the target configuration. The
result of limp→∞ arg minxE(x) for values of q ≥ 1 always produces a cut by maximum
(equivalently minimum) spanning forest. The reciprocal is also true if the weights of the
graph are all different.

In the case of our application, the pairwise weights wij is given by an inverse function
of the original weights ωij . The pairwise term thus penalizes any unwanted high-frequency
content in x and essentially forces x to vary smoothly within an object, while allowing large
changes across the object boundaries. The second term enforces fidelity of x to a specified
configuration l, wi being the unary weights enforcing that fidelity.

The enforcement of markers ls—defined as described in Section 2.2.3 according to four
cases—as hard constrained may be viewed as follows: A node of label ls is added to the
graph, and linked to all nodes i of V that are supposed to be marked. The unary weights
ωi,ls are set to arbitrary large values in order to impose the markers.

2.3.1 Applications To Optical Flow And Semantic Segmentation

An optical flow map may be easily estimated from two successive segmentations St and
St+1. For each region r of St+1, if the label of r comes from a label present in a region
s of the segmentation St, the optical flow in r is computed as the distance between the
centroid of r and the centroid of s. The optical flow map may be used as a sanity check for
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region tracking applications. In principle, a video sequence will not contain displacements
of objects greater than a certain value.

For each superpixel s of St+1, if the label of region s comes from the previous segmen-
tation St, then the semantic prediction from St is propagated to St+1. Otherwise, in case
the label of s is a new label, the semantic prediction is computed using the prediction at
time t + 1. As some errors may appear in the regions tracking, labels of regions having
inconsistent large values in optical flow maps are not propagated. For the specific task of
semantic segmentation, results can be improved by exploiting the contours of the recognized
objects. Semantic contours such as for example transition between a building and a tree
for instance, might not be present in the gradient of the raw image. Thus, in addition to
the pairwise weights ω described in Section 2.2.1, we add a constant in the presence of a
semantic contour.

3. Results

We used for our experiments the NYU depth data set—version 2—of Silberman et al. (2012),
composed of 407024 couples of RGB images and depth images. Among these images, 1449
frames have been labeled. The object labels cover 894 categories. The data set is provided
with the original raw depth data that contain missing values, with code from Dani et al.
(2004) to inpaint the depth images.

3.1 Validation Of Our RGBD Network On Images

The training has been performed using the 894 categories directly as output classes. The
frequencies of object appearances have not been changed in the training process. However,
we established 14 clusters of classes categories to evaluate our results more easily. The
distributions of number of pixels per class categories are given in Table 1. We used the
train/test splits as provided by the NYU depth v2 data set, that is to say 795 training
images and 654 test images. Please note that no jitter (rotation, translations or any other
transformation) was added to the data set to gain extra performances. However, this
strategy could be employed in future work. The code consists of Lua scripts using the
Torch machine learning software of Collobert et al. (2011) available online at http://www.
torch.ch/.

To evaluate the influence of the addition of depth information, we trained a multiscale
ConvNet only on the RGB channels, and another network using the additional depth in-
formation. Both networks were trained until the achievement of their best performances,
that is to say for 105 epochs and 98 epochs respectively, taking approximately 2 days on a
regular server (1.8 GHz Intel Xeon) using 1 core. For superpixel smoothing, following the
implementation of Felzenszwalb and Huttenlocher (2004), we pre-process the images using
a Gaussian filtering step with a kernel of variance σ. A post-processing step that removes
regions of small size, that is to say below a threshold δ is also performed. As Felzenszwalb
and Huttenlocher (2004), we denote the scale of observation parameter by k. To produce our
frame by frame results on NYU depth v2 , we used as in the work of (Farabet et al., 2013)
k = 450, δ = 30 and σ = 0.5. We report in Table 1 two different performance measures:

3499

http://www.torch.ch/
http://www.torch.ch/


Couprie, Farabet, LeCun and Najman

Ground truths

Results using the Multiscale ConvNet

Results using the Multiscale ConvNet with depth information

wall
bed

books
ceiling

chair
floor

furniture
pict./deco

sofa
table

object
window

TV
uknw

Ground truths

Depth maps

Results using the Multiscale Convnet

Results using the Multiscale Convnet with depth information

Figure 5: Some scene labelings using our Multiscale Convolutional Network trained on RGB
and RGBD images. We observe in Table 1 that adding depth information helps
to recognize objects that have low intra-class variance of depth appearance.
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• the “classwise accuracy”, counting the number of correctly classified pixels divided by
the number of false positive, averaged for each class. This number corresponds to the
mean of the confusion matrix diagonal.

• the “pixelwise accuracy”, counting the number of correctly classified pixels divided
by the total number of pixels of the test data.

We tested to scale the depth image with a log scale, however it did not improved the results.

We observe that considerable gains (15% or more) are achieved for the classes ’floor’,
’ceiling’, and ’furniture’. This result is logical since these classes are characterized by a
globally constant appearance of their depth map. Objects such as TV, table, books can
either be located in the foreground as well as in the background of images. On the contrary,
the floor and ceiling will almost always lead to a depth gradient always oriented in the same
direction: Since the data set has been collected by a person holding a Kinect device at a
his chest, floors and ceiling are located at a distance that does not vary to much through
the data set. Figure 5 provides examples of depth maps that illustrate these observations.
Large drops of performances when using depth information are also observed for some
classes (chair, table, window, books and TV). We explain this result partly by the very
weak frequency of appearance of such classes in the data set that is not sufficient to cover
the variety of possible depth appearance for these objects. One should also note that for
specific applications, object frequencies may be weighted in the training step as in Farabet
et al.’s work. Overall, improvements induced by the depth information exploitation are
present and statistically significant, as checked using paired t-tests. In the next section,
these improvements are more apparent.

3.2 Comparison to the State-Of-The-Art

In order to compare our results to the state-of-the-art on the NYU depth v2 data set, we
adopted a different selection of outputs instead of the 14 classes employed in the previous
section. The work of Silberman et al. (2012) defines the four semantic classes Ground,
Furniture, Props and Structure. This class selection is adopted by Silberman et al. (2012)
to use semantic labelings of scenes to infer support relations between objects. We recall that
the recognition of the semantic categories is performed by (Silberman et al., 2012) using
the definition of diverse features including SIFT features, histograms of surface normals,
2D and 3D bounding box dimensions, color histograms, and relative depth.

As reported in Table 2, the results achieved using the Multiscale convnet are improving
the structure class predictions, resulting in an overall 4% relative gain in pixelwise accuracy
over Silberman et al.’s approach. Adding the depth information results in a considerable
improvement of the ground prediction, and better performance over the other classes. This
approach achieves a 4% relative gain in classwise accuracy over previous works and improves
by almost 6% the pixelwise accuracy compared to Silberman et al.’s results.

We note that the class ’furniture’ in the 4-classes evaluation is different than the ’furni-
ture’ class of the 14-classes evaluation. The furniture-4 class encompasses chairs and beds
but not desks, and cabinets for example, explaining a drop of performance here using the
depth information.
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Class Multiscale Convnet Acc. MultiScale Convnet
Occurrences Farabet et al. (2013) +depth Acc.

bed 4.4% 30.3 38.1
objects 7.1 % 10.9 8.7
chair 3.4% 44.4 34.1
furnit. 12.3% 28.5 42.4
ceiling 1.4% 33.2 62.6
floor 9.9% 68.0 87.3
deco. 3.4% 38.5 40.4
sofa 3.2% 25.8 24.6
table 3.7% 18.0 10.2
wall 24.5% 89.4 86.1
window 5.1% 37.8 15.9
books 2.9% 31.7 13.7
TV 1.0% 18.8 6.0
unkn. 17.8% - -

Avg. Class Accuracy - 35.8 36.2

Pixel Acc. (mean) - 51.0 52.4

Pixel Acc. (median) - 51.7 52.9

Pixel Acc. (std. dev.) - 15.2 15.2

Table 1: Class occurrences in the test set—Performance per class and per pixel. Results
in bold indicate statistically significant better performances (above probability of
95% being statistically different)

Ground Furniture Props Structure Class Pixel Comput.
Acc. Acc. time (s)

Silberman et al. (2012) 68 70 42 59 59.6 58.6 >3
Cadena and Košecka (2013) 87.9 64.1 31.0 77.8 65.2 66.9 1.7

Multiscale convnet 61.7 49.4 30.8 86.1 57.0 61.3 0.6

Multiscale convnet+ superpixels 68.1 51.1 29.9 87.8 59.2 63.0 0.7
Multiscl.+depth convnet+superpixels 87.3 45.3 35.5 86.1 63.5 64.5 0.7

Table 2: Accuracy of the multiscale convnet compared to the state-of-the-art. The reported
computation times of Cadena and Košecka (2013) were obtained on an architecture
similar to ours. Bold numbers indicate the best or second best performance.

Very recently, the approach of Cadena and Košecka (2013) achieved about two percent
improvement over our results. Contrary to our system, they use handcrafted features,
resulting therefore in a less versatile method.

A great advantage of our approach is its real-time capabilities. Processing a 320x240
frame takes 0.7 seconds on a laptop using 4 cores, see the work of Farabet et al. (2013) for
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details. The temporal smoothing only requires an additional 0.1s per frame, as we develop
in the next section.

3.3 Super-Pixel Segmentation On Videos Using RGB Information

Next experiments demonstrate the efficiency and versatility of our temporal smoothing
approach by performing simple super-pixel segmentation and semantic scene labeling.

Original frames Mean shift results of Paris (2008) Our results

Figure 6: Comparison of our temporal superpixels with the mean-shift segmentation
method of Paris (2008) on Frame 19 and 20. k = 200, δ = 400, σ = 0.5.

Experiments are performed on two different types of videos: videos where the camera
is static, and videos where the camera is moving. The robustness of our approach to large
variations in the region sizes and large movements of camera is illustrated in Figure 7, where
the camera is moving.

A comparison with the temporal mean shift segmentation of Paris (2008) is displayed
in Figure 6. The super-pixels produced by Paris (2008) are not spatially consistent as the
segmentation is performed in the feature (color) space in their case. Our approach is slower,
although qualified for real-time application, but computes only spatially consistent super-
pixels.

3.4 Semantic Video Labeling

We present our semantic video labeling results in indoor scenes using RGBD images, and
outdoor environments, where the depth information is not available.
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Input images (frames 4 and 5) and difference image

Independent segmentations S′4, S
′
5 (left) and temporally consistent segmentations S4, S5

(right)

Figure 7: Segmentation results on 2 consecutive frames of the NYU-Scene data set.

(a) Independent segmentations with no temporal smoothing

(b) Result using the temporal smoothing method of Miksik et al. (2013)

(c) Our temporally consistent segmentation

balcony
building

road
door

person
sidewalk

car
sun

tree
window

Figure 8: Comparison with the temporal smoothing method of Miksik et al. (2013). Pa-
rameters used: k = 1200, δ = 100, σ = 1.2.

3.4.1 Outdoor Segmentation Results

The goal of this section is to assess the gain of using only the additional temporal infor-
mation. Thus, we do not use depth information in our evaluation. We compare our results
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(a) Output of the Multiscale convnet trained with RGB information - frame by frame

(b) Output of the Multiscale convnet trained using depth information - frame by frame

(c) Results from (b) smoothed using our temporal superpixels

Props Floor Structure Wall

Figure 9: Some results on video sequences of the NYU v2 depth data set.

with the results of Miksik et al. (2013) on the NYU-Scene data set. The data set consists in
a video sequence of 73 frames provided with a dense semantic labeling and ground truths.
The provided dense labeling being performed with no temporal exploitation, it suffers from
sudden large object appearances and disappearances. As illustrated in Figure 8 our ap-
proach reduces this effect, and improves the classification performance of more than 5% as
reported in Table 3.

Multiscale RGBD Convnet Temporal smoothing of Our temporal
Frame by frame Miksik et al. (2013) smoothing

Accuracy 71.11 75.31 76.27

#Frames/sec 1.43 1.33∗ 10.5

Table 3: Overall pixel accuracy (%) for the semantic segmentation task on the NYU Scene
video and computation times ∗Note that the reported timing does not take into
account the optical flow computation needed by Miksik et al. (2013).

3.4.2 Indoor Segmentation Results

On the NYU Depth data set by Silberman et al. (2012), we compare independent seg-
mentation performance with our temporally smoothed results on four video sequences of
indoor scenes. The videos scenes were chosen randomly among these of the NYU data set
containing the largest number of ground truth frames (typically five ground truth frames
for two thousands unlabeled frames). Unless specified, the same choice of parameters was
performed in all our comparisons.

3505



Couprie, Farabet, LeCun and Najman

Multiscale Multiscale convnet Multiscale convnet
convnet + depth + depth + temp. smoothing

dining room 54.5 63.8 58.5

living room 63.6 65.4 72.1

classroom 52 56.5 58.3

office 58.8 56.3 57.4

mean 57.2 60.5 61.6

Table 4: Overall pixel accuracy (%) for the semantic segmentation task on the NYU Depth
data set. Parameter used for the temporal smoothing: δ = 100, σ = 1.2, k =
800, 1000, 1000, 920.

The results obtained in Table 4 show that in most videos scenes, our temporal superpixels
allow us to obtain better results. An example of results appears in Figure 9.

3.5 Computation Time of the Temporal Smoothing Approach

The experiments were performed on a laptop with 2.3 GHz Intel core i7-3615QM. Our
method is implemented on CPU only, in C/C++, and makes use of only one core of the
processor. Super-pixel segmentations take 0.1 seconds per image of size 320× 240 and 0.4
seconds per image of size 640× 380, thus demonstrating the scalability of the pipeline. All
computations are included in the reported timings. The mean segmentation time using
the work of Xu et al. (2012) for a frame of size 320× 240 is 4 seconds. The timings of the
temporal smoothing method of Miksik et al. (2013) are reported in Table 3. We note that the
processor used for the reported timings of Miksik et al. (2013) has similar characteristics as
ours. Furthermore, Mistik et al. use an optical flow procedure that takes only 0.02 seconds
per frame when implemented on GPU, but takes seconds on CPU. Our approach is thus
more adapted to real-time applications for instance on embedded devices where a GPU is
often not available. The code, as well as some data and videos are available at the website
of Couprie (2013).

4. Discussion and Conclusion

This works combines two independent contributions devoted to improve scene labeling re-
sults. It introduces the addition of depth information into feature trainable architectures,
which brings, for a 4-class segmentation task, a class accuracy improvement of more than
7% relatively to the training using only RGB data. The speed of our system is mainly
allowed by the multiscale nature and the sparse connectivity of the employed convolutional
network, allowing us to parse an image in 0.7s on CPU.

Our model is easier to implement without the need to design specific features adapted
to depth information. In contrast to CRF approaches that do not necessary scale well with
a large number of different classes to address, the complexity of our model does not increase
with the number of classes. We also introduce a 14-classes clustering for the NYU depth
data set that allows us to point out some limitations of our model and the data set. For
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instance, poorly represented classes in the data set do not allow our model to sense the
variability of the objects with the additional depth dimension.

In terms of evaluation, the 4-class split was designed for a specific application: to perform
inference on support relationships between objects, but we deplore that all systems now use
it for general purpose semantic labeling with depth. Indeed, it does not give insight about
how well the concurrent systems discriminate objects in a world more complex than with
four object categories.

With the temporal smoothing strategy, we demonstrate the ability of minimum spanning
trees to fulfill accuracy and competitive timing requirements in a global optimization frame-
work. Unlike many video segmentation techniques, our algorithm is causal and does not
require any computation of optical flow. Our experiments on challenging videos show that
the obtained super-pixels are robust to large camera or objects displacements. Their use in
semantic segmentation applications demonstrate that significant gains can be achieved and
lead to state-of-the-art results.

Our feature learning and temporal smoothing approaches were developed independently
from each other, this presents the advantages of possibly being used in different appli-
cations, and also having real time capabilities by decorrelating temporal aspects in the
post-treatment. However the best approach for us would be to combine them in one fully
trainable system, which will probably be possible in a near future with nowadays hardware
computational advances.
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Abstract

The F-measure, which has originally been introduced in information retrieval, is nowa-
days routinely used as a performance metric for problems such as binary classification,
multi-label classification, and structured output prediction. Optimizing this measure is a
statistically and computationally challenging problem, since no closed-form solution exists.
Adopting a decision-theoretic perspective, this article provides a formal and experimental
analysis of different approaches for maximizing the F-measure. We start with a Bayes-risk
analysis of related loss functions, such as Hamming loss and subset zero-one loss, show-
ing that optimizing such losses as a surrogate of the F-measure leads to a high worst-case
regret. Subsequently, we perform a similar type of analysis for F-measure maximizing algo-
rithms, showing that such algorithms are approximate, while relying on additional assump-
tions regarding the statistical distribution of the binary response variables. Furthermore,
we present a new algorithm which is not only computationally efficient but also Bayes-
optimal, regardless of the underlying distribution. To this end, the algorithm requires only
a quadratic (with respect to the number of binary responses) number of parameters of
the joint distribution. We illustrate the practical performance of all analyzed methods by
means of experiments with multi-label classification problems.

Keywords: F-measure, Bayes-optimal predictions, regret, statistical decision theory,
multi-label classification, structured output prediction

1. Introduction

Being rooted in information retrieval (van Rijsbergen, 1974), the so-called F-measure is
nowadays routinely used as a performance metric for different types of prediction problems,
including binary classification, multi-label classification (MLC), and certain applications
of structured output prediction. Amongst others, examples of such applications include
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chunking or named entity recognition in natural language processing (Sang and De Meulder,
2003), image segmentation or edge detection in computer vision (Martin et al., 2004) and
detection of geographic coincidence in social networks (Zhuang et al., 2012).

Compared to measures like error rate in binary classification and Hamming loss in multi-
label classification, the F-measure enforces a better balance between performance on the
minority and the majority class, respectively. Therefore, it is more suitable in the case of
imbalanced data, as it does not take the true negative rate into account. Given a prediction
h = (h1, . . . , hm) ∈ {0, 1}m of an m-dimensional binary label vector y = (y1, . . . , ym) (e.g.,
the class labels of a test set of size m in binary classification or the label vector associated
with a single instance in MLC or the binary vector indicating named entities in a text
document in a structured output prediction task), the F-measure is defined as follows:

F (y,h) =
2
∑m

i=1 yihi∑m
i=1 yi +

∑m
i=1 hi

∈ [0, 1] , (1)

where 0/0 = 1 by definition. This measure essentially corresponds to the harmonic mean
of precision prec and recall recl:

prec(y,h) =

∑m
i=1 yihi∑m
i=1 hi

, recl(y,h) =

∑m
i=1 yihi∑m
i=1 yi

.

One can generalize the F-measure to a weighted harmonic average of these two values, but
for the sake of simplicity, we stick to the unweighted mean, which is often referred to as the
F1-score or the F1-measure.

Despite its popularity in experimental settings, very few theoretical studies of the F-
measure can be found. This paper intends to bridge this gap by analyzing existing methods
and, moreover, by presenting a new algorithm that exhibits the desirable property of sta-
tistical consistency. To this end, we will adopt a decision-theoretic viewpoint. Modeling
the ground-truth as a random variable Y = (Y1, Y2, . . . , Ym), i.e., assuming an underly-
ing probability distribution P over {0, 1}m, the prediction h that maximizes the expected
F-measure is given by

hF = arg max
h∈{0,1}m

E [F (Y ,h)] = arg max
h∈{0,1}m

∑
y∈{0,1}m

P (y)F (y,h). (2)

The corresponding optimization problem is non-trivial and cannot be solved in closed form.
Moreover, a brute-force search is infeasible, as it would require checking all 2m combinations
of prediction vector h and summing over an exponential number of terms in each combina-
tion. As a result, many researchers who report the F-measure in experimental studies rely
on optimizing a surrogate loss as an approximation of (2). For problems such as multi-label
classification and structured output prediction, the Hamming loss and the subset zero-one
loss are immediate candidates for such surrogates. However, as will be shown in Section 3,
these surrogates do not yield a statistically consistent model and, more importantly, they
manifest a high regret. As an intermezzo, we present results for the Jaccard index, which
has recently gained an increased popularity in areas such as multi-label classification. This
measure is closely related to the F-measure, and its optimization appears to be even more
difficult.
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Apart from optimizing surrogates, a few more specialized approaches for finding the
F-measure maximizer (2) have been presented in the last decades (Lewis, 1995; Chai, 2005;
Jansche, 2007; Ye et al., 2012; Quevedo et al., 2012). These algorithms will be revisited in
Section 4. They typically require the assumption of independence of the Yi, i.e.,

P (Y = y) =
m∏
i=1

pyii (1− pi)1−yi , (3)

with pi = P (Yi = 1). While being natural for problems like binary classification, this
assumption is indeed not tenable in domains like MLC and structured output prediction.
We will show in Section 4 that algorithms based on independence assumptions or marginal
probabilities are not statistically consistent when arbitrary probability distributions P are
considered. Moreover, we also show that the worst-case regret of these algorithms is very
high.

Looking at (2), it seems that information about the entire joint distribution P is needed
to maximize the F-measure. Yet, as will be shown in this paper, the problem can be
solved more efficiently. In Section 5, we present a general algorithm that requires only a
quadratic instead of an exponential (with respect to m) number of parameters of the joint
distribution. If these parameters are given, then, depending on their form, the exact solution
can be obtained in quadratic or cubic time. This result holds regardless of the underlying
distribution. In particular, unlike algorithms such as Chai (2005); Jansche (2007); Ye et al.
(2012) and Quevedo et al. (2012), we do not require independence of the binary response
variables (labels).

Our theoretical results are specifically relevant for applications in multi-label classi-
fication and structured output prediction. In these application domains, three different
aggregation schemes of the F-measure can be distinguished, namely instance-wise, micro-
and macro-averaging. One should carefully distinguish these versions, since algorithms
optimized with a given objective are usually performing suboptimally for other (target)
evaluation measures (e.g., Dembczyński et al., 2012a; Luaces et al., 2012). In Section 7, we
present extensive experimental results to illustrate the practical usefulness of our findings.
More specifically, all examined methods are compared for a series of multi-label classifica-
tion problems. One particular data set originates from a recent data mining competition, in
which we obtained the second place using some of the algorithms presented in this article.
Let us anticipate that our experimental results will not determine a clear winner. This is
not at all surprising: while enjoying the advantage of consistency, our algorithm requires the
estimation of more parameters than existing approximate algorithms. As a consequence,
exact optimization is not necessarily superior to approximate optimization. Instead, the
relative performance of exact and approximate optimization depends on several factors,
such as the sample size, the length of Y , the shape of the distribution P , etc.

As mentioned above, we adopt a decision-theoretic point of view: assuming a prob-
abilistic model to be given, the problem of F-measure maximization is interpreted as an
inference problem. Before going into technical details, we like to stress that this is only
one way of looking at F-measure maximization. A second, somewhat orthogonal approach
is to optimize the F-measure during the training phase. This is sometimes referred to as
empirical utility maximization. In general, optimality in this framework is different from
our definition of optimality, but connections between the two paradigms have recently been

3515



Waegeman et al.

discussed by Ye et al. (2012). These authors establish asymptotic equivalence results un-
der the assumption of independence and infinitely large vectors Y . They focus on binary
classification problems, for which such assumptions are realistic, because the vector Y then
represents an entire test set of i.i.d. observations. The same assumptions are made in an-
other recent work that provides an interesting theoretical analysis for binary classification
problems (Zhao et al., 2013). However, in structured output prediction and multi-label
classification, independence does not hold and the length of Y might be small, especially if
the instance-wise F-measure needs to be optimized.

Algorithms that optimize the F-measure during training will hence not be discussed
further in this article. Nevertheless, we briefly mention some of them here for the sake
of completeness. In binary classification, such algorithms are extensions of support vector
machines (Musicant et al., 2003; Joachims, 2005), logistic regression (Jansche, 2005) or
boosting (Kokkinos, 2010). However, the most popular methods, including that of Keerthi
et al. (2007), rely on explicit threshold adjustment. A few specific algorithms have also
been proposed for certain applications in structured output prediction (Tsochantaridis et al.,
2005; Suzuki et al., 2006; Daumé III et al., 2009) and multi-label classification (Fan and Lin,
2007; Zhang et al., 2010; Petterson and Caetano, 2010, 2011). During training, some of these
methods, especially those based on structured SVMs, need to solve an inference problem
that is closely related but not identical to (2). In a recent paper, we have presented a
theoretical and experimental comparison of approaches that optimize the F-measure during
training or inference, respectively, in the context of multi-label classification (Dembczyński
et al., 2013). Since we focus on the decision-theoretic point of view in this work, we do not
discuss the theoretical results obtained in that article, but for completeness we report some
experimental results.

Parts of this article have already been published in previous conference papers (Dem-
bczyński et al., 2011, 2013). Here, we summarize the results of these papers in a unifying
framework, provide a much more detailed theoretical analysis, and complement them by
additional formal results as well as novel experimental studies. The rest of the article is
organized as follows. Section 2 gives a formal definition of the notion of regret, which will
serve as a key element for showing that most existing algorithms are suboptimal. Sec-
tion 3 contains a regret analysis of algorithms that optimize other loss functions than the
F-measure. In Section 4, we perform a similar analysis for F-measure inference algorithms
that have been proposed in the literature. Subsequently, our own algorithm is presented
in Section 5. In Section 6, we test the inference algorithms on synthetic data, while prac-
tical considerations, applications and experimental results on benchmark data are further
discussed in Section 7. The proofs of all theorems in Sections 3 and 4 can be found in an
appendix.

2. Formal Presentation of our Mathematical Framework

In order to show formally that many existing algorithms are sub-optimal w.r.t. optimising
the F-measure, we will use a mathematical framework that is closely related to frameworks
encountered in classical machine learning papers. However, our analysis will slightly differ
from the analysis performed in such papers, as we are investigating inference algorithms
instead of training algorithms. Let us start with a formal definition of what we will call the
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regret of an inference algorithm.

Definition 2.1 Given a probability distribution P , the regret of a vector of predictions h
w.r.t. the F-measure is formally defined as

RF (h) = E
[
F (Y ,hF )− F (Y ,h)

]
=

∑
y∈{0,1}m

[
F (y,hF )− F (y,h)

]
P (y) ,

with hF the F-measure maximizer in (2).

The above definition of regret (aka excess risk in the statistical literature) can be con-
sidered as a classical tool in the framework of Bayes-risk consistency (Devroye et al., 1997;
Bartlett et al., 2006). However, let us emphasize that the theoretical analysis presented be-
low differs from traditional techniques for investigating the consistency of machine learning
algorithms. Typically, a training algorithm is considered consistent if its risk converges in
probability to the Bayes risk as the training sample grows to infinity. Since many training
algorithms optimize a convex and differentiable surrogate of the target loss of interest, such
an analysis is often performed by bounding the risk of the target loss as a function of the
surrogate φ-risk of the surrogate loss (e.g., Breiman, 2000; Steinwart, 2001; Zhang, 2004;
Bartlett et al., 2006; Tewari and Bartlett, 2007; Duchi et al., 2010; Gao and Zhou, 2013).

In this article, we start from a different perspective, since we are analyzing the Bayes-
optimality of inference algorithms. As such, we call a given loss a surrogate loss for the
F-measure if an inference algorithm optimizes this loss instead of the F-measure. This is
different from, for example, the above papers, which analyse the consistency of surrogate
losses during the training phase of a machine learning algorithm, using the surrogate loss as
the internal training loss, i.e., as a convex and differentiable approximation of the target loss
that is optimized during training. Furthermore, a second notable difference to other papers
is that sample size convergence is less important in our analysis, as we are starting from
a trained probabilistic model that is assumed to deliver consistent estimates. A similar
analysis to the one presented here has been performed for the subset 0/1 loss and the
Hamming loss in (Dembczyński et al., 2012a).

We will consider the regret of various types of loss functions and algorithms under
any arbitrary probability distribution P . By searching for probability distributions that
maximize the regret, we are mainly considering the worst-case scenario. In the case of
surrogate losses, we restrict this search to probability distributions that deliver unique risk
minimizers; the reasons for this restriction are of technical nature. Similar to the F-measure
maximizer, let us introduce the risk minimizer of a loss L : {0, 1}m × {0, 1}m → R+ as

hL = arg min
h∈{0,1}m

E [L(Y ,h)] = arg min
h∈{0,1}m

∑
y∈{0,1}m

P (y)L(y,h). (4)

This allows us to introduce the worst-case regret formally.

Definition 2.2 Let L : {0, 1}m × {0, 1}m → R+ be a loss, let P be the set of all probability
distributions over {0, 1}m, and let PuL be the subset of P that delivers unique solutions to
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(4). Then, the worst-case regret is defined as

sup
P∈Pu

L

E
[
F (Y ,hF )− F (Y ,hL)

]
, (5)

with hF and hL defined by (2) and (4), respectively.

Note that, in the above definition, we restrict the worst-case analysis to probability
distributions with a unique risk minimizer for L. Technically, the problem would otherwise
become more difficult, as it would require the comparison of the F-measure maximizer with
a set of risk minimizers HL instead of a unique minimizer hL. This could be done in
different ways, for example, by looking at the most favorable case for L, leading to

sup
P∈P

min
hL∈HL

E
[
F (Y ,hF )− F (Y ,hL)

]
,

or the least favorable one, leading to

sup
P∈P

max
hL∈HL

E
[
F (Y ,hF )− F (Y ,hL)

]
.

To avoid a more or less arbitrary decision, we prefer to exclude these cases from the be-
ginning. In any case, it is clear that the regret (5) provides a lower bound for any other
definition of regret that maximizes over the entire set P of distributions. Furthermore,
remark that non-uniqueness of the F-measure maximizer is unproblematic, since for the
definition of the regret, only the value of the F-measure is important, not the maximizer
itself.

Using classical notions such as Fisher consistency (Wu et al., 2010), one can say that a
sufficient condition for inconsistency is encountered if (5) does not evaluate to zero. How-
ever, since exact solutions or lower bounds will be derived, we are able to give much more
precise information on the degree of incorrectness.

3. The F-Measure and Related Loss Functions

Given the difficulty of maximizing the F-measure, we start our analysis by investigating a
few related loss functions that have been used as surrogates in some multi-label classification
and structured output prediction papers. We will analyze the Hamming loss, the subset
zero-one loss and the Jaccard index. For the former two loss functions, we perform a regret
analysis to show that optimizing these loss functions is not consistent if the F-measure is
our performance metric of interest. For the Jaccard index, we derive a simple upper bound
on the regret when optimizing the F-measure instead.

3.1 The Hamming Loss

The Hamming loss can be considered as the most standard loss for multi-label classification
problems (e.g., Schapire and Singer, 2000; Tsoumakas and Katakis, 2007; Hariharan et al.,
2010). It is also widely used in many structured output prediction methods (e.g., Taskar
et al., 2004; Daumé III et al., 2009; Finley and Joachims, 2008). Using the general notation
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that was introduced above, the Hamming loss simply corresponds to the error rate in binary
classification, and it can be formally defined as follows:1

LH(y,h) =
1

m

m∑
i=1

Jyi 6= hi(x)K . (6)

For the Hamming loss, the risk minimizer is

hH = arg min
h∈{0,1}m

E [LH(Y ,h)] = arg min
h∈{0,1}m

∑
y∈{0,1}m

P (y)LH(y,h). (7)

This is obtained by hH(x) = (hH,1, . . . , hH,m), where

hH,i(x) = arg max
b∈{0,1}

P (Yi = b) ∀i ∈ {1, . . . ,m}. (8)

Thus, in order to optimize the Hamming loss, one should select the marginal modes of P .
The following theorem presents our main result for the Hamming loss.

Theorem 1 Let hH be a vector of predictions obtained by minimizing the Hamming loss,
Then for m > 2 the worst-case regret is given by:

sup
P∈Pu

LH

(
E
[
F (Y ,hF )− F (Y ,hH)

])
= 0.5 ,

where the supremum is taken over all possible distributions P that result in a unique Ham-
ming loss minimizer.

In other words, the theorem indicates that optimizing the Hamming loss as a surrogate
for the F-measure results in a prediction that is far from optimal. This claim will be further
confirmed by experimental results in Sections 6 and 7.

3.2 The Subset Zero-One Loss

The next multi-label loss function we analyze is the subset 0/1 loss, which generalizes the
well-known 0/1 loss from the conventional to the multi-label setting:

Ls(y,h) = Jy 6= hK (9)

Admittedly, this loss function may appear overly stringent, especially in the case of many
labels. Moreover, since making a mistake on a single label is punished as hardly as a mistake
on all labels, it does not discriminate well between “almost correct” and “completely wrong”
predictions. Still, a lot of existing frameworks for multi-label classification and structured
output prediction optimize a convex upper bound on this loss in a direct or approximate
manner. For example, conditional random fields optimize the log-loss as a surrogate for the
subset zero-one loss (Lafferty et al., 2001), structured support vector machines consider the

1. We use JcK to denote the indicator function, equal to 1 if predicate c holds and 0 otherwise.
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Figure 1: Plot of the worst-case regret for the subset zero-one loss (11) as a function of the
number of labels m.

structured hinge loss as a surrogate of the subset 0/1 loss when no margin/slack rescaling is
performed (Tsochantaridis et al., 2005) and probabilistic classifier chains with logistic base
classifiers optimize the log-loss approximately by means of pseudo-likelihood maximization
(Dembczyński et al., 2010, 2012b). Moreover, maximum a posteriori (MAP) estimation
techniques in Bayesian statistics and graphical models are also known to minimize the
subset 0/1 loss.

As for any other 0/1 loss, the risk-minimizing prediction for (9) is simply given by the
mode of the distribution:

hs = arg max
y∈{0,1}m

P (y) (10)

Thus, unlike the Hamming loss, looking at marginal probabilities does not suffice to mini-
mize the subset 0/1 loss. When the independence assumption is violated, information about
the joint distribution over labels is needed, similar as for the F-measure. Our interest in
the subset 0/1 loss is primarily fueled by this connection. Summarized in the following
theorem, we perform a similar type of regret analysis as for the Hamming loss.

Theorem 2 Let hs be a vector of predictions obtained by minimizing the subset 0/1 loss,
then for m > 2 the worst-case regret is given by:

sup
P∈Pu

Ls

(
E
[
F (Y ,hF )− F (Y ,hs)

])
=

(−m− 2 + 2m2)m

(2m− 1)(4 +m+m2)
, (11)

where the supremum is taken over all possible distributions P .

Let us remark that the worst-case regret converges rapidly to one as a function of the
number of labels m, as illustrated in Figure 1. Similar to the result for the Hamming loss,
the above theorem confirms that using the subset zero-one loss as an alternative for the
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F-measure can potentially yield a high regret. Optimizing the subset zero-one loss might
hence be not a valid alternative. Our experimental results in Sections 6 and 7 will indeed
make clear that such an approach performs suboptimal for several data sets.

3.3 The Jaccard Index

The F-measure was originally defined by set operators, as a measure for expressing the
similarity of sets. In this literature, it is known as the dice coefficient (Dice, 1945). Another
well-known measure for expressing similarity of sets is the Jaccard index. The two measures
are very related, since both belong to a more general parametric family of similarity mea-
sures for sets (De Baets et al., 2009). The Jaccard index computes the ratio of intersection
to union:

J(y,h) =
|{i | yi = 1 ∧ hi = 1, i = 1, . . . ,m}|
|{i | yi = 1 ∨ hi = 1, i = 1, . . . ,m}|

(12)

Owing to a simple transformation, it can also be written as follows:2

J(y,h) =

∑m
i=1 yihi∑m

i=1 yi +
∑m

i=1 hi −
∑m

i=1 yihi
(13)

In recent years, the Jaccard index has gained popularity in the machine learning community.
In the context of kernel methods, it is often used as an alternative to the linear kernel for
binary feature vectors, such as fingerprints of molecules in cheminformatics and bioinfor-
matics. In these application domains, one often speaks of the Tanimoto kernel (Swamidass
et al., 2005).

As a utility function the Jaccard index is often considered in multi-label classification.
It remains an open question whether or not a closed-form solution for the risk minimizer
of the Jaccard similarity exists, but the maximization is far from straightforward. Under
the assumption of label independence, which allows one to transform many loss functions
to a contingency table, Quevedo et al. (2012) have recently proposed an exact algorithm
for maximizing the instance-wise Jaccard similarity, as well as other loss functions that
can be computed from such a contingency table. However, without this assumption, one
commonly believes that exact optimization is intractable (Chierichetti et al., 2010). Even
though the F-measure and the Jaccard are monotonically related, it is not the case that the
F-measure maximizer is necessarily also the Jaccard maximizer, because the summation in
(4) in general breaks the monotonicity property. As a result, the analysis that we report
for the Jaccard index differs from the one reported for the Hamming loss and the subset
0/1 loss. Given that the maximization of the Jaccard index is believed to be much harder,
it does not make sense to use this measure as a surrogate for the F-measure during opti-
mization. In contrast, one might think of maximizing the F-measure as a surrogate for the
Jaccard index. The following result characterizes what we can lose with such a strategy.

Theorem 3 Let hJ and hF be vectors of predictions obtained by maximizing the Jaccard
index and the F-measure, respectively. Let the utility of the F-measure maximizer be given

2. Similar as the F-measure, note that the denominator is 0 if yi = hi = 0 for all i = 1, . . . ,m. In this case,
the utility is 0 by definition.
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by

δ(P ) = max
h∈{0,1}m

E [F (Y ,h)] = max
h∈{0,1}m

∑
y∈{0,1}m

P (y)F (y,h).

The regret of the F-measure maximizer with respect to the Jaccard index is then upper
bounded by

E
[
J(Y ,hJ)− J(Y ,hF )

]
≤ 1− δ(P )/2

for all possible distributions P .

Notwithstanding that the above upper bound on the regret remains rather loose, the
observation is interesting because the upper bound on the regret decreases as a function of
the utility of the F-measure maximizer δ(P ). Due to this relationship, a high utility for the
F-measure implies that optimizing this measure as a surrogate for the Jaccard similarity
might be a reasonable thing to do. In other words, on data sets for which an F-measure
maximizing algorithm gets good results, one can expect that this algorithm will also get
good results in terms of the Jaccard index.

4. Existing Algorithms for F-Measure Maximization

The previous section revealed that optimizing more conventional loss functions as surrogates
for the F-measure might result in a poor predictive performance. In this section, we perform
a similar type of analysis for more specialized algorithms that intend to solve (2). These
algorithms make different types of assumptions to simplify the problem. First of all, the
algorithms operate on a constrained hypothesis space, sometimes justified by theoretical
arguments. Secondly, they only guarantee optimality for specific distributions P .

4.1 Algorithms Based on Label Independence

By assuming independence of the random variables Y1, ..., Ym, optimization problem (2) can
be substantially simplified. It has been shown independently in (Lewis, 1995) and (Jansche,
2007) that the optimal solution then always contains the labels with the highest marginal
probabilities, or no labels at all. As a consequence, only a few hypotheses h (m+1 instead
of 2m) need to be examined, and the computation of the expected F-measure can be per-
formed in an efficient way.

Theorem 4 [(Lewis, 1995)] Let Y1, Y2, . . . , Ym be independent Bernoulli variables with pa-
rameters p1, p2, . . . , pm respectively. Then, for all j, k ∈ {1, . . . ,m}, hF,j = 1 and hF,k = 0
implies pj ≥ pk.
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In addition, Lewis (1995) showed that the expected F-measure can be approximated by
the following expression under the assumption of independence:3

E [F (Y ,h)] '

{ ∏m
i=1(1− pi), if h = 0m
2
∑m

i=1 pihi∑m
i=1 pi+

∑m
i=1 hi

, if h 6= 0m

This approximation is exact for h = 0m, while for h 6= 0m, an upper bound of the error
can easily be determined (Lewis, 1995).

However, Chai (2005), Jansche (2007) and Quevedo et al. (2012) have independently
proposed exact procedures for computing the F-maximizer. To this end, independence is
assumed and marginal probabilities p1, p2, . . . , pm serve as input for the algorithms. The
method of Jansche runs in O(m4), while the other two approaches solve the same problem
more efficiently in O(m3).

As a starting point for explaining the three algorithms, notice that (2) can be solved via
outer and inner maximization. Namely, (2) can be transformed into an inner maximization

h(k) = arg max
h∈Hk

E [F (Y ,h)] , (14)

where Hk = {h ∈ {0, 1}m |
∑m

i=1 hi = k}, followed by an outer maximization

hF = arg max
h∈{h(0),...,h(m)}

E [F (Y ,h)] . (15)

The outer maximization (15) can be done by simply checking all m + 1 possibilities. The
main effort is then devoted to solving the inner maximization (14). According to Lewis’
theorem, to solve (14), one needs to check only one vector h for a given k, in which hi = 1
for the k labels with highest marginal probabilities pi. The remaining problem is the
computation of the expected F-measure in (14). This expectation cannot be computed
naively, as the sum is over exponentially many terms. But the F-measure is a function of
integer counts that are bounded, so it can normally only assume a much smaller number
of distinct values. It has been further shown that the expectation has a domain with a
cardinality exponential in m; but since the cardinality of its range is polynomial in m, it
can be computed in polynomial time. As a result, Jansche (2007) obtains an algorithm
that is cubic in m for computing (14), resulting in an overall O(m4) time complexity. He
also presents an approximate version of this procedure, reducing the complexity from cubic
to quadratic. This approximation leads to an overall complexity of O(m3), but it does no
longer guarantee optimality of the prediction.

As a more efficient alternative, the procedure of Chai (2005) is based on ordering the
labels according to the marginal probabilities. For h(k) ∈ Hk, thus hi = 1 for k labels with
the greatest marginal probabilities, he derives the following expression:

E
[
F (Y ,h(k))

]
= 2

m∏
i=1

(1− pi)I1(m) ,

3. We use 0m and 1m to denote m-element vectors of all zeros or ones, respectively.
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where I1(m) is given by the following recurrence equations and boundary conditions:

It(a) = It+1(a) + rtIt+1(a+ 1) + rtJt+1(a+ 1)

Jt(a) = Jt+1(a) + rtJt+1(a+ 1)

Ik+1(a) = 0 Jm+1(a) = a−1

with ri = pi/(1− pi). These equations suggest a dynamic programming algorithm of space
O(m) and time O(m2) in computing the expected F-measure for given k. This yields an
overall time complexity of O(m3).

In a more recent follow-up paper, Ye et al. (2012) further improved the dynamic pro-
gramming algorithm to an O(m2) complexity by additional sharing of internal represen-
tations. The old and the new version of the algorithm both rely on Lewis’ theorem and
a factorization of the probability mass for constructing recurrence equations, hence leav-
ing few hope for extending the algorithm to situations where label independence cannot
be assumed. In another recent paper, Quevedo et al. (2012) propose a general inference
procedure that utilizes similar recurrence equations and dynamic programming techniques.
In contrast to Chai (2005), Jansche (2007) and Ye et al. (2012), the authors primarily ad-
dress multi-label classification problems, focusing on a wide range of loss functions that
can be computed from a contingency table in an instance-wise manner. As a result, the
instance-wise F-measure is maximized as a special case, while assuming label independence.

If the independence assumption is violated, none of the above methods is able to guar-
antee optimality. In the most general case, the F-maximizer needs to be computed by
analyzing the joint distribution. The above methods rely on modeling or ordering marginal
probabilities, which is not sufficient to compute the F-maximizer for many distributions.
This is illustrated by the following example, in which two joint distributions with identical
marginal probabilities have different F-measure maximizers:

y P (y)

0001 0.1
0010 0.2
0100 0.2
1000 0.5

y P (y)

0000 0.5
1001 0.1
1010 0.2
1100 0.2

The non-specified configurations have zero probability mass. For both distributions, we have
p1 = P (Y1 = 1) = 0.5, p2 = P (Y2 = 1) = 0.2, p3 = P (Y3 = 1) = 0.2, p4 = P (Y4 = 1) = 0.1,
but one can easily check that the F-measure maximizers are h = (1000) and h = (0000),
respectively. The regret is small for this simple example, but methods that assume indepen-
dence may produce predictions being far away from the optimal one. The following result
shows this concretely.

Theorem 5 Let hI be a vector of predictions obtained by assuming label independence as
defined in (3), then the worst-case regret is lower-bounded by:

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
≥ 2q − 1,
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for all q ∈ [1/2, 1] satisfying
∑m

s=1

(
2m!

(m−s)!(s−1)!(m+s)q
m−s(1− q)s

)
− qm > 0 and the supre-

mum taken over all possible distributions P .

For increasing m, the condition is satisfied for q close to one (see the appendix for de-
tails). In such a scenario, the worst-case regret is lower bounded by Rq = 2q − 1, so that
limq→1,m→∞Rq = 1. As a consequence, the lower bound becomes tight in the limit of m
going to infinity, as summarized in the following corollary.

Corollary 1 Let hI be a vector of predictions obtained by assuming independence, then the
worst-case regret converges to 1 in the limit of m, i.e.,

lim
m→∞

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
= 1,

where the supremum is taken over all possible distributions P .

Again we will show by means of experiments in Sections 6 and 7 that algorithms based
on label independence can be suboptimal on real-world data sets.

4.2 Algorithms Based on the Categorical Distribution

Solving (2) becomes straightforward in the case of a specific distribution in which the
probability mass is distributed over vectors y containing only a single positive label, i.e.,∑m

i=1 yi = 1, corresponding to the categorical distribution. This was studied by del Coz
et al. (2009) in the setting of so-called non-deterministic classification.

Theorem 6 [(del Coz et al., 2009)] Denote by y(i) a vector for which yi = 1 and all the
other entries are zeros. Assume that P is a joint distribution such that P (Y = y(i)) = pi.
The maximizer h of (2) consists of the k labels with the highest marginal probabilities, where
k is the first integer for which

k∑
j=1

pj ≥ (1 + k)pk+1;

if there is no such integer, then h = 1m.

The categorical distribution reflects the case of multi-class classification problems, as a
special case of multi-label classification problems. The above approach is only applicable
to such problems.

4.3 Algorithms that Use Both the Marginal and the Joint Distribution

Since all the methods so far rely on the fact that the optimal solution contains ones for the
labels with the highest marginal probabilities (or consists of a vector of zeros), one may
expect that thresholding on the marginal probabilities (hi(θ) = 1 for pi ≥ θ, and hi(θ) = 0
otherwise) will provide a solution to (2) in general. Practically, despite using marginal prob-
abilities for the thresholds, such a scenario does not assume label independence anymore,
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because also the joint probability distribution P must be provided.4 When the labels are
ordered according to the marginal probabilities, thus pi ≥ pi+1 for all i ∈ {1, ...,m−1}, this
approach resembles the following optimization problem:

hT = arg max
θ∈{1,p1,...,pm}

E [F (Y ,h(θ))] .

Thus, to find an optimal threshold θ, access to the entire joint distribution is needed. How-
ever, this is not the main problem here, since in the next section, we will show that only a
polynomial number of parameters of the joint distribution is needed. What is more inter-
esting is the observation that the F-maximizer is in general not consistent with the order of
marginal label probabilities. In fact, the regret can be substantial, as shown by the following
result.

Theorem 7 Let hT be a vector of predictions obtained by putting a threshold on sorted
marginal probabilities, then the worst-case regret is lower bounded by

sup
P

(
E
[
F (Y ,hF )− F (Y ,hT )

])
≥ max

(
0,

1

6
− 2

m+ 4

)
,

where the supremum is taken over all possible distributions P .

Finding the exact value of the supremum in the worst case is for the above formulation
an interesting open question. The statement is a surprising result in light of the existence
of many algorithms that rely on finding a threshold for maximizing the F-measure (Keerthi
et al., 2007; Fan and Lin, 2007; Zhang et al., 2010; Lipton et al., 2014)—remark that those
methods rather seek for a threshold on scoring functions instead of marginal probabilities.
While being justified by Theorems 4, 5 and 6 for specific applications, thresholding does
not yield optimal predictions in general. Let us illustrate this with an example for which
m = 12:

y P (y)

000000000000 0.21
100000000000 0.39
011111100000 0.2
010000011111 0.2

The non-specified configurations have zero probability mass. The F-measure maximizer is
given by (1000000000000); yet, not the first label but the second one exhibits the highest
marginal probability. The regret remains rather low in this case, but higher values can be
easily obtained by constructing more complicated examples from (41)—see the appendix.

4. In fact most thresholding methods that optimize the F-measure during training do not use the joint
distribution, and define a threshold based on marginals only. However, that is in practice the same as
assuming independence, and resembles the same conclusions as in Section 4.1. In contrast, the regret will
be lower when also the joint distribution is used to define the threshold. When the F-measure is optimized
in an inference phase, starting from a trained probabilistic model, access to the joint distribution is of
course needed.
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5. An Exact Algorithm for F-Measure Maximization

We now introduce an exact and efficient algorithm for computing the F-maximizer without
using any additional assumption on the probability distribution P . While adopting the
idea of decomposing the problem into an outer and an inner maximization, our algorithm
differs in the way the inner maximization is solved.5 For convenience, let us introduce the
following quantities:

sy =
m∑
i=1

yi, ∆ik =
∑

y:yi=1

2P (y)

sy + k
.

The first quantity gives the number of ones in the label vector y, while ∆ik is a specific
marginal value for i-th label, which for u = 1 corresponds to weighted true positives. Using
these quantities, we show that only m2 + 1 parameters of the joint distribution P (y) are
needed to compute the F-maximizer.

Theorem 8 The solution of (2) can be computed by solely using P (y = 0m) and the values
of ∆ik, for i, k ∈ {1, . . . ,m}, that constitute an m×m matrix ∆.

Proof. The inner optimization problem (14) can be formulated as follows:

h(k) = arg max
h∈Hk

E [F (Y ,h)] = arg max
h∈Hk

∑
y∈{0,1}m

P (y)
2
∑m

i=1 yihi
sy + k

.

The sums in arg max can be swapped, resulting in

∑
y∈{0,1}m

P (y)
2
∑m

i=1 yihi
sy + k

=

m∑
i=1

hi
∑

y∈{0,1}m

2P (y)yi
sy + k

=

m∑
i=1

hi
∑

y:yi=1

2P (y)

sy + k
.

Finally, we obtain

h(k) = arg max
h∈Hk

m∑
i=1

hi∆ik . (16)

As a result, one does not need the whole distribution to find the maximizer of the F-
measure, but the values of ∆ik, which can be given in the form of an m×m matrix ∆. For
the special case of k = 0, we have h(k) = 0m and Ey∼P (y) [F (y,0m)] = P (y = 0m). �

If the matrix ∆ is given, the solution of the F-measure maximization (2) is straight-
forward, since for each inner maximization the problem boils down to selecting the k labels
with the highest ∆ik. The resulting algorithm, referred to as General F-measure Maximizer
(GFM), is summarized in Algorithm 1 and its time complexity is analyzed in the following
theorem.

Theorem 9 Algorithm 1 solves problem (2) in time O(m2) assuming that the matrix ∆ of
m2 parameters and P (y = 0m) are given.

5. The description of the method slightly differs from the previous paper (Dembczyński et al., 2011), and
it is concordant with Dembczyński et al. (2013).
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Algorithm 1 General F-measure Maximizer

INPUT: matrix ∆ and probability P (y = 0m)

for k = 1 to m do

solve the inner optimization problem (14):

h(k) = arg max
h∈Hi

m∑
i=1

hi∆ik

by setting hi = 1 to k labels with the highest ∆ik (in case of ties take any k top labels),
and hi = 0 for the rest;

store a value of

E
[
F (Y ,h(k))

]
=

m∑
i=1

h
(k)
i ∆ik;

end for
define h(0) = 0m, and E [F (Y ,0m)] = P (y = 0m);

solve the outer optimization problem (15):

hF = arg max
h∈{h(0),...,h(m)}

E [F (Y ,h)] ;

return hF and E [F (Y ,hF )];

Proof. To solve (16), it is enough to find the top k elements (i.e., the elements with the high-
est values) in the k-th column of matrix ∆, which can be carried out in linear time (Cormen
et al., 2001). This step has to be repeated for all k. Therefore, the overall complexity of
the inner maximization is quadratic. The solution of the outer optimization problem (15)
is then straight-forward and requires linear time. �

In light of combining the inference algorithm with particular training algorithms, like
multinomial regression as we discuss it in Section 7.1.4, it could be reasonable to redefine
the formulation in the following way. Consider the probabilities

pis = P (yi = 1, sy = s), i, s ∈ {1, . . . ,m} , (17)

that constitute an m × m matrix P.6 Let us also introduce an m × m matrix W with
elements

wsk =
2

(s+ k)
, s, k ∈ {1, . . . ,m} . (18)

It can be easily shown that
∆ = PW, (19)

since

∆ik =
∑

y:yi=1

2P (y)

sy + k
=

m∑
s=1

2pis
s+ k

.

6. We use capital letters to denote matrices.
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If the matrix P is taken as an input by the algorithm, then its complexity is dominated
by the matrix multiplication (19) that is solved naively in O(m3), but faster algorithms
working in O(m2.376) are known (Coppersmith and Winograd, 1990).7

Interestingly, the above results clearly suggest that the F-measure maximizer is more
affected by the number of 1s in the y-vectors than by the interdependence between particular
labels. In other words, modeling of pairwise or higher degree dependencies between labels is
not necessary to obtain an optimal solution, but a proper estimation of marginal quantities
(∆ik, or pis) that take the number of co-occurring labels into account.

In the reminder of this section, we discuss the properties of the GFM algorithm in com-
parison to the other algorithms discussed in Section 4. The methods presented by Chai
(2005); Jansche (2007) and Ye et al. (2012) all assume label independence and produce
exactly the same result, apart from small numerical instabilities that might always occur.
These methods, contrary to GFM, will not deliver an exact F-maximizer if the assumption
of independence is violated. On the other hand, the disadvantage of GFM is the quadratic
number of parameters it requires as input, while the other methods only need m parame-
ters. Since the estimation of a larger number of parameters is statistically more difficult,
it is a priori unclear which method performs better in practice. We are facing here a com-
mon trade-off between an approximate method on better estimates (we need to estimate
a smaller number of parameters from a given sample) and an exact method on potentially
weaker estimates. Nonetheless, if the joint distribution is concentrated on a small number
of different label combinations y, the estimates of ∆ or P can be as good as the estimates
of the marginal probabilities pi.

From the computational perspective, Jansche’s method is characterized by a much higher
time complexity, being respectively O(m4) and O(m3) for the exact and the approximate
versions. The method of Chai has a cubic complexity, and the enhanced version presented
in Ye et al. (2012) is more efficient, since it solves the problem in O(m2) time. The GFM
algorithm is quite competitive, as its complexity is of O(m2) or O(m3), depending on the
setting. Moreover, the cubic complexity of GFM, which follows from the matrix multi-
plication, can be further decreased if the number of distinct values of sy with non-zero
probability mass is smaller than m.

6. Simulations

In the previous sections, we gave theoretical results concerning the performance of different
inference methods in the worst case scenarios. Here, we verify the methods empirically
on synthetic data to check the difference in average performance on two large classes of
distributions. The first class assumes independence of labels, while the second class uses a
model with strong label dependencies.

We test four inference methods optimal for different performance measures. The first
one is suited for Hamming loss. It estimates the marginal probabilities by simple counting
from a given sample and gives empirical marginal modes as output. We denote this method
MM, since it estimates marginal modes. The second one is tailored for subset 0/1 loss. It

7. The complexity of the Coppersmith-Winograd algorithm (Coppersmith and Winograd, 1990) is more
of theoretical significance, since practically this algorithm outperforms the näıve method only for huge
matrices.
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seeks for the joint mode by checking the frequencies of label combinations appearing in the
sample. We refer to this method as JM, since it estimates the joint mode. The two remaining
methods are suited for F-measure maximization. We use the dynamic programming method
of Ye et al. (2012) that assumes label independence, denoted by FM, and the exact GFM
method described in the previous section, which performs exact inference. All parameters
required by these algorithms are also estimated from the sample by simple counting. We
verify the performance of the inference methods by using Hamming loss, subset 0/1 loss,
the Jaccard index, and the F-measure.

We run these simulations, as well as the other experiments described later in this paper,
on a Debian virtual machine with 8-core x64 processor and 5GB RAM.

6.1 Label Independence

The independent data are generated according to:

P (y) =
m∏
i=1

P (yi) ,

where the probabilities P (yi) are given by the logistic model:

P (yi = 1) =
1

1 + exp(−wi)
, where wi ∼ N(0, 3) .

In experiments we set the number of labels to 25 and vary the number of observations
using the following values {5, 10, 20, 30, 40, 50, 75, 100, 200, 500, 1000, 2000, 5000, 10000}. We
repeat the experiment for 30 different models, i.e., sets of values wi. For each model, we
use 50 different training sets of the same size, but to reduce the variance of the results we
use for testing one set of 100,000 observations. The results are given in Figure 2. The right
column presents the performance with respect to different measures as a function of the
number of training observations. The left column gives the same results, but zoomed to the
range from 5 to 100 training observations. We see from the plots that MM and JM get the
best results for Hamming loss and subset 0/1 loss. Since the labels are independent, the
marginal modes and joint mode are the same. Therefore, for large enough training samples,
these two algorithms converge to the same prediction that should be optimal for Hamming
and subset 0/1. However, JM converges much slower, since it directly estimates the joint
mode, by checking the frequencies of label combinations in the training set. FM and GFM
perform very similarly for each performance measure. Since the labels are independent,
FM and GFM should converge to the same prediction, being optimal for the F-measure.
GFM, however, may get slightly worse results for small sample sizes, since it needs to
estimate a larger number of parameters than FM. We also see that algorithms maximizing
the F-measure perform the best for Jaccard index.

6.2 Strong Label Dependence

We perform a similar experiment for a data model with strong label dependencies. The
data are generated by the chain rule of probability, i.e.,

P (y) =
m∏
i=1

P (yi | y1, . . . , yi−1),
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Figure 2: Performance of inference methods in case of label independence as a function of
the number of training observations. Left: the performance up to 100 training
observations. Right: the performance up to 10000 training observations. The
error bars show the standard error of the measured quantities.
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where the probabilities P (yi | y1, . . . , yi−1) are coming from a logistic model of the form:

P (yi | y1, . . . , yi−1) =
1

1 + exp(−
∑i−1

j=1 2wij(yj − 1
2)− wi0)

,

with all wij ∼ N(1, 3) and wi0 ∼ N(1, 3). This model tends to produce for a given label yi
a value that appeared more often on previous labels. The results are presented in Figure 3.
In this case, the marginal modes and the joint mode are not the same. Therefore MM
performs the best for Hamming loss and JM for subset 0/1 loss. More importantly, we can
see that FM performs suboptimally for F-measure, and a clear winner in this case is GFM.
This result confirms our theoretical analysis and shows the benefits of the GFM inference
method. Also GFM performs the best for the Jaccard index, followed by the JM. The FM
method in this case performs the worst. Similarly to the F-measure we might expect here
that methods that assume label independence will not get good results with respect to the
Jaccard index.

There is of course a price we have to pay for a good performance of GFM. Figure 4
presents running times of parameter estimation and inference of the algorithms as a func-
tion of the number of labels. GFM is the slowest method. The running times increase
quadratically with the number of labels. The inference time of FM grows also quadrat-
ically, but with a lower rate. Moreover, this algorithm needs only to estimate marginal
probabilities, therefore its estimation time is exactly the same as for the MM method.

7. Application to Multi-Label Classification Problems

The inference methods for F-measure maximization can be used whenever an estimation
of required parameters is possible. In this section, we focus on the application of the
inference methods in the multi-label setting. Thus, we consider a task of predicting a
vector y = (y1, y2, . . . , ym) ∈ {0, 1}m given another vector x = (x1, x2, . . . , xn) ∈ Rn as
input attributes. To this end, we use a training set {(xi,yi)}Ni=1 to estimate the required
parameters and perform inference for a given test vector x so as to deliver an optimal
prediction under the F-measure (1). Thus, we optimize the performance for each instance
individually (instance-wise F-measure), in contrast to macro- and micro-averaging of the
F-measure (Yang, 1999; Tsoumakas et al., 2010).

7.1 Learning Algorithms

The inference methods for F-measure maximization can be combined with many conven-
tional learning approaches. In the following, we mainly focus on algorithms in which the
final decision is made based on an empirical distribution, like in nearest-neighbors or deci-
sion trees. In these algorithms all parameters required by F-measure maximization methods
are estimated from the empirical distribution. At the end of this section we also discuss an-
other approach in which the parameters are obtained from a parametric model, for example,
from logistic regression. We present the algorithms with the GFM method for F-measure
maximization; however, it should be clear from the description how to obtain corresponding
variants of the algorithms for the methods that assume label independence.
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Figure 3: Performance of inference methods in case of label dependence as a function of
the number of training observations. Left: the performance up to 100 training
observations. Right: the performance up to 10000 training observations. The
error bars show the standard error of the measured quantities.
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Figure 4: Running times in milliseconds of the inference methods for label dependent data
as a function of the number of labels. Left plot shows estimation time of parame-
ters required by the method. Right plot shows the inference time. The error bars
show the standard error of the measured quantities.

7.1.1 Instance-Based Learning

Several instance-based methods for multi-label classification have been proposed in the past
(e.g., Zhang and Zhou, 2007; Cheng and Hüllermeier, 2009), but none of these methods is
tailored for optimizing the F-measure during an inference phase. Consider a query instance
x ∈ X and let {yj ,xj}lj=1 denote the l nearest neighbors of x with respect to a dis-
tance measure on X in the training set. The number l is a fixed parameter of the method.
Instance-based learning can be extended for maximizing the F-measure in a straight-forward
way, namely by replacing the distribution P (y) with the empirical distribution in the neigh-
borhood of the query. Correspondingly, the values ∆ and P (y = 0m) are estimated through
simple counting:

∆̂ik =
1

l

l∑
j=1

Jyik = 1K
syj

+ k
, P̂ (y = 0m) =

1

l

l∑
j=1

Jyj = 0mK.

By using these estimates in the GFM algorithm, we obtain an estimate of the F-measure
maximizer.

7.1.2 Decision Trees

Decision tree methods have been extensively studied in standard classification and regression
settings, and have also been generalized to multi-output problems like MLC and multivariate
regression (see e.g., Zhang, 1998; Lee, 2006). An adaptation of decision trees for maximizing
the F-measure is slightly more complicated than for instance-based learning. The method
we present here resembles the ideas used in predictive clustering trees (Vens et al., 2008).
For simplicity, we only consider binary trees. Moreover, since decision tree induction is
well-known in the machine learning field, we restrict our discussion to the main differences
to conventional (classification or regression) tree learning. In a decision tree, each leaf node
represents a (typically rectangular) part of the instance space X and is labeled with a local
model. Typically, a local model consists of a single prediction, namely the prediction that
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minimizes the average loss among the associated training examples (e.g., the mean value in
regression and the most frequent label in classification). Applying the same principle in the
case of the F-measure in MLC comes down to computing the maximizer of this measure over
the instances in a leaf node. This is similar to the case of instance-based learning, except
that the examples used for estimating ∆ and P (y = 0m) originate from a rectangular region
of the instance space X and not from the neighborhood of the query instance x.

The more demanding part is the induction of the tree, i.e., finding optimal splits with
respect to the F-measure. For a given node of the tree, we search over all attributes and
possible split points, just like in regular decision tree algorithms. Let us denote by N a set
of training examples {(yj ,xj)}lj=1 in a node. The task is then to find a split of N into two
subsets, NL and NR, that maximize some purity criterion. Our approach is analogous to
the one of conventional decision trees, but based on the F-measure:

Q =
#(NL)

#(N )
F (NL) +

#(NR)

#(N )
F (NR)

where #(A) is a cardinality of a set A, and

F (A) = max
h

1

#(A)

∑
yi∈A

F (yi,h).

In order to speed up computations of F (·), we notice that searching a split is usually
performed in an example-by-example manner, which means that we can easily update our
estimates of ∆ and P (y = 0m). Moreover, assuming that a given training example has
a lower number of relevant labels, we do not have to recompute the whole matrix ∆, but
only update some of its rows and columns. Finally, the search for the top k elements in
each column of ∆ can be made faster by checking local changes in the current rankings of
labels. We repeat the above step recursively until a stop condition is reached, for example
the F-measure becomes maximal or the number of examples in the leaf node falls below a
threshold. Of course, more sophisticated approaches are conceivable.

Let us also mention that it is possible to generalize bagging (Breiman, 1996) with these
decision trees. Then, GFM can easily be applied over the bootstrap sample of the weak
hypotheses returned by the trees.

7.1.3 Probabilistic Classifier Chains

Probabilistic classifier chains (PCCs) (Dembczyński et al., 2010) is an approach similar
to maximum entropy Markov models (McCallum et al., 2000) and to conditional random
fields (CRFs) (Lafferty et al., 2001; Ghamrawi and McCallum, 2005). All these approaches
estimate the joint conditional distribution P (y |x). PCC has an additional advantage that
one can easily sample from the estimated distribution. The underlying idea is to repeatedly
apply the product rule of probability to the joint distribution of the labels:

P (y |x) =
m∏
i=1

P (yi |x, y1, . . . , yi−1) (20)

Learning in this framework can be considered as a simple procedure. According to (20),
we decompose the joint distribution into a sequence of marginal distributions that depend
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on a subset of the labels. These marginal distributions can be learned by m functions
fi : X × {0, 1}i−1 → [0, 1] on an augmented input space X × {0, 1}i−1, taking y1, . . . , yi−1

as additional input attributes:

fi : (x, y1, . . . , yi−1) 7→ P (yi = 1 |x, y1, . . . , yi−1) (21)

By plugging the log-linear model into (20), it can be shown that pairwise dependencies
between labels yi and yj are modeled (see also (Kumar et al., 2013)).

The algorithm is mainly suitable for subset 0/1 loss. Exploration of the structure of the
chain in the inference phase boils down to search for the most probable label combination
in a resulting probabilistic binary tree. A greedy algorithm follows only one path choosing
always only the most probable label in each position in the chain (Read et al., 2009). This
algorithm, however, may lead to suboptimal results. It has been shown (Dembczyński et al.,
2012b), however, that an exact method based on a variant of uniform-cost search with a
cut-off list finds the joint mode in a linear time of 1/pmax, where pmax is the probability of
the joint mode. For reasonable values of pmax, this method works very fast.

To optimize the response of PCC for other loss functions, we need to obtain a sample
of observations from the conditional joint distribution P (y |x). To get a single observa-
tion, we can follow the chain and pick the value of label yi by tossing a biased coin with
probabilities given by the i-th classifier. Such a procedure is sometimes referred to as an-
cestral sampling (Bishop, 2006, Chapter 8). From the sample of such observations, we can
estimate all the parameters required by inference methods like GFM, similarly as in the
case of nearest neighbors and decision trees. More precisely, let {yj}nj=1 denote a set of
sampled observations for a given test example x. Then, the values ∆ and P (y = 0m) can
be estimated through simple counting:

∆̂ik =
1

n

n∑
j=1

Jyik = 1K
syj

+ k
, P̂ (y = 0m) =

1

n

n∑
j=1

Jyj = 0mK.

By plugging these estimates into the GFM algorithm, we obtain for a given x a prediction
optimized for the F-measure.

7.1.4 Parametric Models

Alternatively to the approaches described above, which estimate the parameters required
by the F-measure maximization methods on empirical distributions, we discuss here an
approach in which the parameters are efficiently obtained from a parametric model (Dem-
bczyński et al., 2013). Unfortunately, there is no easy way to estimate directly the matrix
∆, since the elements of this matrix do not correspond to a proper probability distribution.
However, we can estimate matrix P, defined in (17), which elements are probabilities:

pis = P (yi = 1, sy = s), i, s ∈ {1, . . . ,m} .

Multiplying the matrix P by a weight matrix W with elements (18) results in the estimate
of ∆, as shown in (19).

To estimate the elements of P we can use a simple reduction to m multi-class probability
estimation (i.e., multinomial regression) problems, each with at most m + 1 classes. We
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define one multinomial regression model for each row of matrix P. Let us observe that for
t = (Jyi = 1K · sy), t ∈ {0, . . . ,m}, we have:∑

t∈{0,...,m}

P (t |x) = 1 .

Therefore, we can define the i-th multinomial regression problem as:

fi : x 7→ P (t |x), for t ∈ {0, . . . ,m} . (22)

In a similar way, we can estimate P (y = 0m |x) by performing an additional reduction
to binary probability estimation with t = Jy = 0mK as an output variable:

f0 : x 7→ P (t |x) ,

and solving it via logistic regression.
The decomposition of the original problem into independent multinomial regression

tasks has computational advantages. Moreover, since the number of distinct values of sy is
usually small, the number of classes in a single multinomial regression task is much smaller
than m+ 1; only in the worst case, we end up with a quadratic complexity in the number
of labels m.

Let us, however, remark that the elements of matrix P estimated across different tasks
are not fully independent of each other (e.g., pim is the same for all i, since P (yi = 1, sy =
m) = P (y = 1m)). Consequently, learning on a finite training set may lead to conflicting
estimates that are not in agreement with any valid distribution. To avoid such conflicts,
one may include additional constraints in the learning problem or calibrate the estimates
afterwards. However, Dembczyński et al. (2013) have shown that with the sample size
growing to infinity this approach is statistically consistent.

To summarize this approach we notice that learning of the probabilistic model has a
time complexity that is at most quadratic in m. In the inference phase for a test instance
x, we first get estimates of P (0m |x) and P from the probabilistic model, again in at
most quadratic time. Then, we need to multiply matrices P and W to get ∆. Finally,
all the parameters are plugged into the GFM method. This approach has in the original
paper (Dembczyński et al., 2013) been referred to as Exact-F-measure-Plug-in classifier
(EFP).

Under the assumption of label independence, one can simplify this approach. Since
we only need marginal probabilities pi, it is enough to reduce the problem to m binary
probability estimation tasks that can be solved, for example, by logistic regression. Then,
for each test instance x, we obtain a vector of marginal probabilities pi, to which one might
apply, for example, the inference method of Ye et al. (2012). We refer to this approach as
Label-independence F-measure-Plug-in classifier (LFP), similarly as in (Dembczyński et al.,
2013).

7.2 Experimental Results

We test some of the algorithms described above on four commonly used multi-label bench-
mark data sets with known training and test sets. We take these data sets from the MU-
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LAN8 and LibSVM9 repositories. Table 1 contains basic statistics of these data sets. We
also relate the obtained results to the results of a variant of structured SVMs that moves
the effort of maximizing the F-measure to the training phase.

We run the experiments on the machine that was also used for the simulations described
earlier, i.e., on a Debian virtual machine with 8-core x64 processor and 5GB RAM.

data set #train #test m d

Scene 1211 1196 6 294
Yeast 1500 917 14 103
Enron 1123 579 53 1001
Mediamill 30993 12914 101 120

Table 1: Data sets and their properties. The number of training and test observations is
denoted by #train and #test, respectively, m is the number of labels, d is the
number of features.

7.2.1 Instance-Based Learning

We first present results of instance-based learning. We use a different number of nearest
neighbors, l ∈ {10, 20, 50, 100}. For each test example, we seek for its nearest neighbors
and apply different inference methods. We use exactly the same methods we applied in
our experiments on synthetic data given in Section 6. The first method, MM, estimates
the marginal modes, JM estimates the joint mode, FM approximates the F-measure by
assuming label independence, and the introduced GFM performs exact inference for the
F-measure. The nearest-neighbor search is performed by using the Weka (Hall et al., 2009)
and Mulan (Tsoumakas et al., 2011) implementation of instance-based learning.

The results are given in Table 2. Similarly as in Section 6, we report the performance
in terms of Hamming loss, subset 0/1 loss, F-measure and Jaccard index.

We can generally confirm our previous results on synthetic data: an inference method
tailored for a given performance measure obtains the best results. This is clear for Hamming
loss, for which MM has the smallest error throughout. JM performs the best for subset 0/1
loss on all data sets with some exceptions on Enron. Both methods tailored for F-measure
maximization, FM and GFM, substantially outperform MM and JM on this performance
criterion. FM seems to beat GFM on Enron, while the latter method produces better
results on the other data sets. There are, however, no clear results for the Jaccard index.

Let us underline that in the case of nearest neighbor methods, we are dealing with a
specific trade-off between the size of the neighborhood and its volume. In general, increasing
the sample size in the inference methods should improve the results. But in this case, by
increasing the number of neighbors, we simultaneously increase the volume of the space
that contains the neighbors. In other words, some of the neighbors can be far away from

8. This repository can be found at: http://mulan.sourceforge.net/datasets.html.
9. This repository can be found at: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multilabel.html.
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Hamming Loss [%] Subset 0/1 Loss [%] F-measure [%] Jaccard [%]
10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

Scene

MM 10.28 10.62 11.52 13.03 40.47 45.15 54.01 66.05 65.80 59.53 49.39 36.40 64.23 58.36 48.54 35.79
JM 11.19 10.99 11.97 12.28 36.54 36.29 39.13 40.05 68.26 68.73 65.89 64.97 67.06 67.47 64.63 63.71
FM 13.80 14.40 16.74 19.83 53.09 56.10 64.55 75.17 70.80 70.12 67.20 62.65 64.59 63.24 58.76 52.48
GFM 13.03 14.09 16.15 19.12 49.75 54.68 63.13 72.91 71.42 70.29 67.85 64.31 65.95 63.80 59.73 54.41

Yeast

MM 20.72 20.00 20.02 20.38 81.57 81.03 82.77 85.71 62.88 61.93 60.31 58.26 52.31 51.49 49.74 47.47
JM 23.09 21.78 21.84 22.04 76.66 76.23 77.54 78.30 59.14 60.53 60.97 60.68 49.75 51.06 51.20 50.72
FM 22.94 23.26 22.83 23.21 83.21 83.21 85.93 88.11 65.29 65.06 65.23 64.85 54.14 53.74 53.71 53.10
GFM 22.94 23.17 22.87 23.61 82.99 83.97 86.37 88.66 65.49 65.47 65.75 64.98 54.31 54.09 54.11 53.08

Enron

MM 5.73 5.94 6.28 6.46 88.08 88.60 89.46 89.64 35.56 27.91 23.23 23.71 28.70 22.97 19.36 19.60
JM 6.56 6.51 6.70 6.73 86.18 87.39 89.29 89.46 33.38 29.52 25.52 24.68 27.68 24.51 21.05 20.38
FM 6.51 6.23 6.34 6.48 87.56 88.60 87.22 88.26 47.50 47.01 42.10 37.86 37.31 36.82 33.65 30.17
GFM 6.61 6.28 6.54 6.63 88.08 86.87 88.43 89.29 44.43 42.45 34.76 29.27 35.12 34.10 27.93 23.70

Mediamill

MM 3.29 3.18 3.16 3.19 89.17 89.66 90.30 91.13 54.98 53.92 52.68 51.81 43.32 43.34 43.10 42.74
JM 4.17 4.03 3.93 3.91 88.93 88.82 89.24 89.05 48.87 48.58 47.32 47.07 43.55 43.66 43.30 42.80
FM 3.97 3.81 3.72 3.68 91.30 91.99 92.64 93.39 55.47 55.65 55.51 55.24 43.60 42.64 41.49 40.58
GFM 3.87 3.74 3.66 3.65 90.48 91.15 91.99 92.81 55.52 55.80 55.54 55.16 38.56 38.40 37.39 37.28

Table 2: Empirical results on 4 benchmark data sets. Instance-based methods are used
with a different number of neighbors (l ∈ {10, 20, 50, 100}) and with different
inference methods: MM—estimates marginal modes, JM—the joint mode, FM—
approximates the F-measure maximizer by assuming independence of labels, and
GFM—computes the exact F-measure maximizer over the nearest neighbors. Re-
sults are reported for Hamming loss, subset 0/1 loss, F-measure and Jaccard index.
The best results for a given number of neighbors and a performance measure are
marked in bold.
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Inference time [s] Inference time [s]
10 20 50 100 10 20 50 100

Scene Yeast

MM 7.622 8.110 9.078 10.064 MM 3.662 3.907 4.352 4.793
JM 7.519 8.052 9.093 10.010 JM 3.687 3.958 4.362 4.812
FM 7.488 8.023 9.106 10.126 FM 3.728 3.920 4.404 4.788
GFM 8.311 8.171 9.169 10.475 GFM 3.634 3.944 4.467 4.875

Enron Mediamill

MM 1.601 1.618 1.978 2.172 MM 336.550 374.207 435.171 499.977
JM 1.477 1.607 1.929 2.236 JM 338.855 373.297 431.354 492.079
FM 1.483 1.645 1.931 2.145 FM 339.704 375.230 433.660 493.424
GFM 1.518 1.681 2.022 2.228 GFM 347.402 382.663 442.356 502.060

Table 3: Computation time in seconds for the instance-based methods for different l =
{10, 20, 50, 100} and inference methods: MM, JM, FM, and GFM. Computation
time includes searching time and inference time

the test example, which usually deteriorates the quality of the estimates. This is usually the
case for high-dimensional problems. This may partially explain the results on the Enron
data set. The performance under the F-measure decreases substantially with the number of
neighbors. Also when comparing the instance-based methods with other methods, presented
later in this section, we see that the overall performance on this data set is much worse for
the former methods.

In Table 3 we present the computation time of the instance-based methods. The compu-
tation time includes both the search of nearest-neighbors and the inference. We can easily
observe that the nearest-neighbor search dominates inference in terms of computational
complexity, since there is only a small difference in computational times between the infer-
ence methods for a given data set and l. We do not present the inference times separately
here, since their characteristics are exactly the same as presented in Section 6.

7.2.2 Probabilistic Classifier Chains

In the next experiments, we use PCC. We train PCC by using linear regularized logistic
regression. We use the implementation of logistic regression from Mallet (McCallum, 2002).
We tune the regularization parameter for each base classifier independently by minimizing
the logistic loss, hoping to thereby produce better probability estimates. We use 5-fold
cross-validation and choose the regularization parameter from the following set of possible
values {10−4, 10−3, . . . , 103}. Similarly as in the previous experiments, we use four different
inference mechanisms. For MM, FM, and GFM methods, we obtain the estimates of the
required parameters by performing ancestral sampling from the conditional joint distribu-
tion of each test example x. The JM method, instead of estimating the joint mode from
the sample, applies the efficient exact search method (Dembczyński et al., 2012b).

Table 4 contains the results of the experiment. As before, we report the Hamming
loss, subset 0/1 loss, F-measure and the Jaccard index. We also give the training and
inference times. The training time concerns the entire procedure that consists of tuning

3540



On the Bayes-Optimality of F-Measure Maximizers

of the regularization parameter in cross-validation and training of a model with the best
value of the regularization parameter. The results for MM, FM, and GFM are given for
sample size of 1000. From the results, we can clearly state that approaches tailored for the
F-measure obtain better results on this performance criterion. It seems that GFM obtains
slightly better results, but also needs a little bit more time. In Figure 5, we additionally
present the F-measure and inference times of FM and GFM as a function of the number of
observations obtained from ancestral sampling. These results are computed over 5 runs of
the inference methods to decrease the impact of the randomness of the sampling method.
The plots confirm our theoretical results concerning the predictive performance and time
complexity. However, the inference times reported here include all three steps: sampling,
estimation of parameters, and inference based on these parameters. As we can see in Table 4
and Figure 5 the differences between GFM, FM, and MM are not substantial here, since
sampling is the most expensive step. The exact method used for joint mode estimation
works much faster than the other methods based on sampling. From the other results in
Table 4 we can also observe that MM is the best for Hamming loss, and JM for the subset
0/1 loss. The results for the Jaccard index show that maximization of the F-measure can
be used as a proxy for this performance criterion, at least FM and GFM perform better
than MM.

7.2.3 Parametric Models

To complete the picture we also present the experimental results of parametric models
that have been previously published in (Dembczyński et al., 2013). We compare EFP and
its simplified variant LFP. We also include to the comparison the binary relevance (BR)
approach that learns and predicts for each label independently. Such a model should perform
well under the Hamming loss. All the methods use linear models and are trained, similarly
as PCC, by logistic regression. The regularization parameter and its tuning is exactly the
same as in the experiment with PCC.

The results are summarized in Table 5. We show the results for Hamming loss, F-
measure and report training and inference times. Not surprisingly, BR achieves the best
results for Hamming loss, but it is outperformed by all the other methods on the F-measure.
EFP is the best method in this regard.

BR is the most efficient in inference. Nevertheless, the inference times of LFP and
EFP are quite comparable to those of BR, despite their quadratic (for LFP) and cubic
(for EFP) complexity. Admittedly, however, the data sets used in the experiments only
contain a small to moderate number of labels (up to 100). For data sets with thousands of
labels, the difference is likely to become substantially larger. The training of BR and LFP
(these are exactly the same procedures) is the most effective. Training of EFP leads to m
multinomial regression models. One should note, however, that the number of classes in
each multinomial regression models can be much less than the highest possible value m+ 1.
Therefore, the training of EFP is still quite effective and takes only a few times longer than
the training of LFP. The training time includes here also the tuning time, similarly as in
the case of PCC.
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Hamming Subset 0/1 F-Measure [%] Jaccard [%] Training Inference
Loss [%] Loss [%] Time [s] Time [s]

Scene

MM 9.89 42.69 62.73 61.37 39 1.839
JM 10.40 34.87 70.93 69.48 39 0.255
FM 12.83 50.44 72.78 66.71 39 1.858
GFM 12.74 49.86 72.78 66.89 39 1.927

Yeast

MM 19.56 81.98 61.78 51.32 32 7.120
JM 20.91 76.34 63.36 53.56 32 0.220
FM 22.31 84.22 65.53 54.29 32 7.161
GFM 22.54 84.73 65.63 54.32 32 7.513

Enron

MM 4.63 86.88 52.62 42.51 81 120.636
JM 4.81 82.56 55.67 45.80 81 1.974
FM 5.59 90.33 58.54 46.19 81 121.172
GFM 5.53 89.12 59.08 46.89 81 121.700

Mediamill

MM 3.18 92.44 51.21 39.60 6150 2226.455
JM 3.57 90.02 44.99 35.62 6150 28.856
FM 3.62 94.81 55.39 42.57 6150 2230.661
GFM 3.61 94.51 55.18 42.44 6150 2293.945

Table 4: Empirical results on 4 benchmark data sets. PCC is used with different inference
methods: MM - estimates marginal modes, JM - the joint mode, FM - approx-
imates the F-measure maximizer by assuming independence of labels, and GFM
- estimates the exact F-measure maximizer over the conditional distribution ob-
tained from the model. For MM, FM, and GFM, we sample 1000 observations
from the conditional joint distribution for each test example. Results are reported
for Hamming loss, subset 0/1 loss, F-measure and Jaccard distance. The best
results for a performance measure are marked in bold.
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Figure 5: Performance of FM and GFM inference methods used in PCC with different num-
ber of observations obtained from ancestral sampling. The results are averaged
over 5 runs of the inference methods to eliminate the randomness of sampling.
Left plots show F-measure, while right plots inference times. The inference time
includes sampling, estimation of parameters, and inference based on these param-
eters. The error bars show the standard error of the measured quantities.
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Hamming Loss [%] F-Measure [%] Training Time [s] Inference Time [s]

Scene

BR 10.51 55.73 29 0.241
LFP 12.18 74.38 29 0.270
EFP 12.22 74.44 72 0.399

Yeast

BR 20.03 60.59 26 0.128
LFP 22.24 65.02 26 0.146
EFP 22.82 65.47 101 0.367

Enron

BR 4.54 55.49 52 1.016
LFP 6.09 56.86 52 1.519
EFP 5.34 61.04 214 2.628

Mediamill

BR 3.19 51.21 3238 13
LFP 3.67 55.15 3238 20
EFP 3.63 55.16 24620 30

Table 5: Empirical results on 4 benchmark data sets of parametric models: BR, LFP, and
EFP. We report the Hamming loss, F-measure and training and inference times in
seconds. The best results for a performance measure are marked in bold.

7.2.4 Comparison with Structured Support Vector Machines

In this subsection we gather results of all F-measure maximization methods presented so
far and compare them with the results of a variant of structured SVMs (Tsochantaridis
et al., 2005) in which the effort of maximizing the F-measure is moved to the training
phase. Two methods of that kind, referred to as RML and SML, have been introduced by
Petterson and Caetano (2010, 2011). We present here only the results of RML, previously
published in (Dembczyński et al., 2013).10 Basically, this method trains one model for each
label, but in a way that the margin, appropriately rescaled by the F-measure, is maximized
jointly over all labels. RML uses a variant of the cutting-plane algorithm for optimization.
So, in each iteration a most violating constraint for each training example is generated.
This step has quadratic complexity in terms of the number of labels. In the prediction
phase the models are independently applied to corresponding labels. Surprisingly, this
method produces usually better results than the more complex SML method (Petterson and
Caetano, 2011), which additionally models pairwise label dependencies.11 In the experiment
the RML method uses a linear model. The regularization parameter is tuned in 5-fold cross-
validation using a range of values corresponding to the one used for PCC, EFP, and LFP.
The maximal number of iterations in the cutting-plane algorithm has been set to 1000.

10. The results were obtained by using the software available at http://users.cecs.anu.edu.au/

~jpetterson/.
11. The comparison of these two methods is given in (Petterson and Caetano, 2011) and Dembczyński et al.

(2013).
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Table 6 present the results for F-measure, training and inference times. For instance-
based methods we report the variant with the number of neighbors which achieves the best
results for a given data set. Similarly for PCC, we take the number of sampled observations
which leads to the best performance. Observing the results we can say that in general the
methods that maximize the F-measure in the inference phase outperform the structured
SVM approach. RML is only competitive on the Scene data set, on which it wins against
instance-based methods and PCC, but loses from EFP and LFP. On Yeast and Medi-
amill it achieves the worst performance. On the latter data set the difference is the most
substantial. On Enron it wins only against the instance-based method. As we already
pointed out, on this data set all variants of nearest neighbors perform weakly, probably
because of the high-dimensional feature space.

The comparison of the running times between RML and the other methods should be
interpreted with caution, due to the use of different programming languages (RML is imple-
mented in C++, while the other algorithms in Java) and differences in the implementations
(different data structures). Therefore, the evaluation times may not be fully comparable.
For example, the inference times for BR (Table 5) and RML should basically be very simi-
lar, as in both cases there is a single linear model for each label. Yet, the implementation
of RML is much more efficient. Nevertheless, we are still able to derive several important
conclusions.

Not surprisingly RML is the most efficient in inference. However, the cutting-plane
algorithm and the constraint generation step therein slow down significantly the training
of RML. This also makes tuning very costly. For PCC, EFP and LFP, the tuning can be
performed independently for each base classifier. In that way we hope to obtain a good
probabilistic model and there is no need to perform neither a costly training nor inference.
Unfortunately, this is not the case of RML. For example, tuning on the Mediamill data
set has not finished in reasonable time. The F-measure result reported in the table is the
best one among those obtained on the test set for different values of the regularization
parameter.

Each of the methods maximizing the F-measure in the inference phase has its advantages
and disadvantages. By comparing the results, we see that parametric models get the best
results on Scene and Enron followed by PCC. On Yeast and Mediamill all the methods
perform very similarly, but the best is the instance-based learning here. Learning of EFP
is the most costly. PCC and LFP train a single model for each label, but in the case of
the former algorithm the feature space is enhanced by the preceding labels, therefore, the
training time is longer for this procedure. We do not report training time for instance-
based methods, as in the simplest case there is no learning in this kind of methods. In
general, however, one should consider the time needed for tuning the number of neighbors
and optionally learning the metric, which we have not performed here. From the inference
point of view, LFP seems to be the most efficient. As we already discussed in the previous
subsection, EFP is still quite competitive in comparison with LFP, but for data sets with
a large number of labels this difference shall be more substantial. Instance-based methods
are also very efficient for data sets with a small number of training examples. Because of
the sampling procedure applied for each testing examples, PCC is the most time demanding
procedure. However, we can see from Figure 5 that the good performance with respect to
the F-measure can be obtained with a smaller number of sampled observations. In many
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applications a set of 100 observations should be sufficient, resulting in a sample generation
that is approximately 10 times faster. The main advantage of PCC is that once we have
a trained model we can apply inference for many different performance measures without
any additional training.

F-Measure [%] Training Time [s] Inference Time [s]

Scene

IB FM (l = 10) 70.80 - 3.746
IB GFM (l = 10) 71.42 - 3.749
PCC FM (n = 1000) 72.78 39 1.858
PCC GFM (n = 1000) 72.77 39 1.927
LFP 74.38 29 0.270
EFP 74.44 72 0.399

RML 73.92 73 0.118

Yeast

IB FM (l = 10) 65.29 - 1.518
IB GFM (l = 50) 65.75 - 1.795
PCC FM (n = 1000) 65.53 39 7.161
PCC GFM (n = 1000) 65.63 39 7.513
LFP 65.02 26 0.146
EFP 65.47 101 0.367

RML 64.78 206 0.056

Enron

IB FM (l = 10) 47.50 - 0.787
IB GFM (l = 10) 44.43 - 0.810
PCC FM (n = 500) 58.75 81 75.677
PCC GFM (n = 500) 59.19 81 76.056
LFP 56.86 52 1.519
EFP 61.04 214 2.628

RML 57.69 3897 0.143

Mediamill

IB FM (l = 20) 55.65 - 164
IB GFM (l = 20) 55.80 - 167
PCC FM (n = 1000) 55.39 6150 2230
PCC GFM (n = 1000) 55.18 6150 2293
LFP 55.15 3238 20
EFP 55.16 24620 30

RML 49.35 - 7

Table 6: Comparison of RML, a variant of structured SVMs for F-measure maximiza-
tion, with other F-measure maximization methods given in the previous tables:
instance-based methods (IB), PCC, LFP and EFP. We present here the best vari-
ant of instance-based methods and PCC for a given data set. The number l of
nearest neighbors for the best variant of IB is given in parentheses. Similarly
the number of sampled observations in PCC is also given in parentheses. The
F-measure, training and inferences time in seconds are reported. The best results
are marked in bold.
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7.3 Results in the JRS 2012 Data Mining Competition

We used the algorithms maximizing the F-measure in the inference phase in our solution for
the JRS 2012 Data Mining Competition (Janusz et al., 2012).12 This competition considered
topical classification of bio-medical articles. In essence, it consisted of a multi-label learning
problem, where the objective was to optimize the instance-based F-measure. We decided
to participate in this competition to showcase the practical relevance of our theoretical
findings regarding the F-measure maximization. Similar to many of our competitors, our
final predictions in the competition were produced by a blend of several methods, and they
achieved a very satisfactory result, namely the second place in the competition with more
than 100 participants. In this paragraph, we briefly explain the methodology that led to
this result.

Our solution was mainly based on PCC with FM and GFM inference methods and the
LFP algorithm. The methods were tuned and run in a similar way as described in the pre-
vious experiments (with small differences: we used 10-fold cross validation, and considered
a wider range for the regularization parameter, namely {10−5, 10−4, . . . , 105}). At this time
the EFP algorithm was not yet developed. We used neither instance-based nor decision
tree methods. Our preprocessing on the competition data was quite straightforward. We
simply deleted all the empty columns (i.e., zero vectors) in the training data, then the
corresponding columns in the test data. The values of features were normalized to [0, 1].

The results of the methods are presented in Table 7. The F-measure is computed
over the entire test set delivered by the organizers after the competition. This is a minor
difference in comparison to the competition results, which are computed over 90% of test
examples. The remaining 10% of test examples constitute a validation set that served for
computing the scores for the leader board during the competition. The results of PCC we
show for different sizes of samples generated from the conditional joint distribution of a
given test example. In the last row in the table, we also give a result of the final method we
used in the competition. It relies on averaging over all predictions we computed during the
competition. These predictions were results of different parameterization of PCC and BR.
In total we gathered 16 predictions that we aggregated via voting. In this voting procedure,
we tested different thresholds on the validation set and selected the best one. The solution
is described in more detail in (Cheng et al., 2012).

From the results we can see that there is no big difference among the methods. The
voting procedure improves only slightly over LFP and PCC with the GFM inference. The
results of these methods would be enough to obtain at least the third place in the compe-
tition. It shows that a quite simple model, without any blending, but with an appropriate
inference method suited for a given performance measure is enough for solving complex
tasks. Interestingly, LFP performs here better than PCC with GFM, which suggests in-
dependence of the labels. However, one can also observe that PCC with FM loses against
other methods. This may suggest that PCC with the sampling procedure has problems
with accurate estimation of marginal probabilities. Increasing the sample size improves the
results (for both, FM and GFM), but it still seems that LFP is the most appropriate method
in this case. It is the most cheapest one, since it does not require additional sampling in the
inference step as PCC does, and gives results only slightly worse than the voting method

12. More info can be found at: http://tunedit.org/challenge/JRS12Contest.
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Method F-measure

PCC FM (n = 50) 0.48650
PCC FM (n = 200) 0.51979
PCC FM (n = 1000) 0.52995
PCC GFM (n = 50) 0.52286
PCC GFM (n = 200) 0.53005
PCC GFM (n = 1000) 0.53146
LFP 0.53279
Voting (final submission) 0.53327

Table 7: The results on the JRS 2012 Competition data set. The number n in parentheses denotes
the number of sampled observations in PCC.

that averages over many predictions. As we already said before, there is no clear answer
which of the two inference methods, GFM or FM, will get better results on a given data
set. GFM provides an exact solution, but needs to estimate more parameters, so FM may
get better results, particularly in the case of no or weak label dependencies.

8. Discussion

In contrast to other performance measures commonly used in experimental studies, such
as error rate, squared loss, and AUC, the F-measure has been investigated less thoroughly
from a theoretical point of view, and only few papers have been devoted to that kind of
analysis so far (e.g. Lewis (1995); Chai (2005); Jansche (2007); Dembczyński et al. (2011);
Ye et al. (2012); Zhao et al. (2013)). In this paper, we analyzed the problem of optimal
predictive inference from the joint distribution under the F-measure. While partial results
were already known from the literature, we completed the picture by presenting the solution
for the general case without any distributional assumptions and by analyzing the relations
between F and other performance measures. Our GFM algorithm requires only a polynomial
number of parameters of the joint distribution and delivers the exact solution in polynomial
time. From a theoretical perspective, GFM should be preferred to existing approaches,
which typically perform threshold maximization on marginal probabilities, often relying
on the assumption of (conditional) independence of labels. Focusing on optimizing the
instance-wise F-measure, empirical results on synthetic and real-world multi-label data sets
show a competitive performance for our approach.

The algorithms discussed here optimize the F-measure in the inference phase. Alter-
natively, one can move the effort of maximizing the F-measure to the training phase, as
in structured SVMs (Tsochantaridis et al., 2005), SEARN (Daumé III et al., 2009), or in
a specific variant of CRFs (Suzuki et al., 2006). These algorithms, however, are usually
based on additional assumptions, and their original formulation does not directly concern
multi-label problems. In the experiments, we performed a comparison to the adaptation
of structured SVMs to the multi-label setting introduced by Petterson and Caetano (2010,

3548



On the Bayes-Optimality of F-Measure Maximizers

2011). This algorithm also maximizes the F-measure, but produces worse results than the
approaches based on the GFM inference. However, its prediction time is much faster, giving
an interesting alternative in time-critical applications.

Let us also mention that the GFM algorithm can be easily tailored for maximizing
the instance-wise F-measure in structured output prediction problems. If the structured
output classifier is able to model the joint distribution, from which we can easily sample
observations, then the use of the algorithm is straight-forward. An application of this kind
is planned as future work.

The GFM algorithm could also be considered for maximizing the macro F-measure, for
example, in a similar setting as in (Zhang et al., 2010), where a specific Bayesian on-line
model is used. In order to maximize the macro F-measure, the authors sample from the
graphical model to find an optimal threshold. The GFM algorithm may solve this problem
optimally, since, as stated by the authors, the independence of labels is lost after integrating
out the model parameters. Theoretically, one may also consider a direct maximization of
the micro F-measure with GFM, but the computational burden is rather high in this case.
We would also like to emphasize that maximization of instance-based F-measure leads to
suboptimal results for the micro F-measure. Despite being related to each other, these two
measures coincide only in a specific case when

∑m
i=1(yi+hi) is constant for all test examples.

The discrepancy between these measures strongly depends on the nature of the data and
the classifier used. For high variability in

∑m
i=1(yi + hi), a significant difference between

the values of these two measures is to be expected. Surprisingly, experimental results are
quite often reported in terms of micro F-measure, although the algorithms maximize the
instance-wise F-measure on the training set.

The use of the GFM algorithm in binary classification seems to be superfluous, since in
this case, the assumption of label independence is rather reasonable. The algorithm of Ye
et al. (2012) seems to be an interesting alternative for probabilistic classifiers. Thresholding
methods (Keerthi et al., 2007; Ye et al., 2012; Zhao et al., 2013) or learning algorithms
optimizing the F-measure directly (Musicant et al., 2003; Joachims, 2005; Jansche, 2005;
Ye et al., 2012) are also appropriate solutions here.
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Appendix A. Proofs of Theorems

Theorem 1 Let hH be a vector of predictions obtained by minimizing the Hamming loss,
Then for m > 2 the worst-case regret is given by:

sup
P∈Pu

LH

(
E
[
F (Y ,hF )− F (Y ,hH)

])
= 0.5 ,

where the supremum is taken over all possible distributions P that result in a unique Ham-
ming loss minimizer.

Proof. For a fixed Hamming loss minimizer hH it follows from (8) that any probability
distribution P ∈ PuLH

should satisfy the following constraint for all i ∈ {1, ...,m}:∑
y∈{0,1}m:yi 6=hH,i

P (y) ≤ 0.5− ε

with ε > 0. Practically, we will choose ε arbitrarily close to zero, implying that its con-
tribution vanishes in the limit, but this construction allows to rewrite the constraint in
traditional mathematical programming form. Let us also define

ηy(h,hH) = F (y,h)− F (y,hH)

for all y ∈ {0, 1}m. Finding the supremum over all probability distributions then becomes
equivalent to solving the following mixed integer nonlinear program:

max
h,hH ,P∈Pu

LH

∑
y∈{0,1}m

ηy(h,hH)P (y) (23)

subject to


∑

y∈{0,1}m P (y) = 1 ,

∀i ∈ {1, ...,m} :
∑

y∈{0,1}m:yi 6=hH,i
P (y) ≤ 0.5− ε ,

∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
h,hH ∈ {0, 1}m

By definition, the solution h for which the maximum is obtained corresponds to the F-
measure maximizer in (2).

To reduce the number of integer variables in the optimization problem, we introduce
the following equivalence classes for the indices of labels:

A = {i ∈ {1, ...,m} : hi = 1 ∧ hH,i = 0} ,
B = {i ∈ {1, ...,m} : hi = 0 ∧ hH,i = 1} ,
C = {i ∈ {1, ...,m} : hi = 1 ∧ hH,i = 1} ,
D = {i ∈ {1, ...,m} : hi = 0 ∧ hH,i = 0} .

We also adopt the shorthand notation a = |A|, b = |B|, c = |C|, d = |D| and

sy =

m∑
i=1

yi , sAy =
∑
i∈A

yi , sBy =
∑
i∈B

yi , sCy =
∑
i∈C

yi , sDy =
∑
i∈D

yi . (24)
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The coefficients in (23) can then be simplified to:

ηy(h,hH) = ηy(a, b, c, d) =
2sAy (sy + b+ c)− 2sBy (sy + a+ c) + 2sCy (b− a)

(sy + a+ c)(sy + b+ c)
. (25)

As a consequence, only four integer variables remain present in the optimization problem,
which is for simplicity converted to a minimization problem in standard mixed-integer linear
program form:

min
a,b,c,d,P

−
∑

y∈{0,1}m
ηy(a, b, c, d)P (y)

subject to



∑
y∈{0,1}m P (y) = 1 ,

∀i ∈ {1, ...,m} :
∑

y∈{0,1}m:yi 6=hH,i
P (y) ≤ 0.5− ε ,

∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
a+ b+ c+ d = m,
a, b, c, d ∈ N .

This new optimization problem is a relaxation of (23), since the F-maximizer of the prob-
ability distribution found as solution will not necessarily comply with the definition of the
sets A, B, C and D. However, this will not cause any trouble, because the oracle solution
that is derived below will obey this additional constraint.

One arrives at a standard linear program formulation by keeping the four integer vari-
ables fixed. As the key element of our proof, we show that for every allowed value of
(a, b, c, d) a solution of the linear program is given by the following probability distribution:

PA(y) =


0.5− ε if y = yA

0.5− (2d− 1)ε if y = yBCD

2ε if y ∈ ΩD
m

0 otherwise

,

where yA is defined as a vector containing ones at positions i ∈ A and zeros at all other
positions. Similarly, yBCD contains zeros at positions i ∈ A and ones at all other positions:

yAi = 1 + yBCDi = 1, ∀i ∈ A ,
yAi = 1− yBCDi = 0, ∀i ∈ B ∪ C ∪D .

The set ΩD
m is defined as:

ΩD
m = {y ∈ {0, 1}m |

∑
i∈A

yi = 0 ∧
∑

i∈B∪C
yi = b+ c ∧

∑
i∈D

yi = d− 1} ,

so this set contains d vectors, which differ only in one position with yBCD.
We verify the Karush-Kuhn-Tucker (KKT) conditions to prove that the above prob-

ability distribution yields the optimum of the linear program for every (a, b, c, d). For
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linear programs, which represent a specific case of optimizing an invex function, the KKT-
conditions are not only necessary but also sufficient for optimality (Hanson, 1981). Let us
define the primal Lagrangian as:

Lp = −
∑

y∈{0,1}m
ηy(a, b, c, d)P (y) + ν

∑
y∈{0,1}m

(
P (y)− 1

)
+

m∑
i=1

µi
[ ∑
y∈{0,1}m:yi 6=hH,i

P (y)− 0.5 + ε
]

−
∑

y∈{0,1}m
λ−y P (y) +

∑
y∈{0,1}m

λ+
y (P (y)− 1) .

with ν, µi, λ
+
y and λ−y Lagrange multipliers. For the above-mentioned probability distribu-

tion, the complementary slackness conditions imply that λ+
y = 0 for all y ∈ {0, 1}m and

λ−y = 0 for all y contained in ΩD
m ∪ {yA,yBCD}. Hence, the zero-gradient condition results

in the following system of equations:

ηy(a, b, c, d) = ν +
∑

i:yi 6=hH,i

µi , ∀y ∈ ΩD
m ∪ {yA,yBCD} ,

ηy(a, b, c, d) = ν +
∑

i:yi 6=hH,i

µi − λ−y , ∀y /∈ ΩD
m ∪ {yA,yBCD} .

First, we show that a solution always exists for this system, and additionally, we check the
dual feasibility conditions µi ≥ 0, λ+

y ≥ 0 and λ−y ≥ 0. For all y /∈ ΩD
m ∪ {yA,yBCD},

the equations have an individual variable λ−y , which only occurs in one equation, so these
equations do not impose any further restrictions, apart from the non-negativity constraint on
the respective Lagrange multipliers. Furthermore, since the sum over µi is always positive,
we have enough degrees of freedom to ignore those equations. For the other equations, one
arrives at a new system of equations by solving for ν:∑

i:yi 6=hH,i

µi −
∑

j:y′j 6=hH,j

µj = ηy(a, b, c, d)− ηy′(a, b, c, d) ,

∀y,y′ ∈ ΩD
m ∪ {yA,yBCD} .

We continue by writing out this system of equations more explicitly, resulting in four cases.
For the pair corresponding to y = yA and y′ = yBCD we obtain∑

i∈A∪B∪C
µi −

∑
i∈D

µi = ηy(a, b, c, d)− ηy′(a, b, c, d) . (26)

For all pairs having y = yA and y′ ∈ ΩD
m, so d pairs in total with j ∈ D, we obtain∑

i∈A∪B∪C
µi −

∑
i∈D\{j}

µi = ηy(a, b, c, d)− ηy′(a, b, c, d) . (27)

For all pairs having y = yBCD and y′ ∈ ΩD
m, so again d pairs with i ∈ D, we obtain

µi = ηy(a, b, c, d)− ηy′(a, b, c, d) . (28)
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For all pairs having y,y′ ∈ ΩD
m, so d(d− 1) pairs with i, j ∈ D, we obtain

µi = µj . (29)

Let us observe that the d equations (27) and the d equations (28) are equivalent due to
(26). Moreover, the d(d − 1) equations in (29) are trivially satisfied, resulting in a system
that can be reduced to d+ 1 equations and m variables. Hence, a solution always exists if
the dual feasibility conditions are satisfied. Plugging (25) into (28) yields for i ∈ D:

µi =
2c(b− a)

(m+ c)(2b+ 2c+ d)
− 2b

2b+ 2c+ d

− 2c(b− a)

(m+ c− 1)(2b+ 2c+ d− 1)
+

2b

2b+ 2c+ d− 1

≥ 2cb(m− 2)

(m+ c)(m− 1 + c)(2b+ 2c+ d)
.

So, µi ≥ 0 as soon as m > 1. Due to the denominator it is also required that 2b+2c+d > 1.
For the µi having i /∈ D we find:∑

i∈A∪B∪C
µi ≥ ηy(a, b, c, d)− ηy′(a, b, c, d)

=
2a

2a+ c
+

2b

2b+ 2c+ d

− 2c(b− a)

(m+ c)(2b+ 2c+ d)

≥ 2mb

(m+ c)(2b+ 2c+ d)
≥ 0 .

In other words, these are the conditions that remain for the µi for which i ∈ D. From
the inequality it follows that the individual µi can be made greater than zero in this case,
implying that also the active Lagrange multipliers λ−y can be chosen in such a way that
they are greater than zero.

Consequently, when m > 1, all KKT conditions are satisfied for the oracle solution that
we provide. Let us compare the value of the objective function for all allowed values of the
four integer variables a, b, c and d. By omitting ε-dependent terms, which vanish when ε
approaches zero, we obtain:∑

y∈ΩD
m∪{yA,yBCD}

ηy(a, b, c, d)P (y) =
a

(2a+ c)
− ca

(m+ c)(2b+ 2c+ d)

− mb

(m+ c)(2b+ 2c+ d)
.

This function is decreasing in b and c, it is constant in a as soon as c = 0 and a > 0. It is
constant in d when b+ c = 0, thus its maximum of 0.5 is not unique. This maximum is for
example obtained for (a = 1, b = 0, c = 0, d = m− 1) and it corresponds to the worst-case
regret mentioned in the theorem. Remark as well that the solution imposes as additional
constraint m > 2, as a result of the previous constraint 2b + 2c + d > 1. Two cases were
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excluded from our analysis: (a = m, b = 0, c = 0, d = 0) and (a = m−1, b = 0, c = 0, d = 1).
These cases do not deserve further attention, since they lead to a worst-case regret that is
always upper bounded by 0.5. �

Theorem 2 Let hs be a vector of predictions obtained by minimizing the subset 0/1 loss,
then for m > 2 the worst-case regret is given by:

sup
P∈Pu

Ls

(
E
[
F (Y ,hF )− F (Y ,hs)

])
=

(−m− 2 + 2m2)m

(2m− 1)(4 +m+m2)
,

where the supremum is taken over all possible distributions P .

Proof. It follows from (9) that optimization problem (4) has a unique solution for the
subset zero-one loss if and only if the underlying probability distribution has a unique
mode. Translating this requirement into a mathematical programming formulation implies
that any probability distribution P ∈ PuLs

should satisfy the following constraint:

P (y) + ε ≤ P (hs) ,

for all y ∈ {0, 1}m \ hs and any ε > 0. Practically, the contribution of ε will again vanish
by choosing it arbitrarily close to zero.

As a result, the supremum can be interpreted as the solution of a mixed integer nonlinear
program:

max
h,hs,P

∑
y∈{0,1}m

(F (y,h)− F (y,hs))P (y) (30)

subject to


∑

y∈{0,1}m P (y) = 1 ,

∀y ∈ {0, 1}m \ hs : P (y) + ε ≤ P (hs) ,
∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
hs,hF ∈ {0, 1}m ε ≥ 0 .

Recall that by construction the solution for h again coincides with the F-measure maxi-
mizer in (2). The mixed integer nonlinear program contains 22m integer variables and 2m

real variables. In what follows, we assume that ε is arbitrarily close to zero, so that all
ε-dependent terms cancel out, while guaranteeing unique risk minimizers. The only conse-
quence of this decision is that the presented solution acts as a supremum (the maximum is
not reached).

Despite a similar formulation as the previous theorem, our proving techniques will be
quite different, because, unlike the previous theorem, it is impossible to derive an oracle
solution for the entire mixed integer nonlinear program. Alternatively, we will look for a
solution of the optimization problem that emerges when ε-dependent terms become zero.
The only practical problem with this solution is the non-uniqueness of the corresponding
subset zero-one loss minimizer, but we will show that this solution can be approximated by
an arbitrarily close solution with a unique subset zero-one loss minimizer. This technique
will suffice to prove the theorem. However, let us remark that the same technique would not
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work to prove Theorem 1, because there it would not be possible to approach the solution
of the optimization problem without ε-terms by an ε-approximate extension with unique
Hamming loss minimizer. This explains why the proving techniques of Theorem 1 and 2
are different.

We start by providing an oracle solution for the linear program that is obtained by fixing
the integer variables to hF = 1m and hs = 0m. The first part of the proof is a bit similar
to a proof given for the regret of the subset 0/1 loss minimizer w.r.t. the Hamming loss
(Dembczyński et al., 2012a). While omitting ε-dependent terms, optimization problem (30)
can be reformulated in standard linear program form as:

min
P

∑
y∈{0,1}m

−η(y)P (y)

subject to


∑

y∈{0,1}m P (y)− 1 = 0 ,

∀y ∈ {0, 1}m \ 0m : P (y)− P (0m) ≤ 0 ,
∀y ∈ {0, 1}m : −P (y) ≤ 0 ,
∀y ∈ {0, 1}m : P (y)− 1 ≤ 0 ,

with

η(y) =

{
2sy
sy+m if y 6= 0m ,

−1 if y = 0m .

In the next paragraphs we will show that the following probability distribution corre-
sponds to the solution of the linear program:

PA(y) =

{ 2
m2+m+4

if d(y,0m) ≥ m− 2 ∨ y = 0m ,

0 otherwise ,

where dH(y,y′) =
∑m

i=1 |yi−y′i| denotes the Hamming distance. This solution represents a
case where the subset zero-one loss minimizer is not unique, but it could be easily extended
to an ε-approximate solution with unique subset zero-one loss minimizer:

PA(y) =


2

m2+m+4
+ m2+m+2

m2+m+4
ε if y = 0m ,

2
m2+m+4

− 2
m2+m+4

ε if d(y,0m) ≥ m− 2 ,

0 otherwise ,

We verify the KKT conditions to prove that the above probability distribution is indeed
the solution of the optimization problem. The primal Lagrangian of the linear program can
be defined as:

Lp = −
∑

y∈{0,1}m
η(y)P (y) + ν

∑
y∈{0,1}m

(
P (y)− 1

)
+
∑

y 6=0m

λ2
y

(
P (y)− P (0m)

)
−

∑
y∈{0,1}m

λ0
yP (y) +

∑
y∈{0,1}m

λ1
yP (y) ,
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with ν, λ0
y, λ

1
y and λ2

y Lagrange multipliers. The stationarity condition for optimality leads
to the following system of linear equations:

−η(y) + ν + λ1
y − λ0

y + λ2
y = 0 ∀y 6= 0m , (31)

1 + ν + λ1
y − λ0

y −
∑

y 6=0m

λ2
y = 0 y = 0m (32)

Other conditions that need to be satisfied are dual feasibility

∀y : λ0
y ≥ 0 , (33)

∀y : λ1
y ≥ 0 , (34)

∀y : λ2
y ≥ 0 , (35)

and the complementary slackness conditions of our oracle solution PA(y):

∀y ∈ Ωu ∪ {0m} : λ0
y = 0 ,

∀y : λ1
y = 0 ,

∀y /∈ Ωu : λ2
y = 0 ,

where Ωu = Ω(m) ∪ Ω(m − 1) ∪ Ω(m − 2) and Ω(t) = {y ∈ {0, 1}m | dH(0m,y) = t}.
Plugging the latter three conditions into (31) and (32) yields

−η(y) + v − λ0
y = 0 , ∀y /∈ Ωu ∪ {0m} ,

−η(y) + v + λ2
y = 0 , ∀y ∈ Ωu ,

v =
∑

y 6=0m
λ2
y − 1 .

Solving the last equation for v results in

v =
(−m− 2 + 2m2)m

(2m− 1)(4 +m+m2)
.

Subsequently, one can verify that this solution for v obeys the non-negativity conditions for
all λy. The non-negativity of λ2

y turns out to be most restrictive for the equivalence class
y ∈ Ω(m− 2). In this case we obtain:

λ2
y =

2m− 4

2m− 2
− v =

2(3m2 − 10m+ 4)

(m− 1)(2m− 1)(4 +m+m2)
. (36)

Analyzing this function more thoroughly reveals that it is strictly positive in the interval
[+3,+∞[. Similarly, we find that the most restrictive condition on λ0

y is obtained for the
elements in the equivalence class y ∈ Ω(m− 3), leading to the following equality:

λ0
y = v − 2m− 6

2m− 3
=

−9m2 + 2m3 + 56m− 24

(2m− 3)(2m− 1)(4 +m+m2)
. (37)

This function is also strictly positive in the interval [+3,+∞[, so all non-negativity condi-
tions are satisfied. Plots of the functions are shown in Figure 6.
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Figure 6: Plots of the functions λ2
y and λ0

y as defined by equations (36) and (37).

One can observe that PA(y) yields the regret mentioned in the theorem. Thus, what
we found so far is a lower bound on the worst-case regret. The tightness of the bound is
further proven by showing that the supremum is always obtained by hs = 0m and hF = 1m
as soon as m > 2. Since it is impossible to enumerate all solutions for the 22m possible
values of the integer variables, we analyse the properties of the objective function to prove
that the optimum is obtained for hs = 0m and hF = 1m. Similar to the previous theorem,
let us introduce

A = {i ∈ {1, ...,m} : hi = 1 ∧ hs,i = 0} ,
B = {i ∈ {1, ...,m} : hi = 0 ∧ hs,i = 1} ,
C = {i ∈ {1, ...,m} : hi = 1 ∧ hs,i = 1} ,
D = {i ∈ {1, ...,m} : hi = 0 ∧ hs,i = 0} .

and the shorthand notations a = |A|, b = |B|, c = |C|, d = |D|, sy, sAy , sBy , sCy , sDy , as defined
in (24).

Optimization problem (30) can then be relaxed to the following standard mixed-integer
nonlinear program form:

min
a,b,c,d,P

−
∑

y∈{0,1}m
ηy(a, b, c, d)P (y)

subject to



∑
y∈{0,1}m P (y) = 1 ,

∀y ∈ {0, 1}m \ hs : P (y)− P (hs) ≤ 0 ,
∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
a+ b+ c+ d = m,
a, b, c, d ∈ N ,
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writing down the coefficients of the objective function as:

ηy(h,hs) = ηy(a, b, c, d) =
sAy + sCy
sy + a+ c

−
sBy + sCy
sy + b+ c

.

Recall that the relaxation again originates from the fact that the solution not necessarily
complies with the definitions of the sets A, B, C and D.

Now observe that the objective function of the mixed-integer nonlinear program is
strictly decreasing in b, independent of the other variables, so we can fix b = 0. Sub-
sequently, observe that for b = 0 the objective function is also strictly decreasing in c,
independent of the other variables, so we also fix c = 0. As a result, the coefficients can be
further simplified to:

ηy(h,hs) = ηy(a, b, c, d) =

{
sAy
sy+a if y 6= 0m ,

−1 if y = 0m .
(38)

To complete the proof we show by contradiction that the optimum is obtained for a = m.
In order to construct the recurrence equations below let us introduce q ∈ {1, ...,m− 1} and
let

Ω0
q = {y ∈ {0, 1}m | yq+1 = 0 ∧ y 6= 0m} ,

Ω1
q = {y ∈ {0, 1}m | yq+1 = 1 ∧ y 6= 01

q+1} ,

where 01
q+1 denotes a vector of m − 1 zeros apart from a single one at position q + 1.

Furthermore, let us introduce the mapping Ψq : {0, 1}m → {0, 1}m, which, in any binary
vector of length m, toggles the bit at position q + 1: a zero at that position becomes a
one and vice versa. The mapping Ψq hence defines a unique correspondence between any
element in Ω0

q and its sister element in Ω1
q . For a = q, the objective function can then be

written as:

δq(P ) =
∑

y∈{0,1}m
ηy(a, b, c, d)P (y) = −P (0m)

+
∑
y∈Ω0

q

2sAy
sy + q

P (y) +
∑
y∈Ω1

q

+
2sAΨq(y)

sΨq(y) + q + 1
P (y)

while for a = q + 1, it can be written as:

δq+1(P ) =
∑

y∈{0,1}m
ηy(a, b, c, d)P (y) = −P (0m) +

2

a+ 1
P (01

q+1)

+
∑
y∈Ω0

q

2sAy
sy + q + 1

P (y) +
∑
y∈Ω1

q

+
2sAΨq(y) + 2

sΨq(y) + q + 2
P (y)

Let us assume that the global optimum is obtained for a < m. Furthermore, let P q(y) be
the probability distribution that delivers this optimum for (a = q, d = m−q). We construct
a new probability distribution P q+1(y) as follows:

P q+1(y) =

{
P q(Ψq(y)) if (y ∈ Ω1

q ∧ P q(y) > P q(Ψq(y))) ∨ (y ∈ Ω0
q ∧ P q(y) < P q(Ψq(y))) ,

P (y) otherwise ,
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If P q(y) is feasible, then P q+1(y) is feasible, too. It follows from

2sAΨq(y) + 2

sΨq(y) + q + 2
≥

2sAΨq(y)

sΨq(y) + q
, ∀y ∈ {0, 1}m

that δq+1(P q+1) ≥ δq(P q) for all q. This is a contradiction. Consequently, the global
optimum of the optimization problem is given by PA. �

Side note about the difference in proving technique for Theorems 1 and 2. In this paragraph
we give some additional explanation why the proving techniques for Theorems 1 and 2
are different. The proof of Theorem 2 cannot proceed with ε-terms because we are not
able to derive an oracle solution for the mixed integer linear program when ε-terms are
considered. However, for Theorem 2 this is not needed because we are able to find a
probability distribution that has unique risk minimizers, while being arbitrarily close to the
oracle solution that we present. The claim of the theorem then immediately follows from
taking the limit when ε approaches zero. Let us consider the example of m = 4, for which
we obtain the following probability distribution:

y P (y)

0000 1/12
1100 1/12
1010 1/12
1001 1/12
0110 1/12
0101 1/12
0011 1/12
1110 1/12
1011 1/12
1101 1/12
0111 1/12
1111 1/12

The subset zero-one loss minimizer is not unique in this case, but let us choose 0000 as
subset zero-one loss minimizer. The F-measure maximizer is 1111. The regret should then
be 13/24 - see fraction in Theorem 2. We can easily extend this to an ε-case with unique
subset zero-one loss minimizer:

3559



Waegeman et al.

y P (y)

0000 1/12 + 11ε
1100 1/12− ε
1010 1/12− ε
1001 1/12− ε
0110 1/12− ε
0101 1/12− ε
0011 1/12− ε
1110 1/12− ε
1011 1/12− ε
1101 1/12− ε
0111 1/12− ε
1111 1/12− ε

So, this suffices as a mathematically correct proof. However, the same trick cannot be
used for Theorem 1. If we would omit the ε-terms in the Lagrangian there, we would end
up with a solution that cannot be ε-approached by a probability distribution with unique
risk minimizer. As an example, let us again consider the case m = 4 and the following
probability distribution:

y P (y)

1000 .5
0111 .5

One of the risk minimizers for Hamming loss is vector 0000 with zero F-measure. Another
vector, 1110, which is also a Hamming loss minimizer, gets an F-measure of 0.5833. This is
a regret that is higher than the supremum mentioned in Theorem 1, but it is a value that
cannot be ε-approached when restricting to unique Hamming loss minimizers.

Theorem 3 Let hJ and hF be vectors of predictions obtained by maximizing the Jaccard
index and the F-measure, respectively. Let the utility of the F-measure maximizer be given
by

δ(P ) = max
h∈{0,1}m

E [F (Y ,h)] = max
h∈{0,1}m

∑
y∈{0,1}m

P (y)F (y,h).

The regret of the F-measure maximizer with respect to the Jaccard index is then upper
bounded by

E
[
J(Y ,hJ)− J(Y ,hF )

]
≤ 1− δ(P )/2

for all possible distributions P
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Proof. The proof follows immediately from the following double inequality:∑m
i=1 yihi(x)∑m

i=1 yi +
∑m

i=1 hi(x)
≤∑m

i=1 yihi(x)∑m
i=1 yi +

∑m
i=1 hi(x)−

∑m
i=1 yihi(x)

≤

2
∑m

i=1 yihi(x)∑m
i=1 yi +

∑m
i=1 hi(x)

,

which results in
F (y,hF )

2
≤ J(y,hF ) ≤ F (y,hF ) ,

for all y,h ∈ {0, 1}m. �

Theorem 5 Let hI be a vector of predictions obtained by assuming label independence as
defined in (3), then the worst-case regret is lower-bounded by:

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
≥ 2q − 1,

for all q ∈ [1/2, 1] satisfying
∑m

s=1

(
2m!

(m−s)!(s−1)!(m+s)q
m−s(1− q)s

)
− qm > 0 and the supre-

mum taken over all possible distributions P .

Proof. To analyze the potential regret of methods that assume independence, it is sufficient
to compare the F-maximizers and their corresponding F-measures for a joint distribution
defined on independent random variables and a second joint distribution having the same
marginal distributions, but no independence. Below, we analyze two families of probability
distributions that are parameterized by a single parameter q, which is defined as q = P (Yi =
0) for all i = 1, ...,m. The first family resembles the case of independent random variables,
for which the joint distribution is defined as the product of marginal probabilities:

PA(y) = qm−s(1− q)s where s =
m∑
i=1

yi . (39)

The second family of distributions captures one particular case of a very strong stochastic
dependence:

PB(y) =


q if y = 0m

1− q if y = 1m
0 otherwise

,

If q > 0.5, then the F-measure maximizer of PB is given by 0m and its corresponding F-
measure is q. It is less straightforward to find the F-measure maximizer of PA. Let us first
introduce the equivalence classes

Ωm(s) = {y ∈ {0, 1}m |
m∑
i=1

yi = s} ,

Ωm(s, l) = {y ∈ {0, 1}m |
m∑
i=1

yi = s ∧ yl = 1} ,
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with s, l ∈ {1, ...,m}. The cardinality of these equivalence classes is given by

|Ωm(s)| =
(m
s

)
=

m!

(m− s)!s!
,

|Ωm(s, l)| =
(m− 1
s− 1

)
=

(m− 1)!

(m− s)!(s− 1)!
.

Let hk be a series of predictions such that
∑m

i=1 hi = k. Without loss of generality, we
can fix hk to a vector of k ones that are followed by m− k zeros, because the distributions
that we analyze are fully symmetric (i.e., all index permutations of {1, ...,m} in the label
vectors yield the same values in probability mass). As a result, we can write the expected
F-measure of hk with k > 0 as:

EY ∼PA
[F (Y ,hk)] =

∑
y∈{0,1}m

F (y,hk)PA(y) (40)

=
∑

y∈{0,1}m

∑k
i=1 2yi
sy + k

PA(y)

=
m∑
s=1

∑
y∈Ωm(s)

∑k
i=1 2yi
s+ k

PA(y)

=

m∑
s=1

k∑
i=1

∑
y∈Ωm(s)

2yi
s+ k

qm−s(1− q)s

=
m∑
s=1

k∑
i=1

∑
y∈Ωm(s,i)

2

s+ k
qm−s(1− q)s

=

m∑
s=1

(m− 1)!

(m− s)!(s− 1)!

2k

s+ k
qm−s(1− q)s

This is an increasing function of k, which implies that the F-measure maximizer consists of
a vector of solely ones (or solely zeros) for PA. In addition, the expected F-measure for a
prediction vector of zeros is given by

EY ∼PA
[F (Y ,0m)] = qm .

Let us define δm as

δm = EY ∼PA
[F (Y ,1m)− F (Y ,0m)]

=

m∑
s=1

( (m− 1)!

(m− s)!(s− 1)!

2m

m+ s
qm−s(1− q)s

)
− qm .

Then, assuming independence delivers the wrong maximizer for PB as soon as δm > 0. �

Corollary 1 Let hI be a vector of predictions obtained by assuming independence, then the
worst-case regret converges to 1 in the limit of m, i.e.,

lim
m→∞

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
= 1,
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where the supremum is taken over all possible distributions P .

Proof. For increasing m, the condition is satisfied for q close to one. The easiest way to
observe this is computing the limit

lim
m→∞

qm = 0 ,

which implies

lim
m→∞

m∑
s=1

m!

(m− s)!s!
qm−s(1− q)s = 1 .

From this last limit and
2m

m+ s
≥ m

s

it follows that:

lim
m→∞

m∑
s=1

(m− 1)!

(m− s)!(s− 1)!

2m

m+ s
qm−s(1− q)s ≥ 1 .

By definition, (40) cannot exceed the upper bound of one, so this inequality must hold as
an equality. In such a scenario, the worst-case regret is lower bounded by Rq = 2q − 1, so
that limq→1,m→∞Rq = 1. As a consequence, the lower bound becomes tight in the limit of
m going to infinity.

�

Theorem 7 Let hT be a vector of predictions obtained by putting a threshold on sorted
marginal probabilities, then the worst-case regret is lower bounded by

sup
P

(
E
[
F (Y ,hF )− F (Y ,hT )

])
≥ max

(
0,

1

6
− 2

m+ 4

)
,

where the supremum is taken over all possible distributions P .

Proof. To analyze the regret of thresholding approaches, we have to construct a counterex-
ample for which the F-measure is not consistent with the order of the marginal probabilities.
The following family of distributions is such a counterexample:

P (y) =


1/2− ε if y1 = 1 ∧

∑m
i=1 yi = 1

(1/2 + ε)/(2m− 4) if y2 = 1 ∧ 1 +
∑m/2+1

i=3 yi =
∑m

i=3 yi = m/2
(1/2 + ε)/(2m− 4) if y2 = 1 ∧ 1 +

∑m
i=m/2+2 yi =

∑m
i=3 yi = m/2

0 otherwise

(41)

where we consider for simplicity thatm is even and ε ∈ [0, 1/2] represents a positive constant.
For ε close to zero, one can easily show that the F-measure maximizer is given by a vector of
predictions consisting of only zeros, apart from a single one at position one. The expected
F-measure of this prediction vector is 1/2 − ε. However, this prediction vector can never
be returned by a method that relies on thresholding over marginal probabilities, because

3563



Waegeman et al.

P (Y2 = 1) > P (Y1 = 1) in this particular case. By enumerating all candidate solutions
examined by thresholding, one will find instead a prediction vector h11 consisting of zeros,
apart from a one at the first two positions. The expected F-measure of this prediction
vector is

E [F (Y ,h11)] = (1/2− ε)(2/3) + (1/2 + ε)(2/(2 + (m/2))) .

As a consequence, this results in the above-mentioned regret when ε approaches zero. �
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Abstract

We present SPMF, an open-source data mining library offering implementations of more
than 55 data mining algorithms. SPMF is a cross-platform library implemented in Java,
specialized for discovering patterns in transaction and sequence databases such as frequent
itemsets, association rules and sequential patterns. The source code can be integrated
in other Java programs. Moreover, SPMF offers a command line interface and a simple
graphical interface for quick testing. The source code is available under the GNU General
Public License, version 3. The website of the project offers several resources such as docu-
mentation with examples of how to run each algorithm, a developer’s guide, performance
comparisons of algorithms, data sets, an active forum, a FAQ and a mailing list.

Keywords: data mining, library, frequent pattern mining, sequence database, transaction
database, open-source

1. Introduction

In this paper, we present SPMF (Sequential Pattern Mining Framework), a data mining
library that is specialized in frequent pattern mining, an important subfield of data mining
that aims at discovering interesting patterns and associations in databases. SPMF is an
open-source project, started in 2009 to address the lack of large open-source data mining
library specialized in frequent pattern mining. There exist several general purpose open-
source data mining libraries such as Weka (Witten et al., 2005), Mahout (Mahout, 2013) and
Knime (Knime, 2013), which provide a wide range of data mining techniques. However, they
offer a very limited set of algorithms for frequent pattern mining. Weka, Knime and Mahout
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offer only a few popular pattern mining algorithms such as Apriori (Agrawal and Srikant,
1994), GSP (Srikant et al., 1996) and FPGrowth (Han et al., 2004). Some specialized
platforms like Coron (Coron, 2013), LUCS-KDD (LUCS-KDD, 2013) and Illimine (Illimine,
2013) offer a slightly larger choice of pattern mining algorithms. However, the source
code of Coron is not public, Illimine provides the source code of only one of its pattern
mining algorithms and LUCS-KDD source code cannot be used for commercial purposes.
SPMF provides more than 55 algorithms for pattern mining. Implementations of most of
these algorithms can only be found in SPMF. For example, only three algorithms from
SPMF appear in Weka and Knime (Apriori, FPGrowth and GSP), only one in Mahout
(FPGrowth), two in LUCS-KDD (Apriori, FPGrowth), and eight in Coron. Another related
project is Galicia (Galicia, 2013), an open-source software focusing on mining lattice-based
patterns and visualizing lattices. It has only one algorithm in common with SPMF. Another
distinctive feature of SPMF is that it offers more than 17 algorithms for mining sequential
patterns, while Weka and Knime only offer a single algorithm (GSP), and other previously
mentioned software offer none. Moreover, note that Galicia, Coron, Illimine and LUCS-
KDD are projects that have been inactive for several years.

Since its first major release in 2010, SPMF has been used in more than 70 research
projects in various domains such as web usage mining, analyzing learner behavior in e-
learning, clinical text retrieval, sales forecasting, restaurant recommendation, analyzing
nucleic acids sequences, anomaly detection in medical treatment and forecasting crime in-
cidents (see the SPMF website for an up-to-date list of applications). Algorithms offered in
SPMF can be applied to two main types of data:

• A transaction database (a.k.a. binary context) is a set of transactions T = {T1, T2, ...
Tn} and a set of items I = {i1, i2, ...im}, where Tx ⊆ I for 1 ≤ x ≤ n. For example,
each transaction of a transaction database could represent a set of items purchased
by a customer at a store, or a set of words appearing in a text document.

• A sequence database is a generalization of a transaction database. It is a set of
sequences S = {S1, S2, ...Sp} and a set of items I = {i1, i2, ...iq}. A sequence is a
list of transactions < T1, T2, ...Tr > where Tx ⊆ I for 1 ≤ x ≤ r. Examples of real-
life data that can be represented as sequence databases are sequences of web pages
visited by users, bioinformatics data (e.g., protein sequences, microarray data and
DNA sequences), stock market data, weather observations and sensor data.

Three main data mining tasks can be performed with SPMF.

• frequent itemset mining (Agrawal and Srikant, 1994) consists of discovering frequent
itemsets, i.e., sets of items appearing in more than minsup transactions of a transac-
tion database, where minsup is a parameter set by the user.

• association rule mining (Agrawal and Srikant, 1994) consists of discovering the associ-
ation rules respecting some thresholds minsup and minconf in a transaction database.
An association rule X ⇒ Y is an association between two sets of items X and Y such
that X ∩Y = ∅, X ∪Y appears in more than minsup transactions, and that the num-
ber of transactions containing X∪Y divided by the number of transactions containing
X is higher than minconf .
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• sequential pattern mining (Agrawal and Srikant, 1995) consists of discovering frequent
sequential patterns, i.e., subsequences appearing in more than minsup sequences of a
sequence database, where minsup is a parameter set by the user.

For these three classical data mining tasks with wide applications, SPMF offers imple-
mentations of popular algorithms such as Apriori, Eclat (Zaki, M. J.), FPGrowth, GSP,
PrefixSpan (Pei et al., 2004), SPAM (Ayres et al., 2000) and BIDE (Wang et al., 2007).
But it also offers several algorithms for variations of these problems, for example to discover
rare itemsets, closed itemsets, non-redundant association rules, indirect association rules,
top-k association rules, to deal with uncertain data or database containing quantity and
profit information and to discover sequential rules (Fournier-Viger et al., 2011). SPMF of-
fers both classical algorithms and recent state-of-the-art algorithms such as Hui-Miner (Liu
et al., 2012), ClaSP (Gomariz et al., 2013) and RuleGrowth (Fournier-Viger et al., 2011).

2. Using SPMF

SPMF is implemented in Java and is cross-platform. The only requirement to run SPMF is
to have Java 7 or higher installed. There are two versions of SPMF. The source code version
offers all algorithms from SPMF. The documentation provides an example of how to run
each algorithm. It explains the input and output of each algorithm, its main characteristics
and where to obtain more information about the algorithm. Moreover, a sample program
and input file is provided in the source code of SPMF to show how to execute each example
from Java code. Running an algorithm is just a few lines of code. One needs to create an
instance of the algorithm, specify its parameter(s), input file and an output file path (if the
result is to be saved to a file). For example, the following code runs the Apriori algorithm
on a file ”input.txt” with its minsup parameter set to 0.4.

AlgoApr ior i a p r i o r i = new AlgoApr ior i ( ) ;
a p r i o r i . runAlgorithm ( 0 . 4 , ” input . txt ” , ” output . txt ” ) ;

The source code can be easily integrated into other Java software programs since (1) the
source code of each algorithm implementation is located in its own subpackage and (2) there
is no dependency on any other software or library. To support developers and users, ex-
tensive resources are provided on the website of SPMF such as an active forum, a FAQ,
a developers’ guide and a mailing list to be informed of the latest updates to SPMF. The
website also provides a set of more than 40 large real-life data sets that can be used with
the algorithms offered in SPMF. This can be useful for educational purpose (e.g., for a
data mining course) or for comparing the performance of algorithms (for data mining re-
searchers). Finally, the website also provides several performance comparisons of algorithms
offered in SPMF, for various data sets, to give a good idea of the relative performance of
the algorithms designed for the same task.

The release version of SPMF is a runnable JAR file that can be launched with a double-
click. It provides a minimalist user interface (see Figure 1), designed to allow quickly testing
the behavior of the algorithms. The graphical user interface allows one to select an input file
and an output file, choose an algorithm, enter its parameters and run it. For each algorithm,
a sample input file is provided and an example is described in the documentation. The
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Figure 1: SPMF graphical user interface

runnable JAR file can also be used to run algorithms from the command line. For example,
to run Apriori, the following command can be used:

java −j a r spmf . j a r run Apr io r i input . txt output . txt 0 . 4

Input files for the algorithms are text files. The format that is used is the one from
frequent pattern mining competitions such as FIMI (Boyardo et al., 2004) and used by
researchers in this domain (files where items are represented by integers). But, to allow
greater interoperability, the GUI and command line version of SPMF can also read the
popular ARFF file format for itemset and association rule mining (used by Weka and
Knime), and tools are provided to convert some selected formats to the SPMF format.

3. Conclusion

We have presented SPMF, a data mining library specialized in frequent pattern mining. The
project is active and latest releases can be found on its website. SPMF has been applied in
more than 70 research projects. Code submissions are reviewed by the project founder and
contributors to see if they meet the requirements before being integrated in SPMF.
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Abstract

Predictive state representations (PSRs) offer an expressive framework for modelling par-
tially observable systems. By compactly representing systems as functions of observ-
able quantities, the PSR learning approach avoids using local-minima prone expectation-
maximization and instead employs a globally optimal moment-based algorithm. Moreover,
since PSRs do not require a predetermined latent state structure as an input, they offer an
attractive framework for model-based reinforcement learning when agents must plan with-
out a priori access to a system model. Unfortunately, the expressiveness of PSRs comes
with significant computational cost, and this cost is a major factor inhibiting the use of
PSRs in applications. In order to alleviate this shortcoming, we introduce the notion of
compressed PSRs (CPSRs). The CPSR learning approach combines recent advancements
in dimensionality reduction, incremental matrix decomposition, and compressed sensing.
We show how this approach provides a principled avenue for learning accurate approx-
imations of PSRs, drastically reducing the computational costs associated with learning
while also providing effective regularization. Going further, we propose a planning frame-
work which exploits these learned models. And we show that this approach facilitates
model-learning and planning in large complex partially observable domains, a task that is
infeasible without the principled use of compression.1

Keywords: predictive state representation, reinforcement learning, dimensionality re-
duction, random projections

1. Introduction

In the reinforcement learning (RL) paradigm, an agent in a system acts, observes, and
receives feedback in the form of numerical signals (Sutton and Barto, 1998). Given this
experience, the agent determines an optimal policy (i.e., a guide for its future actions)
via value-function based dynamic programming or parameterized policy search. This is
conceptually analogous to the ‘operant conditioning’ postulated to underlie certain forms of

1. An earlier version of this work appeared as: W.L. Hamilton, M. M. Fard, and J. Pineau. Modelling sparse
dynamical systems with compressed predictive state representations. In Proceedings of the Thirtieth
International Conference on Machine Learning, 2013.
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animal (and human) learning. Organisms learn to repeat actions that give positive feedback
and avoid those with negative results.

1.1 Fully to Partially Observable Domains

In the standard formulation, an RL agent is given prior knowledge of a domain in the form of
a state-space, transition probabilities, and an observation (i.e., sensor) model. Formally, the
system is described by a Markov decision process (MDP), and given the MDP description,
a variety of optimization algorithms may then be used to solve the problem of determining
an optimal action policy (Sutton and Barto, 1998). In general, approximate solutions are
determined for domains exhibiting large, or even moderate, dimensionality (Gordon, 1999).

The situation is further complicated in domains exhibiting partial observability, where
observations are aliased and do not fully determine an agent’s state in a system. For ex-
ample, an agent’s sensors may indicate the presence of nearby objects but not the agent’s
global position within an environment. To accommodate this uncertainty, the MDP frame-
work is extended as partially observable Markov decision processes (POMDPs) (Kaelbling
et al., 1998). Here, the true state is not known with certainty, and optimization algorithms
must act upon belief states (i.e., probability distributions over the state-space).

1.2 Model-Learning Before Planning

The POMDP extension introduces a measure of uncertainty in the reinforcement learning
paradigm. Nevertheless, an agent learning a policy via the POMDP framework has access to
considerable a priori knowledge: Most centrally, the agent (which necessarily and implicitly
contains the POMDP solver) has access to a description of the system in the form of
an explicit state-space representation. Moreover, in a majority of instances, the agent
knows the probabilities governing the transitions between states, the observation functions
governing the emission of observable quantities from these states, and the reward function
specifying some empirical measure of “goodness” for each state (Kaelbling et al., 1998).

Access to such knowledge allows for the construction of optimal (or near-optimal) plans
and is useful for real-world applications where considerable domain-specific knowledge is
available. However, the converse situation, where a (near)-complete system model is not
known a priori, is both important and lags behind in terms of research results. In such a
setting, an agent must learn a system model prior to (or while simultaneously) learning an
action policy.

At an application level, there are many situations in which expert knowledge is sparse,
and it is possible that even application domains with domain-knowledge could benefit from
the use of algorithms that learn system models prior to planning and that are thus free from
unintended biases introduced via expert-specified system models. At a more theoretical
level, the development of general agents that both learn system models and plan using such
models is fundamental in the pursuit of creating truly intelligent artificial agents that can
learn and succeed independent of prior domain knowledge.
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1.3 Learning a Model-based Predictive Agent

In this work we outline an algorithm for constructing a learning and planning agent for
sequential decision-making under partial state observability. At a high-level, the algorithm is
model-based, specifying an agent that builds a model of its environment through experience
and then plans using this learned model. Such a model-based approach is necessary in
complicated partially observable domains, where single observations are far from sufficient
statistics for the state of the system (Kaelbling et al., 1998). At its core, the algorithm
relies on the powerful and expressive model class of predictive state representations (PSRs)
(Littman et al., 2002). PSRs (described in detail in Section 2) are an ideal candidate for
the construction of an agent that both learns a system model and plans using this model,
as they do not require a predetermined state-space as an input.

PSRs have been used as the basis of model-based reinforcement learning agents in a
number of recent works (Boots et al., 2010; Rosencrantz et al., 2004; Ong et al., 2012; Izadi
and Precup, 2008; James and Singh, 2004). However, for these previous approaches, the
time and space complexities of learning scale super-linearly in the maximum length of the
trajectories used (see Section 3). In this work we use an approach that simultaneously
ameliorates the efficiency concerns related to constructing PSRs and alleviates the need for
domain-specific feature construction. The model-learning algorithm, termed compressed
predictive state representation (CPSR), uses random projections in order to efficiently learn
accurate approximations of PSRs in sparse systems. In addition, the approach makes use
of recent advancements in incrementally learning transformed PSRs (TPSRs), providing
further optimization (Boots and Gordon, 2011). The details of the model-learning algorithm
are provided in Section 3.2. Section 4 presents theoretical results pertaining to the accuracy
of the approximate learned model and elucidates how our approach regularizes the learned
model, trading off reduced variance for controlled bias.

The planning algorithm used is an extension of the fitted-Q function approximation-
based planning algorithm for fully observable systems (Ernst et al., 2005). This approach
has been applied to PSRs previously with some success (Ong et al., 2012) and provides a
strong alternative to point-based value iteration methods (Izadi and Precup, 2008). The
algorithm simply substitutes a predictive state for the observable MDP state in a fitted-
Q learning algorithm, and a function approximator is used to learn an approximation of
the Q-function for the system (i.e., the function mapping predictive states and actions to
expected rewards). The details of the planning approach are outlined in Section 5. The
main empirical contribution of this work is the application of this approach to domains
and sample-sizes of complexity not previously feasible for PSRs. Section 6 will highlight
empirical results demonstrating the performance of the algorithm on some synthetic robot
navigation domains and a difficult real-world application task based upon the ecological
management of migratory bird species.

This work builds upon the algorithm presented in Hamilton et al. (2013), extending it in
a number of ways. Specifically, this work (1) permits a broader class of projection matrices,
(2) includes optional compression of both histories and tests, (3) combines compressed
sensing with incremental matrix decomposition to facilitate incremental/online learning, (4)
provides a more detailed theoretical analysis of the model-learning algorithm, (5) explicitly
includes a planning framework, which exploits the learned CPSR models in a principled
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manner, and (6) provides extensive empirical results pertaining to both model-learning and
planning, including results on a difficult real-world problem.

2. Predictive State Representations

Predictive state representations (PSRs) offer an expressive and powerful framework for
modelling dynamical systems and thus provide a suitable foundation for a model-based
reinforcement learning agent. In the PSR framework, a predictive model is constructed di-
rectly from execution traces, utilizing minimal prior information about the domain (Littman
et al., 2002; Singh et al., 2004). Unlike latent state based approaches, such as hidden Markov
models or POMDPs, PSR states are defined only via observable quantities. This not only
makes PSRs more general, as they do not require a predetermined state-space, but it also
increases their expressive power relative to latent state based approaches (Littman et al.,
2002). In fact, the PSR paradigm subsumes POMDPs as a special case (Littman et al.,
2002). In addition, PSRs facilitate model-learning without the use of local-minima prone
expectation-maximization (EM) and allow for the efficient construction of globally optimal
models via a method-of-moments based algorithm (James and Singh, 2004). The following
section outlines the foundations of the PSR approach and sets the stage for the presenta-
tion of compressed predictive state representations in Section 3 and our efficient learning
algorithm in Section 3.2. Much of the PSR background material (e.g., the derivation of the
PSR model in Sections 2.2 and 2.3) expands upon the presentation in Boots et al. (2010)
and uses important results from that work.

2.1 Notation

This section outlines the notation that will be used throughout the paper.

2.1.1 Matrix Algebra Notation

Bold letters denote vectors v ∈ Rd and matrices M ∈ Rd1×d2 . Given a matrix M, ‖M‖
denotes its Frobenius norm. M† is used to denote the Moore–Penrose pseudoinverse of M.
Sometimes names are given to the columns and rows of a matrix using ordered index sets
I and J . In this case, M ∈ RI×J denotes a matrix of size |I| × |J | with rows indexed by
I and columns indexed by J . We then specify entries in a matrix (or tensor) using these
indices and the bracket notation; e.g., [M]i,j corresponds to the entry in the row indexed
by i ∈ I and the column indexed j ∈ J . Rows or columns of a matrix are specified using
this index notation and the ∗ symbol; e.g., [M]i,∗, denotes the ith row of M. Finally, given
I ′ ⊂ I and J ′ ⊂ J we define [M]I′,J ′ as the submatrix of M with rows and columns
specified by the indices in I ′ and J ′, respectively.

2.1.2 Probability Notation

We denote the probability of an event by P(·) and use | to denote the usual probabilistic
conditioning. To avoid excessive notation, when the P(·) operator is applied to a vector
of events, it is understood as returning a vector of probabilities unless otherwise indicated
(i.e., a single operator is used for single events and vectors of events).
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For clarity, we use || to denote conditioning upon an agents policy (i.e., plan). That is,
|| denotes that we are conditioning upon the knowledge that the agent will “intervene” in
a system by executing the specified actions.

2.2 Technical Foundations

A PSR model represents a partially observable system’s state as a probability distribution
over future events. More formally, we maintain a probability distribution over different
sequences of possible future action-observation pairs. Such sequences of possible future
action-observations are termed tests and denoted τ . For example, we could construct a test
τi = [ok1t+1, o

k2
t+2, ..., o

kn
t+n||a

l1
t+1, a

l2
t+2, ..., a

ln
t+n], where notationally subscripts refer to time,

superscripts identify particular actions or observations, and actions following the || symbol
denote that we are conditioning upon the agent “intervening” by performing those specified
actions at the specified times. We can then say that such a test is executed if the agent
intervenes and takes the specified actions, and we say the test succeeded if the observations
received by the agent match those specified by the test. Going further, we can define the
probability of success for test τi as

P(τi) = P(ok1t+1, o
k2
t+2, ..., o

kn
t+n||a

l1
t+1, a

l2
t+2, ..., a

ln
t+n).

Of course, we want to know more than just the unconditioned probabilities of success
for each test. A complete model of a dynamical system also requires knowing the success
probabilities for each test conditioned on the agent’s previous experience, or history. We
denote such a history hj = [al00 o

k0
0 , a

l1
1 o

k1
1 ...a

lt
t o

kt
t ], where again subscripts denote time and

superscripts identify particular actions or observations. Importantly, the || symbol for
intervention is absent from the definition of history, as the sequence of actions specified in
a history are assumed to have already been executed.

Finally, given that an agent has performed some actions and received some observations,
defining some history hj , we compute

P(τOi |hj ||τAi ),

the probability of τi succeeding conditioned upon the agent’s current history in the system,
where τAi and τOi denote the ordered lists of actions and observations, respectively, defined
in τi.

It is not difficult to see that a partially observable system is completely described by
the conditional success probabilities of all tests given all histories. That is, if we have
P(τOi |hj ||τAi ) ∀i ∀j then we trivially have all necessary information to characterize the dy-
namics of a system. Of course, maintaining all such probabilities directly is infeasible,
as there is a potentially infinite number of tests and histories (and at the very least an
exorbitant number for any system of even moderate complexity) (Littman et al., 2002).

Fortunately, it has been shown that it suffices to remember only the conditional prob-
abilities for a (potentially) small core set of tests, and the conditional probabilities for all
other tests may be defined as linear functions of the conditional probabilities for the tests
in this core set (Littman et al., 2002).2 More formally, we define the system dynamics ma-

2. In this work, the shortened phrase core set is always to be interpreted as core set of tests; that is, such
sets always correspond to a set of tests.
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trix, H, as the (potentially infinite size) matrix, where each row corresponds to a particular
test (under some lexicographic ordering), each column to a particular history (under some
lexicographic ordering), and a particular [H]i,j entry to P(τOi |hj ||τAi ). H simply organizes
P(τOi |hj ||τAi ), ∀i∀j in a matrix structure. In Littman et al. (2002) and Singh et al. (2004) it
is shown that if H has rank k then (1) k corresponds to the rank of the partially observable
system, as defined by Jaeger (2000) and (2) there exists a minimal core set of size k (i.e.,
the smallest core set of tests is of size k, though there may be larger core sets). Thus, if H
has rank k, it suffices to remember conditional probabilities for only k tests (those that are
a part of the minimal core set), and the conditional probabilities for all other tests may be
defined as linear functions of the conditional probabilities for these tests.

The rank of H thus describes the complexity of a system. For example, a system with
rank(H) = k can not be modelled by a POMDP with less than k states; though it may
require more than k POMDP states (Singh et al., 2004). In contrast, a PSR can always
(exactly) model a system with rank(H) = k using a minimal core set of exactly size k (Singh
et al., 2004). This demonstrates how PSRs can be more compact than POMDPS.

Thus, for a PSR, given a minimal core set Q (i.e., |Q| = rank(H)), we can compute the
conditional probability of some test τi /∈ Q as

P(τOi |hj ||τAi ) = r>τiP(QO|hj ||QA),

where rτi is a vector of weights and P(QO|hj ||QA) an ordered vector of conditional prob-
abilities for each test in the minimal core set qi ∈ Q. Integral to this approach is the
fact that restricting the model to linear functions of tests in the minimal core set does not
preclude the modelling of non-linear systems, as the dynamics implicit in the probabilities
may specify non-linear behaviours (Littman et al., 2002).

Thus, given the functions mapping tests in the core set to all other tests, it suffices to
maintain, at time t, only the vector mt = P(QO|ht||QA), where ht is the history of the
system at time t. That is, it suffices to maintain only the vector of conditional probabilities
for the tests in a core set (which is usually assumed to be minimal) .

2.3 The PSR Model

Formally, a PSR model of a system is defined by 〈O,A,Q,F ,m0〉, where O and A define
the possible observations and actions respectively, Q is a minimal core set of tests, F
defines a set of linear functions mapping success probabilities for tests in the minimal core
set to the probabilities for all tests, and m0 defines the initial state of the system (i.e.,
m0 = P(QO||QA)). Since F contains only linear functions, its elements can be specified as
vectors of weights. These vectors, in turn, are specified using a finite set of linear operators
(i.e., matrices). Specifically, we define a linear operator Malok for each action-observation
pair such that

P(okt+1|ht||alt+1) = m>∞MalokP(QO|ht||QA)

= m>∞Malokmt,

where m∞ is a constant normalizer such that m>∞mt = 1, ∀t.

3580



Compressed Predictive States

These operators map probabilities of tests in the specified minimal core set to the prob-
abilities for single action-observation pairs and may be recursively combined to generate
the full set of linear functions in F . For instance, for the test
τi = [ok1t+1, o

k2
t+2, ..., o

kn
t+n||a

l1
t+1, a

l2
t+2, ..., a

ln
t+n], we compute

P(τOi |ht||τAi ) = r>τiP(QO|ht||QA)

= m>∞Malnokn · · ·Mal2ok2Mal1ok1mt. (1)

These operators can also be used to produce n-step predictions (i.e., the probability
P(okt+n|ht||alt+n) of seeing an observation, ok, after taking action, al, n-steps in the future)
by

P(okt+n|ht||alt+n) = m>∞Malok(M?)
n−1mt,

where M? =
∑

alok∈A×OMalok is a matrix that can be computed once and stored as a
parameter for quick computation (Wiewiora, 2007).

Lastly, the operators provide a convenient method for updating the predictive state,
defined by the prediction vector mt, as an agent tracks through a system and receives
observations. The prediction vector mt is updated to mt+1 after an agent takes an action
al and receives observation ok using

mt+1 = P(QO|ht+1||QA)

= P(QO|htalok||QA)

=
Malokmt

m>∞Malokmt
. (2)

Together, the elements of 〈O,A,Q,F ,m0〉 (where F is understood to contain the linear
operators described above and the normalizer) thus provide a succinct model of a system,
which allows for the efficient computation of event probabilities and also facilitates condi-
tioning upon observed histories.

2.4 Learning PSRs

There is a considerable amount of literature describing different approaches to learning
PSRs. We provide an overview of the standard approaches, as Section 3.2 describes, in
detail, the efficient compressed learning approach we propose.3

In general, PSR learning approaches may be divided into two distinct classes: discovery-
based and subspace-based. In the discovery-based approach, a form of combinatorial search
is used to discover the (minimal) core set of tests, and the PSR model is then computed in
a straightforward manner given the explicit knowledge of Q (James and Singh, 2004; James
et al., 2005). This method generates an exact PSR model. However, the combinatorial
search required to find Q precludes the use of this approach in domains of even moderate
cardinality.

Unlike the discovery-based approaches, subspace-based approaches obviate the need
for determining Q exactly (Hsu et al., 2008; Boots et al., 2010; Rosencrantz et al., 2004).

3. For a slightly more detailed discussion of existing PSR learning approaches see Wiewiora (2007).
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Instead, subspace-identification techniques (e.g., spectral methods) are used in order to find
a subspace that is a linear transformation of the subspace defined by Q (Rosencrantz et al.,
2004). The linear nature of the PSR model allows the use of this transformed PSR model
in place of the exact PSR model without detriment. Specifically, it can be shown that the
probabilities obtained via such a transformed model are consistent with those obtained via
the true model (Boots et al., 2010).

Formally, one first specifies a large (non-minimal) core set of tests T and a set of histories
H. Next, one defines two observable matrices PT ,H, PH, and |A|× |O| observable matrices
PT ,ao,H (one for each action-observation pair). PT ,H is a |T | × |H| matrix which contains
the joint probabilities of all specified tests and histories. PH is a |H| × 1 vector containing
the marginal probabilities of each possible history. And each PT ,ao,H is a |T | × |H| matrix
containing the the joint probabilities of all specified tests and histories where a particular
action-observation pair (indicated by the subscript) is appended to the history (Boots et al.,
2010). These observable matrices can be viewed as submatrices of H, the system dynamics
matrix (e.g., PT ,H = [H]T ,H). We also define matrices PQ,H and PQ,ao,H ∀ao ∈ A × O
analogously but with Q replacing T (e.g., PQ,H = [PT ,H]Q,∗).

Under the assumption that the empty history occurs first in the lexicographic ordering
of H, the discovery-based approach builds a PSR model by

m0 = [PQ,H]∗,1 (3)

m>∞ = P>H(PQ,H)†, (4)

Mao = PQ,ao,H(PQ,H)†, (5)

while the subspace-based approach builds a model by

β0 = [ZPT ,H]∗,1 (6)

β>∞ = P>H(ZPT ,H)†, (7)

Bao = ZPT ,ao,H(ZPT ,H)†, (8)

where Z is the projection matrix defining the subspace used for learning, which satisfies
certain conditions. The conditions upon Z and the standard selection criterion for choosing
it are elucidated in Section 2.5 below.

From these equations we see that PSR learning, in both the subspace and discovery
paradigms, corresponds to a set of regression problems. The pseudoinverses in (3)-(8)
corresponding to solutions to a set regression problems. For example, in the learning of
m∞ the columns of PQ,H correspond to samples in the regression (i.e., each history is a
sample), the rows to features (i.e., each test is a feature), and the regression targets are the
entries of PH (i.e., the marginal history vector).

In general, the complexity of the discovery-based learning approach is dominated by
the combinatorial search for the set of core tests. In the worst case this search has time-
complexity O((|A||O|)L), where L is the max-length of a trajectory (i.e., execution trace)
used to learn the model. If the minimal core set of tests is provided as input, the discovery-
based method has complexity O(|H||Q|2); however, the assumption that the minimal core
set of tests is known is not realistic in practice. In contrast, the subspace-based approach
has time-complexity O(|H|||T |dZ), where dZ is the column-dimension of Z. If the size of
the minimal core set of tests is known (an unrealistic assumption) then dZ = |Q|.
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2.5 Transformed Representations

PSR models learned via the subspace method are often referred to as transformed PSRs
(TPSRs), since they learn a model that is an invertible transform of a standard PSR model.
More formally, given the set of linear parameters defining a PSR model and an invertible
matrix J, we can construct a TPSR by applying J as a linear operator to each parameter.
That is, we set β0 = Jm0, β

>
∞ = m>∞J−1, and Bao = JMaoJ

−1 ∀ao ∈ A × O, and these
new transformed matrices constitute the TPSR model (Boots and Gordon, 2011). It is
easy to see that the J’s cancel out in the prediction equation (1) and update equation (2).
Intuitively, TPSRs can be thought of as maintaining a predictive state upon an invertible
linear transform of the state defined by the tests in the minimal core set.

In practice, the matrix J is determined by the projection matrix Z, which is used
during learning in the subspace-based paradigm. To make the relationship between J and
Z explicit, we define the following matrices: R = (rτi , rτ2 , ..., rτ|T |)

> ∈ RT ×Q , with each
row i corresponding to the linear function mapping the probabilities of tests in the minimal
core set to the probability of test τi (i.e., the rτi as defined in Equation 1); N = diag(PH) ∈
RH×H, with the marginal history probabilities along the diagonal; and, Q ∈ RQ×H, with
each column j equal to the expected probability vector for the tests in the minimal core set
given that history hj has been observed (i.e., [Q]∗,j = Mhjm0). These matrices can then be
used to define a factorization of the observable matrices. In particular, Boots et al. (2010)
show that

PT ,H = RQN (9)

and that
PT ,ao,H = RMaoQN (10)

holds for all ao ∈ A×O.
Examining the equations for the different learning methods (i.e., Equations 3 and 6)

and using the factorizations given in (9) and (10), we see first that for the discovery-based
method, which learns a true untransformed PSR, we have that

PQ,H = IQN,

where I is the identity. In this case the set of tests in PQ,H is the minimal core set, and
thus the core set mapping operator R is replaced by the identity. Similarly, we have

PQ,ao,H = IMaoQN.

Thus for the discovery method

PQ,ao,H(PQ,H)† = MaoQN(QN)†

= Mao,

where we used the fact that QN is full column-rank by definition. By contrast, for the
subspace learning algorithm we have, assuming that ZR has full row-rank,

Bao = ZPT ,ao,H(ZPT ,H)†

= ZRMaoQN(ZRQN)†

= ZRMaoQN(QN)†(ZR)†

= ZRMao(ZR)†, (11)
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where we again used the fact that QN has full column-rank. If we further assume that ZR
is invertible (i.e., is square in addition to being full row rank) then (11) simplifies to

ZRMao(ZR)† = ZRMao(ZR)−1.

Similar results hold for β∞ and β0, showing that the subspace learning method does, in fact,
return TPSRs in the case where ZR is invertible, and in this case we have a transformed
representation with J := ZR.

The final piece of a TPSR is the specification of Z, the projection matrix defining the
subspace used during learning (and implicitly defining the transformation matrix J). We
know from the above derivations that Z must be chosen such that ZR is invertible. The
standard method for guaranteeing this is by choosing Z via spectral techniques; that is, Z
is set to be U>, the transpose of the matrix of right singular vectors (from the thin-SVD
of PT ,H) (Boots et al., 2010).

The TPSR approach can also be extended to work with features of tests and histories
(Boots et al., 2010; Boots and Gordon, 2011) and/or kernelized to work in continuous
domains (Boots and Gordon, 2013). This is useful in cases where the observation space is
too complex for standard tests to be used (i.e., when the observation space is structured
or continuous). When features of tests and histories are used, however, they are usually
specified in a domain-specific manner (Boots et al., 2010). Some authors have also used
randomized Fourier methods to efficiently approximate kernel-based feature selection (Boots
and Gordon, 2011). These methods are quite successful in continuous domains (Boots et al.,
2010; Boots and Gordon, 2011, 2013).

In contrast, the benefit of the algorithm presented in Section 3.2 is that it implicitly
performs general purpose feature selection (for discrete-domains) using random compres-
sion. And this is especially useful in cases where it is difficult to know a sufficient set
of features prior to training (e.g., in the case where the model is being learned incremen-
tally). Moreover, the motivation between the compression performed in this work and the
above-mentioned feature-based techniques are disjoint in that the goal of this work is to
provide compression for efficient learning whereas the above-mentioned feature-based learn-
ing strategies are motivated by the need to cope with continuous or structured observation
spaces. See Section 7.2 for further discussion on the relationship between this work and
these alternative feature-based approaches.

3. Compressed Predictive State Representations

In this section, we describe our extension of PSRs, compressed predictive state representa-
tions (CPSRs). The CPSR approach, at its core, combines the state-of-the-art in subspace
PSR learning with recent advancements in compressed sensing. This marriage provides an
extremely efficient and principled approach for learning accurate transformed approxima-
tions of PSRs in complex systems, where learning a full PSR is simply intractable. Section
3.1 motivates the use of compressed sensing techniques in a PSR learning algorithm, and
Section 3.2 describes the efficient CPSR learning approach we propose.
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3.1 Foundations: Compressed Estimation

Despite the fact that non-compressed subspace-based algorithms, such as TPSR, can specify
a small dimension for a transformed space (e.g., by removing the least important singular
vectors of U as in done in Rosencrantz et al. (2004) and analyzed in Kulesza et al. (2014)),
there are still a number of computational limitations. To begin, TPSRs require that the
|T | × |H| matrix, PT ,H, be estimated in its entirety, and that the PT ,ao,H matrices be
partially estimated as well. Moreover, since the naive TPSR approach must compute a
spectral decomposition of PT ,H it has computational complexity O(|H||T |2), in the batch
(and incremental mini-batch) setting, assuming the observable matrices are given as input.
Thus in domains that require many (possibly long) trajectories for learning or that have
large observation spaces, such as those described in Section 6, the naive TPSR approach
becomes intractable, since |H| and |T | both scale as O(L|Z|), where L is the max length of
a trajectory in a training set Z of size |Z|.45 In order to circumvent these computational
constraints (and provide a form of regularization), the CPSR learning algorithm we propose
(in the next section) performs compressed estimation.

This method is borrowed from the field of compressed sensing and works by projecting
matrices down to low-dimensional spaces determined via randomly generated bases. More
formally, a m× n matrix Y is compressed to a d× n matrix X (where d < m) by

X = ΦY, (12)

where Φ is a d ×m Johnson-Lindenstrauss matrix (i.e., a matrix satisfying the Johnson-
Lindenstrauss lemma) (Baraniuk and Wakin, 2009). Intuitively, a Johnson-Lindenstrauss
matrix is a random matrix defining a low-dimensional embedding which approximately
preserves Euclidean distances between projected points (i.e., the projection preserves the
dot-product between vectors). Different choices for Φ are discussed in Section 6. It is worth
noting that in our case, the matrix multiplication in (12) is in fact performed “online”, and
the matrices corresponding to X and Φ are never explicitly held in memory (details in
Section 3.2).

The fidelity of this technique depends what is called the sparsity of the matrix Y.
Sparsity in this context refers to the maximum number of non-zero entries which occur in
any column of Y. Formally, if we denote a column vector of Y by yi, we say that a matrix
is k-sparse if

k ≥ ||yi||0 ∀yi ∈ Y,

where || · ||0 denotes Donoho’s zero “norm” (which simply counts the number of non-zero
entries in a vector).

The technique is very well suited for application to PSRs. Informally, the sparsity
condition is the requirement that for every history hj , only a subset of all tests have non-
zero probabilities (a more formal definition appears in the theory section below). This

4. Note that |H| and |T | scale linearly with the number of observed test/histories. The O(L|Z|) bound is
thus pessimistic in that it assumes each training instance is unique.

5. It is worth noting that no explicit bounds on the sample complexity of PSR learning have been eluci-
dated. However, the sample complexity bounds of Hsu et al. (2008) provide results for a special case of
TPSR learning (i.e., no actions and only single length tests and histories). In general, PSR approaches
are consistent estimators but cannot be assumed to be data efficient (thus emphasizing the need to
accommodate large sample sizes).

3585



Hamilton, Milani Fard and Pineau

seems realistic in many domains. For example, in the PocMan domain described below,
we empirically found the average column sparsity of the matrices to be roughly 0.018%
(i.e., approximately 0.018% of entries in a column were non-zero). Moreover, as we will
demonstrate empirically in Section 6, certain noisy observation models induce sparsity that
can be exploited by this approach.

3.2 Efficiently Learning CPSRs

In this section, we present our novel compressed predictive state representation (CPSR)
learning algorithm. The algorithm builds upon the work of Hamilton et al. (2013), extend-
ing their algorithm in a number of important ways. Specifically, the algorithm presented
here (1) permits a broad class of compression matrices (any full-rank projection matrix
satisfying the JL lemma), (2) includes optional compression of both histories and tests, and
(3) combines compressed sensing with spectral methods in order to provide numerical sta-
bility and facilitate incremental (and even online) model-learning. Section 3.2.1 describes
the foundational batch-learning algorithm. Section 3.2.2 describes how to incrementally
update a learned model with new data efficiently for deployment in online settings.

3.2.1 Batch Learning of CPSRs

To begin, we define two injective functions: φT : T → RdT and φH : H → RdH . These
functions are independent mappings from tests and histories, respectively, to columns of
independent random full-rank Johnson-Lindenstrauss (JL) projection matrices ΦT ∈ RdT ×T
and ΦH ∈ RdH×H, respectively. The matrices are defined via these functions since the
full sets T and H may not be known a priori, and we can get away with this “lazy”
specification since the columns of JL projection matrices are determined by independent
random variables.

Next, given a training trajectory z of action-observation pairs of any length, let Ihj (z)
be an indicator function taking a value of 1 if the action-observations pairs in z correspond
to hj . Similarly define | · | as the length of a sequence (e.g., of action-observation pairs)
and let Ihj ,τi(z) be an indicator function taking a value of 1 if z can be partitioned such
that, starting from some index k within the sequence, there are |hj | action-observation pairs
corresponding to those in hj ∈ H and the next |τi| pairs correspond to those in τi ∈ T .6

Given a batch of of training trajectories Z we compute compressed estimates

Σ̂H = ΦHP̂H
=
∑
z∈Z

∑
hj∈H

Ihj (z)φH(hj) (13)

and

Σ̂T ,H = ΦT P̂T ,HΦ>H

=
∑
z∈Z

∑
ti,hj∈T ×H

Ihj ,ti(z) [φT (ti)⊕ φH(hj)] (14)

6. In this work we use k = 0. That is we do not use the suffix history estimation algorithm (Wolfe et al.,
2005), where k is varied in the range [0, |z|). Using k = 0 minimizes dependencies between estimation
errors as the same samples are not used to get estimates for multiple histories.
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of the observable matrices PH and PT ,H, respectively, where ⊕ denotes the tensor (outer)
product of two vectors.7

Next, we compute the ÛŜV̂> rank-d′ thin SVD of Σ̂T ,H:

(Û, Ŝ, V̂) = SVD(Σ̂T ,H). (15)

Given these matrices we can construct

c1 = ŜV̂>e (16)

and

c>∞ = Σ̂
>
HV̂Ŝ−1, (17)

the compressed and transformed estimates of m1 and m∞, respectively, where e is a vector
such that ΦHe = (1, 0, 0, ..., 0)>. In practice this can be guaranteed by defining a modified
history map φ′H : H → Rd+1 such that that for the null history, ∅, φ′H(∅) = (1, 0, 0, ..., 0)>

and that φ′H(hj) = [0 φH(hj)] for all hj 6= ∅. This specification of e assumes that all
z ∈ Z are starting from a unique start state. If this is not the case, then we set e such
that ΦHe = (1, 1, 1, ..., 1)>, which again can be guaranteed without cost but in this case by
simply adding a constant “dummy” column to the front of ΦH. In this latter scenario, we
would, in fact, not be learning c1 exactly and instead would learn c∗, an arbitrary feasible
state as our start state. The uncertainty in our state estimate should decrease, however, as
we update and track through our system and the process mixes (Boots et al., 2010). And
indeed, the majority of domains without well-defined start-states are those for which there
is significant mixing over time, so this technique should introduce only a small amount of
error in practice.

Given the SVD of Σ̂T ,H, we can also estimate the Cao matrices, the compressed and
transformed versions of the Mao matrices, directly via a second pass over the data. First,
however, we must define a third class of indicator functions on z ∈ Z: Ihj ,ao,τi(z) takes value
1 if and only if the training sequence z can be partitioned such that, starting from some
index k within the sequence, there are |hj |+ 1 action-observation pairs corresponding to hj
appended with a particular ao ∈ A×O and the next |τi| correspond to those in τi. In other
words, Ihj ,ao,τi(z) is equivalent to Ih′j ,τi(z), where a particular ao ∈ A × O is appended to

the history h′j . Using these indicators and the SVD matrices of Σ̂T ,H, we compute, for each
ao ∈ A×O,

Cao =
∑
z∈Z

∑
ti,hj∈T ×H

Ihj ,ao,ti(z)
[(

Û>φT (ti)
)
⊕
(
Ŝ−1V̂>φH(hj)

)]
. (18)

Thus, in two passes over the data, we are able to efficiently construct our CPSR model
parameters. The primary computational savings engendered by this approach is in the
computation of the pseudoinverse of Σ̂T ,H, which we implicitly compute via an SVD. Since
we are performing pseudoinversion (i.e., SVD) on a compressed matrix, the computational

7. We do not normalize our probability estimates in the estimation equations since the normalization
constants cancel out during learning.
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complexity is uncoupled from the number of tests and histories in the set of observed
trajectories Z. Recalling that L denotes the max length of a trajectory in Z and letting
|Z| denote the number of trajectories in the set Z, this approach has a computational
complexity of

O
(
L|Z|dHdT + d2T dH

)
= O (L|Z|) (19)

since dH and dT are a user-specified constants (assuming the standard cubic computational
cost for the SVD).8 Without compression (i.e., with naive TPSR), a computational cost of

O
(
L|Z|+ |H||T |2

)
= O

(
L3|Z|3

)
(20)

is incurred.
In addition to these computational savings, the above approach has the added benefit

of not requiring that T and H be known in entirety prior to learning. This is especially
important in the case where we want to alternate model-learning and planning/exploration
phases using incremental updates (described below), as it is very unlikely that all possible
tests and histories are observed in the first round of exploration. Performing SVD on the
compressed matrices also induces a form of regularization (similar to L2 regularization) on
the learned model, where variance is reduced at the cost of a controlled bias (details in
Section 4).

3.2.2 Incremental Updates to the Model

In addition to straightforward batch learning, it is also possible to incrementally update a
learned model, given new training data, Z ′ (Boots and Gordon, 2011). This is especially
useful in that it facilitates alternating exploration and exploitation phases. Of course, if such
a non-blind alternating approach is used then the distribution of the training data changes
(i.e., it becomes non-stationary), and the sampled trajectories can no longer be assumed to
be i.i.d.. Despite this theoretical drawback, Ong et al. (2012) show that non-blind sampling
approaches can lead to better planning results in a small sample setting.9

Briefly, we obtain a new Σ̂T ,H estimate and update our Σ̂H estimate using using (14)

and (13) with Z ′. Next, we update our SVD matrices, given our additive update to Σ̂T ,H,
using the methods of (Brand, 2002). The c1 and c∞ vectors are then re-computed exactly
as in equations (16) and (17).

To obtain our Cnew
ao matrices, we compute

Cnew
ao =

∑
z∈Z′

∑
ti,hj∈T ×H

Ihj ,ao,ti(z)
[(

Û>newφT (ti)
)
⊕
(
Ŝ−1newV̂>newφH(hj)

)]
+ Û>newÛoldC

old
ao ŜoldV̂

>
oldV̂newŜ−1new. (21)

The first term in (21) corresponds to estimating the contribution to the new Cao matrix
from the new data, and the second term is the projection of the old Cao matrix onto the
new basis. Using the results of Brand (2002), the complexity of this update is

O(L′|Z ′|(dT dH + (d′)3 + d′dT ) + dT d
′dH), (22)

8. Section 4 describes how the choice of these constants affects the accuracy of the learned model.
9. In this work, where larger sample sizes were used, we did not find a significant benefit to goal-directed

sampling and in fact saw detrimental effects in terms of planning ability and numerical stability during
learning. See Section 7 for details.
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where L′ denotes the maximum length of a trajectory in Z ′.

4. Theoretical Analysis of the Learning Algorithm

In the following section, we describe theoretical properties of the CPSR learning approach.
Our analysis proceeds in two stages. First, we show that the learned model is consistent in
the case where dT ≥ |Q| and dH ≥ |Q| (i.e., when no real compression occurs). Following
this, we outline results bounding the induced approximation error (bias) and decrease in
estimation error (variance) due to learning a compressed model.

The analysis included in this section is intended as a means to justify the compression
technique and study the overall consistency of our algorithm. It also provides guidance
for the choosing of a theoretically sound range of values for the projection size used in the
algorithm.

4.1 Consistency of the Learning Approach

The following adapts the results of Boots et al. (2010) and shows the consistency of our
learning approach when the random projection dimension is greater than or equal to the
true underling dimension of the system (i.e., the size of the minimal core set of tests, |Q|).
We then describe the implications of this result for the case where we are in fact projecting
down to a dimension smaller than |Q|.

4.1.1 Consistency in the Non-Compressed Setting

We begin by noting a fundamental result from the TPSR literature. Recall the matrix
R = (rτ1 , rτ2 , ..., rτ|T |)

> ∈ RT ×Q where each row, ri, specifies the linear map

r>τiP(QO|ht||QA) = P(τOi |ht||τAi ).

Supposing that dT ≥ |Q| and dH ≥ |Q| and with U coming from the SVD of ΣT ,H, we have

c0 = (U>ΦTR)m0, (23)

c>∞ = m>∞(U>ΦTR)−1, (24)

Cao = (U>ΦTR)Mao(U
>ΦTR)−1. (25)

That is, we simply recover a TPSR where J = (U>ΦTR), and it has been shown that the
above implies a consistent learning algorithm (Boots et al., 2010; Boots and Gordon, 2011).
We note that ΦT appears in these consistency equations, while ΦH does not, emphasizing
the different roles these two matrices occupy. This difference will play an important role in
the theoretical analysis below.

4.1.2 Extension to the Compressed Case

In the case where dT < |Q| and/or dH < |Q| things are not as straightforward. Specifically,
equations (23)-(25) no longer hold as (U>ΦTR) is no longer invertible (it is in fact, no longer
square), since the SVD is taken on ΣT ,H which has rank less than |Q| when dT < |Q| and/or
dH < |Q| while the column dimension of R is |Q|. The primary focus of our theoretical
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analysis is the effect of this fact, i.e. (U>ΦTR) not being invertible. We show how we can
view ΦT as inducing a form of compressed linear regression, and we provide bounds on the
excess risk of learning within a compressed space.

There is, however, the additional complication of ΦH when dH < |Q|, as in that setting
it is no longer possible to remove ΦH from the consistency equations (23)-(25). From the
perspective of regression, ΦH can be viewed as compressing the number of samples, while
ΦT can be viewed as compressing the features. In this work, we focus on the effect of
compressing tests and provide detailed analysis of how compressing tests (i.e., features)
affects the implicit linear regression performed. Zhou et al. (2007) discuss the effect of
compressing samples during regression, a result that follows naturally from the Johnson-
Lindenstrauss lemma, and in Section 7, we discuss these results and their relationship to
this work. For completeness, Section 6 also provides an empirical analysis of the effects of
compressing histories and tests versus compressing tests alone.

4.2 Effects of Compression

In what follows, we analyse the effects of compression by viewing ΦT as inducing a form of
compressed linear regression, where both the input data and targets are compressed.

4.2.1 Preliminaries

This approach is justified by noting that, as discussed in Section 2.4, in equations (17) and
(18) of our learning algorithm we are in fact performing implicit linear regression. That is,
for (Û, Ŝ, V̂) = SVD(Σ̂T ,H),

V̂Ŝ−1 = (Û>Σ̂T ,H)†

= (Û>ΦT P̂T ,HΦ>H)†. (26)

In other words, V̂Ŝ−1 is the Moore-Penrose pseudoinverse of Û>ΦT P̂HΦ>H, and multipli-
cation by V̂Ŝ−1 is thus equivalent to performing least-squares linear regression.

Following the discussion in the previous section and to avoid unnecessary complication,
we assume ΦH has orthonormal columns (i.e., is not compressive) while analyzing the effects
of compressing the tests. In the case where ΦH has orthonormal columns, we define ΣT ,ao,H
as the compressed analogue of PT ,ao,H, and see that (18) can be rewritten as

Cao = (Û>Σ̂T ,ao,H)(Û>Σ̂T ,H)†

= (Û>ΦT P̂T ,ao,HΦ>H)(Û>ΦT P̂T ,HΦ>H)†

= (Û>ΦT P̂T ,ao,H)Φ>H(Φ>H)†(Û>ΦT P̂T ,H)† (27)

= (Û>ΦT P̂T ,ao,H)(Û>ΦT P̂T ,H)†, (28)

where (27)-(28) holds since ΦH is assumed to have orthonormal columns. An analogous
result holds for c∞ and thus, ΦH can, indeed, be omitted in our analysis (under the as-
sumption that Φ>HΦH = I).

Moreover, we ignore the Û> term in what follows, which is justified in the case where d′ =
dT (i.e., when the truncated SVD dimension is equal to the test compression dimension).
This d′ = dT condition is very mild in the sense that the use of SVD during learning is
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primarily motivated by the need to efficiently compute pseudoinverses, which facilitates the
efficient batch and incremental model-learning algorithms. That is, the SVD is not used as
a dimensionality reduction technique, as random projections are used in that role.10 Thus,
under the assumption that d′ = dT , we have that

Ax = b⇒ Û>Ax = Û>b

holds, since Û> is orthonormal for d′ = dT . Thus, the appearance of Û in the pseudoinverse
is inconsequential in an analysis of the effect of compressing prior to regression.

To simplify the analysis one step further, we assume that our test set is a minimal core
set Q. Therefore, random projections are applied on P̂Q,H and P̂Q,ao,H matrices. The
projections from over-complete test sets with rank bigger than |Q| down to dT dimensions
can be achieved by first projecting to size |Q| and then projecting from |Q| to dT . By
the results of Section 4.1, this first projection leads to a consistent model, i.e. a model
that is a linear transform of the model learned directly from P̂Q,H and P̂Q,ao,H matrices,

since Û>ΦTR is invertible with probability 1 when the projected dimension is equal to |Q|
(Boots et al., 2010). The assumption that we work with the P̂Q,H and P̂Q,ao,H matrices
directly (as apposed to invertible transforms of them) simplifies the analysis below in that
we can elucidate our sparsity assumptions etc. directly in terms of the minimal core set of
tests instead of random linear functions of tests in the minimal core set. This assumption
is mild in that we could work with these random invertible linear transforms and discuss
the discrepancy between a “random” TPSR (i.e., a TPSR defined via a random linear
transform) and a compressed version of this “random” TPSR, and this discussion would be
analogous to that which is provided below, albeit with more cumbersome and unnecessarily
complex derivations. The assumption that we work with the minimal core set of tests simply
allows for a more interpretable and less cluttered analysis.

Now, we define

Bao = PQ,ao,H(PQ,H)†, β∞ = (PQ,H)†P̂H.

Since Q is a minimal core set of tests, the above is a TPSR representation (Boots et al.,
2010; Rosencrantz et al., 2004). Assume we have enough histories in H such that matrices
are full rank. Defining PQ,h and PQ,ao,h to be the vectors containing the joint probabilities
of all tests in the minimal core set and a fixed history h, we have that (by the linearity of
PSRs)

∀h : PQ,ao,h = BaoPQ,h, Ph = β>∞PQ,h.

One can thus think of finding the Bao and β∞ parameters as regression problems, having
the estimates of PQ,hs as noisy input features. We also have noisy observations of the
outputs PQ,ao,h and Ph. Since the sample set suffers from the error in variables problem
(i.e., is noisy both on the input and output values) direct regression in the original space
might result in large estimation error. Therefore, we apply random projections, reducing the

10. As noted in Section 7.1.3 it is sometimes beneficial to use d′ < dT and/or discard very small singular
values in order to improve the numerical stability of computing inverses during learning. However, this
issue of numerical stability is orthogonal to the analysis presented in this section.
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estimation error (variance) at the cost of a controlled approximation error (bias). And we
get the added benefit that working in the compressed space also helps with the computation
complexity of the algorithm.

Note that there is an inherent difference between our work and the TPSR framework. In
TPSR, one seeks to find concise linear transformations of the observation matrices, whereas
CPSR seeks to find good approximations in a compressed space (which cannot be linearly
transformed to the original model). That said, approximate variants of the TPSR learning
algorithm have been analyzed from the perspective of compressed regression (albeit without
appealing to the compressed sensing framework we employ) (Kulesza et al., 2014; Boots
and Gordon, 2010). For example, Kulesza et al. (2014) analyze low-rank TPSR models
where the rank of the learned model is made less than |Q| by removing the least significant
singular vectors of PT ,H. We reiterate, however, that these analyses are distinct from the
analysis presented in this work, as we analyze low-rank models where the rank is reduced via
random projection-based compression (not by removing least-significant singular vectors).
The following sections provide an analysis of the error induced by this compression and how
the error propagates through the application of several compressed operators.

4.2.2 Error of One Step Regression

When the size of the projections is smaller than the size of the minimal core set, we have the
implicit regression performed on a compressed representation. The update operators are
thus the result of compressed ordinary least-squares regression (COLS). There are several
bounds on the excess risk of regression in compressed spaces (Maillard and Munos, 2009,
2012; Fard et al., 2012, 2013). In this section, we assume the existence of a generic upper
bound for the error of COLS.

Assume we have a target function f(x) = x>w + b(x) where x is in a k-sparse D-
dimensional space, and b(·) is the bias of the linear fit. We observe an i.i.d. sample
set {(xi, f(xi) + ηi)}ni=1, where ηi’s are independent zero-mean noise terms for which the
maximum variance is bounded by σ2η, and xi’s are sampled from a distribution ρ. Let f̂d(x)
be the compressed least-squares solution on this sample with a random projection of size d.
That is, f̂d(x) = x>Φ>ŵd with

ŵd = (ΦX>XΦ>)−1(ΦX>)y ∈ Rd,

where X ∈ Rn×D is a design matrix, y ∈ Rn is a vector of training targets, and Φ ∈ Rd×D
is a random projection matrix. Define ‖g(x)‖ρ(x) =

√
Ex∼ρ(g(x))2 to be the weighted L2

norm under the sampling distribution. We assume the existence of a generic upper bound
function ε, such that with probability no less than 1− δ

‖f(x)− f̂d(x)‖ρ(x) ≤ ε(n,D, d, ‖w‖2, ‖x‖2ρ(x), ‖b(x)‖2ρ(x), σ
2
η, δ). (29)

The effectiveness of the compressed regression is largely dependent on how the ‖w‖‖x‖ρ(x)
term behaves compared to the norm of the target values. We refer the reader to the dis-
cussions in Maillard and Munos (2009) and Maillard and Munos (2012) on the ‖w‖‖x‖ρ(x)
term. In the case of working with PSRs, we have that the probability of the tests are often
highly correlated. Using this property, we will show that ‖w‖2 can be bounded well below
its size.
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In order to use these bounds, we need to consider the sparsity assumptions in our
compressed PSR framework. We formalize the inherent sparsity, discussed in previous
sections, as follows: For all h, PQ,h and PQ,ao,h are k-sparse. Given that the empirical

estimates of zero elements in these vectors are not noisy, for ∆x = P̂Q,h − PQ,h we have

that ∆x is k-sparse (with a similar argument for ∆y = P̂Q,ao,h −PQ,ao,h).

To simplify the analysis, in this section we define our Cao matrices to be slightly different
from the ones used in the described algorithm. By forcing the diagonal entries to be 0, we
avoid using the ith feature for the ith regression. This removes any dependence between
the projection and the target weights and simplifies the discussion. Since we are working
with random compressed features as input, all of the features have similar correlation with
the output, and thus removing one of them changes the error of the regression by a factor
of O(1/d). We can nevertheless change the algorithm to use this modified version of the
regression so that the analysis stays sound.

The following theorem bounds the error of a one step update using the compressed
operators. We use i.i.d. normal random projection for simplicity. The error bounds for
other types of random projections should be similar.11 Let [A]−i,∗ be matrix A with the
ith row removed. We have the following:

Theorem 1 Let H be a large collection of sampled histories according to ρ, and let Φd×|Q|

be an i.i.d. normal random projection: Φij ∼ N (0, 1/d). We observe noisy estimate P̂Q,h =

PQ,h+∆x of input and P̂Q,ao,h = PQ,ao,h+∆y of the output, where elements of ∆x and ∆y

are independent zero-mean random variables with maximum variance σ2x and σ2y respectively.

Let σ21 . . . σ
2
|Q| be the decreasing eigenvalues of Eρ(h)[PQ,ao,hP>Q,ao,h]. Choose 1 ≤ m ≤ |Q|

such that σ2m ≤ 1 and define ν =
∑|Q|

i=m+1 σ
2
i . For 1 ≤ i ≤ d, define

ui = ΦiP̂Q,ao,H(Φ−iP̂Q,H)†.

Define Cao to be a d× d matrix such that

(Cao)i = [ui,1,ui,2, . . . ,ui,i−1, 0,ui,i,ui,i+1, . . . ,ui,d−1].

Then with probability no less than 1− δ we have

‖Cao(ΦPQ,h)−ΦPQ,ao,h‖ρ(h) ≤
√
dε(|H|, |Q|, d, w2, x2, b2, σ2η, δ/4d), (30)

where

w2 = ‖Bao‖2(m+ 4
√
m ln(4d/δ)), (31)

x2 = ‖PQ,h‖2ρ(h), (32)

b2 = ν + 4
√
ν ln(4d/δ), (33)

σ2η =
4k ln(4|Q|/δ)

d
σ2y + w2σ2x. (34)

11. The core modifications necessary are analogous to those used made in Achlioptas (2001) to adapt the
Johnson-Lindenstrauss lemma to more general random matrices.
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The proof is included in the appendix. The main idea of the theorem is to use the
dependence and sparsity of the features to tighten the bound on the error of compressed
regression. When most of the variation in the PSR state can be explained using m linear
observations, we can substitute the ΦiBao target weights having norm O(

√
|Q|), with a

linear approximation having much smaller norm O(
√
m), at the expense of a small bias b.

The theorem also describes the overall noise combining the effects of ∆x and ∆y.

Theorem 1 has three main implications. One is that the complexity of the compressed
regression depends on how fast the eigenvalues drop for the minimal core set covariance
matrix. If the eigenvalues drop exponentially fast, as is observed empirically in our experi-
ments, we can guarantee a smaller regression error. Second, if the projection size is of order
O(k ln |Q|) we can control the variance of the combined noise term. Third, if we use the
sparse COLS bound of Fard et al. (2012, 2013), we can can show that regression of size
O(k ln |Q|) should be enough to decrease the overall estimation error at the expense of a
controlled bias.

The following corollary follows immediately from Theorem 1 by union bounding over all
action-observation pairs.

Corollary 2 Using the assumptions of Theorem 1, with probability no less than 1 − δ we
have, for all a ∈ A and o ∈ O,

‖Cao(ΦPQ,h)−ΦPQ,ao,h‖ρ(h) ≤
√
dε(|H|, |Q|, d, w2, x2, b2, σ2η, δ/(4d|A||O|)),

where w2 = maxao ‖Bao‖2(m + 4
√
m ln(4d/δ)), and other factors are as defined in Theo-

rem 1.

4.2.3 Error of the Compressed Normalizer

The c∞ operator is the normalization operator for the compressed space. Therefore, for
any history h, cT∞ΦPQ,h should equal Ph. The following theorem provides a bound over
the error of such a prediction:

Theorem 3 Let H be a large collection of sampled histories according to ρ. We observe
noisy estimate P̂Q,H = PQ,H + ∆x of input and PH = P̂H + ∆z of the output, where
elements of ∆x and ∆z are independent zero-mean random variables with maximum variance
σ2x and σ2z respectively. Define c∞ = (ΦiP̂Q,H)†PH. Then with probability no less than
1− δ we have∥∥∥c>∞(ΦPQ,h)−Ph

∥∥∥
ρ(h)
≤ ε(|H|, |Q|, d, ‖β∞‖2, ‖PQ,h‖2ρ(h), 0, σ

2
∞, δ),

where we define effective noise variance σ2∞ = σ2z + σ2x‖β∞‖2.

The proof is included in the appendix.

4.2.4 Error Propagation

Once we have the one step errors of compressed operators, we can analyse the propagation
of errors as we concatenate the operators. Define o1:n = o1o2 . . . on (and similarly for a1:n
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and [ao]1:n). We would like to bound the error between P(o1:n||a1:n) and our prediction
c∞CanonCan−1on−1 . . .Ca1o1c1.

Since the theorems in the previous sections were in terms of a fixed measure ρ, we have
to make distributional assumptions to simplify the derivations. Assume that we fit our
model using samples h ∼ ρ, imposing a distribution PQ,h ∼ µ. Note that as we increase
the size of a history h, the norm of PQ,h becomes smaller. We make the assumption that
for all 1 ≤ t ≤ n, for a history [ao]1:t ∼ ρt, the implied PQ,[ao]1:t is sampled from a scaled

version of µ (i.e., 1
st
PQ,[ao]1:t ∼ µ). Therefore ‖f(PQ,h)‖ρt(h) = ‖f(stPQ,h)‖ρ(h).

Theorem 4 Let ε and ε∞ be the bounds of Corollary 2 and Theorem 3 respectively, for a
sample H according to ρ and failure probability δ/2. Let ρn and its marginals ρn−1 . . . ρ1,
be distributions over histories of size n, n− 1, . . . 1 respectively, such that ‖f(PQ,h)‖ρt(h) =
‖f(stPQ,h)‖ρ(h) for all measurable f . With probability 1− δ

∥∥c∞CanonCan−1on−1 . . .Ca1o1c1 − P(o1:n||a1:n)
∥∥
ρn
≤ ε∞sn + ‖c∞‖ε

n−1∑
t=1

stc
n−t−1,

where c = maxa,o ‖Cao‖.

The proof is included in the appendix. Note that st is exponentially decreasing in t
(because longer tests are less probable). The norm of the update operators are expected
to be less than 1 (as they shrink the vector of test probabilities). Combining these two, we
expect the summation in the bound of Theorem 4 to be over a small exponential function
of n.

5. Planning with CPSRs

The learning algorithm presented in Section 3.2 facilitates the construction of accurate
predictive models in large complex partially observable domains. In this section, we outline
how to plan (near)-optimal sequences of actions using such a learned model. The planning
approach we employ was first proposed by Ong et al. (2012). In essence, the approach
substitutes a predictive state in place of an observable state in the standard fitted-Q learning
algorithm of Ernst et al. (2005).

Unlike point-based value-iteration PSR (PBVI-PSR) planning algorithms, the theoret-
ical convergence of the fitted-Q algorithm does not require that the PSR correspond to a
finite-dimensional POMDP. That is, existing error-bounds for PBVI-PSR require that the
PSRs used in planning correspond to some finite-dimensional POMDP (Izadi and Precup,
2008), whereas in general PSRs may have no corresponding finite-dimensional POMDP
(Denis and Esposito, 2008).12 In contrast, the fitted-Q approach only requires that the
input state-space be sufficient to describe the system, and PSRs satisfy this requirement,
meaning that the convergence results for fitted-Q carry over to the PSR setting (when an

12. It is worth noting, however, that the PSR-PBVI error bounds could possibly be modified to alleviate this
issue and that PBVI-PSR algorithms have been employed with considerable empirical success (Boots
et al., 2010; Izadi and Precup, 2008).
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exact PSR model is used) (Ernst et al., 2005).13 Moreover, the fitted-Q approach does
not explicitly require learning a model of rewards prior to the application of the planning
algorithm (i.e., the reward model is captured only through the Q-function). We found this
to be preferable to explicitly modelling the immediate rewards as a function of the CPSR
states prior to planning, as such an explicit model introduces an extra (and unnecessary)
level of approximation. In what follows, we briefly review the fitted-Q approach and provide
a high-level description of our planning algorithm.

5.1 Fitted-Q with CPSRs

Algorithm 1: Fitted-Q with CPSR

Inputs: A set D of tuples of the form (ct, at, rt, ct+1) constructed using a CPSR model,
where rt is a numerical reward; R, a regression algorithm; γ, a discount factor; and T , a
stopping condition
Outputs: A policy π

1: k ← 0
2: Set Q̂k(ct, a) = 0 ∀a ∈ A and all possible ct
3: repeat
4: k ← k + 1
5: Build training set, T = {(yl, il), l = 1, ..., |D|} where: il = (clt, a

l
t) and yl = rlt +

γmaxa Q̂k−1(c
l
t+1, a)

6: Apply R to approximate Q̂k from T
7: until T is met

output π, where π(ct) = argmaxa{Q̂k(ct, a)}

As stated above, fitted-Q with PSRs is analogous to the MDP case, with the predictive
state taking the place of the MDP state in Algorithm 1. The algorithm iteratively builds
more and more accurate approximations of theQ-function, which in our case maps predictive
states and actions to expected returns. In this work, the Extra-Trees algorithm is used as the
base regression algorithm (Geurts et al., 2006), as it is a non-linear function approximator
for which the fitted-Q convergence results hold (Ernst et al., 2005). For T , the termination
condition, we use an iteration limit (instead of an ε convergence condition), as this allows
for more accurate predictions of runtimes.

Letting Ψ(T ) be the expected number of iterations under stopping condition T and
assuming that the splitting procedure for nodes in the Extra-Trees algorithm takes constant
time, the computational complexity of this fitted-Q approach is (recalling the definitions of
Section 3.2)

O (Ψ(T )× L|Z|log (L|Z|)) , (35)

13. The error bounds for PSR-PBVI also require that an exact model is known. In general, current theoretical
results on PSR planning ignore the impact of estimation and/or approximation errors incurred during
model-learning, though empirical analyses (e.g., the work of Boots et al. (2010) and Section 6 of this
paper) suggest that the impact of such errors is small.

3596



Compressed Predictive States

which is a factor Ψ(T ) × log(L|Z|) greater than the complexity for the model-learning
algorithm of Section 3.2. In practice, we found Algorithm 1 to be several orders of magnitude
slower than the CPSR learning algorithm.

5.2 Combined Learning and Planning

Algorithm 2 specifies how CPSR model-learning and the fitted-Q planning algorithm are
combined at a high level. This general specification permits a variety of sampling and Q-
function approximation strategies. Specifically, it permits pure unbiased random sampling,
interleaving exploration and exploitation phases, or even the drawing of samples from some
arbitrary (e.g., expert) policy. Of course, if non-blind policies are used then the sample
distribution becomes biased (i.e., the samples are no longer i.i.d.), and the analysis of
Section 4 no longer holds.

Also note that the number of iterations used by the learner and planner need not be
identical. More specifically, more samples may be used to learn the CPSR model than are
used in planning. This is a pragmatic specification, as the CPSR learning algorithm can
efficiently accommodate orders of magnitude larger sample sets than the fitted-Q planner
(by Equations 19 and 35).

Algorithm 2: Combined learning and planning

Inputs: πs, a sampling policy; N , the number of sampling iterations; Im, the number
of trajectories to use in learning; and Ip, the number of trajectories to use in planning
(Im ≥ Ip)
Outputs: A CPSR model, C and policy π

1: D0 ← ∅
2: Initialize the CPSR model, C
3: for i=1 to N do
4: Sample Im trajectories, Zi, using πs
5: Update C using Zi
6: Sub-sample Ip trajectories from Zi and use C to construct a tuple-set Di
7: Di ← Di ∪ Di−1
8: Apply Algorithm 1 with Di to learn a policy, πi
9: [Optional] Update πs (e.g., using πi)

10: end for
output C and πN

6. Empirical Results

We examine empirical results pertaining to both the model quality of compressed models
and the proficiency of model-based planning. The goal of this analysis in the model-quality
setting is to elucidate (1) the empirical cost (in terms of prediction accuracy) of performing
compression (if any), (2) the compute-time reduction engendered by the use of compression,
and (3) the impact of the implicit regularization induced by performing compression. We
also provide model-quality results explicitly comparing prediction performance when histo-
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ries are compressed versus uncompressed, showing that history compression has a negligible
effect empirically (and justifying the simplifying assumption that Φ>HΦH = I in Section 4).

In the planning setting, we again seek to elucidate the empirical impact of performing
compression, and we do so using three different partially observable domains. First, we use a
simple synthetic robot navigation domain (identical to that used in the model-quality exper-
iments) to compare the planning performance of agents trained with CPSR models, agents
trained with uncompressed TPSR models, and memoryless (model-free) agents, which serve
as a baseline. Next, we examine a massive partially observable domain that is intractable
for classic POMDP-based approaches, demonstrating how the use of compression facilitates
learning and planning in settings where it would be otherwise intractable. We also pro-
vide a qualitative comparison to the Monte-Carlo AIXI algorithm (Veness et al., 2011), a
related model-based reinforcement learning approach, using this domain. Lastly, we apply
CPSR based learning and planning to the difficult real-world task of adaptive migratory
management (Nicol et al., 2013). In this adaptive migratory management problem, a se-
quential decision-making agent must learn a model of how a certain bird species migrates
and how their migration patterns are adversely affected by rising sea-levels (and must do
so without prior domain-specific knowledge). Using this learned model the agent must
determine an optimal policy for protecting different locations along the birds’ migratory
route so as to minimize population decline (Martin et al., 2007; Nicol et al., 2013). This
difficult real-world domain, which builds upon hand-crafted simulators and ecological data
sets (Iwamura, 2011; Nicol et al., 2013), demonstrates both the benefits of compression (in
that it is computationally intractable for uncompressed TPSR) and the stark benefits of
model-based planning over memoryless (model-free) planning.

6.1 Projection Matrices

In this analysis, we examine three different classes of random projection matrices: spherical,
Rademacher, and hashed. The spherical projection matrices contain random Gaussian dis-
tributed entries and are identical to those used in Hamilton et al. (2013). The Rademacher
are a related class of random matrices where each entry is an independent Rademacher
variable; these matrices also satisfy the JL lemma (Baraniuk and Wakin, 2009) and can
afford additional efficiencies with low level implementations that exploit the fact that only
additions and subtractions are used in the matrix multiplications (this optimization is not
used here) (Achlioptas, 2001). The hashed random projection matrices induce a feature-
mapping analogous to random hashing; each column of the random projection matrix has
a 1 in a random position and the other entries are zero. These random hashing matri-
ces do not directly satisfy the JL lemma, but they have been shown to preserve certain
kernel-functions and perform extremely well in practice (Weinberger et al., 2009; Shi et al.,
2009).

6.2 Domains

The domains used are based upon previous work on planning with PSRs and on model-based
reinforcement learning in large, complex partially observable domains.
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Figure 1: Graphical depiction of ColoredGridWorld. The S denotes the start position and
the target denotes the goal.

6.2.1 ColoredGridWorld

The first domain, ColoredGridWorld, is conceptually similar to the simulated robot nav-
igation domains commonly used in the PSR literature and is a direct extension of the
GridWorld domain used in Hamilton et al. (2013) and Ong et al. (2012). The environment
is a 47-state maze with coloured walls. The agent must navigate from a fixed start state to
a fixed goal state using only aliased local observations. The action space consists of moves
anywhere in the four cardinal directions (moving into walls produces no effect). To simulate
noise in the agent’s actuators, actions fail with probability 0.2, and if this occurs, the agent
moves randomly in a direction orthogonal to that which was specified. The observation
space consists of whether or not the agent can see coloured walls in any of the 4 cardinal
directions (one observation per wall). There are three possible colors, so there are 3 possible
observations per wall and thus 81 possible observations in total. A reward of 1 is returned
at the goal state (resetting the environment), and no other states emit rewards.

Though simple, this domain is quintessentially partially observable in that it is impos-
sible to learn how to reach the goal without incorporating memory. Moreover, the added
complication of coloured walls exponentially increases the cardinality of the observation
space, leading to many possible tests and histories. In essence, the agent cannot know a
priori whether the colouring is pertinent to the problem, so it vastly complicates the learning
problem.

6.2.2 Partially Observable PacMan

The second domain used is based upon the partially observable PacMan domain, denoted
PocMan, first proposed by Silver and Veness (2010). It is an extremely large partially
observable domain with on the order of 1056 states (Veness et al., 2011). The basic dynamics
follow that of the video-game PacMan: an agent must navigate a maze-like environment
starting from a fixed start-point, collecting food and avoiding coming in contact with any
of four ghosts.

In this work, we examine two versions of the domain. The first version is a replica of
the PocMan domain used by Veness et al. (2011) in their work on a Monte Carlo AIXI
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Figure 2: Graphical depiction of S-PocMan. The white dots denote food and the white
annuli denote power-pills. The yellow PacMan figure denotes the fixed starting
position

approximation. In the second version, which we call S-PocMan, we further complicate the
environment by dropping the parts of the observation vector that allow the agent to sense
in what direction food lies, and we sparsify the amount of food in the environment. In the
original domain food was placed in each position with probability 1

2 ; in S-PocMan there
are only 7 pieces of food in total, each in a fixed position. The reason for examining this
more difficult version of the domain is that, as summarized in Section 6.4, we found that a
memoryless controller was able to perform extremely well on the original PocMan, achieving
results approaching that of the AIXI algorithm. In other words, simply treating the original
PocMan domain as if it were fully observable led to very good results. This seems to be
due to the fact that the food rewards were plentiful and fully observable. In S-PocMan
we make the problem more partially observable in order to demonstrate the usefulness of a
model-based approach.

6.2.3 Adaptive Migratory Management

The last domain we examine is based upon the ecological task of adaptive migratory man-
agement (AMM ). The specific goal of AMM is to use intervention to protect certain regions
in a bird-species’ migratory route. In this work, we focus on the Lesser Sand Plover, which
is one of many species that uses the East-Asian-Australasian (EAA) migratory route. While
migrating, the Lesser Sand Plover stop at staging sites where they feed on invertebrates and
gather energy (Martin et al., 2007). These staging sites are located at intertidal mudflats
that are especially susceptible to rising sea levels (Iwamura, 2011). The sites can be pro-
tected via intervention, but limited resources within the conservation community means that
protection can only be implemented at a limited number of sites within a particular year.
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By phrasing the task of protecting these intertidal areas as a sequential decision-making
problem, the hope is to learn an optimal strategy for intervention.

In Nicol et al. (2013) the AMM problem is formalized, and a simulator based data-
set is provided (for a number of species including the Lesser Sand Plover). At its core
the simulator uses a network-flow model for the migratory routes augmented with hand-
crafted models for sea-level rises, population declines, and other relevant elements. See
Nicol et al. (2013) for a complete description. In this work, we use data generated from
the simulator, and we attempt to both learn a succinct model of the domain and optimize
decisions using this learned model (i.e., we do not assume access to information contained
within the internal simulator state).14

Formally, at each time point (which roughly corresponds to a year) the decision-making
agent receives a vector of observations, where the first entry corresponds to the population
level at the breeding site/node and the next three entries correspond to the protection levels
at the three intertidal sites/nodes on the Lesser Sand Plover’s migratory route. There are
four discretized population levels and three protection levels, corresponding to protection
against three increasing states of sea-level rise. There are thus 108 unique possible obser-
vations. At each time-step the decision-making agent must increase the protection level at
one of the non-breeding nodes, and thus there are three possible actions at each time-step.
(If the agent opts to protect a node which is already maximally protected then the action
has no effect). Internal dynamics of the underlying system-model determine how protec-
tion levels decline over time, but none of this information is available to the agent. At the
beginning of a simulation (i.e., in the fixed start-state) the protection and population levels
are set to their minimal discretized values.

6.3 Model Quality Results

We examined the model quality of different CPSRs and an uncompressed TPSR on the
ColoredGridWorld domain. Sample trajectories were generated using a simple ε-greedy
exploration policy, where the non-random actions were determined by a policy learned via
a memoryless controller. All models were set with d′ = 5, where d′ is final model dimension
(from Section 3.2) set after performing SVD; however, singular values below a tolerance of
10−6 were also discarded. All tests, τi, with |τi| ≤ 7 were included in the estimation process
(including longer length tests did not improve performance).15 For the CPSR models, we set
dT = dH, as preliminary experiments did not reveal any significant benefits to using dT 6= dH
and examined projection dimensions in the range [25, 75]. Only the best performing size
(determined through cross-validation) is reported. All models used 10000 train trajectories
(of max length 13) and were evaluated with 10000 trajectories. The PacMan-style domains
and the AMM domain were not examined in this model-quality context as naive TPSRs

14. Note that for the benchmark results presented in Nicol et al. (2013), they use knowledge of the underlying
simulator state and cast the planning problem in the POMDP framework, while in this work we solve
both the learning and planning problems (rather than just the planning problem).

15. If a particular test was never encountered in the training data, however, it was discarded, as such tests
lead to singularities in the observable matrices.
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Figure 3: Model-quality results on the ColoredGridWorld domain. Plot shows the log-
likelihood of the test data given the different models as the prediction horizon
is increased. The numbers adjacent to the CPSR projection types correspond to
the compressed dimension used. 95% confidence interval error bars are too small
to be visible.
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Figure 4: Model build times (on a log-scale) for the different model types on the Colored-
GridWorld domain. Compressed dimension sizes are listed next to the model
names. Times do not include time taken to build the training set. 95% confi-
dence interval error bars are too small to be visible.

exhausted memory limits when tests of length longer than 1 were used, making a rigorous
comparison is infeasible.16

16. Experiments were run on a machine with a 8-core 3.2 GHz Intel Xeon processor (x64 architecture) and
8GB of RAM.
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Figure 3 plots the average log-likelihood of the models as the prediction horizon (i.e.,
length of the sequences to predict) is increased. The log-likelihood for a single sequence is
computed by taking the logarithm of the probability obtained via (1), and this likelihood
is averaged over all sequences in the test set. From this figure, we see that the compressed
models are not only competitive with the uncompressed TPSR, they actually outperform
TPSR at longer prediction horizons. We conjecture that this is due to the regularization
induced by the use of random projections. Figure 4 plots the build times for the different
models, showing that the compressed models can be built in a fraction of the time required
to build the uncompressed TPSR.

Figure 5 shows a focused experiment examining the impact of compressing histories,
compared to only compressing tests as was done in Hamilton et al. (2013). These results
show log(L(θ)) − log(L(θHC)), the difference between the model-likelihood for a model
where histories are not compressed (θ) and where histories are compressed (θHC). Both the
predictive models are constructed using spherical projection matrices and using (identical)
samples generated from the ColoredGridWorld domain (with the experimental set-up de-
scribed above). As is evidenced in the plot, there is only a small difference in likelihood
between the two models (cf. the likelihood difference seen in Figure 3), and in fact, the
model with compressed histories does slightly better for the first few time steps.
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Figure 5: Difference in log-likelihood between a model where histories are not compressed
and a model where histories are compressed.

6.4 Planning Results

Next, we apply the full learning and planning approach (Algorithm 2) to the domains
ColoredGridWorld, PocMan, S-PocMan, and AMM.

In all experiments, we used 10000 random sampled trajectories to build the models and
again used dT = dH. For planning, we used Ip = 1000 with N = 1 and a random sampling
strategy; this represents the standard unbiased batch-learning setting (Section 7 discusses
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Figure 6: Average return per episode achieved in the ColoredGridWorld domain using dif-
ferent models and the baselines. Compressed dimension sizes are listed next to
the model names. 95% confidence interval error bars are shown.

the possibility of using more complex sampling strategies). And for the fitted-Q algorithm,
we used 100 fitted-Q iterations, one Extra-Tree ensemble of 25 trees per action, and the
default settings for the Extra-Trees (Geurts et al., 2006). As a baseline, we examined
the performance of a memoryless controller on the domains. This controller is analogous
to treating the domains as fully observable and running the standard fitted-Q algorithm
of Ernst et al. (2005). In order to achieve a fair comparison, the memoryless controller
is permitted to use samples that would otherwise be used for model-learning in order to
refine its policy (i.e., the memoryless baseline uses the same total number of samples in the
experiments as the model-based methods). The use of this baseline is not arbitrary, as its
success provides an empirical measure of how partially observable a domain is with respect
to planning; if a domain is easily solved by the memoryless controller then it is nearly fully
observable in that immediate observations are sufficient for determining near-optimal plans.
We also used a simple random planner which selects actions uniformly randomly as a second
baseline.

6.4.1 ColoredGridWorld

For ColoredGridWorld, the models examined were identical to those described in the model
quality experiments above. A discount factor of γ = 0.99 was used for this domain.

Figure 6 details the performance of the different algorithms on the ColoredGridWorld
domain. For this domain, the hashed CPSR algorithm achieved the best performance while
the TPSR algorithm performed second-best. All the PSR-based approaches vastly out-
performed the memoryless-controller baseline. This is expected, as the ColoredGridWorld
problem is strongly partially observable.
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6.4.2 Partially Observable PacMan

−300

−200

−100

0

Hashed−250 Memoryless Rademacher−250 Random Spherical−250
Model

A
v
e

ra
g

e
 R

e
tu

rn
 p

e
r 

E
p

is
o

d
e

(a) PocMan
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Figure 7: Average return per episode achieved in the PocMan (a) and S-PocMan (b) do-
mains using different models and the baselines. Compressed dimension sizes are
listed next to the model names. 95% confidence interval error bars are shown.

For both PocMan and S-PocMan, we set d′ = 25 and examined compressed dimensions
in the range [250, 500] (selecting only the top performer via a validation set); no TPSR
models were used on these domains, as their construction exhausted the memory capacity
of the machine used. Following Veness et al. (2011), for these domains we use γ = 0.99999
as a discount factor.

Figure 7 details the performance of the CPSR algorithms on the PocMan and S-PocMan
domains. In these domains, we see a much smaller performance gap between the CPSR
approaches and the memoryless baseline. In fact, in the PocMan domain, the memoryless
controller is the top-performer. This demonstrates, first and foremost, that the PocMan
domain is not strongly partially observable. Though the observations do not fully determine
the agent’s state, the immediate rewards available to an agent (with the exception of reward
for eating the power pill and catching a ghost) are discernible through the observation vector
(e.g., the agent can see locally where food is). Thus, the memoryless controller is able to
formulate successful plans despite the fact that is treating the domain as if it were fully
observable. Moreover, a qualitative comparison with the Monte-Carlo AIXI approximation
(Veness et al., 2011) reveals that the quality of the memoryless controller’s plans are actually
quite good. In that work, they use a slightly different optimization criteria of optimizing
for average transition reward, and with on the order of 50000 transitions they achieve an
average transition reward in the range [−1, 1] (depending on parameter settings). With
on the order of 250000 transitions they achieve an average transition reward in the range
[1, 1.5]. In this work, the memoryless controller achieves an average transition reward of
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Figure 8: Average discounted reward per episode (i.e., average return per episode) achieved
in the AMM domain using different methods over 100000 test episodes (each of
length 50). The numbers beside the CPSR method names denote the projected
dimension size. 95% confidence intervals are too small to be visible.

−0.2 (despite the fact that it is actually optimizing for average return per episode), and it is
thus, competitive given the same magnitude of samples, as approximately 50000 transitions
were used in this work. It is also important to note that PSR-type models may be combined
with memoryless controllers as memory PSRs (described in Section 7.2), and so it should
be possible to boost the performance of the CPSR models to match that of the memoryless
controller in that way.

Importantly, in S-Pocman where part of the observation vector is dropped and the
rewards are sparsified, we see that the top-performer is again a CPSR based model (which
in this case uses spherical projections). This matches expectations since the food-rewards are
no longer fully discernible from the observation vector, and thus the domain is significantly
less observable. It is also worth noting that building naive TPSRs (without compression
or domain-specific feature selection) is infeasible computationally in these PacMan-inspired
domains, and thus the use of a PSR-based reinforcement learning agent (via the compression
techniques used) in these domains is a considerable advancement.

A final observation is that the performance is quite sensitive to the choice of projection
matrices in these results. For example, in the S-PocMan domain, the Rademacher projec-
tions perform no better than the memoryless baseline, whereas for PocMan the Rademacher
outperforms the other projection methods. The exact cause of this performance change is
unclear. Nevertheless, this highlights the importance of evaluating different projection tech-
niques when applying this algorithm in practice.
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Figure 9: Average total (undiscounted) reward per episode achieved in the AMM domain
using different methods over 100000 test episodes (each of length 50). The num-
bers beside the CPSR method names denote the projected dimension size. 95%
confidence intervals are too small to be visible.

6.4.3 Adaptive Migratory Management

We used a discount factor of γ = 0.99 for the AMM domain. For model-learning, we
set d′ = 10 and examined compressed dimension in the range [10, 100]. The trajectories
used during learning are all of maximum length 50 (the simulation may terminate earlier
if all the birds perish). Note that since the AMM domain is non-stationary (Nicol et al.,
2013), the model-learning algorithms must incorporate histories of length up to 50 (i.e., the
entire trajectory) (Boots et al., 2010), making the history dimension extremely large (i.e.,
≈ 100000) and making uncompressed PSR learning infeasible. Tests up to length 4 were
used for this task.

The results obtained are summarized in Figures 8 and 9. Figure 8 shows the average
sum of discounted rewards obtained using each method while Figure 9 shows the average
total (i.e., undiscounted) sum of rewards obtained by each method. Both these test metrics
are included as the discounted return is what the fitted-Q algorithm optimizes for while the
average total return is important from an intuitive perspective in that ecological conser-
vationists do not necessarily discount the future. (Note, however, that the discount factor
is necessary algorithmically for convergence since this domain technically has an infinite
horizon).

Clearly, the CPSR methods are the top-performers with respect to both metrics. In fact,
the memoryless baseline does no better than random. We also note that returns achieved by
all methods are quite high. The cause of the high return and the fact that the memoryless
does no better than random are closely related. Specifically, in the domain all actions are
positive in that the agent must increase protection somewhere at each time-step. (The
simulator does not allow for no action to be taken). Thus, the random policy still leads to
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reasonable results since it will tend to spread its protection actions out uniformly randomly
among the candidate nodes. Moreover, without building a model and with access only to
the observation vector at each time step, a reasonable strategy is to allocate protection
to areas that have relatively low protection levels, compared to the other nodes. That is,
a reasonable memoryless strategy is also to simply spread out the protection among the
candidate nodes, since without knowledge of the underlying dynamics one must assume
that all nodes are equal. Thus, intuitively the optimal memoryless strategy should be close
to uniformly random, and this explains the similarity in scores between these two baselines.

Between the different CPSR methods, the Rademacher-projection based method per-
formed the best with the spherical-projection method only performing slightly worse. This
result is expected in that there are stronger theoretical guarantees for these methods com-
pared to the hashed projection method.

Lastly, we see that the results are consistent across the two metrics. Interestingly,
however, the performance increase between the top CPSR method and the random baseline
is greater for the total (undiscounted) reward metric. For that metric, the total reward
obtained via the top-performing CPSR method is 4.6% greater than the baseline, whereas
for the discounted metric the top-performing method scores 3.7% greater than the random
baseline. This makes sense in that the CPSR models should benefit more at longer horizons,
since (1) it takes time for the CPSR model to incorporate observed information into its
predictions and (2) the non-stationary in the domain, which is captured via the CPSR
model, is only a factor at longer time-scales (Nicol et al., 2013).

7. Discussion

The CPSR approach provides a new avenue for model-based reinforcement learning where
agents must formulate policies in large, complex partially observable domains without access
to a fully-specified prior system model (i.e., where the system model must be learned prior
to planning). The compressed learning algorithm allows accurate approximations of PSR
models to be constructed in a memory and time efficient manner, and the use of random
projections regularizes the learned solutions, preventing high variance models (over-fitting)
and potentially leading to more accurate results. We elucidated theoretical guarantees
bounding the induced approximation error of this model-learning approach, showing that
the low-dimensional embeddings of the models retain predictive accuracy. In addition,
we proposed a planning approach which exploits these compressed models in a principled
manner, allowing for high-quality plans to be constructed without prior domain knowledge.
Finally, we outlined how model-learning and planning can be combined at a high-level.

The empirical results we obtained demonstrate the efficacy of this approach and delin-
eate domains in which its use is beneficial. The model quality experiments demonstrate
that CPSR models achieve predictive accuracy competitive to that of uncompressed mod-
els, while taking a fraction of the runtime, and the planning results demonstrate that these
models can be exploited by efficient planners, providing a novel and powerful framework for
model-based reinforcement learning. Moreover, the results highlight the fact that the ben-
efits of such a model-based approach are most stark in domains that are not only partially
observable in the traditional sense but that are also strongly partially observable in that
the Q-function (or a good approximation of it) is not discernible from the observation vec-
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tors. In other words, the results demonstrate that aliased observations (and an unobserved
hidden state) alone do not necessitate the need for a model-based learning algorithm. A
model-based approach only becomes necessary when the observations are not sufficient for
learning a reasonable approximation of the Q-function.

7.1 Practical Concerns

The implementation of complex RL frameworks often reveals practical issues that are not
immediately apparent given formal descriptions. In order to facilitate the use of the CPSR
algorithm in applications, we outline some pertinent practical issues that arise while imple-
menting the CPSR algorithm and describe our solutions.

7.1.1 Selecting the Projection Matrices

First, it is necessary to reiterate the sensitivity of the approach with respect to both the
projection dimension and type of projection used. Empirically, we found that the results
could be quite sensitive to these parameters, though this was only the case for some domains.
For example, selecting a projection dimension that is too small may lead to suboptimal
(near-random) performance. This issue is further exacerbated by the fact that the true
dimension of the underlying system is unknown.

The cause of the sensitivity with respect to the projection size is quite evident (smaller
dimensions lose information but provide more regularization). However, the underlying
cause of the differing performance between the different projection types is not as clear. One
would expect the hash-type projection matrices to perform differently than the Rademacher
and spherical projections, since the hash-type matrices do not satisfy the JL lemma, but
we witnessed substantial variation between all three projection types, especially on the
PacMan-type planning domains. Moreover, for the ColoredGridWorld domain, the differ-
ence between the projection types was more stark for planning performance compared to
prediction performance.

The results thus indicate that planning performance is more sensitive to the choice of
the projection matrix (compared to prediction performance). One explanation for this is
simply that small discrepancies in the prediction performance of the models are amplified
when agents must plan using the predictive models. The differing results obtained using
the different projection matrices may then be due to the fact that a coarse-grained search
(necessitated by computational requirements) for the compressed dimension-size was used
and that different random projections may be optimal for slightly different projection sizes
(Achlioptas, 2001). For example, a Rademacher projection may be near optimal at one
point on the coarse-grained search while a spherical projection may be optimized at a point
not included in the coarse-grained search. The slight differences in model-quality induced
by the coarse-grained search would then propagate and lead to large variations in planning
performance.

In order to cope with the sensitivity of the CPSR approach with respect to the projec-
tion sizes and dimension, we recommend using multiple phases of grid search (starting with
exponentially separated values). Moreover, it is useful to narrow down the size-range for
the projections using model-quality experiments (before performing hyperparameter opti-
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mization for planning), since model-quality experiments are not as computational expensive
(compared to planning experiments).

7.1.2 Improving Efficiency by Caching

In Section 3.2 we defined the projection operators via the functions φT : T → RdT and φH :
H → RdH . This specification engenders a number of benefits. Specifically, the full projection
matrices do not need to be held in memory and the number of tests and histories do not
need to be specified in advance. There is a runtime penalty associated with the technique,
however, as the mappings must be recomputed each time a particular test or history is
encountered while iterating over the sample trajectories. In order to ameliorate this issue,
while retaining the benefits of specifying the projections as functions, we implemented a
least-recently-used (LRU) cache. By caching the mappings for frequently encountered tests
and histories, we improved the empirical runtime of the algorithm considerably.

7.1.3 Numerical Stability Issues

At its core, the CPSR algorithm relies on standard linear algebra techniques, namely SVD
and matrix inversions, which are prone to numerical stability issues. If the matrices upon
which these operations are performed are ill-formed, suboptimal results will be obtained (or
the algorithm will simply fail). In this work, we found one common situation where such
stability issues arise.

Since we do not normalize the probability estimates in Section 3.2, the singular values
of Σ̂T ,H in (15) grow with the size of the training set. This leads to stability issues when
inverting the matrix of singular values in order to compute the implicit pseudoinverse in (17)
and (18). This stability issue can be alleviated by normalizing the probability estimates, or
more generally, by scaling Σ̂T ,H by a small constant. Since this constant cancels out during
learning, it can be picked arbitrarily, but it should be chosen such that the magnitude of the
values in Σ̂T ,H are near unity. The most straightforward approach is to simply normalize
the probability estimates, though this may not always suffice (e.g., if there are extremely
unlikely events, the normalizer may make certain entries too small leading to further stability
issues). We also empirically observed that setting d′ < dT and/or removing singular values
below a certain threshold (a standard technique) helped with numerical stability.

7.1.4 Q-function Approximation and Sampling Strategies

Algorithm 2 in Section 5 permits a wide-variety of sampling strategies, and the sampling
strategy used implicitly constrains the Q-function approximation obtained. In this work,
we used an unbiased random sampling strategy in the batch setting. That is, we collected
a large batch of random samples, which we used to both learn a model and construct plans.
We opted for this framework as (1) our simulators were designed for the batch setting and
(2) the theoretical results of Section 4 assume a blind (random) sampling strategy is used.

We did, however, experiment with a goal-directed sampling approach (Ong et al., 2012),
where phases of exploration and exploitation are interleaved. In the goal-directed paradigm,
a number of mini-batch sampling iterations are used, and the sampling policy (πs) is updated
at each iteration to be ε-greedy over the agent’s current policy (πi). Ong et al. (2012)
found that this approach led to better performance in the small-sample setting. In our
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experiments, where we used larger numbers of samples (on the order of 10000), we found
that the goal-directed approach did not improve over random sampling and, in fact, often
led to worse results and numerical instabilities. In particular, the bias in the sampling
strategy led to an imbalance in the Σ̂T ,H matrix in that certain entries dominated in terms
of magnitude. As a result of this imbalance, the SVD in (15) became unstable, and poor
results were obtained. Such stability problems are likely to be an issue whenever biased
sampling strategies are used in the large-sample batch setting. However, in online or small
sample settings, such strategies will likely lead to performance increases due to the fact that
their exploration is myopic and focuses on areas of the state-space relevant to planning (as
shown by Ong et al., 2012).

7.1.5 Compressing Histories

The theoretical analysis of Section 4 assumes that ΦH has orthonormal columns. However,
in order to obtain maximal computational benefits, it is necessary to use a compressive ΦH,
i.e. a ΦH that acts as a feature selector on histories. In fact, for massive domains such
as the PacMan-style domains, compressing histories is necessary for tractable learning and
planning.

Viewing CPSR learning from the perspective of regression (as was done throughout
this paper), the compression of histories is equivalent to compressing the samples used for
regression; that is, it is equivalent to linearly mixing the samples. More formally, we use
the transformation

y = X>w + η → ΦHy = ΦHX>w + ΦHη,

where as usual X is a design matrix, w a vector of regression weights, y a vector of targets,
and η a vector of noise terms. Intuitively, we can view this projection by ΦH as roughly
averaging over training samples. The number of samples for the regression will then be
reduced, but the averaged samples will have reduced (maximum) variance in their noise
terms.

Of course, in this work, we use random ΦH matrices, which do not correspond directly
to taking averages over samples. The most important implication of this is that the noise
terms of the new combined samples are not independent. This more complex setting has
been analyzed in detail by Zhou et al. (2007) (for random Gaussian matrices). In that
work, they focus on the more specific setting of l1 regularized regression, and they prove
a number of important results. Of particular relevance is Claim 4.3, which shows (under
certain conditions) that the entry-wise discrepancy between Q>Q and Q>Φ>ΦQ decreases
asymptotically to zero almost surely, where Q ∈ Rn×m and Φ ∈ Rd×n is a random Gaus-
sian matrix defined as in Theorem 1. This key result facilitates bounding the discrepancy
between the compressed training error and the true error of the regressor and does not rely
on l1 regularization assumptions. We refer the interested reader to that work for detailed
proofs.

Finally, we reiterate that in this work the compression of histories is a computational
necessity, as it allows us to scale the learning algorithm to domains that would be intractable
otherwise. And empirical investigations in Section 6 show that the compression of histories
to dH = dT introduces only a small amount of error during model-learning.
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7.2 Related Work

The CPSR algorithm is closely related to work on using features or kernel embeddings with
PSRs (Boots et al., 2010; Boots and Gordon, 2011; Boots et al., 2013), where features of
tests, histories, and/or observations are employed. Indeed, one view of the CPSR learning
approach is that it is an instantiation of the feature-based learning approach where prin-
cipled random features are employed. However, this view is limited in the sense that the
random features used here facilitate an analysis in terms of compression, whereas with other
feature-based PSR methods it is simply assumed that the specified features are sufficient to
capture the structure of PT ,H; that is, the standard feature-based methods assume features
that are not compressive (Boots et al., 2010; Boots and Gordon, 2011; Boots et al., 2013).

This distinction of whether or not features are assumed as compressive also highlights the
differing motivations between existing feature-based PSR learning and the CPSR approach:
in the CPSR approach, compressive random features are employed to increase the efficiency
and scalability of learning, whereas in other works (e.g. Boots et al., 2010; Boots and
Gordon, 2011; Boots et al., 2013) the features are used to facilitate learning in domains
with continuous or structured observation spaces.

It should be noted, however, that since the general PSR learning framework assumes
discrete observations, decomposing a continuous domain via feature extraction is necessary
for learning in that setting. Moreover, Boots et al. (2013) shows how the well-known
“kernel trick” can be employed to learn in feature-spaces of infinite dimension. The penalty
associated with this kernel embedded approach is that learning scales cubically with the
number of training examples, leading to high computational overhead (Boots et al., 2013).
Boots and Gordon (2011) show how to partially alleviate this cost by using random features
to approximate certain kernels, a technique that also relies on random projections (though
not in the compressed sensing setting).

In a similar vein, the CPSR-based planner is closely related to the goal-directed planning
and learning approach of Ong et al. (2012). The primary difference between our work
and this goal-directed approach is that we present a more general combined learning and
planning framework, which accommodates the use of a wide variety of sampling strategies.

Beyond these works, our approach bears similarities to the memory PSR (mPSR) ap-
proach of James et al. (2005), which uses a type of hybrid PSR-MDP model to reduce
computational costs and increase predictive accuracy, and the hierarchical PSRs (HPSRs)
of Wolfe and Singh (2006), which use the option framework (Sutton et al., 1999) to increase
the predictive capacity of PSRs. Importantly, the improvements suggested by both these
approaches are not incompatible with our compressed learning algorithm.

Our approach also shares similarities with certain model-based reinforcement learning
algorithms, which use adaptive history-based techniques. Examples of these algorithms
include U-Tree (McCallum, 1996) and the Monte-Carlo AIXI approximation (Veness et al.,
2011). These approaches share the motivation of developing agents that can learn a model
of dynamical system and plan using this model. They differ, however, in the instantiation
of their model-based approach, as they use an adaptive history-based approach, which
intuitively corresponds to learning mixtures of different k-order MDPs (where k varies
adaptively). A key aspect of these approaches is focusing the model-learning on areas of
the state-space relevant to achieving goals (similar to the goal-directed sampling routine)
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(McCallum, 1996; Veness et al., 2011). Thus, a fundamental difference between Monte-
Carlo AIXI-like approaches and the one proposed here is that they efficiently learn myopic
models, necessarily constrained by the planning aspect of the problem, whereas in this
work we retain the option of learning full-unbiased models of domains (i.e., our model-
learning may be decoupled from planning). One implication of this is that the models
learned via the CPSR learning approach may be reused in different planning contexts.
However, a disadvantage of learning complete (i.e., full and unbiased) models is that it can
be impractical in very large and complex domains.

7.3 Future Directions

Given the above discussion, an interesting direction for future work would be an analysis
of the inductive bias associated with both the PSR and Monte-Carlo AIXI paradigms.
Though these methods bear similarities, their theoretical motivations are quite distinct:
PSRs being motivated by the theory of observable operators while certain AIXI-like methods
have information-theoretic (and/or Bayesian) motivations (Veness et al., 2011). Recently,
there have been a number of theoretical advancements in the understanding of observable
operator methods, such as the local loss formulation of Balle et al. (2012) and the method
of moments formulation of Anandkumar et al. (2012). These advancements could serve as
tools in such an analysis. Perhaps the most interesting question in this area is understanding
the regularization induced by these different paradigms (e.g., due to the restriction of the
model classes). For example, the Monte-Carlo AIXI method explicitly penalizes model
complexity, while this does not explicitly factor into the optimization of PSR-type methods
(besides through the hyper-parameter selection of the model-size).

Another interesting avenue for the continuation of this work is exploring the use of
different optimization frameworks during learning. In this work, we implicitly use the
standard least-squares objective when solving the pseudoinverse in (17) and (18). However,
there is no a priori reason to believe that this is the optimal formulation, and in fact,
promising results have been obtained by modifying this optimization (e.g., through convex-
relaxation) (Balle et al., 2012). Moreover, it is possible that alternative formulations may
reveal novel regularization strategies (e.g., regularization on the implicit observable-operator
structure) and additional algorithmic efficiencies.

Lastly, the framework presented here provides the necessary ingredients for applying a
CPSR-based learning and planning framework to difficult real-world application problems,
such as robot navigation problems similar to those solved by U-tree-based approaches (Mc-
Callum, 1996). Of course, such applications would introduce certain engineering issues not
highlighted here. In particular, the sampling strategy, projection size, and projection type
would necessarily be constrained by the problem domain and by hardware limitations; for
example, it may be worthwhile to use highly optimized Rademacher projections. Moreover,
in domains with extremely large action and observation dimensions, using a distributed
implementation (e.g., of Equation 18 in the learning algorithm) would likely engender sig-
nificant computational benefits. And, in domains with continuous observations, it would
be necessary to combine discretization or kernel-based feature extraction with the CPSR
compression techniques. These engineering issues, however, should not necessitate altering
the core of the CPSR approach.
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Appendix A.

A.1 Proof of Theorem 1

Proof With eigenvalue decomposition we have Eρ(h)[PQ,ao,hP>Q,ao,h] = VDV>, where D
is the diagonal matrix containing the eigenvalues and V is an orthonormal basis. Let Im
be a |Q| × |Q| matrix with the first m diagonal elements set to 1 and 0 elsewhere. For
all 1 ≤ i ≤ d, define [Φ̃]i,∗ = [Φ]i,∗VImV> and [Φ′]i,∗ = [Φ]i,∗V. Note that since V
is an orthonormal basis and [Φ]i,∗ is i.i.d. normal, [Φ′]i,∗ will also have an i.i.d. normal
distribution with the same covariance.

We wish to substitute [Φ]i,∗ with [Φ̃]i,∗ which has a small norm and introduces a small
bias. We first bound the norm of [Φ̃]i,∗ as follows. With probability no less than 1 − δ/4
for all 1 ≤ i ≤ d

‖ ˜[Φ]i,∗‖2 = [Φ]i,∗VImV>VImV>[Φ]>i,∗

= [Φ′]i,∗Im([Φ′]i,∗)
> =

m∑
j=1

([Φ′]ij)
2

≤ m+ 4
√
m ln(4d/δ). (36)

The tail bound in last line is union bounding over a corollary of Lemma 1 in Laurent
and Massart (2000). The bias induced by using ˜[Φ]i,∗ can be bounded as well. Define
b(h) = [Φ]i,∗PQ,ao,h− [Φ̃]i,∗PQ,ao,h. With probability no less than 1− δ/4 for all 1 ≤ i ≤ d

‖b(h)‖2ρ(h) = Eρ(h)[([Φ]i,∗ − [Φ̃]i,∗)PQ,ao,hP>Q,ao,h([Φ]i,∗ − [Φ̃]i,∗)
>]

= ([Φ]i,∗ − [Φ̃]i,∗)VDV>([Φ]i,∗ − [Φ̃]i,∗)
>

= ([Φ]i,∗ − [Φ]i,∗VImV>)VDV>([Φ]i,∗ − [Φ]i,∗VImV>)>

= [Φ]i,∗V(I− Im)D(I− Im)V>[Φ]>i,∗

= [Φ′]i,∗(I− Im)D(I− Im)([Φ′]i,∗)
>

=

|Q|∑
j=m+1

([Φ′]ij)
2σ2j

≤ ν + 4
√
ν ln(4d/δ). (37)

The tail bound again is due to Lemma 1 in Laurent and Massart (2000) using the assumption
σ2m ≤ 1. Using the above bounds, we have for for all 1 ≤ i ≤ d

∀h : [Φ]i,∗PQ,ao,h = [Φ̃]i,∗PQ,ao,h + b(h) = ([Φ̃]i,∗Bao)PQ,h + b(h). (38)
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Therefore, we have a target [Φ]i,∗PQ,ao,h that is near-linear in the sparse features PQ,h,
with expected bias bounded by b2 = ν + 4

√
ν ln(4d/δ), and norm of the weight vector

[Φ̃]i,∗Bao bounded by w2 = ‖Bao‖2(m+ 4
√
m ln(4d/δ)).

By definition, ui is the COLS estimate with input P̂Q,H, target [Φ]i,∗P̂Q,ao,H, and
projection [Φ]−i,∗. But in order to use the bound of Equation 29, we need to find the
corresponding noise parameters of the COLS algorithm. Since, unlike the assumption of
the general COLS bound, both the input and the output of the regression are noisy, we
need to derive the effective overall noise variance in the sample output. We have

[Φ]i,∗P̂Q,ao,h = [Φ]i,∗PQ,ao,h + [Φ]i,∗∆y

= [Φ̃]i,∗PQ,ao,h + b(h) + [Φ]i,∗∆y

= [Φ̃]i,∗Bao(P̂Q,h −∆x) + b(h) + [Φ]i,∗∆y

= ([Φ̃]i,∗Bao)P̂Q,h + b(h) + ([Φ]i,∗∆y − [Φ̃]i,∗Bao∆x).

And thus the sample points are

P̂Q,h → ([Φ̃]i,∗Bao)P̂Q,h + b(h) + ([Φ]i,∗∆y − [Φ̃]i,∗Bao∆x). (39)

The effective noise [Φ]i,∗∆y−[Φ̃]i,∗Bao∆x has mean 0. Since ∆y is k-sparse and ‖[Φ̃]i,∗Bao‖2 ≤
w2, the variance of the effective noise term is bounded by maxj([Φ]ij)

2kσ2y + w2σ2x. Max-
imization over i and using a tail bound on the maximum of squared normals gives the σ2η
defined in the theorem.

We now apply the union bound to Equation 29. With probability no less than 1− δ/4,
for all 1 ≤ i ≤ d,

‖ui([Φ]−i,∗PQ,h)− [Φ]i,∗PQ,ao,h‖ρ(h) ≤ ε(|H|, |Q|, d, w
2, x2, b2, σ2η, δ/4d). (40)

Note that by our definition of Cao, we have that ui([Φ]−i,∗PQ,h) = (Cao)i(ΦPQ,h), which
immediately gives the theorem by combining the error bounds on each row.

A.2 Proof of Theorem 3

Proof Similar to Theorem 1, we have Ph = β>∞PQ,h for all h. Therefore we have a linear
target and by definition c∞ is the COLS estimate with projection Φ. We have

P̂h = Ph + ∆z = β>∞PQ,h + ∆z

= β>∞P̂Q,h − β>∞∆x + ∆z. (41)

Thus the effective variance is bounded by the σ2∞ defined in the theorem. We complete the
proof by an application of the bound in Equation 29.
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A.3 Proof of Theorem 4

Proof For all t, define et = CatotCat−1ot−1 . . .Ca1o1c1 −PQ,[ao]1:t . After applying the nth
compressed operator we have

‖en‖ρn = ‖CanonCan−1on−1 . . .Ca1o1c1 −PQ,[ao]1:n‖ρn
= ‖Canon(PQ,[ao]1:n−1

+ en−1)−PQ,[ao]1:n‖ρn
≤ ‖Canonen−1‖ρn + ‖CanonPQ,[ao]1:n−1

−PQ,[ao]1:n‖ρn
≤ ‖Canonen−1‖ρn + max

on,an
‖CanonPQ,[ao]1:n−1

−PQ,[ao]1:n‖ρn−1

≤ c‖en−1‖ρn + max
on,an

‖Canonsn−1PQ,[ao]1:n−1
− sn−1PQ,[ao]1:n‖ρ (42)

≤ c‖en−1‖ρn−1 + sn−1ε

≤ ε
n−1∑
t=1

stc
n−i−1. (43)

Line 42 uses the distribution assumption on ρn−1 and having PQ,[ao]1:n linear in PQ,[ao]1:n−1
.

Line 43 follows by induction. We now apply the normalizer operator:

‖c∞CanonCan−1on−1 . . .Ca1o1c1 − P(o1:n||a1:n)‖ρn
= ‖c∞(PQ,[ao]1:n + en)− P(o1:n||a1:n)‖ρn
≤ ‖c∞en‖ρn + ‖c∞PQ,[ao]1:n − P(o1:n|a1:n)‖ρn
≤ ‖c∞‖‖en‖ρn + ‖c∞snPQ,[ao]1:n − snP(o1:n||a1:n)‖ρ (44)

≤ ‖c∞‖ε
n−1∑
t=1

stc
n−t−1 + ε∞sn. (45)

Line 44 uses the distribution assumption on ρn and Line 45 uses the bound of Theorem 3.
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Abstract

We present a multi-task learning approach to jointly estimate the means of multiple inde-
pendent distributions from samples. The proposed multi-task averaging (MTA) algorithm
results in a convex combination of the individual task’s sample averages. We derive the op-
timal amount of regularization for the two task case for the minimum risk estimator and a
minimax estimator, and show that the optimal amount of regularization can be practically
estimated without cross-validation. We extend the practical estimators to an arbitrary
number of tasks. Simulations and real data experiments demonstrate the advantage of the
proposed MTA estimators over standard averaging and James-Stein estimation.

Keywords: multi-task learning, James-Stein, Stein’s paradox

1. Introduction

The mean is one of the most fundamental and useful tools in statistics (Salsburg, 2001).
By the 16th century Tycho Brahe was using the mean to reduce measurement error in as-
tronomical investigations (Plackett, 1958). Legendre (1805) noted that the mean minimizes
the sum of squared errors to a set of samples:

ȳ = arg min
ỹ

N∑
i=1

(yi − ỹ)2. (1)

More recently it has been shown that the mean minimizes the sum of any Bregman di-
vergence to a set of samples (Banerjee et al., 2005; Frigyik et al., 2008). Gauss (1857)
commented on the mean’s popularity in his time:

“It has been customary certainly to regard as an axiom the hypothesis that if
any quantity has been determined by several direct observations, made under the
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same circumstances and with equal care, the arithmetical mean of the observed
values affords the most probable value, if not rigorously, yet very nearly at least,
so that it is always most safe to adhere to it.”

But the mean is a more subtle quantity than it first appears. In a surprising result
popularly called Stein’s paradox (Efron and Morris, 1977), Stein (1956) showed that it is
better (in a summed squared error sense) to estimate each of the means of T Gaussian
random variables using data sampled from all of them, even if the random variables are
independent and have different means. That is, it is beneficial to consider samples from
seemingly unrelated distributions to estimate a mean. Stein’s result is an early example of
the motivating hypothesis behind multi-task learning: that leveraging data from multiple
tasks can yield superior performance over learning from each task independently. In this
work we consider a multi-task regularization approach to the problem of estimating multiple
means; we call this multi-task averaging (MTA).

Multi-task learning is most intuitive when the multiple tasks are conceptually similar.
But we argue that it is really the statistical similarity of the multiple tasks that determines
how well multi-task learning works. In fact, a key result of this paper is that proposed
multi-task estimation achieves lower total squared error than the sample mean if the true
means of the multiple tasks are close compared to the variance of the samples (see Equation
12). Of course, in practice cognitive notions of similarity can be a useful guide for multi-task
learning, as tasks that seem similar to humans often do have similar statistics.

We begin the paper with the proposed MTA objective in Section 2, and review related
work in Section 3. We show that MTA has provably nice theoretical properties in Section 4;
in particular, we derive the optimal notion of task similarity for the two task case, which is
also the optimal amount of regularization to be used in the MTA estimation. We generalize
this analysis to form practical estimators for the general case of T tasks. Simulations in
Section 5 verify the advantage of MTA over standard sample means and James-Stein esti-
mation if the true means are close compared to the variance of the underlying distributions.
In Section 6 we present four experiments on real data: (i) estimating Amazon customer
reviews, (ii) estimating class grades, (iii) forecasting sales, and (iv) estimating the length of
kings’ reigns. These real-data experiments show that MTA is generally 10-20% better than
the sample mean.

A short version of this paper was published in NIPS 2012 (Feldman et al., 2012). This
paper substantially differs from that conference paper that it contains more analysis, proofs,
and new and expanded experiments.

2. Multi-Task Averaging

Consider the problem of estimating the means of T random variables that have finite means
{µt} and variances {σ2

t } for t = 1, . . . , T . We treat this as a T -task multi-task learning
problem, and estimate the T means jointly. We take as given Nt independent and identically
distributed (iid) random samples {Yti}Nt

i=1 for each task t. Key notation is summarized in
Table 1.
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T number of tasks
Nt number of samples for tth task
µt true mean of task t
σ2
t variance of the tth task
Yti ∈ R ith random sample from tth task
Ȳt ∈ R sample average for tth task: 1

Nt

∑
i Yti,

also referred to as the single-task mean estimate
Ȳ ∈ RT vector with tth component Ȳt
Y ∗t ∈ R MTA estimate of tth mean
Y ∗ ∈ RT vector with tth component Y ∗t
Ŷt ∈ R an estimate of the tth mean

Ỹt ∈ R dummy variable

Σ ∈ RT×T diagonal covariance matrix of Ȳ with Σtt =
σ2
t
Nt

A ∈ RT×T pairwise task similarity matrix

L = D −A graph Laplacian of A, with diagonal D s.t. Dtt =
∑T

r=1Atr
W MTA solution matrix, W = (I + γ

T ΣL)−1

Table 1: Key Notation

In this paper, we judge the estimates by total squared error: given T estimates {Ŷt}
and T true means {µt}:

estimation error({Ŷt)})
4
=

T∑
t=1

(
µt − Ŷt

)2
, (2)

Equivalently (up to an additive factor), the metric can be expressed as the total squared
expected error to a random sample Yt from each task:

regression error({Ŷt)})
4
=

T∑
t=1

E

[(
Yt − Ŷt

)2
]

; (3)

we use an empirical approximation to (3) in the experiments because the true means are
not known but held-out samples from the distributions are available.

Let a T × T matrix A describe the relatedness or similarity of any pair of the T tasks,
with Att = 0 for all t without loss of generality (because the diagonal self-similarity terms
are canceled in the objective below). Further we assume each task’s variance σ2

t is known
or already estimated. The proposed MTA objective is

{Y ∗t }Tt=1 = arg min
{Ỹt}Tt=1

1

T

T∑
t=1

Nt∑
i=1

(Yti − Ỹt)2

σ2
t

+
γ

T 2

T∑
r=1

T∑
s=1

Ars(Ỹr − Ỹs)2. (4)

The first term of (4) minimizes the multi-task empirical loss, normalizing the contribution
of each task’s losses by that task’s variance σ2

t so that high-variance tasks do not dispropor-
tionately dominate the loss term. The second term of (4) jointly regularizes the estimates
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by tying them together. The regularization parameter γ balances the empirical risk and the
multi-task regularizer. If γ = 0, the MTA objective decomposes into T separate minimiza-
tion problems, producing the sample averages {Ȳt}. If γ = 1, the balance between empirical
risk and multi-task regularizer is completely specified by the task similarity matrix A.

A more general formulation of MTA is

{Y ∗t }Tt=1 = arg min
{Ỹt}Tt=1

1

T

T∑
t=1

Nt∑
i=1

L(Yti, Ỹt) + γJ
(
{Ỹt}Tt=1

)
,

where L is some loss function and J is some regularization function. If L is chosen to be
any Bregman loss, then setting γ = 0 will produce the T sample averages (Banerjee et al.,
2005). For the analysis and experiments in this paper, we restrict our focus to the tractable
squared-error formulation given in (4). The MTA objective and many of the results in
this paper generalize straightforwardly to samples that are vectors rather than scalars (see
Section 4.2), but for most of the paper we restrict our focus to scalar samples Yti ∈ R.

The task similarity matrix A can be specified as side information, for example from
a domain expert, but often this side information is not available, or it may not be clear
how to convert semantic notions of task similarity into appropriate numerical values for the
task-similarity values in A. In such cases, A can be treated as a matrix parameter of the
MTA objective, and in Section 4 we fix γ = 1 and derive two optimal choices of A for the
T = 2 case: the A that minimizes expected squared error, and a minimax A. We use the
T = 2 analysis to propose practical estimators of A for any number of tasks, removing the
need to cross-validate the amount of regularization.

3. Related Work

In this section, we review related and background material: James-Stein estimation, multi-
task learning, manifold regularization, and the graph Laplacian.

3.1 James-Stein Estimation

A closely related body of work to MTA is Stein estimation (James and Stein, 1961; Bock,
1975; Efron and Morris, 1977; Casella, 1985), which can be derived as an empirical Bayes
strategy for estimating multiple means simultaneously (Efron and Morris, 1972). James
and Stein (1961) showed that the maximum likelihood estimate of the task mean can be
dominated by a shrinkage estimate given Gaussian assumptions. Specifically, given a single
sample drawn from T normal distributions Yt ∼ N (µt, σ

2) for t = 1, . . . , T , Stein showed
that the maximum likelihood estimator Ȳt = Yt is inadmissible, and is dominated by the
James-Stein estimator:

Ŷ JS
t =

(
1− (T − 2)σ2

Ȳ >Ȳ

)
Ȳt, (5)

where Ȳ is a vector with tth entry Ȳt. The above estimator dominates Ȳt when T > 2. For
T = 2, (5) reverts to the maximum likelihood estimator, which turns out to be admissible
(Stein, 1956). James and Stein showed that if σ2 is unknown it can be replaced by a
standard unbiased estimate σ̂2 (James and Stein, 1961; Casella, 1985).
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Note that in (5) the James-Stein estimator shrinks the sample means towards zero (the
terms “regularization” and “shrinkage” are often used interchangeably). The form of (5)
and its shrinkage towards zero points to the implicit assumption that the µt are themselves
drawn from a standard normal distribution centered at 0. More generally, the means are
assumed to be drawn as µt ∼ N (ξ, 1). The James-Stein estimator then becomes

Ŷ JS
t = ξ +

(
1− (T − 3)σ2

(Ȳ − ξ1)>(Ȳ − ξ1)

)
(Ȳt − ξ), (6)

where ξ can be estimated (as we do in this work) as the average of means ξ = ¯̄Y =
1
T

∑T
r=1 Ȳr, and this additional estimation decreases the degrees of freedom by one.1 Note

that (6) shrinks the estimates towards the mean-of-means ξ rather than shrinking towards
zero. Also, the more similar the multiple tasks are (in the sense that individual task means
are closer to the mean-of-means ξ), the more regularization occurs in (6).

There have been a number of extensions to the original James-Stein estimator. The
James-Stein estimator given in (6) is itself not admissible, and is dominated by the positive
part James-Stein estimator (Lehmann and Casella, 1998), which was further theoretically
improved by Bock’s James-Stein estimator (Bock, 1975). Throughout this work, we compare
to Bock’s well-regarded positive-part James-Stein estimator for multiple data points per task
and independent unequal variances (Bock, 1975; Lehmann and Casella, 1998). In particular,
let Yti ∼ N (µt, σ

2
t ) for t = 1, . . . , T and i = 1, . . . , Nt, let Σ be the covariance matrix of the

vector of task sample means Ȳ , and let λmax(Σ) be the largest eigenvalue of Σ, then the
estimator is

Ŷ JS
t = ξ +

1−
tr(Σ)

λmax(Σ) − 3

(Ȳ − ξ1)>Σ−1(Ȳ − ξ1)


+

(Ȳt − ξ), (7)

where (x)+ = max(0, x).

3.2 Multi-Task Learning for Mean Estimation

MTA is an approach to the problem of estimating T means. We are not aware of other
work in the multi-task literature that addresses this problem explicitly; most multi-task
learning methods are designed for regression, classification, or feature selection, for example,
Micchelli and Pontil (2004); Bonilla et al. (2008); Argyriou et al. (2008). Estimating T
means can be considered a special case of multi-task regression, where one fits a constant
function to each task, since, with a feature space of zero dimensions only the constant offset
term is learned. And, similarly to MTA, one of the main approaches to multi-task regression
in the literature is tying tasks together with an explicit multi-task parameter regularizer.

Abernethy et al. (2009), for instance, propose to minimize the empirical loss by adding
the regularizer

||β||∗,

where the tth column of the matrix β is the vector of parameters for the tth task and || · ||∗ is
the trace norm. Applying this approach to mean estimation, the matrix β has only one row,

1. For more details as to why T − 2 in (5) becomes T − 3 in (6), see Example 7.7 on page 278 of Lehmann
and Casella (1998).
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and ||β||∗ reduces to the `2 norm on the outputs, thus for mean estimation this regularizer
does not actually tie the tasks together.

Argyriou et al. (2008) propose a a different regularizer,

tr(β>D−1β),

where D is a learned, shared feature covariance matrix. With no features (as in the MTA
application of constant function regression), D is just a constant and tr(β>D−1β) is a ridge
regularizer on the outputs. The regularizers in the work of Jacob et al. (2008) and Zhang
and Yeung (2010) reduce similarly when applied to mean estimation. These regularizers are
similar to the original James Stein estimator in that they shrink the estimates towards zero;
though more modern James Stein estimators shrink towards a pooled mean (see Section
3.1).

The most closely related work is that of Sheldon (2008) and Kato et al. (2008), where
the regularizer or constraint, respectively, is

T∑
r=1

T∑
s=1

Ars‖βr − βs‖22,

which is the MTA regularizer if applied to mean estimation. In this paper we do just that:
apply this regularizer to mean estimation, show that this special case enables new and useful
analytic results, and demonstrate its performance with simulated and real data.

3.3 Multi-Task Learning and the Similarity Between Tasks

A key issue for MTA and many other multi-task learning methods is how to estimate
some notion of similarity (or task relatedness) between tasks and/or samples if it is not
provided. A common approach is to estimate the similarity matrix jointly with the task
parameters (Argyriou et al., 2007; Xue et al., 2007; Bonilla et al., 2008; Jacob et al., 2008;
Zhang and Yeung, 2010). For example, Zhang and Yeung (2010) assume that there exists
a covariance matrix for the task relatedness, and proposed a convex optimization approach
to estimate the task covariance matrix and the task parameters in a joint, alternating way.
Applying such joint and alternating approaches to the MTA objective given in (4) leads to
a degenerate solution with zero similarity. However, the simplicity of MTA enables us to
specify the optimal task similarity matrix for T = 2 (see Section 4), which we use to obtain
closed-form estimators for the general T > 1 case.

3.4 Manifold Regularization

MTA is similar in form to manifold regularization (Belkin et al., 2006). For example, Belkin
et al.’s Laplacian-regularized least squares objective for semi-supervised regression solves

arg min
f∈H

∑N
i=1(yi − f(xi))

2 + λ||f ||2H + γ
∑N+M

i,j=1 Aij(f(xi)− f(xj))
2,

where f is the regression function to be estimated, H is a reproducing kernel Hilbert space
(RKHS), N is the number of labeled training samples, M is the number of unlabeled training
samples, Aij is the similarity (or weight in an adjacency graph) between feature samples
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xi and xj , and ||f ||H is the norm of the function f in the RKHS. In MTA, as opposed
to manifold regularization, we are estimating a different function (that is, the constant
function that is the mean) for each of the T tasks, rather than a single global function. One
can interpret MTA as regularizing the individual task estimates over the task-similarity
manifold, which is defined for the T tasks by the T × T matrix A.

3.5 Background on the Graph Laplacian Matrix

It will be helpful for later sections to review the graph Laplacian matrix. For graph G
with T nodes, let A ∈ RT×T be a matrix where component Ars ≥ 0 is the weight of the
edge between node r and node s, for all r, s. The graph Laplacian matrix is defined as
L = L(A) = D −A, with diagonal matrix D such that Dtt =

∑
sAts.

The graph Laplacian matrix is analogous to the Laplacian operator, which quantifies
how locally smooth a twice-differentiable function g(x) is. Similarly, the graph Laplacian
matrix L can be thought of as being a measure of the smoothness of a function defined
on a graph. Given a function f defined over the T nodes of graph G, where fi ∈ R is the
function value at node i, the total energy of a graph is (for symmetric A)

E(f) =
1

2

T∑
i=1

T∑
j=1

Aij(fi − fj)2 = f>L(A)f,

which is small when f is smooth over the graph (Zhu and Lafferty, 2005). If A is asymmetric
then the energy can be written as

E(f) =
1

2

T∑
i=1

T∑
j=1

Aij(fi − fj)2 = f>L((A+A>)/2)f. (8)

When each fi ∈ Rd is a vector, one can alternatively write the energy in terms of the
distance matrix:

E(f) =
1

2
tr(∆>A),

where ∆ij = (fi − fj)>(fi − fj).
As discussed above, the graph Laplacian can be thought of as an operator on a func-

tion, but it is useful in and of itself (i.e., without a function). The eigenvalues of the graph
Laplacian are all real and non-negative, and there is a wealth of literature showing how
the eigenvalues reveal the structure of the underlying graph and can be used for clustering
(v. Luxburg, 2007). The graph Laplacian is a common tool in semi-supervised learning lit-
erature (Zhu and Goldberg, 2009), and the Laplacian of a random walk probability matrix
P (i.e., all the entries are non-negative and the rows sum to 1) is also of interest. For exam-
ple, Saerens et al. (2004) showed that the pseudo-inverse of the Laplacian of a probability
transition matrix is used to compute the square root of the average commute time (the
average time taken by a random walker on graph G to reach node j for the first time when
starting at node i, and coming back to node i).

Finally, since we will be using this fact occasionally, we note that the graph Laplacian
is homogeneous, i.e., L(γA) = γL(A), where A is a matrix and γ is a scalar.
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4. MTA Theory and Estimators

First, we give a general closed-form solution for the MTA mean estimates and characterize
the MTA objective in Sections 4.1 through 4.3. Then in Section 4.4 we analyze the estima-
tion error for the two task T = 2 case and give conditions for when MTA is better than the
sample means. In Section 4.5, we derive the optimal similarity matrix A for the two task
case.

Then in Section 4.7, we generalize our T = 2 analysis to propose practical estimators
for any number of tasks T , and analyze their computational efficiency. In Section 4.8, we
analyze the relationship of different estimators formed by linearly combining the sample
means, including the MTA estimators, James Stein, and other estimators that regularize
sample means towards a pooled mean. Lastly, we discuss the Bayesian interpretation of
MTA in Section 4.9.

Proofs and derivations are in the appendix.

4.1 Closed-form MTA Solution

Without loss of generality, we only deal with symmetric A because in the case of asymmetric
A it is equivalent to consider instead the symmetrized matrix (A> +A)/2.

For symmetric A with non-negative components, the MTA objective given in (4) is con-
tinuous, differentiable, and convex; and (4) has closed-form solution (derivation in Appendix
A):

Y ∗ =
(
I +

γ

T
ΣL
)−1

Ȳ , (9)

where Ȳ is the vector of sample averages with tth entry Ȳt = 1
Nt

∑Nt
i=1 Yti, L is the graph

Laplacian of A, and Σ is the diagonal covariance matrix of the sample mean vector Ȳ such

that Σtt =
σ2
t
Nt

. The inverse
(
I + γ

T ΣL
)−1

in (9) always exists:

Lemma 1 Suppose that 0 ≤ Ars < ∞ for all r, s, γ ≥ 0, and 0 <
σ2
t
Nt

< ∞ for all t. The

MTA solution matrix W =
(
I + γ

T ΣL
)−1

exists.

The MTA estimates Y ∗ converge to the vector of true means µ:

Proposition 2 As Nt →∞ ∀ t, Y ∗ → µ.

4.2 MTA for Vectors

MTA can also be applied to vectors. Let Y∗ ∈ RT×d be a matrix with Y ∗t as its tth row
and let Ȳ ∈ RT×d be a matrix with Ȳt ∈ Rd as its tth row. One can perform MTA on the
vectorized form of Y∗:

vec(Y∗) =
(
I +

γ

T
ΣL
)−1

vec(Ȳ),

as long as (the now block-diagonal) Σ ∈ RTd×Td is invertible. An equivalent formulation
for MTA for vectors was proposed in Mart́ınez-Rego and Pontil (2013).
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4.3 Convexity of MTA Solution

One sees from (9) that the MTA estimates are linear combinations of the sample averages:

Y ∗ = WȲ , where W =
(
I +

γ

T
ΣL
)−1

.

Moreover, and less obviously, each MTA estimate is a convex combination of the single-task
sample averages:

Theorem 3 If γ ≥ 0, 0 ≤ Ars < ∞ for all r, s and 0 <
σ2
t
Nt

< ∞ for all t, then the MTA

estimates {Y ∗t } given in (9) are convex combinations of the task sample averages {Ȳt}.

This theorem generalizes a result of Chebotarev and Shamis (2006) that the matrix
(I + γL)−1 is right-stochastic (i.e., the rows are non-negative and sum to 1) if the entries
of A are strictly positive. Our proof (given in the appendix) uses a different approach, and

extends the result both to the more general form of the MTA solution matrix
(
I + γ

T ΣL
)−1

and to A with non-negative entries.

4.4 MSE Analysis for the Two Task Case

In this section we analyze the T = 2 task case, with N1 and N2 samples for tasks 1 and
2 respectively. Suppose random samples drawn for the first task {Y1i} are iid with finite
mean µ1 and finite variance σ2

1, and random samples drawn for the second task {Y2i} are
iid with finite mean µ2 = µ1 + ∆ and finite variance σ2

2. Let the task-relatedness matrix be
A = [0 a; a 0], and without loss of generality, we fix γ = 1. Then the closed-form solution
(9) can be simplified:

Y ∗1 =

 2 +
σ2

2
N2
a

2 +
σ2

1
N1
a+

σ2
2

N2
a

 Ȳ1 +

 σ2
1

N1
a

2 +
σ2

1
N1
a+

σ2
2

N2
a

 Ȳ2. (10)

The mean squared error of Y ∗1 is

MSE[Y ∗1 ] =
σ2

1

N1

4 + 4
σ2

2
N2
a+

σ2
1σ

2
2

N1N2
a2 +

σ4
2

N2
2
a2(

2 +
σ2

1
N1
a+

σ2
2

N2
a
)2

+
∆2 σ

4
1

N2
1
a2(

2 +
σ2

1
N1
a+

σ2
2

N2
a
)2 . (11)

Next, we compare the MTA estimate Y ∗1 to the sample average Ȳ1, which is the maximum
likelihood estimate of the true mean µ1 for many distributions.2 The MSE of the single-task

sample average Ȳ1 is
σ2

1
N1

, and comparing that to (11) and simplifying some tedious algebra
establishes that

MSE[Y ∗1 ] < MSE[Ȳ1] if ∆2 <
4

a
+
σ2

1

N1
+
σ2

2

N2
. (12)

Thus the MTA estimate of the first mean has lower MSE than the sample average estimate
if the squared mean-separation ∆2 is small compared to the summed variances of the sample
means. See Figure 1 for an illustration.

2. The uniform distribution is perhaps the simplest example where the sample average is not the maximum
likelihood estimate of the mean. For more examples, see Section 8.18 of Romano and Siegel (1986).
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Figure 1: Plot shows the percent change in average risk for two tasks (averaged over 10,000
runs of the simulation). For each task there are N iid samples, for N = 2, 10, 20.
The first task generates samples from a standard Gaussian. The second task
generates samples from a Gaussian with σ2 = 1 and different mean value, which
is varied as marked on the x-axis. The symmetric task-relatedness value was
fixed at a = 1 (note this is generally not the optimal value). One sees that
given N = 2 samples from each Gaussian, the MTA estimate is better than the
single-task sample if the difference between the true means is less than 1.5. Given
N = 20 samples from each Gaussian, the MTA estimate is better if the distance
between the means is less than 2. In the extreme case that the two Gaussians
have the same mean (µ1 = µ2 = 0), then even with this suboptimal choice of
a = 1, MTA provides a 20% win for N = 2 samples, and a 5% win for N = 20
samples.

Further, because of the symmetry of (12), if the condition of (12) holds, it is also true
that MSE[Y ∗2 ] < MSE[Ȳ2], such that the MSE of each task individually is reduced.

The condition (12) shows that even when the true means are far apart such that ∆ is
large, there is some tiny amount of MTA regularization a that will improve the estimates.

4.5 Optimal Task Relatedness A for T = 2

We analyze the optimal choice of a in the task-similarity matrix A = [0 a; a 0]. The risk is
the sum of the mean squared errors:

R(µ, Y ∗) = MSE[Y ∗1 ] + MSE[Y ∗2 ], (13)

which is a convex, continuous, and differentiable function of a, and therefore the first deriva-
tive can be used to specify the optimal value a∗, when all the other variables are fixed.
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Figure 2: Plot shows the risk for two tasks, where the task samples were drawn iid from
Gaussians N (0, 1) and N (1, 1). The task-relatedness value a was varied as shown
on the x-axis. The minimum expected squared error is marked by a dot, and
occurs for the choice of a given by (14), and is independent of N .

Minimizing (13) w.r.t. a one obtains the optimal:

a∗ =
2

∆2
, (14)

which is always non-negative, as was assumed. This result is key because it specifies that
the optimal task-similarity a∗ ideally should measure the inverse of the squared task mean-
difference. Further, the optimal task-similarity is independent of the number of samples Nt

or the sample variance σ2
t , as these are accounted for in Σ of the MTA objective. Note that

a∗ also minimizes the functions MSE[Y ∗1 ] and MSE[Y ∗2 ], separately.

The effect on the risk on the choice of a and the optimal a∗ is illustrated in Figure 2.

Analysis of the second derivative shows that this minimizer always holds for N1, N2 ≥ 1.

In the limit case, when the difference in the task means ∆ goes to zero (while σ2
t stay

constant), the optimal task-relatedness a∗ goes to infinity, and the weights in (10) on Ȳ1

and Ȳ2 become 1/2 each.

4.6 Estimating Task Similarity from Data for T = 2 Tasks

The optimal two-task similarity given in (14) requires knowledge of the true means µ1

and µ2. These are, in practice, unavailable. What similarity should be used then? A
straightforward approach is to use single-task estimates instead:

â∗ =
2

(ȳ1 − ȳ2)2
,
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and to use maximum likelihood estimates σ̂2
t to form the matrix Σ̂. This data-dependent ap-

proach is analogous to empirical Bayesian methods in which prior parameters are estimated
from data (Casella, 1985).

4.7 Estimating Task Similarity from Data for Arbitrary T Tasks

Based on our analysis in the preceding sections of the optimal A for the two-task case, we
propose two methods to estimate A from data for arbitrary T > 1. The first method is
designed to minimize the approximate risk using a constant similarity matrix. The second
method provides a minimax estimator. With both methods one can take advantage of the
Sherman-Morrison formula (Sherman and Morrison, 1950) to avoid taking the matrix inverse
or solving a set of linear equations in (9) (detailed in Section 4.7.3). For the special case
that all task variances are assumed equal (an assumption used in all of our experiments),
the computation time is O(T ).

4.7.1 MTA Constant

The risk of estimator Ŷ = WȲ is

R(µ,WȲ ) = E[(WȲ − µ)>(WȲ − µ)] (15)

= tr(WΣW>) + µ>(I −W )>(I −W )µ, (16)

where (16) uses the fact that E[Ȳ Ȳ >] = µµ> + Σ.
One approach to generalizing the results of Section 4.4 to arbitrary T is to try to find

a symmetric, non-negative matrix A such that the (convex, differentiable) risk R(µ,WȲ )

is minimized for W =
(
I + γ

T ΣL
)−1

(recall L is the graph Laplacian of A). The problem
with this approach is two-fold: (i) the solution is not analytically tractable for T > 2 and
(ii) an arbitrary A has T (T − 1) degrees of freedom, which is considerably more than the T
means we are trying to estimate in the first place. To avoid these problems, we generalize
the two-task results by constraining A to be a scaled constant matrix A = a11>, and find
the optimal a∗ that minimizes the risk given by (16). As in Section 4.4, we fix γ = 1.
For analytic tractability, we add the assumption that all the Yt have the same variance,
estimating Σ as tr(Σ)

T I. Then minimizing (15) becomes:

a∗ = arg min
a

R

(
µ,

(
I +

1

T

tr(Σ)

T
L(a11>)

)−1

Ȳ

)
,

which has the solution

a∗ =
2

1
T (T−1)

∑T
r=1

∑T
s=1(µr − µs)2

, (17)

which does reduce to the optimal two task MTA solution (14) when T = 2.
While (17) is theoretically interesting, in practice, one of course does not have {µr} as

these are precisely the values one is trying to estimate, and thus cannot use (17) directly.
Instead, we propose estimating a∗ using the sample means {ȳr}:

â∗ =
2

1
T (T−1)

∑T
r=1

∑T
s=1(ȳr − ȳs)2

. (18)
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Using the optimal estimated constant similarity given in (18) and an estimated covari-
ance matrix Σ̂ produces what we refer to as the MTA Constant estimate

Y ∗ =

(
I +

1

T
Σ̂L(â∗11>)

)−1

Ȳ . (19)

Note that we made the assumption that the entries of Σ were the same in order to be able
to derive (17), but we do not need nor necessarily suggest that assumption on the Σ̂ be
used in practice with â∗ in (19).

4.7.2 MTA Minimax

Bock’s James-Stein estimator is minimax (Lehmann and Casella, 1998)). In this section,
we derive a minimax version of MTA for arbitrary T that prescribes less regularization
than MTA Constant. Formally, an estimator YM of µ is called minimax if it minimizes the
maximum risk:

inf
Ỹ

sup
µ
R(µ, Ỹ ) = sup

µ
R(µ, YM ).

Let r(π, Ŷ ) be the average risk of estimator Ŷ w.r.t. a prior π(µ) such that r(π, Ŷ ) =∫
R(µ, Ŷ )π(µ)dµ. The Bayes estimator Y π is the estimator that minimizes the average risk,

and the Bayes risk r(π, Y π) is the average risk of the Bayes estimator. A prior distribution
π is called least favorable if r(π, Y π) > r(π′, Y π′) for all priors π′.

First, we will specify MTA Minimax for the T = 2 case. To find a minimax estimator
YM it is sufficient to show that (i) YM is a Bayes estimator w.r.t. the least favorable prior
(LFP) and (ii) it has constant risk (Lehmann and Casella, 1998). To find a LFP, we first
need to specify a constraint set for µt; we use an interval: µt ∈ [bl, bu], for all t, where bl ∈ R
and bu ∈ R. With this constraint set the minimax estimator is (see appendix for details):

YM =

(
I +

2

T (bu − bl)2
ΣL(11>)

)−1

Ȳ ,

which reduces to (14) when T = 2. This minimax analysis is only valid for the case when
T = 2, but we found that the following extension of MTA Minimax to larger T worked well
in simulations and applications for any T ≥ 2. To estimate bu and bl from data we assume
the unknown T means are drawn from a uniform distribution and use maximum likelihood
estimates of the lower and upper endpoints for the support:

b̂l = min
t
ȳt and b̂u = max

t
ȳt.

Thus, in practice, MTA Minimax is

YM =

(
I +

2

T (b̂u − b̂l)2
Σ̂L(11>)

)−1

Ȳ .
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4.7.3 Computational Efficiency of MTA Constant and Minimax

Both MTA Constant and MTA Minimax weight matrices can be written as

(I + cΣL(11>))−1 = (I + cΣ(TI − 11>))−1

= (I + cTΣ− cΣ11>)−1

= (Z − z1>)−1,

where c is different for MTA Constant and MTA Minimax, Z = I + cTΣ, z = cΣ1. The
Sherman-Morrison formula (Sherman and Morrison, 1950) can be used to find the inverse:

(Z − z1>)−1 = Z−1 +
Z−1z1>Z−1

1− 1>Z−1z
.

Since Z is diagonal, Z−1 can be computed in O(T ) time, and so can Z−1z.
Further the computation becomesO(T ) if the covariance matrix Σ is taken to be diagonal

with constant component σ2, an assumption we use in all our experiments. In that case,
compute the constant v = 1/(1 + cσ2), and then the MTA estimate reduces to a convex
combination of the task sample average and the pooled sample average: vȲ +(1−v)

∑T
t Ȳt.

4.8 Generality of MTA

In this section, we use the expression ‘matrices of MTA form’ to refer to matrices that can
be written

(I + ΓL(A))−1 , (20)

where A is a matrix with all non-negative entries, and Γ is a diagonal matrix with all
non-negative entries. Matrices of the form (I + γL)−1 have been used as graph kernels
(Fouss et al., 2006; Yajima and Kuo, 2006), and were termed regularized Laplacian kernels
(RLKs) by Smola and Kondor (2003). The RLK assumes that A (and L) are symmetric,
and thus MTA and (20) strictly generalizes the RLK because ΓL is only symmetric for
some special cases such as when Γ is a scaled identity matrix. Thus, one might also refer to
matrices of the form (20) as generalized regularized Laplacian kernels, but in this section
we focus on their role as estimators and in understanding relationships with the proposed
MTA estimator.

Figure 3 is a Venn diagram of the sets of estimators that can be expressed Ŷ = WȲ ,
where W is some T × T matrix. The first subset (the pink region) is all estimators where
W is right-stochastic. The second subset (the green region) is estimators of MTA form as
per (20). The innermost subset (the purple region) includes many well-known estimators
such as the James-Stein estimator, and estimators that regularize single-task estimates of
the mean to the pooled mean or the average of means. In this section we will prove that the
innermost purple subset is a strict subset of the green MTA subset, such that any innermost
estimator can be written in MTA form for specific choices of A, γ, and Σ. Note that the
covariance Σ is treated as a “choice” because some classic estimators assume Σ = I.

Proposition 4 The set of estimators WȲ where W is of MTA form as per (20) is strictly
larger than the set of estimators that regularize the single-task estimates as follows:

Ŷ =

(
1

γ
I + 1α>

)
Ȳ ,
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Ŷ = W ¹Y

W = (I + ¡L(A))
¡1

diagonal ¡ with ¡tt ¸ 0

Ars ¸ 0
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Figure 3: A Venn diagram of the set membership properties of various estimators of the
type Ŷ = WȲ .

where
∑T

r=1 αr = 1− 1
γ , γ ≥ 1, and αr ≥ 0, ∀r.

Corollary 5 Estimators that regularize the single task estimate towards the pooled mean
such that they can be written

Y̌t = λȲt +
1− λ∑T
r=1Nr

T∑
s=1

Ns∑
i=1

Ysi,

for λ ∈ (0, 1] can also be written in MTA form as

Y̌ =

(
I +

1− λ
λN>1

L(1N>)

)−1

Ȳ ,

where N is a T by 1 vector with Nt as its tth entry since in Proposition 4 we can choose
γ = 1

λ and α = 1−λ
NT 1

N, which matches (20) with Γ = 1−λ
λN>1

I and A = 1N>.

Corollary 6 Estimators which regularize the single task estimate towards the average of
means such that they can be written

Y̆t = λȲt +
1− λ
T

T∑
t=1

Ȳt,
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for λ ∈ (0, 1], can also be written in MTA form as

Y̆ =

(
I +

1− λ
λT

L(11>)

)−1

Ȳ ,

since in Proposition 4 we can choose γ = 1
λ and α = 1−λ

T 1, which matches (20) with

Γ = 1−λ
λT I and A = 11>.

Note that the proof of the proposition in the appendix uses MTA form with asymmetric
similarity matrix A. The MTA form with asymmetric A arises if you replace the symmetric
MTA regularization term in (4) with the following asymmetric regularization term as follows:

1

2

T∑
r=1

T∑
s=1

Ars(Ỹr − Ỹs)2 +
1

2

T∑
r=1

(
T∑
s=1

Ars

)
Ỹ 2
r −

1

2

T∑
r=1

(
T∑
s=1

Asr

)
Ỹ 2
r .

Lastly, we make a note about the sum of the mean estimates for the different estimators
of Figure 3. In general, the sum of the estimates Ŷ = WȲ for right-stochastic W may differ
from the sum of the sample means, because 1>WȲ 6= 1>Ȳ for all right-stochastic W . But
in the special case of Bock’s positive-part James-Stein estimator the sum is preserved:

Proposition 7
1>Ŷ JS = 1>Ȳ , (21)

where Ŷ JS is given in (7).

We illustrate this property in the Kings’ reigns experiments in Table 7.

4.9 Bayesian Interpretation of MTA

The MTA estimates from (4) can be interpreted as jointly maximizing the likelihood of
T Gaussian distributions with a joint Gaussian Markov random field (GMRF) prior (Rue
and Held, 2005) on the solution. In MTA, the precision matrix (the inverse covariance of
the GMRF prior) is L, the graph Laplacian of the similarity matrix, and is thus positive
semi-definite (and not strictly positive definite); GMRFs with PSD inverse covariances are
called intrinsic GMRFs (IGMRFs).

GMRFs and IGMRFs are commonly used in graphical models, wherein the sparsity
structure of the precision matrix (which corresponds to conditional independence between
variables) is exploited for computational tractability. Because MTA allows for arbitrary but
non-negative similarities between any two tasks, the precision matrix does not (in general)
have zeros on the off-diagonal, and it is not obvious how additional sparsity structure of L
would be of help computationally.

Additionally, none of the results we show in this paper require a Gaussian assumption
nor any other assumption about the parametric form of the underlying distribution.

5. Simulations

As we have shown in the previous section, MTA is a theoretically rich formulation. In the
next two sections we test the usefulness of MTA Constant and MTA Minimax given data,
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first with simulations, then with real data. In these sections we use lower-case notation to
indicate that we are dealing with actual data as opposed to random variables.

In this section, we test estimators using simulations so that comparisons to ground
truth can be made. The simulated data was generated from either a Gaussian or uniform
hierarchical process with many sources of randomness (detailed below), in an attempt to
imitate the uncertainty of real applications, and thereby determine if these are good general-
purpose estimators. The reported results demonstrate that MTA works well averaged over
many different draws of means, variances, and numbers of samples.

Simulations are run for T = {2, 5, 25, 500} tasks, and parameters were set so that the
variances of the distribution of the true means are the same in both uniform and Gaussian
simulations. Simulation results are reported in Figures 4 and 5 for the Gaussian experi-
ments, and Figures 6 and 7 for the uniform experiments. The Gaussian simulations were
run as follows:

1. Fix σ2
µ, the variance of the distribution from which {µt} are drawn.

2. For t = 1, . . . , T :

(a) Draw the mean of the tth distribution µt from a Gaussian with mean 0 and
variance σ2

µ.

(b) Draw the variance of the tth distribution σ2
t ∼ Gamma(0.9, 1.0) + 0.1, where the

0.1 is added to ensure that variance is never zero.

(c) Draw the number of samples to be drawn from the tth distribution Nt from an
integer uniform distribution in the range of 2 to 100.

(d) Draw Nt samples Yti ∼ N (µt, σ
2
t ).

The uniform simulations were run as follows:

1. Fix σ2
µ, the variance of the distribution from which {µt} are drawn.

2. For t = 1, . . . , T :

(a) Draw the mean of the tth distribution µt from a uniform distribution with mean
0 and variance σ2

µ.

(b) Draw the variance of the tth distribution σ2
t ∼ U(0.1, 2.0).

(c) Draw the number of samples to be drawn from the tth distribution Nt from an
integer uniform distribution in the range of 2 to 100.

(d) Draw Nt samples Yti ∼ U [µt −
√

3σ2
t , µt +

√
3σ2

t ].

We compared MTA Constant and MTA Minimax to single-task sample averages and
to Bock’s James-Stein estimator (Bock, 1975) given in (7), with a slight adaptation for

better performance. The term tr(Σ)
λmax

in (7) is called the effective dimension of the estimator.
In simulations where we set Σ to be the true covariance matrix and then estimated the
effective dimension by estimating the maximum eigenvalue and trace of the sample mean
covariance matrix, we found that replacing the effective dimension with the number of tasks
T (when Σ is diagonal) resulted in a significant performance boost for Bock’s estimator,
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due to the high variance of the estimated maximum eigenvalue in the denominator of the
effective dimension. Preliminary experiments with real data also showed a performance
advantage to using T rather than the effective dimension. Consequently, to present James-
Stein estimation in its best light, for all of the experiments in this paper, the James-Stein
comparison refers to (7) using T instead of the effective dimension.

James-Stein, MTA Constant and MTA Minimax all self-estimate the amount of reg-
ularization to use (for MTA Constant and MTA Minimax the parameter γ = 1). So we
also compared to a 50-50 randomized cross-validated (CV) version of each. For the cross-
validated versions, we randomly subsampled Nt/2 samples and chose the value of γ for
MTA Constant/Minimax or λ for James-Stein that resulted in the lowest average left-out
risk compared to the sample mean estimated with all Nt samples. In the optimal versions
of MTA Constant/Minimax γ was set to 1, as this was the case during derivation. Note that
the James-Stein formulation with a cross-validated regularization parameter λ is simply a
convex regularization towards the average of the sample means:

λȳt + (1− λ)¯̄y.

We used the following parameters for CV: γ ∈ {2−5, 2−4, . . . , 25} for the MTA estimators
and for cross-validated James-Stein a comparable set of λ spanning (0, 1) by the transfor-
mation λ = γ

γ+1 . Even when cross-validating the regularization parameter for MTA, an
advantage of using the proposed MTA Constant or MTA Minimax is that these estimators
provide a data-adaptive scale for γ, where γ = 1 sets the regularization parameter to be a∗

T
or 1

T (bu−bl)2 , respectively.

Some observations from Figures 4-7:

• Further to the right on the x-axis the means are more likely to be further apart, and
multi-task approaches help less on average compared to the single-task sample means.

• For T = 2, the James-Stein estimator reduces to the single-task estimator. The MTA
estimators provide a gain while the means are close with high probability (that is,
when σ2

µ < 1) but deteriorate quickly thereafter.

• For T = 5, MTA Constant dominates in the Gaussian case, but in the uniform case
does worse than single-task when the means are far apart. For all T > 2, MTA
Minimax almost always outperforms James-Stein and always outperforms single-task,
which is to be expected as it was designed conservatively.

• The T = 25 and T = 500 cases illustrate that all estimators benefit from an increase
in the number of tasks. The difference between T = 25 performance and T = 500
performance is minor, indicating that benefit from jointly estimating a larger number
of tasks together levels off early on.

• For MTA Constant, cross-validation is always worse than the estimated optimal reg-
ularization, while the opposite is true for MTA Minimax. This is to be expected, as
minimax estimators are not designed to minimizes the average risk, but average risk
is the metric optimized during cross-validation and is the metric reported.
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• Cross-validating MTA Constant or MTA Minimax should result in similar perfor-
mance, and this can be seen in the figures where the green and blue dotted lines are
superimposed. The performance differs slightly because the discrete set of γ choices
multiply different a’s for the MTA Constant and MTA Minimax.

In summary, when the tasks are close to each other compared to their variances, MTA
Constant is the best estimator to use by a wide margin. When the tasks are farther apart,
MTA Minimax provides a win over both James-Stein and sample averages.

5.1 Oracle Performance

To illustrate the best performance we know is possible to achieve with MTA, Figure 8 shows
the effect of using the true “oracle” means and variances for the calculation of optimal
pairwise similarities for T > 2:

Aorcl
rs =

2

(µr − µs)2
. (22)

This matrix is the best pairwise oracle, but does not generally minimize the risk over all
possible A for T > 2. However, comparing to it illustrates how well the MTA formulation
can do, without the added error due to estimating A from the data.3:

Figure 8 reproduces the results from the T = 5 Gaussian simulation (excluding cross-
validation results), and compares to the performance of oracle pairwise MTA using (22).
Oracle MTA is over 30% better than MTA Constant, indicating that practical estimates of
the similarity are highly suboptimal compared to the best possible MTA performance, and
motivating better estimates of A as a direction for future research.

6. Real Data Experiments

We present four real data experiments,4 comparing eight estimators on both goals (2)
and (3). The first experiment estimates future customer reviews based on past customer
reviews. The second experiment estimates final grades based on homework grades. The
third experiment forecasts a customer’s future order size based on the size of their past
orders. The fourth experiment takes a more in-depth look at the estimates produced by
these methods for the historical problem of estimating the length of a king’s reign.

6.1 Metrics

For all the experiments except estimating final grades, we only have sample data, and so we
compare the estimators using a metric that is an empirical approximation to the regression
error defined in (3). First, we replace the expectation in (3) with a sum over the samples.
Second, we measure the squared error between a sample yti and an estimator formed without

3. Preliminary experiments (not reported) showed that for T > 2 estimating A pairwise as Ârs = 2
(ȳr−ȳs)2

was almost always worse than constant MTA.
4. Research-grade Matlab code and the data used in these experiments can be found at http://mayagupta.

org/publications.html.
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Figure 4: Gaussian experiment results for T = {2, 5}. The y-axis is average (over 10000
random draws) percent change in risk vs. single-task, such that −50% means the
estimator has half the risk of single-task. Note: for T = 2 the James-Stein esti-
mator reduces to single-task, and so the cyan and black lines overlap. Similarly,
for T = 2, MTA Constant and MTA Minimax are identical, and so the blue and
green lines overlap.
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Figure 5: Gaussian experiment results for T = {25, 500}. The y-axis is average (over 10000
random draws) percent change in risk vs. single-task, such that −50% means the
estimator has half the risk of single-task.
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Figure 6: Uniform experiment results for T = {2, 5}. The y-axis is average (over 10000
random draws) percent change in risk vs. single-task, such that −50% means the
estimator has half the risk of single-task. Note: for T = 2 the James-Stein esti-
mator reduces to single-task, and so the cyan and black lines overlap. Similarly,
for T = 2, MTA Constant and MTA Minimax are identical, and so the blue and
green lines overlap.
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Figure 7: Uniform experiment results for for T = {25, 500}. The y-axis is average (over
10000 random draws) percent change in risk vs. single-task, such that −50%
means the estimator has half the risk of single-task.
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Figure 8: Average (over 10000 random draws) percent change in risk vs. single-task with
T = 5 for the Gaussian simulation. Oracle MTA uses the true means and variance
to specify the weight matrix W .

that sample, ŷt\yti . That is, the empirical risk we measure is:

T∑
t=1

(
1

Nt

Nt∑
i=1

[
(yti − ŷt\yti)

2
])

. (23)

To make the results more comparable across data sets, we present the results as the percent
the error given in (23) is reduced compared to the single-task sample mean estimate.

6.2 Experimental Details

For the cross-validation estimators, we cross-validate the regularization parameter from the
set {2−15, 2−14, . . . , 214, 215}. This is a larger range of cross-validation values than used in
the simulations, but we found that necessary to achieve good results with cross-validation in
the real data experiments. Cross-validation parameters were chosen using double-leave-one-
out cross-validation (for each sample left out for test, the remaining N-1 samples undergo
leave-one-out cross-validation to optimize (23)). For real-data experiments with more than
50 tasks, to make the double leave-one-out cross-validation fast enough to be feasible, we
randomly sub-sampled uniformly and independently for each held-out sample 50 tasks for
the estimation of the regularization parameter (but all tasks were used in all cases for the
actual estimates).
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In addition to James-Stein, MTA, and their variants, we also compare to the completely-
regularized baseline, the pooled mean estimator:

ŷpooled
t = ¯̄y =

1

TN

T∑
s=1

N∑
i=1

ysi, (24)

which estimates the same value for each task.
For each experiment, a single pooled variance estimate when needed was used for all

tasks: σ2
t = σ2, for all t. We found that using a pooled variance estimate improved perfor-

mance for all the estimators compared.

6.3 Estimating Customer Reviews for Amazon Products

We model amazon.com customer reviews for a product as iid random draws from an un-
known distribution. We scraped customer review scores (ranging from 1 to 5) for four
different product types from the amazon.com website, as detailed in Table 2. We treat each
product as a task, and jointly estimate the mean reviews for all products of the same type.
The eight estimators are compared to see how well they predict held-out customer reviews,
as per (23); a lower (more negative) score corresponds to greater percent reduction in risk
compared to the sample mean estimates.

# of Products Mean # of Reviews Range of # of Reviews

Machine Learning Books 156 7.7 2—80
Blue Suede Shoes 37 16.2 2—143
Espresso Machines 277 47.1 2—1788
Robot Vacuums 59 137.1 3—883

Table 2: Products used in customer reviews experiments, ordered by mean number of re-
views (that is, mean sample size).

Table 3 shows the percent risk reduction for each estimator compared to single-task
estimates. Some observations:

• MTA Constant (no cross-validation) has the best risk reduction averaged across the
products at 11.9% average risk reduction over the single-task estimates, slightly better
than the cross-validated forms of MTA.

• The average MTA Constant risk reduction is 34% better than JS (11.9% vs 8.9%),
and MTA Constant is better than JS on all the data sets.

• On all data sets, all the joint estimators (not including the pooled mean baseline) do
better than the single-task estimates except JS CV on the robot vacuums data set,
showing that joint estimation usually helps.

• MTA Minimax consistently provides small gains over single-task, on average reducing
risk by 4.0%, with the lowest standard deviation of improvement of 2.1.
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• The JS estimator is more sensitive to the quality of the pooled mean estimate than
the MTA Constant estimator.

• JS does better on average than its cross-validated counterpart JS CV, and MTA
Constant does better on average than its cross-validated counterpart MTA Constant
CV.

• The rows in Table 3 are ordered by the average number of reviews (that is, the average
number of samples per task). As one would expect from theory, the gains are larger
if there are fewer reviews per task.

• Mixing un-related products (the last row of Table 3) still produces substantial gains
over single-task estimates.

Pooled JS JS MTA MTA MTA MTA
Mean CV Constant Constant Minimax Minimax

CV CV

ML Books -24.6 -23.1 -22.9 -24.6 -23.3 -6.5 -23.1
Blue Suede Shoes -12.4 -11.5 -10.6 -12.5 -11.6 -4.8 -11.6
Espresso Machines 2.7 -3.7 -6.3 -8.4 -7.8 -3.6 -8.3
Robot Vacuums 8.7 -0.7 7.3 -2.5 -2.2 -0.8 -1.8
All Products -1.9 -5.4 -9.3 -11.3 -11.0 -4.3 -10.7

Average -5.5 -8.9 -8.4 -11.9 -11.2 -4.0 -11.1
STD 13.2 8.9 10.8 8.1 7.7 2.1 7.7

Table 3: Percent change in risk vs. single-task for customer reviews experiment (lower
is better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation, and ‘STD’
denotes standard deviation.

6.4 Estimating Final Grades from Homework Grades

We model homework grades as random samples drawn iid from an unknown distribution
where the mean for each student is that student’s final class grade. We compare the eight
estimators to see how well they predict each student’s final grade given only their homework
grades. Final class grades are based on the homework, but also on projects, labs, quizzes,
exams and sometimes class participation, with the mix varying by class. We collected
22 anonymized data sets from six different instructors at three different universities for
undergraduate electrical engineering classes. Further experimental details:

• Each of the 22 data sets is for a different class, and constitutes a single experiment,
where each student corresponds to a task.

• We treat the ith homework grade of the tth student as sample yti.

• For each class and each cross-validation method, cross-validation parameters were
chosen independently using leave-one-out cross-validation on the homework grades.
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• For each class, the error measurement for estimator ŷ is the sum of squared errors
across all T students:

T∑
t=1

(µt − ŷt)2,

where µt is the given tth student’s final grade.

Table 4 compares the estimators in terms of the percent change in error compared to
the single task estimate ȳt. A lower (more negative) score corresponds to greater percent
reduction in risk compared to the single task estimates.

Some observations:

• MTA Constant (no cross-validation) has the best average risk reduction, at 16.6%
better on average than the standard single-task estimate. The standard deviation
of the win over single task for MTA Constant is 13.7% - also lower than any of the
other estimators except MTA Minimax. This shows MTA Constant is consistently
providing good error reduction.

• MTA Minimax consistently provides small gains, as designed, with low variance.

• Once again, the higher variance of the James-Stein estimator compared to the others
is because of the positive-part aspect of the JS estimator: when the positive-part
boundary is triggered, JS reduces to the one-task (average-of-means) estimator, which
can have poor performance.

• JS does better on average than its cross-validated counterpart JS CV, and MTA
Constant does better on average than its cross-validated counterpart MTA Constant
CV.

6.5 Estimating Customer Spending

We collaborated with the wooden jigsaw puzzle company Artifact Puzzles to estimate how
much each repeat customer would spend on their next order. We treated each customer as
a task; in the time period spanned by the data there are T = 1355 unique customers who
have each purchased at least twice. We modelled each order by a customer as an iid draw
from that customer’s unknown spending distribution. The number of orders per customer
(that is, samples per task) ranged from 2-23, with a mean of 3.03 orders per customer. The
amount spent on a given order had a rather long tail distribution, ranging from $9-$2403,
with a mean of $82.16.

Results are shown in Table 5, showing the percentage reduction in (23) compared to the
single-task sample means.

Some observations from Table 5:

• MTA Constant performed slightly better than the James-Stein estimator, reducing
the empirical risk by 22.4% rather than 21.1%.

• JS does better than its cross-validated counterpart JS CV, and MTA Constant does
better than its cross-validated counterpart MTA Constant CV.
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Class Pooled JS JS MTA MTA MTA MTA
Size Mean CV Constant Constant Minimax Minimax

CV CV

16 26.3 0.7 -0.0 0.6 -0.0 -0.0 -0.0
20 71.2 −3.2 -5.2 −4.7 −3.4 −1.7 −4.6
25 776.9 −12.2 -12.3 −12.2 −12.2 −2.7 −12.1
29 −7.6 −11.6 −31.2 −11.4 -35.2 −1.8 −29.6
34 373.6 −4.9 −12.4 −5.0 −12.7 −1.1 -13.3
36 -28.3 −17.4 −0.0 −16.0 −0.0 −2.8 −0.0
39 42.0 -5.8 −0.0 −5.6 −0.0 −0.9 −0.0
44 3.0 −47.6 −64.5 −42.7 −68.0 −7.0 -69.0
45 127.6 −3.0 −0.0 -19.2 −0.0 −4.6 −0.0
47 -12.8 −8.0 −0.0 −7.1 −0.0 −0.7 −0.0
48 -21.0 −20.5 −0.0 −18.5 −0.0 −2.5 −0.0
50 63.5 63.5 −0.0 9.3 −0.0 -4.4 −0.0
50 3.7 −33.6 −41.5 −29.7 −42.4 −3.2 -47.4
57 23.3 -3.8 −0.0 −3.6 −0.0 −0.4 −0.0
58 −0.2 -16.3 −0.0 −15.6 −0.0 −2.8 −0.0
65 45.0 -29.4 −0.0 −26.2 −0.0 −4.2 −0.0
68 −16.9 -45.5 −16.5 −39.0 −17.0 −6.1 −19.8
69 −14.7 -41.0 −14.7 −39.8 −14.7 −4.5 −14.8
72 34.6 −32.9 −27.3 −29.0 −27.8 −4.0 -34.8
73 224.2 −28.1 −41.1 −26.4 −39.6 −2.4 -41.2
110 5.7 −14.8 -25.3 −13.4 −20.6 −1.2 −22.0
149 -16.6 −11.7 −0.0 −10.1 −0.0 −0.8 −0.0

Average 77.4 −14.9 −13.3 -16.6 −13.3 −2.7 −14.0
STD 182.0 22.7 18.1 13.7 18.7 1.9 19.4

Table 4: Percent change in risk vs. single-task for the grade estimation experiment (lower
is better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation, and ‘STD’
denotes standard deviation.
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Pooled JS JS MTA MTA MTA MTA
Mean CV Constant Constant Minimax Minimax

CV CV

Customer Spending -10.6 -21.1 -17.6 -22.4 -19.7 -0.6 -19.5

Table 5: Percent change in risk vs. single-task for the customer spending experiments (lower
is better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation.

Pooled JS JS MTA MTA MTA MTA
Mean CV Constant Constant Minimax Minimax

CV CV

Kings’ Reigns -8.2 -8.7 -4.7 -8.9 -2.9 -3.1 -3.2

Table 6: Percent change in risk vs. single-task for the kings’ reigns experiments (lower is
better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation.

6.6 Estimating the Length of Kings’ Reigns

To illustrate the differences between the actual estimates, we re-visit an estimation problem
studied by Isaac Newton, “How long does the average king reign?” (Newton, 1728; Stigler,
1999). Newton considered 9 different kingdoms, from the Kings of Judah to more recent
French kings. Our data set covers 30 well-known dynasties, listed in Table 7, from ancient
to modern times, and spread across the globe. All data was taken from wikipedia.org in
August and September 2013 (see the linked data files for the raw data and more historical
details).

Results are shown in Table 6, showing the percentage reduction in (23) compared to the
single-task sample means. Some observations about these results:

• The pooled mean is 8.2% better than estimating each dynasty’s average separately.
We found it surprising that pooling across cultures and history forms overall better
estimates: the fate of man is apparently the fate of man, regardless of whether it is
1000 BC in Babylon or 19th century Denmark.

• The JS and MTA Constant estimators achieve a slightly bigger reduction in squared
error compared to the pooled mean.

• The MTA Constant estimator is very slightly better than the JS estimator, −8.9% vs
−8.7%.

• The JS and MTA estimators do better than their cross-validated counterparts.

We also give the actual estimators of the average length of the reign for each kingdom
in Table 7. Some observations from Table 7:
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Dynasty, # Kings Avg. Pooled JS JS MTA MTA MTA MTA
Mean CV Const. Const. MM MM

CV CV

Larsa, 15 17.7 19.5 19.2 18.5 18.3 18.1 17.8 18.1
Amorite, 11 26.9 19.5 22.3 24.6 24.6 25.5 26.5 25.6
Assyrian, 27 17.3 19.5 19.1 18.2 17.8 17.6 17.4 17.6
Israel, 21 13.4 19.5 17.7 15.6 14.8 14.2 13.6 14.1
Judah, 22 21.5 19.5 20.5 21.0 21.2 21.3 21.5 21.4
Achaemenid, 9 24.3 19.5 21.4 22.9 22.4 23.1 23.9 23.2
Khmer, 33 20.0 19.5 20.0 20.0 20.0 20.0 20.0 20.0
Song, 18 17.7 19.5 19.2 18.5 18.3 18.0 17.8 18.0
Mongol, 4 10.8 19.5 16.8 13.8 16.1 14.5 12.0 14.3
Ming, 17 16.3 19.5 18.7 17.5 17.2 16.8 16.4 16.8
Qing, 12 24.6 19.5 21.6 23.0 23.1 23.7 24.4 23.8
Mamluk, 10 10.1 19.5 16.6 13.4 13.6 12.3 10.7 12.1
Ottoman, 36 17.0 19.5 19.0 18.0 17.4 17.2 17.1 17.2
Normandy, 3 23.0 19.5 21.0 22.0 21.1 21.6 22.5 21.7
Plantagenet, 8 30.8 19.5 23.7 27.2 26.4 28.0 30.0 28.2
Lancaster, 3 20.3 19.5 20.1 20.2 20.1 20.2 20.3 20.2
York, 3 8.0 19.5 15.9 12.0 15.8 13.8 10.1 13.4
Tudor, 5 23.4 19.5 21.1 22.3 21.6 22.2 23.0 22.3
Stuart, 6 16.8 19.5 18.9 17.9 18.4 17.8 17.1 17.8
Hanover, 6 31.0 19.5 23.7 27.3 25.7 27.5 30.0 27.8
Windsor, 3 14.0 19.5 17.9 16.0 17.9 16.9 15.0 16.7
Capet, 15 22.7 19.5 20.9 21.8 21.9 22.3 22.6 22.3
Valois, 7 24.3 19.5 21.4 22.9 22.4 23.1 23.9 23.2
Habsburg, 5 34.4 19.5 24.9 29.6 26.8 29.3 32.8 29.6
Bourbon, 10 21.8 19.5 20.6 21.2 21.2 21.4 21.7 21.4
Oldenburg, 16 25.8 19.5 22.0 23.9 24.3 25.0 25.6 25.0
Mughal, 20 15.7 19.5 18.5 17.1 16.6 16.2 15.8 16.2
Edo, 15 18.6 19.5 19.5 19.1 19.0 18.8 18.7 18.8
Kamehameha, 5 15.4 19.5 18.4 16.9 17.8 17.1 15.9 16.9
Zulu, 4 15.8 19.5 18.5 17.2 18.2 17.5 16.3 17.4

Average
Over Dynasties 19.98 19.49 19.98 19.98 20.00 20.03 20.01 20.04

Table 7: Sample average and eight other estimators of the expected length of the reign of
a king for each dynasty, ordered chronologically. ‘JS’ denotes James-Stein, ‘CV’
denotes cross-validation, ‘Const.’ denotes Constant, and ‘MM’ denotes Minimax.
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• Table 7 shows that while all the estimators regularize the single task mean (given in
column 1) to the pooled mean (given in column 2), the actual estimates can differ
quite a bit. For example, MTA Constant and MTA Minimax differ by 5 years in their
estimates of the average length of reign of a king from the House of York.

• One sees that the JS estimates are regularized harder towards the pooled mean of 19.5
than the MTA Constant estimates. The MTA Minimax estimates are (as expected)
least changed from the task means.

• The last row of Table 7 shows the estimates averaged over the different dynasties. Note
that the JS and JS CV estimators have the same average across the tasks (dynasties)
as the single-task average, as expected from Proposition 7.

• Based on Tables 5 and 7, we estimate the expected length of a king’s reign to be
the dynasty-averaged MTA Constant estimate of 20.00 years. Newton’s wrote his
estimate as “eighteen or twenty years” (Newton, 1728), and the analysis of Stigler
(1999) of Newton’s data shows that the maximum likelihood estimate from his data
was a more pessimistic 19.03 years.

7. Conclusions And Open Questions

We conclude with a summary and then some open questions.

7.1 Summary

We proposed a simple additive regularizer to jointly estimate multiple means using a pair-
wise task similarity matrix A. Our analysis of the T = 2 task case establishes that both
MTA estimates are better than the individual sample means when the separation between
the true means is small relative to the variance of the samples from each distribution. For
the two-task case, we provide a formula for the optimal pairwise task similarity matrix
A, that is, one can analytically estimate the optimal amount of regularization without the
need to cross-validate or tune a regularization hyper-parameter. We generalized that for-
mula to multiple tasks to form the practical and computationally-efficient MTA Constant
mean estimator, as well as a more conservative minimax variant. Simulations and four sets
of real data experiments show the MTA Constant estimator can substantially reduce errors
over the sample means, and generally performs slightly better than James-Stein estimation
(which also does not require cross-validation).

One can also cross-validate the amount of regularization in the MTA formula or in the
James-Stein formula. Our results show that both cross-validations work well, though in
both simulations and real data experiments, MTA Constant performed slightly better or
comparable to the cross-validations.

7.2 Open Questions

Averaging is common, and MTA has potentially broad applicability as a subcomponent to
the many algorithms that use means as a subroutine, such as k-means clustering, kernel
density estimation, or non-local means denoising.
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Most multi-task learning formulations contain an explicit or implicit dependence on
the pairwise similarity between tasks. For MTA, this is the A matrix. Even when side
information about task similarities is available, it may not be in the optimal numerical
form. This paper shows good performance with the assumption that A has constant entries,
where that constant is the average of pairwise similarities estimated based on the sample
means (MTA Constant). However, the oracle performance plots in Section 5 show that the
right choice of A can perform much better. Estimating all T ×T parameters of A optimally
may be difficult, but we hypothesize that other structured assumptions, such as low rank A,
might perform better than our constant approximation. Mart́ınez-Rego and Pontil (2013)
have shown some promising results by clustering tasks in a pre-processing stage.

We focused in this paper on estimating scalar means. The extension to vectors is
straightforward (see Section 4.2). However, how well the vector extension works in prac-
tice, how to best estimate the block diagonal covariance matrix, and whether different
regularization norms would be better remain open questions. A further extension is when
the samples themselves are distributions, and the task means to be estimated are expected
distributions (Frigyik et al., 2008).

We showed in Section 4 that the matrix inverse needed to compute the MTA Constant
and MTA Minimax estimators can be done efficiently. Simulations showed that the achiev-
able gains generally go up slowly with the number of tasks T , with T = 500 producing an
average risk reduction of 40% in the extreme case that the true means for the 500 tasks
were the same. In the real data experiment on customer spending, there were T = 1355
tasks that produced a risk reduction of 22.4%. Larger-scale experiments and analysis of the
effect of large T on the error would be intriguing.

We focused on squared error loss and the graph Laplacian regularizer because they are
standard, generally work well, lead to computationally efficient solutions, and are easy to
analyze. But re-considering the MTA objective with other loss functions and regularizers
might lead to interesting new perspectives and estimates.

Lastly, we hope that some of the analyses and results in this paper inspire further
theoretical analysis of other multi-task learning methods.
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Appendix A. MTA Closed-form Solution

When all Ars are non-negative, the differentiable MTA objective is convex, and admits
closed-form solution. First, we rewrite the objective in (4) using the graph Laplacian matrix
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L = D − (A+A>)/2:

1

T

T∑
t=1

1

σ2
t

Nt∑
i=1

(Yti − Ỹt)2 +
γ

T 2

T∑
r=1

T∑
s=1

Ars(Ỹr − Ỹs)2

=
1

T

T∑
t=1

(
1

σ2
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Nt∑
i=1

Y 2
ti +

Nt

σ2
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Ỹ 2
t − 2

Nt
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ỸtȲt
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+

γ

T 2
Ỹ >LỸ

=
1

T

(
T∑
t=1

1

σ2
t

Nt∑
i=1

Y 2
ti + Ỹ >Σ−1Ỹ − 2Ỹ >Σ−1Ȳ

)
+

γ

T 2
Ỹ >LỸ ,

where, Σ is a diagonal matrix with Σtt =
σ2
t
Nt

, and Ỹ and Ȳ are column vectors with tth

entries Ỹt and Ȳt, respectively.

For simplicity of notation, we assume from now on that A is symmetric. If, in practice,
an asymmetric A is provided, it can be symmetrized without loss of generality.

Take the partial derivative of the above objective w.r.t. Ỹ and equate to zero,

0 =
1

T

(
2Σ−1Y ∗ − 2Σ−1Ȳ

)
+ 2

γ

T 2
LY ∗ (25)

= Y ∗ − Ȳ +
γ

T
ΣLY ∗

Ȳ =
(
I +

γ

T
ΣL
)
Y ∗,

which yields the following optimal closed-form solution:

Y ∗ =
(
I +

γ

T
ΣL
)−1

Ȳ , (26)

as long as the inverse exists, which we will prove next.

Appendix B. Proof of Lemma 1

Assumptions: γ ≥ 0, 0 ≤ Ars <∞ for all r, s and 0 <
σ2
t
Nt

<∞ for all t.

Lemma 1 The MTA solution matrix W =
(
I + γ

T ΣL
)−1

exists.

Proof Let B = W−1 = I + γ
T ΣL. The (t, s)th entry of B is

Bts =

{
1 +

γσ2
t

TNt

∑
s 6=tAts if t = s

− γσ2
t

TNt
Ats if t 6= s,

The Gershgorin disk (Horn and Johnson, 1990) D(Btt, Rt) is the closed disk in C with center
Btt and radius

Rt =
∑
s 6=t
|Bts| =

γσ2
t

TNt

∑
s 6=t

Ats = Btt − 1.
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One knows that Btt ≥ 1 for non-negative A and when
γσ2

t
TNt
≥ 0, as assumed prior to the

lemma statement. Also, it is clear that Btt > Rt for all t. Therefore, every Gershgorin disk
is contained within the positive half-plane of C, and, by the Gershgorin Circle Theorem
(Horn and Johnson, 1990), the real part of every eigenvalue of matrix B is positive. Its
determinant is therefore positive, and the matrix B is invertible: W = B−1.

Appendix C. Proof of Proposition 2

Recall the proposition: As Nt →∞∀ t, Y ∗ → µ.

Proof First note that the (t, t)th diagonal entry of Σ is
σ2
t
Nt

, which approaches 0 as Nt → 0,
implying that all entries of γ

T ΣL → 0 as Nt → 0 as well. Since matrix inversion is a

continuous operation,
(
I + γ

T ΣL
)−1 → I in the norm.5 By the law of large numbers one

can conclude that Y ∗ asymptotically approaches the true mean µ.

Note further that the above proof is only valid for diagonal Σ, but can be easily ex-
tended for non-diagonal Σ by noting that Σrs = σrσs√

NrNs
also converges to 0 as Nr, Ns → 0.

Appendix D. Proof of Theorem 3

Assumptions: γ ≥ 0, 0 ≤ Ars <∞ for all r, s and 0 <
σ2
t
Nt

<∞ for all t.

We next state and prove two lemmas that will be used to prove Theorem 3.

Lemma 8 W has all non-negative entries.

Proof Because the off-diagonal elements of the graph Laplacian are non-positive, W−1 =(
I + γ

T ΣL
)

is a Z-matrix, defined to be a matrix with non-positive off-diagonal entries
(Berman and Plemmons, 1979). If W−1 is a Z-matrix, then the following two statements
are true and equivalent: “the real part of each eigenvalue of W−1 is positive” and “W exists
and W ≥ 0 (elementwise)” (Berman and Plemmons, 1979, Chapter 6, Theorem 2.3, G20

and N38). It has already been proven in Lemma 1 that the real part of every eigenvalue of
W−1 is positive. Therefore, W exists and is element-wise non-negative.

Lemma 9 The rows of W sum to 1.

5. Any matrix norm will do since the dimensionality is fixed, and on finite dimensional vector spaces all
norms are equivalent and therefore generate the same topology.
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Proof As proved in Lemma 1, W exists. Therefore, one can write:

W1 =1

1 =W−11

=
(
I +

γ

T
ΣL
)
1

=I1 +
γ

T
ΣL1

=1 +
γ

T
Σ0

=1,

where the the third equality is true because the graph Laplacian has rows that sum to zero.
The rows of W therefore sum to 1.

Theorem 3 The MTA solution matrix W =
(
I + γ

T ΣL
)−1

is right-stochastic.

Proof We know that W exists (from Lemma 1), is entry-wise non-negative (from Lemma
8), and has rows that sum to 1 (from Lemma 9).

Appendix E. MTA Constant Derivation

For the case when T > 2, analytically specifying a general similarity matrixA that minimizes
the risk is intractable. To address this limitation for arbitrary T , we constrain the similarity
matrix to be the constant matrix A = a11>, resulting in the following weight matrix:

W cnst =

(
I +

1

T
ΣL(a11>)

)−1

. (27)

For tractability, we optimize a using tr(Σ)I rather than the full Σ matrix, such that

a∗ = arg min
a

R

(
µ,

(
I +

1

T

tr(Σ)

T
L(a11>)

)−1

Ȳ

)
, (28)

and then plug this a∗ into (27) to obtain MTA Constant.
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Simplify
(
I + 1

T
tr(Σ)
T L(a11>)

)−1
using the Sherman-Morrison formula,

(
I +

1

T

tr(Σ)

T
L(a11>)

)−1

=

(
I +

a

T

tr(Σ)

T
(TI − 11>)

)−1

=

(
I + a

tr(Σ)

T
− a

T

tr(Σ)

T
11>

)−1

=
1

1 + a tr(Σ)
T

I +

1

1+a
tr(Σ)

T

a
T

tr(Σ)
T 11> 1

1+a
tr(Σ)

T

1− a
T 1
> 1

1+a
tr(Σ)

T

tr(Σ)
T 1

=
1

a tr(Σ)
T + 1

I +

a
tr(Σ)

T

a
tr(Σ)

T
+1

1
T 11

> 1

1+a
tr(Σ)

T

1− a
tr(Σ)

T

1+a
tr(Σ)

T

=
1

a tr(Σ)
T + 1

I +
a tr(Σ)

T

a tr(Σ)
T + 1

1

T
11>

=
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
.

The risk of Y ∗ = 1

a
tr(Σ)

T
+1

(
I + a tr(Σ)

T 2 11>
)
Ȳ is

R(µ, Y ∗)

= tr

(
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
ΣI

1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)>)

+ µ>

(
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
− I

)>(
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
− I

)
µ

=
1

(a tr(Σ)
T + 1)2

tr

((
I + a

tr(Σ)

T 2
11>

)
Σ

(
I + a

tr(Σ)

T 2
11>

))

+ µ>

(
−a tr(Σ)

T

a tr(Σ)
T + 1

I +
a tr(Σ)

T

a tr(Σ)
T + 1

1

T
11>

)>(
−a tr(Σ)

T

a tr(Σ)
T + 1

I +
a tr(Σ)

T

a tr(Σ)
T + 1

1

T
11>

)
µ
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=
1

(a tr(Σ)
T + 1)2

tr

(
Σ + 2a

tr(Σ)

T 2
11>Σ + a2 tr(Σ)2

T 4
11>Σ11>

)

+
(a tr(Σ)

T )2

(a tr(Σ)
T + 1)2

µ>L

(
1

T
11>

)>
L

(
1

T
11>

)
µ

=
tr(Σ)
T

(a tr(Σ)
T + 1)2

(
T + 2a

tr(Σ)

T
+

(
a
tr(Σ)

T

)2
)

+
(a tr(Σ)

T )2

(a tr(Σ)
T + 1)2

µ>L

(
1

T
11>

)>
L

(
1

T
11>

)
µ.

To find the minimum, we take the partial derivative w.r.t. a and set it equal to zero. Noting
that

L

(
1

T
11>

)>
L

(
1

T
11>

)
= L

(
1

T
11>

)
,

and omitting some tedious algebra,

∂

∂a∗
R(µ, Y ∗) = 0 =

2 tr(Σ)
T (−T + 1 + a∗µ>L

(
1
T 11

>)µ)

(a∗ tr(Σ)
T + 1)3

⇔ a∗ =
T − 1

µ>L
(

1
T 11

>)> L ( 1
T 11

>)> µ
=

T − 1

µ>L
(

1
T 11

>)µ
=

2
1

T (T−1)

∑T
r=1

∑T
s=1(µr − µs)2

.

Appendix F. MTA Minimax Derivation

Recall Lehmann and Casella (1998, Chapter 5, Theorem 1.4):

Theorem Suppose that π is a distribution on the space of µ such that

r(π, Yπ) = sup
µ
R(µ, Yπ),

where r(π, Yπ) =
∫
R(µ, Yπ)π(µ)dµ is the Bayes risk. Then:

1. Yπ is minimax.

2. If Yπ is the unique Bayes solution w.r.t. π (i.e., if it is the only minimizer of the
Bayes risk), then it is the unique minimax estimator.

3. The prior π is least favorable.
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Corollary If a Bayes estimator Yπ has constant risk, then it is minimax.

The first step in finding a minimax solution for the T = 2 case is specifying a constraint
set for µ over which a least favorable prior (LFP) can be found. We will use the box
constraint set, µt ∈ [bl, bu]>, where bl ∈ R and bu ∈ R. It is straightforward to show that
the corresponding LFP is

p(µ) =


1
2 , if µ = [bl, bu]>

1
2 , if µ = [bu, bl]

>

0, otherwise.

The next step is to guess a minimax weight matrix WM and show that the estimator
YM = WM Ȳ (i) has constant risk and (ii) is a Bayes solution. According to the corollary,
if both (i) and (ii) hold for the guessed WM , then WM Ȳ is minimax. For the T = 2 case,
we guess WM to be

WM =

(
I +

2

T (bl − bu)2
ΣL(11>)

)−1

,

which is just W cnst with a = 2
(bl−bu)2 . This choice of W is not a function of µ and thus we

have shown that (i) the Bayes risk w.r.t the LFP is constant for all µ. What remains to be
shown is (ii) WM is indeed the Bayes solution, i.e., it is minimizer of the Bayes risk:

1

2

(
[bl bu](W − I)>(W − I)

[
bl
bu

]
+ tr(WΣW>)

)
+

1

2

(
[bu bl](W − I)>(W − I)

[
bu
bl

]
+ tr(WΣW>)

)
. (29)

Note that this expression is the sum of two convex risks. We already know that for T = 2
the minimizer of the risk

[µ1 µ2](W − I)>(W − I)

[
µ1

µ2

]
+ tr(WΣW>)

is W ∗ =
(
I + 2

T (µ1−µ2)2 ΣL(11>)
)−1

. Thus, the minimizer of either term in (29) is

WM =

(
I +

2

T (bu − bl)2
ΣL(11>)

)−1

(30)

as was to be shown. One can conclude that WM is minimax over all estimators of the form(
I + γ

T ΣL
)−1

for T = 2 for the box constraint set.
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Appendix G. Proof of Proposition 4

Recall the proposition: The set of estimators WȲ where W is of MTA form as per (20) is
strictly larger than the set of estimators that regularize the single-task estimates as follows:

Ŷ =

(
1

γ
I + 1α>

)
Ȳ ,

where
∑T

r=1 αr = 1− 1
γ , γ ≥ 1, and αr ≥ 0, ∀r.

Proof Using the Sherman-Morrison formula,

(
1

γ
I + 1α>

)−1

= γI − γ21α>

1 + γα>1

= γI − γ1α>

= I + (γ − 1)I − γ1α>

= I + γ

(
1− 1

γ

)
I − γ1α>

= I + γL(1α>),

which is a matrix of MTA form for Γ = γI and A = 1αT . Thus, estimators Ŷt can be
written in MTA form:

Ŷ = (I + γL(1α>))−1Ȳ . (31)

The converse clearly does not hold: not all matrices (I+ΓL(A))−1 can be written as (31).

Appendix H. Proof of Proposition 7

Recall the proposition: 1>Ŷ JS = 1>Ȳ , where Ŷ JS is given in (7).

Proof The tth component of Ŷ JS can be written:

Ŷ JS
t =

1

T

T∑
r=1

Ȳr + c(Ȳt −
1

T

T∑
r=1

Ȳr),

for some scalar c ∈ [0, 1] that does not depend on t. Thus,

Ŷ JS =
1− c
T

(
T∑
r=1

Ȳr

)
1 + cȲ ,
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and the sum of the estimates is:

1>Ŷ JS = 1>

(
1− c
T

(
T∑
r=1

Ȳr

)
1 + cȲ

)

=
1− c
T

(
T∑
r=1

Ȳr

)
1>1 + c1>Ȳ

= (1− c)
T∑
r=1

Ȳr + c

T∑
r=1

Ȳr

= 1>Ȳ .
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Abstract

Many real-world problems involve the optimization of multiple, possibly conflicting ob-
jectives. Multi-objective reinforcement learning (MORL) is a generalization of standard
reinforcement learning where the scalar reward signal is extended to multiple feedback
signals, in essence, one for each objective. MORL is the process of learning policies that
optimize multiple criteria simultaneously. In this paper, we present a novel temporal differ-
ence learning algorithm that integrates the Pareto dominance relation into a reinforcement
learning approach. This algorithm is a multi-policy algorithm that learns a set of Pareto
dominating policies in a single run. We name this algorithm Pareto Q-learning and it is
applicable in episodic environments with deterministic as well as stochastic transition func-
tions. A crucial aspect of Pareto Q-learning is the updating mechanism that bootstraps
sets of Q-vectors. One of our main contributions in this paper is a mechanism that sep-
arates the expected immediate reward vector from the set of expected future discounted
reward vectors. This decomposition allows us to update the sets and to exploit the learned
policies consistently throughout the state space. To balance exploration and exploitation
during learning, we also propose three set evaluation mechanisms. These three mechanisms
evaluate the sets of vectors to accommodate for standard action selection strategies, such as
ε-greedy. More precisely, these mechanisms use multi-objective evaluation principles such
as the hypervolume measure, the cardinality indicator and the Pareto dominance relation
to select the most promising actions. We experimentally validate the algorithm on multiple
environments with two and three objectives and we demonstrate that Pareto Q-learning
outperforms current state-of-the-art MORL algorithms with respect to the hypervolume of
the obtained policies. We note that (1) Pareto Q-learning is able to learn the entire Pareto
front under the usual assumption that each state-action pair is sufficiently sampled, while
(2) not being biased by the shape of the Pareto front. Furthermore, (3) the set evalua-
tion mechanisms provide indicative measures for local action selection and (4) the learned
policies can be retrieved throughout the state and action space.

Keywords: multiple criteria analysis, multi-objective, reinforcement learning, Pareto
sets, hypervolume

1. Introduction

Many real-life problems involve dealing with multiple objectives (Coello et al., 2006; Tesauro
et al., 2008; Hernandez-del Olmo et al., 2012). For example, in a wireless sensor network the

c©2014 Kristof Van Moffaert and Ann Nowé.
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criteria consist of energy consumption and latency, which are conflicting objectives (Gorce
et al., 2010). When the system engineer wants to optimize more than one objective, it is
not always clear a priori which objectives might be correlated and how they influence each
other. As the objectives are conflicting, there usually exists no single optimal solution. In
those cases, we are interested in a set of trade-off solutions that balance the objectives.
More precisely, we want to obtain the set of best trade-off solutions, i.e., the set of solutions
that Pareto dominate all the other solutions but are mutually incomparable.

There are two main approaches when dealing with multi-objective problems. The sim-
plest way is to use a scalarization function (Miettinen and Mäkelä, 2002) which transforms
the multi-objective problem into a standard single-objective problem. However, this trans-
formation may not be valid when the scalarization function is non-linear. This approach is
called a single-policy algorithm, as each run converges to a single solution. In order to find
a variety of trade-off solutions, several parameterized scalarization functions are employed
and their results are combined. However, the mapping from weight space to objective space
is not guaranteed to be isomorphic (Das and Dennis, 1997). This means that it is not
obvious how to define the weights in order to get a good coverage of the Pareto front of
policies.

Another class of algorithms are multi-policy algorithms. In contrast to focusing only on
a single solution at a time, a multi-policy algorithm searches for a set of optimal solutions
in a single run. Well-known examples of this class are evolutionary multi-objective algo-
rithms, such as SPEA2 (Zitzler et al., 2002) and NSGA-II (Deb et al., 2002), which evolve a
population of multi-objective solutions. These evolutionary multi-objective algorithms are
amongst the most powerful techniques for solving multi-objective optimization problems.

In our work, we focus on reinforcement learning for multi-objective problems. Rein-
forcement learning (Sutton and Barto, 1998) is a machine learning technique that involves
an agent operating in an environment and receiving a scalar feedback signal for its behavior.
By sampling actions and observing the feedback signal, the agent adjusts its estimate of the
quality of its actions. So far, multi-objective reinforcement learning (MORL) has particu-
larly been focusing on single-policy algorithms (Gabor et al., 1998; Mannor and Shimkin,
2004; Van Moffaert et al., 2013b), while only a restricted number of multi-policy MORL
algorithms have been proposed so far. For instance, Barrett and Narayanan (2008) propose
the Convex Hull Value Iteration (CHVI) algorithm. From batch data, CHVI extracts and
computes every linear combination of the objectives in order to obtain all deterministic
optimal policies. As the algorithm relies on linear combinations, only policies on the convex
hull, a subset of the Pareto front, are learned. The most computationally expensive operator
is the procedure to compute and combine the convex hulls in the convex-hull version of the
Bellman equation. Lizotte et al. (2010) reduce the asymptotic space and time complexity of
the bootstrapping rule by learning several value functions corresponding to different weight
vectors using a piecewise linear spline representation. Wang and Sebag (2013) propose a
multi-objective Monte Carlo Tree Search (MO-MCTS) method to learn a set of solutions.
The algorithm performs tree traversals by selecting the most promising actions. The upper
confidence bounds of these actions are scalarized by applying the hypervolume indicator on
the combination of their estimates and the set of Pareto optimal policies computed so far.
Hence, a scalarized multi-objective value function is constructed that eases the process of
selecting an action with vectorial estimates.
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In this paper, we propose a novel MORL algorithm, named Pareto Q-learning (PQL).
To the best of our knowledge, this is the first temporal difference-based multi-policy MORL
algorithm that does not use the linear scalarization function. Thus, Pareto Q-learning is
not limited to the convex hull, but it can learn the entire Pareto front of deterministic non-
stationary policies, if enough exploration is provided. In contrast to single-policy approaches
that only add a scalarization layer on top of single-objective algorithms, we extend the
core principles of the learning algorithm to learn a set of non-dominated policies. Our
PQL algorithm is particularly suited for on-line use, in other words, when the sampling
cost of selecting appropriate actions is important and the performance should gradually
increase over time. We also propose three evaluation mechanisms for the sets that provide
a basis for on-line action selection strategies. These evaluation mechanisms use multi-
objective indicators such as the hypervolume metric, the cardinality indicator and the Pareto
dominance relation in order to select the best possible actions throughout the learning
process based on the contents of the sets. The Pareto Q-learning algorithm is evaluated on
multiple environments with two and three objectives and its performance is compared w.r.t.
several single-policy MORL algorithms that use either the linear or Chebyshev scalarization
function or the hypervolume indicator.

In Section 2, we introduce notations and concepts of reinforcement learning and current
advances in multi-objective reinforcement learning. In Section 3, we present our novel Pareto
Q-learning algorithm and discuss its design specifications. Subsequently, in Section 4, we
conduct an empirical comparison of our algorithm to other state-of-the-art MORL algo-
rithms. Finally, in Section 5, we draw our conclusions.

2. Background

In this section, we present related work and background concepts such as reinforcement
learning and multi-objective reinforcement learning.

2.1 Reinforcement Learning

A reinforcement learning (Sutton and Barto, 1998) environment is typically formalized by
means of a Markov decision process (MDP). An MDP can be described as follows. Let
S = {s1, . . . , sN} be the state space and A = {a1, . . . , ar} the action set available to the
learning agent. Each combination of current state s, action choice a ∈ A and next state s′

has an associated transition probability T (s′|s, a) and expected immediate reward R(s, a).
The goal is to learn a deterministic stationary policy π, which maps each state to an action,
such that the value function of a state s, i.e., its expected return received from time step t
and onwards, is maximized. The state-dependent value function of a policy π in a state s
is then

V π(s) = Eπ

{ ∞∑
k=0

γ krt+k+1 | st = s

}
, (1)

where γ ∈ [0, 1] is the discount factor. The value of taking an action in a state under policy
π is represented by a Qπ(s, a)-value which stores the expected return starting from state s,
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taking action a, and thereafter following π again. The optimal Q∗-values are defined as

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a) max
a′

Q∗(s′, a′). (2)

Watkins introduced an algorithm to iteratively approximateQ∗. In theQ-learning algorithm
(Watkins, 1989), a Q-table consisting of state-action pairs is stored. Each entry contains a
value for Q̂(s, a) which is the learner’s current estimate about the actual value of Q∗(s, a).
The Q̂-values are updated according to the update rule

Q̂(s, a)← (1− αt)Q̂(s, a) + αt(r + γmax
a′

Q̂(s′, a′)), (3)

where αt is the learning rate at time step t and r is the reward received for performing
action a in state s. Provided that all state-action pairs are visited infinitely often and a
suitable evolution for the learning rate is chosen, the estimates, Q̂, will converge to the
optimal values, Q∗ (Tsitsiklis, 1994).

The Q-learning algorithm is listed below in Algorithm 1. In each episode, actions are
selected based on a particular action selection strategy, for example ε-greedy where a random
action is selected with a probability of ε, while the greedy action is selected with a probability
of (1− ε). Upon applying the action, the environment transitions to a new state s′ and the
agent receives the corresponding reward r (line 6). At line 7, the Q̂-value of the previous
state-action pair (s, a) is updated towards the reward r and the maximum Q̂-value of the
next state s′. This process is repeated until the Q̂-values converge or after a predefined
number of episodes.

Algorithm 1 Single-objective Q-learning algorithm

1: Initialize Q̂(s, a) arbitrarily
2: for each episode t do
3: Initialize s
4: repeat
5: Choose a from s using a policy derived from the Q̂-values, e.g., ε-greedy
6: Take action a and observe s′ ∈ S, r ∈ R
7: Q̂(s, a)← Q̂(s, a) + αt(r + γ max

a′
Q̂(s′, a′)− Q̂(s, a))

8: s← s′

9: until s is terminal
10: end for

2.2 Multi-Objective Reinforcement Learning

In multi-objective optimization, the objective space consists of two or more dimensions (Roi-
jers et al., 2013). Therefore, regular MDPs are generalized to multi-objective MDPs or
MOMDPs. MOMDPs are MDPs that provide a vector of rewards instead of a scalar re-
ward, i.e.,

R(s, a) = (R1(s, a), . . . Rm(s, a)), (4)
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where m represents the number of objectives. In the case of MORL, the state-dependent
value function of a state s is vectorial:

Vπ(s) = Eπ

{ ∞∑
k=0

γ krt+k+1 | st = s

}
. (5)

Since the environment now consists of multiple objectives, different policies can be optimal
w.r.t. different objectives. In MORL different optimality criteria are used. For instance,
Gabor et al. (1998) employ a lexicographical ordering of the objectives, while Barrett and
Narayanan (2008) define linear preferences on the different objectives. Although, in gen-
eral, the Pareto dominance relation is used as an optimality criterion in multi-objective
optimization.

Definition 1 A policy π1 is said to strictly dominate another solution π2, that is π2 ≺ π1,
if each objective in Vπ1 is not strictly less than the corresponding objective of Vπ2 and at
least one objective is strictly greater. In the case where Vπ1 strictly improves Vπ2 on at
least one objective and Vπ2 also strictly improves Vπ1 on at least one, the two solutions
are said to be incomparable. A policy π is Pareto optimal if Vπ either strictly dominates
or is incomparable with the value functions of the other policies. The set of Pareto optimal
policies is referred to as the Pareto front.

2.2.1 Single-Policy MORL

Most approaches of reinforcement learning on multi-objective tasks rely on single-policy
algorithms (Gabor et al., 1998; Mannor and Shimkin, 2004) in order to learn Pareto optimal
solutions. Single-policy MORL algorithms employ scalarization functions (Vamplew et al.,
2008) to define a utility over a vector-valued policy and thereby reducing the dimensionality
of the underlying multi-objective environment to a single, scalar dimension:

Definition 2 A scalarization function f is a function that projects a vector v to a scalar:

vw = f(v,w), (6)

where w is a weight vector parameterizing f .

Recently, a general framework for scalarized single-policy MORL algorithms is pro-
posed (Van Moffaert et al., 2013b). In the framework, scalar Q̂-values are extended to
Q̂-vectors that store a Q̂-value for each objective, i.e.,

Q̂(s, a) = (Q̂1(s, a), . . . , Q̂m(s, a)). (7)

When selecting an action in a certain state of the environment, a scalarization function f
is applied to the Q̂-vector of each action in order to obtain a single, scalar ŜQ(s, a) estimate
(Algorithm 2, line 4). In the following subsection, we will discuss possible instantiations of

the scalarization function f. At line 5, we store the ŜQ(s, a) estimates in a list in order to
apply traditional action selection strategies, such as, for example, the ε-greedy strategy.
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Algorithm 2 Scalarized ε-greedy strategy, scal-ε-greedy()

1: SQList← {}
2: for each action a ∈ A do
3: v← {Q̂1(s, a), . . . , Q̂m(s, a)}
4: ŜQ(s, a)← f(v,w) . Scalarize Q̂-vectors

5: Append ŜQ(s, a) to SQList
6: end for
7: return ε-greedy(SQList)

The scalarized multi-objective Q-learning algorithm is presented in Algorithm 3. At line
1, the Q̂-values for each triplet of states, actions and objectives are initialized. The agent
starts each episode in state s (line 3) and chooses an action based on the multi-objective
action selection strategy at line 5, e.g, scal-ε-greedy. Upon taking action a, the environment
transitions the agent into the new state s′ and provides the vector of sampled rewards r.
As the Q-table has been extended to incorporate a separate value for each objective, these
values are updated for each objective individually and the single-objectiveQ-learning update
rule is extended for a multi-objective environment at line 9. More precisely, the Q̂-values
for each triplet of state s, action a and objective o are updated using the corresponding
reward for each objective, r, into the direction of the best scalarized action of the next state
s′. It is important to note that this framework only adds a scalarization layer on top of the
action selection mechanisms of standard reinforcement learning algorithms.

Algorithm 3 Scalarized multi-objective Q-learning algorithm

1: Initialize Q̂o(s, a) arbitrarily
2: for each episode t do
3: Initialize state s
4: repeat
5: Choose action a from s using the policy derived from ŜQ-values, e.g., scal-ε-

greedy
6: Take action a and observe state s′ ∈ S and reward vector r ∈ Rm
7: a′ ← greedy(s′) . Call scal. greedy action selection
8: for each objective o do
9: Q̂o(s, a)← Q̂o(s, a) + αt(ro + γ Q̂o(s

′, a′)− Q̂o(s, a))
10: end for
11:

12: s← s′ . Proceed to next state
13: until s is terminal
14: end for

A scalarization function can come in many forms and flavors, but the most common
function is the linear scalarization function. As depicted in Eq. 8, the linear scalarization
function calculates a weighted-sum of the Q̂-vector and a non-negative weight vector

ŜQlinear(s, a) =

m∑
o=1

wo · Q̂o(s, a). (8)

3668



Multi-Objective Reinforcement Learning using Sets of Pareto Dominating Policies

The weight vector itself should satisfy the equation

m∑
o=1

wo = 1. (9)

Given these ŜQ-values, the standard action selection strategies can decide on the appropri-
ate action to select. For example, in the greedy case in Eq. 10, the action with the largest
ŜQ-value is selected:

greedylinear(s) = arg max
a′

ŜQlinear(s, a
′). (10)

Because the linear scalarization function computes a convex combination, it has the fun-
damental limitation that it can only find policies that lie in convex regions of the Pareto
front (Vamplew et al., 2008).

An alternative scalarization function is based on the Lp metrics (Dunford et al., 1988).
These metrics measure the distance between a point x in the multi-objective space and a
utopian point z∗. This point z∗ serves as a point of attraction to steer the search process
to high-quality solutions. The utopian point z∗ is a parameter that is being constantly
adjusted during the learning process by recording the best value so far for each objective
o, plus a small negative or positive constant τ , depending whether the problem is to be
minimized or maximized, respectively. In our setting, we measure the distance between
each objective of x to z∗ with 1 ≤ p ≤ ∞:

Lp(x) =
( m∑
o=1

wo|xo − z∗o|p
)1/p

. (11)

In the case of p = ∞, the metric results in the weighted L∞ or the Chebyshev metric and
is of the form

L∞(x) = max
o=1...m

wo|xo − z∗o|. (12)

In the case of single-policy MORL, a ŜQL∞-value is obtained by substituting x for the

Q̂-vector of a state-action pair (s, a):

ŜQL∞(s, a) = max
o=1...m

wo · |Q̂o(s, a)− z∗o|. (13)

Lp metrics entail that the action corresponding to the minimal ŜQLp
-value is considered

the greedy action in state s. Hence, for the Chebyshev metric that is greedyL∞(s):

greedyL∞(s) = arg min
a′

ŜQL∞(s, a′). (14)

Although the Chebyshev metric is a common and established function in evolutionary
algorithms, its application in reinforcement learning lacks theoretical guarantees. More
precisely, there exist examples which indicate that the Chebyshev metric, being a non-
linear function, does not guarantee the scalarized returns to be additive. As a result, the
Bellman equation no longer holds and the learning algorithm is not proven to converge to
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the optimal policy (Perny and Weng, 2010; Roijers et al., 2013). Nevertheless, even without
this theoretical guarantee, a Chebyshev scalarized MORL algorithm can obtain high-quality
solutions (Van Moffaert et al., 2013b).

Quality indicators are functions that assign a real value to a set of vectors and are
usually employed to evaluate the results of multi-objective algorithms. Yet, particular
multi-objective algorithms also use indicators in their internal workings to steer the search
process (Beume et al., 2007; Igel et al., 2007). This class of algorithms are called indicator-
based algorithms. Many quality indicators exist, but the one that is the most interesting for
our context is the hypervolume (Zitzler et al., 2003) indicator. The hypervolume measure
is a quality indicator that evaluates a particular set of vectorial solutions by calculating
the volume with respect to its elements and a reference point (Figure 1). As the goal is to
maximize the hypervolume, this reference point is usually defined by determining the lower
limit of each objective in the environment.

ref
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Figure 1: Illustration of the hypervolume calculator. It calculates the area of a set of
non-dominated policies, i.e., S1, S2 and S3, in the objective space with a given
reference point ref.

The hypervolume indicator is of particular interest in multi-objective optimization as it
is the only quality measure known to be strictly increasing with regard to Pareto dominance.
Recently, the hypervolume-based MORL algorithm (HB-MORL) is proposed (Van Moffaert
et al., 2013a). HB-MORL is a specific multi-objective algorithm that uses an archive of
Q̂-vectors of previously visited states and actions. The innovative part of HB-MORL lies
in the action selection mechanism, i.e., the action that maximizes its contribution to the
archive in terms of the hypervolume measure is selected.

2.2.2 Multi-Policy MORL

In contrast to single-policy MORL, multi-policy algorithms do not reduce the dimensionality
of the objective space but aim to learn a set of optimal solutions at once. White (1982)
proposed a dynamic programming (DP) algorithm that computes a set of Pareto dominating
policies. Dynamic programming differs from reinforcement learning in the fact that it
assumes a model of the environment while reinforcement learning does not need any a

3670



Multi-Objective Reinforcement Learning using Sets of Pareto Dominating Policies

priori knowledge about the environment but is able to work model-free. The DP function is

Q̂set(s, a) = R(s, a)⊕ γ
∑
s′∈S

T (s′|s, a) V ND(s′), (15)

where R(s, a) is the expected reward vector observed after taking action a in state s and
T (s′|s, a) is the corresponding transition probability of reaching state s′ from (s, a). We
refer to V ND(s′) as the set of non-dominated vectors of the Q̂set’s of each action in s′,
as denoted in Eq. 16. The ND operator is a function that removes all Pareto dominated
elements of the input set and returns the set of non-dominated elements:

V ND(s′) = ND(∪a′Q̂set(s′, a′)). (16)

The ⊕ operator performs a vector-sum between a vector v and a set of vectors V . Summing
two vectors can be performed simply by adding the corresponding components of the vectors:

v ⊕ V =
⋃

v′∈V
(v + v′). (17)

The idea is that, after the discounted Pareto dominating rewards are propagated and
the Q̂set’s converge to a set of Pareto dominating policies, the user can traverse the tree
of Q̂set’s by applying a preference function. As highlighted in Section 2.1, a deterministic
stationary policy suffices for single-objective reinforcement learning. In the case of MORL,
White (1982) showed that deterministic non-stationary policies, i.e., policies that do not
only condition on the current state but usually also on the time step t, can Pareto dominate
the best deterministic stationary policies. As a result, in infinite horizon problems with large
values for the discount factor, the number of non-stationary policies increases exponentially
and therefore it can lead to an explosion of the sets. In order to make the algorithm
practically applicable, Wiering and de Jong (2007) proposed the CON-MODP algorithm
which solves the problem of non-stationary policies by introducing a consistency operator,
but their work is limited to deterministic transition functions.

Several multi-policy algorithms were inspired by the work of White. For instance, Bar-
rett and Narayanan (2008) proposed the convex hull value-iteration (CHVI) algorithm which
computes the deterministic stationary policies that are on the convex hull of the Pareto
front. The convex hull is a set of policies for which the linear combination of the value of
policy π, Vπ, and some weight vector w is maximal (Roijers et al., 2013). In Figure 2 (a),
white dots denote the Pareto front of a bi-objective problem and in Figure 2 (b) the red
line represents the corresponding convex hull. The 4 deterministic policies denoted by red
dots are the ones that CHVI would learn. CHVI bootstraps by calculating the convex hull
of the union over all actions in s′, that is

⋃
a′ Q(s′, a′). The most computationally expen-

sive operator is the procedure of combining convex hulls in the bootstrapping rule. Lizotte
et al. (2010) reduce the asymptotic space and time complexity of the bootstrapping rule
by simultaneously learning several value functions corresponding to different weights and
by calculating their piecewise linear spline representation. Recently, they validated their
work on clinical trial data for three objectives, although the practical possibilities for higher
dimensional spaces are not straightforward (Lizotte et al., 2012).
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To conclude, it is important to note that (1) these methods are batch algorithms that
assume a model of the environment is known and that (2), in general, only policies that lie
on a subset of the Pareto front, i.e., the convex hull, are obtained.

While the aforementioned multi-policy algorithms learn only a finite set of deterministic
policies, it might be interesting to employ probabilistic combinations of these policies. Such
a stochastic combination of two policies is called a mixture policy (Vamplew et al., 2009)
and can be explained with the following example. Take for instance a very easy multi-
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Figure 2: (a) A Pareto front of bi-objective policies represented by white dots. (b) The
convex hull of the same Pareto front is represented by a red line. The 4 red dots
denote policies that CHVI and Lizotte’s method would learn.

objective problem where the agent can only follow two deterministic policies π1 and π2 with
Vπ1(s0) = (1, 0) and Vπ2(s0) = (0, 1), where s0 denotes the start state. If one would follow
policy π1 with probability p and policy π2 with probability (1 − p), the average reward
vector would be (p, 1− p). Thus, although there are only two deterministic policies for the
original problem, a mixture policy implicates that we can sample the entire convex hull of
policies by combining the deterministic policies with a certain probability. Hence, stochastic
combinations of the policies of the Pareto front in Figure 2 (a) can represent every solution
on the red line in Figure 2 (b).

However, mixture policies might not be appropriate in all situations, as highlighted
by Roijers et al. (2013). For instance, in the setting of Lizotte et al. (2010), clinical data is
analyzed to propose a treatment to patients based on a trade-off between the effectiveness
of the drugs and severity of the side effects. Consider the case where only two policies exist
that either maximize the effectiveness and the severity of the side effects and vice versa.
While the average performance of the mixture policy of these two basic policies might yield
good performance across a number of episodes, the policy itself might be unacceptable in
each episode individually, i.e., for each patient independently.

3. Pareto Q-learning

In this section, we will propose a novel on-line TD-based multi-objective learning algorithm,
named Pareto Q-learning or PQL, which uses the algorithm of White (1982) as a starting
point. As a result, PQL also learns deterministic non-stationary policies. Before we present
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the details of our algorithm, we first describe the assumption that we make. We currently
only focus on episodic problems, i.e., environments with terminal states that end the episode.
In Section 5, we analyze the challenges to extend PQL to ergodic environments.

The Pareto Q-learning algorithm does not assume a given model, i.e., it works model-
free. Therefore, we present three mechanisms that allow action selection based on the
content of the sets of Q̂-vectors. We name them set evaluation mechanisms as they provide
a scalar evaluation of the sets. These scalar evaluations can then be used to guide the
standard exploration strategies, such as ε-greedy. The details of the evaluation mechanisms
are presented in Section 3.2. First, we elaborate on how we can learn and update sets of
vectors in Section 3.1.

3.1 Set-Based Bootstrapping

The single-objective Q-learning bootstrapping rule updates an estimate of an (s, a)-pair
based on the reward and an estimate of the next state (Watkins, 1989). The update rule
guarantees that the Q̂-values converge to their expected future discounted reward, even
when the environment has a stochastic transition function. In this section, we analyze the
problem of bootstrapping sets of vectors. We first present a naive approach whereupon we
present our novel Pareto Q-learning algorithm.

3.1.1 Naive Approach

The set-based bootstrapping problem boils down to the general problem of updating the set
of vectors of the current state-action (s, a)-pair with an observed reward vector r and a set
of non-dominated vectors of the next state, ND(∪a′Q̂set(s′, a′)) over time. The difficulty
in this process arises from the lack of correspondence between the vectors in the two sets,
i.e., it is not clear which vector of the set of the current (s, a)-pair to update with which
vector in s′. This correspondence is needed to perform a pairwise update of each vector in
Q̂set(s, a) with the corresponding vector (if any) in the other set (see Figure 3).
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[0.15, 0.3]

[0, 0.5]

[0.3, 0.15]

[0.1, 0.9]
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ND(∪a′Q̂set(s
′, a′))Q̂set(s, a)
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r

Figure 3: Set-based bootstrapping: the problem of updating over time the set of vectors
of the current state-action pair with the observed reward vector and the opti-
mal vectors of the next state. There is no explicit correspondence between the
elements in both sets, so as to perform a pairwise update.
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A possible solution is to make this correspondence explicit by labelling or tagging the
vectors in the two sets. When vectors in the sets of (s, a) and s′ are tagged with the same
label or color, the bootstrapping process knows that these vectors can be updated in a
pairwise manner. More precisely, the process would be as follows: when sampling an action
a in s for the first time, the vectors in the set of the next state ND(∪a′Q̂set(s′, a′)) are
labeled with a unique tag. Next, the bootstrapping process can continue for each vector
in s′ individually and the tag is copied to the set of (s, a). This process is illustrated in
Figure 4 (a) for a bi-objective environment. Subsequently, when action a is sampled in
future time steps, we actually have a correspondence between the vectors in the two sets
and we can perform a pairwise update for each objective of each vector with the same label
(Figure 4 (b)). However, the main problem with this naive solution is that these sets are not
stable but can change over time. We highlight two main cases that can occur in a temporal
difference setting:

• It is possible that the set of (s, a) was updated with vectors from s′ at time step t,
while actions in s′ were sampled at time step t+ 1, that were previously unexplored.
Possibly, new non-dominated vectors then appear in ND(∪a′Q̂set(s′, a′)). When, in
future episodes, the set of (s, a) is to be updated again, there are elements in s′ that
were not bootstrapped before and the correspondence between the sets is incomplete
(Figure 4 (c)).

• As estimates are being updated over time, it is very likely that vectors in s′ that
were non-dominated at time step t, become dominated by other vectors at time step
t+1. In Figure 4 (d), we see that in that case the correspondence no longer holds, i.e.,
different labels appear in the two sets. As a consequence, learning would have to begin
from scratch again for those vectors. Especially in early learning cycles, the vectorial
estimates can repeatedly switch between being non-dominated and dominated. Hence,
this naive updating process would waste a lot of samples before the vectors mature.

It is clear that such a naive updating procedure would become even more cumbersome
and complex in environments with stochastic transitions. As a result, it would not be
generally applicable to a wide range of problem domains.

3.1.2 Our Approach: Learning Immediate And Future Reward Separately

In the presentation of our updating principle, we first limit ourselves to environments with
deterministic transition functions. We then proceed to highlight the minimal extensions to
the algorithm to also cover stochastic transitions.

In standard, single-objective Q-learning (Eq. 3), Q̂-values store the sum of the estimated
value of the immediate reward and the future discounted reward. Our idea consists of storing
this information separately. We use R(s, a) to denote the average observed immediate
reward vector of (s, a) and NDt(s, a) the set of non-dominated vectors in the next state
of s that is reached through action a at time step t. The next state of s is determined by
observing the transitions during learning. By storing R(s, a) and NDt(s, a) separately, we
allow them to converge separately as well. This way, no explicit correspondence between the
two sets is required and the current set of non-dominating policies at time step t, NDt(s, a)
is allowed to evolve over time. The Q̂set of (s, a) can be calculated at run time by performing
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Figure 4: Several situations can occur when updating a set with another set over time. In
(a), we would naively label the vectors of s′ with a certain color when sampling
action a in s for the first time. In (b), we note that the labeled and colored
vectors of s′ are now bootstrapped and present in (s, a). As the colors are also
copied in (s, a), the correspondence between the vectors in (s, a) and s′ is explicit
and in future time steps the vectors can be updated in a pairwise manner. (c)
and (d) highlight the different situations one should account for as the sets are
not stable but can change over time. For instance, new vectors can appear in s′

(c) or estimates that were non-dominated can become dominated (d). We refer
to Section 3.1 for more details.

a vector-sum over the average immediate reward vector and the set of discounted Pareto
dominating future rewards:

Q̂set(s, a)← R(s, a)⊕ γNDt(s, a). (18)

Whenever the action a in s is selected, the average immediate reward vector R(s, a) is
updated and the NDt(s, a) list is updated using the non-dominated Q̂-vectors in the Q̂set
of every action a′ in s′, i.e., ND(∪a′Q̂set(s′, a′)).

We present an algorithmic outline of the Pareto Q-learning algorithm in Algorithm 4.
The algorithm starts by initializing the Q̂set’s as empty sets. In each episode, an action is
selected using a particular action selection strategy (line 5). How we actually perform the
action selection based on the Q̂set’s will be presented in the subsequent section. Afterwards,
the environment transfers the agent to state s′ and provides the reward vector r. In state
s′, the non-dominated Q̂-vectors for each action are retrieved at line 8 and are discounted.
At line 9, the average immediate reward for each objective, R(s, a), is iteratively updated
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given the new reward r and the number of times that action a was sampled, denoted by
n(s, a). The algorithm proceeds until the Q̂set’s converge or after a predefined number of
episodes.

Algorithm 4 Pareto Q-learning algorithm

1: Initialize Q̂set(s, a)’s as empty sets
2: for each episode t do
3: Initialize state s
4: repeat
5: Choose action a from s using a policy derived from the Q̂set’s
6: Take action a and observe state s′ ∈ S and reward vector r ∈ Rm
7:

8: NDt(s, a)← ND(∪a′Q̂set(s′, a′)) . Update ND policies of s′ in s

9: R(s, a)← R(s, a) + r−R(s,a)
n(s,a) . Update average immediate rewards

10: s← s′ . Proceed to next state
11: until s is terminal
12: end for

Although we do not provide a formal proof on the convergence of PQL, its convergence
can be argued by the observation that the procedure of repeatedly calculating the set of
non-dominated vectors, as was applied in White’s algorithm, is guaranteed to converge and
the fact that the convergence of the R(s, a) is trivial.

The updating principle can also be extended to stochastic environments, where the
transition probability T (s′|s, a) 6= 1 for some next state s′, given state s and action a. In
the case of stochastic transition functions, we store the expected immediate and future non-
dominated rewards per (s, a, s′)-tuple that was observed during sampling, i.e., R(s, a, s′) and
NDt(s, a, s

′), respectively. By also considering the observed frequencies of the occurrence of
next state s′ per (s, a)-pair, i.e., F s

′
s,a, we estimate T (s′|s, a) for each (s, a). Hence, we learn

a small model of the transition probabilities in the environment, similar to Dyna-Q (Sutton
and Barto, 1998), which we use to calculate a weighted pairwise combination between the
sets. To combine a vector from one set with a vector from the other set, we propose the
C-operator, which simply weighs them according to the observed transition frequencies:

C(Q̂(s, a, s′), Q̂(s, a, s′′)) =
F s

′
s,a∑

s′′′∈S F
s′′′
s,a

Q̂(s, a, s′) +
F s

′′
s,a∑

s′′′∈S F
s′′′
s,a

Q̂(s, a, s′′). (19)

3.2 Set Evaluation Mechanisms

In reinforcement learning, the on-line performance is crucial. Therefore, it is interesting to
see how the standard exploration strategies, such as ε-greedy, can be applied on the Q̂set’s
during learning. In this section, we propose three evaluation mechanisms that obtain a
scalar indication of the quality of a Q̂set. These scalar evaluations are used in action selection
strategies to balance the exploration and the exploitation. We name these techniques set
evaluation mechanisms.
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3.2.1 Hypervolume Set Evaluation

The first set evaluation mechanism we propose uses the hypervolume measure to evaluate
the Q̂set’s. The hypervolume indicator is well-suited for two reasons: (1) it is the only
quality indicator to be strictly monotonic with the Pareto dominance relation and (2) it
provides a scalar measure of the quality of a set of vectors. An outline of the algorithm
is given in Algorithm 5. First, we initialize the list where the evaluations of each action
of s will be stored. At line 4, we calculate the Q̂set for each action and we compute its
hypervolume which we append to the list. The list of evaluations can then be used in an
action selection strategy, similar to the single-objective case. For instance, when selecting
an action greedily, the action corresponding to the Q̂set with the largest hypervolume is
selected. When the Q̂set’s are empty, the hypervolume of each action is 0 and an action is
selected uniformly at random.1 This set evaluation mechanism, in combination with Pareto
Q-learning, is referred to as HV-PQL. A crucial parameter of the hypervolume calculation

Algorithm 5 Hypervolume Qset evaluation

1: Retrieve current state s
2: evaluations = {}
3: for each action a do
4: hva ← HV (Q̂set(s, a))
5: Append hva to evaluations . Store hypervolume of the Q̂set(s, a)
6: end for
7: return evaluations

is the reference point. This parameter is problem-specific and should be chosen with great
care. A good practice is to define it pessimistically by considering the worst possible value
for each objective of every possible policy in the environment.

3.2.2 Cardinality Set Evaluation

An alternative to the previous evaluation mechanism is to consider the number of Pareto
dominating Q̂-vectors of the Q̂set of each action. This evaluation mechanism closely relates
to the cardinality indicator in multi-objective optimization, hence the abbreviation C-PQL.

The rationale behind this evaluation mechanism is that it can heuristically guide the
search process by providing a degree of domination one action has over other actions, locally
in a state. It is expected that these actions then have a larger probability to lead to global
Pareto dominating solutions. Especially when estimates are not yet mature, it might be
interesting to bias the action selection to actions with a large number of non-dominated
solutions. An outline of the algorithm is given in Algorithm 6. At line 2, we initialize a
list where we store the individual Q̂-vectors of the Q̂set, together with a reference to its
corresponding action a (line 5). At line 8, we remove all dominated Q̂-vectors using the
ND operator, such that only the non-dominated Q̂-vectors remain in the NDQs list. Using
this list, the underlying action selection strategy can simply count the number of times each
action a of s remains in the list of Pareto dominating Q̂-vectors, i.e., the NDQs list, and
eventually perform the action selection. Thus, when selecting an action greedily, the action

1. This is also the case for the other set evaluation mechanisms below.
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that relates to the largest number of Pareto dominating Q̂-vectors over all actions in s is
selected.

Algorithm 6 Cardinality Qset evaluation

1: Retrieve current state s
2: allQs = {}
3: for each action a in s do
4: for each Q̂ in Q̂set(s, a) do
5: Append [a, Q̂] to allQs . Store for each Q̂-vector a reference to a
6: end for
7: end for
8: NDQs← ND(allQs) . Keep only the non-dominating solutions
9: return NDQs

3.2.3 Pareto Set Evaluation

The third evaluation mechanism is a simplified version of the cardinality metric. Instead of
considering the number of non-dominated elements in the Q̂set of each action in s, we simply
consider if action a has a non-dominated vector across every other action a′ or not. The
approach eliminates any actions which are dominated, and then randomly selects amongst
the non-dominated actions. Hence, this mechanism only relies on the Pareto relation and
is therefore called PO-PQL. PO-PQL removes the bias that the cardinality indicator in
C-PQL might have for actions with a large number of non-dominated vectors over actions
with just a few. The rationale behind this mechanism is to have a more relaxed evaluation
of the actions of a particular state and to treat every non-dominated solution equally.

3.3 Consistently Tracking a Policy

The set evaluation mechanisms in Section 3.2 provide the necessary tools to perform action
selection during learning, i.e., balancing the exploration towards uncharted areas of the state
space and the exploitation of non-dominated actions. However, at any moment in time, it
might be necessary to apply the learned policies. In single-objective reinforcement learning,
the learned policy can be easily tracked by applying the arg max-operator over all actions
in each state, i.e., applying greedy action selection. In the case of a multi-policy problem,
we are learning multiple policies at the same time which requires an adapted definition of
a greedy policy in MORL.

Because of the nature of multi-policy setting, one needs to select actions consistently in
order to retrieve a desired policy based on the Q̂-vectors. If one would select actions based
on local information about the ‘local’ Pareto front attainable from each action, then there
is no guarantee that the cumulative reward vectors obtained throughout the episode will be
globally Pareto optimal. This process is highlighted in Figure 5 (a) where the state space is
an 8×8 grid and three global Pareto optimal policies exist, each given a different color. In
Figure 5 (b), we select actions that are locally non-dominated, i.e, non-dominated within
the current state. The black policy is a sequence of locally optimal actions, as it always
overlaps with one of the colored lines, however, the resulting policy is not globally Pareto
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optimal. To conclude, when in a state where multiple actions are considered non-dominated
and therefore are incomparable, one can not randomly select between these actions when
exploiting a chosen balance between criteria but actions need to be selected consistently.

S

G

S

G

(a) (b)

Figure 5: (a) In this environment, there is a green, yellow and red Pareto optimal action
sequence that is globally optimal. (b) Selecting actions that are locally non-
dominated within the current state does not guarantee that the entire policy is
globally Pareto optimal. Hence, the information about the global Pareto front
has been lost in the local Pareto front.

In order to solve the problem of locally optimal actions that are globally dominated,
we define a globally greedy policy as a policy π that consistently follows or tracks a given
expected return vector Vπ(s) from a state s so that its return equals Vπ(s) in expectation.
Therefore, we need to retrieve π, i.e., which actions to select from a start state to a terminal
state. However, due to the stochastic behavior of the environment, it is not trivial to
select the necessary actions so as to track the desired return vectors. Let us consider
the small bi-objective MDP with deterministic transitions in Figure 6. When the agent
reaches a terminal state, denoted by a double circle, the episode is finished. Assume that
the discount factor γ is set to 1 for simplicity reasons. Once the Qset’s have converged
separately, we can identify three Pareto optimal policies in the start state s0. These policies
have corresponding expected reward vectors (1.1, 0.5), (2.2, 0.4) and (0.2, 0.6). When one is
for instance interested in following the policy with an expected reward vector of (2.2, 0.4),
the agent should select action a as the vector (2.2, 0.4) is an element of the Q̂set of action a
(and there is no other option). But, once in the next state, the next action to select is not
clear when one only stores the converged Qset’s. Hence, should the agent select action b, c
or d to acquire a return of (2.2, 0.4) at the end of the episode? The approach we propose
to solve this issue is based on the separation of the average immediate and future rewards,
i.e., we can simply subtract the average immediate reward from the expected return we
are targeting, in order to retrieve the next action to select. This way, we can consistently
follow the expected return from state s, Vπ(s), throughout the entire state space. In the
example, the agent should select the action that contains (2.2, 0.4)− (0.2, 0) = (2.0, 0.4) in
its Qset, i.e., action c. The pseudo-code of the tracking algorithm for environments with
deterministic transitions is listed in Algorithm 7. The agent starts in a starting state s of
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S
0

S
1a

b

c

d

Action R(s, a) NDt(s, a) Q̂set(s, a)

a (0.2, 0.0)
(

(0.9, 0.5), (2.0, 0.4), (0.0, 0.6)
) (

(1.1, 0.5), (2.2, 0.4) , (0.2, 0.6)
)

b (0.9, 0.5) () (0.9, 0.5)

c (2.0, 0.4) () (2.0, 0.4)

d (0.0, 0.6) () (0.0, 0.6)

Figure 6: A small multi-objective MDP and its corresponding Qset’s. As we store the
expected immediate and future non-dominated vectors separately, we can consis-
tently follow expected return vectors from start to end state.

the environment and has to follow a particular policy so as to obtain the expected value
of the policy from that state, i.e., Vπ(s), at the end of the episode. For each action of
the action set A, we retrieve both the averaged immediate reward R(s, a) and NDt(s, a),
which we discount. If the sum of these two components equals the target vector to follow,
we select the corresponding action and proceed to the next state. The return target to
follow in the next state s′ is then assigned to Q and the process continues until a terminal
state is reached. When the vectors have not entirely converged yet or the transition scheme
is stochastic, the equality operator at line 7 should be relaxed. In this case, the action is
to be selected that minimizes the difference between the left and the right term. In our
experiments, we select the action that minimizes the Manhattan distance between these
terms.

4. Results and Discussion

Before we analyze the experiments, we first discuss the general challenges in assessing the
performance of on-line multi-policy MORL algorithms in Section 4.1. In Section 4.2, we
evaluate and discuss the performance of the Pareto Q-learning algorithm in combination
with each of the set evaluation mechanisms on two test problems. In the subsequent section,
we perform an empirical comparison of the Pareto Q-learning algorithm to several single-
policy MORL algorithms that are described in Section 2.2.1, such as the scalarized MORL
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Algorithm 7 Track policy π given the expected reward vector Vπ(s) from state s

1: target← Vπ(s)
2: repeat
3: for each a in A do
4: Retrieve R(s, a)
5: Retrieve NDt(s, a)
6: for each Q in NDt(s, a) do
7: if γQ + R(s, a) = target then
8: s← s′ : T (s′|s, a) = 1
9: target← Q

10: end if
11: end for
12: end for
13: until s is not terminal

framework in combination with the linear and Chebyshev scalarization function and the
HB-MORL algorithm.

4.1 Performance Assessment of Multi-Policy Algorithms

In single-objective reinforcement learning, an algorithm is usually evaluated by its average
reward accumulated over time. The curve of the graph then indicates both the speed of
learning and the final performance of the converged policy. In multi-objective reinforcement
learning, the performance assessment is more complex because of two main reasons: (1) the
reward signal is vectorial and not scalar and (2) there exists no total ordering of the policies
but there is a set of incomparable optimal policies.

For scalarized MORL algorithms that converge to a single policy, Vamplew et al. (2010)
propose to employ the hypervolume indicator on the approximation set of policies, i.e., the
policies that are obtained after applying a greedy policy for a range of experiments with
varying parameters in the scalarization functions. The hypervolume of the approximation
set can then be compared to the hypervolume of the true Pareto front, i.e., the set of
Pareto optimal policies of the environment. Each experiment then represents an individual
run of a scalarized MORL algorithm with a specific weight vector w. In the case of tracking
globally greedy policies, we can adopt the mechanism by Vamplew et al. (2010) and calculate
the hypervolume of the cumulative reward vectors obtained by the tracking algorithm of
Section 3.3 for each of the non-dominated vectors in the ND(∪aQ̂set(s0, a)), where s0 is the
start state. The hypervolume of each of these vectors should then approach the hypervolume
of the Pareto front. It is important to note that in this way, we will evaluate and track as
many policies as there exist non-dominated Q̂-vectors in the start state for all actions.

4.2 Benchmarking Pareto Q-learning

In this section, we analyze the performance of the Pareto Q-learning algorithm for each
of the three set evaluation mechanisms, i.e., with either the hypervolume, cardinality or
Pareto evaluation mechanism. The algorithms are tested on three benchmark environments
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with a linear, convex and non-convex Pareto front. All the experiments are averaged over
50 runs and their 95% confidence interval is depicted at regular intervals.

4.2.1 The Pyramid MDP

The Pyramid MDP is a new and simple multi-objective benchmark, which we introduce
in this paper. A visual representation of the world is depicted in Figure 7 (a). The agent
starts in the down-left position, denoted by a black dot at (0, 0), and it can choose any of
the four cardinal directions (up, down, left and right). The transition function is stochastic
so that with a probability of 0.95 the selected action is performed and with a probability
of 0.05 a random transition is executed to a neighboring state. The red dots represent
terminal states. The reward scheme is bi-objective and returns a reward drawn from a
Normal distribution with µ = −1 and σ = 0.01 for both objectives, unless a terminal state
is reached. In that case, the x and y position of the terminal state is returned for the
first and second objective, respectively. The Pareto front is therefore linear as depicted in
Figure 7 (b).
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Figure 7: The Pyramid MDP: the agent starts in the down-left position and can select
actions until a terminal state is reached, denoted by a red dot. In (b), we represent
the corresponding linear Pareto front.

As we are learning multiple policies simultaneously, which potentially may involve dif-
ferent parts of the state space, we found it beneficial to employ a train and test setting,
where in the train mode, we learn with an ε-greedy action selection strategy with decreas-
ing epsilon.2 In the test mode of the algorithm, we perform multiple greedy policies using
Algorithm 7 for every element in ND(∪aQ̂set(s0, a)) of the start state s0 and we average the
accumulated returns along the paths. Each iteration, these average returns are collected
and the hypervolume is calculated.

In Figure 8, we present the results of learning and sampling Pareto optimal policies in
the Pyramid MDP environment for the train and test phases, respectively. In Figure 8
(a), we depict the hypervolume over time of the estimates in the start state s0.3 Hence,

2. At episode eps, we assigned ε to be 0.997eps to allow for significant amounts of exploration in early runs
while maximizing exploitation in later runs of the experiment.

3. In the Pyramid MDP, the reference point for the hypervolume calculation in both HV-PQL and the
performance assessment was specified to (−20,−20) after observing the reward scheme.
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Figure 8: In (a), we depict the hypervolume of the estimates in the start state of the stochas-
tic Pyramid MDP and we note that the entire Pareto front is learned very quickly
during the learning phase. In (b), we track these estimates through the state space
and denote that the hypervolume of their average returns approaches the Pareto
front as well. In (c), we denote the performance of the tracking algorithm for a
specific estimate. We see that the Manhattan distance of the running average of
the return vector approaches the tracked estimate over time.

for each iteration, we calculate HV (∪aQ̂set(s0, a)). We see that each of the set evaluation
mechanisms guide the Pareto Q-learning algorithm very well as the hypervolume of the
learned estimates approaches the hypervolume of the Pareto front (γ is set to 1). Based on
the graph, we see that each of the set evaluation mechanisms has very similar performance
in early stages of the learning process. After around hundred iterations, however, we note
a small distinction in performance between C-PQL and HV-PQL on the one hand and PO-
PQL on the other hand. Closer investigation of the results taught us that this difference is
caused by the fact that, once the estimates become stable, C-PQL and HV-PQL still create
a total order out of the set of Pareto optimal estimates, even though they are incomparable.
That is why, in later iterations of the learning phase, C-PQL and HV-PQL provide a (too)
large bias towards particular areas of the state and action space and therefore some estimates
are no longer updated. Hence, the very close, but not coinciding curves of their learning
graphs. PO-PQL does not provide a total order, but keeps the partial order that the multi-
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objective nature of the problem entails. Therefore, it treats every Pareto optimal solution
equally and the estimates are updated much more consistently.

In Figure 8 (b), we depict the results of the tracking algorithm of Section 3.3 that globally
follows every element of the start state in Figure 8 (a). We see that the hypervolume of
the average returns of each the estimated Q̂-vectors in ND(∪aQ̂set(s, a)) is very similar to
the learned estimates themselves. We see that tracking the estimates obtained by PO-PQL
allows to sample the entire Pareto front over time.

In Figure 8 (c), we see the tracking algorithm at work to retrieve the policy of a specific
vectorial estimate from the start state. In the figure, we denote the Manhattan distance
of the running average return to the estimate after learning. We see that averaging the
return of the policy obtained by the tracking algorithm over time approaches the estimate
predicted at the start state, i.e., the distance becomes zero in the limit.

4.2.2 The Pressurized Bountiful Sea Treasure Environment

In order to evaluate the Pareto Q-learning algorithm on an environment with a larger num-
ber of objectives, we propose the Pressurized Bountiful Sea Treasure (PBST) environment,
which is inspired by the Deep Sea Treasure (DST) environment (Vamplew et al., 2010). Sim-
ilar to the DST environment, the Pressurized Bountiful Sea Treasure environment concerns
a deterministic episodic task where an agent controls a submarine, searching for undersea
treasures. The world consists of a 10×11 grid where 10 treasures are located, with larger
values as the distance from the starting location increases. A visualization of the envi-
ronment is depicted in Figure 9 (a). At each time step, the agent can move into one of
the cardinal directions. The goal of the agent is to minimize the time needed to reach the
treasure, while maximizing the treasure value and to minimize the water pressure.4 The
pressure objective is a novel objective that was not included in the DST environment. It is
defined as the agent’s y-coordinate. In contrast to the DST, the values of the treasures are
altered to create a convex Pareto front. In the PBST environment, a Pareto optimal policy
is a path to a treasure that minimizes the Manhattan distance while staying at the surface
as long as possible before making the descent to retrieve a treasure. As a result, there are
10 Pareto optimal policies as shown in Figure 9 (b).

The results on the train and test phases are depicted in Figure 10 (a) and (b), respec-
tively.5 In Figure 10 (b), we depict the hypervolume of the tracked policies of the start
state by applying the greedy policies. As the environment has both deterministic reward
and transition schemes, the performance of the different set evaluation mechanisms is al-
most identical. The tracking algorithm performs very well and the graph is almost identical
to Figure 10 (a) as in the previous environment.

4. Traditionally, single-objective reinforcement learning solves a maximization problem. If the problem at
hand concerns a minimization of one of the objectives, negative rewards are used for that objective to
transform it also into a maximization problem.

5. In the PBST environment, the reference point for the hypervolume calculation in both HV-PQL and the
performance assessment was specified to (−25, 0,−120) after observing the reward scheme.
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Figure 9: The Pressurized Bountiful Sea Treasure environment (a) and its Pareto front (b).
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Figure 10: The results on the PBST environment. In (a), we depict the hypervolume over
time of the learned estimates in the start state. In (b), we see that the hyper-
volume of the tracked policies is very similar to the hypervolume of the learned
policies, which means that the learned policies are also retrievable.

4.3 Comparison to Single-Policy MORL Algorithms

In the previous section, we analyzed the performance of Pareto Q-learning in combina-
tion with the three set evaluation mechanisms . In this section, we conduct an empirical
comparison of the algorithms to several single-policy MORL algorithms.

4.3.1 The Deep Sea Treasure Environment

The Deep Sea Treasure (DST) is proposed by Vamplew et al. (2010) and is a standard MORL
benchmark instance. A brief description of the environment can be found in Section 4.2.2.
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Figure 11: Deep Sea Treasure environment (a) and its Pareto front (b).

The DST environment and its non-convex Pareto front are depicted in Figure 11 (a) and
(b), respectively.

In Figure 12, we denote the hypervolume during the test phase of the algorithm with
Pareto, cardinality and hypervolume set evaluations, i.e., PO-PQL, C-PQL and HV-PQL,
respectively.6 Furthermore, we also evaluate two single-policy algorithms that employ the
linear and Chebyshev scalarization functions and HB-MORL, the indicator-based MORL
algorithm of Section 2.2.1. These single-policy algorithms are evaluated using the config-
uration specified in Section 4.1. Below, we highlight the performance of each algorithm
individually.

The linear scalarized MORL algorithm is run with 10 uniformly distributed weight
vectors, i.e., the continuous range of [0, 1] is uniformly discretized with steps of 1

10−1 while
satisfying

∑m
o=1 wo = 1. Each of these weights is then used in an individual execution of

the scalarization algorithm and its results are collected in order to obtain a set of sampled
policies in the test phase. We note that, although we have a uniform spread of weights, the
algorithm only manages to retrieve a hypervolume of 768. When we take a closer look at
the results obtained, we see that the algorithm learns fast but from iteration 200, only the
optimal policies with return (−1, 1) and (−19, 124) for the time and treasure objectives,
respectively, are sampled. This is shown by the 95% confidence intervals that become zero
after iteration 200. This is to be expected as the Pareto front is non-convex and, hence, a
linear combination of the objectives then can only differentiate between the extreme policies
of the Pareto front. Therefore, the linear scalarized MORL algorithm converges to either
of the optimal policies with return (−1, 1) or (−19, 124).

The Chebyshev scalarized MORL algorithm is equipped with the same set of weight
vectors as the linear scalarization function. While the Chebyshev scalarization function has
proven its effectiveness in multi-objective optimization, it is not guaranteed to converge to a
Pareto optimal policy in a value-iteration approach (Perny and Weng, 2010). Nevertheless,
we see that the algorithm performs acceptably in practice as it learns almost at the same
speed as the linear scalarized MORL algorithm and attains a bigger hypervolume of 957.
Other experiments will have to investigate whether this performance in practice is consistent
over multiple environments, despite the lack of theoretical guarantees. A first initiative has
been given in Van Moffaert et al. (2013b).

6. The reference point for the hypervolume calculation was specified to (−25, 0).
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Although the indicator-based HB-MORL algorithm does not rely on any weighting pa-
rameters, we also run the experiment 10 times in parallel to obtain a set of policies which
we can compare at every time step. As there are no parameters to steer the search process,
each individual experiment is not guaranteed to converge to a particular solution of the
Pareto front. That is why the graph is increasing in the beginning of the learning process
but it is slightly decreasing near the end as there is no mechanism, like for instance weights
in the standard scalarization algorithms, to specify which experiment should focus on which
part of the objective space. In the end, we see that the performance of HB-MORL drops
slightly under the curve of the linear scalarized MORL algorithm.

So far, the single-policy algorithms did not manage to sample the entire Pareto front.
This was a result of either the shape of the Pareto front, i.e., being non-convex, or the
assignment of the weight vectors. Pareto Q-learning is not biased by any of these aspects,
but treats every Pareto optimal solution equally in the bootstrapping process. As the
environment consist of 10 Pareto optimal policies, the set of non-dominated vectors of the
start state, i.e., ND(∪aQ̂set(s0, a)), exactly contains 10 elements. Therefore, we evaluate as
many policies as the scalarization algorithms in this comparison. In early learning phases,
we see that for each of the set evaluation mechanisms, Pareto Q-learning learns slower
than the scalarized MORL algorithms. This is because the weights of the scalarization
algorithms guide each individual experiment to explore specific parts of the objective space,
while the guidance mechanisms of the Pareto Q-learning algorithm, i.e., the set evaluation
mechanisms, are less explicit. In the end, regardless of the set evaluation mechanisms
used, Pareto Q-learning surpasses the performance of the single-policy algorithms. In this
experiment, the Pareto set evaluation mechanism starts out the worst, but, in the end, it
performs a bit better than the other set evaluation mechanisms and samples every element
of the Pareto front.

5. Conclusions

In this paper, we have presented and discussed multi-objective optimization and reinforce-
ment learning approaches for learning policies in multi-objective environments. We have
highlighted that single-policy MORL algorithms rely on scalarization functions and weight
vectors to translate the original multi-objective problem into a single-objective problem.
Although these algorithms are very common in practice, they suffer from two main short-
comings: their performance depends heavily on (1) the shape of the Pareto front and on
(2) an appropriate choice of the weight vectors, which are hard to specify a priori.

The main contribution of this paper is the novel Pareto Q-learner algorithm that learns
deterministic non-stationary non-dominated multi-objective policies for episodic environ-
ments with a deterministic as well as stochastic transition function. To the best of our
knowledge, PQL is the first multi-policy TD algorithm that allows to learn the entire Pareto
front, and not just a subset. The core principle of our work consists of keeping track of the
immediate reward vectors and the future discounted Pareto dominating vectors separately.
This mechanism provides a neat and clean solution to update sets of vectors over time.

In a reinforcement learning algorithm, the exploration and exploitation trade-off is cru-
cial. Therefore, we developed three evaluation mechanisms that use the Q̂set’s as a basis
for action selection purposes during learning. We name them set evaluation mechanisms.
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Figure 12: The results on the Deep Sea Treasure environment. We compare three single-
policy MORL algorithms that use a linear and Chebyshev scalarization function
and HB-MORL to Pareto Q-learning with the three set evaluation mechanisms.
We note that, regardless of the set evaluation mechanisms, PQL obtained better
performance than the single-policy MORL algorithms and in the end PO-PQL
sampled the entire Pareto front. For a more in-depth analysis of the results, we
refer to Section 4.3.1.

The current set evaluation mechanisms rely on basic multi-objective indicators to translate
the quality of a set of vectors into a scalar value. Based on these indications, local action
selection is possible during the learning phase. Currently, we have combined PQL with
a cardinality, hypervolume and Pareto indicator. We have seen that the Pareto indicator
performed the best on average as it treats every Pareto optimal solution equally. The cardi-
nality and hypervolume set evaluation measures rate the actions also on additional criteria
than the Pareto relation to provide a total order. We have seen that in more complex
environments, these set evaluation mechanisms bias the action selection too much in order
to learn the entire Pareto front. Nevertheless, it could be that the user is not interested in
sampling the entire Pareto front but is looking for particular policies that satisfy certain
criteria. For instance, other quality indicators such as the spread indicator (Van Veld-
huizen and Lamont, 1998) could be used to sample policies that are both Pareto optimal
and well-spread in the objective space. This can straightforwardly be incorporated in our
framework.

In our experiments, we have tested the Pareto Q-learning algorithm on environments
with two and three objectives. However, as the algorithm is based on the Pareto relation,
it is without problem applicable to environments with a larger number of objectives. Addi-
tionally, we also conducted empirical evaluations on a benchmark instance and we compared
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Pareto Q-learning’s performance to several single-policy MORL algorithms. We have seen
that selecting actions that are locally dominating does not guarantee that the overall com-
bination of selected actions in each state, i.e., the policy, is globally Pareto optimal. As a
solution, we proposed a mechanism that tracks a given return vector, i.e., we can follow a
selected expected return consistently from the start state to a terminal state in order to
collect the predicted rewards.

In ParetoQ-learning, theQset’s grow according to the size of the Pareto front. Therefore,
PQL is primarily designed for episodic environments with a finite number of Pareto optimal
policies. To make the algorithm practically applicable for infinite horizon problems with
a large value for the discount factor, we have to consider that all states can be revisited
during the execution of an optimal policy. Upon revisiting a state, a different action that
is optimal w.r.t. other criteria can be chosen. As explained by Mannor and Shimkin
(2002), this offers a possibility to steer the average reward vector towards a target set using
approaching policies. Alternatively, we could reduce the number of learned policies by using
a consistency operator to select the same action during each revisit of some state, similar
to the work of Wiering and de Jong (2007) for multi-criteria DP.

Currently, PQL is limited to a tabular representation where each state-action pair stores
a Qset. In order to make PQL applicable to real-life problems or ergodic environments, these
sets should also be represented through function approximation. A possible idea is to fit
the elements in each set through a geometric approach, such as for instance ordinal least-
squares. If the environment would consist of two or three objectives, we would be fitting the
vectors on a curve or a plane, respectively. In that case, we would be learning the shape of
the Pareto front through local interactions that each update parts of this geometric shape.

To summarize, we note that PQL (1) can learn the entire Pareto front under the as-
sumption that each state-action pair is sufficiently sampled, (2) while not being biased by
the shape of the Pareto front or a specific weight vector. Furthermore, we have seen that (3)
the set evaluation mechanisms provide indicative measures to explore the objective space
based on local action selections and (4) the learned policies can be tracked throughout the
state and action space.
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Abstract

Graph matching is an important problem in machine learning and pattern recognition.
Herein, we present theoretical and practical results on the consistency of graph matching
for estimating a latent alignment function between the vertex sets of two graphs, as well as
subsequent algorithmic implications when the latent alignment is partially observed. In the
correlated Erdős-Rényi graph setting, we prove that graph matching provides a strongly
consistent estimate of the latent alignment in the presence of even modest correlation. We
then investigate a tractable, restricted-focus version of graph matching, which is only con-
cerned with adjacency involving vertices in a partial observation of the latent alignment;
we prove that a logarithmic number of vertices whose alignment is known is sufficient
for this restricted-focus version of graph matching to yield a strongly consistent estimate
of the latent alignment of the remaining vertices. We show how Frank-Wolfe methodol-
ogy for approximate graph matching, when there is a partially observed latent alignment,
inherently incorporates this restricted-focus graph matching. Lastly, we illustrate the rela-
tionship between seeded graph matching and restricted-focus graph matching by means of
an illuminating example from human connectomics.

Keywords: graph matching, Erdős-Rényi graph, consistency, estimation, seeded vertices,
Frank-Wolfe, assignment problem

1. Background and Overview

The graph matching problem (GMP)—i.e., finding the alignment between the vertices of
two graphs which best preserves the structure of the graphs—has a rich and active place in
the literature. Graph matching has applications in a wide variety of disciplines, including
machine learning (Cour et al., 2007; Liu and Qiao, 2012; Fiori et al., 2013), computer vision
(Cho et al., 2009; Cho and Lee, 2012; Zhou and De la Torre, 2012), pattern recognition (Berg
et al., 2005; Caelli and Kosinov, 2004), manifold and embedded graph alignment (Robles-
Kelly and Hancock, 2007; Xiao et al., 2009), shape matching and object recognition (Huet
et al., 1999), and MAP inference (Leordeanu et al., 2009), to name a few.
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There are no efficient algorithms known for solving graph matching exactly. Even the
easier problem of just deciding if two graphs are isomorphic is notoriously of unknown
complexity (Garey and Johnson, 1979; Read and Corneil, 1977). Indeed, graph matching is
a special case of the NP-hard quadratic assignment problem and, if the graphs are allowed
to be directed, loopy, and weighted, then graph matching is actually equivalent to the
quadratic assignment problem. Because of its practical applicability, there is a vast amount
of literature devoted to approximate graph matching algorithms; for an interesting survey
of the literature, see e.g., “Thirty Years of Graph Matching in Pattern Recognition” by
Conte et al. (2004).

In the presence of a latent alignment function between the vertex sets of two graphs,
it is natural to ask how well graph matching would mirror this underlying alignment. In
Section 2.2 we describe the correlated Erdős-Rényi random graph, which provides us with
a useful and natural setting to explore this question. The correlated Erdős-Rényi random
graph consists of two Erdős-Rényi random graphs which share a common vertex set and
a common Bernoulli-trial probability parameter; for each pair of vertices, there is a given
correlation between the two vertices’ adjacency in one graph and the two vertices’ adja-
cency in the other graph. In this manner, there is a natural latent alignment between the
two graphs, and we can then explore whether or not graph matching the two graphs will
consistently estimate this alignment.

If Φ : V (G1) 7→ V (G2) is the latent alignment function between the vertex sets of two
graphs, we define a vertex v ∈ V (G1) to be mismatched by graph matching if there exists
a solution ψ to the graph matching problem such that Φ(v) 6= ψ(v). The graph matching
problem provides a consistent estimate of Φ if the number of mismatched vertices goes to
zero in probability as |V (G1)| tends to infinity, and provides a strongly consistent estimate
of Φ if the number of mismatched vertices converges to zero almost surely as |V (G1)| tends
to infinity.

The first of our main results is Theorem 1, stated in Section 2.2 and proven in Ap-
pendix A. For correlated Erdős-Rényi random graphs, under mild assumptions, Theorem 1.i
establishes that even very modest correlation is sufficient for graph matching to yield a
strongly consistent estimate of the latent alignment; this expands and strengthens the im-
portant results in Pedarsani and Grossglauser (2011). Theorem 1.ii provides a partial
converse; for very weakly correlated graphs, we prove that the expected number of permu-
tations that align the graph more effectively (i.e., with fewer induced edge disagreements)
than the latent alignment goes to infinity as the number of vertices tends to infinity. Un-
fortunately, since there is no known efficient algorithm for graph matching, Theorem 1.i
doesn’t in-of-itself provide a means of efficient graph alignment. However, it does suggest
that efficient approximate graph matching algorithms may be successful in graph alignment
when there is correlation between the graphs above the threshold given in Theorem 1.i.

Next, in Section 2.3, we discuss the seeded graph matching problem. This is a graph
matching problem for which part of the bijection between the two graphs’ vertices is pre-
specified and fixed, and we seek to complete the bijection so as to minimize the number
of edge disagreements between the graphs; in our correlated Erdős-Rényi graph setting,
the seeds are taken from the existing latent alignment. Also in Section 2.3, we describe a
restricted-focus version of the graph matching problem in the context of seeding; this is a
problem wherein we seek the bijection between the two seeded graphs’ vertices that mini-
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mizes only the number of seeded vertex to nonseeded vertex edge disagreements between the
two seeded graphs. Restricting the focus of graph matching in this particular fashion enables
this restricted-focus graph matching problem to be efficiently solved as a linear assignment
problem, in contrast to the algorithmic difficulty of (unrestricted) graph matching.

Our second main result is Theorem 2, which we state in Section 2.4 and prove in Ap-
pendix A. For correlated Erdős-Rényi graphs, under mild assumptions, Theorem 2.i asserts
that a logarithmic number of seeds is sufficient for restricted-focus graph matching to yield
a strongly consistent estimate of the latent alignment function. Theorem 2.ii again provides
a partial converse; for very weakly correlated graphs, we prove that the expected number
of permutations that align the unseeded vertices more effectively (i.e., with fewer induced
seeded vertex to nonseeded vertex edge disagreements) than the latent alignment goes to
infinity as the number of vertices tends to infinity. Now, what should we do if we want
to perform graph alignment and there are seeds, but the number of seeds is below this
logarithmic threshold? The remainder of this paper deals with that situation.

Back in the setting where there are no seeds, an important class of approximate graph
matching algorithms utilize a Frank-Wolfe approach; the idea is more formally described
later in Section 3. To briefly describe here, such methods relax an integer programming
formulation of graph matching to obtain a continuous problem, then perform an iterative
procedure in which a linearization about the current iterate is optimized, and the next
iterate comes from a line search between the current iterate and the linearization optimum.
At the conclusion of the iterative procedure, the final iterate is projected to the nearest
integer-valued point which is feasible as a graph match, and this is taken as the approximate
graph matching solution. It turns out that the linear optimization done in each iteration
can be formulated as a linear assignment problem, which can be solved efficiently, and this
makes the Frank-Wolfe approach an appealing method in terms of speed. The Frank-Wolfe
approach can also be a very accurate method for approximate graph matching as well;
see Brixius and Anstreicher (2001); Vogelstein et al. (2011); Zaslavskiy et al. (2009) for
Frank-Wolfe methodology and variants.

As done in Fishkind et al. (2012), we describe in Section 3.2 how this Frank-Wolfe
methodology for approximate graph matching is naturally and seamlessly extended to the
setting of seeded graph matching so as to perform approximate seeded graph matching. In
analyzing Frank-Wolfe methodology for approximate seeded graph matching, we observe
in Section 3.3 that each Frank-Wolfe iteration involves optimizing a sum of two terms.
Restricting this optimization to just the first of these two terms turns out to be precisely
solving the aforementioned restricted-focus graph matching problem, and restricting this
optimization to just the second of these two terms turns out to be precisely the Frank-
Wolfe methodology step if the seeds are completely ignored.

We conclude this paper with simulations and a real-data example from human con-
nectomics. These simulations and experiments illuminate the relationship between seeded
graph matching via Frank-Wolfe and restricted-focus graph matching via the Hungarian
algorithm. We demonstrate that Frank-Wolfe methodology is often superior to restricted-
focus graph matching, an unsurprising result as the Frank-Wolfe methodology merges
restricted-focus graph matching with seedless Frank-Wolfe methodology. Perhaps more
surprising, we also demonstrate the capacity for restricted-focus graph matching to outper-
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form the full Frank-Wolfe methodology; in these cases, the noise in the unseeded adjacency
can actually degrade overall performance!

2. Graph Matching, Random Graph Setting, Main Results

In this paper, all graphs will be simple graphs; in particular, edges are undirected, there
are no edges with a common vertex for both endpoints, and there are no multiple edges
between any pair of vertices. We will define Gn to be the set of simple graphs on n vertices.
If G ∈ Gn, we will denote the vertex set of G as V (G) and the edge set of G via E(G). For
any v, v′ ∈ V (G), if v and v′ are adjacent in G then this will be denoted {v, v′} ∈ E(G),
and if v and v′ are not adjacent in G then this will be denoted {v, v′} /∈ E(G). For any
finite set V , the symbol

(
V
2

)
will denote all of the

(
n
2

)
unordered pairs of distinct elements

from V .

2.1 The Graph Matching Problem

We now describe the graph matching problem. Suppose G1 and G2 are graphs with the same
number of vertices. Let Π denote the set of bijections V (G1)→ V (G2). For any ψ ∈ Π, the
number of adjacency disagreements induced by ψ, which will be denoted ∆(ψ), is the number
of vertex pairs {v, v′} ∈

(
V (G1)

2

)
such that [{v, v′} ∈ E(G1) and {ψ(v), ψ(v′)} /∈ E(G2)] or

[{v, v′} /∈ E(G1) and {ψ(v), ψ(v′)} ∈ E(G2)]. The graph matching problem is to find a
bijection in Π that minimizes the number of induced edge disagreements; we will denote
the set of solutions Ψ := arg minψ∈Π ∆(ψ). Equivalently stated, if n := |V (G1)| = |V (G2)|,
and if A,B ∈ {0, 1}n×n are the respectively the adjacency matrices for G1 and G2, then
the graph matching problem is to minimize ‖A − PBP T ‖F over all n-by-n permutation
matrices P , where ‖ · ‖F is the Frobenius matrix norm.

There are no efficient algorithms known for graph matching. Even the easier problem
of just deciding if G1 is isomorphic to G2 (i.e., deciding if there is a bijection V (G1) →
V (G2) which does not induce any edge disagreements) is of unknown complexity (Garey
and Johnson, 1979; Read and Corneil, 1977), and is a candidate for being in an intermediate
class strictly between P and NP-complete (if P 6=NP). Also, the problem of minimizing
‖A−PBP T ‖F over all n-by-n permutation matrices P , where A and B are any real-valued
matrices, is equivalent to the NP-hard quadratic assignment problem. There are numerous
approximate graph matching algorithms in the literature; in Section 3 we will discuss Frank-
Wolfe methodology.

2.2 Correlated Erdős-Rényi Random Graphs

Presently, we describe the correlated Erdős-Rényi random graph; this will provide a theoret-
ical framework within which we will prove our main theorems, Theorem 1 and Theorem 2.

The parameters are a positive integer n, a real number p in the interval (0, 1), and a
real number % in the interval [0, 1]; these parameters completely specify the distribution.
There is an underlying vertex set V of cardinality n which is common to two graphs; call
these graphs G1 and G2. For each i = 1, 2 and each pair of vertices {v, v′} ∈

(
V
2

)
, let

1{{v, v′} ∈ E(Gi)} denote the indicator random variable for the event {v, v′} ∈ E(Gi). For
each i = 1, 2 and each pair of vertices {v, v′} ∈

(
V
2

)
, the random variable 1{{v, v′} ∈ E(Gi)}
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is Bernoulli(p) distributed, and they are all collectively independent except that, for each
pair of vertices {v, v′} ∈

(
V
2

)
, the variables 1{{v, v′} ∈ E(G1)} and 1{{v, v′} ∈ E(G2)} have

Pearson product-moment correlation coefficient %. At one extreme, if % is 1, then G1 and G2

are equal, almost surely, and at the other extreme, if % is 0, then G1 and G2 are independent.
After G1 and G2 are thus realized, their vertices are (separately) arbitrarily relabeled, so
that we don’t directly observe the latent alignment function (bijection) Φ : V (G1)→ V (G2)
wherein, for all v ∈ V (G1), the vertices v and Φ(v) were corresponding vertices across the
graphs before the relabeling (i.e., the same element of V ).

If G1 is graph matched to G2, to what extent will the graph match provide a consistent
estimate of the latent alignment function? The following Theorem is our first main result.
We will be considering a sequence of random correlated Erdős-Rényi graphs with n = 1,
then n = 2, then n = 3 . . ., and the parameters p and % are each functions of n; i.e., p := p(n)
and % := %(n). In this paper, when we say a sequence of events holds almost always, we
mean that, with probability 1, all but a finite number of the events hold.

Theorem 1 Suppose there exists a fixed real number ξ1 < 1 such that p ≤ ξ1. Then there
exists fixed positive real numbers c1, c2, c3, c4 (depending only on the value of ξ1) such that:

i) If % ≥ c1

√
logn
np and p ≥ c2

logn
n then almost always Ψ = {Φ}, and

ii) If % ≤ c3

√
logn
n and p ≥ c4

logn
n then limn→∞ E| {ψ ∈ Π : ∆(ψ) < ∆(Φ)} | =∞.

For proof of Theorem 1, see Appendix A.

Note that Theorem 1.i establishes the strong consistency of the graph matching estimate
of the latent alignment function in the presence of even modest correlation between G1

and G2. This theorem is a strengthening and an extension of the pioneering work on de-
anonymizing networks in Pedarsani and Grossglauser (2011), wherein the authors proved
a weaker version of Theorem 1.i in a sparse setting (in particular they require both p and
% to converge to 0 at rate p%3 = O(log(n)/n)). Note that range of values of p for which
Theorem 1.i applies includes both the sparse and the dense regimes.

Because there is no known efficient algorithm for graph matching, Theorem 1.i does not
directly provide a practical means of computing the latent alignment function. But it does
hold out the hope that a good graph matching heuristic might be effective in approximating
the latent alignment function for various classes of graphs.

When proving Theorems 1 and 2, it will be useful for us to observe an equivalent way
to formulate correlated Erdős-Rényi graphs. For all pairs of vertices {v, v′} ∈

(
V
2

)
, the

indicator random variables 1{{v, v′} ∈ E(G1)} are independently distributed Bernoulli(p)
and then (independently for the different pairs v, v′), conditioning on 1{{v, v′} ∈ E(G1)} =
1, we let 1{{v, v′} ∈ E(G2)} be distributed Bernoulli(p + %(1 − p)) and, conditioning on
1{{v, v′} ∈ E(G1)} = 0, we let 1{{v, v′} ∈ E(G2)} be distributed Bernoulli(p(1 − %)). It
is an easy exercise to verify that as such, for each {v, v′} ∈

(
V
2

)
, it holds that 1{{v, v′} ∈

E(G2)} is distributed Bernoulli(p), and that the correlation of 1{{v, v′} ∈ E(G1)} and
1{{v, v′} ∈ E(G2)} is %, as desired.

3697



Lyzinski, Fishkind, and Priebe

2.3 Seeded Graph Matching, Restricted-focus Graph Matching

Continuing with the setting from Section 2.1, suppose that we are also given a subset
U1 ⊆ V (G1) of seeds and an injective seeding function φ : U1 → V (G2), say that U2 ⊆ V (G2)
is the image of φ. Let Πφ denote the set of bijections ψ : V (G1) → V (G2) such that for
all u ∈ U1 it holds that ψ(u) = φ(u). As before, for any bijection ψ ∈ Πφ, the number
of adjacency disagreements induced by ψ, which will be denoted ∆(ψ), is the number of
vertex pairs {v, v′} ∈

(
V (G1)

2

)
such that [{v, v′} ∈ E(G1) and {ψ(v), ψ(v′)} /∈ E(G2)] or

[{v, v′} /∈ E(G1) and {ψ(v), ψ(v′)} ∈ E(G2)]. The seeded graph matching problem is to find
a bijection in Πφ that minimizes the number of induced edge disagreements; as before,
we will denote the set of solutions Ψ := arg minψ∈Πφ ∆(ψ). Equivalently stated, suppose
without loss of generality that U1 = U2 = {v1, v2, . . . , vs}, and that for all j = 1, 2, . . . , s,
φ(vj) = vj ; with A and B denoting the adjacency matrices for G1 and G2 respectively, the
seeded graph matching problem is to minimize ‖A− (I ⊕ P )B(I ⊕ P )T ‖F over all m-by-m
permutation matrices P , where m := |V (G1)| − s, and ⊕ is the direct sum, and I is the
s-by-s identity matrix.

Like graph matching, there are no efficient algorithms known for seeded graph matching;
in fact, seeded graph matching is at least as difficult as graph matching. In Section 3.2 we
discuss how Frank-Wolfe methodology extends to provide efficient approximate seeded graph
matching.

We now present a restricted version of seeded graph matching which is efficiently solv-
able, in contrast to graph matching and seeded graph matching. Let W1 := V (G1)\U1

denote the nonseeds in V (G1). For any ψ ∈ Πφ, let ∆R(ψ) denote the number of pairs
(w, u) ∈ W1 × U1 such that [{w, u} ∈ E(G1) and {ψ(w), ψ(u)} /∈ E(G2)] or [{w, u} /∈
E(G1) and {ψ(w), ψ(u)} ∈ E(G2)]. The restricted-focus seeded graph matching problem
(RGM) is to find a bijection in Πφ which minimizes such seed-nonseed adjacency disagree-
ments; denote the set of solutions ΨR := arg minψ∈Πφ ∆R(ψ). Equivalently stated, if the
adjacency matrices for G1 and G2 are respectively partitioned as

A =

(
A11 AT21

A21 A22

)
, and B =

(
B11 BT

21

B21 B22

)
where A21, B21 ∈ R|W1|×|U1| each represent the adjacencies between the nonseed vertices
and the seed vertices (and the seed vertices are ordered in A11 conformally to B11), then
finding a member of ΨR is accomplished by minimizing ‖A21−PB21‖F over all |W1|× |W1|
permutation matrices P . Expanding,

‖A21 − PB21‖2F = trace(A21 − PB21)T (A21 − PB21)

= traceAT21A21 − traceAT21PB21 − traceBT
21P

TA21 + traceBT
21P

TPB21

= ‖A21‖2F + ‖B21‖2F − 2 · trace
(
P T (A21B

T
21)
)
, (1)

thus finding a member of ΨR is accomplished by maximizing traceP TA21B
T
21 over all

|W1| × |W1| permutation matrices P . This is a linear assignment problem and can be
exactly solved in O(|W1|3) time with the Hungarian Algorithm (Edmonds and Karp, 1972;
Kuhn, 2006). So, whereas finding a member of Ψ is intractable, finding a member of ΨR
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can done efficiently. An important question is how well ΨR approximates Ψ. Slightly abus-
ing notation, we shall refer to both the restricted-focus graph matching problem and the
associated algorithm for exactly solving it by RGM.

2.4 Seeded, Correlated Erdős-Rényi Graphs

Seeded, correlated Erdős-Rényi graphs are correlated Erdős-Rényi graphs G1 and G2 where
part of the latent alignment function is observed; specifically, there is a subset of seeds
U1 ⊆ V (G1) such that Φ is known on U1. If we take φ to be the restriction of Φ to U1 and
we run RGM, we may hope that ΨR = {Φ}; if this hope is true then we are provided an
efficient means of computing the latent alignment function.

The next theorem is another of our main results. We will be considering a sequence
of random correlated Erdős-Rényi graphs where the number of nonseed vertices is m = 1,
then m = 2, then m = 3 . . ., and the number of seeds s is a function of m.

Theorem 2 Suppose there exists a fixed real number ξ2 > 0 such that ξ2 ≤ p ≤ 1− ξ2 and
ξ2 ≤ % ≤ 1− ξ2. Then there exists fixed real numbers c5, c6 > 0 (depending only on ξ2) such
that:
i) If s ≥ c5 logm then almost always ΨR = {Φ}, and
ii) If s ≤ c6 logm then limm→∞ E|{ψ ∈ Πφ : ∆R(ψ) < ∆R(Φ)}| =∞.

For proof of Theorem 2, see Appendix A.

Note that Theorem 2.i establishes that RGM provides a strongly consistent estimate of
the latent alignment in the presence of a logarithmic number of seeds. As noted, a member
of ΨR is efficiently computable, and thus Theorem 2 (unlike Theorem 1) directly provides
a means to efficiently recover the latent alignment bijection Φ, if there are enough seeds.

3. The SGM Algorithm: Extending Frank-Wolfe Methodology for
Approximate Graph Matching to Include Seeds

In the setting with no seeds, there are numerous approximate graph matching algorithms in
the literature. One such algorithm is the FAQ algorithm of Vogelstein et al. (2011), which is
an efficient, state-of-the-art approximate graph matching algorithm based on Frank-Wolfe
methodology. The algorithm’s performance is empirically shown to be state-of-the-art on
many benchmark problems, and when a fixed constant number of Frank-Wolfe iterations
are performed, the running time of FAQ is O(n3), where n is the number of vertices to be
matched. Moreover, if 100 ≤ |V (G1)| and G1 is selected with a discrete-uniform distribution
(i.e., all possible graphs on V (G1) are equally likely) and G2 is an isomorphic copy of G1

with V (G2) being a discrete-uniform random permutation of V (G1), then the probability
that FAQ (with, say, 20 Frank-Wolfe iterations allowed) yields the correct isomorphism is
empirically observed to be very nearly 1. We choose to focus on the FAQ algorithm here
because of its amenability to seeding and because it is the simplest algorithm utilizing the
Frank-Wolfe methodology while also achieving excellent performance on many of the QAP
benchmark problems; see Vogelstein et al. (2011).

In Section 3.2, we describe the SGM algorithm from Fishkind et al. (2012), which
extends the Frank-Wolfe methodology to incorporate utilization of seeds in approximate
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seeded graph matching. In Section 3.3 we point out that each Frank-Wolfe iteration in
SGM involves optimizing a sum of two terms. Restricting this optimization to just the first
of these two terms turns out to be precisely the optimization of RGM from Section 2.3, and
restricting this optimization to just the second of these two terms turns out to be precisely
the corresponding optimization step of FAQ (i.e., the seeds are completely ignored).

We conclude with simulations and real data experiments that illuminate the relationship
between SGM and RGM. SGM can be superior to RGM matching, unsurprising in that
SGM makes use of the unseeded adjacency information while RGM does not. Perhaps more
surprisingly, we also demonstrate the capacity for RGM to outperform SGM in the presence
of very informative seeds; in these case the unseeded connectivity is detrimental to overall
algorithmic performance!

3.1 The Frank-Wolfe Algorithm and Frank-Wolfe Methodology

First, a brief review of the Frank-Wolfe algorithm: The general optimization problem that
the Frank-Wolfe algorithm is applied to is maximize f(x) such that x ∈ S, where S is a
polyhedral set in a Euclidean space, and the function f : S → R is continuously differ-
entiable. The Frank-Wolfe algorithm is an iterative procedure. A starting point x(1) ∈ S
is chosen in some fashion, perhaps arbitrarily. For i = 1, 2, 3, . . ., a Frank-Wolfe iteration
consists of maximizing the first order (i.e., linear) approximation to f about x(i), that is
maximize f(x(i)) +∇f(x(i))T (x − x(i)) over x ∈ S, call the solution y(i) (of course, this is
equivalent to maximizing ∇f(x(i))Tx over x ∈ S), then x(i+1) is defined to be the solution to
maximize f(x) over x on the line segment from x(i) to y(i). Terminate the Frank-Wolfe algo-
rithm when the the sequence of iterates x(1), x(2), . . . (or their respective objective function
values) stops changing much.

Of course, the seeded graph matching problem is a combinatorial optimization problem
and, as such, the Frank-Wolfe algorithm cannot be directly applied. The term Frank-Wolfe
methodology will refer to the approach in which the integer constraints are relaxed so that
the domain is a polyhedral set and the Frank-Wolfe algorithm can be directly applied to the
relaxation and, at the termination of the Frank-Wolfe algorithm, the fractional solution is
projected to the nearest feasible integer point. It is this projected-to point that is adopted
as an approximate solution to the original combinatorial optimization problem. We next
describe the SGM algorithm, which applies Frank-Wolfe methodology to the Seeded Graph
Matching Problem.

3.2 The SGM Algorithm

We now describe the SGM algorithm for approximate seeded graph matching.

SupposeG1 andG2 are graphs, say V (G1) = {v1, v2, . . . , vn} and V (G2) = {v′1, v′2, . . . , v′n},
and let A and B be the respective adjacency matrices of G1 and G2. Suppose without loss of
generality that U1 = {v1, v2, . . . , vs} are seeds, and the seeding function φ : U1 → V (G2) is
given by φ(vi) = v′i for all i = 1, 2, . . . , s. Denote the number of nonseed vertices m := n−s.
Let A and B be partitioned

A =

[
A11 AT21

A21 A22

]
B =

[
B11 BT

21

B21 B22

]
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where A11, B11 ∈ {0, 1}s×s, A22, B22 ∈ {0, 1}m×m, and A21, B21 ∈ {0, 1}m×s.
As mentioned in Section 2.3, the seeded graph matching problem is precisely to minimize

‖A− (I ⊕ P )B(I ⊕ P )T ‖2F = ‖A‖2F + ‖B‖2F − 2 · traceAT (I ⊕ P )B(I ⊕ P )T over all m-by-
m permutation matrices P . Clearly, the seeded graph matching problem is equivalent to
maximizing the quadratic function traceAT (I ⊕P )B(I ⊕P )T over all m-by-m permutation
matrices P .

Relax this maximization of traceAT (I⊕P )B(I⊕P )T over all m-by-m permutation ma-
trices P to the maximization of traceAT (I⊕P )B(I⊕P )T over all m-by-m doubly stochastic
matrices P (which form a polyhedral set), and then the Frank-Wolfe algorithm can be
applied directly to the relaxation. Simplification yields the objective function

f(P ) = traceA11B11 + traceAT21PB21 + traceA21B
T
21P

T + traceA22PB22P
T (2)

= traceA11B11 + 2 · traceP TA21B
T
21 + traceA22PB22P

T

which has gradient

∇(P ) = 2 ·A21B
T
21 + 2 ·A22PB22.

We start the Frank-Wolfe algorithm at an arbitrarily selected doubly stochastic m-by-m
matrix P (1); for convenience we use the “barycenter” matrix P (1) with all entries equal to 1

m .
Then, for successive i = 1, 2, . . ., the Frank-Wolfe iteration is to maximize the inner product
of P with the gradient of f at P (i) over all m-by-m doubly stochastic matrices matrices P ;
this maximization problem is (ignoring a benign factor of 2) maximizing trace P T (A21B

T
21 +

A22P
(i)B22) over m-by-m doubly stochastic matrices. This is a linear assignment problem

since the optimal P in this subproblem must be a permutation matrix (by the Birkhoff-von
Neumann Theorem which states that the m-by-m doubly stochastic matrices are precisely
the convex hull of the m-by-m permutation matrices), and this linear assignment problem
can be solved efficiently with the Hungarian Algorithm in O(m3) time. Say the optimal
value of P in this subproblem is Y (i); then, the function f on the line segment from P (i)

to Y (i) is a quadratic that is easily maximized exactly, with P (i+1) defined as the doubly
stochastic matrix attaining this maximum.

When the Frank-Wolfe iterates P (1), P (2), P (3), . . . stop changing much (or a constant
maximum of iterations are performed—we allowed 20 iterations), then the Frank-Wolfe
algorithm terminates; let the resultant approximate solution to the relaxed problem is
the doubly stochastic matrix Q. The final step is to project Q to the nearest m-by-m
permutation matrix. Minimizing ‖P −Q‖F over permutation matrices P is again a linear
assignment problem solvable in O(m3) time; indeed, minimizing

‖P −Q‖2F = ‖P‖2F − 2traceP TQ+ ‖Q‖2F

is equivalent to maximizing trace P TQ over permutation matrices P . This optimal per-
mutation matrix P is adopted as the approximate solution to the seeded graph matching
problem. Specifically, the algorithm output is the bijection ψ : V (G1)→ V (G2) where, for
i = 1, 2, . . . , s, ψ(vi) = v′i and, for each i = 1, 2, . . . ,m, ψ(vs+i) = v′s+j for the j such
that Pij = 1. This Frank-Wolfe Methodology approach described above is called the SGM
algorithm.
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When there are no seeds, the SGM algorithm is exactly the FAQ algorithm of Vogelstein
et al. (2011); the above development is a seamless extension of the Frank-Wolfe methodology
for approximate graph matching when there are no seeds to Frank-Wolfe methodology for
approximate seeded graph matching.

The running time for the SGM algorithm, like for the FAQ algorithm, is O(n3). This
is because of the linear assignment problem formulation and the use of the Hungarian
algorithm in each Frank-Wolfe iteration, and is a huge savings over using the simplex method
or an interior point method for solving the linearizations in each Frank-Wolfe iteration. This
trick has made Frank-Wolfe methodology a very potent weapon for efficient approximate
graph matching.

3.3 Frank-Wolfe Methodology for Approximate Seeded Graph Matching
Inherently Includes RGM

In each Frank-Wolfe iteration (described in Section 3.2), the linearization which is solved is
maximize (trace P TA21B

T
21 +traceP TA22P

(i)B22) over all m-by-m permutation matrices P .
Observe that if this maximization were just over the first term trace P TA21B

T
21 then it would

be precisely solving RGM from Section 2.3, as per Equation (1) there. Also observe that
if the maximization were just over the second term traceP TA22P

(i)B22, then it would be
exactly the FAQ algorithm (ignoring all of the seeds). In this manner, the SGM algorithm
can be seen as leveraging a combination of the information gleaned from the nonseed-seed
relationships (the “restricted-focus term”) and the nonseed-nonseed relationships (the “FAQ
term”).

Although performing RGM is much simpler than performing SGM, and although RGM
almost always produces the correct graph alignment if there are enough seeds, nonetheless
SGM may perform substantially better when there aren’t enough seeds. Indeed, as noted,
SGM merges RGM with FAQ, and thus utilizes the information contained in the unseeded
adjacency structure. While FAQ alone is often unable to extract out this information (see
Figure 1 below), the RGM term can steer the FAQ term in SGM, allowing it to extract the
relevant signal in the nonseed–to–nonseed adjacency structure.

The utility of this nonseeded term depends on the amount of information captured
in the seed–to–nonseed adjacency. With less informative seeds, the SGM algorithm often
significantly outperforms RGM alone, as there is important signal in the unseeded adjacency
which RGM discards. However, in the presence of well chosen seeds, the seed–to–nonseed
adjacency structure may contain all the relevant signal about the unknown alignment,
and the unseeded adjacency information can be a nuisance (see Figure 4). As the RGM
algorithm is exactly and efficiently solvable, this points to the centrality of both selecting
and quantifying “good” seeds. This is a direction of future research, as we do not address
the problem of intelligent seed selection at present.

As we will see in Figure 1, for weakly correlated graphs, RGM can outperform SGM.
Even with poorly-chosen seeds, the noise in the nonseed–to–nonseed adjacency structure
can outweigh the relevant signal, and the performance of SGM is harmed by including
this extra nuisance information. This further highlights the utility of RGM in real data
applications, where the correlation between graphs can be low.
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We explore the above further in Figure 1. There we compare the performance of SGM
against solving RGM for correlated Erdős-Rényi graphs with n = 300 vertices, p = 0.5,
seeding levels ranging from s = 0 to 275, and correlation ranging from % = 0.1 to 1. For
each value of % and s, we ran 100 simulations and plotted the fraction of nonseeded vertices
correctly matched across the graphs, with corresponding error bars of ±2 s.e. In all cases
(except ρ = 0.1), RGM needed more seeds to perform comparably to SGM. Indeed, with
sufficiently many seeds, all available information about the unknown alignment is captured
in the seed–to–nonseed connectivity, and the (exactly solvable) RGM algorithm alone is
enough to properly align the graphs.

Also note the following from Figure 1. When there are no seeds, we see FAQ (which
is SGM in the absence of seeds) working perfectly at capturing the latent alignment func-
tion when the two graphs are isomorphic (it bears noting that we have also observed FAQ
perfectly matching when the two graphs are not isomorphic but rather *very* highly cor-
related), but FAQ does a surprisingly poor job (indeed, comparable to chance) when the
correlation is even modestly less than one. However, with seeds, SGM quickly does a very
substantially better job; indeed, the “restricted-focus” term is steering the SGM algorithm
in the proper direction!

4. Matching Human Connectomes

We further illuminate the relationship between SGM and RGM through a real data experi-
ment, which will serve to highlight both the utility of RGM and the effect of SGM’s further
incorporation of the unseeded adjacency information. Our data set consists of 45 graphs,
each on 70 vertices, these graphs constructed respectively from diffusion tensor (DT) MRI
scans of 45 distinct healthy patients. We have 21 scans from the Kennedy Krieger Institute
(KKI), with raw data available at http://www.nitrc.org/projects/multimodal/, and 24
scans from the Nathan Kline Institute (NKI), with a description of the raw data available at
http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html. All
raw scans were registered to a common template and identically processed with the MI-
GRAINE pipeline of Gray et al. (2012), each yielding a weighted, symmetric graph on
70 vertices. (All graphs can be found at http://openconnecto.me/data/public/.MR/

MIGRAINE/). Vertices in the graphs correspond to regions in the Desikan brain atlas, with
edge weights counting the number of neural fiber bundles connecting the regions (note that
although the theory and algorithms presented earlier were for simple graphs, they are easily
modified to handle edge weights). In addition to shedding light on the relationship between
SGM and RGM, we also explore the batch effect induced by the different medical centers
and demonstrate the capacity for seeding to potentially ameliorate this batch effect.

The pipeline which processes the scans into graphs first registers each of the graphs to
a common template. As a result, there is a canonical alignment between the vertex sets
of these graphs (vertices corresponding to respective regions in the Desikan brain atlas).
How well is this alignment preserved across medical centers by the adjacency structure
of the graphs alone? Figure 2 explores this question, and presents strong evidence for
the existence of a batch effect (in both adjacency and geometric structure) induced by
the different medical centers. In the figure, the heat map labeled “KKI matched to KKI”
represents a 70×70 matrix, whose i, jth entry measures the relative number of times vertex
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Figure 1: Fraction of vertices correctly matched for the SGM algorithm and for RGM,
plotted versus the number of seeds utilized, for n = 300, p = 1/2 and correlation
% varying from 0.1 to 1. For each value of % and s, we ran 100 simulations and
plotted the fraction of nonseeded vertices correctly matched across the graphs,
with corresponding error bars of ±2 s.e.
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NKI matched to NKI NKI matched to KKI KKI matched to KKI

Figure 2: Left: NKI to NKI matching. Center: NKI to KKI matching. Right: KKI to KKI
matching. Each plot is a 70 × 70 heat map with the color intensity (from white
to red) representing the relative number of times vertex i was match with vertex
j across the experiments (white denoting no matches, dark red denoting many
matches). The dark red diagonal in the left and right heat maps (as compared
to the center map), indicates presence of a substantial batch effect, i.e., the cor-
rect alignment was recovered significantly better matching within medical center
versus across medical center. Vertices 1–35 and 36–70 (as ordered) correspond to
the respective brain hemispheres.

i was mapped to vertex j when we ran the FAQ algorithm (i.e., no seeds) over the
(

21
2

)
pairs

of graphs from the KKI data set. Similarly, the “NKI to KKI” heat map counts the relative
number of times vertices were matched to each other when running the FAQ algorithm
over the 21 · 24 pairs of graphs, with one graph from each of the KKI and NKI data sets.
The “NKI matched to NKI” heat map is defined similarly. The chromatic intensity of the
pixel in the i, jth entry of each heat map represents the relative frequency in which vertex
i was matched to vertex j across the experiments, with darker red implying more frequent
and lighter red implying less frequent. White pixels represent vertex pairs that were never
matched.

Figure 2 demonstrates the existence of significant signal in the adjacency structure
alone (without the associated brain geometry and without seeding) for recovering the la-
tent alignment in all three experiments. When matching KKI to KKI, 32.8% of the vertices
are correctly matched on average; when matching NKI to NKI, 37.4% of the vertices were
correctly matched on average; when matching NKI to KKI, 9.8% of the vertices were cor-
rectly matched on average (whereas chance would have matched ≈ 1.4% on average). We
note that the dramatic performance difference when matching within versus across medical
centers is strong evidence of the presence of a batch effect induced by the different medical
centers. Whether this batch effect is an artifact of experimental differences across medical
centers (different MRI machines, different technicians, etc.) or the registration pipeline, it
must be addressed before the data sets can be aggregated for use in further inference.

Also note that while much of the within medical center matching error was due to
mismatching brain hemispheres (vertices 1–35 representing one hemisphere, and vertices
36–70 the other), the mismatch across medical centers appears significantly less structured.
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SGM 10 seeds SGM 20 seeds SGM 30 seeds SGM 40 seeds

RGM 10 seeds RGM 20 seeds RGM 30 seeds RGM 40 seeds

Figure 3: Clockwise from top left: SGM matching the 21 · 24 pairs of brains, one each from
the NKI and KKI data sets, using 10, 20, 30, 40 seeds; RGM matching the same
set of graphs using 40, 30, 20, 10 seeds. For each seed level, and each method we
ran 100 paired MC replicates. Each plot is a 70 × 70 heat map with the color
intensity (from white to red) representing the relative number of times vertex i
was matched with vertex j across experiments (white denoting no matches, dark
red denoting many matches). We do not count seeded vertices as being correctly
matched to each other, which would have artificially inflated the diagonal.

Can we use seeding to ameliorate this batch effect? In Figure 1, we established the
capacity of seeded vertices to unearth significant signal in the adjacency structure for re-
covering the latent alignment function, signal which was not found without seeds. Figure 3
further demonstrates this phenomenon in our present real data setting. We plot heat maps
showing the 21 · 24 matchings of pairs of graphs, one each from the NKI and KKI data
sets, for various seed levels. For each number of seeds= 10, 20, 30, 40, we ran 100 Monte
Carlo replicates (for each of SGM and RGM) for each pair of matched graphs, with each
seed set chosen uniformly at random from the 70 vertices. Clockwise, from the top left, we
plot the performance of SGM with 10, 20, 30, and 40 seeds and then the performance of
RGM with 40, 30, 20, and 10 seeds. The chromatic intensity of the pixel in the i, jth entry
of each heat map represents the relative frequency in which vertex i was matched to vertex
j across the experiments (seeded vertices are not counted as correctly matched here), with
darker red implying more frequent and lighter red implying less frequent.

The figure conclusively demonstrates that seeding extracts statistically significant signal
in the adjacency structure alone for correctly aligning graphs across medical center, signal
that was effectively obfuscated in the absence of seeds. While unseeded FAQ correctly
matched 9.8% of the vertices on average across medical centers, with 10, 20, 30, 40 seeds,
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SGM (RGM) correctly matches 49.9%,68.4%,78.8%, 85.1% (29.9%, 53.8%, 70.7%, 80.9%) of
the unmatched vertices on average across medical centers. We also see that SGM outper-
forms RGM across all seed levels, with RGM requiring more seeds to achieve the same
performance as SGM. This is not surprising, as RGM is not utilizing any of the adjacency
information amongst the unseeded vertices.

We also see that seeding teases out additional information on the neural geometry in-
herent to the graphs. For instance, with only 10 seeds, 4.3% (15.1%) vertices on average
are mismatched across hemispheres by SGM (RGM). In contrast, 43.8% vertices on average
were mismatched across hemispheres without seeds. Interestingly, some vertex pairs are
consistently mismatched across all seed levels. For example, vertex 57 is matched by SGM
to vertex 47 across medical centers 23.8%, 20.8%, 23.1%, 23.5% of the time with 10, 20, 30, 40
seeds, whereas, with no seeds, vertex 57 is matched to vertex 47 on average 10.9% of the
time when matching among the NKI data set and 10% of the time when matching amongst
the KKI graphs. Indeed, these persistent artifacts are indicative of substantive differences
across (and within) data sets and demand further investigation.

We have noted that, on average, SGM outperformed RGM across all seed levels. How
much of this performance gap is a function of the particular seeds chosen? We explore this
further in Figure 4. For a pair of graphs, one each from the NKI and KKI data sets (we
randomly chose graph 2 in the NKI data set and graph 7 in the KKI set—note that we see
similar patterns across all tested graph pairs), we ran 200 Monte Carlo replicates of SGM and
RGM seeded with the same randomly selected seeds. For each of seeds= 10, 20, 30, 40, 50
(chosen uniformly at random from the vertices), the associated histogram plots the 200
values of the number of vertices correctly matched by SGM minus the number of vertices
correctly matched by RGM.

The RGM algorithm ignores all the adjacency information amongst the unseeded ver-
tices. If, in Figure 4, SGM performed uniformly better than RGM at each seed level, then
there is consistently relevant signal in the unseeded adjacency structure, and we should
never use RGM when SGM is feasibly run. However, we see that there are choices of seeds
(at every level) for which RGM outperforms SGM. The unseeded adjacency information is a
nuisance in these cases. As RGM is efficiently exactly solvable, this dramatically highlights
the importance of intelligent seeding. Indeed, “good” seeds (and hence the RGM algorithm)
have the potential to capture all of the relevant adjacency structure in the graph. While
we do not pursue the question of how to select “good” seeds here, the figure points to the
centrality of this question, and we plan on pursuing active seed selection in future work.

For higher seed levels, we note that there is significantly less difference (and less variabil-
ity) in the performance of SGM and RGM. More seeds capture more information in their
neighborhood structure, and the effect of the unseeded adjacency on algorithm performance
is dampened. Also, at higher seed levels the particular choice of seeds is less important,
as any selection of a large number of seeds will probably contain enough “good” seeds to
strongly align the graphs.

5. Discussion

Estimating the latent alignment between the vertices of two graphs is an important prob-
lem in many disciplines, and our results have both theoretical and practical implications
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Figure 4: RGM versus SGM when matching one graph each from the NKI (graph 2)
and KKI (graph 7) data sets over differing seed levels. For each of seeds=
10, 20, 30, 40, 50 (chosen uniformly at random from the vertices), each histogram
above plots 200 values of the number of vertices correctly matched by SGM mi-
nus the number of vertices correctly matched by RGM utilizing the same random
seeds.

for this problem. Indeed, under mild assumptions, we proved the strong consistency of the
graph matching problem—and its restricted focus subproblem—for estimating the latent
alignment function between the vertex sets of two correlated Erdős-Rényi graphs. Although
seeded graph matching is computationally hard, this result gives hope that efficient approx-
imation algorithms will be effective in recovering the latent alignment across a broad array
of graphs.

Embedded in the hard seeded graph matching problem is the tractable restricted-focus
graph matching problem. This problem is exactly solvable and also provides a strongly
consistent estimator of the latent alignment. While full seeded graph matching often out
performs this restricted focus variant, we demonstrated the capacity for the restricted-
focus subproblem to also outperform the full matching. The relation between the two
approaches hinges on the information contained in the seeded vertices. If the seeds capture
the adjacency structure of the graph, then the restricted-focus subproblem can benefit by
not including the unseeded adjacency information, and we demonstrate this phenomenon
in both real and simulation data. This points to the primacy of intelligently seeding in
graph matching, and we are working on active seeding algorithms for choosing good seeded
vertices.
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Even when outperformed by the full matching problem, we can still use the restricted-
focus problem to extract signal in the graphs that was obfuscated without seeding. In very
large, complex problems, when it may be infeasible to run the full seeded graph matching al-
gorithm, the restricted-focus approach could be run to provide a baseline matching between
the graphs. We are presently investigating this further, as scalability of these approaches is
an increasingly important demand of modern big-data.
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Appendix A. Proofs of Theorems 1 and 2

Theorem 1 is proved in Sections A.2, A.3, and A.4, and these three subsections are a
continuation one of the other. Theorem 2 is proved in Sections A.5, A.6, and A.7 and
these three subsections are a continuation one of the other. Interestingly, the underlying
methodology for proving Theorem 1 is very similar (but with notable differences) to the
methodology for proving Theorem 2. We begin with some results that will subsequently be
used in the proof of Theorems 1 and 2.

A.1 Supporting Results

The next result, Theorem 3, is from Alon et al. (1997), in the form found in Kim et al.
(2002).

Theorem 3 Suppose random variable X is a function of η independent Bernoulli(q) ran-
dom variables such that changing the value of any one of the Bernoulli random vari-
ables changes the value of X by at most 2. For any t : 0 ≤ t <

√
ηq(1− q), we have

P
[
|X − EX| > 4t

√
ηq(1− q)

]
≤ 2e−t

2
.

The next result, Theorem 4, is a Chernoff-Hoeffding bound which is Theorem 3.2 in Chung
and Lu (2006).

Theorem 4 Suppose X has a Binomial(η, q) distribution. Then for all t ≥ 0 it holds that

P [X − EX ≥ t] ≤ exp

{
−t2

2ηq + 2t/3

}
.

3709



Lyzinski, Fishkind, and Priebe

For any r, q ∈ (0, 1), define H(r, q) := r log
(
r
q

)
+(1−r) log

(
1−r
1−q

)
. This is the Kullback-

Leibler divergence between binomial random variables with respective success probabilities
r and q. We will later use the following rough lower bound estimate of a binomial tail
probability:

Proposition 5 Suppose X has a Binomial(η, q) distribution, and suppose that 0 < q < r <
1− 1

η for a real number r. Then

P(X ≥ ηr) ≥
√
π

e3
·
√

(1− r)
r

η−1/2q · e−ηH(r,q).

Proof We compute and bound

P(X ≥ ηr) ≥ P(X = dηre) =

(
η

dηre

)
qdηre(1− q)η−dηre

≥
√

2π

e2
qdηre(1− q)η−dηre ηη+0.5

dηredηre+0.5(η − dηre)η−dηre+0.5

=

√
2π

e2
qdηre(1− q)η−dηre ηη+0.5

(ηr)ηr+0.5(η − ηr)η−ηr+0.5
· (ηr)ηr+0.5(η − ηr)η−ηr+0.5

dηredηre+0.5(η − dηre)η−dηre+0.5
,

where the inequality in the second display line follows from Stirling’s formula. Now,

(ηr)ηr+0.5(η − ηr)η−ηr+0.5

dηredηre+0.5(η − dηre)η−dηre+0.5
=

(r)ηr+0.5(1− r)η−ηr+0.5(
dηre
η

)dηre+0.5 (
1− dηreη

)η−dηre+0.5

≥

 1
dηre
ηr

ηr+0.5

(1− r)dηre−ηr

≥

(
1

1 + 1
ηr

)ηr+0.5

(1− r) ≥ 1

e
√

2
(1− r).

Combining the above, we obtain

P(X ≥ ηr) ≥
√
π

e3
· 1− r
r1/2(1− r)1/2

η−1/2qηr+1(1− q)η−ηr ηη

(ηr)ηr(η − ηr)η−ηr

=

√
π

e3
·
√

1− r
r

η−1/2q · e−ηH(r,q),

as desired.

A.2 Overall Argument of the Proof for Theorem 1, Part i

It is notationally convenient to assume without loss of generality that the correlated Erdős-
Rényi graphs G1 and G2 are on the same set of n vertices V and we do not relabel the
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vertices. Let Π denote the set of bijections V → V ; here, the identity function e ∈ Π is the
latent alignment bijection Φ. For any ψ ∈ Π,

∆+(G1, G2, ψ) := |
{
{v, v′} ∈

(
V

2

)
s.t. {v, v′} /∈ E(G1) and {ψ(v), ψ(v′)} ∈ E(G2)

}
|,

∆−(G1, G2, ψ) := |
{
{v, v′} ∈

(
V

2

)
s.t. {v, v′} ∈ E(G1) and {ψ(v), ψ(v′)} /∈ E(G2)

}
|,

∆0+(G1, G2, ψ) := |
{
{v, v′} ∈

(
V

2

)
s.t. {v, v′} /∈ E(G1), {ψ(v), ψ(v′)} ∈ E(G1),

{ψ(v), ψ(v′)} /∈ E(G2)

}
|,

∆0−(G1, G2, ψ) := |
{
{v, v′} ∈

(
V

2

)
s.t. {v, v′} ∈ E(G1), {ψ(v), ψ(v′)} /∈ E(G1),

{ψ(v), ψ(v′)} ∈ E(G2)

}
|,

∆(G1, G2, ψ) := ∆+(G1, G2, ψ) + ∆−(G1, G2, ψ).

First, note that

∆+(G1, G1, ψ) = ∆−(G1, G1, ψ) =
1

2
∆(G1, G1, ψ) ; (3)

this is because the number of edges in G1 isn’t changed when its vertices are permuted by
ψ.

Next, note that

∆(G1, G2, ψ)−∆(G1, G2, e) = ∆(G1, G1, ψ)− 2 ·∆0+(G1, G2, ψ)− 2 ·∆0−(G1, G2, ψ) ;
(4)

this is easily verified by replacing “G2” in (4) by “G”, and observing the truth of (4) as G,
starting out with G = G1, is changed one edge-flip at a time until G = G2.

Now, consider the event, which we shall call Υ, that for all ψ ∈ Π\{e},

∆0+(G1, G2, ψ) < ∆+(G1, G1, ψ) ·
(

(1− p)(1− %) +
%

2

)
and also (5)

∆0−(G1, G2, ψ) < ∆−(G1, G1, ψ) ·
(
p(1− %) +

%

2

)
. (6)

We will next show in Section A.3 that, under the hypotheses of the first part of Theorem 1,
Υ almost always happens (in other words, with probability 1, Υ happens for all but a finite
numbers of n’s). Then, adding (5) to (6) and using (3), we then obtain that almost always
∆0+(G1, G2, ψ) + ∆0−(G1, G2, ψ) < 1

2 ·∆(G1, G1, ψ) for all ψ ∈ Π\{e}. Substituting this
into (4) yields that almost always ∆(G1, G2, ψ) > ∆(G1, G2, e) for all ψ ∈ Π\{e}, and the
first part of Theorem 1 is then proven.

A.3 Under Hypotheses of Theorem 1, Part i, Υ Occurs Almost Always

For any k ∈ {1, 2, . . . , n}, let Π(k) denote the set of bijections in Π such that the number
of non-fixed-points of the bijection is exactly k; that is, Π(k) := {ψ ∈ Π : |{v ∈ V : ψ(v) 6=
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v}| = k}. A simple upper bound for |Π(k)| is |Π(k)| ≤
(
n
k

)
k! = n(n−1)(n−2) · · · (n−k+1) ≤

nk.

Just for now, let k ∈ {1, 2, . . . , n} be chosen, and let ψ ∈ Π(k) be chosen. Denoting

T (ψ) :=
{
{v, v′} ∈

(
V
2

)
such that v = ψ(v′), v′ = ψ(v)}

}
, we have that the random variable

∆(G1, G1, ψ) is a function of the η :=
(
k
2

)
+ (n − k)k − |T (ψ)| independent Bernoulli(p)

random variables

{1{{v, v′} ∈ E(G1)}}{v,v′}∈(V2)\T (ψ) : ψ(v)6=v or ψ(v′)6=v′

and note that the hypotheses of Theorem 3 are satisfied, hence for the choice of t =
1
20

√
ηp(1− p) in Theorem 3 we obtain that

P
[
|∆(G1, G1, ψ)− E∆(G1, G1, ψ)| > 1

5
ηp(1− p)

]
≤ 2e−ηp(1−p)/400. (7)

Also note that

∆(G1, G1, ψ) =
∑

{v,v′}∈(V2)\T (ψ)

s.t. ψ(v)6=v or ψ(v′)6=v′

1

{
1{{v, v′} ∈ E(G1)} 6= 1{{ψ(v), ψ(v′)} ∈ E(G1)}

}

is the sum of η Bernoulli(2p(1− p)) random variables hence

E∆(G1, G1, ψ) = 2ηp(1− p). (8)

Because |T (ψ)| ≤ k
2 , we have by elementary algebra that (n−2)k

2 ≤ η ≤ nk. Thus, by (7) and
(8) we obtain that (for large enough n; in the following our constants are very conservatively
chosen)

P
(

∆(G1, G1, ψ)

nkp(1− p)
6∈ [1/2, 5/2]

)
≤ 2e

−1
1000

nkp(1−p) ≤ 2e
−(1−ξ1)

1000
nkp. (9)

Conditioning on G1, random variable ∆0+(G1, G2, ψ) has a

Binomial
(
∆+(G1, G1, ψ), (1− p)(1− %)

)
distribution, and random variable ∆0−(G1, G2, ψ) has a

Binomial
(
∆−(G1, G1, ψ), p(1− %)

)
distribution. Conditioning also on the event that ∆(G1,G1,ψ)

nkp(1−p) ∈ [1/2, 5/2], we apply Theo-

rem 4 with the value t = %
2 ·∆

+(G1, G1, ψ), and we use (3) to show

P
[
∆0+(G1, G2, ψ) ≥ ∆+(G1, G1, ψ) ·

(
(1− p)(1− %) +

%

2

)]
≤ e

−(1−ξ1)
40

nkp%2 , (10)

P
[
∆0−(G1, G2, ψ) ≥ ∆−(G1, G1, ψ) ·

(
p(1− %) +

%

2

)]
≤ e

−(1−ξ1)
40

nkp%2 . (11)
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Finally, applying (9), (10) and (11), the probability of ΥC can be bounded using sub-
additivity:

P(ΥC) ≤
n∑
k=1

∑
ψ∈Π(k)

(
2e
−(1−ξ1)

1000
nkp + e

−(1−ξ1)
40

nkp%2 + e
−(1−ξ1)

40
nkp%2

)

≤
n∑
k=1

nk
(

2e
−(1−ξ1)

1000
nkp + 2e

−(1−ξ1)
40

nkp%2
)

≤
n∑
k=1

(
2e
−(1−ξ1)

1000
nkp+k logn + 2e

−(1−ξ1)
40

nkp%2+k logn
)
≤ n · 4

n3
,

the last inequality holding if p ≥ c2
logn
n and % ≥ c1

√
logn
np for sufficiently large, for fixed

constants c1, c2. Because
∑∞

n=1
4
n2 < ∞, we have by the Borel-Cantelli Lemma that Υ

almost always happens. As mentioned in Section A.2, this completes the proof of the first
part of Theorem 1.

Remark 6 Note that we could tighten the constants c1 and c2 appearing above. Here we
choose not to, instead focusing on the orders of magnitude of %, and do not pursue exact
constants further.

A.4 Proof of Theorem 1, Part ii

We now prove the second part of Theorem 1.

Just for now, let ψ ∈ Π(n) be chosen (i.e., ψ is a derangement), and condition on
∆+(G1, G1, ψ) = ∆, where 1

4n
2p(1 − p) ≤ ∆ ≤ 5

4n
2p(1 − p). The random variables

∆0+(G1, G2, ψ) and ∆0−(G1, G2, ψ) are independent, and have distributions Binomial(∆, q1)
and Binomial(∆, q2), respectively, where q1 := (1− p)(1− %) and q2 := p(1− %).

Denoting r1 := q1 + %
2 and r2 := q2 + %

2 , and observing that, under the hypotheses of
Theorem 2, part ii, it holds that r1 < 1− 1

∆ and r2 < 1− 1
∆ we thus have by Proposition 5

that (as π
e6
> 1

200)

P

(
∆0+(G1, G2, ψ) ≥ ∆ · r1 and ∆0−(G1, G2, ψ) ≥ ∆ · r2

)

≥ q1q2

200∆

√
(1− r1)(1− r2)

r1r2
e−∆·H(r1,q1)−∆·H(r2,q2)

Note that we can change the inequalities “≥” in the expression P( ) above into strict
inequalities “>” with a harmless tweak. An elementary calculus argument yields that
H(x+ y, y) ≤ x2/(y − y2) for all 0 < y < 1 and x ≥ 0 such that y + 2x < 1. Indeed, fixing
any value for y, the function value and the derivative of H(x + y, y) with respect to x are
both 0 at x = 0, the function value and the derivative of x2/(y − y2) with respect to x are
both 0 at x = 0, and the second derivative of H(x+ y, y) is less than the second derivative
of x2/(y − y2) for all relevant x. This, together with the fact that 1− r1 = r2, 1− r2 = r1
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and assuming that % is bounded away from 1 (which, indeed, will turn out to be assumed),
we have that there exists a real number c > 0 such that

P

(
∆0+(G1, G2, ψ) > ∆·r1 and ∆0−(G1, G2, ψ) > ∆ · r2

)

≥ q1q2

200∆
e
−%2∆

(
1

4q1(1−q1)
+ 1

4q2(1−q2)

)

≥ c

n2
· e−%

2n2p·
(

1
c·p

)

=
c

n2
· e
−%2n2
c . (12)

From (3) and (9) we have that there exists a fixed constant c4 such that if p ≥ c4
logn
n

then, with probability > 1
2 (for n large enough) it holds that 1

4n
2p(1−p) ≤ ∆+(G1, G1, ψ) ≤

5
4n

2p(1 − p). Thus, by (12), noting again that r1 + r2 = 1 and that ∆+(G1, G1, ψ) =
1
2∆(G1, G1, ψ), we have unconditionally

P

(
∆0+(G1, G2, ψ) + ∆0−(G1, G2, ψ) >

1

2
·∆(G1, G1, ψ)

)
≥ c

2n2
· e
−%2n2
c (13)

Next, the number of derangements |Π(n)| satisfies limn→∞
|Π(n)|
n! = 1

e , thus with Stir-
ling’s formula we have that for n large enough it will hold that |Π(n)| ≥

(
n
e

)n
. Thus, for n

large enough, by (4) and (13),

E| {ψ ∈ Π : ∆(G1, G2, ψ) < ∆(G1, G2, e)} | =
∑
ψ∈Π

P

(
∆(G1, G2, ψ) < ∆(G1, G2, e)

)

≥
∑

ψ∈Π(n)

P

(
∆(G1, G2, ψ) < ∆(G1, G2, e)

)

≥
(n
e

)n c

2n2
· e
−%2n2
c

=
c

2n2
· e
−%2n2
c

+n logn−n,

so that there exists a fixed real number c3 > 0 such that if % ≤ c3

√
logn
n then it holds

that E| {ψ ∈ Π(n) : ∆(G1, G2, ψ) < ∆(G1, G2, e)} | → ∞ as n→∞, and the second part of
Theorem 1 is proven.

Remark 7 Note that we could tighten the constants c3 and c4 appearing above. Here we
choose not to, instead focusing on the orders of magnitude of %, and do not pursue exact
constants further.

A.5 Overall Argument of the Proof for Theorem 2, part i

The proof of Theorem 2 is very similar in structure to the proof of Theorem 1. For simplicity
of notation, suppose without loss of generality that the correlated Erdős-Rényi graphs G1
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and G2 are on the same set of n vertices V , and we do not relabel the vertices. Let Π
denote the set of bijections V → V ; here the identity function e ∈ Π is the latent alignment
bijection. Further suppose that V is partitioned into s seed vertices U , and m nonseed
vertices W . Let φ : U → U be the identity function, and let Πφ := {ψ ∈ Π : ∀u ∈ U ψ(u) =
u}. For any ψ ∈ Πφ, define

∆+
R(G1, G2, ψ) := |{(w, u) ∈W × U : {w, u} /∈ E(G1) and {ψ(w), u} ∈ E(G2)}|,

∆−R(G1, G2, ψ) := |{(w, u) ∈W × U : {w, u} ∈ E(G1) and {ψ(w), u} /∈ E(G2)}|,
∆0+
R (G1, G2, ψ) :=

∣∣{(w, u) ∈W × U : {w, u} /∈ E(G1), {ψ(w), u} ∈ E(G1),

{ψ(w), u} /∈ E(G2)}
∣∣,

∆0−
R (G1, G2, ψ) :=

∣∣{(w, u) ∈W × U : {w, u} ∈ E(G1), {ψ(w), u} /∈ E(G1),

{ψ(w), u} ∈ E(G2)}
∣∣,

∆R(G1, G2, ψ) := ∆+
R(G1, G2, ψ) + ∆−R(G1, G2, ψ).

First note that

∆+
R(G1, G1, ψ) = ∆−R(G1, G1, ψ) =

1

2
∆R(G1, G1, ψ) ; (14)

this can be easily verified by considering, for each u ∈ U and for each cycle C of the
permutation ψ, the changes of status in adjacency-to-u of the vertices as the vertices of
C are considered in their cyclic order. (Specifically, the number of changes along C from
adjacency-to-u to nonadjacency-to-u are equal to the number of changes along C from
nonadjacency-to-u to adjacency-to-u.)

Next, note that

∆R(G1, G2, ψ)−∆R(G1, G2, e) = ∆R(G1, G1, ψ)−2 ·∆0+
R (G1, G2, ψ)

− 2 ·∆0−
R (G1, G2, ψ); (15)

this is easily verified by replacing “G2” in (15) with “G”, and observing the truth of (15)
as G, starting out with G = G1, is changed one edge-flip at a time until G = G2.

Now, consider the event ΥR defined as it holding that, for all ψ ∈ Πφ besides e,

∆0+
R (G1, G2, ψ) < ∆+

R(G1, G1, ψ) ·
(

(1− p)(1− %) +
%

2

)
and also (16)

∆0−
R (G1, G2, ψ) < ∆−R(G1, G1, ψ) ·

(
p(1− %) +

%

2

)
. (17)

We will show in Section A.6 that, under the hypotheses of the first part of Theorem 2, ΥR

almost always happens. Then, adding (16) to (17) and using (14), we then obtain that
almost always ∆0+

R (G1, G2, ψ) + ∆0−
R (G1, G2, ψ) < 1

2 · ∆R(G1, G1, ψ) for all ψ ∈ Πφ\{e}.
Substituting this into (15) yields that almost always ∆R(G1, G2, ψ) > ∆R(G1, G2, e) for all
ψ ∈ Πφ\{e}, and the first part of Theorem 2 will then be proven.

A.6 Under Hypotheses of Theorem 2, Part i, ΥR Occurs Almost Always

For any k ∈ {1, 2, . . . ,m}, denote Πφ(k) := {ψ ∈ Πφ : |{v ∈ V : ψ(v) 6= v}| = k}. Just for
now, let k ∈ {1, 2, . . . ,m} be chosen, and let ψ ∈ Πφ(k) be chosen. The random variable
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∆R(G1, G1, ψ) is a function of the η′ := ks independent Bernoulli(p) random variables

{1{{w, u} ∈ E(G1)}}(w,u)∈W×U :ψ(w) 6=w,

and note that the hypotheses of Theorem 3 are satisfied, hence for the choice of t =
1
20

√
η′p(1− p) in Theorem 3 we obtain that

P
[
|∆R(G1, G1, ψ)− E∆R(G1, G1, ψ)| > 1

5
η′p(1− p)

]
≤ 2e−η

′p(1−p)/400. (18)

Also note that

∆R(G1, G1, ψ) =
∑

(w,u)∈W×U
s.t.ψ(w)6=w

1

{
1{{w, u} ∈ E(G1)} 6= 1{{ψ(w), u} ∈ E(G1)}

}

is the sum of η′ Bernoulli(2p(1− p)) random variables hence

E∆R(G1, G1, ψ) = 2η′p(1− p). (19)

Thus, by (18) and (19) we obtain that

P
(

∆R(G1, G1, ψ)

ksp(1− p)
6∈ [9/5, 11/5]

)
≤ 2e

−1
400

ksp(1−p) ≤ 2e
−ξ22
400

ks. (20)

Conditioning on G1, random variable ∆0+
R (G1, G2, ψ) has a

Binomial
(
∆+
R(G1, G1, ψ), (1− p)(1− %)

)
distribution, and random variable ∆0−

R (G1, G2, ψ) has a

Binomial
(
∆−R(G1, G1, ψ), p(1− %)

)
distribution. Conditioning also on the event that ∆R(G1,G1,ψ)

ksp(1−p) ∈ [9/5, 11/5], applying The-

orem 4 with the value t = %
2 ·∆

+
R(G1, G1, ψ), and using (14), we have that

P
[
∆0+
R (G1, G2, ψ) ≥ ∆+

R(G1, G1, ψ) ·
(

(1− p)(1− %) +
%

2

)]
≤ e

−ξ42
20
·ks, (21)

P
[
∆0−
R (G1, G2, ψ) ≥ ∆−R(G1, G1, ψ) ·

(
p(1− %) +

%

2

)]
≤ e

−ξ42
20
·ks. (22)

Finally, applying (20), (21) and (22), the probability of ΥC
R can be bounded using

subadditivity:

P(ΥC
R) ≤

m∑
k=1

∑
ψ∈Πφ(k)

(
2e
−ξ22
400

ks + e
−ξ42
20
·ks + e

−ξ42
20
·ks
)

≤
m∑
k=1

mk

(
2e
−ξ22
400

ks + 2e
−ξ42
20
·ks
)

≤
m∑
k=1

(
2e
−ξ22
400

ks+k logm + 2e
−ξ42
20
·ks+k logm

)
≤ m · 4

m3
,
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the last inequality holding if s ≥ c5 logm for sufficiently large, fixed constant c5. Because∑∞
m=1

4
n2 < ∞ we have by the Borel-Cantelli Lemma that ΥR almost always happens. As

mentioned in Section A.5, this completes the proof of the first part of Theorem 2.

Remark 8 We do not chase the exact constant c5 here, focusing on the order of magnitude
of s instead. Also, if we allow p and ρ to vary with m, then a minor alteration of the above
proof (and a tighter Chernoff-Hoeffding bound) yields the same conclusion as in Theorem 2.i
if for (an arbitrary but) fixed 0 < ε < 2 and q1 := (1− p)(1− %) and q2 := p(1− %)

c5 := c5(p, %)

> max

{
2

H(q1 + %
2 , q1) · p(1− p)(2− ε)

,
2

H(q2 + %
2 , q2) · p(1− p)(2− ε)

,
16

ε2p(1− p)

}
.

Details are left to the reader.

A.7 Proof of the Theorem 2, Part ii

We now prove the second part of Theorem 2.

Just for now, let ψ ∈ Π(m) be chosen (i.e., none of the nonseeds are fixed points
for ψ), and condition on ∆+

R(G1, G1, ψ) = L, where 9
10smp(1 − p) ≤ L ≤ 11

10smp(1 −
p). The random variables ∆0+

R (G1, G2, ψ) and ∆0−
R (G1, G2, ψ) are independent, and have

distributions Binomial(L, q1) and Binomial(L, q2), respectively, where q1 := (1 − p)(1 − %)
and q2 := p(1− %).

Denoting r1 := q1 + ρ
2 and r2 := q2 + %

2 , we have by Proposition 5 that

P

(
∆0+
R (G1, G2, ψ) > L · r1 and ∆0−

R (G1, G2, ψ) > L · r2

)

≥ q1q2

200L

√
(1− r1)(1− r2)

r1r2
e−L·H(r1,q1)−L·H(r2,q2)

Considering the bound on H(x + y, y) described in Section A.4, we have that H(r1, q1)
and H(r2, q2) are both bounded above by a constant. With the fact that 1 − r1 = r2 and
1− r2 = r1, from the above we obtain that there is a positive real number c such that

P

(
∆0+
R (G1, G2, ψ) > L · r1 and ∆0−

R (G1, G2, ψ) > L · r2

)
≥ c

sm
· e−

sm
c

≥ c

m logm
· e−

sm
c (23)

under the hypotheses of the second part of Theorem 2.

Next, |Πφ(m)| is the number of derangements of an m element set, and it satisfies

limm→∞
|Πφ(m)|
m! = 1

e , thus with Stirling’s formula we have that for m large enough it will
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hold that |Π(m)| ≥
(
m
e

)m
. Thus, for m large enough, by (15) and (23),

E|{ψ ∈ Πφ : ∆R(G1, G2, ψ) < ∆R(G1, G2, e)}| =
∑
ψ∈Πφ

P

(
∆R(G1, G2, ψ) < ∆R(G1, G2, e)

)

≥
∑

ψ∈Πφ(m)

P

(
∆R(G1, G2, ψ) < ∆R(G1, G2, e)

)

≥
(m
e

)m c

m logm
· e−

sm
c

=
c

m logm
· e−

sm
c

+m logm−m,

so that there exists a fixed real number c6 > 0 such that if s ≤ c6 logm then it follows
that E| {ψ ∈ Πφ : ∆R(G1, G2, ψ) < ∆R(G1, G2, e)} | → ∞ as m→∞, and Theorem 2 part
ii is proven.

Remark 9 We could tighten the constant c6 here, but choose instead to focus on the order
of magnitude of s. If we allow p and % to be functions of m, then a simple alteration of the
above proof yields the same results of Theorem 2.ii if

c6 := c6(p, %) <
1

4
[
H(q1 + %

2 , q1) +H(q2 + %
2 , q2)

]
p(1− p)

;

again details are left to the reader.
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Abstract

Hierarchical statistical models are widely employed in information science and data engi-
neering. The models consist of two types of variables: observable variables that represent
the given data and latent variables for the unobservable labels. An asymptotic analysis
of the models plays an important role in evaluating the learning process; the result of the
analysis is applied not only to theoretical but also to practical situations, such as optimal
model selection and active learning. There are many studies of generalization errors, which
measure the prediction accuracy of the observable variables. However, the accuracy of es-
timating the latent variables has not yet been elucidated. For a quantitative evaluation of
this, the present paper formulates distribution-based functions for the errors in the estima-
tion of the latent variables. The asymptotic behavior is analyzed for both the maximum
likelihood and the Bayes methods.

Keywords: unsupervised learning, hierarchical parametric models, latent variable, max-
imum likelihood method, Bayes method

1. Introduction

Hierarchical probabilistic models, such as mixture models, are mainly employed in unsu-
pervised learning. The models have two types of variables: observable and latent. The
observable variables represent the given data, and the latent ones describe the hidden data-
generation process. For example, in mixture models that are employed for clustering tasks,
observable variables are the attributes of the given data and the latent ones are the unob-
servable labels.

One of the main concerns in unsupervised learning is the analysis of the hidden processes,
such as how to assign clustering labels based on the observations. Hierarchical models have
an appropriate structure for this analysis, because it is straightforward to estimate the
latent variables from the observable ones. Even within the limits of the clustering problem,
there are a great variety of ways to detect unobservable labels, both probabilistically and
deterministically, and many criteria have been proposed to evaluate the results (Dubes and
Jain, 1979). For parametric models, the focus of the present paper, learning algorithms such
as the expectation-maximization (EM) algorithm and the variational Bayes (VB) method
(Attias, 1999; Ghahramani and Beal, 2000; Smidl and Quinn, 2005; Beal, 2003) have been

c©2014 Keisuke Yamazaki.
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Estimation Target \Model Case Regular Case Singular Case

Observable Variable Reg-OV estimation Sing-OV estimation

Latent Variable Reg-LV estimation Sing-LV estimation

Table 1: Estimation classification according to the target variable and the model case

developed for estimating the latent variables. These algorithms must estimate both the
parameter and the variables, since the parameter is also unknown in the general case.

Theoretical analysis of the models plays an important role in evaluating the learning
results. There are many studies on predicting performance in situations where both training
and test data are described by the observable variables. The results of asymptotic analy-
sis have been used for practical applications, such as model selection and active learning
(Akaike, 1974; Takeuchi, 1976; Fedorov, 1972). The simplest case of the analysis is when
the learning model contains the true model, which generates the data. Recently, it has been
pointed out that when there is the redundant range/dimension of the latent variables in the
learning model, singularities exist in the parameter space and the conventional statistical
analysis is not valid (Amari and Ozeki, 2001). To tackle this issue, a theoretical analy-
sis of the Bayes method was established using algebraic geometry (Watanabe, 2009). The
generalization performance was then derived for various models (Yamazaki and Watanabe,
2003a,b; Rusakov and Geiger, 2005; Aoyagi, 2010; Zwiernik, 2011). Based on this analysis
of the singularities, some criteria for model selection have been proposed (Watanabe, 2010;
Yamazaki et al., 2005, 2006).

Although validity of the learning algorithms is necessary for unsupervised tasks, sta-
tistical properties of the accuracy of the estimation of the latent variables have not been
studied sufficiently. Table 1 summarizes the classification according to the target variable
of estimation and the model case. We will use the abbreviations shown in the table to
specify the target variable and the model case; for example, Reg-OV estimation stands for
estimation of the observable variable in the regular case. As mentioned above, theoretical
analysis have been conducted in both the Reg-OV and the Sing-OV estimations. On the
other hand, there is no statistical approach to measure the accuracy of the Reg-LV or the
Sing-LV estimation.

The goal of the present paper is to provide an error function for measuring the accuracy,
which is suitable for the unsupervised learning with hierarchical models, and to derive its
asymptotic form. For the first step, we consider the simplest case, in which the attributes,
such as the range and dimension, of the latent variables are known; there is no singularity
in the parameter space. This corresponds to the Reg-OV estimation in the table. Since the
mathematical structure of the parameter is much more complicated in the singular case, we
leave the analysis of the Sing-LV estimation for Yamazaki (2012). The main contributions
of the present paper are the following three items: (1) estimation for the latent variables
falls into three types as shown in Figure 1 and their error functions are formulated in a
distribution-based manner; (2) the asymptotic forms of the error functions are derived on
the maximum likelihood and the Bayes methods in Type I and variants of Types II and III
shown in Figure 2; (3) it is determined that the Bayes method is more accurate than the
maximum likelihood method in the asymptotic situation.
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The rest of this paper is organized as follows: In Section 2 we explain the estimation of
latent variables by comparing it with the prediction of observable variables. In Section 3 we
provide the formal definitions of the estimation methods and the error functions. Section
4 then presents the main results for the asymptotic forms and the proofs. Discussions and
conclusions are stated in Sections 5 and 6, respectively.

2. Estimations of Variables

This section distinguishes between the estimation of latent variables and the prediction of
observable variables. There are variations on the estimation of latent variables due to the
estimated targets.

Assume that the observable data and unobservable labels are represented by the ob-
servable variables x and the latent variables y, respectively. Let us define that x ∈ RM and
y ∈ {1, 2, . . . ,K}. In the case of a discrete x such as x ∈ {1, 2, . . . ,M}, all the results in this
paper hold if

∫
dx is replaced with

∑M
x=1. A set of n independent data pairs is expressed as

(Xn, Y n) = {(x1, y1), . . . , (xn, yn)}, where Xn = {x1, . . . , xn} and Y n = {y1, . . . , yn}. More
precisely, there is no dependency between xi and xj or between yi and yj for i 6= j.

Figure 1 shows a variety of estimations of variables: prediction of an observable variable
and three types of estimations of latent variables. Solid and dotted nodes are the observable
and latent variables, respectively. A data pair is depicted by a connection between two
nodes. The gray nodes are the target items of the estimations. We consider a stochastic
approach, where the probability distribution of the target(s) is estimated from the training
data Xn.

The top-left panel shows the prediction of unseen observable data. Based on Xn, the
next observation x = xn+1 is predicted. The top-right panel shows the estimation of Y n,
which is referred to as Type I. In the stochastic approach, the joint probability of Y n is
estimated. The bottom-left panel shows marginal estimation, referred to as Type II. The
marginal probability of yi (y1 is the example in the figure) is estimated; the rest of the latent
variables in the probability are marginalized out. Note that there is no unseen/future data
in either of Types I or II. The bottom-right panel shows estimation of y in the unseen data,
which is referred to as Type III. The difference between this and Type II is the training
data; the corresponding observable part of the target is included in the training set in Type
II, but it is not included in Type III. In the present paper we use a distribution-based
approach to analyze the theoretical accuracy of a Type-I estimation, but we also consider
connections to the other types.

3. Formal Definitions of Estimation Methods and Accuracy Evaluations

This section presents the maximum likelihood and Bayes methods for estimating latent vari-
ables and the corresponding error functions. Here, we consider only the Type-I estimation
problem for the joint probability of the hidden part. The other types will be defined and
discussed in Section 5.
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Figure 1: Prediction of observable variables and estimations of latent variables. The ob-
servable data are {x1, . . . , xn}. Solid and dotted nodes are observable and unob-
servable, respectively. Gray nodes are estimation targets.

Let p(x, y|w) = p(y|w)p(x|y, w) be a learning model, where w ∈ W ⊂ Rd is the param-
eter. The probability of the observable data is expressed as

p(x|w) =

K∑
y=1

p(y|w)p(x|y, w).

Assume that the true model generating the data (Xn, Y n) is expressed as q(x, y) =
p(y|w∗)p(x|y, w∗), where w∗ is the true parameter, and that the following Fisher infor-
mation matrices exist and are positive definite;

{IXY (w∗)}ij =E

[
∂ ln p(x, y|w∗)

∂wi

∂ ln p(x, y|w∗)
∂wj

]
,

{IX(w∗)}ij =E

[
∂ ln p(x|w∗)

∂wi

∂ ln p(x|w∗)
∂wj

]
,
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where the expectation is

E[f(x, y)] =

∫ K∑
y=1

f(x, y)p(x, y|w∗)dx.

This condition requires the identifiability of the true model, i.e., q(y) > 0 for all y and
i 6= j ⇒ q(x|y = i) 6= q(x|y = j). The joint probability distribution of (Xn, Y n) is denoted
by q(Xn, Y n) =

∏n
i=1 q(xi, yi).

We introduce two ways to construct a probability distribution of Y n based on the ob-
servable Xn. First, we define an estimation method based on the maximum likelihood
estimator. The likelihood is defined by

LX(w) =
n∏
i=1

p(xi|w).

The maximum likelihood estimator ŵX is given by

ŵX = arg maxLX(w).

Definition 1 (The maximum likelihood method) In the maximum likelihood estima-
tion, the estimated distribution of the latent variables is defined by

p(Y n|Xn) =
p(Xn, Y n|ŵX)∑
Y n p(Xn, Y n|ŵX)

=

n∏
i=1

p(xi, yi|ŵX)∑
yi
p(xi, yi|ŵX)

=

n∏
i=1

p(yi|xi, ŵX). (1)

The notation p(Y n|Xn, ŵX) is used when the method is emphasized.

Next, we define the Bayesian estimation. Let the likelihood of the joint probability
distribution be

LXY (w) =
n∏
i=1

p(xi, yi|w).

The marginal likelihood functions are given by

Z(Xn, Y n) =

∫
LXY (w)ϕ(w; η)dw,

Z(Xn) =
∑
Y n

Z(Xn, Y n) =

∫
LX(w)ϕ(w; η)dw,

where ϕ(w; η) is a prior with the hyperparameter η. We assume that the support of the
prior includes w∗.
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Definition 2 (The Bayes method) In the Bayes estimation, the estimated distribution
of Y n is expressed as

p(Y n|Xn) =
Z(Xn, Y n)

Z(Xn)
. (2)

Based on the posterior distribution defined by

p(w|Xn) =
1

Z(Xn)
LX(w)ϕ(w; η),

the estimated distribution has another equivalent form

p(Y n|Xn) =

∫ n∏
i=1

p(yi|xi, w)p(w|Xn)dw. (3)

Comparing Equation 3 with Equation 1 reveals that the Bayes estimation is based on the
expectation over the posterior instead of the plug-in parameter ŵX .

The distribution of Y n in the true model is uniquely expressed as

q(Y n|Xn) =
n∏
i=1

q(yi|xi) =
n∏
i=1

q(xi, yi)

q(xi)
,

where q(xi) =
∑K

yi=1 q(xi, yi). Accuracy of the latent variable estimation is measured by the
difference between the true distribution q(Y n|Xn) and the estimated one p(Y n|Xn). For
the present paper, we define the error function as the average Kullback-Leibler divergence,

D(n) =
1

n
EXn

[∑
Y n

q(Y n|Xn) ln
q(Y n|Xn)

p(Y n|Xn)

]
, (4)

where the expectation is

EXn [f(Xn)] =

∫
f(Xn)q(Xn)dXn.

Note that this function is available for any construction of p(Y n|Xn) when we consider the
cases of the maximum likelihood and the Bayes methods below.

4. Asymptotic Analysis of the Error Function

In this section we present the main theorems for the asymptotic forms of the error function.

4.1 Asymptotic Errors of the Two Methods

In the unsupervised learning, there is label switching, which makes interpretation of the
estimation result difficult. For example, define the parameter w∗s as p(x, y = 1|w∗s) =
p(x, y = 2|w∗), p(x, y = 2|w∗s) = p(x, y = 1|w∗), and p(x, y = k|w∗s) = p(x, y = k|w∗) for
k > 2. In this parameter, the label y = 1 and y = 2 are switched compared with w∗. It holds
that p(x|w∗s) = p(x|w∗) whereas p(x, y|w∗s) 6= p(x, y|w∗). Therefore, the estimation methods
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can search for w∗s as the true parameter instead of w∗ since there is no information of the
true labels. In the present paper, we focus on the best performance, where we successfully
estimate the true parameter. In other words, we define the true parameter according to the
estimated label assignment. Under the best performance situation, the maximum likelihood
estimator ŵX converges to w∗ in probability, and the posterior distribution of the Bayes
method converges to the normal distribution, the mean of which is ŵX , in law. Then, it is
obvious that the error function D(n) goes to zero at n→∞.

The following theorems show the speed of decrease of the error function;

Theorem 3 (The asymptotic error of the maximum likelihood method) In the
latent variable estimation given by Equation 1, the error function Equation 4 has the
following asymptotic form:

D(n) =
1

2n
Tr[{IXY (w∗)− IX(w∗)}I−1X (w∗)] + o

(
1

n

)
.

Theorem 4 (The asymptotic error of the Bayes method) In the latent variable es-
timation given by Equation 2, the error function Equation 4 has the following asymptotic
form:

D(n) =
1

2n
ln det

[
IXY (w∗)I−1X (w∗)

]
+ o

(
1

n

)
.

The proofs are in the appendix. The dominant order is 1/n in both methods, and its
coefficient depends on the Fisher information matrices. It is not an unaccountable result that
the error value depends on the position of w∗. For example, let us consider cluster analysis
and assume that distances among the clusters are large. Since we can easily distinguish
the clusters, there is not much additional information on the label y. Then, IXY (w∗) is
close to IX(w∗), which makes D(n) small in both methods. The true parameter generally
determines difficulty of tasks in the unsupervised learning, and the theorems reflect this
fact. We will present a more detailed discussion on the coefficient in Section 5.

The following corollary shows the advantage of the Bayes estimation.

Corollary 5 Let the error functions for the maximum likelihood and the Bayes methods be
denoted by DML(n) and DBayes(n), respectively. Assume that IXY (w∗) 6= IX(w∗). For any
true parameter w∗, there exists a positive constant c such that

DML(n)−DBayes(n) ≥ c

n
+ o

(
1

n

)
.

The proof is in the appendix. This result shows that DML(n) > DBayes(n) for a sufficiently
large data size n.

5. Discussion

In this section, we first discuss relations to other error functions such as the generalization
error and the error functions on Types II and III. Next, we consider variants of Types II and
III, and show the asymptotic forms of their error functions. Last, we summarize comparison
between the maximum likelihood and the Bayes methods.
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5.1 Relation to Other Error Functions

We now formulate the predictions of observable data and the remaining estimations for
Types II and III, and we consider the relations of their error functions to that of Type I.

First, we compare the Reg-LV estimation with the Reg-OV estimation. In the
observable-variable estimation, the error function is referred to as the generalization error,
which measures the prediction performance on unseen observable data. The generalization
error is defined as

Dx(n) =EXn

[ ∫
q(x) ln

q(x)

p(x|Xn)
dx

]
,

where x is independent of Xn in the data-generating process of q(x). The predictive distri-
bution p(x|Xn) is constructed by

p(x|Xn) =p(x|ŵX)

for the maximum likelihood method and

p(x|Xn) =

∫
p(x|w)p(w|Xn)dw

for the Bayes method. Both methods estimation have the same dominant terms in their
asymptotic forms,

Dx(n) =
d

2n
+ o

(
1

n

)
.

The coefficient of the asymptotic generalization error depends only on the dimension of the
parameter for any model, but that of D(n) is determined by both the model expression
and the true parameter w∗. This dependency appears when the learning model does not
contain the true model in the Reg-OV estimation, and ŵX is used for approximation of the
error function for model selection (Takeuchi, 1976) and active learning (Fedorov, 1972). In
the same way, by replacing w∗ with ŵX , Theorems 3 and 4 enable us to calculate the error
function in the Reg-LV estimation.

In the observable-variable estimation, the error Dx(n) is approximated by the cross-
validation and bootstrap methods since unseen data xn+1 are interchangeable with one of
the given observable data. On the other hand, there is no substitution for the latent variable,
which means that any numerical approximation does not exist for D(n) in principle. The
theoretical results in the present paper are thus far the only way to estimate the accuracy.

Next, we discuss Type-II estimation; we focus on the value yi from Y n and its estimation
accuracy. Based on the joint probability, the estimation of yi is defined by

p(yi|Xn) =
∑
Y n\yi

p(Y n|Xn),

where the summation is taken over Y n except for yi. Thus the error function depends on
which yi we exclude. In order to measure the average effect of the exclusions, we define the
error as follows:

Dy|Xn(n) =EXn

[
1

n

n∑
i=1

∑
yi

q(yi|xi) ln
q(yi|xi)
p(yi|Xn)

]
.
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The maximum likelihood method has the following estimation,

p(yi|Xn) =
∑
Y n\yi

n∏
i=1

p(xi, yi|ŵX)

p(xi|ŵX)

=
p(x1|ŵX) · · · p(xi−1|ŵX)p(xi, yi|ŵX)p(xi+1|ŵX) · · · p(xn|ŵX)∏n

i=1 p(xi|ŵX)

=
p(xi, yi|ŵX)

p(xi|ŵX)
= p(yi|xi, ŵX).

We can easily find that

Dy|Xn(n) =EXn

[
1

n

n∑
i=1

K∑
yi=1

q(yi|xi) ln
q(yi|xi)

p(yi|xi, ŵX)

]
=

1

n
EXn

[∑
Y n

q(Y n|Xn) ln
q(Y n|Xn)

p(Y n|Xn, ŵX)

]
.

Therefore, it holds that Dy|Xn(n) = D(n) in the maximum likelihood method. However,
the Bayes method has the estimation,

p(yi|Xn) =

∫
p(x1|w) · · · p(xi−1|w)p(xi, yi|w)p(xi+1|w) · · · p(xn|w)ϕ(w; η)dw

Z(Xn)
,

which indicates Dy|Xn(n) 6= D(n). A sufficient condition for Dy|Xn(n) = D(n) is to satisfy
p(Y n|Xn) =

∏n
i=1 p(yi|Xn).

Finally, we consider the Type-III estimation. The error is defined by

Dy|x(n) =EXn

[ ∫
q(x)

K∑
y=1

q(y|x) ln
q(y|x)

p(y|x,Xn)
dx

]
.

Note that the new observation x is not used for estimation of y, or Dy|x(n) will be equivalent
to the Type-II error Dy|Xn+1(n+1). The maximum likelihood estimation p(y|x,Xn) is given
by

p(y|x,Xn) =
p(x, y|ŵX)

p(x|ŵX)
,

and for the Bayes method it is

p(y|x,Xn) =

∫
p(x, y|w)

p(x|w)
p(w|Xn)dw. (5)

Using the result in Shimodaira (1993) for a variant Akaike information criterion (AIC) from
partially observed data, we immediately obtain the asymptotic form of Dy|x(n) as

Dy|x(n) =
1

2n
Tr

[{
IXY (w∗)− IX(w∗)

}
IX(w∗)−1

]
+ o

(
1

n

)
.

We thus conclude that all estimation types have the same accuracy in the maximum like-
lihood method. The difference of the training data between Types II and III does not
asymptotically affect the estimation results. The analysis of the Type-III estimate in the
Bayes method is left for future study.
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Prediction Type I Type II Type III

ML d/2 Tr[{IXY − IX}I−1X ]/2 Tr[{IXY − IX}I−1X ]/2 Tr[{IXY − IX}I−1X ]/2

Bayes d/2 ln det[IXY I
−1
X ]/2 unknown unknown

Table 2: Coefficients of the dominant order 1/n in the error functions
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Figure 2: (Left) Partial marginal estimation for y1, . . . , yαn. (Right) Estimation for future
data yn+1, . . . , yn+αn.

5.2 Variants of Types II and III

Table 2 summarizes the results in the previous subsection. The rows indicate the maximum
likelihood (ML) and the Bayes methods, respectively. The Fisher information matrices
IXY (w∗) and IX(w∗) are abbreviated in a form that does not include the true parameter,
i.e., IXY and IX . The error functions of Types II and III in the Bayes method are still
unknown. The analysis is not straightforward when there is a single target of estimation,
because the asymptotic expansion is not available when the number of target nodes is
constant with respect to the training data size n.

Consider the variants of Types II and III depicted in Figure 2. Assume that 0 < α ≤ 1
is a constant rational number and that n gets large enough to satisfy that αn is an integer.
The left panel shows the partial marginal estimation referred to as Type II’. We will consider
the joint probability of y1, . . . , yαn, where the remaining variables yαn+1, . . . , yn have been
marginalized out. Type II’ is equivalent to Type I when α = 1. Note that the order in
which the target nodes are determined does not change the average accuracy for i.i.d. data.
The right panel indicates the estimations for future data yn+1, . . . , yn+αn. We refer to it
as Type III’ and construct the joint probability on these variables. In the variant types,
the targets are changed from a single node to αn nodes, which enables us to analyze the
asymptotic behavior.

We will use the following notation:

X1 ={x1, . . . , xαn},
Y1 ={y1, . . . , yαn}
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Pred. Type I Type II’ Type III’

ML d/2 Tr[{IXY − IX}I−1X ]/2 Tr[{IXY − IX}I−1X ]/2 Tr[{IXY − IX}I−1X ]/2

Bayes d/2 ln det[IXY I
−1
X ]/2 ln det[KXY I

−1
X ]/(2α) ln det[KXY I

−1
X ]/(2α)

Table 3: Coefficients of the dominant order 1/n in the error functions

for Type II’ and

X2 ={xn+1, . . . , xn+αn},
Y2 ={yn+1, . . . , yn+αn}

for Type III’. The Bayes estimations are given by

p(Y1|Xn) =

∫ ∏αn
j=1 p(xj , yj |w)

∏n
i=αn+1 p(xi|w)ϕ(w; η)dw∫ ∏n

i=1 p(xi|w)ϕ(w; η)dw
,

p(Y2|X2, X
n) =

∫ n+αn∏
i=n+1

p(xi, yi|w)

p(xi|w)
p(w|Xn)dw

for Type II’ and Type III’, respectively. The respective error functions are defined by

DY1|Xn(n) =
1

αn
EXn

[∑
Y1

q(Y1|Xn) ln
q(Y1|Xn)

p(Y1|Xn)

]
,

DY2|X2
(n) =

1

αn
EXn,X2

[∑
Y2

q(Y2|X2) ln
q(Y2|X2)

p(Y2|X2, Xn)

]
.

In ways similar to the proofs of Theorems 3 and 4, the asymptotic forms are derived as
follows.

Theorem 6 In Type II’, the error function has the following asymptotic form:

DY1|Xn(n) =
1

2αn
ln det[KXY (w∗)IX(w∗)−1] + o

(
1

n

)
,

where KXY (w) = αIXY (w) + (1− α)IX(w).

The proof is in the appendix.

Theorem 7 In Type III’, the error function has the following asymptotic form:

DY2|X2
(n) =

1

2αn
ln det[KXY (w∗)I−1X (w∗)] + o

(
1

n

)
.

This proof is also in the appendix. These theorems show that when Types II’ and III’
have the same α, they asymptotically have the same accuracy. This implies the asymptotic
equivalency of Types II and III by combining the results of the maximum likelihood method.

Table 3 summarizes the results. Based on the definitions, the results for the maximum
likelihood method are also available for Types II’ and III’. Using the asymptotic forms, we
can compare the relation of the magnitudes for the maximum likelihood method.
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Corollary 8 Assume that IXY (w) 6= IX(w). For 0 < α ≤ 1, there exists a positive constant
c1 such that

Tr[{IXY (w)− IX(w)}I−1X (w)]− 1

α
ln det[KXY (w)I−1X (w)] ≥ c1

n
+ o

(
1

n

)
.

The proof is in the appendix. We immediately obtain the following relation, which shows
the advantage of the Bayes estimation in the asymptotic case:

DBayes
Y1|Xn(n) <DML

Y1|Xn(n)

DBayes
Y2|X2

(n) <DML
Y2|X2

(n)

for respective α’s.

By comparing the errors of Types I and II’ in the Bayes method, we can obtain the
effect of supplementary observable data. Let us consider the Type-II’ case in which the
estimation target is Y1 and the training data is only X1. This corresponds to the estimation
in Type I with αn training data, which we emphasize by calling it Type I’. The difference
between Type I’ and Type II’ is the addition of supplementary data Xn \X1.

Corollary 9 Assume that the minimum eigenvalue of IXY (w∗)I−1X (w∗) is not less than
one, i.e., λd ≥ 1. The error difference is asymptotically described as

D(αn)−DY1|Xn(n) =
1

2αn
ln det[IXY (w∗)K−1XY (w∗)] + o

(
1

n

)
≥c2
n

+ o

(
1

n

)
,

where c2 is a positive constant. This shows that Type II’ has a smaller error than Type I’
in the asymptotic situation; the supplementary data make the estimation more accurate.

The proof is in the appendix.

5.3 Comparison Between the Two Methods

Corollaries 5 and 8 show that the Bayes method is more accurate than the maximum
likelihood method for Types I, II’, and III’. There have been many data-based comparisons
of the predicting performances of these two methods (e.g., Akaike, 1980; Mackay, 1992;
Browne and Draper, 2006). We will now discuss the computational costs of the two methods
for the estimation of latent variables. We note there will be a trade-off between cost and
accuracy.

We will assume that the estimated distribution is to be calculated for a practical purpose.
For example, the value of p(Y n|Xn) in Type I is used for sampling label assignments and
for searching for the optimal assignment arg maxY n p(Y n|Xn). The maximum likelihood
method requires the determination of ŵX for all Types I, II, and III. The computation is
not expensive once ŵX is successfully found, but the global maximum point of the likelihood
function is not easily obtained. The EM algorithm is commonly used for searching for the
maximum likelihood estimator in models with latent variables, but it is often trapped in
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one of the local maxima. The results of the steepest descent method also depend on the
initial point and the step size of the iteration.

The Bayes method is generally expensive. In the estimated distribution p(Y n|Xn) of
Type I, the numerator Z(Xn, Y n) contains integrals that depend on Y n. Sampling yi in
Type II requires the same computation as for Type I: we can obtain yi by ignoring the other
elements Y n \ yi, which realizes the marginalization

∑
Y n\yi p(Y

n|Xn). A conjugate prior
allows us to have a tractable form of Z(Xn, Y n) (Dawid and Lauritzen, 1993; Heckerman,
1999), which reduces the computational cost. In Type III, Equation 5 shows that there
is no direct sampling method for y. In this case, expensive sampling from the posterior
p(w|Xn) is necessary.

The VB method is an approximation that allows the direct computation of P (Y n|Xn)
and p(w|Xn), which have tractable forms and reduced computational costs. However, the
assumption that P (Y n|Xn) and p(w|Xn) are independent does not hold in many cases.
We conjecture that the P (Y n|Xn) of the VB method will be less accurate than that of the
original Bayes method.

6. Conclusions

In the present paper we formalized the estimation from the observable data of the distri-
bution of the latent variables, and we measured its accuracy by using the Kullback-Leibler
divergence. We succeeded in deriving the asymptotic error functions for both the maxi-
mum likelihood and the Bayes methods. These results allow us to mathematically compare
the estimation methods: we determined that the Bayes method is more accurate than the
maximum likelihood method in most cases, while their prediction accuracies are equivalent.
The generalization error has been approximated from the given observable data, such as by
using the cross-validation and bootstrap methods, but there is no approximation technique
for the error of the estimation of the latent variables, because the latent data can not be
obtained. Therefore, these asymptotic forms are thus far the only way we have to estimate
their accuracy.
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Appendix A. Proofs

In this section, we prove the theorems and the corollaries.

A.1 Proof of Theorem 3

Proof First, let us define another Fisher information matrix:

{IY |X(w)}ij =E

[
∂ ln p(y|x,w)

∂wi

∂ ln p(y|x,w)

∂wj

]
.

3733



Yamazaki

Based on p(y|x,w) = p(x, y|w)/p(x|w),

IY |X(w) =IXY (w) + IX(w)− JXY (w)− J>XY (w),

where

{JXY (w)}ij =E

[
∂ ln p(x, y|w)

∂wi

∂ ln p(x|w)

∂wj

]
.

According to the definition, we obtain

{JXY (w)}ij =E

[
1

p(x, y|w)

∂p(x, y|w)

∂wi

∂ ln p(x|w)

∂wj

]
=

∫ ∑
y

∂p(x, y|w)

∂wi

∂ ln p(x|w)

∂wj
dx

=

∫
∂p(x|w)

∂wi

∂ ln p(x|w)

∂wj
dx

=

∫
∂ ln p(x|w)

∂wi

∂ ln p(x|w)

∂wj
p(x|w)dx = {IX(w)}ij .

Thus, it holds that

IY |X(w) =IXY (w)− IX(w). (6)

Next, let us divide the error function into three parts:

D(n) =D1(n)−D2(n)−D3(n), (7)

D1(n) =
1

n
EXnY n

[
ln q(Xn, Y n)

]
,

D2(n) =
1

n
EXnY n

[
ln p(Xn, Y n|ŵX)

]
,

D3(n) =
1

n
EXn

[
ln

q(Xn)

p(Xn|ŵX)

]
,

where the expectation is

EXnY n [f(Xn, Y n)] =

∫ ∑
Y n

f(Xn, Y n)q(Xn, Y n)dXn.

Because D3(n) is the training error on p(x|ŵX), the asymptotic form is known (Akaike,
1974):

D3(n) =− d

2n
+ o

(
1

n

)
.

Let another estimator be defined by

ŵXY = arg maxLXY (w).
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According to the Taylor expansion, D2(n) can be rewritten as

D2(n) =
1

n
EXnY n

[ n∑
i=1

ln p(Xi, Yi|ŵXY )

]

+
1

n
EXnY n

[
δw>

n∑
i=1

∂ ln p(Xi, Yi|ŵXY )

∂w

]

+
1

2n
EXnY n

[
δw>

n∑
i=1

∂2 ln p(Xi, Yi|ŵXY )

∂w2
δw +R1(δw)

]

=
1

n
EXnY n

[ n∑
i=1

ln p(Xi, Yi|ŵXY )

]
− 1

2
EXnY n

[
δw>IXY (w∗)δw

]
+ o

(
1

n

)
,

where δw = ŵX − ŵXY , and R1(δw) is the remainder term. The matrix∑n
i=1

∂2 ln p(Xi,Yi|ŵXY )
∂w2 was replaced with IXY (w∗) on the basis of the law of large numbers.

As for the first term of D2,

D1(n)− 1

n
EXnY n

[ n∑
i=1

ln p(Xi, Yi|ŵXY )

]
= − d

2n
+ o

(
1

n

)

because it is the training error on p(x, y|ŵXY ). The factor in the second term of D2 can be
rewritten as

EXnY n

[
δw>IXY (w∗)δw

]
= EXnY n

[
(ŵX − w∗)>IXY (w∗)(ŵX − w∗)

]
− EXnY n

[
(ŵXY − w∗)>IXY (w∗)(ŵX − w∗)

]
− EXnY n

[
(ŵX − w∗)>IXY (w∗)(ŵXY − w∗)

]
+ EXnY n

[
(ŵXY − w∗)>IXY (w∗)(ŵXY − w∗)

]
. (8)

Let us define an extended likelihood function,

L2(w12) =

n∑
i=1

ln p(Xi, Yi|w1) +

n∑
i=1

ln p(Xi|w2),
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where w12 = (w>1 , w
>
2 )>, ŵ12 = (ŵ>XY , ŵ

>
X)>, and w∗∗ = (w∗>, w∗>)> are extended vectors.

According to the Taylor expansion,

∂L2(w12)

∂w12
=

(
∂
∑

ln p(Xi, Yi|w∗)
∂w1

>
,
∂
∑

ln p(Xi|w∗)
∂w2

>)>
−Mδw12,

δw12 =w12 − w∗∗

M =

−∂2
∑

ln p(Xi,Yi|w∗)
∂w2

1
0

0 −∂2
∑

ln p(Xi|w∗)
∂w2

2

 .
According to ∂L2(ŵ12)

∂w12
= 0, δŵ12 = ŵ12 − w∗∗ can be written as

δŵ12 =M−1
(
∂
∑

ln p(Xi, Yi|w∗)
∂w1

>
,
∂
∑

ln p(Xi|w∗)
∂w2

>)>
.

Based on the central limit theorem, δŵ12 is distributed from N (0, nM−1Σ−1M−1), where

Σ−1 =

[
IXY (w∗) JXY (w∗)
J>XY (w∗) IX(w∗)

]
.

The covariance nM−1Σ−1M−1 of δŵ12 directly shows the covariance of the estimators ŵX
and ŵXY in Equation 8. Thus it holds that

EXnY n

[
δw>IXY (w∗)δw

]
=

1

n
Tr

[
IXY (w∗)I−1X (w∗)

]
− 1

n
Tr

[
JXY (w∗)I−1X (w∗)

]
− 1

n
Tr

[
J>XY (w∗)I−1X (w∗)

]
+

1

n
Tr

[
IX(w∗)I−1X (w∗)

]
+ o

(
1

n

)
.

Considering the relation Equation 7, we obtain that

D(n) =
1

2n
Tr[IY |X(w∗)I−1X (w∗)] + o

(
1

n

)
.

Based on Equation 6, the theorem is proved.

A.2 Proof of Theorem 4

Proof Let us define the following entropy functions:

SXY = −
K∗∑
y=1

∫
q(x, y) ln q(x, y)dx,

SX = −
∫
q(x) ln q(x)dx.
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According to the definition, the error function Equation 4 with the Bayes estimation can
be rewritten as

D(n) =
1

n

{
FXY (n)− FX(n)

}
,

where

FXY (n) =− nSXY − EXnY n

[
lnZ(Xn, Y n)

]
,

FX(n) =− nSX − EXn

[
lnZ(Xn)

]
.

Based on the Taylor expansion at w = ŵX ,

FX(n) =− nSX − EXn

[
ln

∫
exp

{
ln p(Xn|ŵX)

+
1

2
(w − ŵX)>

∂2 ln p(Xn|ŵX)

∂w2
(w − ŵX) + r1(w)

}
ϕ(w; η)dw

]
=− nSX − EXn [ln p(Xn|ŵX ]− EXn

[
ln

∫
er1(w)ϕ(w; η)N (ŵX ,Σ1/n)dw

]
,

where r1(w) is the remainder term and

Σ−11 =− 1

n

∂2 ln p(Xn|ŵX)

∂w2
,

which converges to IX(w∗) based on the law of large numbers. Again, applying the expansion
at w = w∗ to er1(w)ϕ(w; η), we obtain

FX(n) =EXn

[
ln

q(Xn)

p(Xn|ŵX)

]
− ln

√
2π

d√
det{nIX(w∗)}−1

− EXn

[
ln

∫ {
er1(w

∗)ϕ(w∗ : η)

+ (w − w∗)>∂e
r1(w∗)ϕ(w∗; η)

∂w
+ r2(w)

}
N
(
ŵX ,

{
nIX(w∗)

}−1)
dw

]
+ o(1),

where r2(w) is the remainder term. The first term is the training error on p(x|ŵX). Ac-
cording to Akaike (1974), it holds that

EXn

[
ln

q(Xn)

p(Xn|ŵX)

]
=− d

2
+ o(1).

Then, we obtain

FX(n) =
d

2
ln

n

2πe
+ ln

√
det IX(w∗)

ϕ(w∗; η)
+ o(1),
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which is consistent with the result of Clarke and Barron (1990). By replacing Xn with
(Xn, Y n),

FXY (n) =
d

2
ln

n

2πe
+ ln

√
det IXY (w∗)

ϕ(w∗; η)
+ o(1).

Therefore,

D(n) =
1

2n

{
ln det IXY (w∗)− ln det IX(w∗)

}
+ o

(
1

n

)
,

which proves the theorem.

A.3 Proof of Corollary 5

Proof Because IXY (w) is symmetric positive definite, we have a decomposition IXY (w) =
LL>, where L is a lower triangular matrix. The other Fisher information matrix IX(w)
is also symmetric positive definite. Thus, LT I−1X (w)L is positive definite. Let λ1 ≥ λ2 ≥
· · · ≥ λd > 0 be the eigenvalues of L>I−1X (w)L. According to the assumption, at least one
eigenvalue is different from the others. Then, we obtain

2n{DML(n)−DBayes(n)} =Tr[IXY (w)I−1X (w)]− d− ln det[IXY (w)I−1X (w)] + o(1)

=Tr[L>I−1X (w)L]− d− ln det[L>I−1X (w)L] + o(1)

=

d∑
i=1

{λi − 1} − ln

d∏
i=1

λi + o(1)

=
d∑
i=1

{λi − 1− lnλi}+ o(1).

The first term in the last expression is positive, which proves the corollary.

A.4 Proof of Theorem 6

Proof The error function is rewritten as

DY1|Xn(n) =
1

αn

{
F

(1)
XY (n)− FX(n)

}
,

F
(1)
XY (n) =− αnSXY − (1− α)nSX − EXn,Y1

[
ln

∫
L
(1)
XY (w)ϕ(w; η)dw

]
,

L
(1)
XY (w) =

αn∏
j=1

p(xj , yj |w)

n∏
i=αn+1

p(xi|w).
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Based on the Taylor expansion at w = ŵ(1), where ŵ(1) = arg maxL(1)(w),

F
(1)
XY (n) =EXn,Y1

[ αn∑
j=1

ln
q(xj , yj)

p(xj , yj |ŵ(1))
+

n∑
i=αn+1

ln
q(xi)

p(xi|ŵ(1))

+ ln

∫
exp

{
− n(w − ŵ(1))>G(1)(Xn, Y1)(w − ŵ(1)) + r3(w)

}
ϕ(w; η)dw

]
,

where r3(w) is the remainder term and

G(1)(Xn, Y1) = − 1

n

∂2

∂w2

( αn∑
j=1

ln p(xj , yj |ŵ(1)) +
n∑

i=αn+1

ln p(xi|ŵ(1))

)
.

The first and the second terms of F
(1)
XY (n) correspond to the training error. Following the

same method as we used in the proof of Theorem 4 and noting that

G(1)(Xn, Y1)→ KXY (w∗),

we obtain

F
(1)
XY (n) =

d

2
ln

n

2πe
+ ln

√
detKXY (w∗)

ϕ(w∗; η)
+ o(1),

which completes the proof.

A.5 Proof of Theorem 7

Proof The error function is rewritten as

DY2|X2
(n) =

1

αn

{
F

(2)
XY (n)− FX(n)

}
,

F
(2)
XY (n) =− αnSXY − nSX − EXn,X2,Y2

[
ln

∫
L
(2)
XY (w)ϕ(w; η)dw

]
,

L
(2)
XY (w) =

n+αn∏
j=n+1

p(yj |xj , w)

n∏
i=1

p(xi|w).

Based on the Taylor expansion at w = ŵ(2), where ŵ(2) = arg maxL(2)(w),

F
(2)
XY (n) =EXn,X2,Y2

[ αn∑
j=n+1

ln
q(yj |xj)

p(yj |xj , ŵ(2))
+

n∑
i=1

ln
q(xi)

p(xi|ŵ(2))

+ ln

∫
exp

{
− n(w − ŵ(2))>G(2)(Xn, X2, Y2)(w − ŵ(2)) + r4(w)

}
ϕ(w; η)dw

]
,

where r4(w) is the remainder term and

G(2)(Xn, X2, Y2) = − 1

n

∂2

∂w2

( αn∑
j=n+1

ln p(yj |xj , ŵ(2)) +

n∑
i=1

ln p(xi|ŵ(2))

)
.
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The first and the second terms of F
(1)
XY (n) correspond to the training error, which are stated

as

EXn,X2,Y2

[ αn∑
j=n+1

ln
q(yj |xj)

p(yj |xj , ŵ(2))
+

n∑
i=1

ln
q(xi)

p(xi|ŵ(2))

]

= −Tr

[{
αIY |X(w∗) + IX(w∗)

}
KXY (w∗)−1

]
+ o(1).

Following the same method we used in the proof of Theorem 4 and noting that

G(2)(Xn, X2, Y2)→ KXY (w∗),

we obtain

F
(1)
XY (n) =− Tr

[{
αIY |X(w∗) + IX(w∗)

}
KXY (w∗)−1

]
+
d

2
ln

n

2π
+ ln

√
detKXY (w∗)

ϕ(w∗; η)
+ o(1)

=
d

2
ln

n

2πe
+ ln

√
detKXY (w∗)

ϕ(w∗; η)
+ o(1),

which completes the proof.

A.6 Proof of Corollary 8

Proof It holds that

1

α
ln det[KXY (w)I−1X (w)] =

1

α
ln det[α{IXY (w)− IX(w)}I−1X (w) + Ed],

where Ed is the d× d unit matrix. On the other hand,

Tr[{IXY (w)− IX(w)}I−1X (w)] =
1

α

{
Tr[α{IXY (w)− IX(w)}I−1X (w) + Ed]− d

}
.

It is easy to confirm that αL>1 I
−1
X (w)L1 +Ed is positive definite, where L>1 L1 = IXY (w)−

IX(w). Considering the eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µd > 0, we can obtain the following
relation in the same way as we did in the proof of Corollary 5:

Tr[{IXY (w)− IX(w)}I−1X (w)]− 1

α
ln det[KXY (w)I−1X (w)] =

1

α

d∑
i=1

{
µi − 1− lnµi

}
.

It is easy to confirm that the right-hand side is positive, which completes the proof.
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A.7 Proof of Corollary 9

Proof Based on the eigenvalues of IXY (w∗)I−1X (w∗), it holds that

ln det[IXY (w∗)K−1XY (w∗)] = ln det[IXY (w∗)I−1X (w∗)]− ln det[αIXY (w∗)I−1X (w∗) + (1− α)Ed]

=
d∑
i=1

lnλi −
d∑
i=1

ln{αλi + (1− α)} ≥ 0,

which completes the proof.
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Abstract

What do auto-encoders learn about the underlying data-generating distribution? Recent
work suggests that some auto-encoder variants do a good job of capturing the local manifold
structure of data. This paper clarifies some of these previous observations by showing that
minimizing a particular form of regularized reconstruction error yields a reconstruction
function that locally characterizes the shape of the data-generating density. We show that
the auto-encoder captures the score (derivative of the log-density with respect to the input).
It contradicts previous interpretations of reconstruction error as an energy function. Unlike
previous results, the theorems provided here are completely generic and do not depend on
the parameterization of the auto-encoder: they show what the auto-encoder would tend
to if given enough capacity and examples. These results are for a contractive training
criterion we show to be similar to the denoising auto-encoder training criterion with small
corruption noise, but with contraction applied on the whole reconstruction function rather
than just encoder. Similarly to score matching, one can consider the proposed training
criterion as a convenient alternative to maximum likelihood because it does not involve
a partition function. Finally, we show how an approximate Metropolis-Hastings MCMC
can be setup to recover samples from the estimated distribution, and this is confirmed in
sampling experiments.

Keywords: auto-encoders, denoising auto-encoders, score matching, unsupervised repre-
sentation learning, manifold learning, Markov chains, generative models

1. Introduction

Machine learning is about capturing aspects of the unknown distribution from which the
observed data are sampled (the data-generating distribution). For many learning algorithms
and in particular in manifold learning, the focus is on identifying the regions (sets of points)
in the space of examples where this distribution concentrates, i.e., which configurations of
the observed variables are plausible.

Unsupervised representation-learning algorithms try to characterize the data-generating
distribution through the discovery of a set of features or latent variables whose variations
capture most of the structure of the data-generating distribution. In recent years, a number
of unsupervised feature learning algorithms have been proposed that are based on minimiz-
ing some form of reconstruction error, such as auto-encoder and sparse coding variants (Ol-

c©2014 Guillaume Alain and Yoshua Bengio.
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shausen and Field, 1997; Bengio et al., 2007; Ranzato et al., 2007; Jain and Seung, 2008;
Ranzato et al., 2008; Vincent et al., 2008; Kavukcuoglu et al., 2009; Rifai et al., 2011b,a;
Gregor et al., 2011). An auto-encoder reconstructs the input through two stages, an encoder
function f , which outputs a learned representation h = f(x) of an example x, and a decoder
function g, such that g(f(x)) ≈ x for most x sampled from the data-generating distribu-
tion. These feature learning algorithms can be stacked to form deeper and more abstract
representations. Deep learning algorithms learn multiple levels of representation, where the
number of levels is data-dependent. There are theoretical arguments and much empiri-
cal evidence to suggest that when they are well-trained, deep learning algorithms (Hinton
et al., 2006; Bengio, 2009; Lee et al., 2009; Salakhutdinov and Hinton, 2009; Bengio and
Delalleau, 2011; Bengio et al., 2013b) can perform better than their shallow counterparts,
both in terms of learning features for the purpose of classification tasks and for generating
higher-quality samples.

Here we restrict ourselves to the case of continuous inputs x ∈ Rd with the data-
generating distribution being associated with an unknown target density function, denoted
p. Manifold learning algorithms assume that p is concentrated in regions of lower dimen-
sion (Cayton, 2005; Narayanan and Mitter, 2010), i.e., the training examples are by defini-
tion located very close to these high-density manifolds. In that context, the core objective
of manifold learning algorithms is to identify where the density concentrates.

Some important questions remain concerning many of feature learning algorithms based
on reconstruction error. Most importantly, what is their training criterion learning about
the input density? Do these algorithms implicitly learn about the whole density or only some
aspect? If they capture the essence of the target density, then can we formalize that link
and in particular exploit it to sample from the model? The answers may help to establish
that these algorithms actually learn implicit density models, which only define a density
indirectly, e.g., through the estimation of statistics or through a generative procedure.
These are the questions to which this paper contributes.

The paper is divided in two main sections, along with detailed appendices with proofs
of the theorems. Section 2 makes a direct link between denoising auto-encoders (Vincent
et al., 2008) and contractive auto-encoders (Rifai et al., 2011b), justifying the interest
in the contractive training criterion studied in the rest of the paper. Section 3 is the
main contribution and regards the following question: when minimizing that criterion, what
does an auto-encoder learn about the data-generating density? The main answer is that it
estimates the score (first derivative of the log-density), i.e., the direction in which density is
increasing the most, which also corresponds to the local mean, which is the expected value
in a small ball around the current location. It also estimates the Hessian (second derivative
of the log-density).

Finally, Section 4 shows how having access to an estimator of the score can be exploited
to estimate energy differences, and thus perform approximate MCMC sampling. This is
achieved using a Metropolis-Hastings MCMC in which the energy differences between the
proposal and the current state are approximated using the denoising auto-encoder. Ex-
periments on artificial data sets show that a denoising auto-encoder can recover a good
estimator of the data-generating distribution, when we compare the samples generated by
the model with the training samples, projected into various 2-D views for visualization.
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Figure 1: Regularization forces the auto-encoder to become less sensitive to the input, but
minimizing reconstruction error forces it to remain sensitive to variations along
the manifold of high density. Hence the representation and reconstruction end
up capturing well variations on the manifold while mostly ignoring variations
orthogonal to it.

2. Contractive and Denoising Auto-Encoders

Regularized auto-encoders (see Bengio et al. 2012b for a review and a longer exposition)
capture the structure of the training distribution thanks to the productive opposition be-
tween reconstruction error and a regularizer. An auto-encoder maps inputs x to an internal
representation (or code) f(x) through the encoder function f , and then maps back f(x)
to the input space through a decoding function g. The composition of f and g is called
the reconstruction function r, with r(x) = g(f(x)), and a reconstruction loss function `
penalizes the error made, with r(x) viewed as a prediction of x. When the auto-encoder
is regularized, e.g., via a sparsity regularizer, a contractive regularizer (detailed below), or
a denoising form of regularization (that we find below to be very similar to a contractive
regularizer), the regularizer basically attempts to make r (or f) as simple as possible, i.e.,
as constant as possible, as unresponsive to x as possible. It means that f has to throw away
some information present in x, or at least represent it with less precision. On the other
hand, to make reconstruction error small on the training set, examples that are neighbors
on a high-density manifold must be represented with sufficiently different values of f(x) or
r(x). Otherwise, it would not be possible to distinguish and hence correctly reconstruct
these examples. It means that the derivatives of f(x) or r(x) in the x-directions along the
manifold must remain large, while the derivatives (of f or r) in the x-directions orthogonal
to the manifold can be made very small. This is illustrated in Figure 1. In the case of prin-
cipal components analysis, one constrains the derivative to be exactly 0 in the directions
orthogonal to the chosen projection directions, and around 1 in the chosen projection di-
rections. In regularized auto-encoders, f is non-linear, meaning that it is allowed to choose
different principal directions (those that are well represented, i.e., ideally the manifold tan-
gent directions) at different x’s, and this allows a regularized auto-encoder with non-linear
encoder to capture non-linear manifolds. Figure 2 illustrates the extreme case when the
regularization is very strong (r wants to be nearly constant where density is high) in the
special case where the distribution is highly concentrated at three points (three training ex-
amples). It shows the compromise between obtaining the identity function at the training
examples and having a flat r near the training examples, yielding a vector field r(x) − x
that points towards the high density points.

Here we show that the denoising auto-encoder (Vincent et al., 2008) with very small
Gaussian corruption and squared error loss is actually a particular kind of contractive auto-
encoder (Rifai et al., 2011b), contracting the whole auto-encoder reconstruction function
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x"

r(x)"

x1" x2" x3"
Figure 2: The reconstruction function r(x) (in turquoise) which would be learned by a high-capacity

auto-encoder on a 1-dimensional input, i.e., minimizing reconstruction error at the train-
ing examples xi (with r(xi) in red) while trying to be as constant as possible otherwise.
The figure is used to exaggerate and illustrate the effect of the regularizer (corresponding
to a large σ2 in the loss function L later described by Equation 6. The dotted line is
the identity reconstruction (which might be obtained without the regularizer). The blue
arrows shows the vector field of r(x)−x pointing towards high density peaks as estimated
by the model, and estimating the score (log-density derivative), as shown in this paper.

rather than just the encoder, whose contraction penalty coefficient is the magnitude of the
perturbation. This was first suggested in Rifai et al. (2011b).

The contractive auto-encoder, or CAE (Rifai et al., 2011b), is a particular form of reg-
ularized auto-encoder which is trained to minimize the following regularized reconstruction
error:

LCAE = E

[
`(x, r(x)) + λ

∥∥∥∥∂f(x)

∂x

∥∥∥∥2

F

]
(1)

where r(x) = g(f(x)) and ||A||2F is the sum of the squares of the elements of A. Both the
squared loss `(x, r) = ||x−r||2 and the cross-entropy loss `(x, r) = −x log r−(1−x) log(1−r)
have been used, but here we focus our analysis on the squared loss because of the easier
mathematical treatment it allows. Note that success in minimizing the CAE criterion
strongly depends on the parameterization of f and g and in particular on the tied weights
constraint used, with f(x) = sigmoid(Wx + b) and g(h) = sigmoid(W Th + c). The above
regularizing term forces f (as well as g, because of the tied weights) to be contractive, i.e.,
to have singular values less than 1.1 Larger values of λ yield more contraction (smaller
singular values) where it hurts reconstruction error the least, i.e., in the local directions
where there are only little or no variations in the data. These typically are the directions
orthogonal to the manifold of high density concentration, as illustrated in Figure 2.

1. Note that an auto-encoder without any regularization would tend to find many leading singular values
near 1 in order to minimize reconstruction error, i.e., preserve input norm in all the directions of variation
present in the data.
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The denoising auto-encoder, or DAE (Vincent et al., 2008), is trained to minimize the
following denoising criterion:

LDAE = E [`(x, r(N(x)))] (2)

where N(x) is a stochastic corruption of x and the expectation is over the training dis-
tribution and the corruption noise source. Here we consider mostly the squared loss and
Gaussian noise corruption, again because it is easier to handle them mathematically. In
many cases, the exact same proofs can be applied to any kind of additive noise, but Gaussian
noise serves as a good frame of reference.

Theorem 1 Let p be the probability density function of the data. If we train a DAE using
the expected quadratic loss and corruption noise N(x) = x+ ε with

ε ∼ N
(
0, σ2I

)
,

then the optimal reconstruction function r∗(x) will be given by

r∗(x) =
Eε [p(x− ε)(x− ε)]

Eε [p(x− ε)]
(3)

for values of x where p(x) 6= 0.
Moreover, if we consider how the optimal reconstruction function r∗σ(x) behaves asymp-

totically as σ → 0, we get that

r∗σ(x) = x+ σ2∂ log p(x)

∂x
+ o(σ2) as σ → 0. (4)

The proof of this result is found in the Appendix. We make use of the small o notation
throughout this paper and assume that the reader is familiar with asymptotic notation. In
the context of Theorem 1, it has to be understood that all the other quantities except for
σ are fixed when we study the effect of σ → 0.

Equation 3 reveals that the optimal DAE reconstruction function at every point x is
given by a kind of convolution involving the density function p, or weighted average from
the points in the neighbourhood of x, depending on how we would like to view it. A higher
noise level σ means that a larger neighbourhood of x is taken into account. Note that the
total quantity of “mass” being included in the weighted average of the numerator of (3) is
found again at the denominator.

Gaussian noise is a simple case in the sense that it is additive and symmetrical, so it
avoids the complications that would occur when trying to integrate over the density of pre-
images x′ such that N(x′) = x for a given x. The ratio of those quantities that we have
in Equation 3, however, depends strongly on the decision that we made to minimize the
expected square error.

When we look at the asymptotic behavior with Equation 4, the first thing to observe is
that the leading term in the expansion of r∗σ(x) is x, and then the remainder goes to 0 as
σ → 0. When there is no noise left at all, it should be clear that the best reconstruction
target for any value x would be that x itself.
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We get something even more interesting if we look at the second term of Equation 4
because it gives us an estimator of the score from

∂ log p(x)

∂x
= (r∗σ(x)− x) /σ2 + o(1) as σ → 0. (5)

This result is at the core of our paper. It is what allows us to start from a trained DAE,
and then recover properties of the training density p(x) that can be used to sample from
p(x).

Most of the asymptotic properties that we get by considering the limit as the Gaussian
noise level σ goes to 0 could be derived from a family of noise distribution that approaches
a point mass distribution in a relatively “nice” way.

An interesting connection with contractive auto-encoders can also be observed by using a
Taylor expansion of the denoising auto-encoder loss and assuming only that rσ(x) = x+o(1)
as σ → 0. In that case we get the following proposition.

Proposition 1 Let p be the probability density function of the data. Consider a DAE using
the expected quadratic loss and corruption noise N(x) = x + ε, with ε ∼ N

(
0, σ2I

)
. If we

assume that the non-parametric solutions rσ(x) satisfies

rσ(x) = x+ o(1) as σ → 0,

then we can rewrite the loss as

LDAE = E

[
‖r(x)− x‖22 + σ2

∥∥∥∥∂r(x)

∂x

∥∥∥∥2

F

]
+ o(σ2) as σ → 0.

The proof is in Appendix and uses a simple Taylor expansion around x.
Proposition 1 shows that the DAE with small corruption of variance σ2 is similar to

a contractive auto-encoder with penalty coefficient λ = σ2 but where the contraction is
imposed explicitly on the whole reconstruction function r(·) = g(f(·)) rather than on f(·)
alone.2

This analysis motivates the definition of the reconstruction contractive auto-encoder
(RCAE), a variation of the CAE where loss function is instead the squared reconstruction
loss plus contractive penalty on the reconstruction:

LRCAE = E

[
‖r(x)− x‖22 + σ2

∥∥∥∥∂r(x)

∂x

∥∥∥∥2

F

]
. (6)

This is an analytic version of the denoising criterion with small noise σ2, and also corre-
sponds to a contractive auto-encoder with contraction on both f and g, i.e., on r.

Because of the similarity between DAE and RCAE when taking λ = σ2 and because
the semantics of σ2 is clearer (as a squared distance in input space), we will denote σ2 for
the penalty term coefficient in situations involving RCAE. For example, in the statement of

2. In the CAE there is a also a contractive effect on g(·) as a side effect of the parameterization with weights
tied between f(·) and g(·).
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Theorem 2, this σ2 is just a positive constant; there is no notion of additive Gaussian noise,
i.e., σ2 does not explicitly refer to a variance, but using the notation σ2 makes it easier to
intuitively see the connection to the DAE setting.

The connection between DAE and RCAE established in Proposition 1 also serves as
the basis for an alternative demonstration to Theorem 1 in which we study the asymptotic
behavior of the RCAE solution. This result is contained in the following theorem.

Theorem 2 Let p be a probability density function that is continuously differentiable once
and with support Rd (i.e., ∀x ∈ Rd we have p(x) 6= 0). Let Lσ2 be the loss function defined
by

Lσ2(r) =

∫
Rd
p(x)

[
‖r(x)− x‖22 + σ2

∥∥∥∥∂r(x)

∂x

∥∥∥∥2

F

]
dx (7)

for r : Rd → Rd assumed to be differentiable twice, and 0 ≤ σ2 ∈ R used as factor to the
penalty term.

Let r∗σ2(x) denote the optimal function that minimizes Lσ2. Then we have that

r∗σ2(x) = x+ σ2∂ log p(x)

∂x
+ o(σ2) as σ2 → 0. (8)

Moreover, we also have the following expression for the derivative

∂r∗σ2(x)

∂x
= I + σ2∂

2 log p(x)

∂x2
+ o(σ2) as σ2 → 0. (9)

Both these asymptotic expansions are to be understood in a context where we consider{
r∗σ2(x)

}
σ2≥0

to be a family of optimal functions minimizing Lσ2 for their corresponding

value of σ2. The asymptotic expansions are applicable point-wise in x, that is, with any
fixed x we look at the behavior as σ2 → 0.

The proof is given in the appendix and uses the Euler-Lagrange equations from the
calculus of variations.

3. Minimizing the Loss to Recover Local Features of p(·)

One of the central ideas of this paper is that in a non-parametric setting (without parametric
constraints on r), we have an asymptotic formula (as the noise level σ → 0) for the optimal

reconstruction function for the DAE and RCAE that allows us to recover the score ∂ log p(x)
∂x .

A DAE is trained with a method that knows nothing about p, except through the use of
training samples to minimize a loss function, so it comes as a surprise that we can compute
the score of p at any point x.

In the following subsections we explore the consequences and the practical aspect of
this.

3.1 Empirical Loss

In an experimental setting, the expected loss (7) is replaced by the empirical loss
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L̂ =
1

N

N∑
n=1

(∥∥∥r(x(n))− x(n)
∥∥∥2

2
+ σ2

∥∥∥∥ ∂r(x)

∂x

∣∣∣∣
x=x(n)

∥∥∥∥2

F

)

based on a sample
{
x(n)

}N
n=1

drawn from p(x).
Alternatively, the auto-encoder is trained online (by stochastic gradient updates) with a

stream of examples x(n), which corresponds to performing stochastic gradient descent on the
expected loss (7). In both cases we obtain an auto-encoder that approximately minimizes
the expected loss.

An interesting question is the following: what can we infer from the data-generating
density when given an auto-encoder reconstruction function r(x)?

The premise is that this auto-encoder r(x) was trained to approximately minimize a
loss function that has exactly the form of (7) for some σ2 > 0. This is assumed to have
been done through minimizing the empirical loss and the distribution p was only available

indirectly through the samples
{
x(n)

}N
n=1

. We do not have access to p or to the samples.
We have only r(x) and maybe σ2.

We will now discuss the usefulness of r(x) based on different conditions such as the
model capacity and the value of σ2.

3.2 Perfect World Scenario

As a starting point, we will assume that we are in a perfect situation, i.e., with no con-
straint on r (non-parametric setting), an infinite amount of training data, and a perfect
minimization. We will see what can be done to recover information about p in that ideal
case. Afterwards, we will drop certain assumptions one by one and discuss the possible
paths to getting back some information about p.

We use notation rσ2(x) when we want to emphasize the fact that the value of r(x) came
from minimizing the loss with a certain fixed σ2.

Suppose that rσ2(x) was trained with an infinite sample drawn from p. Suppose also that
it had infinite (or sufficient) model capacity and that it is capable of achieving the minimum
of the loss function (7) while satisfying the requirement that r(x) be twice differentiable.
Suppose that we know the value of σ2 and that we are working in a computing environment
of arbitrary precision (i.e., no rounding errors).

As shown by Theorem 1 and Theorem 2, we would be able to get numerically the values
of ∂ log p(x)

∂x at any point x ∈ Rd by simply evaluating

rσ2(x)− x
σ2

→ ∂ log p(x)

∂x
as σ2 → 0. (10)

In the setup described, we do not get to pick values of σ2 so as to take the limit σ2 → 0.
However, it is assumed that σ2 is already sufficiently small that the above quantity is close
to ∂ log p(x)

∂x for all intents and purposes.

3.3 Simple Numerical Example

To give an example of this in one dimension, we will show what happens when we train
a non-parametric model r̂(x) to minimize numerically the loss relative to p(x). We train
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both a DAE and an RCAE in this fashion by minimizing a discretized version of their losses
defined by equations (2) and (6). The goal here is to show that, for either a DAE or RCAE,
the approximation of the score that we get through Equation 5 gets arbitrarily close to the
actual score ∂

∂x log p(x) as σ → 0.

The distribution p(x) studied is shown in Figure 3 (left) and it was created to be simple
enough to illustrate the mechanics. We plot p(x) in Figure 3 (left) along with the score of
p(x) (right).

(a) p(x) = 1
Z

exp(−E(x)) (b) ∂
∂x

log p(x) = − ∂
∂x

E(x)

Figure 3: The density p(x) and its score for a simple one-dimensional example.

The model r̂(x) is fitted by dividing the interval [−1.5, 1.5] into M = 1000 partition
points x1, . . . , xM evenly separated by a distance ∆. The discretized version of the RCAE
loss function is

M∑
i=1

p(xi)∆ (r̂(xi)− xi)2 + σ2
M−1∑
i=1

p(xi)∆

(
r̂(xi+1)− r̂(xi)

∆

)2

. (11)

Every value r̂(xi) for i = 1, . . . ,M is treated as a free parameter. Setting to 0 the derivative
with respect to the r̂(xi) yields a system of linear equations in M unknowns that we can
solve exactly. From that RCAE solution r̂ we get an approximation of the score of p at each
point xi. A similar thing can be done for the DAE by using a discrete version of the exact
solution (3) from Theorem 1. We now have two ways of approximating the score of p.

In Figure 4 we compare the approximations to the actual score of p for decreasingly
small values of σ ∈ {1.00, 0.31, 0.16, 0.06}.

3.4 Vector Field Around a Manifold

We extend the experimentation of Section 3.3 to a 1-dimensional manifold in 2-D space, in
which one can visualize r(x)− x as a vector field, and we go from the non-parametric esti-
mator of the previous section to an actual auto-encoder trained by numerically minimizing
the regularized reconstruction error.
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Figure 4: Comparing the approximation of the score of p given by discrete versions of
optimally trained auto-encoders with infinite capacity. The approximations given
by the RCAE are in orange while the approximations given by the DAE are in
purple. The results are shown for decreasing values of σ ∈ {1.00, 0.31, 0.16, 0.06}
that have been selected for their visual appeal.
As expected, we see in that the RCAE (orange) and DAE (purple) approximations
of the score are close to each other as predicted by Proposition 1. Moreover, they
are also converging to the true score (green) as predicted by Theorem 1 and
Theorem 2.

Two-dimensional data points (x, y) were generated along a spiral according to the fol-
lowing equations:

x = 0.04 sin(t), y = 0.04 cos(t), t ∼ Uniform (3, 12) .

A denoising auto-encoder was trained with Gaussian corruption noise σ = 0.01. The
encoder is f(x) = tanh(b + Wx) and the decoder is g(h) = c + V h. The parameters
(b, c, V,W ) are optimized by BFGS to minimize the average squared error, using a fixed
training set of 10 000 samples (i.e., the same corruption noises were sampled once and for
all). We found better results with untied weights, and BFGS gave more accurate models
than stochastic gradient descent. We used 1000 hidden units and ran BFGS for 1000
iterations.
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The non-convexity of the problem makes it such that the solution found depends on the
initialization parameters. The random corruption noise used can also influence the final
outcome. Moreover, the fact that we are using a finite training sample size with reasonably
small noise may allow for undesirable behavior of r in regions far away from the training
samples. For those reasons, we trained the model multiple times and selected two of the
most visually appealing outcomes. These are found in Figure 5 which features a more global
perspective along with a close-up view.

(a) r(x) − x vector field, acting as sink, zoomed out (b) r(x) − x vector field, close-up

Figure 5: The original 2-D data from the data-generating density p(x) is plotted along
with the vector field defined by the values of r(x) − x for trained auto-encoders

(corresponding to the estimation of the score ∂ log p(x)
∂x ).

Figure 5 shows the data along with the learned score function (shown as a vector field).
We see that that the vector field points towards the nearest high-density point on the data
manifold. The vector field is close to zero near the manifold (i.e., the reconstruction error is
close to zero), also corresponding to peaks of the implicitly estimated density. The points
on the manifolds play the role of sinks for the vector field. Other places where reconstruction
error may be low, but where the implicit density is not high, are sources of the vector field.
In Figure 5(b) we can see that we have that kind of behavior halfway between two sections
of the manifold. This shows that reconstruction error plays a very different role as what
was previously hypothesized: whereas in Ranzato et al. (2008) the reconstruction error
was viewed as an energy function, our analysis suggests that in regularized auto-encoders,
it is the norm of an approximate score, i.e., the derivative of the energy w.r.t. input. Note
that the norm of the score should be small near training examples (corresponding to local
maxima of density) but it could also be small at other places corresponding to local minima
of density. This is indeed what happens in the spiral example shown. It may happen
whenever there are high-density regions separated by a low-density region: tracing paths
from one high-density region to another should cross a “median” lower-dimensional region
(a manifold) where the density has a local maximum along the path direction. The reason
such a median region is needed is because at these points the vectors r(x)− x must change
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sign: on one side of the median they point to one of the high-density regions while on the
other side they point to the other, as clearly visible in Figure 5(b) between the arms of the
spiral.

We believe that this analysis is valid not just for contractive and denoising auto-encoders,
but for regularized auto-encoders in general. The intuition behind this statement can be
firmed up by analyzing Figure 2: the score-like behavior of r(x)−x arises simply out of the
opposing forces of (a) trying to make r(x) = x at the training examples and (b) trying to
make r(x) as regularized as possible (as close to a constant as possible).

Note that previous work (Rifai et al., 2012; Bengio et al., 2013b) has already shown that
contractive auto-encoders (especially when they are stacked in a way similar to RBMs in
a deep belief net) learn good models of high-dimensional data (such as images), and that
these models can be used not just to obtain good representations for classification tasks
but that good quality samples can be obtained from the model, by a random walk near the
manifold of high-density. This was achieved by essentially following the vector field and
adding noise along the way.

3.5 Missing σ2

When we are in the same setting as in Section 3.2 but the value of σ2 is unknown, we can
modify (10) a bit and avoid dividing by σ2. That is, for a trained reconstruction function
r(x) given to us we just take the quantity r(x)−x and it should be approximately the score
up to a multiplicative constant. We get that

r(x)− x ∝ ∂ log p(x)

∂x
.

Equivalently, if one estimates the density via an energy function (minus the unnormalized
log density), then x− r(x) estimates the derivative of the energy function.

We still have to assume that σ2 is small. Otherwise, if the unknown σ2 is too large we
might get a poor estimation of the score.

3.6 Limited Parameterization

We should also be concerned about the fact that r(x)− x is trying to approximate −∂E(x)
∂x

as σ2 → 0 but we have not made any assumptions about the space of functions that r can
represent when we are dealing with a specific implementation.

When using a certain parameterization of r such as the one from Section 3.3, there is
no guarantee that the family of functions in which we select r each represent a conservative
vector field (i.e., the gradient of a potential function). Even if we start from a density
p(x) ∝ exp(−E(x)) and we have that r(x) − x is very close to − ∂

∂xE(x) in terms of some
given norm, there is not guarantee that there exists an associated function E0(x) for which
r(x)− x ∝ − ∂

∂xE0(x) and E0(x) ≈ E(x).

In fact, in many cases we can trivially show the non-existence of such a E0(x) by
computing the curl of r(x). The curl has to be equal to 0 everywhere if r(x) is indeed the
derivative of a potential function. We can omit the x terms from the computations because
we can easily find its antiderivative by looking at x = ∂

∂x ‖x‖
2
2.
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Conceptually, another way to see this is to argue that if such a function E0(x) existed,
its second-order mixed derivatives should be equal. That is, we should have that

∂2E0(x)

∂xi∂xj
=
∂2E0(x)

∂xj∂xi
∀i, j,

which is equivalent to
∂ri(x)

∂xj
=
∂rj(x)

∂xi
∀i, j.

Again in the context of Section 3.3, with the parameterization used for that particular
kind of denoising auto-encoder, this would yield the constraint that V T = W . That is,
unless we are using tied weights, we know that no such potential E0(x) exists, and yet when
running the experiments from Section 3.3 we obtained much better results with untied
weights. To make things worse, it can also be demonstrated that the energy function that
we get from tied weights leads to a distribution that is not normalizable (it has a divergent
integral over Rd). In that sense, this suggests that we should not worry too much about
the exact parameterization of the denoising auto-encoder as long as it has the required
flexibility to approximate the optimal reconstruction function sufficiently well.

3.7 Relation to Denoising Score Matching

There is a connection between our results and previous research involving score matching for
denoising auto-encoders. We will summarize here the existing results from Vincent (2011)
and show that, whereas they have shown that denoising auto-encoders with a particular form
estimated the score, our results extend this to a very large family of estimators (including
the non-parametric case). This will provide some reassurance given some of the potential
issues mentioned in Section 3.6.

Motivated by the analysis of denoising auto-encoders, the authors of Vincent (2011) are
concerned with the case where we explicitly parameterize an energy function E(x), yielding

an associated score function ψ(x) = −∂E(x)
∂x and we stochastically corrupt the original

samples x ∼ p to obtain noisy samples x̃ ∼ qσ(x̃|x). In particular, the article analyzes the
case where qσ adds Gaussian noise of variance σ2 to x. The main result is that minimizing
the expected square difference between ψ(x̃) and the score of qσ(x̃|x),

Ex,x̃

[∥∥∥∥ψ(x̃)− ∂ log qσ(x̃|x)

∂x̃

∥∥∥∥2
]
,

is equivalent to performing score matching (Hyvärinen, 2005) with estimator ψ(x̃) and target
density qσ(x̃) =

∫
qσ(x̃|x)p(x)dx, where p(x) generates the training samples x. Note that

when a finite training set is used, qσ(x̃) is simply a smooth of the empirical distribution
(e.g., the Parzen density with Gaussian kernel of width σ). When the corruption noise

is Gaussian, qσ(x̃|x)
∂x̃ = x−x̃

σ2 , from which we can deduce that if we define a reconstruction
function

r(x̃) = x̃+ σ2ψ(x̃), (12)

then the above expectation is equivalent to

Ex,x̃

[∥∥∥∥r(x̃)− x̃
σ2

− x− x̃
σ2

∥∥∥∥2
]

=
1

σ2
Ex,x̃

[
‖r(x̃)− x‖2

]
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which is the denoising criterion. This says that when the reconstruction function r is pa-
rameterized so as to correspond to the score ψ of a model density (as per Equation 12, and
where ψ is a derivative of some log-density), the denoising criterion on r with Gaussian cor-
ruption noise is equivalent to score matching with respect to a smooth of the data-generating
density, i.e., a regularized form of score matching. Note that this regularization appears
desirable, because matching the score of the empirical distribution (or an insufficiently
smoothed version of it) could yield undesirable results when the training set is finite. Since
score matching has been shown to be a consistent induction principle (Hyvärinen, 2005), it
means that this denoising score matching (Vincent, 2011; Kingma and LeCun, 2010; Swer-
sky et al., 2011) criterion recovers the underlying density, up to the smoothing induced by
the noise of variance σ2. By making σ2 small, we can make the estimator arbitrarily good
(and we would expect to want to do that as the amount of training data increases). Note
the correspondence of this conclusion with the results presented here, which show (1) the
equivalence between the RCAE’s regularization coefficient and the DAE’s noise variance σ2,
and (2) that minimizing the equivalent analytic criterion (based on a contraction penalty)
estimates the score when σ2 is small. The difference is that our result holds even when r
is not parameterized as per Equation 12, i.e., is not forced to correspond with the score
function of a density.

3.8 Estimating the Hessian

Since we have r(x)−x
σ2 as an estimator of the score, we readily obtain that the Hessian of

the log-density, can be estimated by the Jacobian of the reconstruction function minus the
identity matrix:

∂2 log p(x)

∂x2
≈ (

∂r(x)

∂x
− I)/σ2

as shown by Equation 9 of Theorem 2.

In spite of its simplicity, this result is interesting because it relates the derivative of
the reconstruction function, i.e., a Jacobian matrix, with the second derivative of the log-
density (or of the energy). This provides insights into the geometric interpretation of the
reconstruction function when the density is concentrated near a manifold. In that case, near
the manifold the score is nearly 0 because we are near a ridge of density, and the density’s
second derivative matrix tells us in which directions the first density remains close to zero
or increases. The ridge directions correspond to staying on the manifold and along these
directions we expect the second derivative to be close to 0. In the orthogonal directions,
the log-density should decrease sharply while its first and second derivatives would be large
in magnitude and negative in directions away from the manifold.

Returning to the above equation, keep in mind that in these derivations σ2 is near
0 and r(x) is near x, so that ∂r(x)

∂x is close to the identity. In particular, in the ridge

(manifold) directions, we should expect ∂r(x)
∂x to be closer to the identity, which means

that the reconstruction remains faithful (r(x) = x) when we move on the manifold, and this

corresponds to the eigenvalues of ∂r(x)
∂x that are near 1, making the corresponding eigenvalues

of ∂2 log p(x)
∂x2

near 0. On the other hand, in the directions orthogonal to the manifold, ∂r(x)
∂x

should be smaller than 1, making the corresponding eigenvalues of ∂2 log p(x)
∂x2

negative.
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Besides first and second derivatives of the density, other local properties of the density
are its local mean and local covariance, discussed in the Appendix, Section D.

4. Sampling with Metropolis-Hastings

In this section we show how a technique to generate samples from a given denoising auto-
encoder by using Metropolis-Hastings.

We start by explaining how to compute differences in energies Section 4.1, and then we
use this in Section 4.2 to generate samples. We provide an experimental example and we
discuss the potential problems that this method has.

This section serves as a demonstration that the main result of this paper, i.e., the
connection between denoising auto-encoders and the score ∂ log p(x)

∂x , is more than just an
observation : it can have practical uses.

4.1 Estimating Energy Differences

One of the immediate consequences of Theorem 2 and Equation 10 is that, while we cannot
easily recover the energy E(x) itself, it is possible to approximate the energy difference
E(x∗)− E(x) between two states x and x∗. This can be done by using a first-order Taylor
approximation

E(x∗)− E(x) =
∂E(x)

∂x

T

(x∗ − x) + o(‖x∗ − x‖).

To get a more accurate approximation, we can also use a path integral from x to x∗ that we
can discretize in sufficiently many steps. With a smooth path γ(t) : [0, 1] → Rd, assuming
that γ stays in a region where our DAE/RCAE can be used to approximate ∂E

∂x well enough,
we have that

E(x∗)− E(x) =

∫ 1

0

[
∂E

∂x
(γ(t))

]T
γ′(t)dt. (13)

The simplest way to discretize this path integral is to pick points {xi}ni=1 spread at even
distances on a straight line from x1 = x to xn = x∗. We approximate (13) by

E(x∗)− E(x) ≈ 1

n

n∑
i=1

[
∂E

∂x
(xi)

]T
(x∗ − x) (14)

4.2 Sampling

With Equation 13 from Section 4.1 we can perform approximate sampling from the es-
timated distribution, using the score estimator to approximate energy differences which
are needed in the Metropolis-Hastings accept/reject decision. Using a symmetric proposal
q(x∗|x), the acceptance ratio is

α =
p(x∗)

p(x)
= exp(−E(x∗) + E(x))

which can be computed with (13) or approximated with (14) as long as we trust that
our DAE/RCAE was trained properly and has enough capacity to be a sufficiently good
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estimator of ∂E∂x . An example of this process is shown in Figure 6 in which we sample from a
density concentrated around a 1-d manifold embedded in a space of dimension 10. For this
particular task, we have trained only DAEs and we are leaving RCAEs out of this exercise.
Given that the data is roughly contained in the range [−1.5, 1.5] along all dimensions, we
selected a training noise level σtrain = 0.1 so that the noise would have an appreciable
effect while still being relatively small. As required by Theorem 1, we have used isotropic
Gaussian noise of variance σ2

train.
The Metropolis-Hastings proposal q(x∗|x) = N (0, σ2

MHI) has a noise parameter σMH

that needs to be set. In the situation shown in Figure 6, we used σMH = 0.1. After some
hyperparameter tweaking and exploring various scales for σtrain, σMH, we found that setting
both to be 0.1 worked well.

When σtrain is too large, the DAE trained learns a “blurry” version of the density that
fails to represent the details that we are interested in. The samples shown in Figure 6 are
very convincing in terms of being drawn from a distribution that models well the original
density. We have to keep in mind that Theorem 2 describes the behavior as σtrain → 0 so
we would expect that the estimator becomes worse when σtrain is taking on larger values.
In this particular case with σtrain = 0.1, it seems that we are instead modeling something
like the original density to which isotropic Gaussian noise of variance σ2

train has been added.
In the other extreme, when σtrain is too small, the DAE is not exposed to any training

example farther away from the density manifold. This can lead to various kinds of strange
behaviors when the sampling algorithm falls into those regions and then has no idea what
to do there and how to get back to the high-density regions. We come back to that topic
in Section 4.3.

It would certainly be possible to pick both a very small value for σtrain = σMH = 0.01
to avoid the spurious maxima problem illustrated in Section 4.3. However, this leads to the
same kind of mixing problems that any kind of MCMC algorithm has. Smaller values of
σMH lead to higher acceptance ratios but worse mixing properties.

4.3 Spurious Maxima

There are two very real concerns with the sampling method discussed in Section 4.2. The
first problem is with the mixing properties of MCMC and it is discussed in that section.
The second issue is with spurious probability maxima resulting from inadequate training of
the DAE. It happens when an auto-encoder lacks the capacity to model the density with
enough precision, or when the training procedure ends up in a bad local minimum (in terms
of the DAE parameters).

This is illustrated in Figure 7 where we show an example of a vector field r(x) − x
for a DAE that failed to properly learn the desired behavior in regions away from the
spiral-shaped density.

5. Conclusion

Whereas auto-encoders have long been suspected of capturing information about the data-
generating density, this work has clarified what some of them are actually doing, showing
that they can actually implicitly recover the data-generating density altogether. We have
shown that regularized auto-encoders such as the denoising auto-encoder and a form of con-
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original sampled original sampled

Figure 6: Samples drawn from the estimate of ∂E
∂x given by a DAE by the Metropolis-

Hastings method presented in Section 4. By design, the data density distribu-
tion is concentrated along a 1-d manifold embedded in a space of dimension 10.
This data can be visualized in the plots above by plotting pairs of dimensions
(x0, x1), . . . , (x8, x9), (x9, x0), going in reading order from left to right and then
line by line. For each pair of dimensions, we show side by side the original data
(left) with the samples drawn (right).

tractive auto-encoder are closely related to each other and estimate local properties of the
data-generating density: the first derivative (score) and second derivative of the log-density,
as well as the local mean. This contradicts the previous interpretation of reconstruction
error as being an energy function (Ranzato et al., 2008) but is consistent with our exper-
imental findings. Our results do not require the reconstruction function to correspond to
the derivative of an energy function as in Vincent (2011), but hold simply by virtue of
minimizing the regularized reconstruction error training criterion. This suggests that min-
imizing a regularized reconstruction error may be an alternative to maximum likelihood
for unsupervised learning, avoiding the need for MCMC in the inner loop of training, as
in RBMs and deep Boltzmann machines, analogously to score matching (Hyvärinen, 2005;
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(a) DAE misbehaving when away from manifold (b) sampling getting trapped into bad attractor

Figure 7: (a) On the left we show a r(x) − x vector field similar to that of the earlier
Figure 5. The density is concentrated along a spiral manifold and we should have
the reconstruction function r bringing us back towards the density. In this case,
it works well in the region close to the spiral (the magnitude of the vectors is so
small that the arrows are shown as dots). However, things are out of control in
the regions outside. This is because the level of noise used during training was so
small that not enough of the training examples were found in those regions.
(b) On the right we sketch what may happen when we follow a sampling procedure
as described in Section 4.2. We start in a region of high density (in purple) and we
illustrate in red the trajectory that our samples may take. In that situation, the
DAE/RCAE was not trained properly. The resulting vector field does not reflect
the density accurately because it should not have this attractor (i.e., stable fixed
point) outside of the manifold on which the density is concentrated. Conceptually,
the sampling procedure visits that spurious attractor because it assumes that it
corresponds to a region of high probability. In some cases, this effect is regrettable
but not catastrophic, but in other situations we may end up with completely
unusable samples. In the experiments, training with enough of the examples
involving sufficiently large corruption noise typically eliminates that problem.

Vincent, 2011). Toy experiments have confirmed that a good estimator of the density can be
obtained when this criterion is non-parametrically minimized. The experiments have also
confirmed that an MCMC could be setup that approximately samples from the estimated
model, by estimating energy differences to first order (which only requires the score) to
perform approximate Metropolis-Hastings MCMC.

Many questions remain open and deserve further study. A big question is how to gener-
alize these ideas to discrete data, since we have heavily relied on the notions of scores, i.e.,
of derivatives with respect to x. A natural extension of the notion of score that could be
applied to discrete data is the notion of relative energy, or energy difference between a point
x and a perturbation x̃ of x. This notion has already been successfully applied to obtain the
equivalent of score matching for discrete models, namely ratio matching (Hyvärinen, 2007).
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More generally, we would like to generalize to any form of reconstruction error (for exam-
ple many implementations of auto-encoders use a Bernoulli cross-entropy as reconstruction
loss function) and any (reasonable) form of corruption noise (many implementations use
masking or salt-and-pepper noise, not just Gaussian noise). More fundamentally, the need
to rely on σ → 0 is troubling, and getting rid of this limitation would also be very useful. A
possible solution to this limitation, as well as adding the ability to handle both discrete and
continuous variables, has recently been proposed while this article was under review (Bengio
et al., 2013a).

It would also be interesting to generalize the results presented here to other regularized
auto-encoders besides the denoising and contractive types. In particular, the commonly
used sparse auto-encoders seem to fit the qualitative pattern illustrated in 2 where a score-
like vector field arises out of the opposing forces of minimizing reconstruction error and
regularizing the auto-encoder.

We have mostly considered the harder case where the auto-encoder parameterization
does not guarantee the existence of an analytic formulation of an energy function. It would
be interesting to compare experimentally and study mathematically these two formulations
to assess how much is lost (because the score function may be somehow inconsistent) or
gained (because of the less constrained parameterization).
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Appendix A. Exact Solution for DAE

There is a way to get an exact solution to the DAE loss (2) without assuming that σ → 0
or that the noise is Gaussian (but still using the quadratic loss).

We let p be the density function of the data such that ∀x ∈ Rd, p(x) > 0, and we use
additive isotropic Gaussian noise of variance σ2. We are in the non-parametric setting in
which we are minimizing

LDAE =

∫
Rd

Eε∼N (0,σ2I)

[
p(x) ‖r(x+ ε)− x‖22

]
dx (15)

with respect to the function r : Rd → Rd.
By using an auxiliary variable x̃ = x + ε, we can rewrite this loss in a way that puts

the quantity r(x̃) in focus and allows us to perform the minimization with respect to each
choice of r(x̃) independently. That is, we have that

LDAE =

∫
Rd

Eε∼N (0,σ2I)

[
p(x̃− ε) ‖r(x̃)− x̃+ ε‖22

]
dx̃ (16)

which can be differentiated with respect to the quantity r(x̃) and set to be equal to 0.
Denoting the optimum by r∗(x̃), we get
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0 = Eε∼N (0,σ2I) [p(x̃− ε)r∗(x̃)− x̃+ ε] (17)

Eε∼N (0,σ2I) [p(x̃− ε)r∗(x̃)] = Eε∼N (0,σ2I) [p(x̃− ε)(x̃− ε)] (18)

r∗(x̃) =
Eε∼N (0,σ2I) [p(x̃− ε)(x̃− ε)]

Eε∼N (0,σ2I) [p(x̃− ε)]
(19)

Conceptually, this means that the optimal DAE reconstruction function at every point
x̃ ∈ Rd is given by a kind of convolution involving the density function p, or weighted average
from the points in the neighbourhood of x̃, depending on how we would like to view it. A
higher noise level σ means that a larger neighbourhood of x̃ is taken into account. Note
that the total quantity of “mass” being included in the weighted average of the numerator
of (19) is found again at the denominator.

Appendix B. Relationship between Contractive Penalty and Denoising
Criterion

Theorem 1 When using corruption noise N(x) = x+ ε with

ε ∼ N
(
0, σ2I

)
,

the objective function LDAE is

LDAE =

(
E
[
‖x− r(x)‖2

]
+ σ2E

[∥∥∥∥∂r(x)

∂x

∥∥∥∥2

F

])
+ o(σ2)

as σ → 0.

Proof With a Taylor expansion around x we have that

r(x+ ε) = r(x) +
∂r(x)

∂x
ε+ o(σ2).

Substituting this into LDAE we have that

LDAE = E
[

1
2

∥∥∥x− (r(x) + ∂r(x)
∂x ε+ o(σ2)

)∥∥∥2
]

=

(
E
[
‖x− r(x)‖2

]
− 2E[ε]TE

[
∂r(x)
∂x

T
(x− r(x))

])
+Tr

(
E
[
εεT
]
E
[
∂r(x)
∂x

T ∂r(x)
∂x

])
+ o(σ2)

= 1
2

(
E
[
‖x− r(x)‖2

]
+ σ2E

[∥∥∥∂r(x)
∂x

∥∥∥2

F

])
+ o(σ2) (20)

where in the second line we used the independence of the noise from x and properties
of the trace, while in the last line we used E

[
εεT
]

= σ2I and E[ε] = 0 by definition of ε.
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Appendix C. Calculus of Variations

Theorem 2 Let p be a probability density function that is continuously differentiable once
and with support Rd (i.e., ∀x ∈ Rd we have p(x) 6= 0). Let Lσ2 be the loss function defined
by

Lσ2(r) =

∫
Rd
p(x)

[
‖r(x)− x‖22 + σ2

∥∥∥∥∂r(x)

∂x

∥∥∥∥2

F

]
dx

for r : Rd → Rd assumed to be differentiable twice, and 0 ≤ σ2 ∈ R used as factor to the
penalty term.

Let r∗σ2(x) denote the optimal function that minimizes Lσ2. Then we have that

r∗σ2(x) = x+ σ2∂ log p(x)

∂x
+ o(σ2) as σ2 → 0.

Moreover, we also have the following expression for the derivative

∂r∗σ2(x)

∂x
= I + σ2∂

2 log p(x)

∂x2
+ o(σ2) as σ2 → 0.

Both these asymptotic expansions are to be understood in a context where we consider{
r∗σ2(x)

}
σ2≥0

to be a family of optimal functions minimizing Lσ2 for their corresponding

value of σ2. The asymptotic expansions are applicable point-wise in x, that is, with any
fixed x we look at the behavior as σ2 → 0.

Proof
This proof is done in two parts. In the first part, the objective is to get to Equation 23

that has to be satisfied for the optimum solution.
We will leave out the σ2 indices from the expressions involving r(x) to make the notation

lighter. We have a more important need for indices k in rk(x) that denote the d components
of r(x) ∈ Rd.

We treat σ2 as given and constant for the first part of this proof.
In the second part we work out the asymptotic expansion in terms of σ2. We again work

with the implicit dependence of r(x) on σ2.
(part 1 of the proof)
We make use of the Euler-Lagrange equation from the Calculus of Variations. We would

refer the reader to either (Dacorogna, 2004) or Wikipedia for more on the topic. Let

f(x1, . . . , xn, r, rx1 , . . . , rxn) = p(x)

[
‖r(x)− x‖22 + σ2

∥∥∥∥∂r(x)

∂x

∥∥∥∥2

F

]
where x = (x1, . . . , xd) , r(x) = (r1(x), . . . , rd(x)) and rxi = ∂f

∂xi
.

We can rewrite the loss L(r) more explicitly as

L(r) =

∫
Rd
p(x)

 d∑
i=1

(ri(x)− xi)2 + σ2
d∑
i=1

d∑
j=1

∂ri(x)

∂xj

2
 dx

=
d∑
i=1

∫
Rd
p(x)

(ri(x)− xi)2 + σ2
d∑
j=1

∂ri(x)

∂xj

2
 dx (21)
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to observe that the components r1(x), . . . , rd(x) can each be optimized separately.

The Euler-Lagrange equation to be satisfied at the optimal r : Rd → Rd is

∂f

∂r
=

d∑
i=1

∂

∂xi

∂f

∂rxi
.

In our situation, the expressions from that equation are given by

∂f

∂r
= 2(r(x)− x)p(x)

∂f

∂rxi
= 2σ2p(x)

[
∂r1
∂xi

∂r2
∂xi

· · · ∂rd
∂xi

]T
∂

∂xi

(
∂f

∂rxi

)
= 2σ2∂p(x)

∂xi

[
∂r1
∂xi

∂r2
∂xi

· · · ∂rd
∂xi

]T
+2σ2p(x)

[
∂2r1
∂x2i

∂2r2
∂x2i

· · · ∂2rd
∂x2i

]T
and the equality to be satisfied at the optimum becomes

(r(x)− x)p(x) = σ2
d∑
i=1


∂p(x)
∂xi

∂r1
∂xi

+ p(x)∂
2r1
∂x2i

...
∂p(x)
∂xi

∂rd
∂xi

+ p(x)∂
2rd
∂x2i

 . (22)

As Equation 21 hinted, the expression (22) can be decomposed into the different com-
ponents rk(x) : Rd → R that make r. For k = 1, . . . , d we get

(rk(x)− xk)p(x) = σ2
d∑
i=1

(
∂p(x)

∂xi

∂rk(x)

∂xi
+ p(x)

∂2rk(x)

∂x2
i

)
.

As p(x) 6= 0 by hypothesis, we can divide all the terms by p(x) and note that ∂p(x)
∂xi

/p(x) =
∂ log p(x)
∂xi

.

We get

rk(x)− xk = σ2
d∑
i=1

(
∂ log p(x)

∂xi

∂rk(x)

∂xi
+
∂2rk(x)

∂x2
i

)
. (23)

This first thing to observe is that when σ2 = 0 the solution is just rk(x) = xk, which
translates into r(x) = x. This is not a surprise because it represents the perfect reconstruc-
tion value that we get when we the penalty term vanishes in the loss function.

(part 2 of the proof)
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This linear partial differential Equation 23 can be used as a recursive relation for rk(x)
to obtain a Taylor series in σ2. The goal is to obtain an expression of the form

r(x) = x+ σ2h(x) + o(σ2) as σ2 → 0 (24)

where we can solve for h(x) and for which we also have that

∂r(x)

∂x
= I + σ2∂h(x)

∂x
+ o(σ2) as σ2 → 0.

We can substitute in the right-hand side of Equation 24 the value for rk(x) that we get
from Equation 24 itself. This substitution would be pointless in any other situation where
we are not trying to get a power series in terms of σ2 around 0.

rk(x) = xk +σ2
d∑
i=1

(
∂ log p(x)

∂xi

∂rk(x)

∂xi
+
∂2rk(x)

∂x2
i

)

= xk +σ2
d∑
i=1

∂ log p(x)

∂xi

∂

∂xi

xk + σ2
d∑
j=1

(
∂ log p(x)

∂xj

∂rk(x)

∂xj
+
∂2rk(x)

∂x2
j

)
+σ2

d∑
i=1

∂2rk(x)

∂x2
i

= xk +σ2
d∑
i=1

∂ log p(x)

∂xi
I (i = k) + σ2

d∑
i=1

∂2rk(x)

∂x2
i

+σ22
d∑
i=1

d∑
j=1

(
∂ log p(x)

∂xi

∂

∂xi

(
∂ log p(x)

∂xj

∂rk(x)

∂xj
+
∂2rk(x)

∂x2
j

))

rk(x) = xk +σ2∂ log p(x)

∂xk
+ σ2

d∑
i=1

∂2rk(x)

∂x2
i

+ σ22
ρ(σ2, x)

Now we would like to get rid of that σ2
∑d

i=1
∂2rk(x)
∂x2i

term by showing that it is a

term that involves only powers of σ22
or higher. We get this by showing what we get by

differentiating the expression for rk(x) in line (25) twice with respect to some l.

∂rk(x)

∂xl
= I (i = l) + σ2∂

2 log p(x)

∂xl∂xk
+ σ2 ∂

∂xl

(
d∑
i=1

∂2rk(x)

∂x2
i

+ σ2ρ(σ2, x)

)

∂2rk(x)

∂x2
l

= σ2∂
3 log p(x)

∂x2
l ∂xk

+ σ2 ∂

∂x2
l

(
d∑
i=1

∂2rk(x)

∂x2
i

+ σ2ρ(σ2, x)

)

Since σ2 is a common factor in all the terms of the expression of ∂2rk(x)
∂x2l

we get what we

needed. That is,

rk(x) = xk + σ2∂ log p(x)

∂xk
+ σ22

η(σ2, x).
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This shows that

r(x) = x+ σ2∂ log p(x)

∂x
+ o(σ2) as σ2 → 0

and
∂r(x)

∂x
= I + σ2∂

2 log p(x)

∂x2
+ o(σ2) as σ2 → 0

which completes the proof.

Appendix D. Local Mean

In preliminary work (Bengio et al., 2012a), we studied how the optimal reconstruction
could possibly estimate so-called local moments. We revisit this question here, with more
appealing and precise results.

What previous work on denoising and contractive auto-encoders suggest is that regu-
larized auto-encoders can capture the local structure of the density through the value of the
encoding (or reconstruction) function and its derivative. In particular, Rifai et al. (2012);
Bengio et al. (2012a) argue that the first and second derivatives tell us in which directions
it makes sense to randomly move while preserving or increasing the density, which may
be used to justify sampling procedures. This motivates us here to study so-called local
moments as captured by the auto-encoder, and in particular the local mean, following the
definitions introduced in Bengio et al. (2012a).

D.1 Definitions for Local Distributions

Let p be a continuous probability density function with support Rd. That is, ∀x ∈ Rd
we have that p(x) 6= 0. We define below the notion of a local ball Bδ(x0), along with an
associated local density, which is the normalized product of p with the indicator for the ball:

Bδ(x0) = {x s.t. ‖x− x0‖2 < δ}

Zδ(x0) =

∫
Bδ(x0)

p(x)dx

pδ(x|x0) =
1

Zδ(x0)
p(x)I (x ∈ Bδ(x0))

where Zδ(x0) is the normalizing constant required to make pδ(x|x0) a valid pdf for a
distribution centered on x0. The support of pδ(x|x0) is the ball of radius δ around x0

denoted by Bδ(x0). We stick to the 2-norm in terms of defining the balls Bδ(x0) used, but
everything could be rewritten in terms of another p-norm to have slightly different formulas.

We use the following notation for what will be referred to as the first two local moments
(i.e., local mean and local covariance) of the random variable described by pδ(x|x0).

mδ(x0)
def
=

∫
Rd
xpδ(x|x0)dx

Cδ(x0)
def
=

∫
Rd

(x−mδ(x0))(x−mδ(x0))T pδ(x|x0)dx

Based on these definitions, one can prove the following theorem.
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Theorem 3 Let p be of class C3 and represent a probability density function. Let x0 ∈ Rd
with p(x0) 6= 0. Then we have that

mδ(x0) = x0 + δ2 1

d+ 2

∂ log p(x)

∂x

∣∣∣∣
x0

+ o
(
δ3
)
.

This links the local mean of a density with the score associated with that density.
Combining this theorem with Theorem 2, we obtain that the optimal reconstruction function
r∗(·) also estimates the local mean:

mδ(x)− x =
δ2

σ2(d+ 2)
(r∗(x)− x) +A(δ) + δ2B(σ2) (25)

for error terms A(δ), B(σ2) such that

A(δ) ∈ o(δ3) as δ → 0,

B(σ2) ∈ o(1) as σ2 → 0.

This means that we can loosely estimate the direction to the local mean by the direction
of the reconstruction:

mδ(x)− x ∝ r∗(x)− x. (26)

Appendix E. Asymptotic formulas for localized moments

Proposition 4 Let p be of class C2 and let x0 ∈ Rd. Then we have that

Zδ(x0) = δd
πd/2

Γ (1 + d/2)

[
p(x0) + δ2 Tr(H(x0))

2(d+ 2)
+ o(δ3)

]
where H(x0) = ∂2p(x)

∂x2

∣∣∣
x=x0

. Moreover, we have that

1

Zδ(x0)
= δ−d

Γ (1 + d/2)

πd/2

[
1

p(x0)
− δ2 1

p(x0)2

Tr(H(x0))

2(d+ 2)
+ o(δ3)

]
.

Proof

Zδ(x0) =

∫
Bδ(x0)

[
p(x0) +

∂p(x)

∂x

∣∣∣∣
x0

(x− x0) +
1

2!
(x− x0)TH(x0)(x− x0)

+
1

3!
D(3)p(x0)(x− x0) + o(δ3)

]
dx

= p(x0)

∫
Bδ(x0)

dx + 0 +
1

2

∫
Bδ(x0)

(x− x0)TH(x0)(x− x0)dx + 0 + o(δd+3)

= p(x0)δd
πd/2

Γ (1 + d/2)
+ δd+2 πd/2

4Γ (2 + d/2)
Tr (H(x0)) + o(δd+3)

= δd
πd/2

Γ (1 + d/2)

[
p(x0) + δ2 Tr(H(x0))

2(d+ 2)
+ o(δ3)

]
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We use Proposition 10 to get that trace come up from the integral involving H(x0). The
expression for 1/Zδ(x0) comes from the fact that, for any a, b > 0 we have that

1

a+ bδ2 + o(δ3)
=

a−1

1 + b
aδ

2 + o(δ3)
=

1

a

(
1− (

b

a
δ2 + o(δ3)) + o(δ4)

)
=

1

a
− b

a2
δ2 + o(δ3) as δ → 0.

by using the classic result from geometric series where 1
1+r = 1− r+ r2− . . . for |r| < 1.

Now we just apply this to

1

Zδ(x0)
= δ−d

Γ (1 + d/2)

πd/2
1[

p(x0) + δ2 Tr(H(x0))
2(d+2) + o(δ3)

]
and get the expected result.

Theorem 5 Let p be of class C3 and represent a probability density function. Let x0 ∈ Rd
with p(x0) 6= 0. Then we have that

mδ(x0) = x0 + δ2 1

d+ 2

∂ log p(x)

∂x

∣∣∣∣
x0

+ o
(
δ3
)
.

Proof

The leading term in the expression for mδ(x0) is obtained by transforming the x in the
integral into a x− x0 to make the integral easier to integrate.

mδ(x0) =
1

Zδ(x0)

∫
Bδ(x0)

xp(x)dx = x0 +
1

zδ(x0)

∫
Bδ(x0)

(x− x0)p(x)dx.

Now using the Taylor expansion around x0

mδ(x0) = x0 +
1

Zδ(x0)

∫
Bδ(x0)

(x− x0)

[
p(x0) +

∂p(x)

∂x

∣∣∣∣
x0

(x− x0)

+
1

2
(x− x0)T

∂2p(x)

∂x2

∣∣∣∣
x0

(x− x0) + o(‖x− x0‖2)

]
dx.

Remember that
∫
Bδ(x0) f(x)dx = 0 whenever we have a function f is anti-symmetrical

(or “odd”) relative to the point x0 (i.e., f(x−x0) = f(−x−x0)). This applies to the terms

(x−x0)p(x0) and (x−x0)(x−x0) ∂2p(x)
∂x2

∣∣∣
x=x0

(x−x0)T . Hence we use Proposition 9 to get
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mδ(x0) = x0 +
1

Zδ(x0)

∫
Bδ(x0)

[
(x− x0)T

∂p(x)

∂x

∣∣∣∣
x0

(x− x0) + o(‖x− x0‖3)

]
dx

= x0 +
1

Zδ(x0)

(
δd+2 π

d
2

2Γ
(
2 + d

2

)) ∂p(x)

∂x

∣∣∣∣
x0

+ o(δ3).

Now, looking at the coefficient in front of ∂p(x)
∂x

∣∣∣
x0

in the first term, we can use Propo-

sition 4 to rewrite it as

1

Zδ(x0)

(
δd+2 π

d
2

2Γ
(
2 + d

2

))

= δ−d
Γ (1 + d/2)

πd/2

[
1

p(x0)
− δ2 1

p(x0)2

Tr(H(x0))

2(d+ 2)
+ o(δ3)

]
δd+2 π

d
2

2Γ
(
2 + d

2

)
= δ2 Γ

(
1 + d

2

)
2Γ
(
2 + d

2

) [ 1

p(x0)
− δ2 1

p(x0)2

Tr(H(x0))

2(d+ 2)
+ o(δ3)

]
= δ2 1

p(x0)

1

d+ 2
+ o(δ3).

There is no reason the keep the −δ4 Γ(1+ d
2 )

2Γ(2+ d
2 )

1
p(x0)2

Tr(H(x0))
2(d+2) in the above expression be-

cause the asymptotic error from the remainder term in the main expression is o(δ3). That
would swallow our exact expression for δ4 and make it useless.

We end up with

mδ(x0) = x0 + δ2 1

d+ 2

∂ log p(x)

∂x

∣∣∣∣
x0

+ o(δ3).

Appendix F. Integration on balls and spheres

This result comes from Multi-dimensional Integration : Scary Calculus Problems from Tim
Reluga (who got the results from How to integrate a polynomial over a sphere by Gerald
B. Folland).

Theorem 6 Let B =
{
x ∈ Rd

∣∣∣∑d
j=1 x

2
j ≤ 1

}
be the ball of radius 1 around the origin.

Then

∫
B

d∏
j=1

|xj |aj dx =

∏
Γ
(
aj+1

2

)
Γ
(
1 + d

2 + 1
2

∑
aj
)

for any real numbers aj ≥ 0.
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Corollary 7 Let B be the ball of radius 1 around the origin. Then

∫
B

d∏
j=1

x
aj
j dx =


∏

Γ
(
aj+1

2

)
Γ(1+ d

2
+ 1

2

∑
aj)

if all the aj are even integers

0 otherwise

for any non-negative integers aj ≥ 0. Note the absence of the absolute values put on the
x
aj
j terms.

Corollary 8 Let Bδ(0) ⊂ Rd be the ball of radius δ around the origin. Then

∫
Bδ(0)

d∏
j=1

x
aj
j dx =

δd+
∑
aj

∏
Γ
(
aj+1

2

)
Γ(1+ d

2
+ 1

2

∑
aj)

if all the ajare even integers

0 otherwise

for any non-negative integers aj ≥ 0. Note the absence of the absolute values on the x
aj
j

terms.

Proof

We take the theorem as given and concentrate here on justifying the two corollaries.

Note how in Corollary 7 we dropped the absolute values that were in the original Theo-
rem 6. In situations where at least one aj is odd, we have that the function f(x) =

∏d
j=1 x

aj
j

becomes odd in the sense that f(−x) = −f(x). Because of the symmetrical nature of the
integration on the unit ball, we get that the integral is 0 as a result of cancellations.

For Corollary 8, we can rewrite the integral by changing the domain with yj = xj/δ so
that

δ−
∑
aj

∫
Bδ(0)

d∏
j=1

x
aj
j dx =

∫
Bδ(0)

d∏
j=1

(xj/δ)
aj dx =

∫
B1(0)

d∏
j=1

yajδddy.

We pull out the δd that we got from the determinant of the Jacobian when changing
from dx to dy and Corollary 8 follows.

Proposition 9 Let v ∈ Rd and let Bδ(0) ⊂ Rd be the ball of radius δ around the origin.
Then

∫
Bδ(0)

y < v, y > dy =

(
δd+2 π

d
2

2Γ
(
2 + d

2

)) v

where < v, y > is the usual dot product.

Proof

We have that
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y < v, y > =

 v1y
2
1

...
vdy

2
d


which is decomposable into d component-wise applications of Corollary 8. This yields

the expected result with the constant obtained from Γ
(

3
2

)
= 1

2Γ
(

1
2

)
= 1

2

√
π.

Proposition 10 Let H ∈ Rd×d and let Bδ(x0) ⊂ Rd be the ball of radius δ around x0 ∈ Rd.
Then ∫

Bδ(x0)
(x− x0)TH(x− x0)dx = δd+2 πd/2

2Γ (2 + d/2)
trace (H) .

Proof
First, by substituting y = (x− x0) /δ we have that this is equivalent to showing that∫

B1(0)
yTHydy =

πd/2

2Γ (2 + d/2)
trace (H) .

This integral yields a real number which can be written as∫
B1(0)

yTHydy =

∫
B1(0)

∑
i,j

yiHi,jyjdy =
∑
i,j

∫
B1(0)

yiyjHi,jdy.

Now we know from Corollary 8 that this integral is zero when i 6= j. This gives

∑
i,j

Hi,j

∫
B1(0)

yiyjdy =
∑
i

Hi,i

∫
B1(0)

y2
i dy = trace (H)

πd/2

2Γ (2 + d/2)
.
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Abstract

Blind deconvolution involves the estimation of a sharp signal or image given only a blurry
observation. Because this problem is fundamentally ill-posed, strong priors on both the
sharp image and blur kernel are required to regularize the solution space. While this
naturally leads to a standard MAP estimation framework, performance is compromised
by unknown trade-off parameter settings, optimization heuristics, and convergence issues
stemming from non-convexity and/or poor prior selections. To mitigate some of these
problems, a number of authors have recently proposed substituting a variational Bayesian
(VB) strategy that marginalizes over the high-dimensional image space leading to better
estimates of the blur kernel. However, the underlying cost function now involves both in-
tegrals with no closed-form solution and complex, function-valued arguments, thus losing
the transparency of MAP. Beyond standard Bayesian-inspired intuitions, it thus remains
unclear by exactly what mechanism these methods are able to operate, rendering un-
derstanding, improvements and extensions more difficult. To elucidate these issues, we
demonstrate that the VB methodology can be recast as an unconventional MAP problem
with a very particular penalty/prior that conjoins the image, blur kernel, and noise level in
a principled way. This unique penalty has a number of useful characteristics pertaining to
relative concavity, local minima avoidance, normalization, and scale-invariance that allow
us to rigorously explain the success of VB including its existing implementational heuristics
and approximations. It also provides strict criteria for learning the noise level and choosing
the optimal image prior that, perhaps counter-intuitively, need not reflect the statistics of
natural scenes. In so doing we challenge the prevailing notion of why VB is successful for
blind deconvolution while providing a transparent platform for introducing enhancements
and extensions. Moreover, the underlying insights carry over to a wide variety of other
bilinear models common in the machine learning literature such as independent component
analysis, dictionary learning/sparse coding, and non-negative matrix factorization.

Keywords: blind deconvolution, blind image deblurring, variational Bayes, sparse priors,
sparse estimation
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1. Introduction

Blind deconvolution problems involve the estimation of some latent sharp signal of interest
given only an observation that has been compromised by an unknown filtering process.
Although relevant algorithms and analysis apply in a general setting, this paper will focus
on the particular case of blind image deblurring, where an unknown convolution or blur
operator, as well as additive noise, corrupt the image capture of an underlying natural scene.
Such blurring is an undesirable consequence that often accompanies the image formation
process and may arise, for example, because of camera-shake during acquisition. Blind
image deconvolution or deblurring strategies aim to recover a sharp image from only a
blurry, compromised observation, a long-standing problem (Richardson, 1972; Lucy, 1974;
Kundur and Hatzinakos, 1996) that remains an active research topic (Fergus et al., 2006;
Shan et al., 2008; Levin et al., 2009; Cho and Lee, 2009; Krishnan et al., 2011). Moreover,
applications extend widely beyond standard photography, with astronomical, bio-imaging,
and other signal processing data eliciting particular interest (Zhu and Milanfar, 2013; Kenig
et al., 2010).

Assuming a convolutional blur model with additive noise (Fergus et al., 2006; Shan
et al., 2008), the low quality image observation process is commonly modeled as

y = k ∗ x + n, (1)

where k is the point spread function (PSF) or blur kernel, ∗ denotes the 2D convolution
operator, and n is a zero-mean Gaussian noise term (although as we shall see, these as-
sumptions about the noise distribution can easily be relaxed via the framework described
herein). The task of blind deconvolution is to estimate both the sharp image x and blur
kernel k given only the blurry observation y, where we will mostly be assuming that x and
y represent filtered (e.g., gradient domain) versions of the original pixel-domain images.
Because k is non-invertible, some (typically) high frequency information is lost during the
observation process, and thus even if k were known, the non-blind estimation of x is ill-
posed. However, in the blind case where k is also unknown, the difficulty is exacerbated
considerably, with many possible image/kernel pairs explaining the observed data equally
well. This is analogous to the estimation challenges associated with a wide variety of bilinear
models, where the observation model (1) is generalized to

y = H(k)x + n. (2)

Here y, x, and k can be arbitrary matrices or vectors, and k represents unknown parameters
embedded in the linear operator H(k). Note that (1) represents a special case of (2) when y
and x are vectorized images and H(k) is the Toeplitz convolution matrix associated with k.
Other important instances prevalent in the machine learning and signal processing litera-
ture include independent component analysis (ICA) (Hyvarinen and Oja, 2000), dictionary
learning for sparse coding (Mairal et al., 2010), and non-negative matrix factorization (Lee
and Seung, 2001).

To alleviate the intrinsic indeterminacy, prior assumptions must be adopted to constrain
the space of candidate solutions, which naturally suggests a Bayesian framework. In Sec-
tion 2, we briefly review the two most common classes of Bayesian algorithms for blind
deconvolution used in the literature, (i) Maximum a Posteriori (MAP) estimation and (ii)
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Variational Bayes (VB), and then later detail their fundamental limitations, which include
heuristic implementational requirements and complex cost functions that are difficult to dis-
entangle. Section 3 uses ideas from convex analysis to reformulate these Bayesian methods
promoting greater understanding and suggesting useful enhancements, such as rigorous cri-
teria for choosing appropriate image priors. Section 4 then situates our theoretical analysis
within the context of existing analytic studies of blind deconvolution, notably the seminal
work from Levin et al. (2009, 2011b), and discusses the relevance of natural image statistics.
Learning noise variances is later addressed in Section 5, while experiments are carried out
in Section 6 to provide corroborating empirical evidence for some of our theoretical claims.
Finally, concluding remarks are contained in Section 7. While nominally directed at the
challenges of blind deconvolution, we envision that the underlying principles analyses de-
veloped herein will nonetheless contribute to better understanding of generalized bilinear
models in broad application domains.

2. MAP versus VB

As mentioned above, to compensate for the ill-posedness of the blind deconvolution problem,
a strong prior is required for both the sharp image and kernel to regularize the solution space.
Recently, natural image statistics over image gradients have been invoked to design prior
(regularization) models (Roth and Black, 2009; Levin et al., 2007; Krishnan and Fergus,
2009; Cho et al., 2012), and MAP estimation using these priors has been proposed for blind
deconvolution (Shan et al., 2008; Krishnan et al., 2011). While some specifications may
differ, the basic idea is to find the mode (maximum) of

p(x,k|y) =
p(y|x,k)p(x)p(k)

p(y)
∝ p(y|x,k)p(x)p(k),

where x and y are now assumed to be vectorized gradient domain sharp and blurry im-
ages respectively, and k is the corresponding vectorized kernel.1 p(y|x,k) is a Gaussian
likelihood function with mean k ∗ x and covariance λI, and p(x) and p(k) are priors, with
the former often assumed to be sparsity-promoting consistent with estimates of natural
image statistics (Buccigrossi and Simoncelli, 1999; Levin et al., 2011b). After a −2 log
transformation, and ignoring constant factors, this is equivalent to computing

min
x,k
−2 log p(x,k|y) ≡ min

x,k

1

λ
‖k ∗ x− y‖22 + gx(x) + gk(k), (3)

where gx(x) is a penalty term over the desired image, typically of the form gx(x) =∑
i gx(xi), while gk(k) regularizes the blur kernel. Both penalties generally have embedded

parameters that must be balanced along with the unknown λ. It is also typical to assume
that

∑
i ki = 1, with ki ≥ 0 and we will adopt this assumption throughout; however, Sec-

tions 3.5 and 3.7 will discuss a type of scale invariance such that this assumption becomes
irrelevant in important cases.

Although straightforward, there are many problems with existing MAP approaches in-
cluding ineffective global minima, e.g., poor priors may lead to degenerate global solutions

1. Even in vectorized form, we will still use k ∗ x to denote the standard 2D convolution operator, where
the result is then subsequently vectorized.
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like the delta kernel (frequently called the no-blur solution), or many suboptimal local
minima and subsequent convergence issues. Therefore, the generation of useful solutions
requires a delicate balancing of various factors such as dynamic noise levels, trade-off pa-
rameter values, and other heuristic regularizers such as salient structure selection (Shan
et al., 2008; Cho and Lee, 2009; Krishnan et al., 2011) (we will discuss these issues more in
Section 3).

To mitigate some of these shortcomings of MAP, the influential work by Levin et al.
(2009) and others proposes to instead solve

max
k

p(k|y) ≡ min
k
−2 log p(y|k)p(k), (4)

where p(y|k) =
∫
p(x,y|k)dx. This technique is sometimes referred to as Type II estimation

in the statistics literature.2 Once k is estimated in this way, x can then be obtained via
conventional non-blind deconvolution techniques. One motivation for the Type II strategy
is based on the inherent asymmetry in the dimensionality of the image relative to the
kernel (Levin et al., 2009). By integrating out (or averaging over) the high-dimensional
image, the estimation process can then more accurately focus on the few remaining low-
dimensional parameters in k.

The challenge with (4) is that evaluation of p(y|k) requires a marginalization over x,
which is a computationally intractable integral given realistic image priors. Consequently
a variational Bayesian (VB) strategy is used to approximate the troublesome marginaliza-
tion (Levin et al., 2011a). A similar idea has also been explored by a number of other
authors (Miskin and MacKay, 2000; Fergus et al., 2006; Babacan et al., 2012). In brief, VB
provides a convenient way of computing a rigorous upper bound on − log p(y|k), which can
then be substituted into (4) for optimization purposes leading to an approximate Type II
estimator.

The VB methodology can be easily applied whenever the image prior p(x) is expressible
as a Gaussian scale mixture (GSM) (Palmer et al., 2006), meaning

p(x) = exp

[
−1

2
gx(x)

]
=
∏
i

exp

[
−1

2
gx(xi)

]
=
∏
i

∫
N (xi; 0, γi)p(γi)dγi, (5)

where each N (xi; 0, γi) represents a zero mean Gaussian with variance γi and prior distri-
bution p(γi). The role of this decomposition will become apparent below. Also, with some
abuse of notation, p(γi) may characterize a discrete distribution, in which case the integral
in (5) can be reduced to a summation. Note that all prior distributions expressible via (5)
will be supergaussian (Palmer et al., 2006), and therefore will to varying degrees favor a
sparse x (we will return to this issue in Sections 3 and 4).

Given this p(x), the negative log of p(y|k) can be upper bounded via

− log p(y|k) ≤ −
∫∫

q(x,γ) log
p(x,γ,y|k)

q(x,γ)
dxdγ︸ ︷︷ ︸

F [q(x,γ),k]

,

2. To be more specific, Type II estimation refers to the case where we optimize over one set of unknown
variables after marginalizing out another set, in our case the image x. In this context, standard MAP
over both x and k via (3) can be viewed as Type I.
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where F [q(x,γ),k] is called the free energy, q(x,γ) is an arbitrary distribution over x,
and γ = [γ1, γ2, . . .]

T , the vector of all the variances from (5). Equality is obtained when
q(x,γ) = p(x,γ|y,k). In fact, if we were able to iteratively minimize this F over q(x,γ)
and k (i.e., a form of coordinate descent), this would be exactly equivalent to the standard
expectation-maximization (EM) algorithm for minimizing − log p(y|k) with respect to k,
treating γ and x as hidden data and assuming p(k) is flat within the specified constraint
set mentioned previously (see Bishop 2006, Ch.9.4 for a detailed examination of this fact).
However, optimizing over q(x,γ) is intractable since p(x,γ|y,k) is generally not available
in closed-form. Likewise, there is no closed-form update for k, and hence no exact EM
solution is possible.

The contribution of VB theory is to show that if we restrict the form of q(x,γ) via
structural assumptions, the updates can now actually be computed, albeit approximately.
For this purpose the most common constraint is that q(x,γ) must be factorized, namely,
q(x,γ) = q(x)q(γ), sometimes called a mean-field approximation (Bishop, 2006, Ch.10.1).
With this approximation we are effectively utilizing the revised (and looser) upper bound

− log p(y|k) ≤ −
∫∫

q(x)q(γ) log
p(x,γ,y|k)

q(x)q(γ)
dxdγ, (6)

which may be iteratively minimized over q(x), q(γ), and k independently while holding the
other two fixed. In each case, closed-form updates are now possible, although because of the
factorial approximation, we are of course no longer guaranteed to minimize − log p(y|k).

Compared to the original Type II problem from (4), minimizing the bound from (6) is
considerably simplified because the problematic marginalization over x has been effectively
decoupled from γ. However, when solving for q(x) at each iteration, it can be shown that a
full covariance matrix of x conditioned on γ, denoted as C, must be computed. While this
is possible in closed form, it requires O(m3) operations, where m is the number of pixels
in the image. Because this is computationally impractical for reasonably-sized images, a
diagonal approximation to C must be adopted (Levin et al., 2011a). This assumption is
equivalent to incorporating an additional factorization into the VB process such that now
we are enforcing the constraint q(x,γ) =

∏
i q(xi)q(γi). This leads to the considerably

looser upper bound

− log p(y|k) ≤ −
∫∫ ∏

i

q(xi)q(γi) log
p(x,γ,y|k)∏
i q(xi)q(γi)

dxdγ.

In summary then, the full Type II approach can be approximated by minimizing the VB
upper bound via the optimization problem

min
q(x,γ),k

F [q(x,γ),k] , s.t. q(x,γ) =
∏
i

q(xi)q(γi). (7)

The requisite update rules are shown in Algorithm 1.3 Numerous methods fall within this
category with some implementational differences, and the estimation steps are equivalent

3. For simplicity we have ignored image boundary effects when presenting the computation for cj in Algo-
rithm 1. In fact, the complete expression for cj is described in Appendix A in the proof of Theorem 1.
Additionally, Algorithm 1 in its present form includes a modest differentiability assumption on gx for
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Algorithm 1 VB Blind Deblurring (Levin et al., 2011a; Palmer et al., 2006; Babacan et al.,
2012)

1: Input: blurry gradient domain image y, noise level reduction factor β (β > 1), mini-
mum noise level λ0, image prior p(x) = exp[−1

2gx(x)] =
∏
i exp[−1

2gx(xi)]
2: Initialize: blur kernel k, noise level λ
3: While stopping criteria is not satisfied, repeat

• Update sufficient statistics for q(γ) =
∏
i q(γi):

ωi , Eq(γi)[γ
−1
i ]← gx

′(σi)

2σi
,

with σ2
i , Eq(xi)[x

2
i ] = µ2

i + Cii.

• Update sufficient statistics for q(x) =
∏
i q(xi):

µ , Eq(x)[x]← A−1b, Cii , Varq(xi)[xi] ← A−1
ii ,

where A = HTH
λ + diag[ω], b = HTy

λ , H is the convolution matrix of k.

• Update k:

k← arg min
k≥0
‖y −Wk‖22 +

∑
j

cjk
2
j

where cj =
∑

i Ci+j,i+j and W is the convolution matrix of µ.

• Noise level reduction: If λ > λ0, then λ← λ/β.

4: Final Non-Blind Step: In original image domain, estimate sharp image using fixed
k from above

to simply inserting the kernel update rule and noise reduction heuristic from Levin et al.
(2011a) into the general VB sparse estimation framework from Palmer et al. (2006). Results
using this strategy for blind deblurring with different priors can be found in Babacan et al.
(2012). Note that the full distributions for each q(xi) and q(γi) are generally not needed;
only certain sufficient statistics are required (certain means and variances, see Algorithm 1),
analogous to standard EM. These can be efficiently computed using techniques from Palmer
et al. (2006) for any p(x) produced by (5). In the VB algorithm from Levin et al. (2011a),
the sufficient statistic for γ is computed using an alternative methodology which applies
only to finite Gaussian scale mixtures. However, the resulting updates are nonetheless
equivalent to Algorithm 1 as shown in the proof of Theorem 1 presented later.

updating the sufficient statistics of q(γi). Finally, while it is trivial to include multiple image filters in
this pipeline (Levin et al., 2011a; Babacan et al., 2012), we avoid including such additional notation to
simplify the exposition. Here we are already assuming that y and x represent blurry and sharp gradient
domain images, obtained by simple horizontal and vertical first-order difference filters (see Section 3.1).
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While possibly well-motivated in principle, the Type II approach relies on rather severe
factorial assumptions which may compromise the original high-level justifications. In fact,
at any minimizing solution denoted q∗(xi), q

∗(γi), ∀i,k∗, it is easily shown that the gap
between F and − log p(y|k∗) is given explicitly by

KL

(∏
i

q∗(xi)q
∗(γi)||p(x,γ|y,k∗)

)
, (8)

where KL(p1||p2) denotes the standard KL divergence between the distributions p1 and
p2. Because the posterior p(x,γ, |y,k) is generally highly coupled (non-factorial), this
divergence will typically be quite high, indicating that the associated approximation can be
poor. We therefore have no reason to believe that this k∗ is anywhere near the maximizer
of p(y|k), which was the ultimate goal and motivation of Type II to begin with.

Other outstanding issues persist as well. For example, the free energy cost function,
which involves both integration and function-valued arguments, is not nearly as transpar-
ent as the standard MAP estimation from (3). Moreover for practical use, VB depends
on an appropriate schedule for reducing the noise variance λ during each iteration (see Al-
gorithm 1), which implements a form of coarse-to-fine, multiresolution estimation scheme
(Levin et al., 2011b) while potentially improving the convergence rate (Levin et al., 2011a).

It therefore becomes difficult to rigorously explain exactly why VB has often been em-
pirically more successful than MAP in practice (see Babacan et al. 2012; Levin et al. 2011b,a
for such comparisons), nor how to decide which image priors operate best in the VB frame-
work.4 While Levin et al. have suggested that at a high level, marginalization over the
latent sharp image using natural-image-statistic-based priors is a good idea to overcome
some of the problems faced by MAP estimation (Levin et al., 2009, 2011b), this argument
only directly motivates substituting (4) for (3) rather than providing explicit rationaliza-
tion for (7). Thus, we intend to more meticulously investigate the exact mechanism by
which VB operates, explicitly accounting for all of the approximations and assumptions
involved by drawing on convex analysis and sparse estimation concepts from Palmer et al.
(2006); Wipf et al. (2011) (Section 4 will discuss direct comparisons with Levin et al. in
detail). This endeavor then naturally motivates extensions to the VB framework and a
simple prescription for choosing an appropriate image prior p(x). Overall, we hope that
we can further demystify VB providing an entry point for broader improvements such as
robust non-uniform blur and noise estimation.

Several surprising, possibly counterintuitive conclusions emerge from this investigation
which challenge some of the prevailing wisdom regarding why and how Bayesian algorithms
can be advantageous for blind deconvolution. These include:

• The optimal image prior for blind deconvolution purposes using VB or MAP is likely
not the one which most closely reflects natural images statistics. Rather, we argue
that it is the distribution that most significantly discriminates between blurry and
sharp images, meaning a prior such that, for some good sharp image estimate x̂, we

4. Note that, as discussed later, certain MAP algorithms can perform reasonably well when carefully bal-
anced with additional penalty factors and tuning parameters added to (3). However, in direct com-
parisons using the same basic probabilistic model, VB can perform substantially better, even achieving
state-of-the-art performance without additional tuning.

3781



Wipf and Zhang

have p(x̂)� p(k ∗ x̂). Natural image statistics typically fail in this regard for explicit
reasons, which apply to both MAP and VB, as discussed in Sections 3 and 4.

• The advantage of VB over MAP is not directly related to the dimensionality differences
between k and x and the conventional benefits of marginalization over the latter. In
fact, we prove in Section 3.2 that the underlying cost functions are formally equivalent
in ideal noiseless environments given the factorial assumptions required by practical
VB algorithms, and the same basic line of reasoning holds equally well in the noisy
case. Instead, there is an intrinsic mechanism built into VB that allows bad locally
minimizing solutions to be largely avoided even when using the highly non-convex,
discriminative priors needed to distinguish between blurry and sharp images. This
represents a new perspective on the relative advantages of VB.

• The VB algorithm can be reformulated in such a way that non-Gaussian noise models,
non-uniform blur operators, and other extensions are easily incorporated, circumvent-
ing one important perceived advantage of MAP. In fact, we have already obtained
practical success in more complex non-uniform and multi-image models using similar
principles (Zhang et al., 2013; Zhang and Wipf, 2013).

3. Analysis of Variational Bayes

Drawing on ideas from Palmer et al. (2006); Wipf et al. (2011), in this section we will refor-
mulate the VB methodology to elucidate its behavior. Simply put, we will demonstrate that
VB is actually equivalent to using an unconventional MAP estimation-like cost function but
with a particular penalty that links the image, blur kernel, and noise in a well-motivated
fashion. This procedure removes the ambiguity introduced by the VB approximation, the
subsequent diagonal covariance approximation, and the λ reduction heuristic that all con-
tribute still somewhat mysteriously to the effectiveness of VB. It will then allow us to
pinpoint the exact reasons why VB represents an improvement over conventional MAP es-
timations in the form of (3), and it provides us with a specific criteria for choosing the
image prior p(x).

3.1 Notation and Definitions

As mentioned above, and following many previous works (Fergus et al., 2006; Levin et al.,
2011a), we will henceforth work entirely in the derivative domain of images, with the excep-
tion of an implicit final non-blind deconvolution step once the kernel k has been estimated.
From a practical standpoint, these derivatives are computed by convolving the raw image
with standard first-order horizontal and vertical difference filters [1,−1] and [1,−1]T . Given
that convolution is a commutative operator, the blur kernel is unaltered. For latent sharp
image derivatives of size M×N and blur kernel of size P×Q, we denote the lexicographically
ordered vector of the sharp image derivatives, blurry image derivatives, and blur kernel as
x ∈ Rm, y ∈ Rn and k ∈ Rl respectively, with m , MN , n , (M − P + 1)(N − Q + 1),
and l , PQ. This assumes a single derivative filter. The extension to multiple filters, for
example one for each image dimension as described above, follows naturally. For simplicity
of notation however, we omit explicit referencing of multiple filters throughout this paper,
although all related analysis directly follow through.
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The likelihood model (1) can be rewritten as

y = Hx + n = Wk + n, (9)

where H ∈ Rn×m and W ∈ Rn×l are the Toeplitz convolution matrices constructed from
the blur kernel and sharp image respectively. We introduce a matrix Ī ∈ Rl×m, where the
j-th row of Ī is a binary vector with 1 indicating that the j-th element of k (i.e., kj) appears

in the corresponding column of H and 0 otherwise. We define ‖k̄‖2 ,
√∑

j k
2
j Īji, which

is equivalent to the norm of the i-th column of H. It can also be viewed as the effective
norm of k accounting for the boundary effects.5 The element-wise magnitude of x is given
by |x| , [|x1|, |x2|, . . .]T .

Finally we introduce the definition of relative concavity (Palmer, 2003) which will serve
subsequent analyses:

Definition 1 Let u be a strictly increasing function on [a, b]. The function ν is concave
relative to u on the interval [a, b] if and only if

ν(y) ≤ ν(x) +
ν ′(x)

u′(x)
[u(y)− u(x)] (10)

holds ∀x, y ∈ [a, b].

In the following, we will use ν ≺ u to denote that ν is concave relative to u on [0,∞).
This can be understood as a natural generalization of the traditional notion of a concavity, in
that a concave function is equivalently concave relative to a linear function per Definition 1.
In general, if ν ≺ u, then when ν and u are set to have the same functional value and the
same slope at any given point (i.e., by an affine transformation of u), then ν lies completely
under u.

It is well-known that functions concave in |x| favor sparsity (meaning a strong preference
for zero and relatively little distinction between nonzero values) (Rao et al., 2003; Wipf et al.,
2011). The notion of relative concavity induces an ordering for many of the common sparsity
promoting functions. Intuitively, a non-decreasing function ν of |xi| is more aggressive in
promoting sparsity than some u if it is concave relative to u. For example, consider the
class of `p functionals

∑
i |xi|p that are concave in |xi| whenever 0 < p ≤ 1. The smaller p,

the more a sparse x will be favored, with the extreme case p → 0 producing the `0 norm
(a count of the number of nonzero elements in x), which is the most aggressive penalty for
promoting sparsity. Meanwhile, using Definition 1 it is easy to verify that, as a function of
|x|, `p1 ≺ `p2 whenever p1 < p2.

5. Technically ‖k̄‖2 depends on i, the index of image pixels, but it only makes a difference near the image
boundaries. We prefer to avoid an explicit notational dependency on i to keep the presentation concise,
although the proofs in Appendix A do consider i-dependency when it is relevant. The subsequent analysis
will also omit this dependency keeping in mind that all of the results nonetheless carry through in the
general case. The same is true for the other quantities that depend on ‖k̄‖2, e.g., the ρ parameter defined
later in (12).
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3.2 Connecting VB with MAP

As mentioned previously, the VB algorithm of Levin et al. (2011a) can be efficiently imple-
mented using any image prior expressible in the form of (5). However, for our purposes we
require an alternative representation with roots in convex analysis. Based on Palmer et al.
(2006), it can be shown that any prior given by (5) can also be represented as a maximiza-
tion over scaled Gaussians with different variances leading to the alternative representation

p(xi) = exp

[
−1

2
gx(xi)

]
= max

γi≥0
N (xi; 0, γi) exp

[
−1

2
f(γi)

]
, (11)

where f(γi) is some non-negative energy function; the associated exponentiated factor is
sometimes treated as a hyperprior, although it will not generally integrate to one. This
f , which determines the form of gx in (5), will ultimately play a central role in how VB
penalizes images x as will be explored via the results of this section.

Theorem 1 Consider the objective function

L(x,k) ,
1

λ
‖y − k ∗ x‖22 +

∑
i

gVB(xi, ρ) +m log ‖k̄‖22, (12)

where

gVB(xi, ρ) , min
γi≥0

[
x2
i

γi
+ log(ρ+ γi) + f(γi)

]
, and ρ ,

λ

‖k̄‖22
. (13)

Algorithm 1 minimizing (7) is equivalent to coordinate descent minimization of (12) over
x, k, and the latent variables γ = [γ1, . . . , γm]T .

Proofs will be deferred to the Appendix A. This reformulation of VB closely resembles (3),
with a quadratic data fidelity term combined with additive image and kernel penalties. The
penalty on k in (12) is not unlike those incorporated into standard MAP schemes, meaning
gk(k) from (3). However, quite unlike MAP, for λ > 0 the penalty gVB on the image pixels
xi is dependent on both the noise level λ and the kernel k through the parameter ρ, the
ratio of the noise level to the squared kernel norm. The remainder of Section 3 will explore
the consequences of this crucial, yet previously unexamined distinction from typical MAP
formulations.

In contrast, with λ = 0, both MAP and VB possess a formally equivalent penalty on
each xi via the following corollary:

Corollary 1 If λ = 0, then gVB(xi, 0) = gx(xi) ≡ −2 log p(xi).

Therefore the underlying VB cost function is effectively no different than regular MAP from
(3) in the noiseless setting, a surprising conclusion that seems to counter much of the pre-
vailing understanding of VB deconvolution algorithms. So then what exactly is the true
advantage, if any, of VB over MAP? And is the advantage limited to cases when the noise
level is significant? The remainder of Section 3 will address these questions, demonstrating
that VB maintains a significant advantage over MAP, and that this advantage persists, per-
haps paradoxically, even when the noise level is small or zero. These conclusions ultimately
hinge on detailed properties of the image penalty gVB in the context of practical deblurring
pipelines. We will also examine the related issue of choosing the optimal image prior p(x),
which is equivalent to choosing the optimal f in (11).
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3.3 Evaluating the VB Image Penalty gVB

While in a few special cases gVB can be computed in closed-form for general ρ 6= 0 leading
to greater transparency, as we shall see below the VB algorithm and certain attendant
analyses can nevertheless be carried through even when closed-form solutions for gVB are
not possible. Importantly, we can assess properties that may potentially affect the sparsity
and quality of resulting solutions as λ and ‖k̄‖22 are varied.

A highly sparse prior, and therefore penalty function, is generally more effective in
differentiating sharp images with fine structures from blurry ones (details in Section 4).
Recall that concavity with respect to coefficient magnitudes is a signature property of such
sparse penalties (Rao et al., 2003; Wipf et al., 2011). A potential advantage of MAP is that
it is very straightforward to characterize the associated image penalty; namely, if gx from
(3) is a highly concave, nondecreasing function of each |xi|, then we may expect that sparse
image gradients will be heavily favored. And for two candidate image penalties gx

(1) and
gx

(2), if gx
(1) ≺ gx

(2), then we may expect the former to promote an even sparser solution
than the latter (provided we are not trapped at a bad local solution). Section 4 will argue
that gx

(1) will then lead to a better estimate of x and k.
In contrast, with VB it is completely unclear to what degree gVB favors sparse solutions,

except in the special case from the previous section when gVB is equal to the MAP penalty
gx. We now explicitly describe sufficient and necessary conditions for gVB to be a concave,
nondecreasing function of |xi|, which turn out to be much stricter than the conditions
required for MAP.

Theorem 2 The VB penalty gVB will be a concave, non-decreasing function of |xi| for any
ρ if and only if f from (11) is a concave, non-decreasing function on [0,∞). Moreover, at
least m−n elements of x will equal zero at any locally minimizing solution to (12) (however
typically many more will equal zero in practice).

Theorem 2 explicitly quantifies what class of image priors leads to a strong, sparsity-
promoting x penalty when fully propagated through the VB framework. Yet while this
attribute may anchor VB as a legitimate sparse estimator in the image (filter) domain
given an appropriate f , it does not explain precisely why VB often produces superior results
to MAP. In fact, the associated MAP penalty gx (when generated from the same f) will
actually promote sparse solutions under much weaker conditions as follows:

Corollary 2 The MAP penalty gx will be a concave, non-decreasing function of |xi| if and
only if ϑ(z) , log(z) + f(z) is a concave, non-decreasing function on [0,∞).

The extra log factor implies that f itself need not be concave to ensure that gx is concave.
For example, the selection f(z) = z − log(z) it not concave and yet the associated gx still
will be since now ϑ(z) = z, which is concave and non-decreasing as required by Corollary
2. The stronger proclivity for producing sparsity of MAP over VB is further quantified by
the following:

Corollary 3 Let f be a differentiable, non-decreasing function which induces the penalty
functions gx and gVB associated with MAP and VB respectively. As z →∞, then gVB(z)−
gx(z) → 0, and therefore gVB and gx penalize large magnitudes of x equally. In contrast,
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for any z,z′ ≥ 0, if z < z′ then gVB(z) − gx(z) ≥ gVB(z′) − gx(z′). Therefore, as z → 0,
gVB(z)−gx(z) is maximized, implying that the MAP penalty gx favors zero-valued coefficients
(sparsity) more heavily than gVB.

This result implies that for a broad class of image priors, VB actually leads to a weaker
enforcement of sparsity than the corresponding MAP estimator. This occurs because large
magnitudes of any xi are penalized nearly equivalently with VB and MAP, while small mag-
nitudes are penalized much more aggressively with MAP. Taken together then, Corollaries
2 and 3 superficially suggest that perhaps MAP should be preferred over VB to the extent
that we believe sparsity is important for distinguishing sharp and blurry images. However,
a closer investigation will reveal why this conclusion is premature.

For this purpose we will consider closely the simplest choice for f which satisfies the
conditions of Theorem 2, and a choice that has been advocated in the sparse estimation
literature in different contexts: namely, a constant value, f(γ) = b. This in turn implies
that the resulting prior p(xi) is a Jeffreys non-informative distribution on the coefficient
magnitudes |xi| after solving the maximization from (11), and is attractive in part because
there are no embedded hyperparameters (the constant b is irrelevant).6 This selection for
f leads to a particularly interesting closed-form penalty gVB as follows:

Theorem 3 In the special case where f(γi) = b, then

gVB(xi, ρ) ≡ 2|xi|

|xi|+
√
x2
i + 4ρ

+ log

(
2ρ+ x2

i + |xi|
√
x2
i + 4ρ

)
. (14)

Figures 1 (a) and (b) display 1D and 2D plots of this penalty function. It is worth
spending some time here to examine this particular selection for f (and therefore gVB) in
detail since it elucidates many of the mechanisms whereby VB, with all of its attendant
approximations and heuristics, can affect improvement over MAP regardless of the true
noise level.

In the limit as ρ→ 0, the first term in (14) converges to the indicator function I[xi 6= 0],
and thus when we sum over i we obtain the `0 norm of x, which represents a canonical
measure of sparsity, or a count of the nonzero elements in a vector.7 The second term
in (14), when we again sum over i, converges to

∑
i log |xi|, ignoring a constant factor.

Sometimes referred to as Gaussian entropy, this term can also be connected to the `0 norm
via the relations ‖x‖0 ≡ limp→0

∑
i |xi|p and limp→0

1
p

∑
i(|xi|p − 1) =

∑
i log |xi| (Wipf

et al., 2011). Thus the cumulative effect when ρ becomes small is an image prior that closely
mimics the highly non-convex (in |xi|) `0 norm which favors maximally sparse solutions. In
contrast, when ρ becomes large, it can be shown that both terms in (14), when combined
for all i, approach scaled versions of the convex `1 norm. Additionally, this scaling turns
out to be principled in the sense described in Wipf and Wu (2012); Zhang and Wipf (2013).

For intermediate values of ρ between these two extremes, we obtain a gVB that becomes
less concave with respect to each |xi| as ρ increases in the formal sense of relative concavity
discussed in Section 3.1. In particular, we have the following:

6. The Jeffreys prior is of the form p(x) ∝ 1/|x|, which represents an improper distribution that does not
integrate to one.

7. Although with ρ = 0, this term reduces to a constant, and therefore has no impact.
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Figure 1: (a) A 1D example of the coupled penalty gVB(x, ρ) (normalized) with different ρ
values assuming f is a constant. The `1 norm is included for comparison. (b) A
2D example surface plot of the coupled penalty function gVB(x, ρ); f is a constant.

Corollary 4 If f(γi) = b, then gρ1VB ≺ gρ2VB for ρ1 < ρ2.

Thus, as the noise level λ is increased, ρ increases and we have a penalty that behaves
more like a convex (less sparse) function, and so becomes less prone to local minima. In
contrast, as ‖k̄‖22 is increased, meaning that ρ is now reduced, the penalty actually becomes
more concave with respect to |xi|. This phenomena is in some ways similar to certain
homotopy continuation sparse estimation schemes (e.g., Chartrand and Yin 2008), where
heuristic hyperparameters are introduced to gradually introduce greater non-convexity into
canonical compressive sensing problems, but without any dependence on the noise or other
factors. The key difference here with VB however is that penalty shape modulation is
explicitly dictated by both the noise level λ and the kernel k in an integrated fashion. 8

To summarize then, the ratio ρ can be viewed as modulating a smooth transition of the
penalty function shape from something akin to the non-convex `0 norm to a properly-scaled
`1 norm. In contrast, conventional MAP-based penalties on x are independent from k or λ,
and thus retain a fixed shape. The crucial ramifications of this coupling and ρ-controlled
shape modification/augmentation exclusive to the VB framework will be addressed in the
following two subsections. Other choices for f , which exhibit a partially muted form of
this coupling, will be considered in Section 3.7, which will also address a desirable form of
invariance that only exists when f is a constant.

3.4 Noise Dependency Analysis

The success of practical VB blind deconvolution algorithms is heavily dependent on some
form of stagewise coarse-to-fine approach, whereby the kernel is repeatedly re-estimated at

8. After our original submission, a new MAP-related algorithm was published that applies a continuation
strategy, not unlike Chartrand and Yin (2008)), to blind deblurring and achieves very promising results
(Xu et al., 2013). However, unlike VB this algorithm requires two tuning parameters balancing kernel
and image penalties and a fixed, pre-defined schedule for modulating the image penalty shape.
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successively higher resolutions. At each stage, a lower resolution version is used to initial-
ize the estimate at the next higher resolution. One way to implement this approach is to
initially use large values of λ (regardless of the true noise level) such that only dominant,
primarily low-frequency image structures dictate the optimization (Levin et al., 2009). Dur-
ing subsequent iterations as the blur kernel begins to reflect the correct coarse shape, λ can
be gradually reduced to allow the recovery of more detailed, fine structures.

A highly sparse (concave) prior can ultimately be more effective in differentiating sharp
images and fine structures than a convex one. Detailed supported evidence for this claim
can be found in Fergus et al. (2006); Levin et al. (2007); Krishnan and Fergus (2009); Cho
et al. (2012), as well as in Section 4 below. However, if such a prior is applied at the initial
stages of estimation, the iterations are likely to become trapped at suboptimal local minima,
of which there will always be a combinatorial number. Moreover, in the early stages, the
effective noise level is actually high due to errors contained in the estimated blur kernel,
and exceedingly sparse image penalties are likely to produce unstable solutions.

Given the reformulation outlined above, we can now argue that VB implicitly avoids
these problems by beginning with a large λ (and therefore a large ρ), such that the penalty
function is initially nearly convex in |xi| (see Figure 1). In this situation, the data fidelity
term 1

λ ‖y − k ∗ x‖22 from (12) is de-emphasized because of the inverse dependency on λ,
and small edges and structures will be ignored. Hence an approximately convex penalty
is generally sufficient for resolving the remaining strong edges. As the iterations proceed
and fine structures need to be resolved, the penalty function is made less convex (more
concave) as λ is reduced, but the risk of local minima and instability is ameliorated by the
fact that we are likely to be already in the neighborhood of a desirable basin of attraction.
Additionally, the implicit noise level (or modeling error) is now substantially lower.

This kind of automatic ‘resolution’ adaptive penalty shaping is arguably superior to
conventional MAP approaches based on (3), where the concavity/shape of the induced sep-
arable penalty function is kept fixed regardless of the variation in the noise level or scale,
i.e., at different resolutions across the coarse-to-fine hierarchy. In general, it would seem
very unreasonable that the same penalty shape would be optimal across vastly different
noise scales. This advantage over MAP can be easily illustrated by simple head-to-head
comparisons where the underlying prior distributions are identical; Section 3.6 below con-
tains one such example. Additionally, this phenomena can be significantly enhanced by
automatically learning λ as discussed in Section 5.

3.5 Blur Dependency Analysis

There are many different viewpoints for understanding how the blur dependency of the VB
penalty gVB contributes to successful deblurring results. Here we consider potentially one
of the most transparent.

Because the blur kernel appears judiciously in all three terms in (12), with a slight repa-
rameterization and subsequent algebraic manipulation, we may consolidate terms leading
to the equivalent revised formulation of (12) given by

L(x̃, k̃) ,
1

λ

∥∥∥y − k̃ ∗ x̃
∥∥∥2

2
+
∑
i

gVB(x̃i, λ), s.t. ‖˜̄k‖2 = 1, (15)
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where x̃i , xi‖k̄‖2 for all i and, with slight abuse of notation, k̃ denotes a normalized kernel
such that the resulting convolution matrix H has columns of unit norm. In other words, if
x∗ and k∗ represent the optimal solution to (12), then x̃∗ = x∗‖k̄∗‖2 and k̃∗ = k∗/‖k̄∗‖2
are the optimal solution to (15), at least when gVB is given by (14). Hence we see that, once
the kernel operator is constrained to have unit `2 norm, no additional kernel penalization is
included whatsoever. Consequently then, to the extent VB is successful, we observe that an
additional kernel penalty, and any associated tuning parameter, is completely unnecessary.
Additionally, with the kernel fixed, solving for x̃ now represents a standardized sparse
estimation problem, with a quadratic data-fit term now characterized by a design matrix
H with consistent `2 normalized columns.

Note that essentially all previous blind deblurring algorithms assume what amounts
to an `1 normalized kernel satisfying

∑
i ki = 1 (since each element of the sum must be

positive, the corresponding convolution matrix H will have `1 normalized columns except
at the boundary). But in the context of a quadratic data fit term as used by deblurring
algorithms, this is unlikely to be optimal as it will apply some implicit pressure on the
estimated kernel towards the no-blur solution (k = δ), potentially counteracting, at least
in part, the push for sparse image estimates. This occurs because kernels near the delta
solution will increase the `2 column norms of H when the `1 norm is fixed, which then
allows for relatively smaller image coefficients x by virtue of the quadratic data term.
These smaller coefficients then reduce any non-decreasing penalty on the magnitudes of
x, reducing the overall cost function. Additionally, in much more complex non-uniform
deblurring environments, this undesirable effect is considerably more pronounced (Zhang
and Wipf, 2013).

In the context of VB however, this `1 normalization is implicitly switched to `2 normal-
ization via the mechanism outlined above leading to (15), and hence it is entirely inconse-
quential to VB. In contrast, MAP has no such agency, and therefore it is not surprising that
the majority of MAP algorithms explicitly include an additional `2 kernel penalty which
helps to counteract movement towards no-blur solutions. The disadvantage of course is that
an additional image-dependent tuning parameter is required as well to balance the resulting
contribution. We could, however, alternatively consider replacing the `1 norm constraint
in MAP with `2-norm constraints as in (15), although this complicates the optimization
process considerably, whereas VB handles this automatically.9

3.6 Illustrative Example using 1D Signals

Here we will briefly illustrate some of the distinctions between MAP and VB discussed thus
far where other confounding factors have been conveniently removed. For this purpose we
consider a simplified noiseless situation where the optimal λ value is zero, and we consider
the image prior produced when f(γ) = b as introduced in Section 3.3 (later Section 3.7 will

9. One potential way around these complications for MAP would be to replace the non-convex constraint

‖¯̃k‖2 = 1 with the convex quadratic one ‖¯̃k‖2 ≤ 1, ignoring boundary effects which would complicate
things dramatically by requiring m additional constraints, one for each element of x. While in uniform

blur models this could be effective since the optimal solution should satisfy ‖¯̃k‖2 = 1 anyway, in non-
uniform models this is unlikely the case, and such a substitution could still be difficult to implement and
could undermine performance. But the central point remains that VB handles all of these situations
naturally and seamlessly.
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argue that this selection is in some sense optimal). For MAP we also include the kernel
penalty m log ‖k̄‖22 from (12) which will facilitate more direct comparisons with VB below.
Given these assumptions, the associated MAP problem from (3) is easily shown to be

min
x,k

1

λ
‖y − k ∗ x‖22 +

∑
i

2 log |xi|+ 2m log ‖k̄‖2, (16)

where the image penalty is obtained by applying a −2 log transformation to (11) giving

−2 log

[
max
γi≥0
N (xi; 0, γi)

]
≡ 2 log |xi| . (17)

Irrelevant additive constants have been excluded. Conveniently, since∑
i

2 log |xi|+ 2m log ‖k̄‖2 =
∑
i

2 log
(
|xi| ‖k̄‖2

)
, (18)

we can reparameterize (16) using x̃ such that the kernel penalty is removed and the con-

straint ‖˜̄k‖2 = 1 is enforced just as with VB. Consequently, in the limit as λ→ 0, based on
the equivalency derived from Corollary 1, both VB and MAP are then effectively solving

min
x̃,k̃

∑
i

log |x̃i| , s.t. y = k̃ ∗ x̃, ‖˜̄k‖2 = 1. (19)

Moreover, given the arguments made in Section 3.3, the penalty on x̃ is more or less equiv-
alent to the `0 norm up to inconsequential scaling and translations. Thus, (19) effectively
reduces to

min
x̃,k̃
‖x̃‖0, s.t. y = k̃ ∗ x̃, ‖˜̄k‖2 = 1. (20)

Therefore at this simplified, stripped-down level both VB and MAP are merely minimizing
the `0 norm of x subject to the linear convolutional constraint. Of course we do not attempt
to solve (20) directly, which is a difficult combinatorial problem in nature. Instead for both
VB and MAP we begin with a large λ and gradually reduce it towards zero as part of
a multi-resolution approach designed to avoid bad local minima as described in Section
3.4. For this reduction schedule of λ we use β = 1.15 in Algorithm 1 (this value is taken
from Levin et al. 2011a).10 While equivalent when λ → 0, before λ becomes small the
VB and MAP cost functions will behave very differently, leading to a radically different
optimization trajectory terminating at different locally minimizing solutions to (20).

The superiority of the VB convergence path will now be demonstrated with a synthetic
1D signal composed of multiple spikes. This signal is convolved with two different blur
kernels, one uniform and one random, creating two different blurry observations. Refer to
Figure 2 (first row) for the ground-truth spike signal and associated blur kernels. We then
apply the MAP and VB blind deconvolution algorithms, with the same prior (f equals a
constant) and λ reduction schedule, to the blurry test signals and compare the quality of the

10. The corresponding MAP algorithm can be implemented by simply setting C to zero before the q(γi)
update in Algorithm 1, with guaranteed convergence to some local minima. For both MAP and VB, the
γ sufficient statistic update is simply ωi = σ−2

i whenever f is a constant.
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reconstructed blur kernels and signals. The recovery results are shown in Figure 2 (second
and third rows), where it is readily apparent that VB produces superior estimation quality
of both kernel and image. Additionally, the signal recovered by VB is considerably sparser
than MAP, indicating that it has done a better job of optimizing (20), consistent with our
previous analysis. This is not to say that MAP cannot potentially be effective with careful
tuning and initialization (perhaps coupled with additional regularization factors or clever
optimization schemes), only that VB is much more robust in its present form.

Note that this demonstrable advantage of VB is entirely based on an improved con-
vergence path, since VB and MAP possess an identical constellation of local minima once
λ = 0. Moreover, it is unrelated to any putative advantage of solving (4) over (3). We will
revisit this latter point in Section 4.
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Figure 2: 1D deblurring example using MAP and VB approaches assuming the same under-
lying image prior p(x). (a)-(b) results with a uniform blur kernel; (c)-(d) results
with a random blur kernel.

3.7 Other Choices for f

Because essentially any sparse prior on x can be expressed using the alternative variational
form from (11), choosing such a prior is tantamount to choosing f which then determines
gVB. Theorem 2 suggests that a concave, non-decreasing f is useful for favoring sparsity
(assumed to be in the gradient domain). Moreover, Theorem 3 and subsequent analyses
suggest that the simplifying choice where f(γ) = b possesses several attractive properties
regarding the relative concavity of the resulting gVB. But what about other selections for f
and therefore gVB?

While directly working with gVB can sometimes be limiting (except in certain special
cases like f(γ) = b from before), the variational form of (13) allows us to closely examine
the relative concavity of a useful proxy. Let

ψ(γi, ρ) , log(ρ+ γi) + f(γi). (21)

Then for fixed λ and k the VB estimation problem can equivalently be viewed as solving

min
x,γ≥0

1

λ
‖y − k ∗ x‖22 +

∑
i

[
x2
i

γi
+ ψ(γi, ρ)

]
. (22)
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It now becomes clear that the sparsity of x and γ are intimated related. More concretely,
assuming f is concave and non-decreasing (as motivated by Theorems 2 and 3), then there
is actually a one-to-one correspondence in that whenever xi = 0, the optimal γi equals zero
as well, and vice versa.11 Therefore we may instead examine the relative concavity of ψ for
different ρ values, which will directly determine the sparsity of γ and in turn, the sparsity
of x. This then motivates the following result:

Theorem 4 Let ρ1 < ρ2 and assume that f satisfies the conditions of Theorem 2. Then
ψρ1 ≺ ψρ2 if and only if f(γ) = aγ + b, with a ≥ 0.

Thus, although we have not been able to formally establish a relative concavity result
for all general gVB directly, Theorem 4 provides a nearly identical analog allowing us to
draw similar conclusions to those detailed in Sections 3.4 and 3.5 whenever a general affine
f is adopted. Perhaps more importantly, it also suggests that as f deviates from an affine
function, we may begin to lose some of the desirable effects regarding the described penalty
shape modulation.

While previously we closely scrutinized the special affine case where f(γ) = b, it still
remains to examine the more general affine form f(γ) = aγ + b, a > 0. In fact, it is not
difficult to show that as a is increased, the resulting penalty on x increasingly resembles an
`1 norm with lesser dependency on ρ, thus severely muting the effect of the shape modulation
that appears to be so effective (see arguments above and empirical results section below).
So there currently does not seem to be any advantage to choosing some a > 0 and we are
left, out of the multitude of potential image priors, with the conveniently simple choice
of f(γ) = b, where the value of b is inconsequential. Experimental results support this
conclusion: namely, as a is increased from zero performance gradually degrades (results not
shown for space considerations).

As a final justification for simply choosing f(γ) = b, there is a desirable form of invari-
ance that uniquely accompanies this selection.

Theorem 5 If x∗ and k∗ represent the optimal solution to (12) under the constraint∑
i ki = 1, then α−1x∗ and αk∗ will always represent the optimal solution under the modified

constraint
∑

i ki = α if and only if f(γ) = b. Additionally, minimizing (12) is equivalent to
minimizing (15) if and only if f(γ) = b.

This is unlike the myriad of MAP estimation techniques or VB with other choices of
f , where the exact calibration of the constraint can fundamentally alter the form of the
optimal solution beyond a mere rescaling. Moreover, if such a constraint on k is omitted
altogether, these other methods must then carefully tune associated trade-off parameters,
so in one way or another this lack of invariance will require additional tuning.

Interestingly, Babacan et al. (2012) experiments with a variety of VB algorithms using
different underlying image priors, and empirically find that f as a constant works best;

11. To see this first consider xi = 0. The x2i /γi term can be ignored and so the optimal γi need only
minimize log(ρ+ γi) + f(γi), which is concave and non-decreasing whenever f is. Therefore the optimal
γi is trivially zero. Conversely if γi = 0, then there is effectively an infinite penalty on xi, and so the
optimal xi must also be zero.
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however, no rigorous explanation is given for why this should be the case.12 Thus, our
results provide a powerful theoretical confirmation of this selection, along with a number of
useful attendant intuitions.

3.8 Analysis Summary

To summarize this section, we have shown that the shape of the effective VB image penalty
is explicitly controlled by the ratio of the noise variance to the squared kernel norm, and that
in many circumstances this leads to a desired mechanism for controlling relative concavity
and balancing sparsity, largely mitigating issues such as local minima that compromise the
convergence of more traditional MAP estimators. We have then demonstrated a unique
choice for the image prior (i.e., when f is constant) such that this mechanism is in some
sense optimal and scale-invariant. Of course we readily concede that different choices for
the image prior could still be useful when other factors are taken in to account. We also
emphasize that none of this is meant to suggest that real imaging data follows a Jeffreys
prior distribution (which is produced when f is constant). We will return to this topic in
Section 4 below. Overall, this perspective provides a much clearer picture of how VB is able
to operate effectively and how we might expect to optimize performance.

While space precludes a detailed treatment, many natural extensions to VB are sug-
gested by these developments. For example, in the original formation of VB given by (7) it
is not clear the best way to incorporate alternative noise models because the required inte-
grations are no longer tractable. However, when viewed alternatively using (12) it becomes
obvious that different data-fidelity terms can easily be substituted in place of the quadratic
likelihood factor. Likewise, given additional prior knowledge about the blur kernel, there is
no difficulty in substituting for the `2-norm on k or the uniform convolutional observation
model to reflect additional domain knowledge. Thus, the proposed reformulation allows VB
to inherit most of the transparent extensibility previously reserved for MAP.

We may also consider these ideas in the context of existing MAP algorithms, which
adopt various structure selection heuristics, implicitly or explicitly, to achieve satisfactory
performance (Shan et al., 2008; Cho and Lee, 2009; Xu and Jia, 2010). This can be viewed
as adding additional image penalty terms and trade-off parameters to (3). For example,
Shan et al. (2008) incorporates an extra local penalty on the latent image, such that the
gradients of small-scale structures in the recovered image are close to those in the blurry
image. Thus they will actually contribute less to the subsequent kernel estimation step,
allowing larger structures to be captured first. Similarly, a bilateral filtering step is used
for pruning out small scale structures in Cho and Lee (2009). Finally, Xu and Jia (2010)
develop an empirical structure selection metric designed such that small scale structures
can be pruned away by thresholding the corresponding response map, allowing subsequent
kernel estimation to be dominated by only large-scale structures.

12. Based on a strong simplifying assumption that the covariance C from Algorithm 1 is a constant, Babacan
et al. (2012) provides some preliminary discussion regarding possibly why VB may be advantageous over
MAP. However, when C is constant, the analysis easily reduces to a standard penalized regression
problem, and hence this material can already be found in the sparse estimation literature (e.g., see
Palmer et al. 2006; Wipf et al. 2011 and related references). Our key contribution is to explicitly account
for the actual dynamic nature of C and expose the true behavior of VB blind deblurring.
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Generally speaking, existing MAP strategies face a trade-off: either they must adopt
a highly sparse image prior needed for properly resolving fine structures (see Section 4)
and then deal with the attendant constellation of problematic local minima,13 or rely on a
more smooth image prior augmented with compensatory structure-selection measures such
as those described above to avoid bad global solutions. In contrast, we may interpret the
coupled penalty function intrinsic to VB as a principled alternative with a transparent, in-
tegrated functionality for estimation at different resolutions without any additional penalty
factors, trade-off parameters, or complexity.

4. Maximal Sparsity vs. Natural Image Statistics

Levin et al. (2009, 2011a,b), which represents the initial inspiration for our work, presents
a compelling and highly influential case that joint MAP estimation over x and k generally
favors a degenerate, no-blur solution, meaning that k will be a delta function, even when
the assumed image prior p(x) reflects the true underlying distribution of x, meaning p(x) =
ptrue(x), and p(k) is assumed flat in the feasible region.14 In turn, this is presented as a
primary argument for why MAP is inferior to VB. As this line of reasoning is considerably
different from that given in Section 3, here we will take a closer look at these orthogonal
perspectives in the hopes of providing a clarifying resolution.

To begin, it helps to revisit the formal analysis of MAP failure from Levin et al. (2011b),
where the following specialized scenario is presented. Assume that a blurry image y is
generated by y = k∗ ∗x∗, where ‖k∗‖2 � 1 and each true sharp image gradient x∗i is drawn
iid from the generalized Gaussian distribution ptrue(x

∗
i ) ∼ exp(−|x∗i |p), 0 < p ≤ 1. Now

consider the minimization problem

min
x,k

∑
i

|xi|p s.t. y = k ∗ x. (23)

Solving (23) is equivalent to MAP estimation over x and k under the true image prior
ptrue(x) and an implicitly assumed flat prior on k within the previously specified kernel
constraint set. In the limit as the image grows arbitrarily large, (Levin et al., 2011b, Claim
2) proves that the no-blur delta solution {x = y, k = δ} will be favored over the true solution
{x = x∗, k = k∗}. Intuitively, this occurs because the blurring operator k contributes two
opposing effects:

1. It reduces a measure of the image sparsity, which increases
∑

i |yi|p, and

2. It broadly reduces the overall image variance, which reduces
∑

i |yi|p.

Depending on the relative contributions, we may have the situation where the second effect
dominates such that

∑
i |yi|p may be less than

∑
i |x∗i |p, meaning the cost function value

13. Appropriate use of continuation methods such as the algorithm from Chartrand and Yin (2008) may
help in this regard.

14. Note that Levin et al. frequently use MAPx,k to refer to joint MAP estimation over both k and x (Type
I) while using MAPk for MAP estimation of k alone after x has been marginalized out (Type II). In this
terminology, MAPk then represents the inference ideal that VB purports to approximate, equivalent to
(4) herein.
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at the blurred image is actually lower than at the true, sharp image. Consequently, MAP
estimation may not be reliable.

Our conclusions then suggest a sort of paradox: in Section 3 we have argued that VB
is actually equivalent to an unconventional form of MAP estimation over x, but with an
intrinsic mechanism for avoiding bad local minima, increasing the chances that a good
global or near-global minima can be found. Moreover, at least in the noiseless case (λ→ 0),
any such minima will be exactly equivalent to the standard MAP solution by virtue of
Corollary 1. However, based on the noiseless analysis from Levin et al. above, any global
MAP solution is unlikely to involve the true sharp image when the true image statistics
are used for p(x), meaning that VB performance should be poor as well even at a global
solution. Thus how can we reconcile the positive performance of VB actually observed in
practice, and avoidance of degenerate no-blur solutions, with Levin et al.’s characterization
of the MAP cost function?

First, when analyzing MAP, Levin et al. consider only a flat prior on k within the
constraint set

∑
i ki = 1 and ki ≥ 0. However, MAP estimation may still avoid no-blur

solutions when equipped with an appropriate non-flat kernel prior and associated trade-
off parameter. Likewise under certain conditions described in Section 3.5, VB naturally
substitutes in a quadratic normalization constraint for k that we have argued disfavors no-
blur solutions automatically. Moreover, VB introduces this normalization in a convenient
form devoid of additional tuning parameters.

Secondly, the argument in Levin et al. breaks down when the true sharp image x∗ is
actually sparse in the canonical sense, meaning the distribution of each element includes a
delta function at zero, i.e.,

ptrue(x
∗
i ) = αδ(x∗i ) + (1− α)ρ(xi), (24)

where ρ is an arbitrary distribution and α ∈ [0, 1] is a constant. Clearly samples from (24)
will include some elements exactly equal to zero with probability at least α.

Lemma 1 Let x∗ be distributed iid with elements drawn from (24) and let y = k∗ ∗ x∗

for some non-negative kernel k∗. Then with probability approaching one as the image size
grows large

k∗,x∗ = arg min
k,x:y=k∗x

log ptrue(x
∗
i ) = arg min

k,x:y=k∗x
‖x‖0. (25)

The proof is straightforward and we do not reproduce it here. Regardless, this result
demonstrates that exactly sparse images can in fact be recovered using MAP or equivalently
the `0 norm, the latter of which is actually blind to the distribution of non-zero coefficients
ρ(xi). Intuitively, this occurs because these measures are entirely immune to changes in
variance and only sensitive to sparsity; hence any blurring operation will only increase either
penalty function in the feasible region. So immediately we may conclude that, assuming we
have some way of solving (25), we should not discount MAP or `0 minimization as a viable
means for recovering sparse images. And importantly, the exact distribution of nonzero
coefficients is irrelevant as long as some degree of sparsity exists.

Of course most practical images of interest are not exactly sparse. Rather, a commonly-
reported estimate of true image gradient statistics is the generalized Gaussian distribution
with p ≈ [0.5, 0.8], samples from which will have no exactly zero-valued elements (Bucci-
grossi and Simoncelli, 1999). In this regime then the original claim from Levin et al. will
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hold and MAP estimation seems to have been discredited. However, we would argue that
MAP can still be salvaged if we are willing to intentionally allow mismatch between the
true image prior and the image prior which forms the basis of our MAP estimator. More
specifically, we suggest replacing the true image statistics ptrue with the `0 norm. However,
solving (25) directly will obviously not be effective when there are no exactly zero-valued
coefficients.

Fortunately there is a simple way around this. In the regime where n ≈ m, meaning the
sharp and blurry images y and x are large relative to the size of k and therefore of nearly
equal dimension, the generalized Gaussian distribution with p ≈ [0.5, 0.8] is a compressible
distribution in the sense described in Cevher (2009). In words, this means that the sorted
magnitudes of samples from this distribution exhibit a power-law decay and hence can be
well-approximated by sparse signals. Consequently, there will exist some sparse x̂ with
‖x̂‖0 � m such that ‖y − k∗ ∗ x̂‖22 < ε for some small ε. In contrast, each element of
the blurry image y is a summation of many elements of x∗ via the blur operation, and
therefore, by central limit theorem arguments each element, while not exactly iid, will
approach samples from a Gaussian distribution (exactly so for large enough blur kernels),
which is not a compressible distribution. Therefore, if we solve a relaxed version of (25)
given by

min
x,k
‖x‖0, s.t. ‖y − k ∗ x‖22 < ε, (26)

with an appropriate choice for ε, then we are very likely to obtain the true blur kernel k∗,
and a close sparse approximation to x∗. Conversely it is very unlikely that the solution
will be x = y and k = δ. Therefore, just because x∗ may not be exactly sparse, we may
nonetheless locate a sparse approximation x̂ that is sufficiently reasonable such that the
unknown k∗ can still be estimated accurately, facilitating a later non-blind, image domain
estimation step.

Overall then, the success of the `0 norm penalty in the context of MAP estimation
speaks to the following point: it is more important that the assumed image prior p(x) =
exp[−1

2gx(x)] be maximally discriminative with respect to blurred and sharp images, as
opposed to accurately reflecting the statistics of real images. Mathematically, this implies
that it is much more important that we have p(k ∗ x∗) � p(x̂) for some x̂ such that
k ∗ x∗ ≈ k ∗ x̂, than we enforce p(x) = ptrue(x), even if ptrue(x) were known exactly. This
is because the sparsity/variance trade-off described above implies that it may often be the
case that ptrue(k ∗ x∗) > ptrue(x̂) leading to the no-blur solution.

Obviously from a practical standpoint solving (26) represents a difficult, combinatorial
optimization problem with numerous local minima. However, to the extent that the VB
image penalty gVB approximates the `0 norm, the VB cost (12) can be viewed as an approx-
imate Lagrangian form of (26), but augmented with an adaptive shape modulation that
helps to circumvent these local minima. Thus we can briefly summarize largely why VB
can be superior to MAP: VB allows us to use a near-optimal image penalty, one that is
maximally discriminative between blurry and sharp images, but with a reduced risk of get-
ting stuck in bad local minima during the optimization process. Overall, these conclusions
provide a more complete picture of the essential differences between MAP and VB.

Before proceeding to the next section, we emphasize that none of the arguments pre-
sented herein discredit the use of natural image statistics when directly solving (4). In fact
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Levin et al. (2011b) prove that when p(x) = ptrue(x), then in the limit as the image grows
large the MAP estimate for k, after marginalizing over x (Type II), will equal the true k∗.
But there is no inherent contradiction with our results, since it should now be readily appar-
ent that VB is fundamentally different than solving mink p(k|y), and therefore justification
for the latter cannot be directly transferred to justification for the former. This highlights
the importance of properly differentiating various forms of Bayesian inference, both in the
context of blind image deblurring and beyond to widespread application domains.

Natural image statistics are ideal in cases where y and x grow large and we are able
to integrate out the unknown x, benefiting from central limit arguments when estimating
k alone. However, when we jointly compute MAP estimates of both x and k (Type I)
as in (3), we enjoy no such asymptotic welfare since the number of unknowns increases
proportionally with the sample size. One of the insights of our paper is to show that, at
least in this regard, VB is on an exactly equal footing with Type I MAP, and thus we must
look for theoretical VB justification elsewhere, leading to the analysis of relative concavity,
local minima, invariance, maximal sparsity, etc. presented herein.

5. Learning λ

While existing VB blind deconvolution algorithms typically utilize some pre-assigned de-
creasing sequence for λ as described in Section 3.4 and noted in Algorithm 1, it is preferable
to have λ learned automatically from the data itself as is common in other applications of
VB. In the case of blind deblurring, we expect that such a learned λ, with an image-
dependent trajectory, may better modulate the penalty curvature discussed in Section 3.4.
In contrast, a fixed, pre-defined decreasing sequence is likely to be miscalibrated as it will
not reflect the current quality of image and kernel estimates during each iteration. Addi-
tionally, the alternative strategy of learning λ has the conceptual appeal of an integrated
cost function that is universally reduced even as λ is updated, unlike Algorithm 1 where
the λ reduction step may in fact increase the overall cost.

However, current VB deblurring papers either do not mention such a seemingly obvious
alternative (perhaps suggesting that the authors unsuccessfully tried such an approach)
or explicitly mention that learning λ is problematic but without concrete details. For
example, Levin et al. (2011b) observed that the noise level learning used in Fergus et al.
(2006) represents a source of problems as the optimization diverges when the estimated
noise level decreases too much. But there is no mention of why λ might decrease too much,
and further details or analyses are absent.

Interestingly, the perspective presented herein provides some direct insights into how λ
may be effectively learned. Consider minimization of the revised VB cost function (12) over
x, k, and now λ as well. Because x ∈ Rm and y ∈ Rn with m > n, for a fixed k there are
an infinite number of candidate solutions such that y = k ∗ x since the corresponding null-
space of the convolution matrix is of dimension m− n. Therefore there exist an infinite set
images x such that the term 1

λ ‖y − k ∗ x‖22 in the VB cost function (12) can be minimized
to exactly zero even in the limit as λ → 0. Included in this set are basic feasible solutions
(in the linear programming sense), each of which have at least m − n elements of x equal
to zero.
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A problem then arises because it can be shown that gVB(0, ρ) → −∞ as ρ → 0 for all
non-decreasing f .15 Consequently, we can always trivially drive the VB cost function (12)
to −∞ using any basic feasible solution combined with λ → 0, regardless of the quality of
the solution. Now because of the disparity in dimensionality mentioned above, there will
always be feasible solutions to y = k ∗ x with at least m − n or more elements of x equal
to zero. Thus, at any one of these solutions the VB cost function (12) can then be driven
to −∞ with λ → 0. Unless the true x actually has many exactly zero-valued elements,
this will represent a globally degenerate minimizing solution for a broad class of f . And
even for other choices for f , a slightly more subdued form of this same degeneracy will still
exist since the VB-specific regularization fundamentally favors λ being small: essentially
the log(γi + ρ) factor in (13) will always favor ρ, and therefore λ being small. The 1/λ
weighting of ‖y − k ∗ x‖22 is not sufficient for counteracting this effect given the multitude
of feasible solutions such that y = k ∗ x.

And even for other choices for f , a slightly more subdued form of this same degeneracy
will still persist since the existing VB-specific regularization fundamentally favors λ being
small: essentially the log(γi + ρ) factor in (13) will always favor ρ, and therefore λ being
small. The 1/λ weighting of ‖y − k ∗ x‖22 is not sufficient for counteracting this effect given
the multitude of feasible solutions such that y = k ∗ x.

However, these degeneracies can be circumvented with an additional penalty factor on
λ that is naturally motivated by this framework. Specifically, we propose to append the
penalty function

v(λ) = (n−m) log λ+
d

λ
(27)

to (12), where d is assumed to be a small positive constant. The first term in (27) directly
counteracts the degeneracy of basic feasible solutions by providing an equal and opposite
barrier to arbitrary solutions with λ → 0 and ‖x‖0 = m − n. Additionally, when f is a
constant as we have argued previously represents a well-motivated selection, then it can
be shown that this additional penalty represents a very principled approximation to what
the true λ penalty should be if the original VB formulation from (6) were not factorized
as in (7). Additionally, for other choices of f , (12) can be similarly modified to provide a
consistent estimator for λ in the sense described in Wipf and Wu (2012).

As justification for the second term in (27), note that this added factor is proportional
to 1/λ ‖y − k ∗ x‖22, but acts as an interpretable barrier preventing λ from ever going below
d/n, which remains a possibility even with the (n − m) log λ term in place. In fact it is
easily shown (see Appendix B) that any λ minimizing the cost function (12) augmented
with the penalty v(λ) must satisfy λ ≥ d/n, which can be viewed as a lower-bound on what
1/n ‖y − k ∗ x‖22 should be.16

In practice, we have found the fixed value d = n × 10−4 to be highly effective across a
wide range of images and testing scenarios, including all reported results in Section 6 and

15. Based on (13), it is clear that the optimizing γi value for computing gVB(0, ρ) will be γi = 0. When
ρ → 0, we then have log(γi + ρ) → −∞, and therefore gVB(0, ρ) → −∞. Graphically, Figure 1 (b) also
reveals this effect, showing that if we were to jointly minimize over both x and ρ, the {0, 0} solution is
heavily favored.

16. While it could be argued that setting d to a larger value could obviate the need for the (n −m) log λ
penalty altogether, we would lose considerable interpretability, connection with the original VB problem,
and from a practical standpoint, we would likely be saddled with a more sensitive tuning heuristic for d.
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Algorithm 2 VB Blind Deblurring with Jeffreys Prior and Learned λ (VB+).

1: Input: blurry image y, noise level estimation hyper-parameter d = n× 10−4

2: Initialize: blur kernel k, noise level λ
3: While stopping criteria is not satisfied, modify ωi and λ updates from Algorithm 1

with ωi ← σ−2
i ,∀i and λ← ‖y−µ∗k‖22+

∑
i(‖k̄‖22·Cii)+d
n

4: End

all of the real-world, more complex non-uniform deblurring experiments from Zhang and
Wipf (2013). Regardless, use of a single, fixed value is likely to be less burdensome than
producing an entire λ reduction schedule, which also requires a user-specified minimal λ
value anyway. Moreover, the VB update rules only require a slight modification to account
for this additional term while retaining existing convergence properties (see Appendix B for
the derivation). By estimating the noise level together with the image and kernel, we not
only make the deblurring algorithm more noise-aware and mostly parameter-free. But more
importantly, by initializing with a large value and allowing the iterations to learn the optimal
reduction schedule, it offers a natural coarse-to-fine process for blind deblurring, which has
been found as one of the crucial factors for blind deblurring algorithms as discussed above.
The experimental results from Section 6 support this conclusion.

6. Experimental Results

We emphasize that the primary purpose of this paper is the formal analysis of existing
VB blind deconvolution methodology, not the development and validation of an entirely
practical system per se. Some empirical support for recent VB algorithms, complementary
to our theoretical presentation, already exist (Babacan et al., 2012; Levin et al., 2011a;
Zhang et al., 2013; Zhang and Wipf, 2013). Nonetheless, motivated by our results herein,
we will briefly evaluate two simple refinements of Algorithm 1 that help corroborate some
of our analytical findings while demonstrating that an extremely simplified version of VB,
albeit with theoretically sound underpinnings, can outperform recent published state-of-the-
art MAP and VB algorithms with considerably more complexity and/or manual parameters.
In doing so, we hope to motivate the optimal usage of VB for more sophisticated and realistic
blind deblurring problems.

To this end we will (i) use an image prior obtained when f is flat (Jeffreys prior) as
motivated in Section 3 instead of a prior based on natural image statistics, and (ii) we will
learn the λ parameter automatically per the discussion in Section 5. The revised estimation
steps are summarized in Algorithm 2, which is obtained by adopting the basic procedure
from Algorithm 1 under the special case f(γ) = b and with the λ updates derived in
Appendix B. We will refer to this algorithm as VB+. Note that estimation is performed in
the gradient domain using the filters described in Section 3.1; however, the recovered kernel
is applied to a non-blind deconvolution step to obtain the final latent image estimate. This
filtering and final non-blind step, taken from Levin et al. (2011a), is standardized across all
algorithms compared in this section, with the exception of approach from Babacan et al.
(2012), which uses its own specially-tailored non-blind step.
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Given this variant of VB, we reproduce the experiments from Levin et al. (2011a) using
the useful benchmark test data from Levin et al. (2009).17 This consists of 4 base images of
size 255×255 and 8 different blurring effects, leading to a total of 32 blurry images. Ground
truth blur kernels were estimated by recording the trace of focal reference points on the
boundaries of the sharp images (see Levin et al. 2011b, Figure 7 and related text for details
of the experimental setup and data collection). The kernel sizes range from 13×13 to 27×27.
All evaluations are based on the SSD (Sum of Squared Difference) metric defined in Levin
et al. (2009), which quantifies the error between estimated and the ground-truth images.
To normalize for the fact that harder kernels give a larger image reconstruction error even
when the true kernel is known (because the corresponding non-blind deconvolution problem
is also harder), the SSD ratio between the image deconvolved with the estimated kernel and
the image deconvolved with the ground-truth kernel is used as the final evaluation measure.

We first compare VB+ as described in Algorithm 2 with the related variational Bayesian
methods from Fergus et al. (2006), Levin et al. (2011a), and Babacan et al. (2012), labeled
VB-Fergus, VB-Levin, and VB-Babacan respectively. For VB-Fergus and VB-Levin, results
directly accompany the Levin et al. data set; for VB-Babacan the results are produced using
a script provided directly from the first author’s website explicitly designed for producing
competitive results with the Levin et al. data (note that this code contains an additional
kernel penalty with added trade-off parameters set by the authors for working with this
data set). While all three existing VB algorithms can be effective in practice, they have not
been optimized with respect to the considerations provided herein. With VB-Fergus and
VB-Levin, the adopted image priors are loosely based on the statistics of natural scenes
and, as we have argued in Sections 3 and 4, may not be optimal. While VB-Babacan also
involves a prior with f flat like VB+, it adopts the fixed λ reduction schedule originally
from VB-Levin, and hence cannot exploit the full potential of VB.

The cumulative histogram of the SSD error ratios is shown in Figure 3(a) for all VB
methods. The height of the bar indicates the percentage of images having error ratio below
that level. High bars indicate better performance. As mentioned by Levin et al., the results
with error ratios above 2 may already have some visually implausible regions (Levin et al.,
2009). VB+ can achieve close to 90% success with error ratio below 2, significantly higher
than the others.

Regardless, all of the VB algorithms still exhibit reasonable performance, especially
given that they do not benefit from any additional prior information or regularization heuris-
tics that facilitate blur-adaptive structure selection (meaning the additional regularization
based on domain knowledge added to Equation 3 that boost typical MAP algorithms as
discussed previously). However, one curious phenomenon is that both VB-Fergus and VB-
Levin experience a relatively large drop-off in performance when the error ratio reduces from
1.5 to 1.1. While it is difficult to be absolutely certain, one very plausible explanation for
this decline relates to the prior selection employed by these algorithms. In both cases, the
prior is based on a finite mixture of zero mean Gaussians with different variances roughly
matched to natural image statistics. While such a prior does heavily favor approximately
sparse signals, it will never produce any exactly sparse estimates at any resolution of the
course-to-fine hierarchy, and hence, especially at high resolutions the penalty shape modu-

17. This data is available online at http://www.wisdom.weizmann.ac.il/~levina/papers/

LevinEtalCVPR09Data.rar
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lation effect of VB will be highly muted, as will be the beneficial sparsity/variance trade-off
that accompanies more strongly sparse priors. Thus these algorithms may not be optimal
for resolving extremely fine details, which is required for reliably producing image estimates
with low error ratios. In contrast, to achieve high error ratios only lower resolution features
need be resolved, and in this regime VB-Levin, which is also based directly on Algorithm
1, performs nearly as well as VB+. Also note that VB-Babacan performs relatively poorly
at the higher error ratios, which is likely attributable to the fact that local minima and
more catastrophic errors are a serious problem when using the highly non-convex Jeffreys
distribution without a proper schedule for reducing λ that is tuned to the image prior.

We next compare VB+ with several state-of-the-art MAP algorithms from Shan et al.
(2008), Xu and Jia (2010), and Cho and Lee (2009). Shan et al. (denoted MAP-Shan)
adopts an additional local smoothness prior designed to reduce ringing artifacts. Xu et al.
(MAP-Xu) includes two phases for kernel estimation and incorporates an explicit scheme for
edge structure selection. Finally, Cho et al. (MAP-Cho) is also a carefully-engineered MAP
approach coupled with structure selection and sharp edge prediction schemes, which help
the algorithm to avoid the degenerate delta solution. Recall that previously we have argued
that standard MAP algorithms may suffer from one of two problems: either the pixel-
wise image prior is highly sparse and convergence to sub-optimal local solutions becomes a
problem, or the prior is less sparse and global solutions do not sufficiently distinguish blurry
from sharp images. All of the MAP algorithms tested here can be viewed as addressing
this conundrum by including additional regularization schemes (priors) such that global or
near global minima favor sharp images even when the basic pixel-wise image prior is convex
(i.e., minimally sparse). This is a very different strategy than VB, which adopts a simpler
underlying model with no additional regularizers beyond the canonical pixel-wise sparse
prior. Figure 3(b) reveals that the simple VB strategy, when properly implemented, can
still outperform specially tuned MAP estimates. Note that the results of MAP-Cho are from
the data set accompanying Levin et al. (2011a) directly, while the results of MAP-Shan and
MAP-Xu are produced using the software provided by the authors, for which we adjust the
parameters carefully. For all algorithms we run every test image with the same parameters,
similar to Levin et al. (2009, 2011b). Overall, VB+ obtains the highest reported result of
any existing VB or MAP algorithm on this important benchmark.

7. Conclusion

This paper presents an insightful reformulation and subsequent analysis of MAP and VB
blind deconvolution algorithms revealing why practical success is possible and suggesting
valuable improvements for the latter. We summarize the contributions of this perspective
as follows:

• Levin et al. (2009, 2011b) have provided an interesting analysis of VB and related
MAP algorithms. We push the limits of understanding further, demonstrating that
rigorous evaluation of VB and its associated priors cannot be separated from imple-
mentation heuristics, and we have meticulously examined the interplay of the relevant
underlying algorithmic details employed by practical VB systems. Consequently, what
may initially appear to be a plausible rationale for achieving high performance may
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Figure 3: Evaluation of the restoration results: Cumulative histogram of the deconvolution
error ratio across 32 test examples. The height of the bar indicates the percentage
of images having error ratio below that level. High bars indicate better perfor-
mance. (a) comparison with several other VB algorithms. (b) comparison with
several state-of-the-art MAP algorithms.

have limited applicability given the assumptions required to implement scalable ver-
sions of VB.

• We have proven that in an ideal, noiseless setting, VB and MAP have an identical
underlying cost function once the requisite approximations are accounted for (and
they are intimately related even when noise is present). This is in direct contrast to
conventional assumptions explaining the presumed performance advantages of VB.

• We carefully examine the underlying VB objective function in a transparent form,
leading to principled criteria for choosing the optimal image prior. It is crucial to
emphasize that this image prior need not, and generally should not, reflect the most
accurate statistics of real imaging data. Instead, the preferred distribution is one
that is most likely to guide VB iterations to high quality global solutions by strongly
differentiating between blurry and sharp images. In this context, we have motivated a
unique selection, out of the infinite set of possible sparse image priors, that simultane-
ously allows for maximal discrimination between k∗x and x, displays a desirable form
of scale invariance, and leads to an intrinsic coupling between the blur kernel, noise
level, and image penalty such that bad local minima can largely be avoided. To the
best of our knowledge, this represents a completely new viewpoint for understanding
VB algorithms.

• The cause of failure when using standard MAP algorithms depends on the choice of
image prior. If −2 log p(x) is only marginally concave in |x|, or is tuned to natural
image statistics, then the problem is often that global or near-global solutions do
not properly differentiate blurry from sharp images. In contrast, if p(x) is highly
sparse, while global solutions may be optimally selective for sharp image gradients,
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convergence to bad local solutions is more-or-less inevitable. It is with the latter that
VB offers a compelling advantage.

• We have derived and analyzed a simple yet powerful extension of VB deconvolution
algorithms for learning the noise level.

• By reframing VB as a nearly parameter-free sparse regression problem in standard
form, we demonstrate that it is no longer difficult to enhance performance and gener-
ality by inheriting additional penalty functions (such as those from Shan et al. 2008)
or noise models (e.g., Laplacian, Poisson, etc.) commonly reserved for MAP. More-
over, we anticipate that these contributions will lead to a wider range of principled
VB applications, such as non-uniform deconvolution (Whyte et al., 2012; Zhu and
Milanfar, 2013) and multi-frame and video deblurring (Sroubek and Milanfar, 2012;
Takeda and Milanfar, 2011). Preliminary results show tremendous promise (Zhang
et al., 2013; Zhang and Wipf, 2013). Additionally, the analysis we conducted for
blind deconvolution may well be relevant to other related bilinear models like robust
dictionary learning in the presence of noise.

Overall, we hope that these observations will ensure that VB is not under-utilized in
blind deconvolution and related tasks. We conclude by mentioning that, given the new
perspective on VB provided herein, it may be possible to derive new blind deblurring algo-
rithms and penalty functions that deviate from the VB script but nonetheless adopt some
of its attractive properties. This is a direction of ongoing research.
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Appendix A. Proofs

This section provides proofs of various technical results described in this paper.

A.1 Proof of Theorem 1

We begin with the cost function

L(x,k,γ) ,
1

λ
‖y − k ∗ x‖22 +

∑
i

[
x2
i

γi
+ log(λ+ ‖k̄‖22γi) + f(γi)

]
, (28)

which is obtained starting with (12) and then simply removing the minimization over γ from
the definition of gVB in (13), plugging in the value of ρ, and simplifying. The basic strategy
here will be to use a majorization-minimization approach (Hunter and Lange, 2004) akin
to the concave-convex procedure (Yuille and Rangarajan, 2001) to derive coordinate-wise
updates that are guaranteed to reduce or leave unchanged L(x,k,γ), and then show that
these are in fact the same updates as Algorithm 1. In doing so we show that (12) is an
equally valid explanatory cost function with which to interpret VB.
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As an initial proposition, we may attempt to directly minimize L(x,k,γ) over x, k, and
γ independently, in each case while holding the other two variables fixed. Beginning with
x, we collect relevant terms and find that we must solve

min
x

1

λ
‖y − k ∗ x‖22 +

∑
i

x2
i

γi
, (29)

which has a convenient closed-form solution xopt given by

xopt =

[
1

λ
HTH + Γ−1

]−1 1

λ
HTy, (30)

where Γ , diag[γ] and H is the convolution matrix of the blur kernel defined in Section 3.1.
Next we consider updating γ, where the associated cost function conveniently decouples

so we may solve for each γi independently. For this purpose, we use the fact that

λ+ ‖k̄‖22γi = λγi

(
1

γi
+
‖k̄‖22
λ

)
(31)

to obtain the following minimization problem for each γi:

min
γi≥0

x2
i

γi
+ log γi + log

[
‖k̄‖22
λ

+ γ−1
i

]
+ f(γi), (32)

where γi-independent terms are omitted. Because no closed-form solution is available, we
instead use basic principles from convex analysis to form a strict upper bound that will
facilitate subsequent optimization. In particular, we use

zi
γi
− φ∗(zi) ≥ log

[
‖k̄‖22
λ

+ γ−1
i

]
, (33)

which holds for all zi ≥ 0, where φ∗ is the concave conjugate (Boyd and Vandenberghe,

2004) of the concave function φ(α) , log
[
‖k̄‖22
λ + α

]
. It can be shown that equality in (33)

is obtained using

zopt
i =

∂φ

∂α

∣∣∣∣
α=γ−1

i

=
1∑

j k
2
j Īji
λ + γ−1

i

,∀i, (34)

where we have used the fact that ‖k̄‖22 ,
∑

j k
2
j Īji is the squared norm of k reincorporating

the i-dependent image boundary conditions (see Section 3.1), which will become somewhat
relevant for a more comprehensive version of the proof. Plugging (33) into (32) we obtain
the revised problem

min
γi≥0

x2
i + zi
γi

+ log γi + f(γi). (35)

This sub-problem can be handled in multiple ways. First, if the underlying gx associated
with f (obtained from (11)) is differentiable, then (35) has a convenient closed-form solution
obtained as follows. After a exp[−1/2(·)] transformation (35) assumes the same variational
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form as the sparse prior given by (11) evaluated at the point
√
x2
i + zi, ignoring irrelevant

constants. Consequently, based on Palmer et al. (2006) we know that the optimizing γi is
given by

γopt
i =

2σ

gx′(σ)

∣∣∣∣
σ=
√
x2i+zi

, ∀i. (36)

This covers the vast majority of practical sparse priors (and all of those amenable to Al-
gorithm 1). Secondly, if for some reason gx is not differentiable at some point(s), then
(35) may still be solved numerically as a 1D optimization problem, or perhaps analytically
leveraging the structure of f . For example, if f is a non-decreasing function (as motivated
in Section 3.3), then gx will not be differentiable at zero. However, since γopt

i = 0 whenever
x2
i + zi = 0, so this does not pose a problem.

We now examine optimization over k. Isolating terms, this requires that we solve

min
k≥0

1

λ
‖y − k ∗ x‖22 +

∑
i

log

[
‖k̄‖22
λ

+ γ−1
i

]
. (37)

There is no closed-form solution; however, as before we may use strict upper bounds derived
from convex analysis for optimization purposes. Accounting again for the fact that ‖k̄‖22 ,∑

j k
2
j Īji actually depends on i, we choose(∑

j

k2
j Īji

)
vi − ϕ∗i (vi) ≥ log

[ 1

λ

(∑
j

k2
j Īji

)
+ γ−1

i

]
, (38)

which holds for all vi ≥ 0, where ϕ∗ is the concave conjugate of the concave function
ϕi(α) , log

[
α
λ + γ−1

i

]
. Similar to the γ updates from above, it can be shown that equality

in (38) is obtained with the minimizing vi given by

vopt
i =

∂ϕi
∂α

∣∣∣∣
α=

∑
j k

2
j Īji

=
zi
λ
, ∀i. (39)

Plugging (38) and (39) into (37) leads to the quadratic optimization problem

kopt = arg min
k≥0

1

λ
‖y−Wk‖22+

∑
i

zi
λ

∑
j

k2
j Īji

 = arg min
k≥0
‖y−Wk‖22+

∑
j

k2
j

(∑
i

ziĪji

)
,

(40)
where W is the convolution matrix constructed from the image x (see Section 3.1). As a
simple convex program, there exist many high-performance algorithms for solving (40).

To review, we would originally like to minimize L(x,k,γ) over x, k, and the latent
variables γ. To simplify the optimization we introduce additional latent variables z ,
[z1, . . . , zm]T and v , [v1, . . . , vm]T , such that, after combining terms from above we are
now equivalently minimizing

L(x,k,γ, z,v) ,
1

λ
‖y − k ∗ x‖22

+
∑
i

[
x2
i + zi
γi

+ log γi + f(γi)− φ∗(zi)
]

+
∑
i

∑
j

(
k2
j Īji
)
vi − ϕ∗i (vi)

 (41)
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over x, k, and the latent variables γ, z, and v. The associated coordinate descent updates
rules, meaning the cyclic iteration of (30), (34), (36), (39), and (40), are guaranteed to
reduce or leave unchanged L(x,k,γ) by standard properties of majorization-minimization
algorithms. And importantly, at least for our purposes, these updates are in one-to-one
correspondence with those from Algorithm 1, albeit with some inconsequential differences
in notation and statistical interpretation. Specifically, the γ update from (36) is equivalent
to the ω update in Algorithm 1, the x update from (30) is equivalent to the µ update,
the z update becomes equivalent to computing the diagonal of C, and finally the k update
from (40) is the same as that in Algorithm 1 but with the requisite boundary conditions
explicitly incorporated via Ī.

Note that the ω update from Algorithm 1 appears somewhat different from that orig-
inally presented in Levin et al. (2011a), which only considers the special case where the
assumed image prior is a finite Gaussian scale mixture given by

p(xi) =
∑
j

πj√
2πγ̄j

exp

[
−1

2

x2
i

γ̄j

]
, (42)

where πj ≥ 0 and
∑

j πj = 1. However, using Palmer et al. (2006) it is easily shown that

2σ

gx′(σ)
=
(
Ep(γ|xi=σ)[γ

−1]
)−1

=

∑
j

πj√
2πγ̄j

exp
[
−1

2
σ2

γ̄j

]
∑

j
πj√
2πγ̄j

exp
[
−1

2
σ2

γ̄j

]
1
γ̄j

(43)

such that formal equivalence with Levin et al. (2011a) is maintained.

In closing, we emphasize that the upper bounds utilized here were specifically chosen
so as to establish a connection with Algorithm 1. However, once we have motivated that
L(x,k,γ) is an equally valid cost function, other bounds can be used to potentially improve
the convergence rate or other properties of the algorithm. This is a direction of future
research. �

A.2 Proof of Corollary 1

Here we omit the pixel-wise subscript i for simplicity. Likewise for later proofs where appro-
priate. From the definition of gVB we know that gVB(x, 0) = minγ≥0

x2

γ +log(γ)+f(γ). After
a −2 log transformation of (11), and ignoring constant terms, we have gx(x) = −2 log p(x) =

minγ≥0
x2

γ + log(γ) + f(γ), and so it follows that gVB(x, 0) = gx(x). �

A.3 Proof of Theorem 2

We first assume that f is a concave, non-decreasing function and express gVB(x, ρ) as

gVB(x, ρ) , min
γ≥0

x2

γ
+ ψ(γ), (44)
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where ψ(γ) , log(ρ + γ) + f(γ) is also a concave, non-decreasing function of γ (because
log(ρ+ γ) is). Thus we can always express ψ(γ) as

ψ(γ) = min
z≥0

zγ − ψ∗(z), (45)

where ψ∗(z) is the concave conjugate (Boyd and Vandenberghe, 2004) of ψ(γ). Therefore,
it follows that

gVB(x, ρ) = min
γ,z≥0

x2

γ
+ zγ − ψ∗(z). (46)

Optimizing over γ for fixed x and z, the optimal solution is

γopt = z−1/2|x|. (47)

Plugging this result into (46) gives

gVB(x, ρ) = min
z≥0

x2

z−1/2|x|
+ zz−1/2|x| − ψ∗(z) = min

z≥0
2z1/2|x| − ψ∗(z). (48)

This implies that gVB(x, ρ) can be expressed as a minimum over upper-bounding hyperplanes
in |x|, with different z implying different slopes. Any function expressible in this form is
necessarily concave, and also non-decreasing since z ≥ 0 (Boyd and Vandenberghe, 2004).

Now in the other direction, assume that gVB(x, ρ) is a concave, non-decreasing function
of |x|. It then follows that

gVB(x, ρ) = min
z≥0

2z|x|+ h(z) (49)

for some function h. Using the fact that

2|x| = min
α≥0

x2

α
+ α (50)

and defining γ , αz−1, we can re-express gVB(x, ρ) as

gVB(x, ρ) = min
α,z≥0

z

[
x2

α
+ α

]
+ h(z) = min

α,z≥0

x2

αz−1
+ zα+ h(z)

= min
γ,z≥0

x2

γ
+ z2γ + h(z) = min

γ≥0

x2

γ
+ ϕ(γ), (51)

where ϕ(γ) , minz≥0 z
2γ + h(z) is necessarily a concave, non-decreasing function of γ by

construction and arguments made previously. This implies that ψ(γ) from (44) must be a
concave, non-decreasing function of γ for all ρ. Of course as ρ → ∞, log(z + ρ) becomes
arbitrarily flat, with derivative approaching zero for all γ. Consequently, the only way to
ensure that ψ(γ) is concave and non-decreasing for any ρ is to require that f is a concave,
non-decreasing function.

Finally, any locally minimizing solution xopt to (12) must necessarily be a local minimum
to

min
x

1

λ
‖y −Hx‖22 +

∑
i

gVB(xi, ρ). (52)
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If f is concave and non-decreasing, then so is gVB(xi, ρ) based on the arguments presented
above, and so (52) is a canonical sparse estimation problem with a separable concave in |x|
regularizer. Based on (Rao et al., 2003, Theorem 1), we may then conclude that m − n
elements of xopt will be zero at any local minimizer. �

A.4 Proof of Corollaries 2 and 3

For Corollary 2, the proof in both directions follows from similar arguments to those used
for proving Theorem 2. For Corollary 3, the proof follows from several modifications of the
proof of Theorem 2 from Zhang et al. (2013). We omit details for the sake of brevity. �

A.5 Proof of Theorem 3

For f(γ) = b, we have

gVB(x, ρ) ≡ min
γ≥0

x2

γ
+ log(ρ+ γ)︸ ︷︷ ︸

ϕ

(53)

since constant terms are irrelevant. We first calculate the optimal γ by differentiating ϕ
and equating terms to zero. Since

∂ϕ

∂γ
= −x

2

γ2
+

1

ρ+ γ
, (54)

it follows after some algebra that

γopt =
x2 + |x|

√
x2 + 4ρ

2
. (55)

Based on the unimodality of ϕ it follows that γopt represents the unique minimizer. Sub-
stituting (55) into (53) and omitting irrelevant constant factors, we have

gVB(x, ρ) ≡ 2|x|
|x|+

√
x2 + 4ρ

+ log
(
2ρ+ x2 + |x|

√
x2 + 4ρ

)
.

�

A.6 Proof of Corollary 4

Assuming f(γ) = b and ρ1 < ρ2, we want to show that gρ1VB ≺ gρ2VB. For this purpose it

is sufficient to show that
∂2gρVB(x)

∂x2
/
∂gρVB(x)
∂x is an increasing function of ρ, which represents

an equivalent condition for relatively concavity to one given by Definition 1, assuming the
requisite derivatives exist (Palmer, 2003).

Defining η , γ−1, we have

gρVB(x) = min
η≥0

ηx2 + log(ρ+ η−1) (56)
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where the optimal ηopt is given by the gradient of gρVB(x) with respect to x2, which follows

from basic concave duality theory. Let hρ(z) , gρVB(
√
z). Then ηopt = ∂hρ(z)

∂z . With z , x2,

we can readily compute the expression for
∂gρVB
∂x (x) via

∂gρVB(x)

∂x
=
∂hρ(z)

∂z

dz

dx
= 2x

∂hρ(z)

∂z
=
x

ρ

(√
1 +

4ρ

x2
− 1

)
. (57)

Using (57) it is also straightforward to derive
∂2gρVB(x)

∂x2
as

∂2gρVB(x)

∂x2
= 2

∂hρ(z)

∂z
− 4

x2
√

1 + 4ρ
x2

. (58)

We must then show that

∂2gρVB(x)/∂x2

∂gρVB(x)/∂x
=

1

x
−

4

x2
√

1+ 4ρ

x2

x
ρ

(√
1 + 4ρ

x2
− 1

) (59)

is an increasing function of ρ. By neglecting irrelevant additive and multiplicative factors
(and recall that x ≥ 0 from the definition of gρVB), this is equivalent to showing that

ξ(ρ) =
1

ρ

(√
1 +

4ρ

x2
− 1

)
(60)

is a decreasing function of ρ. It is easy to check that

ξ′(ρ) =

√
1 + 4ρ

x2
− 1− 2ρ

x2√
1 + 4ρ

x2

< 0. (61)

Therefore, ξ(ρ) is a decreasing function of ρ, implying that
∂2gρVB(x)

∂x2
/
∂gρVB(x)
∂x is an increasing

function of ρ, completing the proof. �

A.7 Proof of Theorem 4

For simplicity assume that f is twice differentiable. From the definition of relative concavity,

ψρ1 ≺ ψρ2 if and only if ∂2ψρ(γ)
∂γ2

/∂ψ
ρ(γ)
∂γ is an increasing function of ρ (Palmer, 2003). It is

easy to show that

ξ(ρ) ,
∂2ψρ(γ)

∂γ2
/
∂ψρ(γ)

∂γ
=
− 1

(γ+ρ)2
+ f ′′(γ)

1
γ+ρ + f ′(γ)

. (62)

To avoid notation clutter, we let ω , γ + ρ, so that the objective is then to prove that

ξ(ρ) =
− 1
ω2 + f ′′(γ)
1
ω + f ′(γ)

(63)
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is an increasing function of ρ, for all γ, ρ ≥ 0 if and only if f ′′(γ) = 0 and f ′(γ) ≥ 0, or
equivalently that f is affine with positive slope. For this purpose it suffices to examine
conditions whereby

ξ′(ρ) =
f ′′(γ)ω2 + 2f ′(γ)ω + 1

(f ′(γ)ω2 + ω)2 ≥ 0, ∀ρ, γ ≥ 0. (64)

First, assume f ′′(γ) = 0. We also have that f ′(γ) ≥ 0 by virtue of the Theorem
statement. Clearly (64) will always be true and so ξ(ρ) must be an increasing function of
ρ. In the other direction, assume that (64) is true for all ρ and γ. Because f is a concave
function, f ′′(γ) ≤ 0. Now consider the case where f ′′(γ) < 0. The denominator of (64) is
always non-negative and can be ignored. For the numerator, allow ρ to become arbitrarily
large while keeping γ fixed. The quadratic term will then dominate such that ξ′(γ) < 0,
violating our assumption that ξ′(ρ) ≥ 0. Therefore it must be that f ′′(γ) = 0.

To conclude, ψρ1 ≺ ψρ2 if and only if f ′′(γ) = 0 and f ′(γ) ≥ 0, which is equivalent to
the requirement that f(γ) = aγ + b with a ≥ 0. �

A.8 Proof of Theorem 5

Consider the VB cost function (12) with gVB defined via (13). Given an optimal solution
pair {x∗,k∗}, we equivalently want to prove that {α−1x∗, αk∗} is also always an optimal
solution pair if and only if f(γi) = b.

First we assume that f is a constant. It is easy to see that the value of the data fidelity
term in (12) is unchanged since

1

λ
‖y − k∗ ∗ x∗‖22 ≡

1

λ

∥∥∥∥y − αk∗ ∗ x∗

α

∥∥∥∥2

2

. (65)

For the penalty terms, after defining γ̄i , α2γi for each i and ρ∗ , λ/‖k̄∗‖22, we have

gVB

(
x∗i
α
,
ρ∗

α2

)
+ log

(
α2
∥∥k̄∗∥∥2

2

)
= min

γi≥0

x∗2i
α2γi

+ log

(
ρ∗

α2
+ γi

)
+ log

(
α2
∥∥k̄∗∥∥2

2

)
= min

γ̄i≥0

x∗2i
γ̄i

+ log

(
ρ∗

α2
+
γ̄i
α2

)
+ logα2 + log

∥∥k̄∗∥∥2

2

= min
γ̄i≥0

x∗2i
γ̄i

+ log(ρ∗ + γ̄i) + log ‖k̄∗‖22

≡ gVB(x∗i , ρ
∗) + log

(
‖k̄∗‖22

)
, (66)

Therefore, the rescaled solution pair {α−1x∗, αk∗} does not change the cost function value,
and must therefore also represent an optimal solution.

On the other hand, assume that {α−1x∗, αk∗} is an optimal solution for any α > 0,
from which it must follow that

gVB

(
x∗i
α
,
ρ

α2

)
+ log(α2‖k̄∗‖22) = gVB(x∗i , ρ) + log(‖k̄∗‖22)
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and therefore

min
γ̄i≥0

x∗2i
γ̄i

+ log(ρ+ γ̄i) + log ‖k̄‖22 + f
( γ̄i
α2

)
= min

γi≥0

x∗2i
γi

+ log(ρ+ γi) + log ‖k̄‖22 + f(γi). (67)

To satisfy the above equivalence for all possible x∗, k∗, and λ, f must be a constant (with
the exception of an irrelevant, zero-measure discontinuity at zero). The second part of the
theorem is likewise straightforward to show; however, we omit additional details. �

Appendix B. Noise Level Estimation

As introduced in Section 5, we would like to minimize the VB cost function (12) after the
inclusion of an additional λ-dependent penalty. This is tantamount to solving

min
λ≥0

1

λ

[
d+ ‖y − k ∗ x‖22

]
+ n log λ+

∑
i

log
(‖k̄‖22

λ
+ γ−1

i

)
,

where VB factors irrelevant to λ estimation have been omitted. We set d = n × 10−4 for
all simulations which leads to good performance. While there is no closed-form, minimizing
solution for λ, similar to the γ updates described in the proof of Theorem 1, we may utilize
a convenient upper bound for optimization purposes. Here we use

θ

λ
− φ∗(θ) ≥

∑
i

log

(
‖k̄‖22
λ

+ γ−1
i

)
(68)

where φ∗ is the concave conjugate of φ(θ) ,
∑

i log
(
θ‖k̄‖22 + γ−1

i

)
. Equality is obtained

with

θopt =
∂φ

∂θ

∣∣∣∣
θ=λ−1

=
∑
i

‖k̄‖22
‖k̄‖22
λ + γ−1

i

. (69)

To optimize over λ, we may iteratively solve

min
λ,θ≥0

1

λ

(
‖y − k ∗ x‖22 + d

)
+ n log λ+

1

λ
θ − φ∗(θ). (70)

For fixed θ, the minimizing λ is easily computed as

λopt =
‖y − k ∗ x‖22 + θ + d

n
, (71)

where λopt has a lower bound of d/n. Thus we may set d so as to reflect some expectation
regarding the minimal about of noise or modeling error. In practice, these updates can be
merged into Algorithm 1 without disrupting the convergence properties (see Algorithm 2).
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Abstract

In a very strong positive result for passive learning algorithms, Bshouty et al. showed that
DNF expressions are efficiently learnable in the uniform random walk model. It is natural
to ask whether the more expressive class of thresholds of parities (TOP) can also be learned
efficiently in this model, since both DNF and TOP are efficiently uniform-learnable from
queries. However, the time bounds of the algorithms of Bshouty et al. are exponential
for TOP. We present a new approach to weak parity learning that leads to quasi-efficient
uniform random walk learnability of TOP. We also introduce a more general random walk
model and give two positive results in this new model: DNF is efficiently learnable and
juntas are efficiently agnostically learnable.

Keywords: computational learning theory, Fourier analysis of Boolean functions, random
walks, DNF learning, TOP learning

1. Introduction

Positive results in learning theory have often assumed that the learner has access to a mem-
bership oracle. Such a learner is active, actively choosing examples for which it would like
information. Here we consider passive models where the examples are chosen randomly. A
commonly studied passive model is the model where the learner has access to independently
random labeled samples. In this document, we consider a model with intermediate power.
We study the random walk model, where the learner has access to labeled samples drawn
from a random walk on the Boolean cube.

Our work is another step in the line of successful Fourier-based algorithms for learning
with respect to the uniform distribution. Although many of these algorithms have been ac-
tive, the Low Degree Algorithm of Linial et al. (1993), the first major Fourier-based learner,
was a passive learning algorithm. This algorithm uses only random examples to estimate all
of the “low degree” Fourier coefficients of a target function. By showing that AC0 circuits
(and hence DNF expressions) are well-approximated by their Fourier coefficients of degree
logarithmic in the learning parameters, Linial et al. proved that the Low Degree Algorithm
can be used to learn AC0 in quasi-polynomial time. Another recent passive algorithm is
in a new model motivated by the smoothed analysis of algorithms initiated by Spielman
and Teng (2004). In particular, Kalai et al. (2009) show how to learn DNF—and, agnosti-
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cally, decision trees—with respect to so-called smoothed product distributions, essentially
random perturbations of arbitrary product distributions.

When the learner is active and has access to membership queries, the learner has sub-
stantially more power. Kushilevitz and Mansour (1993) gave an algorithm for learning
decision trees in polynomial time. The algorithm, based on earlier work of Goldreich and
Levin (1989), uses membership queries to find the “heavy” (large magnitude) Fourier coef-
ficients, and uses this information to construct a hypothesis. Gopalan et al. (2009) showed
that this algorithm can be made to be efficient and return a hypothesis equivalent to the
decision tree. Jackson (1997) gave the first polynomial-time algorithm for learning DNF
formulas with membership queries. The algorithm combines the Fourier search of Kushile-
vitz and Mansour (1993) with the boost-by-majority algorithm of Freund (1995). Various
improvements have been made to Jackson’s algorithm. Recently, Kalai et al. (2009) showed
how to improve this algorithm to not use boosting, but to find all heavy coefficients of
one function and run an intricate procedure to construct a good hypothesis. Also, Feld-
man (2012) gave a simplified algorithm for this construction. In terms of agnostic learning,
Gopalan et al. (2008) gave an algorithm for agnostically learning decision trees using mem-
bership queries. The possibility of agnostically learning DNF formulas with respect to the
uniform distribution is left open.

A significant step forward in learning in the random walk model (and, in our opinion,
a significant step in learning in any nontrivial passive model) was given by Bshouty et al.
(2005). They showed that, in the random walk model, it is possible to efficiently learn the
class of DNF expressions with respect to the uniform distribution. We define the oracle for
the random walk model here.

Definition 1 The random walk oracle proceeds as follows: the first example generated by
the oracle is 〈x, f(x)〉 for a uniformly random x in {0, 1}n, and the initial internal state of
the oracle is set to x. Every subsequent example is generated as follows:

1. Select i ∈ [n] uniformly at random and select b ∈ {0, 1} uniformly at random.

2. Letting x be the internal state, set the new internal state x′ to be x′j = xj for j 6= i
and x′i = b.

3. Return 〈i, x′, f(x′)〉.

This transition of internal state is known as updating x. A more natural definition
involves flipping rather than updating bits, where “x′i = b” in the second item above is
replaced with “x′i = 1−xi”. As Bshouty et al. (2005) point out, the definitions are essentially
interchangeable for uniform random walks, and the updating oracle turns out to be more
convenient to analyze. The accuracy of hypothesis h is assessed with respect to the uniform
distribution over {0, 1}n, which is the stationary distribution of this random walk. We call
learning in this setting the uniform random walk model.

However, Bshouty et al. left the efficient learnability of polynomial-weight threshold-of-
parity (TOP) functions as an open problem for the uniform random walk model; we will
refer to this problem as learning TOP ; we define the class here.
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Definition 2 A function f : {0, 1}n → {−1, 1} can be expressed as a TOP of weight W if
it can be represented as the sign of a weighted sum of parity functions, where the weights
are integers, and the sum of the magnitudes of the weights is bounded by W . The TOP
weight of f is the minimum weight over all TOP representations of f .

We will be mostly interested in the case that the weight is bounded by a polynomial in
n. This class is equivalent to polynomial-weight polynomial threshold functions of arbitrary
degree over {−1, 1}n. Additionally, Krause and Pudlák (1998) showed that a polynomial
threshold function of weight w over {0, 1}n can be represented as a polynomial threshold
function of weight n2w4 over {−1, 1}n, so this class includes polynomial-weight polyno-
mial threshold functions over {0, 1}n (and this latter class includes polynomial-size DNF
formulas). We remark that the parity function on n variables has TOP weight 1, which
is minimal, while any DNF representation of this function requires 2n−1 terms, which is
maximal (Lupanov, 1961). The efficient learnability of TOP is an intriguing question both
because TOP is a much more expressive class than is DNF and because the membership
query algorithm for efficiently learning DNF, the Harmonic Sieve (Jackson, 1997), can also
efficiently learn TOP. We add that Roch (2007) showed that TOP is learnable from a mod-
ified random walk oracle that updates the bits repeatedly in some fixed order; this type of
oracle is well-suited to the same analysis as Jackson’s Harmonic Sieve.

Unfortunately, as Bshouty et al. point out, their approach does not seem to be capable
of producing a positive TOP learning result. Actually, they give two algorithms, one using
a random walk oracle and a second using a weaker oracle that can be viewed as making
statistical queries to estimate noise sensitivity (which is, roughly, the probability that cor-
rupting an input to a function changes the output). A proof due to Roch (2007) shows
that time 2Ω(n) is required for the latter approach, and Bshouty et al.’s time bound for the
former approach also becomes exponential when applied to learning even a single parity
function on Ω(n) bits.

In somewhat more detail, the Bshouty et al. weak learning algorithm is loosely based
on the algorithm of Goldreich and Levin (1989)—adopted for learning purposes by Kushile-
vitz and Mansour (1993) and therefore often referred to in learning papers as the KM
algorithm—for locating all of the Fourier coefficients of a function whose magnitude ex-
ceeds some threshold. Bshouty et al. replace the influence-like estimates made by KM
with noise sensitivity estimates, and they also employ a breadth-first search rather than
KM’s depth-first approach. Each of these changes makes the modified KM unsuitable for
finding a weak-approximating parity on Ω(n) bits: such an algorithm is essentially search-
ing for a large-magnitude high-order Fourier coefficient, but high-order Fourier coefficients
contribute only negligibly to low-order noise sensitivity estimates, which are the only esti-
mates made by Bshouty et al.; and employing breadth-first search for a high-degree parity
using the original KM influence-like estimates would lead to computing an exponential in
n number of estimates before locating the parity.

We are aware of only one approach to weakly learning parity that differs fundamentally
from KM. This approach is based on a clever algorithm due to Levin (1993) that randomly
partitions the set of 2n Fourier coefficients into polynomially many bins and succeeds in
finding a weak approximator if one of the bins is dominated by a single coefficient, which
happens with non-negligible probability. Variants of Levin’s algorithm have been proposed

3817



Jackson and Wimmer

and analyzed by others (Bshouty et al., 2004; Feldman, 2007). But it is not at all clear how
Levin’s original algorithm or any of the variants could be adapted to use a random walk
oracle rather than a membership oracle.

1.1 Our Results

Thus, it seems that a fundamentally new approach to weakly learning parity functions is
needed in order to efficiently learn TOP in the random walk model. Our main result is the
following:

Theorem 3 In the uniform random walk model, there is an algorithm that learns TOP in
time polynomial in n but exponential in log(s/ε), where s is the minimal TOP-weight of the
target function and ε is the desired accuracy of the approximation.

Virtually every Fourier-based learning algorithm uses the following two procedures (pos-
sibly interleaving their operation):

1. Fourier detection: A procedure for finding appropriate (typically heavy) Fourier co-
efficients of some function (not necessarily the target function).

2. Hypothesis construction: A procedure for constructing a hypothesis given the identi-
fied Fourier coefficients and their estimated values.

In particular, the random walk algorithm of Bshouty et al. (2005) relies on two such
procedures. Specifically, it employs the hypothesis construction method of the Harmonic
Sieve (Jackson, 1997) as a black box but replaces the Sieve’s Fourier detection algorithm
with an algorithm that implements the Bounded Sieve (Bshouty and Feldman, 2002) using
a random walk oracle. Although this bounded Fourier detection approach is sufficient for
learning DNF, it is inadequate for learning TOP. Specifically, the parity function on all
variables (which has TOP weight 1) has no nonzero Fourier coefficients among those that
the Bounded Sieve considers, and the Fourier detection phase fails.

Our algorithm also borrows its hypothesis construction step from the Harmonic Sieve,
but it introduces a new Fourier detection algorithm that uses a random walk oracle to lo-
cate heavy coefficients of arbitrary degree in quasipolynomial time. Our Fourier detection
algorithm borrows some underlying Fourier ideas from KM, but differs markedly in how it
employs these ideas. A key feature is that our algorithm can be viewed as an elimination
algorithm: it locates a good approximating parity function by eliminating all other possi-
bilities. The core of our algorithm can also be viewed as an agnostic learner for parity in
the random walk model; it is efficient if the optimal parity is an O(1)-approximator to the
target. With uniform random examples alone, the best algorithms for this problem run in
time 2O(n/ logn) (Feldman et al., 2009).

Finally, we introduce a more general random walk model based on p-biased distributions.
We briefly show why Fourier-based methods cannot efficiently learn TOP in this model.
On a positive note, we generalize existing efficient learning results for DNF and juntas,
showing that these classes are also efficiently learnable (juntas agnostically and properly,
quite similarly to the analysis in Gopalan et al. (2008)) in the product random walk model.
Roch (2007) has shown a similar result for learning DNF from random walks over the
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domain [b]n equipped with the uniform distribution. We also mention the work of Kalai
et al. (2009) regarding the smoothed analysis model introduced by Spielman and Teng
(2004). In their model, the product distribution itself is a randomly chosen perturbation
of a product distribution. In the smoothed analysis model, DNF is efficiently learnable,
although our random walk model and the smoothed analysis model are of incomparable
strength.

We will assume that the hypothesis construction procedure of Gopalan et al. (2008)
is used in our product distribution algorithm, although the subsequent improved version
of their algorithm due to Feldman (2012) or even the boosting-based approach used in
Jackson’s Harmonic Sieve could also be used. All of these methods have comparable run-
ning times in this model. For the Fourier detection procedure, we generalize the method
of Bshouty et al. (2005) to the product distribution setting, a setting they did not consider.
We use an analysis similar to that of Bshouty et al. to show that the heavy low-degree
Fourier coefficients of real-valued functions will, with high probability, be found by this
procedure.

2. Preliminaries

All of our results are for versions of the well-known PAC model. In this model, the learner’s
goal is to recover an unknown target function f : {0, 1}n → {−1, 1}, where f is a member
of some known class of functions F . The class F is typically equipped with a size measure,
such as minimum TOP weight or minimum number of terms in DNF representation or
minimum decision tree size. The learner is given some sort of oracle access to f in the form
of labeled examples 〈x, f(x)〉, and the accuracy of the hypothesis is measured with respect
to a distribution D (that is related to the oracle).

Definition 4 We say that F is learnable if there is an algorithm that, for every ε, δ > 0,
and every target function f ∈ F , given some sort of oracle access to f , produces a hypothesis
h : {0, 1}n → {−1, 1} such that

Pr
x∼D

[h(x) 6= f(x)] ≤ ε.

with probability 1 − δ. The randomness is over the oracle and the algorithm. We say that
such an algorithm learns F .

In this paper, we consider the case where the oracle access is a random walk oracle as
described in Definition 1. In this case, the accuracy of the hypothesis is measured with
respect to the stationary distribution of the random walk.

Definition 5 If F is learnable for all ε ≥ 1/2 − γ for some γ > 0, we say that F is γ-
weakly learnable. Further, if Prx∼D[h(x) 6= f(x)] ≤ 1/2 − γ, we say that h is a γ-weak
approximation to f .

The run time dependence on δ for our algorithms, like virtually all PAC algorithms,
is logarithmic. As is standard to simplify the exposition, we will ignore the analysis of
δ parameter, and simply assume that all estimates are correct. The δ parameter is then
subsumed in O() notation and will henceforth be ignored.

3819



Jackson and Wimmer

The more interesting and challenging case is the case where there are no restrictions
on the target function. In this model, our goal is to develop an algorithm that returns a
function h that is “competitive” with the best function from some fixed class F ; this is
called agnostic learning.

Definition 6 We say that F is agnostically learnable if there is an algorithm that, for
every ε > 0 and every target function f : {0, 1}n → {−1, 1}, given some sort of oracle
access to f , produces a hypothesis h : {0, 1}n → {−1, 1} such that

Pr
x∼D

[h(x) 6= f(x)] ≤ min
g∈F

Pr
x∼D

[g(x) 6= f(x)] + ε

We say that such an algorithm agnostically learns F .

We will make extensive use of discrete Fourier analysis. For every vector a ∈ {0, 1}n,
we define the function χa : {0, 1}n → {−1, 1} such that χa(x) = (−1)

∑n
i=1 aixi = (−1)a·x.

On any fixed input x, χa(x) returns the parity (1 for even parity, −1 for odd) of the
subset of components of x indexed by 1’s in a. The set of functions {χa}a∈{0,1}n forms
an orthonormal basis for real-valued functions over {0, 1}n, where the inner product of
two functions g and h is taken to be Ex∼U [g(x)h(x)]. Here, U represents the uniform
distribution on {0, 1}n. For a function g : {0, 1}n → R, we define the Fourier coefficient
ĝ(a) = Ex∼U [g(x)χa(x)]. If g is Boolean (meaning that the codomain of g is {−1, 1}) then
it is not hard to see that ĝ(a) = 1 − 2Prx[χa(x) 6= g(x)], where again the probability is
taken with respect to the uniform distribution over {0, 1}n. Thus, if |ĝ(a)| ≥ γ, then either
Prx[χa(x) 6= g(x)] ≤ 1/2 − γ/2 or Prx[−χa(x) 6= g(x)] ≤ 1/2 − γ/2, which implies that
either χa or −χa is a (γ/2)-weak approximation to g.

Our primary algorithms focus on finding heavy Fourier coefficients—finding a such that
|ĝ(a)| ≥ γ for some threshold value γ > 0 that will be clear from context. As has just been
shown, such algorithms can be viewed as γ/2-weak learning algorithms with respect to the

uniform distribution. We use ‖̂g‖̂
2

2 to denote
∑

a ĝ
2(a) and ‖g‖∞ to represent maxx |g(x)|.

Parseval’s identity tells us that ‖̂g‖̂
2

2 = E[g2(x)], where the expectation is over uniform

random choice of x; this implies that if g is Boolean, ‖̂g‖̂
2

2 = 1. The notation x ⊕ y
represents the bitwise exclusive-OR of the binary vectors x and y (assumed to be of the
same length). In later sections, instead of f̂(a), it will be more convenient to write f̂(A),
where A ⊂ {1, . . . , n} is the set of coordinates at which a is 1.

We will call a string in {0, 1, ∗}n a restriction (we use such strings to represent certain
subsets, which can be viewed as restrictions of larger sets). For example, 0 ∗ ∗1∗ represents
the restriction and could be viewed as representing the set of all 5-bit strings where the first
bit is 0 and the fourth is 1. The bits of a restriction are those symbols that are not ∗’s.
Note that an n-bit string is considered to be a restriction. For 1 ≤ i ≤ n and b ∈ {0, 1, ∗},
we use the notation α + (i, b) to represent the restriction α′ that is identical to α except
that its ith symbol α′i is b. We say that a restriction a is consistent with a restriction α if
and only if for all i such that αi 6= ∗ it is the case that ai = αi. A Fourier coefficient f̂(c)
is consistent with restriction a if c is consistent with a. A sum over a ∈ α represents a sum
over the set of all bit-strings a consistent with α. We use |α| to denote the number of non-∗
characters in α.
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As mentioned in the introduction, the Fourier detection portion of our algorithm will be
a variation of the Kushilevitz-Mansour KM algorithm (Kushilevitz and Mansour, 1993).
The KM algorithm proceeds as follows. The goal is, for a given θ > 0 and g : {0, 1}n → R,
to find all a ∈ {0, 1}n such that |ĝ(a)| ≥ θ. The number of such coefficients is clearly at

most ‖̂g‖̂
2

2/θ
2. The KM algorithm builds a binary tree with variables at each non-leaf node

and restrictions at each leaf. The restriction at the leaf v is consistent with the variable
assignments on the path from the root to v. The key idea is to estimate

∑
a∈α ĝ(a)2. When

α = ∗n, we have
∑

a∈α ĝ(a)2 = ‖̂g‖̂
2

2. If we find
∑

a∈α ĝ(a)2 < θ2, then we know that every
desired Fourier coefficient is inconsistent with α. If

∑
a∈α ĝ(a)2 ≥ θ2 and αi = ∗ for some i,

we can refine our partition by replacing α with α+ (i, 0) and α+ (i, 1). Continuing in this
fashion, we find all the heavy Fourier coefficients. This algorithm is efficient because the

number of “active” restrictions at any time is ‖̂g‖̂
2

2/θ
2, so the number of leaves is at most

2‖̂g‖̂
2

2/θ
2. This algorithm can efficiently learn polynomial size decision trees, but cannot

efficiently learn polynomial size DNF formulas.

3. Finding a Heavy Parity

In this section we present and analyze our core algorithm, which given a threshold value
θ and a uniform random walk oracle for a function g : {0, 1}n → R finds the index a of
a Fourier coefficient such that |ĝ(a)| (nearly) exceeds θ, if such a coefficient exists. The
algorithm’s time bound is exponential in log(‖g‖∞/θ) but is otherwise polynomial. In later
sections we use this algorithm to obtain other random walk results, agnostically learning
parity (in polynomial time if the accuracy ε is constant) and learning TOP (in polynomial
time for TOPs of constant size and given constant ε and with significantly better run-time
bound than the previous algorithms of Bshouty et al. in the general case).

3.1 Utility Fourier Algorithms

Our algorithm will depend on two utility algorithms that are described now.

We first require an easy lemma, which will allow us to get uniform random examples
given a uniform random walk oracle:

Lemma 7 Let x be an arbitrary initial internal state of the random walk oracle. Then with
probability at least 1− 1/t, after n ln(nt) examples have been drawn from the oracle, every
bit of x will have been updated at least once.

Proof The probability that the ith bit is not updated after r = n ln(nt) examples is
(1− 1/n)n ln(nt) ≤ exp(− ln(nt)) = 1/(nt). By the union bound, the probability that there
is a bit not updated after n ln(nt) examples is at most 1/t.

By making t sufficiently small, we can fold the failure probability of this “reset to
random” procedure into the δ parameter with only polynomial impact on the algorithm’s
run time. We will therefore assume in the sequel that we can, whenever needed, reset the
random walk to a uniform random internal state. Among other things, this implies that
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an algorithm with access to a random walk oracle can efficiently draw independent random
examples.

Our first utility algorithm is FC(g, a, τ) (an abbreviation of Fourier Coefficient), an
algorithm that takes a uniform random walk oracle for g : {0, 1}n → R, a vector a ∈ {0, 1}n,
and τ > 0 as input, and uses a uniform random set of examples to estimate the Fourier
coefficient ĝ(a) = Ex[g(x)χa(x)] within an additive error τ of the true value. By a standard
Hoeffding argument (Hoeffding, 1963), given a set of polynomial in n, ‖g‖∞, and 1/τ such
examples, the mean of g · χa over the sample provides a sufficiently accurate estimate.
Therefore, FC can be implemented (with high probability) in time polynomial in n, ‖g‖∞,
and 1/τ .

Second, we will use SSF(g, α, τ) (an abbreviation of Sum of Squared Fourier coeffi-
cients) to represent an algorithm that takes a random walk oracle for g : {0, 1}n → R, a
restriction α, and τ > 0 as input, and returns a value σ such that |

∑
a∈α ĝ

2(a)− σ| ≤ τ . If
α contains exactly k bits (or equivalently, k non-∗ entries), then it follows from the analysis
of the KM algorithm (Kushilevitz and Mansour, 1993) that

∑
a∈α ĝ

2(a) = Ex,y,z[g(x +
y)g(x+z)χd(y⊕z)], where the expectation is over uniform choice of x from {0, 1}n−k and
y and z from {0, 1}k, where we use x+ y to mean the n-bit string formed by interleaving
in the obvious way bits from x in positions where there are ∗’s in α with bits from y in
non-∗ positions, and where d is the k-bit string obtained by removing all of the ∗’s from α.
Thus, SSF could be implemented given a membership oracle for g by randomly sampling
the random variable g(x + y)g(x + z)χd(y ⊕ z) and computing the sample mean. Using
Hoeffding’s bound, a sample of size polynomial in 1/τ and ‖g‖∞ suffices to ensure a sample
mean within τ of the true mean, and therefore the time bound for SSF is polynomial in n,
1/τ , and ‖g‖∞. However, when using a random walk rather than membership oracle, we
have a somewhat weaker result:

Lemma 8 The random walk algorithm SSF(g, α, τ) can be implemented using poly(n|α|, ‖g‖∞, 1/τ)
time and samples.

Proof The algorithm uses examples to estimate g(x + y)g(x + z)χd(y ⊕ z). We begin
by resetting the oracle to a random internal state. We then draw from the oracle until
we observe a sequence of consecutive steps that collectively update all of and only the bits
corresponding to non-∗ characters in α (some of these bits might be updated more than
once). The inputs before and after this sequence of steps give us the x+y and x+z values
we need in order to obtain a sample from the random variable. For simplicity of analysis, we
can imagine waiting for a sequence of consecutive steps that update the bits corresponding
to non-∗ characters in order, each being updated exactly once (this gives an upper bound
on the time required for the actual algorithm, which will allow repeats and any ordering
of updates). Then the probability that we see a sequence of |α| updates in order on the
appropriate bits is exactly 1/n|α|, and thus the running time is polynomial in 1/τ , n|α|, and
‖g‖∞.
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3.2 Intuitive Description

Given access to SSF and FC, we next describe the intuition behind our algorithm PT that
finds a parity function weakly approximating the target, if such a function exists. If we
could call SSF with arbitrary restrictions α, then in order to find a weak-approximating
parity function we could simply employ SSF as in the KM algorithm, which operates in
levels as follows (we also assume for simplicity of exposition in this intuition section that
SSF computes the sum of squares of coefficients exactly). At the first level, KM calls (a
membership-oracle based version of) SSF with the restrictions 0∗n−1 and 1∗n−1. Taking
θ to be the magnitude of the desired coefficient, if either of the values returned by SSF is
less than the threshold value θ2 then we know that all coefficients with indices consistent
with the corresponding restriction have magnitude less than θ. For instance, if SSF on
0∗n−1 returns a value below the threshold, we know that, if any Fourier coefficient f̂(a) has
magnitude exceeding θ, it must be the case that a1 = 1. In this case, we can then continue
by calling SSF on 10∗n−2 and 11∗n−2. If both returned values are above threshold, we could
continue with computing the sums of squares of Fourier coefficients on the four restrictions
100∗n−3, 101∗n−3, 110∗n−3 and 111∗n−3. KM continues in this way, computing (estimates
of) sums of squares of coefficients at level k for a set of restrictions each of which contains

k bits. It is not hard to see that, at any level of this recursion, at most ‖̂g‖̂
2

2/θ
2 restrictions

will survive the threshold test. Finally, after running its SSF on the set of restrictions at
the n − 1 level and thresholding, KM can run FC on any surviving restrictions (now full
n-bit vectors) to locate the desired Fourier coefficient, if it exists.

The problem with this approach in our random walk setting is that our implementation
of SSF has a running time exponential in the level, so we cannot afford to run SSF at all
of the levels required by KM. This suggests that rather than adopting the depth-oriented
approach of KM, we might be better served by a breadth-oriented approach.

For instance, imagine that there is one especially heavy coefficient f̂(c) and that the sum
of squares of all other coefficients is very small. Then running SSF on the pair of restrictions
0∗n−1 and 1∗n−1 would reveal the first bit of c (0 if SSF run on the first restriction returns
a large value and 1 otherwise), running the algorithm on the pair ∗0∗n−2 and ∗1∗n−2 reveals
the second bit, and so on. Each of these calls to SSF is, in KM terms, at the first level,
and therefore each can be run in time polynomial in n.

Of course, in general, the Fourier spectrum will not be so accommodating. For instance,
we might be able to fix the first bit of any heavy coefficient as above, but perhaps when
we call SSF on the pair of restrictions ∗0∗n−2 and ∗1∗n−2, both calls return values that
exceed the threshold. In this case, we will further explore the coefficients consistent with
one of these restrictions—let us say those consistent with ∗0∗n−2—by making second-level
calls to SSF, beginning with calls on the pair of restrictions ∗00∗n−3 and ∗01∗n−3. If both
of these calls return values below threshold, we know that any heavy coefficient f̂(c) must
have c2 = 1, so we can proceed with a breadthwise search at the first level. On the other
hand, if exactly one of these restrictions—say ∗01∗n−3—returns a value above threshold,
then we can continue a breadthwise search at the second level, next computing the sums of
squares of coefficients consistent with ∗0∗0∗n−4 and ∗0∗1∗n−4.

If this breadthwise search succeeds at fixing a single bit for each of the remaining bit
positions, then we will have a candidate vector c on which we can run FC. If c is rejected,
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or if at any point in the second-level search both of a pair of returned values are below
threshold, then we will as before be able to fix c2 = 1 and will continue a breadthwise
search at the first level. Finally, if at any point in the second-level search we encounter
a pair of above-threshold return values from SSF, we will begin a third-level breadthwise
search over the coefficients consistent with one of these restrictions. And so on.

What we have not specified thus far is which restriction we choose to further explore
when both restrictions in a pair produce above-threshold values. The answer is that we
choose the restriction corresponding to the smaller of the two sums of squares. This is
perhaps somewhat counter-intuitive; after all, we are seeking a heavy coefficient, so it
might seem that our search efforts should be focused on those sets of coefficients that
are most likely to contain such a coefficient. However, to a large extent our algorithm
attempts to locate a heavy coefficient by eliminating certain sets of coefficients from further
consideration. Viewed this way, choosing to focus on sets of coefficients with small sums
of squares makes good sense, as these are the sets most likely to be eliminated by refined
searches. What is more, we are guaranteed that every time we increase the level of our
search, we are searching on a set of coefficients that has sum of squares at most one half of
the sum at the previous search level. Thus, the sums decrease exponentially quickly with
increases in level, which allows us to limit our calls on SSF to relatively shallow levels.

With this background, we are ready to formally present our algorithm.

3.3 PT Algorithm

PT and its recursive helper function PTH, which performs the bulk of the work, are
presented as Algorithms 1 and 2. The α parameter of PTH represents the bits that have
been fixed (for purposes of further exploration) by earlier search levels. The a parameter is
a restriction that is consistent with α and that further incorporates information learned to
this point in the breadthwise search at the current level. In particular, a is a string of bits
followed by a string of ∗’s, and it essentially tells us that the index of any heavy coefficient
consistent with α must also be consistent with (begin with the bits of) a.

In this paper, we use the control flow statement throw, which takes a value as input.
As used in this algorithm, “throw x” has the effect of returning the value x to the user, and
the entire algorithm is terminated, regardless of the level of recursion at which the throw
statement occurs. (throw will be used in a more general way in a later section.)

We prove the correctness of our algorithm using several lemmas.

Input: θ, ε > 0
Output: thrown value, if any, is a ∈ {0, 1}n such that |ĝ(a)| ≥ θ − ε/2; normal return

guarantees that there is no a such that |ĝ(a)| ≥ θ + ε/2.
1: if θ ≤ ε/2 then {any coefficient will do}
2: throw 0n

3: else
4: PTH(∗n, ∗n, 1, θ, ε)
5: return
6: end if

Algorithm 1: PT

3824



New Results for Random Walk Learning

Input: α ∈ {0, 1, ∗}n; a ∈ {0, 1, ∗}n, where a is consistent with α; 1 ≤ i ≤ n; θ > 0;
0 < ε < 2θ

Output: thrown value, if any, is c ∈ {0, 1}n such that |ĝ(c)| ≥ θ − ε/2; normal return
guarantees that there is no c consistent with a such that |ĝ(c)| ≥ θ + ε/2.

1: while i ≤ n do
2: s0 ← SSF(g, α+ (i, 0), ε2/16)
3: s1 ← SSF(g, α+ (i, 1), ε2/16)
4: if s0 < θ2 and s1 < θ2 then
5: return
6: else if s0 < θ2 then
7: a← a+ (i, 1)
8: else if s1 < θ2 then
9: a← a+ (i, 0)

10: else
11: b← argminb(sb)
12: PTH(α+ (i, b), a+ (i, b), i+ 1, θ, ε)
13: a← a+ (i, 1− b)
14: end if
15: i← i+ 1
16: end while
17: if |FC(g, a, ε/2)| ≥ θ then
18: throw a
19: else
20: return
21: end if

Algorithm 2: PTH
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Lemma 9 Algorithm PT always either throws a vector or returns normally (it does not
loop infinitely).

Proof Clearly, PT eventually terminates if PTH does. It is also easy to see that PTH
terminates if called with parameter value i such that i > n. Assume, for induction, that for
some fixed k ≥ −1, PTH terminates when called with i such that n− i ≤ k, and consider
a call to PTH with i such that n − i = k + 1. Then every recursive call to PTH will be
made with an argument value i such that n−i ≤ k and will therefore either return normally
or throw a value, terminating PH. It is thus clear that, even if all recursive calls to PTH
return normally, the while loop of PTH will eventually terminate, as will the call to PTH
having n− i = k + 1.

Lemma 10 For any execution of PT, in every call to PTH the α and i argument values
will be such that the characters in locations i through n of α will all be ∗.

Proof This is simple to verify.

Lemma 11 The restriction on PTH that the a parameter value be consistent with the α
value will be satisfied throughout any execution of PT. Furthermore, all values that a takes
on during any given execution of PTH will be consistent with the value of the α parameter
passed to this instantiation of PTH.

Proof The call to PTH from PT clearly satisfies the restriction. Let us then assume, for
induction, that the restriction on a is satisfied as long as the level of recursion never exceeds
some fixed integer k, and consider an instance of PTH executing at recursion level k. Then
since the value of i in the while loop of PTH is never less than i’s initial parameter value,
by Lemma 10 any bit restrictions applied to a at lines 7, 9, and 13 will be consistent with
α. It follows that if PTH is called at line 12, initiating execution at recursion level k + 1,
a+ (i, b) will be consistent with α+ (i, b).

Lemma 12 For any execution of PT, in every call to PTH with argument values α, a, i,
θ, and ε, the depth of recursion at which the call is made will be exactly |α|.

Proof The only line for a recursive call to PTH is in line 12, and this is also the only line
where α is modified. As noted in the proof of the previous lemma, the i and α parameter
values within PTH will always be such that position i in α will be a ∗. Therefore, whenever
this line is executed, the value of the α argument in the call—that is, the value of α+ (i, b);
call it α1—will be such that |α1| = |α|+ 1. Thus, each recursive call to PTH increases |α|
by exactly 1.

Lemma 13 For any given execution of PT, no two distinct calls to PTH will have the
same value for the α argument.
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Proof Suppose the claim is false and let α′ be a restriction that is passed to PTH mul-
tiple times such that |α′| is as small as possible. By Lemma 10 every recursive call to
PTH adds a non-∗ bit to the α argument, so α′ cannot be ∗n. Thus, there is a maximum
value—call it j—such that position j of α′ is not a ∗. Also by Lemma 10, the multiple calls
to PTH with argument value α′ must have been such that the value of their α parame-
ter was α′′ = α′+(j, ∗). This is a contradiction to the minimality of α′ since |α′′| = |α′|−1.

Lemma 14 For every fixed g : {0, 1}n → R and θ, ε > 0, if PT run with these parameters
throws a vector c, then |ĝ(c)| ≥ θ − ε/2.

Proof There are only two places in the algorithm that a value can be thrown. The first is
at line 2 in PT, which is called only if θ ≤ ε/2. In this case, θ − ε/2 ≤ 0, so any vector c
will have a corresponding Fourier coefficient satisfying the requirement of the lemma. The
other throw is at line 18 of PTH. In order for this statement to throw a vector c, it must
be the case that |FC(g, c, ε/2)| ≥ θ, which implies |ĝ(c)| ≥ θ − ε/2.

We now need to show that a normal return implies that all the Fourier coefficients have
low magnitude. We show an equivalent statement:

Lemma 15 For any valid fixed g, θ, and ε, if there exists c′ ∈ {0, 1}n such that |ĝ(c′)| ≥
θ+ ε/2, then PT executed on θ and ε and with access to a uniform random walk oracle for
g throws some vector c such that |ĝ(c)| ≥ θ − ε/2.

Proof
Let us for the moment consider a function g for which there is one c′ such that |ĝ(c′)| ≥

θ + ε/2 and all other coefficients c 6= c′ are such that |ĝ(c)| < θ − ε/2. By Lemmas 9 and
14, PT run on an oracle for such g either throws c′ or returns. By Lemma 11, if PTH
is called with a parameter α with which c′ is not consistent, PTH will return normally.
On the other hand, if c′ is consistent with the α parameter of some call to PTH, then
each time s0 and s1 are computed at lines 2 and 3 with some value assigned to i, c′ will
be consistent with α + (i, c′i). Thus, when we compute sc′i , we get a value that is at least

(θ + ε/2)2 − ε2/16 ≥ θ2.
Therefore, a call to PTH for which c′ is consistent with the α parameter of the call

will never execute the normal return at line 5. Furthermore, for such an instantiation of
PTH, if any and all recursive calls to PTH at line 12 are made with α+ (i, b) with which
c′ is not consistent, then all will return normally. In this case, the instance of PTH under
consideration will eventually throw c′ at line 18. On the other hand, if this instance makes
a recursive call at line 12 using a α + (i, b) with which c′ is consistent, then it can be seen
(inductively) that that call must result in c′ being thrown, either directly by the recursively
called PTH itself or indirectly as a result of further recursion.

Next, consider the case in which multiple coefficients have magnitude of at least θ− ε/2
and at least one coefficient has magnitude at least θ + ε/2. Fix the index c′ of one such
coefficient and consider a call to PTH with a parameter α with which c′ is consistent.
The only point at which the above argument used the assumption of a single coefficient
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heavier than θ − ε/2 was in inferring that a recursive call to PTH at line 12 would return
normally given that c′ was not consistent with the argument value α + (i, b). However,
if this assumption of a normal return fails, by Lemmas 9 and 14 it must fail because the
recursive call causes a vector c to be thrown such that |ĝ(c)| ≥ θ − ε/2.

Summarizing, we have argued that whenever PTH is called with a restriction α such
that (θ+ ε/2)-heavy c′ is consistent with α, the algorithm will throw some (θ− ε/2)-heavy
vector c (which is not necessarily c′). Putting this together with the fact that c′—and every
other vector—is consistent with the value ∗n assigned to α in the initial call to PTH gives
the lemma.

Theorem 16 For any g : {0, 1}n → R, given a uniform random walk oracle for g, PT(g, θ, ε)
runs in time polynomial in nlog(‖g‖∞/θ) and 1/ε, throws a value c′ such that |ĝ(c′)| ≥ θ− ε/2
if there exists c such that |ĝ(c)| ≥ θ+ ε/2, and returns normally if |ĝ(c)| < θ− ε/2 for all c.

Proof By Lemma 15, the theorem follows by establishing the run time bound. This, in
turn, depends primarily on bounding the depth of recursion of the algorithm, which we do
now.

Lemma 17 The maximum depth of the recursion when PT is called with fixed parameter
value θ and access to random walk oracle for fixed real-valued function g is O(log(‖g‖∞/θ)).

Proof Consider an arbitrary instance of PTH that is executing at line 11. For b ∈ {0, 1},
define tb =

∑
a∈α+(i,b) ĝ(a)2. In line 11, ideally we would like to assign the value for b that

minimizes tb/(tb + t1−b). If we could replace the ε2/16 in SSF with 0, then the recursion at
line 12 would always be called with this minimizing b and we would have tb/(tb+t1−b) ≤ 1/2.
Thus, for any call to PTH, it would always be the case that∑

c∈α
ĝ(c)2 ≤ ‖̂g‖̂

2

22−|α|,

where we are using the fact (Lemma 12) that the recursion depth is |α|. If the right hand side
of this inequality were less than θ2, then no more recursive calls would be made. Therefore,

we have that |α| is at most dlog2(‖̂g‖̂
2

2/θ
2)e. By Parseval’s, ‖̂g‖̂

2

2 ≤ L2
∞(g), which implies

that the maximum depth of recursion is O(log(‖g‖∞/θ)) as required.
Of course, when using the actual SSF we can have estimation error. Since the error

tolerance is ε2/16, if we reach line 11 then we can only assume for each b ∈ {0, 1} that
tb ≥ θ2 − ε2/16. Recalling that θ ≥ ε/2, we have tb ≥ (3/4)θ2. Furthermore, it could be
that the value assigned to b at line 11 would actually correspond to the larger of the two
sums of squares; the most we can say is that tb ≤ t1−b+ε2/8. Combining these observations
yields that for the value of b chosen at line 11

tb
tb + t1−b

≤ tb
2tb − ε2/8

≤ tb
2tb − θ2/2

≤ (3/4)θ2

2(3/4)θ2 − θ2/2
=

3

4

and it follows that
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∑
a∈α

ĝ(a)2 ≤ ‖̂g‖̂
2

2(4/3)−|α|.

The same reasoning as in the error-free case gives the lemma.

From Lemma 13 we know that each time PTH is called it is passed a distinct value
for the α argument. From Lemma 17 we also know that the maximum depth of the re-
cursion is O(log(‖g‖∞/θ)), so it follows that the number of recursive calls made is at most
nO(log(‖g‖∞/θ)). Each recursive call uses at most one call to FC, which runs in polynomial
time, and two calls to SSF, which run in time polynomial in nlog(‖g‖∞/θ) and 1/ε. The
theorem follows.

4. TOP Learning

The Harmonic Sieve (Jackson, 1997) learns—from a membership oracle and with accuracy
measured with respect to the uniform distribution—Threshold of Parity (TOP) functions
in time polynomial in their weight w as well as in n and 1/ε (recall from Definition 2 that
the TOP weight of a function f is the minimum weight representation of that function
as a threshold of an integer-weighted sum of parity functions). The algorithm’s proof of
correctness is based in part on the following fact (Jackson, 1997):

Fact 18 For every f of TOP weight w and every distribution D over {0, 1}n, there exists
a parity χa such that

|ED[fχa]| ≥
1

2w + 1
.

Defining g ≡ 2nfD, it follows that for any TOP of weight w, there exists a such that
|ĝ(a)| ≥ 1/(2w+1). The original Sieve uses its membership queries in two ways: 1) to obtain
uniform random examples for purposes of estimating hypothesis accuracy; 2) to implement
KM in order to locate heavy a’s for D’s (and hence g’s) defined by a certain boosting
algorithm. The original Sieve boosting algorithm (and some other boosting algorithms
which could be used instead and give asymptotically better bounds) has the property that,
when learning with respect to the uniform distribution, the D’s it defines all have the
property that 2n maxxD(x) is polynomial in 1/ε. It follows that any g defined using such
a D has ‖g‖∞ that is also polynomial in 1/ε.

It is a simple matter, then, to replace the membership-query KM algorithm in the Sieve
with the random-walk PT algorithm. Since 1/θ is O(w) (we can assume w is known, since
a simple binary search technique can be used otherwise), in the context of TOP learning
PT will run in time polynomial in nlog(w/ε). And as noted earlier, the uniform random
examples required by the Sieve can be obtained using a uniform random walk oracle with
Õ(n) run-time cost per example. We therefore obtain the following:

Theorem 19 TOP is learnable in the uniform random walk model in time nO(log(w/ε)).
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When employing certain boosting algorithms, the Harmonic Sieve produces a TOP as
its hypothesis. Thus, TOP is actually properly learnable in the uniform random walk model
in the stated time.

Input: ε > 0
Output: throws a such that |f̂(o)| − |f̂(a)| ≤ 2ε
1: θl ← 1
2: try
3: loop
4: PT(θl, ε)
5: θl ← θl/2
6: end loop
7: catch a
8: end try-catch
9: if θl = 1 or θl ≤ ε then

10: throw a
11: end if
12: θu ← 2θl
13: while θu − θl > ε do
14: try
15: PT((θl + θu)/2, ε)
16: θu ← (θl + θu)/2
17: catch a
18: θl ← (θl + θu)/2
19: end try-catch
20: end while
21: throw a

Algorithm 3: AGPARITY

5. Agnostic Parity Learning

It is straightforward to employ PT to agnostically learn parity in the uniform random walk
model. First, some analysis. Let o ≡ argmaxa |f̂(a)|. That is, either χo or−χo is the optimal
approximating parity; let ±χo represent the optimal. We will use PT to give a agnostic
learning that is proper ; that is, we will actually output a parity function as our hypothesis.
Thus, we want an a ∈ {0, 1}n such that Pr[±χa 6= f ] ≤ Opt + ε = Pr[±χo 6= f ] + ε,
where ±χa represents either χa or −χa, depending on which better approximates f . Since
for any a, Pr[χa 6= f ] = (1 − f̂(a))/2, we can achieve our goal if we find an a such that
|f̂(o)| − |f̂(a)| ≤ 2ε.

The AGPARITY algorithm (Algorithm 3) achieves this goal, as proved in the following
lemma. Note that this algorithm uses try-catch blocks. Any throw occurring within such
a block is “caught” by the catch statement ending the block, and execution proceeds
normally from that point with the thrown value assigned to the variable specified in the
catch statement. On the other hand, if normal sequential execution encounters a catch

3830



New Results for Random Walk Learning

statement, the catch is ignored and execution continues immediately after the next end
try-catch statement. throw statements occurring outside a try-catch block behave as
before, returning the specified value to the user and terminating the entire procedure.

Lemma 20 For any ε > 0 and any f : {0, 1}n → {−1, 1}, Algorithm 3 throws a vector a
such that |f̂(o)| − |f̂(a)| ≤ 2ε. Thus, AGPARITY agnostically learns parity.

Proof Recall (Lemma 15) that if PT(θu, ε) returns normally then there is no a such that
|f̂(a)| ≥ θu+ε/2. Thus, in the case of a normal return, |f̂(o)| < θu+ε/2. On the other hand,
if a call to PT(θl, ε) throws a vector a, then |f̂(a)| ≥ θl − ε/2 by Lemma 14. Therefore, if
we are able to find two threshold values 0 < θl < θu such that θu− θl ≤ ε, PT(θl, ε) throws
a vector a, and PT(θu, ε) returns normally, then we will have that |f̂(o)| − |f̂(a)| ≤ 2ε, as
desired. Algorithm 3 consists for the most part of a search for such threshold values.

The algorithm begins (lines 2 through 8) by searching for a value θl at which PT(θl, ε)
throws some vector, beginning with θl = 1 and halving until a suitable threshold value
is found. This search must terminate after O(log(1/ε)) iterations, since PT will certainly
throw a vector once θl ≤ ε/2. If the first call (with θl = 1) throws a vector a, then
AGPARITY can in turn also throw a without any further search, since in this case
|f̂(a)| ≥ 1− ε/2 and, for any Boolean f , |f̂(o)| can be at most 1. Similarly, if θl ≤ ε when a
vector a is first thrown, then the previous call to PT used a threshold value (call it θu) that
was at most ε greater than θl (since θu = 2θl), and this call returned normally. Therefore,
by the analysis of the previous paragraph, a can safely be thrown by AGPARITY.

On the other hand, if ε < θl < 1 when a is thrown, then we will set θu to 2θl (line 12).
Throughout the remainder of the algorithm, θl will be the largest threshold value at which
PT has thrown a vector, and θu will be the smallest value at which PT has returned
normally. AGPARITY uses binary search to refine these values until they are within ε
of one another. That is, it will call PT on the midpoint between the threshold values,
updating θl if PT throws a vector and updating θu otherwise. Once the threshold values
are sufficiently near one another, AGPARITY will throw the final vector a that it has
caught from PT. It follows immediately from the earlier analysis that this a satisfies the
requirements of the lemma.

We next analyze the run time. Clearly, the second loop of Algorithm 3, like the first,
makes O(log(1/ε)) calls to PT, since the initial difference θu − θl is less than 1 and the
difference is halved each iteration. Therefore, the total number of calls to PT is O(log(1/ε)),
and these calls obviously dominate the run time. Since the threshold value in each call is
at least ε/4 and f is Boolean, the runtime of each call to PT is O(nlog(1/ε)) by Theorem 16.
Therefore, we have shown:

Theorem 21 The class of all parity functions can be agnostically learned in the uniform
random walk model in time O(nlog(1/ε)).
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6. Product Random Walk Model

We next turn to results for a generalization of the uniform random walk model to certain
non-uniform walks. In this section, we give definitions and some preliminary observations.
Subsequent sections generalize existing learning results to this model. We study product
distributions, whose study in the context of learning began with Furst et al. (1991).

From this point forward, we will slightly change notation: we will index Fourier coef-
ficients by subsets of [n] rather than vectors in {0, 1}n; identifying the string a ∈ {0, 1}n
with the set S = {i|ai = 1}. Further, we will take the domain of our functions over the
hypercube to be {−1, 1}n instead of {0, 1}n.

6.1 Properties of Product Distributions

A product distribution over {−1, 1}n with parameter µ = [−1, 1]n is a distribution D where
ED[xi] = PrD[xi = 1]−PrD[xi = −1] = µi for all i, and the bits {xi}ni=1 are independent.
We will denote such a distribution as Dµ. With respect to Dµ, we define the inner product
of two functions f and g to be Ex∼Dµ [f(x)g(x)].

Given a vector µ ∈ [−1, 1]n, a string x ∈ {−1, 1}n, and an index i ∈ [n], define the
function

zi(x) =
xi − µi√

1− µ2
i

and for a set S ⊆ [n], define φS =
∏
i∈S

zi. The work of Bahadur (1961) shows that

the 2n functions φS form an orthonormal basis on real valued functions on {−1, 1}n with
respect to the inner product defined in this section. We define the Fourier coefficient of
f : {−1, 1}n → R as

f̃(S) = E
x∼Dµ

[f(S)φS ].

Notice that when µ = 0n, we recover the uniform distribution. Indeed, many theorems
from Fourier analysis with respect to the uniform distribution are true in arbitrary product
distributions, such as Parseval’s identity:

E
x∼Dµ

[f(x)2] =
∑
S

f̃(S)2.

We will frequently need to bound the maximum absolute value of these φS functions,
so we will assume that the product distribution Dµ is such that µ is in [−1 + c, 1− c]n; we
refer to such a product distribution as c-bounded. The uniform distribution is the unique
1-bounded product distribution.

With the standard Fourier coefficients, if f̂(S) is heavy then the corresponding parity χS
(or its negation) is a weak approximator to f . But φS is not a Boolean function, so it cannot
necessarily be directly used as a hypothesis if f̃(S) is heavy. However, Jackson (1997) shows
how to efficiently produce a weak approximating Boolean function from a heavy f̃(S) as
long as |S| is logarithmic and we are working in a c-bounded product distribution with c
bounded away from 0, which will be the case for our results.
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We can still estimate Fourier coefficients using a modified version of FC. Specifically,
when given g : {−1, 1}n → R as input with tolerance parameter τ , we simply estimate
E[g(x)φS(x)] to within ±τ . A simple application of a Hoeffding bound tells us that we can
do this from a random walk oracle, but the number of samples required to ensure confidence
in our estimate is poly(c−k, 1/τ) for a c-bounded product distribution. Thus, the factor c−k

will often show up in our time complexity bounds. We will refer to this procedure as FCµ.

6.2 Product Random Walk Oracle

It is not immediately clear how one would even define a random walk oracle with respect to
product distributions. Fortunately for us, a very straightforward random walk has desirable
properties. We use the same updating steps as before. Regardless of µ, we pick a coordinate
i uniformly at random and replace it with a bit chosen from the one-dimensional product
distribution with mean µi. For µi = 1/2, we replace the ith coordinate with a uniform
random bit as in the previous sections.

It is straightforward to show that the stationary distribution of this random walk is the
Dµ:

Lemma 22 The stationary distribution of the aforementioned random walk is Dµ, and the
mixing time of this random walk is O(n log n), independent of µ.

Proof
It is easy to compute that with respect to Dµ, we have Prx∼Dµ [xi = b] = 1

2 + 1
2bµi for

b ∈ {−1, 1}. For a string x ∈ {−1, 1}n, we let Dµ(x) denote the probability mass assigned
to x. Further, let x(i) be x with the ith bit flipped. Let α be the current state of the
random walk, and β the next state. It is easy to see that

Dµ(x(i))

Dµ(x)
=

1
2 −

1
2xiµi

1
2 + 1

2xiµi

using the fact that Dµ is a product distribution. Also, we have Pr[β = x(i)|α = x] =
1
n(1

2 −
1
2xiµi), since the random walk step must update bit i and update that bit to −xi.

We have a similar expression when x(i) and x are reversed, and ultimately we have

Dµ(x(i))Pr[β = x|α = x(i)] = Dµ(x(i))
1

n

(
1

2
+

1

2
xiµi

)
= Dµ(x)

1

n

(
1

2
− 1

2
xiµi

)
= Dµ(x)Pr[β = x(i)|α = x)].

It follows that the chain is reversible with respect to Dµ, and this Dµ is the stationary
distribution of the Markov chain.

The mixing follows since we are updating coordinates uniformly at random, so just as in
the previous sections, all n coordinates are (with high probability) updated after O(n log n)
steps.
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6.3 The Noise Sensitivity Model

We will actually prove our product random walk results in a weaker learning model. The
product ρ-noise sensitivity model is defined similarly to the ρ-noise sensitivity model intro-
duced by Bshouty et al. (2005). Specifically, each call to the oracle for this model will return
a 5-tuple 〈x, f(x),y, f(y), U〉, where x is generated at random from Dµ-biased distribution
and y is constructed from x as follows: for each i ∈ n, independently and with probability
1− ρ update each xi by choosing a new value from the distribution with parameter µi for
it (if a bit of x is not updated, it is unchanged in y). U is the set of coordinates of the
bits updated. The accuracy of the hypothesis produced will be measured with respect to
Dµ. We refer to this model as pρNS for short. The following lemma is a generalization of
Proposition 10 of Bshouty et al. (2005).

Lemma 23 For any fixed 0 < ρ < 1, any algorithm in the pρNS model can be simulated in
the pRW model at the cost of a O(n log n) factor in run time.

Proof Our random walk can be described in the following way: given the current string
α, the next string β is α with probability Dµ(α) := (1/n)

∑
(1

2 + 1
2αiµi), and β = α(i)

with probability (1/n)(1
2 −

1
2αiµi) for all i. Under this distribution, we can assign a bit

that got updated according to µi. If β 6= α, then the updated bit must be the unique bit
where βi 6= αi. Otherwise, we randomly choose a bit that was updated (but was updated
to its original value). Here, we choose i with probability (1

2 + 1
2αiµi)/Dµ(α) . The total

probability that i is selected is (1/n)(1
2 −

1
2µi) + (1/n)(1

2 + 1
2µi) = 1/n, regardless of the

value of α. Thus, we can treat our distribution as uniformly choosing a bit, and updating.

Fix ρ ∈ (0, 1). To simulate an oracle for pρNS from pRW , we first draw a Dµ random
labeled example 〈x, f(x)〉 by updating every bit, which happens after O(n log n) samples.
To get 〈y, f(y)〉, we first select a random number u from Binomial(n, 1 − ρ), and update
precisely u of the bits of x. We then repeatedly draw examples from the pRW oracle until
exactly u distinct bits have been updated. The resulting point is as if a random subset of
u bits had been updated. We take this point to be y, its label to be f(y), and U to be the
set of bits updated. The resulting 5-tuple 〈x, f(x), y, f(y), U〉 is consistent with the distri-
bution given by the pρNS oracle. Note that we achieve a slowdown of at most O(n log n);
the worst case is when u = n, and we need a new example from Dµ.

7. Positive and Negative Results in pRW

Having introduced the pRW model, we would like to transfer our uniform random walk
result for agnostically learning parity to the pRW model. Unfortunately, this is not possible
using Fourier methods, due to the “smearing” of the Fourier spectrum of parity under
product distributions where the bits are not uniformly distributed. Here, we think of parity
as a function from {−1, 1}n into {−1, 1}, where χ[n](x) =

∏
xi. We also define χi(x) = xi

for any 1 ≤ i ≤ n. We will restrict ourselves to distributions where µi = µj for all
1 ≤ i ≤ j ≤ n, so the only parameter is µ1.
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Claim 24 Let χ[n] be the parity function on n bits. With respect to Dµ where µ1 = µj for

1 ≤ j ≤ n, the Fourier coefficient f̃(S) of f = χ[n] is

µ
n−|S|
1 (

√
1− µ2

1)|S|.

Proof Assume we are working under Dµ where µ1 = µj for all 1 ≤ j ≤ n; all expectations
here are with respect to this distribution. Then

f̃(S) = E[χ[n]φS ]

= E[
∏
i∈[n]

χi
∏
i∈S

φi]

= E[
∏
i∈S

χiφi
∏
i/∈S

χi]

=
∏
i∈S

E[χiφi]
∏
i/∈S

E[χi].

It is straightforward to check that E[χi] = µ1 and E[χiφi] = 1√
1−µ21

((1 +µ1)(1
2 −

1
2µ1) +

(1− µ1)(1
2 + 1

2µ1)) =
√

1− µ2
1, proving the claim.

When µ1 is bounded away from −1, 0 and 1 by a constant, the expression
√

1− µ2
1 is

bounded away from 0 and 1 by a constant, so every f̃(S) is exponentially small. Thus, our
agnostic parity algorithm, which relies on finding heavy Fourier coefficients, cannot succeed
in the product random walk model (for most values of µ). Although there is a simple
algorithm in the case of learning parities, this “smearing” will still happen for functions
with all high-degree terms when written as a multilinear polynomial; equivalently, when all
the Fourier coefficients with respect to the uniform distribution occur on vectors of high
Hamming weight.

Despite this negative beginning, we are able to obtain two positive results for pRW .
We begin by observing that many of the algorithms used in learning under the uniform dis-
tribution using Fourier analysis techniques work by estimating certain (possibly weighted)
sums of squares of Fourier coefficients. Often, the algorithm efficiently estimates these sums
by estimating expectations, and the correctness of these expectations depends only on the
orthogonality of the χS functions. When only orthogonality is used, it is straightforward
to extend the algorithm to product distributions. However, the structural theorems used
to prove correctness may not follow, as we have just seen in the case of parity. In addition,
the complexity of the algorithm may increase when extending to product distributions.

We will show two positive learning results in pRW (via results in pρNS): DNF formulas
can be efficiently learned in the pRW model, and juntas can be efficiently agnostically
properly learned in the pRW model. The efficiency of these algorithms degrades as c
decreases. The proofs are given in the next two sections. Both of these results rely on
using Fourier detection to find heavy Fourier coefficients of low degree; such an algorithm
is known as the Bounded Sieve.

3835



Jackson and Wimmer

8. Bounded Sieve

We begin this section with the definition of the Bounded Sieve, first appearing in Bshouty
and Feldman (2002):

Definition 25 Let f : {−1, 1}n → R. An algorithm with some form of oracle access to f is
said to perform the Bounded Sieve (with respect to D) if, given input parameters θ > 0 and
` ∈ [n], it outputs a list of subsets of [n] such that every set S ⊆ [n] satisfying |S| ≤ ` and
f̃(S)2 ≥ θ appears in the list. Further, every set in the list satisfies |S| ≤ ` and f̃(S)2 ≥ θ/2.

In short, an algorithm that performs the Bounded Sieve (which we will simply refer to
as the Bounded Sieve) is a Fourier detection algorithm that is only required to detect heavy
low-degree Fourier coefficients. While access to the Bounded Sieve isn’t enough to even
learn constant-size TOP, Bshouty and Feldman (2002) showed that it is sufficient to learn
polynomial-size DNF formulas with respect to the uniform distribution.

The approach taken by Bshouty and Feldman (2002) is boosting-based as is the Har-
monic Sieve of Jackson (1997), so the actual implementation involves a interleaving of the
Fourier detection phase (which is the weak learner) with the hypothesis construction phase
(which is the boosting algorithm). Feldman (2012) gives an algorithm that runs each stage
only once: it is sufficient to find all heavy low-degree Fourier coefficients of the target func-
tion; this corresponds to running the Bounded Sieve once. The contribution of Feldman
(2012) is a hypothesis construction procedure that uses no extra training examples. We
also note that Feldman (2012) gives a membership query algorithm for learning DNF un-
der product distributions and claims that the algorithm also succeeds in the random walk
model, although no random walk model for product distributions is clearly defined. We
proceed to verify that the Bounded Sieve indeed can be performed in the product random
walk model that we have defined.

Theorem 26 (essentially Bshouty and Feldman (2002), see also Feldman (2012))
Let A be an algorithm performing the Bounded Sieve (with respect to a c-bounded product dis-
tribution Dµ) which runs in time poly(n, ‖f‖∞, θ, `). Then there is a poly(n, slog(2/(2−c)), ε− log(2/(2−c)), c− log(2/(2−c)))-
time algorithm which learns n-variable, s-term DNF formulas to error ε using A as a black
box and independent uniform random examples.

We note that Bshouty and Feldman (2002) do not mention product distributions, but
combining the work of Jackson (1997) on product distributions with their work almost
immediately yields the above theorem.

Our proofs use the even weaker pρNS oracle, As in Bshouty et al. (2005), our first goal
is to estimate quantities of the form

T (I) :=
∑
S:S⊇I

ρ|S|f̃(S)2.

Since we only care about finding heavy Fourier coefficients f̃(S) with |S| ≤ `, each
such Fourier coefficient contributes at least ρ`θ to T (I) when S ⊇ I. For applications to
learning DNF we take ` to be O(log n) and θ to be inverse polynomial, so ρ|S|f̃(S)2 is at
least inverse polynomial in n for the indices of Fourier coefficients that we are interested
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in. As an aside, the algorithm is an approximate, low-degree version of the Kushilevitz-
Mansour (Kushilevitz and Mansour, 1993) algorithm applied to the “noisy” version of f ;

specifically, the function
∑
S⊆[n]

ρ|S|f̃(S)φS .

We now work towards efficiently estimating T (I). Given a pρNS oracle and a set I ⊆ [n],

let D(I)
ρ be the distribution of pairs (x,y) as follows: x is a random string from Dµ (we will

suppress the dependence on µ for clarity), and y is formed from x by updating each bit in
I with probability 1 and updating each bit not in I with probability 1− ρ. Using a pρNS
oracle, we can simulate this distribution. We simply keep drawing 〈x, f(x),y, f(y), U〉
until we get a 5-tuple with I ⊆ U . With high probability, we need at most poly((1− ρ)|I|)

examples until this happens. Then (x,y) is our desired draw from D(I)
ρ .

Define T ′(I) = E
(x,y)∼D(I)

ρ
[f(x)f(y)]. It is easy to see that with a pρNS oracle we can

estimate T ′(I) (with a poly((1 − ρ)|I|) slowdown). Now we prove the analog of Claim 12
from Bshouty et al. (2005) in the product setting. Our proof will demonstrate that we only
use orthonormality of the φS functions to achieve this result.

Input: θ > 0, ` > 0
Output: The returned list contains all indices of heavy or almost-heavy Fourier

coefficients S with |S| ≤ `.
1: return EST(θ, `, ∅, ∅)

Algorithm 4: BOUNDED-SIEVE

Input: θ > 0, ` > 0, I ⊆ [n],L ⊆ 2[n]

Output: The list L is augmented with indices of heavy or almost-heavy Fourier
coefficients S with S ⊇ I and |S| ≤ `.

1: Estimate f̃(I)2 to within ±θ/4.
2: if the estimate is at least 3θ/4 then
3: L ← L ∪ {I}
4: end if
5: if |I| ≥ ` then
6: return L
7: end if
8: Estimate T (I) =

∑
S:S⊇I ρ

|S|f̃(S)2 to within ±ρ`θ/4.

9: if the estimate is at least 3ρ`θ/4 then
10: for all i ∈ ([n] \ I) do
11: L ← L ∪EST(θ, `, I ∪ {i},L)
12: end for
13: end if
14: return L

Algorithm 5: EST

Claim 27 T ′(I) =
∑

S
⋂
I=∅ ρ

|S|f̃(S)2.
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Proof All expectations in this proof are over (x,y) ∼ D(I)
ρ .

E[f(x)f(y)] = E[(
∑
S

f̃(S)φS(x))(
∑
T

f̃(T )φT (y))]

=
∑
S

∑
T

f̃(S)f̃(T )E[φS(x)φT (y)]

=
∑
S

∑
T

f̃(S)f̃(T )E[
∏
i∈S

zi(x)
∏
j∈T

zj(y)],

where the second equality holds because the φS functions are orthonormal. Because we are
working over product distributions, zi(x) and zj(x) are independent when i 6= j, and x
can be replaced with y in either or both cases. Notice that if S \ T or T \ S is nonempty,
the expectation is 0. We will assume without loss of generality that T \ S is nonempty and
j ∈ T \ S. Then zj(y) is independent of every other term in the expectation, and E[zj(y)]
is 0. So the only nonzero terms in the sum occur when S = T , and the sum becomes∑

S

f̃(S)2E[
∏
i∈S

zi(x)zi(y)] =
∑
S

f̃(S)2
∏
i∈S

E[zi(x)zi(y)] (1)

using independence again.

Recall that we are trying to show T ′(I) =
∑

S
⋂
I=∅ ρ

|S|f̃(S)2, and the distribution with

which we are taking expectations respect to is D(I)
ρ . To evaluate the expectation, we will

consider two cases. If i ∈ I, then the ith bit is updated with certainty. In this case, zi(x)
and zi(y) are independent and thus E[zi(x)zi(y)] = E[zi(x)]E[zi(y)] = 0. For i /∈ I, we see
that yi is updated with probability 1− ρ. The probability distribution on zi(x)zi(y) is as
follows:

zi(x)zi(y) =


1− µi
1 + µi

with probability (1
2 + 1

2µi)(ρ+ (1− ρ)(1
2 + 1

2µi))

1 + µi
1− µi

with probability (1
2 −

1
2µi)(ρ+ (1− ρ)(1

2 −
1
2µi))

−1 with probability 2(1
2 + 1

2µi)(
1
2 −

1
2µi)(1− ρ)

The first case corresponds to both bits being 1, the second for both bits being−1, and the
third for when the bits are different. It is straightforward to verify that E[zi(x)zi(y)] = ρ.
So the sum in Equation 1 reduces to∑

S

f̃(S)2
∏
i∈S

E[zi(x)zi(y)] =
∑

S:S
⋂
I=∅

ρ|S|f̃(S)2

as claimed.

Equipped with the Fourier interpretation of T ′(I), we can now prove that T (I) can be
efficiently estimated.

Lemma 28 In Step 8, T (I) can be efficiently estimated.
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Proof Define T ′′(I) =
∑

S:S
⋂
I 6=∅ ρ

|S|f̃(S)2. This quantity is easy to estimate, as T ′′(I) +

T ′(I) =
∑

S ρ
|S|f̃(S)2 = T ′(∅). To estimate T (I) =

∑
S:S⊇I ρ

|S|f̃(S)2 within γ, we can

estimate T ′′(J) for every J ⊆ I to within γ/2|I|. We apply inclusion-exclusion, resulting in

T (I) =
∑

J⊆I;J 6=∅

(−1)|J |−1T ′′(J).

There are 2|I| many subsets, and the coefficients of T ′′(J) above are at most 1 in abso-
lute value, so the error is at most γ.

Given that we can estimate T (I), our algorithm will perform a breadth-first search,
similar to Kushilevitz and Mansour (1993). We think of the set 2[n] as a graph in the natural
way; the nodes are identified with subsets of [n], and two nodes T and U are adjacent if
the symmetric difference of T and U has cardinality 1. We will refer to a node I as active
when the recursive procedure is called with I as the third parameter. We remark that in
a breadth-first search of this graph starting at the empty set, the previously undiscovered
nodes are supersets of the current node.

Starting at I = ∅, at each active node, the algorithm estimates f̃(I)2 to within θ/4
and T (I) to within ρ`θ/4. The second estimate uses our procedure outlined in Lemma 28
and takes time poly(n, (1− ρ)`, 2|I|, ρ`θ/2, c−`). The first estimate is performed via FCµ as
described earlier; the required running time can be bounded by poly(n, ‖f‖∞, 1/θ, c−|I|) by
applying the Hoeffding bound (Hoeffding, 1963). The c−|I| term comes from the fact that

under a c-bounded product distribution Dµ, |φI(x)| ≤
(√

2−c
c

)|I|
= poly(c−|I|) for every x.

If FCµ returns that f̃(I)2 has magnitude at least θ/2 then the algorithm adds I to the list

of f ’s heavy Fourier coefficients. Thus if f̃(I)2 ≥ θ then I will certainly be added to the
list.

The breadth-first search proceeds to the neighbors of I only if |I| < ` and the estimate
of T (I) is at least 3ρ`θ/4. The proof is complete given two claims: first, we claim the
algorithm finds all Fourier coefficients f̃(S)2 ≥ θ and |S| ≤ `; and second, we claim the
algorithm ends its search after visiting at most poly(‖f‖∞, 1/θ, (1− ρ)−`) sets I.

For the first claim, note that if |S| ≤ ` and f̃(S)2 ≥ θ, then for I ⊆ S, we have

T (I) =
∑
T :T⊇I

ρ|T |f̃(T )2 ≥ ρ|S|f̃(S)2 ≥ ρ`θ.

It follows that the breadth-first search will reach S. The algorithm will estimate f̃(S)2,
and the set S is added to the list L.

For the second claim, we give an upper bound on the number of active nodes that the
algorithm considers. First, a lemma:

Lemma 29 For any f : {−1, 1}n → R, 0 ≤ j ≤ n, and ρ ∈ (0, 1), we have
∑
|I|=j T (I) ≤

‖f‖2∞ρj(1− ρ)−(j+1).

Proof We straightforwardly calculate:
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∑
|I|=j

T (I) =
∑
|I|=j

∑
S⊇I

ρ|S|f̃(S)2

=
∑
|S|≥j

(
|S|
j

)
ρ|S|f̃(S)2

≤

∑
|S|≥j

f̃(S)2

 ∞∑
t=j

(
t

j

)
ρt

=

∑
|S|≥j

f̃(S)2

 (1/ρ)(
ρ

1− ρ
)j+1

≤ ‖f‖22(1/ρ)(
ρ

1− ρ
)j+1

≤ ‖f‖2∞ρj(1− ρ)−(j+1),

where the third equality follows from generating function identities and the fact that
ρ ∈ (0, 1).

This implies that the number of active nodes at layer j in the breadth-first search can
be at most: ∑

|I|=j

T (I)

ρjθ/2
=
‖f‖2∞ρj(1− ρ)−(j+1)

ρjθ/2
= 2‖f‖2∞(1/θ)(1− ρ)−(j+1).

Since j ≤ `, the total number of nodes the breadth-first search ever encounters is at
most (`+ 1) · 2‖f‖2∞(1/θ)(1− ρ)−(`+1) = poly(n, ‖f‖∞, 1/θ, (1− ρ)−`), as claimed.

Now that the Bounded Sieve is established, we get the following result, which is a
restatement of Theorem 26:

Theorem 30 The class of s-term DNF formulas over n variables can be learned with error
in the pρNS and pRW models in time poly(n, slog(2/(2−c)), ε− log(2/(2−c)), c− log(2/2−c)).

For the Fourier detection phase, we also remark that it seems difficult to transfer the
running time guarantee of the EKM algorithm of Kalai et al. (2009). Although their
paper does not specifically address membership query algorithms, their EKM procedure
can be used as a membership query algorithm for finding heavy Fourier coefficients in
product distributions with a running time independent of c. However, in our product
random walk model, methods as rejection sampling would incur a slowdown on the order
of poly(2/(2− c)`), where ` is the size of the sets of Fourier coefficients we consider. In the
case that c is bounded away from 0, these extra factors are virtually constant compared to
the other factors in the running time.
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9. Agnostically Learning Juntas

In the case of agnostically learning juntas, we can use the Bounded Sieve, but we have to
do slightly more work to show that this is useful. The overall complexity with our imple-
mentation of the Bounded Sieve yields a running time of poly(n, kk, ε−k, c−k) for properly
agnostically learning juntas with respect to a c-bounded product distribution Dµ.

Input: ε, k > 0
Output: returned function is a k-junta with error ε in computing f
1: Use Algorithm 4 to find L, all Fourier coefficients f̂(S) such that |S| ≤ ` = k and
f̂(S)2 ≥ θ = ε22−k.

2: Use FCµ to estimate f̃(S) to within ±θ/4 for each S ∈ L, and call the estimate ĝ(S).
3: Let g be the function such that g(x) =

∑
S∈S ĝ(S)φS(x).

4: Let R = {i|
∑

S:S3i |S|g̃(S)2 ≥ ε2/k}, and let g′(x) =
∑

S⊆R ĝ(S)φS(x).
5: For every K ⊆ R of size k, let h′K = sgn(g′K) and estimate errf (h′K).
6: Return h′K which minimizes errf (h′K).

Algorithm 6: JUNTAS

Our proof is very similar to the proof of Gopalan et al. (2008). In fact, our algorithm is
virtually the same. However, rather than working in the model of uniform distribution plus
membership queries, we extend this algorithm to product distributions as well as restricting
our oracle access to a pρNS oracle.

The algorithm of Gopalan et al. (2008) makes use of its membership queries by using
KM to identify all Fourier coefficients f̂(S) of heavy magnitude with |S| ≤ k. Since the
size of S is bounded for their purposes, it suffices to use the Bounded Sieve, just as we have
already done. In showing above that DNF is efficiently learnable in the pρNS model, we
have effectively also shown that the Bounded Sieve works even in the pρNS model. The
Fourier methods used in their algorithm again only use orthogonality and are not specific to
the uniform distribution. Therefore, after translating expectations to the correct product
distribution, the algorithm is almost immediate.

Suppose we wish to agnostically learn a k-junta. We will start by running the Bounded
Sieve in pρNS, stopping at level k and setting the threshold θ = ε22−k. In this fashion, we
find all heavy Fourier coefficients S of f with |S| ≤ k. Let S be the set of heavy Fourier
coefficients found, and set g(x) =

∑
S∈S g̃(S)φS(x). Note that we can only estimate g,

so we use ĝ(S) to denote our estimate of g̃(S). Following the argument of Gopalan et al.
(2008), let R be the set of coordinates with high “low-degree influences”; we have i ∈ R iff∑

S∈S,S3i g̃(S)2 ≤ ε2/k. Finally, for every set K ⊆ R of size k, estimate the error of sgn(g′K)
on f , where g′K =

∑
S⊆K g̃(S)φS(x). The function sgn(g′K) of least error over choices of

K ⊆ R is our hypothesis.

We will now prove the correctness of this algorithm. We remind the reader that for a
function g : {−1, 1} → R we define ‖g‖1 to be Ex[|g(x)|]; in this section, the expectation is
over the relevant product distribution Dµ. We will prove a sequence of lemmas very similar
to those of Gopalan et al. (2008). First, an analog of their Lemma 13:
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Lemma 31 Given K ⊂ [n], and f : {−1, 1}n → {−1, 1}, let fK(x) =
∑

S⊆K f̃(S)φS(x).
The K-junta that minimizes errf (·) is given by hK(x) := sgn(fK(x)). Also, errf (hK) =
1
2(1− ‖fK‖1).

Proof The proof indeed follows similarly to Lemma 13 of Gopalan et al. (2008). The major
difference is that in the {φS} basis, xi is not a unbiased bit. However, the φS functions are
orthonormal, which is the property used to derive (in the φ basis) that E[φS(x)|xK = u] =
1[S ⊆ K]φS(u). The rest of the argument follows nearly directly by changing f̂ to f̃ . We
provide the details here.

Let us fix a value u ∈ {−1, 1}k. As in the work of Gopalan et al. (2008), by x|xK = u we
denote the random variable x where the indices in K are set according to u and the rest are
uniformly random. This identifies a sub-cube CK(u) of {−1, 1}n. Note that any function
depending only on the coordinates inK will be a constant function when restricted to CK(u).
Hence, the agreement with f is maximized by the function gK : {−1, 1}k → {−1, 1}, where

gK(u) = sgn(E[f(x)|xK = u]) = sgn(
∑
S⊆[n]

f̃(S)E[φS(x)|xK = u].

Using the fact that we are working in a product distribution, the expected value of
φ{i}(x) is 0 if i /∈ K. Thus,

E[φS(x)|xK = u] =

{
φS(u) if S ⊆ K
0 otherwise

Hence E[f(x)|xK = u] =
∑

S⊆K f̃(S)φS(u), which implies that gK(u) = sgn(fK(u)) =
hK(u). Since E[f(x)|xK = u] = fK(u) and f(x) ∈ {−1, 1}, we have

Pr[f(x) = sgn(fK(x))|xK = u] = 1
2 + 1

2(|fK(u)|) and

Pr[f(x) 6= sgn(fK(x))|xK = u] = 1
2 −

1
2(|fK(u)|).

Averaging over all u ∈ {−1, 1}k with respect to the underlying product distribution
and observing that the product distribution induces the appropriate product distribution
on xK , we obtain errf (hK) = Pr[hK(x) 6= f(x)] = 1

2 −
1
2E[|fK(x)] = 1

2(1− ‖fK‖1).

Their Lemma 14 is also easily generalized:

Lemma 32 Let gK : {−1, 1}n → R be such that ‖fK(x) − gK(x)‖1 < ε, and let h′K =
sgn(gK). Writing hK = sgn(fK), we have errf (h′K) ≤ errf (hK) + 2ε.

Proof
Fix xk = u. Then from the previous lemma, we have

errf (h′K |xK = u) =

{
errf (hK |xK = u) if sgn(gK(u)) = hK(u)

errf (hK |xK = u) + 2|fK(u)| if sgn(gK(u)) 6= hK(u)

We claim that in both cases,
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errf (h′K |xK = u) ≤ errf (hK |xK = u) + 2|fK(u)− gK(u)|.

The first case is easy to see; in the second case, we use the fact that sgn(gK) 6= hK =
sgn(fK), so |fK(u)| ≤ |fK(u)− gK(u)|.

Averaging over all choices of u with respect to the underlying product distribution, we
get

errf (h′K |xK = u) ≤ errf (hK) + 2E[|fK(x)− gK(x)|] ≤ errf (hK) + 2ε.

And finally, we can prove correctness of the algorithm by proving an analogue of Theorem
15 in the work of Gopalan et al. (2008):

Theorem 33 The described algorithm agnostically learns k-juntas to error Opt + 6ε in
the pρNS model in time poly(n, kk, ε−k, ((2 − c)/c)k) with respect to a c-bounded product
distribution Dµ.

Proof Let K be the set such that hK = sgn(fK) has the least error Opt. After we search for
heavy Fourier coefficients using the Bounded Sieve, we are guaranteed that |ĝ(S)−f̃(S)| ≤ θ
for all S ⊆ K. Hence E[gK(x)−fK(x))2] =

∑
S⊆K(f̃(S)2− ĝ(S))2 ≤ 2kθ ≤ ε2. The running

time of the Bounded Sieve is certainly bounded by poly(n, kk, ε−k, ((2− c)/c)k).
In the next step of the algorithm, we restrict ourselves to considering variables in the

set R, where i ∈ R iff
∑

i∈S,|S|≤k ĝ(S)2 ≥ ε2/k. Note that even if all k variables from the

set K are dropped, the total Fourier mass involving these variables is at most k(ε2/k) = ε2.
Hence, E[gK(x)− g′K(x))2] ≤ ε2.

Finally, we can bound E[|fK(x)− g′K(x)|] in the following manner:

E[|fK(x)− g′K(x)|] ≤ E[|fK(x)− gK(x)|] + E[|gK(x)− g′K(x)|]
≤ (E[(fK(x)− gK(x))2])1/2 + (E[gK(x)− g′K(x))2])1/2

≤ ε+ ε

= 2ε.

Thus by the previous lemma, errf (g′K) ≤ Opt + 4ε. We estimate errf (h′K) for every
K ⊆ R to within ±ε. There must be at least one choice such that our error estimate is at
most Opt + 5ε, it follows that the true error is at most Opt + 6ε as required.

To bound the running time, we show that |R| = O(k2/ε2). Recall that we estimate
each Fourier coefficient so that our estimate of f̃(S)2 (which we called ĝ(S)2) for S ∈ S is
correct to within ±θ/4. The Bounded Sieve will only return Fourier coefficients such that
f̃(S)2 ≥ θ/2, so it follows that ĝ(S)2 ≤ (3θ/4)/(θ/2)f̃(S)2 = (3/2)f̃(S)2 ≤ 2f̃(S)2 for each
S ∈ S.

Now we observe that
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∑
i∈[n]

(
∑

i∈S,|S|≤k

̂̃g(S)2) ≤
∑
i∈[n]

(
∑

i∈S,|S|≤k

2g̃(S)2) ≤
∑
|S|≤k

2|S|g̃(S)2 ≤ 2k
∑
S

g̃(S)2 ≤ 2k.

Thus, at most 2k/(ε2/k) = 2k2/ε2 variables can satisfy
∑

i∈S,|S|≤k
̂̃g(S)2 ≥ ε2/k. Hence

|R| ≤ 2k2/ε2. It follows that there are at most
(|R|
k

)
≤ (2ek2/ε2)k many choices for K. Each

estimation in Step 2 of the algorithm can be done in poly(n, 1/ε, c−k) time, so the overall
running time beyond the Bounded Sieve is poly(n, ε−k, kk, c−k).

10. Further Work

Although we have made progress on learning TOP in the uniform random walk model, it
would of course be preferable to have a polynomial-time algorithm. In the product model,
parity of a logarithmic number of bits can be agnostically learned, and it is obvious that
n-bit parity is learnable by a “statistical query-like” algorithm that simply observes which
bits are relevant during a random walk. Can TOP be learned (quasi)-efficiently in this
model? Can we remove the condition that the product distribution is c-bounded in the
product random walk model?
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Abstract

Decision forests are an increasingly popular tool in computer vision problems. Their ad-
vantages include high computational efficiency, state-of-the-art accuracy and multi-class
support. In this paper, we present a novel method for transfer learning which uses decision
forests, and we apply it to recognize gestures and characters. We introduce two mecha-
nisms into the decision forest framework in order to transfer knowledge from the source
tasks to a given target task. The first one is mixed information gain, which is a data-
based regularizer. The second one is label propagation, which infers the manifold structure
of the feature space. We show that both of them are important to achieve higher accu-
racy. Our experiments demonstrate improvements over traditional decision forests in the
ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against
other state-of-the-art classifiers.

Keywords: decision forests, transfer learning, gesture recognition

1. Introduction

Machine learning tools have achieved significant success in many computer vision tasks,
including face detection (Viola and Jones, 2004), object recognition (Felzenszwalb et al.,
2010), character recognition (LeCun et al., 1998) and gesture recognition (Guyon et al.,
2013). Those tasks are often posed as a classification problem, namely identifying to which
of a set of categories a new observation belongs. Such classifiers are usually learned from
scratch using a training data set collected for the task. A major advantage of using machine
learning tools is that they tend to deal robustly with the complexities found in real data.

However, in many cases it is difficult to create new training data sets for each new
computer vision task. Although the problem remains unsolved, some progress has already
been made in certain computer vision tasks, such as object recognition (Fei-Fei et al., 2006)
and action recognition (Seo and Milanfar, 2011). The key insight is to try to replicate the
ability of the human brain, which is capable of learning new concepts applying previously
acquired knowledge.

Transfer learning aims at extracting the knowledge from one or more source tasks, and
applying that knowledge to a target task. As opposed to multi-task learning, rather than
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simultaneously learning the source and target tasks, transfer learning focus more on learning
the target task. The roles of the source and target tasks are not symmetric (Pan and Yang,
2010). The goal is to exploit the knowledge extracted from the source tasks so as to improve
the generalization of the classifier in the target task.

Many examples can be found in computer vision where transfer learning can be truly
beneficial. One example is optical character recognition, which seeks to classify a given
image into one of the characters of a given alphabet. Most methods have focused on
recognizing characters from the English alphabet (LeCun et al., 1998). The recognition of
characters from other alphabets, such as French, implies collecting a new training data set
(Grosicki and Abed, 2011). In that case, it would be helpful to transfer the classification
knowledge into the new domain.

The need for transfer learning also arises in gesture recognition (Guyon et al., 2013),
which aims at recognizing a gesture instance drawn from a gesture vocabulary. For example,
a gesture vocabulary may consist of Italian gestures or referee signals. In this case, the
classifier needs to predict the gesture of the vocabulary that corresponds to a given video.
Again, it would be interesting to improve the performance of a system by exploiting the
knowledge acquired from similar vocabularies.

In this paper, we present a novel method for transfer learning which extends the decision
forests framework (Breiman, 2001; Criminisi et al., 2012), and we apply it to transfer knowl-
edge from multiple source tasks to a given target task. We introduce two mechanisms in
order to transfer knowledge from the source tasks to the target task. The first one is mixed
information gain, which is a data-based regularizer. The second one is label propagation,
which infers the manifold structure of the feature space.

Decision forests have certain properties that make them particularly interesting for com-
puter vision problems. First, decision forests are multi-class classifiers; therefore it is not
necessary to train several binary classifiers for a multi-class problem. Second, they are fast
both to train and test. Finally, they can be parallelized, which makes them ideal for GPU
(Sharp, 2008) and multi-core implementations.

The first key contribution is to revise the criterion for finding the parameters of each
internal node of the decision forests in the transfer learning setting. The novel criterion
exploits the knowledge from the source tasks and the target task to find the parameters
for each internal node of the decision forests. The additional information penalizes split
functions with a high information gain in the target task and a low information gain in the
source tasks. We prove that the novel criterion is beneficial.

The second key contribution is to propagate labels through leaves in order to infer the
manifold structure of the feature space. The aim of this step is to assign a predictive model
to the leaves without training samples of the target task after the trees of the decision forest
are grown. We create a fully connected graph, for each tree in the forest, where the nodes
are the leaves of the tree and the weight of each edge takes into account the training data
reaching the leaves. An implicit assumption of this step is that nearby leaves should have
similar predictive models.

We extensively validate our approach in two challenging data sets. First, our exper-
iments in the ChaLearn gesture challenge data set (Guyon et al., 2012) show that our
method does not have a uniform margin of improvement over all the tasks. However, we
demonstrate that when there are source tasks related to the target task, we obtain greater
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improvements. Second, our experiments in the MNIST data set (LeCun et al., 1998) show
that greater improvements are obtained, compared to classification decision forests, when
there are only a few training samples.

This paper is organized as follows. We summarize previous work on transfer learning in
Section 2. Section 3 describes the novel transfer learning decision forest in, illustrates its
performance on some artificial data sets, and proves some properties of the mixed informa-
tion gain. In Section 4 we show how the transfer learning decision forests can be used to
recognize gestures when there is only one training sample. We present our experiments on
the ChaLearn data set and the MNIST data set in Section 5. Finally, Section 6 details our
conclusions.

2. Related Work

In the following we will review transfer learning techniques which have been applied to
computer vision problems. A recent survey (Pan and Yang, 2010) provides a comprehensive
overview of the developments for classification, regression and clustering. In recent years,
the computer vision community has become increasingly interested in using transfer learning
techniques, especially for object recognition (Levi et al., 2004; Sudderth et al., 2005; Fei-Fei
et al., 2006; Bart and Ullman, 2005; Torralba et al., 2007; Quattoni et al., 2008; Bergamo
and Torresani, 2010; Gopalan et al., 2011; Saenko et al., 2010; Tommasi et al., 2014).

A variety of methods have been proposed in the generative probabilistic setting (Fei-
Fei et al., 2006; Sudderth et al., 2005). These models consider the relationships between
different object parts during the training process. The key idea is to share some parameters
or prior distributions between object categories, using the knowledge from known classes as
a generic reference for newly learned models. The association of objects with distributions
over parts can scale linearly (Sudderth et al., 2005), or exponentially (Fei-Fei et al., 2006).

Moreover, discriminative models have been extended to the transfer learning setting
(Dai et al., 2007; Yao and Doretto, 2010; Aytar and Zisserman, 2011; Tommasi et al.,
2014; Lim et al., 2011; Torralba et al., 2007). Transfer learning has been applied to the
SVM framework, during the training process of the target detector the previously learned
template is introduced as a regularizer into the cost function (Tommasi et al., 2014; Aytar
and Zisserman, 2011). Based on boosting (Freund and Schapire, 1997) a framework that
allows users to utilize a small amount of newly labeled data has been developed (Dai et al.,
2007). Later, the framework has been extended for handling multiple sources (Yao and
Doretto, 2010) .

More similar to our method, instance transfer approaches (Pan and Yang, 2010) consider
source and target data together during the training process. A loss function for borrowing
examples from other classes in order to augment the training data of each class has been
proposed by Lim et al. (2011). A method for learning new visual categories is described
by Quattoni et al. (2008), using only a small subset of reference prototypes for a given
set of tasks. As mentioned earlier, a boosting-based algorithm that allows knowledge to
be effectively transferred from old to new data has been proposed by Dai et al. (2007)
and extended later by Yao and Doretto (2010). The effectiveness of the novel algorithm is
analyzed both theoretically and empirically. In this paper, we develop an instance transfer
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approach that exploits source and target data to find the parameters of each internal node
of the decision forest.

Few researchers have addressed the problem of transfer learning using decision forests
or trees. Leistner et al. (2009) extends random forests to semi-supervised learning. In order
to incorporate unlabeled data a maximum margin approach is proposed, which is optimized
using a deterministic annealing-style technique. Wang et al. (2008) proposed to treat each
input attribute as extra task to bias each component decision tree in the ensemble. Pei
et al. (2013) proposed a novel criterion for node splitting to avoid the rank deficiency in
learning density forests for lipreading. The method proposed by won Lee and Giraud-
Carrier (2007) learns a new task by traversing and transforming a decision tree previously
learned for a related task. The transfer learning decision tree learns the target task from
a partial decision tree model induced by ID3 (Quinlan, 1986). In this paper, we follow a
different approach, first we consider the source and target data when we build each tree of
the decision forest. Second, decision forests reduce the variance of the classifier aggregating
the results of multiple random decision trees.

Our approach shares some features with the work by Faddoul et al. (2012), who propose
to transfer learning with boosted C4.5 decision trees. The main difference is that their
method reduces the variance of the decision trees by means of boosting, which has been
shown to be less robust against label noise when compared with decision forests (Breiman,
2001; Leistner et al., 2009). In addition, we use label propagation to learn the manifold
structure of the feature space, and assign predictive models only to the leaves of the trees.

There has been a growing interest in applying transfer learning techniques to gesture
recognition. A method for transfer learning in the context of sign language is described by
Farhadi et al. (2007). A set of labeled words in the source and target data is shared so as
to build a word classifier for a new signer on a set of unlabeled target words. A transfer
learning method for conditional random fields is implemented to exploit information in both
labeled and unlabeled data to learn high-level features for gesture recognition by Liu et al.
(2010). More recently, the ChaLearn Gesture Competition (Guyon et al., 2013) provided
a benchmark of methods that apply transfer learning to gesture recognition. Several ap-
proaches submitted to the competition have been published (Malgireddy et al., 2013; Lui,
2012; Wan et al., 2013).

3. Transfer Learning Decision Forests

We consider N + 1 classification tasks T0, . . . , TN over the instance space Rd and label sets
Y0, . . . ,YN . We are interested in solving the classification task T0 using the knowledge of the
other tasks in order to improve classification accuracy. Our transfer learning algorithm will
take as input the training set S = {(xi,yi, j)|xi ∈ Rd, yi ∈ Yj , j ∈ {0, . . . , N}, 1 ≤ i ≤M}.
The projected sets TjS = {(xi,yi)|xi ∈ Rd, yi ∈ Yj , (xi,yi, j) ∈ S} are the training sets
for each task Tj . The empirical histogram for a training set S of a task T is defined as
p̂TS(y) = 1

|TS|
∑

(x′,y′)∈TS δy′(y) where δy′(y) is the Kronecker delta and the empirical

entropy is defined as H(TS) = −
∑

y∈Y p̂TS(y) log(p̂TS(y)), we will note p̂S(y) or H(S) to
make the notation simpler when it is convenient and unambiguous.

The goal is to find a decision forest F = {F1, . . . , FT }, defined as an ensemble of T
decision trees F , which minimizes the classification error. A decision tree F is a strictly
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binary tree in which each node k represents a subset Rk in the instance space Rd and all the
leaves ∂F form a partition P of Rd. In addition, each leaf k ∈ ∂F of a decision tree F has a
predictive model associated with it: pF (y|x ∈ Rk). The internal nodes k ∈ F ◦ of a decision
tree have a linear split function: h(x,θk) = x · θk, where θk are the parameters of node k.
The subset represented by the left child kL of node k is defined as RkL = RLk = {x ∈ Rd|x ∈
Rk ∧ h(x,θk) < 0} and, similarly, we define RkR = RRk = {x ∈ Rd|x ∈ Rk ∧ h(x,θk) ≥ 0}
as the subset represented by the right child kR. The training set reaching node k is defined
as Sk = {(x,y, j) ∈ S|x ∈ Rk}.

3.1 Training

The training algorithm of a decision forest F consists in training each of the trees F ∈ F
independently, introducing a certain level of randomness in the training process in order to
de-correlate individual tree predictions and improve generalization.

We grow each tree using an extension of the classical training algorithm (Criminisi et al.,
2012). The algorithm follows a top-down approach, optimizing the parameters θ of the root
node in the beginning and recursively processing the child nodes. The recursion is stopped
when all the items in the training set have the same labels, or the maximum depth D is
reached, or the number of points reaching the node is below the minimum number of points
allowed κ.

In this paper, we adapt the procedure for optimizing the parameters θk for each node
k ∈ F ◦ to the transfer learning setting (Pan and Yang, 2010). The difference between
the classification decision forest (Criminisi et al., 2012) and the transfer learning decision
forest is the objective function. In the former, the information gain is used to find the best
parameters, taking into account only one task. By contrast, in this paper we use the mixed
information gain function as described in Section 3.1.1.

The partition P defined by the leaves ∂F after making a tree F grow might contain
regions R with no training samples of the target task T0. Therefore, we cannot define a
predictive model for those regions. In order to overcome this issue we infer the labels from
the regions that have training samples of task T0, as described in Section 3.1.2.

3.1.1 Mixed Information Gain

We believe that valuable knowledge can be transferred from the source tasks T1, . . . , TN to
the target task T0, as it happens with humans. For example, it is simpler to learn a new
sign language if another sign language has already been learned. In other words, there is
latent information that can be understood as common sense.

In our formulation, this common sense information is included in the process of making
each tree F ∈ F in the forest grow. The main idea is, therefore, to find parameters θk
for each k ∈ F ◦ in order to obtain a partition P of the feature space Rd such that, in
each region R ∈ P, the training samples of each task T have the same label. This aims
at improving the generalization capabilities of each tree independently, since each region
R ∈ P is found using more training samples, and is more general because it is encouraged
to split the training samples of several tasks simultaneously.

Unfortunately, this is a very difficult problem. For this reason, we use a greedy heuristic
which consist in recursively choosing for each internal node k ∈ F ◦ the parameters θk of the
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split function h(x,θk), which makes the training samples reaching the child nodes as “pure”
as possible. The information gain achieved by splitting the training set TSk reaching the
internal node k ∈ F ◦ of a task T using parameter θk is computed using the information
gain function

I(TSk,θk) = H(TSk)−
∑

i∈{L,R}

|TSik|
|TSk|

H(TSik)

where TSLk = {(x,y)|(x,y) ∈ TSk ∧ h(x,θk) < 0} and TSRk = {(x,y)|(x,y) ∈ TSk ∧
h(x,θk) ≥ 0}. In this paper, the parameters θk of each internal node k ∈ F ◦ are found
maximizing the information gain of all the tasks T0, . . . , TN simultaneously

θ∗k = arg max
θk∈Tk

(1− γ)I(T0Sk,θk) + γ

N∑
n=1

pn,kI(TnSk,θk) (1)

where γ is a scalar parameter that weights the two terms, Tk ⊂ Rd is a small subset of the
instance space available when training the internal node k ∈ F ◦, and pn,k is the fraction of

samples of the source task Tn in the samples reaching the node k, pn,k = |TnSk|∑N
j=1 |TjSk|

.

The maximization of (1) is achieved using randomized node optimization (Criminisi
et al., 2012). We perform an exhaustive search over subset Tk of the feature space parameters
Rd. The size of the subset is a training parameter noted as ρ = |Tk|. The randomized node
optimization is a key aspect of the decision forest model, since it helps to de-correlate
individual tree predictions and to improve generalization.

The first term of the objective function in (1) is the information gain associated with
the training samples reaching node k for the target task T0. This term encourages the
parameters θk to find a split function h(x,θk) that decreases the entropy of the training set
of the target task T0 reaching the children nodes of k.

Additional information is introduced into the second term of the objective function in (1)
for the purposes of increasing the generalization performance. This information encourages
the parameters θk to make the training samples of source tasks reaching the descendant
nodes of k as pure as possible. The key idea is that this term penalizes split functions
h(x,θk) with a high information gain in the target task T0 and a low information gain in
the source tasks T1, . . . , TN . Those splits might have a high information gain in the target
task T0 only because the training set for task T0 is limited, and if we choose them the
generalization performance will decrease.

A key insight of our work is an alternative representation of the second term in (1).
It is possible to consider all the source tasks T1, . . . , TN together concatenating the label
sets Y1, . . . ,YN , denoted by Y1...N = ⊕Nn=1Yn. The new task is noted as T1...N and the
training sample is noted as T1...NS = {(x,y)|(x,y, j) ∈ S, j ∈ {1, . . . , N},y ∈ ⊕Nn=1Yn}.
Using the generalized grouping rule of the entropy (Cover and Thomas, 2006) an alternative
expression for the second term in (1) is found

I(T1...NSk,θk) =

N∑
n=1

pn,kI(TnSk,θk).

This equation relates the information gain of several source tasks T1, . . . , TN to the
information gain of another source task T1...N . An important consequence of this equation
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is that we can combine the training set of the simpler tasks T1, . . . , TN to obtain a larger
training set for another source task T1...N . Therefore, increasing the number of training
samples per source task or the number of source tasks has a similar effect.

This observation has previously been made in the multi-task learning literature (Faddoul
et al., 2012). However, Faddoul et al. (2012) avoids the high variance of the decision trees
by using the boosting framework, whereas we use a different approach, based on decision
forest, for the same purpose.

We explain in more detail how the combination of the information gain of tasks T0, . . . , TN
for finding the optimal parameters θk improves the generalization properties of the decision
forests. The parameters θk are found using an empirical estimation of the entropy H(Sk)
of the training samples Sk reaching node k and its children. Consequently, errors in esti-
mating entropy can result in very different trees. Tighter bounds for the expected entropy
are found by increasing the number of training samples, as explained in Theorem 1.

Theorem 1 Let P be a probability distribution on Rd × Y such that the marginal dis-
tribution over Y is a categorical distribution with parameters p1, . . . , p|Y|, and suppose

SK = {(x1,y1), . . . , (xK ,yK)} is the set generated by sampling K times from Rd × Y
according to P . Let H(P ) = −

∑|Y|
y=1 py log(py) be the entropy of distribution P . Then

E(H(SK)) +
∑

y∈Y py log
(

1 +
1−py
Kpy

)
≤ H(P ) ≤ E(H(SK)).

This theorem is proved in the Appendix A.
Theorem 1 shows that the empirical entropy H(SK) is closer to the entropy of the

distribution P when the training set is larger, since when K → ∞, log
(

1 +
1−py
Kpy

)
→ 0.

Therefore, if we assume that the source tasks are related to the target task i.e., both have
a similar distribution P , using Theorem 1 we can conclude that the mixed information
gain (1) finds parameters θk that achieve lower generalization errors than the traditional
information gain I(T0Sk,θk).

To gain some insight into how the mixed information gain works, Figure 1 considers a
toy problem with two tasks, each with two labels. It is intuitively clear that the problem
of estimating the information gain of a split with only a few training samples of the target
task is that there are a lot of possible splits with the same empirical information gain but
different generalization capabilities. Our goal is to discover which split to use, and we intend
to choose the one with the best generalization capability. In Figure 1 all the splits have the
same information gain but different mixed information gain. When, in our formulation, we
use the additional training samples from the source tasks to compute the information gain
of a split, some of the splits are penalized for having a low information gain in the source
task and, thus, this allows us to find a split with increased generalization.

One of the major problems with decision trees is their high variance. A small change
in the training data can often result in a very different series of splits. The major reason
for this instability is the hierarchical nature of the process: the effect of an error in the top
split is propagated down to all the splits below it (Hastie et al., 2003). Decision forests
(Breiman, 2001) build a large collection of de-correlated decision trees, and hence reduce
the variance averaging the prediction of each of them. The mixed information gain is a
complementary approach for reducing their variance which increases the generalization of
each tree independently. It is important to note that the mixed information preserves the
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Figure 1: Illustration of mixed information gain on a toy problem in which there are two
tasks, each with two labels. The thickness of the blue lines indicates the mixed
information gain of the split (all the splits have the same information gain).
Task T0 has two green labels (Y0 = {×, ∗}) and task T1 has two red labels
(Y1 = {©,�}).

diversity of the forests, which is essential to improve the generalization error. The random
nature of the random node optimization (Criminisi et al., 2012) used to optimize (1) allows
us to keep a high diversity among the trees.

Figures 2a and 2b compare the output classification on all the points in a rectangular
section of the feature space for a decision forest classifier and for our transfer learning
decision forest classifier. Both decision forests were trained with the same maximum depth
D = 8, and have the same number of trees |F| = 100. The data set for the target and
source task is organized in the shape of a two-arm spiral. We can see that the classification
decision forests have serious generalization problems since, even when all the training data
of the target task is correctly classified, the spiral structure is not predicted accurately. In
contrast, the spiral structure is predicted by the transfer learning decision forests as shown
in Figure 2a.

3.1.2 Label Propagation

For each leaf k ∈ ∂F of each tree F ∈ F , we must have a predictive model pF (y|x ∈ Rk) that
estimates the probability of label y ∈ Y0 given a previously unseen test input x ∈ Rk ⊆ Rd.
This poses a problem when we make each tree grow using the mixed information gain
because we may end up with leaves k ∈ ∂F that have no training samples of the target task
T0 to estimate the predictive model pF (y|x ∈ Rk). In this paper we use label propagation
to assign a predictive model pF (y|x ∈ Rk) to those leaves.

We are given a set of leaves U ⊆ ∂F without training samples of the target task T0

and a set of leaves L ⊆ ∂F with training samples of the target task T0. The goal is to
obtain a predictive model pF (y|x ∈ Rk) for the leaves k ∈ U avoiding the propagation of
labels through low density regions but, at the same time, propagating labels between nearby
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(a) (b)

Figure 2: Left: Output classification of a transfer learning decision forest, tested on all
points in a rectangular section of the feature space. The color associated with
each test point is a linear combination of the colors (red and green) corresponding
to the two labels (�,©) in the target task. The training data for the target task
is indicated with big markers and the training data for the source task is indicated
with small markers. Right: Output classification of a decision forest tested in the
same feature space section as before but trained using only data for the target
task.

leaves. We construct a complete graph G = (V, E), where V = ∂F is the vertex set and E is
the edge set with each edge eij ∈ E representing the relationship between nodes i, j ∈ ∂F .

Edge eij ∈ E is weighted taking into account the training samples of tasks T0, . . . , TN .
For each leaf k ∈ ∂F we define the estimated mean µk and estimated covariance Σk using
the training samples reaching the node

µk =
1

|Sk|
∑

(x,y,j)∈Sk

x

Σk =
∑

(x,y,j)∈Sk

∑
(x′,y′,j′)∈Sk

(x− µk)(x
′ − µk)

T .

We use the estimated mean µk and estimated covariance Σk to define the weight between
two nodes eij ∈ E

eij =
1

2

(
dTijΣidij + dTijΣjdij

)
where dij = µi − µj is the difference between the estimated mean of the leaves i, j ∈
∂F . Weight eij ∈ E is the symmetric Mahalanobis distance. We use it to discourage the
propagation of labels through low density regions. For each node k ∈ U we find the shortest
path in graph G to all the nodes in L. Let s∗k ∈ L be the node with the shortest path to
node k. We assign the predictive model pF (y|x ∈ Rs∗k) to pF (y|x ∈ Rk).

Label propagation methods are usually at least quadratic O(n2) in terms of the number
of training samples, making them slow when a large number of training samples is avail-
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Figure 3: Illustration of the label propagation procedure between regions, as before the
training data for the target task is indicated with big markers and the training
data for the source task is indicated with small markers. The ellipses in black are
the isocontours of a Gaussian distribution learned by maximum likelihood for each
region using the training samples in the region. (a, b) show the predictive model
for two different trees F ∈ F before propagating labels. The color associated with
each region is a linear combination of the colors (red and green) corresponding
to the two labels (�,©) in the target task. The regions in yellow are the ones
without training data of the target task. (c, d) show the predictive model after the
label propagation. (e) Output classification of the final transfer learning decision
forest.

able. We avoid this problem by propagating the predictive model of the leaves, instead of
propagating the labels of the training samples.

We illustrate the behavior of label propagation in Figure 3 using a 2D toy example. We
consider the same two-arm spiral problem of Figure 2 which has data that follow a complex
structure. We show the predictive models for the regions of two randomly grown trees
before and after propagating labels. We observe that the predictive models are propagated
following the intrinsic structure of the data, as a consequence of taking into account the
training data of each region.

3.2 Testing

The predictive model of all the trees F ∈ F is combined to produce the final prediction of
the forest

PF (y = y|x) =
1

|F|
∑
F∈F

PF (y = y|x).
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Let lF : Rd → ∂F be the function that, given a sample x ∈ Rd, returns the leaf such
that x ∈ RlF (x). The prediction for a tree F is:

PF (y = y|x) = PF
(
y = y|x ∈ RlF (x)

)
.

Finally, let k ∈ ∂F be the leaf that is reached by sample x ∈ Rd. The class distribution
for that leaf is:

PF (y = y|x ∈ Rk) =

{
p̂T0Sk

(y) if T0Sk 6= ∅
p̂T0Ss∗

k
(y) otherwise .

Thus, PF (y = y|x) is the empirical histogram of the training samples of the target task
T0 reaching node lF (x) if any. Otherwise, PF (y = y|x) is the empirical histogram associated
with the node that has the shortest path to lF (x).

4. Gesture Recognition

Gesture recognition is one of the open challenges in computer vision. There is a big number
of potential applications for this problem, including surveillance, smart-homes, rehabilita-
tion, entertainment, animation and human–robot interaction and sign language recognition
just to mention a few. The task of gesture recognition is to determine the gesture label that
best describes a gesture instance, even when performed by different people, from various
viewpoints and in spite of large differences in manner and speed.

To reach that goal, many approaches combine vision and machine learning tools. Com-
puter vision tools are employed to extract features that provide robustness to distracting
cues and that, at the same time, are discriminative. Machine learning is used to learn a sta-
tistical model from those features, and to classify new examples using the models learned.
This poses a problem in gesture recognition since it is difficult to collect big data sets to
learn statistical models. Therefore, in this paper we perform experiments aimed at showing
that our transfer learning decision forests are useful to mitigate this problem.

Recently, the ChaLearn competition (Guyon et al., 2012) provided a challenging data
set to evaluate whether transfer learning algorithms can improve their classification perfor-
mance using similar gesture vocabularies. The data set is organized into batches, with only
one training example of each gesture in each batch. The goal is to automatically predict
the gesture labels for the remaining gesture sequences (test examples). The gestures of
each batch are drawn from a small vocabulary of 8 to 12 unique gestures, when we train a
classifier to predict the labels of a target batch (or task) T0 we use the training samples of
T0 and of the other batches T1, . . . , TN .

Each batch of the ChaLearn competition includes 100 recorded gestures grouped in
sequences of 1 to 5 gestures performed by the same user (Guyon et al., 2012). There is
only one gesture in the training sequences, but there might be more than one gesture in
the testing sequences. Therefore in order to use the method described in this section we
need to temporally segment the testing sequences. To this end, we use the dynamic time
warping (DTW) implementation given by the organizers.

In this section, we describe the features and the classifiers used to validate our approach,
as well as their application to the ChaLearn competition (Guyon et al., 2012). First, Section
4.1 describes the features, and then, Section 4.2 describes the classifier.
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τ \ ξ 16 24 32 40

1 32.61 ± 0.14 % 32.61 ± 0.24 % 30.35 ± 0.22 % 29.26 ± 0.26 %

4 30.43 ± 0.17 % 31.52 ± 0.15 % 29.26 ± 0.15 % 28.17 ± 0.19 %

8 30.43 ± 0.13 % 27.35 ± 0.16 % 28.09 ± 0.14 % 27.06 ± 0.18 %

12 32.12 ± 0.23 % 32.61 ± 0.29 % 34.78 ± 0.31 % 29.35 ± 0.33 %

16 33.72 ± 0.28 % 32.61 ± 0.29 % 34.78 ± 0.25 % 30.43 ± 0.31 %

Table 1: Classification error in the test set of the devel11 batch for different combination
of MHI parameters. In all the experiments we leave the the spatial resolution of
each frame fixed to ω1 × ω2 = 16× 12.

4.1 Motion History Images

Given a depth video V where V (x, y, t) is the depth of the pixel with coordinates (x, y)
at the tth frame. We compute the motion history image (MHI) (Bobick and Davis, 1996,
2001; Ahad et al., 2012) for each frame using the following function:

Hτ (x, y, t) =

{
τ if |V (x, y, t)− V (x, y, t− 1)| ≥ ξ
max(0, Hτ (x, y, t− 1)− 1) otherwise

where τ defines the temporal extent of the MHI, and ξ is a threshold employed to perform
the foreground/background segmentation at frame t. The result is a scalar-valued image
for each frame of the original video V where pixels that have moved more recently are
brighter. MHI Hτ represents the motion in an image sequence in a compact manner, the
pixel intensity is a function of the temporal history of motion at that point. A common
problem when computing MHI Hτ using the color channel is the presence of textured objects
in the image sequence; here we use the depth video V to overcome this issue. This is a
relevant problem in gesture recognition, because, as a result of the clothes texture, the MHI
is noisy (Ahad et al., 2012).

An interesting property of the MHI is that it is sensitive to the direction of motion;
hence it is well suited for discriminating between gestures with an opposite direction. An
advantage of the MHI representation is that a range of times may be encoded in a single
frame, and thus, the MHI spans the time scale of human gestures. After computing MHI
Hτ we reduce the spatial resolution of each frame to ω1 × ω2 pixels. Then, we flatten the
MHI for each frame and obtain a feature xm ∈ Rω1ω2 .

Figure 4 contrasts the result of computing the MHI using the RGB channel with the
one obtained using the depth channel. In the first row, we see that the clothes texture
generates noise in the MHI computed using the RGB channel. In the second row, the MHI
of the RGB channel is noisy because of the shadow from the moving arm. Both problems
are avoided using the depth channel for computing the MHI. The parameters to compute
the MHI in all the cases were τ = 15, and ξ = 30. Table 1 shows the classification error
in the test set of the devel11 batch of the ChaLearn competition, after training a decision
forest with the following parameters D = 8, T = 50.
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Figure 4: Comparison of the MHI computed using the depth channel or the RGB channel
for two different training videos of the ChaLearn competition. The first two
columns show the RGB channel and the depth channel, whereas the third and
fourth columns show the MHI computed using the RGB channel and the MHI
computed using the depth channel, respectively.

4.2 Naive Bayes

A main research trend in gesture recognition is to train hidden Markov models (HMMs)
and theirs variants (Bowden et al., 2004; Kurakin et al., 2012), in order to exploit the
temporal relation of a gesture. A drawback of this approach is that many training samples
are required to train the large number of parameters of an HMM. Additionally, recognition
rates might not improve significantly (Li et al., 2008). This limitation has been recognized
by Bowden et al. (2004) and a two-stage classifier was proposed to obtain one-shot learning.

Since in the ChaLearn competition (Guyon et al., 2012) there is only one labeled training
sample of each gesture, we use the naive Bayes model which has a smaller number of
parameters than HMM. We use transfer learning decision forests to predict the probability
that each frame will be part of a given gesture. We combine the predictions of the transfer
learning decision forests for each frame using the naive Bayes model. An advantage of the
naive Bayes assumption is that it is not sensitive to irrelevant frames (the probabilities for
all the labels will be quite similar).

Given a video V of an isolated gesture, we want to find its label y ∈ Y0. Assuming that
the class prior p(y) is uniform we have:

ŷ = arg max
y∈Y0

p(y|V ) = arg max
y∈Y0

p(V |y)

Let x1, . . . ,xM denote the MHI for each frame of a video V with M frames. We assume
the naive Bayes model i.e., that the features x1, . . . ,xM are i.i.d. given the label y, namely:

p(V |y) = p(x1, . . . ,xM |y) =

M∏
m=1

p(xm|y) =

M∏
m=1

p(y|xm)
p(xm)

p(y)
(2)
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Figure 5: Effect of the training parameters for the frame label classification error p(y|x)
(left) and video label classification error p(y|V ) (right) in the devel11 batch using
the transfer learning decision forests.

We compute the probability p(y|xm) using our proposed transfer learning decision forest
F . The data set for training the forest F consists of all the frames in each training video
in the target task T0 and source tasks T1, . . . , TN . We propose to use the frames of the
training videos in the source tasks to obtain a better classifier for each frame.

Taking the logarithm in (2) and ignoring the constant terms we obtain the following
decision rule:

ŷ = arg max
y∈Y0

p(y|V ) = arg max
y∈Y0

M∑
m=1

log (pF (y|xm))

Note that we use the same forest F for computing the label distribution of all the frames
in video V . For this reason, given a frame x, we expect distribution pF (y|x) to be multi-
modal, which is an issue for several statistical methods. However, since the transfer learning
decision forest has a predictive model for each leaf of its tree, it can deal with this type of
distribution without major problems

Figure 5 compares the classification error when predicting the label of a frame p(y|x)
with the classification error when predicting the label of a video p(y|V ), for different combi-
nations of training parameters in the devel11 batch. We observe that the maximum depth
D has a larger impact to predict the label of a video than the number of trees |F|. Moreover,
the classification error when predicting the label of a frame is greater than the classification
error when predicting the label of a video. This means, as expected, that some frames
are more discriminative than others, and that the misclassification of some frames is not a
decisive factor for classifying a video correctly.
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5. Experiments

In this section we present a series of experiments on the ChaLearn Gesture Challenge (Guyon
et al., 2012) and MNIST data set (LeCun et al., 1998) to assess the performance of our
proposed algorithm.

5.1 ChaLearn Gesture Challenge

Here, we evaluate the transfer learning decision forests on the ChaLearn Gesture Challenge.
First, we compare the results obtained for different parameters of the transfer learning
decision forests, and then we compare these results with the ones reported in related works.
For the MHI computation in this section, we set the temporal extent τ = 8, the threshold
ξ = 25, and reduce the spatial resolution of each frame to ω1 × ω2 = 16× 12 pixels.

5.1.1 Transfer Decision Learning Parameters

To obtain a general idea of the effect of the training parameters, Figure 6 evaluates the
classification error for different combinations of training parameters. We report the average
classification error obtained in the devel batches. We use the temporal segmentation of the
videos provided by the ChaLearn competition organizers. The experiments show that when
the mixing coefficient γ is between 25% and 50%, the classification error is the smallest.
This means that we obtain improvements when transferring knowledge from related tasks
but, nevertheless, we still need to make the decision trees grow using information of the
target task.

It is important to remark that when γ = 0 we are not using the training data of the
source tasks and our mixed information gain simplifies to the usual information gain, thus,
only the label propagation extension is being used. The classification error for the case γ = 0
indicates that we achieve an improvement using the label propagation alone. We obtain an
additional improvement when γ is between 25% and 75%, therefore we can conclude that
both extensions are important to reduce the classification error.

The maximum depth of the trees is a highly relevant parameter for the transfer learning
decision forests, and has some influence for the classification decision forests. As expected,
the greater the maximum depth, the smaller the classification error. It is interesting to
observe that the difference in the classification error between different values of the mixing
coefficients γ is reduced when the maximum depth is increased.

Figure 7 shows the confusion matrices for the classifiers of the transfer learning decision
forests (TLDFs) and the decision forests (DFs) in the batches devel06, devel11 and devel14.
To train the TLDFs, we set the number of trees T = 50, the maximum depth D = 8, the
mixing coefficient γ = 25%, and the size of the subset |T | = 50. In these batches the TLDFs
classifier shows improvements over the DFs classifier. The improvement is not uniform for
all the gestures of the batches, but only for some of them. This is because not all the
gestures can benefit from the training data of the source tasks. Only the gestures that
have, at least, one similar gesture in a source task show improvements.

The confusion matrix for the devel06 batch in Figure 7 shows significant improvements
in the classification of the last gesture. Figure 8 shows a representative image of that gesture
and similar gestures in the devel13 and devel15 batches. The person in front of the camera
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Figure 6: Comparison of the classification error using different combination of training pa-
rameters.

moves the left hand to a fixed position and then shows a similar pattern of the fingers, for
all these gestures. The frames of these gestures are usually found in the same leaf after
training the decision forest.

5.1.2 Devel and Final Data

Table 2 compares our results for the development batches of the ChaLearn Challenge with
the ones previously reported by Lui (2012) and Malgireddy et al. (2013), using the evaluation
procedure of the ChaLearn competition (Guyon et al., 2012). To train the TLDFs, we set
the number of trees T = 50, the maximum depth D = 8, the mixing coefficient γ = 25%,
and the size of the search space |T | = 50. As shown in Table 2, for most batches, our
transfer learning decision forests obtain improvements over the DFs, and for some batches,
they obtain the smallest errors.

Table 3 compares our results for the final evaluation data with the final results of the
ChaLearn competition (Guyon et al., 2013). The Joewan team proposed a novel feature
which fuses RGB-D data and is invariant to scale and rotation (Wan et al., 2013). Most of
the other teams have not described their approach in a publication.

(a) (b) (c) (d) (e) (f)

Figure 7: Comparison of the confusion matrices obtained using the DF (a),(b),(c) and
TLDF (d),(e),(f) classifiers on the devel06, devel11 and devel14 batches.
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Figure 8: Similar gestures in different batches. The first, second and third rows show a
gesture in the devel06, devel13 and devel15 batches respectively. The first column
shows the RGB image for a representative frame of the video, the second column
shows the corresponding depth image and the last column shows the MHI.

devel01 devel02 devel03 devel04 devel05 devel06 devel07 devel08 devel09 devel10
Principal motion 6.67% 33.33% 71.74% 24.44% 2.17% 43.33% 23.08% 10.11% 19.78% 56.04%
Lui (2012) – – – – – – – – – –
Malgireddy et al. (2013) 13.33% 35.56% 71.74% 10.00% 9.78% 37.78% 18.68% 8.99% 13.19% 50.55%
DF 4.44% 28.89% 65.22% 25.56% 3.26% 48.89% 19.78% 17.98% 19.78% 59.34%
TLDF 3.89% 25.00% 62.50% 13.89% 4.89% 45.00% 14.29% 10.11% 15.38% 60.99%

devel11 devel12 devel13 devel14 devel15 devel16 devel17 devel18 devel19 devel20 Avg.
Principal motion 29.35% 21.35% 12.50% 39.13% 40.22% 34.48% 48.91% 44.44% 60.44% 39.56% 33.15%
Lui (2012) – – – – – – – – – – 24.09%
Malgireddy et al. (2013) 35.87% 22.47% 9.09% 28.26% 21.74% 31.03% 30.43% 40.00% 49.45% 35.16% 28.73%
DF 42.39% 23.60% 19.32% 45.65% 26.09% 31.03% 53.26% 40.00% 60.44% 46.15% 34.14%
TLDF 39.13% 19.10% 25.00% 27.71% 31.52% 27.01% 45.11% 38.33% 54.95% 67.22% 31.55%

Table 2: Comparison of reported results using the Levenshtein distance.
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Team Private score For comparison score
set on final set #1 on final set #2

alfnie 0.0734 0.0710
Joewan 0.1680 0.1448
Turtle Tamers 0.1702 0.1098
Wayne Zhang 0.2303 0.1846
Manavender 0.2163 0.1608
HIT CS 0.2825 0.2008
Vigilant 0.2809 0.2235
Our Method 0.2834 0.2475
Baseline method 2 0.2997 0.3172

Table 3: ChaLearn results of round 2.

1/-1 2/-2 3/-3 4/-4 5/-5 6/-6
Adaboost (Faddoul et al., 2012) 91.77±1.89% 83.14±2.35% 82.96±1.24% 83.98±1.41% 78.42±0.69% 88.95±1.60%
MTL (Quadrianto et al., 2010) 96.80±1.91% 69.95±2.68% 74.18±5.54% 71.76±5.47% 57.26±2.72% 80.54±4.53%
MT-Adaboost (Faddoul et al., 2012) 96.80±0.56% 86.87±0.68% 87.68±1.04% 90.38±0.71% 84.25±0.73% 92.88±0.90%
Our approach 97.23±0.44% 96.74±0.31% 93.29±0.96% 90.10±1.23% 92.79±1.62% 97.35±0.45%

7/-7 8/-8 9/-9 0/-0 Avg.
Adaboost (Faddoul et al., 2012) 87.11±0.90% 77.51±1.90% 81.84±1.85% 93.66±1.29% 84.93%
MTL (Quadrianto et al., 2010) 77.18±9.43% 65.85±2.50% 65.38±6.09% 97.81±1.01% 75.67%
MT-Adaboost (Faddoul et al., 2012) 92.81±0.57% 85.28±1.73% 86.90±1.26% 97.14±0.42% 90.10%
Our approach 95.55±1.39% 91.99±1.30% 84.76±1.67% 98.05±0.28% 93.78%

Table 4: Comparison of the accuracies on the MNIST data set.

5.2 MNIST

The MNIST (LeCun et al., 1998) data set has been used to compare transfer learning results
(Quadrianto et al., 2010; Faddoul et al., 2012). A small sample of the training set is used to
simulate the situation when only a limited number of labeled examples is available. For each
digit 0 . . . 9, we consider a binary task where label +1 means that the example belongs to the
digit associated with the respective task, and label −1 means the opposite. We randomly
choose 100 training samples for each task and test them on the 10, 000 testing samples.
The experiments are repeated ten times and the results are summarized in Table 4. We
train the TLDFs with D = 6, T = 40, γ = 50%, and we do not apply any preprocessing to
the sample images. The experiments show that our approach achieves better results than
state-of-the-art methods in terms of transfer learning.

To analyze the influence of the number of training samples, we compare the classification
error of the TLDFs with the classification error of the DFs. Figure 9 plots the classification
error as a function of the number of training samples for each classifier. As we did previously,
we compute the classification error using the 10000 test samples of the MNIST data set.
We see that the classification error of the TLDF is smaller than that of the DF. In addition,
it is interesting to note that the gap between both classifiers is larger when the number of
training samples is smaller, thus suggesting that the TLDF is more suitable than DF for
small training samples.
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Figure 9: This figure evaluates the classification error as a function of the number of training
samples.

6. Conclusions

In this paper we have introduced a novel algorithm to transfer knowledge from multiple
source tasks to a given target task. The result is a classifier that can exploit the knowledge
from similar tasks to improve the predictive performance on the target task. Two extensions
were made to the decision forest framework in order to extract knowledge from the source
tasks. We showed that both extensions are important in order to obtain smaller classification
errors. The major improvements are obtained when there are only a few training samples.

We have applied the algorithm to two important computer vision problems and the
results show that the proposed algorithm outperforms decision forests (which are a state-of-
the-art method). We believe that transfer learning algorithms will be an essential component
of many computer vision problems.
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Appendix A

We prove Theorem 1. First, we prove E(H(SK)) +
∑

y∈Y py log
(

1 +
1−py
Kpy

)
≤ H(P )

By definition of the empirical entropy and linearity of the expectation, we have:

E(H(SK)) = −E

∑
y∈Y

p̂SK
(y) log(p̂SK

(y))

 = −
∑
y∈Y

E [p̂SK
(y) log(p̂SK

(y))]
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Using the definitions of the empirical histogram p̂SK
(y) and the expectation:

−
∑
y∈Y

E [p̂SK
(y) log(p̂SK

(y))] = −
∑
y∈Y

K∑
j=0

P

(
p̂SK

(y) =
j

K

)
j

K
log

j

K

Assuming that the samples are iid, then:

= −
∑
y∈Y

K∑
j=0

(
K

j

)
pjy(1− py)K−j

j

K
log

j

K

Note that, in this equation, py is the true probability of distribution P . After some algebraic
manipulations, we obtain the following:

= −
∑
y∈Y

py

K−1∑
j=0

(
K − 1

j

)
pjy(1− py)K−1−j log

j + 1

K

= −
∑
y∈Y

py

K−1∑
j=0

P

(
p̂SK

(y) =
j

K

)
log

j + 1

K

Applying Jensen’s inequality for the convex function − log(x), we obtain:

≥ −
∑
y∈Y

py log

K−1∑
j=0

P

(
p̂SK

(y) =
j

K

)
j + 1

K


= −

∑
y∈Y

py log
(K − 1)py + 1

K

= −
∑
y∈Y

py log

(
py +

1− py
K

)

= −
∑
y∈Y

py log

(
py

(
1 +

1− py
Kpy

))

= −
∑
y∈Y

py log py −
∑
y∈Y

py log

(
1 +

1− py
Kpy

)

= H(P )−
∑
y∈Y

py log

(
1 +

1− py
Kpy

)
Now we prove H(P ) ≤ E(H(SK)).
By definition of the empirical entropy and linearity of the expectation, we have:

E(H(SK)) = −E

∑
y∈Y

p̂SK
(y) log(p̂SK

(y))

 = −
∑
y∈Y

E [p̂SK
(y) log(p̂SK

(y))]
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Applying Jensen’s inequality for the convex function x log x, we obtain the following:

≤ −
∑
y∈Y

E [p̂SK
(y)] log(E [p̂SK

(y)])

Since E [p̂SK
(y)] = py, we have:

= −
∑
y∈Y

py log(py) = H(P )
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Abstract

In many applications, one has side information, e.g., labels that are provided in a semi-
supervised manner, about a specific target region of a large data set, and one wants to
perform machine learning and data analysis tasks “nearby” that prespecified target region.
For example, one might be interested in the clustering structure of a data graph near a
prespecified “seed set” of nodes, or one might be interested in finding partitions in an image
that are near a prespecified “ground truth” set of pixels. Locally-biased problems of this
sort are particularly challenging for popular eigenvector-based machine learning and data
analysis tools. At root, the reason is that eigenvectors are inherently global quantities, thus
limiting the applicability of eigenvector-based methods in situations where one is interested
in very local properties of the data.

In this paper, we address this issue by providing a methodology to construct semi-
supervised eigenvectors of a graph Laplacian, and we illustrate how these locally-biased
eigenvectors can be used to perform locally-biased machine learning. These semi-supervised
eigenvectors capture successively-orthogonalized directions of maximum variance, condi-
tioned on being well-correlated with an input seed set of nodes that is assumed to be
provided in a semi-supervised manner. We show that these semi-supervised eigenvectors
can be computed quickly as the solution to a system of linear equations; and we also de-
scribe several variants of our basic method that have improved scaling properties. We
provide several empirical examples demonstrating how these semi-supervised eigenvectors
can be used to perform locally-biased learning; and we discuss the relationship between our
results and recent machine learning algorithms that use global eigenvectors of the graph
Laplacian.

Keywords: semi-supervised learning, spectral clustering, kernel methods, large-scale
machine learning, local spectral methods, locally-biased learning

1. Introduction

In many applications, one has information about a specific target region of a large data
set, and one wants to perform common machine learning and data analysis tasks “nearby”
the pre-specified target region. In such situations, eigenvector-based methods such as those

c©2014 Toke J. Hansen and Michael W. Mahoney.
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that have been popular in machine learning in recent years tend to have serious difficulties.
At root, the reason is that eigenvectors, e.g., of Laplacian matrices of data graphs, are
inherently global quantities, and thus they might not be sensitive to very local information.
Motivated by this, we consider the problem of finding a set of locally-biased vectors—we will
call them semi-supervised eigenvectors—that inherit many of the “nice” properties that the
leading nontrivial global eigenvectors of a graph Laplacian have—for example, that capture
“slowly varying” modes in the data, that are fairly-efficiently computable, that can be
used for common machine learning and data analysis tasks such as kernel-based and semi-
supervised learning, etc.—so that we can perform what we will call locally-biased machine
learning in a principled manner.

1.1 Locally-Biased Learning

By locally-biased machine learning, we mean that we have a data set, e.g., represented
as a graph, and that we have information, e.g., given in a semi-supervised manner, that
certain “regions” of the data graph are of particular interest. In this case, we may want to
focus predominantly on those regions and perform data analysis and machine learning, e.g.,
classification, clustering, ranking, etc., that is “biased toward” those pre-specified regions.
Examples of this include the following.

• Locally-biased community identification. In social and information network analysis,
one might have a small “seed set” of nodes that belong to a cluster or community
of interest (Andersen and Lang, 2006; Leskovec et al., 2008); in this case, one might
want to perform link or edge prediction, or one might want to “refine” the seed set in
order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a large corpus
of images along with a “ground truth” set of pixels as provided by a face detection
algorithm (Eriksson et al., 2007; Mahoney et al., 2012; Maji et al., 2011); in this case,
one might want to segment entire heads from the background for all the images in the
corpus in an automated manner.

• Locally-biased neural connectivity analysis. In functional magnetic resonance imag-
ing applications, one might have small sets of neurons that “fire” in response to
some external experimental stimulus (Norman et al., 2006); in this case, one might
want to analyze the subsequent temporal dynamics of stimulation of neurons that are
“nearby,” either in terms of connectivity topology or functional response, members of
the original set.

In each of these examples, the data are modeled by a graph—which is either “given” from the
application domain or is “constructed” from feature vectors obtained from the application
domain—and one has information that can be viewed as semi-supervised in the sense that
it consists of exogeneously-specified “labels” for the nodes of the graph. In addition, there
are typically a relatively-small number of labels and one is interested in obtaining insight
about the data graph nearby those labels.

These examples present considerable challenges for standard global spectral techniques
and other traditional eigenvector-based methods. (Such eigenvector-based methods have re-
ceived attention in a wide range of machine learning and data analysis applications in recent
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years. They have been useful, for example, in non-linear dimensionality reduction Belkin
and Niyogi 2003; Coifman et al. 2005; in kernel-based machine learning Schölkopf and Smola
2001; in Nyström-based learning methods Williams and Seeger 2001; Talwalkar and Ros-
tamizadeh 2010; spectral partitioning Pothen et al. 1990; Shi and Malik 2000; Ng et al.
2001, and so on.) At root, the reason is that eigenvectors are inherently global quantities,
thus limiting their applicability in situations where one is interested in very local properties
of the data. That is, very local information can be “washed out” and essentially invisible
to these globally-optimal vectors. For example, a sparse cut in a graph may be poorly
correlated with the second eigenvector and thus invisible to a method based only on eigen-
vector analysis. Similarly, if one has semi-supervised information about a specific target
region in the graph, as in the above examples, one might be interested in finding clusters
near this prespecified local region in a semi-supervised manner; but this local region might
be essentially invisible to a method that uses only global eigenvectors. Finally, one might
be interested in using kernel-based methods to find “local correlations” or to regularize
with respect to a “local dimensionality” in the data, but this local information might be
destroyed in the process of constructing kernels with traditional kernel-based methods.

1.2 Semi-Supervised Eigenvectors

In this paper, we provide a methodology to construct what we will call semi-supervised
eigenvectors of a graph Laplacian; and we illustrate how these locally-biased eigenvectors
(locally-biased in the sense that they will be well-correlated with the input seed set of
nodes or that most of their “mass” will be on nodes that are “near” that seed set) inherit
many of the properties that make the leading nontrivial global eigenvectors of the graph
Laplacian so useful in applications. In order to make this method useful, there should
ideally be a “knob” that allows us to interpolate between very local and the usual global
eigenvectors, depending on the application at hand; we should be able to use these vectors
in common machine learning pipelines to perform common machine learning tasks; and the
intuitions that make the leading k nontrivial global eigenvectors of the graph Laplacian
useful should, to the extent possible, extend to the locally-biased setting. To achieve this,
we will formulate an optimization ansatz that is a variant of the usual global spectral graph
partitioning optimization problem that includes a natural locality constraint as well as an
orthogonality constraint, and we will iteratively solve this problem.

In more detail, assume that we are given as input a (possibly weighted) data graph
G = (V,E), an indicator vector s of a small “seed set” of nodes, a correlation parameter
κ ∈ [0, 1], and a positive integer k. Then, informally, we would like to construct k vectors
that satisfy the following bicriteria: first, each of these k vectors is well-correlated with the
input seed set; and second, those k vectors describe successively-orthogonalized directions
of maximum variance, in a manner analogous to the leading k nontrivial global eigenvectors
of the graph Laplacian. (We emphasize that the seed set s of nodes, the integer k, and the
correlation parameter κ are part of the input; and thus they should be thought of as being
available in a semi-supervised manner.) Somewhat more formally, our main algorithm,
Algorithm 1 in Section 3, returns as output k semi-supervised eigenvectors; each of these
is the solution to an optimization problem of the form of Generalized LocalSpectral
in Figure 1, and thus each “captures” (say) κ/k of the correlation with the seed set. Our
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main theoretical result, described in Section 3, states that these vectors define successively-
orthogonalized directions of maximum variance, conditioned on being κ/k-well-correlated
with an input seed set s; and that each of these k semi-supervised eigenvectors can be
computed quickly as the solution to a system of linear equations. To extend the practical
applicability of this basic result, we will in Section 4 describe several heuristic extensions
of our basic framework that will make it easier to apply the method of semi-supervised
eigenvectors at larger size scales. These extensions involve using the so-called Nyström
method, computing one locally-biased eigenvector and iteratively “peeling off” successive
components of interest, as well as performing random walks that are “local” in a stronger
sense than our basic method considers.

Finally, in order to illustrate how the method of semi-supervised eigenvectors performs
in practice, we also provide a detailed empirical evaluation using a wide range of both
small-scale as well as larger-scale data.

1.3 Related Work

From a technical perspective, the work most closely related to ours is the recently-developed
“local spectral method” of Mahoney et al. (2012). The original algorithm of Mahoney et al.
(2012) introduced a methodology to construct a locally-biased version of the leading non-
trivial eigenvector of a graph Laplacian and also showed (theoretically and empirically in a
social network analysis application) that that the resulting vector could be used to parti-
tion a graph in a locally-biased manner. From this perspective, our extension incorporates
a natural orthogonality constraint that successive vectors need to be orthogonal to previous
vectors. Subsequent to the work of Mahoney et al. (2012), Maji et al. (2011) applied the
algorithm of Mahoney et al. (2012) to the problem of finding locally-biased cuts in a com-
puter vision application. Similar ideas have also been applied somewhat differently. For
example, Andersen and Lang (2006) use locally-biased random walks, e.g., short random
walks starting from a small seed set of nodes, to find clusters and communities in graphs
arising in Internet advertising applications; Leskovec et al. (2008) used locally-biased ran-
dom walks to characterize the local and global clustering structure of a wide range of social
and information networks; and Joachims (2003) developed the Spectral Graph Transducer,
which performs transductive learning via spectral graph partitioning.

The objectives in both (Joachims, 2003) and (Mahoney et al., 2012) are constrained
eigenvalue problems that can be solved by finding the smallest eigenvalue of an asymmetric
generalized eigenvalue problem; but in practice this procedure can be highly unstable (Gan-
der et al., 1989). The algorithm of Joachims (2003) reduces the instabilities by performing
all calculations in a subspace spanned by the d smallest eigenvectors of the graph Lapla-
cian; whereas the algorithm of Mahoney et al. (2012) performs a binary search, exploiting
the monotonic relationship between a control parameter and the corresponding Lagrange
multiplier. The form of our optimization problem also has similarities to other work in
computer vision applications: e.g., (Yu and Shi, 2002) and (Eriksson et al., 2007) find good
conductance clusters subject to a set of linear constraints.

In parallel, Belkin and Niyogi (2003) and a large body of subsequent work including
(Coifman et al., 2005) used (the usual global) eigenvectors of the graph Laplacian to per-
form dimensionality reduction and data representation, in unsupervised and semi-supervised
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settings (Tenenbaum et al., 2000; Roweis and Saul, 2000; Zhou et al., 2004). Typically, these
methods construct some sort of local neighborhood structure around each data point, and
they optimize some sort of global objective function to go “from local to global” (Saul et al.,
2006). In some cases, these methods can be understood in terms of data drawn from an
hypothesized manifold (Belkin and Niyogi, 2008), and more generally they have proven use-
ful for denoising and learning in semi-supervised settings (Belkin and Niyogi, 2004; Belkin
et al., 2006). These methods are based on spectral graph theory (Chung, 1997); and thus
many of these methods have a natural interpretation in terms of diffusions and kernel-based
learning (Schölkopf and Smola, 2001; Kondor and Lafferty, 2002; Szummer and Jaakkola,
2002; Chapelle et al., 2003; Ham et al., 2004). These interpretations are important for
the usefulness of these global eigenvector methods in a wide range of applications. As we
will see, many (but not all) of these interpretations can be ported to the “local” setting,
an observation that was made previously in a different context (Cucuringu and Mahoney,
2011).

Many of these diffusion-based spectral methods also have a natural interpretation in
terms of spectral ranking (Vigna, 2009). “Topic sensitive” and “personalized” versions of
these spectral ranking methods have also been studied (Haveliwala, 2003; Jeh and Widom,
2003); and these were the motivation for diffusion-based methods to find locally-biased
clusters in large graphs (Spielman and Teng, 2004; Andersen et al., 2006; Mahoney et al.,
2012). Our optimization ansatz is a generalization of the linear equation formulation of the
PageRank procedure (Page et al., 1999; Mahoney et al., 2012; Vigna, 2009); and its solution
involves Laplacian-based linear equation solving, which has been suggested as a primitive
is of more general interest in large-scale data analysis (Teng, 2010).

1.4 Outline of the Paper

In the next section, Section 2, we will provide notation and some background and discuss
related work. Then, in Section 3 we will present our main algorithm and our main theoretical
result justifying the algorithm; and in Section 4 we will present several extensions of our
basic method that will help for certain larger-scale applications of the method of semi-
supervised eigenvectors. In Section 5, we present an empirical analysis, including both toy
data to illustrate how the “knobs” of our method work, as well as applications to realistic
machine learning and data analysis problems.

2. Background and Notation

Let G = (V,E,w) be a connected undirected graph with n = |V | vertices and m = |E|
edges, in which edge {i, j} has weight wij . For a set of vertices S ⊆ V in a graph, the

volume of S is vol(S)
def
=
∑

i∈S di, in which case the volume of the graph G is vol(G)
def
=

vol(V ) = 2m. In the following, AG ∈ RV×V will denote the adjacency matrix of G, while
DG ∈ RV×V will denote the diagonal degree matrix of G, i.e., DG(i, i) = di =

∑
{i,j}∈E wij ,

the weighted degree of vertex i. The Laplacian of G is defined as LG
def
= DG − AG. (This

is also called the combinatorial Laplacian, in which case the normalized Laplacian of G is

LG def
= D

−1/2
G LGD

−1/2
G .)
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The Laplacian is the symmetric matrix having quadratic form xTLGx =
∑

ij∈E wij(xi−
xj)

2, for x ∈ RV . This implies that LG is positive semidefinite and that the all-one vector
1 ∈ RV is the eigenvector corresponding to the smallest eigenvalue 0. The generalized
eigenvalues of LGx = λiDGx are 0 = λ1 < λ2 ≤ · · · ≤ λN . We will use v2 to denote
smallest non-trivial eigenvector, i.e., the eigenvector corresponding to λ2; v3 to denote the
next eigenvector; and so on. We will overload notation to use λ2(A) to denote the smallest
non-zero generalized eigenvalue of A with respect to DG. Finally, for a matrix A, let A+

denote its (uniquely defined) Moore-Penrose pseudoinverse. For two vectors x, y ∈ Rn,
and the degree matrix DG for a graph G, we define the degree-weighted inner product as

xTDGy
def
=
∑n

i=1 xiyidi. In particular, if a vector x has unit norm, then xTDGx = 1. Given
a subset of vertices S ⊆ V , we denote by 1S the indicator vector of S in RV and by 1 the
vector in RV having all entries set equal to 1.

3. Optimization Approach to Semi-Supervised Eigenvectors

In this section, we provide our main technical results: a motivation and statement of our
optimization ansatz; our main algorithm for computing semi-supervised eigenvectors; and
an analysis that our algorithm computes solutions of our optimization ansatz.

3.1 Motivation for the Program

Recall the optimization perspective on how one computes the leading nontrivial global
eigenvectors of the normalized Laplacian LG or, equivalently, of the leading nontrivial gen-
eralized eigenvectors of LG. The first nontrivial eigenvector v2 is the solution to the problem
GlobalSpectral that is presented on the left of Figure 1. Equivalently, although Glob-
alSpectral is a non-convex optimization problem, strong duality holds for it and it’s
solution may be computed as v2, the leading nontrivial generalized eigenvector of LG. (In
this case, the value of the objective is λ2, and global spectral partitioning involves then doing
a “sweep cut” over this vector and appealing to Cheeger’s inequality.) The next eigenvector
v3 is the solution to GlobalSpectral, augmented with the constraint that xTDGv2 = 0;
and in general the tth generalized eigenvector of LG is the solution to GlobalSpectral,
augmented with the constraints that xTDGvi = 0, for i ∈ {2, . . . , t − 1}. Clearly, this set
of constraints and the constraint xTDG1 = 0 can be written as xTDGX = 0, where 0 is a
(t− 1)-dimensional all-zeros vector, and where X is an n× (t− 1) orthogonal matrix whose
ith column equals vi (where v1 = 1, the all-ones vector, is the first column of X).

Also presented in Figure 1 is LocalSpectral, which includes a constraint that the
solution be well-correlated with an input seed set. This LocalSpectral optimization
problem was introduced in Mahoney et al. (2012), where it was shown that the solution to
LocalSpectral may be interpreted as a locally-biased version of the second eigenvector of
the Laplacian.1 In particular, although LocalSpectral is not convex, it’s solution can be
computed efficiently as the solution to a set of linear equations that generalize the popular

1. In Mahoney et al. (2012), the locality constraint was actually a quadratic constraint, and thus a somewhat
involved analysis was required. In retrospect, given the form of the solution, and in light of the discussion
below, it is clear that the quadratic part was not “real,” and thus we present this simpler form of
LocalSpectral here. This should make the connections with our Generalized LocalSpectral
objective more immediate.
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GlobalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

xTDGs ≥
√
κ

Generalized
LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDGX = 0

xTDGs ≥
√
κ

Figure 1: Left: The usual GlobalSpectral partitioning optimization problem; the vector
achieving the optimal solution is v2, the leading nontrivial generalized eigenvector
of LG with respect to DG. Middle: The LocalSpectral optimization problem,
which was originally introduced in Mahoney et al. (2012); for κ = 0, this co-
incides with the usual global spectral objective, while for κ > 0, this produces
solutions that are biased toward the seed vector s. Right: The Generalized Lo-
calSpectral optimization problem we introduce that includes both the locality
constraint and a more general orthogonality constraint. Our main algorithm for
computing semi-supervised eigenvectors will iteratively compute the solution to
Generalized LocalSpectral for a sequence of X matrices. In all three cases,
the optimization variable is x ∈ Rn.

Personalized PageRank procedure; in addition, by performing a sweep cut and appealing
to a variant of Cheeger’s inequality, this locally-biased eigenvector can be used to perform
locally-biased spectral graph partitioning (Mahoney et al., 2012).

3.2 Our Main Algorithm

We will formulate the problem of computing semi-supervised vectors in terms of a primitive
optimization problem of independent interest. Consider the Generalized LocalSpec-
tral optimization problem, as shown in Figure 1. For this problem, we are given a graph
G = (V,E), with associated Laplacian matrix LG and diagonal degree matrix DG; an in-
dicator vector s of a small “seed set” of nodes; a correlation parameter κ ∈ [0, 1]; and an
n × ν constraint matrix X that may be assumed to be an orthogonal matrix. We will as-
sume (without loss of generality) that s is properly normalized and orthogonalized so that
sTDGs = 1 and sTDG1 = 0. While s can be a general unit vector orthogonal to 1, it may
be helpful to think of s as the indicator vector of one or more vertices in V , corresponding
to the target region of the graph.

In words, the problem Generalized LocalSpectral asks us to find a vector x ∈ Rn
that minimizes the variance xTLGx subject to several constraints: that x is unit length;
that x is orthogonal to the span of X; and that x is

√
κ-well-correlated with the input seed

set vector s. In our application of Generalized LocalSpectral to the computation
of semi-supervised eigenvectors, we will iteratively compute the solution to Generalized
LocalSpectral, updating X to contain the already-computed semi-supervised eigenvec-
tors. That is, to compute the first semi-supervised eigenvector, we let X = 1, i.e., the
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n-dimensional all-ones vector, which is the trivial eigenvector LG, in which case X is an
n × 1 matrix; and to compute each subsequent semi-supervised eigenvector, we let the
columns of X consist of 1 and the other semi-supervised eigenvectors found in each of the
previous iterations.

To show that Generalized LocalSpectral is efficiently-solvable, note that it is a
quadratic program with only one quadratic constraint and one linear equality constraint.2

In order to remove the equality constraint, which will simplify the problem, let’s change
variables by defining the n× (n− ν) matrix F as

{x : XTDGx = 0} = {x : x = Fx̂}.

That is, F is a span for the null space of XT ; and we will take F to be an orthogonal
matrix. In particular, this implies that F TF is an (n− ν)× (n− ν) Identity and FF T is an
n × n Projection. Then, with respect to the x̂ variable, Generalized LocalSpectral
becomes

minimize
y

x̂TF TLGFy

subject to x̂TF TDGFx̂ = 1,

x̂TF TDGs ≥
√
κ.

(1)

In terms of the variable x, the solution to this optimization problem is of the form

x∗ = cF
(
F T (LG − γDG)F

)+
F TDGs

= c
(
FF T (LG − γDG)FF T

)+
DGs, (2)

for a normalization constant c ∈ (0,∞) and for some γ that depends on
√
κ. The second

line follows from the first since F is an n × (n − ν) orthogonal matrix. This so-called
“S-procedure” is described in greater detail in Chapter 5 and Appendix B of (Boyd and
Vandenberghe, 2004). The significance of this is that, although it is a non-convex opti-
mization problem, the Generalized LocalSpectral problem can be solved by solving
a linear equation, in the form given in Eqn. (2).

Returning to our problem of computing semi-supervised eigenvectors, recall that, in
addition to the input for the Generalized LocalSpectral problem, we need to specify
a positive integer k that indicates the number of vectors to be computed. In the simplest
case, we would assume that we would like the correlation to be “evenly distributed” across
all k vectors, in which case we will require that each vector is

√
κ/k-well-correlated with the

input seed set vector s; but this assumption can easily be relaxed, and thus Algorithm 1 is
formulated more generally as taking a k-dimensional vector κ = [κ1, . . . , κk]

T of correlation
coefficients as input.

To compute the first semi-supervised eigenvector, we will let X = 1, the all-ones vector,
in which case the first nontrivial semi-supervised eigenvector is

x∗1 = c (LG − γ1DG)+DGs, (3)

2. Alternatively, note that it is an example of an constrained eigenvalue problem (Gander et al., 1989).
We thank the numerous individuals who pointed this out to us subsequent to our dissemination of the
original version of this paper.
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where γ1 is chosen to saturate the part of the correlation constraint along the first direction.
(Note that the projections FF T from Eqn. 2 are not present in Eqn. 3 since by design
sTDG1 = 0.) That is, to find the correct setting of γ1, it suffices to perform a binary
search over the possible values of γ1 in the interval (−vol(G), λ2(G)) until the correlation
constraint is satisfied, that is, until (sTDGx1)

2 is sufficiently close to κ1.
To compute subsequent semi-supervised eigenvectors, i.e., at steps t = 2, . . . , k if one

ultimately wants a total of k semi-supervised eigenvectors, then one lets X be the n × t
matrix of the form

X = [1, x∗1, . . . , x
∗
t−1], (4)

where x∗1, . . . , x
∗
t−1 are successive semi-supervised eigenvectors; and the projection matrix

FF T is of the form
FF T = I −DGX(XTDGDGX)−1XTDG,

due to the the degree-weighted inner norm.
Then, by Eqn. (2), the tth semi-supervised eigenvector takes the form

x∗t = c
(
FF T (LG − γtDG)FF T

)+
DGs.

Algorithm 1 Main algorithm to compute semi-supervised eigenvectors
Require: LG, DG, s, κ = [κ1, . . . , κk]

T , ε such that sTDG1 = 0, sTDGs = 1, κT 1 ≤ 1
1: X = [1]
2: for t = 1 to k do
3: FFT ← I −DGX(XTDGDGX)−1XTDG
4: > ← λ2 where FFTLGFF

T v2 = λ2FFTDGFF
T v2

5: ⊥ ← −vol(G)
6: repeat
7: γt ← (⊥+>)/2 (Binary search over γt)
8: xt ← (FFT (LG − γtDG)FFT )+FFTDGs
9: Normalize xt such that xTt DGxt = 1
10: if (xTt DGs)

2 > κt then ⊥ ← γt else > ← γt end if
11: until ‖(xTt DGs)2 − κt‖ ≤ ε or ‖(⊥+>)/2− γt‖ ≤ ε
12: Augment X with x∗t by letting X = [X,x∗t ].
13: end for

In more detail, Algorithm 1 presents pseudo-code for our main algorithm for computing
semi-supervised eigenvectors. The algorithm takes as input a graph G = (V,E), a seed
set s (which could be a general vector s ∈ Rn, subject for simplicity to the normalization
constraints sTDG1 = 0 and sTDGs = 1, but which is most easily thought of as an indicator
vector for the local “seed set” of nodes), a number k of vectors we want to compute, and
a vector of locality parameters (κ1, . . . , κk), where κi ∈ [0, 1] and

∑k
i=1 κi = 1 (where, in

the simplest case, one could choose κi = κ/k, ∀i, for some κ ∈ [0, 1]). Several things should
be noted about our implementation of our main algorithm. First, as we will discuss in
more detail below, we compute the projection matrix FF T only implicitly. Second, a näıve
approach to Eqn. (2) does not immediately lead to an efficient solution, since DGs will not
be in the span of (FF T (LG − γDG)FF T ), thus leading to a large residual. By changing
variables so that x = FF T y, the solution becomes

x∗t ∝ FF T (FF T (LG − γtDG)FF T )+FF TDGs.
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Since FF T is a projection matrix, this expression is equivalent to

x∗t ∝
(
FF T (LG − γtDG)FF T

)+
FF TDGs. (5)

Third, regarding the solution xi, we exploit that FF T (LG−γiDG)FF T is an SPSD matrix,
and we apply the conjugate gradient method, rather than computing the explicit pseudoin-
verse. That is, in the implementation we never explicitly represent the dense matrix FF T ,
but instead we treat it as an operator and we simply evaluate the result of applying a vector
to it on either side. Fourth, we use that λ2 can never decrease (here we refer to λ2 as the
smallest non-zero eigenvalue of the modified matrix), so we only recalculate the upper bound
for the binary search when an iteration saturates without satisfying ‖(xTt DGs)

2 − κt‖ ≤ ε.
Estimating the bound is critical for the semi-supervised eigenvectors to be able to inter-
polate all the way to the global eigenvectors of the graph, so in Section 3.4 we return to
a discussion on efficient strategies for computing the leading nontrivial eigenvalue of LG
projected down onto the space perpendicular to the previously computed solutions.

From this discussion, it should be clear that Algorithm 1 solves the semi-supervised
eigenvector problem by solving in an iterative manner optimization problems of the form
of Generalized LocalSpectral; and that the running time of Algorithm 1 boils down
to solving a sequence of linear equations.

3.3 Discussion of Our Main Algorithm

There is a natural “regularization” interpretation underlying our construction of semi-
supervised eigenvectors. To see this, recall that the first step of our algorithm can be
computed as the solution of a set of linear equations

x∗ = c (LG − γDG)+DGs, (6)

for some normalization constant c and some γ that can be determined by a binary search
over (−vol(G), λ2(G)); and that subsequent steps compute the analogous quantity, sub-
ject to additional constraints that the solution be orthogonal to the previously-computed
vectors. The quantity (LG − γDG)+ can be interpreted as a “regularized” version of the
pseudoinverse of L, where γ ∈ (−∞, λ2(G)) serves as the regularization parameter. This
interpretation has recently been made precise: Mahoney and Orecchia (2011) show that
running a PageRank computation—as well as running other diffusion-based procedures—
exactly optimizes a regularized version of the GlobalSpectral (or LocalSpectral,
depending on the input seed vector) problem; and (Perry and Mahoney, 2011) provide a
precise statistical framework justifying this.

The usual interpretation of PageRank involves “random walkers” who uniformly (or
non-uniformly, in the case of Personalized PageRank) “teleport” with a probability α ∈
(0, 1). As described in (Mahoney et al., 2012), choosing α ∈ (0, 1) corresponds to choosing
γ ∈ (−∞, 0). By rearranging Eqn. (6) as

x∗ = c ((DG −AG)− γDG)+DGs

=
c

1− γ

(
DG −

1

1− γAG
)+

DGs

=
c

1− γD
−1
G

(
I − 1

1− γAGD
−1
G

)+

DGs,
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we recognize AGD
−1
G as the standard random walk matrix, and it becomes immediate that

the solution based on random walkers,

x∗ =
c

1− γD
−1
G

(
I +

∞∑
i=1

(
1

1− γD
−1
G AG

)i)
DGs,

is divergent for γ > 0. Since γ = λ2(G) corresponds to no regularization and γ → −∞
corresponds to heavy regularization, viewing this problem in terms of solving a linear equa-
tion is formally more powerful than viewing it in terms of random walkers. That is, while
all possible values of the regularization parameter—and in particular the (positive) value
λ2(·)—are achievable algorithmically by solving a linear equation, only values in (−∞, 0)
are achievable by running a PageRank diffusion. In particular, if the optimal value of γ
that saturates the κ-dependent locality constraint is negative, then running the PageRank
diffusion could find it; otherwise, the “best” one could do will still not saturate the locality
constraint, in which case some of the intended correlation is “unused.”

An important technical and practical point has to do with the precise manner in which
the ith vector is well-correlated with the seed set s. In our formulation, this is captured
by a locality parameter γi that is chosen (via a binary search) to “saturate” the correlation
condition, i.e., so that the ith vector is κ/k-well-correlated with the input seed set. As a
general rule, successive γis need to be chosen that successive vectors are less well-localized
around the input seed set. (Alternatively, depending on the application, one could choose
this parameter so that successive γis are equal; but this will involve “sacrificing” some
amount of the κ/k correlation, which will lead to the last or last few eigenvectors being
very poorly-correlated with the input seed set. These tradeoffs will be described in more
detail below.) Informally, if s is a seed set consisting of a small number of nodes that
are “nearby” each other, then to maintain a given amount of correlation, we must “view”
the graph over larger and larger size scales as we compute more and more semi-supervised
eigenvectors. More formally, we need to let the value of the regularization parameter γ at
the ith round, we call it γi, vary for each i ∈ {1, . . . , k}. That is, γi is not pre-specified, but
it is chosen via a binary search over the region (−vol(G), λ2(·)), where λ2(·) is the leading
nontrivial eigenvalue of LG projected down onto the space perpendicular to the previously-
computed vectors (which is in general larger than λ2(G)). In this sense, our semi-supervised
eigenvectors are both “locally-biased”, in a manner that depends on the input seed vector
and correlation parameter, and “regularized”, in a manner that depends on the local graph
structure.

To illustrate the previous discussion, Figure 2 considers the two-dimensional grid. In
each subfigure, the blue curve shows the correlation with a single seed node as a function
of γ for the leading semi-supervised eigenvector, and the black dot illustrates the value of
γ for three different values of the locality parameter κ. This relationship between κ and γ
is in general non-convex, but it is monotonic for γ ∈ (−vol(G), λ2(G)). The red curve in
each subfigure shows the decay for the second semi-supervised eigenvector. Recall that it
is perpendicular to the first semi-supervised eigenvector, that the decay is monotonic for
γ ∈ (−vol(G), λ′2(G)), and that λ2 < λ′2 ≤ λ3. In Figure 2(a), the first semi-supervised
eigenvector is not “too” close to λ2, and so λ′2 (i.e., the second eigenvalue of the next
semi-supervised eigenvector) increases just slightly. In Figure 2(b), we consider a locality
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Figure 2: Interplay between the γ parameter and the correlation κ that a semi-supervised
eigenvector has with a seed s on a two-dimensional grid. In Figure 2(a)-2(c),
we vary the locality parameter for the leading semi-supervised eigenvector, which
in each case leads to a value of γ which is marked by the black dot on the blue
curve. This allows us to illustrate the influence on the relationship between γ and
κ on the next semi-supervised eigenvector. Figure 2(a) also highlights the range
(γ < 0) in which Personalized PageRank can be used for computing solutions to
semi-supervised eigenvectors.

parameter that leads to a value of γ that is closer to λ2, thereby increasing the value of
λ′2. Finally, in Figure 2(c), the locality parameter is such that the leading semi-supervised
eigenvector almost coincides with v2; this results in λ′2 ≈ λ3, as required if we were to
compute the global eigenvectors.

3.4 Bounding the Binary Search

For the following derivations it is more convenient to consider the normalized graph Lapla-
cian, in which case we define the first solution as

y1 = c (LG − γ1I)+D
1/2
G s, (7)

where x∗1 = D
−1/2
G y1. This approach is convenient since the projection operator with null

space defined by previous solutions can be expressed as FF T = I − Y Y T , assuming that
Y TY = 1. That is, Y is of the form

Y = [D
1/2
G , y∗1, . . . , y

∗
t−1],

where y∗i are successive solutions to Eqn. (7). In the following the type of projection opera-
tor will be implicit from the context, i.e., when working with the combinatorial graph Lapla-
cian FF T = I −DGX(XTDGDGX)−1XTDG, whereas for the normalized graph Laplacian
FF T = I − Y Y T .

For the normalized graph Laplacian LG, the eigenvalues of LGv = λv equal the eigenval-
ues of the generalized eigenvalue problem LGv = λDGv. The binary search employed in Al-
gorithm 1 uses a monotonic relationship between the γ ∈ (−vol(G), λ2(·)) parameter and the

3882



Semi-supervised Eigenvectors

correlation with the seed xTDGs, that can be deduced from the KKT-conditions (Mahoney
et al., 2012). Note, that if the upper bound for the binary search > = λ2(FF

TLGFF T )
is not determined with sufficient precision, the search will (if we underestimate >) fail to
satisfy the constraint, or (if we overestimate >) fail to converge because the monotonic
relationship no longer hold.

By Lemma 1 in Appendix A it follows that λ2(FF
TLGFF T ) = λ2(LG + ωY Y T ) when

ω →∞. Since the latter term is a sum of two PSD matrices, the value of the upper bound
can only increase as stated by Lemma 2 in Appendix A. This is an important property,
because if we do not recalculate >, the previous value is guaranteed to be an underestimate,
meaning that the objective will remain convex. Thus, it may be more efficient to first
recompute > when the binary search fails to satisfy (xTDGs)

2 = κ, meaning that > must
be recomputed to increase the search range.

We compute the value for the upper bound of the binary search by transforming the
problem in such a way that we can determine the greatest eigenvalue of a new system (fast
and robust), and from that, deduce the new value of > = λ2(FF

TLGFF T ). We do so by
expanding the expression as

FF TLGFF T = FF T
(
I −D−1/2G AGD

−1/2
G

)
FF T

= FF T − FF TD−1/2G AGD
−1/2
G FF T

= I −
(
FF TD

−1/2
G AGD

−1/2
G FF T + Y Y T

)
.

Since all columns of Y will be eigenvectors of FF TLGFF T with zero eigenvalue, these

will all be eigenvectors of FF TD
−1/2
G AGD

−1/2
G FF T + Y Y T with eigenvalue 1. Hence, the

largest algebraic eigenvalue λLA(FF TD
−1/2
G AGD

−1/2
G FF T ) can be used to compute the

upper bound for the binary search as

> = λ2(FF
TLGFF T ) = 1− λLA(FF TD

−1/2
G AGD

−1/2
G FF T ). (8)

The reason for not considering the largest magnitude eigenvalue, is that AG may be in-
definite. Finally, with respect to our implementation we emphasize that FF T is used as a
projection operator, and not represented explicitly.

4. Extension of Our Main Algorithm And Implementation Details

In this section, we present two variants of our main algorithm that are more well-suited for
very large-scale applications; the first uses a column-based low-rank approximation, and the
second uses random walk ideas. In Section 4.1, we describe how to use the Nyström method,
which constructs a low-rank approximation to the kernel matrix by sampling columns, to
construct a general solution for semi-supervised eigenvectors, where the low-rankness is
exploited for very efficient computation. Then, in Section 4.2, we describe a “Push-peeling
heuristic,” based on the efficient Push algorithm by Andersen et al. (2006). The basic idea is
that if, rather than iteratively computing locally-biased semi-supervised eigenvectors using
the procedure described in Algorithm 1, we instead compute solutions to LocalSpectral
and then construct the semi-supervised eigenvectors by “projecting away” pieces of these
solutions, then we can take advantage of local random walks that have improved algorithmic
properties.
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4.1 A Nyström-Based Low-rank Approach

Here we describe the use of the recently-popular Nyström method to speed up the compu-
tation of semi-supervised eigenvectors. We do so by considering how a low-rank decompo-
sition can be exploited to yield solutions to the Generalized LocalSpectral objective
in Figure 1, where the running time largely depends on a matrix-vector product. These
methods are most appropriate when the kernel matrix is reasonably well-approximated by
a low-rank matrix (Drineas and Mahoney, 2005; Gittens and Mahoney, 2012; Williams and
Seeger, 2000).

Given some low-rank approximation LG ≈ I − V ΛV T , we apply the Woodbury matrix
identity, and we derive an explicit solution for the leading semi-supervised eigenvector

y1 ≈ c
(
(1− γ)I − V ΛV T

)+
D

1/2
G s

≈ c
(

1

1− γ I +
1

(1− γ)2
V

(
Λ−1 − 1

1− γ I
)−1

V T

)
D

1/2
G s

≈ c

1− γ
(
I + V ΣV T

)
D

1/2
G s,

where Σii = 1
1−γ
λi
−1 . In order to compute efficiently the subsequent semi-supervised eigen-

vectors we must accommodate for the projection operator FF T = I − Y Y T , while yet
exploiting the explicit closed-form inverse (LG − γI)+ ≈ 1

1−γ
(
I + V ΣV T

)
. However, the

projection operator complicates the expression, since the previous solution can be spanned
by multiple global eigenvectors, so leveraging from the low-rank decomposition is more
difficult for the inverse (FF T (LG − γI)FF T )+.

Conveniently, we can decouple the projection operator by treating the orthogonality
constraint using a Lagrangian approach, such that the solution can be expressed as

yt = c
(
LG − γI + ωY Y T

)+
D

1/2
G s,

where ω ≥ 0 denotes the associated Lagrange multiplier, and where the sign is deduced
from the KKT conditions. Applying the Woodbury matrix identity is now straightforward(

Pγ + ωY Y T
)+

= Pγ
+ − ωPγ+Y

(
I + ωY TPγ

+Y
)+
Y TPγ

+,

where for notational convenience we have introduced Pγ = LG − γI. By decomposing
Y TPγ

+Y with an eigendecomposition USUT the equation simplifies as follows(
Pγ + ωY Y T

)+
= Pγ

+ − ωPγ+Y
(
I + ωUSUT

)+
Y TPγ

+

= Pγ
+ − Pγ+Y UΩUTY TPγ

+,

where Ωii = 1
1
ω
+Sii

. Note how this result gives a well defined way of controlling the amount

of “orthogonality”, and by Lemma 1 in Appendix A, we get exact orthogonality in the limit
of ω →∞, in which case the expression simplifies to(

Pγ + ωY Y T
)+

= Pγ
+ − Pγ+Y (Y TPγ

+Y )+Y TPγ
+.
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Using the explicit expression for Pγ
+, the solution now only involves matrix-vector products

and the inverse of a small matrix

yt = c
(
Pγ

+ − Pγ+Y (Y TPγ
+Y )+Y TPγ

+
)
D

1/2
G s. (9)

To conclude this section, let us also consider how we can optimize the efficiency of the cal-
culation of λ2(FF

TLGFF T ) used for bounding the binary search in Algorithm 1. According

to Eqn. (8) the bound can be calculated efficiently as> = 1−λLA(FF TD
−1/2
G AGD

−1/2
G FF T ).

However, by substituting with D
−1/2
G AGD

−1/2
G ≈ V ΛV T , we can exploit low-rankness since

> = 1− λLA(FF TV ΛV TFF T ) = 1− λLA(Λ1/2V TFF TV Λ1/2),

where the latter is a much smaller system.

4.2 A Push-Peeling Heuristic

Here we present a variant of our main algorithm that exploits the connections between
diffusion-based procedures and eigenvectors, allowing semi-supervised eigenvectors to be
efficiently computed for large networks. This is most well-known for the leading nontrivial
eigenvectors of the graph Laplacian (Chung, 1997); but recent work has exploited these
connections in the context of performing locally-biased spectral graph partitioning (Spiel-
man and Teng, 2004; Andersen et al., 2006; Mahoney et al., 2012). In particular, we can
compute the locally-biased vector using the first step of Algorithm 1, or alternatively we
can compute it using a locally-biased random walk of the form used in (Spielman and Teng,
2004; Andersen et al., 2006). Here we present a heuristic that works by peeling off com-
ponents from a solution to the PageRank problem, and by exploiting the regularization
interpretation of γ, we can from these components obtain the subsequent semi-supervised
eigenvectors.

Specifically, we focus on the Push algorithm by Andersen et al. (2006). This algorithm
approximates the solution to PageRank very efficiently, by exploiting the local modifications
that occur when the seed is highly concentrated. This makes our algorithm very scalable
and applicable for large-scale data, since only the local neighborhood near the seed set will
be touched by the algorithm. In comparison, by solving the linear system of equations we
explicitly touch all nodes in the graph, even though most spectral rankings will be below
the computational precision (Boldi and Vigna, 2011).

We adapt a similar notation as in Andersen et al. (2006) and start by defining the usual
PageRank vector pr(α, spr) as the unique solution of the linear system

pr(α, spr) = αspr + (1− α)AGD
−1
G pr(α, spr), (10)

where α is the teleportation parameter, and spr is the sparse starting vector. For comparison,
the push algorithm by Andersen et al. (2006) computes an approximate PageRank vector
prε(α

′, spr) for a slightly different system

prε(α
′, spr) = α′spr + (1− α′)Wprε(α

′, spr),

where W = 1
2(I + AGD

−1
G ) and not the usual random walk matrix AD−1G as used in Eqn.

(10). However, these equations are only superficially different, and equivalent up to a change
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of the respective teleportation parameter. Thus, it is straightforward to verify that these
teleportation parameters and the γ parameter of Eqn. (6) are related as

α =
2α′

1 + α′
⇔ α′ =

α

2− α ⇔ α′ =
γ

γ − 2
,

and that the leading semi-supervised eigenvector for γ ∈ (−∞, 0) can be approximated as

x∗1 ≈
c

−γD
−1
G prε

(
γ

γ − 2
, DGs

)
.

To generalize subsequent semi-supervised eigenvectors to this diffusion based framework,
we need to accommodate for the projection operator such that subsequent solutions can
be expressed in terms of graph diffusions. By requiring distinct values of γ for all semi-
supervised eigenvectors, we may use the solution for the leading semi-supervised eigenvector
and then systematically “peel off” components, thereby obtaining the solution of one of the
consecutive semi-supervised eigenvectors. By Lemma 5, in Appendix A the general solution
in Eqn. (5) can be approximated by

x∗t ≈ c
(
I −XXTDG

)
(LG − γtDG)+DGs, (11)

under the assumption that all γk for 1 < k ≤ t are sufficiently apart. If we think about
γk as being distinct eigenvalues of the generalized eigenvalue problem LGxk = γkDGxk,
then it is clear that Eqn. (11), correctly computes the sequence of generalized eigenvectors.
This is explained by the fact that (LG − γtDG)+DGs can be interpreted as the first step
of the Rayleigh quotient iteration, where γt is the estimate of the eigenvalue, and DGs is
the estimate of the eigenvector. Given that the estimate of the eigenvalue is right, this
algorithm will in the initial step compute the corresponding eigenvector, and the operator(
I −XXTDG

)
will be superfluous, as the global eigenvectors are already orthogonal in the

degree-weighted norm. To quantify the failure modes of the approximation, let us consider
what happens when γ2 starts to approach γ1. What constitutes the second solution for a
particular value of γ2 is the perpendicular component with respect to the projection onto
the solution given by γ1. As γ2 approaches γ1, this perpendicular part diminishes and the
solution becomes ill-posed. Fortunately, we can easily detect such issues during the binary
search in Algorithm 1, and in general the approximation has turned out to work very well
in practice as our experimental results in Section 5 show.

In terms of the approximate PageRank vector prε(α
′, spr) , the general approximate

solution takes the following form

x∗t ≈ c
(
I −XXTDG

)
D−1G prε

(
γt

γt − 2
, DGs

)
. (12)

As already stated in Section 3.3, the impact of using a diffusion based procedure is that
we cannot interpolate all the way to the global eigenvectors, and that the main challenge
is that the solutions do not become too localized. The ε parameter of the Push algorithm
controls the threshold for propagating mass away from the seed set and into the adjacent
nodes in the graph. If the threshold is too high, the solution will be very localized and
make it difficult to find more than a few semi-supervised eigenvectors, as characterized by
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Lemma 3 in Appendix A, because the leading ones will then span the entire space of the
seed set. As the choice of ε is important for the applicability of our algorithm, we will in
Section 5 investigate the influence of this parameter on large data graphs.

To conclude this section, we consider an important implementation detail that have
been omitted so far. In the work of Mahoney et al. (2012) the seed vector was defined
to be perpendicular to the all-ones vector, and for the sake of consistency we have chosen
to define it in the same way. The impact of projecting the seed set to a space that is
perpendicular to the all-ones vector is that the resulting seed vector is no longer sparse,
making the use of the Push algorithm in Eqn. (12) inefficient. The seed vector can, however,

without loss of generality, be defined as s ∝ D
−1/2
G

(
I − v0vT0

)
s0 where s0 is the sparse

seed, and v0 ∝ diag
(
D

1/2
G

)
is the leading eigenvector of the normalized graph Laplacian

(corresponding to the all-ones vector of the combinatorial graph Laplacian). If we substitute
with this expression for the seed in Eqn. (12), it follows by plain algebra (see Appendix B)
that

x∗t ≈ c
(
I −XXTDG

)(
D−1G prε

(
γt

γt − 2
, D

1/2
G s0

)
−D−1/2G v0v

T
0 s0

)
. (13)

Now the Push algorithm is only defined on the sparse seed set making the the expression
very scalable. Finally, the Push algorithm maintains a queue of high residual nodes that are
yet to be processed. The order in which nodes are processed influences the overall running
time, and in Boldi and Vigna (2011) preliminary experiments showed that a FIFO queue
resulted in the best performance for large values of γ, as compared to a priority queue
that scales logarithmically. For this reason we have chosen to use a FIFO queue in our
implementation.

5. Empirical Results

In this section, we provide a detailed empirical evaluation of the method of semi-supervised
eigenvectors and how it can be used for locally-biased machine learning. Our goal is two-
fold: first, to illustrate how the “knobs” of the method work; and second, to illustrate the
usefulness of the method in real applications. To do this, we consider several classes of data.

• Toy data. In Section 5.1, we consider one-dimensional examples of the popular
“small world” model (Watts and Strogatz, 1998). This is a parameterized family of
models that interpolates between low-dimensional grids and random graphs; and, as
such, it allows us to illustrate the behavior of the method and its various parameters
in a controlled setting.

• Congressional voting data. In Section 5.2, we consider roll call voting data from
the United States Congress that are based on (Poole and Rosenthal, 1991). This is an
example of realistic data set that has relatively-simple global structure but nontrivial
local structure that varies with time (Cucuringu and Mahoney, 2011); and thus it
allows us to illustrate the method in a realistic but relatively-clean setting.

• Handwritten image data. In Section 5.3, we consider data from the MNIST digit
data set (Lecun and Cortes). These data have been widely-studied in machine learn-
ing and related areas and they have substantial “local heterogeneity.” Thus, these
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data allow us to illustrate how the method may be used to perform locally-biased
versions of common machine learning tasks such as smoothing, clustering, and kernel
construction.

• Large-scale network data. In Section 5.4, we consider large-scale network data,
and demonstrate significant performance improvements of the push-peeling heuris-
tic compared to solving the same equations using a conjugate gradient solver. These
improvements are demonstrated on data sets from the DIMACS implementation chal-
lenge, as well as on large web-crawls with more then 3 billion non-zeros in the adja-
cency matrix (Paolo et al., 2004, 2011; Paolo and Sebastiano, 2004).

5.1 Small-World Data

The first data sets we consider are networks constructed from the so-called small-world
model. This model can be used to demonstrate how semi-supervised eigenvectors focus on
specific target regions of a large data graph to capture slowest modes of local variation; and
it can also be used to illustrate how the “knobs” of the method work, e.g., how κ and γ
interplay, in a practical setting. In Figure 3, we plot the usual global eigenvectors, as well as
locally-biased semi-supervised eigenvectors, around illustrations of non-rewired and rewired
realizations of the small-world graph, i.e., for different values of the rewiring probability p
and for different values of the locality parameter κ.

To start, in Figure 3(a) that we show a graph with no randomly-rewired edges (p = 0)
and a parameter κ such that the global eigenvectors are obtained. This yields a symmetric
graph with eigenvectors corresponding to orthogonal sinusoids, i.e., the first two capture
the slowest mode of variation and correspond to a sine and cosine with equal random phase-
shift (up to a rotational ambiguity). In Figure 3(b), random edges have been added with
probability p = 0.01 and the parameter κ is still chosen such that the global eigenvectors—
now of the rewired graph—are obtained. Note the many small kinks in the eigenvectors
at the location of the randomly added edges. Note also the slow mode of variation in
the interval on the top left; a normalized-cut based on the leading global eigenvector would
extract this region, since the remainder of the ring is more well-connected due to the random
rewiring.

In Figure 3(c), we see the same graph realization as in Figure 3(b), except that the semi-
supervised eigenvectors have a seed node at the top of the circle, i.e., at “12 o-clock,” and
the locality parameter κt = 0.005, which corresponds to moderately well-localized eigenvec-
tors. As with the global eigenvectors, the locally-biased semi-supervised eigenvectors are
of successively-increasing (but still localized) variation. Note also that the neighborhood
around “11 o-clock” contains more mass, e.g., when compared with the same parts of the
circle in Figure 3(b) or with other parts of the circle in Figure 3(c), even though it is not
very near the seed node in the original graph geometry. The reason for this is that this
region is well-connected with the seed via a randomly added edge, and thus it is close in
the modified graph topology. Above this visualization, we also show the value of γt that
saturates κt, i.e., γt is the Lagrange multiplier that defines the effective locality κt. Not
shown is that if we kept reducing κt, then γt would tend towards λt+1, and the respective
semi-supervised eigenvectors would tend towards the global eigenvectors that are illustrated
in Figure 3(b). Finally, in Figure 3(d), the desired locality is increased to κ = 0.05 (which
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p = 0,
λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011, λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011,
λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046, λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046.

(a) Global eigenvectors (p = 0)

p = 0.01,
λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149, λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274,
λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315, λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489.

(b) Global eigenvectors (p = 0.01)

p = 0.01, κ = 0.005,
γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047, γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052,

γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000, γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000.

(c) Semi-supervised eigenvectors

p = 0.01, κ = 0.05,
γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367, γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778,
γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665, γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822.

(d) Semi-supervised eigenvectors

Figure 3: Illustration of small-world graphs with rewiring probability of p = 0 or p = 0.01
and with different values of the κ parameter. For each subfigure, the data consist
of 3600 nodes, each connected to it’s 8 nearest-neighbors. In the center of each
subfigure, we show the nodes (blue) and edges (black and light gray are the local
edges, and blue are the randomly-rewired edges). We wrap around the plots
(black x-axis and gray background), visualizing the 4 smallest semi-supervised
eigenvectors. Eigenvectors are color coded as blueblueblueblueblueblueblueblueblueblueblueblueblueblueblueblueblue, redredredredredredredredredredredredredredredredred, yellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellow, and greengreengreengreengreengreengreengreengreengreengreengreengreengreengreengreengreen, starting
with the one having the smallest eigenvalue.
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has the effect of decreasing the value of γt), making the semi-supervised eigenvectors more
localized in the neighborhood of the seed. It should be clear that, in addition to being
determined by the locality parameter, we can think of γ as a regularizer biasing the global
eigenvectors towards the region near the seed set. That is, variation in eigenvectors that are
near the initial seed (in the modified graph topology) are most important, while variation
that is far away from the initial seed matters much less.

5.2 Congressional Voting Data

The next data set we consider is a network constructed from a time series of roll call voting
patterns from the United States Congress that are based on Poole and Rosenthal (1991).
This is a particularly well-structured social network for which there is a great deal of meta-
information, and it has been studied recently with graph-based methods (Mucha et al., 2010;
Waugh et al., 2009; Cucuringu and Mahoney, 2011). Thus, it permits a good illustration
of the method of semi-supervised eigenvectors in a real application (Poole, Fall 2005). This
data set is known to have nontrivial time-varying structure at different time steps, and we
will illustrate how the method of semi-supervised eigenvectors can perform locally-biased
classification with a traditional kernel-based algorithm.

In more detail, we evaluate our method by considering the known Congress data-set
containing the roll call voting patterns in the U.S Senate across time. We considered Senates
in the 70th Congress through the 110th Congress, thus covering the years 1927 to 2008.
During this time, the U.S went from 48 to 50 states, hence the number of senators in each
of these 41 Congresses was roughly the same. We constructed an N ×N adjacency matrix,
with N = 4196 (41 Congresses each with ≈ 100 Senators) where Aij ∈ [0, 1] represents
the extent of voting agreement between legislators i and j, and where identical senators in
adjacent Congresses are connected with an inter-Congress connection strength. We then
considered the Laplacian matrix of this graph, constructed in the usual way (Cucuringu
and Mahoney, 2011).

95th Congress Congress adjacency matrix99th Congress 103th Congress 107th Congress

A

B 20000 4000

Figure 4: Shows the Congress adjacency matrix, along with four of the individual Con-
gresses. Nodes are scaled according to their degree, blue nodes correspond to
Democrats, red to Republicans, and green to Independents.
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Figure 4 visualizes the adjacency matrix, along with four of the individual Congresses,
color coded by party. This illustrates that these data should be viewed—informally—as
a structure (depending on the specific voting patterns of each Congress) evolving along a
one-dimensional temporal axis, confirming the results of Cucuringu and Mahoney (2011).
Note that the latter two Congresses are significantly better described by a simple two-
clustering than the former two Congresses, and an examination of the clustering properties
of each of the 40 Congresses reveals significant variation in the local structure of individual
Congresses, in a manner broadly consistent with Poole (Fall 2005) and Poole and Rosenthal
(1991). In particular, the more recent Congresses are significantly more polarized.

v2

0 2000 4000

x1, κ= 0.001

0 2000 4000

x1, κ= 0.1

0 2000 4000

x1, κ= 0.1

0 2000 4000

v3

0 2000 4000

x2, κ= 0.001

0 2000 4000

x2, κ= 0.1

0 2000 4000

x2, κ= 0.1

0 2000 4000

v4

0 2000 4000

x3, κ= 0.001

0 2000 4000

x3, κ= 0.1

0 2000 4000

x3, κ= 0.1

0 2000 4000

Figure 5: First column: The leading three nontrivial global eigenvectors. Second column:
The leading three semi-supervised eigenvectors seeded (circled node) in an artic-
ulation point between the two parties in the 99th Congress (see Figure 4), for
correlation κ = 0.001. Third column: Same seed as previous column, but for
a correlation of κ = 0.1. Notice the localization on the third semi-supervised
eigenvector. Fourth column: Same correlation as the previous column, but for
another seed node well within the cluster of Republicans. Notice the localization
on all three semi-supervised eigenvectors.

The first vertical column of Figure 5 illustrates the first three global eigenvectors of
the full data set, illustrating fluctuations that are sinusoidal and consistent with the one-
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dimensional temporal scaffolding. Also shown in the first column are the values of that
eigenfunction for the members of the 99th Congress, illustrating that there is not a good
separation based on party affiliations. The next three vertical columns of Figure 5 illus-
trate various localized eigenvectors computed by starting with a seed node in the 99th

Congress. For the second column, we visualize the semi-supervised eigenvectors for a very
low correlation (κ = 0.001), which corresponds to only a weak localization—in this case one
sees eigenvectors that look very similar to the global eigenvectors, and the elements of the
eigenvector on that Congress do not reveal partitions based on the party cuts.

The third and fourth column of Figure 5 illustrate the semi-supervised eigenvectors
for a much higher correlation (κ = 0.1), meaning a much stronger amount of locality. In
particular, the third column starts with the seed node marked A in Figure 4, which is at
the articulation point between the two parties, while the fourth column starts with the seed
node marked B, which is located well within the cluster of Republicans. In both cases the
eigenvectors are much more strongly localized on the 99th Congress near the seed node,
and in both cases one observes the partition into two parties based on the elements of the
localized eigenvectors. Note, however, that when the initial seed is at the articulation point
between two parties then the situation is much noisier: in this case, this “partitionability”
is seen only on the third semi-supervised eigenvector, while when the initial seed is well
within one party then this is seen on all three eigenvectors. Intuitively, when the seed set
is strongly within a good cluster, then that cluster tends to be found with semi-supervised
eigenvectors (and we will observe this again below). This is consistent with the diffusion
interpretation of eigenvectors. This is also consistent with Cucuringu and Mahoney (2011),
who observed that the properties of eigenvector localization depended on the local structure
of the data around the seed node, as well as the larger scale structure around that local
cluster.
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Figure 6: Classification accuracy measured in individual Congresses. For each Congress
we perform 5-fold cross validation based on ≈ 80 samples and leave out the
remaining 20 samples to estimate an unbiased test error. Error bars are obtained
by resampling and they correspond to 1 standard deviation. For each approach
we consider features based on the 1st (blue), 2nd (green), and 3rd (red) smallest
eigenvector(s), excluding the all-one vector. We also plot the probability of the
most probable class as a baseline measure (black) as some Congresses are very
imbalanced.
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To illustrate how these structural properties manifest themselves in a more traditional
machine learning task, we also consider the classification task of discriminating between
Democrats and Republicans in single Congresses, i.e., we measure to what extent we can ex-
tract local discriminative features. To do so, we apply L2-regularized L2-loss support vector
classification with a linear kernel, where features are extracted using the global eigenvec-
tors of the entire data set, global eigenvectors from a single Congress (best case measure),
and our semi-supervised eigenvectors. Figure 6 illustrates the classification accuracy for
1, 2, and 3 eigenvectors. As reported by Cucuringu and Mahoney (2011), locations that
exhibit discriminative information are best found on low-order eigenvectors of this data,
explaining why the classifier based global eigenvectors performs poorly. In the classifier
based on global eigenvectors in the single Congress we exploit a priori knowledge to extract
the relevant data, that in a usual situation would be impossible. Hence, this is simply to
define a baseline point of reference for the best case classification accuracy. The classifier
based on semi-supervised eigenvectors is seeded using a few training samples and performs
in-between the two other approaches. Compared to our point of reference, Congresses in the
range 88 to 96 do worse with the semi-supervised eigenvectors; whereas for Congresses after
100 the semi-supervised approach almost performs on par, even for a single single eigenvec-
tor. This is consistent with the visualization in Figure 4 illustrating that earlier Congresses
are less cleanly separable, as well as with empirical evidence indicating heterogeneity due to
Southern Democrats in earlier Congresses and the recent increase in party polarization in
more recent Congresses, as described in Poole (Fall 2005) and Poole and Rosenthal (1991).

5.3 MNIST Digit Data

The next data set we consider is the well-studied MNIST data set containing 60, 000 training
digits and 10, 000 test digits ranging from 0 to 9; and, with these data, we demonstrate the
use of semi-supervised eigenvectors as a feature extraction preprocessing step in a traditional
machine learning setting. We construct the full 70, 000× 70, 000 k-NN graph, with k = 10
and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2), where σ2i is the Euclidean

distance of the ith node to it’s nearest neighbor; and from this we define the graph Laplacian
in the usual way. We then evaluate the semi-supervised eigenvectors in a transductive
learning setting by disregarding the majority of labels in the entire training data. We
use a few samples from each class to seed our semi-supervised eigenvectors as well as a
few others to train a downstream classification algorithm. For this evaluation, we use the
Spectral Graph Transducer (SGT) of Joachims (2003); and we choose to use it for two
main reasons. First, the transductive classifier is inherently designed to work on a subset of
global eigenvectors of the graph Laplacian, making it ideal for validating that the localized
basis constructed by the semi-supervised eigenvectors can be more informative when we are
solely interested in the “local heterogeneity” near a seed set. Second, using the SGT based
on global eigenvectors is a good point of comparison, because we are only interested in the
effect of our subspace representation. (If we used one type of classifier in the local setting,
and another in the global, the classification accuracy that we measure would obviously be
confounded.) As in Joachims (2003), we normalize the spectrum of both global and semi-
supervised eigenvectors by replacing the eigenvalues with some monotonically increasing
function. We use λi = i2

k2
, i.e., focusing on ranking among smallest cuts; see (Chapelle
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et al., 2003). Furthermore, we fix the regularization parameter of the SGT to c = 3200,
and for simplicity we fix γ = 0 for all semi-supervised eigenvectors, implicitly defining the
effective κ = [κ1, . . . , κk]

T . Clearly, other correlation distributions κ and other values of
γ parameter may yield subspaces with even better discriminative properties (which is an
issue to which we will return in Section 5.3.2 in greater detail).

#Semi-supervised eigenvectors for SGT #Global eigenvectors for SGT
Labeled points 1 2 4 6 8 10 1 5 10 15 20 25

1 : 1 0.39 0.39 0.38 0.38 0.38 0.36 0.50 0.48 0.36 0.27 0.27 0.19
1 : 10 0.30 0.31 0.25 0.23 0.19 0.15 0.49 0.36 0.09 0.08 0.06 0.06
5 : 50 0.12 0.15 0.09 0.08 0.07 0.06 0.49 0.09 0.08 0.07 0.05 0.04

10 : 100 0.09 0.10 0.07 0.06 0.05 0.05 0.49 0.08 0.07 0.06 0.04 0.04
50 : 500 0.03 0.03 0.03 0.03 0.03 0.03 0.49 0.10 0.07 0.06 0.04 0.04

Table 1: Classification error for discriminating between 4s and 9s for the SGT based on,
respectively, semi-supervised eigenvectors and global eigenvectors. The first col-
umn from the left encodes the configuration, e.g., 1:10 interprets as 1 seed and
10 training samples from each class (total of 22 samples—for the global approach
these are all used for training). When the seed is well-determined and the number
of training samples moderate (50:500), then a single semi-supervised eigenvector
is sufficient; whereas for less data, we benefit from using multiple semi-supervised
eigenvectors. All experiments have been repeated 10 times.

5.3.1 Discriminating Between Pairs of Digits

Here, we consider the task of discriminating between two digits; and, in order to address
a particularly challenging task, we work with 4s and 9s. (This is particularly challenging
since these two classes tend to overlap more than other combinations since, e.g., a closed
4 can resemble a 9 more than an open 4.) Hence, we expect that the class separation
axis will not be evident in the leading global eigenvector, but instead it will be “buried”
further down the spectrum; and we hope to find a “locally-biased class separation axis”
with locally-biased semi-supervised eigenvectors. Thus, this example will illustrate how
semi-supervised eigenvectors can represent relevant heterogeneities in a local subspace of
low dimensionality. See Table 1, which summarizes our classification results based on,
respectively, semi-supervised eigenvectors and global eigenvectors, when we use the SGT.
See also Figure 7 and Figure 8, which illustrate two realizations for the 1:10 configuration.
In these two figures, the training samples are fixed; and, to demonstrate the influence of the
seed, we have varied the seed nodes. In particular, in Figure 7 the seed nodes s+ and s− are
located well-within the respective classes; while in Figure 8, they are located much closer
to the boundary between the two classes. As intuitively expected, when the seed nodes fall
well within the classes to be differentiated, the classification is much better than when the
seed nodes are located closer to the boundary between the two classes. See the caption in
these figures for further details.

5.3.2 Effect of Choosing The κ Correlation/Locality Parameter

Here, we discuss the effect of the choice of the correlation/locality parameter κ at different
steps of Algorithm 1, e.g., how {κt}kt=1 should be distributed among the k components.
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Figure 7: Discrimination between 4s and 9s. Left: Shows a subset of the classification re-
sults for the SGT based on 5 semi-supervised eigenvectors seeded in s+ and s−,
and trained using samples l+ and l−. Misclassifications are marked with black
frames. Right: Visualizes all test data spanned by the first 5 semi-supervised
eigenvectors, by plotting each component as a function of the others. Red (blue)
points correspond to 4 (9), whereas green points correspond to remaining digits.
As the seed nodes are good representatives, we note that the eigenvectors provide
a good class separation. We also plot the error as a function of local dimen-
sionality, as well as the unexplained correlation, i.e., initial components explain
the majority of the correlation with the seed (effect of γ = 0). The particular
realization based on the leading 5 semi-supervised eigenvectors yields an error of
≈ 0.03 (dashed circle).

For example, will the downstream classifier benefit the most from a uniform distribution
or will there exist some other nonuniform distribution that is better? Although this will
be highly problem specific, one might hope that in realistic applications the classification
performance is not too sensitive to the actual choice of distribution. To investigate the
effect in our example of discriminating between 4s and 9s, we consider 3 semi-supervised
eigenvectors for various κ distributions. Our results are summarized in Figure 9.

Figures 9(a), 9(b), and 9(c) show, for the global eigenvectors and for semi-supervised
eigenvectors, where the κ vector has been chosen to be very nonuniform and very uniform,
the top three (global or semi-supervised) eigenvectors plotted against each other as well as
the ROC curve for the SGT classifier discriminating between 4s and 9s; and Figure 9(d)
shows the test error as the κ vector is varied over the unit simplex. In more detail, red
(respectively, blue) corresponds to 4s (respectively, 9s), and green points are the remaining
digits; and, for Figures 9(b) and 9(c), the semi-supervised eigenvectors are seeded using 50
samples from each target class (4s vs. 9s) and having a non-uniform distribution of κ, as
specified. As seen from the visualization of the semi-supervised eigenvectors in Figures 9(b)
and 9(c), the classes are much better separated than by using the global eigenvectors, which
are shown in Figure 9(a). For example, this is supported by the Area Under the Curve
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Figure 8: Discrimination between 4s and 9s. See the general description in Figure 7. Here
we illustrate an instance where the s+ shares many similarities with s−, i.e.,
s+ is on the boundary of the two classes. This particular realization achieves a
classification error of ≈ 0.30 (dashed circle). In this constellation we first discover
localization on low order semi-supervised eigenvectors (≈ 12 eigenvectors), which
is comparable to the error based on global eigenvectors (see Table 1), i.e., further
down the spectrum we recover from the bad seed and pickup the relevant mode
of variation.

(AUC) and Error Rate (ERR), being the point on the Receiver Operating Characteristic
(ROC) curve that corresponds to having an equal probability of miss-classifying a positive
or negative sample, which is a fair estimate as the classes in the MNIST data set is fairly
balanced. For Figure 9(c), where we use a uniform distribution of κ, the classifier performs
slightly better than in Figure 9(b), which uses the non-uniform κ distribution (but both
semi-supervised approaches are significantly better than the using the global eigenvectors).
For Figure 9(d), we see the test error on the simplex defined by κ. To obtain this plot we
sampled 500 different κ distributions according to a uniform Dirichlet distribution. With
the exception of one extreme very nonuniform corner, the classification accuracy is not too
sensitive to the choice of κ distribution. Thus, if we think of the semi-supervised eigenvec-
tors as a locally-regularized version of the global eigenvectors, the desired discriminative
properties are not too sensitive to the details of the locally-biased regularization.

5.3.3 Effect of Approximately Computing Semi-Supervised Eigenvectors

Here, we discuss of the push-peeling procedure from Section 4 that is designed to compute
efficient approximations to the semi-supervised eigenvectors by using local random walks to
compute an approximation to personalized PageRank vectors. Consider Figure 10, which
shows results for two values of the ε parameter (i.e., the parameter in the push algorithm
that implicitly determines how many nodes will be touched). Using the same graph as
defined previously, we compute 3 semi-supervised eigenvectors seeding using 50 samples
from each class (4s vs. 9s). However, in this case, we fix the regularization parameter
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Figure 9: The effect of varying the correlation/locality parameter κ on the classification
accuracy. 9(a), 9(b), 9(c) show the top three (global or semi-supervised) eigen-
vectors plotted against each other as well as the ROC curve for the SGT classifier
discriminating between 4s and 9s; and 9(d) shows the test error as the κ vector
is varied over the unit simplex.

vector as γ = [−0.0150,−0.0093,−vol(G)]; and note that choosing these specific values
correspond to the solutions visualized in Figure 9(c) when the equations are solved exactly.
Figure 10(a) shows the results for ε = 0.001. This approximation gives us sparse solutions,
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and the histogram in the second row illustrates the digits that are assigned a nonzero value
in the respective semi-supervised eigenvector. In particular, note that most of the mass
of the eigenvector is distributed on 4s and 9s; but, for this choose of ε, only few digits of
interest (≈ 2.8243%, meaning, in particular, that not all of the 4s and 9s) have been touched
by the algorithm. This results in the lack of a clean separation between the two classes as
one sweeps along the leading semi-supervised eigenvector, as illustrated in the first row; the
very uniform correlation distribution κ = [0.8789, 0.0118, 0.1093]; and the high classification
error, as shown in the ROC curve in the bottom panel.

Consider, next, Figure 10(b), which shows the results for ε = 0.0001. In this case,
the algorithm reproduces the solution by touching only ≈ 25.177% of the nodes in the
graph, i.e., basically all of the 4s and 9s and only a few other digits. This leads to a much
cleaner separation between the two classes as one sweeps over the leading semi-supervised
eigenvector; a much more uniform distribution over κ; and a classification accuracy that is
much better and is similar to what we saw in Figure 9(c). This example illustrates that
this push-peeling approximation provides a principled manner to generalize the concept of
semi-supervised eigenvectors to large-scale settings, where it will be infeasible to touch all
nodes of the graph.

5.3.4 Effect of Low-Rank Nyström Approximation

Here we discuss the use of the low-rank Nyström approximation which is commonly used in
large-scale kernel-based machine learning. The memory requirements for representing the
explicit kernel matrix, that we here take to be our graph, scales with O(N2), whereas invert-
ing the matrix scales with O(N3), which, in large-scale settings, is infeasible. The Nyström
technique subsamples the data set to approximate the kernel matrix, and the memory re-
quirements scales with O(nN) and runs in O(n2N), where n is size of the subsample. For
completeness we include the derivation of the Nyström approximation for the normalized
graph Laplacian in Appendix C.

In the beginning of Section 5.3 we constructed the 70, 000× 70, 000 k-nearest neighbor
graph, with k = 10 and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2). Such a sparse

construction reduces the effect of “hubs”, as well as being fairly insensitive to the choice of
kernel parameter, as the 10 nearest neighbors are likely to be very close in the Euclidean
norm. Because the Nyström method will approximate the dense kernel matrix, the choice
of kernel parameter is more important, so in the following we will consider the interplay
between this parameter, as well as the rank parameter n of the Nyström approximation.
Moreover, to allow us to compare a rank-n Nyström approximation with the full rank-N
kernel matrix, we choose to subsample the data set for all of the following experiments, due
to the O(N2) memory requirements. Thus, to provide a baseline, Figure 11 shows results
based on a k-nearest neighbor graph constructed from 5% and 10% percent of the training
data, where in both cases we used 10% for the test data. For both cases, when compared
with the results of Figure 9(c), the classification quality is degraded, and so we emphasize
that the goal of the following results are not to outperform the results reported in Figure
9(c), but to be comparable with this baseline.

In light of this baseline, Figure 12 provides a thorough analysis for the choices of σ2i
that we used. Figures 12(a) and 12(b) show the classification error when using the global
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(a) Locality parameter ε = 0.001
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(b) Locality parameter ε = 0.0001

Figure 10: Illustration of the push-peeling procedure to compute 3 semi-supervised eigen-
vectors for γ = [−0.0150,−0.0093,−vol(G)]. 10(a) shows results for ε = 0.001;
and 10(b) shows results for ε = 0.0001. First row shows the entries in the leading
semi-supervised eigenvector corresponding to test points, color-coded and sorted
according to magnitude; second row shows the distribution of digits touched in
the full graph when executing the push algorithm; and bottom panels provide
visualizations similar to the ones in Figure 9 (and shown above these is the
correlation vector κ obtained for the fixed choice of γ.
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Figure 11: Example of the impact of subsampling the data set down to 5% (in 11(a)) and
10% (in 11(b)) of the original size. Remaining parameters are the same as in
Figure 9(c), which shows the result to which these two plots should be compared.

eigenvectors, for various rank approximations based on the Nyström method as well as the
exact method (corresponding to rank = n). Interestingly, these two plots are very dissimilar
in terms of their behavior as a function of the number of components. In particular, the
plot in Figure 12(b) shows that the low rank approximations for a given set of components
outperform the high rank approximations, and the exact representation fails to reduce the
error beyond 0.4 for any of the considered set of components. This may seem counterintu-
itive, but the reason for this type of behavior is that the relevant global eigenvectors, for
σ2i = 200, are located far from the end of the spectrum (if we visualized more components
for rank = n the classification error would eventually drop). For the same reason, the
low rank approximations improve more rapidly than the high rank approximations, as the
latter approximate the lower part of the spectrum better, and these turn out to have poor
discriminative properties. In contrast, the results shown in Figure 12(a) provide good class
separation in the lower part of the spectrum, resulting in the high rank approximations to
reduce the error most rapidly.

Finally, Figures 12(c) and 12(d) show the classification error for the SGT trained us-
ing the semi-supervised eigenvectors. (Note that the scale of the x-axis is much smaller
in these subfigures.) For both kernel widths in Figures 12(c) and 12(d), the ordering of
the approximations are similar, i.e., the semi-supervised eigenvectors constructed from the
rank = n approximation performs the best. Moreover, the gap between the rank = 400 and
rank = n is largest for σ2i = 200, again suggesting this approximation is of insufficient rank
to model the relevant local heterogeneities deep down in the spectrum; whereas for σ2i = 80,
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the rank = 400 the approximation comes very close to the exact representation, suggesting
that local structures are well modeled near the end of the spectrum.

To summarize these results, the method of semi-supervised eigenvectors successfully
extracts relevant local structures to perform locally-biased classification, even when they
are located far from the end of the spectrum. Moreover, in both cases we considered, the
classification error is reduced significantly by using only a few locally-biased components.
This contrasts with the global eigenvectors, where for σ2i = 80 at least 20 eigenvectors are
needed in order to obtain similar performance; and for σ2i = 200, the classification error
remains high even for 200 eigenvectors in case of rank = n.

5.4 Large-scale Network Data

The final data sets we consider are from a collection of large sparse networks (Paolo et al.,
2004, 2011; Paolo and Sebastiano, 2004). On these data, we demonstrate that the Push-
peeling Heuristic introduced in Section 4.2 is attractive due to an improved running time, as
compared to solving a system of linear equations. Moreover, we also show that the ability to
obtain multiple semi-supervised eigenvectors depends on the degree heterogeneity near the
seed. Finally, we empirically evaluate the influence of the ε parameter of the Push algorithm
that implicitly determines how many nodes the algorithm will touch. This parameter can
be interpreted as a regularization parameter (different from γ parameter), and setting it
too large means we fail to distribute mass in the network, so that a few semi-supervised
eigenvectors will consume all of the correlation. In particular, this behavior was investigated
on the MNIST digits in Section 5.3.3. The basic properties for the networks considered in
this section are shown in Table 2.

We start by considering the moderately sized networks from the DIMACS implementa-
tion challenge, as these networks are commonly used for the purpose of measuring realistic
algorithm performance. Figure 13 shows analysis results for 6 networks from this collection,
where we evaluate the performance and feasibility of the Push algorithm for approximating
the leading semi-supervised eigenvector.

Network name Number of nodes Number of edges
DIMACS10/de2010 24,115 116,056
DIMACS10/ct2010 67,578 336,352
DIMACS10/il2010 451,554 2,164,464
DIMACS10/smallworld 100,000 999,996
DIMACS10/333SP 3,712,815 22,217,266
DIMACS10/AS365 3,799,275 22,736,152
LAW/arabic-2005 22,744,080 1,107,806,146
LAW/indochina-2004 7,414,866 301,969,638
LAW/it-2004 41,291,594 2,054,949,894
LAW/sk-2005 50,636,154 3,620,126,660
LAW/uk-2002 18,520,486 523,574,516
LAW/uk-2005 39,459,925 1,566,054,250

Table 2: Summary of the networks considered in this section. Some of these networks are
directed and have been symmetrized for the purpose of this analysis, i.e., the
number edges in this table refer to the number of edges in the undirected graph.
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Figure 12: We consider 10% of the MNIST training and test data and investigate the clas-
sification accuracy of a downstream SGT classifier for various approximations of
the dense similarity matrix. 12(a) and 12(b): Classification error for the SGT
evaluated directly on global eigenvectors, based on various Nyström approxima-
tions and the two choices of the kernel width parameter (respectively, σ2i = 80
and σ2i = 200). 12(c) and 12(d): Classification error we have used the Nyström
approximations as basis for computing semi-supervised eigenvectors that are
then used in the downstream SGT classifier. All plots show the mean over 30
repetitions.

As stated in Section 3.3, diffusion based procedures such as the Push algorithm can
be used to solve our objective for γ < 0. The impact of the reduced search range is that
such procedures may not be able to produce a uniform correlation distribution for a set of
semi-supervised eigenvectors. Hence, the leading solution(s) will instead pickup too much
correlation, because sufficient mass cannot to diffuse away from the seed set. However, the
effect of a non-uniform correlation distribution was analyzed on the MNIST data in Section
5.3, where we found that the performance of a downstream classifier is fairly robust to such
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non-uniformities, as seen by the simplex in Figure 9. Consequently, we emphasize that in a
large-scale setting such side effects of diffusion based procedures is offset by the advantage of
a greatly improved time complexity as compared to solving the system of linear equations,
that implicitly touch every node.
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Figure 13: For each network the first row depicts how the correlation decays as α tends
towards 0, whereas the bottom row shows the speedup relative to the standard
approach using conjugate gradient with a tolerance of 1e-6, that is the default
approach in our software distribution. Besides the three considered values of ε
the correlation plots also illustrate the decay based on conjugate gradient (black
curve), however this may be difficult to see, as the Push algorithm for ε = 1e-4
coincides with that solution. Finally, seeds based on a high degree and low
degree node are presented in respectively the first and last column, and the
degree distribution for the network is visualized in a minor overlapping plot.

For each of the 6 analyzed networks in Figure 13, we run two experiments considering
different seeds, using respectively a high degree and low degree single seed node. Figure
13(a)-13(c) considers census block networks characterized by heavy-tailed degree distribu-
tions, whereas Figure 13(d)-13(f) considers more densely connected synthetic networks. For
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each of these 6 networks the speedup is measured by comparing with a standard conjugate
gradient implementation using a tolerance of 1e-6, and we stress that this tolerance cannot
be directly compared with ε in the Push algorithm. Moreover, we test three different set-
tings of the ε parameter, and we emphasize that for ε = 1e-4, the Push algorithm produces
a similar result as the conjugate gradient algorithm. In Figure 13 this can be seen by the
red curve (ε = 1e-4) in the correlation decay plots (see the figure caption) being on top of
the black curve (conjugate gradient).

Common for Figure 13(a)-13(c) are that low degree seed nodes yield very localized
solutions for the entire range of α, opposed to the high degree nodes that all succeed in
gradually reducing the correlation when α is reduced. Also, the choice of ε is obviously
very important, i.e., choosing it too large results in a solution that correlates too much with
the seed, whereas choosing it too small means that we will be touching more nodes than
necessary, resulting in a performance penalty. In general the networks analyzed in Figure
13(a)-13(c) are too small to yield significant performance improvements over the conjugate
gradient algorithm, and the Push algorithm is only competitive for large values of α.

For the network in Figure 13(d), we see similar performance characteristics as the net-
works analyzed in Figure 13(a)-13(c) due to its small size. However, the two final networks
analyzed in Figure 13(e)-13(f) share similar characteristics in terms of the degree distribu-
tion, but due to a much larger size they show significant performance improvements over the
conjugate gradient algorithm. Interestingly, the Push algorithm instantiated with ε = 1e-4
yields a greater speedup in some settings, which may be explained by faster convergence,
caused by a reduced threshold for distributing mass. Hence, the running time of the Push
algorithm may not always decrease monotonically as ε increases.

In general it seems that seeding in a sparsely connected region of a network results in
a solution having a large correlation with the seed for most values of α. This is obviously
a limiting factor if we are interested in using the peeling procedure to find multiple semi-
supervised eigenvectors in that particular region. However, for large networks and more
densely connected regions the benefit of the Push algorithm is immediate.

Finally, we scale up to demonstrate that we can adapt the notion of semi-supervised
eigenvectors to large data sets, and we do so by analyzing 6 large web-crawl networks. These
networks are large enough that touching all nodes is infeasible, i.e., conjugate gradient is
not a feasible option, so in Figure 14 we resort to absolute timings. For the analysis results
shown in Figure 14, we are solely interested in giving the reader some intuition about the
running time in a large-scale setting, as well as an idea on how the parameters interplay.
Hence, we only consider experiments where we seed in a high degree node, as these are
likely yield the worst running times, but also succeed in reducing the correlation the most.
This will make the peeling procedure described in Section 4.2 applicable, allowing us to
obtain multiple semi-supervised eigenvectors. As seen for all networks analyzed in Figure
14(a)-14(f) the solution is highly sensitive to the choice of ε, but for all networks we are able
to reduce the correlation when α tends towards 0 in case of ε = 1e-6. We emphasize that
the reason for ε being smaller for these experiments, as compared to the previous is that
the seed is normalized to have unit norm, implicitly requiring a lower ε when the network
increases in size.

For diffusion based procedures to be useful with respect to the computation of semi-
supervised eigenvectors, mass must be able “bleed” away from the seed set and into the
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Figure 14: Visualizes results for applying the Push algorithm to 6 very large web-crawl
networks. For all networks we seed in the node with the highest degree. The top
plot in each subfigure shows the correlation decay as a function of α, whereas in
the bottom plot we resort to absolute timings as the conjugate gradient algorithm
is not feasible in this setting, as opposed to showing speedups as in Figure 13.

surrounding network. Otherwise only few semi-supervised eigenvectors can be found as the
leading solution(s) become too correlated with the seed set. For moderately sized problems
conjugate gradient performs very well, but in a large-scale setting, as considered here,
the presented approach proves very efficient, allowing us to compute approximations to
semi-supervised eigenvectors in networks consuming more than 30GB of working memory.
Obtaining an improved understanding of how the method of semi-supervised eigenvectors
can be used to perform common machine learning tasks on graphs of that size is an obvious
direction raised by our work.
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6. Conclusion

We have introduced the concept of semi-supervised eigenvectors as local analogues of the
global eigenvectors of a graph Laplacian that have proven so useful in a wide range of ma-
chine learning and data analysis applications. These vectors are biased toward prespecified
local regions of interest in a large data graph; and we have shown that since they inherit
many of the nice properties of the usual global eigenvectors, except in a locally-biased con-
text, they can be used to perform locally-biased machine learning. The basic method is
conceptually simple and involves solving a sequence of linear equation problems; we have
also presented several extensions of the basic method that have improved scaling properties;
and we have illustrated the behavior of the method. Due to the speed, simplicity, stability,
and intuitive appeal of the method, as well as the range of applications in which local regions
of a large data set are of interest, we expect that the method of semi-supervised eigenvectors
can prove useful in a wide range of machine learning and data analysis applications.
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Appendix A. Supplementary Proofs

Lemma 1 Given an SPSD matrix M and some vector x where x>x = 1, it holds that

lim
ω→∞

(
M + ωxx>

)+
=
((
I − xx>

)
M
(
I − xx>

))+
. (14)

Proof: Prior to applying the pseudo inverse, x is clearly an eigenvector with eigenvalue
λ = 0 on the right hand side, and for left hand side x is an eigenvector with eigenvalue
λ =∞. Hence, without loss of generality we can decompose M = αxx> +X⊥ΛX>⊥ , where
Λ is a diagonal matrix, such that M+ = 1

αxx
>+X⊥Λ+X>⊥ . First we consider the expansion

of the left hand side of Eqn. (14)

lim
ω→∞

(
(α+ ω)xx> +X⊥ΛX>⊥

)+
= lim

ω→∞
1

α+ ω
xx> +X⊥Λ+X>⊥ = X⊥Λ+X>⊥ .

Similar, by expanding the right hand side we get((
I − xx>

)(
αxx> +X⊥ΛX>⊥

)(
I − xx>

))+
=
(
X⊥ΛX>⊥

)+
= X⊥Λ+X>⊥ .

�

Lemma 2 For M ′ = M + ω
∑

i xix
>
i where ω ≥ 0 it holds that λk(M

′) ≥ λk(M).

Proof: All eigenvalues of the sum of rank-1 perturbations are non-negative

ω
∑
i

xix
>
i � 0⇒M ′ �M.

�
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Lemma 3 Given an orthonormal basis, X = [x1, . . . , xn−1], i.e., X>DGX = I, and unit
length seed s>DGs = 1. Then, any unit length vector x>nDGxn = 1, perpendicular to the
subspace X>DGxn = 0, will have a correlation with the seed bounded by

0 ≤ (x>nDGs)
2 ≤ 1−

n−1∑
i=1

(x>i DGs)
2.

Proof: The proof follows directly from the Pythagorean theorem. Let X = [x1, . . . , xN ] be
the orthonormal basis of RN , i.e., spanning s. Then

N∑
i=1

(x>i DGs)
2 = (s>DGs)

2 = 1.

�

Lemma 4 For the matrix Pγ = LG − γI it holds that

P+
γ − P+

γ̂ = (γ − γ̂)P+
γ̂ P

+
γ , (15)

given that neither γ nor γ̂ coincides with an eigenvalue of LG.

Proof: The proof follows directly by plain algebra. Simply substitute the SVD Pγ = V ΛγV
T ,

where Λγ is a diagonal matrix with the eigenvalues shifted by γ, into Eqn. (15)

V Λ+
γ V

T − V Λ+
γ̂ V

T = (γ − γ̂)V Λ+
γ̂ V

TV Λ+
γ V

T

V Λ+
γ V

T − V Λ+
γ̂ V

T = (γ − γ̂)V Λ+
γ̂ Λ+

γ V
T

⇒ Λ+
γ − Λ+

γ̂ = (γ − γ̂)Λ+
γ̂ Λ+

γ .

The system is decoupled so it will be sufficient to consider a single eigenvalue

1

λi − γ
− 1

λi − γ̂
=

γ − γ̂
(λi − γ̂)(λi − γ)

λi − γ̂
(λi − γ̂)(λi − γ)

− λi − γ
(λi − γ̂)(λi − γ)

=
γ − γ̂

(λi − γ̂)(λi − γ)

γ − γ̂
(λi − γ̂)(λi − γ)

=
γ − γ̂

(λi − γ̂)(λi − γ)
.

Also, this trivially holds for the rank deficient case, i.e., 0 = 0.
�

Lemma 5 As pointed out in Section 3.3, it is already immediate that the initial semi-
supervised eigenvector can be computed using a diffusion-based procedure, such as the Push
algorithm. However, from that discussion it remains unclear how the approach can be gen-
eralized for the consecutive k − 1 semi-supervised eigenvectors. It turns out that the kth

solution is approximated by

xk ≈ c(I −XXTDG)(LG − γkDG)+DGs, (16)

given that (LG − γkDG)+DGs is linearly independent with respect to the previous k − 1
solutions contained in X.
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Proof: By Eqn. (9) the solution for the second semi-supervised eigenvector can be expressed
as

y2 = c
(
Pγ2

+ − Pγ2+y1(yT1 Pγ2+y1)+yT1 Pγ2+
)
D

1/2
G s,

where (yT1 Pγ2
+y1)

+ is a constant. For notational convenience we start by substituting

b = D
1/2
G s together with the explicit solution y1 ∝ Pγ1+b

y2 = cPγ2
+b− cPγ2

+Pγ1
+bbTPγ1

+Pγ2
+b

bTPγ1
+Pγ2

+Pγ1
+b

,

and for the same reason we also introduce ργ1γ2 = b>Pγ1
+Pγ2

+b

y2 = cPγ2
+b− cργ1γ2Pγ2

+Pγ1
+b

bTPγ1
+Pγ2

+Pγ1
+b
.

We can approximate this expression by exploiting the structural result of Lemma 4, namely
that Pγ1

+ − Pγ2+ = (γ1 − γ2)Pγ2+Pγ1+

y2 ≈ cPγ2+b−
cργ1γ2(Pγ1

+ − Pγ2+)b

bTPγ1
+(Pγ1

+ − Pγ2+)b

= cPγ2
+b− cργ1γ2(Pγ1

+ − Pγ2+)b

ργ1γ1 − ργ1γ2
.

We emphasize that this approximation is exact whenever Pγ1
+ − Pγ2+ is well-conditioned,

and singular for γ1 = γ2. Then, substitute c =
ργ1γ1−ργ1γ2

ργ1γ1

y2 ≈
ργ1γ1Pγ2

+b− ργ1γ2Pγ2+b
ργ1γ1

− ργ1γ2(Pγ1
+ − Pγ2+)b

ργ1γ1

=
ργ1γ1Pγ2

+b− ργ1γ2Pγ2+b− ργ1γ2Pγ1+b+ ργ1γ2Pγ2
+b

ργ1γ1

=
ργ1γ1Pγ2

+b− ργ1γ2Pγ1+b
ργ1γ1

= Pγ2
+b− ργ1γ2Pγ1

+b

ργ1γ1
.

By resubstituting for the auxiliary variables we obtain the desired result

y2 ≈ c(I − y1yT1 )(LG − γI)+D
1/2
G s,

and by applying this procedure recursively it follows that

yk ≈ c(I − Y Y T )(LG − γkI)+D
1/2
G s.
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Finally, we can relate this result to the combinatorial graph Laplacian as follows

yk ≈ c(I −D1/2
G XXTD

1/2
G )D

1/2
G (LG − γkDG)+DGs

= c(D
1/2
G −D1/2

G XXTDG)(LG − γkDG)+DGs

= cD
1/2
G (I −XXTDG)(LG − γkDG)+DGs,

and due to the relationship xk = D
−1/2
G yk it follows that

xk ≈ c(I −XXTDG)(LG − γkDG)+DGs.

�

Appendix B. Derivation of Sparse Graph Diffusions

To allow efficient computation of semi-supervised eigenvectors by graph diffusions, we must
make the relationship with the sparse seed vector explicit. Here we specifically consider the
derivation of Eqn. (13). Given a sparse seed indicator s0, we can write the seed vector s as

s ∝ D−1/2G (I − v0vT0 )s0, where v0 ∝ diag(D1/2) is the leading eigenvector of the normalized
graph Laplacian (corresponding to the all-one vector of the combinatorial graph Laplacian).
Using this explicit form of s we can rewrite the leading solution as

x1 = c(LG − γDG)+DGs

= cD
−1/2
G (LG − γI)+D

1/2
G s

= cD
−1/2
G (LG − γI)+D

1/2
G D

−1/2
G (I − v0vT0 )s0

= cD
−1/2
G

(
(LG − γI)+s0 − (LG − γI)+v0v

T
0 s0
)
.

Since LG − γI simply shifts the eigenvalues of LG by −γ, the latter term simplifies to

x1 = cD
−1/2
G

(
(LG − γI)+s0 −

(
1

−γ v0v
T
0

)
v0v

T
0 s0

)
= cD

−1/2
G

(
(LG − γI)+s0 +

1

γ
v0v

T
0 s0

)
= cD

−1/2
G

(
1

−γD
−1/2
G prε

(
γ

γ − 2
, D

1/2
G s0

)
+

1

γ
v0v

T
0 s0

)
.

Finally, by exploiting the peeling result in Eqn. (16), we can use the Push algorithm to
approximate the sequence of semi-supervised eigenvectors in an extremely efficient manner

x∗t ≈ c
(
I −XXTDG

)(
D−1G prε

(
γt

γt − 2
, D

1/2
G s0

)
−D−1/2G v0v

T
0 s0

)
,

as the Push algorithm is only applied on the sparse seed set.
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Appendix C. Nyström Approximation For The Normalized Graph
Laplacian

The vanilla procedure is as follows; we choose m samples at random from the full data set,
and for notational simplicity we reorder the samples so that these m samples are followed
by the remaining n = N −m samples, i.e., we can partition the adjacency matrix as

AG =

(
A B
BT C

)
,

where A ∈ Rm×m, B ∈ Rm×n, and C ∈ Rn×n, with N = m+ n and m� n. The Nyström
extension then approximates the huge C matrix in terms of A and B, so the resulting
approximation to weight matrix becomes

AG ≈ ÂG =

(
A B
BT BTA−1B

)
.

Hence, rather than encoding only each nodes k-nearest-neighbors into the weight matrix,
the Nyström methods provides a low-rank approximation to the entire dense weight matrix.

Since the leading eigenvectors of D
−1/2
G AGD

−1/2
G correspond to the smallest of LG, our

goal is to diagonalize D
−1/2
G AGD

−1/2
G . At the risk of washing out the local heterogeneities

the Nyström procedure approximates the largest eigenvectors of D
−1/2
G AGD

−1/2
G using the

normalized matrices Ã and B̃

Ãij =
Aij√
d̂id̂j

, i, j = 1, . . .m

B̃ij =
Bij√
d̂id̂j+m

, i = 1, . . .m, j = 1, . . . , n.

Finally, let UΛUT be the SVD of Ã + Ã−1/2B̃B̃T Ã−1/2, then the m leading eigenvectors
are approximated by

V =

(
Ã

B̃T

)
Ã−1/2UΛ−1/2,

and the normalized graph Laplacian by LG ≈ I − V ΛV T .
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Abstract

BayesOpt is a library with state-of-the-art Bayesian optimization methods to solve nonlin-
ear optimization, stochastic bandits or sequential experimental design problems. Bayesian
optimization characterized for being sample efficient as it builds a posterior distribution to
capture the evidence and prior knowledge of the target function. Built in standard C++,
the library is extremely efficient while being portable and flexible. It includes a common
interface for C, C++, Python, Matlab and Octave.

Keywords: Bayesian optimization, efficient global optimization, sequential model-based
optimization, sequential experimental design, Gaussian processes

1. Introduction

Bayesian optimization (Mockus, 1989; Brochu et al., 2010) is a special case of nonlinear op-
timization where the algorithm decides which point to explore next based on the analysis of
a distribution over functions P (f), for example a Gaussian process or other surrogate model.
The decision is taken based on a certain criterion C(·) called acquisition function. Bayesian
optimization has the advantage of having a memory of all the observations, encoded in the
posterior of the surrogate model P (f |D) (see Figure 1). Usually, this posterior distribution
is sequentially updated using a nonparametric model. In this setup, each observation im-
proves the knowledge of the function in all the input space, thanks to the spatial correlation
(kernel) of the model. Consequently, it requires a lower number of iterations compared
to other nonlinear optimization algorithms. However, updating the posterior distribution
and maximizing the acquisition function increases the cost per sample. Thus, Bayesian
optimization is normally used to optimize expensive target functions f(·), which can be
multimodal or without closed form. The quality of the prior and posterior information
about the surrogate model is of paramount importance for Bayesian optimization, because
it can reduce considerably the number of evaluations to achieve the same performance.

2. BayesOpt Library

BayesOpt uses a surrogate model of the form: f(x) = φ(x)Tw+ε(x), where we have ε(x) ∼
T P

(
0, σ2

s(K(θ) + σ2
nI)

)
. Here, T P() means a Student-t process or a mixture of Student-t

processes, with the Gaussian process as a special case. This model can be considered as a
linear regression model φ(x)Tw with heteroscedastic perturbation ε(x), as a nonparametric
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Input: target f(·), priors P (f), P (θ), criterion C(·), budget N Output: x∗

Build a data set D of points X = x1 . . .xl and its response y = y1 . . . yl using an initial design.
While i < N

• Update the distribution with all data available, for example, P (f |D) ∝
∫
P (D|f, θ)P (f)P (θ) dθ

• Select the point xi which maximizes the criterion: xi = arg max C(x|P (f |D)). Observe yi = f(xi)
• Augment the data with the new point and response: D ← D ∪ {xi, yi} i← i+ 1

Figure 1: General algorithm for Bayesian optimization.

process with nonzero mean function or as a semiparametric model. The library allows to
define priors on w, σ2

s and θ. The marginal posterior P (f |D) can be computed in closed
form, except for the kernel parameters θ. BayesOpt allows to use different approximations
based on empirical Bayes (Santner et al., 2003) or MCMC (Snoek et al., 2012) on P (θ|D).

2.1 Implementation

Efficiency has been one of the main objectives during development. We found evidence that
updating θ every iteration might be unnecessary or even counterproductive (Bull, 2011).
For empirical Bayes (ML or MAP of θ), we found that a combination of global and local
derivative-free methods such as DIRECT (Jones et al., 1993) and BOBYQA (Powell, 2009)
marginally outperforms gradient-based method, in CPU time, for optimizing θ by avoiding
the overhead of computing the marginal likelihood derivative.

One of the most critical components, in terms of computational cost, is the computa-
tion of the inverse of the kernel matrix K−1 (Rasmussen and Nickisch, 2010). We compared
different numerical solutions and we found that the Cholesky decomposition method outper-
forms any other method in terms of performance and numerical stability. Furthermore, we
can exploit the structure of the Bayesian optimization algorithm in two ways. First, points
arrive sequentially. Thus, we can do incremental computations of matrices and vectors,
except when the distribution of the kernel parameters P (θ|D) is updated. For example, at
each iteration, we know that only n new elements will appear in the correlation matrix K,
that is, the correlation of the new point with each of the existing points. The rest of the
matrix remains invariant. Thus, instead of computing the whole Cholesky decomposition of
K, being O(n3), we just add a new row of elements to the Cholesky decomposition, which is
O(n2). Second, finding the optimal decision at each iteration xi requires multiple queries of
the acquisition function from the same posterior C(x|P (f |D)) (see Figure 1). Thus, we can
precompute some terms of the posterior and criterion functions that are independent of the
query point x. To our knowledge, this is the first software for Gaussian processes/Bayesian
optimization that exploits the idea of precomputing terms for multiple queries.

Table 1 compares CPU time (single thread) and accuracy of two different configurations
of BayesOpt with respect to other open source libraries. SMAC (Hutter et al., 2011),
HyperOpt (Bergstra et al., 2011) and Spearmint (Snoek et al., 2012) used the HPOlib
(Eggensperger et al., 2013) timing system, based on runsolver. DiceOptim (Roustant
et al., 2012) used R timing system (proc.time). For BayesOpt, standard ctime was used.

Another main objective has been flexibility. The user can easily select among different
algorithms, hyperpriors, kernels or mean functions. Currently, the library supports contin-
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Branin (2D) Camelback (2D)
Gap 50 samp. Gap 200 samp. t 200 sam. ID Gap 50 samp. Gap 100 samp. t 100 sam. ID

SMAC 0.19444 (0.195) 0.06780 (0.059) 147.3 (1.3) 0 0.08534 (0.103) 0.03772 (0.034) 70.5 (0.9) 0
HyperOpt 0.69499 (0.414) 0.07507 (0.059) 23.5 (0.2) 0 0.10941 (0.050) 0.03383 (0.025) 8.0 (0.09) 0
Spearmint 1.48953 (1.468) 0.00000 (0.000) 7530 (30) 2 0.00005 (0.000) 0.00004 (0.000) 1674 (8) 2
DiceOptim 0.00004 (0.000) 0.00003 (0.000) 624 (35) 5 0.80861 (0.417) 0.35811 (0.350) 215 (10) 5
BayesOpt1 1.16844 (1.745) 0.00000 (0.000) 8.6 (0.07) 5 0.00852 (0.021) 0.00000 (0.000) 2.2 (0.2) 5
BayesOpt2 0.04742 (0.116) 0.00000 (0.000) 1802 (78) 2 0.00000 (0.000) 0.00000 (0.000) 147 (1.3) 2

Hartmann (6D) Configuration - θ learning
Gap 50 samp. Gap 200 samp. t 200 sam. ID

SMAC 1.23130 (0.645) 0.31628 (0.249) 155.9 (1.3) 0 Default HPOlib
HyperOpt 1.21979 (0.496) 0.39065 (0.208) 33.3 (0.3) 0 Default HPOlib
Spearmint 2.13990 (0.659) 0.59980 (0.866) 8244 (106) 2 Def. HPOlib, MCMC (10 particles, 100 burn-in)
DiceOptim 0.06008 (0.063) 0.06004 (0.063) 1267 (316) 10 ML, Genoud 50 pop., 20 gen., 5 wait, 5 burn-in
BayesOpt1 0.06476 (0.047) 0.02385 (0.048) 39.0 (0.04) 10 MAP, DIRECT+BOBYQA every 20 iterations.
BayesOpt2 1.05608 (0.831) 0.04769 (0.058) 4093 (56) 2 MCMC (10 particles, 100 burn-in)

Table 1: Mean (and standard deviation) of the optimization gap, f(xbest) − f(xopt), and
time (in seconds) for 10 runs for different number of samples (including initial
design) to illustrate the convergence of each method. ID represent the number of
samples of the initial design for each algorithm and problem.

uous, discrete and categorical optimization. We also provide a method for optimization in
high-dimensional spaces (Wang et al., 2013). The initial set of points (initial design, see
Figure 1) can be selected using well-known methods such as latin hypercube sampling or
Sobol sequences. BayesOpt relies on a factory-like design for the components of the opti-
mization process. They can be selected and combined at runtime while maintaining a simple
structure. This has two major advantages. First, it simplifies creating new components.
For example, a new kernel can be defined by inheriting the abstract kernel or one of the
existing kernels. Then, the new kernel is automatically integrated in the library. Second,
inspired by the GPML toolbox by Rasmussen and Nickisch (2010), we can easily combine
different components, like a linear combination of kernels or multiple criteria. This can be
used to optimize a function considering an additional cost for each sample, for example, the
cost of moving a sensor while maximizing the information (Marchant and Ramos, 2012).
BayesOpt also implements metacriteria algorithms, like the bandit algorithm GP-Hedge by
Hoffman et al. (2011) that can be used to automatically select the most suitable criteria
during the optimization. Examples of these combinations can be found in Section 2.3.2.

The third objective is correctness. For example, the library is thread and exception
safe, allowing parallelized calls. Parts that are sensible to numerical issues, such as the GP-
Hedge algorithm, have been implemented with variation of the actual algorithm to avoid
over- or underflow issues. The library internally uses NLOPT by Johnson (2014) for the
inner optimization loops (optimize criteria, learn kernel parameters, etc.).

The library can be found at: https://bitbucket.org/rmcantin/bayesopt/

2.2 Compatibility

BayesOpt has been designed to be highly compatible in many platforms and setups. It has
been tested and compiled in different operating systems (Linux, Mac OS, Windows), with
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different compilers (Visual Studio, GCC, Clang, MinGW). The core of the library is written
in C++, however, it provides interfaces for C, Python and Matlab/Octave.

2.3 Using the Library

There is a common API implemented for several languages and programming paradigms.
Before running the optimization we need to follow two simple steps:

2.3.1 Target Function Definition

Defining the function that we want to optimize can be achieved in two ways. We can
directly send the function (or a pointer) to the optimizer based on a function template. For
example, in C/C++:

double my funct ion (unsigned int n query , const double ∗query ,
double ∗ gradient , void ∗ func data ) ;

The gradient has been included for future compatibility. Python, Matlab and Octave inter-
faces define a similar template function.

For a more object-oriented approach, we can inherit the abstract module and define
the virtual methods. Using this approach, we can also include nonlinear constraints in the
checkReachability method. This is available for C++ and Python. For example, in C++:

class MyOptimization : public bayesopt : : ContinuousModel {
public :

MyOptimization ( s i z e t dim , bopt params param ) : ContinousModel (dim , param ) {}
double evaluateSample ( const boost : : numeric : : ub las : : vector<double> &query )
{ // My func t i on here } ;
bool checkReachab i l i ty ( const boost : : numeric : : ub las : : vector<double> &query )
{ // My c o n s t r a i n t s here } ;

} ;

2.3.2 BayesOpt Parameters

The parameters are defined in the bopt params struct or a dictionary in Python. The
details of each parameter can be found in the included documentation. The user can define
expressions to combine different functions (kernels, criteria, etc.). All the parameters have
a default value, so it is not necessary to define all of them. For example, in Matlab:

par . surr name = ’sStudentTProcessNIG ’ ; % Surrogate model and hype rp r i o r s
% We combine Expected Improvement , Lower Conf idence Bound and Thompson sampling
par . c r i t name = ’cHedge(cEI ,cLCB ,cThompsonSampling)’ ;
par . kernel name = ’kSum(kMaternISO3 ,kRQISO)’ ; % Sum of k e r n e l s
par . kernel hp mean = [ 1 , 1 ] ; par . k e r n e l h p s t d = [ 5 , 5 ] ; % Hyperpr ior on ke rne l
par . l t y p e = ’L_MCMC ’ ; % Method f o r l e a r n i n g the ke rne l parameters
par . s c type = ’SC_MAP ’ ; % Score func t i on f o r l e a r n i n g the ke rne l parameters
par . n i t e r a t i o n s = 200 ; % Number o f i t e r a t i o n s <=> Budget
par . e p s i l o n = 0 . 1 ; % Add an eps i l on−greedy step f o r b e t t e r e x p l o r a t i o n
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Abstract

We consider constraint-based methods for causal structure learning, such as the PC-, FCI-,
RFCI- and CCD- algorithms (Spirtes et al., 1993, 2000; Richardson, 1996; Colombo et al.,
2012; Claassen et al., 2013). The first step of all these algorithms consists of the adja-
cency search of the PC-algorithm. The PC-algorithm is known to be order-dependent,
in the sense that the output can depend on the order in which the variables are given.
This order-dependence is a minor issue in low-dimensional settings. We show, however,
that it can be very pronounced in high-dimensional settings, where it can lead to highly
variable results. We propose several modifications of the PC-algorithm (and hence also
of the other algorithms) that remove part or all of this order-dependence. All proposed
modifications are consistent in high-dimensional settings under the same conditions as their
original counterparts. We compare the PC-, FCI-, and RFCI-algorithms and their mod-
ifications in simulation studies and on a yeast gene expression data set. We show that
our modifications yield similar performance in low-dimensional settings and improved per-
formance in high-dimensional settings. All software is implemented in the R-package pcalg.

Keywords: directed acyclic graph, PC-algorithm, FCI-algorithm, CCD-algorithm, order-
dependence, consistency, high-dimensional data

1. Introduction

Constraint-based methods for causal structure learning use conditional independence tests
to obtain information about the underlying causal structure. We start by discussing several
prominent examples of such algorithms, designed for different settings.

The PC-algorithm (Spirtes et al., 1993, 2000) was designed for learning directed acyclic
graphs (DAGs) under the assumption of causal sufficiency, i.e., no unmeasured common
causes and no selection variables. It learns a Markov equivalence class of DAGs that can be
uniquely described by a so-called completed partially directed acyclic graph (CPDAG) (see
Section 2 for a precise definition). The PC-algorithm is widely used in high-dimensional
settings (Kalisch et al., 2010; Nagarajan et al., 2010; Stekhoven et al., 2012; Zhang et al.,
2012), since it is computationally feasible for sparse graphs with up to thousands of variables,
and open-source software is available, for example in TETRAD IV (Spirtes et al., 2000) and
the R-package pcalg (Kalisch et al., 2012). Moreover, the PC-algorithm has been shown
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to be consistent for high-dimensional sparse graphs (Kalisch and Bühlmann, 2007; Harris
and Drton, 2013).

The FCI- and RFCI-algorithms and their modifications (Spirtes et al., 1993, 2000, 1999;
Spirtes, 2001; Zhang, 2008; Colombo et al., 2012; Claassen et al., 2013) were designed for
learning directed acyclic graphs when allowing for latent and selection variables. Thus, these
algorithms learn a Markov equivalence class of DAGs with latent and selection variables,
which can be uniquely represented by a partial ancestral graph (PAG). These algorithms first
employ the adjacency search of the PC-algorithm, and then perform additional conditional
independence tests because of the latent variables.

Finally, the CCD-algorithm (Richardson, 1996) was designed for learning Markov equiv-
alence classes of directed (not necessarily acyclic) graphs under the assumption of causal
sufficiency. Again, the first step of this algorithm consists of the adjacency search of the
PC-algorithm.

Hence, all these algorithms share the adjacency search of the PC-algorithm as a common
first step. We will therefore focus our analysis on this algorithm, since any improvements
to the PC-algorithm can be directly carried over to the other algorithms. When the PC-
algorithm is applied to data, it is generally order-dependent, in the sense that its output
depends on the order in which the variables are given. Dash and Druzdzel (1999) exploit
the order-dependence to obtain candidate graphs for a score-based approach. Cano et al.
(2008) resolve the order-dependence via a rather involved method based on measuring edge
strengths. Spirtes et al. (2000) (Section 5.4.2.4) propose a method that removes the “weak-
est” edges as early as possible. Overall, however, the order-dependence of the PC-algorithm
has received relatively little attention in the literature, suggesting that it seems to be re-
garded as a minor issue. We found, however, that the order-dependence can become very
problematic for high-dimensional data, leading to highly variable results and conclusions
for different variable orderings.

In particular, we analyzed the yeast gene expression data set of Hughes et al. (2000). We
chose these data, despite the existence of larger and newer yeast gene expression data sets,
since these data contain both observational and experimental data, obtained under similar
conditions. The observational data consist of gene expression levels of 5361 genes for 63
wild-type yeast organisms, and the experimental data consist of gene expression levels of
the same 5361 genes for 234 single-gene knockout strains. Hence, these data form a nice
test bed for causal inference: algorithms can be applied to the observational data, and their
output can be compared to the “gold standard” experimental data. (Please see Section 6
for more detailed information about the data.)

First, we considered estimating the skeleton of the CPDAG from the observational data,
that is, the undirected graph obtained by discarding all arrowheads in the CPDAG. Figure
1(a) shows the large variability in the estimated skeletons for 25 random orderings of the
variables. Each estimated skeleton consists of roughly 5000 edges which can be divided
into three groups: about 1500 are highly stable and occur in all orderings, about 1500 are
moderately stable and occur in at least 50% of the orderings, and about 2000 are unstable
and occur in at most 50% of the orderings. Since the FCI- and CCD-algorithms employ
the adjacency search of the PC-algorithm as a first step, their resulting skeletons for these
data are also highly order-dependent.
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An important motivation for learning DAGs lies in their causal interpretation. We
therefore also investigated the effect of different variable orderings on causal inference that
is based on the PC-algorithm. In particular, we applied the IDA algorithm (Maathuis
et al., 2010, 2009) to the observational yeast gene expression data, for 25 random variable
orderings. The IDA algorithm conceptually consists of two-steps: one first estimates the
Markov equivalence class of DAGs using the PC-algorithm, and one then applies Pearl’s
do-calculus (Pearl, 2000) to each DAG in the Markov equivalence class. (The algorithm uses
a fast local implementation that does not require listing all DAGs in the equivalence class.)
One can then obtain estimated lower bounds on the sizes of the causal effects between
all pairs of genes. For each of the 25 random variable orderings, we ranked the gene pairs
according to these lower bounds, and compared these rankings to a gold standard set of large
causal effects computed from the experimental single gene knock-out data, as in Maathuis
et al. (2010). Figure 1(b) shows the large variability in the resulting receiver operating
characteristic (ROC) curves. The ROC curve that was published in Maathuis et al. (2010)
was significantly better than random guessing with p < 0.001, and is somewhere in the
middle. Some of the other curves are much better, while there are also curves that are
indistinguishable from random guessing.

The remainder of the paper is organized as follows. In Section 2 we discuss some back-
ground and terminology. Section 3 explains the original PC-algorithm. Section 4 introduces
modifications of the PC-algorithm (and hence also of the (R)FCI- and CCD-algorithms)
that remove part or all of the order-dependence. These modifications are identical to their
original counterparts when perfect conditional independence information is used. When
applied to data, the modified algorithms are partly or fully order-independent. Moreover,
they are consistent in high-dimensional settings under the same conditions as the original
algorithms. Section 5 compares all algorithms in simulations, and Section 6 compares them
on the yeast gene expression data discussed above. We close with a discussion in Section 7.

2. Preliminaries

In this section, we introduce some necessary terminology and background information.

2.1 Graph Terminology

A graph G = (V,E) consists of a vertex set V = {X1, . . . , Xp} and an edge set E. The
vertices represent random variables and the edges represent relationships between pairs of
variables.

A graph containing only directed edges (→) is directed, one containing only undirected
edges (−) is undirected, and one containing directed and/or undirected edges is partially
directed. The skeleton of a partially directed graph is the undirected graph that results
when all directed edges are replaced by undirected edges.

All graphs we consider are simple, meaning that there is at most one edge between any
pair of vertices. If an edge is present, the vertices are said to be adjacent. If all pairs of
vertices in a graph are adjacent, the graph is called complete. The adjacency set of a vertex
Xi in a graph G = (V,E), denoted by adj(G, Xi), is the set of all vertices in V that are
adjacent to Xi in G. A vertex Xj in adj(G, Xi) is called a parent of Xi if Xj → Xi. The
corresponding set of parents is denoted by pa(G, Xi).
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Figure 1: Analysis of the yeast gene expression data (Hughes et al., 2000) for 25 random
orderings of the variables, using tuning parameter α = 0.01. The estimated
graphs and resulting causal rankings are highly order-dependent.

A path is a sequence of distinct adjacent vertices. A directed path is a path along directed
edges that follows the direction of the arrowheads. A directed cycle is formed by a directed
path from Xi to Xj together with the edge Xj → Xi. A (partially) directed graph is called
a (partially) directed acyclic graph if it does not contain directed cycles.

A triple (Xi, Xj , Xk) in a graph G is unshielded if Xi and Xj as well as Xj and Xk are
adjacent, but Xi and Xk are not adjacent in G. A v-structure (Xi, Xj , Xk) is an unshielded
triple in a graph G where the edges are oriented as Xi → Xj ← Xk.

2.2 Probabilistic and Causal Interpretation of DAGs

We use the notation Xi ⊥⊥ Xj |S to indicate that Xi is independent of Xj given S, where
S is a set of variables not containing Xi and Xj (Dawid, 1980). If S is the empty set, we
simply write Xi ⊥⊥ Xj . If Xi ⊥⊥ Xj |S, we refer to S as a separating set for (Xi, Xj). A
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separating set S for (Xi, Xj) is called minimal if there is no proper subset S′ of S such that
Xi ⊥⊥ Xj |S′.

A distribution Q is said to factorize according to a DAG G = (V,E) if the joint density
of V = (X1, . . . , Xp) can be written as the product of the conditional densities of each
variable given its parents in G: q(X1, . . . , Xp) =

∏p
i=1 q(Xi|pa(G, Xi)).

A DAG entails conditional independence relationships via a graphical criterion called
d-separation (Pearl, 2000). If two vertices Xi and Xj are not adjacent in a DAG G, then
they are d-separated in G by a subset S of the remaining vertices. If Xi and Xj are d-
separated by S, then Xi ⊥⊥ Xj |S in any distribution Q that factorizes according to G. A
distribution Q is said to be faithful to a DAG G if the reverse implication also holds, that
is, if the conditional independence relationships in Q are exactly the same as those that can
be inferred from G using d-separation.

Several DAGs can describe exactly the same conditional independence information. Such
DAGs are called Markov equivalent and form a Markov equivalence class. Markov equivalent
DAGs have the same skeleton and the same v-structures, and a Markov equivalence class can
be described uniquely by a completed partially directed acyclic graph (CPDAG) (Andersson
et al., 1997; Chickering, 2002). A CPDAG is a partially directed acyclic graph with the
following properties: every directed edge exists in every DAG in the Markov equivalence
class, and for every undirected edge Xi−Xj there exists a DAG with Xi → Xj and a DAG
with Xi ← Xj in the Markov equivalence class. A CPDAG C is said to represent a DAG G
if G belongs to the Markov equivalence class described by C.

A DAG can be interpreted causally in the following way (Pearl, 2000, 2009; Spirtes et al.,
2000): X1 is a direct cause of X2 only if X1 → X2, and X1 is a possibly indirect cause of
X2 only if there is a directed path from X1 to X2.

3. The PC-Algorithm

We now describe the PC-algorithm in detail. In Section 3.1, we discuss the algorithm
under the assumption that we have perfect conditional independence information between
all variables in V. We refer to this as the oracle version. In Section 3.2 we discuss the more
realistic situation where conditional independence relationships have to be estimated from
data. We refer to this as the sample version.

3.1 Oracle Version

A sketch of the PC-algorithm is given in Algorithm 3.1. We see that the algorithm consists
of three steps. Step 1 (also called adjacency search) finds the skeleton and separation sets,
while Steps 2 and 3 determine the orientations of the edges.

Step 1 is given in pseudo-code in Algorithm 3.2. We start with a complete undirected
graph C. This graph is subsequently thinned out in the loop on lines 3-15 in Algorithm
3.2, where an edge Xi − Xj is deleted if Xi ⊥⊥ Xj |S for some subset S of the remaining
variables. These conditional independence queries are organized in a way that makes the
algorithm computationally efficient for high-dimensional sparse graphs, since we only need
to query conditional independencies up to order q − 1, where q is the maximum size of the
adjacency sets of the nodes in the underlying DAG.
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Algorithm 3.1 The PC-algorithm (oracle version)

Require: Conditional independence information among all variables in V, and an ordering
order(V) on the variables

1: Adjacency search: Find the skeleton C and separation sets using Algorithm 3.2;
2: Orient unshielded triples in the skeleton C based on the separation sets;
3: In C orient as many of the remaining undirected edges as possible by repeated application

of rules R1-R3 (see text);
4: return Output graph (C) and separation sets (sepset).

Algorithm 3.2 Adjacency search / Step 1 of the PC-algorithm (oracle version)

Require: Conditional independence information among all variables in V, and an ordering
order(V) on the variables

1: Form the complete undirected graph C on the vertex set V
2: Let ` = −1;
3: repeat
4: Let ` = `+ 1;
5: repeat
6: Select a (new) ordered pair of vertices (Xi, Xj) that are adjacent in C and satisfy

|adj(C, Xi) \ {Xj}| ≥ `, using order(V);
7: repeat
8: Choose a (new) set S ⊆ adj(C, Xi) \ {Xj} with |S| = `, using order(V);
9: if Xi and Xj are conditionally independent given S then

10: Delete edge Xi −Xj from C;
11: Let sepset(Xi, Xj) = sepset(Xj , Xi) = S;
12: end if
13: until Xi and Xj are no longer adjacent in C or all S ⊆ adj(C, Xi) \ {Xj} with

|S| = ` have been considered
14: until all ordered pairs of adjacent vertices (Xi, Xj) in C with |adj(C, Xi) \ {Xj}| ≥ `

have been considered
15: until all pairs of adjacent vertices (Xi, Xj) in C satisfy |adj(C, Xi) \ {Xj}| ≤ `
16: return C, sepset.
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First, when ` = 0, all pairs of vertices are tested for marginal independence. If Xi ⊥⊥ Xj ,
then the edgeXi−Xj is deleted and the empty set is saved as separation set in sepset(Xi, Xj)
and sepset(Xj , Xi). After all pairs of vertices have been considered (and many edges might
have been deleted), the algorithm proceeds to the next step with ` = 1.

When ` = 1, the algorithm chooses an ordered pair of vertices (Xi, Xj) still adjacent
in C, and checks Xi ⊥⊥ Xj |S for subsets S of size ` = 1 of adj(C, Xi) \ {Xj}. If such a
conditional independence is found, the edge Xi − Xj is removed, and the corresponding
conditioning set S is saved in sepset(Xi, Xj) and sepset(Xj , Xi). If all ordered pairs of
adjacent vertices have been considered for conditional independence given all subsets of size
` of their adjacency sets, the algorithm again increases ` by one. This process continues
until all adjacency sets in the current graph are smaller than `. At this point the skeleton
and the separation sets have been determined.

We see that this procedure indeed ensures that we only query conditional independencies
up to order q − 1, where q is the maximum size of the adjacency sets of the nodes in the
underlying DAG. This makes the algorithm particularly efficient for large sparse graphs.

Step 2 determines the v-structures. In particular, it considers all unshielded triples
in C, and orients an unshielded triple (Xi, Xj , Xk) as a v-structure if and only if Xj /∈
sepset(Xi, Xk).

Finally, Step 3 orients as many of the remaining undirected edges as possible by repeated
application of the following three rules:

R1: orient Xj −Xk into Xj → Xk whenever there is a directed edge Xi → Xj such that
Xi and Xk are not adjacent (otherwise a new v-structure is created);

R2: orient Xi −Xj into Xi → Xj whenever there is a chain Xi → Xk → Xj (otherwise a
directed cycle is created);

R3: orient Xi − Xj into Xi → Xj whenever there are two chains Xi − Xk → Xj and
Xi −Xl → Xj such that Xk and Xl are not adjacent (otherwise a new v-structure or
a directed cycle is created).

The PC-algorithm was shown to be sound and complete.

Theorem 1 (Theorem 5.1 on p.410 of Spirtes et al., 2000) Let the distribution of V be
faithful to a DAG G = (V,E), and assume that we are given perfect conditional indepen-
dence information about all pairs of variables (Xi, Xj) in V given subsets S ⊆ V\{Xi, Xj}.
Then the output of the PC-algorithm is the CPDAG that represents G.

We briefly discuss the main ingredients of the proof, as these will be useful for un-
derstanding our modifications in Section 4. The faithfulness assumption implies that con-
ditional independence in the distribution of V is equivalent to d-separation in the graph
G. The skeleton of G can then be determined as follows: Xi and Xj are adjacent in G if
and only if they are conditionally dependent given any subset S of the remaining nodes.
Naively, one could therefore check all these conditional dependencies, which is known as the
SGS-algorithm (Spirtes et al., 2000). The PC-algorithm obtains the same result with fewer
tests, by using the following fact about DAGs: two variables Xi and Xj in a DAG G are
d-separated by some subset S of the remaining variables if and only if they are d-separated
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by pa(G, Xi) or pa(G, Xj). The PC-algorithm is guaranteed to check these conditional inde-
pendencies: at all stages of the algorithm, the graph C is a supergraph of the true CPDAG,
and the algorithm checks conditional dependencies given all subsets of the adjacency sets,
which obviously include the parent sets.

The v-structures are determined based on Lemmas 5.1.2 and 5.1.3 of Spirtes et al.
(2000). The soundness and completeness of the orientation rules in Step 3 was shown in
Meek (1995) and Andersson et al. (1997).

3.2 Sample Version

In applications, we of course do not have perfect conditional independence information.
Instead, we assume that we have an i.i.d. sample of size n of V = (X1, . . . , Xp). A sample
version of the PC-algorithm can then be obtained by replacing all conditional independence
queries by statistical conditional independence tests at some pre-specified significance level
α. For example, if the distribution of V is multivariate Gaussian, one can test for zero partial
correlation, see, e.g., Kalisch and Bühlmann (2007). This is the test we used throughout
this paper.

We note that the PC-algorithm performs many tests. Hence, α should not be interpreted
as an overall significance level. Rather, it plays the role of a tuning parameter, where smaller
values of α tend to lead to sparser graphs.

3.3 Order-Dependence in the Sample Version

Let order(V) denote an ordering on the variables in V. We now consider the role of
order(V) in every step of the algorithm. Throughout, we assume that all tasks are performed
according to the lexicographical ordering of order(V), which is the standard implementation
in pcalg (Kalisch et al., 2012) and TETRAD IV (Spirtes et al., 2000), and is called “PC-1”
in Spirtes et al. (2000) (Section 5.4.2.4).

In Step 1, order(V) affects the estimation of the skeleton and the separating sets. In
particular, at each level of `, order(V) determines the order in which pairs of adjacent
vertices and subsets S of their adjacency sets are considered (see lines 6 and 8 in Algorithm
3.2). The skeleton C is updated after each edge removal. Hence, the adjacency sets typically
change within one level of `, and this affects which other conditional independencies are
checked, since the algorithm only conditions on subsets of the adjacency sets. In the oracle
version, we have perfect conditional independence information, and all orderings on the
variables lead to the same output. In the sample version, however, we typically make
mistakes in keeping or removing edges. In such cases, the resulting changes in the adjacency
sets can lead to different skeletons, as illustrated in Example 1.

Moreover, different variable orderings can lead to different separating sets in Step 1.
In the oracle version, this is not important, because any valid separating set leads to the
correct v-structure decision in Step 2. In the sample version, however, different separating
sets in Step 1 of the algorithm may yield different decisions about v-structures in Step 2.
This is illustrated in Example 2.

Finally, we consider the role of order(V) on the orientation rules in Steps 2 and 3
of the sample version of the PC-algorithm. Example 3 illustrates that different variable
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orderings can lead to different orientations, even if the skeleton and separating sets are
order-independent.

Example 1 (Order-dependent skeleton in the sample version of the PC-algorithm.) Sup-
pose that the distribution of V = {X1, X2, X3, X4, X5} is faithful to the DAG in Figure
2(a). This DAG encodes the following conditional independencies with minimal separating
sets: X1 ⊥⊥ X2 and X2 ⊥⊥ X4|{X1, X3} .

Suppose that we have an i.i.d. sample of (X1, X2, X3, X4, X5), and that the following
conditional independencies with minimal separating sets are judged to hold at some signifi-
cance level α: X1 ⊥⊥ X2, X2 ⊥⊥ X4|{X1, X3}, and X3 ⊥⊥ X4|{X1, X5}. Thus, the first two
are correct, while the third is false.

We now apply the PC-algorithm with two different orderings: order1(V) = (X1, X4, X2,
X3, X5) and order2(V) = (X1, X3, X4, X2, X5). The resulting skeletons are shown in Fig-
ures 2(b) and 2(c), respectively. We see that the skeletons are different, and that both are
incorrect as the edge X3−X4 is missing. The skeleton for order2(V) contains an additional
error, as there is an additional edge X2 −X4.

We now go through Algorithm 3.2 to see what happened. We start with a complete undi-
rected graph on V. When ` = 0, variables are tested for marginal independence, and the
algorithm correctly removes the edge between X1 and X2. No other conditional independen-
cies are found when ` = 0 or ` = 1. When ` = 2, there are two pairs of vertices that are
thought to be conditionally independent given a subset of size 2, namely the pairs (X2, X4)
and (X3, X4).

In order1(V), the pair (X4, X2) is considered first. The corresponding edge is removed,
as X4 ⊥⊥ X2|{X1, X3} and {X1, X3} is a subset of adj(C, X4) = {X1, X2, X3, X5}. Next,
the pair (X4, X3) is considered and the corresponding edges is erroneously removed, because
of the wrong decision that X4 ⊥⊥ X3|{X1, X5} and the fact that {X1, X5} is a subset of
adj(C, X4) = {X1, X3, X5}.

In order2(V), the pair (X3, X4) is considered first, and the corresponding edge is er-
roneously removed. Next, the algorithm considers the pair (X4, X2). The corresponding
separating set {X1, X3} is not a subset of adj(C, X4) = {X1, X2, X5}, so that the edge
X2 − X4 remains. Next, the algorithm considers the pair (X2, X4). Again, the separating
set {X1, X3} is not a subset of adj(C, X2) = {X3, X4, X5}, so that the edge X2 −X4 again
remains. In other words, since (X3, X4) was considered first in order2(V), the adjacency
set of X4 was affected and no longer contained X3, so that the algorithm “forgot” to check
the conditional independence X2 ⊥⊥ X4|{X1, X3}.

Example 2 (Order-dependent separating sets and v-structures in the sample version of the
PC-algorithm.) Suppose that the distribution of V = {X1, X2, X3, X4, X5} is faithful to
the DAG in Figure 3(a). This DAG encodes the following conditional independencies with
minimal separating sets: X1 ⊥⊥ X3|{X2}, X1 ⊥⊥ X4|{X2}, X1 ⊥⊥ X4|{X3}, X2 ⊥⊥ X4|{X3},
X2 ⊥⊥ X5|{X1, X3}, X2 ⊥⊥ X5|{X1, X4}, X3 ⊥⊥ X5|{X1, X4} and X3 ⊥⊥ X5|{X2, X4}.

We consider the oracle version of the PC-algorithm with two different orderings on the
variables: order3(V) = (X1, X4, X2, X3, X5) and order4(V) = (X1, X4, X3, X2, X5). For
order3(V), we obtain sepset(X1, X4) = {X2}, while for order4(V) we get sepset(X1, X4) =
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{X3}. Thus, the separating sets are order-dependent. However, we obtain the same v-
structure X1 → X5 ← X4 for both orderings, since X5 is not in the sepset(X1, X4), re-
gardless of the ordering. In fact, this holds in general, since in the oracle version of the
PC-algorithm, a vertex is either in all possible separating sets or in none of them (Spirtes
et al., 2000, Lemma 5.1.3).

Now suppose that we have an i.i.d. sample of (X1, X2, X3, X4, X5). Suppose that at
some significance level α, all true conditional independencies are judged to hold, and X1 ⊥
⊥ X3|{X4} is thought to hold by mistake. We again consider two different orderings:
order5(V) = (X1, X3, X4, X2, X5) and order6(V) = (X3, X1, X2, X4, X5). With order5(V)
we obtain the incorrect sepset(X1, X3) = {X4}. This also leads to an incorrect v-structure
X1 → X2 ← X3 in Step 2 of the algorithm. With order6(V), we obtain the correct
sepset(X1, X3) = {X2}, and hence correctly find that X1 −X2 −X3 is not a v-structure in
Step 2. This illustrates that order-dependent separating sets in Step 1 of the sample version
of the PC-algorithm can lead to order-dependent v-structures in Step 2 of the algorithm.

Example 3 (Order-dependent orientation rules in Steps 2 and 3 of the sample version of
the PC-algorithm.) Consider the graph in Figure 4(a) with unshielded triples (X1, X2, X3)
and (X2, X3, X4), and assume this is the skeleton after Step 1 of the sample version of
the PC-algorithm. Moreover, assume that we found sepset(X1, X3) = sepset(X2, X4) =
sepset(X1, X4) = ∅. Then in Step 2 of the algorithm, we obtain two v-structures X1 →
X2 ← X3 and X2 → X3 ← X4. Of course this means that at least one of the statistical tests
is wrong, but this can happen in the sample version. We now have conflicting information
about the orientation of the edge X2 −X3. In the current implementation of pcalg, where
conflicting edges are simply overwritten, this means that the orientation of X2 − X3 is
determined by the v-structure that is last considered. Thus, we obtain X1 → X2 → X3 ← X4

if (X2, X3, X4) is considered last, while we get X1 → X2 ← X3 ← X4 if (X1, X2, X3) is
considered last.

Next, consider the graph in Figure 4(b), and assume that this is the output of the sam-
ple version of the PC-algorithm after Step 2. Thus, we have two v-structures, namely
X1 → X2 ← X3 and X4 → X5 ← X6, and four unshielded triples, namely (X1, X2, X5),
(X3, X2, X5), (X4, X5, X2), and (X6, X5, X2). Thus, we then apply the orientation rules
in Step 3 of the algorithm, starting with rule R1. If one of the two unshielded triples
(X1, X2, X5) or (X3, X2, X5) is considered first, we obtain X2 → X5. On the other hand, if
one of the unshielded triples (X4, X5, X2) or (X6, X5, X2) is considered first, then we obtain
X2 ← X5. Note that we have no issues with overwriting of edges here, since as soon as the
edge X2−X5 is oriented, all edges are oriented and no further orientation rules are applied.

These examples illustrate that Steps 2 and 3 of the PC-algorithm can be order-dependent
regardless of the output of the previous steps.

4. Modified Algorithms

We now propose several modifications of the PC-algorithm (and hence also of the related al-
gorithms) that remove the order-dependence in the various stages of the algorithm. Sections
4.1, 4.2, and 4.3 discuss the skeleton, the v-structures and the orientation rules, respectively.
In each of these sections, we first describe the oracle version of the modifications, and then
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Figure 2: Graphs corresponding to Examples 1 and 4.
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Figure 3: Graphs corresponding to Examples 2 and 5.
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Figure 4: Graphs corresponding to Examples 3 and 6.
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results and examples about order-dependence in the corresponding sample version (obtained
by replacing conditional independence queries by conditional independence tests, as in Sec-
tion 3.3). Finally, Section 4.4 discusses order-independent versions of related algorithms
like RFCI and FCI, and Section 4.5 presents high-dimensional consistency results for the
sample versions of all modifications.

4.1 The Skeleton

We first consider estimation of the skeleton in the adjacency search (Step 1) of the PC-
algorithm. The pseudocode for our modification is given in Algorithm 4.1. The resulting
PC-algorithm, where Step 1 in Algorithm 3.1 is replaced by Algorithm 4.1, is called “PC-
stable”.

The main difference between Algorithms 3.2 and 4.1 is given by the for-loop on lines
6-8 in the latter one, which computes and stores the adjacency sets a(Xi) of all variables
after each new size ` of the conditioning sets. These stored adjacency sets a(Xi) are used
whenever we search for conditioning sets of this given size `. Consequently, an edge deletion
on line 13 no longer affects which conditional independencies are checked for other pairs of
variables at this level of `.

In other words, at each level of `, Algorithm 4.1 records which edges should be removed,
but for the purpose of the adjacency sets it removes these edges only when it goes to the
next value of `. Besides resolving the order-dependence in the estimation of the skeleton,
our algorithm has the advantage that it is easily parallelizable at each level of `.

The PC-stable algorithm is sound and complete in the oracle version (Theorem 2), and
yields order-independent skeletons in the sample version (Theorem 3). We illustrate the
algorithm in Example 4.

Theorem 2 Let the distribution of V be faithful to a DAG G = (V,E), and assume that we
are given perfect conditional independence information about all pairs of variables (Xi, Xj)
in V given subsets S ⊆ V \ {Xi, Xj}. Then the output of the PC-stable algorithm is the
CPDAG that represents G.

Proof The proof of Theorem 2 is completely analogous to the proof of Theorem 1 for the
original PC-algorithm, as discussed in Section 3.1.

Theorem 3 The skeleton resulting from the sample version of the PC-stable algorithm is
order-independent.

Proof We consider the removal or retention of an arbitrary edge Xi −Xj at some level `.
The ordering of the variables determines the order in which the edges (line 9 of Algorithm
4.1) and the subsets S of a(Xi) and a(Xj) (line 11 of Algorithm 4.1) are considered. By
construction, however, the order in which edges are considered does not affect the sets a(Xi)
and a(Xj).

If there is at least one subset S of a(Xi) or a(Xj) such that Xi ⊥⊥ Xj |S, then any
ordering of the variables will find a separating set for Xi and Xj (but different orderings
may lead to different separating sets as illustrated in Example 2). Conversely, if there is no
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Algorithm 4.1 Step 1 of the PC-stable algorithm (oracle version)

Require: Conditional independence information among all variables in V, and an ordering
order(V) on the variables

1: Form the complete undirected graph C on the vertex set V
2: Let ` = −1;
3: repeat
4: Let ` = `+ 1;
5: for all vertices Xi in C do
6: Let a(Xi) = adj(C, Xi)
7: end for
8: repeat
9: Select a (new) ordered pair of vertices (Xi, Xj) that are adjacent in C and satisfy

|a(Xi) \ {Xj}| ≥ `, using order(V);
10: repeat
11: Choose a (new) set S ⊆ a(Xi) \ {Xj} with |S| = `, using order(V);
12: if Xi and Xj are conditionally independent given S then
13: Delete edge Xi −Xj from C;
14: Let sepset(Xi, Xj) = sepset(Xj , Xi) = S;
15: end if
16: until Xi and Xj are no longer adjacent in C or all S ⊆ a(Xi) \ {Xj} with |S| = `

have been considered
17: until all ordered pairs of adjacent vertices (Xi, Xj) in C with |a(Xi) \ {Xj}| ≥ ` have

been considered
18: until all pairs of adjacent vertices (Xi, Xj) in C satisfy |a(Xi) \ {Xj}| ≤ `
19: return C, sepset.

subset S′ of a(Xi) or a(Xj) such that Xi ⊥⊥ Xj |S′, then no ordering will find a separating
set.

Hence, any ordering of the variables leads to the same edge deletions, and therefore to
the same skeleton.

Example 4 (Order-independent skeletons) We go back to Example 1, and consider the
sample version of Algorithm 4.1. The algorithm now outputs the skeleton shown in Figure
2(b) for both orderings order1(V) and order2(V).

We again go through the algorithm step by step. We start with a complete undirected
graph on V. The only conditional independence found when ` = 0 or ` = 1 is X1 ⊥⊥ X2,
and the corresponding edge is removed. When ` = 2, the algorithm first computes the new
adjacency sets: a(X1) = a(X2) = {X3, X4, X5} and a(Xi) = V \ {Xi} for i = 3, 4, 5.
There are two pairs of variables that are thought to be conditionally independent given a
subset of size 2, namely (X2, X4) and (X3, X4). Since the sets a(Xi) are not updated after
edge removals, it does not matter in which order we consider the ordered pairs (X2, X4),
(X4, X2), (X3, X4) and (X4, X3). Any ordering leads to the removal of both edges, as the
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separating set {X1, X3} for (X4, X2) is contained in a(X4), and the separating set {X1, X5}
for (X3, X4) is contained in a(X3) (and in a(X4)).

4.2 Determination of the V-structures

We propose two methods to resolve the order-dependence in the determination of the v-
structures, using the conservative PC-algorithm (CPC) of Ramsey et al. (2006) and a vari-
ation thereof.

The CPC-algorithm works as follows. Let C be the graph resulting from Step 1 of the PC-
algorithm (Algorithm 3.1). For all unshielded triples (Xi, Xj , Xk) in C, determine all subsets
Y of adj(C, Xi) and of adj(C, Xk) that make Xi and Xk conditionally independent, i.e., that
satisfy Xi ⊥⊥ Xk|Y. We refer to such sets as separating sets. The triple (Xi, Xj , Xk) is
labelled as unambiguous if at least one such separating set is found and either Xj is in all
separating sets or in none of them; otherwise it is labelled as ambiguous. If the triple is
unambiguous, it is oriented as v-structure if and only if Xj is in none of the separating
sets. Moreover, in Step 3 of the PC-algorithm (Algorithm 3.1), the orientation rules are
adapted so that only unambiguous triples are oriented. The output of the CPC-algorithm
is a partially directed graph in which ambiguous triples are marked.

We found that the CPC-algorithm can be very conservative, in the sense that very few
unshielded triples are unambiguous in the sample version. We therefore propose a minor
modification of this approach, called majority rule PC-algorithm (MPC). As in CPC, we
first determine all subsets Y of adj(C, Xi) and of adj(C, Xk) satisfying Xi ⊥⊥ Xk|Y. We
then label the triple (Xi, Xj , Xk) as unambiguous if at least one such separating set is found
and Xj is not in exactly 50% of the separating sets. Otherwise it is labelled as ambiguous.
(Of course, one can also use different cut-offs to declare ambiguous and non-ambiguous
triples.) If a triple is unambiguous, it is oriented as v-structure if and only if Xj is in less
than half of the separating sets. As in CPC, the orientation rules in Step 3 are adapted so
that only unambiguous triples are oriented, and the output is a partially directed graph in
which ambiguous triples are marked.

We refer to the combination of PC-stable and CPC/MPC as the CPC/MPC-stable
algorithms. Theorem 4 states that the oracle versions of the CPC- and MPC-stable algo-
rithms are sound and complete. When looking at the sample versions of the algorithms,
we note that any unshielded triple that is judged to be unambiguous in CPC-stable is also
unambiguous in MPC-stable, and any unambiguous v-structure in CPC-stable is an unam-
biguous v-structure in MPC-stable. In this sense, CPC-stable is more conservative than
MPC-stable, although the difference appears to be small in simulations and for the yeast
data (see Sections 5 and 6). Both CPC-stable and MPC-stable share the property that the
determination of v-structures no longer depends on the (order-dependent) separating sets
that were found in Step 1 of the algorithm. Therefore, both CPC-stable and MPC-stable
yield order-independent decisions about v-structures in the sample version, as stated in
Theorem 5. Example 5 illustrates both algorithms.

We note that the CPC/MPC-stable algorithms may yield a lot fewer directed edges than
PC-stable. On the other hand, we can put more trust in those edges that were oriented.

Theorem 4 Let the distribution of V be faithful to a DAG G = (V,E), and assume that we
are given perfect conditional independence information about all pairs of variables (Xi, Xj)
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in V given subsets S ⊆ V\{Xi, Xj}. Then the output of the CPC/MPC(-stable) algorithms
is the CPDAG that represents G.

Proof The skeleton of the CPDAG is correct by Theorems 1 and 2. The unshielded triples
are all unambiguous (in the conservative and the majority rule versions), since for any un-
shielded triple (Xi, Xj , Xk) in a DAG, Xj is either in all sets that d-separate Xi and Xk or
in none of them (Spirtes et al., 2000, Lemma 5.1.3). In particular, this also means that all
v-structures are determined correctly. Finally, since all unshielded triples are unambiguous,
the orientation rules are as in the original oracle PC-algorithm, and soundness and com-
pleteness of these rules follows from Meek (1995) and Andersson et al. (1997).

Theorem 5 The decisions about v-structures in the sample versions of the CPC/MPC-
stable algorithms are order-independent.

Proof The CPC/MPC-stable algorithms have order-independent skeletons in Step 1, by
Theorem 3. In particular, this means that their unshielded triples and adjacency sets
are order-independent. The decision about whether an unshielded triple is unambiguous
and/or a v-structure is based on the adjacency sets of nodes in the triple, which are order-
independent.

Example 5 (Order-independent decisions about v-structures) We consider the sample ver-
sions of the CPC/MPC-stable algorithms, using the same input as in Example 2. In par-
ticular, we assume that all conditional independencies induced by the DAG in Figure 3(a)
are judged to hold, plus the additional (erroneous) conditional independency X1 ⊥⊥ X3|X4.

Denote the skeleton after Step 1 by C. We consider the unshielded triple (X1, X2, X3).
First, we compute adj(C, X1) = {X2, X5} and adj(C, X3) = {X2, X4}. We now consider all
subsets Y of these adjacency sets, and check whether X1 ⊥⊥ X3|Y. The following separating
sets are found: {X2}, {X4}, and {X2, X4}.

Since X2 is in some but not all of these separating sets, CPC-stable determines that the
triple is ambiguous, and no orientations are performed. Since X2 is in more than half of the
separating sets, MPC-stable determines that the triple is unambiguous and not a v-structure.
The output of both algorithms is given in Figure 3(b).

4.3 Orientation Rules

Even when the skeleton and the determination of the v-structures are order-independent,
Example 3 showed that there might be some order-dependence left in the sample-version.
This can be resolved by allowing bi-directed edges (↔) and working with lists containing
the candidate edges for the v-structures in Step 2 and the orientation rules R1-R3 in Step
3.

In particular, in Step 2 we generate a list of all (unambiguous) v-structures, and then
orient all of these, creating a bi-directed edge in case of a conflict between two v-structures.
In Step 3, we first generate a list of all edges that can be oriented by rule R1. We orient all
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these edges, again creating bi-directed edges if there are conflicts. We do the same for rules
R2 and R3, and iterate this procedure until no more edges can be oriented.

When using this procedure, we add the letter L (standing for lists), e.g., LCPC-stable
and LMPC-stable. The LCPC-stable and LMPC-stable algorithms are correct in the oracle
version (Theorem 6) and fully order-independent in the sample versions (Theorem 7). The
procedure is illustrated in Example 6.

We note that the bi-directed edges cannot be interpreted causally. They simply indicate
that there was some conflicting information in the algorithm.

Theorem 6 Let the distribution of V be faithful to a DAG G = (V,E), and assume that we
are given perfect conditional independence information about all pairs of variables (Xi, Xj)
in V given subsets S ⊆ V \ {Xi, Xj}. Then the (L)CPC(-stable) and (L)MPC(-stable)
algorithms output the CPDAG that represents G.

Proof By Theorem 4, we know that the CPC(-stable) and MPC(-stable) algorithms are
correct. With perfect conditional independence information, there are no conflicts between
v-structures in Step 2 of the algorithms, nor between orientation rules in Step 3 of the
algorithms. Therefore, the (L)CPC(-stable) and (L)MPC(-stable) algorithms are identical
to the CPC(-stable) and MPC(-stable) algorithms.

Theorem 7 The sample versions of LCPC-stable and LMPC-stable are fully order-indepen-
dent.

Proof This follows straightforwardly from Theorems 3 and 5 and the procedure with lists
and bi-directed edges discussed above.

Table 1 summarizes the three order-dependence issues explained above and the cor-
responding modifications of the PC-algorithm that removes the given order-dependence
problem.

skeleton v-structures decisions edges orientations

PC - - -

PC-stable
√

- -

CPC/MPC-stable
√ √

-

BCPC/BMPC-stable
√ √ √

Table 1: Order-dependence issues and corresponding modifications of the PC-algorithm
that remove the problem. A tick mark indicates that the corresponding aspect
of the graph is estimated order-independently in the sample version. For exam-
ple, with PC-stable the skeleton is estimated order-independently but not the
v-structures and the edge orientations.
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Example 6 First, we consider the two unshielded triples (X1, X2, X3) and (X2, X3, X4) as
shown in Figure 4(a). The version of the algorithm that uses lists for the orientation rules,
orients these edges as X1 → X2 ↔ X3 ← X4, regardless of the ordering of the variables.

Next, we consider the structure shown in Figure 4(b). As a first step, we construct a
list containing all candidate structures eligible for orientation rule R1 in Step 3. The list
contains the unshielded triples (X1, X2, X5), (X3, X2, X5), (X4, X5, X2), and (X6, X5, X2).
Now, we go through each element in the list and we orient the edges accordingly, allowing
bi-directed edges. This yields the edge orientation X2 ↔ X5, regardless of the ordering of
the variables.

4.4 Related Algorithms

If there are unmeasured common causes or unmeasured selection variables, which is often
the case in practice, then causal inference based on the PC-algorithm may be incorrect.
In such cases, one needs a generalization of a DAG, called a maximal ancestral graph
(MAG) (Richardson and Spirtes, 2002). A MAG describes causal information in its edge
marks, and entails conditional independence relationships via m-separation (Richardson
and Spirtes, 2002), a generalization of d-separation. Several MAGs can describe exactly
the same conditional independence information. Such MAGs are called Markov equivalent
and form a Markov equivalence class, which can be represented by a partial ancestral graph
(PAG) (Richardson and Spirtes, 2002; Ali et al., 2009). PAGs describe causal features
common to every MAG in the Markov equivalence class, and hence to every DAG (possibly
with latent and selection variables) compatible with the observable independence structure
under the assumption of faithfulness. More information on the interpretation of MAGs and
PAGs can be found in, e.g., Colombo et al. (2012) (Sections 1.2 and 2.2).

PAGs can be learned by the FCI-algorithm (Spirtes et al., 2000, 1999). As a first step,
this algorithm runs Steps 1 and 2 of the PC-algorithm (Algorithm 3.1). Based on the
resulting graph, it then computes certain sets, called “Possible-D-SEP” sets, and conducts
more conditional independence tests given subsets of the Possible-D-SEP sets. This can lead
to additional edge removals and corresponding separating sets. After this, the v-structures
are newly determined. Finally, there are ten orientation rules as defined by Zhang (2008).
The output of the FCI-algorithm is an (estimated) PAG (Colombo et al., 2012, Definition
3.1).

From our results, it immediately follows that FCI with any of our modifications of
the PC-algorithm is sound and complete in the oracle version. Moreover, we can easily
construct partially or fully order-independent sample versions as follows. To solve the
order-dependence in the skeleton we can use the following three step approach. First, we
use PC-stable to find an initial order-independent skeleton. Next, since Possible-D-SEP
sets are determined from the orientations of the v-structures, we need order-independent
v-structures. Therefore, in Step 2 we can determine the v-structures using CPC. Finally,
we compute the Possible-D-SEP sets for all pairs of nodes at once, and do not update these
after possible edge removals. The modification that uses these three steps returns an order-
independent skeleton, and we call it FCI-stable. To assess order-independent v-structures
in the final output, one should again use an order-independent procedure, as in CPC or
MPC for the second time that v-structures are determined. We call these modifications
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CFCI-stable and MFCI-stable, respectively. Regarding the orientation rules, we note that
the FCI-algorithm does not suffer from conflicting v-structures (as shown in Figure 4(a)
for the PC-algorithm), because it orients edge marks and because bi-directed edges are
allowed. However, the ten orientation rules still suffer from order-dependence issues as in
the PC-algorithm (see Example 3 and Figure 4(b)). To solve this problem, we can again use
lists of candidate edges for each orientation rule as explained in the previous section about
the PC-algorithm. We refer to these modifications as LCFCI-stable and LMFCI-stable, and
they are fully order-independent in the sample version. However, since these ten orientation
rules are more involved than the three for PC, using lists can be very slow for some rules,
for example the one for discriminating paths.

Table 2 summarizes the three order-dependence issues for FCI and the corresponding
modifications that remove them.

skeleton v-structures decisions edges orientations

FCI - - -

FCI-stable
√

- -

CFCI/MFCI-stable
√ √

-

LCFCI/LMFCI-stable
√ √ √

Table 2: Order-dependence issues and corresponding modifications of the FCI-algorithm
that remove the problem. A tick mark indicates that the corresponding aspect
of the graph is estimated order-independently in the sample version. For exam-
ple, with FCI-stable the skeleton is estimated order-independently but not the
v-structures and the edge orientations.

In the presences of latent and selection variables, one can also use the RFCI-algorithm
(Colombo et al., 2012). This algorithm can be viewed as a compromise between PC and
FCI, in the sense that its computational complexity is of the same order as PC, but its
output can be interpreted causally without assuming causal sufficiency (but is slightly less
informative than the output from FCI).

RFCI works as follows. It starts with the first step of PC. It then has a more involved
Step 2 to determine the v-structures (Colombo et al., 2012, Lemma 3.1). In particular, for
any unshielded triple (Xi, Xj , Xk), it conducts additional tests to check if both Xi and Xj

and Xj and Xk are conditionally dependent given sepset(Xi, Xj) \ {Xj} found in Step 1. If
a conditional independence relationship is detected, the corresponding edge is removed and
a minimal separating set is stored. The removal of an edge can create new unshielded triples
or destroy some of them. Therefore, the algorithm works with lists to make sure that these
actions are order-independent. On the other hand, if both conditional dependencies hold and
Xj is not in the separating set for (Xi, Xk), the triple is oriented as a v-structure. Finally,
in Step 3 it uses the ten orientation rules of Zhang (2008) with a modified orientation rule
for the discriminating paths, that also involves some additional conditional independence
tests. The output of the RFCI-algorithm is an (estimated) RFCI-PAG (Colombo et al.,
2012, Definition 3.2).
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From our results, it immediately follows that RFCI with any of our modifications of the
PC-algorithm is correct in the oracle version, in the sense it outputs the true RFCI-PAG.
Because of its more involved rules for v-structures and discriminating paths, one needs
to make several adaptations to create a fully order-independent algorithm. For example,
the additional conditional independence tests conducted for the v-structures are based on
the separating sets found in Step 1. As already mentioned before (see Example 2) these
separating sets are order-dependent, and therefore also the possible edge deletions based on
them are order-dependent, leading to an order-dependent skeleton. To produce an order-
independent skeleton one should use a similar approach to the conservative one for the
v-structures to make the additional edge removals order-independent. Nevertheless, we can
remove a large amount of the order-dependence in the skeleton by using the stable version
for the skeleton as a first step. We refer to this modification as RFCI-stable. Note that this
procedure does not produce a fully order-independent skeleton, but as shown in Section 5.2,
it reduces the order-dependence considerably. Moreover, we can combine this modification
with CPC or MPC on the final skeleton to reduce the order-dependence of the v-structures.
We refer to these modifications as CRFCI-stable and MRFCI-stable. Finally, we can again
use lists for the orientation rules as in the FCI-algorithm to reduce the order-dependence
caused by the orientation rules.

Finally, in the presence of directed cycles, one can use the CCD-algorithm (Richardson,
1996). This algorithm can also be made order-independent using a similar approach.

4.5 High-Dimensional Consistency

The original PC-algorithm has been shown to be consistent for certain sparse high-dimensio-
nal graphs. In particular, Kalisch and Bühlmann (2007) proved consistency for multivariate
Gaussian distributions. More recently, Harris and Drton (2013) showed consistency for the
broader class of Gaussian copulas when using rank correlations, under slightly different
conditions.

These high-dimensional consistency results allow the DAG G and the number of observed
variables p in V to grow as a function of the sample size, so that p = pn, V = Vn =
(Xn,1, . . . , Xn,pn) and G = Gn. The corresponding CPDAGs that represent Gn are denoted
by Cn, and the estimated CPDAGs using tuning parameter αn are denoted by Ĉn(αn). Then
the consistency results say that, under some conditions, there exists a sequence αn such that
P (Ĉn(αn) = Cn)→ 1 as n→∞.

These consistency results rely on the fact that the PC-algorithm only performs condi-
tional independence tests between pairs of variables given subsets S of size less than or equal
to the degree of the graph (when no errors are made). We made sure that our modifications
still obey this property, and therefore the consistency results of Kalisch and Bühlmann
(2007) and Harris and Drton (2013) remain valid for the (L)CPC(-stable) and (L)MPC(-
stable) algorithms, under exactly the same conditions as for the original PC-algorithm.

Finally, also the consistency results of Colombo et al. (2012) for the FCI- and RFCI-
algorithms remain valid for the (L)CFCI(-stable), (L)MFCI(-stable), CRFCI(-stable), and
MRFCI(-stable) algorithms, under exactly the same conditions as for the original FCI- and
RFCI-algorithms.

3939



Colombo and Maathuis

5. Simulations

We compared all algorithms on simulated data from low-dimensional and high-dimensional
systems with and without latent variables. In the low-dimensional setting, we compared the
modifications of PC, FCI and RFCI. All algorithms performed similarly in this setting, and
the results are presented in Appendix A.1. The remainder of this section therefore focuses
on the high-dimensional setting, where we compared (L)PC(-stable), (L)CPC(-stable) and
(L)MPC(-stable) in systems without latent variables, and RFCI(-stable), CRFCI(-stable)
and MRFCI(-stable) in systems with latent variables. We omitted the FCI-algorithm and
the modifications with lists for the orientation rules of RFCI because of their computational
complexity. Our results show that our modified algorithms perform better than the original
algorithms in the high-dimensional settings we considered.

In Section 5.1 we describe the simulation setup. Section 5.2 evaluates the estimation of
the skeleton of the CPDAG or PAG (i.e., only looking at the presence or absence of edges),
and Section 5.3 evaluates the estimation of the CPDAG or PAG (i.e., also including the edge
marks). Appendix A.2 compares the computing time and the number of conditional inde-
pendence tests performed by PC and PC-stable, showing that PC-stable generally performs
more conditional independence tests, and is slightly slower than PC. Finally, Appendix A.3
compares the modifications of FCI and RFCI in two medium-dimensional settings with la-
tent variables, where the number of nodes in the graph is roughly equal to the sample size
and we allow somewhat denser graphs. The results indicate that also in this setting our
modified versions perform better than the original ones.

5.1 Simulation Setup

We used the following procedure to generate a random weighted DAG with a given number of
vertices p and an expected neighborhood size E(N). First, we generated a random adjacency
matrix A with independent realizations of Bernoulli(E(N)/(p−1)) random variables in the
lower triangle of the matrix and zeroes in the remaining entries. Next, we replaced the ones
in A by independent realizations of a Uniform([0.1, 1]) random variable, where a nonzero
entry Aij can be interpreted as an edge from Xj to Xi with weight Aij . (We bounded the
edge weights away from zero to avoid problems with near-unfaithfulness.)

We related a multivariate Gaussian distribution to each DAG by letting X1 = ε1 and
Xi =

∑i−1
r=1AirXr + εi for i = 2, . . . , p, where ε1, . . . , εp are mutually independent N (0, 1)

random variables. The variables X1, . . . , Xp then have a multivariate Gaussian distribution
with mean zero and covariance matrix Σ = (1−A)−1(1−A)−T , where 1 is the p×p identity
matrix.

We generated 250 random weighted DAGs with p = 1000 and E(N) = 2, and for each
weighted DAG we generated an i.i.d. sample of size n = 50. The settings were chosen
to somewhat resemble the observational yeast gene expression data (see Section 6). In the
setting without latents, we simply used all variables. In the setting with latents, we removed
half of the variables that had no parents and at least two children, chosen at random.

We estimated each graph for 20 random variable orderings, using the sample versions of
(L)PC(-stable), (L)CPC(-stable), and (L)MPC(-stable) in the setting without latents, and
the sample versions of RFCI(-stable), CRFCI(-stable), and MRFCI(-stable) in the setting
with latents, with tuning parameter α ∈ {0.000625, 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04}.
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Thus, from each randomly generated DAG, we obtained 20 estimated CPDAGs or RFCI-
PAGs from each algorithm, for each value of α.

5.2 Estimation of the Skeleton

Figure 5 shows the number of edges, the number of errors, and the true discovery rate for
the estimated skeletons, when compared to the true CPDAG or true PAG. The figure only
compares PC and PC-stable in the setting without latent variables, and RFCI and RFCI-
stable in the setting with latent variables, since the modifications for the v-structures and
the orientation rules do not affect the estimation of the skeleton.

We first consider the number of estimated errors in the skeleton, shown in the first row
of Figure 5. We see that PC-stable and RFCI-stable return estimated skeletons with fewer
edges than PC and RFCI, for all values of α. This can be explained by the fact that PC-
stable and RFCI-stable tend to perform more tests than PC and RFCI (see also Appendix
A.2). Moreover, for all algorithms smaller values of α lead to sparser outputs, as expected.
When interpreting these plots, it is useful to know that the average number of edges in the
true CPDAGs and PAGs is about 1000. Thus, for all algorithms and almost all values of
α, the estimated graphs are too sparse.

The second row of Figure 5 shows that PC-stable and RFCI-stable make fewer errors
in the estimation of the skeletons than PC and RFCI, for all values of α. This may be
somewhat surprising given the observations above: for most values of α the output of PC
and RFCI is too sparse, and the output of PC-stable and RFCI-stable is even sparser. Thus,
it must be that PC-stable and RFCI-stable yield a large decrease in the number of false
positive edges that outweighs any increase in false negative edges.

This conclusion is also supported by the last row of Figure 5, which shows that PC-stable
and RFCI-stable have a better True Discovery Rate (TDR) for all values of α, where the
TDR is defined as the proportion of edges in the estimated skeleton that are also present
in the true skeleton.

Figure 6 shows more detailed results for the estimated skeletons of PC and PC-stable
for one of the 250 graphs (randomly chosen), for four different values of α. For each value of
α shown, PC yielded a certain number of stable edges that were present for all 20 variable
orderings, but also a large number of extra edges that seem to pop in or out randomly for
different orderings. The PC-stable algorithm yielded far fewer edges (shown in red), and
roughly captured the edges that were stable among the different variable orderings for PC.
The results for RFCI and RFCI-stable show an equivalent picture.

5.3 Estimation of the CPDAGs and PAGs

We now consider estimation of the CPDAG or PAG, that is, also taking into account the
edge orientations. For CPDAGs, we summarize the number of estimation errors using the
Structural Hamming Distance (SHD), which is defined as the minimum number of edge
insertions, deletions, and flips that are needed in order to transform the estimated graph
into the true one. For PAGs, we summarize the number of estimation errors by counting
the number of errors in the edge marks, which we call “SHD edge marks”. For example, if
an edge Xi → Xj is present in the estimated PAG but the true PAG contains Xi ↔ Xj ,
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Figure 5: Estimation performance of PC (circles; black line) and PC-stable (triangles; red
line) for the skeleton of the CPDAGs (first column of plots), and of RFCI (circles;
black line) and RFCI-stable (triangles; red line) for the skeleton of the PAGs
(second column of plots), for different values of α (x-axis displayed in log scale).
The results are shown as averages plus or minus one standard deviation, computed
over 250 randomly generated graphs and 20 random variable orderings per graph.
The average number of edges in the true underlying CPDAGs and PAGs is about
1000.
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Figure 6: Estimated edges with the PC-algorithm (black) for 20 random orderings on the
variables, as well as with the PC-stable algorithm (red, shown as variable ordering
21), for a random graph from the high-dimensional setting. The edges along the
x-axes are ordered according to their presence in the 20 random orderings using
the original PC-algorithm. Edges that did not occur for any of the orderings were
omitted.

then that counts as one error, while it counts as two errors if the true PAG contains, for
example, Xi ← Xj or Xi and Xj are not adjacent.

Figure 7 shows that the PC-stable and RFCI-stable versions have significantly better
estimation performance than the versions with the original skeleton, for all values of α.
Moreover, MPC(-stable) and CPC(-stable) perform better than PC(-stable), as do MRFCI(-
stable) and CRFCI(-stable) with respect to RFCI(-stable). Finally, for PC the idea to
introduce bi-directed edges and lists in LCPC(-stable) and LMPC(-stable) seems to make
little difference.

Figure 8 shows the variance in SHD for the CPDAGs, see Figure 8(a), and the variance
in SHD edge marks for the PAGs, see Figure 8(b), both computed over the 20 random
variable orderings per graph, and then plotted as averages over the 250 randomly gener-
ated graphs for the different values of α. The PC-stable and RFCI-stable versions yield
significantly smaller variances than their counterparts with unstabilized skeletons. More-

3943



Colombo and Maathuis

over, the variance is further reduced for (L)CPC-stable and (L)MPC-stable, as well as for
CRFCI-stable and MRFCI-stable, as expected.

Figure 9 shows receiver operating characteristic curves (ROC) for the directed edges in
the estimated CPDAGs (Figure 9(a)) and PAGs (Figure 9(b)). We see that finding directed
edges is much harder in settings that allow for hidden variables, as shown by the lower true
positive rates (TPR) and higher false positive rates (FPR) in Figure 9(b). Within each
figure, the different versions of the algorithms perform roughly similar, and MPC-stable
and MRFCI-stable yield the best ROC-curves.
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Figure 7: Estimation performance in terms of SHD for the CPDAGs and SHD edge marks
for the PAGs, shown as averages over 250 randomly generated graphs and 20
random variable orderings per graph, for different values of α (x-axis displayed
in log scale).

6. Yeast Gene Expression Data

We also compared the PC and PC-stable algorithms on the yeast gene expression data
(Hughes et al., 2000) that were already briefly discussed in Section 1. We recall that
we chose these data since they contain both observational and experimental data, obtained
under similar conditions. The observational data consist of gene expression measurements of
5361 genes for 63 wild-type cultures (observational data of size 63×5361). The experimental
data consist of gene expression measurements of the same 5361 genes for 234 single-gene
deletion mutant strains (experimental data of size 234× 5361).
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Figure 8: Estimation performance in terms of the variance of the SHD for the CPDAGs and
SHD edge marks for the PAGs over the 20 random variable orderings per graph,
shown as averages over 250 randomly generated graphs, for different values of α
(x-axis displayed in log scale).

In Section 6.1 we consider estimation of the skeleton of the CPDAG, and in Section 6.2
we consider estimation of bounds on causal effects. We used the same data pre-processing
as in Maathuis et al. (2010).

6.1 Estimation of the Skeleton

We applied PC and PC-stable to the (pre-processed) observational data. We saw in Section
1 that the PC-algorithm yielded estimated skeletons that were highly dependent on the
variable ordering, as shown in black in Figure 10 for the 26 variable orderings (the original
ordering and 25 random orderings of the variables). The PC-stable algorithm does not
suffer from this order-dependence, and consequently all these 26 random orderings over the
variables produce the same skeleton which is shown in the figure in red. We see that the PC-
stable algorithm yielded a far sparser skeleton (2086 edges for PC-stable versus 5015-5159
edges for the PC-algorithm, depending on the variable ordering). Just as in the simulations
in Section 5 the order-independent skeleton from the PC-stable algorithm roughly captured
the edges that were stable among the different order-dependent skeletons estimated from
different variable orderings for the original PC-algorithm.

To make “captured the edges that were stable” somewhat more precise, we defined the
following two sets: Set 1 contained all edges (directed edges) that were present for all 26
variable orderings using the original PC-algorithm, and Set 2 contained all edges (directed
edges) that were present for at least 90% of the 26 variable orderings using the original
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Figure 9: Estimation performance in terms of TPR and FPR for the directed edges in
CPDAGs and PAGs, shown as averages over 250 randomly generated graphs and
20 random variable orderings per graph, where every curve is plotted with respect
to the different values of α.

PC-algorithm. Set 1 contained 1478 edges (7 directed edges), while Set 2 contained 1700
edges (20 directed edges).

Table 3 shows how well the PC and PC-stable algorithms could find these stable edges in
terms of number of edges in the estimated graphs that are present in Sets 1 and 2 (IN), and
the number of edges in the estimated graphs that are not present in Sets 1 and 2 (OUT).
We see that the number of estimated edges present in Sets 1 and 2 is about the same for
both algorithms, while the output of the PC-stable algorithm has far fewer edges which are
not present in the two specified sets.

Throughout our analyses of the yeast data, we used tuning parameter α = 0.01, as
in Maathuis et al. (2010). We are not aware of any fully satisfactory method to choose
α in practice. In Appendix B, we briefly mention two possibilities that were described in
Maathuis et al. (2009): optimizing a Bayesian Information Criterion (BIC) and stability
selection (Meinshausen and Bühlmann, 2010).

6.2 Estimation of Causal Effects

We used the experimental data as the gold standard for estimating the total causal effects
of the 234 deleted genes on the remaining 5361 (Maathuis et al., 2010). We then defined the
top 10% of the largest effects in absolute value as the target set of effects, and we evaluated
how well IDA (Maathuis et al., 2009, 2010) identified these effects from the observational
data.
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Figure 10: Analysis of estimated skeletons of the CPDAGs for the yeast gene expression
data (Hughes et al., 2000), using the PC and PC-stable algorithms with tuning
parameter α = 0.01. The PC-stable algorithm yields an order-independent
skeleton that roughly captures the edges that were stable among the different
variable orderings for the original PC-algorithm.

Edges Directed edges

PC PC-stable PC PC-stable

Set 1
IN 1478 (0) 1478 (0) 7 (0) 7 (0)

OUT 3606 (38) 607 (0) 4786 (47) 1433 (7)

Set 2
IN 1688 (3) 1688 (0) 19 (1) 20 (0)

OUT 3396 (39) 397 (0) 4774 (47) 1420 (7)

Table 3: Number of edges in the estimated graphs that are present in Sets 1 and 2 (IN),
and the number of edges in the estimated graphs that are not present in Sets 1
and 2 (OUT). The results are shown as averages (standard deviations) over the 26
variable orderings.
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Figure 1(b) showed that IDA with the original PC-algorithm is highly order-dependent.
Figure 11 shows the same analysis with PC-stable (solid black lines). We see that using
PC-stable generally yielded better and more stable results than the original PC-algorithm.
Note that some of the curves for PC-stable are worse than the reference curve of Maathuis
et al. (2010) towards the beginning of the curves. This can be explained by the fact that
the original variable ordering seems to be especially “lucky” for this part of the curve (see
Figure 1(b)). There is still variability in the ROC curves in Figure 11 due to the order-
dependent v-structures (because of order-dependent separating sets) and orientations in the
PC-stable algorithm, but this variability is less prominent than in Figure 1(b). Finally, we
see that there are 3 curves that produce a very poor fit.
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Figure 11: ROC curves corresponding to the 25 random orderings of the variables for the
analysis of yeast gene expression data (Hughes et al., 2000), where the curves
are generated as in Maathuis et al. (2010) but using PC-stable (solid black lines)
and MPC-stable and CPC-stable (dashed black lines) with α = 0.01. The ROC
curves from Maathuis et al. (2010) (dashed blue) and the one for random guessing
(dashed-dotted red) are shown as references. The resulting causal rankings are
less order-dependent.

Using CPC-stable and MPC-stable helps in stabilizing the outputs, and in fact all the
25 random variable orderings produce almost the same CPDAGs for both modifications.
Unfortunately, these estimated CPDAGs are almost entirely undirected (around 90 directed
edges among the 2086 edges) which leads to a large equivalence class and consequently to a
poor performance in IDA, see the dashed black line in Figure 11 which corresponds to the
25 random variable orderings for both CPC-stable and MPC-stable algorithms.
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Figure 12: Analysis of the yeast gene expression data (Hughes et al., 2000) for PC, PC-
stable, and MPC-stable algorithms using the original ordering over the variables
(solid lines), using 100 runs stability selection without permuting the variable
orderings, labelled as + SS (dashed lines), and using 100 runs stability selection
with permuting the variable orderings, labelled as + SSP (dotted lines). The
grey line labelled as RG represents the random guessing.

Another possible solution for the order-dependence orientation issues would be to use
stability selection (Meinshausen and Bühlmann, 2010) to find the most stable orientations
among the runs. In fact, Stekhoven et al. (2012) already proposed a combination of IDA
and stability selection which led to improved performance when compared to IDA alone,
but they used the original PC-algorithm and did not permute the variable ordering. We
present here a more extensive analysis, where we consider the PC-algorithm (black lines),
the PC-stable algorithm (red lines), and the MPC-stable algorithm (blue lines). Moreover,
for each one of these algorithms we propose three different methods to estimate the CPDAGs
and the causal effects: (1) use the original ordering of the variables (solid lines); (2) use
the same methodology used in Stekhoven et al. (2012) with 100 stability selection runs but
without permuting the variable orderings (labelled as + SS; dashed lines); and (3) use the
same methodology used in Stekhoven et al. (2012) with 100 stability selection runs but
permuting the variable orderings in each run (labelled as + SSP; dotted lines). The results
are shown in Figure 12 where we investigate the performance for the top 20000 effects
instead of the 5000 as in Figures 1(b) and 11.

We see that PC with stability selection and permuted variable orderings (PC + SSP)
loses some performance at the beginning of the curve when compared to PC with standard
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stability selection (PC + SS), but it has much better performance afterwards. The PC-stable
algorithm with the original variable ordering performs very similar to PC plus stability
selection (PC + SS) along the whole curve. Moreover, PC-stable plus stability selection
(PC-stable + SS and PC-stable + SSP), loses a bit at the beginning of the curves but picks
up much more signal later on in the curve. It is interesting to note that for PC-stable with
stability selection, it makes little difference if the variable orderings are further permuted
or not, even though PC-stable is not fully order-independent (see Figure 11). In fact, PC-
stable plus stability selection (with or without permuted variable orderings) produces the
best fit over all results.

7. Discussion

Due to their computational efficiency, constraint-based causal structure learning algorithms
are often used in sparse high-dimensional settings. We have seen, however, that especially
in these settings the order-dependence in these algorithms is highly problematic.

In this paper, we investigated this issue systematically, and resolved the various sources
of order-dependence. There are of course many ways in which the order-dependence is-
sues could be resolved, and we designed our modifications to be as simple as possible.
Moreover, we made sure that existing high-dimensional consistency results for PC-, FCI-
and RFCI-algorithms remain valid for their modifications under the same conditions. We
showed that our proposed modifications yield improved and more stable estimation in sparse
high-dimensional settings for simulated data, while their performances are similar to the
performances of the original algorithms in low-dimensional settings.

Additionally to the order-dependence discussed in this paper, there is another minor
type of order-dependence in the sense that the output of these algorithms also depends on
the order in which the final orientation rules for the edges are applied. The reason is that
an edge(mark) could be eligible for orientation by several orientation rules, and might be
oriented differently depending on which rule is applied first. In our analyses, we have always
used the original orderings in which the rules were given.

Compared to the adaptation of Cano et al. (2008), the modifications we propose are
much simpler and we made sure that they preserve existing soundness, completeness, and
high-dimensional consistency results. Finally, our modifications can be easily used together
with other adaptations of constraint-based algorithms, for example hybrid versions of PC
with score-based methods (Singh and Valtorta, 1993; Spirtes and Meek, 1995; van Dijk
et al., 2003) or the PC∗ algorithm (Spirtes et al., 2000, Section 5.4.2.3).

All software is implemented in the R-package pcalg (Kalisch et al., 2012).
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Appendix A. Additional Simulation Results

We now present additional simulation results for low-dimensional settings (Appendix A.1),
high-dimensional settings (Appendix A.2) and medium-dimensional settings (Appendix
A.3).

A.1 Estimation Performance in Low-Dimensional Settings

We considered the estimation performance in low-dimensional settings with less sparse
graphs.

For the scenario without latent variables, we generated 250 random weighted DAGs with
p = 50 and E(N) = {2, 4}, as described in Section 5.1. For each weighted DAG we generated
an i.i.d. sample of size n = 1000. We then estimated each graph for 50 random orderings of
the variables, using the sample versions of (L)PC(-stable), (L)CPC(-stable), and (L)MPC(-
stable) with tuning parameter α ∈ {0.000625, 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04} for
E(N) = 2 and α ∈ {0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32} for E(N) = 4 for the partial
correlation tests. Thus, for each randomly generated graph, we obtained 50 estimated
CPDAGs from each algorithm, for each value of α. Figure 13 shows the estimation perfor-
mance of PC (circle; black line) and PC-stable (triangles; red line) for the skeleton. Figure
14 shows the estimation performance of all modifications of PC and PC-stable with respect
to the CPDAGs in terms of SHD, and in terms of the variance of the SHD over the 50
random variable orderings per graph.

For the scenario with latent variables, we generated 120 random weighted DAGs with
p = 50 and E(N) = 2, as described in Section 5.1. For each DAG we generated an i.i.d. sam-
ple size of n = 1000. To assess the impact of latent variables, we randomly defined in each
DAG half of the variables that have no parents and at least two children to be latent. We
then estimated each graph for 20 random orderings of the observed variables, using the sam-
ple versions of FCI(-stable), CFCI(-stable), MFCI(-stable), RFCI(-stable), CRFCI(-stable),
and MRFCI(-stable) with tuning parameter α ∈ {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08} for the
partial correlation tests. Thus, for each randomly generated graph, we obtained 20 esti-
mated PAGs from each algorithm, for each value of α. Figure 15 shows the estimation
performance of FCI (circles; black dashed line), FCI-stable (triangles; red dashed line),
RFCI (circles; black solid line), and RFCI-stable (triangles; red solid line) for the skeleton.
Figure 16 shows the estimation performance for the PAGs in terms of SHD edge marks,
and in terms of the variance of the SHD edge marks over the 20 random variable orderings
per graph.

Regarding the skeletons of the CPDAGs and PAGs, the estimation performances be-
tween PC and PC-stable, as well as between (R)FCI and (R)FCI-stable are basically indis-
tinguishable for all values of α. However, Figure 15 shows that FCI(-stable) returns graphs
with slightly fewer edges than RFCI(-stable), for all values of α. This is related to the fact
that FCI(-stable) tends to perform more tests than RFCI(-stable).
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Regarding the CPDAGs and PAGs, the performance of the modifications of PC and
(R)FCI (black lines) are very close to the performance of PC-stable and (R)FCI-stable
(red lines). Moreover, CPC(-stable) and MPC(-stable) as well as C(R)FCI(-stable) and
M(R)FCI(-stable) perform better in particular in reducing the variance of the SHD and
SHD edge marks, respectively. This indicates that most of the order-dependence in the
low-dimensional setting is in the orientation of the edges.

We also note that in all proposed measures there are only small differences between
modifications of FCI and of RFCI.
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Figure 13: Estimation performance of PC (circles; black line) and PC-stable (triangles; red
line) for the skeleton of the CPDAGs, for different values of α (x-axis displayed
in log scale) in both low-dimensional settings. The results are shown as averages
plus or minus one standard deviation, computed over 250 randomly generated
graphs and 50 random variable orderings per graph, and slightly shifted up and
down from the real values of α for a better visualization.
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Figure 14: Estimation performance of (L)PC(-stable), (L)CPC(-stable), and
(L)MPC(-stable) for the CPDAGs in the low-dimensional settings, for
different values of α. The first row of plots shows the performance in terms of
SHD, shown as averages over 250 randomly generated graphs and 50 random
variable orderings per graph. The second row of plots shows the performance
in terms of the variance of the SHD over the 50 random variable orderings per
graph, shown as averages over 250 randomly generated graphs.
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Figure 15: Estimation performance of FCI (circles; black dashed line), FCI-stable (triangles;
red dashed line), RFCI (circles; black solid line), and RFCI-stable (triangles; red
solid line), for the skeleton of the PAGs for different values of α (x-axis displayed
in log scale) in the low-dimensional setting. The results are shown as averages
plus or minus one standard deviation, computed over 120 randomly generated
graphs and 20 random variable orderings per graph, and slightly shifted up and
down from the real values of α for a better visualization.
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Figure 16: Estimation performance of the modifications of FCI(-stable) and RFCI(-stable)
for the PAGs in the low-dimensional setting, for different values of α. The left
panel shows the performance in terms of SHD edge marks, shown as averages
over 120 randomly generated graphs and 20 random variable orderings per graph.
The right panel shows the performance in terms of the variance of the SHD edge
marks over the 20 random variable orderings per graph, shown as averages over
120 randomly generated graphs.

A.2 Number of Tests and Computing Time

We consider the number of tests and the computing time of PC and PC-stable in the
high-dimensional setting described in Section 5.1.

One can easily deduce that Step 1 of the PC- and PC-stable algorithms perform the
same number of tests for ` = 0, because the adjacency sets do not play a role at this
stage. Moreover, for ` = 1 PC-stable performs at least as many tests as PC, since the
adjacency sets a(Xi) (see Algorithm 4.1) are always supersets of the adjacency sets adj(Xi)
(see Algorithm 3.2). For larger values of `, however, it is difficult to analyze the number of
tests analytically.

Table 4 therefore shows the average number of tests that were performed by Step 1 of
the two algorithms, separated by size of the conditioning set, where we considered the high-
dimensional setting with α = 0.04 (see Section 5.2) since this was most computationally
intensive. As expected the number of marginal correlation tests was identical for both
algorithms. For ` = 1, PC-stable performed slightly more than twice as many tests as PC,
amounting to about 1.36× 105 additional tests. For ` = 2, PC-stable performed more tests
than PC, amounting to 3.4 × 103. For larger values of `, PC-stable performed fewer tests
than PC, since the additional tests for ` = 1 and ` = 2 lead to a sparser skeleton. However,
since PC also performed relatively few tests for larger values of `, the absolute difference
in the number of tests for large ` is rather small. In total, PC-stable performed about
1.39× 105 more tests than PC.
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Table 5 shows the average runtime of the PC- and PC-stable algorithms. We see that
PC-stable is somewhat slower than PC for all values of α, which can be explained by the
fact that PC-stable tends to perform a larger number of tests (cf. Table 4).

PC-algorithm PC-stable algorithm

` = 0 5.21× 105 (1.95× 102) 5.21× 105 (1.95× 102)

` = 1 1.29× 105 (2.19× 103) 2.65× 105 (4.68× 103)

` = 2 1.10× 104 (5.93× 102) 1.44× 104 (8.90× 102)

` = 3 1.12× 103 (1.21× 102) 5.05× 102 (8.54× 101)

` = 4 9.38× 101 (2.86× 101) 3.08× 101 (1.78× 101)

` = 5 2.78× 100 (4.53× 100) 0.65× 100 (1.94× 100)

` = 6 0.02× 100 (0.38× 100) -

Total 6.62× 105 (2.78× 103) 8.01× 105 (5.47× 103)

Table 4: Number of tests performed by Step 1 of the PC and PC-stable algorithms for
each size of the conditioning sets `, in the high-dimensional setting with p = 1000,
n = 50 and α = 0.04. The results are shown as averages (standard deviations)
over 250 random graphs and 20 random variable orderings per graph.

PC-algorithm PC-stable algorithm PC / PC-stable

α = 0.000625 111.79 (7.54) 115.46 (7.47) 0.97

α = 0.00125 110.13 (6.91) 113.77 (7.07) 0.97

α = 0.025 115.90 (12.18) 119.67 (12.03) 0.97

α = 0.05 116.14 (9.50) 119.91 (9.57) 0.97

α = 0.01 121.02 (8.61) 125.81 (8.94) 0.96

α = 0.02 131.42 (13.98) 139.54 (14.72) 0.94

α = 0.04 148.72 (14.98) 170.49 (16.31) 0.87

Table 5: Run time in seconds (computed on an AMD Opteron(tm) Processor 6174 using R
2.15.1.) of PC and PC-stable for the high-dimensional setting with p = 1000 and
n = 50. The results are shown as averages (standard deviations) over 250 random
graphs and 20 random variable orderings per graph.

A.3 Estimation Performance in Settings where p = n

Finally, we consider two settings for the scenario with latent variables, where we generated
250 random weighted DAGs with p = 50 and E(N) = {2, 4}, as described in Section 5.1. For
each DAG we generated an i.i.d. sample size of n = 50. We again randomly defined in each
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DAG half of the variables that have no parents and at least two children to be latent. We
then estimated each graph for 50 random orderings of the observed variables, using the sam-
ple versions of FCI(-stable), CFCI(-stable), MFCI(-stable), RFCI(-stable), CRFCI(-stable),
and MRFCI(-stable) with tuning parameter α ∈ {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16}
for E(N) = 2 and α ∈ {0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32} for E(N) = 4. Thus, for each
randomly generated graph, we obtained 50 estimated PAGs from each algorithm, for each
value of α.

Figure 17 shows the estimation performance for the skeleton. The (R)FCI-stable versions
(red lines) lead to slightly sparser graphs and slightly better performance in TDR than
(R)FCI versions (black lines) in both settings.

Figures 18 shows the estimation performance of all modifications of (R)FCI with re-
spect to the PAGs in terms of SHD edge marks, and in terms of the variance of the SHD
edge marks over the 50 random variable orderings per graph. The (R)FCI-stable versions
produce a better fit than the (R)FCI versions. Moreover, C(R)FCI(-stable) and M(R)FCI(-
stable) perform similarly for sparse graphs and they improve the fit, while in denser graphs
M(R)FCI(-stable) still improves the fit and it performs much better than C(R)FCI(-stable)
for the SHD edge marks. Again we see little difference between modifications of RFCI and
FCI with respect to all measures.

Appendix B. Choice of the Tuning Parameter in the PC-Algorithm

We now discuss two possible methods for the choice of α in the PC-algorithm: one based on
optimizing a Bayesian Information Criterion (BIC), and another based on stability selection.

In order to optimize the BIC, we take a grid of α’s. For each α, we compute the estimated
CPDAG Ĝ(α). Based on a DAG Ĝ′(α) in the Markov equivalence class described Ĝ(α), we
then compute the maximum likelihood estimators Σ̂Ĝ′(α) and µ̂ for the covariance matrix

and mean vector of the Gaussian distribution of our variables X1, . . . , Xp (Marchetti et al.,
2012). Finally, we choose α to minimize

−2`
(

Σ̂Ĝ′(α), µ̂
)

+ log n

(∑
i≤j

1(Σ̂Ĝ′(α))ij 6=0 + p

)
,

where `(·) denotes the log-likelihood of a p-dimensional multivariate Gaussian distribution.
We point out, however, that one carefully needs to consider the behavior of BIC in the
high-dimensional setting.

Another approach to tune the PC-algorithm is based on stability selection (Meinshausen
and Bühlmann, 2010), which we also used in Section 6 (with permutations of the variable
orderings) to solve order-dependence issues. For a rather large α, or for a range of α’s, one
can investigate which edges are stable under a subsampling procedure, where stability is
measured in terms of the relative frequency of occurrence of (directed or undirected) edges
under the sub-sampling scheme. An edge is kept if it is stable, i.e., if the corresponding
subsampling frequency is larger than a certain cut-off. One can also apply a stability
selection procedure to IDA, where one considers the stability of the ranking of causal effects.
The latter approach was taken in Stekhoven et al. (2012).
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Figure 17: Estimation performance of FCI (circles; black dashed line), FCI-stable (triangles;
red dashed line), RFCI (circles; black solid line), and RFCI-stable (triangles; red
solid line), for the skeleton of the PAGs for different values of α (x-axis displayed
in log scale) in two settings where p = n. The results are shown as averages
plus or minus one standard deviation, computed over 250 randomly generated
graphs and 50 random variable orderings per graph, and slightly shifted up and
down from the real values of α for a better visualization.
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Figure 18: Estimation performance of the modifications of FCI(-stable) and RFCI(-stable)
for the PAGs in settings where p = n, for different values of α. The first row
of plots shows the performance in terms of SHD edge marks, shown as averages
over 250 randomly generated graphs and 50 random variable orderings per graph.
The second row of plots shows the performance in terms of the variance of the
SHD edge marks over the 50 random variable orderings per graph, shown as
averages over 250 randomly generated graphs.
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M. Kalisch, M. Mächler, D. Colombo, M.H. Maathuis, and P. Bühlmann. Causal inference
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Abstract

Learning preference distributions is a critical problem in many areas (e.g., recommender
systems, IR, social choice). However, many existing learning and inference methods im-
pose restrictive assumptions on the form of user preferences that can be admitted as ev-
idence. We relax these restrictions by considering as data arbitrary pairwise comparisons
of alternatives, which represent the fundamental building blocks of ordinal rankings. We
develop the first algorithms for learning Mallows models (and mixtures thereof) from pair-
wise comparison data. At the heart of our technique is a new algorithm, the generalized
repeated insertion model (GRIM), which allows sampling from arbitrary ranking distribu-
tions, and conditional Mallows models in particular. While we show that sampling from a
Mallows model with pairwise evidence is computationally difficult in general, we develop
approximate samplers that are exact for many important special cases—and have provable
bounds with pairwise evidence—and derive algorithms for evaluating log-likelihood, learn-
ing Mallows mixtures, and non-parametric estimation. Experiments on real-world data sets
demonstrate the effectiveness of our approach.1

Keywords: preference learning, ranking, incomplete data, Mallows models, mixture
models

1. Introduction

With the abundance of preference data from search engines, review sites, etc., there is
tremendous demand for learning detailed models of user preferences to support personal-
ized recommendation, information retrieval, social choice, and other applications. Much
work has focused on ordinal preference models and learning user or group rankings of al-
ternatives or items. Within this setting, we can distinguish two classes of models. First,
we may wish to learn an underlying objective (or “correct”) ranking from noisy data or
noisy expressions of user preferences (e.g., as in web search, where user selection suggests
relevance), a view adopted frequently in IR and “learning to rank” (Burges, 2010) and occa-
sionally in social choice (Young, 1995). Second, we might assume that users have different

1. Some parts of this paper appeared in: T. Lu and C. Boutilier, Learning Mallows Models with Pairwise
Preferences, Proceedings of the Twenty-Eighth International Conference on Machine Learning (ICML
2011), pp.145-152, Bellevue, WA (2011).

c©2014 Tyler Lu and Craig Boutilier.
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types with inherently distinct preferences, and learn a population model that explains this
diversity. Learning preference types (e.g., by segmenting or clustering the population) is
key to effective personalization and preference elicitation in recommender systems, social
choice, and numerous other domains. For example, with a learned population preference
distribution, choice data obtained from a specific user allows inferences to be drawn about
her preferences. In this work, we focus on the latter setting, learning preference distributions
when users have genuinely distinct preferences.

Considerable work in machine learning has exploited ranking models developed in the
statistics and psychometrics literature, such as the Mallows model (Mallows, 1957), the
Plackett-Luce model (Plackett, 1975; Luce, 1959), and others (Marden, 1995), as well as
their non-parametric representations (Lebanon and Mao, 2008). However, most research to
date provides methods for learning preference distributions using very restricted forms of
evidence about individual user preferences, whether passively observed or actively elicited,
ranging from complete rankings, to top-t/bottom-t alternatives, to partitioned preferences
(Lebanon and Mao, 2008). Missing from this list are arbitrary pairwise comparisons of
the form “alternative a is preferred to alternative b.” Such pairwise preferences form the
building blocks of almost all reasonable evidence about preferences, and subsumes the most
general evidential models proposed in the literature. Furthermore, preferences in this form
naturally arise in active elicitation of user preferences and choice contexts (e.g., web search,
product comparison, advertisement clicks), where a user selects one alternative over others
in some set (Louviere et al., 2000). In general, data about a user’s preferences will often take
the form of arbitrary choice sets as is common in web search, online advertising, product
comparison, etc. But none of the techniques and algorithms developed to date can learn
from such choice sets. These preferences can be as simple as a single paired comparison:
“I like alternative a better than b,” or as complex as a set of comparisons: “I like a better
than b, c, . . ., and I like z better than y, x, . . .” In this sense, pairwise comparisons should
be viewed as the fundamental building block and universal language of ordinal preference
ranking.2

While learning with pairwise preferences is clearly of great importance, it is widely
believed that learning probabilistic models of ordinal preference using paired comparison
data is impractically difficult (indeed, we show this formally below). As a consequence, the
Mallows model is often shunned in favor of more inference-friendly models (e.g., Plackett-
Luce, which accommodates more general, but still restrictive, preferences; see Cheng et al.,
2010; Guiver and Snelson, 2009). To date, no methods have been proposed for learning from
arbitrary pairwise preferences in any of the commonly used ranking models in machine
learning. We tackle this problem directly by developing techniques for learning Mallows
models, and mixtures thereof, from pairwise preference data.

Our core contribution is the generalized repeated insertion model (GRIM), a new method
for sampling from arbitrary ranking distributions—including conditional Mallows—that
generalizes the repeated insertion method for unconditional sampling of Mallows models
(Doignon et al., 2004). We show that even evaluating the log-likelihood under a Mallows
model with respect to arbitrary ordinal data is #P-hard, implying that learning will be at

2. Of course, ordinal preferences do not capture strength of preference; but real-valued or scaled preferences
(e.g., movie or book ratings) can be converted to pairwise preferences readily, albeit with some loss of
information.
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least as difficult. However, we derive another method, which we call AMP, which efficiently,
though approximately, samples from any conditional Mallows distribution given arbitrary
pairwise evidence. Moreover, we show that AMP is exact for important classes of evidence
(including partitioned preferences), and that empirically it provides very close approxima-
tions given general pairwise evidence. We use this sampler as the core of a Monte Carlo EM
algorithm to learn Mallows mixtures, evaluate log-likelihood, and make predictions about
missing preferences. We also extend the non-parametric framework of Lebanon and Mao
(2008) to handle unrestricted ordinal preference data. Experiments show our algorithms can
effectively learn Mallows mixtures, with reasonable running time, on data sets with hun-
dreds of alternatives and thousands of users. Our sampling algorithm can be adapted rather
easily to other models as well (e.g., we show how a simple modification allows sampling from
Mallows models with a weighted Kendall-tau metric).

The remainder of the paper is organized as follows. In Section 2 we describe the necessary
background on ordinal preferences, Mallows models, and the repeated insertion method
(Doignon et al., 2004) for Mallows distributions, which we extend later in the paper. We
also discuss related work on learning probabilistic preference models. We introduce our
main technical tool, the generalized repeated insertion method (GRIM), in Section 3. We
show how it can be used to sample from Mallows mixtures conditioned on incomplete
preferences by first defining an approximate, but direct sampler AMP that is exact for
important special cases, and analyzing its computational and statistical properties. We
then develop Metropolis and Gibbs sampling methods that exploit AMP to soundly sample
any Mallows or Mallows mixture posterior. In Section 4 we develop an EM algorithm
for learning a Mallows mixture from arbitrary pairwise comparison data that leverages
our sampling algorithms, and provide experimental results of this procedure on several
real-world data sets in Section 5. Section 6 extends the framework of Lebanon and Mao
(2008) for non-parametric estimation to handle evidence in the form of arbitrary ordinal
preferences. We conclude in Section 7 with a discussion of future directions.

2. Preliminaries

We begin by describing the ordinal preferences (rankings) used in the work, providing a
brief overview of several common probabilistic preference models, with an emphasis on
the Mallows φ-model (and mixtures) and models of partial preference data. We then out-
line Doignon et al. (2004) repeated insertion model for sampling preferences from a Mallows
distribution (and draw connections to older models for sampling rankings proposed by Con-
dorcet, Kemeny and Young). We also briefly discuss related work on learning probabilistic
preference models.

2.1 Ordinal Preferences

We assume a set of m alternatives A = {a1, . . . , am} and n agents N = {1, . . . , n}. Each
agent ` has preferences over the set of alternatives represented by a total ordering or ranking
�` over A. We write x �` y to mean ` prefers x to y. Rankings can be represented as
permutations of A. For any positive integer b, let [b] = {1, . . . , b}. We often represent a
ranking as a permutation or bijection σ : A → [m], where σ(a) is the rank or position
of a in the ranking. Thus, for i ∈ [m], σ−1(i) is the alternative with rank i. We write
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σ = σ1σ2 · · ·σm for a ranking with i-th ranked alternative σi ∈ A, and �σ for the induced
preference relation. For any X ⊆ A, let σ|X denote the ranking obtained by restricting σ
to alternatives in X. Let 1[·] be the indicator function.

Generally, we do not have access to the complete preferences of agents, but only partial
information about their rankings (e.g., based on choice behavior, query responses, etc.). We
assume this data has a very general form: for each agent ` we have a set of revealed pairwise
preference comparisons over A, or simply preferences:

v` = {x`1 �` y`1, . . . , x`k` �` y
`
k`
}.

Intuitively, these reflect information about `’s preferences revealed by some process. For
example, this could represent product-ratings data; preference revealed by selection or pur-
chase of certain items (e.g., web links, products) over others, or responses to survey data.

Let tc(v`) denote the transitive closure of v`, i.e., the smallest transitive relation contain-
ing v`. We write {x, y} ∈ v` if there is a comparison between x and y in v` and, similarly,
{x, y} ∈ tc(v`) if x, y are comparable in its transitive closure. Since preferences are strict,
tc(v`) is a strict partial order on A. We assume each v` is consistent, i.e., tc(v`) contains
no cycles.3 Preferences v` are complete if and only if tc(v) is a total order on A. Let Ω(v)
denote the set of linear extensions of v, i.e., those rankings consistent with v. Let Ω = Ω(∅)
be the set of all m! complete preferences. A collection V = (v1, . . . , vn) is a (partial) pref-
erence profile—we assume that the observed data used for inference and learning purposes
in our work takes this form. Given ranking σ = σ1σ2 · · ·σm and preference v, we define the
dissimilarity or disagreement d(v, σ) between the two to be:

d(v, σ) =
∑

i<j≤m
1[σj � σi ∈ tc(v)]. (1)

Dissimilarity between a partial preference and a ranking is the number of pairwise disagree-
ments among the relative ranking of alternatives, i.e., those pairs in v that are misordered
relative to σ. If v is a complete ranking, d(v, σ) is the classic Kendall-tau metric on rank-
ings. Likewise, define s(v, σ) to be the number of pairwise comparisons in tc(v) that are
consistent with σ. We have that d(v, σ) + s(v, σ) is the number of comparisons in tc(v). If
v is complete, then d(v, σ) + s(v, σ) =

(
m
2

)
.

Arbitrary sets v of pairwise comparisons can be used to model a wide range of realistic
revealed preferences:4

• Complete rankings require m− 1 paired comparisons (e.g, a � b � c . . .), and can be
elicited with at most m(m− 1)/2 paired comparison queries.

• Top-t preferences (Busse et al., 2007) require that users provide a complete ranking
of their top t most preferred alternatives. These can be represented using m−1 pairs:

3. Many of the concepts for probabilistic modeling, inference and learning developed in this paper can be
applied mutatis mutandis to models where revealed preferences are noisy; however, we leave this topic
to future research.

4. One exception to this is information about preferences that involve “disjunctive” constraints. For in-
stance, a response to the question “What alternative is ranked tth?” cannot be mapped to a set of
pairwise preferences unless the positions t are queried in ascending or descending order (hence inducing
top-t or bottom-t preferences).
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t − 1 comparisons to order the top t alternatives, and m − t pairs to ensure the t-th
alternative is ranked above the remaining m− t. Bottom-t preferences are similar.

• Complete rankings of subsets X ⊆ A (Guiver and Snelson, 2009; Cheng et al., 2010)
are also representable in the obvious fashion (requiring k− 1 comparisons if |X| = k).

• Preferences revealed by the choice of an alternative a from X ⊆ A (Louviere et al.,
2000) can also be represented using k− 1 pairs of the form a � b for each b ∈ X \ {a}
(where |X| = k). Sets of such choices are captured in the obvious way.

• Ordinal ratings data: if alternatives are scored on an ordinal scale s (e.g., a scale
of 1–5 where 1 is most preferred), we simply include a � b whenever s(a) < s(b),
assuming that alternatives with the same rating cannot be compared using the level
of granularity provided.

Much of the existing work in learning or modelling distributions over ordinal prefer-
ences restricts the class of representable preferences. Much work has focused on top-t
preferences (Busse et al., 2007; Meila and Chen, 2010; Gormley and Murphy, 2007; Fligner
and Verducci, 1986, 1993), and its generalizations (Lebanon and Mao, 2008); other papers
have worked with rankings of a subset of alternatives (Guiver and Snelson, 2009; Cheng
et al., 2010). The main issue in allowing arbitrary consistent collections of paired prefer-
ences, which can represent all of the above special cases, is the difficult inference problem
that results. The primary aim of this work is to develop tractable inference algorithms for
a much broader and realistic class of preferences. Before closing our discussion of ordinal
preferences, we define a recently studied and relatively expressive class of preferences

Definition 1 (Lebanon and Mao 2008) A partial preference v is a partitioned prefer-
ence if A can be partitioned into subsets A1, . . . , Aq s.t.: (a) for all i < j ≤ q, if x ∈ Ai and
y ∈ Aj then x �tc(v) y; and (b) for each i ≤ q, alternatives in Ai are incomparable under
tc(v).

Partitioned preferences are quite general, subsuming some of the special cases above, in-
cluding top-t or bottom-t preferences, or ratings data. However, they cannot represent
many naturally occurring preferences, including those as simple as a single pairwise com-
parison a � b. We demonstrate below that our techniques can be applied effectively to such
preferences.

2.2 Mallows Models and Sampling Procedures

There are many distributional models of rankings that have been developed in psychomet-
rics, statistics and econometrics to explain choice behavior (Marden, 1995 provides a good
overview). Two of the more popular in the machine learning community are the Mallows
model (Mallows, 1957) and the Plackett-Luce model (Plackett, 1975; Luce, 1959). We focus
on Mallows in this work, though we believe our methods can be extended to other models.

2.2.1 The Mallows Model

The Mallows φ-model (which we simply call the Mallows model hereafter) is typical of a
wide-range of distance-based ranking models (Mallows, 1957; Marden, 1995). As above, let
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d be the Kendall-tau distance. The Mallows model is parameterized by a modal or reference
ranking σ and a dispersion parameter φ ∈ (0, 1]. For any ranking r, the Mallows model
specifies:

P (r) = P (r |σ, φ) =
1

Z
φd(r,σ) , (2)

where Z =
∑

r′∈Ω φ
d(r′,σ) is the normalization constant. It can be shown that

Z = 1 · (1 + φ) · (1 + φ+ φ2) · · · (1 + · · ·+ φm−1). (3)

When φ = 1 we obtain the uniform distribution over Ω (in the social choice literature, this
model is known as impartial culture). As φ → 0, the distribution concentrates all mass
on σ. The model can also be expressed as P (r|σ, λ) = 1

Z e
−λd(r,σ), where λ = − lnφ ≥ 0.

Various extensions and generalizations of this model have been developed (e.g., using other
distance measures) (Marden, 1995).

2.2.2 Condorcet’s Decision Problem

We describe a simple sampling procedure proposed by Mallows, Condorcet and further
analyzed by Young, since this will motivate the RIM sampler discussed in Section 2.2.3.
Mallows (1957) explained his model using process in which a judge assesses alternatives by
repeatedly making pairwise comparisons. The outcome of such a comparison is stochastic
and depends on the reference ranking σ. If x and y are compared and x is preferred to y in σ,
then the judge “correctly” assesses x � y with probability 1− pxy, and erroneously assesses
y � x with probability pxy < 1/2. Each assessment is independent of other comparisons.
Mallows’ process generated a pairwise comparison for each pair of alternatives as described:
after all paired comparisons are made, if the result is consistent (i.e., corresponds to a
ranking), it is accepted; otherwise the process is repeated. While the error probability pxy
can depend in a fairly general way on their positions in σ, if pxy = p for all x, y then we
obtain the Mallows model.

Such a probabilistic view of rankings was studied two centuries earlier by Nicolas de Con-
dorcet in the context of collective political decision making (Condorcet, 1785). He modeled
his view of the role of government, that of making the “right decisions,” by considering the
selection from a set of choices (e.g., policies), one that maximizes benefit to society. Mem-
bers of society, or voters, express their opinion in the form of a ranking over choices. He
assumed that some (latent) objective ranking orders choices from most to least beneficial
to society and that each voter is able to provide an independent, random assessment of
relative rank of any pair of choices: if a � b, in the objective ranking a voter will assess
that to be the case with probability 1 − p, with a error probability less than 1/2. Instead
of studying the probabilistic model per se, Condorcet addressed the decision problem: how
to find the ranking most likely to be correct. For the case of three alternatives, he proved
that the ranking which minimized the total number pairwise preference disagreements (i.e.,
Kendall-tau distance) with respect to the stated voter rankings was the most likely to be
correct.

In modern parlance, Condorcet showed how to compute the maximum likelihood esti-
mator (MLE) of the objective or reference ranking. Kemeny (1959) proposed the Kemeny
ranking as a general method for aggregating noisy voter rankings, extending Condorcet’s
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approach to accommodate any number of alternatives. The Kemeny ranking is that which
minimizes total number of pairwise preference disagreements with the set of voter rankings,
which Kemeny justified axiomatically (showing it to be the only aggregate ranking that sat-
isfies certain intuitive axioms). A statistical rationale for Kemeny’s approach was provided
by Young (1995), who extended Condorcet’s analysis, showing that, for any number of al-
ternatives, under Condorcet’s noise model, the MLE of the reference ranking is in fact the
Kemeny ranking. These two independent threads (Condorcet-Kemeny-Young and Mallows)
can both be viewed as statistical estimation of a noisy ranking model. We tie these threads
together, showing that Condorcet’s noise model for any number of alternatives corresponds
to the Mallows models (which implies, by Young’s result, that the Kemeny ranking is the
MLE for the Mallows model). The Condorcet-Mallows noisy ranking process can be for-
malized as follows:

Pairwise Comparison Sampling of Mallows

1. Let σ be the reference ranking and 0 ≤ p ≤ 1/2.
2. Initialize v ← ∅.
3. For each pair of items x, y in A, such that x �σ y,

(a) with probability 1− p add x � y to v,
(b) otherwise add y � x to v.

4. If v is intransitive, go back to step 1 and start over.
5. v is transitive and corresponds to a ranking.

This pairwise comparison process generates rankings in accordance with the Mallows
model (Equation 2), a fact shown by Mallows (1957), but which we derive here (since it
will be instructive below). Consider the following distribution over rankings v:

P ′(v | σ, p) =
1

Z ′

∏
{x,y}⊆A

{
p if v and σ disagree on x, y

1− p otherwise,
(4)

where Z ′ is the normalization constant (i.e., the sum of the probabilities generated by the
above procedure, over all transitive, complete preferences). The form of this distribution
corresponds exactly to the rankings generated. This can be seen by noticing that the
generating procedure independently decides for each pair of alternatives x, y, with a flip of
p-biased coin, whether to order them according to σ. Since intransitive preferences v are
discarded by the procedure, the generating procedure corresponds to P ′. We can simplify
the expression for P ′ to:

P ′(v | σ, p) =
1

Z ′
pd(v,σ)(1− p)s(v,σ)

=
1

Z ′
pd(v,σ)(1− p)(m2 )−d(v,σ)

=
1

Z ′
(1− p)(m2 )

(
p

1− p

)d(v,σ)

. (5)
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By setting φ = p
1−p , recalling the definition of Z (Equation 3), and noticing that

Z ′ = (1− p)(m
2 )Z (6)

= (1− p)(m
2 )
(

1 +
p

1− p

)(
1 +

p

1− p +

(
p

1− p

)2
)
· · ·
(

1 + · · ·+
(

p

1− p

)m−1
)
, (7)

we obtain Equation 2. The log-likelihood, given observed complete rankings r1, . . . , rn, is

n∑
`=1

[d(r`, σ) lnφ− lnZ] .

Hence, the MLE ranking is the minimizer of
∑n

`=1 d(r`, σ), namely, the Kemeny ranking.

2.2.3 The Repeated Insertion Model

The Condorcet/Mallows sampling procedure for drawing rankings from the Mallows distri-
bution can be very inefficient, since it relies on rejection of partially constructed rankings
as soon as a single circular, or non-transitive, triad (a � b � c � a) is drawn. While the
original motivation for these models was not computational, efficient sampling is important
for a variety of inference and learning tasks. Doignon et al. (2004) introduce the repeated
insertion model (RIM) for the analysis of probabilistic models of approval voting, but which
also provides a much more effective means of sampling from a Mallows distribution.

RIM is a generative process that gives rise to a family of distributions over rankings and
provides a practical way to sample rankings from a Mallows model. The model assumes
some reference ranking σ = σ1σ2 · · ·σm, and insertion probabilities pij for each i ≤ m, j ≤ i.
RIM generates a new output ranking using the following process, proceeding in m steps. At
step 1, σ1 is added to the output ranking. At step 2, σ2 is inserted above σ1 with probability
p2,1 and inserted below with probability p2,2 = 1 − p2,1. More generally, at the i-th step,
the output ranking will be an ordering of σ1, . . . , σi−1 and σi will be inserted at rank j ≤ i
with probability pij . Critically, the insertion probabilities are independent of the ordering
of the previously inserted alternatives.

It is easy to see that one can generate any ranking with the appropriate insertion posi-
tions. As we describe below, Doignon et al. (2004) show that one can sample from a Mallows
distribution using RIM with appropriate insertion probabilities. We now introduce several
concepts that can be used to more easily formalize and analyze RIM, and our subsequent
extensions of it.

Definition 2 Let σ = σ1 · · ·σm be a reference ranking. Let an insertion vector be any
positive integer vector j = (j1, . . . , jm) satisfying ji ≤ i,∀i ≤ m; and let I be the set of such
insertion vectors. A repeated insertion function Φσ : I → Ω maps an insertion vector j into
a ranking Φσ(j) by placing each σi, in turn, into rank ji, for all i ≤ m.

This definition is best illustrated with an example. Consider the insertion vector (1, 1, 2, 3)
and reference ranking σ = abcd. In this case, Φσ(1, 1, 2, 3) = bcda because: we first insert
a into rank 1; we then insert b into rank 1, shifting a down to obtain partial ranking ba;
we then insert c into rank 2, leaving b in place, but moving a down, obtaining bca; finally,
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we insert d at rank 3, giving bcda. By the same process we obtain Φσ(1, 2, 3, 4) = abcd,
and Φσ(1, 1, 1, 1) = dcba. Given reference ranking σ, there is a one-to-one correspondence
between rankings and insertion vectors.

Observation 3 For any reference ranking σ, the repeated insertion function Φσ is a bijec-
tion between I and Ω.

Sampling using RIM can characterized as follows:

Definition 4 The repeated insertion model is a probabilistic model over rankings defined
by a reference ranking σ, the repeated insertion function Φσ(j1, . . . , jm) and a sequence of
insertion probabilities piji for i ≤ m, ji ≤ i, such that

∑i
j=1 pij = 1, ∀i ≤ m. A ranking is

generated at random by first drawing an insertion vector j = (j1, . . . , jm) ∈ I, where each ji
is drawn independently with probability piji, and then applying the insertion function Φσ(j).

Let Φ−1
σ (r) = (j′1, . . . , j

′
m). Then the probability of generating a particular ranking r under

RIM is
∏
i≤m pij′i . It is easy to see that the Kendall-tau distance between the reference

ranking and the ranking induced by an insertion vector is the sum of the number “insertion
misorderings” over all alternatives:

Proposition 5 For any insertion vector j = (j1, . . . , jm) ∈ I, we have that

m∑
i=1

i− ji = d(Φσ(j), σ). (8)

Proof Observe that whenever σi is inserted at the ji-th position, it creates i− ji pairwise
misorderings with respect to alternatives σ1, . . . , σi−1. All pairwise misorderings can be
accounted for this way. Summing over all i ≤ m gives the Kendall-tau distance.

Doignon et al. (2004) show that by setting the insertion probabilities pij appropriately, the
resulting generative process corresponds to the Mallows model. We reprove their Theorem
here, since the proof will be instructive later.

Theorem 6 (Doignon et al. 2004) By setting insertion probabilities pij = φi−j/(1+φ+
· · · + φi−1) for j ≤ i ≤ m, the distribution induced by RIM with insertion function Φσ is
identical to that of the Mallows model with reference ranking σ and dispersion parameter φ.

Proof We reprove the Doignon et al. (2004) theorem. Let r be any ranking and σ the
reference ranking of the Mallows model. Let Φ−1

σ (r) = (j1, . . . , jm) be the insertion ranks.
If we multiply the factors φi−ji across i ≤ m this gives φ

∑m
i=1 i−ji = φd(r,σ) by Proposition 5.

This term φd(r,σ) is exactly the proportional probability of r in Mallows. The denominator
of
∏m
i=1 piji is (1 +φ)(1 +φ+φ2) · · · (1 +φ+ · · ·+φm−1) regardless of r—this is exactly the

normalizing constant in Mallows model. Interestingly, this gives an alternate proof of the
normalization constant in the Mallows model.

Thus RIM offers a simple, useful way to sample rankings from the Mallows model while
maintaining consistent partial rankings at each stage. In contrast to the rejection sampling
approach of Condorcet/Mallows, RIM can be much more effective since it does not require
the rejection of intransitive triads (which may occur with high probability if φ is large). We
summarize the RIM approach from Mallows model:

3971



Lu and Boutilier

RIM Sampling of Mallows

1. Let σ = σ1 · · ·σm be the reference ranking and φ the dispersion.
2. Start with an empty ranking r.
3. For i = 1..m:

• Insert σi into r at rank position j ≤ i with probability
φi−j/(1 + φ+ · · ·+ φi−1).

RIM has worst-case quadratic running time (required number of draws from a Bernoulli
distribution) when sampling from a Mallows model (this can be explained in much the same
way as the complexity of insertion sort). However, the average-case time complexity can
be much smaller, since insertions at each stage of the algorithm are likely to occur near the
bottom of the partial ranking.

Proposition 7 The expected time complexity of repeated insertion sampling for a Mallows
model (σ, φ) is

O

(
min

{
m(1 + φm+1)

1− φ − φ(1− φm)

(1− φ)2
,m2

})
.

Proof Suppose we have O(1) access to biased coin flips. The implementation will be as
follows. Place σ1 in the first rank. Then loop for i = 2 to m. Let pij = φi−j/

∑i−1
j′=0 φ

j′ .
Sample a rank position j to insert σi: start with j = i, flip a coin with probability pij , if
success insert at rank j. Otherwise decrease j by 1, flip a coin with probability pij/(1 −∑

j′>j pij′), if success, insert at rank j, otherwise decrease j by 1 and repeat this process
until j = 1. By the chain rule, the probability of insertion at rank j is exactly what Mallows
model requires. For each σi, when the sampled insertion rank position is j, it would require
at most i − j + 1 coin flips. The expected running time, i.e., total number of coin flips, if
φ < 1, is proportional to

m∑
i=1

∑i−1
j=0(j + 1)φj∑i−1

j=0 φ
j

=
m∑
i=1

1

1− φ − iφ
i

≤ m(1 + φm+1)

1− φ − φ(1− φm)

(1− φ)2
.

This means one can effectively sample in linear time if φ is not too close to 1. If φ = 1, the
expected running time is O(m2).

Sampling with Weighted Kendall-tau. To illustrate the flexibility of RIM, we show it can
be used to sample from a Mallows model using a weighted Kendall-tau distance. For
two rankings r and σ and insertion vector j = (j1, . . . , jm) such that Φσ(j) = r, one can
define a weighted Kendall-tau distance (Shieh, 1998) with respect to positive weights w =
(w1, . . . , wm) as follows

dw(r, σ) =
m∑
i=1

wi(i− ji).

Recall that by Proposition 5, if w = 1, then dw is the standard Kendall-tau distance.
Otherwise, this weighted Kendall-tau is sensitive to the pairwise misorderings of top-ranked
alternatives in σ.
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One can sample from a Mallows model defined by Pw(r) ∝ e−dw(r,σ) using RIM as
follows. Let φi = e−wi for i ≤ m. If we define the insertion probability of σi at position
ji ≤ i to be φi−jii /(1 + φi + · · ·+ φi−1

i ), then the probability of generating r is proportional
to e

∑m
i=1(i−ji) lnφi = e−dw(r,σ).

2.3 A Mallows Mixture Model for Incomplete Preferences

While distributions such as Mallows or its mixture formulation (Murphy and Martin, 2003)
give rise to complete rankings, there is relatively little work on generative models for partial
rankings, and in particular, models that generate arbitrary (consistent) sets of pairwise
comparisons. We introduce such a generative model in this section upon which to base our
subsequent learning and inference procedures given such pairwise evidence.

A Mallows mixture distribution with K components is parameterized by mixing propor-
tions π = (π1, . . . , πK), reference rankings σ = (σ(1), . . . , σ(K)), and dispersion parameters
φ = (φ1, . . . , φK). Rankings are generated randomly by selecting one of the K components
according to the multinomial distribution with parameters π. We sometimes represent this
with a unit component indicator vector z = (z1, . . . , zK) ∈ {0, 1}K in which the only entry
of z set to 1 is that of the selected component. If zk = 1, then ranking r is drawn from the
Mallows distribution with parameters σ(k), φk.

In our model for partial preferences, we assume that each agent ` possesses a latent
ranking r, where r is drawn from a mixture of Mallows distributions. We obtain the set
of pairwise comparisons for ` by assuming a single additional parameter α which generates
random pairs of alternatives. Intuitively, this reflects a process in which, given `’s latent
ranking r, each pair of alternatives is selected independently with probability α, and `’s
preference for that pair, as dictated by r, is revealed. That is,

P (v | r, α) =

{
α|v|(1− α)(

m
2 )−|v| if r ∈ Ω(v),

0 otherwise.
(9)

This model reflects the relatively straightforward missing at random assumption (Ghahra-
mani and Jordan, 1995), in which there is no correlation among those pairwise preferences
that are missing/observed, nor any between observed pairs and the underlying ranking
(e.g., the positions of the observed pairs). The missing at random assumption is not always
realistic (Marlin and Zemel, 2007). We also note that this model assumes a single global
parameter α that indicates the expected degree of completeness of each agent `’s partial pref-
erences. Allowing agent-specific completeness parameters α` and moving beyond “missing
at random” are important directions. However, this model serves as a reasonable starting
point for investigation.

Figure 1 illustrates a graphical model for the entire process. The resulting joint distri-
bution is

P (v, r, z | π,σ,φ, α) = P (v | r, α)P (r | z,σ,φ)P (z | π). (10)

In our basic inference and learning problem, we take the observed data to be a preference
profile V = (v1, . . . , vn) of n agents, and we let Z = (z1, . . . , zn) denote the correspond-
ing latent component memberships (i.e., zi indicates the mixture component where vi is
generated from).
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Figure 1: The generative model of incomplete preferences. Observed data v, a set of pair-
wise comparisons, is shaded.

2.4 Related Work

There is a large literature on ranking in the machine learning, statistics, economics, and
theory of computation communities. It includes a variety of approaches, evaluation criteria,
heuristics and applications, driven by several distinct motivations. In this section we briefly
review two somewhat distinct lines of research.

The first body of work is that on rank aggregation. Roughly speaking, the aim is to
find the best objective ranking given complete or partial observations generated by some
noisy process involving the (latent) objective ranking. For example, such a ranking may be
a ranking of web pages expressing a typical user’s (relative) degree of satisfaction with the
pages. Observed information may consist of feedback, in the form of expert ratings or user
preferences expressed implicitly via web page clicks on a search results page. In other appli-
cations, observed data may include partial rankings (e.g., in political elections), or pairwise
comparisons (e.g., in sports leagues). Given such feedback, the ranking system will ag-
gregate and optimize some objective function that attempts to capture user or population
satisfaction such as NDCG—common in the IR field—(Burges et al., 2005; Volkovs and
Zemel, 2009), misordered pairs (Cohen et al., 1999; Freund et al., 2003; Joachims, 2002;
R. Herbrich and Obermayer, 2000), binary relevance (Agarwal and Roth, 2005; Rudin,
2009), and objectives from social choice theory (e.g., Kemeny, Borda rankings). For ex-
ample, in machine learning, the area of learning to rank (LETOR) has been a topic of
much research since the late 1990s, starting with the work of Cohen et al. (1999). Research
into ranking systems often seeks strong generalization capabilities, in the sense that it can
produce an objective ranking given a previously unencountered ranking problem using new
attributes (e.g., rank web pages given a new search query). Much of this research has indeed
been focused on web ranking applications (e.g., the Yahoo! Learning to Rank Challenge;
see Burges, 2010). More recently, Busa-Fekete et al. (2014) have developed active learning
algorithms for inferring certain distributional properties of the Mallows model.
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There are also communities in statistics and computational social choice that are con-
cerned with estimating the maximum likelihood ranking under some distributional assump-
tions. Often such models—for example, the Mallows and Plackett-Luce models discussed
above—assume a central, modal or reference objective ranking at which the distribution is
peaked. A fundamental problem is estimation of this objective ranking from a collection of
ordinal preference data. For example, the Kemeny ranking can be interpreted as a maxi-
mum likelihood estimate of the modal ranking in a Mallows model (Young, 1995). Other
such interpretations of common rank aggregation rules also exist (Conitzer and Sandholm,
2005; Conitzer et al., 2009).

The above perspective, that of computing an objective ranking, applies to many situ-
ations (e.g., one would expect the ranking of web pages for a search query in “norovirus
symptoms” to be objectively stable, since users will largely agree the informativeness of
retrieved web pages). However, in many settings this is entirely inappropriate. When a
group of individuals plans an activity together, such as going to a restaurant for dinner,
the ranking of restaurants should clearly depend on the personal tastes and preferences of
the individuals involved. In such cases, a distribution over a population’s subjective pref-
erences better reflects reality. A second, growing, body of work aims to assess (individual
or aggregate/group) rankings of options, or decisions, by explicitly using, modelling or rea-
soning about the diversity of user preferences. This is a more general problem than that
of objective rank aggregation. For example, the Netflix collaborative filtering competition
has initiated much research on predicting a user’s movie ratings given the ratings for other
movies, including their own and those of other users. Other relevant research on such rank-
ing work includes label ranking (Hüllermeier et al., 2008), which seeks to aggregate sparse
preference data of “similar users” into personalized preferences.

In recent years there has been growing interest in applying probabilistic models of prefer-
ences from statistics, psychometrics, and econometrics to model a population’s preferences.
This is the context in which our work is situated. We focus on learning such preference dis-
tributions, including multimodal distributions over preferences where each mode (cluster)
corresponds to a “sub-type” within the population. Much recent research has focused on
using the single-peaked Mallows model as a basis for multimodal mixture distributions. One
of the first papers to propose an algorithm for learning Mallows mixtures is that of Murphy
and Martin (2003). Their method assumes that training data takes the form of complete
preference rankings (individual preferences), and has a running time that is factorial in the
number of alternatives. Busse et al. (2007) develop a tractable EM algorithm for Mallows
mixtures where preferences are restricted to be of the top-t type. A recent extension by
Meila and Chen (2010) of Mallows mixtures allows for a Bayesian treatment in choosing
the number of components using Dirichlet process mixtures, and offers experiments on con-
siderably larger data sets. Recent work has also studied fitting temporal mixture models (a
variation on the Bradley-Terry model) using EM (Francis et al., 2014).

Aside from mixture models, Lebanon and Mao (2008) propose a non-parametric kernel
density estimator for rankings, which places a “smooth Mallows bump” on each training
preference. They derive an efficiently computable, closed-form formula for the evaluation
of the estimator. However, they restrict their training data to partitioned preferences (see
above), a more general concept than top-t rankings, but significantly less expressive than
arbitrary pairwise comparisons. In contrast to our work, they do not address how to learn
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the kernel bandwidth parameter (see Section 6 for further discussion). There has been re-
cent work on sampling algorithms for rankings that shares some similarities with the GRIM
algorithm we develop here. This includes a sampling algorithm based on a generalization of
the Plackett-Luce model (Volkovs and Zemel, 2012), inspired by bipartite matching prob-
lems that occur in certain application domains. Biernacki and Jacques (2013) propose a
noisy insertion-sort model of rankings and develop EM algorithms for estimating its param-
eters. This is related to RIM but with some minor differences. However, none of this work
addresses the question of sampling from a posterior distribution given partial preferences
as evidence.

Apart from the the Mallows model, the Plackett-Luce model has also been popular as
a representation of preferences. Recent work on learning and inference with this model
includes: an approach to Bayesian inference of the modal ranking (Guiver and Snelson,
2009), but where training preferences are limited to ranking of all of alternatives in some
subset of alternatives; and a method for learning a mixture model given top-k preferences
(Gormley and Murphy, 2008), with application to political voting data.

Huang and Guestrin (2009) develop the riffle independence model, which partitions a
set of alternatives into two sets: a ranking of each set is generated stochastically (and in-
dependently); then a stochastic process is used to interleave or “riffle” the two resulting
rankings to produce a combined ranking. The model can applied hierarchically, with the
same process used to generate the required subrankings. Huang et al. (2012) show that
inference in this model is tractable for certain classes of observations. Of particular note
is that fact that conditioning on partitioned preferences (which they term “partial rank-
ing observations”) can be accomplished efficiently . Interestingly, Mallows models can be
represented using the riffle independence model.

3. Generalized Repeated Insertion Model

Our ultimate goal is to support effective learning and inference with Mallows models (and
by extension, Mallows mixtures) given observed data or evidence in the form of partial
preference profiles consisting of arbitrary pairwise comparisons. Sampling is, of course, an
important aspect of this. The rejection sampling models discussed above can obviously be
extended to accommodate pairwise observations, but are likely to be extremely inefficient.
By contrast, while RIM provides a powerful tool for sampling from Mallows models (and
mixtures), it samples unconditionally, without allowing for (direct) conditioning on evi-
dence. In this section, we describe and analyze a generalized version of the RIM technique
that permits conditioning at each insertion step. In fact, our generalized repeated inser-
tion model (GRIM) can be used to sample from arbitrary rank distributions. We begin in
Section 3.1 by describing GRIM in this general, abstract fashion. The primary focus of
our theoretical and computational analysis in Section 3.2, however, will be on its use for
Mallows distributions.

3.1 Sampling from Arbitrary Ranking Distributions

We first present the generalized repeated insertion model (GRIM) abstractly as a means of
sampling from any distribution over rankings. GRIM is based on a relatively simple insight,
namely, that the chain rule allows us to represent any distribution over rankings in a concise
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way, as long as we admit dependencies in our insertion probabilities. Specifically, we allow
the insertion probabilities for any alternative σi in the reference ranking to be conditioned
on the ordering of the previously inserted alternatives (σ1, . . . , σi−1).

Let Q be any distribution over rankings and σ an (arbitrary) reference ranking. Recall
that we can (uniquely) represent any ranking r ∈ Ω using σ and an insertion vector jr =
(jr1 , . . . , j

r
m) ∈ I, where r = Φσ(jr). Thus Q can be represented by a distribution Q′ over the

space I of insertion vectors, i.e., Q′(jr) = Q(r). Similarly, for k < m, any partial ranking
r[k] = (r1, . . . , rk) of the alternatives {σ1, . . . , σk}, can be represented by a partial insertion
vector j[k] = (jr1 , . . . , j

r
k). Letting

Q(r[k]) =
∑
{Q(r) : r1 � r2 � · · · � rk} and Q′(j[k]) =

∑
{Q′(j′) : j′[k] = j[k]},

we have Q′(j[k]) = Q(r[k]). We define conditional insertion probabilities:

pij | j[i−1] = Q′(ji = j | j[i− 1]). (11)

This denotes the probability with which the ith alternative σi in the reference ranking is
inserted at position j ≤ i, conditioned on the specific insertions (jr1 , . . . , j

r
i−1) of all previous

alternatives. By the chain rule, we have

Q′(j) = Q′(jm|j[m− 1])Q′(jm−1|j[m− 2]) · · ·Q′(j[1]).

Suppose we apply RIM with conditional insertion probabilities pij|j[i−1] defined above; that
is, we draw random insertion vectors j by sampling j1 through jm, in turn, but with each
conditioned on the previously sampled components. The chain rule ensures that the result-
ing insertion vector is sampled from the distribution Q′. Hence the induced distribution
over rankings r = Φσ(j) is Q. We call the aforementioned procedure the generalized repeated
insertion model (GRIM). Based on the arguments above, we have:

Theorem 8 Let Q be any ranking distribution and σ a reference ranking. For any r ∈
Ω, with insertion vector jr (i.e., r = Φσ(jr)), GRIM, using the insertion probabilities in
Equation 11, generates insertion vector jr with probability Q′(jr) = Q(r).

For instance, GRIM can be used to sample from a (conditional) Mallows model given
evidence in the form of pairwise comparisons, as shown in the following example.

Example 1 We illustrate GRIM using a simple example, sampling from a (conditional)
Mallows model over A = {a, b, c}, with dispersion φ, given evidence v = {a � c}. The
following table describes the steps in the process:

Insert a, b Insert c given ab Insert c given ba

r Insertion Prob. r Insertion Prob. r Insertion Prob.

a P (ja=1)=1 cab P (jc=1)= 0 cba P (jc=1)=0

ab P (jb=1)= 1
1+φ acb P (jc=2)= φ

1+φ bca P (jc=2)=0

ba P (jb=2)= φ
1+φ abc P (jc=3)= 1

1+φ bac P (jc=3)=1

The resulting ranking distribution Q is given by the product of the conditional insertion
probabilities: Q(abc) = 1/(1 + φ)2; Q(acb) = φ/(1 + φ)2; and Q(bac) = φ/(1 + φ). As
required, Q(r) = 0 iff r is inconsistent with evidence v.
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3.2 Sampling from Mallows Posteriors

We now develop and analyze several techniques for sampling from (mixtures of) Mallows
models given partial preference profiles as evidence. We use the term Mallows posterior to
refer to the conditional distribution that arises from incorporating evidence—in the form of
a set of pairwise comparisons—into a known Mallows model. This is the primary inference
task facing a system making predictions about a specific user’s preferences given pairwise
evidence from that user, assuming a reasonably stable population model. This stands in
contrast to the more general problem of learning the parameters of a Mallows model (a
problem we address in Section 4).

3.2.1 Intractability of Sampling

One key difficulty with enabling inference conditioned on pairwise comparisons is the in-
tractability of the posterior. In the above model (Equation 10), where agent `’s incomplete
preference v` is observed, it is intractable to work with the posterior P (r, z|v`,π,σ,φ, α)
even when the mixture model has a single component, a fact we prove below. One typi-
cal approach is to rely on sampling to estimate the posterior. To this end, we develop a
polynomial-time posterior sampling algorithm based on GRIM, but relying on approxima-
tion of the relevant conditional insertion probabilities.

While GRIM allows sampling from arbitrary distributions over rankings, as presented
above it is largely a theoretical device, since it requires inference to compute the required
conditional probabilities. Thus to use GRIM to sample from a Mallows posterior, given
arbitrary pairwise comparisons v, we must first derive these required terms. The Mallows
posterior is given by

Pv(r) = P (r | v) =
φd(r,σ)∑

r′∈Ω(v) φ
d(r′,σ)

1[r ∈ Ω(v)], (12)

which requires summing over an intractable number of rankings to compute the normaliza-
tion constant.

We could use RIM for rejection sampling: sample unconditional insertion ranks, and
reject a ranking at any stage if it is inconsistent with v. However, this is impractical because
of the high probability of rejection. One can also modify the pairwise comparison sampling
model (see Section 2.2.2) to reject inconsistent pairwise comparisons. However, if |v| is small
relative to m, then for values of φ that are not too small, the probability of rejection is very
high. For instance, if φ is close to 1, m = 120 and 30 alternatives appear in v, any three
alternatives the probability of a cyclic triad for any triple (e.g., a � b, b � c, c � a) is ≈ 1/4.
The 90 alternatives unconstrained by v can be divided into 30 groups of 3 alternatives, hence
the probability that a cycle occurs among at least one triad is at least 1− (3/4)30 = 0.9998.
This is a lower bound on the probability of rejection, showing rejection sampling to be
impractical in many settings.

The main obstacle to using GRIM for sampling is computation of the insertion prob-
abilities of a specific alternatives given the inserted positions all previous alternatives, as
given by Equation 11, when Q′ (more precisely, the corresponding Q) is the Mallows pos-
terior. This essentially involves computing a high-order marginal over rankings, and turns
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out to be #P-hard, even with a uniform distribution over Ω(v). The following result on the
complexity of counting linear extensions of a partial order will be useful below:

Theorem 9 (Brightwell and Winkler 1991) Given a partial order v, computing the
number of linear extensions of v, that is |Ω(v)|, is #P-complete.

To show that computing a function f(x) is #P-hard for input x, it is sufficient to show that
a #P-complete problem can be reduced to it in polynomial time.

Proposition 10 Given v, a reference ordering σ, a partial ranking r1 · · · ri−1 over σ1, . . . , σi−1,
and j ≤ i, computing the probability of inserting σi at rank j with respect to the uniform
Mallows posterior P (i.e., computing P (r) ∝ 1[r ∈ Ω(v)]) is #P-hard.

Proof We reduce the problem of counting the number of linear extensions of incom-
plete preferences v, which is a #P-complete problem, to that of computing the desired
insertion probabilities, showing the problem to be #P-hard. Given v, notice that any
r = r1 . . . rm ∈ Ω(v) has a uniform posterior probability of 1/|Ω(v)|. Let Φ−1

σ (r) =
(j1, . . . , jm). Assume the existence of an algorithm f to compute the required insertion
probabilities. We can use it to solve the counting problem as follows: we use f to compute
piji = Pr(insert σi at rank ji | r|{σ1,...,σi−1}) with partial order v for each i ∈ {2, . . . ,m}
(i.e., m − 1 applications of f). By Theorem 8, we know the posterior probability of r is
1/|Ω(v)| =

∏
i piji ; thus we can compute |Ω(v)| by inverting the product of the insertion

probabilities. Note that this reduction can be computed in polynomial time: we can con-
struct any r ∈ Ω(v) by using a topological sort algorithm, and we require only m− 1 calls
to the algorithm insertion algorithm f .

This result shows that it is hard to sample exactly in general, and suggests that computing
the normalization constant in a Mallows posterior is difficult. This would also imply a com-
putational complexity obstacle in the work on non-parametric estimators with a Mallows
kernel (Lebanon and Mao, 2008) for an arbitrary set of pairwise comparisons. Neverthe-
less we develop an approximate sampler AMP that is computationally very efficient. While
its approximation quality can be quite poor in the worst case, we see below that, empiri-
cally, it produces excellent posterior approximations. We also derive bounds that delineate
circumstances under which it will provide approximations with low error.

3.2.2 AMP: An Approximate Sampler

AMP is based on the same intuitions as those illustrated in Example 1, where instead of
computing the correct insertion probabilities, we use the (unconditional) insertion prob-
abilities used by RIM, but subject to constraints imposed by v. First, we compute the
transitive closure tc(v) of v. Then we use a modified repeated insertion procedure where
at each step, the alternative being inserted can only be placed in positions that do not
contradict tc(v). We can show that the valid insertion positions for any alternative, given
v, form a contiguous region of the ranking (see Figure 2 for an illustration).

Proposition 11 Given partial preference v, let the insertion of i−1 alternatives σ1, . . . , σi−1

induce a ranking r1 · · · ri−1 that is consistent with tc(v). Let Li = {i′ < i|ri′ �tc(v) σi} and
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b a d c

e

l5 = 2 h5 = 3
v = {b � e, e � d}

Figure 2: Valid insertion ranks for e are {l5, . . . , h5} = {2, 3} given previous insertions and
constraints v.

Algorithm 1 AMP Approximate Mallows Posterior

Input: v, σ, φ
1: r ← σ1

2: for i = 2..m do
3: Calculate li and hi from Equations 13 and 14.

4: Insert σi in r at rank j ∈ {li, . . . , hi} with probability φi−j∑
li≤j′≤hi

φi−j′
.

5: end for
Output: r

Hi = {i′ < i|ri′ ≺tc(v) σi}. Then inserting σi at rank j is consistent with tc(v) if and only
if li ≤ j ≤ hi, where

li =

{
1 if Li = ∅
max(i′ ∈ Li) + 1 otherwise,

(13)

hi =

{
i if Hi = ∅
min(i′ ∈ Hi) otherwise.

(14)

Proof Inserting σi at any rank position less than li is impossible since either li = 1 (we
can’t insert in rank 0) or σi lies above rli , which contradicts the requirement imposed by
tc(v) that rli must be ranked higher. A similar argument can be made for inserting in
rank below hi since rhi needs to be below σi. Finally, inserting into any rank in {li, . . . , hi}
does not violate tc(v) since the alternative will be inserted below all alternatives that must
precede it in tc(v) and all alternatives that must succeed it.

Proposition 11 immediately suggests an implementation of the GRIM algorithm, AMP,
for approximate sampling of the Mallows posterior—AMP is outlined in Algorithm 1. It
first initializes ranking r with σ1 at rank 1. Then for each i = 2 . . .m, it computes li, hi
and inserts σi at rank j ∈ {li, . . . , hi} with probability proportional to φi−j . Note that
tc(v), which is required as part of the algorithm, can be computed via a modified depth-
first search. AMP induces a sampling distribution P̂v that does not match the posterior Pv
exactly: indeed the KL-divergence between the two can be severe, as the following example
shows.

Example 2 Let A = {a1, . . . am} and v = a2 � a3 � · · · � am. Let P be the uniform
Mallows prior (φ = 1) with σ = a1 · · · am. There are m rankings in Ω(v), one ranking
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ri for each placement of a1 into rank position 1 ≤ i ≤ m. That is, r1 = a1a2 · · · am and
ri = a2 · · · aia1ai+1 · · · am for i ≥ 2. The true Mallows posterior Pv is uniform over Ω(v).
But AMP induces an approximation with P̂v(ri) = 2−i for i ≤ m− 1 and P̂v(rm) = 2−m−1.
To see this, note that to construct ri, AMP would need to insert alternatives a2, . . . , ai
successively, each with probability 1/2, above a1. Then ai+1 must be inserted below a1 with
probability 1/2, and finally the remaining alternatives ai+2, . . . , am can only be inserted at
the bottom (with probability 1). Hence, the KL-divergence between Pv and P̂v is

KL(Pv||P̂v) =
m∑
i=1

Pv(ri) log2

(
Pv(ri)

P̂v(ri)

)

=

[
m−1∑
i=1

1

m
log2

1/m

2−i

]
+

1

m
log2

1/m

2−m+1

= 1− 1

m
+
m− 1

2
− log2m .

3.2.3 Statistical Properties of AMP

Example 2 shows that AMP may provide poor approximations in the worst case; however
we will see below (Section 5) that it performs very well in practice. We can also prove
interesting properties, and provide theoretical guarantees of exact sampling in important
special cases.

We first observe that AMP always produces a valid ranking; in other words, valid inser-
tion positions always exist given any consistent v.

Proposition 12 For all i ≥ 2 and all rankings of alternatives σ1, . . . , σi−1 that is consistent
with v, we have that li ≤ hi, where li and hi are defined in Equation 13 and 14, respectively.
That is, AMP always has a position at which to insert alternative σi.

Proof Let r be a ranking of σ1, . . . , σi−1 consistent with v. Let x be the lowest ranking
alternative in r such that x �tc(v) σi and y the highest-ranked alternative in r with y ≺tc(v)

σi. By transitivity, x �tc(v) y. Now if hi < li (as defined in terms of r) this implies y �r x,
but this contradicts the assumption that r is consistent with v.

Furthermore, the approximate posterior has the same support as the true posterior:

Proposition 13 The support of the distribution over rankings as defined by AMP is equal
to Ω(v) which is equal to the support of the Mallows posterior as given in Equation 12.

Proof By Proposition 11, the algorithm never violates the constraints in tc(v), and by
Proposition 12, it will always have at least one valid insertion position. Hence the algorithm
always outputs a ranking consistent with v. Now, let r ∈ Ω(v) and Φ−1

σ (r) = (j1, . . . , jm)
be the its corresponding insertion vector. We show that for all i ≤ m, ji ∈ {li, . . . , hi}. If
this is not true, then there exists a smallest i′ ≤ m such that ji′ /∈ {li′ , . . . , hi′} (note i′ ≥ 2
since the first alternative is always inserted at the first position). However, Proposition 11
asserts that this insertion rank would lead to a ranking inconsistent with v—so this is not
possible. Since AMP places positive probability on any insertion position in {li, . . . , hi} then
r has positive probability under AMP.
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Proposition 14 For any r ∈ Ω(v), the probability AMP will output r is

P̂v(r) =
φd(r,σ)∏m

i=1(φi−hi + φi−hi+1 + · · ·+ φi−li)
. (15)

Proof Let Φ−1
σ (r) = (j1, . . . , jm) be the insertion ranks. We have already established in

Proposition 13 that AMP puts positive probability on these valid insertion ranks. In fact
the probability of r under the algorithm (see Algorithm 1) is

m∏
i=1

φi−ji

(φi−li + φi−li−1 + · · ·+ φi−hi)
=

φ
∑m
i=1 i−ji∏m

i=1(φi−li + φi−li−1 + · · ·+ φi−hi)

=
φd(r,σ)∏m

i=1(φi−li + φi−li−1 + · · ·+ φi−hi)
,

where the last equality comes from Proposition 5.

Using this result we can show that if v lies in the class of partitioned preferences, AMP’s
induced distribution is exactly the Mallows posterior:

Proposition 15 (Lebanon and Mao 2008) Let σ be a reference ranking. Let v be a par-
titioned preference (see Definition 1) with partition A1, . . . , Aq of A. Let δ = |{(x, y)|y �σ
x, x ∈ Ai, y ∈ Aj , i, j ∈ [q], i < j}|, which is the number of pairs of alternatives, that span
different subsets of the partition, that are misordered with respect to σ. Then

δ =

q−1∑
i=1

∑
x∈Ai

q∑
j=i+1

∑
y∈Aj

1[y �σ x], (16)

∑
r∈Ω(v)

φd(r,σ) = φδ
q∏
i=1

|Ai|∏
j=1

(1 + φ+ φ2 + · · ·+ φj−1). (17)

Notice that Equation 17 represents the normalization constant in Mallows posterior. The
intuition underlying Equation 17 is that, for any r ∈ Ω(v), the misorderings contributed by
alternatives that span two subsets, as given by δ, are the same (hence the leading factor)
whereas within a subset Ai alternatives can be ordered arbitrarily (hence the product of
normalization constants for |Ai|).

Proposition 16 Given a partitioned preference v, the distribution induced by AMP, P̂v, is
equal to the true Mallows posterior Pv.

Proof Since the numerator in Equation 15 ( which denotes the probability that AMP out-
puts r) is the same as the proportional probability of the Mallows posterior, it is sufficient
to show that the denominator in Equation 15 equals the Mallows posterior normalization
constant given by Equation 17. Suppose σ = σ1 · · ·σm. Let v be a partitioned preference
A1, . . . , Aq. Consider alternatives in Ai such that σ|Ai = σt1σt2 · · ·σt|Ai| (i.e., the rank-
ing of alternatives in Ai according to σ). For any k ∈ {1, . . . , |Ai|}, suppose alternatives
A′ = {σ1, . . . , σtk−1} are inserted. The structure of the resulting ranking is as follows: the
alternatives (A1 ∪A2 ∪ · · · ∪Ai−1) ∩A′ must lie at the top of the ranking; the alternatives
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Ai ∩ A′ = {σt1 , . . . , σtk−1
} are in the middle; and Btk = (Ai+1 ∪ · · · ∪ Aq) ∩ A′ are at bot-

tom. When inserting σtk at rank j, we have j ∈ {ltk , . . . , htk}, where htk = tk − |Btk | and
ltk = htk − |Ai ∩A′| = tk − (k− 1)− |Btk |. Hence σtk is inserted at rank j with probability

φtk−j

φtk−htk + · · ·+ φtk−ltk
=

φtk−j

φ|Btk | + · · ·φk−1+|Btk |
.

The denominator can be written φ|Btk |(1 + · · · + φk−1). Observe that Btk consists of all
alternatives from A′ that are above σtk in σ, but are below it in v (since all such alternatives

belong to Ai+1 ∪ · · · ∪Aq). So
∑|Ai|

k=1 |Btk | is the total number of pairs (x, y), where x ∈ Ai
and y ∈ Ai+1 ∪ · · · ∪Aq, that are misordered with respect to σ. Thus inserting alternatives
in Ai contributes a factor of

|Ai|∏
k=1

φ|Btk |(1 + · · ·+ φk−1) = φ
∑
x∈Ai

∑q
j=i+1

∑
y∈Aj

1[y�σx]
|Ai|∏
k=1

(1 + · · ·+ φk−1)

to the denominator in Equation 15. Once all alternatives have been inserted, the denomi-
nator becomes

φ
∑q
i=1

∑
x∈Ai

∑q
j=i+1

∑
y∈Aj

1[y�σx]
q∏
i=1

|Ai|∏
k=1

(1 + · · ·+ φk−1).

This is exactly the Mallows posterior normalization constant in Equation 17.

As a consequence, AMP provides exact sampling in the case of partitioned preferences,
In general, this is not the case with arbitrary partial preferences (pairwise comparisons).

We now derive bounds on the relative error of AMP’s posterior, bounding the ratio between
the sample probability of an arbitrary ranking r for AMP and the true posterior probability.
The main technical challenge is deriving a bound on the Mallows posterior normalization
constant. We can obtain an upper bound by exploiting the pairwise comparison interpre-
tation of Mallows model (see Section 2.2.2).

Theorem 17 (Upper Bound on Normalization Constant) Let σ be a reference rank-
ing, φ ∈ (0, 1] and v a preference. The Mallows posterior normalization constant is upper
bounded by ∑

r∈Ω(v)

φd(r,σ) ≤ φd(v,σ)(1 + φ)(
m
2 )−d(v,σ)−s(v,σ). (18)

Proof The LHS of Equation 18 can be written in terms Equation 4, by setting φ = p/(1−p)
(see Section 2.2.2 for derivations of the pairwise comparison interpretation of Mallows) as
follows: ∑

r∈Ω(v)

φd(r,σ) = Z ·
∑
r∈Ω(v)

P (r|σ, p) (19)

= Z · 1

Z ′

∑
r∈Ω(v)

∏
{x,y}⊆A

{
p if r and σ disagree on x, y

1− p otherwise,
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where p = φ/(1 + φ), Z ′ is given by Equation 6 and Z is given by Equation 3, thus the

constant in front simplifies to 1/(1−p)(m2 ). Since r must be consistent with v, if x and y are
comparable under v, then r must be agree with v on (x, y), i.e., if x �tc(v) y then x �r y.
So

P (r|σ, p) =
1

Z ′
pd(v,σ)(1− p)s(v,σ)

∏
{x,y}/∈tc(v)

{
p if r and σ disagree on x, y

1− p otherwise.

Hence, since Ω(v) is contained in the set of all intransitive relations on A that is consistent
with comparisons in tc(v), we must have (for k =

(
m
2

)
− d(v, σ)− s(v, σ))

∑
r∈Ω(v)

P (r|σ, p) ≤ 1

Z ′
pd(v,σ)(1− p)s(v,σ)

∑
z∈{0,1}k

k∏
i=1

pzi(1− p)1−zi ,

=
1

Z ′
pd(v,σ)(1− p)s(v,σ).

Z ·
∑
r∈Ω(v)

P (r|σ, p) ≤ 1

(1− p)(m2 )
pd(v,σ)(1− p)s(v,σ). (20)

Combining Equation 20 with Equation 19, and noting that p = φ/(1 + φ), we obtain
Equation 18.

Equation 18 tells us if d(v, σ) increases (i.e., v increasingly disagrees with σ), then the first
factor dominates and upper bound gets smaller—this reflects our natural intuitions since
the set Ω(v) gets “further away” from reference ranking σ and hence its probability mass
is small. We also see that if |tc(v)| is small, then d(v, σ) + s(v, σ) is small and the upper
bound increases since the second factor dominates. This too makes sense because Ω(v) is
large and has greater probability mass. If s(v, σ) is large, more constraints are placed on v,
hence Pr(Ω(v)) is smaller, and likewise the upper bound decreases. The following example
illustrates that this bound may be quite loose in some cases, but tight in others.

Example 3 Consider again the partial ranking evidence from Example 2, where v = a2 �
· · · � am, the alternatives are {a1, . . . , am}, and our reference ranking is σ = a1a2 · · · am.
Recall that there are m rankings in Ω(v), one ranking ri for each placement of a1 into rank
position i. Now the term on the LHS of Equation 18, i.e., the true value of the normalization
constant, is

m∑
i=1

φd(ri,σ) = 1 + φ+ φ2 + · · ·+ φm.

Note that d(v, σ) = 0 and s(v, σ) =
(
m−1

2

)
since all pairwise comparisons in tc(v) agree with

σ. Thus, the term on the RHS of Equation 18, i.e., the upper bound is

φ0(1 + φ)(
m
2 )−0−(m−1

2 ) = (1 + φ)m−1.

This upper bound on the normalization constant gets tight as φ→ 0, but becomes exponen-
tially loose in m as φ→ 1.
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Before we derive a lower bound, we introduce some notions from order theory.

Definition 18 Let v be a partial preference. An anti-chain of v is a subset X of A such
that for every x, y ∈ X they are incomparable under tc(v). A maximum anti-chain is an
anti-chain whose size is at least the size of any anti-chain. The width of v, w(v) is the size
of a maximum anti-chain of v.

Theorem 19 (Lower Bound on Normalization Constant) Let σ be a reference rank-
ing, and φ ∈ (0, 1]. Let X be a maximum anti-chain of v, Y = {a ∈ A\X | ∃x ∈ X, a �tc(v)

x} and Z = A\(X ∪Y ). Let δ = |{(x, y)|x ∈ X, y ∈ Y, x �σ y}|+ |{(y, z)|y ∈ Y, z ∈ Z, z �σ
y}|+ |{(x, z)|x ∈ X, z ∈ Z, z �σ x}|. Denote by tc(v)|Y and tc(v)|Z the transitive closure of
v restricted to the subsets Y and Z, respectively. Also let Ω(tc(v)|Y ) denote those rankings
over Y that are consistent with tc(v)|Y , and similarly for Ω(tc(v)|Z). We have

∑
r∈Ω(v)

φd(r,σ) ≥ φδ
 ∑
r∈Ω(tc(v)|Y )

φd(r,σ|Y )

 ∑
r∈Ω(tc(v)|Z)

φd(r,σ|Z)

 w(v)∏
i=1

i−1∑
j=0

φj . (21)

Proof We first show that Z ′ = {a ∈ A\X | ∃x ∈ X,x �tc(v) a} = Z. If a ∈ A\X does not
belong to Y then it must be comparable to at least one element in x ∈ X otherwise we can
add it to Y and obtain a larger anti-chain. Hence, since a is not in Y , then x �tc(v) a. Also,
note that if a ∈ Y then a /∈ Z ′. This is because if a belonged to both Y and Z, then there
exists x1, x2 ∈ X such that x1 �tc(v) a and a �tc(v) x2 this would mean x1 �tc(v) x2 which
contradicts the anti-chain property of X. For a particular alternative in X, alternatives in
Y are either incomparable to it or must be preferred to it, similarly alternatives in Z are
either incomparable or must be dis-preferred to it.

This also implies no alternative in Z can be preferred over alternatives in Y since if this
were to happen, i.e., if z �tc(v) y where z ∈ Z, y ∈ Y , then ∃x ∈ X such that y �tc(v) x,
this implies z �tc(v) x which is impossible from the above observation that Z ∩ Y = ∅.

Consider all rankings Ω̃(v) where we place alternatives of Y at the top, X in the middle
and Z at the bottom. Within Y and Z we rank alternatives respecting tc(v) and since X
is an anti-chain, rank these alternatives without restrictions. That is

Ω̃(v) = {r|∀y ∈ Y, x ∈ X, z ∈ Z, y �r x, x �r z, r|Y ∈ Ω(tc(v)|Y ), r|Z ∈ Ω(tc(v)|Z)}.
Now we argue Ω̃(v) ⊆ Ω(v). Note that we satisfy preference constraints when ranking
within Y , X and Z. Also as we showed above, alternatives in Y are never dis-preferred to
alternatives in X or Z and alternatives in X are never dis-preferred to alternatives in Z.

For the lower bound, first observe if r ∈ Ω̃(v) then d(r, σ) = d(r|Y , σ|Y ) + d(r|X , σ|X) +
d(r|Z , σ|Z)+δ where δ is defined in the theorem as the number of misorderings of alternatives
across X,Y, Z, which is independent of r. Hence,

∑
r∈Ω(v)

φd(r,σ) ≥
∑
r∈Ω̃(v)

φd(r,σ) = φδ

 ∑
r∈Ω(tc(v)|Y )

φd(r,σ|Y )


 ∑
r∈Ω(tc(v)|X)

φd(r,σ|X)

 ∑
r∈Ω(tc(v)|Z)

φd(r,σ|Z)

 .
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Finally, it can be seen that the sum inside the third factor is exactly the normalization
constant of an unconstrained Mallows model with |X| = w(v) alternatives, and hence equal

to
∏w(v)
i=1

∑i−1
j=0 φ

j , the second and fourth factors involve sums over rankings of Y and Z
consistent with tc(v). This proves the lower bound.

While the lower bound is not presented in a convenient closed-form, it is useful nonetheless
if w(v) is large: if there are few preference constraints in v (e.g., v involves only a small
subset of alternatives) we expect Ω(v) to be large and hence have higher probability mass.
We recover the true Mallows normalization constant if v = ∅ since w(v) = m. If v is highly
constrained—Ω(v) has smaller probability mass—then w(v) is small, but so are the factors
involving summations in Equation 21. Note that φδ decreases as the number of comparisons
in v that disagree with σ increases; this again corresponds to intuition.

With these bounds in hand, we can bound the quality of the posterior estimate P̂v(r)
produced by AMP:

Corollary 20 Let L and U be the lower and upper bound as in Theorems 19 and 17,
respectively. Then for r ∈ Ω(v), where li and hi are defined in Proposition 11, we have

L∏m
i=1

∑hi
j=li

φi−j
≤ P̂v(r)

Pv(r)
≤ U∏m

i=1

∑hi
j=li

φi−j
. (22)

Proof P̂v(r) has the form given in Proposition 14 while Pv(r) ∝ φd(r,σ). Then apply upper
and lower bounds on the normalizing constant of Pv(r).

3.2.4 MMP: An MCMC Sampler Based on AMP

While AMP may have (theoretically) poor worst-case performance, we use it as the basis
for a statistically sound sampler MMP, by exploiting AMP to propose new rankings for the
Metropolis algorithm. With Equation 15, we can derive the acceptance ratio for Metropolis.
At step t+ 1 of Metropolis, let r(t) be the previous sampled ranking. Ranking r, proposed
by AMP independently of r(t), will be accepted as the t+ 1st sample r(t+1) with probability
a∗
(
r, r(t)

)
, where:

a∗
(
r, r(t)

)
= min

1,
φd(r,σ)/Zv

φd(r(t),σ)/Zv

φd(r
(t),σ)∏m

i=1 φ
i−ht

i+φi−h
t
i
+1+···+φi−l

t
i

φd(r,σ)∏m
i=1 φ

i−hi+φi−hi+1+···+φi−li


= min

1,

m∏
i=1


hi−li+1
hti−lti+1

if φ = 1

φh
t
i−hi (1−φhi−li+1)

1−φh
t
i
−lt
i
+1

otherwise

 . (23)

Here the lis and his are defined as in Equations 13 and 14, respectively (with respect to r;
and lti), and hti are defined similarly, but with respect to r(t). The term Zv =

∑
r′∈Ω(v) φ

d(r′,σ)

is the normalization constant of the Mallows posterior (given partial evidence v). The
algorithm is specified in detail in Algorithm 2.

Exploiting Proposition 13, we can show:
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Algorithm 2 MMP Sample Mallows Posterior using Metropolis

Input: v, σ, φ, number of steps T
1: for t = 1..T do
2: r ← AMP(v, σ, φ)
3: a ∼ Uniform[0,1]

4: r(t) ←
{
r if t = 1 or a ≤ a∗(r, r(t−1))

r(t−1) otherwise
5: end for

Output: r(T )

Theorem 21 The Markov chain induced by MMP is ergodic on the class of states (rank-
ings) Ω(v).

Proof Note that the acceptance ratio as given in Equation 23 is always positive. The
proposal distribution AMP draws rankings that are independent of previous rankings and by
Proposition 13, its support is Ω(v). Hence, for any r′ ∈ Ω(v), MMP has positive probability
of making a transition to any ranking in Ω(v)—thus establishing that Ω(v) is a recurrent
class—including itself—implying aperiodicity.

Thus, along with the detailed balance property of Metropolis, we have that the steady state
distribution of MMP is exactly the Mallows posterior Pv(r).

3.3 Sampling Mallows Mixture Posterior

Extending the GRIM, AMP and MMP algorithms to sampling from a mixture of Mallows
models is straightforward. Recall the mixture posterior:

P (r, z|v,π,σ,φ) =
P (v|r, α)P (r|z,σ,φ)P (z|π)∑

z

∑
r∈Ω P (v|r, α)P (r|z,σ,φ)P (z|π)

.

We use Gibbs sampling to alternate between r and z, since the posterior does not factor in
a way that permits us to draw samples exactly by sampling one variable, then conditionally
sampling another. We initialize the process with some z(0) and r(0), then repeatedly sample
z conditional on r, and r conditional on z. For the tth sample, z(t) is drawn from a
multinomial with K outcomes:

P (z : zk = 1|r(t−1),π,σ,φ) =
P (r(t−1)|z,σ,φ)P (z|π)∑
z′ P (r(t−1)|z′,σ,φ)P (z′|π)

=
φ
d(r(t−1),σ(k))
k πk∑K

k′=1 φ
d(r(t−1),σ(k′))
k′ πk′

.

To sample r(t) given zt, we use:

P (r|z(t), v,π,σ,φ) =
P (v|r)P (r|z(t),σ,φ)P (z(t)|π)∑

r′∈Ω P (v|r′)P (r′|z(t),σ,φ)P (z(t)|π)
. (24)
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Algorithm 3 SP: Sample Mallows Mixture Posterior using Gibbs

Input: v,π,σ,φ, number of steps T
1: Initialize r(0) (e.g., topological sort on v)
2: for t = 1..T do
3: z(t) ∼ P (·|r(t−1),π,σ,φ) ∝ φd(r(t−1),σ(k))

k πk
4: Suppose z(t) is indicator for kth component.
5: r(t) ← AMP or MMP(v, σ(k), φk)
6: end for

Output: (z(T ), r(T ))

Note that the term P (z(t)|π) in the numerator and denominator cancels, and the missing
completely at random assumption (see Equation 9) implies P (v|r) = 1[r ∈ Ω(v)]f(v), where
f is a function independent of r. Thus Equation 24 becomes Equation 12 (conditioned on
parameters σ(k), φk). This is exactly the Mallows posterior sampling problem addressed in
the previous section. Combining Gibbs sampling with sampling from a single component
gives the overall SP algorithm, which is detailed in Algorithm 3. We note that this sampler
is described using either MMP to exactly sample rankings (given the sampled mixture
component) or AMP to allow more tractable, but approximate, sampling of rankings (see
Line 5). In our experiments, we find that AMP works well within this Gibbs sampler.

4. EM Learning Algorithm for Mallows Mixtures

Armed with the sampling algorithms derived from GRIM, we now turn to maximum like-
lihood learning of the parameters π, σ, and φ of a Mallows mixture using the expectation
maximization (EM) algorithm. Before detailing our EM algorithm, we first consider the
evaluation of the Mallows mixture log-likelihood in Section 4.1, which can be used to select
the number of mixture components, or to test EM learning convergence. We then review
the EM algorithm in Section 4.2 before detailing the steps of our EM learning procedure
for Mallows mixture models in Section 4.3. In Section 4.4 we analyze the running time of
our learning algorithm and suggest several ways to improve its performance.

4.1 Evaluating Log-Likelihood

The log-likelihood in our mixture model is

Lα(π,σ,φ|V ) =
∑
`∈N

ln

∑
z`

∑
r`∈Ω

P (v`|r`)P (r`|z`,σ,φ)P (z`|π)

 . (25)

This can be rewritten as

Lα(π,σ,φ | V ) =
∑
`∈N

ln

 K∑
k=1

∑
r`∈Ω(v`)

πkP (r`|σ(k), φk)α
|v`|(1− α)(

m
2 )−|v`|


=

∑
`∈N

ln

 K∑
k=1

∑
r`∈Ω(v`)

πkP (r`|σ(k), φk)

+ ln
[
α|v`|(1− α)(

m
2 )−|v`|

]
.
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Note that the latter term involving α is decoupled from the other parameters, and in fact
its maximum likelihood estimate is α∗ =

∑
`∈N 2|v`|/(nm(m − 1)). Since we are only

interested in the log-likelihood as a function of the other parameters, we can ignore this
additive constant and focus on

L(π,σ,φ | V ) =
∑
`∈N

ln

 K∑
k=1

∑
r`∈Ω(v`)

πkφ
d(r`,σ

(k))
k

Zk

 , (26)

where Zk is the Mallows normalization constant. Unfortunately, evaluating this term is
provably hard.

Theorem 22 Let V = (v1, . . . , vn) be a profile of partial preferences. Computing the log-
likelihood L(π,σ,φ|V ) is #P-hard.

Proof We reduce the problem of counting the number of linear extensions of a partial
order to this problem (see Theorem 9). Let v be a partial order for which we wish to
count its linear extensions. We encode the input to log-likelihood computation as follows:
let V = (v), K = 1 with φ = 1, and let σ be an arbitrary ranking. We have L =
L(π, σ, φ|V ) = ln

∑
r∈Ω(v) 1/m!. Thus we can recover the number of linear extensions by

computing exp(L) ·m!. That this can be accomplished in polynomial time can be seen by
noting that L is polynomial in m and we can use the power series expansion

∑
i≥0 Lim!/i!,

where we can truncating the series after a polynomial number of steps, after which the
terms in the expansion no longer impact the integer portion of the solution (number of
extensions).

Given the computational difficulty of evaluating the log-likelihood exactly, we consider
approximations. We can rewrite the log-likelihood as

L(π,σ,φ|V ) =
∑
`∈N

ln

[
K∑
k=1

πk E
P (r|σ(k),φk)

1[r ∈ Ω(v`)]

]
,

and estimate the inner expectations by sampling from the Mallows model P (r|σ(k), φk).
However, this can require exponential sample complexity in the worst case (e.g., if K = 1
and v is far from σ, i.e., d(v, σ) is large, then to ensure v is in the sample requires a sample
set of exponential size in expectation). But we can rewrite the summation inside the log as

L(π,σ,φ|V ) =
∑
`∈N

ln

 K∑
k=1

πk
Zk

∑
r∈Ω(v`)

φ
d(r,σ(k))
k

 ,
and evaluate

∑
r∈Ω(v`)

φ
d(r,σ(k))
k using importance sampling:

∑
r∈Ω(v`)

φ
d(r,σ(k))
k = E

r∼P̂v`

[
φ
d(r,σ(k))
k

P̂v`(r|σ(k), φk)

]
. (27)
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We generate samples r
(1)
`k , . . . , r

(T )
`k with AMP(v`, σ

(k), φk) for ` ≤ n and k ≤ K, then

substitute P̂v from Equation 15 into Equation 27 to obtain:

∑
`∈N

ln

 K∑
k=1

πk
Zk

1

T

T∑
t=1

m∏
i=1

i−l(`kt)i∑
j=i−h(`kt)

i

φjk

 ,
where h

(`kt)
i and l

(`kt)
i are defined in Equations 14 and 13, and defined with respect to r

(t)
`k ,

σ(k), and v`. We can simplify the expression inside the log and derive the estimate:

L̂(π,σ,φ|V ) =
∑
`∈N

ln

[
1

T

K∑
k=1

T∑
t=1

πk·
1
m!

∏m
i=1(h

(`kt)
i − l(`kt)i + 1) if φk = 1

φ
∑m
i=1 i−h

(`kt)
i

k

∏m
i=1

1−φ
h

(`kt)
i

−l(`kt)
i

+1

k

1−φik
otherwise

 . (28)

As a matter of practical implementation, to ensure the sum of terms inside the log do
not evaluate to zero (as it may be too small to be represented using common floating
point standards), we observe that given numbers a and b with a > b > 0, ln(a + b) =
ln(a) + ln(1 + b/a). Thus even if a and b are too small to be represented as floating point
data types, we still obtain good approximations if ln(a) can be readily evaluated. This same
technique can be used to ensure numerical stability.

4.2 The EM Algorithm

A popular approach to maximum likelihood estimation is the expectation maximization
(EM) algorithm (Dempster et al., 1977). It is applied to probabilistic models in which a set
of parameters θ determine the values of random variables, but observed data is available
for only some of these variables. Let v denote the observed variables, and h the remaining
unobserved (hidden or latent). In our model, we have θ = (π,σ,φ, α), while v consists of
a set of pairwise comparisons and h = (z, r) consist of the mixture-component assignment
and its underlying complete preference ranking. EM is effectively a local search algorithm,
which alternates between two steps. The E-step computes a posterior distribution over
the hidden variables given the observed variables and a current estimate θ̃ of the model
parameters:

E-Step: P (h|v, θ̃).
The M-step computes, as its new estimate, those model parameters θ that maximize the
expected value (w.r.t. θ̃) of the log-likelihood (using the posterior computed in the E-step):

M-step: max
θ

E
P (h|v,θ̃)

lnP (h, v|θ).

These steps are iterated until convergence. Indeed, EM converges and gives a locally optimal
solution, since each iteration of EM will increase the log-likelihood. In general one does not
need to maximize the log-likelihood in the M-step, but simply increase it. An important
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variation of EM called Monte Carlo EM is used when the posterior in the E-step is hard
to compute (e.g., when dealing with large discrete event spaces, such as rankings). In
Monte Carlo EM, ones samples from the posterior in the E-step, and in the M-step simply
optimizes the choice of parameters with respect to the empirical (sample) expectation.

4.3 Monte Carlo EM for Mallows Mixtures

Learning a Mallows mixture is challenging, since even evaluating its log-likelihood is #P-
hard. A straightforward application of EM yields the following algorithm:

Initialization. Initialize values for πold, σold, and φold.

E-step. Compute/estimate the posterior P (z`, r`|v`,πold,σold,φold) for all ` ∈ N .

M-step. Compute model parameters that maximize expected log-likelihood:

πnew,σnew,φnew = argmax
π,σ,φ

∑
`∈N

E
P (r`,z`|v`,πold,σold,φold)

[lnP (v`, r`, z`|π,σ,φ)]

= argmax
π,σ,φ

∑
`∈N

∑
z`

∑
r`∈Ω

P (r`, z`|v`,πold,σold,φold) lnP (v`, r`, z`|π,σ,φ).

Exact estimation in the E-step and optimization in the M-step is of course difficult due to
the intractability of the Mallows posterior. Hence we resort to Monte Carlo EM and exploit
our sampling methods to render EM tractable as follows. We initialize the parameters with
values πold, σold, and φold. For the E-step, instead of working directly with the posterior, we

use GRIM-based Gibbs sampling (see Section 3.3) to obtain samples (z
(t)
` , r

(t)
` )Tt=1 from the

posteriors P (r`, z`|v`,πold,σold,φold) of each agent ` ≤ n. We note once again that Gibbs
sampling may use either approximate AMP or the full-fledged MCMC MMP to generate
rankings.

In the M-step, we maximize the expected log-likelihood using the empirical expectation
with respect to the generated samples:

πnew,σnew,φnew = argmax
π,σ,φ

n∑
`=1

1

T

T∑
t=1

lnP (v`, r
(t)
` , z

(t)
` |π,σ,φ). (29)

We show below in Theorem 23 that we can perform this maximization by adjusting
the three (sets of) parameters in sequence—specifically, if the parameters are maximized in
the order π, σ and φ (and the first two can be maximized independently), this provides a
globally optimal solution for the M-step (i.e., the solution obtained by optimizing parameters
simultaneously). However, optimization of σ, in particular, is NP-hard (as we discuss
below), so we use a local search heuristic to approximate the choice of reference rankings
in the M-step. We now detail the steps involved in the M-step optimization.

Somewhat abusing notation, let indicator vector z
(t)
` denote the mixture component to

which the tth sample derived from preference ` belongs. We partition the collection of all
agent samples (over all `) into such classes: let Sk = (ρk1, . . . , ρkjk) be the sub-sample of

the rankings r
(t)
` , over all ` ∈ N, t ∈ [T ], that are drawn from the kth component of the

mixture model, i.e., where z
(t)
` = k. Note that j1 + · · · + jK = nT . We can rewrite the
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objective in the M-step as

1

T

K∑
k=1

jk∑
i=1

lnP (v`(k,i)|ρki)P (ρki|σ(k), φk)P (k|πk),

where `(k, i) is the agent in sample ρk,i. We ignore lnP (v`(k,i)|ρki), which only impacts α;
and we know ρki ∈ Ω(v`(k,i)). Thus, we can rewrite the objective as

K∑
k=1

jk∑
i=1

[
lnπk + d(ρki, σ

(k)) lnφk −
m∑
w=1

ln
1− φwk
1− φk

]
. (30)

where the last summation is the log of the Mallows normalization term.

Optimizing π. We apply the method of Lagrange multipliers. The Lagrangian L =
(
∑K

k=1

∑jk
i=1 lnπk) + λ(π1 + · · · + πK − 1), where we have removed irrelevant terms of the

objective not involving π. Taking the gradient, setting to zero and solving the system of
equations ∇π,λL = 0, we obtain:

πk =
jk
nT

, ∀k ≤ K. (31)

Optimizing σ. The only term involving σ in Equation 30 is
∑K

k=1

∑jk
i=1 d(ρki, σ

(k)) lnφk.
Since lnφk is a negative scaling factor, and we can optimize the reference rankings σ(k) for
each mixture component independently, we obtain:

σ(k)∗ = argmin
σ(k)

jk∑
i=1

d(ρki, σ
(k)). (32)

Optimizing the choice of reference ranking σ(k) within a mixture component requires com-
putation of the Kemeny ranking with respect to the rankings in Sk. This is, unfortunately,
an NP-hard problem (Bartholdi III et al., 1989). To maintain tractability, we exploit the
notion of local Kemenization (Dwork et al., 2001): instead of optimizing the ranking, we
compute a locally optimal σ(k), in which swapping any two adjacent alternatives in σ(k)

does not reduce the sum of distances in the Kemeny objective. While this may not result in
optimal rankings, it has been shown to be extremely effective experimentally (Dwork et al.,
2001; Busse et al., 2007).

We detail our local Kemenization algorithm in Algorithm 4. It works by first initializing
the new ranking σ(k) to that from the previous EM iteration, σold,(k). Then, for each
alternative x, starting with those at the top of the ranking and moving downwards, we
evaluate swaps of x with the element above it, say y, and proceeding with the swap if the
majority of rankings in Sk prefer x over y. This proceeds until the first potential swap of x
fails (at which point we move on to the next alternative). This results in a locally optimal
ranking (Dwork et al., 2001). Note we need not store all rankings in Sk; we require only its
pairwise tournament graph, which is a complete directed graph with vertices corresponding
to the alternatives A and the weight of each edge x→ y set to be cxy = |{ρ ∈ Sk : y �ρ x}|.
Here cxy is the “cost” of placing x above y.
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Algorithm 4 LocalKemeny

Input: Sk = (ρk1, . . . , ρkjk)
1: σ ← σold

k

2: Compute pairwise tournament graph:
3: for all pair (x, y) : x, y ∈ A and x 6= y do
4: cxy = |{ρ ∈ Sk : y �ρ x}|.
5: end for
6: d←∑

{x,y} : x�
σ(k)y

cxy

7: for i = 2..m do
8: x← alternative in ith rank of σ
9: for j = i− 1..1 do

10: y ← alternative in jth rank of σ
11: if cxy < cyx then
12: Swap x with y
13: d← d− cxy + cyx
14: else
15: quit this loop
16: end if
17: end for
18: end for
Output: σ, Kemeny cost d

Optimizing φ. When optimizing φ in Equation 30, the objective decomposes into a sum
that permits independent optimization of each φk. Exact optimization of φk is difficult;
however, we can use gradient ascent with:

∂ (Equation 30)

∂φk
=
d(Sk, σ

(k))

φk
− jk

m∑
i=1

[(i− 1)φk − i]φi−1
k + 1

(1− φik)(1− φk)
,

where d(Sk, σ
(k)) =

∑jk
i=1 d(ρki, σ

(k)) is the Kemeny objective, which we obtain after running
LocalKemeny.

Theorem 23 Let π∗ be given by Equation 31, σ∗ be given by Equation 32, and φ∗ be the
optimal φ in Equation 30 where π is replaced with π∗ and σ is replaced with σ∗. Then π∗,
σ∗ and φ∗ is a globally optimal solution to Equation 29.

Proof Regardless of the values of σ and φ, π is optimized by Equation 31 (see our anal-
ysis above), giving the optimal solution. It is also easy to see that the optimal reference
rankings σ are the Kemeny rankings corresponding to ranking sets S1, . . . , SK , respectively,
independent of the value of φ. Finally, if we substitute the optimal values π∗ and σ∗ into
Equation 30, its optimal solution φ∗ forms part of the optimal solution (π∗,σ∗,φ∗) to
Equation 29.

It isn’t difficult to see that a “locally optimal” pair (σ,φ) obtained by optimizing σ
first, then φ is a locally optimal pair for Equation 29. Hence the resulting EM estimates
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are also locally optimal with respect to the likelihood (Neal and Hinton, 1999). While no
approximation bounds can be given, this lends some support to the optimization approach
we adopt. To test the convergence of EM, one can test the convergence of the parameters
(use Kendall-tau distance to measure σ against that of the previous iteration). One can
also measure whether the log-likelihood is converging.

To reduce problems with local maxima, we initialize the mixture parameters using a K-
means clustering approach where distances are measured using Kendall-tau rather than the
usual squared Euclidean distance. One can use a modified version of Lloyd’s 1982 method
for K-means, where the “centroid” (pertaining to Lloyd’s method) of a set of rankings can
is simply its Kemeny ranking.

4.4 Complexity of EM Steps

We analyze the running time of one iteration of our EM approach. In the E-step, we
sample variables (z, r). We need not store the ranking r for the component corresponding
to z, since in the M-step we do not need the actual rankings in Sk, but only its pairwise
tournament graph. Hence we need only update the tournament graph corresponding to
component z with sample r, which takes O(m2) time. When sampling r, let TMetro be
the number of Metropolis steps before using the next sample. Each draw of r from AMP
requires O(m2) time. Sampling z requires O(Km logm) time since Kendall-tau distance
can be computed in O(m logm) time. Let TGibbs be the number of Gibbs sampling steps
run Gibbs before outputting a sample and suppose we restart Gibbs after each such sample.
Suppose also we draw TP posterior samples for each data point v`. Then the E-step takes
O(nTPTGibbs(TMetrom

2 +Km logm)) time. In practice, one can chose a very small number
of samples, and run relatively few steps, when running the MCMC methods. Indeed, in
our experiments below, we don’t use MMP within the Gibbs sampler, but instead use AMP
directly (this can be viewed as running Metropolis for a single step); we discuss this further
below. In principle, posterior sampling can be executed in parallel, with multiple processors
handling the sampling and tournament graph updates for disjoint subsets of the data v`,
with the results from different processors merged into the K tournament graphs.

For the M-step, updating π takes constant time, while updating the component reference
rankings σ takes O(Km2) time. Optimizing φ can also be realized effectively, for instance,
by using gradient ascent and bounding number of iterations. Hence the M-step requires
O(Km2) time. Space complexity is dominated by the size of the K tournament graphs,
hence is O(Km2).

Various techniques can be used to speed up computation from a practical perspective.
Instead of storing the tournament graphs, which require quadratic memory, one can instead
approximate the Kemeny ranking for any component using the Borda count to rank alterna-
tives, which is a 5-approximation to Kemeny (Coppersmith et al., 2006), and often provides
much better approximations in practice. If using Borda, when generating a complete rank-
ing r in the posterior-sampling step (E-step) belonging to component k, one need only to
update the Borda scores of all alternatives within component k; in the M-step we simply
rank alternatives (within each component) according to their sampled Borda scores. We
still need the Kemeny distance between the resulting Borda ranking and the sampled rank-
ings, but this can be approximated by re-running the E-step and evaluating the Kendall-tau
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distance in an online fashion. One might also consider using Spearman footrule distance,
which can be computed in O(m) time rather than O(m logm) as in Kendall-tau, since it is
2-approximation to the Kemeny distance (Diaconis, 1988).

5. Experiments

We perform a series of experiments to validate the efficacy of our sampling and learning al-
gorithms, to discover interesting properties of the learned mixture models on several popular
data sets, and to evaluate the predictive power of our learned models to help predict miss-
ing preferences. We first assess the quality of our GRIM-based posterior sampling method
AMP, measuring its accuracy relative to the true Mallows posterior. We then measure the
approximation quality of our Monte Carlo algorithm for evaluating the Mallows mixture
log-likelihood. Next we apply our EM algorithm to learn mixture models using several data
sets: synthetically generated data sets, a Movielens ratings data set (with large m); and a
sushi preference data set. The synthetic data experiments confirm the effectiveness of our
EM algorithm while also revealing insights on how the size of preference data (either n or α)
impacts learning. We also remark on some of its connections to crowdsourcing. Finally we
assess the predictive accuracy of the learned models by conditioning on partial preference
information and inferring the probability of the missing pairwise comparison preferences.
In all experiments, we use Equation 26 to measure log-likelihood.

5.1 Sampling Quality

We first assess how well AMP approximates the true Mallows posterior Pv using randomly
generated (synthetic) data. We vary parameters m, φ and α, while fixing a canonical
reference ranking σ = (1, 2, · · ·m). For each parameter setting, we generate 20 preferences
v (e.g., the partial preferences of 20 agents) using our mixture model (see Section 2.3 and
Equations 9 and 10), and evaluate the exact KL-divergence of Pv with respect to P̂v

5 This
divergence is normalized by the entropy of Pv, since, when increasing m, KL-divergence and
entropy both increase. Results are shown in Figure 3, with fixed and varying parameters
for all three plots described in the caption. These results indicate that AMP approximates
the posterior very well, with average normalized KL error ranging from 1–5%, across the
parameter ranges tested.

5.2 Evaluating Log-Likelihood

In Section 4.1 we showed the #P-hardness of evaluating the log-likelihood and derived a
Monte Carlo estimator that uses the AMP sampler. We evaluate the quality of the approx-
imation produced by this estimator in this section. We vary three parameters to generate
three experiments: (a) the number of alternatives m; (b) the number of mixture compo-
nents K; and (c) the number of samples T per agent and per component (Equation 28).
In all experiments, we fix the number of agents (i.e., the number of input preferences) at
n = 50.

5. To compute KL-divergence, we need only consider consistent completions of our partial preferences.
This set of rankings usually has size much smaller than m!, and can be enumerated by modifying the
topological sort algorithm.
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Figure 3: Comparing the posterior generated by AMP to the true Mallows posterior: nor-
malized KL-divergence. The box-and-whisker plots have boxes shown the 25-75
percentile range over 20 runs, with the line inside box indicating the median, and
the ‘+’ symbols outliers. From left to right: Plot 1: Varying α, while fixing
φ = 0.5, m = 10. Plot 2: Varying φ, while fixing α = 0.2, m = 10. Plot 3:
Varying m, fixing φ = 0.5 and for m ≤ 13, α = 0.2, for m > 13, α = 0.5.

In setting (a) (varying m), we generate v from a mixture model with K = 3 and
π = (1/3, 1/3, 1/3), φ = (1/2, 1/2, 1/2) and α = 0.2. Each σk (k ≤ K) is drawn uniformly
at random from Ω.

In setting (b) (varying K), we generate v from a mixture model with K components,
where m = 8, π = (1/K, . . . , 1/K), φ = (1/2, . . . , 1/2) and α = 0.2. Again σ drawn
uniformly at random as in setting (a).

In setting (c) (varying T ), parameters are K = 1, m = 8, σ chosen uniformly at random,
φ = 0.5 and α = 0.2.

The parameters for which we evaluated the log-likelihood are generated as follows: mix-
ture weights π are sampled from a “uniform” Dirichlet distribution with a parameter vector
(i.e., equivalent sample size counts) consisting of K 5s. The reference rankings σ were drawn
uniformly at random, and φ is drawn uniformly at random from interval (0, 1).

The results for all three settings are shown in Figure 4. Overall we see that the Monte
Carlo approximation is very good, and improves significantly while reducing variance as we
increase the sample size for each agent’s log-likelihood (as captured by K · T ). Increasing
m slightly degrades approximation quality, although it offers excellent estimates across the
entire range of tested values.

5.3 EM Mixture Learning

We now evaluate our EM mixture-learning algorithms on the synthetic, Sushi and Movielens
data sets.

5.3.1 Synthetic Data

Having empirically established that AMP provides good approximations to the true poste-
rior, and that the log-likelihood can be closely approximated by importance sampling, we
now evaluate how effective our EM algorithm is at recovering parameters in a controlled
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Figure 4: Comparing the ratio of the true log-likelihood to its Monte Carlo approximation.
20 instances are run per parameter setting. From left to right: Plot 1: Varying
m, while fixing T = 5. Plot 2: Varying K while fixing T = 5. Plot 3: Varying
T . Other parameter values are described in the text.

setting, using synthetic data generated from models with known parameters. We empha-
size that the following experiments all use AMP within the Gibbs sampler in the E-step of
Monte Carlo EM, rather than the MCMC algorithm MMP, given the approximation quality
of AMP as well as its much better tractability.

We perform four experiments in which we vary: (a) α, the (expected) fraction of pairwise
comparisons revealed from each preference; (b) the number of alternativesm; (c) the number
of mixture components K; and (d) the number of agent preferences (data set size). In each
experiment, we generate random model parameters as follows: π is drawn from a Dirichlet
distribution with a uniform parameter vector of 5s; σ is drawn uniformly at random; and
φ values are drawn uniformly at random from [0.2, 0.8]. Training data is generated using
our probabilistic model with these parameters. When varying the single parameter for
each experiment, we fix the other three, with fixed values: α = 0.2, m = 20, K = 3 and
n = 50×K. We analyze the performance of EM by (approximately) evaluating the ratio of
the log-likelihood of the learned parameters to that of the true model parameters (π,σ,φ)
on test data (preferences) generated from the true model—we set ntest = n and αtest = 1.

Results are shown in Figure 5 and provide some interesting insights. First they suggest
that learning is more effective when either of α or n is larger (i.e., when we have more
preference data for training). We also see that learning performance degrades when we
increase the number of mixture components—this is hardly surprising, since there is less
data per component as we increase K. Finally, learning improves as m increases for fixed
values of α. This holds because the transitive closure for larger m tends to offer more
preference information. For instance, a1 � a2 � a3 � a4 � a5 � a6 provides 5 comparisons,
and corresponds to 1/9 of all comparisons when m = 10, while leaving many comparisons
unavailable, even after taking its transitive closure. By contrast, a1 � a2 � · · · � a100

has 99 comparisons which is only 1/50 of all comparisons when m = 100; but its transitive
closure is a complete ranking.

These observations have interesting implications when considering information elicita-
tion via “wisdom of the crowds.” When estimating a single objective ranking (i.e., K = 1),
the amount of data needed for reliable estimation can be obtained by either increasing α (the
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Figure 5: Performance of EM on synthetic data. Each plot shows the ratio of the log-
likelihood of learned parameters to those of the true model parameters. Each
parameter setting averages results of 20 instances. Log-likelihoods are approxi-
mated as in Section 4.1 with T = 10. Other parameter settings are described in
the text.

average number of pairwise comparisons revealed per agent) and decreasing n (the number
of agents queried) or by increasing n and decreasing α. In other words, one can obtain
the same “effective” data by either asking more agents about their objective assessments
while decreasing the number of questions per agent, as asking fewer agents to respond, but
demanding more pairwise assessments per agent.

5.3.2 Sushi Data

The Sushi data set consists of 5000 complete rankings over 10 varieties of sushi indicating
sushi preferences (Kamishima et al., 2005). We used 3500 preferences for training and 1500
for validation. We ran EM experiments by generating revealed pairwise comparisons for
training with various probabilities α. To mitigate issues with local maxima, we ran EM ten
times (more than is necessary) for each instance. Figure 6 shows that, even without com-
plete preferences, EM learns well even with only 30-50% of all paired comparisons, though
it degrades significantly at 20%, in part because only 10 alternatives are ranked (still per-
formance at 20% is good when K = 1, 2). With K = 6 components, a good fit is found
when training on complete preferences: Table 1 shows the learned clusters (all with reason-
ably low dispersion), illustrating interesting patterns (e.g., fatty tuna is strongly preferred
by all but one group; a strong correlation exists across groups in preference/dispreference
for salmon roe and sea urchin, which are “atypical fish”; and cucumber roll is consistently
dispreferred).
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Figure 6: Sushi data set. Plots of average validation log-likelihood when the training data,
pairwise comparisons, are revealed with probabilities α ∈ {0.2, 0.3, 0.4, 0.5, 1.0}.
Learning degrades as α gets closer to 0.2, that is, as more pairwise comparisons
are removed.

π0 = 0.17 π1 = 0.15 π2 = 0.17 π3 = 0.18 π4 = 0.16 π5 = 0.18
φ0 = 0.66 φ1 = 0.74 φ2 = 0.61 φ3 = 0.64 φ4 = 0.61 φ5 = 0.62

fatty tuna shrimp sea urchin fatty tuna fatty tuna fatty tuna
salmon roe sea eel fatty tuna tuna sea urchin sea urchin
tuna squid sea eel shrimp tuna salmon roe
sea eel egg salmon roe tuna roll salmon roe shrimp
tuna roll fatty tuna shrimp squid sea eel tuna
shrimp tuna tuna sea eel tuna roll squid
egg tuna roll squid egg shrimp tuna roll
squid cucumber roll tuna roll cucumber roll squid sea eel
cucumber roll salmon roe egg salmon roe egg egg
sea urchin sea urchin cucumber roll sea urchin cucumber roll cucumber roll

Table 1: Learned model for K = 6 on the sushi data set with complete preferences.
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5.3.3 Movielens Data

We apply our EM algorithm to a subset of the Movielens data set (see www.grouplens.org) to
find “preference types” across users. We use the 200 (out of roughly 3900) most frequently
rated movies, and the ratings of the 5980 users (out of roughly 6000) who rated at least one
of these. Integer ratings from 1 to 5 are converted to pairwise preferences in the obvious
way (for ties, no preference was added to v). For example, if A and B had rating 5, C had
rating 3 and D rating 1 then the user preference becomes v = {A � C,A � D,B � C,B �
D,C � D}. We discard preferences that are empty when restricted to the top 200 movies,
and use 3986 preferences for training and 1994 for validation. We run EM with number of
components K = 1, . . . , 20; for each K we ran EM 20 times to mitigate the impact of local
maxima. For each K, we evaluate average log-likelihood of the best run on the validation
set to select the number of mixture components K. Log-likelihoods are approximated using
our Monte Carlo estimator (with K · T = 120).6

Log-likelihood results are shown in Figure 7 as a function of the number of mixture
components. These results suggest that the best component sizes are K = 10 and K = 5
on the validation set. The learned model with K = 5 is displayed in Table 2, with each
component ranking truncated to the top-20 movies. The five references rankings in this case
are have some intuitive interpretation, but do not seem to exhibit the same separation as in
the Sushi data set, in part due to the non-trivial overlap involving a number of “universally
popular” movies (e.g., two movies, The Shawshank Redemption and The Usual Suspects,
occur in all five components; two more occur in four, and more than 30 occur in three).
Note also that the dispersion of each component is extremely high, approaching 1.

Despite this, certain patterns can be discerned. especially by focusing on reasonably
unique movies, those than occur in only one or two components. For example, the second
component contains the following “unique” movies: Monty Python and the Holy Grail, The
Maltese Falcon, Blade Runner, One Flew Over the Cuckoo’s Nest, A Clockwork Orange,
2001: A Space Odyssey, North by Northwest, Pulp Fiction, Chinatown, and Apocalypse
Now. Themes within this cluster of unique movies include “older” science fiction, ultra-
violence, actor Jack Nicholson and director Stanley Kubrick. The average date of the (top)
twenty movies within this component is 1970, which is significantly lower than those of
other components.

The same analysis of the fifth component shows the following “unique” movies: A
Christmas Story, This is Spinal Tap, American Beauty, Pulp Fiction, The Princess Bride,
Forrest Gump, Fight Club, Fargo, Ferris Bueller’s Day Off, Raising Arizona, Good Will
Hunting, and The Matrix. Many of the movies here would commonly be characterized as
“quirky,” including five “quirky comedies,” and several that tend toward extreme violence.
The movies in this component also have a significantly later average date, 1992, than the
others.

6. The C++ implementation of our algorithms have EM wall clock times of 15–20 minutes (Intel Xeon
dual-core, 3GHz), certainly practical for a data set of this size. In other data sets, given the smaller
number of alternatives, run times are much faster.
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Figure 7: Movielens data set: average training and validation log likelihoods on the learned
model parameters of different component sizes.

π1 = 0.24, φ1 = 0.98 π2 = 0.23, φ2 = 0.98 π3 = 0.21, φ3 = 0.98 π4 = 0.19, φ4 = 0.98 π5 = 0.13, φ5 = 0.97
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Schindler’s List (1993)

Schindler’s List (1993) Casablanca (1942) Rear Window (1954) Schindler’s List (1993) Life Is Beautiful (1997)
Rear Window (1954) Star Wars: Episode IV

- A New Hope (1977)
Star Wars: Episode IV
- A New Hope (1977)

Star Wars: Episode IV
- A New Hope (1977)

Christmas Story, A
(1983)

Shawshank Redemp-
tion, The (1994)

Usual Suspects, The
(1995)

Shawshank Redemp-
tion, The (1994)

Matrix, The (1999) This Is Spinal Tap
(1984)

American Beauty
(1999)

Raiders of the Lost Ark
(1981)

Casablanca (1942) Sixth Sense, The
(1999)

American Beauty
(1999)

Godfather: Part II,
The (1974)

Monty Python and the
Holy Grail (1974)

Sixth Sense, The
(1999)

Sting, The (1973) Sixth Sense, The
(1999)

One Flew Over the
Cuckoo’s Nest (1975)

Rear Window (1954) Psycho (1960) Forrest Gump (1994) Pulp Fiction (1994)

Casablanca (1942) Maltese Falcon, The
(1941)

Citizen Kane (1941) Usual Suspects, The
(1995)

Princess Bride, The
(1987)

Usual Suspects, The
(1995)

Blade Runner (1982) Sting, The (1973) Braveheart (1995) Silence of the Lambs,
The (1991)

Pulp Fiction (1994) One Flew Over the
Cuckoo’s Nest (1975)

Usual Suspects, The
(1995)

Green Mile, The (1999) Godfather, The (1972)

Monty Python and the
Holy Grail (1974)

Clockwork Orange, A
(1971)

Saving Private Ryan
(1998)

Indiana Jones and the
Last Crusade (1989)

Forrest Gump (1994)

Fargo (1996) 2001: A Space Odyssey
(1968)

Godfather: Part II,
The (1974)

Saving Private Ryan
(1998)

Fight Club (1999)

Life Is Beautiful (1997) North by Northwest
(1959)

Silence of the Lambs,
The (1991)

Princess Bride, The
(1987)

Fargo (1996)

Graduate, The (1967) Pulp Fiction (1994) Wizard of Oz, The
(1939)

Star Wars: Episode V
- The Empire Strikes
Back (1980)

Ferris Bueller’s Day
Off (1986)

North by Northwest
(1959)

Godfather: Part II,
The (1974)

Dr. Strangelove (1963) Silence of the Lambs,
The (1991)

Raising Arizona (1987)

GoodFellas (1990) Chinatown (1974) Jaws (1975) Good Will Hunting
(1997)

Saving Private Ryan
(1998)

Chinatown (1974) Apocalypse Now
(1979)

Braveheart (1995) Ferris Bueller’s Day
Off (1986)

Good Will Hunting
(1997)

Raiders of the Lost Ark
(1981)

Shawshank Redemp-
tion, The (1994)

Aliens (1986) When Harry Met Sally
(1989)

Matrix, The (1999)

Table 2: Learned model for K = 5 on Movielens. Shows the top 20 (out of 200) movies.
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5.4 Predicting Missing Pairwise Preferences

In our prediction experiments, we seek to evaluate the performance of the learned models in
predicting unseen pairwise comparisons. In particular, we use the complete sushi data set,
train our mixture model on the first 3500 complete rankings (we train for all K = 1, . . . , 20),
and select the best K by evaluating the log-likelihood on the validation data set, which
consists of 500 complete rankings. It turns out that a mixture model with K = 6 was most
suitable.

To test posterior prediction performance, we use 1000 complete rankings, distinct from
both the training and validation sets, and randomly remove a fraction 1 − α of the pair-
wise comparisons from each ranking, then compute the transitive closure of the remaining
comparisons to obtain partial preferences. We generate preferences for four different values
of α. With α = 0, all preferences are removed; with α = 0.25, 42% of the pairwise com-
parisons are left after computing transitive closures; with α = 0.5, 76% of the all pairwise
comparisons remain; and with α = 0.75, 83% of the pairwise comparisons are left.

We conditioned the learned model on the partial preferences of each agent in turn,
to obtain posterior distributions over which we can infer each agent’s missing pairwise
comparisons. In making predictions, we use our posterior sampling algorithm SP to sample
complete rankings, which we then use to update a tournament graph—recall, this is a set
of counts cab to count the number of rankings for which a � b, for all a, b ∈ A. Then we
estimate the posterior probability P (a � b | v) by cab

cab+cba
.

We define our prediction loss as follows. Suppose we have a complete ranking r with its
corresponding partial preference v obtained as described above. For a given a �r b that is
unobserved in tc(v), we define the posterior prediction loss to be P̂ (a ≺ b | v) = cba

cab+cba
.

Let M(v) = {(a, b) : a �r b, a � b /∈ tc(v)} be the set of missing pairwise comparisons in v.
We define the average loss of v as

εv =

∑
(a,b)∈M(v`)

P̂ (a ≺ b|v)

|M(v`)|
.

We next define the average loss per preference to be

ε =
1

n

n∑
`=1

εv` ,

where n is the number of distinct agents or preferences (in this case n = 1000). For a �r b,
let D(a, b) = r(b) − r(a) be the difference in their rank positions and MD(v) = {(a, b) ∈
M(v) : D(a, b) = D}. We also measure the average loss at distance D as follows:

εD =

∑n
`=1

∑
(a,b)∈MD(v`)

P̂ (a ≺ b|v)∑n
`=1 |MD(v`)|

.

The results for average loss per preference are as follows:

• ε = 0.43 for preferences generated with α = 0;

• ε = 0.35 for α = 0.25,

• ε = 0.39 for α = 0.5, and
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Figure 8: Sushi prediction results: average prediction loss for missing pairwise comparisons
for pairs at different distances in the underlying ranking.

• ε = 0.44 for α = 0.75.

(We interpret these results below). Results for εD at various distances are plotted in Fig-
ure 8. Since these results are extremely sensitive to the number of pairwise comparisons
available in the data at different distances, we show the number of such comparisons, per
distance, in Table 3.

The results indicate that predictive performance is weakly accurate when pairs are close
in distance, but improves as the distance between the predicted alternatives increases in
the underlying ranking. For α = 0.75, the average loss at distances 5 and 6 is higher than
expected, but this is due to the small number of comparisons missing available for testing
(and in general) at those distances. We also observe that the number of comparisons of
a particular distance decreases as a function of the distance—this is more pronounced for
smaller values of α. This can be attributed to the use of transitive closure: the further
apart a pair of alternatives are in the underlying ranking, the less likely it is that we will
remove all of the pairwise comparisons required render the two alternatives incomparable
after taking the transitive closure of the preferences that remain. As a consequence of
the skewed distribution of missing pairs available for prediction at specific distances, the
average loss per preference does not in fact decrease as α increases. For example, it is
0.39 for α = 0.5, and 0.44 for α = 0.75; this is because the relative number of missing
comparisons at smaller distances (which are more difficult to predict) is much greater when
α = 0.75 than when α = 0.5 (as shown in Table 3).

6. Applications to Non-Parametric Estimators

Lebanon and Mao (2008) propose a non-parametric estimator for Mallows models when
observations form partitioned preferences. This estimator is an analogue of typical kernel
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D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9

α = 0 9000 8000 7000 6000 5000 4000 3000 2000 1000

α = .25 6610 5487 4393 3459 2492 1744 1092 606 256

α = .5 4429 2911 1683 898 443 191 65 22 1

α = .75 2230 824 244 62 9 2 0 0 0

Table 3: The number of missing pairwise comparisons (over all agents) among pairs that
are distance D from each other, with preferences generated by randomly deleting
fraction 1 − α of preferences, then taking the transitive closure of the remaining
comparisons.

density estimators, but over the space of rankings. Their purpose, similar to mixture mod-
els, is to model the distribution of real ranking data. The idea is to place “smooth unimodal
bumps,” formulated as a single Mallows model, at every input (training) preference. This
is much like a mixture model with the number of components equal to the number of pref-
erences in the training data. They offer closed-form solutions by exploiting the existence
of the closed-form for the Mallows normalization constant when partitioned preferences are
observed. Unfortunately, with general pairwise comparisons, computing this normalization
constant is intractable unless #P=P. In contrast to our contributions above, they do not
address the question of how to find a maximum likelihood estimate of the Mallows disper-
sion parameter, also known as the kernel width, which they suggest as being “extremely
difficult.”

It turns out we can use AMP for approximate marginalization to support non-parametric
estimation with general preference data. This shows the potential applicability of our
sampling algorithm to a wider range of problems where observations consist of pairwise
comparisons. We illustrate its application by defining a non-parametric estimator and
deriving a Monte Carlo evaluation formula suitable for incomplete preferences.

Define a joint distribution q` over the probability space Ω(v`)× Ω:

q`(s, r) =
φd(r,s)

|Ω(v`)|Zφ
, (33)

where Zφ is the Mallows normalization constant with respect to dispersion φ. This dis-
tribution corresponds to drawing a ranking s uniformly at random from Ω(v`) and then
drawing r from a Mallows distribution with reference ranking s and dispersion φ. The esti-
mator, extended in the style of Lebanon and Mao (2008) to any set of paired comparisons,
is simply:

p(v) =
1

n

∑
`∈N

q`(s ∈ Ω(v`), r ∈ Ω(v)) (34)

=
1

n

∑
`∈N

∑
s∈Ω(v`)

∑
r∈Ω(v)

φd(r,s)

|Ω(v`)|Zφ
.

Note that this is a distribution over rankings and not incomplete preferences, that is, a
marginal over Ω(v). A special case arises when V consists entirely of complete rankings,
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which simplifies to a mixture of Mallows models with n equally weighted components,
each with one of the observed rankings v` as its reference ranking, and dispersion φ. This
estimator can be useful for inference over the posterior p(r|v) = p(r)1[r ∈ Ω(v)]/p(v) for
r ∈ Ω(v). For any fixed v, let f(s) =

∑
r∈Ω(v) φ

d(r,s). Then we have

p(v) =
1

nZφ

∑
`∈N

∑
s∈Ω(v`)

1

|Ω(v`)|
f(s)

=
1

nZφ

∑
`∈N

E
s∼Ω(v`)

f(s),

where s is drawn uniformly from Ω(v`). One can estimate the expectation by importance

sampling. Suppose we draw, for each `, rankings s
(1)
` , . . . , s

(T )
` using AMP(v`, σ, φ = 1)

to approximate uniform sampling (e.g., choose some ranking σ from Ω(v`)). Let w`t =

1/P̂v`(s
(t)
` ), which has a closed-form given by Equation 15. Then the estimate is

p̂(v) =
1

nZφ

n∑
`=1

∑T
t=1w`tf(s

(t)
` )∑T

t=1w`t
.

Evaluating f(s
(t)
` ) is generally intractable, but again, it can be approximated using our

earlier techniques, as given by Equation 27. In summary, we can realize non-parametric
estimation using a nested sampling procedure to first approximate the outer expectation
over s, followed by the inner summation f(s).

7. Conclusion and Future Work

We have developed a set of algorithms to support the efficient and effective learning of
ranking or preference distributions when the observed data comprise a set of unrestricted
pairwise comparisons of alternatives. Given the fundamental nature of pairwise compar-
isons in revealed preference, our methods extend the reach of rank learning in a vital way.
One of our main technical contributions, the GRIM algorithm, allows sampling of arbi-
trary distributions, including Mallows models conditioned on pairwise data. It supports a
tractable approximation to the #P-hard problem of log-likelihood evaluation of Mallows
mixtures; and it forms the heart of an EM algorithm that was shown to be quite effective
in our experiments. GRIM can also be used for non-parametric estimation.

We are pursuing a number of interesting directions, including various extensions and
applications of the model we have developed here. One of the weaknesses with Mallows
is its lack of flexibility in various dimensions, such as allowing different dispersion “rates”
in different regions of the ranking. Models that allow more flexibility while controlling
for overfitting could lead to more realistic ranking models for real-world settings. Other
extensions include exploration of other probabilistic models of incomplete preferences that
employ different distributions over rankings, such as Plackett-Luce or weighted Mallows;
that account for noisy comparison data from users; and that account for data that is not
missing at random—this may occur, say, in settings in which a bias exists towards observing
preferences for higher ranked alternatives.
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In another vein, we are interested in exploiting learned preference models of the type
developed here for decision-theoretic tasks in social choice or personalized recommendation.
Learned preferences can be leveraged in both active preference elicitation (e.g., in social
choice or group decision making (Lu and Boutilier, 2011)), or in passive (purely observa-
tional) settings. It would also be interesting to apply GRIM to other posterior distributions
such as energy models, and to compare it to different MCMC techniques like chain flipping
(Dellaert et al., 2003).
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Abstract

One of the most widely used techniques for data clustering is agglomerative clustering. Such
algorithms have been long used across many different fields ranging from computational
biology to social sciences to computer vision in part because their output is easy to interpret.
Unfortunately, it is well known, however, that many of the classic agglomerative clustering
algorithms are not robust to noise. In this paper we propose and analyze a new robust
algorithm for bottom-up agglomerative clustering. We show that our algorithm can be
used to cluster accurately in cases where the data satisfies a number of natural properties
and where the traditional agglomerative algorithms fail. We also show how to adapt our
algorithm to the inductive setting where our given data is only a small random sample of
the entire data set. Experimental evaluations on synthetic and real world data sets show
that our algorithm achieves better performance than other hierarchical algorithms in the
presence of noise.

Keywords: unsupervised learning, clustering, agglomerative algorithms, robustness

1. Introduction

Many data mining and machine learning applications ranging from computer vision to
biology problems have recently faced an explosion of data. As a consequence it has become
increasingly important to develop effective, accurate, robust to noise, fast, and general
clustering algorithms, accessible to developers and researchers in a diverse range of areas.

One of the oldest and most commonly used methods for clustering data, widely used
in many scientific applications, is hierarchical clustering (Gower, 1967; Bryant and Berry,
2001; Cheng et al., 2006; Dasgupta and Long, 2005; Duda et al., 2000; Gollapudi et al.,
2006; Jain and Dubes, 1981; Jain et al., 1999; Johnson, 1967; Narasimhan et al., 2006).

∗. A preliminary version of this article appeared under the title Robust Hierarchical Clustering in the
Proceedings of the Twenty-Third Conference on Learning Theory, 2010.
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In hierarchical clustering the goal is not to find a single partitioning of the data, but
a hierarchy (generally represented by a tree) of partitions which may reveal interesting
structure in the data at multiple levels of granularity. The most widely used hierarchical
methods are the agglomerative clustering techniques; most of these techniques start with
a separate cluster for each point and then progressively merge the two closest clusters
until only a single cluster remains. In all cases, we assume that we have a measure of
similarity between pairs of objects, but the different schemes are distinguished by how
they convert this into a measure of similarity between two clusters. For example, in single
linkage the similarity between two clusters is the maximum similarity between points in
these two different clusters. In complete linkage, the similarity between two clusters is the
minimum similarity between points in these two different clusters. Average linkage defines
the similarity between two clusters as the average similarity between points in these two
different clusters (Dasgupta and Long, 2005; Jain et al., 1999).

Such algorithms have been used in a wide range of application domains ranging from
biology to social sciences to computer vision mainly because they are quite fast and the
output is quite easy to interpret. It is well known, however, that one of the main limitations
of the agglomerative clustering algorithms is that they are not robust to noise (Narasimhan
et al., 2006). In this paper we propose and analyze a robust algorithm for bottom-up
agglomerative clustering. We show that our algorithm satisfies formal robustness guarantees
and with proper parameter values, it will be successful in several natural cases where the
traditional agglomerative algorithms fail.

In order to formally analyze correctness of our algorithm we use the discriminative frame-
work (Balcan et al., 2008). In this framework, we assume there is some target clustering
(much like a k-class target function in the multi-class learning setting) and we say that an
algorithm correctly clusters data satisfying property P if on any data set having property P ,
the algorithm produces a tree such that the target is some pruning of the tree. For example
if all points are more similar to points in their own target cluster than to points in any
other cluster (this is called the strict separation property), then any of the standard single
linkage, complete linkage, and average linkage agglomerative algorithms will succeed.1 See
Figure 1 for an example. However, with just tiny bit of noise, for example if each point has
even just one point from a different cluster that it is similar to, then these standard algo-
rithms will all fail (we elaborate on this in Section 2.2). See Figure 2 for an example. This
brings up the question: is it possible to design an agglomerative algorithm that is robust
to these types of situations and more generally can tolerate a substantial degree of noise?
The contribution of our paper is to provide a positive answer to this question; we develop a
robust, linkage based algorithm that will succeed in many interesting cases where standard
agglomerative algorithms will fail. At a high level, our new algorithm is robust to noise in
two different and important ways. First, it uses more global information for determining the
similarities between clusters; second, it uses a robust linkage procedure involving a median
test for linking the clusters, eliminating the influence of the noisy similarities.

1. We note however that the Ward’s minimum variance method, another classic linkage based procedure,
might fail under the strict separation property in the presence of unbalanced clusters. We provide a
concrete example in Appendix C.
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1.1 Our Results

In particular, in Section 3 we show that if the data satisfies a natural good neighborhood
property, then our algorithm can be used to cluster well in the tree model, that is, to
output a hierarchy such that the target clustering is (close to) a pruning of that hierarchy.
The good neighborhood property relaxes the strict separation property, and only requires
that after a small number of bad points (which could be extremely malicious) have been
removed, for the remaining good points in the data set, in the neighborhood of their target
cluster’s size, most of their nearest neighbors are from their target cluster. We show that
our algorithm produces a hierarchy with a pruning that assigns all good points correctly. In
Section 4, we further generalize this to allow for a good fraction of “boundary” points that
do not fully satisfy the good neighborhood property. Unlike the good points, these points
may have many nearest neighbors outside their target cluster in the neighborhood of their
target cluster’s size; but also unlike the bad points, they have additional structure: they fall
into a sufficiently large subset of their target cluster, such that all points in this subset have
most of their nearest neighbors from this subset. As long as the fraction of boundary points
in such subsets is not too large, our algorithm can produce a hierarchy with a pruning that
assigns all good and boundary points correctly.

We further show how to adapt our algorithm to the inductive setting with formal cor-
rectness guarantees in Section 5. In this setting, the clustering algorithm only uses a small
random sample over the data set and generates a hierarchy over this sample, which also
implicitly represents a hierarchy over the entire data set. This is especially useful when
the amount of data is enormous such as in astrophysics and biology. We prove that our
algorithm requires only a small random sample whose size is independent of that of the
entire data set and depends only on the noise and the confidence parameters.

We then perform experimental evaluations of our algorithm on synthetic data and real-
world data sets. In controlled experiments on synthetic data presented in Section 6.1, our
algorithm achieves results consistent with our theoretical analysis, outperforming several
other hierarchical algorithms. We also show in Section 6.2 that our algorithm performs
consistently better than other hierarchical algorithms in experiments on several real-world
data. These experimental results suggest that the properties and the algorithm we propose
can handle noise in real-world data as well. To obtain good performance, however, our
algorithm requires tuning the noise parameters which roughly speaking quantify the extent
to which the good neighborhood property is satisfied.

1.2 Related Work

In agglomerative hierarchical clustering (Dasgupta and Long, 2005; Duda et al., 2000; Jain
and Dubes, 1981; Jain et al., 1999), the goal is not to find a single partitioning of the data,
but a hierarchy (generally represented by a tree) of partitionings which may reveal interest-
ing structure in the data at multiple levels of granularity. Traditionally, only clusterings at
a certain level are considered, but as we argue in Section 2 it is more desirable to consider
all the prunings of the tree, since this way we can then handle much more general situations.

As mentioned above, it is well known that standard agglomerative hierarchical cluster-
ing techniques are not tolerant to noise (Nagy, 1968; Narasimhan et al., 2006). Several
algorithms have been proposed to make the hierarchical clustering techniques more robust
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to noise, such as Wishart’s method (Wishart, 1969), and CURE (Guha et al., 1998). Ward’s
minimum variance method (Ward, 1963) is also more preferable in the presence of noise.
However, these algorithms have no theoretical guarantees for their robustness. Also, our
empirical study demonstrates that our algorithm has better tolerance to noise.

On the theoretical side, the simple strict separation property discussed above is gener-
alized to the ν-strict separation property (Balcan et al., 2008). The generalization requires
that after a small number of outliers have been removed all points are strictly more similar
to points in their own cluster than to points in other clusters. They provided an algorithm
for producing a hierarchy such that the target clustering is close to some pruning of the
tree, but via a much more computationally expensive (non-agglomerative) algorithm. Our
algorithm is simpler and substantially faster. As discussed in Section 2.1, the good neigh-
borhood property is much broader than the ν-strict separation property, so our algorithm
is much more generally applicable compared to their algorithm specifically designed for
ν-strict separation.

In a different statistical model, a generalization of Wishart’s method is proposed Chaud-
huri and Dasgupta (2010). The authors proved that given a sample from a density function,
the method constructs a tree that is consistent with the cluster tree of the density. Although
not directly targeting at robustness, the analysis shows the method successfully identifies
salient clusters separated by low density regions, which suggests the method can be robust
to the noise represented by the low density regions.

For general clustering beyond hierarchical clustering, there are also works proposing
robust algorithms and analyzing robustness of the algorithms; see (Garćıa-Escudero et al.,
2010) for a review. In particular, the trimmed k-means algorithm (Garćıa-Escudero and
Gordaliza, 1999), a variant of the classical k-means algorithm, updates the centers after trim-
ming points that are far away and thus are likely to be noise. An interesting mathematical
probabilistic framework for clustering in the presence of outliers is introduced (Gallegos,
2002; Gallegos and Ritter, 2005), which used maximum likelihood approach to estimate the
underlying parameters. An algorithm combining the above two approaches is later pro-
posed (Garćıa-Escudero et al., 2008). The robustness of some classical algorithms such as
k-means is also studied from the perspective of how the clusters are changed after adding
some additional points (Hennig, 2008; Ackerman et al., 2013).

1.3 Structure of the Paper

The rest of the paper is organized as follows. In Section 2, we formalize our model and define
the good neighborhood property. We describe our algorithm and prove it succeeds under
the good neighborhood property in Section 3. We then prove that it also succeeds under a
generalization of the good neighborhood property in Section 4. In Section 5, we show how
to adapt our algorithm to the inductive setting with formal correctness guarantees. We
provide the experimental results in Section 6, and conclude the paper in Section 7.

2. Definitions. A Formal Setup

We consider a clustering problem (S, `) specified as follows. Assume we have a data set S
of n objects. Each x ∈ S has some (unknown) “ground-truth” label `(x) in Y = {1, . . . , k},
where we will think of k as much smaller than n. Let Ci = {x ∈ S : `(x) = i} denote
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the set of points of label i (which could be empty), and denote the target clustering as
C = {C1, . . . , Ck}. Let C(x) be a shorthand of Cl(x), and nC denote the size of a cluster C.

Given another proposed clustering h, h : S → Y , we define the error of h with respect
to the target clustering to be

err(h) = min
σ∈Sk

[
Pr
x∈S

[σ(h(x)) 6= `(x)]

]
,

where Sk is the set of all permutations on {1, . . . , k}. Equivalently, the error of a clustering
C′ = {C ′1, . . . , C ′k} is minσ∈Sk

1
n

∑
i |Ci − C ′σ(i)|. This is popularly known as Classification

Error (Meilă and Heckerman, 2001; Balcan et al., 2013; Voevodski et al., 2012).

We will be considering clustering algorithms whose only access to their data is via
a pairwise similarity function K(x, x′) that given two examples outputs a number in the
range [−1, 1]. We will say that K is a symmetric similarity function if K(x, x′) = K(x′, x)
for all x, x′. In this paper we assume that the similarity function K is symmetric.

Our goal is to produce a hierarchical clustering that contains a pruning that is close
to the target clustering. Formally, the goal of the algorithm is to produce a hierarchical
clustering: that is, a tree on subsets such that the root is the set S, and the children
of any node S′ in the tree form a partition of S′. The requirement is that there must
exist a pruning h of the tree (not necessarily using nodes all at the same level) that has
error at most ε. It has been shown that this type of output is necessary in order to be
able to analyze non-trivial properties of the similarity function (Balcan et al., 2008). For
example, even if the similarity function satisfies the requirement that all points are more
similar to all points in their own cluster than to any point in any other cluster (this is
called the strict separation property) and even if we are told the number of clusters, there
can still be multiple different clusterings that satisfy the property. In particular, one can
show examples of similarity functions and two significantly different clusterings of the data
satisfying the strict separation property. See Figure 1 for an example. However, under
the strict separation property, there is a single hierarchical decomposition such that any
consistent clustering is a pruning of this tree. This motivates clustering in the tree model,
which is the model we consider in this work as well.

Given a similarity function satisfying the strict separation property (see Figure 1 for an
example), we can efficiently construct a tree such that the ground-truth clustering is a prun-
ing of this tree (Balcan et al., 2008). Moreover, the standard linkage single linkage, average
linkage, and complete linkage algorithms would work well under this property. However,
one can show that if the similarity function slightly deviates from the strict separation con-
dition, then all these standard agglomerative algorithms will fail (we elaborate on this in
Section 2.2). In this context, the main question we address in this work is: Can we develop
other more robust, linkage based algorithms that will succeed under more realistic and yet
natural conditions on the similarity function?

Note The strict separation property does not guarantee that all the cutoffs for different
points x are the same, so single linkage would not necessarily have the right clustering if it
just stopped once it has k clusters; however the target clustering will provably be a pruning
of the final single linkage tree; this is why we define success based on prunings.
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Figure 1: Consider a document clustering problem. Assume that data lies in multiple re-
gions Algorithms, Complexity, Learning, Planning, Squash, Billiards, Football,
Baseball. Suppose that the similarity K(x, y) = 0.999 if x and y belong to
the same inner region; K(x, y) = 3/4 if x ∈ Algorithms and y ∈ Complexity,
or if x ∈ Learning and y ∈ Planning, or if x ∈ Squash and y ∈ Billiards,
or if x ∈ Football and y ∈ Baseball; K(x, y) = 1/2 if x is in (Algorithms or
Complexity) and y is in (Learning or Planning), or if x is in (Squash or Billiards)
and y is in (Football or Baseball); define K(x, y) = 0 otherwise. Both clusterings
{Algorithms ∪ Complexity ∪ Learning ∪ Planning, Squash ∪ Billiards,Football ∪
Baseball} and {Algorithms∪Complexity,Learning∪Planning, Squash∪Billiards∪
Football ∪ Baseball} satisfy the strict separation property.

2.1 Properties of the Similarity Function

We describe here some natural properties of the similarity functions that we analyze in this
paper. We start with a noisy version of the simple strict separation property mentioned
above (Balcan et al., 2008) and then define an interesting and natural generalization of it.

Property 1 The similarity function K satisfies ν-strict separation for the clustering
problem (S, `) if for some S′ ⊆ S of size (1 − ν)n, K satisfies strict separation for (S′, `).
That is, for all x, x′, x′′ ∈ S′ with x′ ∈ C(x) and x′′ 6∈ C(x) we have K(x, x′) > K(x, x′′).

So, in other words we require that the strict separation is satisfied after a number of
bad points have been removed. A somewhat different condition is to allow each point to
have some bad immediate neighbors as long as most of its immediate neighbors are good.
Formally:

Property 2 The similarity function K satisfies α-good neighborhood property for the
clustering problem (S, `) if for all points x we have that all but αn out of their nC(x) nearest
neighbors belong to the cluster C(x).

Note that the α-good neighborhood property is different from the ν-strict separation
property. For the ν-strict separation property we can have up to νn bad points that can
misbehave; in particular, these νn bad points can have similarity 1 to all the points in
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S; however, once we remove these points the remaining points are more similar to points
in their own cluster than to points in other cluster. On the other hand, for the α-good
neighborhood property we require that for all points x all but αn out of their nC(x) nearest
neighbors belong to the cluster C(x). (So we cannot have a point that has similarity 1 to
all the points in S.) Note however that different points might misbehave on different αn
neighbors. We can also consider a property that generalizes both the ν-strict separation
and the α-good neighborhood property. Specifically:

Property 3 The similarity function K satisfies (α, ν)-good neighborhood property for
the clustering problem (S, `) if for some S′ ⊆ S of size (1−ν)n, K satisfies α-good neighbor-
hood for (S′, `). That is, for all points x ∈ S′ we have that all but αn out of their nC(x)∩S′
nearest neighbors in S′ belong to the cluster C(x).

Clearly, the (α, ν)-good neighborhood property is a generalization of both the ν-strict
separation and α-good neighborhood property. Formally,

Fact 1 If the similarity function K satisfies the α-good neighborhood property for the clus-
tering problem (S, `), then K also satisfies the (α, 0)-good neighborhood property for the
clustering problem (S, `).

Fact 2 If the similarity function K satisfies the ν-strict separation property for the clus-
tering problem (S, `), then K also satisfies the (0, ν)-good neighborhood property for the
clustering problem (S, `).

It has been shown that if K satisfies the ν-strict separation property with respect to
the target clustering, then as long as the smallest target cluster has size 5νn, one can in
polynomial time construct a hierarchy such that the ground-truth is ν-close to a pruning
of the hierarchy (Balcan et al., 2008). Unfortunately the algorithm presented there is
computationally very expensive: it first generates a large list of Ω(n2) candidate clusters
and repeatedly runs pairwise tests in order to laminarize these clusters; its running time is
a large unspecified polynomial. The new robust linkage algorithm we present in Section 3
can be used to get a simpler and much faster algorithm for clustering accurately under the
ν-strict separation and the more general (α, ν)-good neighborhood property.
Generalizations Our algorithm succeeds under an even more general property called weak
good neighborhood, which allows a good fraction of points to only have nice structure in
their small local neighborhoods. The relations between these properties are described in
Section 4.1, and the analysis under the weak good neighborhood is presented in Section 4.2.

2.2 Standard Linkage Based Algorithms Are Not Robust

As we show below, even if the data satisfies the good neighborhood property, the standard
single linkage, average linkage, and complete linkage algorithms might fail. The contribution
of our work is to develop a robust, linkage based algorithm that will succeed under these
natural conditions. More specifically, we can show an example where the standard single
linkage, average linkage, and complete linkage algorithms would perform very badly, but
where our algorithm would work well. In particular, let us slightly modify the example
in Figure 1, by adding a little bit of noise, to form links of high similarity between points
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Figure 2: Same as Figure 1 except that let us match each point in Algorithms with a point
in Squash, each point in Complexity with a point in Billiards, each point in
Learning with a point in Football, and each point in Planning with a point in
region Baseball. Define the similarities to be the same as in Figure 1 except that
we let K(x, y) = 1 if x and y are matched. Note that for α = 1/n the similarity
function satisfies the α-good neighborhood with respect to any of the prunings
of the tree above. However, single linkage, average linkage, and complete linkage
would initially link the matched pairs and produce clusters with very high error
with respect to any such clustering.

in different inner blobs.2 See Figure 2 for a precise description of the similarity. In this
example all the single linkage, average linkage, and complete linkage algorithms would in
the first n/2 stages merge the matched pairs of points. From that moment on, no matter
how they perform, none of the natural and desired clusterings will even be 1/2 close to
any of the prunings of the hierarchy produced. Notice however, that K satisfies the α-good
neighborhood with respect to any of the desired clusterings (for α = 1/n), and that our
algorithm will be successful on this instance. The ν-strict separation is not satisfied in this
example either, for any constant ν.

3. Robust Median Neighborhood Linkage

In this section, we propose a new algorithm, Robust Median Neighborhood Linkage, and
show that it succeeds for instances satisfying the (α, ν)-good neighborhood property.

Informally, the algorithm maintains a threshold t and a list C′t of subsets of points of
S; these subsets are called blobs for convenience. We first initialize the threshold to a
value t that is not too large and not too small (t = 6(α + ν)n + 1), and initialize C′t−1 to

2. Since, usually, the similarity function between pairs of objects is constructed based on heuristics, this
could happen in practice; for example we could have a similarity measure that puts a lot of weight on
features such as date or names, and so we could easily have a document about Learning being more
similar to a document about Football than to other documents about Learning. While this example
seems a little bit contrived, in Figure 7 in Section 4 we will give a naturally occurring example where
the standard single linkage, average linkage, and complete linkage algorithms still fail but our algorithm
succeeds because it satisfies a generalization of the good neighborhood property that we will discuss in
Section 4.
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Algorithm 1 Robust Median Neighborhood Linkage

Input: Similarity function K on a set of points S, n = |S|, noise parameters α > 0, ν > 0.

Step 1 Initialize t = 6(α+ ν)n+ 1.
Initialize C′t−1 to be a list of blobs so that each point is in its own blob.
while |C′t−1| > 1 do

Step 2 B Build a graph Ft whose vertices are points in S and

whose edges are specified as follows.

Let Nt(x) denote the t nearest neighbors of x.
for any x, y ∈ S that satisfy |Nt(x) ∩Nt(y)| ≥ t− 2(α+ ν)n do

Connect x, y in Ft.
end for

Step 3 B Build a graph Ht whose vertices are blobs in C′t−1 and

whose edges are specified as follows.

Let NF (x) denote the neighbors of x in Ft.
for any Cu, Cv ∈ C′t−1 do

if Cu, Cv are singleton blobs, i.e., Cu = {x}, Cv = {y} then
Connect Cu, Cv in Ht, if |NF (x) ∩NF (y)| > (α+ ν)n.

else
Set St(x, y) = |NF (x) ∩NF (y) ∩ (Cu ∪ Cv)|, i.e., the number of

points in Cu ∪Cv that are common neighbors of x, y in Ft.
Connect Cu, Cv in Ht, if medianx∈Cu,y∈CvSt(x, y) > |Cu|+|Cv |

4 .
end if

end for
Step 4 B Merge blobs in C′t−1 to get C′t

Set C′t = C′t−1.
for any connected component V in Ht with |

⋃
C∈V C| ≥ 4(α+ ν)n do

Update C′t by merging all blobs in V into one blob.
end for

Step 5 B Increase threshold

t = t+ 1.
end while

Output: Tree T with single points as leaves and internal nodes corresponding to the
merges performed.

contain |S| blobs, one for each point in S. For each t, the algorithm builds C′t from C′t−1
by merging two or more blobs as follows. It first builds a graph Ft, whose vertices are the
data points in S and whose edges are constructed by connecting any two points that share
at least t − 2(α + ν)n points in common out of their t nearest neighbors. Then it builds
a graph Ht whose vertices correspond to blobs in C′t−1 and whose edges are specified in
the following way. Two singleton blobs Cu = {x} and Cv = {y} are connected in Ht if
the points x, y have more than (α + ν)n common neighbors in Ft. For blobs Cu and Cv
that are not both singleton, the algorithm performs a median test. In this test, for each
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pair of points x ∈ Cu, y ∈ Cv, it computes the number St(x, y) of points z ∈ Cu ∪ Cv
that are the common neighbors of x and y in Ft. It then connects Cu and Cv in Ht if
medianx∈Cu,y∈CvSt(x, y) is larger than 1/4 fraction of |Cu| + |Cv|. Once Ht is built, we
analyze its connected components in order to create C′t. For each connected component
V of Ht, if V contains sufficiently many points from S in its blobs we merge all its blobs
into one blob in C′t. After building C′t, the threshold is increased and the above steps are
repeated until only one blob is left. The algorithm finally outputs the tree with single points
as leaves and internal nodes corresponding to the merges performed. The full details of our
algorithm are described in Algorithm 1. Our main result in this section is the following:

Theorem 1 Let K be a symmetric similarity function satisfying the (α, ν)-good neighbor-
hood for the clustering problem (S, `). As long as the smallest target cluster has size greater
than 6(ν + α)n, Algorithm 1 outputs a hierarchy such that a pruning of the hierarchy is
ν-close to the target clustering in time O(nω+1), where O(nω) is the state of the art for
matrix multiplication.

In the rest of this section, we will first describe the intuition behind the algorithm in
Section 3.1 and then prove Theorem 1 in Section 3.2.

3.1 Intuition of the Algorithm under the Good Neighborhood Property

We begin with some convenient terminology and a simple fact about the good neighborhood
property. In the definition of the (α, ν)-good neighborhood property (see Property 3), we
call the points in S′ good points and the points in B = S \ S′ bad points. Let Gi = Ci ∩ S′
be the good set of label i. Let G = ∪iGi denote the whole set of good points; so G = S′.
Clearly |G| ≥ n− νn. Recall that nCi is the number of points in the cluster Ci. Note that
the following is a useful consequence of the (α, ν)-good neighborhood property.

Fact 3 Suppose the similarity function K satisfies the (α, ν)-good neighborhood property for
the clustering problem (S, `). As long as t is smaller than nCi, for any good point x ∈ Ci,
all but at most (α+ ν)n out of its t nearest neighbors lie in its good set Gi.

Proof Let x ∈ Gi. By definition, out of its |Gi| nearest neighbors in G, there are at least
|Gi| − αn points from Gi. These points must be among its |Gi| + νn nearest neighbors in
S, since there are at most νn bad points in S \ G. This means that at most (α + ν)n out
of its |Gi| + νn nearest neighbors are outside Gi. Notice |Gi| + νn ≥ nCi , we have that at
most (α+ ν)n out of its nCi nearest neighbors are outside Gi, as desired.

Intuition We first assume for simplicity that all the target clusters have the same size nC
and that we know nC . In this case it is quite easy to recover the target clusters as follows.
We first construct a graph F whose vertices are points in S; we connect two points in F if
they share at least nC−2(ν+α)n points in common among their nC nearest neighbors. By
Fact 3, if the target clusters are not too small (namely nC > 6(ν +α)n), we are guaranteed
that no two good points in different target clusters will be connected in F , and that all
good points in the same target cluster will be connected in F . If there are no bad points
(ν = 0), then each connected component of F corresponds to a target cluster, and we could
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Figure 3: Graph F and H when all target clusters are of the same size nC , which is known.
In F , no two good points in different target clusters can be connected, and all good
points in the same target cluster will be connected. In H, bad points connected
to good points from different target clusters are disconnected.

simply output them. Alternatively, if there are bad points (ν > 0), we can still cluster well
as follows. We construct a new graph H on points in S by connecting points that share
more than (α+ ν)n neighbors in the graph F . The key point is that in F a bad point can
be connected to good points from only one single target cluster. This then ensures that no
good points from different target clusters are in the same connected component in H. So,
if we output the largest k components of H, we will obtain a clustering with error at most
νn. See Figure 3 for an illustration.

If we do not know nC , we can still use a pretty simple procedure. Specifically, we start
with a threshold t ≤ nC that is not too small and not too large (say 6(ν + α)n < t ≤ nC),
and build a graph Ft on S by connecting two points if they share at least t − 2(ν + α)n
points in common out of their t nearest neighbors. We then build another graph Ht on S by
connecting points if they share more than (α+ν)n neighbors in the graph Ft. The key idea
is that when t ≤ nC , good points from different target clusters share less than t−2(ν+α)n
neighbors, and thus are not connected in Ft and Ht. If the k largest connected components
of Ht all have sizes greater than (α + ν)n and they cover at least a (1 − ν) fraction of the
whole set of points S, then these components must correspond to the target clusters and
we can output them. Otherwise, we increase the critical threshold and repeat. By the time
we reach nC , all good points in the same target clusters will get connected in Ft and Ht, so
we can identify the k largest components as the target clusters.

Note that as mentioned above, when t ≤ nC , each connected component in Ht can
contain good points from only one target cluster. An alternative procedure is to reuse this
information in later thresholds, so that we do not need to build the graph Ht from scratch
as described in the above paragraph. Specifically, we maintain a list C′t of subsets of points;
these subsets are called blobs for convenience. We start with a list where each blob contains
a single point. At each threshold t, we build Ft on the points in S as before, but build Ht on
the blobs in C′t−1 (instead of on the points in S). When building Ht, for two singleton blobs,
it is safe to connect them if their points share enough neighbors in Ft. For non-singleton
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Figure 4: Graph Ft and Ht when target clusters have the same size nC but we do not know
nC . The figure shows the case when t < nC . In Ft, no good points are connected
with good points outside their target clusters; in Ht, blobs containing good points
in different target clusters are disconnected.

blobs, it turns out that we can use a median test to outvote the noise.3 In particular, for
two blobs Cu and Cv that are not both singleton, we compute for all x ∈ Cu and y ∈ Cv the
quantity St(x, y), which is the number of points in Cu∪Cv that are the common neighbors of
x and y in Ft. We then connect the two blobs in Ht if medianx∈Cu,y∈CvSt(x, y) is sufficiently
large. See Figure 4 for an illustration and see Step 3 in Algorithm 1 for the details.

In the general case where the sizes of the target clusters are different, similar ideas
can be applied. The key point is that when t ≤ nCi , good points from Ci share less than
t−2(ν+α)n neighbors with good points outside, and thus are not connected to them in Ft.
Then in Ht, we can make sure that no blobs containing good points in Ci will be connected
with blobs containing good points outside Ci. When t = nCi , good points in Ci form a
clique in Ft, then all the blobs containing good points in Ci are connected in Ht, and thus
are merged. See Figure 5 for an illustration. Full details are presented in Algorithm 1 and
the proof of Theorem 1 in the following subsection.

3.2 Correctness under the Good Neighborhood Property

In this subsection, we prove Theorem 1 for our algorithm. The correctness follows from
Lemma 2 and the running time follows from Lemma 3. Before proving these lemmas, we
begin with a useful fact which follows immediately from the design of the algorithm.

Fact 4 In Algorithm 1, for any t, if a blob in Ct contains at least one good point, then at
least 3/4 fraction of the points in that blob are good points.

Proof This is clearly true when the blob is singleton. When it is non-singleton, it must be
formed in Step 4 in Algorithm 1, so it contains at least 4(α + ν)n points. Then the claim
follows since there are at most νn bad points.

3. The median test is quite robust and as we show, it allows some points in these blobs to have weaker
properties than the good neighborhood. See Section 4 for examples of such points and a theoretical
analysis of the robustness.
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Figure 5: Graph Ft and Ht when target clusters are of different sizes. The figure shows
the case when t = nC2 . In Ft, no good points are connected with good points
outside their target clusters; good points in C2 form a clique since t = nC2 . In Ht,
blobs containing good points in different target clusters are disconnected; blobs
containing good points in C2 are all connected.

Lemma 2 The following claims are true in Algorithm 1:
(1) For any Ci such that t ≤ |Ci|, any blob in C′t containing good points from Ci will not
contain good points outside Ci.
(2) For any Ci such that t = |Ci|, all good points in Ci belong to one blob in C′t.

Proof Before proving the claims, we first show that the graph Ft constructed in Step 2 has
the following useful properties. Recall that Ft is constructed on points in S by connecting
any two points that share at least t − 2(α + ν)n points in common out of their t nearest
neighbors. For any Ci such that t ≤ |Ci|, we have:

(a) If x is a good point in Ci and y is a good point outside Ci, then x and y are not
connected in Ft.

To see this, first note that by Fact 3, x has at most (α+ ν)n neighbors outside Ci
out of the t nearest neighbors. For y ∈ Gj , if nCj ≥ t, then y has at most (α + ν)n
neighbors in Ci; if nCj < t, y has at most (α+ ν)n+ t− nCj neighbors in Ci. In both
cases, y has at most (α+ ν)n+ max(0, t−nCj ) < t− 5(α+ ν)n neighbors in Ci, since
nCj > 6(α+ν)n and t > 6(α+ν)n. Then x and y have at most t−4(α+ν)n common
neighbors, so they are not connected in Ft.

(b) If x is a good point in Ci, y is a good point outside Ci, and z is a bad point, then z
cannot be connected to both x and y in Ft.

To prove this, we will show that if z is connected to x, then z cannot be connected
to y. First, by the same argument as above, out of the t nearest neighbors, y has
less than t − 5(α + ν)n neighbors in Ci. Second, by Fact 3, x has at most (α + ν)n
neighbors outside Ci. If z has less than t − 3(α + ν)n neighbors in Ci, then z and x
share less than t − 3(α + ν)n + (α + ν)n = t − 2(α + ν)n neighbors and will not be
connected. So z must have at least t − 3(α + ν)n neighbors in Ci, and thus cannot
have more than 3(α+ ν)n neighbors outside Ci. The two statements show that y and
z share less than t − 5(α + ν)n neighbors in Ci, and at most 3(α + ν)n neighbors
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Figure 6: Illustration of the median test on Cu and Cv. At least 3/4 fraction of the points
in Cu and Cv are good points, and thus more than half of the pairs (x, y) with
x ∈ Cu and y ∈ Cv are pairs of good points.

outside Ci. So they share less than t−2(α+ν)n+3(α+ν)n = t−2(α+ν)n neighbors
and thus are not connected in Ft.

Now we prove Claim (1) in the lemma by induction on t. The claim is clearly true
initially. Assume for induction that the claim is true for the threshold t − 1 < |Ci|, that
is, for any Ci such that t − 1 < |Ci|, any blob in C′t−1 containing good points from Ci will
not contain good points outside Ci. We now prove that the graph Ht constructed in Step 3
has the following properties, which can be used to show that the claim is still true for the
threshold t.

• If Cu ∈ C′t−1 contains good points from Ci and Cv ∈ C′t−1 contains good points outside
Ci, then they cannot be connected in Ht.

If both Cu and Cv are singleton blobs, say Cu = {x}, Cv = {y}, then by Property (a)
of Ft, the common neighbors of x and y can only be bad points, and thus Cu and Cv
cannot be connected.
If one of the two blobs (say Cu) is a singleton blob and the other is not, then Cu
contains only one good point, and by Fact 4, at least 3/4 fraction of the points in Cv
are good points. If both Cu and Cv are non-singleton blobs, then by Fact 4, at least
3/4 fraction of the points in Cu and Cv are good points. Therefore, in both cases, the
number of pairs (x, y) with good points x ∈ Cu and y ∈ Cv is at least 3

4 |Cu|×
3
4 |Cv| >

|Cu||Cv |
2 . That is, more than half of the pairs (x, y) with x ∈ Cu and y ∈ Cv are pairs

of good points; see Figure 6 for an illustration. This means there exist good points
x∗ ∈ Cu, y∗ ∈ Cv such that St(x

∗, y∗) is no less than medianx∈Cu,y∈CvSt(x, y). By the
induction assumption, x∗ is a good point in Ci and y∗ is a good point outside Ci.
Then by Property (a)(b) of Ft, x

∗ and y∗ have no common neighbors in Ft, and thus
medianx∈Cu,y∈CvSt(x, y) = 0. Therefore, Cu and Cv are not connected in Ht.

• If Cu ∈ C′t−1 contains good points from Ci, Cv ∈ C′t−1 contains good points outside
Ci, and Cw ∈ C′t−1 contains only bad points, then Cw cannot be connected to both
Cu and Cv in Ht.

To prove this, assume for contradiction that Cw is connected to both Cu and Cv.
First, note the following fact about Cw. Since any non-singleton blob must be formed
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in Step 4 in the algorithm and contain at least 4(α + ν)n points and thus cannot
contain only bad points, Cw must be a singleton blob, containing only a bad point z.
Next, we show that if Cw = {z} is connected to Cu, then z must be connected to
some good point in Ci in Ft. If Cu is a singleton blob, say Cu = {x}, then by Step
4 in the algorithm, z and x share more than (α + ν)n common neighbors in Ft. By
Property (a)(b) of Ft, the common neighbors of x and z in Ft can only be good points
in Ci or bad points. Since there are at most νn bad points, z must be connected to
some good point in Ci in Ft. If Cu is not a singleton blob, then by Step 4 in the
algorithm, medianx∈CuSt(x, z) > (|Cu| + |Cw|)/4. By Fact 4, at least 3/4 fraction of
the points in Cu are good points. So there exists a good point x∗ ∈ Cu such that
St(x

∗, z) ≥ medianx∈CuSt(x, z), which leads to St(x
∗, z) > (|Cu| + |Cw|)/4 > νn. By

the induction assumption, x∗ is a good point in Ci. Then by Property (a) of Ft, x
∗ is

only connected to good points from Ci and bad points. Since St(x
∗, z) > νn, z and

x∗ must share some common neighbors from Ci. Therefore, z is connected to some
good point in Ci in Ft.
Similarly, if Cw = {z} is connected to Cv, z must be connected to some good point
outside Ci in Ft. But then z is connected to both a good point in Ci and a good point
outside Ft, which contradicts Property (b) of Ft.

By the properties of Ht, no connected component contains both good points in Ci and good
points outside Ci. So Claim (1) is still true for the threshold t. By induction, it is true for
all thresholds.

Finally, we prove Claim (2). First, at the threshold t = |Ci|, all good points in Ci are
connected in Ft. This is because any good point in Ci has at most (α + ν)n neighbors
outside Ci, so when t = |Ci|, any two good points in Ci share at least t−2(α+ν)n common
neighbors and thus are connected in Ft.

Second, all blobs in C′t−1 containing good points in Ci are connected in Ht. There are
two cases.

• If no good points in Ci have been merged, then all singleton blobs containing good
points in Ci will be connected in Ht.

This is because all good points in Ci are connected in Ft, and thus they share at
least |Gi| ≥ 6(α+ ν)n− νn points as common neighbors in Ft.

• If some good points in Ci have already been merged into non-singleton blobs in C′t−1,
we can show that in Ht these non-singleton blobs will be connected to each other and
connected to singleton blobs containing good points from Ci.

Consider two non-singleton blobs Cu and Cv that contain good points from Ci. By
Fact 4, at least 3/4 fraction of the points in Cu and Cv are good points. So there exist
good points x∗ ∈ Cu and y∗ ∈ Cv such that St(x

∗, y∗) ≤ medianx∈Cu,y∈CvSt(x, y). By
Claim (1), x∗ and y∗ must be good points in Ci. Then they are connected to all good
points in Ci in Ft, and thus St(x

∗, y∗) is no less than the number of good points in Cu
and Cv, which is at least 3(|Cu| + |Cv|)/4. Now we have medianx∈Cu,y∈CvSt(x, y) ≥
St(x

∗, y∗) ≥ 3(|Cu|+ |Cv|)/4 > (|Cu|+ |Cv|)/4, and thus Cu, Cv are connected in Ht.
Consider a non-singleton blob Cu and a singleton blob Cv that contain good points
from Ci. The above argument also holds, so Cu, Cv are connected in Ht.
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Therefore, in both cases, all blobs in C′t−1 containing good points in Ci are connected in Ht.
Then in Step 4, all good points in Ci are merged into a blob in C′t.

Lemma 3 Algorithm 1 has a running time of O(nω+1).

Proof The initializations in Step 1 take O(n) time. To compute Ft in Step 2, for any
x ∈ S, let It(x, y) = 1 if y is within the t nearest neighbors of x, and let It(x, y) = 0
otherwise. Initializing It takes O(n2) time. Next we compute Nt(x, y), the number of
common neighbors between x and y. Notice that Nt(x, y) =

∑
z∈S It(x, z)It(y, z), so Nt =

ItI
T
t . Then we can compute the adjacency matrix Ft (overloading notation for the graph

Ft) from Nt. These steps take O(nω) time.
To compute the graph Ht in Step 3, first define NSt = Ft(Ft)

T . Then for two points x
and y, NSt(x, y) is the number of their common neighbors in Ft. Further define a matrix
FCt as follows: if x and y are connected in Ft and are in the same blob in C′t−1, then let
FCt(x, y) = 1; otherwise, let FCt(x, y) = 0. As a reminder, for two points x that belongs
to Cu ∈ C′t−1 and y that belongs to Cv ∈ C′t−1, St(x, y) is the number of points in Cu ∪ Cv
they share as neighbors in common in Ft. FCt is useful for computing St: since for x ∈ Cu
and y ∈ Cv,

St(x, y) =
∑
z∈Cv

Ft(x, z)Ft(y, z) +
∑
z∈Cu

Ft(x, z)Ft(y, z)

=
∑
z∈S

Ft(x, z)FCt(y, z) +
∑
z∈S

FCt(x, z)Ft(y, z),

we have St = Ft(FCt)
T + FCt(Ft)

T . Based on NSt and St, we can then build the graph
Ht. All these steps take O(nω) time.

When we perform merges in Step 4 or increase the threshold in Step 5, we need to
recompute the above data structures, which takes O(nω) time. Since there are O(n) merges
and O(n) thresholds, Algorithm 1 takes time O(nω+1) in total.

4. A More General Property: Weak Good Neighborhood

In this section we introduce a weaker notion of good neighborhood property and prove that
our algorithm also succeeds for data satisfying this weaker property.

To motivate the property, consider a point x with the following neighborhood structure.
In the neighborhood of size nC(x), x has a significant amount of its neighbors from other
target clusters. However, in a smaller, more local neighborhood, x has most of its nearest
neighbors from its target clusters C(x). In practice, points close to the boundaries between
different target clusters typically have such neighborhood structure; for this reason, points
with such neighborhood are called boundary points.

We present an example in Figure 7. A document close to the boundary between the
two fields AI and Statistics has the following neighborhood structure: out of its n/4
nearest neighbors, it has all its neighbors from its own field; but out of its n/2 near-
est neighbors, it has n/4 neighbors outside its field. With 1/8 fraction of such boundary
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Figure 7: Consider a document clustering problem. Assume that there are n/4 documents
in each of the four areas: Learning, Planning, ParameterEstimation and Hypothe-
sisTesting. The first two belong to the field AI, and the last two belong to the field
Statistics. The similarities are specified as follows. (1) K(x, y) = 0.99 if x, y be-
long to the same area; (2) K(x, y) = 0.8 if x, y belong to different areas in the same
field; (3) K(x, y) = 0.5 if x, y belong to different fields. As shown in (b), there are
four prunings: {Learning,Planning,ParameterEstimation,HypothesisTesting},
{AI,ParameterEstimation,HypothesisTesting}, {Learning,Planning, Statistics},
and {AI, Statistics}. All these four prunings satisfy the strict separation prop-
erty, and consequently satisfy the α-good neighborhood property for α = 0.
However, this is no longer true if we take into account noise that naturally
arises in practice. As shown in (c), in each area, 1/8 fraction of the docu-
ments lie close to the boundary between the two fields. More precisely, the
similarities for these boundary documents are defined as follows. (1) These doc-
uments are very similar to some document in the other field: for each bound-
ary document x, we randomly pick one document y in the other field and set
K(x, y) = K(y, x) = 1.0; (2) These documents are also closely related to the other
documents in the other field: K(x, y) = K(y, x) = 0.9 when x is a boundary
document and y belongs to the other field; (3) These documents are not close
to those in the other area in the same field: K(x, y) = K(y, x) = 0.6 when x is
a boundary document and y belongs to the other area in the same field. Then
the clustering {AI,Statistics} satisfies the (α, ν)-good neighbor property only for
α ≥ 1/4 or ν ≥ 1/8. Similarly, {AI,ParameterEstimation,HypothesisTesting}
and {Learning,Planning,Statistics} satisfy the property only for α ≥ 1/4 or
ν ≥ 1/16. See the text for more details, and see Section 6.1 for simulations of
this example and its variants.

points, the clustering {AI,Statistics} satisfies the (α, ν)-good neighbor property only for
α ≥ 1/4 or ν ≥ 1/8. This is because either we view all the boundary points as bad
points in the (α, ν)-good neighborhood property which leads to ν ≥ 1/8, or we need
α ≥ 1/4 since a boundary point has n/4 neighbors outside its target cluster. Similarly,
{AI,ParameterEstimation,HypothesisTesting} and {Learning,Planning, Statistics} satisfy
the property only for α ≥ 1/4 or ν ≥ 1/16.

For this example, either α is too large so that Theorem 1 is not applicable, or ν is too
large so that the guarantee in Theorem 1 leads to constant error rate. However, it turns
out that our algorithm can still successfully produce a hierarchy as in Figure 7(b) where
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the desired clusterings ({Learning,Planning,ParameterEstimation,HypothesisTesting},
{AI,ParameterEstimation,HypothesisTesting}, {Learning,Planning, Statistics}, and
{AI,Statistics}) are prunings of the hierarchy. As we show, the reason is that each of
these prunings satisfies a generalization of the good neighborhood property which takes
into account the boundary points, and for which our algorithm still succeeds. Note that the
standard linkage algorithms fail on this example.4 In the following, we first formalize this
property and discuss how it relates to the properties of the similarity function described in
the paper so far. We then prove that our algorithm succeeds under this property, correctly
clustering all points that are not adversarially bad.

For clarity, we first relax the α-good neighborhood to the weak (α, β)-good neighborhood
defined as follows.

Property 4 A similarity function K satisfies weak (α, β)-good neighborhood property
for the clustering problem (S, `), if for each p ∈ S, there exists Ap ⊆ C(p) of size greater
than 6αn such that p ∈ Ap and

• any point in Ap has at most αn neighbors outside Ap out of the |Ap| nearest neighbors;

• for any such subset Ap ⊆ C(p), at least β fraction of points in Ap have all but at most
αn nearest neighbors from C(p) out of their nC(p) nearest neighbors.

Informally, the first condition implies that every point falls into a sufficiently large subset
of its target cluster, and points in the subset are close to each other in the sense that most
of their nearest neighbors are in the subset. This condition is about the local neighborhood
structure of the points. It shows that each point has a local neighborhood in which points
closely relate to each other. Note that the local neighborhood should be large enough so
that the membership of the point is clearly established: it should have size comparable to
the number of connections to points outside (αn). Here we choose a minimum size of greater
than 6αn mainly because it guarantees that our algorithm can still succeed in the worst
case. The second condition implies that for points in these large enough subsets, a majority
of them have most of their nearest neighbors from their target cluster. This condition is
about more global neighborhood structure. It shows how the subsets are closely related to
those in the same target cluster in the neighborhood of size equal to the target cluster size.
Note that in this more global neighborhood, we do not require all points in these subsets
have most nearest neighbors from their target clusters; we allow the presence of (1 − β)
fraction of points that may have a significant number of nearest neighbors outside their
target clusters.

Naturally, as we can relax the α-good neighborhood property to the (α, ν)-good neigh-
borhood property, we can relax the weak (α, β)-good neighborhood to the weak (α, β, ν)-
good neighborhood as follows. Informally, it implies that the target clustering satisfies the
weak (α, β)-good neighborhood property after removing a few bad points.

4. For any fixed non-boundary point y and fixed boundary point x in the other field, the probability
that y has similarity 1.0 only with x is 2

n
(1 − 2

n
)n/16−1 ≈ 2

n
e−1/8. Since there are n/16 such boundary

points x and 7n/8 such non-boundary points y, when n is sufficiently large, with high probability n/12
non-boundary points have similarity 1.0 with one single boundary point. Then the standard linkage
algorithms (in particular, single linkage, average linkage, and complete linkage) would first merge these
pairs of points with similarity 1.0. From then on, no matter how they perform, any pruning of the
hierarchy produced will have error higher than 1/12.
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Property 5 A similarity function K satisfies weak (α, β, ν)-good neighborhood prop-
erty for the clustering problem (S, `), if there exist a subset of points B of size at most νn,
and for each p ∈ S \B, there exists Ap ⊆ C(p) \B of size greater than 6(α+ ν)n such that
p ∈ Ap and

• any point in Ap has at most αn neighbors outside Ap out of the |Ap| nearest neighbors;

• for any such subset Ap ⊆ Ci \ B, at least β fraction of points in Ap have all but at
most αn nearest neighbors from Ci \B out of their |Ci \B| nearest neighbors in S \B.

For convenience, we call points in B bad points. If a point in Ci \B has all but at most
αn nearest neighbors from Ci \ B out of its |Ci \ B| nearest neighbors in S \ B, we call it
a good point. Then the second condition in the definition can be simply stated as: any Ap
has at least β fraction of good points. Note that Ci can contain points that are neither bad
nor good. Such points are called boundary points, since in practice such points typically lie
close to the boundaries between target clusters.

As a concrete example, consider the clustering {AI,Statistics} in Figure 7(c). It satisfies
the weak (α, β, ν)-good neighborhood property with probability at least 1 − δ when the
number of points n = O(ln 1

δ ). To see this, first note that for a fixed point y and a fixed
boundary point x in the other field, the probability that K(y, x) = 1 is 2/n. Since there
are n/16 boundary point in the other field, by Hoeffding bound, the probability that y has
similarity 1 with more than n/32 points is bounded by exp{−2·n/16·(1/2)2} = exp{−n/32}.
By union bound, with probability at least 1−n exp{−n/32}, no point has similarity 1 with
more than n/32 points. Then by setting Ap as the area that p falls in, we can see that the
clustering satisfies the weak (α, β, ν)-good neighborhood property for α = 1/32, β = 7/8
and ν = 0. Note that there may also be some adversarial bad points. Then the weak
(α, β, ν)-good neighborhood property is satisfied when α = 1/32, β = 7/8 and ν is the
fraction of bad points. See Section 6.1 for simulations of this example and its variants.

4.1 Relating Different Versions of Good Neighborhood Properties

The relations between these properties are illustrated in Figure 8. The relations between
the weak good neighborhood properties and other properties are discussed below, while the
other relations in the figure follow from the facts in Section 2.1.

strict
separation

−strict
separation

−good
neighborhood

 , −good
neighborhood

weak  ,−good
neighborhood

weak  , ,−good
neighborhood

Figure 8: Relations between various properties. The arrows represent generalization.
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By setting Ap = Ci for p ∈ Ci in the definition, we can see that the weak (α, β)-good
neighborhood property is a generalization of the α-good neighborhood property when each
target cluster has size greater than 6αn. Formally,

Fact 5 If the similarity function K satisfies the α-good neighborhood property for the clus-
tering problem (S, `) and mini |Ci| > 6αn, then K also satisfies the weak (α, β)-good neigh-
borhood property for the clustering problem (S, `) for any 0 < β ≤ 1.

Proof If K satisfies the α-good neighborhood property and mini |Ci| > 6αn, then we have:
for any p ∈ Ci, there exists a subset Ci ⊆ Ci of size greater than 6αn, such that out of the
nCi nearest neighbors, any point x ∈ Ci has at most αn neighbors outside Ci. So K satisfies
both conditions of the weak (α, β)-good neighborhood property.

By setting Ap = Gi for p ∈ Gi in the definition, we can see that the weak (α, β, ν)-good
neighborhood property generalizes the (α, ν)-good neighborhood property when each target
cluster has size greater than 7(α + ν)n. Also, by setting ν = 0, we can see that the weak
(α, β)-good neighborhood property is equivalent to the weak (α, β, 0)-good neighborhood.

Fact 6 If the similarity function K satisfies the (α, ν)-good neighborhood property for the
clustering problem (S, `) and mini |Ci| > 7(α+ ν)n, then K also satisfies the weak (α, β, ν)-
good neighborhood property for the clustering problem (S, `) for any 0 < β ≤ 1.

Proof If K satisfies the (α, ν)-good neighborhood property and mini |Ci| > 7(α + ν)n,
then we have: for any p ∈ Gi = Ci \ B, there exists a subset Gi ⊆ Gi of size greater than
6(α+ ν)n, such that out of the |Gi| nearest neighbors in S \B, any good point x ∈ Gi has
at most αn neighbors outside Gi. So K satisfies both conditions of the weak (α, β, ν)-good
neighborhood property.

Fact 7 If the similarity function K satisfies the weak (α, β)-good neighborhood property
for the clustering problem (S, `), then K also satisfies the weak (α, β, 0)-good neighborhood
property for the clustering problem (S, `).

Proof By setting ν = 0 in the definition of the weak (α, β, ν)-good neighborhood property,
we can see that it is the same as the weak (α, β)-good neighborhood property.

4.2 Correctness under the Weak Good Neighborhood Property

Now we prove that our algorithm also succeeds under the weak (α, β, ν)-good neighborhood
property when β ≥ 7/8. Formally,

Theorem 4 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood property for the clustering problem (S, `) with β ≥ 7/8. Then Algorithm 1
outputs a hierarchy such that a pruning of the hierarchy is ν-close to the target clustering
in time O(nω+1), where O(nω) is the state of the art for matrix multiplication.
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Figure 9: Illustration of a fully formed blob Cu: for any point p ∈ Cu\B, Ap ⊆ Cu. Then we
can show that sets in {Ap : p ∈ Cu \B} are laminar, that is, for any p, q ∈ Cu \B,
either Ap ∩ Aq = ∅ or Ap ⊆ Aq or Aq ⊆ Ap. For example, in the figure we have
Ap5 ⊆ Ap4 .

Theorem 4 is a generalization of Theorem 1, and the proof follows a similar reasoning.
The proof of correctness is from Lemma 8 stated and proved below and the running time
follows from Lemma 3. The intuition is as follows. First, by similar arguments as for the
good neighborhood property, each point p in S \ B will only be merged with other points
in Ap at t ≤ |Ap|, and all points in Ap will belong to one blob at t = |Ap| (Lemma 5), since
in the local neighborhood of size |Ap|, the point has most of its nearest neighbor from Ap.
Then, we need to show that such blobs will be correctly merged. The key point is to show
that even in the presence of boundary points, the majority of points in such blobs are good
points (Lemma 7). Then the median test can successfully distinguish blobs containing good
points from different target clusters, and our algorithm can correctly merge blobs from the
same target clusters together.

To formally prove the correctness, we begin with Lemma 5. The proof is similar to that
for Lemma 2, replacing Ci with Ap.

Lemma 5 The following claims are true in Algorithm 1:
(1) For any point p ∈ S \B and t such that t ≤ |Ap|, any blob in C′t containing points from
Ap will not contain points in (S \Ap) \B.
(2) For any point p ∈ S \B and t = |Ap|, all points in Ap belong to one blob in C′t.

Lemma 5 states that for any p ∈ S \B, we will form Ap before merging them with points
outside. Then we only need to make sure that these Ap formed will be correctly merged.
More precisely, we need to consider the blobs that are “fully formed” in the following sense:

Definition 6 A blob Cu ∈ C′t in Algorithm 1 is said to be fully formed if for any point
p ∈ Cu \B, Ap ⊆ Cu.

To show that fully formed blobs are correctly merged, the key point is to show that the
majority of points in such blobs are good points, and thus the median test in the algorithm
can successfully distinguish blobs containing good points from different target clusters. This
key point is in fact a consequence of Lemma 5:
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Lemma 7 For any fully formed blob Cu ∈ C′t in Algorithm 1, at least β fraction of points
in Cu \B are good points.

Proof It suffices to show that there exist a set of points P ⊆ Cu\B, such that {Ap : p ∈ P}
is a partition of Cu \B. Clearly Cu \B = ∪p∈Cu\BAp. So we only need to show that sets in
{Ap : p ∈ Cu \B} are laminar, that is, for any p, q ∈ Cu \B, either Ap ∩Aq = ∅ or Ap ⊆ Aq
or Aq ⊆ Ap. See Figure 9 for an illustration.

Assume for contradiction that there exist Ap and Aq such that Ap \Aq 6= ∅, Aq \Ap 6= ∅
and Ap ∩ Aq 6= ∅. Without loss of generality, suppose |Ap| ≤ |Aq|. Then by the second
claim in Lemma 5, when t = |Ap|, all points in Ap belong to one blob in C′t. In other words,
this blob contains Ap ∩Aq and Ap \Aq. So for t ≤ |Aq|, the blob contains points in Aq and
also points in S \B \Aq, which contradicts the first claim in Lemma 5.

We are now ready to prove the following lemma that implies Theorem 4.

Lemma 8 The following claims are true in Algorithm 1:
(1) For any Ci such that t ≤ |Ci|, any blob in C′t containing points in Ci \B will not contain
points in (S \ Ci) \B.
(2) For any Ci such that t = |Ci|, all points in Ci \B belong to one blob in C′t.

Proof Before proving the claims, we first show that the graph Ft constructed in Step 2 has
the following useful properties by an argument similar to that in Lemma 2. Recall that Ft
is constructed on points in S by connecting any two points that share at least t− 2(α+ ν)n
points in common out of their t nearest neighbors. For any Ci such that t ≤ |Ci|, we have:

(a) If x is a good point in Ci and y is a good point outside Ci, then x and y are not
connected in Ft.

To see this, first note that by Fact 3, x has at most (α+ ν)n neighbors outside Ci
out of the t nearest neighbors. Suppose y is a good point from Cj . If nCj ≥ t, then
y has at most (α+ ν)n neighbors in Ci; if nCj < t, y has at most (α+ ν)n+ t− nCj

neighbors in Ci. In both cases, y has at most (α+ν)n+max(0, t−nCj ) < t−5(α+ν)n
neighbors in Ci, since nCj > 6(α+ν)n and t > 6(α+ν)n. Then x and y have at most
t− 4(α+ ν)n common neighbors, so they are not connected in Ft.

(b) If x is a good point in Ci, y is a good point outside Ci, and z is a bad point, then z
cannot be connected to both x and y in Ft.

To prove this, we will show that if z is connected to x, then z cannot be connected
to y. First, by the same argument as above, out of the t nearest neighbors, y has
less than t − 5(α + ν)n neighbors in Ci. Second, by Fact 3, x has at most (α + ν)n
neighbors outside Ci. If z has less than t − 3(α + ν)n neighbors in Ci, then z and x
share less than t − 3(α + ν)n + (α + ν)n = t − 2(α + ν)n neighbors and will not be
connected. So z must have at least t − 3(α + ν)n neighbors in Ci, and thus cannot
have more than 3(α+ ν)n neighbors outside Ci. The two statements show that y and
z share less than t − 5(α + ν)n neighbors in Ci, and at most 3(α + ν)n neighbors
outside Ci. So they share less than t−2(α+ν)n+3(α+ν)n = t−2(α+ν)n neighbors
and thus are not connected in Ft.
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Now we prove Claim (1) in the lemma by induction on t. The claim is clearly true
initially. Assume for induction that the claim is true for the threshold t− 1, that is, for any
Ci such that t−1 ≤ |Ci|, any blob in C′t−1 containing points in Ci \B will not contain points
in (S \ Ci) \ B. We now prove that the graph Ht constructed in Step 3 has the following
properties, which can be used to show that the claim is still true for the threshold t.

• If Cu ∈ C′t−1 contains points from Ci\B and Cv ∈ C′t−1 contains points from (S\Ci)\B,
then they cannot be connected in Ht.

Suppose one of them (say Cu) is not fully formed, that is, there is a point p ∈ Cu\B
such that Ap 6⊆ Cu. Then by Lemma 5, the algorithm will not merge Cu with Cv at this
threshold. More precisely, since not all points in Ap belong to Cu, we have t−1 < |Ap|
by Claim (2) in Lemma 5. Then by Claim (1) in Lemma 5, since Cv contains points
in (S \Ap) \B, Cu and Cv will not be merged in C′t. So they are not connected in Ht.
So we only need to consider the other case when Cu and Cv are fully formed blobs. By
Lemma 7, the majority of points in the two blobs are good points. The good points
from different target clusters have few common neighbors in Ft, then by the median
test in our algorithm, the two blobs will not be connected in Ht. Formally, we can
find two good points x∗ ∈ Cu, y∗ ∈ Cv that satisfy the following two statements.

– St(x
∗, y∗) ≥ medianx∈Cu,y∈CvSt(x, y).

By Lemma 7, at least β ≥ 7/8 fraction of points in Cu \B are good points. The
fraction of good points in Cu is at least

β|Cu \B|
|Cu \B|+ |B|

≥ 7/8× 6(α+ ν)n

6(α+ ν)n+ νn
≥ 3

4
,

since |Cu \B| ≥ 6(α+ ν)n and |B| ≤ νn. Similarly, at least 3
4 fraction of points

in Cv are good points. Then among all the pairs (x, y) such that x ∈ Cu, y ∈ Cv,
at least 3

4 ×
3
4 >

1
2 fraction are pairs of good points. So there exist good points

x∗ ∈ Cu, y∗ ∈ Cv such that St(x
∗, y∗) ≥ medianx∈Cu,y∈CvSt(x, y).

– St(x
∗, y∗) ≤ (|Cu|+ |Cv|)/4.

The fraction of good points in Cu ∪ Cv is at least 3
4 . Since in Ft, good points in

Cu are not connected to good points in Cv, we have St(x
∗, y∗) ≤ (|Cu|+ |Cv|)/4.

Combining the two statements, we have medianx∈Cu,y∈CvSt(x, y) ≤ (|Cu| + |Cv|)/4
and thus Cu and Cv are not connected in Ht.

• If in C′t−1, Cu contains points from Ci \B, Cv contains points from (S \ Ci) \B, and
Cw contains only bad points, then Cw cannot be connected to both Cu and Cv.

By the same argument as above, we only need to consider the case when Cu and
Cv are fully formed blobs. To prove the claim in this case, assume for contradiction
that Cw is connected to both Cu and Cv. First, note the following fact about Cw.
Since any non-singleton blob must be formed in Step 4 in the algorithm and contain
at least 4(α + ν)n points and thus cannot contain only bad points, Cw must be a
singleton blob, containing only a bad point z.
Next, we show that if Cw = {z} are connected to Cu in Ht, then z must be connected

4033



Balcan, Liang and Gupta

to at least one good point in Cu in Ft. We have medianx∈CuSt(x, z) >
|Cu|+|Cw|

4 , which

means z is connected to more than |Cu|
4 points in Cu in Ft. By the same argument as

above, at least 3/4 fraction of points in Cu are good points, then z must be connected
to at least one good point in Cu.
Similarly, if Cw is connected to Cv in Ht, then z must be connected to at least one
good point in Cv in Ft. But this contradicts Property (b) of Ft, so Cw cannot be
connected to both Cu and Cv in Ht.

By the properties of Ht, no connected component contains both points in Ci \ B and
points in (S \Ci) \B. So Claim (1) is still true for the threshold t. By induction, it is true
for all thresholds.

Finally, we prove Claim (2). By Lemma 5, when t = |Ci|, for any point p ∈ Ci \ B,
Ap belong to the same blob. So all points in Ci \ B are in sufficiently large blobs. We
will show that any two of these blobs Cu, Cv are connected in Ht, and thus will be merged
into one blob. By Lemma 7, we know that more than 3/4 fraction of points in Cu (Cv
respectively) are good points, and thus there exist good points x∗ ∈ Cu, y∗ ∈ Cv such that
St(x

∗, y∗) ≤ medianx∈Cu,y∈CvSt(x, y). By Claim (1), all good points in Cu and Cv are from
Ci, so they share at least t − 2(α + ν)n neighbors when t = |Ci|, and thus are connected
in Ft. Then St(x

∗, y∗) is at least the number of good points in Cu ∪ Cv, which is at least
3(|Cu|+ |Cv|)/4. Then medianx∈Cu,y∈CvSt(x, y) ≥ St(x

∗, y∗) > (|Cu|+ |Cv|)/4. Therefore,
all blobs containing points from Ci \B are connected in Ht and thus merged into a blob.

5. The Inductive Setting

Many clustering applications have recently faced an explosion of data, such as in astrophysics
and biology. For large data sets, it is often resource and time intensive to run an algorithm
over the entire data set. It is thus increasingly important to develop algorithms that can
remove the dependence on the actual size of the data and still perform reasonably well.

In this section we consider an inductive model that formalizes this problem. In this
model, the given data is merely a small random subset of points from a much larger data
set. The algorithm outputs a hierarchy over the sample, which also implicitly represents
a hierarchy over the data set. In the following we describe the inductive version of our
algorithm and prove that when the data satisfies the good neighborhood properties, the
algorithm achieves small error on the entire data set, requiring only a small random sample
whose size is independent of that of the entire data set.

5.1 Formal Definition

First we describe the formal definition of the inductive model. In this setting, the given
data S is merely a small random subset of points from a much larger abstract instance
space X. For simplicity, we assume that X is finite and that the underlying distribution is
uniform over X. Let N = |X| denote the size of the entire instance space, and let n = |S|
denote the size of the sample.
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Algorithm 2 Inductive Robust Median Neighborhood Linkage

Input: similarity function K, n ∈ Z+, parameters α > 0, ν > 0.

B Get a hierarchy on the sample

Sample i.i.d. examples S = {x1, . . . , xn} uniformly at random from X.
Run Algorithm 1 with parameters (2α, 2ν) on S and obtain a hierarchy T .

B Get the implicit hierarchy over X
for any x ∈ X do

Let NS(x) denote the 6(α+ ν)n nearest neighbors of x in S.
Initialize u = root(T ) and fu(x) = 1.
while u is not a leaf do

Let w be the child of u that contains the most points in NS(x).
Set u = w and fu(x) = 1.

end while
end for

Output: Hierarchy T and {fu, u ∈ T}.

Our goal is to design an algorithm that based on the sample produces a hierarchy of
small error with respect to the whole distribution. Formally, we assume that each node u in
the hierarchy derived over the sample induces a cluster (a subset of X). For convenience, u
is also used to denote the blob of sampled points it represents. The cluster u induces over
X is implicitly represented as a function fu : X → {0, 1}, that is, for each x ∈ X, fu(x) = 1
if x is a point in the cluster and 0 otherwise. We say that the hierarchy has error at most
ε if it has a pruning fu1 , . . . , fuk of error at most ε.

5.2 Inductive Robust Median Neighborhood Linkage

The inductive version of our algorithm is described in Algorithm 2. To analyze the al-
gorithm, we first present the following lemmas showing that, when the data satisfies the
good neighborhood property, a sample of sufficiently large size also satisfies the weak good
neighborhood property.

Lemma 9 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood
for the clustering problem (X, `). Consider any fixed x ∈ X \B. If the sample size satisfies
n = Θ

(
1
α ln 1

δ

)
, then with probability at least 1 − δ, x has at most 2αn neighbors outside

(C(x) \B) ∩ S out of the |(C(x) \B) ∩ S| nearest neighbors in S \B.

Proof Suppose x ∈ Gi. Let NN(x) denote its |Gi| nearest neighbors in X. By assumption
we have that |NN(x) \Gi| ≤ αN and |Gi \NN(x)| ≤ αN . Then by Chernoff bounds, with
probability at least 1− δ at most 2αn points in our sample are in NN(x) \Gi and at most
2αn points in our sample are in Gi \NN(x).

We now argue that at most 2αn of the |Gi ∩ S| nearest neighbors of x in S \ B can
be outside Gi. Let n1 be the number of points in (NN(x) \ Gi) ∩ S, n2 be the number of
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points in (Gi \ NN(x)) ∩ S, and n3 be the number of points in (Gi ∩ NN(x)) ∩ S. Then
|Gi ∩ S| = n2 + n3 and we know that n1 ≤ 2αn, n2 ≤ 2αn. We consider the following two
cases.

• n1 ≥ n2. Then n1 + n3 ≥ n2 + n3 = |Gi ∩ S|. This implies that the |Gi ∩ S| nearest
neighbors of x in the sample all lie inside NN(x), since by definition all points inside
NN(x) are closer to x than any point outside NN(x). But we are given that at most
n1 ≤ 2αn of them can be outside Gi. Thus, we get that at most 2αn of the |Gi ∩ S|
nearest neighbors of x are not from Gi.

• n1 < n2. This implies that the |Gi ∩ S| nearest neighbors of x in the sample include
all the points in NN(x) in the sample, and possibly some others too. But this implies
in particular that it includes all the n3 points in Gi∩NN(x) in the sample. So, it can
include at most |Gi ∩S| −n3 = n2 ≤ 2αn points not in Gi ∩NN(x). Even if all those
are not in Gi, the |Gi ∩ S| nearest neighbors of x still include at most 2αn points not
from Gi.

In both cases, at most 2αn of the |Gi∩S| nearest neighbors of x in S\B can be outside Gi.

Lemma 10 Let K be a symmetric similarity function satisfying the (α, ν)-good neighbor-

hood for the clustering problem (X, `). If the sample size satisfies n = Θ
(

1
min(α,ν) ln 1

δmin(α,ν)

)
,

then with probability at least 1 − δ, K satisfies the (2α, 2ν)-good neighborhood with respect
to the clustering induced over the sample S.

Proof First, by Chernoff bounds, when n ≥ 3
ν ln 2

δ , we have that with probability at least
1− δ/2, at most 2νn bad points fall into the sample.

Next, by Lemma 9 and union bound, when n = Θ
(
1
α ln n

δ

)
we have that with probability

at least 1− δ/2, for any Ci, any x ∈ Gi ∩S, x has at most 2αn points outside Gi ∩S out of

its |Gi ∩ S| nearest neighbors in (X \B)∩ S. Therefore, if n = Θ
(

1
min(α,ν) ln n

δ

)
, then with

probability at least 1 − δ, the similarity function satisfies the (2α, 2ν)-good neighborhood
property with respect to the clustering induced over the sample S.

It now suffices to show n is large enough so that n = Θ
(

1
min(α,ν) ln n

δ

)
. To see this, let

η = min(α, ν). Since lnn ≤ tn− ln t− 1 for any t, n > 0, we have

c

η
lnn ≤ c

η

(
η

2c
n+ ln

2c

η
− 1

)
=
n

2
+
c

η
ln

2c

e · η
,

for any constant c > 0. Then n = Θ
(
1
η ln 1

η

)
implies n = Θ

(
1
η lnn

)
, and n = Θ

(
1
η ln 1

δ·η

)
implies n = Θ

(
1
η ln n

δ

)
.

Theorem 11 Let K be a symmetric similarity function satisfying the (α, ν)-good neighbor-
hood for the clustering problem (X, `). As long as the smallest target cluster has size greater

than 12(ν + α)N , then Algorithm 2 with parameters n = Θ
(

1
min(α,ν) ln 1

δ·min(α,ν)

)
produces

a hierarchy with a pruning that is (ν+δ)-close to the target clustering with probability 1−δ.
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Proof Note that by Lemma 10, with probability at least 1− δ/4, we have that K satisfies
the (2α, 2ν)-good neighborhood with respect to the clustering induced over the sample.
Moreover, by Chernoff bounds, with probability at least 1 − δ/4, each Gi has at least
6(ν + α)n points in the sample. Then by Theorem 1, Algorithm 1 outputs a hierarchy T
on the sample S with a pruning that assigns all good points correctly. Denote this pruning
as {u1, . . . , uk} such that ui \B = (Ci ∩ S) \B.

Now we want to show that fu1 , . . . , fuk have error at most ν+δ with probability at least
1− δ/2. For convenience, let u(x) be a shorthand of u`(x). Then it is sufficient to show that
with probability at least 1− δ/2, a (1− δ) fraction of points x ∈ X \B have fu(x)(x) = 1.

Fix Ci and a point x ∈ Ci \ B. By Lemma 9, with probability at least 1− δ2/2, out of
the |Gi ∩ S| nearest neighbors of x in S \ B, at most 2αn can be outside Gi. Recall that
Algorithm 2 checks NS(x), the 6(α+ ν)n nearest neighbors of x in S. Then out of NS(x),
at most 2(α+ ν)n points are outside Gi ∩ S. By Lemma 2, ui contains Gi ∩ S, so ui must
contain at least 4(α + ν)n points in NS(x). Consequently, any ancestor w of ui, including
ui, has more points in NS(x) than any other sibling of w. Then we must have fw(x) = 1
for any ancestor w of ui. In particular, fui(x) = 1. So, for any point x ∈ X \ B, with
probability at least 1− δ2/2 over the draw of the random sample, fu(x)(x) = 1.

Then by Markov inequality, with probability at least 1− δ/2, a (1− δ) fraction of points
x ∈ X \ B have fu(x)(x) = 1. More precisely, let Ux denote the uniform distribution over
X \ B, and let US denote the distribution of the sample S. Let I(x, S) denote the event
that fu(x)(x) 6= 1. Then we have

Ex∼Ux,S∼US
[I(x, S)] = ES∼US

[
Ex∼Ux [I(x, S)|S]

]
≤ δ2/2.

Then by Markov inequality, we have

PrS∼US

[
Ex∼Ux [I(x, S)|S] ≥ δ

]
≤ δ/2,

which means that with probability at least 1− δ/2 over the draw of the random sample S,
a (1− δ) fraction of points x ∈ X \B have fu(x)(x) = 1.

Similarly, Algorithm 2 also succeeds for the weak good neighborhood property. By
similar arguments as those in Lemma 9 and 10, we can prove that K satisfies the weak good
neighborhood property over a sufficiently large sample (Lemma 12), which then leads to
the final guarantee Theorem 13. For clarity, the proofs are provided in Appendix B.

Lemma 12 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Furthermore, it satisfies that for any p ∈
X \ B, |Ap| > 24(α + ν)N . If the sample size satisfies n = Θ

(
1

min(α,ν) ln 1
δmin(α,ν)

)
, then

with probability at least 1 − δ, K satisfies the (2α, 1516β, 2ν)-good neighborhood with respect
to the clustering induced over the sample S.

Theorem 13 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `) with β ≥ 14

15 . Furthermore, it satisfies
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that for any p ∈ X \ B, |Ap| > 24(α + ν)N . Then Algorithm 2 with parameters n =

Θ
(

1
min(α,ν) ln 1

δ·min(α,ν)

)
produces a hierarchy with a pruning that is (ν + δ)-close to the

target clustering with probability 1− δ.

6. Experiments

In this section, we compare our algorithm (called RMNL for convenience) with popu-
lar hierarchical clustering algorithms, including standard linkage algorithms (Sneath and
Sokal, 1973; King, 1967; Everitt et al., 2011), (Generalized) Wishart’s Method (Wishart,
1969; Chaudhuri and Dasgupta, 2010), Ward’s minimum variance method (Ward, 1963),
CURE (Guha et al., 1998), and EigenCluster (Cheng et al., 2006).

To evaluate the performance of the algorithms, we use the model discussed in Section 2.
Given a hierarchy output by an algorithm, we generate all possible prunings of size k, where
k is the number of clusters in the target clustering.5 Then we compute the Classification
Error of each pruning with respect to the target clustering, and report the best error. The
Classification Error of a computed clustering h with respect to the target clustering ` is the
probability that a point chosen at random from the data is labeled incorrectly.6 Formally,

err(h) = min
σ∈Sk

[
Pr
x∈S

[σ(h(x)) 6= `(x)]

]
,

where Sk is the set of all permutations on {1, . . . , k}. For reporting results, we follow the
classic methodology (Guha et al., 1998): for all algorithms accepting input parameters
(including (Generalized) Wisharts’ Method, CURE, and RMNL), the experiments are re-
peated on the same data over a range of input parameter values, and the best results are
considered.

Data sets To emphasize the effect of noise on different algorithms, we perform controlled
experiments on a synthetic data set AIStat. This data set contains 512 points. It is an
instance of the example discussed in Section 4 and is described in Figure 7. We further
consider the following real-world data sets from UCI Repository (Bache and Lichman, 2013):
Wine, Iris, BCW (Breast Cancer Wisconsin), BCWD (Breast Cancer Wisconsin Diagnostic),
Spambase, and Mushroom. We also consider the MNIST data set (LeCun et al., 1998) and
use two subsets of the test set for our experiments: Digits0123 that contains the examples
of the digits 0, 1, 2, 3, and Digits4567 that contains the examples of the digits 4, 5, 6, 7.

We additionally consider the 10 data sets (PFAM1 to PFAM10) (Voevodski et al., 2012),
which are created by randomly choosing 8 families (of size between 1000 and 10000) from
the biology database Pfam (Punta et al., 2012), version 24.0, October 2009. The sim-
ilarities for the PFAM data sets are generated by biological sequence alignment software
BLAST (Altschul et al., 1990). BLAST performs one versus all queries by aligning a queried
sequence to sequences in the data set, and produces a score for each alignment. The score
is a measure of the alignment quality and thus can be used as similarity. However, BLAST

5. Note that we generate all prunings of size k for evaluating the performance of various algorithms only. The
hierarchical clustering algorithms do not need to generate these prunings when creating the hierarchies.

6. To compute this error for a computed clustering in polynomial time, we first find its best match to the
target clustering using the Hungarian Method (Kuhn, 1955) for min-cost bipartite matching in time
O(n3), and then calculate the error as the fraction of points misclassified in matched clusters.
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Figure 10: Classification Error on the synthetic data AIStat. The y-axis represents the %
error. (a) Fix ν = 0 and vary α from 1/32 to 1/16. The x-axis represents the
value of α; (b) Fix α = 1/32 and vary ν from 0 to 1/32. The x-axis represents
the value of ν; (c) Vary α from 1/32 to 1/16, and vary ν from 0 to 1/32. The
x-axis represents the value of α + ν. Note that the instance no longer satisfies
the weak good neighborhood property when α+ ν ≥ 1/24 ≈ 11/256.

does not consider alignments with some of the sequences, in which case we assign similari-
ties 0 to the corresponding sequences and exclude them from the neighbors of the queried
sequence.

The smaller data sets are used in the transductive setting: Wine (178 points of dimension
13), Iris (150×4), BCW (699×10), and BCWD (569×32). The larger ones are used in the
inductive setting: Spambase (4601× 57), Mushroom (8124× 22), Digits0123 (4157× 784),
Digits4567 (3860× 784), and PFAM1 to PFAM10 (10000 ∼ 100000 sequences each).

6.1 Synthetic Data

Here we compare the performance of the algorithms on the synthetic data AIStat. Recall
that the clustering {AI, Statistics} satisfies the weak (α, β, ν)-good neighborhood property
for α = 1/32, β = 7/8, ν = 0 with high probability (See Figure 7 in Section 4). We conduct
three sets of experiments, where we vary the values of α and ν by modifying the similarities
between the points.

(a) For each point x, we choose ∆αn points y from the other field and set the similarities
K(x, y) = K(y, x) = 1, so that the value of α is increased to 1/32 + ∆α. By varying
∆α, we control α = 1/32 + i/256 for i = 0, . . . , 8 and run the clustering algorithms
on the modified data.

(b) We randomly choose νn points x, and then set the similarity between x and any other
point to be 1 minus the original similarity. This introduces νn bad points. We thus
control ν = i/256 for i = 0, . . . , 8.
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(c) We perform the above two modifications simultaneously, that is, we control α =
1/32 + i/256 and ν = i/256 for i = 0, . . . , 8.

Note that the instance no longer satisfies the weak good neighborhood property when α+ν ≥
1/24. This is because the weak good neighborhood requires that each point p 6∈ B falls into
a subset Ap of size greater than 6(α+ ν)n with desired properties (see Property 5), and the
largest such subsets in AIStat have size n/4.

Figure 10 shows the results of these experiments, averaged over 10 runs. When α+ ν <
1/24, the instance satisfies the weak good neighborhood property and our algorithm has
error at most ν. Moreover, even if the instance does not satisfy the weak good neighborhood
property when α+ν ≥ 1/24, our algorithm still reports lower error. All the other algorithms
have higher error than our algorithm and fail rapidly as α+ ν increases. This demonstrates
that in cases modeled by the properties we propose, our algorithm will be successful while
the traditional agglomerative algorithms fail.

6.2 Real-World Data

In this section, we compare the performance of our algorithm with the other algorithms on
real-world data sets and show that our algorithm consistently outperforms the others.

6.2.1 Transductive Setting

Here we compare the performance of the algorithms in the transductive setting where the
algorithms use all the points in the data set. Figure 11 shows that our algorithm consistently
achieves lowest or close to lowest errors on all the data sets. Ward’s Method is the best
among the other algorithms, but still shows larger errors than our algorithms. All the other
algorithms generally show worse performance, and report significantly higher errors on some
of the data sets. The comparison shows the robustness of our algorithm to the noise in the
real world data sets.

To further evaluate the robustness of the algorithms, in the following we show their
performance when different types of noise are added to the data. Since our algorithm
requires additional parameters to characterize noise, we also discuss their robustness to
parameter tuning.
Robustness to Noise Here we present the performance of the algorithms when Gaussian noise
or corruption noise is added and the level of noise is increased monotonically. The Gaussian
noise model essentially corresponds to additive perturbations to the data entries and it is
a very common type of noise studied throughout machine learning. The corruption noise
models data corruption or missing values, and is also frequently studied in machine learning
and coding theory (Blum et al., 2007; Feldman et al., 2008; Wigderson and Yehudayoff,
2012; Moitra and Saks, 2013). The experiments on different types of noise then evaluate
the robustness of the algorithms to noise caused by different reasons in real world scenarios.
Note that the instance is not in a metric space after adding noise to the similarities, so in
this case, we only evaluate algorithms that can be run on non-metric instances.

We consider three types of noise: corruption noise to the attributes, corruption noise
to the similarities, and Gaussian noise added to the attributes. The first type of noise
is generated as follows: normalize the entries in the data matrix to [0, 1]; randomly pick
p fraction of the entries; replace each sampled entry with a random value independently
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(a) Wine (b) Iris (c) BCW (d) BCWD

Figure 11: Classification Error in the transductive setting. The y-axis represents the %
error.

generated from N(0, 1), where p is the parameter indicating the level of noise. The second
type of noise is generated using the same approach, but is added to the similarity matrix.
The third type of noise is generated as follows: normalize the entries in the data matrix to
[0, 1]; add a random value independently generated from N(0, p2) to each entry, where p is
the parameter indicating the level of noise.

Figure 12 shows the results of different algorithms in the presence of noise, averaged over
30 runs. The rows correspond to different types of noise added, and the columns correspond
to different data sets. The first row shows the results when corruption noise is added to the
attributes. Our algorithm shows robustness to such type of noise: its error rates remain
the best or close to the best up to noise level 0.2 on all data sets. EigenCluster and Ward’s
method also show robustness, but their error rates are generally higher than those of our
algorithm. The other algorithms report high errors even when the noise level is as low as
0.04.

The second row shows the results when corruption noise is added to the similarities. We
observe that the errors of our algorithm remain nearly the same up to noise level 0.2 over
all the data sets, while the other algorithms report higher errors. Some algorithms (such as
Complete Linkage on Wine) show comparable performance to our algorithms when there
is no noise, but their errors generally increase rapidly as the noise level increases. This
shows that our algorithm performs much better than the other algorithms in the presence
of corruptions in the similarities.

The third row shows the results when Gaussian noise is added to the attributes. We
observe that when the noise level increases, the errors of all algorithms increase. The errors
of our algorithm do not increase much: they remain the best or close to the best up to
the noise level 0.2 on all the data sets. Ward’s method also shows robustness, since the
minimum variance criterion used is insensitive to this type of noise. The other algorithms
generally show higher errors than our algorithms and Ward’s method.
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Figure 12: Classification Error in the presence of noise. Rows: corruption noise added to
the attributes, corruption noise added to the similarities, Gaussian noise added
to the attributes. Columns: Wine, Iris, BCW, BCWD. In each subfigure, the
x-axis represents the noise level, and the y-axis represents the % error.

In conclusion, our algorithm generally outperforms the other algorithms when corruption
noise is added to the data attributes or the similarities, or when Gaussian noise is added to
the data attributes. Its robustness to Gaussian noise in similarities is not so significant since
such noise with large variance can change the neighbor rankings of all points considerably.
Still, it can tolerate such noise when the noise variance is not too large.

Robustness to Parameter Tuning Our algorithm requires extra input parameters α and ν.
There may be indirect ways to set their values, for example, by estimating the size of the
smallest target cluster. Still, we are not aware of any efficient algorithm to compute the ap-
proximately correct values. Since these parameters play an important role in our algorithm,
it is crucial to show the robustness of the algorithm to parameter tuning. Note that the
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Figure 13: Classification Error of RMNL using different values of parameter (α + ν). The
x-axis represents the value of (α+ ν), and the y-axis represents the % error.

two parameters are always used together as the additive term (α+ ν), thus essentially the
algorithm takes one parameter. So for evaluation, we vary the parameter (α + ν) linearly
and run our algorithm over these values.

Figure 13 shows the performance of the algorithm for different parameter values. We
observe that the algorithm does not require the exact value of (α + ν) as it shows good
performance over a continuous range of values. The range is sufficiently large for all data
sets except Iris. The range for Iris is relatively small as there is little noise in it, and thus
the parameter should be set to small values. In the other data sets we tried, we observed
that it is easy to land in the right range with only a few runs.

6.2.2 Inductive Setting

In this subsection, we present the evaluation results in the inductive setting. In this setting,
the algorithm generates a hierarchy on a small random sample of the data set, and inserts
the remaining points to generate a new hierarchy over the entire data set. We repeat the
sampling and evaluation for 5 times and report the average results.

We compare our inductive algorithm with the random sample algorithm (Eriksson,
2012). These algorithms sample some fraction of the similarities and use only these sim-
ilarities. The percentage of sampled similarities can be tuned in these algorithms, so we
compare their performance when they use the same amount of sampled similarities.

Figure 14 shows the results for eight configurations (using 5% or 10% similarities on
four different data sets). Our algorithm consistently outperforms the random sampling
algorithm. Figure 15 shows the results on PFAM1 to PFAM10, which approximately satisfy
the good neighborhood property (Voevodski et al., 2012). On all PFAM data sets, the errors
of our algorithm are low while those of the random sample algorithm are much higher. This
shows the significant advantage of our algorithm when the data approximately satisfies the
good neighborhood property.

7. Discussion

In this work we propose and analyze a new robust algorithm for bottom-up agglomerative
clustering. We show that our algorithm can be used to cluster accurately in cases where
the data satisfies a number of natural properties and where the traditional agglomerative
algorithms fail. In particular, if the data satisfies the good neighborhood properties, the
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Figure 14: Classification Error of different algorithms in the inductive setting. The y-axis
represents the % error. The x-axis represents data sets, where the numbers
before the names of the data sets denote the fraction of similarities used by the
inductive algorithms.

Figure 15: Classification Error on PFAM1 to PFAM10 data sets using 2.5% similarities.
The y-axis in each case represents the % error, and the x-axis represents data
sets.

algorithm will be successful in generating a hierarchy such that the target clustering is close
to a pruning of that hierarchy.

We also show how to extend our algorithm to the inductive setting, where the given
data is only a small random sample of the entire data set. Our algorithm achieves similar
correctness guarantees, requiring only a small random sample whose size is independent of
that of the entire data set.

We empirically show that with appropriate tuning of the noise parameters our algorithm
consistently performs better than other hierarchical algorithms and are more robust to noise
in the data. We also show the efficacy of the inductive version of our algorithm as a faster
alternative when evaluation over the complete data is resource intensive.

Additionally, our subsequent work (Balcan and Liang, 2013) showed that the algorithm
can be applied to the closely related community detection task and compares favorably with
existing approaches.
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It would be interesting to see if our algorithmic approach can be shown to work for other
natural properties on the input similarity function. For example, it would be particularly
interesting to analyze a noisy version of the max stability property (Balcan et al., 2008),
which was shown to be a necessary and sufficient condition for single linkage to succeed, or
of the average stability property which was shown to be a sufficient condition for average
linkage to succeed. It would also be interesting to identify other natural conditions under
different types of algorithms which are known to provide empirical noise robustness (e.g.,
the Wards method) would provably succeed. Finally, from an experimental point of view,
an interesting open question is whether one can provide a wrapper for the algorithm to
eliminate the need for manual tuning of the noise parameters.
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Appendix A. Implementation Details of Algorithm 1

Here we give the full details of the implementation of Algorithm 1.

First, we need some auxiliary data structures to build the graphs Ft and Ht. See
Algorithm 3 for the definitions of these data structures.

Second, we specify the order of merging clusters. In the merge step in Algorithm 1, the
blobs in a sufficiently large connected component of Ht can be merged in arbitrary order.
In our implementation, we merge two connected Cu, Cv in Ht such that they are not both
singleton blobs and they have maximum medianx∈Cu,y∈CvSt(x, y)/(|Cu|+ |Cv|) (so that we
are most confident about merging them). Then we merge singleton clusters.

Third, for practical purposes, we can slightly modify the algorithm to speed it up on
practical instances.7 When there are less than 4(α+ν)n singleton blobs, we know that they
cannot be merged together into one blob. So we can simply merge each singleton blob with
the non-singleton blob that has the highest median similarity. This will correctly assign
all but bad points under the good neighborhood properties. Similarly, when the number of
singleton blobs is less than half the current threshold, we can safely merge each singleton
blob with the non-singleton blob that has the highest median similarity.

Appendix B. Additional Proofs for Section 5

Here we provide the details for proving that Algorithm 2 also succeeds for the weak good
neighborhood. First, by a similar argument as that in Lemma 9, we can prove Lemma 14

7. This does not change the time complexity and the correctness, but we observe that it helps speed up
practical instances.
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Algorithm 3 Implementation Details of Robust Median Neighborhood Linkage

Input: Similarity function K on a set of points S, n = |S|, α > 0, ν > 0.

Step 1 For each point, sort the other points increasingly according to the distances.
Initialize t = 6(α+ ν)n+ 1, and C′t−1 to be a list of singleton blobs.
while |C′t−1| > 1 do

Step 2 B Build a graph Ft on the points in S as follows:

Set It(x, y) = 1 if y is in x’s t nearest neighbors; It(x, y) = 0 otherwise.
Set Nt = It(It)

T .
Set Ft(x, y) = 1 if Nt(x, y) ≥ t− 2(α+ ν)n; Ft(x, y) = 0 otherwise.

Step 3 B Build a graph Ht on the blobs in C′t−1 as follows:

Set NSt = Ft(Ft)
T .

Set FCt(x, y) = 1 if x, y are in the same blob in C′t−1 and Ft(x, y) = 1;
FCt(x, y) = 0 otherwise.

Set St = Ft(FCt)
T + FCt(Ft)

T .
for any Cu, Cv ∈ C′t−1 do

if Cu = {x} and Cv = {y} then
Ht(Cu, Cv) = 1 if NSt(x, y) > (α+ ν)n;
Ht(Cu, Cv) = 0 otherwise.

else
Ht(Cu, Cv) = 1 if medianx∈Cu,y∈CvSt(x, y) > |Cu|+|Cv |

4 ;
Ht(Cu, Cv) = 0 otherwise.

end if
end for

Step 4 B Merge blobs

while ∃Cu, Cv with Ht(Cu, Cv) = 1 and |Cu|+ |Cv| > 4(α+ ν)n do

Find the pair Cu, Cv with maximum medianx∈Cu,y∈Cv

St(x,y)
|Cu|+|Cv | .

Merge the pair Cu, Cv, and update C′t−1. Recompute FCt, St and Ht.
end while

Step 5 B Merge singletons

while ∃ component V in Ht with | ∪C∈V C| ≥ 4(α+ ν)n do
Merge blobs in V , and update C′t−1. Recompute FCt, St and Ht.

end while
Step 6 B Speed up

if ∃ less than max{4(α+ ν)n, t/2} singleton blobs in C′t−1 then
Merge each singleton with the non-singleton blob of highest median

similarity.
Update C′t−1. Recompute FCt, St and Ht.

end if
C′t = C′t−1.

Step 7 B Increase threshold

t = t+ 1.
end while

Output: Tree T with single points as leaves and internal nodes corresponding to the
merges performed.
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showing that for a fixed p in X \ B and fixed x ∈ Ap, the first condition of the weak
good neighborhood is still satisfied on a sufficiently large sample (Recall the definition of
Property 5). Similarly, we can prove Lemma 15 showing that the second condition of the
weak good neighborhood is also satisfied. Then, the similarity K satisfies the weak good
neighborhood property with respect to the clustering induced over the sample (Lemma 12).
Our final guarantee, Theorem 13, then follows from the lemmas.

Lemma 14 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Consider any fixed p ∈ X \B and any fixed
x ∈ Ap. If the sample size satisfies n = Θ

(
1
α ln 1

δ

)
, then with probability at least 1 − δ, x

has at most 2αn neighbors outside Ap ∩ S out of the |Ap ∩ S| nearest neighbors in S \B.

Lemma 15 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Consider any fixed p ∈ X \B and any fixed
good point x ∈ Ap. If the sample size satisfies n = Θ

(
1
α ln 1

δ

)
, then with probability at least

1− δ, x has at most 2αn neighbors outside C(x) ∩ S out of the |Ap ∩ S| nearest neighbors
in S \B.

Lemma 12 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `). Furthermore, it satisfies that for any p ∈
X \ B, |Ap| > 24(α + ν)N . If the sample size satisfies n = Θ

(
1

min(α,ν) ln 1
δmin(α,ν)

)
, then

with probability at least 1 − δ, K satisfies the (2α, 1516β, 2ν)-good neighborhood with respect
to the clustering induced over the sample S.

Proof Consider the first condition of the weak good neighborhood property. First, by
Chernoff bounds, when n ≥ 3

ν ln 4
δ , we have that with probability at least 1 − δ/4, at

most 2νn bad points fall into the sample. Next, by Lemma 14 and union bound, when
n = Θ

(
1
α ln n

δ

)
we have that with probability at least 1− δ/4, for any point p ∈ S \B, any

point x ∈ Ap ∩ S has at most 2αn neighbors outside Ap ∩ S out of the |Ap ∩ S| nearest
neighbors in S \ B. Since |Ap| > 24(α + ν)N , we also have |Ap ∩ S| > 12(α + ν)n with
probability at least 1− δ/4. So the first condition of the weak good neighborhood property
is satisfied.

Now consider the second condition. Fix Ci and a point p ∈ (Ci \ B) ∩ S. When
n = Θ

(
1
α ln n

δ

)
, with probability at least 1 − δ/(8n), at least 15

16β fraction of points x in
Ap ∩ S have all but at most αN nearest neighbors from Ci \B out of their |Ci \B| nearest
neighbors in X \ B. Fix such a point x ∈ Ap ∩ S. By Lemma 15, with probability at least
1 − δ/(8n2), it has all but at most 2αn nearest neighbors from (Ci \ B) ∩ S out of their
|(Ci \B)∩S| nearest neighbors in S \B. By union bound, we have that with probability at
least 1− δ/4, for any Ci and any p ∈ Ci \B, at least 15

16β fraction of points in Ap ∩ S have
all but at most 2αn nearest neighbors from (Ci \B) ∩ S out of their |(Ci \B) ∩ S| nearest
neighbors in S \B. So the second condition is also satisfied.

Therefore, if n = Θ
(

1
min(α,ν) ln n

δ

)
, then with probability at least 1 − δ, the similar-

ity function satisfies the (2α, 2ν)-good neighborhood property with respect to the clus-
tering induced over the sample S. The lemma then follows from the fact that n =

Θ
(

1
min(α,ν) ln 1

δmin(α,ν)

)
implies n = Θ

(
1

min(α,ν) ln n
δ

)
.
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Theorem 13 Let K be a symmetric similarity function satisfying the weak (α, β, ν)-good
neighborhood for the clustering problem (X, `) with β ≥ 14

15 . Furthermore, it satisfies
that for any p ∈ X \ B, |Ap| > 24(α + ν)N . Then Algorithm 2 with parameters n =

Θ
(

1
min(α,ν) ln 1

δ·min(α,ν)

)
produces a hierarchy with a pruning that is (ν + δ)-close to the

target clustering with probability 1− δ.
Proof Note that by Lemma 12, with probability at least 1− δ/4, we have that K satisfies
the weak (2α, 1516β, 2ν)-good neighborhood with respect to the clustering induced over the
sample. Then by Theorem 1, Algorithm 1 outputs a hierarchy T on the sample S with a
pruning {u1, . . . , uk} such that ui \B = (Ci ∩ S) \B.

Now we want to show that fu1 , . . . , fuk have error at most ν + δ with probability at
least 1 − δ/2. For convenience, let u(x) be a shorthand of u`(x). Then it is sufficient to
show that with probability at least 1 − δ/2, a (1 − δ) fraction of points x ∈ X \ B have
fu(x)(x) = 1. Fix Ci and a point x ∈ Ci \ B. By Lemma 14, with probability at least
1 − δ2/2, out of the |Ax ∩ S| nearest neighbors of x in S \ B, at most 2αn can be outside
Ax. Then out of the 6(α + ν)n nearest neighbors of x in S, at most 2(α + ν)n points are
outside Ax ∩ S. By Lemma 2, ui contains Ax ∩ S, so ui must contain at least 4(α + ν)n
points in NS(x). Consequently, any ancestor w of ui, including ui, has more points in NS(x)
than any other sibling of w. Then we must have fw(x) = 1 for any ancestor w of ui. In
particular, fui(x) = 1. So, for any point x ∈ X \B, with probability at least 1− δ2/2 over
the draw of the random sample, fu(x)(x) = 1. By Markov inequality, with probability at
least 1− δ/2, a (1− δ) fraction of points x ∈ X \B have fu(x)(x) = 1.

Appendix C. Strict Separation and Ward’s Method

∣A∣=4n ∣B∣=n

5 6

∣C∣=n

Figure 16: An example that satisfies the strict separation property but is not clustered
successfully by Ward’s minimum variance Method.

Here we describe an example showing that Ward’s minimum variance method fails in
the presence of unbalanced clusters. The clustering instance satisfies the strict separation
property and thus the more general good neighborhood properties, but on this instance
Ward’s method leads to large classification error.

The instance is presented in Figure 16. It consists three groups of points on a line:
Group A has 4n points, Group B has n points, and Group C has n points. The distances
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between points in the same groups are 0, while the distances between points in A and points
in B are 5, the distances between points in B and points in C are 6, the distances between
points in A and points in C are 11.

It can be verified that the clustering {A∪B,C} satisfies the strict separation property.
We now show that Ward’s method will produce a tree that do not have this clustering as
a pruning, and thus fails to cluster the instance. Recall that Ward’s method starts with
each point being a singleton cluster and at each step finds the pair of clusters that leads to
minimum increase in total within-cluster variance after merging. Formally, it merges the
two clusters U and V such that

(U, V ) = argmin [Var(U ∪ V )−Var(U)−Var(V )] ,

where
Var(X) = min

c

∑
p∈X
‖p− c‖22.

Since the distances between points in the same groups are 0, the method will first merge
points in the same groups and forms three clusters A,B, and C. Now, merging A and
B increases the variance by 20n, while merging B and C increases the variance by 18n.
Therefore, B and C will be merged, and thus the best pruning in the tree produced is
{A,B ∪ C}. This leads to an error of 1/6 ≈ 16.7%.
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Abstract

How can we take advantage of opportunities for experimental parallelization in exploration-
exploitation tradeoffs? In many experimental scenarios, it is often desirable to execute
experiments simultaneously or in batches, rather than only performing one at a time. Ad-
ditionally, observations may be both noisy and expensive. We introduce Gaussian Process
Batch Upper Confidence Bound (GP-BUCB), an upper confidence bound-based algorithm,
which models the reward function as a sample from a Gaussian process and which can select
batches of experiments to run in parallel. We prove a general regret bound for GP-BUCB,
as well as the surprising result that for some common kernels, the asymptotic average regret
can be made independent of the batch size. The GP-BUCB algorithm is also applicable in
the related case of a delay between initiation of an experiment and observation of its re-
sults, for which the same regret bounds hold. We also introduce Gaussian Process Adaptive
Upper Confidence Bound (GP-AUCB), a variant of GP-BUCB which can exploit parallelism
in an adaptive manner. We evaluate GP-BUCB and GP-AUCB on several simulated and
real data sets. These experiments show that GP-BUCB and GP-AUCB are competitive with
state-of-the-art heuristics.1

Keywords: Gaussian process, upper confidence bound, batch, active learning, regret
bound

1. Introduction

Many problems require optimizing an unknown reward function, from which we can only
obtain noisy observations. A central challenge is choosing actions that both explore (es-

∗. This research was carried out while TD was a student at the California Institute of Technology.
1. A previous version of this work appeared in the Proceedings of the 29th International Conference on

Machine Learning, 2012.
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timate) the function and exploit our knowledge about likely high reward regions in the
function’s domain. Carefully calibrating this exploration–exploitation tradeoff is especially
important in cases where the experiments are costly, e.g., when each experiment takes a
long time to perform and the time budget available for experiments is limited. In such
settings, it may be desirable to execute several experiments in parallel. By parallelizing the
experiments, substantially more information can be gathered in the same time-frame; how-
ever, future actions must be chosen without the benefit of intermediate results. One might
conceptualize these problems as choosing “batches” of experiments to run simultaneously.
The challenge is to assemble batches of experiments that both explore the function and
exploit by focusing on regions with high estimated value.

Two key, interrelated questions arise: the computational question of how one should
efficiently choose, out of the combinatorially large set of possible batches, those that are
most effective; and the statistical question of how the algorithm’s performance depends on
the size of the batches (i.e., the degree of informational parallelism). In this paper, we
address these questions by presenting GP-BUCB and GP-AUCB; these are novel, efficient
algorithms for selecting batches of experiments in the Bayesian optimization setting where
the reward function is modeled as a sample from a Gaussian process prior or has low norm
in the associated Reproducing Kernel Hilbert Space.

In more detail, we provide the following main contributions:

• We introduce GP-BUCB, a novel algorithm for selecting actions to maximize reward
in large-scale exploration-exploitation problems. GP-BUCB accommodates parallel or
batch execution of the actions and the consequent observation of their reward. GP-
BUCB may also be used in the setting of a bounded delay between initiation of an
action and observation of its reward.

• We also introduce GP-AUCB, an algorithm which adaptively exploits parallelism to
choose batches of actions, the sizes of which are limited by the conditional mutual
information gained therein; this limit is such that the batch sizes are small when
the algorithm selects actions for which it knows relatively little about the reward.
Conversely, batch sizes may be large when the reward function is well known for the
actions selected. We show that this adaptive parallelism is effective and can easily be
parameterized using pre-defined limits.

• We prove sublinear bounds on the cumulative regret incurred by algorithms of a
general class, including GP-BUCB and GP-AUCB, that also imply bounds on their
rates of convergence.

• For some common kernels, we show that if the problem is initialized by making obser-
vations corresponding to an easily selected and provably bounded set of queries, the
regret of GP-BUCB can be bounded to a constant multiplicative factor of the known
regret bounds of the fully sequential GP-UCB algorithm of Srinivas et al. (2010, 2012).
This implies (near-)linear speedup in the asymptotic convergence rates through par-
allelism.

• We demonstrate how execution of many UCB algorithms, including the GP-UCB, GP-
BUCB, and GP-AUCB algorithms, can be drastically accelerated by lazily evaluating
the posterior variance. This technique does not result in any loss in accuracy.

4054



Parallelizing Exploration-Exploitation in GP Bandit Optimization

• We evaluate GP-BUCB and GP-AUCB on several synthetic benchmark problems, as
well as two real data sets, respectively related to automated vaccine design and thera-
peutic spinal cord stimulation. We show that GP-BUCB and GP-AUCB are competitive
with state-of-the-art heuristics for parallel Bayesian optimization. Under certain cir-
cumstances, GP-BUCB and GP-AUCB are competitive with sequential action selection
under GP-UCB, despite having to cope with the disadvantage of delayed feedback.

• We consider more complex notions of execution cost in the batch and delay settings
and identify areas of this cost and performance space where our algorithms make
favorable tradeoffs and are therefore especially suitable for practical applications.

In the remainder of the paper, we first review the literature (Section 2) and formally
describe the problem setting (Section 3). In the next section, we describe the GP-BUCB
algorithm, present the main regret bound, which applies to a general class of algorithms
using an upper confidence bound decision rule, and present corollaries bounding the regret
of GP-BUCB and initialized GP-BUCB (Section 4). We extend this analysis to GP-AUCB,
providing a regret bound for that algorithm, and discuss different possible stopping con-
ditions for similar algorithms (Section 5). Next, we introduce the notion of lazy variance
calculations (Section 6). We compare our algorithms’ performance with each other and
with several other algorithms across a variety of problem instances, including two real data
sets (Section 7). Finally, we present our conclusions (Section 8).

2. Related Work

Our work builds on ideas from bandits, Bayesian optimization, and batch selection. In the
following, we briefly review the literature in each of these areas.

2.1 Multi-armed Bandits

Exploration-exploitation tradeoffs have been classically studied in context of multi-armed
bandit problems. These are sequential decision tasks where a single action is taken at each
round, and a corresponding (possibly noisy) reward is observed. Early work has focused
on the case of a finite number of candidate actions (arms), a total budget of actions which
is at least as large as the number of arms, and payoffs that are independent across the
arms (Robbins, 1952). In this setting, under some strong assumptions, optimal policies
can be computed (Gittins, 1979). Optimistic allocation of actions according to upper-
confidence bounds (UCB) on the payoffs has proven to be particularly effective (Auer et al.,
2002). In many applications, the set of candidate actions is very large (or even infinite). In
such settings, dependence between the payoffs associated with different decisions must be
modeled and exploited. Various methods of introducing dependence include bandits with
linear (Dani et al., 2008; Abernethy et al., 2008; Abbasi-Yadkori et al., 2011) or Lipschitz-
continuous payoffs (Kleinberg et al., 2008; Bubeck et al., 2008), or bandits on trees (Kocsis
and Szepesvári, 2006). In this paper we pursue a Bayesian approach to bandits, where
fine-grained assumptions on the regularity of the reward function can be imposed through
proper choice of the prior distribution over the payoff function. Concretely, we focus on
Gaussian process priors, as considered by Srinivas et al. (2010).
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2.2 Bayesian Optimization

The exploration-exploitation tradeoff has also been studied in Bayesian global optimization
and response surface modeling, where Gaussian process (GP, see Rasmussen and Williams,
2006) models are often used due to their flexibility in incorporating prior assumptions
about the payoff function’s structure (Brochu et al., 2010). In addition to a model of
the payoff function, an algorithm must have a method for selecting the next observation.
Several bandit-like heuristics, such as Maximum Expected Improvement (Jones et al., 1998),
Maximum Probability of Improvement (Mockus, 1989), Knowledge Gradient (Ryzhov et al.,
2012), and upper-confidence-based methods (Cox and John, 1997), have been developed
to balance exploration with exploitation and have been successfully applied in learning
problems (e.g., Lizotte et al., 2007). In contrast, the Entropy Search algorithm of Hennig
and Schuler (2012) seeks to take the action that will greedily decrease future losses, a less
bandit-like and more optimization-focused heuristic. Recently, Srinivas et al. (2010, 2012)
analyzed GP-UCB, an algorithm for this setting based on upper-confidence bound sampling,
and proved bounds on its cumulative regret, and thus convergence rates for Bayesian global
optimization. We build on this foundation and generalize it to the parallel setting.

2.3 Parallel Selection

To enable parallel selection, one must account for the delay between decisions and obser-
vations. Most existing approaches that can deal with such delay result in a multiplicative
increase in the cumulative regret as the delay grows. Only recently, Dudik et al. (2011)
demonstrated that it is possible to obtain regret bounds that only increase additively with
the delay (i.e., the penalty becomes negligible for large numbers of decisions). However,
the approach of Dudik et al. only applies to contextual bandit problems with finite deci-
sion sets, and thus not to settings with complex (even nonparametric) payoff functions.
Similarly, contemporary work by Joulani et al. (2013) develops a meta-algorithm for con-
verting sequential bandit algorithms to the delayed, finite decision set environment. While
this algorithm has regret bounds which only increase additively with batch size, it does
not generalize to the case of infinitely large decision sets and, by construction, does not
take advantage of knowledge of pending observations, leading to redundant exploration, of
particular concern when individual observations are expensive.

In contrast to these theoretical developments for finite bandits, there has been heuristic
work on parallel Bayesian global optimization using GPs, e.g., by Ginsbourger et al. (2010).
The state of the art is the simulation matching algorithm of Azimi et al. (2010), which uses
the posterior of the payoff function at the beginning of the batch to simulate observations
that the sequential algorithm would encounter if it could receive feedback during the batch,
obtaining a number of Monte Carlo samples over future behaviors of the sequential algo-
rithm. These Monte Carlo samples are then aggregated into a batch of observations which
is intended to “closely match” the set of actions that would be taken by the sequential algo-
rithm if it had been run with sequential feedback. To our knowledge, no theoretical results
regarding the regret or convergence of this algorithm exist. We experimentally compare
with this approach in Section 7. Azimi et al. (2012a) recently extended this construction
to the batch classification setting.
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Azimi et al. (2012b) also propose a very different algorithm that adaptively chooses the
level of parallelism it will allow. This is done in a manner which depends on the expected
prediction error between the posterior constructed with the simulated observations in the
batch in progress versus the true posterior that would be available assuming the observations
had actually been obtained. We also compare against this adaptive algorithm in Section 7.

Recently, Chen and Krause (2013) investigated batch-mode active learning using the
notion of adaptive submodular functions. In contrast to our work, their approach focuses
on active learning for estimation, which does not involve exploration–exploitation tradeoffs.

3. Problem Setting and Background

We wish to take a sequence of actions (or equivalently, make decisions) x1,x2, . . . ,xT ∈ D,
where D is the decision set, which is often (but not necessarily) a compact subset of Rd. The
subscript denotes the round in which that action was taken; each round is an opportunity
for the algorithm to take one action. For each action xt, we observe a noisy scalar reward
yt = f(xt)+εt, where f : D → R is an unknown function modeling the expected payoff f(x)
for each action x. For now we assume that the noise variables εt are i.i.d. Gaussian with
known variance σ2n, i.e., εt ∼ N (0, σ2n), ∀t ≥ 1. This assumption will be relaxed later in one
of the cases of our main theorem. If the actions xt are selected one at a time, each with
the benefit of all observations y1, . . . , yt−1 corresponding to previous actions x1, . . . ,xt−1,
we shall refer to this case as the strictly sequential setting. In contrast, the main problem
tackled in this paper is the challenging setting where action xt must be selected using
only observations y1, . . . , yt′ , where often t′ < t − 1. Thus, less information is available for
choosing actions as compared to the strictly sequential setting.

In selecting these actions, we wish to maximize the cumulative reward
∑T

t=1 f(xt).
Defining the regret of action xt as rt = [f(x∗)− f(xt)], where x∗ ∈X∗ = argmaxx∈D f(x)
is an optimal action (assumed to exist, but not necessarily to be unique), we may equiva-
lently think of maximizing the cumulative reward as minimizing the cumulative regret

RT =
T∑
t=1

rt.

By minimizing the regret, we ensure progress toward optimal actions uniformly over T . In
fact, the average regret, RT /T , is a natural upper bound on the suboptimality of the best
action considered so far, i.e., RT /T ≥ mint∈1,...,T [f(x∗)− f(xt)] (where this minimum is
often called the simple regret, Bubeck et al., 2009). Therefore bounds on the average regret
imply convergence rates for global optimization. It is particularly desirable to show that
RT is sublinear, i.e., o(T ), such that the average regret (and thus the minimum regret) goes
to zero for large T ; an algorithm with this property is described as being “no-regret.”

In Section 3.1, we formally define the problem setting of parallel selection. Sections 3.2
and 3.3 introduce mathematical background necessary for our analysis. Section 3.4 describes
the GP-UCB algorithm and discusses why some simple attempts at generalizing it to the
parallel setting are insufficient, setting the stage for GP-BUCB, the subject of Section 4.
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3.1 The Problem: Parallel or Delayed Selection

In many applications, at time τ , we wish to select a batch of actions, e.g., xτ , ...,xτ+B−1,
where B is the size of the batch, to be evaluated in parallel. One natural application is the
design of high-throughput experiments, where several experiments are performed in parallel,
but feedback is only received after the experiments have concluded. In other settings, the
feedback is delayed. We can model both situations by selecting actions sequentially; however
when choosing xt in round t, we can only make use of the feedback obtained in rounds
1, . . . , t′, for some t′ ≤ t − 1. Formally, we assume there is some mapping fb : N → {N, 0}
(where N denotes the positive integers) such that fb[t] ≤ t− 1, ∀t ∈ N, and when selecting
an action at time t, we can use feedback up to and including round fb[t]. If fb[t] = 0, no
observation information is available.

Here and in most of the remainder of the paper, we concentrate primarily on this perspec-
tive on parallelism, which we term the pessimistic view, in which we consider the problem of
coping effectively under inferior feedback. Intuitively, given feedback such that fb[t] ≤ t− 1
and often fb[t] < t − 1, an algorithm should be expected to underperform relative to the
strictly sequential algorithm, which obtains feedback according to fb[t] = t − 1. This view
provides a natural benchmark; success is performing nearly as well as the strictly sequen-
tial algorithm, despite the disadvantageous feedback. The contrasting optimistic view, in
which parallelism may confer an advantage over strictly sequential algorithms via the abil-
ity to take more than one action simultaneously, is equivalent to the pessimistic view via a
reparameterization of time, if batches are constructed sequentially; the difference between
the two is fundamentally the philosophical primacy of decision-making in the pessimistic
view and the experimental process in the optimistic view. We examine our results from the
optimistic perspective in Section 7.3 and in Figure 7. Unfortunately, this optimistic view
of parallelism presents difficulties when comparing algorithms; there is less clearly a bench-
mark for comparing the regret suffered by two algorithms which have submitted the same
number of batches but use different levels of parallelism, since they may at any time have
different numbers of observations. We thus concentrate our analytical and experimental
approach on the pessimistic view, while remaining motivated by its optimistic counterpart.

Different specifications of the feedback mapping fb[t] can model a variety of realistic
scenarios. As noted above, setting B = 1 and fb[t] = t − 1 corresponds to the non-
delayed, strictly sequential setting in which a single action is selected and the algorithm
waits until the corresponding observation is returned before selecting the succeeding action.
The simple batch setting, in which we wish to select batches of size B, can be captured by
setting fb[t]SB = b(t− 1)/BcB, i.e.,

fb[t]SB =


0 : t ∈ {1, . . . , B}
B : t ∈ {B + 1, . . . , 2B}
2B : t ∈ {2B + 1, . . . , 3B}

...

.

Note that in the batch case, the time indexing within the batch is a matter of algorithmic
construction, since the batch is built in a sequential fashion, but actions are initiated simul-
taneously and observations are received simultaneously. If we wish to formalize the problem
of selecting actions when feedback from those actions is delayed by exactly B rounds, the
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simple delay setting, we can simply define this feedback mapping as fb[t]SD = max{t−B, 0}.
Note that in both the simple batch and delay cases, B = 1 is the strictly sequential case. In
comparing these two simple cases for equal values of B, we observe that fb[t]SB ≥ fb[t]SD,
that is, the set of observations available in the simple batch case for selecting the tth action
is always at least as large as in the simple delay case, suggesting that the delay case is
in some sense “harder” than the batch case. As we will see, however, the regret bounds
presented in this paper may be expressed in terms of the maximal number of pending ob-
servations (i.e., those which have been initiated, but are still incomplete), which is B− 1 in
both of these settings, resulting in unified proofs and regret bounds for the two cases.

More complex cases may also be described using a feedback mapping. For example,
we may be interested in executing B experiments in parallel, where we can start a new
experiment as soon as one finishes, but the length of each experiment is variable; this
translates to a more complex delay setting in which the algorithm has a queue of pending
observations of some finite size B and checks at each round to see whether the queue is full.
If the queue is not full, the algorithm submits an action, and if it is full, it “balks,” i.e.,
does not submit an action and continues waiting for room to open within the queue. This is
a natural description of an agent which periodically monitors slow experimental processes
and takes action when it discovers they have finished. Since the algorithm only selects a
new action when the queue is not full, there can be at most B − 1 pending observations
at the time a new action is selected, as in the simple batch and delay cases. Again, the
maximum number of pending observations is the key to bounding the regret.

Since the level of difficulty of a variety of settings may be described in terms of the
maximum number of pending observations when selecting any action (which we set to be
B − 1), in our development of GP-BUCB and initialized GP-BUCB in Sections 4.4 and 4.5,
we only assume that the mapping fb[t] is specified as part of the problem instance and
t − fb[t] ≤ B for a known constant B. Importantly, our algorithms do not need to know
the full feedback mapping ahead of time. It suffices if fb[t] is revealed to the algorithms at
each time t.

3.2 Modeling f via Gaussian Processes

Regardless of when feedback is obtained, if we are to turn a finite number of observations
into useful inference about the payoff function f , we will have to make assumptions about
its structure. In particular, for large (possibly infinite) decision sets D there is no hope to do
well, i.e., incur little regret or even simply converge to an optimal action, if we do not make
any assumptions. For good performance, we must choose a regression model which is both
simple enough to be learned and expressive enough to capture the relevant behaviors of f .
One effective formalism is to model f as a sample from a Gaussian process2 (GP) prior.
A GP is a probability distribution across a class of—typically smooth—functions, which is
parameterized by a kernel function k(x,x′), which characterizes the smoothness of f , and
a mean function µ(x). In the remainder of this section, we assume µ(x) = 0 for notational
convenience, without loss of generality. We often also assume that k(x,x) ≤ 1, ∀x ∈ D,
i.e., that the kernel is normalized; results obtained using this assumption can be generalized
to any case where k(x,x) has a known bound. We write f ∼ GP(µ, k) to denote that

2. See Rasmussen and Williams (2006) for a thorough treatment.
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we model f as sampled from such a GP. If noise is i.i.d. Gaussian and the distribution
of f is conditional on a vector of observations y1:t−1 = [y1, ..., yt−1]

T corresponding to
actions Xt−1 = [x1, ...,xt−1]

T , one obtains a Gaussian posterior distribution f(x)|y1:t−1 ∼
N (µt−1(x), σ2t−1(x)) for each x ∈ D, where

µt−1(x) = K(x,Xt−1)[K(Xt−1,Xt−1) + σ2nI]−1y1:t−1 and (1)

σ2t−1(x) = k(x,x)−K(x,Xt−1)[K(Xt−1,Xt−1) + σ2nI]−1K(x,Xt−1)
T . (2)

In the above, K(x,Xt−1) denotes the row vector of kernel evaluations between x and
the elements of Xt−1, the set of actions taken in the past, and K(Xt−1,Xt−1) is the
matrix of kernel evaluations where [K(Xt−1,Xt−1)]ij = k(xi,xj), ∀xi,xj ∈ Xt−1, i.e.,
the covariance matrix of the values of f over the set so far observed. Since Equations
(1) and (2) can be computed efficiently, closed-form posterior inference is computationally
tractable in a GP distribution via linear algebraic operations.

3.3 Conditional Mutual Information

A number of information theoretic quantities will be essential to the analysis of the algo-
rithms presented in this paper. In particular, we are interested in the mutual information
I(f ;yA) between f and a set of observations yA, where these observations correspond to a
set A = {x1,x2, . . . } and each xi in A is also in D. For a GP, I(f ;yA) is

I(f ;yA)=H(yA)−H(yA |f)=
1

2
log
∣∣I+σ−2n K(A,A)

∣∣ ,
where K(A,A) is the covariance matrix of the values of f at the elements of the set A,
H(yA) is the differential entropy of the probability distribution over the set of observations
yA, and H(yA |f) is the corresponding value when the distribution over yA is conditioned
on f . Note that for a GP, since yA only depends on the values of f at A, denoted f(A), it
follows that H(yA |f) = H(yA |f(A)) and so I(f ;yA) = I(f(A);yA).

The conditional mutual information with respect to f resulting from observations yA,
given previous observations yS , is defined (for two finite sets A,S ⊆ D) as

I(f ;yA | yS) = H(yA | yS)−H(yA | f,yS) = H(yA | yS)−H(yA | f),

where the second equality follows from conditional independence of the observations given f .
The conditional mutual information gained from observations yA can also be calculated as
a sum of the marginal conditional mutual information gains of each observation in yA;
conditioned on yS , and for A = {x1,x2, ..., xT }, this sum is

I(f ;yA | yS) =
T∑
t=1

log (1 + σ−2n σ2t−1(xt)), (3)

where the term σ2t−1(xt) is the posterior variance over f(xt), conditioned on yS and
{y1, ..., yt−1} ⊆ yA. It is important to note that σ2t−1(xt), given by Equation (2), is in-
dependent of the values of the observations. Since the sum’s value can thus be calculated
without making the observations (i.e., during the course of assembling a batch), it is pos-
sible to calculate the mutual information that will be gained from any hypothetical set of
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Algorithm 1 GP-UCB

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·).
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D[µt−1(x) + α
1/2
t σt−1(x)]

Compute σt(·) via Equation (2)
Obtain yt = f(xt) + εt
Perform Bayesian inference to obtain µt(·) via Equation (1)

end for

observations. We will also be interested in the maximum information gain with respect to f
obtainable from observations yA corresponding to any set of actions A, where |A| ≤ T ,

γT = max
A⊆D, |A|≤T

I(f ; yA). (4)

3.4 The GP-UCB Approach for Strictly Sequential Selection

Modeling f as a sample from a GP has the major benefit that the predictive uncertainty
can be used to guide exploration and exploitation. This is done via a decision rule, by which
the algorithm selects actions xt. While several heuristics, such as Expected Improvement
(Mockus et al., 1978) and Most Probable Improvement (Mockus, 1989) have been effectively
employed in practice, nothing is known about their convergence properties in the case of
noisy observations. Srinivas et al. (2010), guided by the success of upper-confidence-based
sampling approaches for multi-armed bandit problems (Auer, 2002), analyzed the Gaussian
process Upper Confidence Bound (GP-UCB) decision rule,

xt = argmax
x∈D

[
µt−1(x) + α

1/2
t σt−1(x)

]
. (5)

This decision rule uses αt, a domain-specific time-varying parameter, to trade off exploita-
tion (sampling x with high mean) and exploration (sampling x with high standard devia-
tion). Srinivas et al. (2010) showed that, with proper choice of αt, the cumulative regret
of GP-UCB grows sublinearly for many commonly used kernel functions. This algorithm is
presented in simplified pseudocode as Algorithm 1.

Implicit in the definition of the GP-UCB decision rule is the corresponding confidence
interval for each x ∈ D,

Cseq
t (x) ≡

[
µt−1(x)− α1/2

t σt−1(x), µt−1(x) + α
1/2
t σt−1(x)

]
, (6)

where this confidence interval’s upper confidence bound is the value of the argument of the
decision rule. For this (or any) confidence interval, we will refer to the difference between the

uppermost limit and the lowermost, here w = 2α
1/2
t σt−1(x), as the width. This confidence

interval is based on the posterior over f given y1:t−1; a new confidence interval is created
for round t + 1 after adding yt to the set of observations. Srinivas et al. (2010) carefully
select αt such that a union bound over all t ≥ 1 and x ∈ D yields a high-probability
guarantee of confidence interval correctness; it is this guarantee and the direct relationship
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between confidence intervals and the decision rule which enable the construction of high-
probability regret bounds. Using this guarantee, Srinivas et al. (2010) then prove that the
cumulative regret of the GP-UCB algorithm can be bounded as RT = O(

√
TαTγT ), where

αT is the confidence interval width multiplier described above. For many commonly used
kernel functions, Srinivas et al. (2010) show that γT grows sublinearly and αT only needs
to grow polylogarithmically in T , implying that RT is also sublinear; thus RT /T → 0 as
T →∞, i.e., GP-UCB is a no-regret algorithm.

Motivated by the strong theoretical and empirical performance of GP-UCB (Srinivas
et al., 2010, 2012), we explore generalizations to batch and parallel selection (i.e., B > 1).
One näıve approach would be to update the GP-UCB score, Equation (5), only once new
feedback becomes available, selecting the same action at each time step between acquisitions
of new observations. In the case that the observation noise model is Gaussian, the bound
of Srinivas et al. (2010) can be used together with reparameterization of time to bound the
regret to no more than a factor of

√
B greater than the GP-UCB algorithm. In empirical

tests (Online Appendix 2), this algorithm does not explore sufficiently to perform well early
on, making it of limited practical interest. To encourage more exploration, one may instead
require that no action is selected twice within a batch (i.e., simply rank actions according
to the GP-UCB score, and pick actions in order of decreasing score until new feedback is
available). However, since f often varies smoothly, so does the GP-UCB score; under some
circumstances, this algorithm would also suffer from limited exploration. Further, if the
optimal set X∗ ⊆ D is of size |X∗| < B and there is a finite gap between the rewards f(x∗)
and f(x) for all x∗ ∈X∗,x /∈X∗, the algorithm is suffers linear regret, since some x /∈X∗

must be included in every batch. This algorithm also underperforms in empirical tests
(Online Appendix 2). These näıve algorithms have clear shortcomings because they do not
simultaneously select diverse sets of actions and ensure appropriate convergence behavior.

In the following, we introduce the Gaussian process Batch Upper Confidence Bound
(GP-BUCB) algorithm, which successfully balances these competing imperatives. GP-BUCB
encourages diversity in exploration, uses past information in a principled fashion, and yields
strong performance guarantees. We also extend it and develop the Gaussian process Adap-
tive Upper Confidence Bound (GP-AUCB) algorithm, which retains the theoretical guar-
antees of the GP-BUCB algorithm, but chooses batches of variable length in an adaptive,
data-driven manner.

4. The GP-BUCB Algorithm and Regret Bounds

We introduce the GP-BUCB algorithm in Section 4.1. Section 4.2 states the paper’s major
theorem, a bound on the cumulative regret of a general class of algorithms including GP-
BUCB and GP-AUCB. This main result is in terms of a quantity C, a bound on information
used within a batch; this quantity is examined in detail in Section 4.3. Using these insights,
Section 4.4 provides a corollary, bounding the regret of GP-BUCB specifically. Section 4.5
improves this regret bound by initializing GP-BUCB with a finite set of observations.

4.1 GP-BUCB: An Overview

A key property of GPs is that the predictive variance at time t, Equation (2), only de-
pends on Xt−1 = {x1, . . . , xt−1}, i.e., where the observations are made, but not which
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Algorithm 2 GP-BUCB

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·), feedback mapping fb[·].
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D[µfb[t](x) + β
1/2
t σt−1(x)]

Compute σt(·) via Equation (2)
if fb[t] < fb[t+ 1] then

Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t] + 1, . . . , fb[t+ 1]}
Perform Bayesian inference to obtain µfb[t+1](·) via Equation (1)

end if
end for

values y1:t−1 = [y1, . . . , yt−1]
T were actually observed. Thus, it is possible to compute the

posterior variance that would be used by the sequential GP-UCB decision rule, Equation
(5), even while certain observations are not yet available. In contrast, the predictive mean
using in Equation (1) does depend on the actual observations. A natural approach towards
parallel exploration is therefore to replace the GP-UCB decision rule, Equation (5), with a
decision rule that sequentially chooses actions within the batch using all the information
that is available so far,

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σt−1(x)

]
. (7)

Here, the parameter βt has a role analogous to the parameter αt in the GP-UCB algorithm.
The confidence intervals corresponding to this decision rule are of the form

Cbatch
t (x) ≡

[
µfb[t](x)− β1/2t σt−1(x), µfb[t](x) + β

1/2
t σt−1(x)

]
. (8)

Note that this approach is equivalent to running the strictly sequential GP-UCB algorithm
based on hallucinated observations. Concretely, we hallucinate observations yfb[t]+1:t−1 for
those observations that have not yet been received, simply using the most recently updated
posterior mean, i.e., yfb[t]+1:t−1 = [µfb[t](xfb[t]+1), . . . , µfb[t](xt−1)]. As a consequence, the
mean of the posterior including these hallucinated observations remains precisely µfb[t](x),
but the posterior variance decreases.

The resulting GP-BUCB algorithm is shown in pseudocode as Algorithm 2. This ap-
proach naturally encourages diversity in exploration by taking into account the change in
predictive variance that will eventually occur after receiving the pending observations; since
the payoffs of “similar” actions are assumed to co-vary, exploring one action will automat-
ically reduce the predictive variance of similar actions, and thus their value in terms of
exploration. This decision rule appropriately deprecates those observations which will be
made partially redundant by the acquisition of the pending observations, resulting in a more
correct valuation of exploring any x in D.

The disadvantage of this approach appears as the algorithm progresses deeper into the
batch. At each time t, the width of the confidence intervals Cbatch

t (x) is proportional to
σt−1(x). As desired, shrinking the confidence intervals with respect to the start of the batch
by using this standard deviation enables GP-BUCB to avoid exploratory redundancy. How-
ever, as an undesired side-effect, doing so conflates the information which is actually avail-
able, gained via the observations y1:fb[t], with the hallucinated information corresponding
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to actions xfb[t]+1 through xt−1. Thus, the posterior reflected by σt−1(x) is “overconfident”
about the algorithm’s actual state of knowledge of the function. This is problematic when
using the confidence intervals to bound the regret.

To build an algorithm with rigorous guarantees on its performance while still avoiding
exploratory redundancy, we must control for this overconfidence. One measure of overconfi-
dence is the ratio σfb[t](x)/σt−1(x), which is the ratio of the width of the confidence interval
derived from the set of actual observations y1:fb[t] to the width of the confidence interval
derived from the partially hallucinated set of observations y1:t−1. This ratio is related to
I(f(x);yfb[t]+1:t−1 | y1:fb[t]), the hallucinated conditional mutual information with respect
to f(x) (as opposed to the whole of f), as follows:

Proposition 1 The ratio of the standard deviation of the posterior over f(x), condi-
tioned on observations y1:fb[t], to that conditioned on y1:fb[t] and hallucinated observations
yfb[t]+1:t−1 is

σfb[t](x)

σt−1(x)
= exp

(
I(f(x);yfb[t]+1:t−1 | y1:fb[t])

)
.

Proof The proposition follows from the fact that

I(f(x);yfb[t]+1:t−1|y1:fb[t]) = H(f(x)|y1:fb[t])−H(f(x)|y1:t−1)

= 1/2 log(2πeσ2fb[t](x))− 1/2 log(2πeσ2t−1(x))

= log(σfb[t](x)/σt−1(x)).

Crucially, if there exists some constant C, such that I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈
D,∀t ≥ 1, the ratio σfb[t](x)/σt−1(x) can also be bounded for every x ∈ D as follows:

σfb[t](x)

σt−1(x)
= exp

(
I(f(x);yfb[t]+1:t−1 | y1:fb[t])

)
≤ exp (C). (9)

Armed with such a bound, the algorithm can be modified to compensate for its overconfi-
dence. Our goal is to compensate in a way that allows the algorithm to avoid redundancy,
while guaranteeing accurate confidence intervals for the sake of deriving regret bounds. Our
strategy is to increase the width of the confidence intervals (through proper choice of the
parameter βt), such that the confidence intervals used by GP-BUCB are conservative in their
use of the hallucinated information and consequently still contain the payoff function f(x)
with high probability. More precisely, we will require that Cseq

fb[t]+1(x) ⊆ Cbatch
t (x) for all t

at which we select actions and all x ∈ D; that is, the batch algorithm’s confidence intervals
are sufficiently large to guarantee that even for the last action selection in the batch, they
contain the confidence intervals used by the GP-UCB algorithm given y1:fb[t], as defined in
Equation (6). Srinivas et al. (2010) provide choices of αt such that the resulting confidence
intervals have a high-probability guarantee of correctness ∀t ≥ 1,x ∈ D. Thus, if it can be
shown that Cseq

fb[t]+1(x) ⊆ Cbatch
t (x), ∀x ∈ D, t ∈ N, the batch confidence intervals inherit

the high-probability guarantee of correctness.
Fortunately, the relationship between Cseq

fb[t]+1(x) and Cbatch
t (x) is simple; since the par-

tially hallucinated posterior has the same mean as that based on only y1:fb[t],

Cseq
fb[t]+1(x) ⊆ Cbatch

t (x) ⇐⇒ β
1/2
t σt−1(x) ≥ α1/2

fb[t]σfb[t](x).
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Figure 1: (a): The confidence intervals Cseq
fb[t]+1(x) (dark), computed from previous noisy

observations y1:fb[t] (crosses), are centered around the posterior mean (solid black)
and contain f(x) (white dashed) w.h.p. To avoid overconfidence, GP-BUCB
chooses Cbatch

fb[t]+1(x) (light gray) such that even in the worst case, the succeed-

ing confidence intervals in the batch, Cbatch
τ (x), ∀τ : fb[τ ] = fb[t], will contain

Cseq
fb[t]+1(x). (b): Due to the observations that GP-BUCB “hallucinates” (stars),

the outer posterior confidence intervals Cbatch
t (x) shrink from their values at the

start of the batch (black dashed), but still contain Cseq
fb[t]+1(x), as desired. (c):

Upon selection of the last action of the batch, the feedback for all actions is
obtained, and for the subsequent action selection in round t′, new confidence
intervals Cseq

fb[t′]+1(x) and Cbatch
fb[t′]+1(x) are computed.

If we have a suitable bound on σfb[t](x)/σt−1(x) via Equation (9), all that remains is to
choose βt appropriately. If we do so by using a uniform, multiplicative increase with re-
spect to αfb[t] for every x ∈ D and t ∈ N, the desired redundancy avoidance property
of these confidence intervals is simultaneously maintained, since the actions correspond-
ing to pending observations (and related actions) are deprecated as if the observations
had actually been obtained. Figure 1 illustrates this idea. The problem of developing
a parallel algorithm with bounded delay is thus reduced to finding a value C such that
I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈ D,∀t ≥ 1, thus allowing us to select βt to guarantee
the containment of the reference sequential confidence intervals by their batch counterparts.

4.2 General Regret Bound

Our main theorem bounds the regret of GP-BUCB and related algorithms. This regret bound
is formulated in terms of a bound C, which we assume to be known to the algorithm, on
the maximum amount of conditional mutual information which is hallucinated with respect
to f(x) for any x in D. We defer discussion of methods of obtaining such a bound to
Section 4.3. This bound is used to relate confidence intervals used to select actions, which
incorporate this hallucinated information, to the posterior confidence intervals as of the last
feedback obtained, which contain the payoff function f with high probability. This theorem
holds under any of three different assumptions about f , studied by Srinivas et al. (2012) in
the case of the GP-UCB algorithm, which may all be of practical interest. In particular, it
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holds even if the assumption that f is sampled from a GP is replaced by the assumption
that f has low norm in the associated Reproducing Kernel Hilbert Space (RKHS).3

Theorem 2 Specify δ ∈ (0, 1) and let γt be as defined in Equation (4). Let there exist a
mapping fb[t] (possibly revealed online) that dictates at which rounds new feedback becomes
available. Model the payoff function f via a Gaussian process prior with bounded variance,
such that for any x in the decision set D, k(x,x) ≤ 1. Suppose one of the following sets of
assumptions holds:

Case 1: D is a finite set and f is sampled from the assumed GP prior. The noise variables
εt are i.i.d., εt ∼ N (0, σ2n). Choose αt = 2 log(|D|t2π2/6δ).

Case 2: D ⊆ [0, l]d is compact and convex, with d ∈ N, l > 0, and f is sampled from
the assumed zero-mean GP prior. The noise variables εt are i.i.d., εt ∼ N (0, σ2n).
The kernel k(x,x′) is such that the following bound holds with high probability
on the derivatives of GP sample paths f , where a and b are constants such that
a ≥ δ/(4d), b > 0 and bl

√
log(4da/δ) is an integer:

Pr

{
sup
x∈D
|∂f/∂xj | > L

}
≤ ae−(L/b)2 , j = 1, . . . , d.

Choose αt = 2 log(2t2π2/(3δ)) + 2d log
(
t2dbl

√
log(4da/δ)

)
.

Case 3: D is arbitrary and the squared RKHS norm of f under the kernel assumed is
bounded as ||f ||2k ≤ M for some constant M . The noise variables εt form an
arbitrary martingale difference sequence (meaning that E[εt | ε1, . . . , εt−1] = 0 for
all t ∈ N), uniformly bounded by σn. Choose αt = 2M + 300γt ln3(t/δ).

Employ the GP posterior and the GP-BUCB update rule, Equation (7), to select actions
xt ∈ D for all t ≥ 1, using βt = exp(2C)αfb[t]+1 (Cases 1 & 3) or βt = exp(2C)αt (Case
2), where C > 0 and

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, (10)

for all t ≥ 1 and all x ∈ D. Under these conditions, the following statement holds with
regard to the cumulative regret:

Pr
{
RT ≤

√
C1T exp(2C)αTγT + 2,∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ−2n ).

Proof The proof of this result is presented in Appendix A.

First, note that this guarantee holds for any amount of time the algorithm is allowed
to run, since the algorithm does not use knowledge of how many actions it may yet take;
thus, with high probability, RT is less than the given expression for every T less than
or equal to the number of executed actions. Second, the key quantity that controls the
regret in Theorem 2 is C, the bound in Equation (10) on the maximum conditional mutual
information obtainable within a batch with respect to f(x) for any x ∈ D. In particular,
the cumulative regret bound of Theorem 2 is a factor exp(C) larger than the regret bound
for the sequential (B = 1) GP-UCB algorithm. Various choices of the key parameter C are
explored in the following sections.

3. See Schölkopf and Smola (2002).
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4.3 Suitable Choices for C

The significance of a bound C on the information hallucinated with respect to any f(x)
arises through this quantity’s ability to bound the degree of contamination of the GP-BUCB
confidence intervals, given by Equation (8), with hallucinated information.

Two properties of the mutual information in this setting are particularly useful. These
properties are monotonicity (adding an element x to the set A cannot decrease the mutual
information between f and the corresponding set of observations yA) and submodularity
(the increase in mutual information between f and yA with the addition of an element x
to set A cannot be greater than the corresponding increase in mutual information if x is
added to A′, where A′ ⊆ A) (Krause and Guestrin, 2005). Submodularity arises because
individual observations are conditionally independent, given f .

Using the time indexing notation developed in Section 3.1, the following results hold:

∀x ∈ D : I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ I(f ;yfb[t]+1:t−1 | y1:fb[t]) (11)

≤ max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) (12)

≤ max
A⊆D,|A|≤B−1

I(f ;yA) = γB−1. (13)

The first inequality follows from the monotonicity of mutual information, i.e., the informa-
tion gained with respect to f as a whole must be at least as large as that gained with respect
to f(x). The second inequality holds because we specify the feedback mapping such that
t − fb[t] ≤ B, and the third inequality holds due to the submodularity of the conditional
mutual information.

Often, the terms on the right-hand side of these inequalities are easier to work with
than I(f(x);yfb[t]+1:t−1 | y1:fb[t]). The remainder of the paper is characterized by which
inequality we employ in constructing an algorithm and choosing a suitable C to use with
Equation (9) and Theorem 2; Sections 4.4 and 4.5 approach the problem via Inequalities
(13) and (12), while Section 5.1 exploits Inequality (11) and Section 5.2 examines the
consequences of directly bounding the local hallucinated information.

4.4 Corollary Regret Bound: GP-BUCB

The GP-BUCB algorithm requires that t− fb[t] ≤ B, ∀t ≥ 1, and uses a value C such that,
for any t ∈ N,

max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) ≤ C, (14)

thus bounding I(f(x);yfb[t]+1:t−1 | y1:fb[t]) for all x ∈ D and t ∈ N via Inequality (12). Oth-
erwise stated, in GP-BUCB, the local information gain with respect to any f(x),x ∈ D, t ∈ N
is bounded by fixing the feedback times and then bounding the maximum conditional mutual
information with respect to the entire function f which can be acquired by any algorithm
which chooses any set of B−1 or fewer observations. This approach is sensible because such
a bound C holds for any batches constructed with any algorithm. Following an approach
which is less agnostic with regard to algorithm choice makes it quite difficult to disentangle
the role of C in setting the exploration-exploitation tradeoff parameter βt from its role as
a bound on how much information is hallucinated by the algorithm; since a larger βt en-
courages exploration under the GP-BUCB decision rule, Equation (7), a larger value of C
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Algorithm 3 Uncertainty Sampling

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·).
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D σt−1(x)
Compute σt(·) via Equation (2)

end for

(and thus βt) typically produces batches that explore more and thus use more hallucinated
information.

It remains to choose a C which satisfies Inequality (14). We do so via Inequality (13). As
noted in Section 4.3, mutual information is submodular with respect to the set of observed
actions, and thus the maximum conditional mutual information which can be gained by
making any set of observations is maximized when the set of observations currently available,
to which these new observations will be added, is empty. Letting the maximum mutual
information between f and any observation set of size B− 1 be denoted γB−1 and choosing
C = γB−1 provides a bound on the possible local conditional mutual information gain for
any t ∈ N and x ∈ D, as in Inequality (13).

In practice, γB−1 is often difficult to calculate; in general, this requires optimizing over
the combinatorially large set of sets of actions of size B− 1. However, Krause and Guestrin
(2005) demonstrate that, due to the submodularity of the mutual information with respect
to f in this setting, there is an easily obtained upper bound on γB−1. Specifically, they
use uncertainty sampling, a greedy procedure, shown here as Algorithm 3, and show that
e/(e−1) I(f ;yUSB−1) ≥ γB−1, where I(f ;yUSB−1) is the information gained by observing the set
of observations yUSB−1 corresponding to the actions {x1, . . . ,xB−1} selected using uncertainty
sampling. This insight enables efficient computation of upper bounds on γB−1.

Choosing C = γB−1 yields the following Corollary, a special case of Theorem 2:

Corollary 3 Assume the GP-BUCB algorithm is employed with a constant B such that
t − fb[t] ≤ B for all t ≥ 1. Let δ ∈ (0, 1), and let the requirements of one of the numbered
cases of Theorem 2 be met. Choose βt = exp(2C)αfb[t]+1 (Cases 1 & 3) or βt = exp(2C)αt
(Case 2) and select actions xt for all t ≥ 1. Then

Pr
{
RT ≤

√
C1T exp(2γB−1)αTγT + 2, ∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ−2n ) and γB−1 and γτ are as defined in Equation (4).

Unfortunately, the choice C = γB−1 is not especially satisfying from the perspective
of asymptotic scaling. The maximum information gain γB−1 usually grows at least as
Ω(logB), implying that exp(C) grows at least linearly in B, yielding a regret bound which
is also at least linear in B. Fortunately, the analysis of Section 4.5 shows that the GP-BUCB
algorithm can be modified such that a constant choice of C independent of B suffices.

4.5 Better Bounds Through Initialization

To obtain regret bounds independent of batch size B, the monotonicity properties of con-
ditional mutual information can again be exploited. This can be done by structuring GP-
BUCB as a two-stage procedure. First, an initialization set Dinit of size |Dinit| = T init is
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selected nonadaptively (i.e., without any feedback); following the selection of this entire set,
feedback yDinit for all actions in Dinit = {xinit

1 , . . . ,xinit
T init} is obtained. In the second stage,

GP-BUCB is applied to the posterior Gaussian process distribution, conditioned on yDinit .
Notice that if we define

γinitT = max
A⊆D,|A|≤T

I(f ;yA | yDinit),

then, under the assumptions of Theorem 2, using C = γinitB−1, the regret of the two-stage

algorithm is bounded by RT = O
(
T init + (TγTαT exp(2C))1/2

)
. In the following, we show

that it is indeed possible to construct an initialization set Dinit such that the size T init

is dominated by (TγTαT exp(2C))1/2, and—crucially—that C = γinitB−1 can be bounded
independently of the batch size B.

The initialization set Dinit which enables us to make this argument is constructed by
running the uncertainty sampling algorithm (Algorithm 3) for T init rounds and setting Dinit

to the selected actions. Note that uncertainty sampling can be viewed as a special case of
the GP-BUCB algorithm with a constant prior mean of 0 and the requirement that for all
1 ≤ t ≤ T init, fb[t] = 0, i.e., no feedback is taken into account for the first T init iterations.

Under this procedure, we have the following key result about the maximum residual
information gain γinit:

Lemma 4 Suppose uncertainty sampling is used to generate an initialization set Dinit of
size T init. Then

γinitB−1 ≤
B − 1

T init
γT init . (15)

Proof The proof of this lemma is presented in Appendix B.

Whenever γT is sublinear in T , the bound on γinitB−1 given by Inequality (15) converges to
zero for sufficiently large T init; thus for any constant C > 0, we can choose T init as a
function of B such that γinitB−1 < C. Using this choice of C in Theorem 2 bounds the post-
initialization regret. In order to derive bounds on T init, we in turn need a bound on γT
which is analytical and sublinear. Fortunately, Srinivas et al. (2010) prove suitable bounds
on how the information gain γT grows for some of the most commonly used kernels. We
summarize our analysis below in Theorem 5. For sake of notation, define Rseq

T to be the
regret bound of Corollary 3 with B = 1 (i.e., that of Srinivas et al., 2010, associated with
the sequential GP-UCB algorithm).

Theorem 5 Suppose the assumptions of one of the cases of Theorem 2 are satisfied. Fur-
ther, suppose the kernel and T init are as listed in Table 1, and B ≥ 2. Fix δ > 0. Let RT
be the cumulative regret at round T of the two-stage initialized GP-BUCB algorithm, which
ignores feedback for the first T init rounds. Then there exists a constant C ′ independent of
B such that

Pr
{
RT ≤ C ′Rseq

T + 2||f ||∞T init,∀T ≥ 1
}
≥ 1− δ, (16)

where C ′ takes the value shown in Table 1.

Proof The proof of this result and the values in Table 1 are presented in Appendix B.

In Table 1, d·e denotes the first integer greater than or equal to the argument. Note that
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Kernel Type Size T init of Initialization Set Dinit Regret
Multiplier C′

Linear: γt ≤ ηd log (t+ 1)

⌈
max

[
log (B),

log η+log d+2 log (B)
2 log (B)−1

eηd(B − 1) log (B)

]⌉
exp (2/e)

Matérn: γt ≤ νtε d(ν(B − 1))1/(1−ε)e e

RBF: γt ≤ η(log (t+ 1))d+1

⌈
max

[
(log (B))d+1,(

e
d+1

log η+(d+2) log (B)
2 log (B)−1

)d+1

η(B − 1)(log (B))d+1

]⌉
exp (( 2d+2

e
)d+1)

Table 1: Initialization set sizes for Theorem 5.

the particular values of C ′ used in Table 1 are not the only ones possible; they are chosen
simply because they yield relatively clean algebraic forms for T init. The most important
component of this result is the scaling of the regret RT with T and B. As compared to
Theorem 2, which bounds RT via the product exp (2C)TαTγT , where C is a function of
B, Theorem 5 replaces the root of this product with a sum of two terms, one in each of B
and T ; the term C ′Rseq

T in Inequality (16) is the cost paid for running the algorithm post-
initialization (dependent on T , but not B), whereas the second term is the cost of performing
the initialization (dependent on B, but not T ). Notice that whenever B = O(polylog(T )),
T init = O(polylog(T )), and further, note Rseq

T = Ω(
√
T ). Thus, as long as the batch size

does not grow too quickly, the term O(T init) is dominated by C ′Rseq
T and the regret bounds

of GP-BUCB are only a constant factor, independent of B, worse than those of GP-UCB.

In practice, Dinit should not be constructed by running uncertainty sampling for T init

rounds, but rather by running until γinitB−1 ≤ C for the pre-specified C; one online check can
be constructed using Lemma 4. This procedure cannot take more than T init rounds for the
kernels discussed and may take considerably fewer. Further, this procedure is applicable to
any kernel with sublinear γT , generalizing this initialization technique to kernels other than
those we have examined.

5. Adaptive Parallelism: GP-AUCB

While the analysis of the GP-BUCB algorithm in Sections 4.4 and 4.5 used feedback map-
pings fb[t] specified by the problem instance, it may be useful to let the algorithm control
when to request feedback, and to allow this feedback period to vary in some range not easily
described by any constant B. For example, allowing the algorithm to control parallelism is
desirable in situations where the cost of executing the algorithm’s requested actions depends
on both the number of batches and the number of individual actions or experiments in those
batches. Consider a chemical experiment, in which the cost may depend on the time to
complete the batch of reactions and the cost of the reagents needed for each individual ex-
periment. In such a case, confronting an initial state of relative ignorance about the reward
function, it may be desirable to avoid using a wasteful level of parallelism. Motivated by this,
we develop an alternative to our requirement in GP-BUCB that t− fb[t] ≤ B; we will instead
specify a C > 0 and choose the feedback mapping fb[t] in concert with the sequence of ac-
tions selected by the algorithm such that I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C,∀x ∈ D,∀t ≥ 1.
This requirement on fb[t] in terms of C may appear stringent, but in fact it can be easily
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satisfied by on-line, data-driven construction. The GP-AUCB algorithm adaptively controls
feedback through precisely such a mechanism.

Section 5.1 introduces GP-AUCB and states a corollary regret bound for this algorithm.
A few comments on local versus global stopping criteria for adaptivity of algorithms follow
in Section 5.2.

5.1 GP-AUCB Algorithm

The key innovation of the GP-AUCB algorithm is in choosing fb[t] online, using a limit
on the amount of information hallucinated within the batch. Such adaptive batch length
control is possible because we can measure online the amount of information hallucinated
with respect to f using Equation (3), even in the absence of the observations themselves.
This quantity can be used in a stopping condition; when it exceeds a pre-defined constant
C, the algorithm terminates the batch and waits for the environment to return observations
for the pending actions. The feedback mapping fb is then updated to include these new
observations and the selection of a new batch begins. The resulting algorithm, GP-AUCB,
is shown in Algorithm 4.

GP-AUCB is also applicable in the delay setting. In Section 3.1, a view of the delay setting
was presented in which an algorithm maintains a queue of pending observations, where this
queue is of size B and the algorithm submits a query in any round during which the queue
is not full. This is natural for GP-BUCB, particularly if the delay on any observation is
known to be bounded by B′, i.e., t − fb[t] ≤ B′; in such a case, choosing B = B′ gives an
algorithm which submits an action every round. However, if B′ is unknown, the queue size
B would have to be chosen in some other way, such that potentially B < B′. In this case,
the algorithm might have B pending observations at the beginning of a round, a full queue,
and so decline to submit an action in that round, i.e., balk. Analogously, GP-AUCB in the
delay setting implements a queue which is bounded by the conditional mutual information
of the corresponding observations and f , given the current posterior. At each round, GP-
AUCB checks if this quantity is more than a pre-defined value C, and only submits a query
if it is not. Consequently, if C < γB′−1, the algorithm may balk on some rounds.

By terminating batches (or balking) such that no action is selected when the conditional
information of the pending observations with respect to f is more than C, the GP-AUCB
algorithm ensures that

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈ D, ∀t ≥ 1,

where t indexes all actions selected by the algorithm, the first inequality follows from the
monotonicity of conditional mutual information, and the second inequality follows from the
stopping condition. This result implies that Inequality (10) is satisfied, a key requirement
of Theorem 2. In contrast, GP-BUCB satisfies the requirement that the second inequality
hold by selecting a value for C greater than the conditional information which could be
gained in any batch of a fixed size, as in Inequality (14), potentially resulting a choice of
C larger than necessary for a given B. Since GP-AUCB considers the batches which are
actually constructed, it can be expected to enable a higher level of parallelism for the same
C, or a comparable level of parallelism for a smaller C.

It is also important to contrast the behavior of GP-AUCB with a scheduled, monoton-
ically increasing level of parallelism. Under the stopping condition, the batch length is
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Algorithm 4 GP-AUCB

Input: Decision set D, GP prior µ0, σ0, kernel k(·, ·), information gain threshold C.
Set fb[t′] = 0, ∀t′ ≥ 1, G = 0.
for t = 1, 2, . . . , T do

if G > C then
Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t− 1], . . . , t− 1}
Perform Bayesian inference to obtain µt−1(·) via Equation (1)
Set G = 0
Set fb[t′] = t− 1, ∀t′ ≥ t

end if
Choose xt = argmaxx∈D[µfb[t](x) + β

1/2
t σt−1(x)]

Set G = G+ 1
2 log (1 + σ−2n σ2t−1(xt))

Compute σt(·) via Equation (2)
end for

chosen in response to the algorithm’s need to explore or exploit as dictated by the decision
rule, Equation (7). This does tend to cause an increase in parallelism; the batch length
may possibly become quite large as the shape of f is better and better understood and the
variance of f(xt) tends to decrease. However, if exploratory actions are chosen, the high
information gain of these actions contributes to a relatively early arrival at the information
gain threshold C and thus relatively short batch length, even late in the algorithm’s run.

Since all actions are selected when I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C for all x ∈ D, this
approach meets the conditions of Theorem 2, yielding the following corollary:

Corollary 6 Let the GP-AUCB algorithm be employed with a specified constant δ ∈ (0, 1)
and a specified constant C > 0, for which the resulting feedback mapping fb : N → N
guarantees I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C,∀t ≥ 1. If the conditions of one case of Theorem 2
are met, and βt = exp(2C)αfb[t]+1 (Case 1 & 3) or βt = exp(2C)αt (Case 2), then

Pr
{
RT ≤

√
C1T exp(2C)αTγT + 2, ∀T ≥ 1

}
≥ 1− δ

where C1 = 8/ log(1 + σ−2n ).

Importantly, the specification of C directly specifies the regret bound under Corollary 6.
Describing a problem in terms of C is thus natural in the case that we wish to parallelize
an experimental process and our specification is what factor additional regret is acceptable,
as compared to the sequential GP-UCB algorithm. The batch sizes or balking which result
can then be regarded as those which follow from this specification.

Despite the advantages of this approach, C is abstract and less natural for an experi-
mentalist to specify than a maximum batch size or delay length. However, some intuition
with regard to C may be obtained. First, C can be selected to deliver batches with a spec-
ified minimum size Bmin. To ensure this occurs, C can be set such that C > γ(Bmin−1), i.e.,
no set of queries of size less than Bmin could possibly gain enough information to end the
batch. A satisfactory C can be found by either obtaining γ(Bmin−1) directly (tractable for
small Bmin) or via a constant factor bound (Krause and Guestrin, 2005) using the amount
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of information which could be gained during uncertainty sampling (Algorithm 3). Note
that it is also possible to combine the results of Section 4.5 with Corollary 6 to produce
a two-stage adaptive algorithm which can deliver high starting parallelism, very high par-
allelism as the run proceeds, and a low information gain bound C, yielding a favorable
asymptotic regret bound. This may be done by initializing thoroughly enough that, for
a pre-specified C and Bmin, γinitBmin−1 < C, such that the stopping condition cannot take
effect until the batch size is at least Bmin, and then running the GP-AUCB algorithm. This
procedure ensures that all batches are of size at least Bmin and no action is selected using
more than C hallucinated information. Alternatively, for uninitialized GP-AUCB, note that
C could be quite small, e.g., γ1; a very small choice for C should produce GP-UCB-like,
fully-sequential behavior while the algorithm knows very little, but as the algorithm begins
repeatedly selecting actions within a small, well-characterized set, it will permit a greater
level of parallelism.

In Section 3.1, the pessimistic and optimistic views of parallelism discussed therein could
respectively be viewed as emphasizing one or the other of action selection or feedback receipt
as the most important clock by which the system’s progress could be judged. However, in the
simple batch and delay settings, these perspectives were fixed to one another by the constant
B, governing the maximum level of parallelism. Allowing adaptive or stochastic delay and
balking breaks this fixed linkage and can be thought of as creating a third clock timing the
opportunities for the algorithm to select a single action. If the delay is fixed in terms of the
number of such opportunities between action and observation, rather than the number of
actions between these events, this gives a more natural notion of waiting for observations
and allows a better comparison of the tradeoffs inherent in such policies. In our experiments,
this opportunity-for-action perspective is explicitly used for all adaptive algorithms shown
in Figures 3 and 6, which apply the adaptive algorithms to the delay setting. We also
take our previous, pessimistic or action-centered perspective in Figure 5 when looking at
adaptive batch size selection, allowing examination of how much regret adaptive batch size
selection incurs as compared to fully sequential of fixed parallel algorithms.

5.2 Locally Stopped Adaptive Algorithms

Recently, Azimi et al. (2012b) proposed the Hybrid Batch Bayesian Optimization algorithm
(HBBO). HBBO implements a check on the faithfulness of a hallucinated posterior, similar
to our approach. This check is expressed not in terms of information gain, but rather
expected prediction error versus the true posterior if all information had been acquired.
Their stopping condition is also only locally checked at the selected xt, rather than all x in
D. Azimi et al. (2012b) employ this stopping condition along with a constraint that the size
of the batch assembled can never exceed a pre-specified Bmax. They show that, in practice,
much of the time the algorithm is “safe” under the local faithfulness condition and the level
of parallelism is actually controlled by Bmax. In this section, we consider how our results
similarly extend to local stopping conditions.

Theorem 2’s requirement on the hallucinated conditional information gain is stated in
terms of Equation (10), a bound on hallucinated information with respect to f(x) for all
x ∈ D. Through Equation (9), this bound ensures that the confidence intervals used to
select actions are still sufficiently faithful to those based on the true posterior, i.e., that
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Algorithm 5 GP-AUCB Local

Input: Decision set D, GP prior µ0, σ0, kernel k(·, ·), information gain threshold C,
maximum batch size Bmax.
Set fb[t′] = 0, ∀t′ ≥ 1.
for t = 1, 2, . . . , T do

if t− fb[t] > Bmax or ∃x ∈ D : σfb[t](x)/σt−1(x) > exp(C) then
Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t− 1], . . . , t− 1}
Perform Bayesian inference to obtain µt−1(·) via Equation (1)
Set fb[t′] = t− 1, ∀t′ ≥ t

end if
Choose xt = argmaxx∈D[µfb[t](x) + β

1/2
t σt−1(x)]

Compute σt(·) via Equation (2)
end for

σt−1(x) does not become too small with respect to σfb[t](x). In the previous analysis, we
ensured that this bound held for all x ∈ D by bounding I(f ;yfb[t]+1:t−1|y1:fb[t]), an upper
bound on each of the local information gains. However, in order to select actions, σt−1(x)
is calculated on-line; if D is of finite size, it is thus possible (if expensive) to compute
the ratio σfb[t](x)/σt−1(x) for every x in D and every time step. Similar to GP-AUCB,
it is possible to create an algorithm which uses Equation (7) to select actions and which
terminates batches adaptively whenever there is any x ∈ D where this ratio is greater than
exp(C) for a specified C > 0. Such an algorithm retains the regret bounds of Theorem 2.
With the additional constraint that the assembled batch size not exceed a specified Bmax,
we denote this algorithm GP-AUCB Local and present it as Algorithm 5. We also test this
algorithm in some of the experiments and figures in Section 7, along with HBBO.

A number of statements may be made regarding GP-AUCB Local. First, in the case of a
flat prior, e.g., f ∼ GP(0, k(x,x′)), Equation (7) reduces to xt = argmaxx∈D σt−1(x) until
feedback is obtained at the end of the first batch, i.e., uncertainty sampling (Algorithm
3). GP-AUCB Local’s first batch may thus contain a very large number of actions, broadly
initializing the decision set. Such a procedure resembles the typical initialization of bandit
algorithms and may be attractive in some settings, particularly those in which parallelism is
essentially unlimited and the central concern is the number of batches. Second, in practice,
nearly all of batches of GP-AUCB Local are stopped via the maximum batch size constraint
because the largest local information gain may be small, even for a large batch. This means
that this algorithm is effectively implementing GP-BUCB in the simple parallel case, where
B = Bmax, albeit with a tighter regret bound, since the specified C only needs to exceed
the local information gain, rather than the maximum global information gain.

6. Lazy Variance Calculations

In this section, we introduce the notion of lazy variance calculations, which may be used
to greatly accelerate the computation of many UCB-based algorithms, including GP-UCB,
GP-BUCB, and GP-AUCB, without any loss of performance.
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While the probabilistic inference carried out by GP-UCB, GP-BUCB, and GP-AUCB
may be implemented in closed form, without the need for expensive approximate inference,
the computational cost of the algorithms may still be high, particularly as the number of
observations increases. In applications where a finite decision set is considered at every
time t, the major computational bottleneck is calculating the posterior mean µfb[t](x) and
variance σ2t−1(x) for the candidate actions, as required to calculate the decision rule and
choose an action xt. The mean is updated only whenever feedback is obtained, and—
upon computation of the Cholesky factorization of K(Xfb[t], Xfb[t]) + σ2nI—the calculation
of the posterior mean µfb[t](x) takes O(t) additions and multiplications. On the other
hand, σ2t−1(x) must be recomputed for every x ∈ D after every round, and requires solving
backsubstitution, which requires O(t2) computations. For large decision sets D, the variance
computation thus dominates the computational cost of GP-BUCB.

Fortunately, for any fixed decision x, σ2t (x) is non-increasing in t. This fact can be
exploited to dramatically improve the running time of GP-BUCB. The key idea is that
instead of recomputing σt−1(x) for all candidate actions x in every round t, we can maintain
an upper bound σ̂t−1(x), initialized to σ̂0(x) =∞. In every round, we lazily apply the GP-
BUCB rule with this upper bound to identify

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σ̂t−1(x)

]
. (17)

We then recompute σ̂t−1(xt) ← σt−1(xt). If xt still lies in the argmax of Equation (17),
we have identified the next action to take, and set σ̂t(x) = σ̂t−1(x) for all x ∈ D. Minoux
(1978) proposed a similar technique, concerning calculating the greedy action for submodu-
lar maximization, which the above technique generalizes to the bandit setting. A similar idea
was also employed by Krause et al. (2008) in the Gaussian process setting for experimen-
tal design. The lazy variance calculation method leads to dramatically improved empirical
computational speed, discussed in Section 7.4. Note also that the quantities needed for a
rank-1 update of the Cholesky decomposition of the observation covariance K(Xt, Xt)+σ2nI
are obtained at no additional cost; in order to select xt, we calculate the posterior standard
deviation σt−1(xt), which requires precisely these values.

Locally stopped algorithms (Section 5.2) may have stopping conditions which require
σt−1(x) for every x ∈ D, which would seem to indicate that the lazy approach is not
applicable. However, they may also benefit from lazy variance calculations. Since the
global conditional information gain bounds the local information gain for all x ∈ D, as in
Inequality (11), we obtain the implication

I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C =⇒ @x ∈ D : I(f(x);yfb[t]+1:t−1 | y1:fb[t]) > C

that is, that until the stopping condition for GP-AUCB is met, the stopping condition for GP-
AUCB Local is also not met, and thus no local calculations need be made. In implementing
GP-AUCB Local, we may run what is effectively lazy GP-AUCB until the global stopping
condition is met, at which time we transition to GP-AUCB Local. For a fixed maximum
batch size Bmax, it is often the case that local variance calculations become only very rarely
necessary after the first few batches.

We have so far in this section concentrated on the case where D is of finite size. It is in
general challenging to optimize the decision rule (a possibly multimodal function) over D if
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D is a continuous set, as in Case 2 of Theorem 2. Many heuristics are reasonable, but any
heuristic which re-uses candidate actions from round to round (e.g., one which considers
repeating past actions xt′ ,∀t′ < t, or employs an expanding, finite discretization of D) could
also be accelerated by this method.

7. Experiments

We compare GP-BUCB with several alternatives: (1) The strictly sequential GP-UCB al-
gorithm (B = 1), which immediately receives feedback from each action without batching
or delay, thus providing the baseline comparison from the pessimistic perspective (see Sec-
tion 3.1); (2) Two versions of a state-of-the-art algorithm for Batch Bayesian optimization
proposed by Azimi et al. (2010), which can use either a UCB or Maximum Expected Im-
provement (MEI) decision rule, herein SM-UCB and SM-MEI respectively. Note that the
algorithm of Azimi et al. (2010) is not applicable to the delay setting and so does not appear
in our delay experiments. Similarly, we compare GP-AUCB against two other adaptive algo-
rithms: (1) HBBO, proposed by Azimi et al. (2012b), which checks an expected prediction
error stopping condition, makes decisions using either an MEI or a UCB decision rule, and
is applicable only to the batch setting; and (2) GP-AUCB Local, a local information gain-
checking adaptive algorithm described in Section 5.2. We also present some experimental
comparisons across these two sets of algorithms.

In Section 7.1, we describe the computational experiments in more detail. We perform
each of these experiments for several data sets. These data sets and the corresponding
experimental results are presented in Section 7.2. We highlight the optimistic perspective
on parallelism and the tradeoffs inherent in adaptive parallelism in Section 7.3. Finally, we
present the results of the computational time comparisons in Section 7.4.

7.1 Experimental Comparisons

We perform a number of different experiments using this set of algorithms: (1) A simple ex-
periment in the batch case, in which the non-adaptive batch length algorithms are compared
against one another, using a single batch length of B = 5 (Figure 2); (2) A correspond-
ing experiment in the delay case using a delay of B = 5 rounds between action and the
corresponding observation, comparing GP-UCB, GP-BUCB, GP-AUCB, and GP-AUCB Local
against one another, where the two adaptive algorithms may balk (Figure 3); (3) An exper-
iment examining how changes in the batch length over the range B = 5, 10, and 20 affect
performance of the non-adaptive algorithms (Figure 4), and a similar experiment where the
adaptive algorithms may terminate batches freely, with the restriction that batches must
contain at least one and at most 5, 10, or 20 actions (Figure 5); (4) A corresponding exper-
iment in the delay setting, examining how fixed delay length values of 5, 10, and 20 rounds
affect algorithm performance, and in which the adaptive algorithms may balk (Figure 6);
(5) An experiment which examines how parallelism and different parameterizations of exe-
cution cost may be traded off (Figure 7); and (6) an experiment comparing execution time
for various algorithms in the batch case, comparing basic and lazy versions (see Section 6)
of the algorithms presented (Figure 8). In the interest of space, some plots are reserved
to Online Appendix 2. We also present the results of the experiments in tabular form in
Online Appendix 3. The algorithms do not receive an initialization set of observations in
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any of the experiments. All experiments were performed in MATLAB using custom code,
which we make publicly available.4

Comparisons of reward and regret among the algorithms discussed above are presented in
terms of their cumulative regret, as well as their simple regret (the function’s maximum value
minus the best reward obtained). Execution time comparisons are performed using wall-
clock time elapsed since the beginning of the experiment, recorded at ends of algorithmic
time steps. All experiments were repeated for 200 trials, with pseudo-independent tie-
breaking and observation noise for each trial. Additionally, in those experimental cases
where the reward function was a draw from a GP (the SE and Matérn problems), each trial
used a pseudo-independent draw from the same GP.

In the theoretical analysis in Section 4, the crucial elements in proving the regret bounds
of GP-BUCB and GP-AUCB are C, the bound on the information which can be hallucinated
within a batch and βt, the exploration-exploitation tradeoff parameter, which is set with ref-
erence to C to ensure confidence interval containment of the reward function. For practical
purposes, it is often necessary to define βt and the corresponding parameter of GP-UCB, αt,
in a fashion which makes the algorithm considerably more aggressive than the regret bound
requires. This aggressiveness is particularly important in cases where each observation is
very expensive. Setting αt or βt in this fashion removes the high-probability guarantees in
the regret bound, but often produces excellent empirical performance. On the other hand,
leaving the values for αt and βt as would be indicated by the theory results in heavily
exploratory behavior and very little exploitation. In this paper, in all algorithms which
use the UCB or BUCB decision rules, the value of αt has been set such that it has a small
premultiplier (0.05 or 0.1, see Table 2), yielding substantially smaller values for αt. Further,
despite the rigors of analysis explored above in Section 4, we choose to set βt = αfb[t]+1 for
the batch and delay algorithms, without reference to the value of C or the batch length B.
Taking either of these measures removes the guarantees of correctness as carefully crafted
in Section 4. However, as verified by the experiments comparing batch sizes, this is often
not a substantial detriment to performance, even for large batch sizes; the batch algorithms
generally remain quite competitive with the sequential GP-UCB algorithm. This approach
is additionally supported by interactions between local information gain and batch size
constraints seen in practice with GP-AUCB Local. One experimental advantage of this ap-
proach is that (with some limitations necessitated by the adaptive algorithms) the various
algorithms using a UCB decision rule are using the same exploration-exploitation trade-
off parameter at the same iteration, including GP-UCB, GP-BUCB, GP-AUCB, and even
SM-UCB and HBBO when using the UCB decision rule. This choice enables us to remove
a confounding factor in comparing how well the algorithms overcome the disadvantages
inherent in the batch and delay settings.

In the adaptive algorithms (GP-AUCB and GP-AUCB Local), C still establishes the
stopping condition, even though it is not used in setting βt. For GP-AUCB, we specify a
minimum batch size or acceptable number of queued observations Bmin and use uncertainty
sampling to calculate a constant-ratio upper bound on γBmin , as discussed in Section 4.4.
Since the ratio e/(e− 1) in this bound is > 1, we also use a linear upper bound γ1Bmin and
set C to the smaller of the two bounds. This choice ensures that the algorithm will always be

4. See www.its.caltech.edu/~tadesaut/.
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(f) Rosenbrock: MR
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(i) SCI: AR
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(j) Cosines: MR
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(k) Vaccine: MR
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Figure 2: Time-average (AR) and minimum (MR) regret, simple batch setting, batch size
of 5. GP-UCB is shown in blue, GP-BUCB in green with circular markers, SM-MEI
in black, with triangles, and SM-UCB red, with inverted triangles. When more
than one algorithm name is associated with a single arrow, the vertical order of
the labels indicates the local vertical order of the regret curves.
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Problem Setting Kernel Function Hyperparameters Noise Variance σ2
n

Premultiplier
(on αt, βt)

Matérn covMaterniso l = 0.1, σ2 = 0.5 0.0250 0.1

SE covSEiso l = 0.2, σ2 = 0.5 0.0250 0.1

Rosenbrock RBF l2 = 0.1, σ2 = 1 0.01 0.1

Cosines RBF l2 = 0.03, σ2 = 1 0.01 0.1
Vaccine covLINone t2 = 0.8974 1.1534 0.05

SCI covSEard
l = [0.988, 1.5337, 1.0051, 1.5868],

σ2 = 1.0384
0.0463 0.1

Table 2: Experimental kernel functions and parameters.

able to select at least Bmin actions before receiving feedback. In GP-AUCB Local, it is more
difficult to choose C appropriately, but we set C = maxx∈D 1/2 log(1 + Bminσ

−2
n σ20(x)),

where σ20(x) = k(x,x) is the prior variance at x. This is the maximum information about
any f(x) which would result from noisily observing f(x) Bmin times. Since for both GP-
AUCB and GP-AUCB Local we used Bmin rather than Bmin− 1 to set C, we implement the
stopping condition using a strict inequality for the threshold, requiring that the information
gain be < C rather than ≤ C. In experimental setting (3), we set Bmin = 1, in line with
HBBO, and in experimental settings (2), (4), and (5), we use Bmin = 2.

7.2 Data Sets

We empirically evaluate GP-BUCB and GP-AUCB on several synthetic benchmark problems
as well as two real applications. For each of the experimental data sets used in this paper,
the kernel functions and experimental constants are listed in Table 2. Where applicable,
the covariance function from the GPML toolbox (Ver. 3.1, Rasmussen and Nickisch, 2010)
used is also listed by name. For all experiments, δ = 0.1 (see Theorem 2) for UCB-based
algorithms and tolerance ε = 0.02 for HBBO. Each of the experiments discussed above is
performed for each of the data sets described below and their results are presented, organized
by experimental comparison (e.g., delay, adaptive batch size, etc.), in the accompanying
figures.

7.2.1 Synthetic Benchmark Problems

We first test GP-BUCB and GP-AUCB in conditions where the true prior is known. A set of
100 example functions was drawn from a zero-mean GP with Matérn kernel over the interval
[0, 1]. The kernel, its parameters, and the noise variance are known to each algorithm and
D is the discretization of [0, 1] into 1000 evenly spaced points. These experiments are also
repeated with a Squared-Exponential kernel. Broadly speaking, these two problems are
quite easy; the functions are fairly smooth, and for all algorithms considered, the optimum
was found nearly every time, even for long batch sizes or delay lengths. For long batch
lengths, substantial regret is incurred during the first batch, since no feedback is available;
this is visible in Figures 11(a) and 11(b), in Online Appendix 2. For the batch lengths
studied, the first batch of feedback provides a good localization of the optimum because
the first few observations are highly informative; for this reason, subsequent values of the
minimum regret are typically very small. For the same reason, average regret is largely
driven by the length of the first batch. In the delay length experiments, the relative ease of
the problems also means that the adaptive algorithms were able to use only relatively few
actions and still obtain effective initialization.
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(d) Cosines: MR
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Figure 3: Time-average (AR) and minimum (MR) regret plots, delay setting, with a delay
length of 5 rounds between action and observation. GP-AUCB is shown in cyan
with square markers.

The Rosenbrock and Cosines test functions used by Azimi et al. (2010) are also consid-
ered, using the same Squared-Exponential kernel as employed in their experiments, though
with somewhat different length scales. For both functions, D is a 31x31 grid of evenly-
spaced points on [0, 1]2; D is thus similar in size to its counterpart in the Matérn and
Squared-Exponential experiments. The values of the Rosenbrock test function at these
points are heavily skewed toward the upper end of the reward range, such that the mini-
mum regret is often nearly zero before the first feedback is obtained. In our experiments
on the Rosenbrock function, similar performance was obtained across algorithms at each
batch size in terms of both average and minimum regret. One result of interest is visible in
Figure 6(c), which concerns delay length changes; it is possible to see that GP-AUCB balked
too often in this setting, leading to substantial losses in performance relative to GP-AUCB
Local and GP-BUCB. The Cosines test function also shows broadly similar results across
specific problem instances, with only a small spread in regret among the algorithms tested.
Because the Cosines function is multi-modal, the average regret seems to show two-phase
convergence behavior, in which individual runs may be approaching local optima and sub-
sequently finding the global optimum. The overly frequent balking by GP-AUCB present
in the Rosenbrock test function is also present for longer delays in the Cosines function, as
can be seen in 6(g).

In both delay experiments, this behavior may be explained by how the kernel chosen
interacts with the stopping condition, which requires that the information gain with respect
to the reward function f as a whole be less than a chosen constant C. With a flat prior,
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Figure 4: Time-average (AR) and minimum (MR) regret plots, non-adaptive batch algo-
rithms, batch sizes 5 (solid), 10 (dash-dot), and 20 (dashed).

GP-BUCB, GP-AUCB and GP-AUCB Local all initially behave like uncertainty sampling
(see Sections 4.5 and 5.2). Since uncertainty sampling gains a great deal of information
globally, GP-AUCB thus tends to balk; on the other hand, since uncertainty sampling scatters
queries widely, the information gained with respect to any individual reward f(x) may be
comparatively small, and so GP-AUCB Local balks less or not at all. If the informativeness
of the observations selected is overestimated, perhaps by poor specification of the long-
range covariance properties of the assumed kernel function, this greater degree of balking
by GP-AUCB may result in overall losses in performance.

7.2.2 Automated Vaccine Design

We also test GP-BUCB and GP-AUCB on a database of Widmer et al. (2010), as considered
for experimental design by Krause and Ong (2011). This database describes the bind-
ing affinity of various peptides with a Major Histocompatibility Complex (MHC) Class I
molecule, of importance when designing vaccines to exploit peptide binding properties. Al-
gorithmic parallelization in such broad chemical screens is particularly attractive because
automated, parallel equipment for carrying out these experiments is available. Each of the
peptides which bound with the MHC molecule is described by a set of chemical features in
R45, where each dimension corresponds to a chemical feature of the peptide. The binding
affinity of each peptide, which is treated as the reward or payoff, is described as an off-
set IC50 value. The experiments use an isotropic linear kernel fitted on a different MHC
molecule from the same data set. Since the data describe a phenomenon which has a mea-
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Figure 5: Time-average (AR) and minimum (MR) regret plots, adaptive batch algorithms,
maximum batch sizes 5, 10, and 20. HBBO is shown in black with left pointing
triangle makers when using an MEI decision rule and in red with right pointing
triangle makers when using a UCB decision rule, while GP-AUCB Local is shown
in pink with diamond markers. For the adaptive algorithms, minimum batch size
Bmin was set to 1, as in HBBO. The algorithms tended to run fully sequentially
at the beginning, but quite rapidly switched to maximal parallelism.

surable limit, many members of the data set are optimal; out of 3089 elements of D, 124,
or about 4%, are in the maximizing set. In the simple batch experiments, Figures 2(h) and
2(k), GP-BUCB performs competitively with SM-MEI and SM-UCB, both in terms of aver-
age and minimum regret, and converges to the performance of GP-UCB. In the simple delay
setting, Figures 3(b) and 3(e), both GP-BUCB and GP-AUCB produce superior minimum
regret curves to that of GP-UCB, while performing comparably in terms of long-run aver-
age regret; this indicates that the more thorough initialization of GP-AUCB and GP-BUCB
versus GP-UCB may enable them to avoid early commitment to the wrong local optimum,
thus finding a member of the maximizing set more consistently. This is consistent with
the results of the non-adaptive batch size comparison experiment, Figures 4(b) and 4(e),
which shows that as the batch size B grows, the algorithm must pay more “up front” due
to its more enduring ignorance, but also tends to avoid missing the optimal set entirely.
This same sort of tradeoff of average regret against minimum regret is clearly visible for
the GP-AUCB Local variants in the experiments sweeping maximal batch size for adaptive
algorithms, Figures 5(b) and 5(e).

4082



Parallelizing Exploration-Exploitation in GP Bandit Optimization

7.2.3 Spinal Cord Injury (SCI) Therapy

Lastly, we compare the algorithms on a data set of leg muscle activity triggered by ther-
apeutic spinal electrostimulation in spinal cord injured rats. From the 3-by-9 grid of elec-
trodes on the array, a pair of electrodes is chosen to activate, with the first element of the
pair used as the cathode and the second used as the anode. Electrode configurations are
represented in R4 by the cathode and anode locations on the array. These active array
electrodes create an electric field which may influence both incoming sensory information
in dorsal root processes and the function of interneurons within the spinal cord, but the
precise mechanism of action is poorly understood. Since the goal of this therapy is to
improve the motor control functions of the lower spinal cord, the designated experimen-
tal objective is to choose the stimulus electrodes which maximize the resulting activity in
lower limb muscles, as measured by electromyography (EMG). Batch or delay algorithms
are particularly suited to this experimental setting because the time to process the EMG
information needed to assess experimental stimuli may be quite long as compared to the
time required to actually test a stimulus, and because idle time during the experimental
session should be avoided to the degree possible. We use data with a stimulus amplitude
of 5 V and seek to maximize the peak-to-peak amplitude of the recorded EMG waveforms
from the right medial gastrocnemius muscle in a time window corresponding to a single
interneuronal delay. This objective function attempts to measure the degree to which the
selected stimulus activates interneurons controlling reflex activity in the spinal gray matter.
This response signal is non-negative and for physical reasons does not generally rise above
3 mV. A Squared-Exponential ARD kernel was fitted using experimental data from 12 days
post-injury. Algorithm testing is done using an reward function composed of data from 116
electrode pairs tested on the 14th day post-injury.

Like the Vaccine data set, the SCI data set displays a number of behaviors which indicate
that the problem instance is difficult; in particular, the same tendency that algorithms which
initialize more thoroughly eventually do better in both minimum and average regret was
observed. This tendency is visible in the simple batch setting (Figures 2(i) and 2(l)), where
GP-UCB is not clearly superior to either GP-BUCB or GP-AUCB. This is surprising because
the pessimistic perspective on parallelism suggests that being required to work in batches,
rather than one query at a time, might be expected to give the algorithm less information at
any given round, and should thus be a disadvantage. This under-exploration in GP-UCB may
be a result of the exploration-exploitation tradeoff parameter αt being chosen to promote
greater aggressiveness across all algorithms. Interestingly, this data set also displays both a
small gap between the best and second-best values of the reward function (approximately
0.9% of the range) and a large gap between the best and third-best (approximately 7% of
the range). When examining how many out of the individual experimental runs simulated
selected x∗ = argmaxx∈D f(x) on the 200th query in the simple batch case, only 20% of
GP-UCB runs choose x∗; the numbers are considerably better for GP-BUCB, SM-UCB, and
SM-MEI, at 35%, 30.5%, and 36%, but are still not particularly good. If the first sub-
optimal action is also included, these numbers improve substantially, to 63.5% for GP-UCB
and 84%, 91%, and 96.5% for GP-BUCB, SM-UCB, and SM-MEI. These results indicate
that the second-most optimal x is actually easier to find than the most optimal, to a
fairly substantial degree. It is also important to place these results in the context of the
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Figure 6: Time-average (AR) and minimum (MR) regret plots, delay setting, with delay
lengths of 5, 10, and 20 rounds between action and observation. This experiment
examines the degree to which these algorithms are able to cope with long delays
between action and observation. Note that the adaptive algorithms, GP-AUCB
and GP-AUCB Local, may balk at some rounds. The time-average regret is calcu-
lated with respect to the number of actions actually executed as of that round;
this means that the number of queries submitted as of any particular round is
hidden with respect to the plots shown, and may vary across runs of the same
algorithm.
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experimental setting; even assuming that the measured response values are reflective of a
difference in spinal excitability between these two highest-performing stimuli, it may be
that this very small difference in excitability would not yield any difference in therapeutic
outcome. Since all of GP-BUCB, SM-UCB, and SM-MEI more consistently found one of the
two best actions in the decision set than GP-UCB, all of them show strong performance in
comparison to GP-UCB.

7.3 Parallelism: Costs and Tradeoffs

We have presented several algorithms, but an important question is which should be chosen
to control any particular experimental process. Our motivation in pursuing parallel algo-
rithms is the setting in which there is a cost—not accumulated in the regret—associated
with the experimental process, such that each round or opportunity to submit a query is
expensive, but the additional marginal cost of taking an action at that round is not very
large. It is interesting to consider more precisely what we mean by “expensive” or “not very
large,” and also what effect varying these costs with respect to one another might have on
which algorithm or level of parallelism is appropriate. In particular, one would expect a low
level of parallelism to be beneficial if per-action costs are much higher than per-opportunity
(i.e., when speed is less important than economy), while a high level of parallelism would
be beneficial if the opposite is true, with intermediate levels of parallelism being superior
in the middle. This intuition can be tested by measuring the costs and regret incurred by
several algorithms solving the same problem. It is necessary to have a measure by which the
performance of different algorithms can be compared, given a particular parameterization
of costs. Here, we use an experiment in the delay setting, where the algorithm chooses to
either take an action or balk at each round, and employ the average total cost up to the
round in which a given average regret is first obtained.

Given N sample runs, a successful algorithm should have a (nearly) monotonically
decreasing average regret curve, defined as r̄(T ) = 1/N

∑N
n=1RT,n/T , where RT,n is the

cumulative regret of run n after T rounds; these regret curves are the same ones presented in
previous experiments. After averaging over many runs, this curve can be inverted to find the
first round τ(r̄) in which the sample average regret is at or below a particular r̄. The average
cost of running the algorithm until round τ(r̄) can then be computed. The cost of run n
is the sum of two contributions, the first for running τ(r̄) rounds of the algorithm and the
second for the actual execution of an(τ(r̄)) actions, where the number of actions executed
varies depending on the data acquired. Parameterizing the relative costs of each round and
each action using w, the average cost C(r̄, w) = (1− w)τ(r̄) + w · ā(τ(r̄)) corresponding to
a particular average regret value r̄ can be obtained, where ā(τ(r̄)) = 1/N

∑N
n=1 an(τ(r̄)).

Note that w ∈ [0, 1] translates to any constant, non-negative ratio of the cost of a single
action to that of a single round. This procedure is not equivalent to fixing a value of r̄,
running each sample run of the algorithm until Rt,n/t ≤ r̄ and averaging over the costs
incurred in so doing; in particular, if an algorithm has a non-zero probability of failing
to ever obtain r̄, individual sample runs may not terminate, making sensible comparison
impossible. The calculation of C(r̄, w) as proposed here is robust to this case, giving an
estimate of the expected cost to run the algorithm until a round in which the expected
cumulative average regret is ≤ r̄.
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(b) w = 0
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(c) w = 1/2
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Figure 7: Parameterized cost comparison on the SCI data set, simple delay case, B = 5.
The same experiment is also presented in Figure 3(c), but in that figure, we
take the pessimistic perspective and compare GP-BUCB and GP-AUCB with GP-
UCB, where GP-UCB receives feedback every round. Here, we take the optimistic
perspective, which treats parallelism as a potential advantage, and impose the
same delay on all algorithms. Figure 7(a): the space of cost-tradeoff parameter
w and attained average regrets r̄ is colored according to which algorithm has the
lowest mean cost at the round in which the mean, time-average regret is first
≤ r̄. Figures 7(b), (c), and (d) show r̄ as a function of C and correspond to
vertical slices through Figure 7(a) at the left, center, and right. Since GP-AUCB
and GP-UCB pass on some rounds, the terminal cost of GP-AUCB and GP-UCB
is possibly < 300.

Among a set of algorithms, and given a test problem, one can find which among them
has the lowest value of C(r̄, w) at any particular point in the r̄, w space. Similarly, for
any fixed value of w, it is possible to once more invert the function and plot r̄w(C); this
plot resembles conventional average regret plots, and corresponds to intersections of each
algorithm’s C(r̄, w) surface with the plane at a fixed w.
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We compare GP-BUCB, GP-AUCB, and GP-UCB in the SCI therapy setting, with a
simple delay (B = 5). In this setting, GP-BUCB selects an action every round (filling its
queue of pending experiments to 5, and then keeping it full) and GP-AUCB may balk, but
will tend to fill its queue fully by the end of the experiment. Note that here, we employ
GP-UCB under the same feedback mapping as the other algorithms, rather than its use as a
benchmark in all of our previous experiments; it thus only submits an action when its queue
of pending observations is empty, i.e., every fifth round. The results of this experiment are
shown in Figure 7. In this scenario, GP-AUCB costs the least through most of the parameter
space, due to its tendency to pass in early rounds, when the potential for exploitation is
lowest. In line with the intuition described at the beginning of this section, the advantage
changes to the fully sequential algorithm when w is large (i.e., parallelism is expensive),
and to GP-BUCB when w is small. Many real-world situations lie somewhere between these
extremes, suggesting that GP-AUCB may be useful in a variety of scenarios.

7.4 Computational Performance

We also examined the degree to which lazy variance calculations, as described in Section 6,
reduce the computational overhead of each of the algorithms discussed. These results are
presented in Figure 8. Note that for algorithms which appear as both lazy and non-lazy
versions, the only functional difference between the two is the procedure by which the action
is selected, not the action selection itself; all computational gains are without sacrificing
accuracy and without requiring any algorithmic approximations. All computational time
experiments were performed on a desktop computer (quad-core Intel i7, 2.8 GHz, 8 GB
RAM, Ubuntu 10.04) running a single MATLAB R2012a process.

For all data sets, the algorithms lie in three broad classes: Class 1, comprised of the
lazy GP-UCB family of algorithms; Class 2, the non-lazy versions of the GP-UCB family of
algorithms, as well as the HBBO UCB and MEI variants; and Class 3, consisting of the
SM-MEI and SM-UCB algorithms, in both lazy and non-lazy versions. Class 1 algorithms
run to completion about one order of magnitude faster than those in Class 2, which in turn
are about one order of magnitude faster than those in Class 3. The various versions of
the simulation matching algorithm of Azimi et al. (2010) require multiple samples from the
posterior over f to aggregate together into a batch, the composition of which is intended
to match or cover the performance of the corresponding sequential UCB or MEI algorithm.
The time difference between Class 2 and Class 3, approximately one order of magnitude,
reflects the choice to run 10 such samples. Within Class 3, our implementation of the
lazy version of SM-MEI is slower than the non-lazy version, largely due to the increased
overhead of sorting the decision rule and computing single values of the variance; a more
efficient implementation of either or both of these elements could perhaps improve on this
tradeoff. The lazy algorithms also tend to expend a large amount of computational time
early, computing upper bounds on later uncertainties, but tend to make up for this early
investment later; this is even visible with regard to the lazy version of SM-UCB, which is
initially slower than the non-lazy version, but scales better and, in all six data sets examined,
ends up costing substantially less computational time by the 200th query.
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Figure 8: Elapsed computational time in batch experiments, B = 5. Lazy versions of al-
gorithms (except GP-UCB) are shown will filled markers. Note the logarithmic
vertical scaling in all plots. Note also the substantial separation between the
three groups of algorithms, discussed in Section 7.4.

8. Conclusions

We develop the GP-BUCB and GP-AUCB algorithms for parallelizing exploration-exploitation
tradeoffs in Gaussian process bandit optimization. We present a unified theoretical analysis,
hinging on a natural notion of conditional mutual information accumulated while making
selections without observing feedback. Our analysis allows us to bound the regret of GP-
BUCB and GP-AUCB, as well as similar GP-UCB-type algorithms. In particular, Theorem 2
provides high-probability bounds on the cumulative regret of algorithms in this class, ap-
plicable to both the batch and delay setting. These bounds also imply bounds on the
convergence rate of such algorithms. Further, we prove Theorem 5, which establishes a
regret bound for a variant GP-BUCB using uncertainty sampling as initialization. Crucially,
this bound scales independently of the batch size or delay length B, if B is constant or
polylogarithmic in T . Finally, we introduce lazy variance calculations, which dramatically
accelerate computational performance of GP-based active learning decision rules.

Across the experimental settings examined, GP-BUCB and GP-AUCB performed compa-
rably with state-of-the-art parallel and adaptive parallel Bayesian optimization algorithms,
which are not equipped with theoretical bounds on regret. GP-BUCB and GP-AUCB also
perform comparably to the sequential GP-UCB algorithm, indicating that GP-BUCB and
GP-AUCB successfully overcome the disadvantages of only receiving delayed or batched
feedback. As the family of algorithms we describe offers a spectrum of parallelism, we also
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examine a parameterization of cost to achieve a given level of regret. In this comparison,
GP-AUCB appears to offer substantial advantages over the fully parallel or fully sequential
approaches. We believe that our results provide an important step towards solving complex,
large-scale exploration-exploitation tradeoffs.
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Appendix A. Proof of Theorem 2

In order to prove Theorem 2, this appendix first establishes a series of supporting lemmas.
For clarity of development, we present the proof of the first case in detail, followed by the
required lemmas and modifications required to prove the second and third cases. Since our
three cases are those treated by Srinivas et al. (2012) for the GP-UCB algorithm, our proofs
use Proposition 1 to generalize their theoretical analysis to the batch and delay cases. In
the following, µt−1(x) and σt−1(x) are found via Equations (1) and (2), which assume i.i.d.
Gaussian noise of variance σ2n, even in Case 3, where the actual noise is non-Gaussian.

A.1 Case 1: Finite D

In all three cases, the first component of the proof is the establishment of confidence intervals
which contain the payoff function f with high-probability. In Case 1, this is done by using
a result established by Srinivas et al. (2012), presented here as Lemma 7.

Lemma 7 (Lemma 5.1 of Srinivas et al., 2012) Specify δ ∈ (0, 1) and set αt = 2 log(|D|πt/δ),
where

∑∞
t=1 π

−1
t = 1, πt > 0. Let x1,x2, · · · ∈ D be an arbitrary sequence of actions. Then,

P (|f(x)− µt−1(x)| ≤ α1/2
t σt−1(x), ∀x ∈ D,∀t ≥ 1) ≥ 1− δ.

Proof For a ∼ N (0, 1), P (a > c) ≤ 1/2 exp(−c2/2). Conditioned on actions {x1, . . . ,xt−1}
and corresponding observations {y1, . . . , yt−1}, f(x) ∼ N (µt−1(x), σ2t−1(x)); for any αt > 0,

P

(
f(x)− µt−1(x)

σt−1(x)
> α

1/2
t

)
= P

(
f(x)− µt−1(x)

σt−1(x)
< −α1/2

t

)
≤ 1

2
exp(−αt/2).

Note that these two events are the two ways the confidence interval on f(x) could fail

to hold, i.e., that f(x) /∈ [µt−1(x) − α1/2
t σt−1(x), µt−1(x) + α

1/2
t σt−1(x)]. Union bound-

ing these confidence interval failure probabilities over D, P (∃x ∈ D : f(x) /∈ [µt−1(x) −
α
1/2
t σt−1(x), µt−1(x)+α

1/2
t σt−1(x)]) ≤ |D| exp(−αt/2). Let δ/πt = |D| exp(−αt/2), implic-

itly defining αt as specified. Union bounding in time and taking the complement yields

P (|f(x)− µt−1(x)| ≤ α1/2
t σt−1(x), ∀x ∈ D,∀t ∈ {1, . . . , T}) ≥ 1− δ

T∑
t=1

π−1t .
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If πt > 0 is chosen such that
∑∞

t=1 π
−1
t ≤ 1, the result follows.

This series convergence condition on πt corresponds to a requirement that αt grow
sufficiently fast as to make confidence interval failures vanishingly unlikely as t → ∞.
Lemma 7 also implies that for S, a subset of the positive integers, P (|f(x) − µt−1(x)| ≤
α
1/2
t σt−1(x), ∀x ∈ D,∀t ∈ S) ≥ 1− δ, since πt > 0 =⇒

∑
t∈S π

−1
t ≤ 1.

Next, we must establish a link between confidence intervals which use a fully updated
posterior and for which we have high probability guarantees of correctness (e.g., those in
in Lemma 7), and the confidence intervals used in Equation (7), which use a hallucinated
posterior. Lemma 8 shows that a bound on the local information hallucinated during the
batch implies such a link between batch and sequential confidence intervals.

Lemma 8 Suppose that at round t, there exists C > 0 such that

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈ D. (18)

Choose

βt = exp(2C)αfb[t]+1, (19)

where Equation (6) relates sequential confidence intervals Cseq
fb[t]+1(x) with the parameter

αfb[t]+1 and Equation (8) relates batch confidence intervals Cbatch
t (x) with the parameter βt.

If f(x) ∈ Cseq
fb[t]+1(x), for all x ∈ D, then f(x) ∈ Cbatch

t′ (x) for all x ∈ D and all t′ such

that fb[t] + 1 ≤ t′ ≤ t.

Proof Noting that the confidence intervals Cseq
fb[t]+1(x) and Cbatch

t (x) are both centered on

µfb[t](x),

Cseq
fb[t]+1(x) ⊆ Cbatch

t (x), ∀x ∈ D ⇐⇒ α
1/2
fb[t]+1σfb[t](x) ≤ β1/2t σt−1(x), ∀x ∈ D.

By the definition of the conditional mutual information with respect to f(x), and by em-
ploying Equation (18), Equation (9) follows. Choosing βt as in Equation (19), it follows
that

α
1/2
fb[t]+1σfb[t](x) = β

1/2
t exp (−C) · σfb[t](x) ≤ β1/2t σt−1(x),

where the inequality is based on Equation (9), thus implying Cseq
fb[t]+1(x) ⊆ Cbatch

t (x)∀x ∈ D.

In turn, if f(x) ∈ Cseq
fb[t]+1(x), then f(x) ∈ Cbatch

t (x). Further, since Equation (19) relates

βt to αfb[t]+1, then βt′ = βt for all t′ ∈ {fb[t] + 1, . . . , t}. Since σt′(x) is non-increasing,

Cbatch
t′ (x) ⊇ Cbatch

t (x) for all such t′, completing the proof.

With a bound C on the conditional mutual information gain with respect to f(x) for
any x ∈ D, as in Equation (18), Lemma 8 links the confidence intervals and GP-BUCB
decision rule at time t with the GP posterior after observation fb[t]. Lemma 9 extends this
link to all t ≥ 1 and all x ∈ D, given a high-probability guarantee of confidence interval
correctness at the beginning of all batches.
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Lemma 9 Let there exist a constant C > 0, a sequence of actions {x1, . . . , xt−1}, and a
feedback mapping fb[t] such that for all x ∈ D

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀t ≥ 1.

Let βt = exp(2C)αfb[t]+1, ∀t ≥ 1; then

P (f(x) ∈ Cseq
fb[t]+1(x), ∀x ∈ D, ∀t ≥ 1) ≥ 1− δ

=⇒ P (f(x) ∈ Cbatch
t (x), ∀x ∈ D, ∀t ≥ 1) ≥ 1− δ.

Proof For every t ≥ 1, there exists a τ ≥ 0 such that τ = fb[t]; let S = {τ1, τ2, . . . } be the
set of all such images under fb, such that fb[t] ∈ S for all t ≥ 1. If βt is chosen as specified,
then for any t and τ = fb[t], if f(x) ∈ Cseq

τ+1(x), Lemma 8 implies that f(x) ∈ Cbatch
t (x). If

f(x) ∈ Cseq
τ+1(x) for all x ∈ D and τ ∈ S, then f(x) ∈ Cbatch

t (x) for all x ∈ D and all t ≥ 1
because every t has an image in S. Thus f(x) ∈ Cseq

τ+1(x), ∀x ∈ D,∀τ ∈ S =⇒ f(x) ∈
Cbatch
t (x),∀x ∈ D,∀t ≥ 1. The lemma follows because if the probability of the sufficient

condition is at least 1 − δ, then the probability of the implied condition must also be at
least 1− δ.

The high-probability confidence intervals are next related to the instantaneous regret
and thence to the cumulative regret. We first state several supporting lemmas.

Lemma 10 (From Lemma 5.2 of Srinivas et al., 2012) If f(x) ∈ Cbatch
t (x) for all x ∈ D

and all t ≥ 1, when actions are selected via Equation (7), rt ≤ 2β
1/2
t σt−1(xt), ∀t ≥ 1.

Proof By Equation (7), xt is chosen at each time t such that µfb[t](x) + β
1/2
t σt−1(x) ≤

µfb[t](xt) + β
1/2
t σt−1(xt), ∀x ∈ D, including for any optimal choice x = x∗. Since the

instantaneous regret is defined as rt = f(x∗) − f(xt) and by assumption both f(x∗) and
f(xt) are contained within their respective confidence intervals,

rt ≤ [µfb[t](x
∗) + β

1/2
t σt−1(x

∗)]− [µfb[t](xt)− β
1/2
t σt−1(xt)]

≤ [µfb[t](xt) + β
1/2
t σt−1(xt)]− [µfb[t](xt)− β

1/2
t σt−1(xt)]

≤ 2β
1/2
t σt−1(xt).

Lemma 11 (Lemma 5.3 of Srinivas et al., 2012) The mutual information gain with respect
to f for the actions selected, {x1, . . . ,xT }, can be expressed in terms of the predictive
variances as

I(f ;y1:T ) =
1

2

T∑
t=1

log(1 + σ−2n σ2t−1(xt)).

This statement is a result of the additivity of the conditional mutual information gain of
observations of a Gaussian.
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Lemma 12 (Extension of Lemma 5.4 of Srinivas et al., 2012) Let k(x,x) ≤ 1, ∀x ∈ D. If
f(x) ∈ Cbatch

t (x), ∀x ∈ D, ∀t ≥ 1, and given that actions xt, ∀t ∈ {1, . . . , T} are selected
using Equation (7), it holds that

RT ≤
√
TC1βTγT ,

where C1 = 8/ log(1 + σ−2n ), γT is defined in Equation (4), and βt is defined in Equation
(19).

Proof Given f(x) ∈ Cbatch
t (x), ∀x ∈ D, ∀t ≥ 1, Lemma 10 bounds the instantaneous

regret rt as rt ≤ 2β
1/2
t σt−1(xt), ∀t ≥ 1. The square of the right-hand quantity may be

manipulated algebraically to show that 4βtσ
2
t−1(xt) ≤ C1βt[1/2 log(1 + σ−2n σ2t−1(xt))]. This

manipulation exploits the facts that σ2t−1(x) ≤ k(x,x) ≤ 1,∀x ∈ D and that x/ log(1 + x)
is non-decreasing for x ∈ [0,∞). Summing in time and noting that βt is non-decreasing,∑T

t=1 4βtσ
2
t−1(xt) ≤ C1βT

∑T
t=1 1/2 log(1 + σ−2n σ2t−1(xt)) = C1βT I(f ;y1:T ) by Lemma 11.

Thus, by Equation (4),
∑T

t=1 r
2
t ≤ C1βTγT . The claim then follows as a consequence of the

Cauchy-Schwarz inequality, since R2
T ≤ T

∑T
t=1 r

2
t .

Proof [Proof of Theorem 2, Case 1] Taken together, Lemmas 8 through 12, a bound C
satisfying Equation (18), and a high-probability guarantee that some set of sequential con-
fidence intervals always contain the values of f allow us to construct a batch algorithm with
high-probability regret bounds. Lemma 7 gives us precisely such a guarantee in the case
that D is of finite size. Employing Lemma 7 and Lemma 12, and noting that the result
holds for all T ≥ 1, Case 1 of Theorem 2 follows as an immediate corollary.

A.2 Case 2: D ⊂ Rd

Case 2 of Theorem 2 deals with decision sets which are continuous regions of Rd. As a
note, we assume that it is possible to select xt ∈ D according to Equation (7), i.e., as the
maximizer of the decision rule over D. This assumption is non-trivial in practice; this is
a non-convex optimization problem in general, though of a function which is perhaps not
too ill-behaved, e.g., it is differentiable under the assumptions of Case 2. Nevertheless, we
make this assumption and proceed with our analysis.

In the proof of Lemma 7, P (∃x ∈ D : |f(x)− µt−1(x)| > β1t /2σt−1(x)) is bounded via
a union bound over D as at most |D| exp(−αt/2). Unfortunately, since this bound scales
directly with the number of elements in D, this is not useful when D is continuous. We
instead use a very similar analysis to establish high-probability confidence intervals on a
subset Dt of D; using a high-probability bound on the derivatives of the sample paths drawn
from the GP, we then proceed to upper-bound f(x) for x ∈ D \Dt. Next, we establish a
high-probability guarantee for the containment of the reward corresponding to the actions
actually taken within their respective confidence bounds at any time, and combine these
results to bound the regret rt suffered in round t. With some slight modifications and
careful choices of the scaling of Dt and βt, the remainder of the analysis from Case 1 can
be employed to establish the required bound on RT for all T ≥ 1.
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Lemma 13 (From Lemma 5.6 of Srinivas et al., 2012) Specify a discrete set Dt ⊂ D
for every t ≥ 1, where D ⊆ [0, l]d and |Dt| is finite. Also specify δ ∈ (0, 1) and let βt =
2 exp(2C) log(|Dt|πt/δ), where πt > 0,∀t ≥ 1,

∑∞
t=1 π

−1
t = 1, and I(f(x);yfb[t]+1:t−1|y1:t) ≤

C,∀x ∈ D,∀t ≥ 1. Then,

P (|f(x)− µfb[t](x)| ≤ β1/2t σt−1(x),∀x ∈ Dt,∀t ≥ 1) ≥ 1− δ.

Proof The proof of this lemma is very similar to that of Lemma 7. First, conditioned on ac-
tions {x1,x2, . . . ,xfb[t]} and observations {y1, y2, . . . , yfb[t]}, f(x) ∼ N (µfb[t](x), σ2fb[t](x));

thus, (f(x) − µfb[t](x))/σfb[t](x) ∼ N (0, 1). If a ∼ N (0, 1), c ≥ 0, then P (a > c) ≤
1/2 exp(−c2/2). Using this inequality and a union bound over all x ∈ Dt, we obtain
the following result for general βt > 0:

P

( |f(x)− µfb[t](x)|
σfb[t](x)

≤ β1/2t

σt−1(x)

σfb[t]
,∀x ∈ Dt

)
≥ 1− |Dt| exp

(
−βt

2

σ2t−1(x)

σ2fb[t]

)
≥ 1− |Dt| exp(−βt exp(−2C)/2).

Analogous to the proof of Lemma 7, let δ/πt = |Dt| exp(−βt exp(−2C)/2), implicitly defin-
ing βt, and union bound in time, yielding the desired result.

Note that if at each time t ≥ 1 we specify a particular zt ∈ D and choose Dt = zt,

Lemma 13 implies that P (|f(zt) − µfb[t](zt)| ≤ β̃
1/2
t σt−1(zt), ∀t ≥ 1) ≥ 1 − δ, where β̃t ≥

2 exp(2C) log(πt/δ). This fact will be employed for zt = xt below.
Next, we upper bound the value of f(x∗), where x∗ is possibly within D \ Dt. Let

[x]t = argminx′∈Dt ||x− x′||1, i.e., the closest point in Dt to x, in the sense of 1-norm. As
a technical point, [x]t may not be uniquely determined; any 1-norm minimizing element of
Dt is sufficient for the following discussion.

Lemma 14 (From Lemma 5.7 of Srinivas et al., 2012) Specify δ ∈ (0, 1) and let τt be a
time-varying parameter. Let Dt ⊂ D be chosen such that ||x− [x]t||1 ≤ ld/τt,∀x ∈ D,∀t ≥
1. Let the statement

P (sup
x∈D
|∂f(x)/∂xi| < L,∀i ∈ {1, . . . , d}) ≥ 1− da exp(−L2/b2)

hold for any L > 0 for some corresponding a ≥ δ/(2d), b > 0, where xi denotes the ith
dimension of x. Choose L = b

√
log(2da/δ), τt = dt2bl

√
log(2da/δ), and βt ≥ 2 exp(2C) ·

log(2|Dt|πt/δ), where πt > 0,∀t ≥ 1,
∑∞

t=1 π
−1
t = 1, and I(f(x);yfb[t]+1:t−1|y1:t) ≤ C,∀x ∈

D,∀t ≥ 1. Then,

P

(
|f(x∗)− µfb[t]([x∗]t)| < β

1/2
t σt−1([x

∗]t) +
1

t2
, ∀t ≥ 1

)
≥ 1− δ

Proof For the specified choice of L, we obtain P (|∂f(x)/∂xi| < b
√

log(2da/δ),∀x ∈
D,∀i ∈ {1, . . . , d}) ≥ 1− δ/2. Thus, with probability ≥ 1− δ/2,

|f(x∗)− f([x∗]t)| ≤ b
√

log(2da/δ) · ||x∗ − [x∗]t||1
≤ b
√

log(2da/δ) · ld/τt

≤ 1

t2
.

4093



Desautels, Krause, and Burdick

By Lemma 13, for βt as chosen above, |f([x∗]t)−µfb[t]([x∗]t)| ≤ β
1/2
t σt−1([x

∗]t), ∀t ≥ 1 with
probability ≥ 1 − δ/2. The result follows by a union bound on the possible failures these
two events.

Note that Lemma 14 states that if we know the size of a suitable discretization Dt of D, we
may choose βt such that we may establish a high probability upper bound on f over all of
D. Note also that a larger βt is acceptable and that Dt itself is not required to prove the
result. Our next result proves the existence and size of a sufficient discretization of D; we
will then choose βt according to this provably existent discretization and entirely avoid its
explicit construction.

In the following lemma, dτte denotes the smallest integer which is at least τt.

Lemma 15 There exists a discretization Dt of D ⊆ [0, l]d, D compact and convex, where
|Dt| ≤ dτted and ||x− [x]t||1 ≤ ld

τt
, ∀x ∈ D.

Proof It is sufficient to construct an example discretization. One way to do so is to first
generate an ε-cover of [0, l]d ⊇ D, where ε = ld/2τt; this can be done by placing a ball

centered at each location in { l
2dτte ,

3l
2dτte , . . . ,

(2dτte−1)l
2dτte }

d, such that each point in [0, l]d (and

thus D) is at most ld/2dτte ≤ ld/2τt from the nearest point in this set (i.e., is within at
least one of the closed balls) and every ball center lies within [0, l]d. Denote this set of ball
centers A and note that |A| = dτted. For each x ∈ A, denote the corresponding 1-norm
ball of radius ld/2τt as B1

ld/2τt
(x). We now use A to construct Dt, such Dt is an ε-cover

for D, for ε = ld/τt. Begin with Dt empty and iterate over x ∈ A. If x ∈ D, add it to
Dt. If x /∈ D, but B1

ld/2τt
(x) ∩D 6= ∅, add any point in this intersection to Dt. If x /∈ D

and B1
ld/2τt

(x) ∩ D = ∅, do not add x to Dt. By construction, x ∈ Dt =⇒ x ∈ D.

Since the triangle inequality implies B1
ld/2τt

(x) ⊂ B1
ld/τt

(x′), ∀x′ ∈ B1
ld/2τt

(x), we have the

result that
⋃

x′∈Dt B
1
ld/τt

(x′) ⊇
⋃

x:x∈A, B1
ld/2τt

(x)∩D 6=∅B
1
ld/2τt

(x), where this second union

is by definition a cover for D. Dt is thus an ε-cover for D for ε = ld/τt and therefore a
satisfactory discretization of size no more than dτted.

Lemma 14 also rests on a bound on the derivatives of f(x) with respect to xi, ∀i =
1, . . . , d. Such a bound can be created if the kernel function k(x,x′) defining the distribution
over f is sufficiently many times differentiable with respect to x and x′.

Lemma 16 (From Srinivas et al., 2012, Appendix I) If f ∼ GP(0, k(x,x′)) and derivatives
of k(x,x′) exist up to fourth order with respect to x,x′ ∈ D, then f is almost surely
continuously differentiable and there exist positive constants a, b, and L, such that

P (|f(x)− f(x′)| ≤ L||x− x′||1, ∀x,x′ ∈ D) ≥ 1− δ,

where L = b
√

log(da/δ).

Proof If all fourth order partial derivatives of k(x,x′) exist, the derivatives of f are them-
selves Gaussian processes with a kernel function corresponding to the twice differentiated
k and there exist positive constants a, {b1, . . . , bd} such that P (supx∈D |∂f/∂xj | > L1) ≤
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a exp(−bjL2
1),∀j ∈ {1, . . . , d}, for any L1 > 0 (Theorem 5 of Ghosal and Roy, 2006). Let

L1 =
√

log(da/δ)/(minj
√
bj). Note that a can be chosen arbitrarily large and a ≥ δ/d

(required so the argument of the logarithm is ≥ 1) implies (da/δ)(−bj/(minj bj)) ≤ δ/da;
union bounding in j, we thus obtain that P (supx∈D |∂f/∂xj | > L1, ∀j ∈ {1, . . . , d}) ≤ δ.

Reparameterizing, choose b ≥ maxj b
−1/2
j > 0, and define L = b

√
log(da/δ). Using this

bound on the supremum of the derivatives of f , and a piecewise construction of the path
from x to x′ according to the unit vectors, the result follows.

In the proof of Lemma 15, we bound the size of the virtual decision set Dt as dτted. We
can instead use τdt if τt is an integer. Luckily, we can always make a and b bigger, e.g., such
that bl

√
log(da/δ) is an integer. If this quantity is an integer, so is τt = dt2bl

√
log(da/δ).

Next, we bound the regret rt incurred at round t.

Lemma 17 (From Lemma 5.8 of Srinivas et al., 2012) Specify δ ∈ (0, 1). Let the statement

P (sup
x∈D
|∂f(x)/∂xi| < L,∀i ∈ {1, . . . , d}) ≥ 1− da exp(−L2/b2)

hold for any L > 0 and positive constants a, b. Choose a, b such that a ≥ δ/(4d) and
bl
√

log(4da/δ) is an integer. Let actions be selected using Equation (7), where

βt = 2 exp(2C)[log(4πt/δ) + d log(dt2bl
√

log(4da/δ))],

πt > 0,∀t ≥ 1,
∑∞

t=1 π
−1
t = 1, and I(f(x);yfb[t]+1:t−1|y1:t) ≤ C,∀x ∈ D,∀t ≥ 1. Then,

P (rt ≤ β1/2t σt−1(x) + t−2, ∀t ≥ 1) ≥ 1− δ.

Proof By Lemma 15, for any round t, we may construct a discretization Dt of size no more
than dτted, such that ||x− [x]t||1 ≤ ld/τt, where τt = dt2bl

√
log(4da/δ) and τt is an integer.

Choosing βt as specified and implicitly constructing such a Dt, by Lemma 14, it follows that

P (|f(x∗) − µ([x∗]fb[t])| < β
1/2
t σt−1([x

∗]t) + t−2) ≥ 1 − δ/2. Applying Lemma 13 to every

xt, t ≥ 1, for any β̃t ≥ 2 exp(2C) log(2πt/δ), P (|f(xt)− µfb[t](xt)| ≤ β̃
1/2
t σt−1(xt)∀t ≥ 1) ≥

1− δ/2. As specified, βt ≥ 2 exp(2C) log(2πt/δ), and so f(xt) is bounded with probability

≥ 1−δ/2. By Equation (7), µfb[t](xt)+β
1/2
t σt−1(xt) ≥ µfb[t](x)+β

1/2
t σt−1(x),∀x ∈ D,∀t ≥

1, and so,

rt = f(x∗)− f(xt)

≤ [µfb[t]([x
∗]t) + β

1/2
t σt−1([x

∗]t) + t−2]− [µfb[t](xt)− β
1/2
t σt−1(xt)]

≤ [µfb[t](xt) + β
1/2
t σt−1(xt) + t−2]− [µfb[t](xt)− β

1/2
t σt−1(xt)]

= 2β
1/2
t σt−1(xt) + t−2,

with probability ≥ 1− δ.

Proof [Proof of Theorem 2, Case 2] By Lemma 17, for βt = 2 exp(2C)[log(4πt/δ) +

d log(dt2bl
√

log(4da/δ))], it follows that rt ≤ 2β
1/2
t σt−1(xt) + t−2,∀t ≥ 1, with probability
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≥ 1− δ. Consequently,

RT =
T∑
t=1

rt ≤
T∑
t=1

2β
1/2
t σt−1(xt) +

T∑
t=1

t−2

≤
√
TC1βTγT + π2/6,

for all T ≥ 1, with probability ≥ 1−δ, where C1 = 8/ log(1+σ−2n ) and the second inequality
follows via the argument advanced in the proof of Lemma 12 in Case 1; this argument uses
the information gain and Lemma 11 to bound the sum of the squares of the terms, and then
the Cauchy-Schwarz inequality to bound the original sum. Theorem 2, Case 2 follows.

A natural extension is to the case where the GP prior mean is non-zero, but is known
and Lipschitz-continuous. This is straight-forward, since bounds on supx∈D |∂f(x)/∂xi| or
the generalization error in the prior mean may be naturally obtained.

A.3 Case 3: Finite RKHS Norm of f

Case 3 involves a reward function f with a finite RKHS norm with respect to the algorithm’s
GP prior. Fortunately, Srinivas et al. (2012) again have a result which creates confidence
intervals in this situation.

Lemma 18 (Theorem 6 from Srinivas et al., 2012) Specify δ ∈ (0, 1). Let k(x,x′) be an
assumed Gaussian process kernel and let ||f ||k be the RKHS norm of f with respect to k. Let
k be such that k(x,x) ≤ 1 for all x ∈ D. Assume noise variables εt are from a martingale
difference sequence, such that they are uniformly bounded by σn. Define

αt = 2M + 300γt log3(t/δ),

where M ≥ ||f ||2k. Then

P (|f(x)− µt−1(x)| ≤ α1/2
t σt−1(x), ∀x ∈ D,∀t ≥ 1) ≥ 1− δ.

In brief, the reproducing property of kernels implies that the corresponding inner product
of g(x) with k(x,x′), denoted 〈g(x), k(x,x′)〉k, is 〈g(x), k(x,x′)〉k = g(x′) for any kernel
k, and so, using such an inner product and the Cauchy-Schwarz inequality,

|µt(x)− f(x)| =
√
〈µt(x′)− f(x′), kt(x,x′)〉2kt

≤
√
〈kt(x,x′), kt(x,x′)〉kt〈µt(x)− f(x), µt(x)− f(x)〉kt

=
√
kt(x,x)||µt − f ||kt = σt(x)||µt − f ||kt ,

where kt is the posterior kernel and µt is the posterior mean at time t. This implies
that an upper bound on ||µt − f ||kt gives an upper bound on the regret which can be
incurred at the selection of action t + 1 (via the argument of Lemma 10), suggesting that

our UCB width multiplier α
1/2
t should have a form related to the growth of ||µt − f ||kt .

Since ||g||2kt = ||g||2k + σ−2n
∑t

τ=1 g(xτ )2 for a function g, we may substitute g = µt − f and
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then factor the squared norm. We thus obtain a term in ||f ||2k and a second term in the
observations and noise terms yt and εt. We assume we have a bound M ≥ ||f ||2k, and so
our problem reduces to choosing an αt sufficiently large to surpass the growth of the second
term. Through an inductive argument on the probability of confidence interval failure up
to the tth action and using the αt chosen, Srinivas et al. (2012) show that these confidence
intervals hold with probability at least 1− δ. Importantly, this argument does not use the
decision-making process of the algorithm, instead only relying on the algorithm’s internal
GP posterior over f and the characteristics of the martingale noise process. We refer the
interested reader to Appendix II of Srinivas et al. (2012) for the details.5

In terms of proving Case 3 of Theorem 2, Lemma 18 is just the sort of statement we
need; it establishes a precisely analogous result to Lemma 7, providing a set of confidence
intervals Cseq

τ (x) such that for τ = fb[t] + 1, we can construct βt and thus Cbatch
t (x) such

that Cbatch
t (x) ⊇ Cseq

fb[t]+1(x),∀x ∈ D,∀t ≥ 1.

Proof [Proof of Theorem 2, Case 3] By Lemma 18, for the specified value of δ, and
choosing αt = 2M + 300γt log3(t/δ), P (f(x) ∈ Cseq

τ (x), ∀x ∈ D,∀τ ≥ 1) ≥ 1 − δ. Let
βt = exp(2C)αfb[t]+1, where C satisfies Equation (18); by Lemmas 8 and 9, P (f(x) ∈
Cbatch
t (x),∀x ∈ D,∀t ≥ 1) ≥ 1 − δ. Then, by Lemma 10, the instantaneous regret is

bounded as rt ≤ β
1/2
t σ2t−1(x) for each t ≥ 1. Application of Lemmas 11 and 12 yields the

result.

Appendix B. Initialization Set Size Bounds

Thorough initialization of GP-BUCB can drive down the constant C, which bounds the
information which can be hallucinated in the course of post-initialization batches and also
governs the asymptotic scaling of the regret bound with batch size B. First, we connect
the information which can be gained in post-initialization batches with the amount of
information being gained in the initialization, through Lemma 4, the formal statement
of which is in Section 4.5, and the proof of which is presented here.

Proof [Proof of Lemma 4] Since the initialization procedure is greedy, the marginal infor-
mation gain 1/2 log(1 + σ−2n σ2t−1(x)) is a monotonic function of σt−1(x), and information
gain is submodular (See Section 3.3), the information gain from yT init , which corresponds to
xinit
T init , the last element of the initialization set, must be the smallest marginal information

gain in the initialization process, and thus no greater than the mean information gain, i.e.,

I

(
f ;yT init | yDinit

T init−1

)
≤ I

(
f ;yDinit

T init

)
/T init.

5. In the proof of Lemma 7.2 of Srinivas et al. (2012), the (GP-UCB-type) algorithm’s internal GP posterior
model of f is exploited to examine ||µt−f ||kt in terms of the model’s individual conditional distributions
for yτ , τ = 1, . . . , t. This argument relies on the GP model and its assumption of i.i.d. Gaussian noise,
but does not change or violate the problem assumption that the actual observation noise εt is from an
arbitrary, uniformly bounded martingale difference sequence.
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Further, again because information gain is submodular and the initialization set was con-
structed greedily, no subsequent action can yield greater marginal information gain. Thus,

γinitB−1 ≤ (B − 1) · I
(
f ;yT init | yDinit

T init−1

)
.

Combining these two inequalities with the definition of γT init yields the result.

Next, we examine how Lemma 4 can be used to bound the regret of the two-stage
algorithm. In the two stage algorithm, we may consider two sets of confidence intervals,
which do not coincide during the construction of the initialization set, and do coincide
afterward; specifically, let f̃b[t] be a virtual feedback mapping which receives feedback at
every point the actual feedback mapping fb[t] does, i.e., at time T init and at times thereafter
such that Equation (10) is satisfied for all t ≥ T init +1 for C = 1/2 log(C ′), and in addition,
receives feedback during the construction of the initialization set such that Equation (10)
is also satisfied during this time. While the virtual feedback mapping f̃b[t] is of course
not used by the algorithm to construct confidence intervals or make decisions, it will prove
useful for our proof.
Proof [Theorem 5] Assume that there can be constructed an initialization set Dinit of size
T init, subsequent to which the information gain of any batch selected by the GP-BUCB
decision rule with respect to f(x) for any x ∈ D is no more than C. Then, for the values
of βt given in the statement of Theorem 2 and using C = 1/2 log(C ′), where C ′ is dictated
by the choice of kernel,

P (|f(x)− µf̃b[t](x)| ≤ β1/2t σt−1(x), ∀x ∈ D,∀t ≥ 1) ≥ 1− δ

in Cases 1 & 3, and the corresponding statement with |f(x)−µf̃b[t](x)| ≤ β1/2t σt−1(x)+ t−2

in Case 2. This result follows from the following sets of lemmas: 7, 8, and 9 (Case 1); 13,
14, 15, and 16 (Case 2); and 18, 8, and 9 (Case 3). Since the actual feedback mapping fb[t]
and f̃b[t] coincide for t ≥ T init + 1, the virtual feedback mapping’s probability of confidence
interval containment (correctness to known error in Case 2) at all times t ≥ 1 is a lower
bound on the probability that the true, post-initialization confidence intervals constructed
using fb[t] are correct (correct to known error in Case 2); i.e.,

P (|f(x)−µfb[t](x)| ≤ β1/2t σt−1(x), ∀x ∈ D,∀t ≥ T init + 1)

≥ P (|f(x)− µf̃b[t](x)| ≤ β1/2t σt−1(x), ∀x ∈ D,∀t ≥ 1)

≥ 1− δ

in Cases 1 & 3 and similarly,

P (|f(x)− µfb[t](x)| ≤ β1/2t σt−1(x) + t−2,∀x ∈ D,∀t ≥ T init + 1) ≥ 1− δ

in Case 2. By Lemma 11, I(yT init+1:T ; {f(x1), . . . , f(xT )}) = 1
2

∑T
t=T init+1 log(1+σ−2n σ2t−1(xt)).

DefineRT init+1:T =
∑T

t=T init+1 rt. By the same Cauchy-Schwarz argument used in each proof
in Appendix A, with probability ≥ 1− δ,

RT init+1:T ≤
√

(T − T init)C1βTγinit(T−T init)
≤
√
TC1βTγT ,
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for all T ≥ 1, in Cases 1 & 3. The second inequality in the above argument is wasteful, but
simplifies the statement of the theorem without affecting asymptotic scaling. In Case 2, we
must amend the final bound by adding a term π2/6 to the right-hand side as an upper bound
on
∑T

t=T init+1 t
−2, itself bounding the generalization error from the virtual discretization.

Noting that RT = RT init + RT init+1:T , RT init =
∑T init

t=1 f(x∗) − f(xt) ≤ 2T init||f ||∞, C ′ ≥ 1,
and βt = (C ′)2αfb[t]+1 (αt in Case 2), the result follows.

B.1 Initialization Set Size: Linear Kernel

For the linear kernel, there exists a logarithmic bound on the maximum information gain
of a set of queries, precisely, ∃ η ≥ 0 : γt ≤ ηd log (t+ 1) (Srinivas et al., 2010). We attempt
to initialize GP-BUCB with a set Dinit of size T init, where, motivated by this bound and the
form of Inequality (15), we assume T init is of the form

T init = kηd(B − 1) logB. (20)

We must show that there exists a k of finite size for which an initialization set of size
T init, as in Equation (20), implies that any subsequent set S, |S| = B − 1, produces a
conditional information gain with respect to f of no more than C. This requires showing
that the inequality B−1

T initγT init ≤ C holds for this choice of k and thus T init. Since we consider
non-trivial batches, i.e., B − 1 ≥ 1, if k is large enough that kηd(B − 1) ≥ 1,

log (log (B) + 1/(kηd(B − 1))) ≤ log (log (B) + 1) ≤ logB.

Using Equation (20) and the bound for γT init , and following algebraic rearrangement, this
inequality implies that if kηd(B − 1) ≥ 1,

B − 1

T init
γT init ≤ C ⇐=

log k

k logB
+

log η + log d

k logB
+

2

k
≤ C.

By noting that the maximum of log k
k over k ∈ (0,∞) is 1/e and choosing for convenience

C = 2/e, we obtain for k ≥ 1/(ηd(B − 1)):

B − 1

T init
γT init ≤

2

e
⇐=

1

e logB
+

1

k

(
log η + log d+ 2 logB

logB

)
≤ 2

e
.

Choosing k to satisfy both constraints simultaneously,

B − 1

T init
γT init ≤

2

e
⇐= k ≥ max

[
1

ηd(B − 1)
,
e(log η + log d+ 2 logB)

2 log (B)− 1

]
.

Thus, for a linear kernel and such a k, an initialization set Dinit of size T init, where
T init ≥ kηd(B − 1) log (B), ensures that the hallucinated conditional information in any
future batch of size B is ≤ 2

e .
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B.2 Initialization Set Size: Matérn Kernel

For the Matérn kernel, γt ≤ νtε, ε ∈ (0, 1) for some ν > 0 (Srinivas et al., 2010). Hence:

(B − 1)

T init
γT init ≤ C ⇐=

ν(B − 1)(T init)ε

T init
= ν(B − 1)(T init)ε−1 ≤ C

⇐⇒ T init ≥
(
ν(B − 1)

C

)1/(1−ε)
.

Thus, for a Matérn kernel, an initialization set Dinit of size T init ≥
(
ν(B−1)

C

)1/(1−ε)
implies that the conditional information gain of any future batch is ≤ C. Choosing C = 1,
we obtain the results presented in the corresponding row of Table 1.

B.3 Initialization Set Size: Squared-Exponential (RBF) Kernel

For the RBF kernel, the information gain is bounded by an expression similar to that of the
linear kernel, γt ≤ η(log (t+ 1))d+1 (Srinivas et al., 2010). Again, motivated by Inequality
(15), one reasonable choice for an initialization set size is T init = kη(B − 1)(logB)d+1. We
again attempt to show that there exists a finite k such that the conditional information
gain of any post-initialization batch is ≤ C. By a similar parallel argument to that for the
linear kernel (Appendix B.1), and assuming that B ≥ 2 and kη(B − 1) ≥ 1, it follows that

B − 1

T init
γT init ≤ C ⇐=

log k + log η + log (B − 1)

k1/(d+1)(logB)

log [(logB)d+1 + 1]

k1/(d+1)(logB)
≤ C1/(d+1)

⇐=
log k

k1/(d+1)(logB)
+

log η

k1/(d+1)(logB)
+

(d+ 2)

k1/(d+1)
≤ C1/(d+1),

where the last implication follows because for a ≥ 0, b ≥ 1, (ab + 1) ≤ (a+ 1)b.
By noting that the maximum of k−1/(d+1) log k over k ∈ (0,∞) is (d+1)/e and choosing

C = (2(d+ 1)/e)d+1, we obtain for k ≥ 1/(η(B − 1)):

B − 1

T init
γT init ≤

(
2d+ 2

e

)d+1

⇐=
d+ 1

e logB
+

1

k1/(d+1)

(
log η + (d+ 2) logB

logB

)
≤ 2d+ 2

e
,

or equivalently, incorporating the constraint k ≥ 1/(η(B − 1)) explicitly,

B − 1

T init
γT init ≤

(
2d+ 2

e

)d+1

⇐= k ≥ max

[
1

η(B − 1)
,

(
e(log η + (d+ 2) logB)

(d+ 1)(2 log (B)− 1)

)d+1
]
.

Thus, for a Squared-Exponential kernel and such a k, an initialization set Dinit of size
T init, where T init ≥ kη(B − 1)(log (B))d+1, ensures that the hallucinated conditional infor-

mation in any future batch of size B is no more than
(
2d+2
e

)d+1
.
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Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Machine
Learning: ECML, pages 282–293, 2006.

Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in
graphical models. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI), pages 324–331, 2005.

Andreas Krause and Cheng Soon Ong. Contextual Gaussian process bandit optimization.
In Advances in Neural Information Processing Systems (NIPS), pages 2447–2455, 2011.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in Gaus-
sian processes: Theory, efficient algorithms and empirical studies. Journal of Machine
Learning Research (JMLR), 9:235–284, February 2008.

Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait opti-
mization with Gaussian process regression. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI), pages 944–949, 2007.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions.
In J. Stoer, editor, Optimization Techniques, volume 7 of Lecture Notes in Control and
Information Sciences, pages 234–243. Springer, 1978.

Jonas Mockus. Bayesian Approach to Global Optimization: Theory and Applications.
Kluwer Academic Publishers, 1989.

4102



Parallelizing Exploration-Exploitation in GP Bandit Optimization

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian methods
for seeking the extremum, volume 2, pages 117–129. Elsevier, 1978.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning
(GPML) toolbox. Journal of Machine Learning Research (JMLR), 11:3011–3015, 2010.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535, 1952.

Ilya O. Ryzhov, Warren B. Powell, and Peter I. Frazier. The knowledge gradient algorithm
for a general class of online learning problems. Operations Research, 60(1):180–195, 2012.

Bernhard Schölkopf and Alex J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. The MIT Press, 2002.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In Proceedings of
the 27th International Conference on Machine Learning (ICML), pages 1015–1022, 2010.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-
theoretic regret bounds for Gaussian process optimization in the bandit setting. Infor-
mation Theory, IEEE Transactions on, 58(5):3250–3265, 2012.

Christian Widmer, Nora C. Toussaint, Yasemin Altun, and Gunnar Rätsch. Inferring latent
task structure for multitask learning by multiple kernel learning. BMC Bioinformatics,
11(Suppl 8):S5, 2010.

4103



 



Journal of Machine Learning Research 15 (2014) 4105-4143 Submitted 12/12; Revised 5/14; Published 12/14

Active Imitation Learning: Formal and Practical Reductions
to I.I.D. Learning

Kshitij Judah judahk@eecs.oregonstate.edu

Alan P. Fern afern@eecs.oregonstate.edu

Thomas G. Dietterich tgd@eecs.oregonstate.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of Electrical Engineering and Computer Science

Oregon State University

1148 Kelley Engineering Center

Corvallis, OR 97331-5501, USA

Editor: Joelle Pineau

Abstract

In standard passive imitation learning, the goal is to learn a policy that performs as well
as a target policy by passively observing full execution trajectories of it. Unfortunately,
generating such trajectories can require substantial expert effort and be impractical in
some cases. In this paper, we consider active imitation learning with the goal of reducing
this effort by querying the expert about the desired action at individual states, which are
selected based on answers to past queries and the learner’s interactions with an environment
simulator. We introduce a new approach based on reducing active imitation learning to
active i.i.d. learning, which can leverage progress in the i.i.d. setting. Our first contribution
is to analyze reductions for both non-stationary and stationary policies, showing for the
first time that the label complexity (number of queries) of active imitation learning can
be less than that of passive learning. Our second contribution is to introduce a practical
algorithm inspired by the reductions, which is shown to be highly effective in five test
domains compared to a number of alternatives.

Keywords: imitation learning, active learning, active imitation learning, reductions

1. Introduction

Traditionally, passive imitation learning involves learning a policy that performs nearly as
well as an expert’s policy based on a set of trajectories of that policy. However, generating
such trajectories is often tedious or even impractical for an expert (e.g., real-time low-level
control of multiple game agents). In order to address this issue, we consider active imitation
learning where full trajectories are not required, but rather the learner asks queries about
specific states, which the expert labels with the correct actions. The goal is to learn a policy
that is nearly as good as the expert’s policy using as few queries as possible.

The active learning problem for i.i.d. supervised learning1 has received considerable
attention both in theory and in practice (Settles, 2012), which motivates leveraging that

1. i.i.d. stands for independent and identically distributed. The i.i.d. supervised learning setting is where
the input data during both training and testing are drawn independently from the same data distribution.
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work for active imitation learning. However, the direct application of i.i.d. approaches to
active imitation learning can be problematic. This is because active i.i.d. learning algorithms
assume access to either a target distribution over unlabeled input data (in our case states)
or a large sample drawn from it. The goal then is to select the most informative query
to ask, usually based on some combination of label (in our case actions) uncertainty and
unlabeled data density. Unfortunately, in active imitation learning, the learner does not
have direct access to the target state distribution, which is the state distribution induced
by the unknown expert policy.

In principle, one could approach active imitation learning by assuming a uniform or an
arbitrary distribution over the state space and then apply an existing active i.i.d. learner.
However, such an approach can perform very poorly. This is because if the assumed dis-
tribution is considerably different from that of the expert, then the learner is prone to ask
queries in states rarely or even never visited by the expert. For example, consider a bicycle
balancing problem. Clearly, asking queries in states where the bicycle has entered an un-
avoidable fall is not very useful, because no action can prevent a crash. However, an active
i.i.d. learning technique will tend to query in such uninformative states, leading to poor
performance, as shown in our experiments. Furthermore, in the case of a human expert,
a large number of such queries poses serious usability issues, since labeling such states is
clearly wasted effort from the expert’s perspective.

In this paper, we consider the problem of reducing active imitation learning to active
i.i.d. learning both in theory and practice. Our first contribution is to analyze the Probably
Approximately Correct2 (PAC) label complexity (number of expert queries) of a reduction
for learning non-stationary policies, which requires only minor modification to existing
results for passive learning. Our second contribution is to introduce a reduction for learning
stationary policies resulting in a new algorithm, Reduction-based Active Imitation Learning
(RAIL), and an analysis of the label complexity. The resulting complexities for active
imitation learning are expressed in terms of the label complexity for the i.i.d. case and show
that there can be significant query savings compared to existing results for passive imitation
learning. Our third contribution is to describe a new practical algorithm, RAIL-DA (for
data aggregation), inspired by the RAIL algorithm, which makes a series of calls to an active
i.i.d. learning algorithm. We evaluate RAIL-DA in five test domains and show that it is
highly effective when used with an i.i.d. algorithm that takes the unlabeled data density
into account.

The rest of the paper is organized as follows. We begin by reviewing the relevant
related work in Section 2. In Section 3, we present the necessary background material and
describe the active imitation learning problem setup. In Section 4, we present the proposed
reductions for the cases of non-stationary and stationary policies. In Section 5, we present
the RAIL-DA algorithm. In Section 6, experimental results are presented. In Section 7, we
summarize and present some directions for future research.

2. Related Work

Active learning has been studied extensively in the i.i.d. supervised learning setting (Settles,
2012) but to a much lesser degree for sequential decision making, which is the focus of

2. See Section 3.3.
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active imitation learning. Several studies have considered active learning for reinforcement
learning (RL) (Clouse, 1996; Mihalkova and Mooney, 2006; Gil et al., 2009; Doshi et al.,
2008), where learning is based on both autonomous exploration and queries to an expert.
In our imitation learning framework, in contrast, we do not assume a reward signal and
learn only from expert queries. Other work (Shon et al., 2007) studies active imitation
learning in a multiagent setting, where the expert is itself a reward seeking agent which
acts to maximize its own reward, and hence is not necessarily helpful for learning. In the
current setting, we only consider helpful experts.

One approach to imitation learning is inverse RL (IRL) (Ng and Russell, 2000), where
a reward function is learned based on a set of target policy trajectories. The learned reward
function and transition dynamics are then given to a planner to obtain a policy. There
has been limited work on active IRL. This includes Active Sampling (Lopes et al., 2009),
a Bayesian approach where the posterior over reward functions is used to select the state
with maximum uncertainty over the actions. Another Bayesian approach (Cohn et al.,
2010, 2011) models uncertainty about the entire MDP model and uses a decision-theoretic
criterion, Expected Myopic Gain (EMG), to select various types of queries to pose to the
expert, e.g., queries about transition dynamics, the reward function, or optimal action
at a particular state. For autonomous navigation tasks, Silver proposed two active IRL
techniques that request demonstrations from the expert on examples that are either novel
(novelty reduction) or uncertain (uncertainty reduction) to the learner (Silver et al., 2012).
Specifically, in novelty reduction, a start and goal location is selected such that the path that
may most likely be demonstrated by the expert results in the learner seeing novel portions
of the navigation terrain. This helps in learning behavior on previously unseen regions of
the navigation terrain. In uncertainty reduction, a start and goal location is selected such
that there is high uncertainty about the best path from start to goal.

While promising, the scalability of these approaches is hindered by the assumptions
made by IRL, and these approaches have only been demonstrated on small problems. In
particular, they require that the exact domain dynamics are provided or can be learned,
which is often not realistic, for example, in the Wargus domain considered in this paper.
Furthermore, even when a model is available, prior IRL approaches require an efficient
planner for the MDP model. For the large domains considered in this paper, standard
planning techniques for flat MDPs, which scale polynomially in the number of states, are
not practical. While there has been substantial work on MDP planning for large domains
via the use of factored representations (e.g., Boutilier et al. 1999) or simulators (e.g., Kocsis
and Szepesvri 2006), robustness and scalability are still problematic in general.

To facilitate scalability, rather than following an IRL framework we consider a direct
imitation framework where we attempt to directly learn a policy instead of the reward
function and/or transition dynamics. Unlike inverse RL, this framework does not require
an exact dynamic model nor an efficient planner. Rather, our approach requires only a
simulator of the environment dynamics that is able to generate trajectories given a policy.
The simulator may or may not be exact, and the performance of our approach will depend
on how precise the simulator is. Even though a precise simulator is not always available
for a real world domain, for many domains such a simulator is often available (e.g., flight
simulators, computer network simulators etc.), even when a compact description of the
transition dynamics and/or a planner are not.
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Active learning work in the direct imitation framework includes Confidence Based Au-
tonomy (CBA) (Chernova and Veloso, 2009), and the related dogged learning framework
(Grollman and Jenkins, 2007), where a policy is learned in an online manner as it is exe-
cuted. When the learner is uncertain about what to do at the current state, the policy is
paused and the expert is queried about what action to take, resulting in a policy update.
The execution resumes from the current state with the learner taking the action suggested
by the expert. One can roughly view CBA as a reduction of imitation learning to stream-
based active learning where the learner receives unlabeled inputs (states) one at a time and
must decide whether or not to request the label (action) of the current input. CBA makes
this decision by estimating its uncertainty about the action to take at a given state and
requesting an action label for states with uncertainty above a threshold. One difficulty in
applying this approach is setting the uncertainty threshold for querying the expert. While
an automated threshold selection approach is suggested by Chernova and Veloso (Chernova
and Veloso, 2009), our experiments show that it is not always effective (See Section 6). In
particular, we observed that the proposed threshold selection mechanism is quite sensitive
to the initial training data supplied to the learner.

Recently, Ross et al. proposed novel algorithms for imitation learning that are able to
actively query the expert on states encountered during the execution of the policy being
trained (Ross and Bagnell, 2010; Ross et al., 2011). The motivation behind these algo-
rithms is to eliminate the discrepancy between the training (expert’s) and test (learner’s)
state distributions that arises in the traditional passive imitation learning approach when-
ever the learned policy is unable to exactly mimic the expert’s policy. This discrepancy
often leads to the poor performance of the traditional approach. Note that such an issue
is not present in the i.i.d. learning setting, where mistakes made by the learner do not in-
fluence the distribution of future test samples. They show that under certain assumptions
their algorithms achieve better theoretical performance guarantees than traditional passive
imitation learning.

However, because the primary goal of these algorithms is not to minimize the labeling
effort of the expert, these algorithms query the expert quite aggressively, which makes them
impractical for human experts or computationally expensive with automated experts. To
see this, consider the first iteration of the DAGGER algorithm proposed by Ross et al. (Ross
et al., 2011). In the first iteration, DAGGER trains a policy on a set of expert-generated
trajectories, as in passive imitation learning. Thus, in practice the query complexity of
the first iteration of DAGGER will be similar to that of passive imitation learning. In
subsequent iterations, additional queries are asked by querying the expert on states along
trajectories produced by learned policies in prior iterations. In contrast, our work focuses
on active querying for the purpose of minimizing the expert’s labeling effort. In particular,
we show that an active approach can achieve an improved query complexity over passive
in theory (under certain assumptions) and in practice. Like our work, their approach also
requires a dynamics simulator to help select queries.

Our goal in this paper is to study the problem of active imitation learning and show
that it can achieve better label complexity than passive imitation learning. To this end, we
mention some prior work on the theoretical analysis of the label complexity of passive imi-
tation learning. Khardon formalized a model for passive imitation learning of deterministic
stationary policies in the realizable setting and gave a PAC-style label complexity result
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(Khardon, 1999). He showed that for any policy class for which there exists a consistent
learner, the class is efficiently learnable in the sense that only a polynomial number of expert
trajectories are required by the learner to produce a policy as good as the expert’s policy.
However, the result holds for only deterministic policies in the realizable setting and the
generalizations to stochastic policies and the agnostic setting were left as future work.

More recently, Syed and Schapire performed theoretical analysis of passive imitation
learning in a more general setting where the expert policy is allowed to be stochastic and
the learning can be agnostic (Syed and Schapire, 2010). In their analysis, they take a
reduction based approach, where the problem of passive imitation learning is reduced to
classification, and they relate the performance of the learned policy to the accuracy of the
classifier. Standard PAC analysis can then be used to show that only a polynomial number
of expert trajectories are required to achieve the desired level of performance. A similar
analysis was done by Ross and Bagnell (Ross and Bagnell, 2010). To our knowledge, no
prior work has addressed the relative sample complexity of active versus passive imitation
learning, which is one of the primary contributions of this paper. Some of the material in
this paper appeared in an earlier version of the paper (Judah et al., 2012).

3. Problem Setup and Background

In this section, we present the necessary background material and formally set up the active
imitation learning problem.

3.1 Markov Decision Processes

We consider imitation learning in the framework of Markov decision processes (MDPs). An
MDP is a tuple 〈S,A, P,R, I〉, where S is the set of states, A is the finite set of actions,
P (s, a, s′) is the transition function denoting the probability of transitioning to state s′

upon taking action a in state s, R(s, a) ∈ [0, 1] is the reward function giving the immediate
reward in state s upon taking action a, and I is the initial state distribution. A stationary
policy π : S 7→ A is a deterministic mapping from states to actions such that π(s) indicates
the action to take in state s when executing π. A non-stationary policy is a tuple π =
(π1, . . . , πT ) of T stationary policies such that π(s, t) = πt(s) indicates the action to take in
state s at time t when executing π, where T is the time horizon. The expert’s policy, which
we assume is deterministic, is denoted by π∗.

A key concept used in this paper is the notion of a state distribution of a policy at a
particular time step. We use dtπ : S 7→ [0, 1] to denote the state distribution induced at time
step t by starting in s1 ∼ I and then executing π. Note that d1

π = I for all policies. We
use dπ = 1

T

∑T
t=1 d

t
π to denote the state distribution induced by policy π over T time steps.

To sample an (s, a) pair from dtπ, we start in s1 ∼ I, execute π to generate a trajectory
T = (s1, a1, . . . , sT , aT , sT+1) and set (s, a) = (st, at). Similarly, to sample from dπ, we first
sample a random time step t ∈ {1, . . . , T}, and then sample an (s, a) pair from dtπ. Note
that in order to sample from dπ∗ (or dtπ∗), we need to execute π∗. Throughout the paper,
we assume that the only way π∗ can be executed is by querying the expert for an action
in the current state and executing the given action, which puts significant burden on the
expert.
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The T -horizon value of a policy V (π) is the expected total reward of trajectories that
start in s1 ∼ I at time t = 1 and then execute π for T steps. This can be expressed as

V (π) = T · Es∼dπ [R(s, π(s))].

The regret of a policy π with respect to an expert policy π∗ is equal to V (π∗)− V (π).

3.2 Problem Setup

Passive Imitation Learning. In imitation learning, the goal is to learn a policy π with a
small regret with respect to the expert. In this work, we consider the direct imitation learn-
ing setting, where the learner directly selects a policy π from a hypothesis class Π (e.g.,
linear action classifiers). In the passive imitation learning setup, the protocol is to provide
the learner with a training set of full execution trajectories of π∗ and the state-action pairs
(or a sample of them) are passed to a passive i.i.d. supervised learning algorithm Lp. The
hypothesis π ∈ Π that is returned by Lp is used as the learned policy.

Active Imitation Learning. To help avoid the cost of generating full trajectories, the active
imitation learning setup allows the learner to pose action queries. Each action query in-
volves presenting a state s to the expert and then obtaining the desired action π∗(s) from
the expert. In addition to having access to the expert for answering queries, we assume that
the learner has access to a simulator of the MDP. The input to the simulator is a policy π
and a horizon T . The simulator output is a state trajectory that results from executing π
for T steps starting in the initial state. The learner is allowed to interact with this simulator
as part of its query selection process. The simulator is not assumed to provide a reward
signal, which means that the learner cannot find π by pure reinforcement learning. The
only way for the learner to gain information about the target policy is through queries to
the expert at selected states.

Given access to the expert and the simulator of the MDP, the goal in active imitation
learning is to learn a policy π ∈ Π that has a small regret by posing as few queries to
the expert as possible. Note that it is straightforward for the active learner to generate
full expert trajectories by querying the expert at each state of the simulator it encounters.
Thus, an important baseline active learning approach is to generate an appropriate number
N of expert trajectories for consumption by a passive learner. The number of queries for
this baseline is N · T . A fundamental question that we seek to address is whether an active
learner can achieve the same performance with significantly fewer queries both in theory
and in practice.

3.3 Background on I.I.D. Learning

Since our analysis in the next two sections is based on reducing to active i.i.d. learning and
comparing to passive i.i.d. learning, we briefly review the Probably Approximately Correct
(PAC) (Valiant, 1984) learning formulation for the i.i.d. setting. Here we consider the re-
alizable PAC setting, which will be the focus of our initial analysis. Section 4.3 extends to
the non-realizable or agnostic setting.

Passive Learning. In passive i.i.d. supervised learning, N i.i.d. data samples are drawn
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from an unknown distribution DX over an input space X and are labeled according to an
unknown target classifier f : X 7→ Y, where Y denotes the label space. In the realizable PAC
setting it is assumed that f is an element of a known class of classifiers H and, given a set of
N examples, a learner outputs a hypothesis h ∈ H. Let ef (h,DX ) = Ex∼DX [h(x) 6= f(x)]
denote the generalization error of the returned classifier h. Standard PAC learning theory
provides a bound on the number of labeled examples that is sufficient to guarantee that for
any distribution DX , with probability at least 1 − δ, the returned classifier h will satisfy
ef (h,DX ) ≤ ε. We will denote this bound by Np(ε, δ), which corresponds to the label/query
complexity of i.i.d. passive supervised learning for a class H. We will also denote a passive
learner that achieves this label complexity as Lp(ε, δ).

Active Learning. In active i.i.d. learning, the learner is given access to two resources rather
than just a set of training data: 1) A “cheap” resource (Sample) that can draw an unlabeled
sample from DX and provide it to the learner when requested, 2) An “expensive” resource
(Label) that can label a given unlabeled sample according to target concept f when re-
quested. Given access to these two resources, an active learning algorithm is required to
learn a hypothesis h ∈ H while posing as few queries to Label as possible. It can, however,
pose a much larger number of queries to Sample (though still polynomial), as it is cheap.

Unlike passive i.i.d. learning, formal label/query complexity results for active i.i.d. learn-
ing depend not only on the hypothesis class being considered, but also on joint properties
of the target hypothesis and data distribution (e.g., as measured by the disagreement co-
efficient proposed by Hanneke, 2009). We use Na(ε, δ,DX ) to denote the label complexity
(i.e., calls to Label) that is sufficient for an active learner to return an h that for distri-
bution DX with probability at least 1 − δ satisfies ef (h,DX ) ≤ ε. Note that here we did
not explicitly parameterize Na by the target hypothesis f since, in the context of our work,
f will correspond to the expert policy and can be considered as fixed. We will denote an
active learner that achieves this label complexity as La(ε, δ,D), where the final argument
D indicates that the Sample function used by La samples from distribution D.

It has been shown that for certain problem classes, Na can be exponentially smaller than
Np (Hanneke, 2009; Dasgupta, 2011). For example, in the realizable learning setting (i.e.,
the target concept is in the hypothesis space), for any active learning problem with finite
VC-dimension and finite disagreement coefficient, the sample complexity is exponentially
smaller for active learning compared to passive learning with respect to 1

ε . That is, ignoring
the dependence on δ, Np = O(1

ε ) whereas Na = O(log(1
ε )). A concrete problem for which

this is the case is when the data are uniformly distributed on a unit sphere in a d dimensional
input space Rd, and the hypothesis space H consists of homogeneous linear separators. As
an example active learning algorithm that achieves this performance, the algorithm of Cohn
et al. (Cohn et al., 1994) simply samples a sequence of unlabeled examples and queries for
the label of example x only when there are at least two hypotheses that disagree on the
label of x, but agree on all previously labeled examples.

While results such as the above gives some theoretical justification for the use of ac-
tive learning over passive learning in the i.i.d. setting, the results and understanding are
not nearly as broad as for passive learning. Further, there are known limitations to the
advantages of active versus passive learning. For example, lower bounds have been shown
(Dasgupta, 2006; Beygelzimer et al., 2009a) implying that no active learning algorithm can
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asymptotically improve over passive learning across all problems with finite VC-dimension.
However, despite the limited theoretical understanding, there is much empirical evidence
that in practice active learning algorithms can often dramatically reduce the required
amount of labeled data compared to passive learning. Further, there are active learning
algorithms that in the worst case are guaranteed to achieve performance similar to passive
learning in the worst case, while also showing exponential improvement in the best case
(Beygelzimer et al., 2009a).3

4. Reductions for Active Imitation Learning

One approach to solving novel machine learning problems is via reduction to well-studied
core problems. A key advantage of this reduction approach is that theoretical and empir-
ical advances on the core problems can be translated to the more complex problem. For
example, i.i.d. multi-class and cost-sensitive classification have been reduced to i.i.d. binary
classification (Zadrozny et al., 2003; Beygelzimer et al., 2009b). In particular, these reduc-
tions allow guarantees regarding binary classification to translate to the target problems.
Further, the reduction-based algorithms have shown equal or better empirical performance
compared to specialized algorithms. More closely related to our work, in the context of
sequential decision making, both imitation learning and structured prediction have been re-
duced to i.i.d. classification (Daumé et al., 2009; Syed and Schapire, 2010; Ross and Bagnell,
2010).

In this section, we consider a reduction approach to active imitation learning. In par-
ticular, we reduce to active i.i.d. learning, which is a core problem that has been the focus
of much theoretical and empirical work. The key result is to relate the label complexity of
active imitation learning to the label complexity of active i.i.d. learning. In doing so, we
can assess when improved label complexity (either empirical or theoretical) of active i.i.d.
learning over passive i.i.d. learning can translate to improved label complexity of active imi-
tation learning over passive imitation learning. In what follows, we first present a reduction
for the case of deterministic non-stationary policies. Next, we give a reduction for the more
difficult case of deterministic stationary policies.

4.1 Non-Stationary Policies

Syed and Schapire analyze the traditional reduction from passive imitation learning to
passive i.i.d. learning for non-stationary policies (Syed and Schapire, 2010). The algorithm
receives N expert trajectories as input, noting that the state-action pairs at time t across
trajectories can be viewed as i.i.d. draws from distribution dtπ∗ . The algorithm, then returns
the non-stationary policy π̂ = (π̂1, . . . , π̂T ), where π̂t is the policy returned by running the
learner Lp on examples from time t.

3. A simple example of such an algorithm is the previously mentioned algorithm of Cohn et al. (Cohn et al.,
1994) for the realizable learning setting. In this case, active learning can be stopped after drawing a
number of unlabeled instances equal to the passive query complexity of the hypothesis class. This is
because, for each instance, the algorithm either asks a query to get the label or the algorithm knows
the label in cases when there is no disagreement. Thus, in the worst case, the algorithm will query each
drawn example and ask for the same number of labels as a passive algorithm. But when the disagreement
coefficient is finite, exponentially fewer queries will be made.
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Let εt = eπ∗t (π̂t, d
t
π∗) be the generalization error of π̂t at time t. Syed and Schapire

(Syed and Schapire, 2010, Lemma 3)4 show that if at each time step εt ≤ ε′, then V (π̂) ≥
V (π∗)−ε′T 2. Hence, if we are interested in learning a π̂ whose regret is no more than ε with
high probability, then we must simultaneously guarantee that with high probability εt ≤ ε

T 2

at all time steps. This can be achieved by calling the passive learner Lp at each time step
with Np(

ε
T 2 ,

δ
T ) examples. Thus, the overall passive label complexity of this algorithm (i.e.,

the number of actions provided by the expert) is T ·Np(
ε
T 2 ,

δ
T ). To our knowledge, this is

the best known label complexity for passive imitation learning of non-stationary policies.

Our goal now is to provide a reduction from active imitation learning to active i.i.d.
learning that can achieve an improved label complexity. A naive way to do this would
simply replace calls to Lp in the above approach with calls to an active learner La. Note,
however, that in order to do this the active learner at time step t requires the ability to
sample from the unlabeled distribution dtπ∗ . Generating each such unlabeled sample requires
executing the expert policy for t steps from the initial state, which in turn requires t label
queries to the expert. Thus, the label complexity of this naive approach will be at least
linearly related to the number of unlabeled examples required by the active i.i.d. learning
algorithm. Typically, this number is similar to the passive label complexity rather than the
potentially much smaller active label complexity. Thus, the naive reduction does not yield
an advantage over passive imitation learning.

It turns out that for a slightly more sophisticated reduction to passive i.i.d. learning,
introduced by Ross and Bagnell (Ross and Bagnell, 2010), it is possible to simply replace Lp
with La and maintain the potential benefit of active learning. Ross and Bagnell introduced
the forward training algorithm for non-stationary policies, which trains a non-stationary
policy in a series of T iterations. In particular, iteration t trains policy π̂t by calling a
passive learner Lp on a labeled data set drawn from the state distribution induced at time
t by the non-stationary policy π̂t−1 = (π̂1, . . . , π̂t−1), where π̂1 is learned on states drawn
from the initial distribution I. The motivation for this approach is to train the policy at
time step t based on the same state-distribution that it will encounter when being run after
learning. By doing this, they show that the algorithm has a worst case regret of εT 2 and
under certain assumptions can achieve a regret as low as O(εT ).

Importantly, the state-distribution used to train π̂t given by dtπ̂t−1 is easy for the learner
to sample from without making queries to the expert. In particular, to generate a sample
the learner can simply simulate π̂t−1, which is available from previous iterations, from a
random initial state and return the state at time t. Thus, we can simply replace the call to
Lp at iteration t with a call to La with unlabeled state distribution dtπ̂t−1 as input. More
formally, the active forward training algorithm is presented in Algorithm 1.

Ross and Bagnell (Ross and Bagnell, 2010, Theorem 3.1) give the worst case bound on
the regret of the forward training algorithm which assumes the generalization error at each
iteration is bounded by ε. Since we also maintain that assumption when replacing Lp with
La (the active variant) we immediately inherit that bound.

4. The main result of Syed and Schapire (Syed and Schapire, 2010) holds for stochastic expert policies
and requires a more complicated analysis that results in a looser bound. Lemma 3 is strong enough for
deterministic expert policies, which is the assumption made in our work.
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Algorithm 1 Active Forward Training

Input: active i.i.d. learning algorithm La, ε, δ
Output: non-stationary policy π̂ = (π̂1, . . . , π̂T )

1: Initialize π̂1 = La(ε,
δ
T
, I) . queries by La answered by expert; unlabeled data

is generated from initial state distribution I.
2: for t = 2 to T do
3: π̂t−1 = (π̂1, . . . , π̂t−1)
4: π̂t = La(ε,

δ
T
, dtπ̂t−1) . queries by La answered by expert; unlabeled data is

generated using simulator and π̂t−1 as described in the main text.
5: end for
6: return π̂ = (π̂1, ..., π̂T )

Proposition 1 Given a PAC active i.i.d. learning algorithm La, if active forward training
is run by giving La parameters ε and δ

T at each step, then with probability at least 1− δ it
will return a non-stationary policy π̂ such that V (π̂) ≥ V (π∗)− εT 2.

Note that La is run with δ
T as the reliability parameter to ensure that all T iterations

succeed with probability at least 1− δ.
We can apply Proposition 1 to obtain the overall label complexity of active forward

training required to achieve a regret of less than ε with probability at least 1 − δ. In
particular, we must run the active learner at each of the T iterations with parameters ε

T 2

and δ
T , giving an overall label complexity of

∑T
t=1Na(

ε
T 2 ,

δ
T , d

t
π̂t−1), where d1

π̂0 = I and the
π̂t−1 are random variables in this expression. Recall, from above, that the best known label
complexity of passive imitation learning is T ·Np(

ε
T 2 ,

δ
T ).

Comparing these quantities we see that if we use an active learning algorithm whose
sample complexity is no worse than that of passive, i.e., Na(

ε
T 2 ,

δ
T , d

t
π̂t−1) is no worse than

Np(
ε
T 2 ,

δ
T ) for any t, then the expected sample complexity of active imitation learning

will be no worse than the passive case. As mentioned in the previous section, such i.i.d.
active learning algorithms can be realized. Further, if in addition, for some iterations the
expected value of Na(

ε
T 2 ,

δ
T , d

t
π̂t−1) for some values of t is better than the passive complexity,

then there will be an overall expected improvement over passive imitation learning. While
this additional condition cannot be verified in general, we know that such cases can exist,
including cases of exponential improvement. Further, empirical experience in the i.i.d.
setting also suggests that in practice Na can often be expected to be substantially smaller
than Np and rarely worse. The above result suggests that those empirical gains will be able
to transfer to the imitation learning setting.

4.2 Stationary Policies

A drawback of active forward training is that it is impractical for large T and the resulting
policy cannot be run indefinitely. We now consider the case of learning stationary policies;
first we review the existing results for passive imitation learning.

In the traditional approach, a stationary policy π̂ is trained on the expert state distribu-
tion dπ∗ using a passive learning algorithm Lp and returning a stationary policy π̂. Ross and
Bagnell (Ross and Bagnell, 2010, Theorem 2.1) show that if the generalization error of π̂
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Algorithm 2 RAIL

Input: active i.i.d. learning algorithm La, ε, δ
Output: stationary policy π̂

1: Initialize π̂0 to arbitrary policy or based on prior knowledge
2: for t = 1 to T do
3: π̂t = La(ε,

δ
T
, dπ̂t−1) . queries by La answered by expert; unlabeled data is

generated using simulator as described in Section 3
4: end for
5: return π̂T

with respect to the i.i.d. distribution dπ∗ is bounded by ε′ then V (π̂) ≥ V (π∗)− ε′T 2. Since
generating i.i.d. samples from dπ∗ can require up to T queries (see Section 3) the passive
label complexity of this approach for guaranteeing a regret less than ε with probability at
least 1−δ is T ·Np(

ε
T 2 , δ). Again, to our knowledge, this is the best known label complexity

for passive imitation learning. Further, Ross and Bagnell (Ross and Bagnell, 2010) show
that there are imitation learning problems where this bound is tight, showing that in the
worst case, the traditional approach cannot be shown to do better.

The above approach cannot be converted into an active imitation learner by simply re-
placing the call to Lp with La, since again we cannot sample from the unlabeled distribution
dπ∗ without querying the expert. To address this issue, we introduce a new algorithm called
RAIL (Reduction-based Active Imitation Learning) which makes a sequence of T calls to
an active i.i.d. learner, noting that it is likely to find a useful stationary policy well before
all T calls are issued. RAIL is an idealized algorithm intended for analysis, which achieves
the theoretical goals but has a number of inefficiencies from a practical perspective. Later
in Section 5, we describe the practical instantiation that is used in our experiments.

RAIL is similar in spirit to active forward training, though its analysis is quite different
and more involved. Like forward-training, RAIL iterates for T iterations, but on each
iteration, RAIL learns a new stationary policy π̂t that can be applied across all time steps
t = 1 . . . T . Note that T denotes the length of the horizon as well as the total number of
iterations that RAIL runs for. Similarly t denotes a single time step as well as a single
iteration of RAIL. Iteration t+1 of RAIL learns a new policy π̂t+1 that achieves a low error
rate at predicting the expert’s actions with respect to the state distribution of the previous
policy dπ̂t . More formally, Algorithm 2 gives pseudocode for RAIL. The initial policy π̂0 is
arbitrary and could be based on prior knowledge and the algorithm returns the final policy
π̂T , which is learned using the active learning applied to unlabeled state distribution dπ̂T−1 .

Similar to active forward training, RAIL makes a sequence of T calls to an active learner.
Unlike forward training, however, the unlabeled data distributions used at each iteration
contains states from all time points within the horizon, rather than being restricted to states
arising at a particular time point. Because of this difference, the active learner is able to
ask queries across a range of time points and we might expect policies learned in earlier
iterations to achieve non-trivial performance throughout the entire horizon. In contrast, at
iteration t the policy produced by forward training is only well defined up to time t.
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The complication faced by RAIL, however, compared to forward training, is that the
distribution used to train π̂t+1 differs from the state distribution of the expert policy dπ∗ .
This is particularly true in early iterations of RAIL, since π̂0 is initialized arbitrarily. Intu-
itively, however, we might expect that as the iterations proceed, the unlabeled distributions
used for training dπt will become similar to dπ∗ . To see this, consider the first iteration.
While dπ̂0 need not be at all similar to dπ∗ overall, we know that they will agree on the
initial state distribution. That is, we have that d1

π̂0 = d1
π∗ = I. Because of this, the policy

π̂1 learned on dπ̂0 can be expected to agree with the expert on the first step. This implies
that the states encountered after the first action of the expert and learned policy will tend
to be similar. That is d2

π̂1 will be similar to d2
π∗ . In this same fashion we might expect dt+1

π̂t

to be similar to dt+1
π∗ after iteration t. We now show that this intuition can be formalized in

order to bound the disparity between dπ̂T and dπ∗ , which will allow us to bound the regret
of the learned policy. We first state the main result, which we prove below.

Theorem 2 Given a PAC active i.i.d. learning algorithm La, if RAIL is run with parame-
ters ε and δ

T passed to La at each iteration, then with probability at least 1− δ it will return
a stationary policy π̂ such that V (π̂) ≥ V (π∗)− εT 3.

Recall that the corresponding regret for active forward training of non-stationary policies
was εT 2. From this we see that the impact of moving from non-stationary to stationary
policies in the worst case is a factor of T in the regret bound. Similarly the bound is a
factor of T worse than the comparable result above for passive imitation learning, which
suffered a worst-case regret of εT 2. From this we see that the total label complexity for
RAIL required to guarantee a regret of ε with probability 1 − δ is

∑T
t=1Na(

ε
T 3 ,

δ
T , dπ̂t−1)

compared to the above label complexity of passive learning T ·Np(
ε
T 2 , δ).

We first compare these quantities in the worst case. If, in each iteration, the active i.i.d.
label complexity is the same as the passive complexity, then active imitation learning via
RAIL can ask more queries than passive. That is, the active complexity would scale as
T ·Np(

ε
T 3 ,

δ
T ) versus T ·Np(

ε
T 2 , δ), which is dominated by the factor of 1

T difference in the
accuracy parameters. In the realizable setting with finite VC-dimension, RAIL’s complexity
could be a factor of T higher than passive in this worst-case scenario.

However, if across the iterations the expected active i.i.d. label complexityNa(
ε
T 3 ,

δ
T , dπ̂t−1)

is substantially better than Np(
ε
T 3 ,

δ
T ), then RAIL will leverage those savings. For exam-

ple, in the realizable setting with finite VC-dimension, if all distributions dπ̂t−1 result in a
finite disagreement coefficient, then we can get exponential savings. In particular, ignor-
ing the dependence on δ (which is only logarithmic), we get an active label complexity of

O(T log T 3

ε ) versus the corresponding passive complexity of O(T
3

ε ).

The above analysis points to an interesting open problem. Is there an active imitation
learning algorithm that can guarantee to never perform worse than passive, while at the
same time showing exponential improvement in the best case?

For the proof of Theorem 2, we introduce the quantity P tπ(M), which is the probability
that a policy π is consistent with a length t trajectory generated by the expert policy π∗ in
MDP M . It will also be useful to index the state distribution of π by the MDP M , denoted
by dπ(M). The main idea is to show that at iteration t, P tπ̂t(M) is not too small, meaning
that the policy at iteration t mostly agrees with the expert for the first t actions. We first
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state two lemmas, that are useful for the final proof. First, we bound the regret of a policy
in terms of P Tπ (M).

Lemma 3 For any policy π, if P Tπ (M) ≥ 1− ε, then V (π) ≥ V (π∗)− εT .

Proof Let Γ∗ and Γ be all state-action sequences of length T that are consistent with π∗

and π respectively. If R(T ) is the total reward for a sequence T then we get the following

V (π) =
∑
T ∈Γ

Pr(T |M,π)R(T )

≥
∑

T ∈Γ∩Γ∗

Pr(T |M,π)R(T )

=
∑
T ∈Γ∗

Pr(T |M,π∗)R(T )−
∑

T ∈Γ∗−Γ

Pr(T |M,π∗)R(T )

= V (π∗)−
∑

T ∈Γ∗−Γ

Pr(T |M,π∗)R(T )

≥ V (π∗)− T ·
∑

T ∈Γ∗−Γ

Pr(T |M,π∗)

≥ V (π∗)− εT.

The last two inequalities follow since the reward for a sequence must be no more than T ,
and due to our assumption about P Tπ (M).

Next, we show how the value of P tπ(M) changes across one iteration of RAIL. We
show that if we learn a policy π̂ on state distribution dπ(M) of policy π whose error rate
eπ∗(π̂, dπ(M)) (see Section 3.3) w.r.t. to the expert’s policy π∗ is no more than ε, then
P t+1
π̂ (M) is at least as large as P tπ(M)− Tε. When π and π̂ correspond to policies learned

at iteration t and (t+1) respectively, then Lemma 4 describes change in the value of P tπ(M)
across one iteration.

Lemma 4 For any policies π and π̂ and 1 ≤ t < T , if eπ∗(π̂, dπ(M)) ≤ ε, then P t+1
π̂ (M) ≥

P tπ(M)− Tε.

Proof We define Γ̂ to be all sequences of state-action pairs of length t+1 that are consistent
with π̂. Also define Γ to be all length t+ 1 state-action sequences that are consistent with
π on the first t state-action pairs (so need not be consistent on the final pair). We also
define M ′ to be an MDP that is identical to M , except that the transition distribution of
any state-action pair (s, a) is equal to the transition distribution of action π(s) in state s.
That is, all actions taken in a state s behave like the action selected by π in s.

We start by arguing that if eπ∗(π̂, dπ(M)) ≤ ε then P t+1
π̂ (M ′) ≥ 1−Tε, which relates our

error assumption to the MDP M ′. To see this, note that for MDP M ′, all policies, including
π∗, have state distribution given by dπ. Thus by the union bound 1−P t+1

π̂ (M ′) ≤
∑t+1

i=1 εi,
where εi is the error of π̂ at predicting π∗ on distribution diπ. This sum is bounded by Tε
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since eπ∗(π̂, dπ(M)) = 1
T

∑T
i=1 εi. Using this fact we can now derive the following

P t+1
π̂ (M) =

∑
T ∈Γ̂

Pr(T |M,π∗)

≥
∑
T ∈Γ∩Γ̂

Pr(T |M,π∗)

=
∑
T ∈Γ

Pr(T |M,π∗)−
∑
T ∈Γ−Γ̂

Pr(T |M,π∗)

= P tπ(M)−
∑
T ∈Γ−Γ̂

Pr(T |M,π∗)

= P tπ(M)−
∑
T ∈Γ−Γ̂

Pr(T |M ′, π∗)

≥ P tπ(M)−
∑
T 6∈Γ̂

Pr(T |M ′, π∗)

≥ P tπ(M)− (1− P t+1
π̂ (M ′))

≥ P tπ(M)− Tε.

The equality of the fourth line follows because Γ contains all sequences whose first t actions
are consistent with π with all possible combinations of the remaining action and state tran-
sition. Thus, summing over all such sequences yields the probability that π∗ agrees with the
first t steps. The equality of the fifth line follows because Pr(T | M,π∗) = Pr(T | M ′, π∗)
for any T that is in Γ and for which π∗ is consistent (has non-zero probability under π∗).
The final line follows from the above observation that P t+1

π̂ (M ′) ≥ 1− Tε.

We can now complete the proof of the main theorem.
Proof [Proof of Theorem 2] Using failure parameter δ

T in the call to La in each iteration
of RAIL ensures that with at least probability (1 − δ) that for all 1 ≤ t ≤ T , we will have
eπ∗(π̂

t, dπ̂t−1(M)) ≤ ε, where dπ̂0(M) denotes the state distribution of the initial policy π̂0.
This can be easily shown using the union bound. Next, we show using induction that for
1 ≤ t ≤ T , we have P tπ̂t ≥ 1− tT ε. As a base case for iteration t = 1, we have P 1

π̂1 ≥ 1−Tε,
since the the error rate of π̂1 relative to the initial state distribution at time step t = 1 is
at most Tε (this is the worst case when all errors are committed at time step 1). Assume
that the inequality holds for t = k, i.e., P k

π̂k
≥ 1− kTε. Consider π̂k+1 trained on dπ̂k(M).

By the union bound argument above, we know that eπ∗(π̂
k+1, dπ̂k(M)) ≤ ε. Hence, π̂k+1

and π̂k satisfy the precondition of Lemma 4. Therefore we have

P k+1
π̂k+1 ≥ P kπ̂k − Tε (by Lemma 4)

≥ 1− kTε− Tε (by inductive argument)

≥ 1− (k + 1)Tε.

Hence, for 1 ≤ t ≤ T , we have P tπ̂t ≥ 1 − tT ε. In particular, when t = T , we have
P T
π̂T
≥ 1− T 2ε. Combining this with Lemma 3 completes the proof.
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4.3 Agnostic Case

Above we considered the realizable setting, where the expert’s policy was assumed to be in
a known hypothesis class H. In the agnostic case, we do not make such an assumption. The
learner still outputs a hypothesis from a class H, but the unknown policy is not necessarily
in H. The agnostic i.i.d. PAC learning setting is defined similarly to the realizable setting,
except that rather than achieving a specified error bound of ε with high probability, a learner
must guarantee an error bound of infπ∈H ef (π,DX )+ε with high probability (where f is the
target), where DX is the unknown data distribution. That is, the learner is able to achieve
close to the best possible accuracy given class H. In the agnostic case, it has been shown
that exponential improvement in label complexity with respect to 1

ε is achievable when
infπ∈H ef (π,DX ) is relatively small compared to ε (Dasgupta, 2011). Further, there are
many empirical results for practical active learning algorithms that demonstrate improved
label complexity compared to passive learning.

It is straightforward to extend our above results for non-stationary and stationary poli-
cies to the agnostic case by using agnostic PAC learners for Lp and La. Here we outline
the extension for RAIL. Note that the RAIL algorithm will call La using a sequence of
unlabeled data distributions, where each distribution is of the form dπ for some π ∈ H
and each of which may yield a different minimum error given H. For this purpose, we
define ε∗ = supπ∈H inf π̂∈H eπ∗(π̂, dπ) to be the minimum generalization error achievable
in the worst case considering all possible state distributions dπ that RAIL might possibly
encounter. With minimal changes to the proof of Theorem 1, we can get an identical result,
except that the regret is (ε∗ + ε)T 3 rather than just εT 3. A similar change in regret holds
for passive imitation learning. This shows that in the agnostic setting we can get significant
improvements in label complexity via active imitation learning when there are significant
savings in the i.i.d. case.

5. RAIL-DA: A Practical Variant of RAIL

Despite the theoretical guarantees, there are at least two potential drawbacks of the RAIL
algorithm from a practical perspective. First, RAIL does not share labeled data across
iterations which is potentially wasteful in practice, though important for our analysis. In
practice, we might expect that aggregating labeled data across iterations would be beneficial
due to the larger amount of data. This is somewhat confirmed by the empirical success
of the DAGGER algorithm (Ross et al., 2011) and motivates evaluating the use of data
aggregation within RAIL. Incorporating data aggregation into RAIL, however, complicates
the theoretical analysis, which we leave for future work. The second practical inefficiency of
RAIL is that the unlabeled state distributions used at early iterations may be quite different
from dπ∗ . In particular, the state distribution of policy π̂t, which is used to train the policy
at iteration t + 1, is only guaranteed to be close to the expert’s state distribution for the
first t time steps and can (in the worst case) differ arbitrarily at later times. Thus, early
iterations may focus substantial query effort on parts of the state space that are not the
most relevant for learning π∗.
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Algorithm 3 RAIL+

Input: L0, n, AccumData, N , K
. L0 : initial set of labeled data
. n : no. of queries per iteration
. AccumData : accumulate data across iterations or not
. N : committee size for DWQBC
. K : # trajectories used to generate unlabeled data

Output: stationary policy π̂

1: Initialize L = L0

2: while query budget remaining do
3: U = SampleUnlabeledData(K,L) . generates pool of unlabeled data
4: if !AccumData then
5: Initialize L = L0

6: end if
7: for i = 1 to n do . select n queries from pool U
8: s = DWQBC(L,U ,N) . density-weighted QBC is used as active i.i.d. learner
9: L = L ∪ {(s, Label(s))} . obtain label from expert

10: end for
11: end while
12: return π̂ = SupervisedLearn(L)

We now describe a parameterized practical instantiation of RAIL used in our experi-
ments, which is intended to address the above issues and also specify certain other imple-
mentation details. Algorithm 3 gives pseudocode for this algorithm, which we call RAIL+

to distinguish it from the idealized version of RAIL in our analysis. In Section 6, we will
compare different instances of RAIL+, including parameterizations corresponding to pure
RAIL and RAIL-DA (for data aggregation), which is the primary algorithm in our empirical
study. We note that our description assumes the use of a pool-based active learner, which
is a common active learning setting, meaning that the learner requires as input a pool of
unlabeled examples U that represents the unlabeled target distribution.

5.1 Data Aggregation and Incremental Querying

The first major difference compared to RAIL is that RAIL+ can aggregate data across
iterations when the Boolean parameter AccumData is set to true. In this case, during
each iteration the newly labeled data is added to the set of labeled data from previous
iterations (lines 7-10). Otherwise, the labeled data from previous iterations is discarded
after generating unlabeled data U (lines 4-6).

The second major difference is that RAIL+ may ask fewer queries per iteration than
RAIL as specified by the parameter n. RAIL corresponds to a version of RAIL+ that
does not use data aggregation and has n = Na. Because RAIL+ can aggregates data, it
opens up the possibility of asking only a small number of queries per iteration (n � Na)
and hence behaving more incrementally. This is reflected in the main loop of Algorithm 3
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Algorithm 4 Density-Weighted Query-By-Committee Algorithm

1: procedure DWQBC(L,U ,N)
2: C = SampleCommittee(N ,L) . committee represents posterior over policies
3: d̂L =EstimateDensity(U) . estimate density of states in U (see text)
4: s∗ = argmax{V E(s, C) ∗ d̂L(s) : s ∈ U} . selection heuristic (see text)
5: return s∗

6: end procedure

(lines 2-11). Each iteration starts with the current set of labeled examples L, which have
been accumulated across all previous iterations by RAIL+. This set of examples is used to
generate a pool U of unlabeled examples/states (see details below) intended to represent
the unlabeled target distribution. A pool-based active learner, DWQBC (explained later),
is then called n times to select n queries from this pool. Each query is labeled by the expert
and added to the growing set of labeled training data L. After the n queries have been
issued and L is updated, the next iteration begins.

This incremental version of RAIL allows for rapid updating of the unlabeled state dis-
tributions used for learning (represented via U) and prevents RAIL from using its query
budget on earlier less accurate distributions. In our experiments, we find that using n = 1
is most effective compared to larger values, which facilitates the most rapid update of the
distribution. In this case, each query selected by the active i.i.d. learner is based on the
most up-to-date state distribution, which takes all prior data into account. We refer to this
best performing variant of RAIL+ with n = 1 and data aggregation as RAIL-DA.

An interesting variation to RAIL+ is when queries take a non-trivial amount of real-time
to answer and there are k experts available that can answer queries in parallel. In this case,
it can be beneficial to ask k simultaneous queries per iteration in order to reduce the amount
of real-time required to learn a policy. The problem of selecting k such queries is known as
batch active learning, and a variety of approaches are available for the i.i.d. setting (Brinker,
2003; Xu et al., 2007; Hoi et al., 2006a,b; Guo and Schuurmans, 2008; Azimi et al., 2012).
An advantage of our reduction-based approach to active imitation learning is that we can
directly plug in the i.i.d. batch active learner in our framework without requiring any other
changes to be made.

5.2 Density Weighted QBC

Since it is important that the active i.i.d. learner be sensitive to the unlabeled data dis-
tribution, we choose a density-weighted learning algorithm. In particular, we use density-
weighted query-by-committee (McCallum and Nigam, 1998) in our implementation. Given
a set of labeled data L and unlabeled data U , this approach first uses bootstrap aggregation
on L in order to generate a policy committee for query selection (Algorithm 4, line 2). In
our experiments we use a committee of size 5. The approach then computes a density esti-
mator over the unlabeled data U (line 3). In our implementation we use a simple distance
based binning approach to density estimation, though more complex approaches could be
used. The selected query is the state that maximizes the product of state density and
committee disagreement (line 4). As a measure of disagreement we use the entropy of the
vote distribution (Dagan and Engelson, 1995) (denoted as VE), which is a common choice.

4121



Judah, Fern, Dietterich and Tadepalli

Algorithm 5 Procedure SampleUnlabeledData

1: procedure SampleUnlabeledData(K,L)
2: C = SampleCommittee(K,L) . committee represents posterior over policies
3: U = {} . initialize multi-set of unlabeled data
4: for π ∈ C do
5: S = SimulateTrajectory(π) . states generated on trajectory of π
6: U = U ∪ S
7: end for
8: return U
9: end procedure

Intuitively, the selection heuristic of DWQBC attempts to trade off the uncertainty about
what to do at a state (measured by VE) with the likelihood that the state is relevant to
learning the target policy (measured by the density).

5.3 Bayesian Learner

The final choice we make while implementing RAIL+ (and hence RAIL-DA) is again mo-
tivated by the goal of arriving at an accurate unlabeled data distribution as quickly as
possible. Recall that at iteration t + 1, RAIL learns using an unlabeled data distribution
dπ̂t , where π̂t is a point estimate of the policy based on the labeled data from iteration t.
In order to help improve the accuracy of this unlabeled distribution (with respect to dπ∗),
instead of using a point estimate, we adopt a Bayesian approach in RAIL+. In particular,
at iteration t let L be the set of state-action pairs collected from the previous iteration
(or from all previous iterations if data is accumulated). We use this to define a posterior
P (π̂|L) over policies in our policy class H. This distribution, in turn, defines a posterior
unlabeled state distribution dL = Eπ̂∼P (π̂|L)[dπ̂(s)] that RAIL+ effectively uses in place of
dπ̂t as used in RAIL. Note that we can sample states from dL by first sampling a policy π̂
and then sampling a state from dπ̂, all of which can be done without interaction with the
expert.

Our implementation of this idea uses bootstrap aggregation (Breiman, 1996) in order
to approximate dL by an unlabeled data pool U via a call to the procedure Sample-
UnlabeledData in Algorithm 3 (line 3). Our implementation assumes a class of linear
parametric policies with a zero-mean Gaussian prior over the parameters. The procedure
first uses bootstrap aggregation to approximate sampling a set of policies from the posterior
(Algorithm 5, line 2) forming a “committee” C of K policies. We view C as an empirical
distribution representing the posterior over policies. In particular, each policy is the result
of first generating a bootstrap sample of the current labeled data and then calling a super-
vised learner on the sampled data. Each member of the committee is then simulated to
form a state trajectory, and the states on those trajectories are aggregated to produce the
unlabeled data pool U (Algorithm 5, lines 4-7). Our implementation uses K = 5.

From a theoretical perspective, the use of a Bayesian classifier does not impact the
validity of RAIL’s performance guarantee provided that the Bayesian approach provides
PAC guarantees. In fact, early theoretical work in active learning (Freund et al., 1997) used
exactly this type of assumption in their analysis of the query-by-committee algorithm.
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Algorithm 6 Procedure SampleCommittee

1: procedure SampleCommittee(K,L)
2: C = {} . initialize the committee
3: for i = 1 to K do
4: L′ = BootstrapSample(L) . create a bootstrap sample of L
5: π′ = SupervisedLearn(L′) . learn a classifier(policy) using L′

6: C = C ∪ π′
7: end for
8: return C
9: end procedure

In practice, dL is a significantly more useful estimate of dπ∗ than the point estimate
with respect to learning a policy. This is because it places more weight on states that are
more frequently visited by policies drawn from the posterior rather than just a single policy.
As an extreme example of the advantage of using dL in practice, consider active imitation
learning in an MDP with deterministic dynamics and a single start state. At iteration t,
RAIL will use the state distribution of the point estimate π̂t−1, which for our assumed
MDP will be uniform over the deterministic state sequence generated by π̂t−1. Thus, active
learning will place equal emphasis on learning among that set of states. This is despite the
fact that, in early iterations, we should expect that states appearing later in the trajectory
are less likely to be relevant to learning π∗. This is because inaccuracies in π̂t−1 lead to
error propagation as the trajectory unfolds. In contrast, dL will weigh states according to
the trajectories produced by all policies, weighted by the posterior. The practical effect is
a non-uniform distribution over states in those trajectories, roughly weighted by how many
policies visit the states. Thus, states at the tail end of trajectories in early iterations will
generally carry very little weight, since they are only visited by one or a small number of
policies.

6. Experiments

We conduct our empirical evaluation on five domains: 1) Cart-pole, 2) Bicycle, 3) Wargus,
4) Driving, and 5) NETtalk. Below we first describe the details of these domains. We then
present various experiments that we performed in these domains. In the first experiment,
we study the impact of data aggregation and query size on the performance of RAIL+ from
Algorithm 3. For this we compare several parameter settings, varying from versions that
are close to pure RAIL to RAIL-DA (n = 1 with data aggregation). We show that versions
closer to RAIL-DA that aggregate data and ask queries incrementally are more effective in
practice. In particular, we show that RAIL-DA (which aggregates data and asks only one
query per iteration) is the most effective parameterization. Next, we evaluate the impact of
another implementation choice discussed in Section 5, the choice of base active learner in
RAIL+. We show that a density-weighted base active learner leads to better performance
in practice than using other base active learners that ignore the data distribution. Once
we have shown that RAIL-DA with a density-weighted base active learner is the best, we
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compare it with a number of baseline approaches to active imitation learning in our last set
of experiments. Finally, we provide some overall observations.

For all the learners in the experiments that are presented in this section, we employed
the SimpleLogistic classifier from Weka (Hall et al., 2009) to learn policies over the set of
features that were provided for each domain.

6.1 Domain Details

In this subsection, we give the details of all the domains used in our experiments.

6.1.1 Cart-Pole

Cart-pole is a well-known RL benchmark. In this domain, there is a cart on which rests
a vertical pole. The objective is to keep the attached pole balanced by applying left or
right force to the cart. An episode ends when either the pole falls or the cart goes out of
bounds. There are two actions, left and right, and four state variables (x, ẋ, θ, θ̇) describing
the position and velocity of the cart and the angle and angular velocity of the pole. We
made slight modifications to the usual setting where we allow the pole to fall down and
become horizontal and the cart to go out of bounds (we used [-2.4, 2.4] as the in bounds
region). We let each episode run for a fixed length of 5000 time steps. This opens up the
possibility of generating several “undesirable” states where either the pole has fallen or the
cart is out of bounds that are rarely or never generated by the expert’s state distribution.

For all the experiments in cart-pole, the learner’s policy is represented via a linear
logistic regression classifier using features of state-action pairs where features correspond
to state variables. The expert policy was a hand-coded policy that can balance the pole
indefinitely. For each learner, we ran experiments from 150 random initial states close to
the equilibrium start state ((x, ẋ, θ, θ̇) = (0.0, 0.0, 0.0, 0.0)). For each start state a policy is
learned and a learning curve is generated measuring the performance as function of number
of queries posed to the expert. To measure performance, we use a reward function (unknown
to the learner) that gives +1 reward for each time step where the pole is kept balanced and
the cart is within bounds and −1 otherwise. The final learning curve is the average of the
individual curves.

6.1.2 Bicycle Balancing

This domain is a variant of the RL benchmark of bicycle balancing and riding (Randløv and
Alstrøm, 1998). The goal is to balance a bicycle moving at a constant speed for 1000 time
steps. If the bicycle falls, it remains fallen for the rest of the episode. Similar to the cart-pole
domain, in bicycle balancing there is a huge possibility of spending significant amount of
time in “undesirable” states where the bicycle has fallen down. The state space is described
using nine variables (ω, ω̇, θ, θ̇, ψ, xf , yf , xb, yb), where ω and ω̇ are the vertical angle and
angular velocity of the bicycle, θ and θ̇ are the angle and angular velocity of the handlebar, ψ
is the angle of the bicycle to the goal, xf and yf are x and y coordinates of the front tire and
xb and yb are x and y coordinates of the rear tire of the bicycle. There are five possible actions
A = {(τ = 0, v = −0.02), (τ = 0, v = 0), (τ = 0, v = 0.02), (τ = 2, v = 0), (τ = −2, v = 0)},
where the first component is the torque applied to the handlebar and the second is the
displacement of the rider.
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As in the cart-pole domain, for all experiments in bicycle balancing, the learner’s policy
is represented as a linear logistic regression classifier over features of state-action pairs. A
feature vector for a state-action pair is defined as follows: Given a state s, a vector consisting
of following 20 basis functions is computed:

(1, ω, ω̇, ω2, ω̇2, ωω̇, θ, θ̇, θ2, θ̇2, θθ̇, ωθ, ωθ2, ω2θ, ψ, ψ2, ψθ, ψ̄, ψ̄2, ψ̄θ)T ,

where ψ̄ = π − ψ if ψ > 0 and ψ̄ = −π − ψ if ψ < 0. This vector of basis functions is
repeated for each of the 5 actions giving a feature vector of length 100. The expert policy
was hand-coded and can balance the bicycle for up to 26K time steps. We used a similar
evaluation procedure as for cart-pole where we generated 150 random start states and for
each start state, a policy was learned using each of the learning algorithms and a learning
curve was generated measuring total reward as function of number of queries posed to the
expert. We give a +1 reward for each time step where the bicycle is kept balanced and a
−1 reward otherwise.

6.1.3 Wargus

We consider controlling a group of 5 friendly close-range military units against a group of
5 enemy units in the real-time strategy game Wargus, similar to the setup used by Judah
et al. (Judah et al., 2010). The objective is to win the battle while minimizing the loss
in total health of friendly units. The set of actions available to each friendly unit is to
attack any one of the remaining units present in the battle (including other friendly units,
which is always a bad choice). In our setup, we allow the learner to control one of the units
throughout the battle, whereas the other friendly units are controlled by a fixed “reasonably
good” policy. This situation would arise when training the group via coordinate ascent on
the performance of individual units. The expert policy corresponds to the same policy used
by the other units. Note that poor behavior from even a single unit generally results in a
huge loss.

The learner’s policy is represented using 27 state-action features that capture different
information about the current battle situation such as the distance between the friendly
agent and the target of attack, whether the target is already under attack by other friendly
units, health of the target relative to friendly unit, whether the target is actually a friendly
unit, etc. Providing full demonstrations in real time in such tactical battles is very difficult
for human players and quite time consuming if demonstrations are done in slow motion,
which motivates state-based active learning for this domain. For experiments, we designed
21 battle maps differing in the initial unit positions, using 5 for training and 16 for testing.
We report results in the form of learning curves showing the performance metric as a
function of number of queries posed to the expert. We use the difference in the total health
of friendly and enemy units at the end of the battle as the performance metric (which
is positive for a win). Due to the slow pace of the experiments running on the Wargus
infrastructure, we average results across at most 20 trials.

6.1.4 Driving Domain

The driving domain is a traffic navigation problem often used as a test domain in the
imitation learning literature (Abbeel and Ng, 2004). This domain was also the main test
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Figure 1: Screenshot of the driving simulator.

bed used to evaluate the confidence based autonomy (CBA) learner in prior work (Chernova
and Veloso, 2009). Here we evaluate RAIL-DA on a particular implementation of the driving
domain used by Cohn et al. (Cohn et al., 2011). In this domain, the goal is to successfully
navigate a car through traffic on a busy five lane highway. The highway consists of three
traffic lanes and two shoulder lanes (see Figure 1). The learner controls the black car, which
moves at a constant speed. The other cars move at a randomly chosen continuous-valued
constant speed, and they don’t change lanes. At each discrete time step, the learner controls
the car by taking one of the three actions: 1) Left, which moves the car to the adjacent left
lane, 2) Right, which moves the car to the adjacent right lane, and 3) Stay, which keeps the
car in the current lane. The agent is allowed to drive on the shoulder lane but cannot move
off the shoulder lanes.

The learner’s policy is represented as a linear logistic regression classifier that maps a
given state to one of the three actions. The state space is represented using 68 features. The
first 5 features are binary features that specify the learner’s current lane. The next 3 binary
features specify whether the learner is colliding with, tailgating or trailing another car. The
remaining 60 features, consisting of three parts, one for the learner’s current lane and two
for the two adjacent lanes, which are binary features that specify whether the learner’s car
will collide with or pass another car in 2X time steps, where X ranges from 0 to 19. This
captures the agent’s view of the traffic while taking car velocities into account.

To conduct experiments in the driving domain, we carefully designed a reward function
that induces good driving behavior and used Sarsa(λ) (Sutton and Barto, 1998) with linear
function approximation to learn a policy to serve as the expert policy. The expert policy
uses the same set of 68 features as used by the agent for value function approximation.
For each learner, we ran 100 different learning trials where during each trial the learner is
allowed to pose a maximum of 500 (1000 in Experiment 1) queries to the expert and learn
from it. For each trial, a learning curve is generated that measures the performance as a
function of the number of queries posed to the expert. To measure performance, after each
query is posed and the policy is updated, the updated policy is allowed to navigate the car
for 1000 time steps in a test episode, and the total reward is recorded. The final performance
measure is the average total reward per episode measured over 500 test episodes. The final
learning curve is the average over all 100 trials.
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6.1.5 Structured Prediction

We evaluate RAIL-DA on two structured prediction tasks, stress prediction and phoneme
prediction, both based on the NETtalk data set (Dietterich et al., 2008). In stress prediction,
given a word, the goal is to assign one of the 5 stress labels to each letter of the word in left-
to-right order so that the word is pronounced correctly. The output labels are ‘2’ (strong
stress), ‘1’ (medium stress), ‘0’ (light stress), ‘<’ (unstressed consonant, center of syllable
to the left), and ‘>’ (unstressed consonant, center of syllable to the right). In phoneme
prediction, the task is to assign one of the 51 phoneme labels to each letter of the word. It
is straightforward to view structured prediction as imitation learning (see for example Ross
et al., 2011,Daumé et al., 2009) where at each time step (letter location), the learner has
to execute the correct action (i.e., predict correct label) given the current state. The state
consists of features describing the input (the current letter and its immediate neighbors) and
the previous L predictions made by the learner (the prediction context). In our experiments,
we use L = 1, 2.

The NETtalk data set consists of 2000 words divided into 1000 training words and
1000 test words. Each method is allowed to select a state located on any of the words
in the training data and pose it as a query. The expert reveals the correct label at that
location. We use character accuracy as a measure of performance. The details of how in
each learning trial RAIL-DA and other baselines select a query from the set of training
words will be described when we present our results in the following subsections. We report
final performance in the form of learning curves averaged across 50 learning trials.

6.2 Experiment 1: Evaluation of the Effects of Data Aggregation and Query
Size

We compare different versions of RAIL+, by varying the parameters AccumData and n in
Algorithm 3, in order to observe the impact of data aggregation and query size. We use the
notation RAIL+-n-DA for versions that aggregate data and ask n queries per iteration and
use RAIL+-n to denote variants that ask n queries per iteration without data aggregation.
Note that RAIL+-1-DA is the same as RAIL-DA and that RAIL+-n with a large value of n
corresponds to the original version of RAIL from our analysis. Note that all these variants
use the DWQBC active i.i.d. learner as described in Section 5.

For this experiment, we focus on three domains: 1) Cart-Pole, 2) Bicycle Balancing, and
3) Driving Domain. In each domain, we evaluated RAIL+-n-DA and RAIL+-n for values
of n starting at n = 1 in increments until some maximum value. The maximum value of n
in each domain was selected to be a value where i.i.d. active learning from the true expert
state distribution reliably converged to a near perfect policy. For each RAIL+ variant and
domain, we show the averaged learning curve as described earlier.

Figure 2 shows the results of the experiment. We first discuss results in the Bicycle
domain due to more discernible trends in this domain. Figure 2(b) shows results of the
experiment in the Bicycle domain. First, observe the impact of data aggregation by com-
paring each pair RAIL+-n and RAIL+-n-DA. Clearly, RAIL+-n-DA is significantly better
than RAIL+-n for each value of n, indicating that it is generally better to aggregate data
across iterations in this domain. This is likely explained by the fact that the use of ag-
gregation allows for the algorithms to learn from more data at later iterations. This is
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Figure 2: Evaluation of the effects of data aggregation and query size in RAIL+: (a) Cart-
pole (b) Bicycle balancing (c) Driving domain.
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particularly important for small values of n, such as n = 1 and n = 10, where without
aggregation each iteration is learning from only a small amount of data (the small amount
of initial data + n).

Now consider the impact of varying n with the use of aggregation in Bicycle. The
clear trend is that when aggregation is being used the performance improves significantly
as n decreases from n = 100 to n = 1. That is, the more incremental variants of RAIL+

dominate, with n = 1 (i.e. the RAIL-DA algorithm) dominating all others by a large margin.
The main reason for this particularly striking trend is that in Bicycle the distributions being
learned from in early iterations are quite distant from that of the expert. In particular, the
early iterations involve learning from state distributions of policies that result in early
crashes, and hence many useless states from the point of view of learning. This means that
when using n = 100, the first 100 queries are selected from such a distribution and not
much is learned. In fact, we see a downward trend, indicating that learning from those
distributions hurts performance. On the other hand, as n decreases fewer queries are spent
on those early inaccurate distributions, and the data from a small number of queries per
iteration accumulates, resulting in policies that have better state distributions to learn
from. Indeed, for n = 1, only one query is asked for each distribution, and we see very rapid
improvement until reaching expert performance after just over 50 queries.

Figure 2(a) shows results for Cart-Pole. The target concept in this domain is simpler,
and hence the learning curves improve more quickly compared to Bicycle. However, we
see the same general trends as for Bicycle. Aggregation is beneficial and we get the best
performance for small values of n when using aggregation. Again we see that RAIL+-1-DA
(i.e., RAIL-DA) is the top performer. These same trends are observed in Figure 2(c) for
Driving.

Overall, these experiments provide strong evidence that in practice aggregation is an
important enhancement to RAIL+ over RAIL, and that more incremental variants are
preferable. Thus, for the remainder of the paper we will use the RAIL-DA algorithm which
uses aggregation and n = 1.

6.3 Experiment 2: Evaluation of RAIL-DA with Different Base Active
Learners

In Section 5, we mentioned that it is important that the active i.i.d. learner used with
RAIL be sensitive to the unlabeled data distribution. To test this hypothesis, we conducted
experiments to study the effects of using active i.i.d. learners that take data distribution into
consideration against active learners that ignore the data distribution altogether in RAIL-
DA. We compare the performance of three different versions of RAIL-DA: 1) RAIL-DA, the
RAIL-DA algorithm from the previous experiment that uses density-weighted QBC as the
base active learner, 2) RAIL-DA-QBC, RAIL-DA but with density-weighted QBC replaced
with the standard QBC (without density weighting), and 3) RAIL-DA-RAND, which uses
random selection of unlabeled data points.

Figure 3 shows the performance of the three versions of RAIL-DA on our first four test
domains. We see that, in Cart-Pole, Bicycle and Wargus, RAIL-DA performs better than
both RAIL-DA-QBC and RAIL-DA-RAND. This shows that it is critical for the active
i.i.d. learner to exploit the state density information that is estimated by RAIL-DA at
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Figure 3: Performance of RAIL-DA with different base active learners on (a) Cart-pole (b)
Bicycle balancing (c) Wargus (d) Driving Domain.
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Figure 4: Performance of RAIL-DA with different base active learners on NETtalk: (a)
Stress prediction, L = 1 (b) Stress prediction, L = 2 (c) Phoneme prediction,
L = 1 (d) Phoneme prediction, L = 2. Character accuracy of the expert is 1.
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each iteration. Recall that in these domains, especially during early iterations, RAIL-
DA is quite likely to generate several uninformative states that are far from the expert’s
state distribution (states with fallen pole or bike, or states where the friendly team is
heavily outnumbered by the enemy team in Wargus). Taking state density information into
account helps to avoid querying in such states compared to a learner that ignores density
information. In the driving domain, we see that although RAIL-DA performs better than
RAIL-DA-RAND, its performance is comparable to that of RAIL-DA-QBC. This is because
in the driving domain, even states that are not close to the expert’s state distribution provide
informative training information. This allows RAIL-DA-QBC to pose useful queries and
generalize well from them.

Figure 4 shows the performance of the three versions of RAIL-DA on the NETtalk data
set along with 95% confidence intervals. RAIL-DA and RAIL-DA-QBC can select the best
query across the entire training set. RAIL-DA-RAND selects a random query from the
set of unlabeled states generated on a random training sequence. For stress prediction, we
see that RAIL-DA performs better than both RAIL-DA-QBC and RAIL-DA-RAND. For
phoneme prediction, RAIL-DA performs better than RAIL-DA-RAND, but its performance
is comparable to RAIL-DA-QBC. Overall, we see that RAIL-DA performs best, so it will
be compared against the other baselines in the next section.

6.4 Experiment 3: Comparison of RAIL-DA with Baselines

We compare RAIL-DA against the following baselines:

1. Passive. This baseline simulates the traditional approach by starting at the initial
state and querying the expert about what to do at each visited state.

2. unif-QBC. This baseline views all the MDP states as i.i.d. according to the uniform
distribution and applies the standard query-by-committee (QBC) (Seung et al., 1992)
active learning approach. Intuitively, this approach will select the state with highest
action uncertainty according to the current data set and ignores the state distribution.

3. unif-RAND. This baseline selects states to query uniformly at random.

4. Confidence based autonomy (CBA) (Chernova and Veloso, 2009). This approach re-
quires the use of policies that provide some form of confidence estimate (e.g., prob-
abilities over actions). Given the current set of labeled data, the approach executes
trajectories of the current policy until it reaches a state where the policy confidence
falls below a threshold. It then queries the expert for the correct action and updates
the policy accordingly. It then executes the correct action and continues until the
next low confidence state is reach. It is possible for CBA to stop asking queries once
the confidence exceeds the threshold in all states visited by the current policy. We use
the same automated threshold adjustment strategy proposed by Chernova and Veloso
(Chernova and Veloso, 2009). We also experimented with other threshold adjustment
mechanisms as well as fixed thresholds, but were unable to find an improvement that
performed better across our domains.

Figure 5 shows the results of this experiment along with 95% confidence intervals on
our first four test domains. Figure 5(a) shows the performance of RAIL-DA on cart-pole.
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Figure 5: Active imitation learning results: (a) Cart-pole (b) Bicycle balancing (c) Wargus
(d) Driving domain.
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Figure 6: Queried states in Cart-pole for learners: (a) Passive, (b) RAIL-DA. The black
circles represent states where the right action is suggested by the expert policy.
The red stars represent states where the left action is suggested. The decision
boundary separating these two sets of states is a line very close to θ̇ = 0. We see
that unlike Passive, RAIL-DA focuses its queries around the decision boundary.
This figure is best viewed in color.
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We observe that RAIL-DA learns quickly and achieves optimal performance with only 30-
35 queries. Passive, on the other hand, takes 100 queries to get close to the optimal
performance. The reason for this difference is clear when one visualizes the states queried
by RAIL-DA versus Passive. Figure 6(a) shows the states queried by Passive. The black
circles represent states where the right action is suggested by the expert. The red stars
represent states where the left action is optimal according to the expert. The decision
boundary of the expert policy is the line separating these two sets of states (very close
to θ̇ = 0). We notice that Passive asks many uninformative queries that are not close to
the decision boundary. Figure 6(b) shows the queries posed by RAIL-DA. We see that the
queries posed by RAIL-DA tend to be close to the decision boundary of the expert policy.

A naive reduction to active learning can be dangerous, as demonstrated by the poor
performance of unif-QBC. Further, RAIL-DA performs much better than random query
selection as demonstrated by the performance of unif-RAND. By ignoring the real data
distribution altogether and incorrectly assuming it to be uniform, these naive methods end
up asking many queries that are not relevant to learning the expert policy (e.g., states
where the pole is in an irrecoverable fall or the cart is out of bounds). CBA, like RAIL-DA,
learns quickly but settles at a suboptimal level of performance. This is because it becomes
confident prematurely and stops asking queries. This shows that CBA’s automatic threshold
adjustment mechanism did not work well in this domain. We did experiment with several
modifications to the threshold adjustment strategy, but we were unable to find one that
was robust across all our domains. Thus we report results for the original strategy.

Figure 5(b) compares each approach in the bicycle domain. The results are similar
to those of cart-pole with RAIL-DA being the top performer. Unif-RAND and Unif-QBC
show notably poor performance in this domain. This is because bicycle balancing is a harder
learning problem than cart-pole with many more uninformative states (an unrecoverable
fall or fallen state). We found that almost all queries posed by Unif-RAND and Unif-QBC
were in these states. CBA does only slightly better than Passive, though unlike cart-pole,
it achieves near-optimal asymptotic performance.

The results in the Wargus domain are shown in Figure 5(c). Passive learns along the
expert’s trajectory in each map on all 5 training maps considered sequentially according to
a random ordering. For RAIL-DA, in each iteration a training map is selected randomly
and a query is posed in the chosen map. For CBA, a map is selected randomly and CBA is
allowed to play an episode in it, pausing and querying as and when needed. If the episode
ends, another map is chosen randomly and CBA continues to learn in it. After each query,
the learned policy is tested on the 16 test maps. We use the difference in the total health
of friendly and enemy units at the end of the battle as the performance metric (which is
positive for a win). We did not run experiments for unif-QBC and unif-RAND, because it
is difficult to define the space of feasible states over which to sample uniformly.

We see that although Passive learns quickly for the first 20 queries, it fails to improve
further. This shows that the states located in this initial prefix of the expert’s trajectory
are very useful, but thereafter Passive gets stuck on the uninformative part of the trajec-
tory until its query budget is over. On the other hand, RAIL-DA and CBA continue to
improve beyond Passive, with the performance of CBA being comparable to RAIL-DA in
this domain, which indicates that both these active learners are able to locate and query
more informative states.
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The results for the driving domain are shown in Figure 5(d). We see qualitatively
similar performance trends as in the previous three domains with RAIL-DA still being the
best performing learner and outperforming most of the competing baselines. The exception
however is that unif-QBC and unif-RAND perform quite well in this domain, both being
able to outperform Passive and even CBA. Furthermore, performance of unif-QBC is quite
comparable to that of RAIL-DA. The good performance of unif-QBC and unif-RAND in the
driving domain is due to the fact that obtaining action labels on most states in the driving
domain can serve as useful training data for learning the expert policy. This is unlike the
previous three domains, where labels obtained for many states were relatively useless for
learning the target policy (e.g., states with a fallen pole or bike).

Our final set of results are in the structured prediction domain. Passive learns along
the expert’s trajectory on each training sequence considered in the order it appears in
the training set. Therefore, Passive always learns on the correct context, i.e., previous
L characters correctly labeled. RAIL-DA and unif-QBC can select the best query across
the entire training set. CBA, like Passive, considers training sequences in the order they
appear in the training set and learns on each sequence by pausing and querying as and
when needed. To minimize the effects of the ordering of the training sequences on the
performance of Passive and CBA, for all learners, we ran 50 different trials where in each
trial we randomize the order of the training sequences. We report final performance as the
learning curves averaged across all 50 trials. The learning curves along with 95% confidence
intervals are shown in figure 7.

Figures 7(a) and (b) presents the stress prediction results. The results are qualitatively
similar to cart-pole, except that Unif-QBC and unif-RAND do quite well in this domain
but not as well as RAIL-DA. We see that CBA performs quite poorly because we found
that in several trials it prematurely stops asking queries,5 which reveals its sensitivity to its
threshold adjustment mechanism. Similar trends are seen in the phoneme prediction results
shown in Figures 7(c) and (d). CBA does well on this task but not as well as RAIL-DA.

6.5 Overall Observations

We can draw a number of conclusions from the experiments. First, the implementation
choices discussed in Section 5 are necessary to make RAIL more practical. In particular,
RAIL-DA, which aggregates data and asks only one query per iteration, proved to be the
most robust among all the variants of RAIL. Second, the choice of the active i.i.d. learner
used for RAIL is important. In particular, performance can be poor when the active learning
algorithm does not take density information into account. Using density weighted query-
by-committee was effective in all of our domains. Third, RAIL-DA proved to be the most
robust and effective active imitation learning algorithm among several baselines in all of
our domains. It outperformed all other baselines in our experiments. Fourth, we found
that CBA is quite sensitive to the threshold adjustment mechanism, and we were unable
to find an alternative mechanism that works across our domains. In the original CBA
paper by Chernova and Veloso (Chernova and Veloso, 2009), CBA was tested only on

5. To plot the learning curve for CBA, for each trial, we took the character accuracy after the last query
and extrapolated it to 300 queries to obtain a curve. The final curve is the average of the extrapolated
curves.
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Figure 7: Active imitation learning results on NETtalk: (a) Stress prediction, L = 1 (b)
Stress prediction, L = 2 (c) Phoneme prediction, L = 1 (d) Phoneme prediction,
L = 2. Character accuracy of the expert is 1.
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Passive Imitation Learning Active Imitation Learning

Non-stationary T ·Np(
ε
T 2 ,

δ
T )

∑T
t=1Na(

ε
T 2 ,

δ
T , d

t
π̂t−1)

Stationary T ·Np(
ε
T 2 , δ)

∑T
t=1Na(

ε
T 3 ,

δ
T , dπ̂t−1)

Table 1: A comparison of the best known label complexities for PAC learning deterministic
stationary and non-stationary policies in the passive and active settings. The label
complexities are for learning policies with regret no more than ε with probability
at least 1 − δ. Np(ε

′, δ′) and Na(ε
′, δ′, D) are label complexities of passive and

active i.i.d. learning respectively with accuracy and reliability parameters ε′ and δ′

and data distribution D. When Na is exponentially smaller than Np on some or all
of the distributions dπ̂t−1 , t = 1 . . . T , then these savings in label complexity in the
i.i.d. setting translate to imitation learning resulting in improved label complexity
of active imitation learning compared to passive.

the driving domain, and in their experiment CBA was initialized with a large amount of
training data. We found that initializing CBA with a larger training set also resulted in
improved performance of CBA in all of our domains. However, this conflicts with our goal of
minimizing the amount of training data required from the expert, and hence we initialized
all learners with the minimum training data required by the SimpleLogistic classifier. This
turned out to be insufficient for CBA to function properly. Fifth, we showed that a more
naive application of active i.i.d. learning in the imitation setting is not always effective.

7. Summary and Future Work

We considered reductions from active imitation learning to active i.i.d. learning, which al-
low for advances in the i.i.d. setting to translate to imitation learning. First, we analyzed
the label complexity of reductions for both non-stationary and stationary policies, showing
the number of queries required for active imitation learning in terms of the active sample
complexity in the i.i.d. setting. These results for the realizable learning setting are sum-
marized in Table 1. In the non-stationary case, the results show that active IL will not be
worse than passive IL provided that the i.i.d. active learning algorithm is guaranteed to be
no worse than passive. Further we can expect significant improvement in query complexity
when the active i.i.d. algorithm is significantly better than the passive i.i.d. learner.

For the case of stationary policies, our current reduction RAIL only guarantees improve-
ment or equivalence to passive IL when there is significant reduction in sample complexity
of i.i.d. active learning over passive learning. While this is often the case in practice, it
leaves an open theoretical problem. If we use an active i.i.d. learner that is guaranteed to
do no worse than passive, then can we find a reduction such that active IL also has that
guarantee?

Our second contribution was to introduced RAIL-DA, a practical variant of the reduction
for stationary policies. RAIL-DA employees data aggregation and incremental learning in
order to address several practical inefficiencies noted for the RAIL algorithm studied in the
analysis. Our experiments showed that RAIL-DA significantly improved over RAIL and
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other variants of RAIL+. Further, we showed that in five domains RAIL-DA significantly
outperformed a number of natural alternatives and the CBA algorithm from prior work.

The work presented in this paper is a first theoretical effort towards analyzing an active
imitation learning approach and showing that it enjoys better label complexity than the
traditional passive approach. In addition to the above open problem, an interesting line of
followup work is to analyze RAIL-DA or other variants of RAIL that use data aggregation.
Further, it is of interest to consider the online active learning setting, where the learner is
embedded in a real environment, rather than having access to a simulator that can be reset.
Such an algorithm might resemble the CBA algorithm, which would continually execute
the current policy and only query the expert when it was uncertain. This is similar to
the traditional QBC active learning algorithm in the i.i.d. setting. The only difference is
that in the imitation learning setting the unlabeled data stream does not come from a fixed
i.i.d. distribution, but rather from the policy being executed. It seems plausible that the
theoretical results for QBC could be extended to the imitation learning setting.

We are also interested in extending the allowed query responses. For example, it is
natural to allow the expert to declare a query as “bad” and refuse to provide an action
label. This is useful in situations where the queries are posed at states that the expert
would rarely or never encounter, and hence may have not natural preference about what
to do. In our bicycle balancing example, these correspond to states where the bicycle is in
an unavoidable fall, and no action can prevent the crash. In such cases, the expert is likely
to be uncertain or agnostic about the action, since the choice does not arise for the expert
or is unimportant. We would like to study how to incorporate the “bad query” response
into the query selection process and update policy parameters based on such responses as
those responses effectively indicate states to be avoided. A first step in this direction has
already been taken, where we used the “bad query” responses within a Bayesian active
learning framework to select queries (Judah et al., 2011). However, the responses were not
incorporated into the learning of policy parameters (or updating the posterior) in that work.

Finally, we would like to apply active imitation learning to other types of imitation
learning applications, e.g., the development of policy learning agents that learn by imitation
of computationally expensive automated experts. For example, given a domain model or
a simulator, automated experts based on various types of search can make near optimal
decisions, if provided enough time. However, generating full trajectories of near-optimal
behavior can be extremely time consuming, and require many trajectories if the learned
policy representation is complex. Active imitation learning could be a viable approach to
speed up the learning of more reactive policies, based on data from such computationally
expensive experts.

It is important to consider usability issues that arise when interacting with human ex-
perts. In particular, it is likely that the cost model of queries studied in this paper (cost of
1 per query) is overly simplistic. For example, it may be less work for an expert to answer
sets of queries about related states/scenarios, rather than arbitrary sets of queries. Under-
standing how to acquire and use such cost models for active learning is an interesting future
direction. Finally, real experts will often not correspond to deterministic policies. Rather,
they may appear to be non-deterministic or stochastic policies. Studying both passive and
active imitation learning in such a setting is an interesting an important direction.
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